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PREFACE

As in most colleges the course in analytic geometry is pre-

ceded by a course in advanced algebra, it appeared desirable

to publish separately those parts of our " Analytic Geometry

and Principles of Algebra " which deal with analytic geometry,

omitting the sections on algebra. This is done in the present

work.

In plane analytic geometry, the idea of function is intro-

duced as early as possible ; and curves of the tovm y =f{x),

where f{x) is a simple polynomial, are discussed even before

the conic sections are treated systematically. This makes it

possible to introduce the idea of the derivative ; but the sec-

tions dealing with the derivative may be omitted.

In the chapters on the conic sections only the most essential

properties of these curves are given in the text ; thus, poles

and polars are discussed only in connection with the circle.

The treatment of solid analytic geometry follows more the

usual lines. But, in view of the application to mechanics, the

idea of the vector is given some prominence ; and the repre-

sentation of a function of two variables by contour lines as

well as by a surface in space is explained and illustrated by

practical examples.

The exercises have been selected with great care in order

not only to furnish sufficient material for practice in algebraic

work, but also to stimulate independent thinking and to point

Hrpf\g^gr*g^M
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out the applications of the theory to concrete problems. The
number of exercises is sufficient to allow the instructor to make
a choice.

ALEXANDER ZIWET.
LOUIS A. HOPKINS.
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PLANE AN^ALYTIC GEOMETRY

CHAPTER I

COORDINATES

1. Location of a Point on a Line. The position of a point

P (Fig. 1) on a line is fully determined by its distance OP
from a fixed point O on the line, if we know on which side of

the point P is situated (to the right or to the left of O in

Fig. 1). Let us agree, for instance, to count distances to the

4-H^t
Fig. 1

right of as positive, and distances to the left of as negative

;

this is indicated in Fig. 1 by the arrowhead which marks the

positive sense of the line.

The fixed point is called the origin. The distance OP,

taken with the sign + if P lies, let us say, on .the right, and

with the sign — when P lies on the opposite side, is called

the abscissa of P.

It is assumed that the unit in which the distances are

measured (inches, feet, miles, etc.) is known. On a geographi-

cal map, or on a plan of a lot or building, this unit is indicated

by the scale. In Fig. 1, the unit of measure is one inch, the

abscissa of P is + 2, that of Q is ^ 1, that of i? is — 1/3.

B 1



2 PLANE ANALYTIC GEOMETRY [I, §2

2. Determination of a Point by its Abscissa. Let us select,

on a given line, an arbitrary origin 0, a unit of measure, and a

definite sense as positive. Then any real number, such as 5,

— 3, 7.35, — V2, regarded as the abscissa of a point P, fully

determines the position of P on the line. Conversely, every

point on the line has one and only one abscissa.

The abscissa of a point is usually denoted by the letter a?,

which, in analytic geometry as in algebra, may represent any

real or complex number.

To represent a real point the abscissa must be a real number.

If in any problem the abscissa » of a point is not a real num-

ber, there exists no real point satisfying the conditions of the

problem.

EXERCISES

1. What is the abscissa of the origin ?

2. With the inch as unit of length, mark on a line the points whose

abscissas are : 3, —2, VS, — 1.26, — \/5, |, — ^.

3. On a railroad line running east and west, if the station B is 20 miles

east of the station A and the station C is 33 miles east of A, what are the

abscissas of A and C for B as origin, the sense eastward being taken as

positive ?

4. On a Fahrenheit thermometer, what is the positive sense ? What
is the unit of measure? What is the meaning of the reading 66°?

What is meant by — 7° ?

6. A water gauge is a vertical post carrying a scale ; the mean water

level is generally taken as origin. If the water stands at + 7 on one day

and at —11 the next day, the unit being the inch, how much has the

water fallen ?

6. If 051, X2 (read : x one, x two) are the abscissas of any two points

Pi, P2 on a given line, show that the abscissa of the midpoint between

Pi and P2 is ^ (xi + X2). Consider separately the cases when Pi, P^ lie

on the same side of the origin and when they lie on opposite sides.
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3. Ratio of Division. A segment AB (Fig. 2) of a straight

line being given, it is shown in elementary geometry how to

find the point C that divides ^

AB in a given ratio 7c. Thus,

if A; = I, the point G such that

AG^2
AB 5

is found as follows. On any

line through A lay off AD = 2 and AE=5', join B and E.

Then the parallel to BE through D meets AB at the required

point C.

Analytically, the problem of dividing a line in a given ratio

is solved as follows. On the line AB (Fig. 3) we choose a

point as origin and assign a positive sense. Then the

abscissas Xi of A and X2 of B are known. To find a point

FiG. 3

which divides AB in the ratio of division k = AC/AB, let us

denote the unknown abscissa of C by x. Then we have

AC^x — x-i^, AB = X2 — x^;

hence the abscissa a; of O must satisfy the condition

^ — Xi __^
•*'2— "^l

whence
X = Xi-\- k {X2 — Xi) ',

or, if we write Ax (read : delta x) for the " difference of the

ic's," i.e. Ax z=x.2— Xi,

x = Xi-\-k ' Ax.

Thus, if the abscissas of A and B are 2 and 7, the abscissas
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of the points that divide AB in the ratios J, ^, f , f are 3, 4^,

8, 9^, respectively. Check these results by geometric con-

struction.

If the segments AC and AB have the same sense, the divi-

sion ratio k is positive. For example, in Fig. 3, the point O
lies between A and B ; hence the division ratio A; is a positive

proper fraction. If the division ratio k is negative, the seg-

ments AC and AB must have opposite sense, so that B and C
lie on the opposite sides of A.

If the abscissas of A and B are again 2 and 7, the abscissa

xoi C when A; = 2, - 1, - 1, - .2 will be 12, - 3, 0, 1, respec-

tively. Illustrate this by a figure, and check by the geometric

construction.

4. Location of a Point in a Plane. To locate a point in

a plane, that is, to determine its position in a plane, we may

proceed as follows. Draw two lines at right angles in the

plane ; on each of these take the point of intersection O as

origin, and assign a definite positive sense to each line, e.g. by

marking each line with an arrowhead. It is usual to mark

the positive sense of one line by affixing the letter x to it, and

the positive sense of the other line by

affixing the letter y to it, as in Fig. 4. ^

These two lines are then called the axes

of coordinates^ or simply the axes. We —o
~

q
~

distinguish them by calling the line Ox the yiq. 4

ic-axis, or axis of abscissas, and the line Oy

the ?/-axis, or axis of ordinates. Now project the point P on

each axis, i.e. let fall the perpendiculars PQ^ PR from P on

the axes. The point Q has the abscissa OQ = x on the axis Ox.

The point R has the abscissa OR = y on the axis Oy. The

distance OQ = RP=x is called the abscissa of P, and

I
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OR = QP= y is called the ordinate of P. The position of the

point P in the plane is fully determined if its abscissa x and

its ordinate y are both given. The two numbers x, y are also

called the coordinates of the point P.

5. Signs of the Coordinates. Quadrants. It is clear

from Fig. 4 that x and y are the perpendicular distances of the

point P from the two axes. It should be observed that each

of these numbers may be positive or

negative, as in § 1. ,
^

n ^r"

—

The two axes divide the plane into
i

four compartments distinguished as in i

trigonometry as the first, second, third, i ^

and fourth quadrants (Fig. 5). It is ^zr
| jn

readily seen that any point in the first p"'

quadrant has both its coordinates posi-

tive. What are the sisrns of the coordi-

1

^t)'

nates in the other quadrants ? What are the coordinates of the

origin ? What are the coordinates of a point on one of the

axes ? It is customary to name the abscissa first and then

the ordinate; thus the point (—3, 5) means the point whose

abscissa is — 3 and whose ordinate is 5.

Every point in the vlanp. hna turn dpfnifp rpnl nura^^fn ao-rrh.

ordinates; conversely, to every pair of real numbers correspoiids

one and only one point of the plane.

Locate the points: (6, -2), (0, 7), (2-V3, |), (-4, 2V2),

(-5,0).

6. Units. It may sometimes be convenient to choose the

unit of measure for the abscissa of a point different from the

unit of measure for the ordinate. Thus, if the same unit, say

one inch, were taken for abscissa and ordinate, the point (3, 48)

might fall beyond the limits of the paper. To avoid this we
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may lay off the ordinate on a scale of i inch. When different

units are used, the unit used on each axis should always be

indicated in the drawing. When nothing is said to the con-

trary, the units for abscissas and ordinates are always under-

stood to be the same.

7. Oblique Axes. The position of a point in a plane can

also be determined with reference to two axes that are not at

right angles ; but the angle w between these

axes must be given (Fig. 6). The abscissa

and the ordinate of the point P are then

the segments OQ = x, OR = y cut off on

the axes by the parallels through P to the

axes. If 0) = ^ TT, i.e. if the axes are at

right angles, we have the case of rectangular coordinates

discussed in §§4, 5. In what follows, the axes are always

taken at right angles unless the contrary is definitely

stated.

8. Distance of a Point from the Origin.

For the distance r=OP (Fig. 7) of the point

P from the origin we have from the right-

angled triangle OQP:
Fig. 7

Fig. 6

^

r= y/x^ -f y^y

where x, y are the coordinates of P.

If the axes are oblique (Fig. 8), with the angle

xOy = CO, we have, from the triangle OQP, in

which the angle at Q is equal to ir — «,* by the

cosine law of trigonometry,
Fig. 8

r — y/x^ + y* — 2 xy cos (ir — «) = Vx- + y^* -f 2 xy cos w.

* In advanced mathematics, angles are generally measured in radians, the

symbol ir denoting an angle of 180^
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Notice that these formulas hold not only when the point P
lies in the first quadrant, but quite generally wherever the

point P may be situated. Draw the figures for several cases.

9. Distance between Two Points. By Fig. 9, the distance

d = PiP2 between two points Pi{xi, y^ and P2(a72> 2/2) can be

found if the coordinates of the two points

are given. For in the triangle P1QP2 we

have

PiQ = 3^2 - a^i ,
QP2 = 2/2 - yi

;

hence F^^ 9

(1) d = v/(a^2-^i)2 + (2/2-2/1)2.

If we write Ax (§ 3) for the " difference of the ic's " and Ay

for the " difference of the y's ", i.e.

Aa; = a;2 — a^i and A?/ = 2/2 — 2/1?

the formula for the distance has the simple form

(2) d = V(Aa?)2 + (A2/)2;

or, in words,

The distance between any two points is equal to the square root

of the sum of the squares of the differences between their corre-

sponding coordinates.

Draw the figure showing the distance between two points

(like Fig. 9) for various positions of these points and show

that the expression for d holds in all cases.

Show that the distance between two points Pi (aji, yi), P2 (X2^ ^2) when
the axes are oblique, with angle w, is

d = \/{X2 - Xl)2+ (^2 - yiY^ + 2(X2 - Xi){y2 - yi) cos (O

= V( Aa;)2 + (A2/)2 + 2 Ax- Ay • cos w.
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10. Ratio of Division. If two points P^ {x^
, y^ and P^ (xo, y^

are given by their coordinates^ the coordinates x, y of any point

Pon the line P1P2 can be found if the division ratio P^P/P^P^, = k

is known in which the point P divides the segment P1P2' Let Qi

,

Q2, Q (Fig. 10), be the projections of P^, P2, P on the axis Ox-,

then the point Q divides Q1Q2 in the same ratio k in which

P divides P1P2' Now as OQi = Xi,

0^2= ^2? OQ = a;, it follows from § 3

that

x=Xi -\-k(x2 — Xi).

y

R
- ^
-A

R,--X 1 1 X
X «r Q q.In the same way we find by projecting

Pi, P2, P on. the axis Oy that

FiQ. 10

y = yi + ^(y2-yi)'

Thus, the coordinates x, y oi P are found expressed in terms

of the coordinates of Pj , Po and the division ratio k. Putting

again X2 — Xi = Ax,y2 — yi=Ay, we may also write

x = Xi-\-k' /iix, y = yi-\-k'Ay.

Here again the student should convince himself that the

formulas hold generally for any position of the two points, by

selecting numerous examples. He should also prove, from a

figure, that the same expressions for the coordinates of the

point P hold for oblique coordinates.

As in § 3, if the division ratio k is negative, the two

segments P1P2 and PiP must have opposite sense, so that

the points P and P2 must lie on opposite sides of the

point Pj.

Find, e.g., the coordinates of the points that divide the seg-

ment joining (— 4, 3) to (6, — 5) in the division ratios k = ^,

k=2, A:=— i, k = —l, and indicate the four points in a

fiGTure.
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11. Midpoint of a Segment. The midpoint P of a segment

P1P2 has for its coordinates the arithmetic means of the corre-

sponding coordinates of Pi and P^ ; that is, if x^
, y^ are the co-

ordinates of Pi, ^2, 2/2 those of Pg) the division ratio being

A; = i the coordinates of the midpoint P are (§ 10)

a; = a?i + 1(0^2 - ajj) = Ka^i + ^2),

2/= 2/i + i(2/2 - 2/1) = }(2/i + 2/2).

EXERCISES

1. With reference to the same set of axes, locate the points (6, 4),

(2, -
i), (- 6.4, - 3.2), (-4, 0), (- 1, 5), (.001, - 4.01).

2. Locate the points (-3,4), (0,-1), (6, - V2), (f^
_ 10|),

(0,a), (a, 6), (3, -2), (-2, V2).

3. If a and h are positive numbers, in what quadrants do the follow-

ing points lie : (a, — &), (6, a), (a, a), (- 6, 6), (—6, — a)?

4. Show that the points (a, &) and («, — 6) are symmetric with

respect to the axis Ox ; that (a, &) and (—a, 6) are symmetric with re-

spect to the axis Oy \ that (a, &) and (— a, — 6) are symmetric with

respect to the origin.

6. In the city of Washington the lettered streets (A street, B street,

etc.) run east and west, the numbered streets (1st street, 2d street, etc.)

north and south, the Capitol being the origin of coordinates. The axes

of coordinates are called avenues, thus, e.gr., 1st street runs one block

east of the Capitol. If the length of a block were 1/10 mile, what would

be the distance from the corner of South C street and East 5th street to

the corner of North Q street and West 14th street ?

6. Prove that the points (6, 2), (0, — 6), (7, 1) lie on a circle whose

center is (3, — 2).

7. A square of side s has its center at the origin and diagonals coin-

cident with the axes ; what are the coordinates of the vertices ? of the

midpoints of the sides ?

8. If a point moves parallel to the axis 0^, which of its coordinates

remains constant ?
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9. In what quadrants can a point lie if its abscissa is negative ? its

ordinate positive ?

10. Find the coordinates of the points which trisect the distance be-

tween the points (1, — 2) and (— 3, 4).

11. To what point must the line segment drawn from (2, —3) to

(—3, 6) be extended so that its length is doubled ? trebled ?

12. The abscissa of a iwint is — 3, its distance from the origin is 5

;

what is its ordinate ?

13. A rectangular house is to be built on a comer lot, the front, 30 ft.

wide, cutting off equal segments on the adjoining streets. If the house is

20 ft. deep, find the coordinates (with respect to the adjoining streets) of

the back comers of the house.

14. A baseball diamond is 90 ft. square and pitcher's plate is 60 ft.

from home plate. Using the foul lines as axes, find the coordinates of

the following positions :

(a) pitcher's plate
;

(6) catcher 8 ft. back of home plate and in line with second base
;

(c) base runner playing 12 ft. from first base
;

(d) third baseman playing midway between pitcher's plate and third

base (before a bunt)

;

(c) right fielder playing 90 ft. from first and second base each.

16. How far does the ball go in Ex. 14 if thrown by third baseman

in position (d) to second base ?

16. If right fielder (Ex. 14) catches a ball in position (e) and throws

it to third base for a double play, how far does the ball go ?

17. A park 600 ft. long and 400 ft. wide has six lights arranged in a

circle about a central light cluster. All the lights are 200 ft. apart, and

the central cluster and two others are in a line parallel to the length of

the park. What are the coordinates of all the Ughts with respect to two

boundary hedges ?

18. With respect to adjoining walks, three trees have coordinates

(30 ft., 8 ft.), (20 ft., 45 ft.), (- 27 ft., 14 ft,), respectively. A tree is to

be planted to form the fourth vertex of a parallelogram; where should it

be placed ? (Three possible positions ; best found by division ratio.)
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12. Area of a Triangle with One Vertex at the Origin.

Let one vertex of a triangle be the origin, and let the other

vertices be Pi(a;„ 2/1) and P2(a^2> 2/2)- Draw through P^ and

P2 lipes parallel to the axes (I'ig. 11). The

area A of the triangle is then obtained by-

subtracting from the area of the circum-

scribed rectangle the areas of the three non-

shaded triangles ; i.e.

A^x^y^ - l^i?/! - |-i»22/2 - K^i -«^2)(2/2 -2/1)

= i(^iy2 - a^22/i)

;

or, in determinant notation,

X, Pi

Fig. 11

X2 2/2

This formula gives the area with the sign -f or — according

as the sense of the motion around the perimeter OP^P^O is

counterclockwise (opposite to the rotation of the hands of a

clock) or clockwise.

13. Translation of Axes. Instead of the origin and the

axes Ox, Oy (Fig. 12), let us select a new origin 0' (read :

prime) and new ax:es O'x', O'y', parallel to the old axes. Then

any point P whose coordinates with reference to the old axes

are OQ = Xj QP= y will have with

reference to the new axes the coordi-

nates 0'Q' = x', Q'P=y'; and the

figure shows that if h, k are the co-

ordinates of the new origin, then

x = x' -]-h,

y = y' + k.

0^

y1

Fig. 12

The change from one set of axes to a new set is called a

transformation of coordinates. In the present case, where the
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new axes are parallel to the old, this transformation can be

said to consist in a translation of the axes.

14. Area of Any Triangle. Let Py{x^, y^), P2(^2)2/2),

P^ix^, 2/3) he the vertices of the triangle (Fig. 13). If we take

one of these vertices, say Pg, as new

origin, with the new axes parallel to the

old, the new coordinates of Pi , Pg will be

:

3/ 2 Xi fl/g, X 2 —~ X2 fl/g,

y\=yi-y3, ^2= 2/2 -2/3.

Hence, by § 12, the area of the triangle

= K^i{y2 - 2/3) + 3:2(2/3 - 2/1)+ 2:3(2/1 - 2/2)]

;

or, in determinant notation,

^=i
^l yi 1

X2 2/2 1

X3 2/3 1

Here as in § 12 the sign of the area is + or — according as

the sense of the motion along the perimeter P1P2P3P1 is coun-

terclockwise.

EXERCISES

1. Find the areas of the triangles having the following vertices :

(a) (1, 3), (5, 2), (4, 6) ; (6) (- 2, 1), (2, - 3), (0, - 6) ;

(c) (a, &), (a, 0), (0, 6) ; (d) (4, 3), (6, - 2), (- 1, 6).

2. Show that the area of the triangle whose vertices are (7, —8),

(—3, 2), (— 5, —4) is four times the area of the triangle formed by-

joining the midpoints of the sides.

3. Find the area of the quadrilateral whose vertices are (2, 3), (— 1,

-1), (-4,2), (-3,6).
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4. Find the area of the triangle whose vertices are (a, 0), (0, &),

(-C, -c).

5. Find the area of~^he triangle (1, 4), (3, -2), (-3, 16). What

does your result show about these points ?

6. Find the area of the triangle (a, 6 + c), (b^ c-\- a), (c, a + &)•

What does the result show whatever the values of a, &, c ?

7. Show that the points (3, 7), (7, 3), (8, 8) are the vertices of an

isosceles triangle. What is its area ? Show that the same is true for the

points (a, 6), (&, a), (c, c), whatever a, 6, c, and find the area.

8. Find the perimeter of the triangle whose vertices are (3, 7), (2,

— 1), (5, 3). Is the triangle scalene ? What is its area ?

9. Show that the area of a quadrilateral whose vertices are (oji, yi),

(a^2, 2/2), (xs, 2/3), (Xi, y^) may be written in the form

A = l

x\ — xz yi — 2/3

X2 — X4 yi — yi

15. Statistics. Related Quantities. If pairs of values

of two related quantities are given, each of these pairs of

values is represented by a point in the plane if the value of

one quantity is represented by the abscissa and that of the

other by the ordinate of the point. A curved line joining

these points gives a vivid idea of the way in which the two

quantities change. Statistics and the results of scientific ex-

periments are often represented in this manner.

EXERCISES

1. The population of the United States, as shown by the census reports,

is approximately as given in the following table :

Teak 1800 '10 '20 '30 '40 '50 '60 '70 '80 '90 1900 '10

Million 4 5 7 10 13 17 23 31 39 50 63 76 92
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Mark the points corresponding to the pairs of numbers (1790, 4),

(1800, 5), etc., on squared paper, representing the time on the horizontal

axis and the population vertically. Connect these points by a curved line.

2. From the figure of Ex. 1, estimate approximately the population of

the United States in 1875 ; in 1905 ; in 1915.

3. From the figure of Ex. 1, estimate approximately when the popula-

tion was 25 millions ; 60 millions ; when it will be 100 millions.

4. Draw a figure to represent the growth of the population of your

own State, from the figures given by the Census Reports.

[Other data suitable for statistical graphs can be found in large quan-

tity in the Census Reports ; in the Crop Reports of the government ; in

the quotations of the market prices of food and of stocks and bonds ; in

the World Almanac ; and in many other books. ]

6. The temperatures on a certain day varied hour by hour as follows

:

A.M. N. P.M.

Time . .

Temp. . .

6

50

7

62

8

55

9

60

10

64

11

67

12

70

1

72

2

74

3

75

4

74

5

72

6

69

7

65

8

60

9

57

Draw a figure to represent these pairs of values.

6. In experiments on stretching an iron bar, the tension t (in tons)

and the elongation E (in thousandths of an inch) were found to be as

follows :

t (in tons)

E (in thousandths of an inch)

1

10

2

19

4

38

6

60

10

103

Draw a figure to represent these pairs of values.

[Other data can be found in books on Physics and Engineering.]

7. By Hooke's law, the elongation ^ of a stretched rod is supposed

to be connected with the tension t by the formula E = c - t^ where c is a

constant. Show that if c = 10, with the units of Ex. 6, the values of E
and t would be nearly the same as those of Ex. 6. Plot the values given

by the formula and compare with the figure of Ex. 6.
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8. The distances through which a body will fall from rest in a vacuum

in a time t are given by the formula s = 16 1'^, approximately, if t is in

seconds and s is in feet. Show that corresponding values of s and t are

2

64

3

144

4

256

6

400

6

576

Draw a figure to represent these pairs of values.

16. Polar Coordinates. The position of a point P in a

plane (Fig. 14) can also be assigned by its distance OP = r

from a fixed point, or pole, 0, and the angle xOP = <^, made
by the line OP with a fixed line Ox, the polar axis. The dis-

tance r is called the radius vector, the angle <^ the polar angle

(or also the vectorial angle, azimuth, ampli- j,

tude, or anomaly) of the point P. The /r^''

radius vector r and the polar angle eft are q
^^^^ je^

called the polar coordinates of P. Fig. 14

Locate the points : (5, | tt), (6, | tt), (2, 140°), (7, 307°),

(V5, tt), (4, 0°).

To obtain for every point in the plane a single definite pair of polar

coordinates it is sufficient to take the radius vector r always positive and

to regard as polar angle the positive angle between and 27r(O^0<27r)
through which the polar axis (regarded as a half-line or ray issuing from

the pole 0) must be turned about the pole in the counterclockwise

sense to pass through P. The only exception is the pole for which

r = 0, while the polar angle is indeterminate.

But it is not necessary to confine the radius vector to positive values

and the polar angle to values between and 2 tt. A single definite point

P will correspond to every pair of real values of r and 0, if we agree that

a negative value of the radius vector means that the distance r is to be

laid off in the negative sense on the polar axis, after being turned through

the angle 0, and that a negative value of <p means that the polar axis

should be turned in the clockwise sense.

The polar angle is then not changed by adding to it any positive or
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negative integral multiple of 2 tt ; and a point whose polar coordinates are

r, can also be described as having the coordinates — r, ^ ± t.

Locate the points

:

(3, -i^), {a, - |,r), (- 5, 75°), (- 3, - 20°).

17. Transformation from Cartesian to Polar Coordinates,

and vice versa. The coordinates OQ = x, QP = y, defined in

§ 4, are called cartesian coordinates, to distinguish them

from the polar coordinates. The term is derived from the

Latin form, Cartesius, of the name of Rene Descartes, who

first applied the method of coordinates systematically (1637),

and thus became the founder of analytic geometry.

The relation between the cartesian and polar coordinates of

one and the same point P appears from V

Fig. 15. We have evidently

:

x = r cos <f>,
,

.
and

y = r8in<f>,

18. Distance between Two Points in Polar Coordinates.

If two points Pi, P2 are given by their polar coordinates, r,,

^ and ra, <^2> the distance d = P^P^ between

them is found from the triangle OP^P^ (Fig. 16),

by the cosine law of trigonometry, if we ob-

serve that the angle at is equal to ± {<t>2—<t>i) '-

y- p

tan
<f}

=z^»
X

^^ X 1 X
d Q

Fia. 15

d = Vri" + ra^ - 2 r,r^ cos {<t>o - <^i).
^

fiq. 16

EXERCISES

1. Find the distances between the points: (2, lir) and (4, fTr);

(a, iir) and (3 a, ^tt).

2. Find the cartesian coordinates of the points (5, ^ir), ("6, — i tt),

(4, i n), (2, I ,r), (7, tt), (6, - x), (4, 0), (- 3, 60°), (- 6, - 90°) .
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3. Find the polar coordinates of the points (VS, 1), (-VS, 1),

(1,-1), (-1,-1), (-a, a).

4. Find an expression for the area of a triangle whose vertices are

(0, 0), (n, 00, and (ra, 02).

5. Find the area of the triangle whose vertices are (n, 0i), {1% 02),

(»*3, 03).

19. Projection of Vectors. A straight line segment AB
of definite length, direction, and sense (indicated by an arrow-

head, pointing from A to B) is called a vector. The projection

A'B' (Figs. 17, 18) of a vector AB on an axis, i.e. on a line I

B

1

1

'^___

^ 1

1

.__±_

1

1

->

A' I B'

Fig. 17

on which a definite sense has been selected as positive, is the

product of the length of the vector AB into the cosine of the angle

between the positive senses of the axis and the vector

:

A'B' = AB cos a.

The positive sense of the axis makes with the vector two angles

whose sum is 2 tt = 360°. As their cosines are the same, it

makes no difference which of

the two angles is used.

With these conventions it is

readily seen that the sum of the

projections of the sides of an

open polygon on any axis is equal

to the projection of the closing side

on the same axis, the sides of the

open polygon being taken in the same sense around the perim-

eter.

c

Thus, in Fig. 19, the vectors P^P^, P^P^, ••• P^Pq are in-
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clined at the angles cti, a2, ••• a^ to the axis I ; the closing line PiP^

makes the angle a with I ; its projection is P'iP'q ; and we have

P1P2 cos tti+PgA cos 02+^3A cos as-\-P^Ps cos u^-^-P^Pq cos a^

= P'lP'e = PiPg cos a.

For, if the abscissas of Pi, P2, ••• Pe measured along I, from

any origin on Z, are Xi, X2, ••• Xg, the projections of the

vectors are X2 — Xi, x^ — X2, etc., so that our equation becomes

the identity

:

X^-Xi + Xs — X2-\-X^-Xs+Xs-X^ + Xe-Xs = Xfi-Xi.

20. Components and Resultants of Vectors. In physics,

forces, velocities, accelerations, etc., are represented by vectors

because such magnitudes have not only a numerical value but

also a definite direction and sense.

According to the parallelogram law of physics, two forces OPi,

OP2, acting on the same particle, are together equivalent to

the single force OP (Eig. 20), whose vector

is the diagonal of the parallelogram formed

with OPi, OP2 as adjacent sides. The same q^.^^^ ^^

law holds for simultaneous velocities and Fiq- 20

accelerations, and for simultaneous or consecutive rectilinear

translations. The vector OP is called the resultant of OPi and

OP2, and the vectors OPi, OP2 are called the components

of OP.

To construct the result-

ant it suffices to lay off from

the extremity of the vector

OPi the vector P^P = OP2

;

the closing line OP is the ^

resultant. This leads at

once to finding the result-

ant OP of any number of Fig. 21
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vectors, by adding the component vectors geometrically, i.e.

putting them together endwise successively, as in Fig. 21,

where the dotted lines need not be drawn.

By § 19, the projection of the resultant on any axis is equal

to the sum of the projections of all the components on the

same axis.

EXERCISES

1. The cartesian coordinates x, y of any point P are the projections of

its radius vector OP on the axes Ox, Oy. (See § 16.)

2. The projection of any vector AB on the axis Ox is the difference

of the abscissas of A and B ; similarly for Oy.

3. A force of 10 lb. is inclined to the horizon at 60° ; find its hori-

zontal and vertical components.

4. A ship sails 40 miles N. 60° E. then 24 miles N. 45° E. How far

is the ship then from its starting point ? How far east ? How far north ?

6. A point moves 5 ft. along one side of an equilateral triangle, then

6 ft. parallel to the second, and finally 8 ft. parallel to the third side.

What is the distance from the starting point ?

6. The sum of the projections of the sides of any closed polygon on any

axis is zero.

7. If three forces acting on a particle are parallel and proportional to

the sides of a triangle, the forces are in equilibrium, i.e. their resultant is

zero. Similarly for any closed polygon.

8. Find the resultant of the forces OPi, OP2, OP3, OP4, OP5, if

the coordinates of Pi, P2, P3, P4, P5, with as origin, are (3, 1),

(1, 2), (-1, 3), (-2, -2), (2, -2). (Resolve each force into its

components along the axes.)

9. If any number of vectors (in the same plane), applied at the ori-

gin, are given by the coordinates x, y of their extremities, the length of

the resultant is = \/(Sx)2 +(2^)2 (where Sa; means the sum of the ab-

scissas, Sy the sum of the ordinates), and its direction makes with Ox an

angle a such that tan a = Sy/Sx.

10. Find the horizontal and vertical components of the velocity of a

ball when moving 200 ft. /sec. at an angle of 30° to the horizon.
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11. Six forces of 1, 2, 3, 4, 5, 6 lb., making angles of 60° each with

the next, are applied at the same point, in a plane ; find their resultant.

12. A particle at one vertex of a square is acted upon by three forces

represented by the vectors from the particle to the other three vertices

;

find the resultant.

21. Geometric Propositions. In using analytic geometry

to prove general geometric propositions, it is generally conven-

ient to select as origin a prominent point in the geometric

figure, and as axes of coordinates prominent lines of the figure.

Example. In any right triangle, the distance from the

vertex of the right angle to the midpoint of the hypotenuse

is equal to half the hypotenuse.

Since this theorem is true, if at all, when the triangle is in

any position, we may place the vertex of the right angle at the

origin and the adjacent sides along the positive axes. Then the

coordinates of the vertices are (0, 0), (a, 0), (0, &), where a and

b are the lengths of the two sides about the right angle.

The length of the hypotenuse is Va^ -j- b^. The midpoint of

the hypotenuse has the coordinates (a/2, 6/2), by § 11. Hence

the distance from this point to the vertex of the right angle

(0, 0) is V(a/2)2+ (6/2)2 ^ i.VoH^- Since this is half the

length of the hypotenuse, the theorem is proved.

Sometimes greater symmetry and elegance is gained by tak-

ing the coordinate system in a general position.

MISCELLANEOUS EXERCISES

1. A regular hexagon of side 1 has its center at the origin and one

diagonal coincident with the axis Ox ; find the coordinates of the vertices.

2. If a square, with each side 6 units in length, is placed with one

vertex at the origin and a diagonal coincident with the axis Ox, what are

the coordinates of the vertices ?

3. If a rectangle, with two sides 3 units in length and two sides

3V3 units in length, is placed with one vertex at the origin and a diagonal
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along the axis Ox, what are the coordinates of the vertices ? There are

two possible positions of the rectangle
;
give the answers in both cases.

4. Show that the points (0, - 1), (- 2, 3), (6, 7), (8, 3) are the

vertices of a parallelogram. Prove that this parallelogram is a rectangle.

5. Show that the points (1, 1), (- 1, - 1), ( + V3, - V3) are the

vertices of an equilateral triangle.

6. Show that the points (6, 6), (3/2, - 3), (-3, 12), (- \S 3) are

the vertices of a parallelogram.

7. Find the radius and the coordinates of the center of the circle pass-

ing through the three points (2, 3), (- 2, 7), (0, 0).

8. The vertices of a triangle are (0, 6), (4, - 3), (— 5, 6). Find the

lengths of the medians and the coordinates of the centroid of the triangle,

i.e. of the intersection of the medians.

Prove the following propositions :

9. The diagonals of any rectangle are equal.

10. The distance between the midpoints of two sides of any triangle is

equal to half the third side.

11. The distance between the midpoints of the non-parallel sides of a

trapezoid is equal to half the sum of the parallel sides.

12. The line segments joining the midpoints of the adjacent sides of a

quadrilateral form a parallelogram.

13. If two medians of a triangle are equal, the triangle is isosceles.

14. In any triangle the sum of the squares of any two sides is equal

to twice the square of the median drawn to the midpoint of the third side

plus half the square of the third side.

15. The line segments joining the midpoints of the opposite sides of

any quadrilateral bisect each other.

16. The sum of the squares of the sides of a quadrilateral is equal to

the sum of the squares of the diagonals plus four times the square of the

line segment joining the midpoints of the diagonals.

17. The difference of the squares of any two sides of a triangle is equal

to the difference of the squares of their projections on the third side.

18. The vertices (a:i, yi), (x^^ 1/2), (xs^ y^) of a triangle being given,

find the centroid (intersection of medians).



CHAPTER II

THE STRAIGHT LINE

M-

22. Line Parallel to an Axis. When the coordinates a;, y

of a point P with reference to given axes Ox, Oy are known,

the position of P in the plane of the axes is determined com-

pletely and uniquely. Suppose now

that only one of the coordinates is

given, say, a; = 3 ; what can be said

about the position of the point P?
It evidently lies somewhere on the

line AB (Fig. 22) that is parallel to

the axis Oy and has the distance 3

from Oy. Every point of the line AB
has an abscissa a; = 3, and every point

whose abscissa is 3 lies on the line AB. For this reason we

say that the equation

a; = 3

represents the line AB; we also say that a; = 3 is the equation

of the line AB.

More generally, the equation x = a, where a is any real

number, represents that parallel to the axis Oy whose distance

from Oy is a. Similarly, the equation y = b represents a

parallel to the axis Ox.

Fig. 22

EXERCISES

Draw the lines represented by the equations

:

1. x=-2. 4. 5 a: = 7.

2. x = 0. 6. y = 0.

3. x = 12.6. 6. 2y=-7.
22

Sx+l =

10-Sy
y=±2.
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23. Line through the Origin. Let us next consider any

line * through the origin 0, such as the line OP in Fig. 23.

The points of this line have the prop- «

erty that the ratio y/x of their coordi-

nates is the same, wherever on this

line the point P be taken. This ratio

is equal to the tangent of the angle a

made by the line with the axis Ox, Fig. 23

i.e. to what we shall call the slope of the line. Let us put

tan a = m
;

then we have, for any point P on this line : y/x = m, i.e.

:

(1) y = mx.

Moreover, for any point Q, not on this line, the ratio y/x

must evidently be different from tan a, i.e. from m. The equa-

tion y = mx is therefore said to represent the line through

whose slope is m; and y = mx is called the equation of this line.

We mean by this statement that the relation y — mx is satis-

fied by the coordinates of every point on the line OP, and only

by the coordinates of the points on this line. Notice in partic-

ular that the coordinates of the origin 0, i.e. a; = 0, y = 0,

satisfy the equation y = mx.

24. Proportional Quantities. Any two values of x are

proportional to the corresponding values ofyiiy= mx. For,

if (a?!, 2/i) and {xz, 2/2) are two pairs of values of x and y that

satisfy (1), we have

yi = mxi, y2 = mx2;
hence, dividing,

2/1/^2 = a;i/iC2-

* For the sake of brevity, a straight line will here in general be spoken of

simply as a line ; a line that is not straight will be called a curve.
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The constant quantity m is called the factor ofpropoHionality.

Many instances occur in mathematics and in the applied

sciences of two quantities related to each other in this man-

ner. It is often said that one quantity y varies as the other

quantity x.

Thus Hooke's Law states that the elongation^ of a stretched

wire or spring varies as the tension t ; that is, E = kt^ where k

is a constant.

Again, the circumference c of a circle varies as the radius r
;

that is,

c = 2 Trr.

EXERCISES

1. Draw each of the lines :

(a)y = 2x. (c)y=-^^x. (e)5x4-3y = 0. (g)y=-x.
(b)y=-3x. (d) 6y = Sx. {f)y = x. (h) x - y = 0.

2. Show that the equation ax -\- by = can be reduced to the form

y = mx, if & T^ 0, and therefore represents a line through the origin.

3. Find the slope of the lines

:

(a) x + y = 0. (c) 3x_- j\y = 0.

(b) x-y = 0. (d) V2 X + y = 0,

4. Draw a line to represent Hooke's Law E = kt, if A; = 10 (see Ex. 7,

p. 14), Let (be represented as horizontal lengths (as is x in § 23) and let

E be represented by vertical lengths (as is y in § 23).

6. Draw a line to represent the relation c = 2 Trr, where c means the

circumference and r the radius of a circle.

6. The number of yards y in a given length varies as the number of

feet / in the same length ; in particular, f=3y. Draw a figure to

represent this relation.

7. If 1 in. = 2.64 cm., show that c = 2.64 i, where c is the number of

centimeters and i is the number of inches in the same length. Draw a

figure.
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25. Slope Form. Finally, consider a line that does not pass

through the origin and is not parallel to either of the axes of

coordinates (Fig. 24) ; let it intersect the axes Ox, Oy at A,

B, respectively, and let P (x, y) be any other point on it. The

figure shows that the slope m of

the line, i.e. the tangent of the .

angle a at which the line is in-

clined to the axis Ox, is

m tana = RP
BR '

or, since RP=:QP-QR= QP-
'

_2/

Fig. 24

m

OB=y.
-b

b3ind BR=OQ=x

y = mx-\- b„

that is,

(2)

where h — OB is called the intercept made by the line on the

axis Oy, or briefly thejji^intercept.

The slope angle a at which the line is inclined to the axis Ox

is always understood as the smallest angle through which the

positive half of the axis Ox must be turned counterclockwise

about the origin to become parallel to the line.

26. Equation of a Line. On the line AB of Fig. 24 take

any other point P' -, let its coordinates be x', y', and show that

y' = nnx' + b.

Take the point P* (x/ y') outside the line AB and show that

the equation y = mx -f 6 is not satisfied by the coordinates x',

y' of such a point.

For these reasons the equation y = mx + & is said to represent

the line whose y4ntercept is b and whose slope is m; it is also

called the equation of this line. The ^/-intercept OB = b and

the slope m = tan a together fully determine the line.
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Every line of the plane can he represented by an equation of the

form
y = mx + b,

excepting the lines parallel to the axis Oy. When the line be-

comes parallel to the axis Oy, both its slope m and its y-inter-

cept b become infinite. We have seen in § 22 that the equa-

tion of a line parallel to the axis Oy is of the form x — a.

Reduce the equation 3x—2y=5 to the form y = mx + b and

sketch the line.

EXERCISES

1. Sketch the lines whose y-intercept is 6 = 2 and whose slopes are

in = i, 3, 0, — f ; write down their equations. v

2. Sketch the lines whose slope is m = 4/3 and whose y-intercepts are

0, 1, 2, 5, — 1, — 2, — 6, — 12.2, and write down their equations.

3. Sketch the lines whose equations are

:

(a) y=2x+S. (c) y=x-^. (e) x-y=l. (gr) 7a;-y+12=0.

(6) y=-ia;+L (d) x-^y= l. (/) x-2y-\-2=0. (h) 4a;+3y+5=0.

4. Do the points (1, 5), (-2, -1), (3, 7) lie on the hne y=2x-\-S ?

5. A cistern that already contained 300 gallons of water is filled at the

rate of 100 gallons per hour. Show that the amount A of water in the

cistern n hours after filling begins is ^ = 100 n +300. Draw a figure to

represent this relation, plotting the values of A vertically, with 1 vertical

space = 100 gallons.

6. In experiments with a pulley block, the pull p in lbs., required to

lift a load I in lbs., was found to be expressed by the equation |>=. 16 1-\-2.

Draw this line. How much pull is required to operate the pulley with no

load (i.e. when Z = 0) ?

7. The readings of a gas meter being tested, T, were found in compari-

son with those of a standard gas meter S, and the two readings satisfied

the equation T = SOO + 1.2 S. Draw a figure. What was the reading

T when the reading S was zero ? What is the meaning of the slope of

the line in the figure ?
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27. Parallel and Perpendicular Lines. Two lines

y = m-ipc 4- 6i , y = m<^ + &2

are obviously parallel if they have the same slope, i.e. if

(3) mi = m^.

Two lines y = m-^x -\-bi, y = m^ + h^ are perpendicular if the

slope of one is equal to minus the reciprocal of the slope of

the other, i.e. if

(4) mYm2 = — 1.

For if mj = tan «! , mg = tan «£ , the condition that m^m2 = — 1

gives tan a2 = — 1/tan Oi = — cot «! , whence otg = «i + i t.

EXERCISES

1. Write down the equation of any line : (a) parallel to y = 3 ic — 2,

(6) perpendicular to y = 3 x — 2.

2. Show that the parallel to y = Zx — 2 through the origin is y = 3 x.

3. Show that the perpendicular to y = 3 x — 2 through the origin is

y=-\x.

4. For what value of h does the line y = 3 a; + & pass through the

point (4, 1) ? Find the parallel to ?/ = 3 x — 2 through the point (4, 1).

6. Find the parallel to y = 5 a; + 1 through the point (2, 3).

6. Find the perpendicular to y = 2x — \ through the point (1, 4).

7. What is the geometrical meaning of 6i = 62 in the equations

y = m\x + 61 , y = mix + &2 ?

8. Two water meters are attached to the same water pipe and the water

is allowed to flow steadily through the pipe. The readings B\ and Bi of the

two meters are found to be connected with the time t by means of the

equations
i?i = 2.5f, i?2 = 2.5« + 150,

where i?i and ^2 are measured in cubic feet and t is measured in seconds.

Show that the Unes that represent these equations are parallel. What

is the meaning of this fact ?

9. The equations connecting the pull p required to lift a load w is

found for two pulley blocks to be

Pi = .05w> 4- 2, Pi = .05w + 1.5

Show that the hnes representing these equations are parallel. Explain.
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10. The equations connecting the pull p required to lift a load w is

found for two pulley blocks to be

Pi = .15w + 1.5, p2 = .05w> + 1.5.

Show that the lines representing these equations are not parallel, but

that the values of pi and p2 are equal when lo = 0. Explain.

28. Linear Function. The equation y = mx-\-b, when m
and b are given, assigns to every value of x one and only one

definite value of y. This is often expressed by saying that

mx -|- 6 is a function of x ; and as the expression mx + 5 is of

the first degree in Xj it is called Si function of the first degree or,

owing to its geometrical meaning, a linear function of x.

Examples of functions of x that are not linear are 3 a* — 5,

aa^ + bx-^Cf x{x — l), 1/a;, sin a;, 10*, etc. The equations

y = 30^ — 5, y = ax^ -\- bx -{• c, etc., represent, as we shall see

later, not straight lines but curves.

The linear function y = nix -h b, being the most simple kind

of function, occurs very often in the applications. Notice that

the constant b is the value of the function for x = 0. The con-

stant m is the rate of change of y with respect to x.

29. Illustrations. Example 1. A man, on a certain date,

has $ 10 in bank ; he deposits $ 3 at the end of every week

;

how much has he in bank x weeks after date ?

Denoting by y the number of dollars in bank, we have

2^ = 3a; + 10.

His deposit at any time a; is a linear function of x. Notice

that the coefficient of x gives the rate of increase of this de-

posit ; in the graph this is the slope of the line.

Example 2. Water freezes at 0° C. and 32° F. ; it boils at

100° C. and at 212° F. ; assuming that mercury expands uni-

formly, i.e. proportionally to the temperature, and denoting



II, § 29] THE STRAIGHT LINE 29

by X any temperature in Centigrade degrees, by y the same

temperature in Fahrenheit degrees, we have

y-32 _ 212-32_9 . „_8j,,32

If the line represented by this equation be drawn accurately,

on a sufficiently large scale, it could be used to convert centi-

grade temperature into Fahrenheit temperature, and vice versa.

Example 3. A rubber band, 1 ft. long, is found to stretch

1 in. by a suspended mass of 1 lb. Let the suspended mass

be increased by 1 oz., 2 oz., etc., and let the corresponding

lengths of the band be measured. Plotting the masses as ab-

scissas and the lengths of the band as ordinates, it will be

found that the points (x, y) lie very nearly on a straight line

whose equation is y = ^^x-\-l. The experimental fact that

the points lie on a straight line, i.e. that the function is linear,

means that the extension, 2/
— 1, is proportional to the tension,

i.e. to the weight of the suspended mass x (Hooke's Law).

Notice that only the part of the line in the first quadrant,

and indeed only a portion of this, has a physical meaning.

Can this range be extended by using a spiral steel spring ?

Example 4. When a point P moves along a line so as to

describe always equal spaces in equal times, its motion is called

uniform. The spaces passed over are then proportional to the

times in which they are described, and the coefficient of pro-

portionality, i.e. the ratio of the distance to the time, is called

the velocity v of the uniform motion. If at the time ^ = the

moving point is at the distance Sq, and at the time t at the dis-

tance s, from the origin, then

S = So + vt.

Thus, in uniform motion, the distance s is a linear function of

the time t, and the coefficient of t is the speed : v= (s— s^/t.
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EXERCISES

1. If the constants m and b (§28) are given numerically, any number

of points of the line can be located by arbitrarily assigning to the ab-

scissa X any series of values and computing from the function the corre-

sponding values of the ordinates. This process is known as plotting a

line by points. Two points are sufficient to determine the line.

Plot by points the following functions

:

(a) y = ^x, {b)y = 2x-5, (c)2/=-3x + 6,

(d)y=-^x-i, (e)y = x(ix-l), {f)y = x\

{g)y = x\ ih)y = 2'.

2. Draw the line represented by the equation y = fx + 32 of Ex-

ample 2, § 29. What is its slope ? What is the y-intercept ? What is

the meaning of each of these quantities if y and x represent the tempera-

tures in Fahrenheit and in Centigrade measure, respectively ?

3. Represent the equation y = ^^ x + 1 of Example 3, § 29, by a figure.

What is the meaning of the y-intercept ?

4. Draw the line 8 = SQ + vt ot Example 4, § 29, for the values Sq = 10,

V = 3. What is the meaning of t) ? Show that the speed v may be

thought of as the rate of increase of s per second.

5. If, in the preceding exercise, v be given a value greater than 3,

how does the new line compare with the one just drawn ?

6. If, in Ex. 4, v is given the value 3, and Sq several different values,

show that the lines represented by the equation are parallel. Explain.

7. In experiments on the temperatures at various depths in a mine,

the temperature (Centigrade) T was found to be connected with the

depth d by the equation r=G0 + .01^, where d is measured in feet.

Draw a figure to represent this equation. Show that the rate of increase

of the temperature was 1° per hundred feet.

8. In experiments on a pulley block, the pull p (in lb.) required to

lift a weight w (in lb.) was found to be j9 = .03 w> + 0.5. Show that the

rate of increase of j3 is 8 lb. per hundredweight increase in w.

9. The velocity tj of a body falling from rest is proportional to the

time: V = gt, where.gr is a constant (about 32 in English units). If the

body is thrown down with an initial velocity t?o, the velocity at any time

tis V = Vq-{-



II, §30] THE STRAIGHT LINE 31

Draw a figure to represent this equation for g = 32, v^ = 10. Show

that g is the rate of increase of the velocity (called the acceleration),

30. General Linear Equation. The equation

in which. Ay B, C are any real numbers, is called the general

equation of the first degree in x and y. The coefficients A, B, G
are called the constants of the equation ; x, y are called the

variables. It is assumed that A and B are not both zero.

The terms Ax and By are of the first degree ; the term C is

said to be of degree zero because it might be written in the

form Csfi ; this term C is also called the constant term.

Every equation of the first degree,

(5) Ax-{^By ^ C=0,
in which A and B are not both zero, represents a straight line;

and conversely, every straight line can be represented by such an

equation. For this reason, every equation of the first degree

is called a linear equation.

The first part of this fundamental proposition follows from

the fact that, when B is not equal to zero, the equation can be

reduced to the form y = mx + 6 by dividing both sides by B
;

and we know that y = mx + b represents a line (§ 25). When
B is equal to zero, the equation reduces to the form x = a^

which also represents a line (§ 22).

The second part of the theorem follows from the fact that

the equations which we have found in the preceding articles

for any line are all particular cases of the equation

Ax -\- By +0=0.
This equation still expresses the same relation between x

and y when multiplied by any constant factor, not zero. Thus,

any one of the constants A, B, C, if not zero, can be reduced

to 1 by dividing both sides of the equation by this constant.
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The equation is therefore said to contain only two (not three)

essential constants.

31. Conditions for Parallelism and for Perpendicularity.

It is easy to recognize whether two lines whose equations are

Ax + By -\-C=0 and A'x -f- B'y + C" = are parallel or per-

pendicular. The lines are parallel if they have the same slope7\

and they are perpendicular (§ 27) if the product of their slopes

is equal to —1. The slopes of our lines are — A/B and

— A/B' ; hence these lines are parallel if — A/B = — A!/Bf,

i'e. if A.B = A''.B'',

and they are perpendicular if

A A
b' B ,

= -1^ i.e. if AA' -hBB' = 0.

32. Intercept Form. If the constant term C in a linear

equation is zero, the equation represents a line through the

origin. For, the coordinates (0, 0) of the origin satisfy the

equation Ax + By = 0.

If the constant terra C is not equal to zero, the equation

Ax -{- By -\- C=0 can be divided by (7; it then reduces to the

form A , B , ^ n—X H— v + 1 =0.
C

If A and B are both different from zero, this can be written

:

-C/A' - C/B

or putting — C/A = a, — C/B = b

:

(6) a o

The conditions A=^0, B =^ mean fig. 25

evidently that the line is not parallel to either of the axes.

Therefore the equation of any line, not passing through the
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origin, and not parallel to either axis, can be written in tlie

form (6). With y = this equation gives x=: a; with x =
it gives y = b. Thus

are the intercepts (Fig. 25) made by the line on the axes Ox,

Oy, respectively (see § 25).

EXERCISES

1. Write down the equations of the line whose . intercepts on the

axes Ox, Oy are 5 and — 3, respectively ; the line whose intercepts are

—
I and 7 ; the line whose intercepts are — 1 and — |. Sketch each of

the lines and reduce each of the equations to the form Ax+By-\- (7=0, so

that A, B, C are integers.

2. Find the intercepts of the lines : Sx — 2y = l,x-{-Ty-\-l=0,

— Sx+ly — 5 = 0. Try to read off the values of the intercepts directly

from these equations as they stand.

3. In Ex. 2, find the slopes of the lines.

4. Prove (6), § 32 by equality of areas, after clearing of fractions.

6. What is the equation of the axis Oy ? of the axis Ox ?

6. What is the value of B such that the line represented by the equa-

tion 4:X + By — li = passes through the point (—6, 17).

7. What is the value of A such that the line Ax i-l y=10 has its

oj-intercept equal to — 8 ?

8. Reduce each of the following equations to the intercept form (6)

,

and draw the lines :

(a) 3 X - 5 ?/ - 16 = 0. (b) X -\- ^ y -\- 1 = 0.

4x-_3j^^-6^2 (^d) 5x=:Sx + y-10.

9. Reduce the equations of Ex. 8 to the slope form (2), § 25.

10. Find the equation of the line of slope 6 passing through the point

(6, - 5).

D
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11. Show that the points (- 1, - 7), (i, - 3), (2, 2), (-2, - 10)

lie on the same line,

12. Find the area of the triangle formed by the lines x -\- y = 0,

x — y = OfX — a = 0.

13. Show that the line 4(aj — a) -f- 5(y — 6) = is perpendicular to the

line 5x — 4y — 10 = and passes through the point (a, b).

14. A line has equal positive intercepts and passes through (—5, 14).

What is its equation ? its slope ?

16. If a line through the point (6, 7) has the slope 4, what is its

y-intercept ? its x-intercept ?

16. The Reaumur thermometer is graduated so that water freezes at

O'^ and boils at SO*^- Draw the line that represents the reading i? of the

Reaumur thermometer as a function of the corresponding reading C of

the Centigrade thermometer.

17. Express the value of a note of $ 1000 at the end of the first year as

a function of the rate of interest. At 6 % simple interest its value is what

function of the time in years ?

33. Line through One Point. To find the line of given

slope 7% through a given point Pi{xi, yi), observe that the

equation must be of the form (2), viz.

since this line has the slope m^. If this line is to pass through

the given point, the coordinates ajj, yi must satisfy this equa-

tion, i.e. we must have

Vi = iriiXi + h.

This equation determines b, and the value of b so found might

be substituted in the preceding equation. But we can eliminate

b more readily between the two equations by subtracting the

latter from the former. This gives

as the equation of the line of slope mj through Pi(x^, y^.
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The problem of finding a line through a given point parallel^

or perpendicular, to a given line is merely a particular case of

the problem just solved, since the slope of the required line can

be found from the equation of the given line (§ 27). If the

slope of the given line is m^ = tan a^, the slope of any parallel

line is also m^, and the slope of any line perpendicular to it is

1
mg = tan (a^ + ^tt) = — cot Wj = —

m,

34. Line through Two Points, To find the line through two

given points, Pi{x^, Pi), P^ix^, y^, observe (Fig. 26) that the

slope of the required line is evi-

dently

m, =_ y2-yi _^y
Xa Xi Ax

if, as in § 9, we denote by Ax, Ay
the projections of P^Pz on Ox, Oy;

and as the line is to pass through (x^, y{), we find its equation

by § 33 as

y-yi = y2-yi
Xt> — 3/1

or y-yi = ^{x
Ax

(x - X,),

0.

The equation of the line through two given points (xi, yi),

(^2j 2/2) can also be written in the determinant form

X y 1

xi yi 1 =0,

^2 2/2 1

which (§ 14) means that the point (x, y) is such as to form

with the given points a triangle of zero area. By expanding

the determinant it can be shown that this equation agrees with

the preceding equation.
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EXERCISES

1. Find the equation of the line through the point (—7, 2) parallel to

the line y = Sx.

2. Show that the points (4, — 3), (— 5, 2), (5, 20) are the vertices of

a right triangle.

3. Find the equation of the line through the point (—6, —3) which

makes an angle of 30° with the axis Ox ;
30° with the axis Oy.

4. Does the line of slope | through the point (4, 3) pass through the

point (-5, -4) ?

6. Find the equation of the line through the point (— 2, 1) parallel to

the line through the points (4, 2) and (—3, — 2).

6. Find the equations of the lines through the origin which trisect

that portion of the line 6 x — 6 y = 60 which lies in the fourth quadrant.

7. What are the intercepts of the line through the points (2, — 3),

C-5,4)?

8. Show that the equation of the line through the point (a, b) per-

pendicular to the line Ax + By -}- C = ia (x — a)/A = (y — bys.

9. Find the equations of the diagonals of the rectangle formed by the

lines x-{-a = 0, x — b = 0, y + c = 0, y — d = 0.

10. Find the equation of the perpendicular bisector of the line joining

the points (4, — 5) and (—3, 2). Show that any point on it is equally

distant from each of the two given points.

11. Find the equation of the line perpendicular to the line Ax— Sy-\-G=0

that passes through the midpoint of (— 4, 7) and (2, 2).

12. What are the coordinates of a point equidistant from the points

(2, — 3) and (— 5, 0) and such that the line joining the point to the origin

has a slope 1 ?

13. In an experiment with a pulley-block it is assumed that the rela-

tion between the load I and the pull p required to lift it is linear. Find

the relation if p = 8 when I = 100, and p = 12 when I = 200.

14. In an experiment in stretching a brass wire it is assumed that the

elongation E is connected with the tension t by means of a linear relation.

Find this relation if i = 18 lb. when E = A in., and < = 58 lb. when

^ = .3 in.



CHAPTER III

RELATIONS BETWEEN TWO OR MORE LINES

35. Intersection of Two Lines. The point of intersection

of any two lines is found by solving the equations of the lines as

simultaneous equations. For, the coordinates of the point of

intersection must satisfy each of the two equations, since this

point lies on each of the two lines ; and it is the only point

having this property. Thus, by solving the equations

3 a; + 5^-34 = 0,

we find X = S, y = 5] hence (3, 5) is the point of intersection

of the two lines represented by these equations.

36. Particular Cases. The equations of any two lines being

given, say

(1) aix + hy = fci,

a^x -f- 622/ = ^2)

we find by the usual method, that is, first multiplying by 62? &i

and subtracting, then multiplying by 02, ai and subtracting

:

(2) , (ai&2 — a2bi)x = fci&2 — ^2^)

{a^2 — <^^i)y = GbJ^2 — Ct2^1«

The expression aih^ — a^bi is called the determinant of the

equations. Two cases must be distinguished according as this

determinant is :?i: or = 0.

(a) If a^2 — <^2^i =9^ ^> which means by § 31 that the lines are

not parallel, we can divide the equations (2) by this determi-

nant and thus find x and y. If, in particular, ki and k2 are both

37
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zero, tiiat is, if the equations (1) are homogeneous and hence

represent two lines through the origin, we find from (2) a; =
and 2/ = 0, as was to be expected.

(6) If ai&2 — ct2^i = 0, that is, if the lines (1) are parallel, we

cannot in (2) divide by 0162 — (h^i ; the equations (2) then

become
0'X = ^162 — k2bif

. 2/ = aik2 — 02^1,

and cannot be satisfied by any values of x and y unless the

right-hand members are both zero. In the latter case we have

rt'2 ^ ^2

that is, the second equation is merely a multiple of the first.

In this case the two equations (1) represent the same line and

have therefore all points in common.

EXERCISES

1. Find the coordinates of the points of intersection of the following

lines ; and check by a sketch :

(a') J5x-7 2/+ ll=0, ,^. f 3x-}-2y=0, ,. f 2.4a;+3.1 y= 4.6,

^^ [3ic+2y-12=0. ^^ [6x-4y+4=0. ^^
[ .8x + 2y = 6.2.

2. Do the following pairs of lines intersect, or are they parallel or

coincident ?

. . f3a;-6y-8=0, ... f2x-6y-4=0, , . f x + iy = 0,

^^
I
x-2y+l = 0. ^^

[ x-3y-2=0. ^^ |2x + 3y = 0.

3. Show that the condition that the three lines Ax -{- By + (7=0,

A'x 4- B'y + C" = 0, A"x + B"y + C" = meet at a point isABC
A' B' C =0.

A^- B" C"

4. Show that the straight lines 3x + y — 1=0, jc-3y + 13 = 0,

2x — y -^6 = have a common point.
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6. Show that the lines joining the midpoints of the sides of any tri-

angle divide the triangle into four equal triangles.

