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PREFACE.

The preceding editions of this work were published in 1830,

1832, 1835, and 1840. This fifth edition differs from the

three preceding, as to the body of the work, in nothing

which need prevent the four, or any two of them, from

being used together in a class. But it is considerably aug-

mented by the addition of eleven new Appendixes,* relating

to matters on which it is most desirable that the advanced

student should possess information. The first Appendix, on

Computation, and the sixth, on Decimal Money, should be

read and practised by every student with as much attention

as any part of the work. The mastery of the rules for in-

stantaneous conversion of the usual fractions of a pound

sterUng into decimal fractions, gives the possessor the greater

part of the advantage which he would derive from the intro-

duction of a decimal coinage.

At the time when this work was first published, the

importance of establishing arithmetic in the young mind

upon reason and demonstration, was not admitted by many.

The case is now altered: schools exist in which rational

* Some separate copies of these Appendixes are printed, for those

who may desire to add them to the former editions.

41.7
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arithmetic is taught, and mere rules are made to do no more

than their proper duty. There is no necessity to advocate

a change which is actually in progress, as the v^rorks which

are published every day sufficiently shew. And my principal

reason for alluding to the subject here, is merely to warn

those who want nothing but routine, that this is not the

book for their purpose.

A. De Morgan.

London, May 1, 1846.
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ELEMENTS OF AEITHMETIC,

BOOK I.

PRINCIPLES OF ARITHMETIC.

SECTION I.

NUMERATION.

1. Imagine a multitude of objects of the same kind assembled

together; for example, a company of horsemen. One of the first

things that must strike a spectator, although unused to counting, is,

that to each man there is a horse. Now, though men and horses are

things perfectly unlike, jet, because there is one of the first kind to

every one of the second, one man to every horse, a new notion will be

formed in the mind of the observer, which we express in words by

saying that there is the same number of men as of horses. A savage,

who had no other way of counting, might remember this number by

taking a pebble for each man. Out of a method as rude as this has

sprung our system of calculation, by the steps which are pointed out in

the following articles. Suppose that there are two companies of horse-

men, and a person wishes to know in which of them is the greater

number and also to be able to recollect how many there are in each.

2. Suppose that while the first company passes by, he drops a pebble

into a basket for each man whom he sees. There is no connexion

between the pebbles and the horsemen but this, that for every horseman
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there is a pebble ; that is, in common language, the number of pebbles

and of horsemen is the same. Suppose that while the second company

passes, he drops a pebble for each man into a second basket r he will

then have two baskets of pebbles, by which he \A\\ be able to convey

to any other person a notion of how many horsemen there were in

each company. When he wishes to know which company was the

larger, or contained most horsemen, he will take a pebble out of each

basket, and put them aside. He will go on doing this as often as he

can, that is, until one of the baskets is emptied. Then, if he also find

the other basket empty, he says that both companies contained the same

number of horsemen ; if the second basket still contain some pebbles,

he can tell by them how many more were in the second than in the

first.

3. In this way a savage could keep an account of any numbers in

which he was interested. He could thus register his children, his cattle,

or the number of summers and winters which he had seen, by means

of pebbles, or any other small objects which could be got in large

numbers. Something of this sort is the practice of savage nations at

this day, and it has in some places lasted even after the invention of

better methods of reckoning. At Rome, in the time of the republic,

the praetor, one of the magistrates, used to go every year in great pomp,

and drive a nail into the door of the temple of Jupiter; a way of

remembering the number of years which the city had been built, which

probably took its rise before the introduction of writing.

4. In process of time, names would be given to those collections of

pebbles which are met with most frequently. But as long as small

numbers only were required, the most convenient way of reckoning

thera would be by means of the fingers. Any person could make with

his two hands the little calculations which would be necessary for his

purposes, and would name all the different collections of the fingers.

He would thus get words in his own language answering to one, two,

three, four, five, six, seven, eight, nine, and ten. As his wants in-

creased, he would find it necessary to give names to larger numbers;

but here he would be stopped by the immense quantity of words which
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he must have, in order to express all the numbers which he would be

obliged to make use of. He must, then, after giving a separate name

to a few of the first numbers, manage to express all other numbers by

means of those names.