6. Show that the altitudes of any triangle meet in a point.

7. Show that the medians of any triangle meet in a point.

8. Show that the line through the origin perpendicular to the line

through the points (a, 0) and (0, b) meets the lines through the points

(a, 0\, {—b, b) and (0, &), (a, -va) in a common point.

Xejt. &XX M^, y-o -^
37. Angle between Two Lines. We shall understand by

the angle (/, l')= 6 between two lines I and V the least angle

through which I must be turned coun-

terclockwise about the point of inter-

section to come to coincidence with V.

This angle is equal to the differ-

ence of the slope angles a, a' (Fig. 27)

of the two lines. Thus, if a' > a, we

have 6 = a' — a, since a' is the exterior Fig. 27

angle of a triangle, two of whose interior angles are a and 6,

It follows that

/o\ i. /I i. / f \ tan a' — tana.
(3) tan 6 = tan (a' — a)= •

^ ^ ^ ^ 1 H- tan a tan a'

If the equations of I and V are

y = mx -^ b, y = m'x -|- 6',

respectively, we have tan a = m, tan «' = m' ; hence

(4) t^ne^^^^^^^r
^ ^

1 -f mm'

If the equations of I and Z' are

Ax -\- By + 0=0,
A'x + B'y + C" = 0,

respectively, we have tan a = — A/B, tan a' = — A'/B' ; hence

AB' - A'B
(5) tan 6 =

AA! + BB'
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38. It follows, in particular, that the two lines I and V, § 37,

are parallel if and only if

m' = m, or AB' - A'B = ;

and they are perpendicular to each other if and only if
"^

m' = --,ovAA' + BB' =0.
m

(Compare §§27, 31.) Hence, to write down the equation of

a line parallel to a given line, replace the constant term by an

arbitrary constant ; to write down the equation of a line per-

pendicular to a given line, interchange the coefficients of x and

y, changing the sign of one of them, and replace the constant

term by an arbitrary constant.

EXERCISES

1. Determine whether the following pairs of lines are parallel or per-

pendicular : Sx + 2y-Q = 0, 2a;-3y + 4 = 0; 6a; + 3y-6 = 0,

10x + 6y + 2 = 0;2ic-f6y-14=0, 8a;-3y + 6=0.

2. Find the point of intersection of the line 6a; + 8y-f-17 = with its

X)erpendicular through the origin.

3. Find the point of intersection of the lines through the points (6, —2)

and (0, 2), and (4, 6) and (- 1, -4).

4. Find the perpendicular bisector of the line-seginent joining the

point (3, 4) to the point of intersection of the lines 2x — y-\-l = and

3 x + y - 16 = 0.

6. Find the lines through the point of intersection of the lines 5 x— y =0,

x-t-7y — 9 = and perpendicular to them.

6. Find the area of the triangle formed by the lines 3 a; + 4 y = 8,

6 a; — 5 2/ = 30, and x = 0.

7. Find the area of the triangle formed by the lines a; + y — 1 = 0,

2 X + y + 6 = 0, and X - 2 y - 10 = 0.

8. Find the point of intersection of the lines

a ha
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9. Find the area of the triangle formed by the lines y = m\X + 6i,

y = mix, + 62 and the axis Ox.

10. The vertices of a triangle are (5, - 4), (— 3, 2), (7,6). Find the

equations of the medians and their point of intersection.

11. Find the angle between the lines 4 x— 3 y—6=0 and x—1 1/+6=0.

12. Find the tangent of the angle between the lines (a) 4ic—3y+6=0
and9a; + 2y-8 = 0; (6) 3a;4-6y- 11 = and a; + 2y-3 = 0.

13. Find the two lines through the point (6, 10) inclined at 45° to

the line 3 a; - 2 ?/ - 12 = 0.

14. Find the lines through the point (— 3, 7) such that the tangent of

the angle between each of these lines and the line 6a; — 2y + ll=0isJ.

15. Show that the angle between the lines Ax + By + = and

{A + B)x-(A-B)y + D = is 45°.

16. Find the lines which make an angle of 45° with the line

4x — 7 y + 6 =0 and bisect the portion of it intercepted by the axes.

17. The hypotenuse of an isosceles right-angled triangle lies on the line

3a; — 6y— 17=0. The origin is one vertex ; what are the others ?

39. Polar Equation of Line. The position of a line in the

plane is fully determined by the length p = ON (Fig. 28) of the

perpendicular let fall from the origin on

the line and the angle
ft
= xOJSf made by

this perpendicular with the axis Ox.

Then p and ft are evidently the polar

coordinates of the point -A'' (§ 16). Let

P be any point of the line and OP= r,

xOP=
<f>

its polar coordinates. As the

projection of OP on the perpendicular

ON is equal to ON, and the angle NOP —
<f>
—

ft,
we have

(6) rcos(<f>-ft)=p.

This is the equation of the line NP in polar coordinates.
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40. Normal Form. The last equation can be transformed to

Cartesian coordinates by expanding the cosine :

r cos </> cos )8 + r sin <^ sin )3 =p

and observing (§ 17) that r cos </> = «, r sin </> = ?/ ; the equation

then becomes

(7) xco8p+ y8inp=:p.

This equation, which is called the normal form of the equation

of the line, can be read off directly from the figure ; it means

that the sum of the projections of x and y on the perpendicular

to the line is equal to the projection of r (§ 20).

Observe that in the normal form (7) the number p is always

positive, being the distance of the line from the origin, or the

radius vector of the point N. Hence x cos fi-\-ysin ft is always

positive ; this also appears by considering that xcos (S-^y sin /?

is the projection of the radius vector OP on ON, and that this

radius vector makes with ON an angle that cannot be greater

than a right angle. ,

The angle p = xON is, as a polar angle (§ 16), always under-

stood to be the angle through which the axis Ox must be turned

counterclockwise about the origin to make it coincide with ON;
it can therefore have any value from to 2 tt. By drawing the

parallel to the line NP through the origin it is readily seen

that, if a is the slope angle of the line NP, we have

fi
= a-{-^Tr or ^ = a + |7r

according as the line lies on one side of the origin or the other,

angles differing by 2 tt being regarded as equivalent. Thus, in

Fig. 28, a = 120°, /5 = a + | tt = 120° + 270° = 390°, which is

equivalent to 30°. For a parallel on the opposite side of the

origin we should have y8 = «+ i tt = 120° + 90° = 210°.
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41. Reduction to Normal Form. The equation

Ax-{-By+C=0

is in general not of the form (7), since in the latter equation

the coefficients of x and y, being the cosine and sine of an

angle, have the property that the sum of their squares is equal

to 1, while in the former equation the sum of the squares of

A and B is in general not equal to 1. But the general equation

Ax + By-^C=0

can be reduced to the normal form (7) by multiplying it by

a factor k properly chosen ; we know (§ 30) that the equation

kAx + kBy + kO=0
represents the same line as does the equation Ax-{-By+C=0.

Now if we select k so that

kA = cos p, kB = sin /3, kC=—p,
the equation Ax -{- By -{- G= reduces to the normal form

X cos p -{-y sin y3 — p = 0. The first two conditions give

k^A^ + fc2jB2 ^ cos2 p + sin2 yS = 1,

whence A; = ±
yjA^ + B^ ^

Since the right-hand member p in the normal form (7) is posi-

tive, the sign of the square root must be selected so that kC
becomes negative. We have therefore the rule :

To reduce the general equation Ax -\-By -\- C =0 to the normal

form
xcos p -\-y sin /3 —p= 0,

divide by — VA^ + B^ when C is positive and by -{-\/AF+^

when C is negative.

Then the coefficients of x and y will be cos ft sin /3, respec-

tively, and the constant term will be the distance p of the line

from the origin.
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Thus, to reduce Sx-\-2y-\-5 = 0to the normal form, divide

by -V3M^= -Vl3; this gives

cosy8 = =, smy8 = z=j —p =
Vl3' ' Vl3' ^ V13'

i.e. the normal form is

3
:2/
=

V13 Vl3 V13

The perpendicular to the line from the origin has the length

6/Vl3 ; and as both cos ft and sin ft are negative, this perpen-

dicular lies in the third quadrant. Draw the line.

Reduce the equation 3x-{-2y — 5 — 0to the normal form.

42. Distance of a Point from a Line. If, in Fig. 28, we

take instead of a point P on the line any point P^ {xi, y^)

not on the line (Fig. 29), the expression

Xi cos /3 + yi sin p is still the projection on

ON (produced if necessary) of the radius

vector OPi. But this projection OS differs

from the normal ON= p to the line. The

figure shows that the difference

Xi cos p + yisin p ^ p = OS — 0N= NS fio. 29

is equal to the distance NiPi of the point P^ from the line.

Thus, to find the distance of any point P^ (xi, yi) from a line

whose equation is given in the normal form

xcos p + ysinp — p= 0,

it suffices to substitute in the left-hand member of this equa-

tion for Xf y the coordinates x^, y^ of the point Pj. The expression

Xicos p + yisin p —p
then represents the distance of P^ from the line.

If this expression is negative, the point Pi lies on the same

side of the line as does the origin ; if it is positive, the point
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Pi lies on the opposite side of the line. Any line thus divides the

plane into two regions which we may call the positive and nega-

tive regions ; that in which the origin lies is the negative region.

To find the distance of a point P^ (aji, ^i) from a line given in

the general form
Ax + By+C=0,

we have only to reduce the equation to the normal form (§ 41)

and then apply the rule given above. Thus the distance is

Ax^ 4- By^ + O ^^ Ax^±ByjJ-C_

according as C is positive or negative.

43. Bisector of an Angle. To find the bisectors of the

angles between two lines given in the normal form

xGos ft-\-y sin ^8 —p = 0,

a; cos /?' + ?/ sin ^' — p' = 0,

observe that for any point on either bisector its distances from

the two lines must be equal in absolute value. Hence the

equations of the bisectors are

xGos ^-{-ysm (i—p=±(x cos /3' -\-y sin /8' —p').

To distinguish the two bisectors, ob-

serve that for the bisector of that pair

of vertical angles which contains the

origin (Fig. 30) the perpendicular dis-

tances are, in one angle both positive,

in the other both negative ; hence the

plus sign gives this bisector.

If the equations of the lines are

given in the general form

Ax-^By-^C = 0, A'x+B'y-[-C' = 0,

first reduce the equations to the normal form, and then apply

the previous rule.

N^ / /

N fv
Xn—/''>-'
\ "n

~\\
1 \/ 1

^
^ 1

^x
• / /

/
1 '

Fig. 30
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EXERCISES

1. Draw the lines represented by the following equations :

(a) r cos (0 - ^ ir) = 6. (e) r cos (0 + f tt) = 3.

(6) r cos (0 — t) = 4. (/) r sin (0 - ^ tt) = 8.

(c) r cos = 10. ($r) r sin (0 + | ir) = 7.

(d) r sin = 5. (Ji) r cos (0 — | tt) = 0.

2. In polar coordinates, find the equations of the lines : (a) parallel to

and at the distance 6 from the polar axis (above and below)
; (6) per-

pendicular to the polar axis and at the distance 4 from the pole (to the

right and left)
;

(c) inclined at an angle of ^ tt to the polar axis and at

the distance 12 from the pole.

3. Express in polar coordinates the sides of the rectangle ABC it

OA = 6 and AB = 9, OA being taken as polar axis.

4. What lines are represented by (7) when p is constant, while /3

varies from zero to 2 tt ? What lines when p varies while /3 remains con-

stant?

6. The perpendicular from the origin to a line is 5. units in length and

makes an angle tan-i^ with the axis Oac. Find the equation of the line.

6. Reduce the equations of Ex. 8, p. 33, to the normal form (7).

7. Find the equations of the lines whose slope angle is 160° and which

are at the distance 4 from the origin.

8. What is the equation of the line through the point ( — 3, 5) whose

perpendicular from the origin makes an angle of 120^ with the axis Ox ?

9. For the line 7x — 24y — 20=0 find the intercepts, slope, length

of perpendicular from the origin and the sine and cosine of the angle

which this perpendicular makes with the axis Ox.

10. Find by means of sin /3 and cos/3 the quadrants crossed by the line

4ic — 5y = 8.

11. Put the following equations in the form (7) and thus find p, sin /3,

cos /9:

(a)y=:mx + b. (6)?+| = l. (c)3a; = 4y.
a

IS. Is the point (3, — 4) on the positive or negative side of the line

through the points (— 5, 2) and (4, 7) ?
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13. Is the point (—1, — f ) on the positive or negative side of the line

4:X-9y-8 = 0?

14. Find by means of an altitude and a side the area of the triangle

formed by the lines Zx + 2y + 10 = 0, ^x-3y+lQ = 0, 2x + y-4:

= 0. Check the result with another altitude and side.

15. Find the distance between the parallel lines (a) Sx— 5y— 4 =
and 6 a; — 10 y + 7 = ; (6) 5 x + 7 2/ + 9 = and 16 re + 21 y — 3 = 0.

16. What is the length of the perpendicular from the origin to the line

through the point (—5, — 4) whose slope angle is 60° ?

17. What are the equations of the lines whose distances from the

origin are 6 units each and whose slopes are f ?

18. Find the points on the axis Ox whose perpendicular distances from

the line 24 a: — 7 t^ — 16 = are ±5.

19. Find the point equidistant from the points (4, — 3) and (—2, 1),

and at the distance 4 from the line Sx — Ay — 6 = 0.

20. Find the line parallel tol2a; — 5y — 6 = and at the same distance

from the origin ; farther from the origin by a distance 3.

21. Find the two lines through the point (1, ^^) such that the perpen-

diculars let fall from the point (6, 5) are of length 5.

22. Find the line perpendicular to 4 a; — 7 y — 10 = which crosses the

axis Ox at a distance 6 from the point (— 2, 0).

23. Find the bisectors of the angles between the lines: (a) x—y —4=
and 3 x + 3 2^ + 7 = 0; (6) 6a:-12y-16 = and 24x + 7y + 60 = 0.

24. Find the bisectors of the angles of the triangle formed by the lines

5x + 12 2/ + 20 = 0, 4x-32/-6 = 0, 3x-4y+5 = and the center of

the circle inscribed in the triangle.

25. Find the bisector of that angle between the lines 3 x — VSy+ 10 =0,

V2 x + y — 6 = 0in which the origin lies.

26. If two lines are given in the normal form, what is represented by
their sum and what by their difference ?

27. Show that the angle between the lines x + y = and x — y = is

90° whether the axes are rectangular or oblique.
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44. Pencils of Lines. All lines through one and the same

point are said to form a pencil; the point is called the center of

the pencil. If

^^ \A'x-j-B'y-j-C =
are any two different lines of a pencil, the equation

(9) Ax-{-By+ C-^k{A'x + B'y + C) = 0,

where k is any constant, represents a line of the pencil. For,

the equation (9) is of the first degree in x and y, and the coeffi-

cients of X and y cannot both be zero, since this would mean

that the lines (8) are parallel. Moreover, the line (9) passes

through the center of the pencil (8) because the coordinates of

the point that satisfies each of the equations (8) also satisfy

the equation (9).

All lines parallel to the same direction are said to form a

pencil of parallels. It is readily seen that if the lines (8) are

parallel, the equation (9) represents a line parallel to them.

EXERCISES

1. Find the line : (a) through the point of intersection of the lines

4x— 7y+6 = 0, 6x-f-lly — 7 = and the origin
; (&) through the

point of intersection of the lines 4x — 2y — 3=0, x + y — 5 = and

the point (—2, 3); (c) through the point of intersection of the lines

4x— 6y4-6 = 0, y— x — 3 = 0, of slope 3 ;
(d) through the intersection

of5x— 6y-f-10 = 0, 2x + 3y — 12 = 0, perpendicular to 4 y + x = 0.

5. Find the line of the pencil x — 5 = 0, y + 2 = that is inclined to

the axis Ox at 30°.

3. Determine the constant b of the line y = Sx + b so that this line

shall belong to the pencil 3x — 4y + 6 =0, x = 5.

4. Find the line joining the centers of the pencils x — 3 y = 12,

5 X - 2 y = 1 and x + y = 6, 4x — 5y = 3.

6. Find the line of the pencil 4x-5y-12 = 0, 3x + 2y-16 =
that makes equal intercepts on the axes.
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45. Non-linear Equations representing Lines. When two

lines are given, say

A'x + B'y + O' = 0,

then the equation

{Ac + By-^Cf){A'x + B'y-{-C) = 0,

obtained by multiplying the left-hand members (the right-hand

members being reduced to zero) is satisfied by all the points

of the first given line as well as all the points of the second

given line, and by no other points.

The product equation which is of the second degree is there-

fore said to represent the two given lines. Similarly, by equat-

ing to zero the product of the left-hand members of the equations

of three or more straight lines (whose right-hand members are

zero) we find a single equation representing all these lines.

An equation of the nth degree may therefore represent n

straight lines, viz. when its left-hand member (the right-hand

member being zero) can be resolved into n linear factors, with

real coefiicients.

EXERCISES

1. Find the. common equation of the two axes of coordinates.

2. Show that n lines through the origin are represented by a homo-

geneous equation (i.e. one in which all terms are of the same degree in

X and y) of the nth degree.

3. Draw the lines represented by the following equations :

(or) (X -a)(y-b)= 0. (/) xy - ax = 0.

(&) 3 a;2 - xy - 4 2/2 = 0. (g) y^ - ^y^ + Qy = 0.

(c) a;2_9y2-o. (h) x^y-xy = 0.

(d) ax2 4- &?/2 = 0. (0 2/3 _ 6 a:2/2 + 11 a;2y - 6 x3 = 0.

(e) x2 - X - 12 = 0.

4. What relation must hold between a, h, &, if the lines represented

by ax2 + 2 hxy + by^ = are to be real and distinct, coincident, imag-

inary ?
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MISCELLANEOUS EXERCISES

1. Find the angle between the Hnes represented by the equation

ax^ + 2 hxy + hy'^ = 0. What is the condition for these Unes to be per-

pendicular ? coincident ?

2. Reduce the general equation ^x + J?«/ 4- C = to the normal

form x cos /3 + 2/ sin /3 = p by considering that, if both equations represent

the same line, the intercepts must be the same.

3. Find the line through (xi , y{) making equal intercepts on the axes.

4. Find the area of the triangle formed by the Unes y — m\x + 6i

,

y = miX -\-b2,y = b.

6. What does the equation <p = const, represent in polar coordinates ?

6. Find the polar equation of the line through (6, ir) and (4, J t).

7. Derive the determinant expression for the area of a triangle (§ 14)

by multiplying one side by half the altitude.

8. The weights w?, W being suspended at distances d, Z), respectively,

from the fulcrum of a lever, we have by the law of the lever WD = wd.

If the weights are shifted along the lever, then to every value of d cor-

responds a definite value of Z) ; i.e. Z> is a function of d. Represent this

function graphically ; interpret the part of the hne in the third quadrant.

9. A train, after leaving the station J., attains in the first 6 minutes,

IJ miles from A, the speed of 30 miles per hour with which it goes on.

How far from A will it be 50 minutes after starting? (Compare Ex-

ample 4, § 29.) Illustrate graphically, taking s in miles, t in minutes.

10. A train leaves Detroit at 8 hr. 25 m. a.m. and reaches Chicago at

4 hr. 5 m. p.m. ; another train leaves Chicago at 10 hr. 30 m. a.m. and

arrives in Detroit at 5 hr. 30 m. p.m. The distance is 284 miles. Regard-

ing the motion as uniform and neglecting the stops, find graphically and

analytically where and when the trains meet. If the scale of distances

(in miles) be taken 1/20 of the scale of times (in hours), how can the

velocities be found from the slopes ?

11. A stone is dropped from a balloon ascending vertically at the rate

of 24 ft. /sec; express the velocity as a function of the time (Example 6,

§ 29) . What is the velocity after 4 sec. ?

12. How long will a ball rise if thrown vertically upward with an

initial velocity of 100 ft. /sec. ?



CHAPTER IV

THE CIRCLE

46. Circles. A circle, in a given plane, is defined as the locus

of all those points of the plane which are y

at the same distance from a fixed point.

Let G (h, Tc) be the center, r the radius

(Fig. 31) ; the necessary and sufficient

condition that any point P (x, y) is at

the distance r from C (h, k) is that Fig. 31

1-*

(1) (aJ - ^)2+ (2/ - A;)2= *'2.

This equation, which is satisfied by the coordinates x, y of

every point on the circle, and by the coordinates of no other

point, is called the equation of the circle of center C (h, k) and

radius r.

If the center of the circle is at the origin (0, 0), the equation

of the circle is evidently

(2) a?-\-y'^ = i\

EXERCISES

Write down the equations of the following circles

:

(a) center (3, 2), radius 7
;

(6) center at origin, radius 3
;

(c) center at (— a, 0), radius a
;

{d) circle of any radius touching the axis Ox at the origin
;

(e) circle of any radius touching the axis Oy at the origin.

Illustrate each case by a sketch.

51
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47. Equation of Second Degree. Expanding the equation

(1) of § 46, we obtain the equation of the circle in the new form

x^^y'i-2hx-2 ky + li" + Ic" - r^ = 0.

This is an equation of the second degree in x and y. But it is of

a particular form. The general equation of the second degree

in X and y is of the form

(3) Ax'-{-2Hxy-\-By^-\-2Gx + 2Fy-\-C=0'y

i.e. it contains a constant term, (7; two terms of the first de-

gree, one in x and one in y ; and three terms of the second de-

gree, one in x^, one in osy, and one in y\

If in this general equation we have

it reduces, upon division by Aj to the form

ii^ + y^ + --^x + —y-\-- = 0,

which agrees with the form (1) of the equation of a circle, ex-

cept for the notation for the coefficients.

We can therefore say that any equation of the second degree

which contains no xy-term and in which tlie coefficients of a^ and

y^ are equal, may represent a circle.

48. Detennination of Center and Radius. To draw the

circle represented by the general equation

(4) Ax^ + Ay^ + 2 «a; + 2 Fy + C = O,

where A, G, F, Q are any real numbers while ^ ^ 0, we first

divide by ^ and complete the squares in x and y ; i.e. we first

write the equation in the form

The left-hand member represents the square of the distance of

the point (x, y) from the point (— 0/A, — F/A) ; the right-
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hand member is constant. The given equation therefore repre-

sents the circle whose center has the coordinates

7. ^ T. ^

and whose radius is

This radius is, however, imaginary if G^ -^ F"^ < AC; in this

case the equation is not satisfied by any points with real co-

ordinates.

If G"^ + F^^ AG) the radius is zero, and the equation is satis-

fied only by the coordinates of the point (— G/A, — F/A).

If G^+F"^ > AG, the radius is real, and the equation repre-

sents a real circle.

Thus, the general equation of the second degree (3), § 47, repre-

sents d circle if, and only if,

A = B=^0,H=0, G' + F'>AG.

49. Circle determined by Three Conditions. The equation

(1) of the circle contains three constants h, 7c, r. The general

equation (4) contains four constants of which, however, only

three are essential since we can always divide through by one of

these constants. Thus, dividing by A and putting 2 G/A = a,

2 F/A — b, C/A = c, the general equation (4) assumes the form

(5) a^-f2/' + a^-h&2/ + c = 0,

with the three constants a, b, c.

The existence of three constants in the equation corresponds

to the possibility of determining a circle geometrically, in a

variety of ways, by three conditions. It should be remembered

in this connection that the equation of a straight line contains

two essential constants, the line being determined by two

geometrical conditions (§ 30).
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EXERCISES

1. Draw the circles represented by the following equations:

(a) 2 a;2 + 2 2/2 _ 8 X + 5 y + 1 = 0. (b) Sx^ + Sy^ + 17 x - 15y-6 = 0.

(c) 4a;2 + 4y2_6x-10y +4 = 0. (d) x^ + y^ + x - iy = 0.

(e) 2 x2 + 2 y2 _ 7 x = 0. (f) x^ + y'^-Sx-e=0.

2. What is the equation of the circle of center (A, k) that touches the

axis Ox ? that touches the axis Oy ? that passes through the origin ?

3. What is the equation of any circle whose center lies on the axis

Ox ? on the axis Oy ? on the line y= x? on the line y = 2 x ? on the line

y = mx?

4. Find the equation of the circle whose center is at the point (— 4, 6)

and which passes through the point (2, 0).

5. Find the circle that has the points (4, — 3) and (— 2, — 1) as ends

of a diameter.

6. A swing moving in the vertical plane of the observer is 48 ft. away

and is suspended from a pole 27 ft. high. If the seat when at rest is 2 ft.

above the ground, what is the equation of the path (for the observer as

origin)? What is the distance of the seat from the observer when the

rope is inclined at 45° to the vertical ?

7. Find the locus of a point whose distance from the point (a, 6) is k

times its distance from the origin.

Let P (x, y) be any point of the locus ; then the condition is

V(x - a)2 + (y - 6)2 = kVx^ + y*

.

upon squaring and rearranging this becomes

:

(1 - k2)x2 + (1 - K'^)y^ - 2 ax - 2 &y + a2 + 62 = 0.

Hence for any value of k except k = 1, the locus is a circle whose center is

a/(l - K^), 6/(1 — /c2) and whose radius is k VaM^/(l — k^). What
is the locus when k = 1 ?

8. Find the locus of a point twice as far from the origin as from the

point (6, — 3). Sketch.

9. What is the locus of a point whose distances from two points Pi,

P2 are in the constant ratio k ?
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10. Determine the locus of the points which are k times as far from

the point (—2, 0) as from the point (2, 0). Assign to k the values

V5, V3, V2, I VS, I V3, I \/2 and illustrate with sketches drawn with

respect to the same axes.

11. Determine the locus of a point whose distance from the line

3x — 4y+l=0 is equal to the square of its distance from the origin.

Illustrate with a sketch.

12. Determine the locus of a point if the square of its distance from

the line x + y — a = is equal to the product of its distances from the

axes.

50. Circle in Polar Coordinates. Let us now express the

equation of a circle in polar coordinates. If C(ri, <^i) is the

center of a circle of radius a (Fig. 32)

and P(r,
<f>)

any point of the circle,

then by the cosine law of trigo-

nometry o^"'A^9i.

r^ + ri^— 2 Tir cos (<^ — <^i) = a\ Fig. 32

This is the equation of the circle since, for given values of rj,

<^i, a, it is satisfied by the coordinates r, of every point of

the circle, and by the coordinates of no other point.

Two special cases are important

:

(1) If the origin be taken on the circumference and the

polar axis along a diameter OA (Fig. 33),

the equation becomes

r"^ -\- a^ — 2 ar cos
<l>
= a%

i.e. r = 2a cos <^.

This equation has a simple geometrical

interpretation : the radius vector of any
^^'

point Pon the circle is the projection of the diameter OA =2 a

on the direction of the radius vector.

(2) If the origin be taken at the center of the circle, the

equation is r = a.
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EXERCISES

1. Draw the following circles in polar coordinates :

(a) r = 10 cos 0. (6) r = 2a cos (0 - iir). (c) r = sin0.

id) r = 6. (e) r = 7 sin (0 _ ^ «)

.

(f)r = 17 cos 0.

2. Write the equation of the circle in polar coordinates

:

(a) with center at (10, ^ ir) and radius 5
;

(6) with center at (6, \ir) and touching the polar axis
;

(c) with center at (4, f w) and passing through the origin
;

(d) with center at (3, tt) and passing through the point (4, |ir).

3. Change the equations of Ex. (1) and (2) to rectangular coordinates

with the origin at the pole and the axis Ox coincident with the polar axis.

4. Determine in polar coordinates the locus of the midpoints of the

chords drawn from a fixed point of a circle.

51. Intersection of Line and Circle. To solve two equa-

tions in X and y of which one is of the first degree (linear)

while the other is of the second degree, it is generally most

convenient to solve the linear equation for either x or y and to

substitute the value so found in the equation of the second degree.

It then remains to solve a quadratic equation.

The method for solving a quadratic equation consists in

completing the square of the terms in x^ and x. The equation

aa;2 + 6a; -f c =
has the roots

— b± V62 — 4 ac
X = •

2a

The quantity h^ — 4:ac is called the discriminant of the

equation. According as the discriminant is positive, zero, or

negative, the roots are real and different, real and equal, or

imaginary.

An equation of the first degree represents a straight line.

If the given equation of the second degree be of the form
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described in § 47, it will represent a circle. By solving two

such simultaneous equations we find the coordinates of the

points that lie both on the line and on the circle, i.e. the points

of intersection of line and circle.

Let us find the intersections of the line

y = mx + h

with the circle about the origin

ic2 + 2/^ = r"^'

Substituting the value of y from the former equation into the

latter, we find the quadratic equation in x :

fl;2 + {mx H- by = r2,

or (1 + m2) a;2 + 2 mbx + &2 _ ,^2 ^ q.

The two roots iCi, x^ of this equation are the abscissas of the

points of intersection ; the corresponding ordinates are found

by substituting x-^, x^ in ?/ = mx + h.

It is easily seen that the abscissas x^, X2 are real and differ-

ent if (1 + m2) r2 - 62 > 0,

... b ^
I.e. II —==^< r.

Vl -1- m2

Since m = tan a, and hence 1/Vl + m2 = cos a, the .preceding

relation means that b cos a <r, i.e. the line has a distance from

the origin less than the radius of the circle. If

(l + m2)r2-52 = 0,

the roots x^, X2 are real and equal. The line and the circle

then have only a single point in common. Such a line is said

to touch the circle or to be a tangent to the circle. If

(1 + m2) r2 _ 62 < 0,

the roots are complex, and the line has no points in common

with the circle.
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52. The General Case. The intersections of the line and

circle

are found in the same way : substitute the value of y (or x),

found from the equation of the line, in the equation of the

circle and solve the resulting quadratic equation.

It is often desired to determine merely vjJiether the line is

tangent to the cirde. To answer this question, substitute y

(or x) from the linear equation in the equation of the circle

and, without solving the quadratic equation, write down the con-

dition for equal roots (b^ = 4 ac, § 51).

EXERCISES

1. Find the coordinates of the points where the circle x^ -{ y^ — x + y
— 12 = crosses the axes.

2. Find the intersections of the line 3x + y— 5 = and the circle

a;2 -f y2 _ 22 X - 4 y + 25 = 0.

3. Find the intersections of the line 2x — 7y + 5 = and the circle

2 x2 + 2 y2 + 9x + 9 y - 11 = 0.

4. Find the equations of the tangents to the circle x^ + y'^ = 16 that

are parallel to the line y = — 3 x + 8.

6. Show that the equations of the tangents to the circle x^ -{ y^ = r^

with slope n» are y = mx ± rVl + m^.

6. For what value of r will the line 3 x- 2 y — 5 = be tangent to the

circle x'^ + y^ = r^?

7. Find the equations of the tangents to the circle 2x^-\-2y^ — 3x

+ 6y — 7 = that are perpendicular to the line x+2y + 3 = 0.

8. Find the midpoint of the chord intercepted by the line 6x-y + 9=0
on the circle x^ + y^ = 18.

9. Find the equations of the tangents to the circle x^-\-y'^ = 58 that

pass through the point (10, 4).
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63. The Tangent to a Circle. The tangent to a circle (com-

pare § 40) at any point P may be defined as the perpendicular

through P to the radius passing through P. To find the equa-

tion of the tangent to a circle whose center is at the origin,

a;2 -f 2/2 = r^,

at the point P (x, y) of the circle (Fig. 34), observe that the

distance p of the tangent from the origin

is equal to the " radius r and that the

angle p made by this distance with the

axis Ox is such that

cos « = - , sm « = ^

:

r r

substituting these values in the normal

form X cos ^ -f Y" sin ^ = p of the

equation of a line (§ 40), we find as equation of the tangent

xX^yY^T^,

where a;, y are the coordinates of the point of contact P and

X, Y are those of any point of the tangent.

64. The General Case. To find the equation of the tangent

to a circle whose center is not at the origin let us write the

general equation (4), § 48, viz.

(4) Ax^^Ay''^2Qx-\-2Fy^C^%
in the form

Fig. 34

{'-ih{'
where — G/A, — F/A are the coordinates of the center and

G^/A" + F^/A^- C/A is the square of the radius r (§ 48).

With respect to parallel axes through the center the same circle

has the equation
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and the tangent at the point P(x, y) of the circle is (§ 63)

:

Hence, transferring back to the original axes, we find as

equation of the tangent at P(x, y) to the circle (4)

:

AxX + AyT+ G (x-^X)-\- F(y +Y)+C=0.
This general form of the tangent is readily remembered if we

observe that it can be derived from the equation (4) of the

circle by replacing x^ by xXj y^ by yY, 2xby x+X, 2yhyy-^T.

EXERCISES

1. Find the tangent to the given circle at the given point

:

(a) a;2 + y2 = 4i, (5, _4).

^b) x^ + y^ + Gx + 5y-lQ = 0, (-2,3).

(c) 3x2 + 3y2 + iOa; + 17y + 18 = 0, (-2, -5).

(d) x^ + y^-ax-by= 0, (a, 6).

5. The equation of any circle through the origin can be written in the

form (§ 49) x^ -{ y^ + ax + by = ; show that the line ax -\- by = is the

tangent at the origin, and find the equation of the parallel tangent.

3. Derive the equation of the tangent to the circle (x—h)^+{y—k)^= i^.

4. Show that the circles x^ + y^ - Qx + 2y + 2 = and x^ + ys _ 4 y

+ 2 = touch at the point (1, 1).

6. Find the tangents to the circle x^-\-y^ — 2x-10y-\-d = at the

extremities of the diameter through the point (— 1, 11/2).

6. The line 2 a; + y = 10 is tangent to the circle x^ + y^ = 20; what is

the point of contact ?

7. What is the point of contact if ^4- -By +0 = is tangent to the

circle x^-\-y^ = r^?

8. Show that x — y—l = is tangent to the circle x^ -\^y^ + ix
— 10 y — 3 = 0, and find the point of contact.

9. By § 51, the line y = mx -\- b has but one point in common with

the circle x^ -{^y^ = r^ il (I + m^)r^ = b^ ; show that in this case the radius

drawn to the common point is perpendicular to the line y = mx + b.
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55. Circle through Three Pomts. To find the equation of

the circle passing through three points P^ {x^
, 2/1), P2 (^2 > 2/2)*

P3 (x^
, 2/3), observe that the coordinates of these points satisfy

the equation of the circle (§ 49)
*

(6) x' + if + ax + hy + c^O)

hence we must have

(J)

^i + Vi + «^i + &2/1 + c = 0,

^2 + 2/2^ + ax^ + &?/2 4-c = 0,

a^3^ + 2/3^ + «i«3 + ^2/3+ c = 0.

From the last three equations we can find the values of a, &,

and c ; these values must then be substituted in the first equar

tion.

In general this is a long and tedious operation. What we

actually wish to do is to eliminate a, h, c between the four

equations above. The theory of determinants furnishes a very

simple means of eliminating four quantities between four

homogeneous linear equations. Our equations are not homo-

geneous in a, 6, c. But if we write the first two terms in

each equation with the factor 1 : {x^ -f y^) • 1, (x^ -f y^) • 1, etc.,

we have four equations which are linear and homogeneous in 1,

a, b, c; hence the result of eliminating these four quantities is

the determinant of their coefficients equated to zero. Thus the

equation of the circle through three points is

a^ -j- 2/' X y 1

^i + 2/1' «i 2/1 1

^i + 2/2' ^2 2/2 1

^z+Vz ^z 2/3 1

= 0.

Compare § 34, where the equation of the straight line through

two points is given in determinant form.
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EXERCISES

1. Find the equations of the circles that pass through the points

:

(a) (2,3), (-1,2), (0,-3).

(6) (0,0), (1,-4), (5,0).

(c) (0, 0), (a, 0), (0, 6).

2. Find the circles through the points (3,-1), (—1,-2) which
touch the axis Ox.

3. Find the circle through the points (2, 1), (- 1, 3) with center on

the line 3x-y + 2=0.

4. Find the circle whose center is (3, — 2) and which touches the

line 3a; + 4y-12 = 0.

6. Find the circle through the origin that touches the line

4a; -5y- 14 = Oat (0, 2).

6. Find the circle inscribed in the triangle determined by the lines

24x-72/+3=0, 3x-4y-9 = 0, 5a; + 12y-50 = 0.

7. Two circles are said to be orthogonal if their tangents at a point of

intersection are perpendicular ; the square of the distance between their

centers is then equal to the sum of the squares of their radii. If the

equations of two intersecting circles are

x^ -i-y^ + aix + biy + Ci = 0, and x^ + y^ + a^x + 62^ + c^ = 0,

show that the circles are orthogonal when aiOa + &162 = 2(Ci -f Ca).

8. Find the circle that has its center at (—2, 1) and is orthogonal to

the circle x^ + y «_ q a; + 3 = 0.

9. Find the circle that has its center on the line y = 3 a; + 4, passes

through the point (4, — 3), and is orthogonal to the circle

a;2 + y^ + 13 a; + 5 y + 2 =0.

66. Inversion. A circle of center O and radius a being given

(Fig. 35), we can find to every point P of the plane

(excepting the center 0) one and only one point P
on OP^ produced beyond P if necessary, such that / y/^f

OP . OP' = a\

The point P' is said to be inverse to P with respect

to the circle (0, a) ; and as the relation is not Fig. 35
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changed by interchanging P and P', the point P is inverse to P^ The

point is called the center of inversion.

It is clear that (1) the inverse of a point P within the circle is a point

P' without, and vice versa ; (2) the inverse of a point of the circle itself

coincides with it
; (3) as P approaches the center 0, its inverse P' moves

off to infinity, and vice versa.

The inverse of any geometrical figure (line, curve, area, etc.) is the

figure formed by the points inverse to all the points of the given figure.

57. Inverse of a Circle. Taking rectangular axes through O
(Fig. 36), we find for the relations between the coordinates of two in-

verse points P{x, y), P' (x", y')^ if we put OP = r, OP' = r' i

x' _y' _r' _ rr' _ a^

X y r f^ r^

since rt' =:a^; hence /
.

a^^ yf^ a^y

a;2 + y2' ^ x^ + y^

and similarly

x =

These equations enable us to find to any curve whose equation is given the

equation of the inverse curve, by simply substituting for x, y their values.

Thus it can be shown that by inversion any circle is transformed into

a circle or a straight line.

For, if in the general equation of the circle

A(x^ -{-y'^)+2Gx-^2Fy-\- C =
we substitute for x and y the above values, we find

{x'^ + 2/'2)2
^

ic'2 + ?/'2
^

x'2 + y'^
'

that is, Aa^ + 2 Ga'^x' + 2 Fa^ + C{x'-^ + y'^) = 0,

which is again the equation of a circle, provided G =^0. In the special

case when C = 0, the given circle passes through the origin, and its in-

verse is a straight line. Thus every circle through the origin is trans-

formed by inversion into a straight line. It is readily proved conversely

that every straight line is transformed into a circle passing through the

origin ; and in particular that every line through the origin is transformed

into itself, as is obvious otherwise.
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EXERCISES

1. Find the coordinates of the points inverse to (4, 3), (2, 0), (— 5, 1)

with respect to the circle x^ + i/2 = 25.

2. Show that by inversion every hue (except a line through the center)

is transformed into a circle passing through the center of inversion.

3. Show that all circles with center at the center of inversion are

transformed by inversion into concentric circles.

4. Find the equation of the circle about the center of inversion which

is transformed into itself.

6. With respect to the circle x^-\-y^ = 16, find the equations of the

curves inverse to :

(a) x=5, {h) x-y=0, (c) x^-\-y^-6x=0, (d) x'^-\-y^-10y-{-l=0,

(e) 3x-4y+6=0.

6. Show that the circle Ax^ -\- Ay^ + 2 Gz + 2 Fy + a^A = is trans-

formed into itself by inversion with respect to the circle x^ -\- y"^ = a*.

7. Prove the statements at the end of § 57.

58. Pole and Polar. Let P, P' (Fig. 37) be inverse points with

respect to the circle (O, a) ; then the perpen-

dicular I to OP through P' is called the polar of

P, and P the pole of the line Z, with respect to

the circle.

Notice that (1) if (as in Fig. 37) Plies within

the circle, its polar I lies outside
; (2) if P lies

outside the circle, its polar intersects the circle

in two points
; (3) if P lies on the circle, its

polar is the tangent to the circle at P.

Referring the circle to rectangular axes through its center (Fig. 38) so

that its equation is

x2 + 2/2 = a2,

we can find the equation of the polar I of

any given point P (x, y). For, using

as equation of the polar the normal

form X cos /3 + F sin /3 = p, we have

evidently, if P' is the point inverse

toP:

Fig. 37

r /»^>i\

^
I ^y\ l\ JC

M Fig. 38

\
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sin/3 y

therefore the equation becomes

xX
.

yY _

,
p= 0P' =

N/aj2 + 2/2

or simply

Va;2 + 2/2 Va;2 + 2/2 Vx^ + 2/2

xX+2/r=a2.

This then is the equation of the polar I of the point P (x, y) with re-

spect to the circle of radius a about the origin. If, in particular, the

point P (x, y) lies on the circle, the same equation represents the tan-

gent to the circle x^ + 2/^ = a^ at the point P (x, y), as shown previously

in § 53.

59. Chord of Contact. The polar l of any outside point P with

respect to a given circle passes through the points of contact Ci , C2 of

the tangents drawn from P to the circle.

To prove this we have only to show that if Ci is one of the points of

intersection of the polar I of P with the circle, then the angle OCiP
(Fig. 39) is a right angle. Now the triangles

OCiP and OP'C\ are similar since they have

the angle at in common and the including

sides proportional owing to the relation

OP- 0P' = a\

OP ^ a

a OP''
i.e

It follows that '^ OCiP =
Fig. 39

where a = OCi.

OP'Gi = ^w.

The rectilinear segment C1O2 is sometimes called the chord of contact

of the point P. We have therefore proved that the chord of contact of

any outside point P lies on the polar of P.

It follows that the equations of the tangents that can he drawn from

any outside point P to a given circle can be found by determining the

intersections Ci , d of the polar of P with the circle ; the tangents are

then obtained as the lines joining C\ , C2 to P.
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60. The General Case. The equation of the polar of a point

P (x, y) with respect to any circle given in the general form (4),

§ 48, viz.,

(4) Ax'^ + Ay^-\-2Gx-Sr2Fy + C = ^,

is found by the same method that was used in § 54 to generalize the

equation of the tangent. Thus, with respect to parallel axes through the

center the equation of the circle is

^^~A^^A^ A'

the equation of the polar of P (x, y) with respect to these axes is by

58
xX+yY:

A^ A^

Hence, transferring back to the original axes, we find as equation of the

polar ofP (a;, y) with respect to the circle (4)

:

AxX+AyT+Gix + X)+F{y+ r)+C = 0.

If, in particular, the point P (x, y) lies outside the circle, this polar

contains the chord of contact of P ; if P lies on the circle, the polar be-

comes the tangent at P (§ 54).

61. Construction of PolarS. if a point Pi describes a line I, its

polar h with respect to a given circle (0, a) turns about a fixed point,

viz. , the pole P of the line I (Fig. 40)

.

Conversely, if a line h turns about one

of its points P, its pole Pi with respect

to a given circle (O, a) describes a line I,

viz. the polar of the point P.

For, the line I is transformed by in-

version with respect to the circle (0, a)

into a circle passing through O and

through the pole P of I; as this circle

must obviously be symmetric with respect

to OP it must have OP as diameter. Any
point Pi of I is transformed by inversion

into that point Q of the circle of diameter OP at which this circle is in-

tersected by OPi . The polar of Pi is the perpendicular through Q to

OPi ; it passes therefore through P, wherever Pi be taken on I.

The proof of the converse theorem is similar.

Fia. 40
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The pole Pi of any line h can therefore be constructed as the intersec-

tion of the polars of any two points of h ; this is of advantage when the

line h does not meet the circle. And the polar li of any point Pi can be

constructed as the line joining the poles of any two lines through Pi ; this

is of advantage when the point Pi lies inside the circle.

EXERCISES

1. Find the equation of the polar of the given point with respect to

the given circle and sketch if possible

;

(a) (4, 7), 0^2 + y2^ 8.

(6) (0, 0), x2 + 2/2 - 3 a; - 4 = 0.

(c) (2,l),x^ + y^-ix-2y+l=0.
(d) (2, - 3), x2 + ?/2 4- 3 a; + 10 2/ + 2 = 0.

2. Find the pole of the given line with respect to the given circle and

sketch if possible

:

(a) X + 2 y- 20 = 0, x^ + y"^ = 20.

(b) x + y + l=0, x^ + y^ = 4.

(c) ^x-y = 19, a;2 + y2 = 25.

(d) Ax + By + C = 0, x^ + y^ = r^.

(e) y = mx -\- b, x^ -\- y^ = r^.

3. Find the pole of the line joining the points (20, 0) and (0, 10),

with respect to the circle x^ + y^ = 25.

4. Find the tangent to the circle x2+?/2_io a:+4 ?/+9=0 at (7, - 6).

6. Find the intersection of the tangents to the circle 2 a;2 + 2 ?/2— 15 cc

+ 2/
— 28 = at the points (3, 5) and (0, — 4)

.

6. Find the tangents to the circle x^-{-y^ — 6x — 10y + 2 = that

pass through the point (3, — 3)

.

7. Find the tangents to the circle a;2 + ?/2_3ic + ?/— 10 = that pass

through the point (— |, — V) •

8. Show that the distances of two points from the center of a circle

are proportional to the distances of each from the polar of the other.

9. Show analytically that if two points are given such that the polar

of one point passes through the second point, then the polar of the second

point passes through the first point.

10. Find the poles of the lines x — y — S = and x + y + 8 = with

respect to the circle x'^ + y'^ — Qx + iy + S=0.
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62. Power of a Point, if in the left-hand member of the equa-

tion of the circle

we substitute for x and y the coordinates Xi , j/i of a point Pi not on the

circle (Fig. 41), the expression {xi — h)^ + {yi — ky — r^ is different

from zero. Its value is called the power

of the point P\ (xi , y{) with respect to

the circle. As {x^ — hy + (yi - ky is

the square' of the distance PiC = d be-

tween the point Pi (a;i, yi) and the

center C{h, k), the power of the point

-Pi (a^ii yO with respect to the circle is

cP — r^ ; and this is positive for points

without the circle (d > r) , zero for points Fig. 41

on the circle (d = r), and negative for points within the circle (d < r).

If the point lies without the circle, its power has a simple interpretation
;

it is the square of the segment PiT = t oi the tangent drawn from Pi to

the circle

:

t'i=cP-r^=(^Xi- hy -\- (yi - ky - r^.

Hence the length t of the tangent that can be drawn from an outside

point Pi {xi , j/i) to a circle x^ + y"^ + ax -\- by -^ c = is given by

«2 = xi^ + yi* -f- aa;i -f &yi + c.

Notice that the coeflBcients of x^ and y^ must be 1. Compare the similar

case of the distance of a point from a line (§ 42).

63. Radical Axis. The locus of a point whose powers with respect

to any two circles

a;2 + r/2 + aix -\- Iny -I- Ci = 0,

x2 -}- y2 -f aax + b-2y -|- C2 = 0,

are equal is given by the equation

a;2 + y2 ^ aix + biy -{- ci = x^ -\- y^ + a^x -H b^y + c^.,

which reduces to

(ai - a2)x -}- (61 - b2)y + (ci - C2) = 0.

This locus is therefore a straight line ; it is called the radical axis of the

two circles. It always exists unless ai = a-z and bi = bo, i.e. unless the

circles are concentric.
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Three circles taken in pairs have three radical axes which pass through

a common point, called the radical center. For, if the equation of the

third circle is
x^ + y^ + a,x + h,y + C3 = 0,

the equations of the radical axes will be

(.052 - «3)a; + (62 - 63)2/ + (C2 - C3) = 0,

{az - a{)x + (63 - hi)y +(03 - Ci) = 0,

(«! - a2)a; + (&i — &2)y +(ci — C2) = 0.

These lines intersect in a point, since the detenninant of the coefficients

in these equations is equal to zero (Ex. 3, p. 38).

64. Family of Circles. The equation

(8) (x^ + 2/2 + aix + hiy + ci) + k{x^ + y^ + a2X + h^y + C2) =
represents a family^ or pencil^ of circles each of which passes through the

points of intersection of the circles

(9) x^ + y^ + aix + biy + Ci = 0,

and

(10) x'^-\-y^+ a^x + h^y + Ca = 0,

if these circles intersect. For, the equation (8) written in the form

(1 + /c)x2 +(1 + /c)y2 +(ai + Ka'i)x +(&i + Khi)y + Ci + kC2 =
represents a circle for every value of k except /c= — 1, as the coefficients

of x2 and y"^ are equal and there is no x?/-term (§47). Each one of the

circles (8) passes through the common points of the circles (9) and (10)

if they have any, since the equation (8) is satisfied by the coordinates

of those points which satisfy both (9) and (10). Compare § 44. The

constant k is called the parameter of the family.

In the special case when k =— 1, the equation is of the first degree

and hence represents a line, viz. the radical axis (§ 63) of the two circles

(9), (10). If the circles intersect, the radical axis contains their com-

mon chord.

EXERCISES

1. Find the powers of the following points with respect to the circle

x2 + y2 _ 3 3. _ 2 y = and thus determine their positions relative to the

circle: (2,0), (0,0), (0, -4), (3,2).

2. What is the length of the tangent to the circle : (a) x"^ -\- y^ -\- ax

+ 62/ + c = from the point (0, 0), (6) (x - 2)2+ (^ - 3)2 - 1 = from

the point (4, 4) ?
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3. By § 62, t^ = d:^ — r'^=(d-\- r){d — r); interpret this relation

geometrically.

4. Find the radical axis of the circles x^ '\- y^ -\- ax -\- by -\- c = and

x^ + y^ + bx -\- ay + c = and the length of the common chord.

6. Find the radical center of the circles x^ + y2 ^ Sx-\-4y — 'J=0,

x^ -{y^ = l6, 2{x^ + y^) -{ Q X -\- 1 = 0. Sketch the circles and their radi-

cal axes.

6. Find the circle that passes through the intersections of the circles

x^ -\-y'^+ 5x = and x^ +y^-{-x — 2y-6 = 0, and (a) passes through

the point (— 5, 6), (6) has its center on the line 4x — 2y — 16 = 0,

(c) has the radius 6.

7. Sketch the family of circles x^ + y^ - 6 y + k(x^ -\-y'^ -\- By) = 0.

8. What family of circles does the equation Az -\- By -\- C + k{x^

4- y2 4- (jx + &?/ + c) = represent ?

9. Find the family of curves inverse to the family of lines y = mx + b\

(a) with m constant and b variable, (6) with m variable and b constant.

Draw sketches for each case.

10. Show that a circle can be drawn orthogonal to three circles, pro-

vided their centers are not in a straight line.

11. Find the locus of a point whose power with respect to the circle

2x2 + 2y2_5a; + lly — 6=0is equal to the square of its distance from

the origin. Sketch.

12. Find the locus of a point if the sum of the squares of its distances

from the sides of an equilateral triangle of side 2 a is constant.

15. Show that the circle through the points (2, 4), (- 1, 2), (3, 0) is

orthogonal to the circle which is the locus of a point the ratio of whose

distances from the points (2, 3) and (— 1, 2) is 3. Sketch.

14. Show that the circles through two fixed points, say (—a, 0),

(a, 0), form a family like that of Ex. 8.

16. The locus of a point whose distances from the fixed points (—a, 0),

(a, 0) are in the constant ratio *c ( ^ 1) is the circle

x^ + y'^ + 2^-^ax + a^ = 0.
1 — k'^

Compare Ex. 9, p. 54. Show that, whatever k{=^1), this circle inter-

sects every circle of the family of Ex. 15 at right angles.



CHAPTER V

POLYNOMIALS

PART I. QUADRATIC FUKCTION—PARABOLA

65. Linear Function. As mentioned in § 28, an expression

of the form mx -\- h, where m and 6 are given real numbers

(m^O) while a; may take any real value, is called a linear

function of x. We have seen that this function is represented

graphically by the ordinates of the straight line

y = mx -\- b
;

b is the value of y for x = 0, and m is the slope of the line, i.e.

the rate of change of the function y with respect to x.

66. Quadratic Function. Parabola. An expression of

the form ax"^ + &a; + c in which a :^ is called a quadratic func-

tion of Xj and the curve

y — ax"^ -{- bx -\- c,

whose ordinates represent the function, is called a parabola.

If the coefficients a, 6, c are given numerically, any number

of points of this curve can be located by arbitrarily assigning

to the abscissa x any series of values and computing from the

equation the corresponding values of the ordinates. This

process is known as plotting the curve by points ; it is some-

what laborious; but a study of the nature of the quadratic

function will show that the determination of a few points is

sufficient to give a good idea of the curve.

71
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Fig. 42

67. The Form y = ax\ Let us first take 6 = 0, c = ; the

resulting equation

(1) y = cia?

represents a parabola which passes through the origin, since

the values 0, satisfy the equation. This parabola is symmet-

ric with respect to the axis Oy ; for, the values of y correspond-

ing to any two equal and opposite values of x are equal. This

line of symmetry is called the axis of the

parabola ; its intersection with the parab-

ola is called the vertex.

We may distinguish two cases accord-

ing as a > or a < ; if a = 0, the equa-

tion becomes y = 0, which represents the

axis Ox.

(1) If a > 0, the curve lies above the axis Ox. For, no matter

what positive or negative value is assigned to a;, y is positive.

Furthermore, as x is allowed to increase in absolute value, y

also increases indefinitely. Hence the parabola lies in the first

and second quadrants with its vertex at

the origin and opens upward, i.e. is con-

cave upward (Fig. 42).

(2) If a < 0, we conclude, similarly,

that the parabola lies below the axis Ox,

in the third and fourth quadrants, with

its vertex at the origin and opens down-

wardf i.e. is concave downward (Fig. 43).

Draw the following parabolas

:

y = x',y = Sx'',y = -\y?,y=\x'.

68. The General Equation. The curve represented by the

more general equation

(2) y = aa? -{hx-\-c

differs from the parabola y = aa? only in position. To see this

Fig. 43
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we use the process of completing the square in a;; i.e. we

write the equation in the equivalent form

=K'^^J 4a
+ c;

I.e.

If we put

2a 4a Fig. 44

the equation becomes

and it is clear (§ 13) that, with reference to parallel axes

OiXij Oi2/i through the point Oi (h, k) the equation of the

curve is 2/1 = <^^i (Fig. 44). The parabola (2) has therefore

the same shape as the parabola y = ax^ ; but its vertex lies at

the point (h, k), and its axis is the line x = h. The curve

opens upward or downward according as a > or a < 0.

69. Nature of the Curve. To sketch the parabola (2)

roughly, it is often sufficient to find the vertex (by completing

the square in x^ as in § 68, and the intersections with the axes.

The intercept on the axis Oy is obviously equal to c. The in-

tercepts on the axis Ox are found by solving the quadratic

equation
aar^ + 6a; + c = 0.

We have thus an interesting interpretation of the roots of any

quadratic equation: the roots of aa;^ -f- 6a; -h c = are the

abscissas of the points at which the parabola (2) intersects

the axis Ox. The ordinate of the vertex of the parabola

is evidently the least or greatest value of the function

y — ax^ + hx -\- c according as a is greater or less than zero.
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EXERCISES

1. With respect to the same coordinate axes draw the curves y = ax'^

for a=2, f, 1, i, 0, — i, — 1, - |, — 2. What happens to the parabola

y = ox2 as a changes ?

2. Determine in each of the following examples the value of a so that

the parabola y = ax^ will pass through the given point

:

(a) (2,3). (b) (-4, 1). (c) (-2, -2). (d) (3, -4).

3. A body thrown vertically upward in a vacuum with a velocity of v

feet per second will just reach a height of h feet such that h = ^v^.

Draw the curve whose ordinates represent the height as a function of the

initial velocity.

(a) With what velocity must a ball be thrown vertically upward to rise

to a height of 100 ft. ?

(6) How high will a bullet rise if shot vertically upward with an ini-

tial velocity of 800 ft. per sec. , the resistance of the air being neglected ?

4. The period of a pendulum of length I (i.e. the time of a small

back and forth swing) is 7"= 2iry/l/g. Take g = S2 ft. /sec. and di-aw

the curve whose ordinates represent the length I of the pendulum as a

function of the period T.

(a) How long is a pendulum that beats seconds (i.e. of period 2 sec.) ?

(6) How long is a pendulum that makes one swing in two seconds ?

(c) Find the period of a pendulum of length one yard.

6. Draw the following parabolas and find their vertices and axes

:

(a) y = \x^-x + 2. (b) y = - \ x^ -h x. (c) y = 5x^ + 16x + 3.

(d)y = 2-x-x2, (e) y=x2-9. (f)y = -9^x^.
(fir) y =3x2- 6x -1-5. (A) y = ix2-|-2x-6. (i) x^ - 2x -y = 0.

6. What is the value of b if the parabola y = x^ -\-bx — 6 passes

through the point (1, 6) ? of c if the parabola y = x2 — 6x-|-c passes

through the same point ?

7. Suppose the parabola y = ax^ drawn ; how would you draw y =
a(x-|-2)2? y = a(x-7)2? y = ax'^ + 2? y = ax2 - 7 ? y = ax2-f 2x -|- 3 ?

8. What happens to the parabola y = ax^ }- bx -\- c as 'c changes ?

For example, take the parabola y = x2 — x + c, where c =— 3, — 2, — 1,

0, 1, 2, 3.
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9. What happens to the parabola y = ax^ -\-hx -^ c as a changes ?

For example, take y = ax'^ — x — Q, where a = 2, 1, ^, 0,-^,-1, — 2.

10. (a) If the parabola y = ax^ + bx is to pass through the points

(1, 4), (—2, 1) what must be the values of a and b ? (&) Determine the

parabola y = ax^ + bx -\- c so as to pass through the points (1, ^), (3, 2),

(4, f ) ; sketch.

11. The path of a projectile in a vacuum is a parabola with vertical

axis, opening downward. With the starting point of the projectile as

origin and the axis Ox horizontal, the equation of the path must be of the

form y = ax^ + bx. If the projectile is observed to pass through the points

(30, 20) and (50, 30), what is the equation of the path? What is the

highest point reached ? Where will the projectile reach the ground ?

12. Find the equations of the parabolas determined by the following

conditions

:

(a) the axis coincides with Oy, the vertex is at the origin, and the

curve passes through the point (— 2, — 3) ;

(&) the axis is the line x = 3, the vertex is at (3, — 2), and the curve

passes through the origin
;

(c) the axis is the line x =— 4, the vertex is (— 4, 6), and the curve

passes through the point (1, 2).

13. Sketch the following parabolas and lines and find the coordinates

of their points of intersection :

(a) y = 6x^,y = 7x + S. (6) y -2x'^ ^Sx, y = x + 6.

(c) y = 2-Sx^,y = 2x + S. (^a) y = 3 -\-x- x^, x + y - 4 = 0.

14. Sketch the following curves and find their intersections

:

(a) x^ + y^ = 25, y = f a;2. (6) 3^^ +y^ ^ 6y = 0, y = ^x^ - 2x + 6.

15. The ordinate of every point of the line y = | ic + 4 is the sum of

the corresponding ordinates of the lines y = ^x and y = 4. Draw the last

two lines and from them construct the first line.

16. The ordinate of every point of the parabola y ^^x"^ + ^x—l is

the sum of the corresponding ordinates of the parabola y = ^x^ and the

line y = ^x — 1. From this fact draw the former parabola.

17. The ordinate of every point of the parabola y = ^x^ — x + Sis the

difference of the corresponding ordinates of the parabola y = ^x^ and the

line y = x — S. In this way sketch the former parabola.
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70. Symmetry. Two points P, , Pg are said to be situated

symmetncally with respect to a line Z, if / is the perpendicular

bisector of P^P^ ; this is also expressed by saying that either

point is the reflection of the other in the line h

Any two plane figures are said to be symmetric with respect

to a line I in their plane if either figure is formed of the reflec-

tions in I of all the points of the other figure. Each figure is

then the reflection of the other in the line I. Two such figures

are evidently brought to coincidence by turning either figure

about the line I through two right angles. Thus, the lines

y = 2x-\-S and y = — 2x — 3 are symmetric with respect to

the axis Ox.

A line I is called an axi's of symmetry (or simply an axis) of

a figure if the portion of the figure on one side of / is the

reflection in Z of the portion on the other side. Thus, any

diameter of a circle is an axis of symmetry of the circle.

What are the axes of symmetry of a square ? of a rectangle ?

of a parallelogram?

In analytic geometry, symmetry with respect to the axes of

coordinates, and to the lines y= ±x, is of particular importance.

It is readily seen that if a figure is symmetric with respect

to both axes of coordinates, it is symmetric with respect to the

origiuy i.e. to every point Pi of the figure there exists another

point P2ot the figure such that the origin' bisects PiP2- A
point of symmetry of a figure is also called center of the

figure.

EXERCISES

1. Give the coordinates of the reflection of the point (a, 6) in the

axis Ox ; in the axis Oy; in the line y = z ; in the line y = 2x ; in the

line y =—x.

2. Show that when x is replaced by — jc in the equation of a given curve,

we obtain the equation of the reflection of the given curve in the y-axis.
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3. Show that when x and y are replaced by y and x, respectively, in

the equation of a given curve, we obtain the equation of the reflection of

the given curve in the line y = z.

4. Sketch the lines y = - 2 ac + 5 and a; = - 2 y + 5 and find their

point of intersection.

6. Sketch the parabolas y = a^ and x = y^ and find their points of

intersection.

6. Find the equation of the reflection of the line 2 a; — 3 y + 4 = in

the line y = x\ in the axis Ox ; in the axis Oy ; in the line y- — x.

7. What is the reflection of the line a; = a in the line y = a; ? in the

axes?

8. Find and sketch the circle which is the reflection of the circle

x2 + y2 _ 3 X - 2 = in the line y = a;, and find the points in which the

two circles intersect.

9. Find the circle which is the reflection of the circle a;2-}-y2 — 4x4-3
= in the line y = x\ in the coordinate axes. Sketch all of these

circles.

10. What is the general equation of a circle which is its own reflection

in the line y = a: ? in the axis Ox ? in the axis Oy ? What circle is its

own reflection in all three of these lines ?

11. What is the equation of the reflection of the parabola y =—x2+4

in the line y = x ? in the line y =— x ? Are these reflections parabolas ?

12. What is the reflection of the parabola y=3x2 — 5x + 6 in the

axis Ox ? In the axis Oy ? Are these reflections parabolas ?

13. If the cartesian equation of a curve is not changed when x is re-

placed by — X, the curve is symmetric with respect to Oy ; if it is not

changed when y is replaced by — y, the curve is symmetric with respect

to Ox ; if it is not changed when x and y are replaced by — x and — y,

respectively, the curve is symmetric with respect to the origin ; if it is

not changed when x and y are interchanged, the curve is symmetric with

respect to y = x.
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71. Slope of Secant. Let P(x, y) be any point of the

parabola

(1) y = a^.

If Pi {xi, yi)be any other point of

this parabola so that

(2) yi = axi\

the line PPj (Fig. 45) is called a

secant.

For the slope tan a^ of this secant

we have from Fig. 45

:

(3) tan„. =^' = -^ y^^y
QQi Ax'

or, substituting for y and yi their values

:

(4) tan «! = ^W - a?') ^ „/^ _j_ ^ X

ari — X

72. Slope of Tangent. Keeping the point P (Fig. 45)

fixed, let the point P^ move along the parabola toward P; the

limiting position which the secant PPi assumes at the instant

when Pi passes through P is called the tangent to the parabola

at the point P.

Let us determine the slope tan a of this tangent. As the

secant turns about P approaching the tangent, the point Qi ap-

proaches the point Q, and in the limit OQi = Xi becomes OQ=x.
The last formula of § 71 gives therefore tan a if we make

Xi = x: tan a = 2 ax.

The slope of the tangent at P which indicates the "steep-

ness " of the curve at P is also called the slope of the parabola

at P. Thus the slope of the parabola y = ax^ at any point

whose abscissa is a; is = 2 ox ; notice that it varies from point

to point, being a function of a?, while the slope of a straight

line is constant all along the line.
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The knowledge of the slope of a curve is of great assistance

in sketching the curve because it enables us, after locating

a number of points, to draw the tangent at each point. Thus,

for the parabola y = | ic^ ^^ find tan a=^x -, locate the points

for which a; = 0, 1, 2, — 1, — 2, and draw the tangents at these

points ; then sketch in the curve.

73. Derivative. If we think of the ordinate of the parab-

ola y = aa^ as representing the function ax^, the slope of the

parabola represents the rate at which the function varies with

X and is called the derivative of the function ax\ We shall

denote the derivative of y by y'. In § 72 we have proved that

the derivative of the function y = ax^ is y' = 2 ax.

The process of finding the derivative of a function, which is

called differentiation, consists, according to §§ 71-72, in the

following steps: Starting with the value y=ax^ of the func-

tion for some particular value of x (say, at the point P, Fig. 45),

we give to x an increment Xi^—x = Ax (compare § 9) and

calculate the value of the corresponding increment yi--y = Ay

of the function. Then the derivative y' of the function y is the

limit that Ay / Ax approaches as Ax approaches zero. In the

case of the function y = ax^ we have

Ay=y^-y = a{x^ - a;^) = a\_{x -h Axf - x^] = a[2 xAx + {Axf] ;

hence -^ == a(2 a; + Ax).

The limit of the right-hand member as Ax approaches zero

gives the derivative

:

?/' = 2 ax.

Thus, the area y of a circle in terms of its radius xiay = ttx^. Hence

the derivative y', that is the slope of the tangent to the curve that rep-

resents the equation y = irx^, is y' = 2Trx. This represents (§72) the

rate of increase of the area y with respect to x. Since 2 wx is the length
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of the circumference, we see that the rate of increase of the area y
with respect to the radius x is equal to the circumference of the circle.

74. Derivative of General Quadratic Function. By this

process we can at once find the derivative of the general quad-

ratic function y = aoi? -{- hx -\- c (§ 66), and hence the slope of

the parabola represented by this equation. We have here

Ay = a{x + Aa;)2 + h{x + Aa;) + c — {ao? -\-hx-{-c)

= 2 ax^x + a(Aa;)2 -}- h^x
;

hence —^ = 2 aa; + 6+ aAa;.
Ax

The limit, as Aa; becomes zero, is 2ax-\-h\ hence the deriva-

tive of the quadratic function y =ax^ -\-hx -\- c is y^ =^2 ax •\- b.

76. Maximum or Minimum Value. It follows both from

the definition of the derivative as the limit of Ay/Ax and from

its geometrical interpretation as the slope, tana, of the curve

that if, for any value of x, the derivative is positive, the function,

i.e. the ordinate of the curve, is (algebraically) increasing; if

the derivative is negative, the function is decreasing.

At a point where the derivative is zero the tangent to the curve

is parallel to the axis Ox. The abscissas of the points at which

the tangent is parallel to Ox can therefore be found by equat-

ing the derivative to zero.

In this way we find that the abscissa of the vertex of the

parabola y=aa? -{-bx -^ cis x = — 6/2 a, which agrees with § 68.

We know (§ 68) that the parabola y = ax^ -\- bx -{- c opens

upward or downward according as a is > or < 0. Hence the

ordinate of the vertex is a minimum ordinate, i.e. algebraically

less than the immediately preceding and following ordinates, if

a > ; it is a maximum ordinate, i.e. algebraically greater than

the immediately preceding and following ordinates, if a < 0.

This enables us to determine the maximum or minimum of
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a quadratic function ax^ + &« -f- c ; the value of x for which the

function becomes greatest or least is found by equating the

derivative to zero ; the quadratic function is a maximum or a

minimum for this value of x according as a < or > 0.

Thus, to determine the greatest rectangular area that can be inclosed

by a boundary {e.g. a fence) of given length 2 A;, let one side of the

rectangle be called x ; then the other side m k — x. Hence the area A of

the rectangle \b A = x{k — x) =kx — x'^.

Consequently the derivative of A is k— 2 x. If we set this equal to

zero, we have 2x = kj whence x = k/2. It follows that k—x=k/2;
hence the rectangle of greatest area is a square.

EXERCISES

1. Locate the points of the parabola y = x^—4:X + ^ whose abscissas

are -- 1, 0, 1, 2, 3, 4, draw the tangents at these points, and then sketch

in the curve.

2. Sketch the parabolas 4:y= — x^ + 4:X and y = x^ — S by locating

the vertex and the intersections with Ox and drawing the tangents at

these points.

3. Is the function y = 6(x^ — 4x + 3) increasing or decreasing as x

increases from x = I? from x = |

?

4. Find the least or greatest value of the quadratic functions

:

{a)2x^-Sx + 6. (&) 8-6x-a;2. (c)x^-5x-6.
(d)2-2a;-x2. (g)4 + x-^x2. (/) 5x2 - 20 a; + 1.

6. Find the derivative of the linear function y = mx + b.

6. The curve of a railroad track is represented by the equation

y = I x2, the axes Ox, Oy pointing east and north, respectively ; in what

direction is the train going at the points whose abscissas are 0, 1,2, — ^ ?

7. A projectile describes the parabola y = fx—Zx^, the unit being the

mile. What is the angle of elevation of the gun ? What is the greatest

height ? Where does the projectile strike the ground ?

8. A rectangular area is to be inclosed on three sides, the fourth side

being bounded by a straight river. If the length of the fence is a con-

stant k, what is the maximum area of the rectangle ?

Q
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Fio. 46

4 .

18 .

PART 11. POLYNOMIALS

76. The Cubic Function. A function

of the form a^a^ + OiX^+azX -|- ttg is called a

cubic function of x. The curve repre-

sented by the equation

y =0^ + a^x^ + a^x + a^

can be sketched by plotting it by points

(§ 66).

For example, to draw the curve repre-

sented by the equation

y = a;3-2a^-6a;-f 6,

we select a number of values of x and com-

pute the corresponding values of y :

a;=-3-2-101 23
2/=- 24 860-40

These points can then be plotted and connected by a smooth

curve which will approximately represent the curve corre-

sponding to the given equation (Fig. 46).

77. Derivative. The sketching of such a cubic curve is

again greatly facilitated by finding the derivative of the cubic

function ; the determination of a few points, with their tan-

gents, will suffice to give a good general idea of the curve.

To find the derivative of the function y = a^ + a^a? + a^
-f as the process of § 73 should be followed. The student

may carry this out himself ; he will find the quadratic function

2/' = 3 a^"^ -I- 2 OiX + aj.

78. Maximum or Minimiun Values. The abscissas of

those points of the curve at which the tangent is parallel to

the axis Ox are again found by equating the derivative to

zero ; they are therefore the roots of the quadratic equation
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3 tto^ + 2 aiX + tta = 0.

If at such a point the derivative passes from positive to nega-

tive values, the curve is concave doimiward, and the ordinate

is a maximum; if the derivative passes from negative to posi-

tive values, the curve is concave upward^ and the ordinate is

a minimum.

79. Second Derivative. The derivative of a function of

X is in general again a function of x. Thus for the cubic

function y = aocc^ -\- a^pi? -{• a>^ + a^ the derivative is the quad-

ratic function
2/' = 3 a^^ + 2 a,a; 4- «2.

The derivative of the first derivative is called the second deriva-

tive of the original function ; denoting it by y'\ we find (§ 74)

2/" = 6 aoo; + 2 a^.

As a positive derivative indicates an increasing function,

while a negative derivative indicates a decreasing function

(§ 75), it follows that if at any point of the curve the second

derivative is positive, the first derivative, i.e. the slope of the

curve, increases
;
geometrically this evidently means that the

curve there is concave upward. Similarly, if the second de-

rivative is negative, the curve is concave downward. We have

thus a simple means of telling whether at any particular point

the curve is concave upward or downward.

It follows that at any point where the first derivative van-

ishes, the ordinate is a minimum if the second derivative is

positive ; it is a maximum if the second derivative is negative.

80. Points of Inflexion. A point at which the curve

changes from being concave downward to being concave up-

ward, or vice versa, is called a point of inflexion. At such a

point the second derivative vanishes.

Our cubic curve obviously has but one point of inflection,

viz. the point whose abscissa is a; = — ai/(3 Oq).
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EXERCISES

1. Find the first and second derivatives of y v^hen

:

(a) y = 6 x8 - 7 a;2 - X + 2. (6) y = 20 -\- ix- Sx^ - oi*.

(c) l0y = a^-5x^ + Sx + 9. (d) y = (x - l)(x- 2)(x-3).

(e) 2/ = x2(x+3). (/) 7 2/ = 3x-2x(x2-l).

2. Sketch the curve y = (x— 2)(x + 1) (x + 3), observing the sign of y

between the intersections with Ox, and determining the minimum, maxi-

mum, and point of inflection.

3. In the curve y = aox^ + aix^ + azx + as, what is the meaning of as ?

4. Sketch the curves :

(a) 6 y = (X - 1) (X -f iy. (&) y = (x - 3)8.

(c) 6 y = 6 + X + x'* - «*. (d) y = x« - 4 X.

(e) 8 y = 5 x* - x8. (/) y = x« - 3 x* + 4 x - 5.

6. Draw the curves y = x, y = x^, y = x«, with their tangents at the

points whose abscissas are 1 and — 1.

6. Find the equation of the tangent to the curve 14 y = 6 x* — 2 x^

+x — 20 at the point whose abscissa is 2.

7. At what points of the curve y = x' — 6 x^ + 3 are the tangents

parallel to the line y=—3x4-6?

8. Are the following curves concave upward or downward at the

indicated points ? Sketch each of them.

(a) y = 4x8-6x, atx = 3. (6) 3y = 5x- 3x8, at x =- 2.

(c) y = x8-2x2 + 6, atx = ^. (d) 2y = x8 -3x2, at x = 1.

Ce) y = 1 -x-x8, atx = 0. (/) 10y=x8+x2-15x-!-6,atx=-|.

9. Show that the parabola y = ox* + 6x -f c is concave upward or

concave downward for all values of x according as a is positive or negative.

10. The angle between two curves at a point of intersection is the

angle between their tangents. Find the angles between the curves y = x^

and y = x8 at their points of intersection.

11. Find the angle at which the parabola y = 2x2 — 3x — 6 intersects

the curve y = x8 + 3 x — 17 at the point (2, — 3).

18. The ordinate of every point of the curve y = x8 + 2 x* is the sum of

the ordinates of the curves y = x8 and y = 2 x^. From the latter two

curves construct the former.
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13. From the curve y = x^ construct the following curves :

(a)y = 4x8. (6)2/ = ^|y. (c)y = x3-.2. (d)y = 2a:8+4.

14. Draw the curve 2 ^ = ic^ — 3 x^ and its reflection in the line y = x.

What is the equation of this reflected curve ? What is the equation of the

reflection in the axis Oy ?

15. A piece of cardboard 18 inches square is used to make a box by-

cutting equal squares from the four corners and turning up the sides.

Draw the curve whose ordinates represent the volume of the box as a

function of the side of the square cut out. Find its maximum.

16. The strength of a rectangular beam cut from a log one foot in

diameter is proportional to (i.e. a constant times) the width and the

square of the depth. Find the dimensions of the strongest beam which

can be cut from the log. Draw the curve whose ordinates represent the

strength of the beam as a function of the width.

17. Find the equation of the curve in the form y = ax^ + bx^ + cx + d

which passes through the following points :

(a) (0, 0), (2, - 1), (- 1, 4), (3, 4) ;

(6) (1, 1), (3,-1), (0, 5), (-4,1).

18. Show that every cubic curve of the form y = aoofi + aix^ + azx + as

is symmetric with respect to its point of inflection.

81. Polynomials. The methods used in studying the quad-

ratic and cubic functions and the curves represented by them

can readily be extended to the general case of the polynomial,

or rational integral function, of the nth degree,

y = a^x^ + a^x^-^ -f a^x^~'' + - + (^n-v^ + ^n?

where the coefficients a,,, a^, ••• a„ may be any real numbers,

while the exponent n, which is called the degree of the poly-

nomial, is a positive integer.

We shall often denote such a polynomial by the letter y or

by the symbol f{x) (read : function of x, or / of a;) ; its value

for any particular value of x, say a; = iCi or a; = ^, is then de-

noted by f(x^ or f(h), respectively. Thus, for a; = we have

/(0) = a„.
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82. Calculation of Values of a Polynomial. In plotting

the curve y =f(x) by points (§§ 66, 76) we have to calculate

a number of ordinates. Unless f(x) is a very simple poly-

nomial this is a rather laborious process. To shorten it ob-

serve that the value f{x{) of the polynomial

f{x)= 0^+ ttiaf*-^ H f- a„

for a; = a^ can be written in the form

/(^) = ( - (((«oa?i + «i)»i + «2)a5i + cis)xi -f ... + a,_,)xi + a„.

To calculate this expression begin by finding a^pCi -\- a^ ; mul-

tiply by Xi and add aj ; multiply the result by Xi and add a^
;

etc. This is best carried out in the following form

:

«o «i Oj ...,

aoX,+ «!

(Vi + <!ll)Xi

{a^i + <2y)Xi -f o^...

instance, if

/W == 2ar«-3a;2--12a^ + 5

= ((2 jc - 3)a; --12);K4-5,

to find /(3) write the coefficients in a row and place 2x3 = 6

below the second coefficient ; the sum is 3. Place 3 x 3 = 9 be-

low the third coefficient ; the sum is — 3. Place 3x(—3)=—

9

below the last coefficient; the sum, —4, is =/(3).

2-3-12 6

6 9-9
2 3-3-4

This process is useful in calculating the values of?/ that cor-

respond to various values of x, as we have to do in plotting a

curve by points.
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EXERCISES

1. If /(x)=5x8-13x + 2, what is meant by /(a)? hj f{x-\-h)?

What is the value of /(O)? of/(2)? of/(-3/5)? of/(-l)?

2. Find the ordinates of the curve y=x^ — oi^ + Sx'^ — 12x-\-S for

a; = 3, -9, -^
3. Find the ordinates ot2y = x^ + Sx^-20x-251otx = 1,2,3,- 1,-2.

4. Suppose the curve y =/(a;)drawn ; how would you sketch :

{a)y=f(x-2)? ib)y=f(x+S)? {c)y=f{2x)2 (d)y=f(-x)?

(e) y=f(^iy (/) y=fix)+5? (g) y=f(x)-2x?

83. Derivative of the Polynomial. We have seen in the

preceding sections how greatly the sketching of a curve and

the investigation of a function is facilitated by the use of the

derivatives of the function. Thus, in particular, the first

derivative y' is the rate of change of the function y with a;,

and hence determines the slope, or steepness, of the curve

y =f{x). We begin therefore the study of the polynomial by

determining its derivative. The method is essentially the

same as that used in § § 73, 74 for finding the derivative of

a quadratic function.

The first derivative y' of any function y of a; is defined, as

in § 73, to be the limit of the quotient Ay/^x as Ax approaches

zero, Ay being the increment of

the function y corresponding to

the increment Ax otx; in symbols

:

Sr' = liin^.
Ax=0Ax

Geometrically this means that y'

is the slope of the tangent of the

V "

^/7 1 1^ /\\ \ *.y
A

/ i « .Qi

FiQ. 47

curve whose ordinate is y.

PP, (Fig. 47) :

For, Ay/Ax is the slope of the secant
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—^ = tan «i

;

Ax

and the limit of this quotient as Ax approaches zero, i.e. as Pi

moves along the curve to P, is the slope of the tangent at P

:

y^ = tan a = lim^.
Ax=oAa;

If the function y be denoted by /(«), then

Ay=f{x + Ax)-f(x)',
hence

Ax=o Ax

84. Calculation of the Derivative. To find, by means of

the last formula, the derivative of the polynomial

y =/(aj)=V + ai«""* + - + a.>

we should have to form first /(a; -|- Ax), i.e.

(x + Axy -\-ai{x-\- Axy-^ + ... + a„,

subtract from this the original polynomial, then divide by Aa?,

and finally put Ax = 0.

This rather cumbersome process can be avoided if we

observe that a polynomial is a sum of terms of the form ax*

and apply the following fundamental propositions about

derivatives

:

(1) the derivative of a sum of terms is the sum of the derivor

tives of the terms ;

(2) the derivative of ax'' is a times the derivative ofx"";

(3) the derivative of a constant is zero;

(4) the derivative of x" is rix"~^

The first three of these propositions can be regarded as

obvious ; a fuller discussion of them, based on an exact defi-

nition of the limit of a function, is given in the differential
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calculus. A proof of the fourth proposition is given in the

next article.

On the basis of these propositions we find at once that the

derivative of the polynomial

y = a^"" + QiX""-^ -h aiX""-"^ 4- - + a„_ia; + a„

is

?/' = aowx^-i -f ai(n — l)a;"-2 _j_ ^2(72 — 2)x''-^ + — + ««-!•

85. Derivative of x^. By the definition of the derivative

(§83) we have for the derivative of 2/ = x"

:

Ax=0 Ax

Now by the binomial theorem we have

{x + ^xY = a;" + na;"-iAa; + '*^^^^~^
x''-\/^xy + — +(Aa;)",

JL • ^

and hence

{x + Aa;)'» — aj** = na;"-^Ax + ^^^ ~
-^ a;"-'^(Aa;)'^ + ... + (Aa;)'*.

Dividing by Aa; and then letting Aa; become zero, we find

y' = na;""^

EXERCISES

1. Find the derivatives of the following functions of x by means of

the fundamental definition (§ 83) and check by § 84 :

(a) a;8. (6) x^ + x. (c) x* + 6 x^.

(d) - 6 a;8. (c) x* - S x^. (J) mx + b.

2. Find the derivatives of the following functions

:

(a) 5 a;*- 3x2 + 6 X. (b) 1-x+l x^-^x^ (c) (x - 2)3.

(d) (2 X + 3)5. (e) 3(4 x - l)^. (/) x'^ + ax'»-i+ ftx'-s.

3. For the following functions write the derivative indicated :

(a) 6 x8 - 3 X, find y'". (6) ax^ + bx + c, find y'".

(c) x6, find^. W ax3 + ftx2 + ex + (?, find yiv.

(e) ix6,findy". (/) i^x«, find i,vii.

(g) x^ - gx8, find y'". {h) (2 x - 3)3, find y'".
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86. Properties of the General Polynomial Curve. In plot-

ting the curve

y = Ooaj* + aiaf~^ -f a.^"'^ -{- ... -{-a^

observe that (Fig. 48)

:

(a) the intercept OB on the axis Oy
is equal to the constant term a„

;

(6) the intercepts OA^ OA2, ••. on

the axis Ox are roots of the equation

y = 0, i.e.
'

FiQ. 48

aoX"H-ai.'B"-iH- ... +a, = 0;

(c) the abscissas of the least and greatest ordinates are

found by solving the equation y' = 0, i.e. (§ 84)

every real root giving a minimum ordinate if for this root y"

is positive and a maximum ordinate if y" is negative

;

(d) the abscissas of the points of inflection are found by

solving the equation y" = 0, i.e.

7i(n-l)aoX''-2+ — +2a„_s = 0,

every real root of this equation being the abscissa of a point

of inflection provided that y'"=^0. (If y"' were zero, y' might

not be a maximum or minimum, and further investigation

would be necessary.)

87. Continuity of Poljnaomials. It should also be ob-

served that the function y = a^pf" + Ojaf~^ + — -\- a„ is one-

valued, real, and finite for every x ; i.e. to every real and finite

abscissa x belongs one and only one ordinate, and this ordinate is

real and finite. Moreover, as the first derivative y' = nooa:""^

-{-••• +a„_i is again a polynomial, the slope of the curve is

everywhere one-valued and finite.
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Thus, so-called discontinuities of the ordinate (Fig. 49) or of

the slope (Fig. 50) cannot occur : the curve y = a^x"" -\ h a„

is continuous.

Strictly defined, the continuity of the function y= Ooic" + •••

4- a„ means that, for every value of x, the limit of the function

is equal to the value of the function. The function y = aoCC* + —

+ a„ has one and only one value for any value x = Xi, viz.

a^j^ + ... + a^. The value of • the function for any other

value of X, say for a^ + ^x, is a^ix^ + Aa;)" -}- ••. -f a^ which can

be written in the form ao^i" + — + «n + terms containing Ax

as factor. Therefore as Ax approaches zero, the function

approaches a limit, viz. its value for x = Xi.

88. Intermediate Values. A continuous function, in

varying from any value to any other value, must necessarily

pass through all intermediate values. Thus, our polynomial

y = aoX"" + — -f a„, if it passes from a negative to a positive

value (or vice versa) ^ must pass through zero. It follows

from this that beticeen any two ordinates of opposite sign the

curve y = cTo^" + ••• + <^u ''^ust cross the axis Ox at least once.

It also follows from the continuity of the polynomial and

its derivatives that between any two intersections with the axis

Ox there must lie at least one maximum or minimum^ and be-

tween a maximum and a minimum there must lie a point of

inflection.

Ordinates at particular points can be calculated by the pro-

cess of § 82.
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EXERCISES

1. Sketch the following curves :

(a) y=(a:-l)(x-2)(x-3). (&) iy = x^-l. (c) 10y = x^.

{d) 10y = x5 + 5. (e) 4y= (a;+2)2(a;-3). (/) y={x-iy.

8. When is the curve y = aox" + aix^-^ + ••• + an symmetric with

respect to Oy?

3. Determine the coefficients so that the curve y = oqx^ + aix* + a^^^

+ asx + a4 shall touch Ox at (1, 0) and at (— 1, 0) and pass through

(0, 1), and sketch the curve.

4. Find the coordinates of the maxima, minima, and points of inflec-

tion and then sketch the curve 4 y = x* — 2 x^.

5. Are the following curves concave upward or downward at the indi-

cated points ?

(a) 16y=16x*-8x2 + l, atx=-l, -J, 0, i, 3.

(6) y = 4x-x*, atx=:-2, 0, 1, 3.

(c) y = x", at any point ; distinguish the cases when n is a positive

even or odd integer.

6. What happens to the curves y = ox* and y = aX^ as a changes ?

For example, take a =2, 1, ^, 0, — |, — 1, — 2.

7. Find the values of z for which the following relations are true

:

(a) X*- 6x2 + 9^0. (6) (x - l)2(x2- 4) ^0.

8. Those curves whose ordinates represent the values of the first,

second, etc., derivatives of a given polynomial are called the first, second,

etc., derived curves. Sketch on the same coordinate axes the following

curves and their derived curves :

(a) 6y = 2x«-3x2-12x. (6) y =(x - 2)2(x + 1).

(c) y=(x-|-l)8. (d) 2y = x* 4x2 + 1.

9. At what point on Ox must the origin be taken in order that the

equation of the curve y = 2x'— 3x2 — 12x — 5 shall have no term in x* ?

no term in x ?

10. Find, to three significant figures, the roots of the equation

x8-3x+l=0.



CHAPTER VI

THE PARABOLA

89. The Parabola. The parabola can be defined as the

locus of a point whose distance from a fixed point is equal to its

distance from a fixed line. The fixed point is called the focus,

the fixed line the directrix, of the parabola.

Let F (Fig. 51) be the fixed point, d the fixed linej then

every point P of the parabola must satisfy

the condition

FP=PQ,

Q being the foot of the perpendicular from

P to d. Let us take F as origin, or pole, and

the perpendicular FD from F to the directrix

as polar axis, and let the given distance FD
= 2 a. Then FP =r 2ind PQ = 2 a -r cos cf>.

The condition PP=PQ becomes therefore

^^ r = 2 a — r cos <^,

(1) r= ^^
.

^ ^
1 + cos <j>

This equation, which expresses the radius vector of P as a

function of the vectorial angle <j>, is the polar equation of the

parabola, when the focus is taken as pole and the perpendicular

from the focus to the directrix as polar axis.

90. Polar Construction of Parabolas. By means of the

equation (1) the parabola can be plotted by points. Thus, for

<^ = we find r = a as intercept on the polar axis. As <^

increases from the value 0, r continually increases, reaching

93

Fig. 51
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the value 2 a for <^ = i7r, and becoming infinite as
<f>

ap-

proaches the value tt.

For any negative value of <^ (between and — tt) the radius

vector has the same length as for the corresponding positive

value of <}> ; this means that the parabola is symmetric with

respect to the polar axis.

The intersection A of the curve with its axis of symmetry

is called the vertex, and the axis of

symmetry FA the axis, of the parab-

ola. The segment BB' cut off by

the parabola on the perpendicular to

the axis drawn through the focus is

called the latus rectum; its length

is 4 a, if 2 a is the distance between

focus and directrix. Notice also that

the vertex A bisects this distance

FD so that the distance between focus

and vertex as well as that between vertex and directrix is a.

In Fig. 62 the polar axis is taken positive in the sense from

the pole toward the directrix. If the sense from the directrix

to the pole is taken as positive (Fig. 52), we have again with

-Fas pole FP=r, but the distance of P from the directrix is

2 a + ?• cos
<f>,

So that the polar equation is now

(2) r =-^^~
^ ^ 1 - cos <^

We have assumed a as a positive number, 2 a denoting the

absolute value of the distance between the fixed point (focus)

and the fixed line (directrix). The radius vector r is then

always positive. But the equations (1) and (2) still represent

parabolas if a is a negative number, viz. (1) the parabola of

Fig. 52, (2) the parabola of Fig. 51, the radius vector r being

negative (§ 16).

Fig. 52
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<f

w
ifc*f^n
^^/ * •^ /X /

/ /

A

'

J) alajf

d V
Fig. 53

91. Mechanical Construction. A mechanism for traciag

an arc of a parabola consists of a right-

angled triangle (shaded in Fig. 53), one of

whose sides is applied to the directrix.

At a point It of the other side HQ 3l

string of length MQ is attached ; the other

end of the string is attached at the focus

F. As the triangle slides along the di-

rectrix, the string is kept taut by means

of a pencil at P which traces the parabola.

Of course, only a portion of the parabola can thus be traced,

since the curve extends to infinity.

92. Transformation to Cartesian Coordinates. To obtain

the cartesian equation of the parabola let the origin be taken

at the vertex, i.e. midway between the fixed line and fixed

point, and the axis Ox along the axis of the parabola, positive

in the sense from vertex to focus (Fig. 54). Then the focus

F has the coordinates a, 0, and the equation of the directrix is

x = —a. The distance FP of any point

P(x, y) of the parabola from the focus is

therefore V(a; — a)^ -f- 1/^, and the dis-

tance QP of P from the directrix is

a-\-x. Hence the equation is

(x-ay + y''=(a-\-xy,

which reduces at once to

(3) 2/2 = 4 ax.

This then is the cartesian equation of the parabola, referred

to vertex and axis, I.e. when the vertex is taken as origin and

the axis of the parabola (from vertex toward focus) as axis Ox.

Notice that the ordinate at the focus (a, 0) is of length 2 a
;

the double ordinate B'B at the focus is the latus rectum (§ 90).

Fig. 54
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93. Negative Values of a. In the last article the constant

a was again regarded as positive ; but (compare § 90) the equa-

tion (3) still represents a parabola when a is a negative number,

the only difference being that in this case the parabola turns its

opening in the negative sense of the axis Ox (toward the left

in Fig. 54). Thus the parabolas 2/^=4 ax and y^= — 4 aa are sym-

metric to each other with respect to the axis Oy (Ex. 14, p. 77).

The equation (3) is very convenient for plotting a parabola

by points. Sketch, with respect to the same axes, the parab-

olas : y^ = 16xjy^ = — 16 x, y^= x, y^ = — x, y^=Sx, y'^ = — \ x,

94. Axis Vertical. The equation

(4) x'=4:ayy

which differs from (3) merely by the interchange of x and y,

evidently represents a parabola whose vertex lies at the origin

and whose axis coincides with the axis Oy. The parabolas (3)

and (4) are each the reflection of the other in the line y =x
(Ex. 14, p. 77). The equation (4) can be written in the form

y = ^x^.
4a

As 1/4 a may be any constant, this is the equation discussed in

§ 67.

95. New Origin. An equation of the form (Fig. 55)

(5) (y — ky = 4: a(x

y

JtA
Q

Fig. 55

k\

Q

FiQ. 56

or of the form (Fig. 56)

(6) (x-^)2 = 4a(2/-A;),
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evidently represents a parabola whose vertex is the point (^, k),

while the axis is in the former case parallel to Ox, in the latter

to Oy. For, by taking the point (h, k) as new origin we can

reduce these equations to the forms (3), (4), respectively.

The parabola (5) turns its opening to the right or left, the

parabola (6) upward or downward, according as 4 a is positive

or negative.

96. General Equation. The equations (5), (6) as well as

the equations (3), (4) are of the second degree. Now the

general equation of the second degree (§ 47),

Ax" + 2 Hxy -^ Bf + 2 Ox + 2 Fy + C= 0,

can be reduced to one of the forms (5), (6) if it contains no

term in xy and only one of the terms in x^ and 2/S i-^- if H=
and either ^ or ^ is =0. This reduction is performed (as in

§ 48) by completing the square my ov x according as the equa-

tion contains the term in y^ or x\

Thus any equation of the second degree, containing no term in

xy and only one of the squares x"^, y^, represents a parabola, whose

vertex is found by completing the square and whose axis is

parallel to one of the axes of coordinates.

EXERCISES

1. Sketch the following parabolas

:

(a) r = , (6) r = -—^ (c) r = asec^ ^ 0.
^ ^ 1 + cos ^ ^ 1 - cos

2. Sketch the following curves and find their intersections :

2 a
(a) r = 8 cos <l>, r = (6) r = a, r =

1 — cos 1 + cos

8 2 (I

(c) r = 4 cos 0, r = (d) r cos = 2 a, r = - •

1 + cos 1 - cos

3. Sketch the following parabolas :

(a) (y_2)2 = 8(x~5). (6) (x + 3)2 = 5(3 - y).

(c) x2 = 6(y + 1). {d) (2/ + 3)2 = - 3 X.
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4. Sketch each of the following parabolajs and find the coordinates of

the vertex and focus, and the equations of the directrix and axis :

(a) 2/2-2y-3x- 2 = 0. (6) x2 + 4x- 4 y = 0.

(c) a;2__4a; + 3y + 1 = 0. (d) Sx^ - 6x - y = 0.

(e) 8 y2 - 16 y 4- X + 6 = 0. (/) y^ + y + x = 0.

(^) x2~x-3y + 4 = 0. (A) 8y2_3x + 3=0.

6. Sketch the following loci and find their intersections :

(a) y = 2x, y =x2. (6) y* = 4ax, x -f y = 3a.

(c) y2 = x + 3, y2 = 5-x. (d) y2 4-4x + 4=0, x2+y2=41.

6. Sketch the parabolas with the following lines and points as direc-

trices and foci, and find their equations :

(a) X - 4 = 0, (6, - 2). (6) y 4- 3 = 0, (0, 0).

(c) 2x + 6 = 0, (0, -1). (d) x = 0, (2, -3).

(e) 3y-l = 0, (-2,1). (/) x-2a = 0, (a, 6).

7. Find the parabola, with axis parallel to Ox, and passing through

the points

:

(a) (1, 0), (5, 4), (10, -6). (6) (V, -5), (f, 0), (j, -3).

8. Find the parabola, with axis parallel to Oy^ and passing through

the points

:

(a) (0, 0), (-2, 1), (6, 9). (d) (1, 4), (4, -1), (-3, 20).

9. Find the parabola whose directrix is the line 3x — 4y — 10=0 and

whose focus is: (a) at the origin; (6) at (6, — 2). Sketch each curve.

When does the equation of a parabola contain an xy term ?

10. Find the parabolas with the following points as vertices and foci

(two solutions) :

(a) (-3, 2), (-3, 6). (6) (2, 5), (-1, 5).

(c) (-1, -1), (1, -1). {d) (0, 0), (0, -a).

11. If s denotes the distance (in feet) from a point P in the line of

motion of a falling body, at a time < (in seconds),

s-so = ig(t-to)%

where g is the gravitational constant (32.2 approximately) and Sq is the

distance from F at the time ^q, show that this equation can be put in the

standard form

s = lgT,
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where s denotes the distance from some other fixed point in the line of

motion and 7 is the time since the body was at that point.

12. The melting point t (in degrees Centigrade) of an alloy of lead and

zinc is found to be
f = 133 + .875a; + .01125a;2,

where x is the percentage of lead in the alloy. Reduce the equation to

standard form t = kx ; and show that x — x — h^ t= t — k, where h is

the percentage of lead that gives the lowest melting point, and k is the

temperature at which that alloy melts.

13. Show that the locus of the center of the circle which passes

through a fixed point and is tangent to a fixed line is a parabola.

14. Show that the locus of the center of a circle which is tangent to a

fixed line and a fixed circle is a parabola. Find the directrix of this

parabola.

97. Slope of the Parabola. The slope tan a of the parabola

at any point P (x, y) (Fig. 57) can be found (comp. § 72) by

first determining the slope

tan «!

=

y^^y

of the secant PP^ , and then letting

-Pi(2Jij 2/i) move along the curve up

to the point P(x, y). Now as P^

conies to coincide with P, x-^ becomes

equal to x, and y^ equal to y, so that

the expression for tan «! loses its

meaning. But observing that P and

Pi lie on the parabola, we have y^^^^ax and y^ = 4 aa^i , and

hence y^ — y^ — A^a{xi — x). Substituting from this relation

the value of x^ — x in the above expression for tan «!, we find

for the slope of the secant

:

tan a^ = ^a -^—'- =
Vi-y^ 2/1 + 2/

Fig. 57
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If we now let Pj come to coincidence with P so that yi becomes

= y, we find for the slope of the tangent at P{x, y) :

(7) tana = ^.
y

This slope of the tangent at P is also called the slope of the

parabola at P. The ordinate y of the parabola is a function of

the abscissa x ; and the slope of the parabola at P (x, y) is the

rate at which y increases with increasing x at P; in other words,

it is the derivative y' of y with respect to x (compare § 73).

As by the equation of the parabola we have y = ± 2Va^, we

find:

(8) 2/' = tana =?^=±J^.
y ^x

The double sign in the last expression corresponds to the fact

that to a given value of x belong two points of the curve with

equal and opposite slopes.

98. Equation of the Tangent. As the slope of the parabola

2/2 =4 oa;

at the point P(x, y) is 2 a/y (§ 97), the equation of the tangent

at this point is

Y-y=^{X-x),
y

where X, Fare the coordinates of any point of the tangent,

while Xj y are the coordinates of the point of contact. This

equation can be simplified by multiplying both sides by y and

observing that y* = 4 aa; ; we thus find

(9) yT=^2aix + X).

Notice that (as in the case of the circle, § 64) the equation

of the tangent is obtained from the equation of the curve,

y^ = 4:ax, by replacing y^ hy yT, 2 x hy x -\- X.
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The segment TP (Fig. 58) of the tangent from its intersec-

tion T with the axis of the

parabola to the point of contact

P is called the length of the

tangent at P ; the projection TQ
of this segment TP on the axis

of the parabola is called the

subtangent at P. Now, with

Y= 0, equation (9) gives X = ^ x, i.e. TO = OQ; hence the

subtangent is bisected by the vertex. This furnishes a simple

construction for the tangent at any point P of the parabola if

the axis and vertex of the parabola are known.

99. Equation of the Normal. The normal at a point P
of any plane curve is defined as the perpendicular to the tan-

gent through the point of contact.

The slope of the normal is therefore (§ 27) minus the recip-

rocal of that of the tangent. Hence the equation of the normal

to the parabola is :

Y
that is

:

, = -J^(X-.),

(10) yX-^2aY=(2a-\-x)y.

The segment PN of the normal from the point P{x, y)

on the curve to the intersection N of the normal with the axis

of the parabola is called the leyigth of the normal at P; the

projection QJSf of this segment PN on the axis of the parabola

is called the subnormal at P.

Now, with F=0, equation (10) gives X= 2 a-{-x, and as

x=OQ, it follows that Q]Sf=2a; i.e. the subnormal of the

parabola is constant, viz. equal to half the latus rectum.
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100. Intersections of a Line and a Parabola. The inter-

sections of the parabola

with the straight line

y = mx + h

are found by substituting the value of y from the latter in the

former equation

:

{mx -I- 6)2 = 4 ax,

or, reducing

:

mV + 2(m6-2a)a; + 62 = 0.

The roots of this quadratic in x are the abscissas of the

points of intersection ; the ordinates are then found from

y = mx -4- h.

It thus appears that a straight line cannot intersect a parabola

in more than two points. If the roots are imaginary, the line

does not meet the parabola ; if they are real and equal, the

line has but one point in common with the parabola and is

a tangent to the parabola (provided m =^ 0).

101. Slope Equation of the Tangent. The condition for

equal roots is

(6m-2a)» = 6»m»,

which reduces to

The point that the line of this slope has in common with the

parabola is then found to have the coordinates

2a — bm 6* _^ . . okX = = —
, y = ma; -f 6 = J o.

m* a

As the slope of the parabola at any point (x, y) is (§ 97)

2/ = 2 a/y, the slope at the point just found is 3/ = ajb — m
;

i.e. the slope of the parabola is the same as that of the line

y = mx-\-b\ this line is therefore a tangent. Thus, the line
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(11) y=^mx+- y

is tangent to the parabola y^ = 4 ax whatever the value of m.

This may be called the slope-form of the equation of the tangent.

Equation (11) can also be deduced from the equation (9), by

putting 2 a/y = m and observing that 2/^= 4 aaj.

102. Slope Equation of the Normal. The equation (10) of

the normal can be written in the form

2a 2a

or since by the equation (3) of the parabola x = y^/4: a :

2a ^^^Sa'

If we denote by n the slope of this normal, we have

:

n = -^, y = -2an, ^^-an\
2 a 8 a^

so that the equation of the normal assumes the form

(12) T=nX-2an- an\

This may be called the slopeform of the equation of the normal.

103. Tangents from an Exterior Point. The slope-form

(11) of the tangent shows that from any point (x, y) of the plane

not more than two tangents can be drawn to the parabola y'^ = ^ax.

For, the slopes of these tangents are found by substituting in

(11) for X, y the coordinates of the given point and solving the

resulting quadratic in m. This quadratic may have real and

different, real and equal, or complex roots.

Those points of the plane for which the roots are real and

different are said to lie outside the parabola ; those points for

which the roots are imaginary are said to lie within the parab-
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ola; those points for which the roots are equal lie on the

parabola. The quadratic in m can be written

xm^ — ym -f a = 0,

so that the discriminant is y* — 4 ax. Therefore a point (x^ y)

of the plane lies within, on, or outside the parabola according as

2/* — 4 oa; is less than, equal to, or greater than zero.

Similarly, the slope-form (12) of the normal shows that not

more than three normals can be drawn from any point of the

plane to the parabola, since the equation (12) is a cubic for n

when the coordinates of any point of the plane are substituted

for X, T. As a cubic has always at least on§ real root there

always exists one normal through a given point; but there

may be two or three.

104. Geometric Properties. Let the tangent and normal

at P (Fig. 59) meet the axis at T, N-, let Q be the foot of the

perpendicular from P to

the axis, D that of the per-

pendicular to the directrix

d; and let be the vertex,

F the focus.

As the subtangent TQ is

bisected by (§ 98) and

the subnormal QN is equal

to 2 a (§ 99), while OF =
a, it follows that F lies

midway between T and N.

The triangle TPN being

right-angled at P, and F being the midpoint of its hypotenuse,

it follows that FP=^FT=FN.
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Hence, if axis and focus are given, the tangent and the normal

at any point P of the parabola are found by describing about

F a circle through P which will meet the axis at T and N.

As FP=DP, it follows that FPDT is a rhombus; the

diagonals PT and FD bisect therefore the angles of the

rhombus and intersect at right angles. As TP (like TQ) is

bisected by the tangent at the vertex, the intersection of these

diagonals lies on this tangent at the vertex. The properties

just proved that the tangent at P bisects the angle between the

focal radius PF and the parallel PD to the axis and that the

perpendicular from the focus to the tangent meets the tangent on

the tangent at the vertex are of particular importance.

105. Diameters. It is known from elementary geometry that

in a circle all chords parallel to any given direction have their

midpoints on a straight line which is a diameter of the circle.

Similarly, in a parabola, the locus of the midpoints of all chords

parallel to any given direction is a straight line^ and this line

which is parallel to the axis

is called a diameter of the

parabola. To prove this, take

the vertex as origin and the

axis of the parabola as axis Ox

(Fig. 60) so that the equation

is 2/^^ = 4 ax. Any line of given

slope m has the equation

y = mx-\-b, Fig. 60

and with variable b this represents a pencil of parallel lines.

Eliminating x we find for y the quadratic
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The roots ^j, y^ are the ordinates of the points Pj, Pg at

which the line intersects the parabola. The sum of the roots is

4a
2/1 + ^2 =—

;

m
hence the ordinate \{yi + 2/2) of the midpoint P between Pj , Pj

is constant (i.e. independent of »), viz. = 2 a/m, and independ-

ent of 6. The midpoints of all chords of the same slope m
lie, therefore, on a parallel to the axis, at the distance 2 a/m

from it. The condition for equal roots (§ 101) gives h = a/m.

That one of the parallels which passes through the point where

the diameter meets the parabola is, therefore,

y = mx-Jf-—\
m

by § 101 this is a tangent. Thus, the tangent at the end of a

diameter is parallel to the chords bisected by the diameter.

EXERCISES

1. Find and sketch the tangent and normal of the following parabolas

at the given points :

(a) 2y2 = 26x, (2, 5). (6) 3y2 = 4x, (3, - 2). (c) y^ = 2x, {\, 1).

(d) 5y2=i2x, (i-2). (6) y^ = x,{hl). (/) 46y« = x, (5, i).

2. Show that the secant through the points P (a; , y) and Pi (xi , j/i)

of the parabola y^ = iax has the equation 4aX— (y+ yi) F+ yyi = 0,

and that this reduces to the tangent at P when Pi and P coincide.

3. Find the angle between the tangents to a parabola at the vertex

and at the end of the latus rectum. Show that the tangents at the ends of

the latus rectum are at right angles.

4. Find the length of the tangent, subtangent, normal, and subnormal

of the parabola y^ ^^ 4 ^ at the point (1, 2).

6. Find and sketch the tangents to the parabola y^ = Sx from each

of the following points

:

(a) (- 2, 3). (6) (- 2, 0). (c) (-6, 0). (d) (8, 8).
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6. Draw the tangents to the parabola ?/2 = 3 x that are inclined to the

axis Ox at the angles: (a) 30°, (&) 45°, (c) 135°, (d) 150°; and find

their equations.

7. Find and sketch the tangents to the parabola y^ = Ax that pass

through the point ( — 2, 2).

8. Find and sketch the normals to the parabola y^ = 6z that pass

through the points :

(«) (1,0). (6) (¥,-3). (c) (-*/,-!). ((^)(f,-|). (e) (0,0).

9. Are the following points inside, outside, or on the parabola

Sy^ = x? (a) (3,1). (6) (2, i). (c) (8, 1). (c?) (10, f).

10. Show that any tangent to a parabola intersects the directrix and

latus rectum (produced) in points equally distant from the focus.

11. Show that the tangents drawn to a parabola from any point of the

directrix are perpendicular.

12. Show that the ordinate of the intersection of any two tangents to

the parabola y^ = 'iax is the arithmetic mean of the ordinates of the

points of contact, and the abscissa is the geometric mean of the abscissas

of the points of contact.

13. Show that the sum of the slopes of any two tangents of the parab-

ola 2/2 = 4 aa: is equal to the slope Y/Xoi the radius vector of the point of

intersection (X, F) of the tangents ; find the product of the slopes.

14. Find the locus of the intersection of two tangents to the parabola

2/2 = 4 ax^ if the sum of the slopes of the tangents is constant.

15. Find the locus of the intersection of two perpendicular tangents to

a parabola ; of two perpendicular normals to a parabola.

16. Show that the angle between any two tangents to a parabola is

half the angle between the focal radii of the points of contact.

17. From the vertex of a parabola any two perpendicular lines are

drawn ; show that the line joining their other intersections with the

parabola cuts the axis at a fixed point.

18. Find and sketch the diameter of the parabola y"^ — Qx that bisects

the chords parallel to 3a; — 2y + 5 = 0; give the equation of the focal

chord of this system.

19. Find the system of parallel chords of the parabola y2 = 8 x bisected

by the line y = 3.
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20. Show that the tangents at the extremities of any chord of a parab-

ola intersect on the diameter bisecting this chord. Compare Ex. 12.

21. Find the length of the focal chord of a parabola of given slope m.

22. Find the angles at which the parabolas y^ = 4ax and x^ = 4ay

intersect.

23. Two equal confocal parabolas have the same axis but open in op-

posite sense ; show that they intersect at right angles.

24. If axis, vertex, and one other point of the parabola are given, ad-

ditional points can be constructed as follows : Let be the vertex, P the

given point, and Q the foot of the perpendicular from P to the tangent

at the vertex ; divide QP into equal parts by the points ^i, J.2, •••
; and

OQ into the same number of equal parts by the points Pi, P2, •••
; the

intersections of 0-4i, 0^2» ••• with the parallels to the axis through Pi,

P2, •••are points of the parabola.

26. If two tangents APu AP^ to a parabola with their points of con-

tact Pi, P2 are given and ^Pi, ^P2 be divided into the same number of

equal parts, the points of division being numbered from Pi to A and from

A to P2, the lines joining the points bearing equal numbers are tangents

to the parabola. To prove this show that the intersections of any tangent

with the lines ^Pi, ^P2 divide the segments Pi^, APi in the same

division ratio.

26. The shape assumed by a uniform chain or cable suspended between

two fixed points Pi, P2 is called a catenary ; its equation is not algebraic

and cannot be given here. But when the line P1P2 is nearly horizontal

and the depth of the lowest point below P1P2 is small in comparison with

P1P2, the catenary agrees very nearly with a parabola.

The distance between two telegraph poles is 120 ft. ; P2 lies 2 ft. above

the level of Pi ; and the lowest point of the wire is at 1/3 the distance be-

tween the poles. Find the equation of the parabola referred to Pi as

origin and the horizontal line through Pi as axis Ox ; determine the posi-

tion of the lowest point and the ordinates at intervals of 20 ft.

27. The cable of a suspension bridge assumes the shape of a parabola

if the weight of the suspended roadbed (together with that of the cables)

is uniformly distributed horizontally. Suppose the towers of a bridge

240 ft. long are 60 ft. high and the lowest point of the cables is 20 ft. above

the roadway ; find the vertical distances from the roadway to the cables

at intervals of 20 ft.
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28. When a parabola revolves about its axis, it generates a surface called

a paraboloid of revolution ; all meridian sections (sections through the

axis) are equal parabolas. If the mirror of a reflecting telescope is such

a surface (the portion about the vertex), all rays of light falling in parallel

to the axis are reflected to the same point ; explain why.

106. Parameter Equations. Instead of using the cartesian

or polar equation of a curve it is often more convenient to

express x and y (or r and <^) each in terms of a third variable,

which is then called the parameter.

Thus the parameter equations of a circle of radius a about the

origin as center are :

x = a cos </>, y = a sin <^,

</) being the parameter. To every value of
<f>

corresponds a

definite x and a definite y, and hence a point of the curve.-

The elimination of <^, by squaring and adding the equations,

gives the cartesian equation a^-\-y^ = a^.

Again, to determine the motion of a projectile we may observe

that, if gravity were not acting, the projectile, started with an

initial velocity v^ at an angle c to the horizon, would have at the

time t the position

a; = ^>o cos c •
^, y = VQ sin e • t^

the horizontal as well as the vertical motion being uniform.

But, owing to the constant acceleration g of gravity (down-

ward), the ordinate y is diminished by ^gt"^ in the time i, so

that the coordinates of the projectile at the time t are

x = Vq cos c •
^, y = VQmie't — \gt'^.

These are the parameter equations of the path, the parameter

here being the time t. The elimination of t gives the cartesian

equation of the parabola described by the projectile

:

y=zVQtdiXi€'X- / x\
2V cos^ €
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107. Parameter Equations of a Parabola. For any parabola

^ = 4 oa; we can also use as parameter the angle a made by the

tangent with the axis Ox\ we have for this angle (§ 97)

:

2a
tan a =—

;

y

it follows that y = 2a cot a and hence x = y^/4: a = a cot* «.

The equations

x= a cot' a, y = 2 a cot a

are parameter equations of the parabola ?/' = 4 oic ; the elimina-

tion of cot a gives the cartesian equation.

108. Parabola referred to Diameter and Tangent. The

equation of the parabola y^ = 4ax preserves this simple form if instead of

axis and tangent at the vertex we take as

axes any diameter and the tangent at its end.

We shall show that the equation in these

oblique coordinates is

yi* = 4 aiXi ,

where oi is a new constant determined below.

To prove this observe that since the new

origin Oi (A, A;) is a point of the parabola

y* = 4 aXy we have by § 107

h = acot^a, k = 2a cot a, ^o- 61

where a is the angle at which the tangent at Oi is inclined to the axis.

Hence, transferring to parallel axes through Oi, we obtain the equation

(y + 2 a cot a)2 = 4 a (x + a cot2 a),

which reduces to
y^ -\-iacot(t'y = iax.

The relation between the rectangular coordinates x, y and the oblique

coordinates Xi , yi , both with Oi as origin, is readily seen from the figure

to be X = xi + yi cos a, y = yi sin a. Substituting these values we find

2/1^ sin2 a + 4 a cos a • yi = 4 oici + 4 ayi cos a,

y

/ h / \ 1 X
/'

or, if we put a/sin^ a = ai, y^ — 4 xi = 4 a\X\.



VI, § 108] THE PARABOLA 111

The meaning of the constant ai appears by observing that

sin2 a tan2 a

ai is therefore the distance of the new origin Oi from the directrix, or,

what amounts to the same, from the focus F.

EXERCISES

1. Show that the parameter equations of a circle with center at (A, k)

and radius a are

X = h -i- a cos 4>, y = k-{- asiiKp.

2. Sketch the curves whose equations are :

(a) x = t,y = t'^; (b) x = t^ -1, y = 3-21"^;

(c) x = 2t-l, y = t^-St'; ((?) X = 3 + 2 cos 0, 2/ = 4 + 2 sin
;

(e) a; = 4 + 5 cos 0, y = 2 + 5 sin 0.

3. What must be the initial velocity vq of a projectile if, with an eleva-

tion of 30°, it is to strike an object 100 ft. above the horizontal plane of

starting point at a horizontal distance from the latter of 1200 ft.?

4. What must be the elevation e to strike an object 100 ft. above the

horizontal plane of the starting point and 6000 ft. distant, if the initial

velocity be 1200 ft. per second ?

6. Prove that a projectile whose elevation is 60° rises three times as

high as when its elevation is 30°, the magnitude of the initial velocity

being the same in each case.

6. If a golf ball be driven from the tee horizontally with initial speed

= 300 ft. /sec, where and when would it land on ground 16 ft. below the

tee if resistance of air and rotation of ball could be neglected ?

7. A man standing 15 feet from a pole 150 ft. high aims at the top of

the pole. If the bullet just misses the top, where will it strike the ground

if vo - 1000 ft. /sec. ?

8. The ends ^, J5 of a straight rod of length 2 a move along two per-

pendicular lines ; find the locus of the midpoint of AB.

9. Four rods are jointed so as to form a parallelogram ; if one side is

fixed, find the path described by any point rigidly connected with the op-

posite side.
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109. Area of Parabolic Segment. A parabola, together with

any chord perpendicular to its axis, bounds an area OPF^ (shaded in

Fig. 62). It was shown by Archimedes (about

250 B.C.) that this area is two thirds the area

of the rectangle PPfQ'Q that has the chord

J"P as one side and the tangent at the vertex

as opposite side. Fig. 62

This rectangle PJPQ'Q is often called (somewhat improperly) the cir-

cumscribed rectangle so that the result can be expressed briefly by saying

that the area of the parabola is 2/3 of that of the circumscribed rectangle.

This statement is of course equivalent to saying that the (non-shaded)

area OQP is 1/3 of the area of the rectangle OQPB. In this form the

proposition is proved in the next article.

110. Area by Approximation Process. To obtain first an ap-

proximate value {A) for the area OQP (Fig. 63) we may subdivide the

area into rectangular strips of equal width,

by dividing OQ into, say, n equal parts

and drawing the ordiuates j/i , y2, ••• ^n-

If the width of these strips is Ax so that

OQ = nAx, we have as approximate value

of the area

:

(A) = Ax • yi -\- Ax ' 7/2 + •" + Ax • y„.

Now yi is the ordinate corresponding to the abscissa Ax
; yz corresponds

to the abscissa 2 Ax, etc.
; yn corresponds to the abscissa nAx = OQ.

Hence, if the equation of the curve is a;'* = 4 ay, we have :

FiQ. 63

4a
2/2 T^(2Ax)2,

4a
yn = ^{nAxy.

4a

Substituting these values we find :

(^)=(M-'(i + 22 + 32+ ... +n2).
4 a

Now,

1 + 22+ ... +n2 = in(n+l)(2n+l)=i(2n8 + 3n2 + n);-

hence (^) = ^'(2n« + 3n2 + n) = C^Y2 + § + I).
^ ' 24 a 24 a \ n n^)

Now nAx = OQ — Xn, the abscissa of the terminal point P, whatever the

number n and length Ax of the subdivisions. Hence, if we let the num-
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ber n increase indefinitely, we find in the limit the exact expression A for

the area OQP:
._^_1.

4a 3

where y„ = Xr?/4, a is the ordinate of the terminal point P. As XnVn is

the area of the rectangle OQPB, Archimedes' proposition (§ 109) is

proved.

111. Area expressed in Terms of Ordinates. The area

(shaded in Fig. 64) between the parabola cc^ = 4 ay, the axis Ox, and the

two ordinates yi, y^, whose abscissas differ by y
2 Ax is evidently, by the formula of § 110,

A = -^{x^^-Xi^).
12 a

Ax

12 a

= -=^ (6 xi^ + 12 xiAx
12 a

[(xi + 2 Ax)8-xi3]

- 8 (Ax)2).

Fig. 64
This expression can be given a remarkably

simple form by introducing not only the ordinates y\ = a;iV4 a, yz =
(ici + 2 Axy/i a, but also the ordinate 2/2 midway between yi and yz,

whose abscissa is Xi + Ax. For we have :

yi + 4 2/2 + =~[xi^-hHxi + Axy +{xi + 2 Ax)2]
4a

We find therefore

:

=— [6 Xi2 + 12 XiAx + 8(Ax)2].
4/z

^ = |Ax(yi + 4?/2 + y3).