5. I now shew how this has been done in our own language. The

English names of numbers have been formed from the Saxon : and in

the following table each number after ten is written down in one

column, while another shews its connexion with those which have pre-

ceded it.

One eleven ten and one*

two twelve ten and two

three thirteen ten and three

four fourteen ten and four

five fifteen ten and five

six sixteen ten and six

seven seventeen ten and seven

eight eighteen ten and eignt

nine nineteen ten and nine

ten twenty two tens»

twenty-one two tens and one fifty five tens

twenty-two two tens and two sixty six tens

&c. &c. &c. &c. seventy seven tens

thirty three tens eighty eight tens

&c. &c. ninety nine tens

forty four tens a hundred ten tens

&c. &c.

sL hundred and one ten tens and one

&c. &c.

a thousand ten hundreds

ten thousand

* It has been supposed that eleven and twelve are derived from the Saxon for one

left and two left (meaning, after ten is removed) ; but there seems better reason to

think that leven is a word meaning ten, and connected with decern.
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a hundred thousand

a million ten hundred thousand

or one thousand thousand

ten millions

a hundred millions

&c.

6. Words, written down in ordinary language, would very soon be

too long for such continual repetition as takes place in calculation.

Short signs would then be substituted for words ; but it would be im-

possible to have a distinct sign for every number: so that when some

few signs had been chosen, it would be convenient to invent others

for the rest out of those already made. The signs which we use are

as follow

:

I 2 3 4 5 6 7 8 9

ught one two three four five six seven eight nine

I now proceed to explain the way in which these signs are made to

represent other numbers.

7. Suppose a man first to hold up one finger, then two, and so

on, until he hfis held up every finger, and suppose a number of men

to do the same thing. It is plain that we may thus distinguish one

number from another, by causing two different sets of persons to hold

up each a certain number of fingers, and that we may do this in many

different ways. For example, the number fifteen might be indicated

either by fifteen men each holding up one finger, or by four men each

holding up two fingers and a fifth holding up seven, and so on. The

question is, of all these contrivances for expressing the number, which

is the most convenient ? In the choice which is made for this purpose

consists what is called the method of numeration.

8. I have used the foregoing explanation because it is very probable

that our system of numeration, and almost every other which is used

in the world, sprung from the practice of reckoning on the fingers,

which children usually follow when first they begin to count. The

method which I have described is the rudest possible ; but, by a little
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alteration, a system may be formed which will enable us to express

enormous numbers with great ease.

9. Suppose that you are going to count some large number, for

example, to measure a niunljer of yards of cloth. Opposite to yourself

suppose a man to be placed, who keeps his eye upon you, and holds up

a finger for every yard which he sees you measure. When ten yards

have been measured he will have held up ten fingers, and will not be

able to count any further unless he begin again, holding up one finger at

the eleventh yard, two at the twelfth, and so on. But to know how

many have been counted, you must know, not only how many fingers

he holds up, but also how many times he has begun again. You may

keep this in view by placing another man on the right of the former,

who directs his eye towards his companion, and holds up one finger the

moment he perceives him ready to begin again, that is, as soon as ten

yards have been measured. Each finger of the first man stands only for

one yard, but each finger of the second stands for as many as all the

fingers of the first together, that is, for ten. In this way a hundred

may be counted, because the first may now reckon his ten fingers once

for each finger of the second man, that is, ten times in all, and ten tens

is one hundred (5).* Now place a third man at the right of the second,

who shall hold up a finger whenever he perceives the second ready to

begin again. One finger of the third man counts as many as all the

ten fingers of the second, that is, counts one hundred. In this way we

may proceed until the third has all his fingers extended, which will

signify that ten hundred or one thousand have been counted (5). A

fourth man would enable us to count as far as ten thousand, a fiftn

as far as one hundred thousand, a sixth as far as a million, and so

on.

10. Each new person placed himself towards your left in the rank

opposite to you. Now rule columns as in the next page, and to the

right of them all place in woids the number which you wish to repre-

' sent ; in the first column on the right, place the number of fingeis

The references are to the preceding articles.

b2
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which the first man will be holding up when that number of yards has

been measured. In the next column, place the fingers which the second

man will then be holding up ; and so on.

fifty-seven.

one hundred and four.

one hundred and ten.

two thousand three hundred and forty-

eight.

fifteen thousand nine hundred and six.

one hundred and eighty-seven thousand
and four.

three million, six hundred and ninety-

seven thousand, two hundred and
eighty-five.