This formula holds even if the vertex of

the parabola is at any point {h, k)
,
pro-

vided the axis of the parabola is parallel to

Oy. For (Fig. 65 ) , to find the area under

the arc P1P2P3 we have only to add to

the doubly shaded area the simply shaded

rectangle whose area is 2 kAx. We find

therefore for the whole area

:

I Ax(yi + 4 ?/2 + 2/3) + 2 Mx = ^ Ax(yi + 4 1/2 + 2/3 + 6 A:)

= 1 Ax l(yi + A;) + 4 (2/2 + k) +(2/3 + A:)],

I

Fio. 65
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Fig. 66

where yi,y2, yz are the ordinates of the parabola referred to its vertex,

and hence yi + k^ yi + k^ yz-\- k the ordmates for the origin O.

We have therefore for any parabola whose axis is parallel to Oy :

A = \ ^x{yi + iy2-{-y3).

112. Approximation to any Area. Simpson's Rule. The

last formula is sometimes used to find an approximate value for the area

under any curve (i.e. the area bounded

by the axis Ox, an arc AB of the curve,

and the ordinates of^ and B, Fig. 66).

This method is particularly convenient

if a number of equidistant ordinates

of the curve are known, or can be

found graphically.

Let Ax be the distance of the ordi-

nates, and let yi , 2/2 » ys be any three

consecutive ordinates. Then the doubly shaded portion of the required

area, between yi and ys, will be (if Ax is sufficiently small) very nearly

equal to the area under the parabola that passes through Pi , P3 , P3 and

has its axis parallel to Oy. This parabolic area is by § 111

= ^Ax(yi+^yi + y3).

The whole area under AB is a sum of such expressions. This method

for finding an approximate expression for the area under any curve is

known as Simpson's rule (Thomas Simpson, 1743) although the funda-

mental idea of replacing an arc of the curve by a parabolic arc had been

suggested previously by Newton.

113. Area of any Parabolic Segment. As the equation of a

parabola referred to any diameter and the tangent at its end has exactly

the same form as when the parabola is

referred to its axis and the tangent at

the vertex (§ 108) it can easily be shown

that the area of any parabolic segment is

S/3 of the area of the circumscribed paral-

lelogram formed by the chord, the parallel

tangent, and the two parallels to the axis

through the extremities of the chord

(Fig. 67).

^ JjE Qi Ax Q,

FlQ. 67
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With the aid of this proposition Simpson's rule can be proved very

simply. For, the area of the parabolic segment P1P3P2 (Fig. 67) is then

equal to 2/3 of the parallelogram formed by the chord P1P2, the tangent

at P2, and the ordinates yi, ys (produced if necessary). This parallelo-

gram has a height = 2 Ax and a base = ilfP2 = 2/2 — i (yi + Vs) ', hence

the area of P1P3P2 is f Ax (2 y^^y^- y^) = 1 Ax [4 2/2 - 2 (2/1 + ys)].

To find the whole shaded area we have only to add to this the area of

the trapezoid QiQzPzP\^ which is Ax (1/1+2/3).

Hence A = QiQsPsP2Pi = ^ Ax[4 2/2 - 2(2/1 + 2/3) + S(yi + 2/3)]

= ^ Ax(2/i +42/2 + 2/3).

EXERCISES

1. Show that the area of any parabolic segment is 2/3 of the area

of the circumscribed parallelogram.

2. In what ratio does the parabola y^ = 4ax divide the area of the

circle (x - a)2 + 2/2 = 4 a^ ?

3. Find the area bounded by the parabola y'^ = 4 ax and a line of

slope m through the focus.

4. Find and sketch the curve whose ordinates represent the area

bounded by : (a) the line ^ = | x, the axis Ox, and any ordinate, (&) the

parabola 2/ = f x^, the axis Ox, and any ordinate.

5. Find an approximation to the areas bounded by the following

curves and the axis Ox (divide the interval in each case into eight or

more equal parts)

:

(a) 4 2/ = 16 - x2. (6) 2/ = (x + 3) (x - 2)2. (c) 2/ = a;2 - x^.

6. The cross-sections in square feet of a log at intervals of 6 ft. are

3.25, 4.27, 5.34, 6.02, 6.83 ; find the volume.

7. The cross-sections of a vessel in square feet measured at intervals

of 3 ft. are 0, 2250, 5800, 8000, 10200 ; find the volume. Allowing one

ton for each 35 cu. ft. , what is the displacement of the vessel ?

8. The half-widths in feet of a launch's deck at intervals of 6 ft. are

0, 1.8, 2.6, 3.2, 3.3, 3.3, 2.7, 2.1, 1 ; find the area.
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ELLIPSE AND HYPERBOLA

At Ft

:^>^
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FiQ. 68

114. Definition of the Ellipse. The ellipse may be defined

as the locus of a point whose distances from two fixed points have

a constant sum.

If Fi , F2 (Fig. 68) are the fixed points, which are called the

focif and if P is any point of the

ellipse, the condition to be satisfied

by P is

FiP -h F,P = 2 a.

The ellipse can be traced mechan-

ically by attaching at F^y Ff the

ends of a string of length 2 a and

keeping the string taut by means of a pencil. It is obvious

that the curve will be symmetric with respect to the line FiF^,

and also with respect to the perpendicular bisector of F1F2.

These axes of symmetry are called the axes of the ellipse ; their

intersection O is called the center of the ellipse.

115. Axes. The points A^, A^y B^, B^ (Figs. 68 and 69)

where the ellipse intersects these axes are called vertices.

The distance A^A^ of those vertices

that lie on the axis containing the

foci -Fi, i^2 is = 2 a, the length of

the string. For when the point P
in describing the ellipse arrives at

-4i, the string is doubled along

F^A^ so that

116

FiQ. 69
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and since, by symmetry, A2F2 = i^iA , we have

A2F2 + F^F^ + F^A^ = A^A^ = 2 a.

The distance AoA^ = 2 a, which is called the major axiSj must

evidently be not less than the distance 1^2-^1 between the foci,

which we shall denote by 2 c.

The distance B2B1 of the other two vertices is called the

minor axis and will be denoted by 2 b. We then have

62 = a2 - c2

;

for when P arrives at Bi , we have B^F^ = B^F^ = a.

116. Equation of the Ellipse. If we take the center as

origin and the axis containing the foci as axis Ox, the equation

of the ellipse is readily found from the condition F^P + F^P
= 2 a, which gives, since the coordinates of the foci are c,

and — c, :

Vix - c)2 + 2/2 + V(aj + c)2 + 2/2 = 2 a.

Squaring both members we have

a.2 _^ 2/2 -f- c2 + V(a;2 + 2/^ + 02 — 2 cx){x^ + y^ -^ c'^ -{- 2 ex) = 2 a^ -,

transferring a;2 -f 2/2 + c2 to the right-hand member and squar-

ing again, we find

(a;2 + 2/2 -f c2)2 - 4 c2a;2 = 4 a^ - 4 a2(a;2 -}- 2/2 -f- c^) + (x^ + y^-\- c^y,

i.e. (a2 - c2)a;2 + aY = a^(a^ - c2).

Now for the ellipse (§ 115) a2 — c2 = b^. Hence, dividing both

members by a^b% we find

as the cartesian equation of the ellipse referred to its axes.

This equation shows at a glance : (a) that the curve is sym-

metric to Ox as well as to Oy
; (6) that the intercepts on the

axes Ox, Oy are ± a, and ± b. The lengths a, b are called

the semi-axes.
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Solving tlie equation for y we find

(2) 2^ = ±-V^^'=^,
ct

which shows that the curve does not extend beyond the vertex

Ai on the right, nor beyond A2 on the left.

If a and h (or, what amounts to the same, a and c) are given

numerically, we can calculate from (2) the ordinates of as

many points as we please. If, in particular, a = b (and hence

c = 0), the ellipse reduces to a circle,

EXERCISES

1. Sketch the eUipse of semi-axes a = 4, 6 = 3, by marking the ver-

tices, constructing the foci, and determining a few points of the curve

from the property FiP -\- F2P= 2 a. Write down the equation of this

ellipse, referred to its axes.

2. Sketch the ellipse x^/l6 + y^/9 = 1 by drawing the circumscribed

rectangle and finding some points from the equation solved for y.

3. Sketch the ellipses : (a) «« +2 y* = 1. (6) 3 x^ + 12 y* = 6.

(c) 3 a;2 + 3 1/2 = 20. (d) x^ + 20 y^ = 1.

4. If in equation (1) a < 6, the equation represents an ellipse whose

foci lie on Oy. Sketch the ellipses :

(a) T + 7^=l' (^) 20x2 + 2/2 = 1. (c) 10x2 + 9y2=io.
4 lo

6. Find the equation of the ellipse referred to its axes when the foci

are midpoints between the center and vertices.

6. Find the product of the slopes of chords joining any point of an

ellipse to the ends of the major axis. What value does this product

assume when the ellipse becomes a circle ?

7. Derive the equation of the ellipse with foci at (0, c), (0, — c), and

major axis 2 a.

8. Write the equations of the following ellipses : (a) with vertices

at (5, 0), (- 5, 0), (0, 4), (0, - 4) ; (&) with foci at (2, 0), (- 2, 0),

and major axis 6.

9. Find the equation of the ellipse with foci at (1, 1), (—1, — 1),

and major axis 6, and sketch the curve.
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117. Definition of the H3rperbola. The hyperbola can be

defined as the locus of a point whose distances from two fixed

points have a constant difference.

The fixed points F^, F^ are again called the foci; if 2 a is

the constant difference, every point P of the hyperbola must

satisfy the condition

F^P-F^P=^±2a.

Kotice that the length 2 a must here be not greater than the

distance F^^ = 2 c of the foci.

The curve is symmetric to the line -Fa^i and to its perpen-

dicular bisector.

A mechanism for tracing an arc of a hyperbola consists of

a straightedge F2Q (Fig. 70) which turns about one of the

foci, F2 ; a string, of length F2Q — 2a, is fastened to the

Fig. 70

straightedge at Q and with its other end to the other focus,

Fi. As the straightedge turns about F^, the string is kept

taut by means of a pencil at P which describes the hyperbolic

arc. Of course only a portion of the hyperbola can be traced

in this manner.

118. Equation of the Hyperbola. If the line F^F^ be taken

as the axis Ox, its perpendicular bisector as the axis Oy, and if

F^F^ = 2 c, the condition F^P-F^P^ ±2 a becomes (Fig. 71) ;

y/(x+ cy -{-f -Vix - cy -\-y' = ±2 a.
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Squaring both members we find

[VII, § 118

a^+2/' 4- c^- V(ar^ 4-2^' 4- c^- 2 ca;)(a^H- 2/2 -fc^-f 2 caj) =2 a^

squaring again and reducing as in § 116, we find exactly the

same equation as in § 116

:

Fig. 71

But in the present case c^ a, while for the ellipse we had

c < a. We put, therefore, for the hyperbola

c2-a2 = &2;

the equation then reduces to the form

(3)
a2 62

which is the cartesian equation ofthe hyperbola referred to its axes.

119. Properties of the Hjrperbola. The equation (3) shows

at once: (a) that the curve is symmetric to Ox and to Oy\

(6) that the intercepts on the axis Ox are ± a, and that the

curve does not intersect the axis Oy.

The line F^F^ joining the foci and the perpendicular bisector

of F^F^ are called the axes of the hyperbola ; the intersection

of these axes of symmetry is called the center.

The hyperbola has only two vertices, viz. the intersections

Ax , Ai with the axis containing the foci.
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The shape of the hyperbola is quite different from that of

the ellipse. Solving the equation for y we have

h
(4) y=±-^o?-a?,

which shows that the curve extends to infinity from A^ to the

right and from A^ to the left, but has no real points between

the lines x = a, x = — a.

The line F^F^ containing the foci is called the transverse

axis; the perpendicular bisector of F^F^ is called the conjugate

axis. The lengths a, b are called the transverse and conjugate

semi-axes.

In the particular case when a=b, the equation (3) reduces to

7^ — y^ — a^f

and such a hyperbola is called rectangular or equilateral.

120. As3rmptotes. In sketching the hyperbola (3) or (4) it

is best to draw first of all the two straight lines

i.e.

(5) y^±U
a

which are called the asymptotes of the hyperbola.

Comparing with equation (4) it appears that, for any value

of X, the ordinates of the hyperbola (4) are always (in absolute

value) less than those of the lines (5); but the difference

becomes less as x increases, approaching zero as x increases

indefinitely.

Thus, the hyperbola approaches its asymptotes more and

more closely, the farther we recede from the center on either

side, without ever reaching these lines at any finite distance

from the center.
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EXERCISES

1. Sketch the hyperbola a;2/16 — yV4 = 1, after drawing the asymp-

totes, by determiuing a few points from the equation solved for y ; mark

the foci.

2. Sketch the rectangular hyperbola x^ — y"^ — 9. Why the name

rectangular ?

3. With respect to the same axes draw the hyperbolas

:

(a) 20a;2 - ys = 12. (6) x^ - 20 y^ = 12. (c) x^-y'^z= 12.

4. The equation — a^^/a^ + y'^jlP- — 1 represents a hyperbola whose

foci lie on the axis Oy. Sketch the curves

:

(a) - 3x2 + 4j/2 = 24. (6) a;2_ 3^2 -|- 18 = 0. (c) x^-y'^ + 16 = 0.

6. Sketch to the same axes the hyperbolas

:

9 ^ ' 9 ^

Two such hyperbolas having the same asymptotes, but with their axes

interchanged, are called conjugate.

6. What happens to the hyperbola x^/a'^ — y'^/h'^ = 1 as a varies ? as

6 varies ?

7. The equation x^/aP' — y^/b^ = k represents a family of similar

hyperbolas in which k is the parameter. What happens as k changes

from 1 to — 1 ? What members of this family are conjugate ?

8. Find the foci of the hyperbolas

:

(a) 9 a;2 - 16 1/2 = 144. (6) 3 a;2 _ y2 = 12.

9. Find the hyperbola with foci (0, 3), (0, — 3) and transverae axis 4.

10, Find the equation of the hyperbola referred to its axes when the

distance between the vertices is one half the distance between the foci.

11. Find the distance from an asymptote to a focus of a hyperbola.

13. Show that the product of the distances from any point of a hyper-

bola to its asymptotes is constant.

13. Find the hyperbola through the point (1, 1) with asymptotes

y=±2x.

14. Find the equation of the hyperbola whose foci are (1, 1),

(—1, — 1), and transverse axis 2, and sketch the curve.
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121. Ellipse as Projection of Circle. If a circle be turned

about a diameter ^2^1 = ^ a through an angle €(<|-7r) and

then projected on the original plane, the projection is an

ellipse.

For, if in the original plane we take the center as origin

and OAi as axis Ox (Fig. 72), the

ordinate QP of every point P of

the projection is the projection of

the corresponding ordinate QP^ of

the circle; i.e. —j^ q

QP=QPi cose. Fig. 72

The equation of the projection is therefore obtained from the

equation

x' + y^ = a'

of the circle by replacing y by y/cos c. The resulting equation

x^-\-
y'

COS^e

represents an ellipse whose semi-axes are a, the radius of the

circle, and 6 = a cos c, the projection of this radius.

122. Construction of Ellipse from Circle. We have just

seen that, if a > 6, the ellipse

can be obtained from its circumscribed circle a^ + 2/^ = a^ by re-

ducing all the ordinates of this circle in the ratio b/a. This

also appears by comparing the ordinates

y = ±-Va^ — x"^

a

of the ellipse with the ordinates ?/ = ± Va^ — x^ of the circle.
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But the same ellipse can also be obtained from its inscribed

circle a^ -{- y^ = b^ hj increasing each abscissa in the ratio a/b,

as appears at once by solving for x.

It follows that when the semi-axes a, b are given, points of

the ellipse can be constructed by drawing concentric circles of

radii a, b and a pair of perpendicular diameters (Fig. 73) ; if

Fig. 73

any radius meets the circles at Pj , P^ > the intersection P of

the parallels through P^ , Pj ^o the diameters is a point of the

ellipse.

123. Tangent to Ellipse. It follows from § 121 that if

P («, y) is any point of the ellipse and Pj that point of the cir-

cumscribed circle which has the same abscissa, the tangents at

P to the ellipse and at P^ to the circle must meet at a point T on

the major axis (Fig. 74).

Q A,

Fig. 74

For, as the circle is turned about A^A^ into the position in

which P is the projection of Pj , the tangent to the circle at Pi

is turned into the position whose projection is PT, the point T
on the axis remaining fixed.
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The tangent a^jX+ 2/1Y= a^ to the circle at Pi {xi , y^) meets

the axis Ox at the point T whose abscissa is

OT=ayxi = a''/x,

Hence the equation of the tangent at P(a;, y) to the ellipse is

IT
«^

= — , or
a2 yX —

yX-fx-^^Y-a^^=0:

X

dividing by a^y/x and observing that, by the equation of the

ellipse, x^ — o? = — {a?/lf)y'^ we find

(6)
xX yY.

as equation of the tangent to the ellipse (1) at 4lie point P(x, y).

It follows from the equation of the tangent that the slope

of the ellipse at any point P(x, y) is

¥x
tan a =

a^y

124. Eccentricity. For the length of the focal radius F^P

of any point P{x, y) of the ellipse (1) we have (Fig. 75),

since a^ — 6^ = c^

:

F,P^={x-cy+y^=(x-cy-{-—(a''-x^)=^^(a'- 2 a''cx-{-c'x%

whence FiP=± {-i^y
The ratio c/a of the distance

2 c of the foci to the major axis

2 a is called the (numerical) ec-

centricity of the ellipse. Denot-

ing it by e we have F^P= ± (a — ex),

and similarly we find F^P^ ± (a + ex).

Fig. 75
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For the hyperbola (3) we find in the same way, if we again

put e = cla, exactly the same expressions for the focal radii

F^P^ F^P (in absolute value). But as for the ellipse c^^o?— b^

while for the hyperbola c^^a^+ b- it follows that the eccentric-

ity of the ellipse is always a proper fraction becoming zero only

for a circle^ while the eccentricity of the hyperbola is always greater

than one.

125. Equation of Normal to Ellipse. As the normal to a

curve is the perpendicular to its tangent through the point of

contact, the equation of the normal to the ellipse (1) at the point

P{Xy y) is readily found from the equation (6) of the tangent as

y X ^ /I IN c'

I.e. ^X--Y=c\
X y

The intercept made by this normal on the axis Ox is there-

fore

ON=z^x=^e'hi.

From this result it appears by § 125 that (Fig. 76)

FiN= c-\-e^x=i e(a -f-ea;)= e • F^P,

FiN= c-e^ = e(a-ex)=e' F^P;

hence the normal divides the dis-

tance F2F1 in the ratio of the

adjacent sides F^P^ F^P of the

triangle F^PF.^. It follows that

the normal bisects the angle betiveen

the focal radii PF^ , PF^ ; in other words, the focal radii are

equally inclined to the tangent.

Fia. 76
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126. Construction of any Hyperbola from Rectangular

Hyperbola. The ordinates (4),

y = ±- Va;2
a

of the hyperbola (3) are b/a times the corresponding ordinates

y = ± 'vx^ — a^

of the equilateral hyperbola (end of § 119) having the same

transverse axis. When 6 < a, we can put b/a = cos e and re-

gard the general hyperbola as the projection of the equilateral

hyperbola of equal transverse axis. When 6 > a, we can put

a/b = cos € so that the equilateral hyperbola can be regarded as

the projection of the general hyperbola.

In either case it is clear that the tangents to the general and

equilateral hyperbolas at corresponding points (i.e. at points

having the same abscissa) must intersect on the axis Ox.

127. Slope of Equilateral Hyperbola. To find the slope of

the equilateral hyperbola

X'^ — y^ — a^j

observe that the slope of any secant joining the point P{x, y)

and Pi{xyy 2/i) ^^ (2/i~2/)/(^i~^)> ^-nd that the relations

2/2=aj2-a2, y^ = x^—o?

give y^-yi^ = x^-x^\ i.e. (y-yi)(y + yi) =(x-^x{){x-\'x;)f

whence .VZL^

_

^"^ i
.

x-x^ y+yi
Hence, in the limit when Pi comes to coincidence with P, we

find for the slope of the tangent at P(x, y) : tan a =x/y. Hence

the equation of the tangent to the equilateral hyperbola is

T-y = -{X-x),oTxX-yT=a\
y

since x^ —y^^ a^.
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128. Tangent to the Hyperbola. It follows as in § 123 that

the tangent to the general hyperbola (3) has the equation

(7) ^-yl=i,
^ ^

a^ ¥
The slope of the hyperbola (3) is therefore

tan a =
a^y

Notice that the equations (6), (7) of the tangents are obtained

from the equations (1), (3) of the curves by replacing x*, y'^ by

xXj yY, respectively (compare §§ 54, 98).

It is readily shown (compare § 126) that for the hyperbola

(3) the tangent meets the axis Ox at the point T that divides

the distance of the foci F^Fi proportionally to the focal radii

F2P, FiP, so that the tangent to the hyperbola bisects the angle

between the focal radii.

EXERCISES

1. Show that a right cylinder whose cross-section (i.e. section at

right angles to the generators) is an ellipse of semi-axes a, b has two

(oblique) circular sections of radius a ; find their inclinations to the

cross-section.

2. Derive the equation of the normal to the hyperbola (3).

3. Find the polar equations of the ellipse and hyperbola, with the

center as pole and the major (transverse) axis as polar axis.

4. Find the lengths of the tangent, subtangent, normal, and sub-

normal in terms of the coordinates at any point of the ellipse.

6, Show that an ellipse and hyperbola with common foci are

orthogonal.

6. Show that the eccentricity of a hyperbola is equal to the secant

of half the angle between the asymptotes.

7. Express the cosine of the angle between the asymptotes of a

hyperbola in terms of its eccentricity.

8. Show that the tangents at the vertices of a hyperbola intersect the

asymptotes at points on the circle about the center through the foci.
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9. Show that the point of contact of a tangent to a hyperbola is the

midpoint between its intersections with the asymptotes.

10. Show that the area of the triangle formed by the asymptotes and

any tangent to a hyperbola is constant.

11. Show that the product of the distances from the center of a hyper-

bola to the intersections of any tangent with the asymptotes is constant.

12. Show that the tangent to a hyperbola at any point bisects the angle

between the focal radii of the point.

13. As the sum of the focal radii of every point of an ellipse is con-

stant (§ 116) and the normal bisects the angle between the focal radii

(§ 125), a sound wave issuing from one focus is reflected by the ellipse

to the other focus. This is the explanation of "whispering galleries."

Find the semi-axes of an elliptic gallery in which sound is reflected from

one focus to the other at a distance of 69 ft. in 1/10 sec. (the velocity of

sound is 1090 ft,/sec).

14. Show that the distance from any point of an equilateral hyperbola

to its center is a mean proportional to the focal radii of the point.

15. Show that the bisector of the angle formed by joining any point

of an equilateral hyperbola to its vertices is parallel to an asymptote.

16. Show that the tangents at the extremities of any diameter (chord

through the center) of an ellipse or hyperbola are parallel.

17. Let the normal at any point Pof an ellipse referred to its axes cut

the coordinate axes at Q and B ; find the ratio PQ/PB.

18. Show that a tangent at any point of the circle circumscribed about

an ellipse is also a tangent to the circle with center at a focus and radius

equal to the focal radius of the corresponding point of the ellipse.

19. Show that the product of the y-intercept of the tangent at any

point of an ellipse and the ordinate of the point of contact is constant.

20. Find the locus of the center of a circle which touches two fixed

non-intersecting circles.

21. Find the locus of a point at which two sounds emitted at an

interval of one second at two points 2000 ft. apart are heard simul-

taneously.
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129. Intersections of a Straight Line and an Ellipse.

The intersections of the ellipse (1) with any straight line are

found by solving the simultaneous equations

y = mx 4- k.

Eliminating y, we find a quadratic equation in x:

(m'a} + 62)a^ ^ 2 mka'x + {Jc" - 6')a' = 0.

To each of the two roots the corresponding value of y results

from the equation y = mx + k.

Thus, a straight line can intersect an ellipse in not more than

two points.

130. Slope Form of Tangent Equations. If the roots of

the quadratic equation are equal, the line has but one point in

common with the ellipse and is a tangent.

The condition for equal roots is

m'lea^ = {m^a^ + &')(*:* - &*),

whence k=± Vm^a^ + b\

The two parallel lines

(8) y = mx ± VmV+^
are therefore tangents to the ellipse (1), whatever the value of

m. This equation is called the slope form of the equation of a

tangent to the ellipse.

It can be shown in the same way that a straight line cannot

intersect a hyperbola in more than two points, and that the

two parallel lines

y = WM5± -Vm^a^ — 6'

have each but one point in common with the hyperbola (3).

131. The condition that a line be a tangent to an ellipse or

hyperbola assumes a simple form also when the line is given

in the general form
Ax-{-By+C=0.
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Substituting the value of y obtained from this equation in

the equation (1) of the ellipse, we find for the abscissas of the

points of intersection the quadratic equation

:

{A^a? + jB262)ic2 + 2 ACo^x + (O^ - I^h'')a^ = 0;

the condition for equal roots is

A^C^a^ = {AH^ + Wh^C^ - B'b''),

which reduces to

A^a'-^-B'b'^C'.

The line is therefore a tangent whenever this condition is

satisfied.

When the line is given in the normal form,

a; cos )8 + 2/ sin ^ = j9,

the condition becomes

132. Tangents from an Exterior Point. By § 130 the line

y = mx + V m'-^a'-^ + b^^

is tangent to the ellipse (1) whatever the value of m. The condition that

this Une pass through any given point {xi , yi) is

2/1 = mxi + y/m^d^ + 6^
;

transposing the term mxi, and squaring, we find the following quadratic

equation for m :

mHx^ - 2 mxxyx + y^ = m'^a^ + b^,

i.e. (xi^ - a^)m^ - 2 xiyim + yi^ -b'^ = 0.

The roots of this equation are the slopes of those lines through (xi , yi)

that are tangent to the ellipse (1).

Thus, not more than two tangents can be drawn to an ellipse from any

point. Moreover, these tangents are real and different, real and coin-

cident, or imaginary, according as
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This condition can also be written in the form

i.e. ^\yl^i^o.
a^ h"^ <

Hence, to see whether real tangents can be drawn from a point (xi , yi)

to the ellipse (1) we have only to substitute the coordinates of the point

for X, y in the expression

^ + 2^-1-

if the expression is zero, the point (xi, yi) lies on the ellipse, and only

one tangent is possible ; if the expression is positive, two real tangents

can be drawn, and the point is said to he outside the eUipse ; if the expres-

sion is negative, no real tangents exist, and the point is said to he within

the eUipse.

These definitions of inside and outside agree with what we would

naturally call the inside or outside of the eUipse. But the whole discus-

sion applies equally to the hyperbola (3) where the distinction between

inside and outside is not so obvious.

133. Sjonmetry. Since the ellipse, as well as the hyperbola,

has two rectangular axes of symmetry, the axes of the curve,

it has a center^ the intersection of these axes, i.e. a point of

symmetry such that every chord through this point is bisected

at this point (compare § 70). Analytically this means that

since the equation (1), as well as (3), is not changed by replac-

ing a; by — ic, nor by replacing yhy —y, it is not changed by

replacing both x and yhy — x and — y, respectively. In other

words, if (a;, y) is a point of the curve, so is (— a;, — y). This

fact is expressed by saying that the origin is a point of sym-

metry, or center.

134. Conjugate Diameters. Any chord through the center

of an ellipse or hyperbola is called a diameter of the curve.
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Just as in the case of the circle, so for the ellipse the locus

of the midpoints of any system of parallel chords is a diameter.

This follows from the corresponding property of the circle

because the ellipse can be regarded as the projection of a

circle (§121). But this diameter is in general not perpen-

dicular to the parallel chords ; it is said to be conjugate to the

diameter that occurs among the parallel chords. Thus, in Fig.

77, P'Q' is conjugate to PQ (and vice versa).

Fig. 77

To find the diameter conjugate to a given diameter y = mx
of the ellipse (1), let y—mx -\-k be any parallel to the given

diameter. If this parallel intersects the ellipse (1) at the real

points (a^, 2/1) and (X2, 2/2)? the midpoint has the coordinates

^(ajj + X2), J(yi + 2/2)- The quadratic equation of § 129 gives

X=-{Xi-{-X2) = ma^k

m^a^ + 62

If instead of eliminating y we eliminate x, we obtain the quad-

ratic equation

(m2a2+ 62)2/2 _ 2 Wy + Qc"- m' a')W = 0,

whence y
1/ , N

^'^

7^ (2/1 + 2/2) = —TTTTi2 mV+d^
Eliminating k between these results, we find the equation of the

locus of the midpoints of the parallel chords of slope m :
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(9) y = --\x,
^ ^ ma?

If m = tan a is the slope of any diameter of the ellipse (1),

the slope of the conjugate diameter is

mi = tan «! = -•

The diameter conjugate to this diameter of slope wij has there-

fore the slope

mo= —
'' - m,a'

\ ma^J

i.e. it is the original diameter of slope m (Fig. 77). In other

words, either one of the diameters of slopes m and m^ is conjugate

to the other ; each bisects the chords parallel to the other.

135. Tangents Parallel to Diameters. Among the parallel

lines of slope m, y = mx -{- k, there are two tangents to the

ellipse, viz. (§ 130) those for which

k=±VrrM^f¥,

their points of contact lie on (and hence determine) the conju-

gate diameter. This is obvious geometrically; it is readily

verified analytically by showing that the coordinates of the

intersections of the diameter of slope — b^/ma^ with the

ellipse (1) satisfy the equations of the tangents of slope m, viz.

y = mx ± -y/m^a^ + b^.

The tangents at the ends of the diameter of slope m must of

course be parallel to the diameter of slope wij. The four tan-

gents at the extremities of any two conjugate diameters thus

form a circumscribed parallelogram (Fig. 77).

The diameter conjugate to either axis of the ellipse is the

other axis ; the parallelogram in this case becomes a rectangle.
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136. Diameters of a Hjrperbola. For the hyperbola the

same formulas can be derived except that 6^ is replaced

throughout by — fe^. But the geometrical interpretation is

somewhat different because a line y = mx meets the hyperbola

(3) in real points only when m < b/a.

Fig. 78

The solution of the simultaneous equations

y = mx, y^x^ — a^y"^ = a'^ft*

gives

:

ah
y-

mob

V6^ — m^a^ V6^ — m^a}

These values are real if m < h/a and imaginary if m'^hfa

(Fig. 78). In the former case it is evidently proper to call the

distance PQ between the real points of intersection a diameter

of the hyperbola ; its length is

PQ == 2 V^^Tf = 2ab Jj + ^'^ -

If m>b/a, this quantity is imaginary; but it is customary to

speak even in this case of a diameter, its length being defined

as the real quantity

By this convention the analogy between the properties of the

ellipse and hyperbola is preserved.
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137. Conjugate Diameters of a Hyperbola. Two diameters

of the hyperbola are called conjugate if their slopes m, mi are

such that

mmi =—

•

a*

One of these lines evidently meets the curve in jeal points, the

other does not.

If m < 6/a, the line y = mx, as well as any parallel line,

meets the hyperbola (3) in two real points, and the locus of the

midpoints of the chords parallel to ^ = ma; is found to be the

diameter conjugate to y = mx, viz.

y = 77hx=—-X.

If m > 6/a, the coordinates x^^ y^ and aja, 2/2 of the intersec-

tions of y = mx with the hyperbola are imaginary; but the

arithmetic means ^ (xi + x^), ^(^1 + 2/2) ^^^ ^^^^) a-ud the locus

of the points having these coordinates is the real line

y = rriiX = X.
ma}

It may finally be noted that what was in § 136 defined as

the length of a diameter that does not meet the hyperbola

in real points is the length of the real diameter of the hyper-

bola

a' + 6« '

two such hyperbolas are called conjugate.
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138. Parameter Equations. Eccentric Angle. Just as the

parameter equations of the circle x"^ -{- y^ = a^ are (§ 106)

;

x = a cos 9, y = a sin 0,

so those of the ellipse (1) are

x=:a cos $, y = b sin Oj

and those of the hyperbola (3) are

x= a sec 6, y = b tan 6.

In each case the elimination of the parameter 6 (by squaring

and then adding or subtracting) leads to the cartesian equation.

The angle 0, in the case of the

circle, is simply the polar angle of

the point P{x, y). In the case of the

ellipse, as appears from Fig. 79

(compare § 122), 6 is the polar angle

not of the point P (x, y) of the ellipse,

but of that point Pi of the circum-

scribed circle which has the same

abscissa as P, and also of that point

Pg of the inscribed circle which has the same ordinate as P.

This angle 6 = xOP^ is called the eccentric angle of the point

P (x, y) of the ellipse.

In the case of the hyperbola the eccentric angle 6 determines

the point P{x, y) as follows (Fig. 80). ' Let a line through

inclined at the angle to the trans-

verse axis meet the circle of radius

a about the center at A, and let the

transverse axis meet the circle of

radius b about the center at B. Let

the tangent at A meet the transverse

axis at A' and the tangent at B meet

the line OA at B'. Then the parallels to the axes through A
and B' meet at P.

Fia. 79

y
-^N

a ^%:-^Y
X

r b b A'

Fia. 80
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139. Area of Ellipse. Since any ellipse of semi-axes a, b

can be regarded as the projection of a circle of radius a,

inclined to the plane of the ellipse at an angle c such that

cos € = 6/a, the area A of the ellipse is ^ = -n-a^ cos e = irdb.

EXERCISES

1. Find the tangents to the ellipse x^ + 4 j/^ = 16, which pass through

the following points

:

(a) (2, V3), (6) (-3, iV7), (c) (4,0), {d) (-8,0).

2. Find the tangents to the hyperbola 2 a:^ — 3 ?/2 = 18, which pass

through the following points :

(a) (-6, 3V2), (6) (-3,0), (c) (4, -V5), {d) (0,0).

3. Find the intersections of the line x — 2 y = 7 and the hyperbola

x2 - ?/2 = 5.

4. Find the intersections of the line 3x-j-2/ — 1=0 and the ellipse

x2 + 4 y2 = 65.

6. For what value of k will the line i/ = 2x + A;bea tangent to the

hyperbola x2-4 2/2_4 = o?

6. For what values of m will the line y= mx + 2 be tangent to the

ellipse x2-f4y2_i=o?
7. Find the conditions that the following lines are tangent to the

hyperbola x2/a2 - ^2/52 _ 1

.

(a) Ax -\- By + C = (i, (&) x cos /3 + «/ sin /3 = p.

8. Are the following points on, outside, or inside the ellipse x2 -f4 y2= 4p

(a) (!,f), (?>) a, -i)» (c) (-i-l).
9. Are the following points on, outside, or inside the hyperbola

9x2-y2 = 9? (a) (f,
- f), (6) (1.35,2.15), (c) (1.3,2.6).

10. Find the difference of the eccentric angles of points at the extremi-

ties of conjugate diameters of an ellipse.

11. Show that conjugate diameters of an equilateral hyperbola are

equal.

12. Show that an asymptote is its own conjugate diameter.

13. Show that the segments of any line between a hyperbola and its

asymptotes are equal.

14. Find the tangents to an ellipse referred to its axes which have

equal intercepts.
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15. What is the greatest possible number of normals that can be drawn

from a given point to an ellipse or hyperbola ?

16. Show that tangents drawn at the extremities of any chord of an

ellipse (or hyperbola) intersect on the diameter conjugate to the chord.

17. Show that lines joining the extremities of the axes of an ellipse

are parallel to conjugate diameters.

18. Show that chords drawn from any point of an ellipse to the ex-

tremities of a diameter are parallel to conjugate diameters.

19. Find the product of the perpendiculars let fall to any tangent from

the foci of an ellipse (or hyperbola).

20. The earth's orbit is an ellipse of eccentricity .01677 with the sun

at a focus. The mean distance (major semi-axis) between the sun and

earth is 93 million miles. Find the distance from the sun to the center

of the orbit.

21. Find the sum of the squares of any two conjugate semi-diametere

of an ellipse. Find the difference of the squares of conjugate semi-diam-

eters of a hyperbola.

22. Find the area of the parallelogram circumscribed about an ellipse

with sides parallel to any two conjugate diameters.

23. Find the angle between conjugate diameters of an ellipse in terms

of the semi-diameters and semi-axes.

24. Express the area of a triangle inscribed in an ellipse referred to

its axes in terms of the eccentric angles of the vertices.

25. The circle which is the locus of the intersection of two perpendicu-

lar tangents to an ellipse or hyperbola is called the director-circle of the

conic. Find its equation : (a) For the ellipse. (6) For the hyperbola.

26. Find the locus of a point such that the product of its distances

from the asymptotes of a hyperbola is constant. For what value of this

constant is the locus the hyperbola itself ?

27. Find the locus of the intersection of normals drawn at correspond-

ing points of an ellipse and the circumscribed circle.

28. Two points J., 5 of a line I whose distance is AB = a move along

two fixed perpendicular lines ; find the path of any point P oil.



CHAPTER VIII

CONIC SECTIONS— EQUATION OF SECOND DEGREE

PART I. DEFINITION AND CLASSIFICATION

140. Conic Sections. The ellipse, hyperbola, and parabola

are together called conic sections, or simply conies, because

the curve in which a right circular cone is intersected by any

plane (not passing through the vertex) is an ellipse or hyper-

bola according as the plane cuts only one of the half-cones or

both, and is a parabola when the plane is parallel to a gener-

ator of the cone. This will be proved and more fully dis-

cussed in §§ 148-152.

141. General Definition. The three conies can also be

defined by a common property in the plane : the locus of a point

for ivhich the ratio of its distances from a fixed point and from

a fixed line is constant is a conic, viz. an ellipse if the constant

ratio is less than one, a hyperbola if

the ratio is greater than one, and a
.

parabola if the ratio is equal to one.

We shall find that this constant

ratio is equal to the eccentricity e = c/a

as defined in § 124. Just as in the

case of the parabola for which the —
above definition agrees with that of Fio. 81

§ 89, we shall call the fixed line d^ directrix, and the fixed

point Fi focus (Fig. 81).

142. Polar Equation. Taking the focus F^ as pole, the

perpendicular from Fi toward the directrix dj as polar axis,

140
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and putting the given distance FiD = q, we have FiP=rj

PQz=q—r cos <!>, r and
<f>

being the polar coordinates of any

point P of the conic. The condition to be satisfied by the

point P, viz. F^P/PQ = e, i.e. F^P— e • PQ, becomes, therefore,

r = e(g — rcos<^), or r= ^

1 + e cos <^

This then is the polar equation of a conic if the focus is taken

as pole and the perpendicular from the focus toward the directrix

as polar axis. It is assumed that q is not zero; the ratio e

may be any positive number.

143. Plotting the Conic. By means of this polar equation

the conic can be plotted by points when e and q are given.

Thus, for <^ = and <^ = tt, we find eq/{l + e) and eq/{l — e) as

the intercepts FiA^ and jF\^2 on the polar axis
; A > ^2 are the

vertices. For any negative value of </> (between and — tt)

the radius vector has the same length as for the same positive

value of
<f>.

The segment LL' cut off by the conic on the per-

pendicular to the polar axis drawn through the pole is called

the latus rectum; its length is 2 eg. Notice that in the ellipse

and hyperbola, i.e. when e ^1, the vertex Ai does not bisect

the distance FiD (as it does in the parabola), but that

F,A,/A,D = e.

If in Fig. 81, other things being

equal, the sense of the polar axis be

reversed, we obtain Fig. 82. We have

again FiP=r; but the distance of P
from the directrix di is QP = q +
r cos

<f>,
so that the polar equation of

the conic is now

:

r= ,
'1

.

1 — e cos </)

<i

y^P
~L,

D Ail \

di

Fig. 82

a;
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144. Classification of Conies. For e = l, the equations of

§§ 142-143 reduce to the equations of the parabola given in

§§ 89, 90. It remains to show that for e < 1 and e > 1

these equations represent respectively an ellipse and a hyper-

bola as defined in §§ 114, 117.

To show this we need only introduce cartesian coordi-

nates and then transform to the center, i.e. to the midpoint

between the intersections Ai, A2 of the curve with the polar

axis.

145. Transformation to Cartesian Coordinates. The equa-

tion of § 142,

r= e(q — r cos <^)

becomes in cartesian coordinates, with the pole Fi as origin

and the polar axis as axis Ox (Fig. 81)

:

V?+y = e{q — x)y

or, rationalized

:

(1 - e2)flj2 ^2e^qx-hf = e\^.

The midpoint between the vertices A^^ A^ at which the

curve meets the axis Ox has, by § 143, the abscissa

2 ^Vl + e \-e) l-e^'

this also follows from the cartesian equation, with ?/ = 0.

146. Change of Origin to Center. To transform to paral-

lel axes through this point O we have to replace x by

X — e^q/(^. — e?) ; the equation in the new coordinates is there-

fore

and this reduces to

(1 - e^^ +/ = eV(l +j^) =^,
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(1 _ ^y 1 _ e2

If e < 1 this is an ellipse with semi-axes

if e > 1 it is a hyperbola with semi-axes

147. Focus and Directrix. The distance c (in absolute value)

from the center to the focus F^ is, as shown above, for the

ellipse
2

c =—^ = ae,

for the hyperbola

c = ^
^

^ = ae.

The distance (in absolute value) of the directrix from the

center is for the ellipse, since g = a(l — e^)/e = a/e — ae :

e e

and for the hyperbola, since q = ae — a/e

:

OD = c — q = ae — ae -{-- = -'
e e

It is clear from the symmetry of the ellipse and hyperbola

that each of these curves has two foci, one on each side of the

center at the distance ae from the center, and two directrices

whose equations are a; = ± a/e.

EXERCISES

1. Sketch the following conies

:

(«)'- = ;r-r-| 7' (&) r = ^
.^

, ic)r~ ^
2 + 3 cos 2 4- cos 1 — 2 cos
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2. Sketch the following conies and find their foci and directrices :

(a) a;2 + 4 2/2 := 4, (b) 4 x2 + y^ = 4,

(c) a:2 - 4 2/2 = 4, (d) 4x^ - y' = 4,

(e) 16 a;2 -\-2by^ = 400, (/) 9 a;2 _ 16 y2 = 144^

{g) 9 ic2 - 16 2/2 + 144 = 0, (h) x^-y^ = 2.

3. Show that the following equations represent ellipses or hyperbolas

and find their centers, foci, and directrices

:

(a) a;2 + 32/2_2x+ 62/4- 1 = 0, (6) 12x2- 42/2 - 12x - 9 = 0,

(c) 5x2 + 2/2 + 20x + 15 = 0, (d) 5x2-42/2 + 82/4-16 = 0.

4. Find the length of the latus rectum of an ellipse and a hyperbola

in terms of the serai-axes.

5. Show that when tangents to an ellipse or hyperbola are drawn

from any point of a directrix the line joining the points of contact passes

through a focus.

6. From the definition (§ 141) of an ellipse and hyperbola, show that

the sum and difference respectively of the focal radii of any point of the

conic is constant.

7. Find the locus of the midpoints of chords drawn from one end of :

(a) the major axis of an ellipse
; (6) the minor axis.

8. Find the locus of § 141 when the fixed point lies on the fixed line.

148. The Conies as Sections of a Cone. As indicated by

their name the conic sections, i.e. the parabola, ellipse, and

hyperbola, can be defined as the curves in which a right circu-

lar cone is cut by a jjlane (§ 140).

In Figs. 83, 84, 85, Fis the vertex of the cone, ^ CVC=2 a

the angle at its vertex ; OQ indicates the cutting plane, CVC
that plane through the axis of the cone which is perpen-

dicular to the cutting plane. The intersection OQ of these

two planes is evidently an axis of symmetry for the conic.

The conic is a parabola, ellipse, or hyperbola, according

as OQ is parallel to the generator VC of the cone (Fig.

83), meets VC at a point (7 belonging to the same half-cone
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as does (Fig. 84), or meets FC at a point (X of the other

half-cone (Fig. 85). If the angle

GOQ be called /8, the conic is

a parabola if y8 = 2 a (Fig. 83),

an ellipse \i p>2a (Fig. 84),

a hyperbola if y8 < 2 « (Fig. 85).

In each of the three figures CC
represents the diameter 2 r of any

cross-section of the cone (i.e. of any

section at right angles to its axis).

We take as origin, OQ as axis Fig. 83

Oa;, so that (Fig. 83) OQ = x, QP=y are the coordinates of

any point P of the conic.

As QP is the ordinate of the circular cross-section CPQ'P*

we have in each of the three cases y^ = QP^ = CQ, • QC

149. Parabola. In the first case (Fig. 83), when ^ = 2 a so

that OQ is parallel to VQ\ the expression

X OQ oq ^

is constant, i.e. the same at whatever distance from the vertex

we may take the cross-section CPQ'P' . For, QC" is equal to

the diameter OB — 2r^ of the cross-section through 0, and

CQ/OQ = CO/ VC= 2 r/r esc « = 2 sin a. Hence, denoting

the constant r^ sin a by j) we have

||.QC' = 4rosin«=4p.

The equation of the conic in this case, referred to its axis OQ
and vertex 0, is therefore y^ = 4:px. Notice that asp = ^o sin a

the focus is found as the foot of the perpendicular from

the midpoint of OB on OQ.
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150. Ellipse. In the second case (Fig. 84), i.e. when

yS > 2 a, if we put '00' = 2 a, it can be shown that

x{2a-x) OQ'QO'

is constant. For we have QI^ =
CQ • QC and from the triangles CQOj

QOO'j observing that

-^ QaC =l3-2a:

whence

C'(^ _ sm /d / ]>. ^

OQ sin(i,r-a)' / '"-^ ->\
Q(7_sin(^-2a)
Q(y sin(i,r + a)'

Fig. 84

QP^ _sin^sin()8-2a)
OQ . Q(y --2 '

cos' a

an expression independent of the position of the cross-section

CC Denoting this positive constant by Zc*, we find the equation

y^= fe(2a-a;), or
(^~^)'

which is an ellipse, with semi-axes a,

ka, and center (a, 0).

151. Hyperbola. In the third case

(Fig. 85), proceeding as in the second

and merely observing that now QC/

= — (2 a -\- x), we find the equation

y^ = k'^x (2 a -\- x) y

I.e.

a" (kay
'

which represents a hyperbola, with

semi-axes a, ka and center (—a, 0).
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152. Limiting Cases. The conic is an ellipse, hyperbola, or

parabola according as ^8 > 2 a, < 2 a, or = 2 a. Hence the

parabola can be regarded as the limiting case of either an

ellipse or a hyperbola whose center is removed to infinity.

If when /8 > 2 a (Fig. 84), we let /8 approach tt, or if when

/8 < 2 a (Fig. 85), we let /? approach 0, the cutting plane be-

comes in the limit a tangent plan^ to the cone. It then has

in common with the cone the points of the generator VC,

and these only. A single straight line can thus appear as a

limiting case of an ellipse or hyperbola.

Finally we obtain another class of limiting cases, or cases of

degeneration, of the conies if, in any one of the three cases,

we let the cutting plane pass through the vertex V of the

cone. In the first case, /8 = 2 a, the cutting plane is then tan-

gent to the cone so that the parabola also may degenerate into

a single straight line. In the second case, ^ > 2 a, if /3=^ ir,

the ellipse degenerates into a single point, the vertex V of the

cone. In the third case, /8 < 2 a, if /? ^ 0, the hyperbola de-

generates into two intersecting lines. The terra conic section,

or conic, is often used as including these limiting cases.

EXERCISES

1. For what value of /3 in the preceding discussion does the conic be-

come a circle ?

2. Show that the spheres inscribed in a right circular cone so as to

touch the cutting plane (Figs. 83, 84, 86) touch this plane at the foci of

the conic.

3. The conic sections were originally defined (by the older Greek

mathematicians, in the time of Plato, about 400 b.c.) as sections of a

cone by a plane at right angles to a generator of the cone ; show that the

section is a parabola, ellipse, or hyperbola according as the angle 2 a at

the vertex of the cone is = | tt, < ^ tt, > ^ tt.
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PART XL REDUCTION OF GENERAL EQUATION

153. Equations of Conies. We have seen in the two pre-

ceding chapters that by selecting the coordinate system in a con-

venient way the equation of a parabola can be obtained in the

simple form

that of an ellipse in the form

a^^b^-^'

and that of a hyperbola in the form

a" b-' '

When the coordinate system is taken arbitrarily, the carte-

sian equations of these curves will in general not have this

simple form ; but they will always be of the second degree.

To show this let us take the common definition of these curves

(§ 141) as the locus of a point whose distances from a fixed

point and a fixed line are in a constant ratio. With respect to

any rectangular axes, let x^
, y^ be the coordinates of the fixed

point, ax + 6?/ + c = the equation of the fixed line, and e the

given ratio. Then by §§ 9 and 42 the equation of the locus is

V(^-.0^ + (,-,0^ = e . «^±M±^,

or, rationalized:

(X - x,y+ {y-y,f = ^^ (ax-\-by-^cy.
a -j-

It is readily seen that this equation is always of the second

degree; i.e. that the coefficients of x^, y^, and xy cannot all

three vanish.
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154. Equation of Second Degree. Conversely, every equa-

tion of the second degree, i.e. every equation of the form (§47)

(1) Ax^ -{-2 Hxy -\- By"" + 2 Qx + 2Fy -^ C = 0,

where A, H, B are not all three zero, in general represents a

conic. More precisely, the equation (1) may represent an

ellipse, a hyperbola, or a parabola; it may represent two

straight lines, different or coincident ; it may be satisfied by

the coordinates of only a single point; and it may not be

satisfied by any real point.

Thus each of the equations

ar^ _ 3 2/2 = 0, x?/ =
evidently represents two real different lines ; the equation

aj2_2a; + l=0
represents a single line, or, as it is customary to say, two coin-

cident lines ; the equation

a;2 + 2/' =
represents a single point, while

is satisfied by no real point and is sometimes said to represent

an "imaginary ellipse."

The term conic is often used in a broader sense (compare § 152)

so as to include all these cases ; it is then equivalent to the

expression "locus of an equation of the second degree.'"'

It will be shown in the present chapter how to determine

the locus of any equation of the form (1) with real coefficients.

The method consists in selecting the axes of coordinates so as

to reduce the given equation to its most simple form.

155. Translation of Axes. The transformation of the

equation (1) to its most simple form is very easy in the par-

ticular case when (1) contains no term in xy, i.e. when 11=0.

Indeed it suffices in this case to complete the squares in x and y

and transform to pO/TQ/lhl axes.
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Two cases may be distinguished:

(a) 11=: 0, A=^ Oj B ^0, so that the equation has the form

(2) Ax''-\-By^-{-2Gx-\-2Fy-{-C= 0.

Completing the squares in x and y (§ 48), we obtain an equation

of the form
A{x-hy + B(y-ky= K,

where ^ is a constant ; upon taking parallel axes through the

point (hy k) it is seen that the locus is an ellipse, or a hyper-

bola, or two straight lines, or a point, or no real locus, accord-

ing to the values of A^ B, K.

(h) H=0, and either jB= or ^4=0, so that the equation is

(3) Aa!' + 2Gx-\-2Fy-]-C=0,oT By^ + 2Ox-{-2Fy+C=0.

Completing the square in x or y, we obtain

(x-hy=p(y-k), or (y -ky = q{x-h);

with (h, k) as new origin we have a parabola referred to vertex

and axis, or two parallel lines, real and different, coincident, or

imaginary.

It follows from this discussion that the absence of the term in

xy indicates that, in the case of the ellipse or hyperbola, its axes,

in the case of the parabola, its axis and tangent at the vertex^ are

parallel to the aaxs of coordinates.

EXERCISES

1. Beduce the following equations to standard forms and sketch the

loci :

(a) 2 1/2 - 3 a; + 8 y + 11 = 0, (6) ic^ + 4 y2 _ g -,. + 4 y + 6 = 0,

(c) 6 x2 + 3 2,2 _ 4 a; ^ 2 y + 1 = 0, {d) a;2 _ 9 y2 _ 6 x + 18 y = 0,

(c) 9 x2 + 9 y2 _ 36 x+6 y+ 10=0, (/) 2 x2 - 4 y2 -f 4 x + 4 y - 1 = 0,

{g) x2 + y2 - 2 X + 2 y + 3 = 0, ih) 3 x2 - 6 x + y + 6 = 0,

(0 x2 - y2 _ 4aj - 2 y + 3 = 0, (j) 2 x2 - 5 x + 12 = 0,

(A:) 2x2 -5 a; + 2 = 0, (?) y2-4y + 4 = 0.
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2. Find the equation of each of the following conies, determine the

axis perpendicular to the given directrix, the vertices on this axis (by

division-ratio), the lengths of the semi-axes, and make a rough sketch

in each case

:

(a) with x — 2 = as directrix, focus at (6, 3), eccentricity | ;

(&) with 3a; + 4y — 6 = 0as directrix, focus at (5, 4), eccentricity \ ;

(c) with x — y — 2 = as directrix, focus at (4, 0), eccentricity |.

3. Find the axis, vertex, latus rectum, and sketch the parabola with

focus at (2, — 2) and 2a: — 3?/— 5 = as directrix (see Ex. 2).

4. Prove the statement at the end of § 166.

5. Find the equation of the ellipse of major axis 5 with foci at (0, 0)

and (3, 1).

156. Rotation of Axes. If the right angle xOy formed by

the axes Ox, Oy be turned about the origin through an

angle 6 so as to take the new position x^Oyi (Fig. 86), the

w

(40

relation between the old coordinates OQ = x, QP= y of any

point P and the new coordinates OQ^^x^, QiP=yi of the

same point P are seen from the figure to be

x = Xi cos — yi sin 9,

y = x^ sin -\- yi cos 6.

By solving for x^, y^, or again from Fig. 86, we find

Xi = X cos $ -\-ysmOj

yi = — X sin 6 -{-y cos 6.

If the cartesian equation of any curve referred to the axes
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Ox, Oy is given, the equation of the same curve referred to the

new axes Ox^ , Oy^ is found by substituting the values (4) for

X, y in the given equation.

157. Translation and Rotation. To transform from any-

rectangular axes Ox, Oy (Fig. 87) to any other rectangular

y

1
k

h ^
i .

ji

Fia. 87

axes OiiCi, Oi2/i, we have to combine the translation 00^

(§ 13) with the rotation through an angle B (§ 156).

This can be done by first transforming from Ox, Oy to the

parallel axes Oix\ Oiy' by means of the translation (§ 13)

x = x' -{- h,

y = y'-\-k,

and then turning the right angle x'Oiy' through the angle

$ = x'OiXi, which is done by the transformation (§ 156)

x' = Xi cos 6 — yi sin 0,

y' == Xi sin 0-^yi cos 6.

Eliminating x', y', we find

x = Xi cos 6
(5)

2/i sin 0-\-hy

,y = Xi sin 6 -\- yi cos 6 -\- k.

The same result would have been obtained by performing

first the rotation and then the translation.

It has been assumed that the right angles xOy and x^Oy^ are

superposable ; if this were not the case, it would be necessary

to invert ultimately one of the axes.
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EXERCISES

1. Find the coordinates of each of the following points after the axes

have been rotated about the origin through the indicated angle :

(a) (3, 4), iT. (6) (0, 5),-|7r.

(c) (-3, 2), e? = tan-i|. (d) (4, -3), ^tt.

2. If the origin is moved to the point (2, — 1) and the axes then

rotated through 30°, what will be the new coordinates of the following

points ?

(a) (0,0). (6) (2,3). (c) (6,-1).

3. Find the new equation of the parabola y^ = 4 ax after the axes have

been rotated through : (a) ^tt
, (&) Jtt ,

(c) ir .

4. Show that the equation x"^ + y'^ = «^ is not changed by any rotation

of the axes about the origin. Why is this true ?

5. Find the center of the circle (x— a)^ + y'^ =a^ after the axes have

been turned about the origin through the angle d. What is the new

equation ?

6. For each of the following loci rotate the axes about the origin

through the indicated angle and find the new equation

:

(a) x2-y2 + 2 = o, Itt. (b) x^-y^ = aMTr.

(c) y = mx + 6, ^ = tan-i m. (d) 12a;2 - 7xy - 12i/2 = 0, ^ = tan-i|.

(^) -2 + !^=^'^'^- ^^^ x2_2/2 = 0,i,r.
a2 0^

7. Through what angle must the axes be turned about the origin so

that the circle a;2 + i/2_3x + 4?/ — 5 = will not contain a linear term

in x?

8.- Suppose the right angle XiOyi (Fig. 89) turns about the origin at

a uniform rate making one complete revolution in two seconds. The

coordinates of a point with respect to the moving axes being (2, 1), what

are its coordinates with respect to the fixed axes xOy at the end of ;

(a) i sec. ? (&) I sec. ? (c) 1 sec. ? (d) 1| sec. ?

9. In Fig. 89, draw the line OP, and denote Z QOP by </). Divide

both sides of each of the equations (4) by OP and show that they are

then equivalent to the trigonometric formulas for cos (^ + 0) and

sin (0 + 0).
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158. Removal of the Term in x^y. The general equation

of the second degree (1), § 154, when the axes are turned about

the origin through an angle ^ (§ 156), becomes

:

A{^^ cos 0—y\ sin BY
\-2H{x^ cos B — y^ sin B) {x^ sin B-\-yx cos B)

+ B (x'l sin ^ + 2/i cos BJ-

+ 2 G^(£Ci cos ^— 2/i sin B)

+ 2 F{x^ sin ^ + 2^1 cos ^) + O= 0.

This is an equation of the second degree in x^ and ^i in

which the coefficient of x^y^ is readily seen to be

— 2ulcos^sin^ + 25sin^cos^H-2ir(cos2^-sin2^)

= (5-^)sin2^ + 2ircos2^.

It follows that if the axes be turned about the origin

through an angle B such that

(5-^)sin2^ + 2^cos2d= 0,

•i.e. such that

(6) tan2e=^^,
the equation referred to the new axes will contain no term in

a^?/i and can therefore be treated by the method of § 155.

According to the remark at the end of § 155 this means

that the new axes OaJi, Oyi, obtained by turning the original

axes Oa;, Oy through the angle B found from (6), are parallel

to the axes of the conic (or, in the case of the parabola, to the

axis and the tangent at the vertex).

The equation (6) can therefore be used to determine ttie

directions of the axes of the conic; but the process just indicated

is generally inconvenient for reducing a numerical equation of

the second degree to its most simple form since the values of

cos B and sin B required by (4) to obtain the new equation are

in general irrational.
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EXERCISES

1. Through what angle must the axes be turned about the origin td

remove the term in xy from each of the following equations ?

(a) 3a:2+2V'3x2/+2/'^-3a;+4?/-10=0. (6) x2 + 2V3a;y + 7y2_i5=:0.

(c) 2a;2-3x2/ + 2?/2 + x-?/ + 7=0. {d)xy = 2a'^.

2. Reduce each of the following equations to one of the forms in § 244.

{a)xy=-2. (b) Qx"^- 6xy - 6y^ = 0.

(c) 3a;2-10xy + 3?/2 + 8 = 0. (d) VSx^ - lOxy + ISy'^ - 72 = 0.