•^
S"

2? t
to

a. %

I. 5 7

II. I o 4

III. I I o

IV. 2 3 4 8

V. I 5 9 o 6

VI. I ' 7 o o 4

VII. 3 6 9 7 2 8 5

11. In I. the number fifty-seven is expressed. This means (5) five

tens and seven. The first has therefore counted all his fingers five

times, and has counted seven fingers more. This is 8he\vn by five

fingers of the second man being held up, and seven of the first. In II.

the number one hundred and four is represented. This number is (5)

ten tens and four. The second person has therefore just reckoned all

his fingers once, which is denoted by the third person holding up one

finger; but he has not yet begun again, because he does not hold up

a finger until the first has counted ten, of which ten only four are

completed. When all the last-mentioned ten have been counted, he

then holds up one finger, and the first being ready to begin again, has

no fingers extended, and the number obtained is eleven tens, or ten

tens and one ten, or one hundred and ten. This is the case in III.

You will now find no difficulty with the other numbers in the table.

12. In all these numbers a figure in the first column stands for

only as many yards as are written under that figure in (6). A figure

in the second column stands, not for as many yards, but for as many

tens of yards ; a figure in the third column stands for as many hundreds

of yards ; in the fourth column for aa many thousands of yards ; and so

on : that is, if we suppose a figure to move from any column to the one
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on its left, it stands for ten times as many yards as before. Recollect

this, and you may cease to draw the lines between the columns, be-

cause each figure will be sufficiently well known by the place in which

it is ; that is, by the number of figures which come upon the right hand

of it.

13. It is important to recollect that this way of writing numbers,

which has become so familiar as to seem the natural method, is not

more natural than any other. For example, we might agree to signify

one ten by the figure of one with an accent, thus, i' ; twenty or two

tens by 2'; and so on: one hundred or ten tens by 1"; two hundred

by 1"
; one thousand by 1'"

; and so on : putting Eoman figures for

accents when they become too many to write with convenience. The

fourth number in the table would then be written 2'"
i" 4' 8, which

might also be expressed by 8 4' 3" 2'", 4' 8 i"
2'"

; or the order of the

figures might be changed in any way, because their meaning depends

upon the accents which are attached to them, and not upon the place

in which they stand. Hence, a cipher would never be necessary ; for

104 would be distinguished from 14 by writing for the first \'%^ and for

the second 1'/^ The common method is preferred, not because it is

more exact than this, but because it is more simple.

14. The distinction between our method of numeration and that

of the ancients, is in the meaning of each figure depending partly upon

the place in which it stands. Thus, in /j.^^^.^ each four stands for four

oi something ; but in the first column on the right it signifies only four

of the pebbles which are counted ; in the second, it means four col-

lections of ten pebbles each ; in the third, four of one hundred each

;

and 80 on.

15. The things measured in (11) were yards of cloth. In this case

one yard of cloth is called the unit. The first figure on the right is

said to be in the units'' place^ because it only stands for so many units

as are in the number that is written under it in (6). The second

figure is said to be in the tens' place, because it stands for a number

of tens of units. The third, fourth, and fifth figures are in the places

of the hundreds^ thousands, and tens of thousands, for a similar reason.
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16. If the quantity measured had been acres of land, an acre of

land would have been called the unit, for the unit is one of the things

which are measured. Quantities are of two sorts ; those which contain

an exact number of units, as 47 yards, and those which do not, as 47

yards and a half. Of these, for the present, we only consider the first.

17. In most parts of arithmetic, all quantities must have the same

unit. You cannot say that 2 yards and 3 feet make 5 yards or 5 feet,

because 2 and 3 make 5 ;
yet you may say that 2 yards and 3 yards

make 5 yards, and that 2 feet and 3 feet make 5 feet. It would be

absurd to try to measure a quantity of one kind with a unit which is a

quantity of another kind ; for example, to attempt to tell how many

yards there are in a gallon, or how many bushels of com there are in a

barrel of wine.

18. All things which are true of some numbers of one unit are true

of the same numbers of any other miit. Thus, 1 5 pebbles and 7 pebbles

together make 22 pebbles; 15 acres and 7 acres together make 22 acres,

and so on. From this we come to say that 15 and 7 make 22, meaning

that 15 things of the same kind, and 7 more of the same kind as the

first, together make 22 of that kind, whether the kind mentioned be

pebbles, horsemen, acres of land, or any other. For these it is but

necessary to say, once for all, that 15 and 7 make 22. Therefore, in

future, on this part of the subject I shall cease to talk of any particular

units, such as pebbles or acres, and speak of numbers only. A number,

considered without intending to allude to any particular things, is called

an abstract number : and it then merely signifies repetitions of a unit,

or the number of times a unit is repeated.

19. I will now repeat the principal things which have been men-

tioned in this chapter.

I. Ten signs are used, one to stand for nothing, the rest for tlie

first nine numbers. They are o, i, 2, 3, 4, 5, 6, 7, 8, 9. The first of

these is called a cipher.

II. Higher numbers have not signs for themselves, but are signified

by placing tlie signs already mentioned by the side of each other, and

agreeing that the first figure on the right hand shall keep the value
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which it has when it stands alone ; that the second on the right hand

shall mean ten times as many as it does when it stands alone ; that the

third figure shall mean one hundred times as many as it does when it

stands alone ; the fourth, one thousand times as many ; and so on.

III. The right-hand figure is said to be in the units'' place, the

next to that in the tens' place, the third in the hundreds' place, and

so on.

IV. When a number is itself an exact number of tens, hundreds,

or thousands, &c., as many ciphers must be placed on the right of it as

will bring the number into the place which is intended for it. The

following are examples

:

Fifty, or five tens, 50 : seven hundred, 700.

Five hundred and twenty- eight thousand, 528000.

If it were not for the ciphers, these numbers would be mistaken for

5, 7, and 528.

V. A cipher in the middle of a number becomes necessary when any

one of the denominations, units, tens, &c. is wanting. Thus, twenty

thousand and six is 20006, two hundred and six is 206. Ciphers might

be placed at the beginning of a number, but they would have no

meaning. Thus 026 is the same as 26, since the cipher merely shews

that there are no hundreds, which is evident from the number itself.

20. If we take out of a number, as 16785, any of those figures which

come together, as 67, and ask, what does this sixty-seven mean? of

what is it sixty-seven ? the answer is, sixty-seven of the same collections

as the 7, when it was in the number; that is, 67 himdreds. For the

6 is 6 thousands, or 6 ten hundreds, or sixty hundreds; which, with

the 7, or 7 hundreds, is 67 hundreds : similarly, the 678 is 678 tens.

This number may then be expressed either as

1 ten-thousand 6 thousands 7 hundreds 8 tens and 5 ;

or 16 thousands 78 tens and 5 ; or i ten thousand 678 tens and 5 ;

or 167 hundreds 8 tens and 5 ; or 1678 tens and 5, and so on.

21. £XKRCIS£8.

I. Write down the signs for ;—four hundred and seventy-six ; two
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thousand and ninety-seven ; sixty-four thousand three liundred and

fifty ; two millions seven hundred and four ; five hundred and seventy-

eight millions of millions.

II. Write at full length 53, 1805, 1830, 66707, 180917324^ 66713721,

90976390, 25000000.

III. What alteration takes place in a number made up entirely of

nines, such as 99999, by adding one to it ?

IV. Shew that a number which has five figures in it must be greater

than one which has four, though the first have none but small figures in

it, and the second none but large ones. For example, that loiii is

greater than 9879.

22. You now aee that the convenience of our method of numeration

arises from a few simple signs being made to change their value as they

change the column in which they are placed. The same advantage

arises from counting in a similar way all the articles which are used

in every-day life. For example, we count money by dividing it into

pounds, shillings, and pence, of which a shilling is 12 pence, and a

pound 20 shillings, or 240 pence. We write a number of pounds,

shillings, and pence in three columns, generally placing points between

the columns. Thus, 263 pence would not be written as 263, but as

£1 . I . II, where £ shews that the i in the first column is a pound.