159. Transformation to Parallel Axes. To transform the

general equation of the second degree (1), § 154, to parallel

axes through any point (x^, y^j we have to substitute (§ 13)

x = x'^Xq, 2/=2/H-2/oj

the resulting equation is

A7f^+ 2 Hxfy' + By'^ + 2 {Ax, + Hy, + G) a/

+ 2{Hx, + By, + F)y'^-C^0,

where the new constant term is

(7) C' = Ax,^^-2Hx^,^By,'-\-2 0x,^.2Fy,+a

It thus appears that after any translation of the coordinate

system

:

(a) the coefficients of the terms of the second degree remain

unchanged

;

(6) the new coefficients of the terms of the first degree are

linear functions of the coordinates of the new origin

;

(c) the new constant term is the result of substituting the

coordinates of the new origin in the left-hand member of the

original equation.
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160. Transformation to the Center. The transformed equa-

tion will contain no terms of the first degree, i.e. it will be of

the form

(8) Ax'^ + 2 Ilxy -f By'^ + C" = 0,

if we can select the new origin (a;,,, y^) so that

.^.
Ax, + Hy,+ G = 0,

^^ Hx, + By, + F = 0.

This is certainly possible whenever

A H

and we then find :

nm _FH-GB _ GH- FA
^^^ '~AB-H-''^'~ AB-H^'
As the equation (8) remains unchanged when x', ]/ are

replaced by — ic', — y' ^ respectively, the new origin so found is

the center of the curve (§ 133). The locus is therefore in

this case a central conic, i.e. an ellipse or a hyperbola; but it

may reduce to two straight lines or to a point (see § 162). It

might be entirely imaginary, viz. if H= ; but the case when

H=0 has already been discussed in § 155.

We shall discuss in § 164 the case in which AB — H^= 0.

161. The Constant Term and the Discriminant. The cal-

culation of the constant term C can be somewhat simplified

by observing that its expression (7) can be written

C'=(Ax, + Hy, + G)x, + (Hx,-^By, + F)y,-\-Gx,-\-Fy,-}-C,

i.e., owing to (9),

(11) C'=Gx,-{-Fy,-\-a

If we here substitute for x^, y^ their values (10) we find :

C = G^^//- G^B +FGH- F^A + ABO-H^O
AB-H^



VIII, § 163] EQUATION OF SECOND DEGREE 157

The numerator, which is called the discriminant of the equa-

tion of the second degree and is denoted by D, can be written

in the form of a symmetric determinant, viz.

A H O
D== H B F

G F C

If we denote the cofactors of this determinant by the corre-

sponding small letters, we have XQ = g/c, y^^f/c, C/=D/c-

Notice that the coefficients of the equations (9), which deter-

mine the center, are given by the first two rows of D, while the

third row gives the coefficients of C in (11).

162. Straight Lines. After transforming to the center, i.e.

obtaining the equation (8), we must distinguish two cases

according as C" = or C =f= 0. The condition C" = means

by (7) that the center lies on the locus ; and indeed the homo-

geneous equation
Ax" + 2Hx'y'-{-By"=

represents two straight lines through the new origin (Xq
, 2/0)

(§ 45). The separate equations of these lines, referred to

the new axes, are found by factoring the left-hand member.

As we here assume (§ 160) that AB—H'^=^0, and H=^0, the

lines can only be either real and different, or imaginary. In

the latter case the point (o^,,
, Vo) is the only real point whose

coordinates satisfy the original equation.

163. Ellipse and Hyperbola. If C'=^0 we can divide (8)

by — C so that the equation reduces to the form

(12) ax'+2hxy-^by^ = l.

This equation represents an ellipse or a hyperbola (since we

assume h^O). The axes of the ellipse or hyperbola can be

found in magnitude and direction as follows.



158 PLANE ANALYTIC GEOMETRY [VIII, § 163

If an ellipse or hyperbola, with its center, be given graphi-

cally, the axes can be constructed by inter-

secting the curve with a concentric circle

and drawing the lines from the center to

the intersections; the bisectors of the

angles between these lines are evidently

the axes of the curve (Fig. 88).

The intersections of the curve (12) with

a concentric circle of radius r are given by

the simultaneous equations

ax'-ir2hxy + hf = l, x'+if = i''',

dividing the second equation by r^ and subtracting it from the

first, we have

(13) (« -^)»^ + 2 'ixZ' +(6-^)2/^ = 0.

This homogeMeous equation represents two straight lines

through the origin, and as the equation is satisfied by the

coordinates of the points that satisfy both the preceding equar

tions, these lines must be the lines from the origin to the inter-

sections of the circle with the curve (12). If we now select r

so as to make the two lines (13) coincide, they will evidently

coincide with one or the other of the axes of the curve (12).

The condition for equal roots of the quadratic (13) in y/x is

(14) (a-r^(b-r^-n^^o.

This equation, which is quadratic in 1/r* and can be written

(14')
(JJ-(«

+ 6)i + «6-'i'= 0.

determines the lengths of the axes. If the two values found for

r^ are both positive, the curve is an ellipse ; if one is positive
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and the other negative, it is a hyperbola ; if both are negative,

there is no real locus.

Each of the two values of l/r^ found from (14'), if substi-

tuted in (13), makes the left-hand member, owing to (14), a

complete square. Tlie equations of the axes are therefore

or, multiplying by Va — l/r^ and observing (14)

\x±hy = 0.
(--i)

164. Parabola. It remains to discuss the case (§ 160) of the

general equation of the second degree.

Ax" + 2 Hxy -{- By"" + 2 Ox + 2Fy -^ C= 0,

in which we have ^^— H^ = Q

This condition means that the terms of the second degree form

a perfect square :

Ax^ + 2 Hxy -\- By^= (VAx+ VBy^,

Putting ^A = a and V-B = 6 we can write the equation of the

second degree in this case in the form

(15) {ax + hyf = -2Gx-2Fy-G,
If O and F are both zero, this equation represents two parallel

straight lines, real and different, real and coincident, or im-

aginary according as < 0, C = 0, O > 0.

If G and F are not both zero, the equation (15) can be inter-

preted as meaning that the square of the distance of the point

{x, y) from the line

(16) ax + by =
is proportional to the distance of (x, y) from the line

(17) 2Gx + 2Fy-^C=0.

Hence if these lines (16), (17) happen to be at right angles, the
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locus of (15) is a parabola, having the line (16) as axis and the

line (17) as tangent at the vertex.

But even when the lines (16) and (17) are not at right angles

the equation (15) can be shown to represent a parabola. For

if we add a constant k within the parenthesis and compensate

the right-hand member by adding the terms 2 akx + 2 bky + k^,

the locus of (15) is not changed ; and in the resulting equation

(18) (ax + by + ky = 2{ak - G)x + 2{bk -F)y + k^-G
we can determine k so as to make the two lines

(19) ax-\-by-^k = 0,

(20) 2(ak - G)x + 2{bk -F)y + k^-C=0
perpendicular. The condition for perpendicularity is

a{ak-G) + b{bk-F)=0,
whence

(21) k =^^±^.

With this value of k, then, the lines (19), (20) are at right

angles ; and if (19) is taken as new axis Ox and (20) as new
axis Oy, the equation (18) reduces to the simple form

y^= px.

The constant p, i.e. the latus rectum of the parabola, is found

by writing (18) in the form

/ax -{-by-\- fey

2V(afc - Gy + (bk - Fy 2(ak - G)x+ 2(bk-F)y-^k^-

C

,

a^+b^ 2V(ak-Gy-\-{bk-Fy
hence

^ =^^^ V(aA: -GO* + (bk - Fy.

Substituting for k its value (21) we can reduce it to

^_ 2(aF-bCf)

(a2+ 62)i
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EXERCISES

1. Find the equation of each of the following loci after transforming

to parallel axes through the center

:

(a) Sx'^-ixy-y^-Sx-iy+7 = 0.

(6) 5 x2 + 6 x?/ + ?/^ + 6 X - 4 y — 5 = 0.

(c) 2 x2 + xy - 6 y2 _ 7 a; — 7 ?/ + 5 = 0.

(d) x2 - 2 xy - 2/2 + 4 X - 2 ?/ - 8 = 0.

2. Find that diameter of the conic 3x^ — 2xy—4:y^-{-6x—^y {2=0
(a) which passes through the origin, (&) which is parallel to each co-

ordinate axis.

3. For what values of k do the following equations represent straight

lines ? Find their intersections.

(a) 2x^-xy-Sy^-6x + l9y -\-k = 0.

(&) kx^ + 2 xy + y"^ - X - y - 6 = 0.

(c) 3 x2 - 4 xi/ + ^•^/2 + 8 2/
- 3 = 0.

(d) X* + 2 ?/2 + 6 X - 4 y + A; = 0.

4. Show that the equations of conjugate hyperbolas x^/a^—y^/b^=±l

and their asymptotes x^/a'^—y^/b^ = 0, even after a translation and rota-

tion of the axes, will differ only in the constant terms and that the con-

stant term of the asymptotes is the arithmetic mean between the constant

terms of the conjugate hyperbolas.

6. Find the asymptotes and the hyperbola conjugate to

2 x2 - xy - 15 2/2 + X + 19 y + 16 = 0.

6. Find the hyperbola through the point (—2, 1) which has the lines

2x — y+l=0, 3x + 2?/ — 6 = as asymptotes. Find the conjugate

hyperbola.

7. Show that the hyperbola xy = a^ is referred to its asymptotes as

coordinate axes. Find the semi-axes and sketch the curve. Find and

sketch the conjugate hyperbola.

8. The volume of a gas under constant temperature varies inversely

as the pressure (Boyle's law), i.e. vp = c. Sketch the curve whose ordi-

nates represent the pressure as a function of the volume for different

values of c ; e.g. take c = 1, 2, 3.

9. Sketch the hyperbola (x — a)(y — b) = c^ and its asymptotes. In-

terpret the constants a, 6, c geometrically.
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10. Sketch the hyperbola xy-\-3y — 6 = and its asymptotes.

11. Find the center and semi-axes of the following conies, write their

equations in the most simple form, and sketch the curves

:

(a) 6 x^ - 6 xy + 6 y^ + 12V2 z - W2y + 8 = 0.

(6) a;2 - 6V3 xy - 6 y2 _ 16 = 0. (c) x^ + xy + y^ _ 3 y + 6 = 0.

(d) 13 x2 - 6V3xy + 7 y^ _ 64 = 0.

(e) 2 x2 - 4 xy + y2 _|_ 2 x - 4 2/
- f = 0.

(/) 3x2 + 2xy + y2 + 6x + 4y + ^ = 0.

IS. Sketch the following parabolas :

(a) x2 - 2VSxy -\-Sy^- eVSx - 6 y = 0.

(6) x2 - 6 xy + 9 y2 _ 3 X + 4y - 1 = 0.

IS. Show that the following combinations of the coeflBcients of the

general equation of the second degree are invariants {i.e. remain un-

changed) under any transformation from rectangular to rectangular axes

:

(a) A-hB. (6) AB - H\ (c) {A -5)2 + 4 m.

14. Show that x2 + y 2 = a^ represents a parabola. Sketch the locus.

15. Find the parabola with x + y = as directrix and (^ a, J a) as

focus.

16. Let five points A^ J5, C, D^ E be taken at equal intervals on a

line. Show that the locus of a point P such that AP • EP = BP • DP is

an equilateral hyperbola. (Take C as origin.)

17. The variable triaYigle AQB is isosceles with a fixed base AB.
Show that the locus of the intersection of the line AQ with the perpen-

dicular to QB through B is an equilateral hyperbola.

18. Let ^ be a fixed point and let Q describe a fixed line. Find the

locus of the intersection of a line through Q perpendicular to the fixed

line and a line through A perpendicular to A Q.

19. Find the locus of the intersection of lines drawn from the extrem-

ities of a fixed diameter of a circle to the ends of the perpendicular

chords.

20. Show by (14'), §163, that if the equation of the second degree

represents an ellipse, parabola, hyperbola, we have, respectively,

AB-H^ >0, = 0, <p.



CHAPTER IX

HIGHER PLANE CURVES

PART I. ALGEBRAIC CURVES

165. Cubics. It has been shown (§ 30) that every equation

of the first degree,

Oo

+ a^x + 6^2/ = 0,

represents a straight line; and (§ 154) that every equation of

the second degree,

ao

+ a^x + h^y

+ a^^ + ^^y + C22/2 = 0,

either represents a conic or is not satisfied by any real points.

The locus represented by an equation of the third degree,

ao

+ a^x -f h^
4- ttgoj^ + h^y + Cay*

-I- a^ + h^^y + c^xy'^ + d^^= 0,

I.e. the aggregate of all real points whose coordinates x, y satisfy

this equation, is called a cubic curve.

Similarly, the locus of all points that satisfy any equation of

the fourth degree is called a quartic ctirve; and the terms quintiCj

sextic, etc., are applied to curves whose equations are of the

Jifthf sixth, etc., degrees.

Even the cubics present a large variety of shapes; still

more so is this true of higher curves. We shall not discuss

such curves in detail, but we shall study some of their properties.

163
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166. Algebraic Curves. The general form of an algebraic

equation of the nth degree in x and y is

«o

4- a^x + h^

(1) +a^-\- b^y -f C22/2

^a^-\-b^y-\-c^'^-\-d^

+ a^a;" + b^x^'-^y -\ \-Kxy''~^+ Z^" = 0.

The coefficients are supposed to be any real numbers, those in

the last line being not all zero. The number of terms is not

more than 1 -f 2 -f 3 + ... -^(n + 1) = i(n + l)(n + 2).

If the cartesian equation of a curve can be reduced to this

form by rationalizing and clearing of fractions, the curve is

called an algebraic curve of degree n.

An algebraic curve of degree n can be intersected by a

straight line,

Ax + By-{-C=0,

in not more than n points. For, the substitution in (1) of the

value of y (or of x) derived from the linear equation gives an

equation in x (or in y) of a degree not greater than n ; this

equation can therefore have not more than n roots, and these

roots are the abscissas (or ordinates) of the points of intersec-

tion.

We have already studied the curves that represent the poly-

nomial function

y=aQ-{-a^x-\-a^-\ \- a^iC*

;

such a curve is an algebraic curve, but it is readily seen by

comparison with the preceding equation that this equation is

of a very special type, since it contains no term of higher de-

gree than one in y. Such a curve is often called a parabolic

curve of the nth degree.
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167. Transformation to Polar Coordinates. The cartesian

equation (1) is readily transformed to polar coordinates by sub-

stituting

x = r cos <^, 2/ = ^ sin <^

;

it then assumes the form

:

+ (ai cos <^ + &i sin ^)r

(2) + (as cos^ <^ + 62 cos </) sin <^ + Cg sin'' ^r^

+ (ag cos^ <^ H- 63 cos^ <^ sin <^ -h Cg cos </> sin^ <}!> + c^g sin' c^)/^

4- (a„ cos" <^+ 6„ cos''"^ <^ sin <^ -f- +A;„cos </>sin"-^ <^+Z„sin'»<^)r'"

= 0.

If any particular value be assigned to the polar angle <^, this

becomes an equation in r of a

degree not greater than n. Its

roots ri, • represent the in-

tercepts OPi, OP2, ••• (Fig. 89)

made by the curve (2) on the line

y = tan
<f>

- x. Some of these

roots may of course be imaginary,

and there may be equal roots. Fig. 89

168. Curve through the Origin. The equation in r has at

least one of its roots equal to zero if, and only if, the constant

term Uq is zero. Thus, the necessary and sufficient condition that

the origin be a point of the curve is ao = 0.

This is of course also apparent from the equation (1) which

is satisfied by aj = 0, 2/ = if, and only if, Oq = 0.

169. Tangent Line at Origin. The equation (2) has at

least two of its roots equal to zero if ao=0 and a^ cos <^ +
61 sin = 0. If tti and 61 are not both zero, the latter condition
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can be satiefied by selecting the angle <^ properly, viz. so that

tan<^ = -^.

The line through the origin inclined at this angle <^ to the

polar axis is the tangent to the curve at the origin (Fig. 90)

.

Its cartesian equation is y = tan <^ • a; = — (ai/bi)x, i.e.

(3) a,x + b,y = 0.

Thus, if ao = while Oj , bi are not both zero, the curve has

at the origin a single tangent ; the origin is therefore called

a simple, or ordinary, point of the curve.

In other words, if the lowest terms in

the equation (1) of- an algebraic curve

are of the first degree, the origin is a

simple point of the curve, and the equor

tion of the tangent at the origin is ob-

tained by equating to zero the terms of

the first degree.

170. Double Point. The condition ajcos <^+6i sin <^ =
necessary for two zero roots is also satisfied if aj = and 6i = 0;

indeed, it is then satisfied whatever the value of </>. Hence, if

ao= 0, Oj = 0, 6i = 0, the equation (2) has at least two zero

roots for any value of <\>. If in this case the terms of the

second degree in (1) do not all vanish, the curve is said to

have a double point at the origin. Thus, the origin is a double

point if, and only ify the lowest terms in the equation (1) are of

the second degree.

171. Tangents at a Double Point. The equation (2) will

have at least three of its roots equal to zero if we have a© = 0,

Oi = 0, 6i = and

Oj cos* <^ + 62 cos </> sin <^ -h Cj sin' <^ = 0.
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If tta, 62J C2 are not all zero, we can find two angles satisfying

this equation which may be real and different, or real and

equal, or imaginary. The lines drawn at these angles (if real)

through the origin are the tangents at the double point.

Multiplying the last equation by r^ and reintroducing carte-

sian coordinates we obtain for these tangents the equation

w a^"^ + h^y + C22/^ = 0.

Fig. 91

Thus, if the loivest terms in the equation (1) are of the second

degree^ the origin is a double point, and these terms of the second

degree equated to zero represent the tangents at the origin.

172. Types of Double Point, (a) If the two lines (4) are

real and different, the double point is

called a node or crunode; the curve then

has two branches passing through the

origin, each with a different tangent

(Fig. 91). J-

(6) If the lines (4) are coincident, i.e.

if a-fi? + bcfcy -f- c^y^ is a complete square,

the double point is called a cusp, or spinode; the curve then

has ordinarily two real branches tangent to

one and the same line at the origin (Fig. 92

represents the most simple case).

(c) If the lines (4) are imaginary, the

double point is called an isolated point, or

an acnode; in this case, while the coordi-

nates 0, of the origin satisfy the equation

of the curve, there exists about the origin

a region containing no other point of the

curve, so that no tangents can be drawn

through the origin (Fig. 93).

Fia. 92

Fig. 93
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It should be observed that, for curves of a degree above

the third, the origin in case (b) may be an isolated point ; this

will be revealed by investigating the higher terms (viz. those

above the second degree).

173. Multiple Points. It is readily seen how the reasoning

of the last articles can be continued although the investigation

of higher multiple points would require further discussion.

The result is this : If in the equation of an algebraic curve, when

rationalized and cleared of fractions, the lowest terms are of

degree k, the origiri is a k-tuple point of the curve, and the tan-

gents at this point are given by the terms of degree k, equated

to zero.

To investigate whether any given point (Xi , 2/j) of an alge-

braic curve is simple or multiple it is only necessary to trans-

fer the origin to the point, by replacing xhy x-\-Xi and y by

y -{ yi, and then to apply this rule.

EXERCISES

1. Determine the nature of the origin and sketch the curves

:

(a) y = x'^-2x. (6) x'^ = iy-y^. (c) (x + a){y, + a) = a'^.

(d) y2 = a;2(4 - x). (c) y^ = 3i^. (/) x^ + ^2 = ^^j.

ig)y^ = x^ + 3fi. (A) x8 - 3 aa;y + 1/8 = 0. (i) x*-y*-^Qxy^ = 0.

8. Determine the nature of the origin and sketch the curve (y—x^y=x**,

for: (a) n = l. (6) n = 2. (c) n = 3. (d) w = 4.

3. Locate the multiple points, determine their nature, and sketch the

curves

:

(a) y^ = x{x + 3)2. (6) (y - 3)2 = xK (c) (y + iy = (x- 3)8.

(d)y8=(x + l)(x-l)2.

4. Sketch the curve y^ =:{x — a')(x — b)(x — c) and discuss the multi-

ple points when

:

Ca) 0<a<b<c. (6) 0<a<6 = c. (c) 0<a = b<c. (d) 0<a = b = c.
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PART 11. SPECIAL CURVES

174. Conchoid. A fixed point and a fixed line I, at the

distance a from 0, being given, the radius vector OQ, drawn from
to every point Q of I, is produced by a segment QP= b of con-

stant length; the locus of Pis called the conchoid of Nicomedes.

For as pole and the perpendicular to I as polar axis the

equation of Hs
,

ri = a/ cos <^

;

hence that of the conchoid is

r ^ + b.
cos <^

If the segment QP be laid off in the opposite sense, we obtain

the curve

r = by
cos <^

which is also called a conchoid. Indeed, these two curves

are often regarded as merely two branches of the same

curve. Transforming to cartesian coordinates and rationaliz-

ing, we find the equation

which represents both branches. Sketch the curve, say for

6 = 2 a, and for b = a/2, and determine the nature of the origin.

175. Limacon. If the line I be replaced by a circle and the

fixed point be taken on the circle, the locus of P is called

Pascal's limacon.

For as pole and the diameter of the circle as polar axis

the equation of the circle, of radius a, is ri = 2 a cos <^ ; hence

that of the limaQon is :

r = 2 a cos
<f>

-\- b.
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If 6 = 2 a, the curve is called the cardioid; the equation

then becomes
r = 4 a cos^ ^ <f>.

Sketch the limaQons for 6 = 3a, 2a, a; transform to car-

tesian coordinates and determine the character of the origin.

176. Cissoid. OC/ = a being a diameter of a circle, let any

radius vector drawn from meet the circle and its tangent at O'

at the points Q, D, respectively; if on this radius vector we lay-

off OR = QD, the locus of R is called the cissoid of Diodes.

With as pole and OCy as polar axis, we have

OD = a/cos
<f>,
OQ= a cos <^

;

the equation is therefore

/I A sin2
r = af cos

<f>
)= a

\cos </> J cos

or in cartesian coordinates

<f>

a?

a—x Fio. »4

If instead of taking the difference of the radii vectores of the

circle and its tangent we take their sum, we obtain the so-called

companion of the cissoid,

r= a(cos <^ + sec <^),

.2a-arI.e.

r
x— a

Sketch this curve.

177. Versiera. With the data of § 176, let us draw through

Q a parallel to the tangent, through D a parallel to the diameter

;

the locus of the point of intersection P of these parallels is

called the versiera (wrongly called the " witch of Agnesi ").
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We have evidently with as origin and 00^ as axis Ox:

x = a cos^
<f>, y = a tan

<f>,

whence eliminating <^

:

x=
2/2 + a2

If we replace the tangent at 0' by any

perpendicular to 00' (Fig. 95), at the

distance b from 0, we obtain the curve

x = a cos^
(f>, y = h tan ^y

_ a¥

which reduces to the versiera for h = a.

Sketch the versiera, and the last curve for 6 = i a.

178. Cassinian Ovals. Lemniscate. Two fixed points Fj,

F2 being given it is known that the locus of a point P is

:

Fig. 96

(a) a circle if i^iP/i^^^P= const. (Ex. 7, p. 54);

(6) an ellipse if F^P + F^P^ const. (§ 114)

;

(c) a hyperbola if PiP- ^2^= const. (§ 119).

The locus is called a Cassinian oval if FiP > F2P= const. If
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we put F1F2 = 2 a, the equation, referred to the midpoint

between Fi and F2 as origin and OF2 as axis Oxj is

[(x + ay + /] l{x - ay + y2] = k^.

In the particular case when k — a^ the curve passes through

the origin and is called a lemniscate. The equation then re-

duces to the form
^x^ + y^y = 2a%x'-y%

which becomes in polar coordinates r^ = 2 a^ cos 2 </>.

Trace the lemniscate from the last equation.

(Ito/ Cycloid. The common cycloid is the path described by

any point Pofa circle rolling over a straight line (Fig. 97).

If A be the point of contact of the rolling circle in any posi-

tion, the point of the given line that coincided with the point

P of the circle when P was point of contact, it is clear that

the length OA must equal the arc AP=a$, where a is the

radius of the circle, and 6= "^ACP, the angle through which

the circle has turned since P was at 0. The figure then shows

that, with as origin and OA as axis Ox :

X = OQ = aO — a sin 6, y = a — a cos 6.

These are theparameter equations of the cycloid. The curve has

an infinite number of equal arches, each with an axis of sym-

metry (in Fig. 97, the line x= wa) and with a cusp at each

end. Write down the cartesian equation.
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180. Trochoid. The path described by any point P rigidly

connected with the rolling circle is called a trochoid. If the

Fig. 98. —The Trochoids

distance of P from the center C of the circle is 6, the equations

of the trochoid are x= aO— b sin 6, y = a — b cos 0.

Draw the trochoid for b = ^a and for 6 = | a.

181. Epicycloid. The path described by any point P of a

circle rolling on the outside of a fixed circle is called an epicy-

cloid (Fig. 99).

Let be the center, b the

radius, of the fixed circle, Cthe

center, a the radius, of the rolling

circle; and let Aq be that point

of the fixed circle at which the

describing point P is the point

of contact. Put A^OA = <f>,
ACP

= 6. As the arcs AAq and AP
are equal, we have 6(^ = a6. ^^^- ^
With as origin and OAq as axis of x we have

X = (a -\- b) cos <j> -i- a sin [^ — (i tt — <^)],

y := {a -\- b) sin
(f>
— a cos [^ — (|- tt — <^)],

I.e. X = (a -\- b) cos
(f>
— a cos 9,

y=: (a -\- b) sin
<f)
— a sin

a

a + b

a
<t>-
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182. H3rpocycloid. If the circle rolls on the inside of the

fixed circle, the path of any point of the rolling circle is called

a hypocycloid. The equations are obtained in the same way

;

they differ from those of the epicycloid (§ 181) merely in hav-

ing a replaced by — a. Write down these equations.

Show that : (a) for b = 2a the hypocycloid reduces to a

straight line, and illustrate this graphically
;
(b) for 6 = 4 a the

curve, called the four-cusped hypocycloid, has the equations

x = Sa cos <f>-\-a cos 3 <^ = a cos' <^,

y=Sa sin
<f>
— asmS<f> = a sin' </>,

whence x^ -\-y^ = a^,

EXERCISES

1. Sketch the following curves : (a) Spiral of Archimedes r = ai>;

(6) Hyperbolic spiral r<f> = a
;

(c) Lituus r'^tp = a^.

2. Sketch the following curves : (a) r = a sin </> ; (6) r = a cos
;

(c) r = a8in2
;
(d) r = acos2<f>; (e) r= acos30

; (/) r = asin30;

(g) r = a cos 4
;
{h) r = a sin 4

<f>.

3. Sketch with respect to the same axes the Cassinian ovals (§ 178)

for a = 1 and k = 2, 1.5, 1.1, 1, .75, .5, 0.

4. Let two perpendicular lines AB and CD intersect at O. Through

a fixed point Q of AB draw any line intersecting CD at R. On this line

lay off in both directions from B segments BP of length OB. The locus

of P is called the strophoid. Find the equation and sketch the curve.

6. Show that the lemniscate (§ 178) is the inverse curve of an equi-

lateral hyperbola with respect to a circle about its center.

6. Show that the strophoid (Ex. 4) is the curve inverse to an equilat-

eral hyi)erbola with respect to a circle about a vertex with radius equal

to the transverse axis.

7. Show that the cissoid (§ 176) is the curve inverse to a parabola

with respect to a circle about its vertex.

8. Find the curve inverse to the cardioid (§175) with respect to a

circle about the origin.
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9. Transform the equation a{x^ 4- y'^) = y? to polar coordinates, in-

dicate a geometrical construction, and draw the curve.

10. A tangent to a circle of radius 2 a about the origin intersects the

axes at T and T. Find and sketch the locus of the midpoint P of TT'.

11. From any point ^ of the line x — a draw a line parallel to the axis

Ox intersecting the axis Oy at Q. Find and sketch the locus of the foot

of the perpendicular from (7 on 0§.

12. The center of a circle of radius a moves along the axis Ox. Find

and sketch the locas of the intersections of this circle with lines joining

the origin to its highest point.

13. The center of a circle of radius a moves along the axis Ox. Find

and sketch the locus of its points of contact with the lines through the origin.

183. The Sine Curve. The simple sine curvCj y=8m x,

is best constructed by means of an auxiliary circle of radius

one. In Fig. 100, OQ is made equal to the length of the arc

OA = X ; the ordinate at Q is then equal to the ordinate BA of

the circle.

y

Fig. 100

Construct one whole period of the sine curve, i.e. the portion

corresponding to the whole circumference of the auxiliary

circle ; the width 2 tt of this portion is called the period of the

function sin x.

The simple cosine curve, y = GOSx, is the same as the sine

curve except that the origin is taken at the point (Jir, 0).

The simple tangent curve, y = tan x, is derived like the sine

curve from a unit circle. Its period is tt.
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184. The Inverse Trigonometric Curves. The equation

y = sin X can also be written in the form

X = sin~^ y, ox x — arc sin y.

The curve represented by this equation is of course the same

as that represented by the equation y = sin x.

But if X and y be interchanged, the resulting equation

x = sin y, OT y = sin"* ^, y = arc sin x,

represents the curve obtained from the simple sine curve by

reflection in the line y=x(^ 70).

Notice that the trigonometric functions sina;, cos x, tan x, etc.,

are one-valued, i.e. to every value of x belongs only one value

of the function, while the inverse trigonometric functions sin~* x,

COS"* a;, tan"* a;, etc., are many-valued; indeed, to every value of

X, at least in a certain interval, belongs an infinite number of

values of the function.

185. Transcendental Curves. The trigonometric and in-

verse trigonometric curves, as well as, in general, the cycloids

and trochoids, are transcen-

dental curves, so called because

the relation between the carte-

sian coordinates x, y cannot be

expressed in finite form (i.e.

without using infinite series) by

means of the algebraic opera-

tions of addition, subtraction,

multiplication, division, and

raising to a power with a con-

Fio. lOX stant exponent.
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186. Logarithmic and Exponential Curves. Another very

important transcendental curve is the exponential curve

y = a%

and its inverse, the logarithmic curve

y = loga X,

where a is any positive constant (Fig. 101). A full discussion

of these curves can only be given in the calculus.

EXERCISES

1. From a table of trigonometric functions, plot the curve y = sinoj.

2. Plot the curve y = sinx geometrically, as in § 183.

3. Plot the curve y = cos x (a) from a table
; (6) by a geometric con-

struction similar to that of § 183.

4. Plot the curve y = tanaj from a table.

5. Plot each of the curves

(a) y = sm2 x. (6) y = 2 cos Sx. (c) y = S tan (x/2).

(df) y = sec x. (e) y = cot 2 sc. (f)y = 2 tan 4 x.

6. Plot each of the curves

(a) y = sin-i X. (6) y = cos~i x. (c) y = tan-i x,

7. By adding the ordinates of the two curves y = s'mx and y = cos x,

construct the graph of y = sin x + cos x.

8. Draw each of the curves

(a) y = smx + 2 cos x. (c) y = sec x + tan x.

(6) ?/ = 2 sin a; + cos(x/2). (d) 2/ = sin x -f 2 sin 2 a; + 3 sin 3x.

9. The equation aj = sin t, where t means the time and x means the

distance of a body from its central position, represents a Simple Harmonic

Motion. From the graph, describe the nature of the motion.

10. From a table of logarithms of numbers, draw the curve y—\ogiox.

11. By multiplying the ordinates of the curve of Ex. 10 by 3, construct

the curve y = S logio x.

12. From the figure of Ex. 10, construct the curve y = 10* by reflec-

tion of the curve of Ex. 10 in the line y = x.

13. Draw the curve y = ^ logio^: by the process of Ex. 11. Show that

it represents the equation y = logiooaJ, since

y = logioo X = logioo 10 X logio x = l logio x.

N
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PART III. EMPIRICAL EQUATIONS

187. Empirical Formulas. In scientific studies, the rela-

tions between quantities are usually not known in advance,

but are to be found, if possible, from pairs of numerical values

ofthe quantities discovered by experiment.

Simple cases of this kind have already been given in §§ 15,

29. In particular, the values of a and b in formulas of the

type y = a-\-hx were found from two pairs of values of x and y.

Compare also § 34.

Likewise, if two quantities y and x are known to be connected

by a relation of the form ?/ = a -f 6a; + cx^, the values of a, 6, c

can be found from any three pairs of values of x and y. For,

if any pair of values of x and y are substituted for x and y

in this equation, we obtain a linear equation for a, 6, and c.

Three such equations usually determine a, 6, and c.

In general the coefficients a, h, c, •••, Z in an equation of the

^^®
y:=a-\-hx-\-cy?+ ... -\-lxr

can be found from any n + 1 pairs of values of x and y.

188. Approximate Nature of Results. Since the measure-

ments made in any experiment are liable to at least small

errors, it is not to be expected that the calculated values of

such coefficients as a, 6, c, .-. of § 187 will be absolutely accu-

rate, nor that the points that represent the pairs of values of

X and y will all lie absolutely on the curve represented by the

final formula.

To increase the accuracy, a large number of pairs of values

of X and y are usually measured experimentally, and various

pairs are used to determine such constants as a,b,Cf .•• of § 187.

The average of all the computed values of any one such con-

stant is often taken as a fair approximation to its true value.
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189. Illustrative Examples.

Example 1. A wire under tension is found by experiment to stretch

an amount I, in thousandths of an inch, under a tension T, in pounds, as

follows :
—

T in pounds .
" 10 15 20 25 30

I in thousandths of an inch . 8 12.5 15.5 20 23

Find a relation of the form I = kT (Hookers Law) which approx-

imately represents these results.

First plot the given data on squared paper, as in the adjoining figure.

30

25

20

15

10

ZZIZZZy^LZZZZZZZZIZZZZZ

10 15 20 25 30 35

Fig. 102

Substituting I = 8, T = 10 in I = kT, we find k = .8. From I = 12.5,

T = 15, we find k = .833. Likewise, the other pairs of values of I and T
give, respectively, k = .775, k = .S, k= .767. The average of all these

values of A; is A; = .795 ; hence we may write, approximately,

I = .795 T.
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This equation is represented by the line in Fig. 102 ; this line does not

pass through even one of the given points, but it is a fair compromise be-

tween all of them, in view of the fact that each of them is itself probably

slightly inaccurate.

Example 2. In an experiment with a Weston Differential Pulley

Block, the effort E^ in pounds, required to raise a load IF, in pounds, was

found to be as follows :

w 10 20 30 40 50 60 70 80 90 100

E 3i 4| 6i n 9 lOi ]2i 13| 16 16i

Find a relation of the form E = aW -\- h that approximately agrees

with these data. [Gibson]

These values may be plotted in the usual manner on squared paper.

They will be found to lie very

20

10

nearly on a straight line. If E
is plotted vertically, 6 is the in-

tercept on the vertical axis, and

a is the slope of the line ; both

can be measured directly in the

figure.

To determine a and h more

exactly, we may take various

points that lie nearly on the

line. Thus {E = Q\, 11'= 30)

and {E = 16J, W = 100) lie

nearly on a line that passes close

to all the points. Substituting in the equation E

m

JW
20 40

Fig.

GO

103

80 100.

6J = 30 a + 6, 16J

aW-hhwe obtain

100 a + 6,

whence a = 0.146, 6 = 1. !6. Hence we may take

^=0.146 TF+ 1.86,

approximately. Other pairs of values of E and W may be used in like

manner to find values for a and b, and all the values of each quantity may
be averaged.
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Example 3. If 6 denotes the melting point (Centigrade) of an alloy

of lead and zinc containing x per cent of lead, it is found that

X = % lead 40

e = melting point .... 186°

Find a relation of the form 6 = a -{- bx -\- cx^ that approximately expresses

these facts. [Saxelby]

Taking any three pairs of values, say (40, 186), (70, 250), (90, 304),

and substituting in d = a + bx + cx^ we find

186 = a + 40 & 4- 1600 c,

260 = a + 70 b + 4900 c,

304 = a + 90 & + 8100 c,

whence a = 132, b = .92, c = .0011, approximately ; whence

^ = 132 + .92 X + .0011 x^.

Other sets of three pairs of values of x and y may be used in a similar

manner to determine a, &, c ; and the resulting values averaged, as above.

EXERCISES

1. In experiments on an iron rod, the amount of elongation I (in thou-

sandths of an inch) and the stretching force p (in thousands of pounds)

were found to be {p = 10, I =8 ), (p = 20, I = 15), (p = 40,1 = 31).

Find a formula of the type I = Jc-p which approximately expresses these

data. Ans. k = .715.

2. The values 1 in. =2,5 cm. and 1 ft. = 30.5 cm. are frequently

quoted, but they do not agree precisely. The number of centimeters, c,

in i inches is surely given by a formula of the type c = ki. Find k ap-

proximately from the preceding data.

3. The readings of a standard gas-meter S and those of a meter T being

tested on the same pipe-line were found to be (aS^=3000, T'=0), (/S'=3510,

T = 500), {S = 4022, T = 1000). Find a formula of the type T = aS+b
which approximately represents these data.

4. An alloy of tin and lead containing x per cent of lead melts at the

temperature 9 (Fahrenheit) given by the values (a! = 25%, ^ = 482°),

(x = 50 %, d = 370°), (x = 75 %, 6 = 356°) . Determine a formula of the

type d = a + bx + cx'^ which approximately represents these values.
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5. The temperatures (Centigrade) at a depth d (feet) below the sur-

face of the earth in a mine were found to be d = 100, d = 15.7°
; d = 200,

^=16.5 ; J =300, ^=17.4. Find a relation of the form e=a-\-bd between

d and d.

6. Determine a line that passes reasonably near each of the three

points (2, 4), (C, 7), (10, 9). Determine a quadratic expression

y=a-\-bx-\-cx^ that represents a parabola through the same three points.

7. Determine a parabola whose equation is of the form y=a+bx+cx^
that passes through each of the points (0, 2.5;, (1.5, 1.5), and (3.0, 2.8).

Are the values of rt, &, c changed materially if the point (2.0, 1.7) is

substituted for the point (1.5, 1,5) ?

8. If the curve y = sin a; is drawn with one unit space on the x-axis

representing 60^, the points (0, 0), (^, J), (1|, 1) lie on the curve. Find a

parabola of the form y= a+bx-\-cx^ through these three points, and draw

the two curves on the same sheet of paper to compare them.

190. Substitutions. It is particularly easy to test whether

points that are given by an experiment really lie on a straight

line ; that is, whether the quantities measured satisfy an equa-

tion of the form y = a-{-bx. This is done by means of a trans-

parent ruler or a stretched rubber band.

For this reason, if it is suspected that two quantities x and

y satisfy an equation of the form

it is advantageous to substitute a new letter, say u, for a? :

u = x^, y = a-{-hu

and then plot the values of y and u. If the new figure does

agree reasonably well with some straight line, it is easy to find

a and &, as in § 189.

Likewise, if it is suspected that two quantities x and y are

connected by a relation of the form

y = a-\-h--OTxy = ax-\-hf
X

it is advantageous to make the substitution u = 1/x.



IX, § 191] EMPIRICAL EQUATIONS 183

Other substitutions of the same general nature are often

useful.

In any case, the given values of x and y should be plotted first

unchanged, in order to see what substitution might be useful.

191. Illustrative Example. If a body slides down an inclined

plane, the distance s that it moves is connected with the time t after it

starts by an equation of the form s = kt'^. Find a value of k that agrees

reasonably with the following data

:

s, in feet 2.6 10.1 23.0 40.8 63.7

t, in seconds 1 2 3 4 5

In this case, it is not necessary to plot the values of s and t themselves,

because the nature of the equation, s = kt^, is known from physics.

Hence we make the substitution t^ = u, and write down the supple-

mentary table

:

8, in feet 2.6 10.1 23.0 40.8 63.7

w (or t2) 1 4 9 16 25

These values will be found to give points very nearly on a straight line

whose equation is of the form s — ku. To find A;, we divide each value of

s by the corresponding value of u ; this gives several values of k

:

k 2.6 2.525 2.556 2.55 2.548

The average of these values of k is approximately 2.556 ; hence we may

write s = 2.556 M, or s = 2.556 t^.

EXERCISES

1. Find a formula of the type u = kv^ that represents approximately

the following values

:

u 3.9 15.1 34.5 61.2 95.5 137.7 187.4

V 1 2 3 4 5 6 7
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2. A body starts from rest and moves s feet in t seconds according to

the following measured values :

s, in feet 3.1 13.0 30.6 50.1 79.5 116.4

t, in seconds 5 1 1.5 2 2.5 3

Find approximately the relation between s and t.

3. The pressure p, measured in centimeters of mercury, and the volume

V, measured in cubic centimeters, of a gas kept at constant temperature,

were found to be :

191V 146 155 165 178

p 117.2 109.4 102.4 95.0

Substitute u for 1/v, compute the values of m, and determine a relation

of the form p = ku; that is, p = k/v.

4. Determine a relation of the form y = a + bx^ that approximately

represents the values

:

X 1 2 3 4 5 6 7

y 14.1 25.2 44.7 71.4 105.6 147.9 197.7

192. Logarithmic Plotting. In case the quantities y and x

are connected by a relation of the form

it is advantageous to take logarithms (to the base 10) on both

sides

:

log y = log kaf" = log k -\-n log x,

and then substitute new letters for log x and log y

:

u = log X, v= log y.

For, if we do so, the equation becomes

v = l -\- nuj

where I = log k.
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If the values of x and ?/ are given by an experiment, and if

w = log £c and v = log y are computed, the values of u and v

should correspond to points that lie on a straight line, and the

values of I and n can be found as in § 189. The value of k

may be found from that of Z, since log k=l.

Example 1. The amount of water J., in cu. ft., that will flow per

minute through 100 feet of pipe of diameter d, in inches, with an initial

pressure of 50 lb. per sq. in. , is as follows :

1 1.5

13.4.3

2

27.50

3

75.13

4

152.51

6

409.54

Find a relation between A and d.

Let u = \ogd, V = log A ; then the values of u and v are

\ogd .

losA .

0.000

0.688

0.176

1.128

0.301

1.439

0.477

1.876

0.602

2.183

0.778

2.612

" J .2 .3 4 .5 .6 .7 .8

Fig. 104

These values give points in the (w, v) plane that are very nearly on

a straight line ; hence we may write, approximately,

where a and b can be determined directly by measurement in the figure,
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or as in § 189. If we take the first and last pairs of values of u and v, we

find

.688 = a + 0,

2.612 = a +.778 ft.

Solving these equations, we find approximately, a = .688, b = 2.473,

and we may write

V = .688 + 2.473 u or log A = .688 + 2.473 log d.

Since .688 = log 4.88,

the last equation may be written in the form

log ^ = log 4. 88 + 2.473 log d

= log(4.88 (P««)

whence ^ = 4.88 ^2.478.

Slightly different values of the constants may be found by using other

pairs of values of u and v.

193. Logarithmic Paper. Paper called logarithmic paper

may be bought that is ruled in lines whose distances, horizon-

tally and vertically, from one point (Fig. 105) are propor-

tional to the logarithms of the numbers 1, 2, 3, etc.

Such paper may be used advantageously instead of actually

looking up the logarithms in a table, as was done in § 192.

For if the given values be plotted on this new paper, the result-

ing figure is identically the same as that obtained by plotting

the logarithms of the given values on ordinary squared paper.

Example. A strong rubber band stretched under a pull of p kg.

shows an elongation of E cm. The following values were found in an ex-

periment :

p 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0

E 0.1 0.3 0.6 0.9 1.3 1.7 2.2 2.7 3.3 3.9 5.3 6.9

[RiGGS]

If these values are plotted on logarithmic paper as in Fig. 105, it is evi-

dent that they lie reasonably near a straight line, such as that drawn.
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By measurement in the figure, the slope of this line is found to be 1.6,

approximately. Hence if u = logp and v = log E, we have

where Z is a constant not yet determined ; whence

log E=l + 1.6logp

or E = kp^-^

l(p
.IJ - - 7
Q /

/^ r

_J/
//

j& = elongation in c

p — pull in kg.

/m.
/

/
Z z-zz

TTfTTI— I

—

'"'"""^ /.
—

^

t-: EE
15 —

"

J/- _ s i. /
i it
'fi

^/ - —
fe _ /

/

~t
2

*i _ __ .. ^'-^.Z J^ -----

A

4= = = ::
Z'l^'^.

_^ EE
45 2 —

. ^ -I
"-I2

1 :^
1 y -- P

^4 .15 .2 .2i ,4 i,ji .7.ajSi 16 2 ' 2I 4 5 €» 7 8 9i0

Fig. 105.— Elongation of a Rubber Band

where Z = log A:. If p = 1, ^ = A: ; from the figure, if p = 1, E = .B

hence A: = .3, and
E = .3i>i-6.

The use of logarithmic paper is however not at all essential

;

the same results may b© obtained by the method of § 192.
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EXERCISES

1. In testing a gas engine corresponding values of the pressure p, meas-

ured in pounds per square foot, and the volume r, in cubic feet, were

obtained as follows : tJ = 7.14, p = 54.6 ; 7.73, 60.7 ; 8.59, 45.9. Find

the relation between |) and v (use logarithmic plotting).

Ans. p = 387.6 v-^, orpv^ = 387.6.

2. Expansion or contraction of a gas is said to be adiabatic when no

heat escapes or enters. Determine the adiabatic relation between pressure

p and volume v (Ex. 1) for air from the following observed values:

p = 20.64, V = Q.'27 ; 26.79, 6.34 ; 64.25, 3.15.

Ans. pri« = 273.5.

3. The intercollegiate track records for foot-races are as follows,

where d means the distance run, and t means the record time :

d 100 yd. 220 yd. 440 yd. 880 yd. 1 mi. 2 mi.

t 0:09^ 0:21^ 0:48 1:54| 4:15§ 9:24^

Plot the logarithms of these values on squared paper (or plot the

given values themselves on logarithmic paper). Find a relation of the

form t = kd^. What should be the record time for a race of 1320 yd. ?

[See Kennelly, Popular Science Monthly, Nov. 1908.]

4. Solve the Example of § 193 by the method of § 192.

6. Each of the following sets of quantities was found by experiment.

Find in each case an equation connecting the two quantities, by §§ 192-

193.

(«) V

p

1

137.4

2

62.6

3

39.6

4

28.6

5

22.6

(b) u

V

12.9

63.0

17.1

27.0

23.1

13.8

28.6

8.6

3.0

6.9

(c)

c

82°

2.09

212°

2.69

390°

2.90

570°

2.98

750°

3.09

1100°

3.28



SOLID ANALYTIC GEOMETRY

CHAPTER X

COORDINATES

194. Location of a Point. The position of a point in three-

dimensional space can be assigned without ambiguity by giv-

ing its distances from three mutually rectangular planes, pro-

vided these distances are taken with proper signs according as

the point lies on one or the other side of each plane.

The three planes, each perpendicular to the other two, are

called the coordinate planes ; their common point (Fig. 106)

is called the origin. The three ^

mutually rectangular lines Ox, q^ ^pf

Oy, Oz in which the planes in-

tersect are called the axes of

coordinates; on each of them

a positive sense is selected

arbitrarily, by affixing the

letter x, y, z, respectively, y^
The three coordinate planes,

Oyz, Ozx, Oxy, divide the whole

of space into eight compartments called octants. The first

octant in which all three coordinates are positive is also called

the coordinate trihedral.

If P', P", P"' are the projections of any point P on the

coordinate planes Oyz, Ozx, Oxy, respectively, then P'P= x,

P"P = y, P"'P=z are the rectangular cartesian coordinates of

189

?<- ^Q"

Fig. 106
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P. If the planes through P parallel to Oyz, Ozx, Oxy intersect

the axes Ox, Oy, Oz in Q\ Q", Q'", the point P is found from

its coordinates x, y, z by. passing along the axis Ox through the

distance OQ'=x, parallel to Oy through the distance Q'P"=y,

and parallel to Oz through the distance P"P=z, each of

these distances being taken with the proper sense.

Every point in space has three definite real numbers as coordi-

nates; conversely, to every set of three real numbers corresponds

one and only one point.

Locate the points : (2, 3, 4), (- 3, 2, 0), (5, 0, - 3), (0, 0, 4),

(0, - 6, 0), (- 5, - 8, -2).

195. Distance of a Point from the Origin. For the distance

OP=r (Fig. 106) of the point P(x, y, z) from the origin we
have, since OP is the diagonal of a rectangular parallelepiped

with edges OQ' = x, OQ" = y, OQ"' = z:

r= Vic^ -f 2/^ +
196. Distance between two Points,

the t>vo points Pi (x^ , ?/i , z^) and Pj

(X2,y2, Z2) can be found if the coordi-

nates of the two points are given.

For (Fig. 107), the planes through P^

and those through Pj parallel to the

coordinate planes bound a rectangular

parallelepiped with P1P2 = d as di-

agonal
; and as its edges are

P^Q=zX2-x,, P,R = 7j2-yi.,

we find

The distance between

M

<?^ ^

Fig. 107

PlS = Z2 — Zi,

d = V(a^ - x,y -h (t/2 - y,y + (z, - Zy)\

197. Oblique Axes. The position of a point P in space can also

be determined with respect to three axes not at right angles. The coor-

dinates of P are the segments cut o2 on the axes by planes through P
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parallel to the coordinate planes. In what follows, the axes are always

assumed to he at right angles unless the contrary is definitely stated.

EXERCISES

1. What are the coordinates of the origin ? What can you say of the

coordinates of a point on the axis Ox ? on the axis Oy ? on the axis Oz ?

2. What can you say of the coordinates of a point that lies in the

plane Oxy ? in the plane Oyz ? in the plane Ozx ?

3. Where is a point situated when x = 0? when z = 0? when

x = y = 0? when y = z? when x = 2? when z =—Z? when x = 1

,

y = 2?

4. A rectangular parallelepiped lies in the first octant with three of

its faces in the coordinate planes, its edges are of length a, &, c, respec-

tively ; what are the coordinates of the vertices ?

6. Show that the points (4,3, 5), (2, -1,3), (0,1,7) are the

vertices of an equilateral triangle.

6. Show that the points (- 1, 1, 3), (— 2, — 1, 4), (0, 0, 5) lie on a

sphere whose center is (2, — 3, 1). What is the radius of this sphere ?

7. Show that the points (6, 2, - 5), (2, - 4, 7), (4, - 1, 1) lie on a

straight line.

8. Show that the triangle whose vertices are (a, 6, c)
, (&, c, a) ,

(c, a, &)

is equilateral.

9. What are the coordinates of the projections of the point (6, 3, — 8)

on the axes of coordinates ? What are the distances of this point from the

coordinate axes ?

10. What is the length of the segment of a line whose projections on

the coordinate axes are 5, 3, and 2 ?

11. What are the coordinates of the points which are symmetric to

the point (a, 6, c) with respect to the coordinate planes ? with respect

to the axes ? with respect to the origin ?

12. Show that the sum of the squares of the four diagonals of a rec-

tangular parallelepiped is equal to the sum of the squares of its edges.
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198. Projection. The projection of a point on a plane or

line is the foot of the perpendicular let fall from the point on

the plane or line. The projection of a rectilinear segment AB
on a plane or line is the intercept A'B' between the feet of the

perpendiculars AA', BB' let fall from Ay B on the plane or

line. If a is one of the two angles made by the segment with

the plane or line, we have

A'B' = AB cos a.

In analytic geometry we have generally to project a vector,

i.e. a segment with a definite sense, on an axis, i.e. on a line

with a definite sense (compare § 19). The angle a is then

understood to be the angle between the positive senses of

vector and axis (both being drawn from a common origin).

The above formula then gives the projection with its proper

sign.

Thus, the segment OP (Fig. 106) from the origin to any

point P(x, y, z) can be regarded as a vector OP. Its projec-

tions on the axes of coordinates are

the coordinates x, y, z of P. These

projections are also called the rec-

tangular components of the vector OP,

and OP is called the resultant of the

components OQ', OQ', OQ'", or also

of OQ', Q'P"', P"'P,
/** Fir 108

Similarly, in Fig. 108, if P^P^ be

regarded as a vector, the projections of this vector P^P-i on

the axes of coordinates are the coordinate differences x^ — Xy,

2/2 — 2/u 22 — ^i- See § 203.

199. Resultant. The proposition of § 19 that the sum of

the projections of the sides of an open polygon on any axis is
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equal to the projection of the closing side on the same axis and

that of § 20 that the projection of the resultant is equal to the

sum of the projections of its components are readily seen to hold

in three dimensions as well as in the plane. Analytically

these propositions follow by considering that whatever the

points Pi(.Ti, y,, z,), P^(x^, y^, z^), ••• P„(a;„
, 2/„, z^) in space,

the sum of the projections of the vectors P1P2 , PjA >
••* Pn-i^n

on the axis Ox is :

(x2-x^)-{-(xs-X2)-{ \-(x^ 00

„

1 )— Vu„ "^ Out

where the right-hand member is the projection of the closing

side or resultant PiP„ on Ox. Any line can of course be taken

as axis Ox.

200. Division Ratio. Two points Pi(xi, y^, z^ and

Pi (^2 J 2/2 ? ^2) beirig given by their

coordinates, the coordinates x, y, z

of any point P of the line P^P^

can he found if the division ratio

PyP/P^P^ = k is known in luhich

the point P divides the segment

P,P, (Fig 109).

Let Qi, Q, ^2^36 the projections

of Pi, P, P2 on the axis Ox\ as

Q divides Q^Q^ in the same ratio k in which P divides PiPj,

we have as in § 3 :

x=x^-\- k{x2 — x{).

Similarly we find by projecting on Oy, Oz

:

y = yi + ^Cv2

-

Vi), z = z,-{- k{z. - z^.

If k is positive, P lies on the same side of Pi as does P2; if

k is negative, P lies on the opposite side of Px (§ 3).

o

Fig. 109
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201. Direction Cosines. Instead of using the cartesian

coordinates a, y^ z to locate a point P (Fig. 110) we can also

use its radius vector r = OP, i.e. the length of the vector drawn

from the origin to the point, and its direction cosines, i.e. the

cosines of the angles a, p, y, made

by the vector OP with the axes Ox,

Oy, Oz. We have evidently

05 = r cos a, y = r cos^, z = r cosy.

As a line has two opposite senses

we can take as direction cosines j

of any line parallel to OP either

cos a, cos p, cos y, or — cos a, — cos p, — cos y.

The direction cosines cos a, cos )8, cos y of a vector OP are

often denoted briefly by the letters I, m, n, respectively, so

that the coordinates of P are

x= lr, y = mr, z = nr.

The direction cosines of any parallel line are then Z, m, n

or — ?, — m, — n.

202. Pythagorean Relation. Tlie sum of the squares of the

direction cosines of any line is equal to one.

For the equations of § 201 give upon squaring and adding,

since a^ -\-
y'^

-\- z^ = r^

:

cos'^a + cos* P + cos* 7 = 1*

or

P + m2 + n2 = 1

;

and this still holds when I, m, n are replaced by —l,—m,— n.

Since this result is derived directly from the Pythagorean

Theorem of geometry, it may be called the Pythagorean Pela-

tion between the direction cosines. Notice that I, m, n can be

regarded as the coordinates of the extremity of a vector of

unit length drawn from the origin parallel to the line.
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EXERCISES

1. Find the length of the radius vector and its direction cosines for

each of the following points : (5, — 3, 2); (— 3, — 2, 1); (—4, 0, 8).

2. The direction cosines of a line are proportional to 1, 2, 3 ; find

their values.

3. A straight line makes an angle of 30° with the axis Ox and an

angle of 60° with the axis Oy ; what is the third direction angle ?

4. What is the direction of a line when Z = ? when Z = m = ?

5. What are the direction cosines of that line whose direction angles

are equal ?

6. What are the direction cosines of the line bisecting the angle

between two intersecting lines whose direction cosines are Z, m, n and Z',

wi', n'^ respectively ?

7. Find the direction cosines of the line which bisects the angle

between the radii vectoresof the points (3, — 4, 2) and (— 1, 2, 3).

8. Three vertices of a parallelogram are (4, 3, —2), (7, —1, 4),

(— 2, 1, — 4); find the coordinates of the fourth vertex (three solutions).

9. In what ratio is the line drawn from the point (2, — 5, 8) to the

point (4, 6, — 2) divided by the plane Ozx ? by the plane Oxy ? At what

points does this line pierce these coordinate planes ?

10. In what ratio is the line drawn from the point (0, 5, 0) to the

point (8, 0, 0) divided by the line in the plane Oxy which bisects the

angle between the axes ?

11. Find the coordinates of the midpoint of the line joining the points

(4, —3, 8) and (6, 5, — 9). Find the points which trisect the same segment.

12. If we add to the segment joining the points (4, 1, 2) and (— 2,

5, 7) a segment of twice its length in each direction, what are the coordi-

nates of the end points ?

13. Find the coordinates of the intersection of the medians of the tri-

angle whose vertices are Pi(a;i, yi , ^i), P2{X2
, 2/2, Zi) ^ Pz{xz , 2/3 , ^z)-

14. Show that the lines joining the midpoints of the opposite edges of

a tetrahedron intersect and are bisected by their common point.

15. Show that the projection of the radius vector of the point

P(a;, ?/, z) on a line whose direction cosines are V, m', n' is Vx-\-m'y-\-n'z.
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M

(T

Fig. Ill

203. Projections. Components of a Vector. If two points

-f\(^ij 2/i > ^\) and Piix^^ y^, z^ are given by their coordinates,

the projections of the vector, P^P^ on

the axes, or what amounts to the

same, on parallels to the axes drawn

through Pi (Fig. Ill), are evidently

(§ 198) :

P^q = x^-x^, PiR^Vi — yi,

P^S = z^-z,.

These projections, or also the vectors

P\Q, QNfNPz, are called the rectangular components of the

vector P1P2 , or its components along the axes.

If d is the length of the segment P^P^ , its direction cosines Z,

m, n are, since P2Q is perpendicular to PiQ, P^R to P^R, P^S

to P,S:

J Xn — X, ?/, — Vl 2;., — Z,

a a a

These relations can also be written in the form

:

^2 - a?i ^ .V2 - Vi^ Zj-Zi ^ ^
I m n

flt,mt.iit)

204. Angle between Two Lines. If the directions of two lines

are given by their direction cosines l^ ?Wi, ?^l ajid h, Wo, tio, the

angle ij/ between the two lines is given

by the formula

cos <|/ = lih + inxnii + nin2

.

For, drawing through the origin

two lines of direction cosines ^ , wij

,

Til ^-rid I2, m^, W2 3-nd taking on the

former a vector OPi of unit length, Fia. 112

the projection OP of OPi on the other line is equal to the
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cosine of the required angle if/. On the other hand, OPi has

li, rrii , rii as components along the axes ; hence, by § 199 :

cos k{/ = Zi?2 4- wi^mg + riiWa •

Two intersecting lines (or any two parallels to them) make

two angles, say ij/ and -rr—ip. But if the direction cosines of

each line are given, a definite sense has been assigned to each

line, and the angle between the lines is understood to be the

angle between these senses.

205. Conditions for Parallelism and for Perpendicularity.

If, in particular, the lines are parallel, we have either li^h,

mi = m2 , ?ii = ^2 , or Z^ = — ?,, m^ = — m2 , w i = — Wg ; hence in

either case ^i _ '^i _ ^
I2 m2 ^2

This then is the condition of parallelism of two lines whose

direction cosines are li, rrii, % and I2, mg, %2-

If the lines are perpendicular, i.e. ii i{/ = -|- tt, we have

cos j/^ = ; hence the condition of perpendicularity of two lines

whose direction cosines are l^, m^, n^ and I2 , m2 , ^2 is

hh + Wim2 + nin2 = 0.