Here is a system of numeration in which a number in the second column

on the right means 12 times as much as the same number in the first

;

and one in the third column is twenty times as great as the same in the

second, or 240 times as great as the same in the first. In each of the

tables of measures which you will hereafter meet with, you will see a

separate system of numeration, but the methods of calculation for all

will be the same.

23. In order to make the language of arithmetic shorter, some other

signs are used. They are as follow

:

I. 15+38 means that 38 is to be added to 15, and is the same thing

as 53. This is the sum of 15 and 38, and is read fifteen plut thirty-

eight {plus is the Latin for more).

II. 64—12 means that 12 is to be taken away from 64, and is the



§23-24* NUMERATION. 11

same thing as 52. This is the difference of 64 and 12, and is read sixty-

four minus twelve {minus is the Latin for less).

III. 9x8 means that 8 is to be taken 9 times, and is the same thing

as 72. This is the product of 9 and 8, and is read nine into eight.

ic8
IV. -7- means that 108 is to be divided by 6, or that you must

6

find out how many sixes there are in 108 ; and is the same thing as 18.

This is the quotient of 108 and 6 ; and is read a hundred and eight

by six.

V. When two numbers, or collections of numbers, with the fore-

going signs, are the same, the sign = is put between them. Thus,

that 7 and 5 make 12, is written in this way, 7+5=12. This is called

an equation^ and is read, seven plus five equals twelve. It is plain that

we may construct as many equations as we please. Thus

:

7+9—3=12+1 ; 1 + 3x2=11, and 80 on.

24. It often becomes necessary to speak of something which is true

not of any one number only, but of all numbers. For example, take

10 and 7 ; their sum* is 17, their difference is 3. If this sum and

diiference be added together, we get 20, which is twice the greater of

the two numbers first chosen. If from 17 we take 3, we get 14, which

is twice the less of the two numbers. The same thing will be found to

hold good of any two numbers, which gives this general proposition,

—

If the sum and difference of two numbers be added together, the result

is twice the greater of the two ; if the difference be taken from the sum,

the result is twice the lesser of the two. If, then, we take any numbers,

and call them the first number and the second number, and let the first

number be the greater ; we have

(1st No.+2d No.)+(ist No.—2d No.)=twice ist No.

(ist No.+2d No.)—(ist No.—2d No.)= twice 2d No.

The brackets here enclose the things which must be first done, be-

fore the signs which join the brackets are made use of. Thus,

* Any little computations which occur in the rest of this section may be made on

the fingers, or with counters.
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8—(24-i)x(i+i) signifies that 2+1 must be taken i+i times, and the

product must be subtracted from 8. In the same manner, any re-

sult made from two or more numbers, which is true whatever numbers

are taken, may be represented by using first No., second No., &c., to

stand for them, and by the signs in (23). But this may be much

shortened ; for as first No., second No., &c., may mean any numbers,

the letters a and b may be used instead of these words ; and it must

now be recollected that a and b stand for two numbers, provided only

that a is greater than b. Let twice a be represented by 2a, and twice

b by 26. The equations then become

(a+6)+(a—A)=2a, and {a+b')—{a—b)—zh.

This may be explained still further, as follows :

25. Suppose a number of sealed packets, marked a, 6, c, rf, &c., on

the outside, each of which contains a distinct but unkno^vn number

of counters. As long as we do not know how many counters each

contains, we can make the letter which belongs to each stand for its

number, so as to talk of the number a, instead of the number in the

packet marked a. And because we do not know the numbers, it does

not therefore follow that we know nothing whatever about them ; for

there are some connexions which exist between all numbers, which we

call general properties of numbers. For example, take any number,

multiply it by itself, and subtract one from the result ; and then sub-

tract one from the number itself. The first of these will always contain

the second exactly as many times as the original number increased by

one. Take the number 6 ; this multiplied by itself is 36, which dimi-

nished by one is 35 : again, 6 diminished by i is 5 ; and 35 contains

5, 7 times, that is, 6+1 times. This will be found to be true of any

number, and, when proved, may be said to be true of the number con-

tained in the packet marked a, or of the number a. If we represent a

multiplied by itself by aa,* we have, by (23)

aa—\

a—

I

• This should be (23) axa, but the sign x is unnecessary here. It is used with

uumbers, as in 2x7, to prevent confounding this, which is 14, with 27.
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26. When, therefore, we wish to talk of a number without specify-

ing any one in particular, we use a letter to represent it. Thus:

Suppose we wish to reason upon what will follow from dividing a num •

ber into three parts, without considering what the number is, or what

are the parts into which it is divided. Let a stand for the number,

and b, c, and d, for the parts into which it is divided. Then, by our

supposition,

a = b+c+d.