206. The formula of § 204 gives

sin2 ^ = 1 — cos2 1// = 1 —(hl2 + Wim2 + nin2)^.

As (§ 202) (Zi2 + mi2 + ni^)(ih^ + m-P- + n-?^^ 1, we can write this ex-

pression in the form

Zi2 + m^ + n^ hh + mirm + fiiUi

hh + mim2 + win2 h^ + m2^+ n-^
sin^i//

which can also be expressed as follows

sin^ i// =
mo 712

h wi711 h
«2 h

The direction (I, m, n) perpendicular to two given different directions

(li , mi , ni) and (^2, «i2, n^) is found by solving the equations (§ 205)

hi + mim + Win = 0,

ZgZ + 7W2WI + n2n = 0,
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I m n

Hi h

whence

If we denote by k the common value of these ratios, we have

1 = wii ni
k, m Til h

112 h
w= \k;

12 Wl2

I

substituting these values in the relation (§ 202) l^ -\- m^ -{ n^ = 1, and

observing the preceding value of sin^, we find:

TOi ni

m2 7121 n2 li n=±
h wii

I2 wtg

sin^sin ^ sin yj/

where V is the angle between the given directions.

207. Three directions (h , w»i , ni), (Z2, WI2, W2), (^3 , ^3 , ws) are com-

planar, i.e. parallel to the same plane, if there exists a direction (/, m, n)

perpendicular to all three. This will be the case if the equations

hi + fnim + wiw = 0,

hi + wi2m 4- 712/1 = 0,

hi + w»3W» + nzn =

have solutions not all zero ; hence the condition of complanarity

h wii Wi

h WI2 W2

I3 WI3 ns

= 0.

EXERCISES

1. Find the length and direction cosines of the vector drawn from the

point (5, —2, 1) to the point (4, 8, — 6) ; from the point (a, b, c) to the

point (—a, —b, —c) ; from (— a, —6, — c) to (a, 6, c).

2. Show that when two lines with direction cosines Z, w, n and

Z', w*', n', respectively, are parallel, IV + mm' + nn' = ± 1.

3. Show that when two lines with direction cosines proportional to

a, 6, c and a', 6', c' are perpendicular aa' + 66'+ cc' = ; and when the

lines are parallel a/a' = 6/6' = c/c'.

4. Show that the points (5, 2, -3), (6, 1, 4), (-2, -3, 6),

(—1, — 4, 13) are the vertices of a parallelogram.
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6. Show by direction cosines that the pomts (6, -3, 5), (8, 2, 2),

(4, —8, 8) lie in a line.

6. Find the angle between the vectors from (5, 8, — 2) to (—2, 6,-1)
and from (8, 3, 5) to (1, 1, -6).

7. Find the angles of the triangle whose vertices are (5, 2, 1),

(0,3, -1),(2, -1,7).

8. Find the direction cosines of a line which is perpendicular to two

lines whose direction cosines are proportional to 2, —3, 4, and 6, 2, —1,

respectively.

9. Derive the formula of § 204 by taking on each line a vector of unit

length, OPi and OP2, and expressing the distance P1P2 first by the

cosine law of trigonometry, then by § 196, and equating these expressions.

10. Find the rectangular components of a force of 12 lb. acting along

a line inclined at 60° to Ox and at 45° to Oy.

11. Find the resultant of the forces OPi , OP2 , OP3 , OP4 if the co-

ordinates of Pi, P2, P3, P4, with Oas origin, are (3, —1, 2), (2, 2,-1),

(-1,2, 1), (-2, 3, -4).

12. If any number of vectors, applied at the origin, are given by the

coordinates x, y, z of their extremities, the length of the resultant B is

V'(Sx)2 + (Sy)'-^ + (S2:)2 (see Ex. 9, p. 20), and its direction cosines

are 2x/i?, Sy/iJ, ^zjB.

13. A particle at one vertex of a cube is acted upon by seven forces

represented by the vectors from the particle to the other seven vertices

;

find the magnitude (length) and direction of the resultant.

14. If four forces acting on a particle are parallel and proportional to

the sides of a quadrilateral, the forces are in equilibrium, i.e. their resultant

is zero. Similarly for any closed polygon.

208. Translation of Coordinate Trihedral. Let x, y, z be

the coordinates of any point P with respect to the trihedral

formed by the axes Ox, Oy, Oz (Fig. 113). If parallel axes

Oi^i, Oi?yi, O^Zi be drawn through any point Oi(a, b, c), and if

^ij Vi, ^1 are the coordinates of P with respect to the new tri-
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hedral OiXiy^Zi, then the relations between the old coordinates

X, y, z, and the new coordinates «i , 2/1, ^i of one and the same

point P are evidently

x = a-{-x^, y = b-\-yi, z = c-{-Zi.

The coordinate trihedral has thus

been given a translation, represented

by the vector 00^. This operation

I

^1 ic !

is also called a transformation to X^— •«- >

I I

parallel axes through Oj. Fio. 113

209. Area of a Triangle. Any two vectors OPi , OP2 drawn from

the origin determine a triangle OPxPi, whose area A can easily be ex-

pressed if the lengths ri , r2 and direction cosines

of the vectors are given. For, denoting the angle

P1OP2 by ^, we have for the area A :

A = \ ViTi sin \{/^

where sin ^ can be expressed in terms of the direc-

tion cosines by § 206.
%

FiQ. 114

210. Moment of a Force. Such areas are used in mechanics to

represent the moments of forces. The moment of a force about a point O
is defined as the product of the force into the

perpendicular distance of from the line of

action of the force. Thus, if the vector P1P2

(Fig. 115) represent a force (in magnitude,

direction, and sense) the moment of this force ^L.,,,,^^^^

about the origin O is equal to twice the area

of the triangle OP1P2, i.e. to the area of the

parallelogram OP1P2P3 , where OP3 is a vector

equal to the vector P1P2. Fig. 116

It is often more convenient to represent this moment not by such an

area, but by a vector OQ^ drawn from O at right angles to the triangle,

and of a length equal to the number that represents the moment. If the

body on which the force acts could turn freely about this perpendicular,

the moment would represent the turning effect of the force P1P2.
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The sense of this vector that represents the moment is taken so as to

make the vector point toward that side of the plane of the triangle from

which the force P1P2 is seen to turn counterclockwise.

211. If we square the expression found in § 209 for the area of the

triangle OP1P2 and substitute for sin^ xp its value from § 206, we find :

^2 = iriW(
mi Hi

+
712 h +

Zi Wi

1

Hence A^ is the sum of the squares of the three quantities

Ax = \ ri?'2

mi Wi

mi 712
, Ay = I rir2

7ii h
7l2 h

Inri
h «i2

which have a simple geometrical and mechanical interpretation. For, as

the coordinates of Pi , P2 are

we have, e.g.,

Xi = hri, yx = wiri, zi = win,

X2 = hr2, y2 = W2r2, Z2 = n2^2»

A, = l
hn min
?2^2 W2»*2

= i
xi yi

X2 2/2

and as Xi , 2/1 and X2
, 2/2 are the coordinates of the projections Qi , Q2 of

Pi , P2 on the plane Oxy, Ag represents (§ 12) the area of the triangle

0QiQ2, ie. the projectio7i on the plane Oxy of the area OP1P2. Sim-

ilarly, Ax and Ay are the projections of the area OP1P2 on the planes

Oyz and Ozx, respectively. As any three mutually rectangular planes

can be taken as coordinate trihedrals, our formula A^ = A^ -\- A^ + A^
means that the square of the area of any triangle is equal to the sum of

the squares of its projections on any three mutually rectangular planes.

In mechanics, 2Ag is the moment of the projection ^1^2 of the force

P1P2 about 0, or what is by definition the same thing, the moment of

P1P2 about the axis Oz. Similarly, for 2A^, 2 Ay . The proposition

means, therefore, that the moments of P1P2 about the axes Ox, Oy, Oz

laid off as vectors along these axes can be regarded as the rectangular

components of the moment of Pi P2 about the point ;
in other words,

2Agy 2 Ay, 2 A, are the components along Ox, Oy, Oz of that vector

2 ^ (§ 210) which represents the moment of P1P2 about 0.
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Fio. 116

212. Polar Coordinates. The position of any point P (Fig.

116) can also be assigned by its

radius vector 0P= r, i.e. the dis-

tance of P from a fixed origin or

pole 0, and two angles : the colati-

tude $, i.e. the angle NOP made

by OP with a fixed axis ON, the

X>olar axis, and the longitude
<f>,

i.e. the angle AOP made by the

plane of $ with a fixed plane

NOA through the polar axis, the

initial meridian plane.

A given radius vector r confines the point P to the sphere

of radius r about the pole 0. The angles 6 and <^ serve to

determine the position of P on this sphere. This is done as

on the earth's surface except that instead of the latitude, which

is the angle made by the radius vector with the plane of the

equator AP', we use the colatitude or polar distance 6 = NOP.
The quantities r, 6, and <^ are the j^olar or spherical coordi-

nates of P. After assuming a point as pole, a line ON
through 0, with a definite sense, as polar axis, and a (half-)

plane through this axis as initial meridian plane, every point

P has a definite radius vector r (varying from zero to infinity),

colatitude $ (varying from to -n), and a definite longitude <^

(varying from to 2 it). The counterclockwise sense of rotation

about the polar axis is taken as the positive sense of <^.

213. Transformation from Cartesian to Polar Coordinates.

The relations between the cartesian coordinates x, y, z and the

polar coordinates r, 6, <f>
of any point P appear directly from

Fig. 117. If the axis Oz coincides with the polar axis, the

plane Oxy with the equatorial plane, i.e. the plane through the
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pole at right angles to the polar axis, while the plane Ozx is

taken as initial meridian plane, the pro- '

jections of OP=r on the axis Oz and *

on the equatorial plane are

OIi = rGose, OQ = r sine.

Projecting OQ on the axes Ox, Oy,we -/^ y H&

find Fig, 117

a; = r sin ^ cos <^, ?/ = r sin ^ sin </>, z = rcos0.

Also r = Va^ + 2/^ + 2-, cos (9 = ^
tan<^ = ^.

Vaj2 + y'^-\-z^ »

EXERCISES

1. Find the area of the triangle whose vertices are (a, 0, 0), (0, 6, 0),

(0, 0, c).

2. Find the area of the triangle whose vertices are the origin and the

points (3, 4, 7), (- 1, 2, 4).

3. Find the area of the triangle whose vertices are (4, — 3, 2),

(6,4,4), (-5, -2, 8).

4. The cartesian coordinates of a point are 1, V3, 2 V3 ; what are its

polar coordinates ?

5. If r = 5, fl = i TT, = I TT, what are the cartesian coordinates ?

6. The earth being taken as a sphere of radius 3962 miles, what are

the polar and cartesian coordinates of a point on the surface in lat. 42° 17'

N. and long. 83° 44' W. of Greenwich, the north polar axis being the axis

Oz and the initial meridian passing through Greenwich ? What is the

distance of this point from the earth's axis ?

7. Find the area of the triangle whose vertices are (0, 0, 0) , (ri , ^1 , 0i)

,

(r2, ^2, 02).

8. Express the distance between any two points in polar coordinates.

9. Find the area of any triangle when the cartesian coordinates of the

vertices are given.

10. Find the rectangular components of the moment about the origin

of the vector drawn from (1, — 2, 3) to (3, 1, — 1).



CHAPTER XI

THE PLANE AND THE STRAIGHT LINE

PART I. THE PLANE

214. Locus of One Equation. In plane analytic geometry

any equation between the coordinates x, y ov r,
<f>

of a. point in

general represents a plane curve. In particular, an equation of

the first degree in x and y represents a straight line (§ 30)

;

an equation of the second degree in x and y in general repre-

sents a conic section (§154).

In solid analytic geometry any equation between the coordi-

nates X, y, z or r, 0, 4> of a. point in general represents a surface.

Thus, if any equation in Xj y, z,

F{x,y,z)^0,

be imagined solved for z so as to take the form

2!=/(a;,y),

we can find from this equation to every point (a?, y) in the

plane Oxy one or more ordinates z (which may of course be

real or imaginary), and the locus formed by the extremities of

the real ordinates will in general form a surface. It may how-

ever happen in particidar cases that the locus of the equation

F(Xy y, z)= 0, i.e. the totality of all those points whose coordi-

nates X, y, z when substituted in the equation satisfy it, con-

sists only of isolated points, or forms a curve, or that there are

no real points satisfying the equation.

Similar considerations apply to an equation in polar

coordinates

F(r, $,<(>) =0,
204
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215. Locus of Two Simultaneous Equations. Two simulta-

neous equations in cc, y, z (or in the polar coordinates r, 6, <f>)

will in general represent a curve in space, namely, the inter-

section of the two surfaces represented by the two equations

separately.

Thus, in the present chapter, we shall see that an equation of

the first degree in x, y, z represents a plane and that therefore

two such equations represent a straight line, the intersection or

the two planes. In chapters XII and XIII we shall discuss

loci represented by equations of the second degree, which are

called quadric surfaces.

216. Equation of a Plane. Every equation of the first degree

in X, y, z represents a plane. The plane is defined as a surface

such that the line joining any two of its points lies completely

in the surface. We have therefore to show that if the general

equation of the first degree

(1) Ax-{-By-^Cz + D=0
is satisfied by the coordinates of any two points Pi(aJi, ?/i, Zj)

and P^ix.^ , 2/2 J %)? i-^- if

Ax^ -f Byi + (7% + J5 = 0,

^ -^
^ Ax2 + By2-\-Cz2 + D=:0,

then (1) is satisfied by the coordinates of every point

P(x, y, z) of the line PiP2-

Now, by § 200, the coordinates of every point of the line

P1P2 can be expressed in the form

x = Xi-\- k(x2 — a^i), y = yi-\- Kv^ — Vi), z = ^i + K^2 — %)»

where k is the ratio in which P divides PiP^, i.e.

h = P,P/P^P,.

We have therefore to show that

A[x^ + K^2 - a^)] + ^[2/1 +^fe-2/i)] + C[_z^+K^2-Zi)'] +^=0,
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whatever the value of k. Adding and subtracting kD, we can

write this equation in the form

{l-k){Ax^ + By^+Cz^-\-D)-^k{Ax^-\-By^+Cz^ + U)=zO',

and this is evidently true for any k, owing to the conditions (2).

217. Essential Constants. The equation (1) will still rep-

resent the same plane when multiplied by any constant differ-

ent from zero. Since A, B, C cannot all three be zero, we

can divide (1) by one of these constants ; it will then contain

not more than three arbitrary constants. We say therefore

that the general equation of a plane contains tJwee essential

constants. This corresponds to the geometrical fact that a

plane can, in a variety of ways, be determined by three condi-

tions, such as the conditions of passing through three points.

218. Special Cases. If, in equation (1), Z> = 0, the plane

evidently passes through the origin.

If, in equation (1), C=0, so that the equation is of the

form Ax -[- By -\- D = 0, this equation represents the plane

perpendicular to the plane Oxy and passing through the line

whose equation in the plane Oxy is Ax -\- By -\- D = 0. For,

the equation Ax + J5?/ -|- 2) = is satisfied by the coordinates

of all points («, ?/, z) whose x and y are connected by the re-

lation Ax -\-By -{- D = and whose z is arbitrary, but it is not

satisfied by the coordinates of any other points. Similarly, if

5 = in (1), the plane is perpendicular to Ozx; if ^ = 0, the

plane is perpendicular to Oyz.

It B = and C= in (1), the equation obviously represents

a plane perpendicular to the axis Ox ; and similarly when

and A, or A and B are zero.

Notice that the line of intersection of (1) with the plane

Oxy, for instance, is represented by the simultaneous equations

Ax + By+Cz + D=0, 2 = 0.
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219. Intercept Form. If D =^ 0, the equation (1) can be

divided by Z) ; it then assumes the form

If Aj Bf G are all different from zero, this equation can be

written

+ 1,-D/A ' -D/B ' -D/G
or, putting - D/A = a, - D/B = b, - D/G= c

:

(3)
a c

In this equation, called the intercept form of the equation

of a plane, the constants a, h, c are the intercepts made by the

plane on the axes Ox, Oy, Oz respectively. For, putting, for

instance, 2/ = and 2: = 0, we find x = a\ etc.

220. Plane through Three Points. If the plane

Ax + By + Gz-\-D =

is to pass through the three points Pi(xi, y^, z^, ^2(^2) 2^2 ? ^2))

A (^3 J 2/3? ^z)j the three conditions

Ax, + By, + Gz,-\-D = 0,

Ax^-^By^-\-Gz^+D = 0,

Ax^ + By^ + Gz^ + D = (i

must be satisfied. Eliminating A, B, G, D between the /owr

preceding equations, as in § 55, we find the equation of the

plane passing through the three points in the form

X y z 1

X, 2/1 ^l 1

x^ 2/2 2^2 1

X3 2/3 2=3 1
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EXERCISES

1. Find the intercepts made by the following planes :

(a) 4a; + 12y + 3^ = 12; (&) 15a:- 6y + 10« -f 30 = ;

Qc) x-y }-z-l=0; (rf)x+2y + 30 + 4 = O.

2. Interpret the following equations

:

(a)a; + y + « = l; {b)5y-3z = 12,

(c) x + y=0; (d) 5 y + 12 = 0.

3. Find the plane determined by the points (2, 1, 3), (1, — 5, 0),

(4,6, -1).

4. Write down the equation of the plane whose intercepts are 3, 2, — 5.

6. Find the intercepts of the plane passing through the points

(3, -1,4), (6, 2, -3), (-1,-2, -3).

6. If planes are parallel to and a distance a from the coordinate planes,

what are their intercepts ? What are their equations ?

7. Show that the four points (4, 3, 3), (4,-3,-9), (0, 0, 3),

(2, 1, 2) lie in a plane and find its equation.

221. Normal Form. The position of a plane in space is

fully determined by the length p = ON (Fig. 118) of the per-

pendicular let fall from the origin

on the plane and the direction co-

sines I, m, n of this perpendicular

regarded as a vector ON. Let Pbe
any point of the plane and OQ =x,

QR = y, EP= z its coordinates ; as

the projection of the open polygon

OQRP on ON is equal to ON
(§ 199) we have

(4) lx + my-\- nz =p.

This equation is called the normal form of the equation of a

plane. Observe that the number p is always positive, being

the distance of the plane from the origin, or the length of the

vector ON. Hence Ix + my -{- nz is always positive.

FiQ. 118
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222. Reduction to the Normal Form. The equation Ax +
By + Cz -\- D = is in general not of the form ly-{-my-\-nz—p

since in the latter equation the coefficients of x, y, z, being the

direction cosines of a vector, have the property that the sum

of their squares is equal to 1, while A^ + B^-\- C^ is in general

not equal to 1. But the general equation can be reduced to

the normal form by multiplying it by a constant factor Ic

properly chosen. The equation

TcAx + l<^By + hCz -\-kD=0

evidently represents the same plane as does the equation

Ax -i- By + Cz -\- D = 0; and we can select Jc so that

{JcAy + (JcBy + (kCy = l, viz. k.
^

±VA^ + B^+C^
As in the normal form the right-hand member p is positive

(§ 221) the sign of the square root should be selected so that

kD becomes negative.

TTie normal form is therefore obtained by dividing the equation

Ax + By -\- Cz+D = Oby ± VA^ + B^ + C^ according asD is

negative or positive.

It follows at the same time that the direction cosines of any

normal to the plane Ax -\- By -{- Cz -{- D = are proportional

to A, B, C, viz.

I z= , m =

C

and that the distance of the plane from the origin is

-D
P =

±VAr-hB'-^0'

the upper sign of the square root to be used when D is nega-

tive, the lower when D is positive.
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223. Distance of Point from Plane. Let Ix -\- my + nz = p
be the equation of a plane in the normal form, Pi(iCi, yi, z^

any point not on this plane (Fig. 119). The projection OS of

the vector OPi on the normal to the

plane being equal to the sum of the

projections of its components 0Q =
Xi ,

QR = 2/i, RPi = 2!i, we have

OS = Za^ + myx + nzj

.

Hence the distance d of Pi from the

plane, which is equal to NS, will be

d= OS — 0N= Ixi + myi + 7iZi — ;>. fig. ii9

If this expression is negative, the point Pj lies on the same

side of the plane as does the origin ; if it is positive, the point

Pj lies on the opposite side of the plane. Any plane thus di-

vides space into two regions, in one of which the distance of

every point from the plane is positive, while in the other the

distance is negative. If the plane does not pass through the

origin, the region containing the origin is the negative region

;

if it does, either side can be taken as the positive side.

To find the distance of a point Pi(xi, ?/i, Zi) from a plane

given in the general form

Ax-^By + Cz-hD = 0,

we have only to reduce the equation to the normal form

(§ 223) and then to substitute for x, y, z the coordinates a^i, 3/1,

Zi of Pi ; thus

^^ Axi + Byi-{- Czi 4- D

the square root being taken with + or — according as Z) is

negative or positive.

Notice that d is the distance from the plane to the point

Pi, not from P^ to the plane.
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224. Angle between Two Planes. As two intersecting

planes make two angles whose sum = ir, we shall, to avoid any

ambiguity, define the angle between the planes as the angle

between the perpendiculars (regarded as vectors) drawn from

the origin to the two planes.

If the equations of the planes are given in the normal form,

liX-{-miy + niZ=pi,

l^-{-m^ + n.;Z =P2i

we have, by § 204, for the angle i/^ between the planes

:

cos \p = l-J.2 -f mim2 + n^a^

.

If the equations of the planes are in the general form,

we find by reducing to the normal form (§ 222)

:

cosj/^= A^A2-^B,B,+ C,C2

±VA' + B,' + 0^2 . ± ^A,' + B,' + C,^

225. Bisecting Planes. To find the equations of the two

planes that bisect the angles formed by two intersecting planes

given in the normal form,

liX-{-miy-{-niZ—pi = 0, l2X-{-m^ -{-n^z—pz^O,

observe that for any point in either bisecting plane its distances

from the two given planes must be equal in absolute value.

Hence the equations of the required planes are

liX + rriiy -f- n^z —pi=z± (Icpc -\- m^y -\-n^— p^.

To distinguish the two planes, observe that for the plane that

bisects that pair of vertical angles which contains the origin

the perpendicular distances are in the one angle both positive,

in the other both negative; hence the plus sign gives this

bisecting plane.
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If the equations of the planes are given in the general form,

first reduce the equations to the normal form (§ 222).

EXERCISES

1. A line is drawn from the origin perpendicular to the plane

X — y — 62 — 10 = 0; what are the direction cosines of this line

?

2. Find the distance from the origin to the plane 2x-\-2y — z=6.

3. Find the distances of the following planes from the origin

:

(a) 3x-Ay-\-5z-S = 0, ^b)x + y+z = 0,

(c) 2y-50 = 3, (d) Sx-4y-\-6 = 0.

4. Find the distances from the following planes to the point

(2,1, -3):

(a) 3 X + 6 y - 6 2 = 8, (6) 2x-Sy-z = 0, (c) x + y -[- z = 0.

6. Find the plane through the point (4, 8, 1) which is perpendicular

to the radius vector of this point ; also the parallel plane whose distance

from the origin is 10 and in the same sense.

6. Find the plane through the point (—1,2, — 4) that is parallel to

the plane 4x — 3y + 22 = 8; what is the distance between these planes ?

7. Find the distance between the planes 4x — 6y — 2z = 6, 4x — 5y
- 2 « + 8 = 0.

8. Are the points (6, 1, — 4) and (4, — 2, 3) on the same side of the

plane 2x + Sy - 6z -^ 1 =0?

9. Write down the equation of the plane equally inclined to the axes

and at the distance p from the origin.

10. Show that the relation between the distance p from the origin to a

plane and the intercepts a, 6, c is 1/a^ + l/b^ + l/c^ = 1/p/^.

11. Show that the locus of the points equally distant from the points

-Pi(a;i , yi , 2i) and P^ixo , j/a , 22) is a plane that bisects P1P2 at right

angles.

12. Find the equations of the planes bisecting the angles : (a) between

the planes a: + 2/ + «-3=0, 2«-3y + 42 + 3 = 0; (6) between the

planes 2x-2y-z = 8,x + 2y-2z = 6.
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= 0.

226. Volume of a Tetrahedron. The volume of the tetrahe-

dron whose vertices are the points Pi(xi, y^, z{), F^ixz, y^, z^,

Pzi^zi Vzi ^z)i A(^4> 2/4 > ^a) can be expressed in terms of the

coordinates of the points. The equation of the plane deter-

mined by the points P2, P^, P4 is (§ 220)

X y z 1

•^2 2/2 ^2 1

•^3 2/3 % 1

^•4 2/4 2:4 1

Now the altitude d of the tetrahedron is the distance from this

plane to the point P^ (x^
, 2/1 , ^i), i-e. (§ 223)

x^ 2/1 2^1 1

X2 2/2 ^2 -*-

''^S Vz ^3 1

X, Va z. 1

2/2 ^2 1 2 Z2 X2 1 2
a;2 2/2 1

2/3 2:3 1 + 2^3 Xs 1 + Xz 2/3 1

2/4 2^4 1 24 a;4 1 a?4 2^4 1

d=

But the denominator is seen immediately to represent twice

the area of the triangle with vertices P2, P3, P4 (Ex. 9, p. 203),

i.e. twice the base of the tetrahedron. Denoting the base by J5,

we then have

2Bd

X, Vi 2=1

X2 y2- 2^2

X, 2/3 2^3

X, 2/4 2^4

The volume of the tetrahedron is V=^Bd, and therefore

Xi 2/1 2^1 1

X2 2/2 2;, 1

Xs 2/3 2:3 1

2^4 2/4 2:4 1

^
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227. Simultaneous Linear Equations. Two simultaneous

equations of the first degree,

represent in general the line of intersection of the two planes

represented by the two equations separately. For, the coordi-

nates of every point of this line, and those of no other point,

satisfy both equations. See § 215 and §§ 231-232.

Three simultaneous equations of the first degree,

A,x + B,y+C,z + D, = 0,

A^x+ ^2^ -h Co2; +A = 0,

A,x + ^32/ + C32; -fA = 0,

determine in general the point of intersection of the three

planes. The coordinates of this point are found by solving

the three equations for x, y, z. But it may happen that the

three planes have no common point, as when the three lines of

intersection are parallel, or when the three planes are parallel

;

and it may happen that the planes have an infinite number of

points in common, as when two of the planes, or all three,

coincide, or when the three planes pass through . one and the

same line.

Four planes will in general have no point in common. If they do, i.e.

if there exists a point (xi ,^1,^1) satisfying the four equations

Aixi + BiVi + Cizi + Di = 0,

^23^1 + Biyi + CiZi + Z>2 = 0,

^33:1 + ^3^1 + CiZi + Da = 0,

AaXx + -84^1 + CaZx + Z>4 = 0,

we can eliminate a;i, j/i, 01, 1 between these equations so that we find

the condition

= 0.

Ax Bx Cx Dx

A2 B2 C2 i>2

As Bz Cz Bz

A4 Bi c. B,
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EXERCISES

1. Find the volume of the tetrahedron whose vertices are (0, 0, 0),

(o, 0, 0), (0, 6, 0), (0, 0, c).

2. Find the volumes of the tetrahedra whose vertices are the following

points

:

(a) (7, 0, 6), (3, 2, 1), (- 1, 0, 4), (3, 0, -2).

(6) (3, 0, 1), (0, - 8, 2), (4, 2, 0), (0, 0, 10).

(c) (2, 1,-3), (4, -2, 1), (3, -7, -4), (5, 1, 8).

3. Find the coordinates of the points in which the following planes

intersect

:

(a) 2x + 6y + z-2 = 0, xi-6y-{-z = 0, Sx-Sy -\-2 z - 12 = 0,

(6) 2x+y+z=a+ b+ G, ^x-2 y-\-z=2 a-2b-\-c, 6x-y=3a-6.
4. Show that the four planes 6x — Sy—z = 0, 4:X — 2y + z = Sy

Sx + 2y — 6z = 6, x + y -\- z = 6 pass through the same point. What
are the coordinates of this point ?

6. Show that the four planes 4x + y + 2! + 4 = 0, a; + 2y — + 3 = 0,

y — 50 + 14=0, x + y -\- z — 2 = have a common point.

6. Show that the locus of a point the sura of whose distances from

any number of fixed planes is constant is a plane.

228. Pencil of Planes. All the planes that pass through

one and the same line are said to form a pencil of planes, and

their common line is called the axis of the pencil.

If the equations of any two non-parallel planes are given,

say

A,x+ B,y + C,z + A = 0,

then the equation of any other plane of the pencil having their

intersection as axis can be written in the form

(2) {A,x + B,y + 0,z + A) + K^^ + ^22/ + 0,z + A) = 0,

where A; is a constant whose value determines the position of

the plane in the pencil.

For, this equation (2) being of the first degree in x, y, z

certainly represents a plane ; and the coordinates of the points
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of the line of intersection of the two given planes (1), since

they satisfy each of the equations (1), must satisfy the equa-

tion (2) so that the plane (2) passes through the axis of the

pencil.

229. Sheaf of Planes. All the planes that pass through

one and the same point are said to form a sheaf of planes, and

their common point is called the center of the sheaf.

If the equations of any three planes, not of the same pencil,

are given, say

A;,x + B^+C,z-^D^ = 0,

then the equation of any other plane of the sheaf having their

point of intersection as center can be written in the form

{A^x + B,y + C,z 4- A) + K{Ax + Biy-irC^^- A)
+ k^{A^x-\- B^ 4- C^z + A) = 0,

where Ic^ and k^ are constants whose values determine the

position of the plane in the sheaf.

The proof is similar to that of § 228.

230. Non-linear Equations Representing Several Planes.

When two planes are given, say

Aa' + Ay + Ci2 +A = 0,

A^ + B^-\-C^ + D^ = 0,

then the equation

{A^x 4- B,y -f C,z + D,){A^x + 5^2/ + CjZ -f A)= 0,

obtained by equating to zero the product of the left-hand mem-

bers (the right-hand members being reduced to zero), is satis-

fied by all the points of the first given plane as well as all the

points of the second given plane, and by no other points.

The product equation is therefore said to represent the two

given planes. The equation is of the second degree.
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Similarly, by equating to zero the product of the left-hand

members of the equations of three or more planes (the right-

hand members being zero) we obtain a single equation repre-

senting all these planes. An equation of the nth degree may,

therefore, represent n planes ; it will do so if its left-hand mem-

ber can be resolved into n linear factors with real coefficients.

EXERCISES

1. Find the plane that passes through the Ime of mtersection of the

planes 5x — 32/+4^ — 35=0, x + y —z = and through (4, — 3, 2)

.

2. Show that the planes 3cc — 2?/ + 5^ + 2=0, x + y — — 5 = 0,

6a; + ?/4-2;3— 13 = belong to the same pencil:

3. Show that the following planes belong to the same sheaf and find

the coordinates of the center of the sheaf : 6x + y — 4;2 = 0, x + 2/ + i2 = 5,

2a;-4y-2 = 10, 2a; + 3?/+;s = 4.

4. What planes are represented by the following equations ?

(a) iK2-6x + 8 = 0, (6) ?/2-9 = 0, (c) x'^-z^ = 0, {d) x'^-4xy = 0.

5. Find the cosine of the angle between the following pairs of planes

:

(a) 4:x-3y^z=6, x-\-y-z=S
;

(b) 2x+7 y-{-4z=2, x-9y-2z=12.

6. Show that the following pairs of planes are either parallel or

perpendicular

:

(a) Sx-2y-\-5z=0,2x+Sy=8; (b) 6x+2y-z=6, lOx+iy-2 z=3;

(c) x + y-2z = S, x-{-y+z=n; (d) x- 2y - z = S, 3x -Qy-S z=6.

7. Find the plane that is perpendicular to the segment joining the

points (3, — 4, 6) and (2, 1, — 3) at its midpoint.

8. Show that the planes Aix + Biy + Ciz + Di = 0, A2X + B2y + C2Z

-f-i>2 = are parallel (on the same or opposite sides of the origin) if

A1A2 + B1B2 + C1C2 ^^1^^
V^i2 -f- Bi^ + Ci2' VA2' + B2^ + CV

9. A cube whose edges have the length a is referred to a coordinate

trihedral, the origin being taken at the center of a face and the axes par-

allel to the edges of the cube. Find the equations of the faces.
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a: y z 1

Xl y\ Z\ 1

X2 yi 22 1

A B c

10. Show that the plane through the points Pi (xi , yi , Z\) and

P2fx2, ?/2, 2^2) and perpendicular to the plane Ax -\- By \- Cz -^^ D — ^

can be represented by the equation

= 0.

11. Find those planes of the pencil 4a; — 3y + 52 = 8, 2x + 3y — « = 4

which are perpendicular to the coordinate planes.

12. Find the plane that is perpendicular to the plane 2x + 3y — « = 1

and passes through the points (1, 1, — 1), (3, 4, 2).

13. Find the plane that is perpendicular to the planes 4x — 3y + 2 = 6,

2a; + 3y — 60 = 4 and passes through the point (4, — 1, 6).

14. Show that the conditions that three planes A\X+ Bxy -|- C\Z+ Di = 0,

A^x + Biy + C^z + Z>2 = 0, Azx + Bzy + Ca^ + -D3 = belong to the same

pencil, are

A{-\- kAt _ Bi + kB2

As Bz

Ci -t- kCj

Cz

Di±kD2.
Dz

'

or, putting these fractions equal to s and eliminating k and a,

Ci Di Ci Di

C2 Di = C2 Dt

Cz Dz Cz Dz

A,

A2

Az

Di

D2

Dz

Ai

Ao

Az

Ai

A2

Az

By Cx

B2 C2

Bz Cz

= 0.

(Verify Ex. 2 by using these conditions.)

15. Find the equations of the faces of a right pyramid, with square

base of side 2 a and with altitude h, the origin being taken at the center

of the base, the axis Oz through the opposite vertex, and the axes Ox, Oy

parallel to the sides of the base.

16. Homogeneous substances passing from a liquid to a solid state tend

to form crystals ; e.g. an ideal specimen of ammonium alum has the form

of a regular octahedron. Find the equations of the faces of such a crystal

of edge a if the origin is taken at the center and the axes through the

vertices, and determine the angle between two faces.

17. Find the angles between the lateral faces of a right pyramid whose

base is a regular hexagon of side a and whose altitude is h.
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PART 11. THE STRAIGHT LINE

231. Determination of Direction Cosines. Two simulta-

neous linear equations (§ 227),

(1) Ax+By+ Cz-{-n=0, A'x-{-B'y-{-C'z-\-I>'=0,

represent a line, namely, the intersection of the two planes

represented by the two equations separately, provided the two

planes are not parallel.

To obtain the direction cosines ?, m, n of this line observe

that the line, since it lies in each of the two planes, is perpen-

dicular to the normal of each plane. Now, by § 222 the direc-

tion cosines of these normals are proportional to A, B, and

A' J B\ C\ respectively. We have therefore

Al + Bm-\-Cn = 0, An + B'm -h C"n = 0,

whence

l:m:n
BO
B'C'

OA
C'A'

AB
A'B'

The direction cosines themselves are then found by dividing

each of these determinants by the square root of the sum of

their squares.

232. Intersecting Lines. The two lines

A^x-{-B,y-\- Ci^-f A = 0, ) r A^-^B^y + G^^ + D^^O,

A^x -\- B^y + C^z 4- A' = J

^^
1 Ao}x^B^y-\- C^z+D^ =

will intersect if, and only if, the four planes represented by

these equations have a common point. By § 227, the condition

for this is

A A C'l A
A^ B,' C/ A
A2 Jj2 C2 -^2

A2 -O2 ^2 -^2

= 0.



220 SOLID ANALYTIC GEOMETRY [XI, § 233

233. Special Forms of Equations. For many purposes it is

couvenieiit to represent a line by means of one of its points

and its direction cosines, or by means of two of its points.

Let the line be called A.

If (^j ^ij 2;i) is a given point of X and I, m, n are the direc-

tion cosines of X, then every point (a;, y, z) of A must satisfy

the relations (§ 203) :

In these equations, I, m, n, can evidently be replaced by any

three numbers proportional to Z, m, n. Thus, if («2, ya? ^Jg) be

any point of \ different from (a^, ^u ^j), we have the continued

proportion

X2 — Xi : y2 — yi : z^ — Zi = l : m : n;

hence the equations of the line through the two points (xi , yi , Zi)

and (x2
, 2/2 f ^2) 21re

:

(S)
x-x^ ^ y-Vi ^ g-gj

^

X^-QC^ 2/2-2/1 «2-«i*

If, for the sake of brevity, we put x^— x^ = a, y2 — yi = ^>

Z2 — Zi = c, we can write the equations of the line in the form

(4)
ag-a?i ^ 2/-2/i _ g-gi
a be*

where a, b, c, are proportional to I, m, n, and can be regarded as

the components of a vector parallel to the line.

The equations (3) also follow directly by eliminating k be-

tween the equations of § 200, namely,

(5) x=xi+k{x2-x{), 2/=2/i+A:(2/2-2/i), z=Zj^+k(z2-Zj).

These equations which, with a variable k, represent any point

of the line through (x^, y^, z^ and (ajj, 2/2? ^2) are called the

parameter equations of the line.
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Fig. 120

234. Projecting Planes of a Line. Each of the forms (2),

(3), (4), which are not essentially different, furnishes three

linear equations ; thus (4) gives :

6 c G a ah
but these three equations are equivalent to only two, since from

any two the third follows immediately.

The first of these equations, which

can be written in the form

represents, since it does not contain x

(§ 218), a plane perpendicular to the

plane Oyz] and as this plane must con-

tain the line X it is the plane CCA
that projects \ on the plane Oyz (Fig. 120). Similarly the other

two equations represent the planes that project A. on the co-

ordinate planes Ozx and Oxy. Any two of these equations

represent the line X as the intersection of two of these pro-

jecting planes.

At the same time the equation

y-?/i ^ g-gi
h c

can be interpreted as representing a line in the plane Oyz,

viz. the intersection of the projecting plane with the plane

x — 0. This line {AC in Fig. 120) is the projection X^ of X on

the plane Oyz. As the other two equations (4) can be inter-

preted similarly it appears that the equations (2), (3), or (4)

represent the line A. by means of its projections A^, Xy, X^ on

the three coordinate planes, just as is done in descriptive

geometry. Any two of the projections are of course sufficient

to determine the line.
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235. Determination of Projecting Planes. To reduce the

equations of a line A given in the form (1) to the form (4) we

have only to eliminate between the equations (1) first one of

the variables x, y, z, then another, so as to obtain two equa-

tions, each in only two variables (not the same in both).

The process will best be understood from an example. The

line being given as the intfersection of the planes

(a) 2x-Sy-{-z + S = 0y

(5) x + y + z-2 = 0,

eliminate z by subtracting (6) from (a) and eliminate x by

subtracting (6), multiplied by 2, from (a) ; this gives the line

as the intersection of the planes

x — 4:y-\-5 = 0,

which are the projecting planes parallel to Oz and Ox, i.e. the

planes that project the line on Oxy and Oyz. Solving for y

and equating the two values of y we find :

x-\-5 __y _ z — 7

4 ^i~35"-

The line passes therefore through the point (—5, 0, 7) and

has direction cosines proportional to 4, 1, — 5, viz.

,4 1 5
1 =—^, m =—=, n = —

.

V42 V42 V42

EXERCISES

1. Write the equations of the line through the point (— 3, 1, 6) whose

direction cosines are proportional to 3, 5, 7.

2. Write the equations of the line through the point (3, 2, — 4) whose

direction cosines are proportional to 6, — 1, 3.

3. Find the line through the point (a, 6, c) that is equally inclined

to the axes of coordinates.
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4. Find the lines that pass through the following pairs of points

:

(a) (4, - 3, 1), (2, 3, 2), (6) (- 1, 2, 3), (8, 7, 1),

(c) (- 2, 3, - 4), (0, 2, 0), (d) (- 1, - 5, - 2), (- 3, 0, -1),

and determine the direction cosines of each of these lines.

6. Find the traces of the plane 2aj — 3?/ — 4^ = 6 in the coordinate

planes.

6. Write the equations of the\me2x—Sy-\-6 z—6=0,x—y-\-2z—S=0
in the form (4) and determine the direction cosines.

7. Put the line 4x — Sy — 6 = 0^x — y — z — 4: = in the form (4)

and determine the direction cosines.

8. Find the line through the point (2, 1, — 3) that is parallel to the

line 2x-Sy + 4z — 6 = 0, 6x + y-2z — S = 0.

9. What are the projections of the line 6x — Sy — lz — 10 = 0,

x + y — Sz+6 = on the coordinate planes ? -

10. Obtain the equations of the line through two given points by

equating the values of k obtained from § 200.

11. By § 222, the direction cosines of any line are proportional to the

coeflBcients of x, y, and z in the equation of a plane perpendicular to the

line. Find a line through the point (3, 5, 8) that is perpendicular to the

plane 2x-\-y + Sz=:b.

236. Angle between Two Lines. The cosine of the angle ^ be-

tween two lines whose direction cosines are Zi , mi , wi and Z2 > wi2 , n2 is,

by § 204,
cos \j/ = hh + Wim2 + W1W2

.

Hence if the lines are given in the form (4) , say

x-xi^y — yi_z - zi x -Xi _y — yi _z — Zj

we have

COS^ :

hi ci ai hi C2

aiGi 4- hihi + C1C2

±V^ + 5l2 + Ci2 . ±Va22 + &2^ + C22

If the lines are parallel^ then

ai_&i.

ai hi
— >

Ci

if they are perpendicular, then

and mce versa.
didi + &1&2 + C1C2 = ;
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Let the line and plane

plana

237. Angle between Line and Plane.

be given by the equations

x — x\ _ y— y\ _ z — zi

a b c '

Ax-{-By+Cz + D = 0.

The plane of Fig, 121 represents the plane

through the given line perpendicular to the given

plane. The angle /3 between the given line and

plane is the complement of the angle a between the line and any perpen-

dicular PN to the plane. Hence

8in^= aA + bB + cC

Fig. 121

± Va'^ + 6'-« + c2 . ± y/A^ + 52 + C^

The (necessary and sufficient) condition for parallelism of line and

plane is

aA -\- bB -\- cC = i

the condition of perpendicularity is

a _b_±
A~ B C

238. Line and Plane Perpendicular at Given Point. If the

plane Ax -^ By -^ Cz + D =

passes through the point Pi(xi , yi , «i), we must have

Axi + Byi -{- Czi -\- D = 0.

Subtracting from the preceding equation, we have as the equation of

any plane through the point Pi(xi , yi, zi) :

A{x - xi) + B{y - yi) + C(z - zi) = 0.

The equations of any line through the same point are

x — xi __ y — y\ _ z —zx
a b c

If this line is perpendicular to the plane, we must have (§ 237) : a/A =
b/B = c/C. Hence the equations

x — xi _ y—y\ _ z — zi

A ~ B ~ C

represent the line through Pi(a;i, yi, zi) perpendicular to the plane

A(x - xi) + B{y - yi) + C{z - zi) = 0.
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239. Distance of a Point from a Line, if the equations of

the line X are given in the form

z — Z\

I

y-yi
m

where (cci , yi , zi) is a point Pi of X (Fig.

122), the distance d = QP2 of the point

P2ix2, 2/2, Zi) from X can be found from

the right-angled triangle P1QP2 which gives

d^ = P1P2' - PlQ^

by observing that

P1P22 = (X2 - Xi)2 + (y2 -yiy + (Z2 - ZiY,

while PiQ is the projection of P1P2 on X. This projection is found

(§ 199) as the sum of the projections of the components X2 — xi, 2/2 — 2/1,

Z2 — z\ of P1P2 on X

:

PiQ = 1{X2 - xi) + w(2/2 - y\) + n{Z2 - Zl).

Hence

cP=(^X2-Xiy+ (2/2-2/i)H(^2-2i)2-[Z(x2-xi)4-w(2/2-2/i) +n(z2-z{)Y.

240. Shortest Distance between Two Lines. Two lines

Xi , X2 whose equations are given in the form

x — xi_y — yi_z — zi x~ X2 _y — y2 _z - Z2

TOl Wl m2 W2

xoill intersect if their directions {l\ , «ii , wi), (Z2, WI2 , W2), and the direc-

tion of the line joining the points (xi , 2/1 , ^1), (^2 , 2/2 » ^2) are complanar

(§207), i.e. if

X2 — Xi 2/2 - 2/1 «2 - «1

Zl wi n\ = 0.

Z2 W2 W2

If the lines Xi , X2 do not intersect, their shortest distance d is the dis-

tance of P2(X2, 2/2, ^2) from the plane through Xi parallel to X2. As this

plane contains the directions of Xi and X2 , the direction cosines of its nor-

mal are (§ 206) proportional to

mi wi m h h mi

m2 W2 112 h
'

h mz
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and as it passes through Pi (xi , yi , zi) its equation can be written in the

form
x — xi y — yi z — zx

l\ mi m = 0.

I2 Wl2 712

Hence the shortest distance of the lines \\ , X2 is

:

Xi - xi 2^2 - yi Zi -zi

l\ TWi n\

h WI2 rii

V
r/ii n\

W2 W2

h n»i

h n»2

As the denominator of this expression is equal to sin^ (§ 206), we have

d sin ^ =
X2 — xi yi — yi Zi - zi

h mi ni

h rrii m

EXERCISES

1. Find the cosine of the angle between the lines

x-S _ y-5 ^ z + l ^^^ x+l^ y-3 ^ g + 3

2 3 4 -1 2 3 *

' 2. Find the angle between the lines 3x — 2y + 4«— 1 = 0,

2x + y-30 + 10 = 0, a,nd x + y + z = 6, 2x-hSy -5z = S.

3. Find the angle between the lines that pass through the points

(4, 2, 6), (- 2, 4, 3) and (- 1, 4, 2), (4, - 2, - 6).

4. Find the angle between the line

x + l _ y — 2 __ g + 10

3 -6 3

and a perpendicular to the plane 4x — 3y — 22 = 8.

5. In what ratio does the plane 3x — 4y + 60 — 8 = divide the

segment drawn from the origin to the point (10, — 8, 4).

6. Find the plane through the point (2, — 1, 3) perpendicular to the

line

x—S _ y+2 _ z—7
4 3 -1

*
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7. Find the plane that is perpendicular to the line 4x + y — z=6,
'dx + iy-{-Sz + 10 = and passes through the point (4, — 1,3).

8. Find the plane through the origin perpendicular to the line

5x-2y + z=6, Sx + y-4z = S.

9. Find the plane through the point (4, — 3, 1) perpendicular to the

line joining the points (3, 1, — 6), (— 2, 4, 7).

10. Find the line through the point (2, — 1, 4) perpendicular to the

plane ic — 2^ + 42 = 6.

11. Show that the lines x/S = y/ -- 1 = z/-2 and x/i = y/6 = z/3 are

perpendicular.

12. Show that the lines

^L=Ll = y±l = ^:zl and a;-2^y-3^ z1-2 3 _2 4 -6
are parallel.

13. Find the angle between the line Sx — 2y — z = 4, 4x + 3y— 3^ = 6

and the plane x -i-y -\- z = S.

14. Find the lines bisecting the angles between the lines

x — a _ y - & _ ^ — c ^j^j x — a _ y — b _ z — c

15. Find the plane perpendicular to the plane Sx — iy — z = 6 and

passing through the points (1, 3, — 2), (2, 1, 4)

.

16. Find the plane through the point (3, — 1, 2) perpendicular to the

line 2 a; — 3!/ — 42; = 7, ic+y— 2^=4.

17. Find the plane through the point (a, 6, c) perpendicular to the

line Aix + Biy + Ciz + Di = 0, Azx + B^y + dz + D2 = 0.

18. Find the projection of the vector from (3, 4, 5) to (2, — 1, 4) on the

line that makes equal angles with the axes ; and on the plane

2x-3y + 45!=6.

19. Find the distances from the following lines to the points indicated

:

(6) 2a; + y-0 = 6, a;- y + 4^ = 8, (3, 1,4);

(c) 2x + 3?/ + 60 = l, 3x-6y + 32=0, (4, 1, -2).
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20. Show that the equation of the plane determined by the line

x-xi y-yi_z-zi
a b c

d the point P2(a;2, 2/2 , Z2) can be written in the form

X -xi 2/ -2/1 z -zi

X2 — Xi 2/2 — Vl Z2 — Zi = 0.

a b c

21. Find the plane determined by the intersecting lines

a:-3_y-6_0 + l .^. x - S _y - 5 _z + 1

4 3 2 12 3

22. Find the plane determined by the line

x-xi_y-yi_z~zi
a b c

and its parallel through the point P2{x2
, 2/2 , ^2)-

23. Given two non-intersecting lines

x — xi __ y — yi _ z- zx x — X2 _ y -y2 _ z — Zj
,

a\ b\ c\ a2 62 C2

find the plane passing through the first line and a parallel to the second;

and the plane passing through the second line and a parallel to the first.

24. What is the condition that the two lines of Ex. 23 intersect ?

26. Find the distance from the diagonal of a cube to a vertex not on

the diagonal.

26. Find the distance between the lines given in Ex. 23.

27. Show that the locus of the points whose distances from two fixed

planes are in constant ratio is a plane.

28. Show that the plane (m — n)x +(n — l)y +(l — m)z = contains

the line x/l = y/m = z/n and is perpendicular to the plane determined by

the lines x/m = y/n = z/l and x/n = y/l = z/m.



CHAPTER XII

THE SPHERE

241. Spheres. A sphere is defined as the locus of all those

points that have the same distance from a fixed point.

Let C{h, j, h) denote the center, and r the radius, of a sphere

;

the necessary and sufficient condition that any point P{Xj ?/, z)

has the distance r from C{U, j, k) is

(1) (^ - 7^)2 + (y -jY -Y{z- IcY = r^.

This then is the cartesian equation of the sphere of center

C(h, j, k) arid radius r.

If the center of the sphere lies in the plane Oosy, the equa-

tion becomes
(x-hy + {y-jy + z'=r\

If the center lies on the axis Ox, the equation is

(x-hy-\-y^-\-z^ = r\

The equation of a sphere about the origin as center is

:

242. Expanded Form. Expanding the squares in the equa-

tion (1), we find the equation of the sphere in the form

x'^-\.y^-{.z'^-2hx- 2jy -2kz-^h'' +f-\-k'^-r^ = 0.

This is an equation of the second degree in x, y, z ; but it is of

a particular form.

The general equation of the second degree in x, y, z is

(2) Ax"^ + By^ -\-Cz^^2 Dyz + 2Ezx-[-2 Fxy

-i-2Gx-\-2Hy-{-2Iz-i-J=0',

229
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i.e. it contains a constant term J; three terms of the first

degree, one in x, one in y, and one in z ; and six terms of the

second degree, one each in x^, y^, z^j yz, zx, and on/.

If in (2) we have D = E = F= 0, A= B=C^O,\t reduces,

upon division by A, to the form

a;2-f.7/2 + 2;2-f_-x+— 2/-I-— Z + —= 0,

which agrees with the above form of the equation of a sphere,

apart from the notation for the coefficients.

243. Determination of Center and Radius. To determine

the locus represented by the equation

(3) Ax^ -\- Ay" + Az^ \-2 Gx^-2 Hy -\-2 Iz -^r J^Q,

where A^ G, II, /, J are any real numbers while ^ =^ 0, we

divide by A and complete the squares in x, y, z; this gives

The left side represents the square of the distance of the point

{x, y, z) from the point (— G/A, —H/A, — I/A)] the right

side is constant. Hence, if the right side is positive, the equa-

tion represents the sphere whose center has the coordinates

(— G/A, — H/A, — I/A), and whose radius is

r = -WG^+ H^-\-P-AJ.
A

If, however, G^ + H^+ I^< AJ, the equation is not satisfied by

any point with real coordinates. If G^ -|- H^ -{-/* = AJ, the

equation is satisfied only by the coordinates of the point

(-G/A,-H/A,-I/A).
Thus the equation of the second degree

Ax^ + By^-j-Cz^ + 2 Dyz -\-2Ezx-{-2 Fxy

+ 2Gx-{-2Hy + 2Iz-i-J=0,

represents a sphere if, and only if,

A=B=C^O, D=:E = F=0, G^ + IP-\-P>AJ.
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244. Essential Constants. The equation (1) of the sphere

contains four constants : li, j^ k, r. The equation (2) contains

five constants of which, however, only four are essential since

we can divide out by one of these constants. Thus dividing

by A and putting 2 0/A = a, 2 H/A = 6, 2 I/A = c, J/A = d,

the general equation (2) assumes the form

x^ + y'^ -\- z^ + ax -[-hy -\- cz -\- d = 0,

with only the four essential constants a, 6, c, d.

This fact corresponds to the possibility of determining a

sphere geometrically, in a variety of ways, by four conditions.

EXERCISES

1. Find the spheres with the following points as centers and with the

indicated radii

:

(a) (4, -1,2), 4; (6) (0,0, 4), 4; (c) (2,-2, 1), 3 ; {d) (3, 4, 1), 7.

2. Find the following spheres

:

(«) with the points (4, 2, 1) and (3, — 7, 4) as ends of a diameter

;

(6) tangent to the coordinate planes and of radius a
;

(c) with center at the point (4, 1, 5) and passing through (8, 3, — 5).

3. Find the centers and the radii of the following spheres :

(a) a;2 + 2/2 +-^2 _3a; + 5y_6^ + 2 = 0.

(6) a:2 + y2 _|. 2;2 - 2 6a; + 2 c;? - 62 _ c2 = 0.

(c) 2 x2 + 2 1/2 + 2 2;2 -^ 3 a; - y + 5 - 11 = 0.

{d) x^-{-y'^ + z^-x-y -z = Q.

4. Show that the equation A{x'^ \- y"^ + z"^) + 2 Ox + 2 Hy -^ 2 Iz + J
= 0, in which J is variable, represents a family of concentric spheres.

5. Find the spheres that pass through the following points :

(a) (1, 1, 1), (3, - 1, 4), (- 1, 2, 1), (0, 1, 0).

(6) (0, 0, 0), (a, 0, 0), (0, 6, 0), (0, 0, c).

(c) (0, 0, 0), (- 1, 1, 0), (1, 0, 2), (0, 1, - 1).

(d) (0, 0, 0), (0, 0, 4), (3, 3, 3), (0, 4, 0).

6. Find the center and radius of the sphere that is the locus of the

points three times as far from the point (a, 6, c) as from the origin.

7. Show that the locus of the points, the ratio of whose distances from

two given points is constant, is a sphere except when the ratio is unity.
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8. Find the positions of tlie following points relative to the sphere

x^ + y^ + z'^-4x-\-^y-2z = 0] (a) the origin, (6) (2, -2, 1),

(c) (1,1,1), (d) (3, -2,1).

9. Find the positions of the following planes relative to the sphere

(a)4x-\-2y + z-\-2 = 0, (b)8x-y-iz-\-5 = 0.

10. Find the positions of the following lines relative to the sphere of

Ex. 9: (a)2x-y + 2z + 7=0, Zx- y-z-lOz=0.
(6)3x + 8y + 5r-9=0, a;-8y+«+ll = 0.

245. Equations of a Circle. In solid analytic geometry a

curve is represented, by two simultaneous equations (§ 221),

that is, by the equations of any two surfaces intersecting in

the curve. Thus two linear equations represent together the

line of intersection of the two planes represented by the two

equations taken separately (§§ 233, 237).

A linear equation together with the equation of a sphere,

^ ^
x^ -\-

y^
-\- z^ -{- ax -j- by + cz -{- d = 0,

represents the locus of all those points, and only those points,

which the plane and sphere have in common. Thus, if the

plane intersects the sphere, these simultaneous equations rep-

resent the circle in which the plane cuts the sphere; if the

plane is tangent to the sphere, the equations represent the

point of contact; if the plane does not intersect or touch

the sphere, the equations are not satisfied simultaneously by

any real point.

246. Sections Perpendicular to Axes. Projecting Cylinders.

In particular, the simultaneous equations

(6) z — k, a^ -\- y^ -\- z^ = r^

represent, if A: < r, a circle about the axis Oz (i.e. a circle

whose center lies on Oz and whose plane is perpendicular to

Oz). If the value of z obtained from the linear equation be
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substituted in the equation of the sphere, we obtain an equation

in X and ?/, oc^ -{- 1/ — r^ — Tc^, which represents (since z is

arbitrary) the circular cylinder, about Oz as axis, which pro-

jects the circle (5) on the plane Oxy. Interpreted in the plane

Oxy^ i.e. taken together with z = 0, this equation represents

the projection of the circle (5) on the plane Oxy.

Similarly if we eliminate x ov y or 2 between the equations

(4), we obtain an equation in y and z, z and x, or x and y, rep-

resenting the cylinder that projects the circle (4) on the plane

OyZy Ozx, or Oxy, respectively.

247. Tangent Plane. The tangent plane to a sphere at any

point Pi of the sphere is the plane through Pj, at right angles

to the radius through Pj

.

¥oY a sphere whose center is at the origin, a;^ + 2/^ -f 2^ _ ^^

the equation of the tangent plane at Pi(x^, yi, z^) is found by

observing that its distance from the origin is r and that the

direction cosines of its normal are those of OPi, viz. Xi/r,

yi/r, Zi/r. Hence the equation

(6) x^x + y{y + 212; = r\

If the equation of the sphere is given in the general form

^(a;2 +2/2+ 22)4. 2 Gx + 2 Hy +2Iz -\-J= 0,

we obtain by transforming to parallel axes through the center

the equation

the tangent plane at Fi(xi, yi, Zi) then is

.
x,x + 2/12/ + ^i2 =— +— +—- -.

Transforming back to the original axes, we have

:

A^ A^ A^ a'
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Multiplying out and rearranging, we find that the equation of

the tangent plane to the sphere

Aix" + y"" + z") + 2 Gx + 2 Hy + 2 Iz + J=
at the point Pi(a^, yi, Zi) is

A{x^xJtyiy^-Ziz) + 0(x^^x) 4-fi-(2/i+y)4- 7(21+2)+ J= 0.

248. Intersection of Line and Sphere. The intersections

of a sphere about the origin,

x^ -^y^ + z^ = r\

with a line determined by two of its points Pi(xi, yi, Zi) and

PiiXi, 2/2> ^2)} a-iid given in the parameter form [(6), § 239]

x = x^ + k{x2-x{), y = yi + k(y2-yi)j 2 = % + ^(za - Zi),

are found by substituting these values of a:, y, z in the equation

of the sphere and solving the resulting quadratic equation in k :

Ix, + k(x, - x{)Y + [2/1 + k(y, - 2/0]^ + [^1 + k{z, - z,)Y = r»,

which takes the form

l(x, - x,y + (y, - y,y + (z, - z,y^ k' + 2 [x,{x, - x,)+ y,(y, - y,)

+ Zi (22 - Zi)] k +W + 2/1' + z,' - r2) = 0.

The line P1P2 will intersect the sphere in

two different points, be tangent to the

sphere, or not meet it at all, according as ^C^f^
^^

the roots of this equation in k are real and ^x^
different, real and equal, or imaginary ; i.e.

according as ^^^' ^^

lx,{x,-x,)+y,(y,-y,)+z,(z,-z,)J-(P{x,^-^y,^+z,^)+(Pr''^0,

where d denotes the distance of the points Pi and Pj- Divid-

ing by cP, we can write this condition in the form

where by § 239 the quantity in square brackets is the square

of the distance S from the line P^Pz to the origin (Fig. 123).
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Our condition means therefore that the line P^P^ meets the

sphere in two different points, touches it, or does not meet it

at all according as r > 8, r = 8, r < 8, which is obvious geomet-

rically.

249. Tangent Cone. The condition for the line P^P^ to be

tangent to the sphere is (§ 244) :

W+ yi'-hzi'-r%)i{-x,y H- (y, - y,y + (22 - z^yy

To give this expression a more symmetric form, let us put, to

abbreviate,

^1^2 + 2/i2/2 + 2=122 = P, ^i + yi + 21^ = gi, x^ -h 2/2' -f z^ = ^2,

so that the condition is

i.e. p^-2 r^p = q^q^ - r^q^ - r%
;

adding r* in both members, we have

i.e.

(x,x, + 2/12/2 + 21^2 - r^ = (o^i^ + 2/1' + 2i^ - r')(x2' + 2/2' + z,^ - r»).

Now keeping the sphere and the point Pj fixed, let Pj vary

subject only to this condition, i.e. to the

condition that P1P2 shall be tangent to

the sphere; the point Pj, which we shall

now call P(x, y, z) is then any point of

the cone of vertex P^ tangent to the sphere.

Hence the equation of the cone of vertex

Pi (^1 ) 2/1 J 2i) tangent to the sphere x^-\-y'^-\- z^

(a^i' + 2/1' + z^ - r2)(a^ + y2 + 2;^ _ ^)^ (^^^ ^ 2/i2/ ^-z^z - rj.

If, in particular, the point Pi is taken on the sphere so that

x^ + yx + z^ — r\ the equation of the tangent cone reduces to

the form x^x + y^y + z^z = r^, which represents the tangent

plane at Pi.
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250. Inversion. A sphere of center and radius a being given,

we can find to every point P of space (excepting 0) one and only one

point P' on OP (produced if necessary) such that OP OP' = a^. The

points P, P' are said to be inverse to each other with respect to the

sphere (compare § 56).

Taking rectangular axes through O, we find as the relations between

the coordinates of the two inverse points P(x, y, z) and P'(x', y', z') if

we put OP = r = Vx^ + y^ + z'\ OP' = r' = Vx'=^ + y'-^ + z'^ :

X _y' _z' _r' _rr' _a'^ ,

X y z r r^ r^
'

hence z' - "^"^
v'- ^ z'

-

— •hence x-^^^^^^^^, ^'-^2 + ^2 + ^2' '-^^^y2^^2'

and similarly

a^x' .. _ aY „ _ a^z'
X =

x'-i ^ y'i + z'i' " x'2 + y'i + z'^' x'-^ + y'^ + z'^

These equations enable us to find to any surface whose equation is given

the equation of the inverse surface, by simply substituting for x, y, z

their values.

Thus it can be shown, that by inversion every sphere is transformed

into a sphere or a plane. The proof is similar to the corresponding propo-

sition in plane analytic geometry (§57) and is left as an exercise.

EXERCISES

1. Find the radius of the circle which is the intersection : (a) of the

plane y = 6 with the sphere x"^ -\- y^ -\- z^ — 6y = ] (6) of the plane

2x — Sy + z-2 = with the sphere x"^ + y^ + z^ -6x + 2y - 16 = 0.

2. A line perpendicular to the plane of a circle through its center is

called the axis of the circle. Find the circle : (a) which lies in the plane

« = 4, has a radius 3 and Oz as axis
; (6) which lies in the plane y = 6,

has a radius 2 and the line x — 3 = 0, — 4=0as axis.

3. Find the circles of radius 3 on the sphere of radius 4 about the

origin whose common axis is equally inclined to the coordinate axes.

4. Does the Une joining the points (2,-1,-6), (-1, 2, 3) intersect

the sphere x^ -\-y^ + z^ = 10? Find the points of intersection.
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5. Find the planes tangent to the following spheres at the given

points
: (a) a;2 + 2/2 + ^2 _ 3 ^ _ 5 ^ _ 2 = 0, at (2, - 1, 3) ;

(&) x2 + y2 ^ 02 ^ 2 X - 6 ?/ + 2 -1 = 0, at (0, 1, - 3) ;

(c) 3ix^ + y^-\-z^)-5x + 2y -z = 0, at the origin;

(d) x^ -^ y^ + z'^— ax - bij - cz - 0, at (a, b, c).

6. Find the tangent cone : (a) from (4, 1, — 2) to a;2 + y2 ^ ^2 = 9

;

(6) from (2 a, 0, 0) to x^ + y^ + z"^ = a^
;

(c) from (4, 4, 4) to a;2 + y2

+ ^^2 = 16 ;
(d) from (1, - 5, 3) to x'^ + y^ + z^ = 9.

7. Find the cone with vertex at the origin tangent to the sphere

(x-2 a)2+ y'i + z2 = a\

8. Show that, by inversion with respect to the sphere x^ + y'^ -^ z^ = a^,

every plane (except one through the center) is transformed into a sphere

passing through the origin.

9. With respect to the sphere x^ -i- y^ + z^ = 25, find the surfaces in-

verse to (a) x = 6, (6) x-y = 0, (c) 4 (a;2 + y2 4. ^2)_ 20 a; — 25 = 0.

10. Show that by inversion with respect to the sphere x'^ -\-
y^ -\- z^ = a^

every line through the origin is transformed into itself.

11. With respect to the sphere x^ -\-y^ -\- z^ = a^^ find the surface in-

verse to the plane tangent at the point Pi {xi ,^yi , zi).

12. Show that all spheres with center at the center of inversion are

transformed into concentric spheres by inversion.

13. What is the curve inverse to the circle x^ + y^ + z^ = 25, = 4,

with respect to the sphere x^ + y^ -^ z^ = 16?

251. Poles and Polars. Let P and P' be inverse points with

respect to a given sphere ; then the plane w through P', at right angles to

OP ( being the center of the sphere) , is called the polar plane of the

point P, and P is called the pole of the plane tt, with respect to the

sphere.

With respect to a sphere of radius a, with center at the origin^

x2 + y2 _|_ 2-2 = a2,

the equation of the polar plane of any point Pi(iCi, 2/1, z{) is readily

found by observing that its distance from the origin is a2/ri, and that the
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direction cosines of its normal are equal to Xi/ri, yi/n, ^i/n, where

n^ = xi^ -\- y\^ + z^ ; the equation is therefore

xix + Viy + ziz = a^-

If, in particular, the point Pi lies on the sphere, this equation, by § 254

(6), represents the tangent plane at Pi. Hence the polar plane of any

point of the sphere is the tangent plane at that point ; this also follows

from the definition of the polar plane.

262. With respect to the same sphere the polar planes of any two

points Pi(a;i
, yi , zi) and P2(X2

, yz , ^2) are

Xix + yiy + ziz = a^ and xix + yzy + z^z = a*.

Now the condition for the polar plane of Pi to pass through P2 is

v.xXi + yi2/2 + z^zi = a?-
;

but this is also the condition for the polar plane of P2 to pass through Pi.

Hence the polar planes of all the points of any plane w (not passing

through the origin O) pass through a common pointy namely, the pole

of the plane ir ; and conversely, the poles of all the planes through a com-

mon point P lie in a plane^ namely, the polar plane of P.

263. The polar plane of any point P of the line determined by two

given points Pi(xi , j/i , zi) and P2(X2
, 2/2 , 22) (always with respect to the

same sphere x^ -\- y^ + z^ = a^) is

Ixi + k{x2 - xi)]x + [yi + k{y2 - t/i)]y + \.zi-\-k{z2 - zi)^z = a^.

This equation can be written in the form

Xix + yiy + ziz — a^ +——• (xzx + y2y + Z2Z — a^) = 0,

which for a variable k represents the planes of the pencil whose axis is the

intersection of the polar planes of Pi and P2. Hence the polar planes of

all the points of a line X pass through a common line ; and conversely,

the poles of all the planes of a pencil lie on a line.

Two lines related in this way are called conjugate lines (or conjugate

axes, reciprocal polars). Thus the line P1P2
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and the line xix + yiy + ziz = a^,

X2X + y2y + Z2Z = a^

are conjugate with respect to the sphere x^ •{ y^ -\- s^ = a*.

As the direction cosines of these lines are proportional to

X2 — X1, y2- yi, Z2- z\

and
y\ zx Z\ Xx xi y\

y2 Z2 02 X2 X2 y2

respectively, the two conjugate lines are at right angles (§236).

254. By the method used in the corresponding problem in the plane

(§60) it can be shown that the polar plane of any point Pi(cci, yi, zi)

with respect to any sphere

A(pfi + 2/2 + 02) ^. 2 G^a; + 2 ^y + 2 70 + J'=
is

A{xix + y\y + 010) + G(xi + x) + H{yi + y) + /(01 4- 0) + J'= 0.

255. Power of a Point, if in the left-hand member of the equation

of the sphere

(X- /i)2 + {y - j)2 + (^z-kY-r^ =
we substitute for x, y, z\ the coordinates xi , yi , 01 of any point not on

the sphere, we obtain an expression (xi — hy + (yi — J)^+ {z\ — ky — r^

different from zero which is called the power of the point P\(x\
^ yi, 01)

with respect to the sphere.

As {xi — hy + {y\ — j)'^ + (01 — A:)2 is the square of the distance d be-

tween the point Pi and the center C of the sphere, we can write the

power of Pi briefly

^2 - r2

;

the power of Pi is positive or negative according as Pi lies outside or

within the sphere. For a point Pi outside, the power is evidently the

square of the length of a tangent drawn from Pi to the sphere.

256. Radical Plane, Axis, Center. The locus of a point whose

powers with respect to the two spheres

x2 + y2 + ^2 ^_ a-iX + hiy + ci0 + di-O,

x^+y^ + z'^ + a2x + b2y + C20 + c?2 =
are equal is evidently the plane

(ai — a2)x + (61 — 62)2/ + (ci - 02)0 + di — d2 = 0,

which is called the radical plane of the two spheres. It always exists un-

less the two spheres are concentric.
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It is easily proved that the three radical planes of any three spheres

(no two of which are concentric) are planes of the same pencil (§ 228) ;

and hence that the locus of the points of equal power with respect to

three spheres is a straight line. This line is called the radical axis of the

three spheres ; it exists unless the centers lie in a straight line.

The six radical planes of four spheres, taken in pairs, are in general

planes of a sheaf (§229). Hence there is in general but one point of

equal power with respect to four spheres. This point, the radical center

of the four spheres, exists unless the four centers lie in a plane.

257. Family of Spheres. The equation

(x^-\-y^-\-z^+ aix -\-biy-\-ciz-\-di) -{-k(ix^+y^+z^-+a2X-\-b2y-\-C2Z-{-d2) =0

represents a family, or pencil, of spheres, provided k =^—1. If the two

spheres
x^ + y^ + z^ + aix + biy + ciz -|- di = 0,

«2 + y2 + «2 ^a2pc + b2y + C2Z + d2 =

intersect, every sphere of the pencil passes through the common circle of

these two spheres. It k =— 1, the equation represents the radical plane

of the two spheres.

EXERCISES

1. Find the radius of the circle in which the polar plane of the point

(4, 3,-1) with respect to x^-{-y^+Z' = 16 cuts the sphere.

2. Find the radius of the circle in which the polar plane of the point

(6, — 1, 2) with respect to x^ + y^ -\- z^ — 2x -\- 4y = cuts the sphere.

3. Show that the plane 3a; + y — 4^ = 19 is tangent to the sphere

x^ + y^ + z^ — 2x — iy — 6z—l2 = 0, and find the point of contact.

4. If a point describes the plane 4a; — 5y — 3a: = 16, find the coordi-

nates of that point about which the polar plane of the point turns with

respect to the sphere x^ +y^ + z'^ = 16.

5. If a point describes the plane 2x-\-Sy-\-z = i, find that point

about which the polar plane of the point turns with respect to the sphere

X2 + y2 + 2!2 = 8.

6. If a point describes the line ^
~

= ^ = ^
~

, find the equa-
3 5-2'

tions of that line about which the polar plane of the point turns with



XII, § 257] THE SPHERE 241

respect to the sphere x^ -\-y'^ + z^ = 25. Show that the two lines are

perpendicular.

7. If a point describe the line 2x - Sy -j- iz = 2, x + y -{ z = 3, find

the equations of that line about which the polar plane of the point turns

with respect to the sphere x^ + y^ + z^ = 16. Show that the two lines are

perpendicular.

8. Find the sphere through the origin that passes through the circle

of intersection of the spheres x"^ -\- y'^ -\- z^ — 3x + 4 y — 6z — S = 0^

x^ -^ y^ + z^ - 2 X -\- y - z - 10 = 0.

9. Show that the locus of a point whose powers with respect to two

given spheres have a constant ratio is a sphere except when the ratio is

unity.

10. Show that the radical plane of two spheres is perpendicular to the

line joining their'centers.

11. Show that the radical plane of two spheres tangent internally or

externally is their common tangent plane.

12. Find the equations of the radical axis of the spheres x^ -\- y^-{- z^

-3x-2y -z-4: = 0, x^-\-y^ + z^-\-5x~Sy-2z-8 = 0, x'^ -\-
y^

-\-z^-16 = 0.

13. Find the radical center of the spheres x^ -i-y'^ -^ z^ — 6x j-2y

- z + e = 0, x^ -\- y^ + z^ - 10 = 0, x^ + y^ + z^ + 2x - Sy + 5 z - 6 = 0,

^2 + ?/2 + 02 _ 2 X + 4 ?/ - 12 = 0.

14. Show that the three radical planes of three spheres are planes of

the same pencil.

15. Two spheres are said to be orthogonal when their tangent planes

at every point of their circle of intersection are perpendicular. Show

that the two spheres x"^ -}- y^ -{- z"^ + a^x + b^y + c^z + di = 0, x^ 4. ^2 _|_ ^2

+ a^x + h^y + C2« + 0^2 = are orthogonal when a\ai + 6162 + C1C2

= 2{di + d2).

16. Write the equation of the cone tangent to the sphere x^ + y^ +
^2 — fi with vertex (0, 0, zi). Divide this equation by zi^ and let the

vertex recede indefinitely, i.e. let z\ increase indefinitely. The equation

3.2 _|_ ^2 _ ^2^ thus obtained, represents the cylinder with axis along the

axis Oz and tangent to the sphere x^ + i/^ 4. ^2 _ ,.2^

B



CHAPTER XIII

QUADRIC SURFACES

258. The Ellipsoid. The surface represented by the

equation

is called an ellipsoid. Its shape is best investigated by tak-

ing cross-sections at right angles to the axes of coordinates.

Thus the coordinate plane Oyz whose equation is x = in-

tersects the ellipsoid in the ellipse

Any other plane perpendicular to the axis Ox (Fig. 125) at

FiQ. 125

the distance h < a from the plane Oyz intersects the ellipsoid

in an ellipse whose equation is

i.e. y^
,

2' _j

'('-5)"<'-S)
242
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Strictly speaking this is the equation of the cylinder that pro-

jects the cross-section on the plane Oyz. But it can also be

interpreted as the equation of the cross-section itself, referred

to the point (/i, 0, 0) as origin and axes in the cross-section

parallel to Oy and Oz.

Notice that as ^ < a, W^/o?, and hence also 1— h^/a}, is a posi-

tive proper fraction. The semi-axes 6Vl — h^/o?, cVI — h^/a}

of the cross-section are therefore less than h and c, respec-

tively. As h increases from to a, these semi-axes gradually

diminish from h, c to 0.

259. Cross-Sections. Cross-sections on the opposite side

of the plane Oyz give the same results; the ellipsoid is evi-

dently symmetric with respect to the plane Oyz.

By the same method we find that cross-sections perpendicu-

lar to the axes Oy and Oz give ellipses with semi-axes dimin-

ishing as we recede from the origin. The surface is evidently

symmetric to each of the coordinate planes. It follows that

the origin is a center, i.e. every chord through that point is

bisected at that point. In other words, if (x, y, z) is a point

of the surface, so is (—a?, —2/, —z). Indeed, it is clear from

the equation that if (.t, y, z) lies on the ellipsoid, so do the

seven other points {x, y, -z), {x, —y, z), (-x, y, z), (x, -y, -z),

(- x, y, - 2), (- a;, - y, z), {-x, -y, -z). A chord through

the center is called a diameter.

It follows that it suffices to study the shape of the portion of

the surface contained in one octant, say that contained in the tri-

hedral formed by the positive axes Ox, Oy, Oz ; the remaining

portions are then obtained by reflection in the coordinate planes.

The ellipsoid is a dosed surface; it does not extend to in-

finity ; indeed it is completely contained within the parallel-

epiped with center at the origin and edges 2 a, 2 6, 2 c, parallel

to Ox, Oy, Oz, respectively.
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260. Special Cases. In general, the semi-axes a, b, c of the

ellipsoid, i.e. the intercepts made by it on the axes of coordi-

nates, are different. But it may happen that two of them, or

even all three, are equal.

In the latter case, i.e. if a = b = c, the ellipsoid evidently

reduces to a sphere.

If two of the axes are equal, e.g. if 6 = c, the surface

^ + ^ + 51 = 1
a" b^ b^

is called an ellipsoid of revolution because it can be generated

by revolving the ellipse

n '

62
1

Fig. 126

about the axis Ox (Fig. 126).

Any cross-section at right angles

to Ox, the axis of revolution, is a

circle, while the cross-sections at

right angles to Oy and Oz are

ellipses. The circular cross-section in the plane Oyz is called

the equator ; the intersections of the surface with the axis of

revolution are the poles.

li a ^b {a being the intercept on the axis of revolution),

the ellipsoid of revolution is called prolate ; if a < b, it is

called oblate. In astronomy the ellipsoid of revolution is

often called spheroid, the surfaces of the planets which are

approximately ellipsoids of revolution being nearly spherical.

Thus for the surface of the earth the major semi-axis, i.e. the

radius of the equator, is 3962.8 miles while the minor semi-

axis, i.e. the distance from the center to the north or south

pole, is 3949.6 miles.
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261. Surfaces of Revolution. A surface that cau be gen-

erated by the revolution of a plane curve about a line in the

plane of the curve is called a surface of revolution. Any such

surface is fully determined by the generating curve and the

position of the axis of revolution with respect to the curve.

Let us take the axis of revolution as axis Ox, and let the

equation of the generating curve be

As this curve revolves about Ox, any

point P of the curve (Fig. 127) de-

scribes a circle about Ox as axis, "et rTTisr

,

with a radius equal to the ordinate / f i /

f(x) of the generating curve. For ^
\ '/

any position of P we have therefore Fig. 127

f +'''= Ifi^m
and this is the equation of the surface of revolution.

Thus if the ellipse

revolves about the axis Ox, we find since y = ± {h/a)^a^ — o?

for the ellipsoid of revolution so generated the equation

2/2 + 22_5!(a2-a;2),
a

which agrees with that of § 260.

Any section of a surface of revolution at right angles to the

axis of revolution is of course a circle ; these sections are called

parallel circles, or simply parallels (as on the earth's surface).

Any section of a surface of revolution by a plane passing

through the axis of revolution is called a meridian section ;

it consists of the generating curve and its reflection in the axis

of revolution.
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EXERCISES

1. An ellipsoid has six/oci, viz. the foci of the three ellipses in which

the ellipsoid is intersected by its planes of symmetry. Determine the

coordinates of these foci : (a) for an ellipsoid with semi-axes 1, 2, 3

;

(6) for the earth (see § 260) ; (c) for an ellipsoid of semi-axes 10, 8, 1
;

(d) for an ellipsoid of semi-axes 1, 1, 5.

2. Find the equations of the surfaces of revolution generated by re-

volving the following curves about the given lines :

(a) y = x", about the axis Ox.

(b) y- = X, about the latus rectum.

(c) a;2 _j_ y2 _ 2 ac = 0, about the axis Oy.

(d) x2 _ y2 _ 1^ about the axis Ox.

3. Find the equation of the paraboloid of revolution generated by the

revolution of t-he parabola y^ = 4 ox about Ox.

4. Find the equation of a torus, or anchor-ring, i.e. the surface

generated by the revolution of a circle of radius a about a line in its plane

at the distance & > a from its center.

5. Find the equation of the surface generated by the revolution of a

circle of radius a about a line in its plane at the distance 6 < a from its

center. Is the appearance of this surface noticeably different from the

surface of Ex. 4 ? What happens to this surface when 6 = 0; when b = a?

6. Find the equation of the surface generated by the revolution of the

parabola y^ = iax about : (a) the tangent at the vertex
; (6) the latus

rectum.

7. Find the equation of the surface generated by the revolution of the

hyperbola xy = a^ about an asymptote.

8. Find the cone generated by the revolution of the line y = mx -\- b

about: (a) Ox, (6) Oy.

9. How are the following surfaces of revolution generated ?

(a) y2+22=x*. (6) 2x2-f-2y2-32=0. (c) x^-\-y^-z^-2x+i=0.

10. Find the equation of the surface generated by the revolution of

the ellipse x^ 4- 4 y2 _ 4 a; = o : (a) about the major axis
;
(b) about the

minor axis
; (c) about the tangent at the origin.
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262. Hyperboloid of One Sheet. The surface represented

by the equation

is called a hyperboloid of one sheet (Fig. 128). The intercepts

Fig. 128

on the axes Ox, Oy are ± a, ± 6 ; the axis Oz does not intersect

the surface.

263. Cross-Sections. The plane Oxy intersects the surface

in the ellipse

cross-sections perpendicular to Oz give ellipses with ever-

increasing semi-axes.

The planes Oyz and Ozx intersect the surface in the hyperbolas

^_?. — 1 ^__ — 1
62 ^2~ ' a2 c2~

Any plane perpendicular to Ox, at the distance h from the

origin, intersects the hyperboloid in a hyperbola, viz.

f

"(•-i) <'-3
1.
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As long as ^ < a this hyperbola has its transverse axis parallel

to Oy while for 1i'>a the transverse axis is parallel to Oz ; for

h = a the equation reduces to y''-/h'^ — z^l& = and represents

t"wo straight lines, viz. the parallels through (a, 0, 0) to the

asymptotes of the hyperbola yV^* ~ ^V^'^ = ^ which is the

intersection of the surface with the plane Oyz.

Similar considerations apply to the cross-sections perpen-

dicular to Oy.

The hyperboloid has the same properties of symmetry as the

ellipsoid (§ 259) ; the origin is a center, and it suffices to inves-

tigate the shape of the surface in one octant.

264. Hyperboloid of Revolution of One Sheet. If in the

hyperboloid of one sheet we have a = b, the cross-sections per-

pendicular to the axis Oz are all circles so that the surface can

be generated by the revolution of the hyperbola

about Oz. Such a surface is called a hyperboloid of revolution

of one sheet.

265. Other Forms. The equations

a* 6» c2 ' a* b^ c^

also represent hyperboloids of one sheet which can be investi-

gated as in §§ 262-264. In the former of these the axis Oy, in

the latter the axis Ox, does not meet the surface.

Every hyperboloid of one sheet extends to infinity.

266. Hyperboloid of Two Sheets. The surface represented

by the equation

a" b^ c2

is called a hyperboloid of two sheets (Fig. 129).
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The intercepts on Ox are ± a ; the axes Oy, Oz do not meet

the surface.

267. Cross-Sections. The cross-sections at right angles to

Ox, at the distance h from the origin are

'('-i)"<'-S)"
these are imaginary as long as h < a;

for h>a they are ellipses with ever-

increasing semi-axes as we recede from

the origin.

The cross-sections at right angles to Oy

and Oz are hyperbolas.

The hyperboloid of two sheets, like that of one sheet and

like the ellipsoid, has three mutually rectangular planes of

symmetry whose intersection is therefore a center.

The surfaces

z^ -, x^

Fig. 129

^2^ Z^_
^ ^=1

are hyperboloids of two sheets, the former being met by Oy,

the latter by Oz, in real points.

The hyperboloid of two sheets extends to infinity.

268. Hyperboloid of Revolution of Two Sheets. If 6 = c

in the equation of § 266, the cross-sections at right angles to Ox

are circles and the surface becomes a hyperboloid of revolution

of two sheets.

269. Imaginary Ellipsoid. The equation

= 1
a2 b^ c2

is not satisfied by any point with real coordinates. It is some-

times said to represent an imaginary ellipsoid.
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270. The Paraboloids.

— 4-^ = 2 cz.
'2^62

-^ = 2c2,

The surfaces

a-' 0== a2

which are called the elliptic paraboloid (Fig. 130) and hyper-

bolic paraboloid (Fig. 131), respectively, have each only two

planes of symmetry, viz. the planes Oyz and Ozx. We here

assume that c=^0. The cross-sections at right angles to the

Fig. 130

axis Oz are evidently ellipses in the case of the elliptic parab-

oloid, and hyperbolas in the case of the hyperbolic paraboloid.

The plane Oxy itself has only the origin in common with the

elliptic paraboloid ; it intersects the hyperbolic paraboloid in

the two lines x^/a?' — y^jW- — 0, i.e. y = ± hx/a.

The intersections of the elliptic paraboloid (Fig. 130) with

the planes Oyz and Ozx are parabolas with Oz as axis and as

vertex, opening in the sense of positive 2; if c is positive, in the

sense of negative z if c is negative. Planes parallel to these

coordinate planes intersect the elliptic paraboloid in parabolas

with axes parallel to Oz, but with vertices not on the axes Oa;,

Ot/, respectively.

For the hyperbolic paraboloid (Fig. 131), which is saddle-

shaped at the origin, the intersections with the planes Oyz and
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Ozx are also parabolas with Oz as axis ; if c is positive the

parabola in the plane Oyz opens in the sense of negative z, that

in the plane Ozx opens in the sense of positives. Similarly

for the parallel sections.

271. Paraboloid of Revolution. If in the equation of the

elliptic paraboloid we have a = 6, it reduces to the form

x^-\-y^ = 2pz.

This represents a surface of revolution, called the paraboloid of

revolution. This surface can be regarded as generated by the

revolution of the parabola y^ = 2pz about the axis Oz.

272. Elliptic Cone. The surface represented by the equation

^ f
a^ b^

=

is an elliptic cone, with the origin as vertex and the axis Oz as

axis (Fig. 132).

The plane Oxy has only the origin in

common with the surface. Every parallel

plane z = k, whether Ic be positive or negative,

intersects the surface in an ellipse, with

semi-axes increasing proportionally to k.

The plane Oyz, as well as the plane Ozx,

intersects the surface in two straight lines

through the origin. Every plane parallel to

Oyx or to Ozx intersects the surface in a

hyperbola. Fia. 132

273. Circular Cone. If in the equation of the elliptic cone

we have a = b, the cross-sections at right angles to the axis Oz

become circles. The cone is then an ordinary circular cone, or
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cone of revolution, which can be generated by the revolution

of the line y = (a/c)z about the axis Oz. Putting a/c = m we

can write the equation of a cone of revolution about Oz, with

vertex at 0, in the form

274. Quadric Surfaces. The ellipsoid, the two hyper-

boloids, the two paraboloids, and the elliptic cone are called

quadric surfaces because their cartesian equations are all of

the second degree.

Let us now try to determine, conversely, all the various loci

that can be represented by the general equation of the second

degree

Ax^ + By^ +Cz'^ + 2 Dyz -h 2 Ezx -h 2 Fxy

'Jt2Gx-\-2Hy + 2Iz + J=0.

In studying the equation of the second degree in x and y

(§ 253) it was shown that the term in xy can always be

removed by turning the axes about the origin through a cer-

tain angle. Similarly, it can be shown in the case of three

variables that by a properly selected rotation of the coordinate

trihedral about the origin the terms in yx, zx, xy can in general

all be removed so that the equation reduces to the form

(1) Ax^ + By^ + C^^ + 2 Gx + 2 JJy +2 J» -H «/= 0.

This transformation being somewhat long will not be given

here. We shall proceed to classify the surfaces represented

by equations of the form (1).

275. Classification. The equation (1) can be further sim-

plified by completing the squares. TJiree cases may be distin-

guished according as the coefficients A, By C are all three differ-

ent from zero, one only is zero, or two are zero.
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Case (a): A =^ 0, B ::^0, C^ 0. Completing the squares in

X, y, z we find

Referred to parallel axes through the point (— G/A, — H/B,
— I/C) this equation becomes

(2) Ax''-\-By^-\-Cz^ = J,.

Case (6) : A=^0, B=^0, 0=0. Completing the squares in x

and y we find

(-i) ^^^ B A B '

If 1=^0, we can transform to parallel axes through the point

(—G/A, — H/B, J2/2 I) so that the equation becomes

(3) Ax" + By''-i-2Iz = 0.

If, however, 7=0, we obtain by transforming to the point

(-G/A,-II/B,0)

(3') Ax'-\-By^=J,.

Case (c) : A^O, B = 0, C = 0. Completing the square in

X we have
^2 6?2

-(-SJ+
2 Hy + 2 Iz =^ -J=J^.

If H and / are not both zero, we can transform to parallel

axes through the point (— G/A, J^/2 H, 0) or through (— G/A,

0, J3/2 /) and find

(4) . Ax' + 2Hy + 2Iz = 0.

If Zr= and 7= 0, we transform to the point (— G/A, 0, 0)

so that we find

(4') Ax''=J,.
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276. Squared Terms all Present, Case (a). We proceed to

discuss the loci represented by (2). If J^ ^ 0, we can divide

(2) by t/i and obtain :

(a) if A/Ji , B/J^ , C/Ji are positive, an ellipsoid (§ 258)

;

(fi)
if two of these coefficients are positive while the third

is negative, a Jiyperholoid of one sheet (§ 262)

;

(y) if one coefficient is positive while two are negative, a

hyperboloid of tivo sheets (§ 266)

;

(8) if all three coefficients are negative, the equation is not

satisfied by any real point (§ 269) ; .

If J^ = 0, the equation (2) represents an elliptic cone (§ 272)

unless A, B, C all have the same sign, in which case the origin

is the only point represented.

277. Case (b). The equation (3) of §275 evidently fur-

nishes the two paraboloids (§ 270) ; the paraboloid is elliptic if

A and B have the same sign; it is hyperbolic if A and B are of

opposite sign.

The equation (S*), since it does not contain z and hence leaves

z arbitrary, represents the cylinder, with generators parallel to Oz,

passing through the conic Ax^ + By"^ =^ J^, As ^ and B are

assumed different from zero, this conic is an ellipse if AfJ^ and

5/J2 are both positive, a hyperbola if AjJ^ and ^/c/, are of

opposite sign, and it is imaginary if AjJ^ and -B/Jg are both

negative. This assumes J^ 4^ 0. If J^ — 0, the conic degen-

erates into two straight lines, real or imaginary ; the cylinder

degenerates into two planes if the lines are real.

278. Case (c). There remain equations (4) and (4'). To sim-

plify (4) we may turn the coordinate trihedral about Ox through

an angle whose tangent is — HII\ this is done by putting

-^H'+P ^/H' + P
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our equation then becomes

It evidently represents a parabolic cylinder, with generators

parallel to Oy.

Finally, the equation (4') is readily seen to represent two

planes perpendicular to Ox, real or imaginary, unless J3 = 0,

in which case it represents the plane Oyz.

EXERCISES

1. Name and locate the following surfaces :

(a) a;2 + 2 ?/2 + 3^2 = 4. (Jb) x"^ + y'^ - hz -Q = 0.

(c) x^ - y'^ + z"^ = 4.. (d) x2-y^ + z^-\-Sz + 6 = 0.

(e) 2?/2 -4:^2 _ 5=0. (/) 2a;2 + y2_|.3^2 + 5_0.

(g) 6;s2 + 2x2 = 10. ih) z^-9 = 0.

(i) x2-y + l = 0. 0*) x^-y^-z^ + 6z = 9.

(k) x^ + Sy'^ + z"^ -j- 4 z -\- 4 = 0. {I) z'^-hy -9 = 0.

2. The cone
x2/a2 + yyb^ - 02/c2 =

is called the asymptotic cone of the hyperboloid of one sheet

a;2/a2 + ^2/52 _ ^2/c2 = 1.

Show that as z increases the two surfaces approach each other, i.e. they

bear a relation similar to a hyperbola and its asymptotes.

3. What is the asymptotic cone of the hyperboloid of two sheets ?

4. Show that the intersection of a hyperboloid of two sheets with any

plane actually cutting the surface is an ellipse, parabola, or hyperbola.

Determine the position of the plane for each conic.

5. Show that in general nine points deterinine a quadric surface and

that the equation may be written as a determinant of the tenth order

equated to zero.

6. Show that the surface inverse to the cylinder x^ -\- y^ = a^, with

respect to the sphere ^2 4- y2 + ^2 _ ^52^ ig the torus generated by the rev-

olution of the circle (y — a/2)2 + z^ = a^ about the axis Ox.

7. Determine the nature of the surface xyz = a^ by means of cross-

sections.
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279. Tangent Plane to the Ellipsoid. The plane tangent

to the ellipsoid

a" h^ c^

can be found as follows (compare §§ 255, 256). The equa-

tions of the line joining any two given points {x^ y^ z^ and

{^ , 2/2 , 22) are

x=^x^-{-k{Xi — x^\ 2/ = 2/i + %2-yi), z =
2!i + A:(22-2;i).

This line will be tangent to the ellipsoid if the quadratic

in k

[_x, + k{x^-x,)J [yi-^k(y,-y,)J [z, + k(z,-z,)y^^
a«

"^
6«

"^
c«

has equal roots. Writing this quadratic in the form

nx^-x,y
_^ (y,-y,y _^

(z,-z,y\t

\_ 0} b^ c* J

o^xiix^-x^) yijy^-y,) z^jz^-z,)!. fx,^ y,^ z,^ ^\ ^

\_ a^ 6* o" \ ^^a^^h^^ c" J '

we find the condition

a2
"^

62
"^

c2 ; \o? 62 c2 )\

J{x,-x,y (y,-y,y
,
fe-^OnW

I

yx'
,

z,^ .\

L a2 6* c2 JVa^ 62 c2 y

If now we keep the point {x^
, 2/1 , ^i) fixed, but let the point

(^2) .V2) 2:2) vary subject to this condition, it will describe the

cone, with vertex (oq
, 2/1 , 2i), tangent to the ellipsoid ; to indi-

cate this we shall drop the subscripts of x^, y^y z^. If, in

particular, the point {x^
, y^ , Zi) be chosen on the ellipsoid, we

have

^' + .^' + !l = i,

a2 62 c2



XIII, §281] QUADRIC SURFACES 257

and the cone becomes the tangent plane. The equation of the

tangent plane to the ellipsoid at the point {x^^
, y^ , z^ is, therefore

:

a2 &2
"1"

c2

280. Tangent Planes to Hj^erboloids. In the same way

it can be shown that the tangent planes to the hyperboloids

a2 62 c2 ' a2 52 (.2

at (a;i,2/i,2i) are

a2 62 c2
> ^2 52 ^2

By an equally elementary, but somewhat longer, calculation

it can be shown that the tangent plane to the quadric surface

Ax'' + By^ + C0' + 2 D?jz + 2Ezx + 2 Fxy

+ 2Gx-\-2Hy + 2Iz-\-J=0
at (.Tj

, 2/1 J 2;i) is

:

AxyX 4- %i2/ + C2i2 + Z)(yi2; + ^iV) + ^(^^i.^ + a?i2;) + F{x,y + ^/lO;)

+ 6?(x, + ir) + ^(2/1 + 2/) + /(^i + ^) + J^= 0,

In particular, the tangent planes to the paraboloids

tj^yl^2cz, t-t=.2cz
a2 62 a" 62

are

281. Ruled Surfaces. A surface that can be generated by

the motion of a straight line is called a ruled surface; the line

is called the generator.

The plane is a ruled surface. Among the quadric surfaces

not only the cylinders and cones but also the hyperboloid of

one sheet and the hyperbolic paraboloid are ruled surfaces.
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282. Rulings on a Hyperboloid of One Sheet. To show

this for the hyperboloid

a" b^ c2 '

we write the equation in the form

and factor both members

:

Ci-t){l-H^!X'-l}

It is then apparent that any point whose coordinates satisfy

the two equations

be \ aj b a k\ aj

where k is an arbitrary parameter, lies

on the hyperboloid. These two equa-

tions represent for every value of A; (:^ 0)

a straight line. The hyperboloid of one

sheet contains therefore the family of

lines represented by the last two equa-

tions with variable A:.

In exactly the same way it is shown that the same hyper-

boloid also contains the family of lines

be V aJ b c k'\ aJ

Fig. 133

Thus every hyperboloid of one sheet contains two sets of recti-

linear generators (Fig. 133).
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283. Rulings on a Hyperbolic Paraboloid. The hyperbolic

paraboloid (Fig. 134)

x^ y^ =2C2

also contains two sets of recti-

linear generators^ namely,

a b a b k

and

a b a b k' Fig. 134

EXERCISES

1. Derive the equation of the tangent plane to :

(a) the elliptic paraboloid
;

(b) the hyperbolic paraboloid
;

(c) the elliptic cone.

2. The line perpendicular to a tangent plane at a point of contact is

called the normal line. Write the equations of the tangent planes and

normal lines to the following quadric surfaces at the points indicated

:

(a) a;V9 + y^i - ^716 = 1, at (3, - 1, 2)

;

(6) a;2 + 2 2/2 + 2^2^10, at (2,1, -2);
(c) a;2 + 2 y2 _ 2 ;22 ^ 0, at (4, 1, 3) ;

(d) x^-Sy^-z = 0, at the origin.

3. Show that the cylinder whose axis has the direction cosines I, rn, n

and which is tangent to the ellipsoid x^/a^ + y^/b^ + z^/c^ = 1, is

w b^ cy U'" &2 c2;U' &' c2 / •

4. Show that the plane Ix -^ my + nz = Vl'-^a^ + m^b'^ + n^c^ is tangent

to the ellipsoid x^/a"^ + y'^/b'^ + z^/c"^ = 1.

5. Show that the locus of the intersection of three mutually perpen-

dicular tangent planes to the ellipsoid a:2/a2 -f 2/2/52 _f. ^2/02 = 1, is the

sphere (called director sphere) x^ -{ y"^ +z^ = a^ + b^ + c2.
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6. Show that the elliptic cone is a ruled surface.

7. Show that any two linear equations which contain a parameter

represent the generating line of a ruled surface. What surfaces are gen-

erated by the following lines ?

(a) x-y-\-kz = 0,x-\-y-z/k = Q; (6) 3 a; - 4 y = A;, (3 a;+4 y)k=l
;

(c) X - y + 3 A-2 = 3 k, k{x + y)— 2 = 3.

8. Show that every generating line of the hyperbolic paraboloid

a;2/a2 _ y'ljifi = 2 C2 is parallel to one of the planes x^/ct^ — y'^/h'^ = 0.

284. Surfaces in General When it is required to deter-

mine the shape of a surface from its cartesian equation

the most effective methods, apart from the calculus, are the

transformation of coordinates and the taking of cross-sections,

generally (though not necessarily always) at right angles to

the axes of coordinates. Both these methods have been ap-

plied repeatedly to the quadric surfaces in the preceding

articles.

285. Cross-Sections. The method of cross-sections is ex-

tensively used in the applications. The railroad engineer de-

termines thus the shape of a railroad dam ; the naval architect

uses it in laying out his ship ; even the biologist uses it in con-

structing enlarged models of small organs of plants or animals.

286. Parallel Planes. When the given equation contains

only one of the variables x, y, z, it represents of course a set of

parallel planes (real or imaginary), at right angles to one of

the axes. Thus any equation of the form

F(x)=0

represents planes at right angles to Ox, of which as many are

real as the equation has real roots.
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287. Cylinders. When the given equation contains only two

variables it represents a cylinder at right angles to one of the

coordinate planes. Thus any equation of the form

F(x,y)=0

represents a cylinder passing through the curve F{x, y)= in

the plane Oxy, with generators parallel to Oz. If, in particular,

F(x, y) is homogeneous in x and y, i.e. if all terms are of the

same degree, the cylinder breaks up into planes.

288. Cones. When the given equation F(x, y^ z)=0 is

homogeneous in x, y, and z, i.e. if all terms are of the same

degree, the equation represents a general cone, with vertex at

the origin. For in this case, if (x, y, z) is a point of the sur-

face, so is the point (kx, ky, kz), where k is any constant; in

other words, if P is a point of the surface, then every point of

the line OP belongs to the surface ; the surface can therefore

be generated by the motion of a line passing through the origin

289. Functions of Two Variables. Just as plane curves are

used to represent functions of a single variable, so surfaces can

be used to represent functions of two variables. Thus to obtain

an intuitive picture of a given function f(x, y) we may con-

struct a model of the surface

such as the relief map of a mountainous country. The ordi-

nate z of the surface represents the function.

290. Contour Lines. To obtain some idea of such a surface

by means of a plane drawing the method of contour lines or

level lines can be used. This is done, e.g., in topographical

maps. The method consists in taking horizontal cross-sections

at equal intervals and projecting these cross-sections on the hori-

zontal plane. Where the level lines crowd together the surface

is steep ; where they are relatively far apart the surface is flat.
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EXERCISES

1. What surfaces are represented by the following equations ?

(a) Ax + By-{- C = 0.

(c) y^ + z'^^a^.

(e) zx-a^,

(g) x«- 3x2-3;+ 3 = 0.

(0 y = x2-x-6.
{k) x2 + 2 1/2 = 0.

(m) x2 - J/2
= 2-2.

(0) (x-l)(y-2)(;^-3) = 0.

(6) xcos/3 + ysin j3=p.

(/);?2 = 4ay.

(h) xyz = 0.

U) yz^-9y = 0.

(0 x^ = yz.

(n) y^-{-2z^-\-izx = 0.

2. Determine the nature of the following surfaces by sketching the

contour lines

:

(a) z=x + y. (6) z = xy. (c) z = y/x. (d) z =x2 + y,

(e) 2=x2-y2+4. (/) 2 = x2. (g) z=x^+y^-ix. (h) z = xy~x.
(i) z = 2'. (j) y=«2_4x. (^-) y = 3 ^2 + x2. (Z) «=3 x+y2.

3. The Cassinian ovals (§ 178) are contour lines of what surface ?

4. What can be said about the nature of the contour lines of a sur-

face z=f(x) ? Discuss in particular : (a) 2 = x2 — 9
;

(b) z = x^ — 8;

(c) y = z^-{-2z.

291. Rotation of Coordinate Trihedral. To transform the

equation of a surface from one coordinate trihedral Oxyz to another

Ox'y'z', with the same origin O, we

must find expressions for the old co-

ordinates X, y, z of any point P in terms

of the new coordinates x', y', z'. We
here confine ourselves to the case when

each trihedral is trirectangular ; this is

the case of orthogonal transformation^

or orthogonal substitution.

Let ^1 , mi , ni be the direction cosines

of the new axis Ox' with respect to the

old axes Ox, Oy, Oz (Fig. 136) ; similarly

h, m2 , W2 those of Oy', and ^3 , m^ , na those of Oz'. This is indicated by

the scheme

Fig. 135
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X'

h^ + mi2 + ni2 = 1,

h^ + mi^ + 7122 = 1,

Zs^ + m32 + W32 = 1,

Zi^ + 22^ + Za^ = 1,

mi2 + m22 + m32 = ]

Zl Z2 Z3

Wll Wi2 WI3

wi n2 ns

which shows at the same time that then the direction cosines of the old

axis Ox with respect to the new axes Ox', Oy' , Oz' are Zi , ^2 , Z3 , etc.

292. The nine direction cosines Zi , Z2 , ••• W3 are sufficient to determine

the position of the new trihedral Ox'y'z' with respect to the old. But

these nine quantities cannot be selected arbitrarily ; they are connected by

six independent relations which can be written in either of the equivalent

forms
Z2Z3 + m2m3 + 712^3 = 0,

'

(1) Z22 + m22 + 7122 = 1, Z3Z1 + mzlUi + WsWi = 0,

Z1Z2 + WliW2 4- WiW2 = 0,

wiini + miUi + WI3W3 = 0,

(1') mi2 + m22 + m32 = 1, riih + n2Z2 + W3Z3 = 0,

Wi2 + W22 4- W32 = 1

,

limi + Z2TO2 + hmz = 0.

The meaning of these equations follows from §§ 202 and 205. Thus

the first of the equations (1) expresses the fact that Zi, mi, wi are the

direction cosines of a line, viz. Ox' ; the last of the equations (1') ex-

presses the perpendicularity of the axes Ox and Oy ; and so on.

293. If X, y, z are the old, x', y\ z' the new coordinates of one and

the same point, we find by observing that the projection on Ox of the

radius vector of P is equal to the sum of the projections on Ox of its

components x', j/', z' (§ 199), and similarly for the projections on Oy

and Oz

:

X = Zix' + hyi + hz',

(2) y = Ttiix' + miy' + mzz',

z = mx' + n2y' + nzz'.

Indeed, these relations can be directly read off from the scheme of

direction cosines in § 291.

Likewise, projecting on Ox', Oy', Oz', we find

x' = Zix + m\y + n\z,

(2') y' = hx + nny + n2Z,

z' = I3X + mzy + nzz.
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As the equations (2), by means of which we can transform the equation

of any surface from one rectangular system of coordinates to any other

with the same origin, give x, y, z as linear functions of x\ y\ «', it follows

that 8uch a transformation cannot change the degree of the equation of

the surface.

294. The equation (2') must of course result also by solving the equa-

tions (2) for x', 2/', z\ and vice versa. Putting

l\ h h
wii »n2 Wl3 = A
ni n2 W3

solving (2) for x', j/', «', and comparing the coefficients of x, y, z with

those in (2') we find the following relations :

Dll = 7712713 — 7713712 , DMi = 7l2?3 — W3Z2 » DtIi = litn^ — Z3WI2 1 ©tC.

Squaring and adding the first three equations and applying the re-

lations (1) we find : Z)2 = 1.

By § 226, D can be interpreted as six times the volume of the tetrahe-

dron whose vertices are the origin and the points x', y', z' in Fig. 135, i.e.

the intei-sections of the new axes with the unit sphere about the origin.

The determinant gives this volume with the sign + or — according as the

trihedral Ox'y'z' is superposable or not (in direction and sense) to the

trihedral Oxyz (see § 295). It follows that D=±l and

li=± (m27i3 — W3W2), wii = i (712I3 - 713/2), ni=± {hmz — hmi)^

h — ± (w»37ii — ?7»in3), «i2 = ± {nzh — nih), 7i2 = ± Chrni — hmz)^

^3 =± (77ii7i2 — wi27ii), ^3 = ± (7ii?2 — Wa/i), n^ = ± (hm^ — hmi)

,

the upper or lower signs to be used according as the trihedrals are super-

posable or not.

295. A rectangular trihedral Oxyz is called right-handed if the rotation

that turns Oy through 90° into Oz appears counterclockwise as seen from

Ox ; otherwise it is called left-handed. In the present work right-handed

sets of axes have been used throughout.

Two right-handed as well as two left-handed rectangular trihedrals are

superposable ; a right-handed and a left-handed trihedral are not super-

posable. The difference is of the same kind as that between the gloves

of the right and left hand.

Two non-superposable rectangular trihedrals become superposable upon

reversing one (or all three) of the axes of either one.
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296. The fact that the nine direction cosines are connected by six rela-

tions (§ 292) suggests that it must be possible to determine the position of

the new trihedral with respect to the old by only three angles. As such

we may take, in the case of superposable trihedrals, the angles 6, 0, ^,

marked in Fig. 135, which are known as Eulefs angles.

The figure shows the intersections of the two trihedrals with a sphere

of radius 1 described about the origin as center. If OiV is the intersection

of the planes Oxy and Ox'y', Euler's angles are defined as

d = zOz\ (t>
= NOx', xfy = xON.

The line ON is called the line of nodes, or the nodal line.

Imagine the new trihedral Ox'y'z' initially coincident with the old

trihedral Oxyz, in direction and sense. Now turn the new trihedral

about Oz in the positive (counterclockwise) sense until Ox' coincides with

the assumed positive sense of the nodal line ON; the amount of this

rotation gives the angle \p. Next turn the new trihedral about ON in the

positive sense until the plane Ox'y' assumes its final position ; this gives

the angle d as the angle between the planes Oxy and Ox'y', or the angle

zOz' between their normals. Finally a rotation of the new trihedral

about the axis Oz', which has reached its final position, in the positive

sense until Ox' assumes its final position, determines the angle 0.

297. The relations between the nine direction cosines and the three

angles of Euler are readily found from Fig. 135 by applying the fundamen

tal formula of spherical trigonometry cos c = cos a cos b + sin a sin b cos y
successively to the spherical triangles

xNx', xNy', xNz\

yNx', yNy', yNz',

zNx', zNy', zNz'.
We find in this way :

l\ = cos ^p cos — sin i/' sin cos 0,

mi = sin ^ cos -f cos V' sin cos 6,

Wi = sin sin d,

I2—— cos sin — sin cos cos d, I3 = sin sin 0,

m2 =— sin sin + cos cos cos 0, mz =— cos sin 0,

n2 = cos sin 0, m = cos 0.
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13 4
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7 9 11
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39
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5453
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5809
6922
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1 2 4
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5 7 8
5 7 8
5 7 8

5 6 8
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5 6 7
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4 6 7
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6794
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6972
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6618
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6803
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1 2 3
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12 3
1 2 3
12 3

12 3
12 3
12 3
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4 5 6
4 5 6

4 5 6
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4 5 6

4 5 6
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4 4 6

7 8 9
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7 7 8
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6 7 8
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7076
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7324
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7093
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7340
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7300
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3 4 5
3 4 5
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3 4 5

6 7 8
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6 6 7

6 6 7

N 1 2 8 4 6 6 7 8 9 1 2 2 4 5 6 7 8 9

The proportional parts are stated in full for every tenth at the right-hand side.

The logarithm of any number of four significant figures can bo read directly by add-
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N 1 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9

55
56

57
58
59

60

7404
7482

7559
7634
7709

7782

7412
7490

7566
7642
7716

7789

7419
7497

7574
7649
7723

7427
7505

7582
7657
7731

7435
7513

7589
7664
7738

7443
7520

7597
7672
7745

7451
7528

7604
7679
7752

7459
7536

7612
7686
7760

7466
7543

7619
7694
7767

7474
7551

7(527

7701
7774

12 2
12 2

112
112
112

3 4 5
3, 4 5

3 4 5
3 4 4
3 4 4

5 6 7
5 6 7

5 6 7
5 6 7

5 6 7

7796 7803 7810 7818 7825 7832 7839 7846 112 3 4 4 5 6 6

61
62
63

64
65
66

67
68
69

7853
7924
7993

8062
8129
8195

8261
8325
8388

7860
7931
8000

8069
8136
8202

8267
8331
8395

7868
7938
8007

8075
8142
8209

8274
8338
8401

7875
7945
8014

8082
8149
8215

8280
8344
8407

7882
7952
8021

8089
8156
8222

8287
8351
8414

7889
7959
8028

8096
8162
8228

8293
8357
8420

7896
7966
8035

8102
8169
8235

8299
8363
8426

7903
7973
8041

8109
8176
8241

8306
8370
8432

7910
7980
8048

8116
8182
8248

8312
8376
8439

7917
7987
8055

8122
8189
8254

8319
8382
8445

112
1 1 2
112
112
112
112
112
112
112

3 3 4
3 3 4
3 3 4

3 3 4
3 3 4
3 3 4

3 3 4
3 3 4
3 3 4

5 6 6
5 5 6
5 5 6

5 5 6
5 5 6
5 5 6

6 5 6
4 5 6
4 5 6

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 112 3 3 4 4 5 6

71

72
73

74
75
76

77
78
79

8513
8573
8633

8692
8751
8808

8865
8921
8976

8519
8579
8639

8698
8756
8814

8871
8927
8982

8525
8585
8645

8704
8762
8820

8876
8932
8987

8531
8591
8651

8710
8768
8825

8882
8938
8993

8537
8597
8657

8716
8774
8831

8887
8943
8998

8543
8603
8663

8722
8779
8837

8893
8949
9004

8549
8609
8669

8727
8785
8842

8899
8954
9009

8555
8615
8675

8733
8791
8848

8904
8960
9015

8561
8621
8681

8739
8797
8854

8910
8965
9020

8567
8627
8686

8745
8802
8859

8915
8971
9025

112
112
112
112
112
112
1 1 2
112
112

3 3 4
3 3 4
2 3 4

2 3 4
2 3 3
2 3 3

2 3 3
2 3 3
2 3 3

4 5 6
4 5 6
4 5 6

4 6 6
4 5 5
4 4 5

4 4 5
4 4 5
4 4 5

80 ^)031 9036 9042 9047 9053 9058 9063 9069 9074 9079 112 2 3 3 4 4 5

81
82
83

84
85
86

87
88
89

90a5
9138
9191

9243
9294
9345

9395
9445
9494

fX)90

9143
9196

9248
9299
9350

9400
9450
9499

9096
9149
9201

9253
9304
9355

9405
9455
9504

9101
9154
9206

9258
9309
9360

9410
9460
9509

910fj

9159
9212

9263
9315
9365

9415
9465
9513

9112
9165
9217

9269
9320
9370

9420
9469
9518

9117
9170
9222

9274
9325
9375

9425
9474
9523

9122
9175
9227

9279
9330
9380

9430
9479
9528

9128
9180
9232

9284
9335
9385

9435
9484
9533

9133
9186
9238

9289
9340
9390

9440
9489
9538

112
1 1 2
1 1 2

112
1 1 2
112
112

1 1

1 1

2 3 3
2 3 3
2 3 3

2 3 3
2 3 3
2 3 3

2 3 3
2 2 3
2 2 3

4 4 5
4 4 5

44 5

4 4 5
4 4 5

4 4 5

4 4 5
3 4 4
3 4 4

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 1 1 2 2 3 3 4 4

91
92
93

94
95
96

97
98
99

9590
9638
9685

9731
9777
9823

9868
9912
9956

9595
9643
9689

9736
9782
9827

9872
9917
9961

9600
9647
9694

9741
9786
9832

9877
9<)21

99(i5

9605
9652
9699

9745
9791
9836

9881
9926
9969

9609
9657
9703

9750
9795
9841

9886
9930
9974

9614
9661
9708

9754
9800
9845

9890
9934
9978

9619
9666
9713

9759
9805
9850

9894
9939
9983

9624
mil
9717

9763
9809
9854

9899
9943
9987

9628
9675
9722

9768
9814
9859

t)903

9948
9991

9633
9(i80

9727

9773
9818
9863

9908
9952
9996

Oil
Oil
Oil
Oil

1 1

1 1

Oil
Oil
Oil

2 2 3
2 2 3
2 2 3

2 2 3
2 2 3
2 2 3

2 2 3
2 2 3
2 2 3

3 4 4
3 4 4
3 4 4

3 4 4
3 4 4
3 4 4

3 4 4
3 3 4
3 3 4

N 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

ing the proportional part corresponding to the fourth figure to the tabular number
corresponding to tbo first three figures. Thero may be an error of 1 in the last place.
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[Charactoristics of Lof?arithins orn tted- determine by the usual i-ule from the value]

Uadians 1 )egrees Si ME Tangext C!oTANGENT CosiNE
Value Lo?io Value Logio Value Logio Value Lopio

.0000 0°00' .0000 .0000 l.OCKX) .0000
.0000

90° 00'

50
1.5708
1.5079!0029 10 .0029 .4637 !0029 .4637 343.77 .5363 I'.OOOO

.0058 20 .0058 .7(>48 .0058 .7648 171.89 .2352 1.0000 .0000 40 1.5650

.0087 30 .0087 .9408 .0087 .i)409 114.69 .0591 1.0000 .0000 30 1.5(521

.0116 40 .0116 .0(558 .0116 .0658 85.940 .9^42 .9995) .0000 20 1.5592

.0U5 50 .0145 .1627 .0145 .1627 68.750 .8373 .9999 .0000 10 1.5563

.0175 1°00' .0175 .2419 .0175 .2419 57.290 .7581 .9998 .99^)0 89° 00' 1.5533

.0204 10 .0204 .3088 .0204 .3089 49.104 .6911 .9998 .fn>9<) 50 1.5504

.0233 20 .0233 .3668 .0233 .36(59 42.964 .6331 .9i)97 .99*.><) 40 1.5475

.0202 30 .0262 .4179 .02(52 .4181 38.188 .5819 .99i)7 .91HHJ 30 1.5446

.0291 40 .0291 .4637 .0291 .4638 34.368 .5362 .9996 .9<)98 20 1.5417

.0320 50 .0320 .5050 .0320 .6053 31.242 .4947 .9995 .ims 10 1.5388

.0349 2° 00' .0^49 .5428 .0349 .5431 28.636 .4569 .9994 .9997 88° 00' 1.5359

.0378 10 .0378 .5776 .0378 .5779 26.4.32 .4221 .9993 .99<)7 50 1.53.30

.0407 20 .0407 .6097 .0407 .6101 24.542 .3899 .9{m .9^>96 40 1.5301

.0436 30 .0436 Ami .0437 .6401 22.904 .3599 .9990 .^y^m 30 1.5272

.0465 40 .0465 .(5677 .0466 .6(582 21.470 .3318 .9989 .9995 20 1.5243

.0495 50 .0494 .(5940 .0495 .6945 20.20(5 .3055 .9988 .9995 10 1.5213

.0524 3° 00' .0523 .7188 .0524 .7194 19.081 .2806 .9986 .9994 87° 00' 1.5184

.0553 10 .0552 .7423 .0553 .7429 18.075 .2571 .9985 .V.W3 50 1.5155

.0582 20 .0581 .7645 .0582 .7(552 17.1(59 .2^48 .9i)83 .9993 40 1.5126

.0611 30 .0(510 .7a')7 .0612 .78(55 16..350 .2i;i5 .9981 .m\2 30 1.5097

.0(U0 40 .0640 .8059 .0(541 .80(57 15.(505 .193:i .9980 .mn 20 1.5068

.0669 50 .0<}<39 .8251 .0(570 .8261 14.924 .1739 .9978 .9f»90 10 1.5039

.0698 4° 00' .0(598 .8436 .0699 .8446 14..301 .1554 .9976 .9989 86° 00' 1.5010

.0727 10 .0727 .8613 .0729 .8(524 13.727 .1376 .9974 .9!>S9 50 1.4981

.0756 20 .0756 .8783 .0758 .8795 13.197 .1205 .9971 .9988 40 1.4952

.0785 30 .0785 .8946 .0787 .8960 12.706 .1040 .9969 .9987 30 1.4923

.0814 40 .0814 .9104 .0816 .9118 12.251 .0882 .9967 .9986 20 1.4893

.0844 50 .0M3 .9256 .0*46 .9272 11.826 .0728 .9964 .9985 10 1.4864

.0873 6° 00' .0872 .9403 .0875 .9420 11.430 .0580 .9962 SY.)H-A 85° 00' 1.4835

.0902 10 .mK)l .9545 .0904 .9m:i 11.059 .0437 .{)959 A¥M'2 50 1.4806

.0931 20 .0929 sm2 .09:i4 .9701 10.712 .02^9 .9957 .9<t81 40 1.4777

.OiXJO 30 .0958 .9816 .0963 .98:3(5 10..'385 .0164 .*«»54 .9980 30 1.4748

.0989 40 .0987 .9<H5 .09<>2 .99(56 10.078 .0034 .9951 .9«>79 20 1.4719

.1018 50 .1016 .0070 .1022 .0093 9.7882 .9907 .9948 .i>977 10 1.4690

.1047 6° 00' .1045 .0192 .ia5i .0216 9.5144 .9784 .9946 .9976 84° 00' 1.4661

.1076 10 .1074 .0311 .1080 .o:»6 9.2553 .9(5(54 .9942 .9<)75 50 1.4632

.1105 20 .1103 .0426 .1110 .0453 9.0098 .9547 .9939 .9973 40 1.4603

.1134 30 .1132 .0539 .1139 .0567 8.77(59 .94:« .9936 .9972 30 1.4573

.1164 40 .11(51 .0648 .11(59 .0678 8.5555 .9322 .9i)32 .9»»71 20 1.4544

.1193 50 .1190 .0755 .1198 .0786 8.3450 .9214 .9929 .9969 10 1.4516

.1222 7° 00' .1219 .0859 .1228 .0891 8.1443 .9109 .9925 .99(58 83° 00' 1.4486

.1251 10 .1248 .0961 .1257 .0995 7.9530 .9005 .9i>22 .9966 60 1.4457

.1280 20 .1276 .10(50 .1287 .1096 7.7704 .8904 .9918 .9964 40 1.4428

.1309 30 .1305 .1157 .1517 .1194 7.5958 .8806 .9914 .9963 30 1.4399

.1338 40 .1334 .1252 .1346 .1291 7.4287 .8709 .9911 .9961 20 1.4370

.13(>7 50 .1363 .1345 .1376 .1385 7.2687 .8615 .9907 .9iW 10 1.4»41

.1396 8° 00' .1392 .1436 .1405 .1478 7.1154 .8522 .9903 .9958 82° 00' 1.4312

.1425 10 .1421 .152,5 .1435 .1569 6.9682 .8431 .9899 .995(5 50 1.4283

.1454 20 .1449 .1612 .1465 .1(558 6.8269 .8342 .aS94 .9954 40 1.4254

.148-4 30 .1478 .1697 .1495 .1745 6.6912 .82.55 .9890 .{K)52 30 1.4224

.1513 40 .1507 .1781 .1524 .ia3i 6.5(506 .8169 .988(5 .99.50 20 1.4195

.1542 50 .1536 .1863 .1554 .1915 6.4348 .8085 .9881 .9948 10 1.4166

.1571 9° 00' .1564 .1943 .1584 .1997 6.3138 .8003 .9877 .9946 81° 00' 1.4137

Value Log,o Value Lopio Value Logio Value Logio Degrees Radians
Cosine Cotangent Tangent Sink



Four Place Trigonometric Functions 269
[Characteristics of Logarithms orai tted — leterraine by the usual rule from the value]

Radians Degeees Sine Tangent Cotangent Cosine
V^alue Logjo Value i-Ogio Value Logio Value Logio

.1571 9° 00' .1564 .1943 .1584 .1997 6.3138 .8003 .9877 .9946 81° 00' 1.413?

.1600 10 .1593 .2022 .1614 .2078 6.1970 .7922 .9872 .9944 50 1.4108

.1(529 20 .1622 .2100 .1644 .2158 6.0844 .7842 .98(58 .9942 40 1.4079

.1658 30 .1650 .217() .1673 .2236 5.9758 .7764 .9863 .9940 30 1.4050

.1687 40 .1679 .2251 .1703 .2313 5.8708 .7687 .9858 .9938 20 1.4021

.1716 50 .1708 .2324 .1733 .2389 5.7694 .7611 .9853 .t)936 10 1.3992

.1745 10° 00' .1736 .2397 .1763 .2463 5.6713 .7537 .9848 .9934 80° 00' 1.3963

.1774 10 .1765 .2468 .1793 .2536 5.5764 .7464 .9843 .9931 50 1.3934

.1804 20 .1794 .2538 .1823 .2609 5.4845 .7391 .9838 .9929 40 1.3904

.1833 30 .1822 .2606 .1853 .2680 5.3955 .7320 .9833 .9927 30 1.3875

.1862 40 .J851 .2674 .1883 .2750 5.3093 .7250 .9827 .9924 20 1.3846

.1891 50 .1880 .2740 .1914 .2819 5.2257 .7181 .9822 .9922 10 1.3817

.1920 11°00' .1908 .2806 .1944 .2887 5.1446 .7113 .9816 .9919 79° 00' 1.3788

.1949 10 .1937 .2870 .1974 .2953 5.06.58 .7047 .9811 .9917 50 1..3759

.1978 20 .1965 .2934 .2004 .3020 4.98<)4 .6980 .9805 .9914 40 1.3730

.2007 30 .1994 .25)97 .2035 .3085 4.9152 .6915 .9799 .9912 30 1..3701

.2036 40 .2022 .3058 .2065 .3149 4.8430 .6851 .9793 .9909 20 1.3672

.2065 50 .2051 .3119 .2095 .3212 4.7729 .6788 .9787 .9907 10 1.3(343

.2094 12<'00' .2079 .3179 .2126 .3275 4.7046 .6725 .9781 .9904 78° 00' 1.3614

.2123 10 .2108 .3238 .2156 .3336 4.6382 .6664 .9775 .9901 50 1.3584

.2153 20 .2136 .32% .2186 .3397 4.5736 .6603 .9769 .9899 40 1..3555

.2182 30 .2164 .3353 .2217 .3458 4.5107 .6542 .9763 .9896 30 1.3526

.2211 40 .2193 .3410 .2247 .3517 4.4494 .6483 .9757 .9893 20 1.3497

.2240 50 .2221 .3466 .2278 .3576 4.3897 .6424 .9750 .9890 10 1.3468

.2269 13° 00' .2250 .3521 .2309 .3(534 4.3315 .6366 .9744 .9887 77° 00' 1.3439

.2298 10 .2278 .3575 .2339 .3691 4.2747 .6309 .9737 .9884 50 1.3410

.2327 20 .2306 .3629 .2370 .3748 4.2193 .6252 .9730 .9881 40 1.3381

.2356 30 .2334 .3682 .2401 .3804 4.1653 .619(5 .9724 .9878 30 1.3352

.2385 40 .2;^)3 .3734 .24.32 .3859 4.1126 .6141 .9717 .9875 20 1.3323

.2414 50 .2391 .3786 .2462 .3914 4.0<ill .6086 .9710 .9872 10 1.3294

.2443 14° 00' .2419 .3837 .2493 .3968 4.0108 .6032 .9703 .98(39 76° 00' 1.3265

.2473 10 .2447 .3887 .2524 .4021 3.9(517 .5979 .961K5 .98(56 50 1..3235

.2502 20 .2476 .3937 .2555 .4074 3.9136 .5926 .9689 .9863 40 1.3206

.2531 30 .2504 .3986 .2586 .4127 3.8667 .5873 .9(581 .9859 30 1.3177

.2560 40 .2532 .4035 .2617 .4178 3.8208 .5822 .9674 .985(5 20 1.3148

.2589 50 .2560 .4083 .2648 .4230 3.77(30 .5770 .fH367 .9853 10 1.3119

.2618 15°00' .2588 .4130 .2679 .4281 3.7321 .5719 .9659 .9849 75° 00' 1.30^)0

.2647 10 .2616 .4177 .2711 .4331 3.6891 .5669 .9(352 .9846 50 1.3061

.2676 20 .2641 .4223 .2742 .4381 3.6470 .5619 .9644 .9843 40 1.3032

.2705 30 .2672 .4269 .2773 .4430 3.6059 .5570 .9(336 .9839 30 1.3003

.2734 40 .2700 .4314 .2805 .4479 3.5656 .5521 .9628 .9836 20 1.2974

.2763 50 .2728 .4359 .2836 .4527 3.5261 .5473 .9621 .9832 10 1.2945

.2793 16° 00' .2756 .4403 .2867 .4575 3.4874 .5425 .9613 .9828 74° 00' 1.2915

.2822 10 .2784 .4447 .2899 .4622 3.4495 .5378 .%05 .9825 50 1.2886

.2851 20 .2812 .4491 .2931 .4669 3.4124 .5331 .9596 .9821 40 1.2857

.2880 30 .2840 .45.33 .2962 .4716 3.3759 .5284 .9588 .9817 30 1.2828

.2909 40 .2868 .4576 .2994 .4762 3.3402 .52.38 .9580 .9814 20 1.2799

.2938 50 .2896 .4618 .3026 .4808 3.3052 .5192 .9572 .9810 10 1.2770

.2967 17° 00' .2924 .4659 .3057 .4853 3.2709 .5147 .9563 .9806 73° 00' 1.2741

.2996 10 .2952 .4700 .3089 .4898 3.2371 .5102 .9555 .9802 50 1.2712

.3025 20 .2979 .4741 .3121 .4943 3.2041 .5057 .9546 .9798 40 1.2683

.3054 30 .3007 .4781 .3153 .4987 3.1716 .5013 .9537 .9794 30 1.2654

.3083 40 .3035 .4821 .3185 .5031 3.1397 .4969 .9528 .9790 20 1.2625

.3113 50 .3062 .4861 .3217 .5075 3.1084 .4925 .9520 .9786 10 1.2595

.3142 18° 00' .3090 Aim .3249 .5118 3.0777 .4882 .9511 .9782 72° 00' 1.2.566

Value Logio Value Login Value Logio Value Logio Degrees Radians
Cosine Cotangent Tangent Sine



270 Four Place Trigonometric Functions
[Characteristics of Logarithms omitted — determine by the usual rule from the value]

Radians Dbobees Sink Tangent Cotangent Cosine .

Value Logio Value Logio Value Logio Value Logio

.3142 18° 00' .3090 .4900 .3249 .5118 3.0777 .4882 .9511 .9782 72° 00' 1.2566

.3171 10 .3118 .4939 .3281 .5161 3.0475 .4839 .9502 .9778 50 1.2537

.3200 20 .3145 .4977 .3314 .5203 3.0178 .4797 .9492 .i)774 40 1.2508

.3229 30 .3173 .5015 .3346 .5245 2.9887 .4755 .9483 .9770 30 1.2479

.3258 40 .3201 .5052 .3378 .5287 2.9600 .4713 .9474 .9765 20 1.2450

.3287 50 .3228 .5090 .3411 .5329 2.9319 .4671 .9465 .9761 10 1.2421

.3316 19° 00' .3256 .5126 .3443 .5370 2.9042 .4630 .9455 .9757 71° 00' 1.2392

.3345 10 .3283 .5163 .3476 .5411 2.8770 .4589 .9446 .9752 50 1.2.363

.3374 20 .3311 .5U)9 .3508 .5451 2.8502 .4549 .9436 .9748 40 1.2334

.»i03 30 .3338 .5235 .3541 .5491 2.8239 .4509 .9426 .9743 30 1.2305

.3432 40 .3365 .5270 .3574 .5531 2.7980 .4469 .9417 .9739 20 1.2275

.3462 50 .3393 .5306 .3607 .5571 2.7725 .4429 .9407 .9734 10 1.2246

.3491 20° 00' .3420 .5341 .3640 .5611 2.7475 .4389 .9397 .9730 70° 00' 1.2217

.3520 10 .3448 .5375 .3673 .5650 2.7228 .4350 .9387 .9725 50 1.2188

.3549 20 .3475 .5409 .3706 .5689 2.6985 .4311 .9377 .9721 40 1.2159

.3578 30 .3502 .5443 .3739 .5727 2.6746 .4273 .9367 .9716 30 1.2130

.3607 40 .3529 .5477 .3772 .5766 2.6511 .4234 .9356 .9711 20 1.2101

.3636 50 .3557 .5510 .3805 .5804 2.6279 .4196 .9346 .9706 10 1.2072

.3665 21° 00' .3584 .5543 .3839 .5842 2.6051 .4158 .9336 .9702 69° 00' 1.2043

.3694 10 .3611 .5576 .3872 .5879 2.5826 .4121 .9.325 .9697 60 1.2014

.3723 20 .3638 .5609 .3906 .5917 2.5605 .4083 .9315 .9692 40 1.1985

.3752 30 .3665 .5641 .3939 .5954 2.5386 .4046 .9304 .9687 30 1.1956

.3782 40 .3692 .5673 .3973 .mn 2.5172 .4009 .9293 .9682 20 1.1926

.3811 50 .3719 .5704 .4006 .6028 2.4960 .3972 .9283 .9677 10 1.1897

.3840 22° 00' .3746 .5736 .4040 .6064 2.4751 .3936 .9272 .9672 68° 00' 1.1868

.3869 10 .3773 .5767 .4074 .6100 2.4545 .3900 .9261 .9667 50 1.1839

.3898 20 .3800 .5798 .4108 .6136 2.4342 .3864 .9250 .9661 40 1.1810

.3i)27 30 .3827 .5828 .4142 .6172 2.4142 .3828 .i)239 .9656 30 1.1781

.3956 40 .3854 ,5859 .4176 .()208 2.31^ .37i)2 .9228 .9651 20 1.1752

.3985 50 .3881 .5889 .4210 .0243 2.3750 .3757 .9216 .9646 10 1.1723

.4014 23° 00' .3907 .5919 .4245 .6279 2.a559 .3721 .9205 .9640 67° 00' 1.1094

.4043 10 .S9M .5948 .4279 .6314 2.;i:3()9 .3686 .91i>4 .9635 50 1.1665

.4072 20 .3961 .5978 .4314 .o:j48 2.3183 .3652 .9182 .9()2f) 40 1.163(5

.4102 30 .3987 .6007 .4348 .6383 2.2^)98 .3617 .9171 .9624 30 1.1606

.4131 40 .4014 .6036 .4383 .6417 2.2817 .3583 .9159 .9618 20 1.1577

.4160 50 .4041 .6065 .4417 .6452 2.2637 .3548 .9147 .9613 10 1.1548

.4189 24° 00' .4067 .6093 .4452 .6486 2.2460 .3514 .9135 .9607 66° 00' 1.1519

.4218 10 .4094 .6121 .4487 .6520 2.2286 .3480 .9124 .9602 50 1.1490

.4247 20 .4120 .6149 .45-22 .()553 2.2113 .3447 .9112 .9596 40 1.1461

.4276 30 .4147 .6177 .4557 .6587 2.1943 .3413 .9100 .9590 30 1.1432

.4305 40 .4173 .6206 .45i)2 .6620 2.1775 .3380 .9088 .9584 20 1.1403

.4334 50 .4200 .6232 .4628 .6654 2.1609 .3346 .9075 .9579 10 1.1374

.4363 26° 00' .4226 .6259 .4663 .6687 2.1445 .3313 .9063 .9573 66° 00' 1.1345

.4392 10 .4253 .628(5 .4699 .6720 2.1283 .3280 .tK)51 .95<57 50 1.1316

.4422 20 .4279 .6313 AIM .67r,2 2.1123 .3248 .9038 .9561 40 1.1286

.4451 30 .4305 .6340 .4770 .6785 2.0<K>5 .3215 .9026 .9555 30 1.1267

.4480 40 .4331 .6.36<i .4806 .6817 2.0809 .3183 .9013 .a549 20 1.1228

.4509 50 .4358 .6392 .4S41 .68.50 2.0655 .3150 .9001 .9543 10 1.1199

.4538 26° 00' .4384 .6418 .4877 .6882 2.0503 .3118 .8988 .9537 64° 00' 1.1170

.4567 10 .4410 .6444 .4913 .6914 2.o;r)3 .3086 .85)75 .a')30 50 1.1141

.4596 20 .4436 .6470 .4950 .<)1H6 2.0204 .3054 .8962 .9524 40 1.1112

.4625 30 .4462 .6495 .4986 .6977 2.0057 .3023 .8949 .9518 30 1.1083

.4654 40 .4488 .6521 .5022 .7009 1.9912 .2991 .S9m .9512 20 1.1054

.4683 50 .4514 .6540 .5059 .7040 1.9768 .2960 .8923 .9505 10 1.1025

.4712 27° 00' .4540 .6570 .5095 .7072 1.9626 .2928 .8910 .9499 63° 00' 1.0996

Value Logio Value Logio Value Logio Value Logio Degbebs Radians
Cosine Cotangent Tangent Sine



Four Place Trigonometric Functions 271

[Characteristics of Logarith ns omitted— determine by the usual rule from the value]

Radians Degrees Sine Tangent Cotangent Cosine
Value Logio Value Logio Value Logio Value Logio

.4712 27° 00' .4540 .6570 .5095 .7072 1.9626 .2928 .8910 .9499 63° 00' 1.0996

.4741 10 .4566 .6595 .5132 .7103 1.9486 .2897 .8897 .9492 50 1.0966

.4771 20 .4592 .6620 .5169 .7134 1.9347 .2866 .8884 .9486 40 1.0937

.4800 30 .4617 .6644 .5206 .7165 1.9210 .2835 .8870 .9479 30 1.0^)08

.4829 40 .4643 .66(58 .5243 .7196 1.9074 .2804 .8857 .9473 20 1.0879

.4858 50 .4669 .6692 .5280 .7226 1.8940 .2774 .8843 .9466 10 1.0850

.4887 28° 00' .4695 .6716 .5317 .7257 1.8807 .2743 .8829 .9459 62° 00' 1.0821

.4916 10 .4720 .6740 .5354 .7287 1.8676 .2713 .8816 .9453 50 1.0792

.4945 20 .4746 .6763 .5392 .7317 1.8546 .2683 .8802 .9446 40 1.07(53

.4974 30 .4772 .6787 .5430 .7348 1.8418 .2652 .8788 .9439 30 1.0734

.5003 40 .4797 .6810 .5467 .7378 1.8291 .2622 .8774 .9432 20 1.0705

.5032 50 .4823 .6833 .5505 .7408 1.8165 .2592 .8760 .9425 10 1.0676

.5061 29° 00' .4848 .6856 .5543 .7438 1.8040 .2562 .8746 .9418 61° 00' 1.0647

.5091- 10 .4874 .6878 .5581 .7467 1.7917 .2533 .8732 .9411 50 1.0617

.5120 20 .4899 .6901 .5619 .7497 1.7796 .2503 .8718 .9404 40 1.0588

.5149 30 .4924 .6923 .5658 .7526 1.7675 .2474 .8704 .9397 30 1.0559

.5178 40 .4950 .6946 .5(596 .7556 1.7556 .2444 .8689 .9390 20 1.0530

.5207 50 .4975 .6968 .5735 .7585 1.7437 .2415 .8675 .9383 10 1.0501

.5236 30° 00' .5000 .6990 .5774 .7614 1.7321 .2386 .8660 .9375 60° 00' 1.0472

.5265
' 20

.5025 .7012 .5812 .7644 1.7205 .2356 .8646 .9:368 50 1.0443
.5294 .5050 .7033 .5851 .7673 1.7090 .2327 .8631 .9361 40 1.0414
.5323 30 .5075 .7055 .5890 .7701 1.6977 .2299 .8616 .9353 30 1.0385

.5352 40 .5100 .7076 .5930 .7730 1.6864 .2270 .8601 .9346 20 1.0356

.5381 50 .5125 .7097 .5969 .7759 1.6753 .2241 .8587 .9338 10 1.0327

.5411 31° 00' .5150 .7118 .6009 .7788 1.6643 .2212 .8572 .9331 59° 00' 1.0297

.5440 10 .5175 .7139 .6048 .7816 1.6534 .2184 .8557 .9323 50 1.0268

.5469 20 .5200 .7160 .6088 .7845 1.6426 .2155 .8542 .9315 40 1.0239

.5498 30 .5225 .7181 .6128 .7873 1.6319 .2127 .8526 .9308 30 1.0210

.5527 40 .5250 .7201 .6168 .7902 1.6212 .2098 .8511 .9300 20 1.0181

.5556 50 .5275 .7222 .6208 .7930 1.6107 .2070 .8496 .9292 10 1.0152

.5585 32° 00' .5299 .7242 .6249 .7958 1.6003 .2042 .8480 .9284 58° 00' 1.0123

.5614 10 .5324 .7262 .6289 .7986 1.5900 .2014 .8465 .9276 50 1.0094

.5643 20 .5348 .7282 .6330 .8014 1.5798 .1986 .8450 .9268 40 1.00(35

.5672 30 .5373 .7302 .6371 .8042 1.5697 .1958 .8434 .9260 30 1.0036

.5701 40 .5398 .7322 .6412 .8070 1.5597 .1930 .8418 .9252 20 1.0007

.5730 50 .5422 .7342 .6453 .8097 1.5497 .1903 .8403 .9244 10 .9977

.5760 33° 00' .5446 .7361 .6494 .8125 1.5399 .1875 .8387 .9236 57° 00' .9948

.5789 10 ..5471 .7380 .6536 .8153 1.5301 .1847 .8371 .9228 50 .9919

.5818 20 .5495 .7400 .6577 .8180 1.5204 .1820 .8355 .9219 40 .98i)0

.5847 30 ..5519 .7419 .(^619 .8208 1.5108 .1792 .8339 .9211 30 .9861

.587(5 40 .5544 .7438 .6(561 .8235 1.5013 .1765 .8323 .9203 20 .9832

.5905 50 .5568 .7457 .6703 .8263 1.4919 .1737 .8307 .9194 10 .9803

.5934 34° 00' .5592 .7476 .6745 .8290 1.4826 .1710 .8290 .9186 56° 00' .9774

.5%3 10 .5616 .7494 .(5787 .8317 1.4733 .1683 .8274 .9177 50 .9745

.5992 20 .5640 .7513 .6830 .8344 1.4641 .1656 .8258] .9169 40 .9716

.6021 30 .5664 .7531 .6873 .8371 1.4550 .1629 .8241 .91(30 30 .9687

.6050 40 .5688 .7550 .(3916 .8398 1.4460 .1602 .8225 .9151 20 .9(557

.6080 50 .5712 .7568 .6959 .8425 1.4370 .1575 .8208 .9142 10 .9628

.6109 35° 00' .5736 .7586 .7002 .8452 1.4281 .1548 .8192 .9134 55°00' .9599

.6138 10 .57(50 .7604 .7046 .8479 1.4193 .1521 .8175 .9125 50 .9570

.6167 20 .5783 .7622 .7089 .8506 1.4106 .1494 .8158 .9116 40 .9541

.6196 30 .5807 .7640 .7133 .8533 1.4019 .1467 .8141 .9107 30 .9512

.6225 40 .5831 .7657 .7177 .85.59 1.3934 .1441 .8124 .9098 20 .9483

.6254 50 .5854 .7675 .7221 .8586 1.3848 .1414 .8107 .9089 10 .9454

.6283 36° 00' .5878 .7(i<)2 .7265 .8613 1.3764 .1387 .8090 .9080 54° 00' .9425

Value Logio Value Login Value Logio Value Logio Degrees Uadians
Cosine Cotangent TangENT Sine



272 Four Place Trigonometric Functions
[Characteristics of Logarithms omitted — determine by the usual rule from the valae]

Radians Degbees Sine Tangent Cotangent Cosine -

Value Logio Value Logio Value Logic Value Logic

.6283 36^^00' .5878 .7692 .7265 .8613 1.3764 .1387 .8090 .9080 64° 00' .^25

.6312 10 .5901 .7710 .7310 .8639 1.3680 .1361 .8073 .9070 50 .9396

.6341 20 .5925 .7727 .7355 .8666 1.3597 .13M .8056 .9061 40 .9367

.6370 30 .5948 .7744 .7400 .8692 l.;i514 .1308 .8039 .9052 30 .9.338

.6400 40 .5972 .7761 .7445 .8718 1.3432 .1282 .8021 .9042 20 .9308

.6429 50 .5995 .7778 .7490 .8745 1.3351 .1255 .8004 .9033 10 .i>279

.6458 87° 00' .6018 .7795 .7536 .8771 1.3270 .1229 .7986 .9023 68° 00' .9250

.6487 10 .6041 .7811 .7581 .8797 1.3190 .1203 .7969 .9014 50 .9221

.6516 20 .(i065 .7828 .7627 .8824 1.3111 .1176 .7951 .9004 40 .9192

.6545 30 .6088 .7»i4 .7673 .8850 1.3032 .1150 .79;i4 .8995 30 .9163

.6574 40 .6111 .7861 .7720 .8876 1.2954 .1124 .7916 .8985 20 .9134

.6603 50 .6134 .7877 .7766 .8902 1.2876 .1098 .7898 .8975 10 .9105

.6632 88° 00' .6157 .7893 .7813 .8928 1.2799 .1072 .7880 .8965 62° 00' .9076

.6661 10 .6180 .7910 .7860 .89.54 1.2723 .1046 .7862 .8955 50 .9047

.6(>90 20 .6202 .7926 .7907 .8980 1.2W7 .1020 .7844 .8945 40 .9018

.6720 30 .6225 .7911 .7954 .9006 1.2572 .0994 .7826 .8935 30 .8988

.6749 40 .6248 .7957 .8002 .9032 1.2497 .0968 .7808 .8925 20 .8959

.6778 50 .6271 .7973 .8050 .9058 1.2423 .0942 .7790 .8915 10 .8930

.6807 89° 00' .6293 .7989 .8098 .9084 1.2349 .0916 .7771 .8905 61°00' .8901

.6836 10 .6316 .8004 .8146 .9110 1.2276 .0890 .7753 .8895 50 .8872

.6865 20 .6338 .8020 .8195 .9135 1.2203 .0865 .7735 .88^ 40 .8843

.689i 30 .6361 .8035 .8243 .9161 1.2131 .0839 .7716 .8874 30 .8814

.6923 40 .6383 .8050 .8292 .9187 1.2059 .0813 .7698 .8864 20 .878^)

.6952 50 .6406 .806(> .8342 .9212 1.1988 .0788 .7679 .8853 10 .8756

.6981 40° 00' .6428 .8081 .8391 .9238 1.1918 .0762 .7660 .8843 60° 00' .8727

.7010 10 .6450 .8096 .8441 .9264 1.1847 .0736 .7642 .8832 50 .8698

.7039 20 .6472 .8111 .8491 .9289 1.1778 .0711 .7623 .8821 40 .86()8

.7069 30 .(>494 .8125 .8541 .9315 1.1708 .0685 .7604 .8810 30 .8639

.7098 40 .(i517 .8140 .8591 .9341 1.1640 .0659 .7585 .8800 20 .8610

.7127 50 .6539 .8155 .8642 .9366 1.1571 .06U .7566 .8789 10 .8581

.7156 41° 00' .6561 .8169 .8693 .9392 1.1504 .0608 .7547 .8778 49° 00' .85,52

.7185 10 .6583 .8184 .8744 .9417 1.1436 .0583 .7528 .8767 50 .8523

.7214 20 .6604 .811)8 .87i)6 .9443 1.1369 .0557 .7509 .8756 40 .8494

.7243 30 .6626 .8213 .8847 .9468 1.1303 .a532 .7490 .8745 30 .8465

.7272 40 .6648 .8227 .8899 .9494 1.1237 .0506 .7470 .8733 20 .8436

.7301 50 .6670 .8241 .8952 .9519 1.1171 .0481 .7451 .8722 10 .8407

.7330 42° 00' .6691 .82.55 .iXXH .9544 1.1106 .0456 .7431 .8711 48° 00' .8378

.7359 10 .6713 .8269 .9057 .9570 1.1041 .0430 .7412 .8699 50 .8*48

.7389 20 .6734 .8283 .9110 .9595 1.0977 .0405 .7392 .8G8S 40 .8319

.7418 30 .6756 .8297 .91(>3 .9()21 1.0913 .0379 .7373 .8676 30 .8290

.7447 40 .6777 .8311 .9217 .9646 1.0850 .0354 .7353 .8665 20 .8261

.7476 50 .6799 .8324 .9271 .9671 1.0786 .0329 .7333 .8653 10 .8232

.7505 48° 00' .6820 .8338 .9325 .9697 1.0724 .0303 .7314 .8641 47° 00' .8203

.7534 10 .6841 .8351 .9380 .9722 1.0661 .0278 .72<H .8629 50 .8174

.7563 20 .6862 .8365 .9435 .9747 1.0599 .0253 .7274 .8618 40 .8145

.7692 30 .6884 .8378 .9490 .9772 1.0538 .0228 .7254 .8606 30 .8116

.7621 40 .6905 .8391 .9545 .9798 1.0477 .0202 .7234 .8594 20 .8087

.7650 50 .6926 .8405 .9601 .9823 1.0416 .0177 .7214 .8582 10 .8058

.7679 44° 00' .6947 .8418 .9657 .9848 1.0355 .0152 .7193 .85<)9 46° 00' .8029

.7709 10 .6967 .8431 .9713 .9874 1.0295 .0126 .7173 .8557 50 .7999

.7738 20 .6988 .8444 .9770 .9899 1.0235 .0101 .7153 .8545 40 .7970

.7767 30 .7009 .»457 .9827 .9924 1.0176 .0076 .7133 .8532 30 .7i^l

.7796 40 .7030 .8469 .9884 .9949 1.0117 .0051 .7112 .8520 20 .7912

.7825 50 .7050 .i^82 .9942 .9975 1.0058 .0025 .7092 .8507 10 .7883

.7854 46^00' .7071 M95 1.0000 .0000 1.0000 .0000 .7071 .^495 45° 00' .7854

Value Logjo Value Login Value Logio Value Logio Degbees Radians
Cosine Cotangent Tangent Shtf.



ANSWERS

[Answers which might lessen the value of the Exercise are not given.]

Pages 9-10. 5. 2| miles. 16. 173.9 ft.

Pages 12-13. 3. 22. 4. ^(_bc + ca + ab)

.

Pages 16-17. 4. i rir2 sin (02 - 0i)-

5. ^lroj'3 sin ((^3 - 02) + nn sin (0i - 03)+ nr2 sin (02 - 0i)].

Page 21. 16. They intersect at [K»^i+ a:2+a^3+X4),i(2/i+ y2+2/3+2/4)].

19. [Ka^i + a;2 + a^a), K^i + 2/2 + ^3)]-

Pages 40-41. 6. 640/39. 9. (&1W2 - 62^1)72 wima (mi - W2).

10. (3,1).

Pages 46-47. 2. (a) r sin = ± 5
; (&) r cos = ± 4

;

(c) rcos(0--f7r) = ± 12.

3. = 0, r sin = 9, = i TT, r cos = 6. 14. 8464/85.

19. (_ 5, _ 10). 21. x = l (by inspection), 4x-3?/ + 16 = 0.

Page 49. 4. h"^ ^ ah^O.

Page 50. 1. tan-i
^^^^'"^^

; a =- 6, /i^ = a6.
a + &

4. [wi(&2 - &)- ^2(61 - 6)]V2mim2 (W2- wii).

6. r(2cos — 3sin0)+ 12 =0.

10. 1 hr. 10 m. ; 176 miles from Detroit.

Pages 54-55. 6. x^ + ^/^ - 96 x - 54 y + 2408 = ; 31 .8 ft. or 66.3 ft.

8. x^ + 1/2 — 16 X + 8 ?/ + 60 = 0. 9. A circle except for k =± 1.

10. x^ + y'^ + 4:l±^x + 4 = 0.

Page 56. 2. (a) r2 - 20 r sin + 76 = 0;

(5) r2- 12rcos(0-i7r)+18 = O; (c) r + 8 sin = 0.

Page 58. 3. (- 6, - 1), (29/106, 42/53).

7. 8x-4?/-ll±15V2 = 0.

273



274 ANSWERS

Page 60. 3. (xi - /t) (x - A) + (yi -k)(y -k)= r^.

7. (-rM/C, -r2J5/C). 8. (2,1).

Page 62. 6. (x - 79/38)2 + (y - 55/38)2 = (65/38)2.

8. x2 + y2 + 4 X - 2 y - 15 = 0.

Page 67. 1. (c) Polar lies at infinity.

Pages 69-70. 3. Let Z, M be the intersections of the circle with

OPi, then d^ - r2 = LPi • MPi.

4. x = yi Vi(a + 6)2 -4c.
6. (c) 2x2+2y24-22x + 6y + 15 = 0, 2x2+2y2_i0x-10y-25 = 0.

9. 6x2 ^ 5^2 ^ fj2^x — a'^y = 0.

12. If the vertices of the square are (0, 0), (a, 0), (0, a), (a, a) and k^

is the constant, the locus is 2 x2 + 2 y2 _ 2 ax — 2 ay + 2 a^ — A;2 = ;

k>a; ^aV6.
13. If the vertices of the triangle are (a, 0), (—a, 0), (0, aV3) and

A;2 is the constant, the locus is 3 x2 + 3 y2 _ 2 VS ay + 3 a2 — 2 A;2 = 0.

Pages 74-75. 10. (a) 2y=3x2 + 5x; (6) 12y =- 5x2 + 29x - 18.

11. 300y =-x2 + 230x; 44.1 ft. above the ground; 230 ft. from the
starting point.

Page 81. 6. East, East 33° 41' North, East 63° 8' North, East 18° 26'

South.

10. 100/(7r + 4).

Pages 84-85. 10. 0, 8° 8'. 11. 7° 29'.

15. When the side of the square is 3 in.

17. (a) 6y = x8 + 6x2-19x; (6) 7y = 2x« - x2 - 29a; + 35.

Page 92. 10. - 1.88, 1.53, .347.

Pages 97-98. 2. (a) (4, jir), (4, |t); (6) (a, ^tt), (a, | tt)
;

(c) (4,0); (d) (4 a, JT), (4a, fx).

7. (a) y2_4a;_|-4 = 0; (6) 14y2_ 45 a; + 62y + 60 = 0.

8. (6) x2-10x-3y + 21=0; (c) a;2 + 2x + y - 1 =0.

9. The equation of a parabola contains an xy term when its axis is oblique

to a coordinate axis.

Pages 106-108. 8. (a) y = ; (6) 2x + 2y - 9=0, 2 x-y-18 = 0;

(c) 2x + 2y-9 = 0, 8x+ 16y-27 =0, 24x-16y- 153 = 0.

id) 8x-16y-27 = 0.

14. y = kx. 16. Directrix; y2 = a(x - 3 a). 21. — (1 + w2).
*n.2
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26. x2-80x-2400?/ = 0; 0, - i, - |, - J, 0, |, 2.

29. x2 = 360(y-20).
3

Page 115. 2. (3 7r-4)/6 7r. 3. §a^ (^+f')^ .

3 m**

6. (a) 64/3
; (6) 625/12

;
(c) 1/12. 7. 123.84 ft^. 8. 1794 J tons.

9. 199.4 ft2.

Page 118. 9. 8x2 -2 a;?/ + 8 2/2 -63 = 0.

Page 122. 10. 3x2 - ^2 = 3 ^^^ n. 5. 14. 2xy = 1.

Pages 128-129. 2. ^X+-r=:c2. 13. 54.5 ft., 42.2 ft. 17.62/^2.
X y

20. An ellipse or hyperbola according as one circle lies within or without

the other circle.

Pages 138-139. 7. (a) A^a^-&h'^=^ C^
; (&) aP- cos2 ^- &2 sin2 ^=p2.

19. 62. 21. a2-f 62; a2_52. 22. 4 a6. 23. sin-i (a6/a'6')-

25. (a) x2 + y2 ^ Qj2 + 52 .

(6) x2 + ^2 ^ (j2 _ 52.

Page 144. 3. (a) (1, - 1), (1 ± V2, - 1), x = 1 ± | V2 ;

(&) a,0), (f,0), (-f,0),X = 0,X=:l.

4. 2 62/a. 7. (a) a2i/2 = h'h:,{a - x); (6) 52^2 = cfiyQy _ yy
8. Two straight lines.

Page 151. 2. (a); Vertices (5, 3), (8, 3); semi-axes 3/2, V2.

(6) Vertices (4, 8/3), (8, 8) ; semi-axes 10/3. 5\/3/3.

(c) Vertices (17/5, 7/5), (1, 3) ; semi-axes V65/5, ^13/2.

3. 3x +2y- 2 = 0; 21/13, -37/26, 10/ \/l3.

Page 153. 5. (acos ^, — asin ^), x2 -|- y2 _ 2 a(xcos0 — ?/ sin ^)= 0.

Pages 161-162. 2. (a) 3 x - 14 1/ = ; (6) y =- 3/13, x = - 14/13.

5. 2 x2 - x?/ - 15 ?/2 H- X -f- 19 ?/ - 6 = 0,

2 x2 - xy - 15 ?/2 + x -f 19 ?/ - 28 = 0.

6. 6x2 -f xy- 2 2/2 -9x 4-82/ -46 = 0,

6x^ + xy-2y^ -9x + 8y + Si =0.
11. (a) x2/4 + ?/2 = 1 ;

(b) x2/4 - 2/2/2 = 1
;

(c) 3x2 -f y2 + 6 = 0;

(d) x2/16 + 2/2/4 = 1 . (e) (3 -h Vl7)x2 -f (3 - V17)?/2 = 4
;

(/) (2-hV2)x2-H(2-V2)2/2 = l.

15. x^-\-y^= aK
19. Equilateral hyperbola.
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Page 168. 2. (a) Simple point
; (6) node

; (c) cusp
;

(d) cusp.

4. (a) None
;

(b) node at {b, 0) ;
(c) isolated point at (a, 0) ;

(d) cusp at (a, 0).

Pages 174-175. 4. r=a(sec ± tan 0) or (x - a)y^-{- x'^(x-^ a) =0.
10. a;2?/2 = a2(a;2 ^ yiy ^ Cissoid (a - x)y^ = x^.

12. y(x2 4- y2) := rt(^2 _ ^2). i3_ y _ ^ ctn <p.

l + V
etc.Page 195. 6. —:^

V2(l + ;Z' + mm' + nn')

13. \{xi + Xa + xa), K^i + ^2 + ys), i(;?i + 22 + ^s).

Page 199. 6. cos-i(7/3V29).

Page 203. 2. ^V465. 3. fV269.
6. (3962, AV 43', 276° 16'), (320, - 2914, 2666), 2931.

7. \ rir2Vl — [cos ^1 cos ^2 + sin ^1 sin 62 cos (0i — 02)]*-

8. Vri^ 4. ra'-^ — 2 rir2[sin ^1 sin 62 cos (0i — 02) + cos di cos ^2].

10. - 1, 10, 7.

Page 208. 3. 30a:- lOy + 7^ - 89 = 0.

6. 97/28, - 97/49, - 97/9. 7. 3x-4y + 2«-6 = 0.

Page 212. 5. 4x + 8y-f0 = 81,4x+8y+« = 9O.

Page 215. 2. (a) 56/3 ; (6) ; (c) 19/3.

12. 3x-2y = l. 13. 6x + lly + 9;? = 58.Page 218
16. 70° 31'. 17. cos-i(2 K^ + 3 a2)/(4 K^ + 3 a-^).

Pages 226-228. 3. 69° 29'.

21. X - 2 y + « + 8 = 0.

y^i — xi y2 — yi Z2 — 21

24. a\ b\ cx

a^ 62 C2

19. (a) V63719; (6) V'194/33.

Pages 236-237. 4.

7. x2- 3?/2_3«'^ = 0.

(1, 0, - 3), (- 9/11, 20/11, 27/11).

13. 25 (x-^ + y2 + 5r2) = 162^ 25 « = 64.

Pages 240-241. 4. (4,-5,-3). 6. (4,6,2).

6. bx-\-2y- z = 2b, 2x-3y + 2 + 25 = 0.

Page 246. 4. (x^ + j,2 + ^^2 _ ^2 _ 52)2 _ 4 ^,2(^2 _ ^2) = q.

6. (a) 16a2(x2 + 2:2^ = y4. (5) I6a2[(x-a)2+22] = (4a-2_y2)2.

7. y2(a;2 + 2-2) = a*.
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(The numbers refer to the pages.)

Abscissa, 1, 4.

Acnode, 167.

Adiabatic expansion, 188.

Algebraic curves, 163-168.

Amplitude, 15.

Anchor-ring, 246.

Angle between line and plane, 224

;

between two curves, 84 ; between
two lines, 39, 196, 223; between
two planes, 211.

Anomaly, 15.

Area of ellipse, 138 ; of parabolic

segment, 112-115; of triangle, 11,

12, 200; under any curve, 114.

Asymptotes, 121.

Asymptotic cone, 255.

Axes of coordinates, 4, 189 ; of

ellipse, 116; of hyperbola, 120.

Axis, 17; of parabola, 72, 94; of

pencil, 215 ; of revolution, 244

;

of symmetry, 76.

Azimuth, 15.

Bisecting planes, 211.

Bisectors of angles of two lines, 45.

Boyle's Law, 161.

Cardioid, 170.

Cartesian coordinates, 16.

Cartesian equation of conic, 142 ; of

ellipse, 117; of hyperbola, 120;
of parabola, 95.

Cartesius, 16.

Cassinian ovals, 171, 174, 262.

Catenary, 108.

Center of ellipse, 116, 132; of ellip-

soid, 243; of hyperbola, 120, 132;
of hyperboloid, 248, 249 ; of inver-
sion, 63; of pencil, 48; of sheaf,

216; of symmetry, 76, 132.

Centroid, 21.

Chord of contact, 65.

Circle, 51-70
; in space, 232 ; through

three points, 61.

Circular cone, 251.

Cissoid, 170.

Classification of conies, 142 ; of

quadric surfaces, 252-255.
Clockwise, 11.

Colatitude, 202.

Common chord, 69.

Completing the square, 52, 73.

Component, 18, 192, 196.

Conchoid, 169.

Cone, 251, 261 ; asymptotic, 255; of

revolution, 252.

Conic sections, 140-147, 148.

Conies as sections of a cone, 144-147.

Conjugate axes, 238 ; axis, 121

;

diameters, 132-136 ; hyperbolas,
122 ; lines, 238.

Continuity, 90-91,

Contour lines, 261.

Coordinate axes, 4, 189
;
planes, 189

;

trihedral, 189.

Coordinates, 1, 5, 189; polar, 15,

202.

Coplanar, 198.

Cosine curve, 176.

Counterclockwise, 11.

Cross-sections, 243, 247, 249, 260.

Crunode, 167.

Cubic curves, 163 ; function, 82-84.

Curve in space, 205.

Cusp, 167.

Cycloid, 172.

Cylinders, 261.

Derivative, 79-81, 82, 87-89; of

ax^, 79 ; of cubic function, 82 ; of

277
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polynomial, 87-89 ; of quadratic

function, 80 ; of z", 89.

Derived curves, 92.

Descartes, 16.

Determinant, 11, 12; of two equa-
tions, 37.

Diameter, 243; of ellipse, 132; of

hyperbola, 135 ; of parabola, 105-

106.

Direction cosines, 194, 219.

Director circle, 139 ; sphere, 259.

Directrices of conies, 140, 143.

Directrix of parabola, 93.

Discriminant of equation of second
degree, 156-157 ; of quadratic

equation, 56.

Distance between two points, 7, 16,

190; of point from line, 44, 225;
of point from origin, 6, 190 ; of

point from plane, 210; of two
lines, 225-226.

Division ratio, 3, 8, 193.

Double point, 166-167.

Eccentric angle, 137.

Eccentricity, 125, 140.

Ellipse, 116-139, 140, 146, 157-159.

Ellipsoid, 242-244; of revolution,

244.

Elliptic cone, 251 ; paraboloid, 250.

Empirical equations, 178-188.

Epicycloid, 173.

Equation of first degree, see Linear
equation; of line, 25, 31; of

plane, 205-209 ; of second degree,

52.

Equations of line, 219-220.
Equator, 244.

Equatorial plane, 202.

Equilateral hyperbola, 121.

Euler's angles, 265.

Exponential curve, 177.

Factor of proportionality, 24.

Falling body, 30, 50, 74.

Family of circles, 69 ; of spheres, 240.

Foci of conic, 143; of ellipse, 116,

140; of hyperbola, 119, 140.

Focus of parabola, 93.

Four-cusped hypocycloid, 174.

Function, 28; linear, 71; of two
variables, 261 ; quadratic, 71

;

rational integral, 85.

Gas-meter, 26, 181.

Gas pressure, 184, 188.

General equation of second degree,

52, 149-162, 229, 252.

Geometric properties of parabola,

104.

Higher plane curves, 163-188.

Hooke's Law, 14, 24, 29, 179, 181.

Hyperbola, 119-139, 140, 146, 157-

159.

Hyperbolic paraboloid, 250; spiral,

174.

Hyperboloid, of one sheet, 247-248;
of revolution of one sheet, 248 ; of

revolution of two sheets, 249 ; of

two sheets, 248-249.

Hypocycloid, 174.

Imaginary ellipsoid, 249.

Inclined plane, 183.

Inflection, 83.

Intercept, 25, 33 ; form, 32, 207.

Intersecting lines, 219.

Intersection of line and circle, 56

;

of line and ellipse, 130 ; of line and
parabola, 102 ; of line and sphere,

234 ; of two lines, 37.

Invariants, 162.

Inverse of a circle, 63 ; trigonometric

curves, 176.

Inversion, 62, 236.

Inversor, 111.

Isolated i)oint, 167.

Latitude, 202.

Latus rectum of parabola, 94 ; of

conic, 141.

Left-handed trihedral, 264.

Lemniscate, 172, 174.

Level lines, 261.

LimaQon, 169.

Limiting cases of conies, 147.

Line, 23, 219 ; and plane perpendicu-

lar at given point, 224 ; of nodes,

265; intercept form, 32; normal
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form, 42 ;
parallel to an axis, 22

;

parameter equations, 220 ; through
one point, 34, 220 ; through origin,

23 ; through two points, 35, 220.

Linear equation, 31, 205.

Linear equations, three, 214 ; two,

37-38, 205, 214.

Linear function, 28, 71.

Lituus, 174.

Logarithmic curve, 177.

Logarithmic paper, 186; plotting,

184-188.

Longitude, 202.

Major axis, 117.

Maximum, 80, 82.

Mechanical construction of ellipse,

116 ; of hyperbola, 119 ; of parab-

ola, 95.

Melting point of alloy, 181.

Meridian plane, 202 ; section, 245.

Midpoint of segment, 9.

Minimum, 80, 82.

Minor axis, 117.

Moment of a force, 200-201.

Multiple points, 168.

Nodal line, 265.

Node, 167.

Non-linear equations representing

lines, 49, 216.

Normal form, 42, 208.

Normal to ellipse, 126 ; to parabola,

101, 103 ; to any surface, 259.

Oblate, 244.

Oblique axes, 6, 7, 190.

Octant, 189.

Ordinary point, 166.

Ordinate, 5.

Origin, 1, 4, 189.

Orthogonal substitution, 262 ; trans-

formation, 262.

Parabola, 71-81, 93-115, 145, 159-

160 ; Cartesian equation, 95

;

polar equation, 93-94 ; referred to

diameter and tangent, 110.

Paraboloid, elliptic, 250 ; hyperbolic,

250: of revolution, 251.

Parallel circle, 245
;

planes, 260.

Parallelism, 27, 32, 40, 197, 223, 224.

Parallelogram law, 18.

Parameter, 69, 109 ; equations of

circle, 109; of ellipse, 137; of

hyperbola, 137; of line, 220; of

parabola, 110.

Peaucellier's cell. 111.

Pencil of circles, 69 ; of lines, 48 ; of

parallels, 48 ; of planes, 215 ; of

spheres, 240.

Pendulum, 74.

Perpendicularity, 27, 32, 40, 197,

223, 224.

Plane, 204-218 ; intercept form, 207 ;

normal form, 208 ; through three

points, 207.

Plane and line perpendicular at given

point, 224.

Plotting by points, 30, 71.

Points of inflection, 83.

Polar, 64, 66, 237; angle, 15; axis,

15, 202; coordinates, 15, 202;
equation of circle, 55 ; of conic,

141-142 ; of line, 41 ; of parabola,

93-94
;
plane, 237.

Pole, 15, 202.

Pole and polar, 64, 66, 237.

Poles, 244.

Polynomial, 85-92 ; curve, 90-92.

Power of a point, 68, 239.

Projectile, 75, 81, 111.

Projecting cylinders, 232 ;
planes of

a line, 221-222.

Projection, 17-20, 192-193, 196.

Prolate, 244.

Proportional quantities, 23.

Pulleys, 26, 30, 36, 180.

Pythagorean relation, 194.

Quadrant, 5.

Quadratic equation, 56 ; function,

71-81.

Quadric surfaces, 242-261, 252.

Radical axis, 68, 239-240; center,

69, 239-240
;
plane, 239.

Radius vector, 15, 194, 202.

Rate of change, 28, 87 ; of interest,

28, 34.
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Reciprocal polars, 238.

Rectangular coordinates, 6 ; hyper-

bola, 121.

Reduction to normal form, 43, 209.

Related quantities, 13.

Removal of term in xy, 154.

Resultant, 18, 192.

Right-handed trihedral, 264.

Rotation of axes, 151-152 ; of coor-

dinate trihedral, 262-265.

Ruled surfaces, 257-259.

Rulings on hyperboloid of one sheet,

258 ; on hyperbolic paraboloid, 259.

Second derivative, 83.

Sheaf of planes, 216.

Shortest distance of two lines, 225-226.

Simple point, 166.

Simple harmonic motion, 177.

Simpson's rule, 114.

Simultaneous linear equations, 37-

38, 214.

Sine curve, 175.

Slope, 23 ; of ellipse, 125 ; of hyper-

bola, 128 ; of parabola, 78-79, 99 ;

of secant of parabola, 78.

Slope form of equation of line, 25.

Sphere, 229-241 ; through four

points, 231.

Spherical coordinates, 202.

Spheroid, 244.

Spinode, 167.

Spiral of Archimedes, 174.

Statistics, 13.

Straight line, 22.

Strophoid, 174.

Subnormal to parabola, 101.

Substitutions, 182.

Subtangent to parabola, 101.

Superposable axes, 152 ; trihedrals,

264.

Surface, 204, 260 ; of revolution, 245.

Suspension bridge, 108.

Symmetry, 76-77, 132.

Tangent to algebraic curve at origin,

165-168 ; to circle, 59 ; to ellipse,

124, 130 ; to hyperbola, 128, 130

;

to parabola, 78, 100, 102.

Tangent cone to sphere, 235.

Tangent curve, 176.

Tangent plane to ellipsoid, 256-257;
to hyperboloids, 257 ; to parabo-
loids, 257 ; to quadric surfaces, 257 ;

to sphere, 233.

Telescope, 109.

Temperature, 14, 30, 182.

Tetrahedron volume, 213.

Thermometer, 2, 30, 34.

Torus, 246.

Transcendental curves, 176.

Transformation from cartesian to

polar coordinates, 16, 202-203;
to center, 142, 156 ; to parallel

axes, 11, 155.

Translation of axes, 11, 149-150; of

coordinate trihedral, 199.

Transverse axis, 121.

Trochoid, 173.

Uniform motion, 29, 50.

Units, 5.

Vector, 17, 192.

Vectorial angle, 15.

Velocity, 29, 30.

Versiera, 170.

Vertex of parabola, 72, 94.

Vertices of ellipse, 116; of hyper-

bola, 120.

Volume of tetrahedron, 213.

Water gauge, 2.

Whispering galleries, 129.
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Analytic Geometry and Principles of Algebra

BY

ALEXANDER ZIWET
Professor of Mathematics, the University of Michigan

AND LOUIS ALLEN HOPKINS
Instructor in Mathematics, the University of Michigan

Edited by EARLE RAYMOND HEDRICK

Cloth, via + jdg pp., appendix, answers, index, i2mo, $i.6o

This work combines with analytic geometry a number of topics traditionally

treated in college algebra that depend upon or are closely associated with

geometric sensation. Through this combination it becomes possible to show

the student more directly the meaning and the usefulness of these subjects.

The idea of coordinates is so simple that it might (and perhaps should) be

explained at the very beginning of the study of algebra and geometry. Real

analytic geometry, however, begins only when the equation in two variables

is interpreted as defining a locus. This idea must be introduced very gradu-

ally, as it is difficult for the beginner to grasp. The familiar loci, straight

line and circle, are therefore treated at great length.

In the chapters on the conic sections only the most essential properties of

these curves are given in the text ; thus, poles and polars are discussed only

in connection with the circle.

The treatment of soUd analytic geometry follows the more usual lines. But,

in view of the application to mechanics, the idea of the vector is given some

prominence; and the representation of a function of two variables by contour

lines as well as by a surface in space is explained and illustrated by practical

examples.

The exercises have been selected with great care in order not only to fur-

nish sufficient material for practice in algebraic work but also to stimulate

independent thinking and to point out the applications of the theory to con-

crete problems. The number of exercises is sufficient to allow the instructor

to make a choice.

To reduce the course presented in this book to about half its extent, the

parts of the text in small type, the chapters on solid analytic geometry, and

the more difficult problems throughout may be omitted.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



TRIGONOMETRY
BY

ALFRED MONROE KENYON
Professor of Mathematics, Purdue University

And LOUIS INGOLD
Assistant Proff^sor of Mathematics, the University of

Missouri

Edited by Earle Raymond Hedrick

Trigonometry, flexible cloth, pocket size, long i2mo {xi-\- tj2 pp.) with Complete

Tables {xinii + 124 pp.) , $i.JS

Trigonometry {xi-^ ij2 pp.) with Brief Tables {xviii-\- 12 pp.), $1.00

Macmillan Logarithmic and Trigonometric Tables, flexible cloth, pocket size, long

j2mo {xviii+ 124 pp.) , $j6o

FROM THE PREFACE

The book contains a minimum of purely theoretical matter. Its entire

organization is intended to give a clear view of the meaning and the imme-

diate usefulness of Trigonometry. The proofs, however, are in a form that

will not require essential revision in the courses that follow. . . .

The number of exercises is very large, and the traditional monotony is

broken by illustrations from a variety of topics. Here, as well as in the text,

the attempt is often made to lead the student to think for himself by giving

suggestions rather than completed solutions or demonstrations.

The text proper is short; what is there gained in space is used to make the

tables very complete and usable. Attention is called particularly to the com-

plete and handily arranged table of squares, square roots, cubes, etc.; by its

use the Pythagorean theorem and the Cosine Law become practicable for

actual computation. The use of the slide rule and of four-place tables is

encouraged for problems that do not demand extreme accuracy.

Only a few fundamental definitions and relations in Trigonometry need be

memorized; these are here emphasized. The great body of principles and

processes depends upon these fundamentals; these are presented in this book,

as they should be retained, rather by emphasizing and dwelling upon that

dependence. Otherwise, the subject can have no real educational value, nor

indeed any permanent practical value.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



THE CALCULUS
BY

ELLERY WILLIAMS DAVIS

Professor of Mathematics, the University of Nebraska

Assisted by William Charles Brenke, Associate Professoi ot

Mathematics, the University of Nebraska

Edited by Earle Raymond Hedrick

Cloth, semi-flexible, xxi -\- 383 pp. + Tables {63), i2mo, $2.00

Edition De Luxe, flexible leather binding, India paper, $2.40

This book presents as many and as varied applications of the Calculus

as it is possible to do without venturing into technical fields whose subject

matter is itself unknown and incomprehensible to the student, and without

abandoning an orderly presentation of fundamental principles.

The same general tendency has led to the treatment of topics with a view

toward bringing out their essential usefulness. Rigorous forms of demonstra-

tion are not insisted upon, especially where the precisely rigorous proofs

would be beyond the present grasp of the student. Rather the stress is laid

upon the student's certain comprehension of that which is done, and his con-

viction that the results obtained are both reasonable and useful. At the

same time, an effort has been made to avoid those grosser errors and actual

misstatements of fact which have often offended the teacher in texts otherwise

attractive and teachable.

Purely destructive criticism and abandonment of coherent arrangement

are just as dangerous as ultra-conservatism. This book attempts to preserve

the essential features of the Calculus, to give the student a thorough training

in mathematical reasoning, to create in him a sure mathematical imagination,

and to meet fairly the reasonable demand for enlivening and enriching the

subject through applications at the expense of purely formal work that con-

tains no essential principle.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New Tork



GEOMETRY
BY

WALTER BURTON FORD
Junior Professor of Mathematics, University of Michigan

And CHARLES AMMERMAN
The William McKinley High School, St. Louis

Edited by Earle Raymond Hedrick, Professor of Mathematics

in the University of Missouri

Plane and Solid Geometry, cloth, i2mo, 31q pp., $1^5

Plane Geometry, cloth, i2mo, 213 pp., $ .80

Solid Geometry, cloth, i2mo, 106 pp., $ .80

STRONG POINTS

I. The authors and the editor are well qualified by training and experi-

ence to prepare a textbook on Geometry.
II. As treated in this book, geometry functions in the thought of the

pupil. It means something because its practical applications are shown.
III. The logical as well as the practical side of the subject is emphasized.

IV. The arrangement of material is pedagogical.

V. Basal theorems are printed in black-face type.

VI. The book conforms to the recommendations of the National Com-
mittee on the Teaching of Geometry.

VII. Typography and binding are excellent. The latter is the reenforced

tape binding that is characteristic of Macmillan textbooks.

" Geometry is likely to remain primarily a cultural, rather than an informa-

tion subject," say the authors in the preface. " But the intimate connection
of geometry with human activities is evident upon every hand, and constitutes

fully as much an integral part of the subject as does its older logical and
scholastic aspect." This connection with human activities, this application

of geometry to real human needs, is emphasized in a great variety of problems
and constructions, so that theory and application are inseparably connected
throughout the book.
These illustrations and the many others contained in the book will be seen

to cover a wider range than is usual, even in books that emphasize practical

applications to a questionable extent. This results in a better appreciation

of the significance of the subject on the part of the student, in that he gains a

truer conception of the wide scope of its application.

The logical as well as the practical side of the subject is emphasized.
Definitions, arrangement, and method of treatment are logical. The defi-

nitions are particularly simple, clear, and accurate. The traditional manner
of presentation in a logical system is preserved, with due regard for practical

applications. Proofs, both formal and informal, are strictly logical.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



Elements of Theoretical Mechanics
BY

ALEXANDER ZIWET
Professor of Mathematics in the University of Michigan

Cloth, 8vo, 4Q4 pp., $4.00

The work is nof a treatise on applied mechanics, the applications being

merely used to illustrate the general principles and to give the student an idea

of the uses to which mechanics can be put. It is intended to furnish a safe

and sufficient basis, on the one hand, for the more advanced study of the sci-

ence, on the other, for the study of its more simple applications. The book
will in particular stimulate the study of theoretical mechanics in engineering

schools.

Introduction to Analytical Mechanics

BY

ALEXANDER ZIWET
Professor of Mathematics in the University of Michigan

And peter FIELD

Assistant Professor of Mathematics in the University of

Michigan

Cloth, i2mo, 374 pp., $1.60

The present volume is intended as a brief introduction to mechanics for

junior and senior students in colleges and universities. It is based to a large

extent on Ziwet's "Theoretical Mechanics "; but the applications to engineer-
ing are omitted, and the analytical treatment has been broadened. No knowl-
edge of differential equations is presupposed, the treatment of the occurring
equations being fully explained. It is believed that the book can readily be
covered in a three-hour course extending throughout a year. The book has,

however, been arranged so that certain omissions may be easily made in order
to adapt it for use in a shorter course.

While more prominence has been given to the analytical side of the sub-

ject, the more intuitive geometrical ideas are generally made to precede the

analysis. In doing this the idea of the vector is freely used; but it has
seemed best to avoid the special methods and notations of vector analysis.

That material has been selected which will be not only useful to the begin-
ning student of mathematics and physical science, but which will also give the
reader a general view of the science of mechanics as a whole and afford him
a foundation broad enough to faciUtate further study.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New Tork
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