On this we can reason, and produce results which do not belong to any

particular number, but are true of all. Thus, if one part be taken away

from the number, the other two will remain, or

a—b — c+d.

If each part be doubled, the whole number will be doubled, or

za = 2b+2c+2d.

If we diminish one of the parts, as rf, by a number ar, we diminish the

whole number just as much, or

a—J? = b+c+{d—j;).

27. EXERCISES.

What is a+7.b—c, where 0= 12, b= 18, c=j ?

—

Answer, 41.

What is ;—, where a= 6 and 5= 2 ?

—

Ans. 8.
a—b

What is the difference between (a+b) (c+d) and a+bc+d, for the

following values of a, b, c, and d ?

b d Anst

2 3 4 10

12 7 I *5

1 1 1 I
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SECTION II.

ADDITION AND SUBTRACTION.

28. There is no process in arithmetic which does not consist entirely

in the increase or diminution of numbers. There is then nothing which

might not be done with collections of pebbles. Probably, at first, either

these or the fingers were used. Our word calculation is derived from

the Latin word calculus, which means a pebble. Shorter ways of

counting have been invented, by which many calculations, which would

require long and tedious reckoning if pebbles were used, are made at

once with very little trouble. The four great methods are. Addition,

Subtraction, Multiplication, and Division ; of which, the last two are

only ways of doing several of the first and second at once.

29. When one number is increased by others, the number which is

as large as all the numbers together is called their sum. The process

of finding the sum of two or more numbers is called Addition, and,

as was said before, is denoted by placing a cross (+) between the

numbers which are to be added together.

Suppose it required to find the sum of 1834 and 2799. In order to

add these numbers, take them to pieces, dividing each into its units,

tens, hundreds, and thousands :

1834 is I thous. 8 hund. 3 tens and 4

;

2799 is 2 thous. 7 hund. 9 tens and 9.

Each number is thus broken up into four parts. If to each part of

the first you add the part of the second which is under it, and then put

together what you get from these additions, you will have added 1834 and

2799. In the first number are 4 units, and in the second 9 : these will,

when the numbers are added together, contribute 13 units to the sum.

Again, the 3 tens in the first and the 9 tens in the second will contri-

bute 12 tens to the sum. The 8 hundreds in the first and the 7 hundreds

in the second will add 15 hundreds to the sum ; and the thousand m
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the first with the 2 thousands in the second will contribute 3 thousands

to the sum ; therefore the sum required is

3 thousands, 15 hundreds, 12 tens, and 13 units.

To simplify this result, you must recollect that

—

13 units are 1 ten and 3 units.

12 tens are i hund. and 2 tens.

15 hund. are 1 thous. and 5 hund.

3 thous. are 3 thous.

Now collect the numbers on the right-hand side together, as was

done before, and this will give, as the sum of 1834 and 2799,

4 thousands, 6 himdreds, 3 tens, and 3 units,

which (19) is written 4633.

30. The former process, written with the signs of (23) is as follows

:

1834= 1x1000+8x100+3x10 + 4

*799 = 2x1000 + 7x100 + 9x10 + 9

Therefore,

1834+2799 = 3x1000+ 15x100+ 12x10+ 13

But 13= 1x10+ 3

I2X 10= 1x100+ 2x10

15X 100=1x1000+ 5x100

3x1000 =3x1000 Therefore,

1834+2799=4x1000+ 6x100+ 3x10+ 3

= 4633-

31. The same process is to be followed in all cases, but not at the

same length. In order to be able to go through it, you must know

how to add together the simple numbers. This can only be done by

memory; and to help the memory you should make the following table

three or four times for yourself:



16 PRINCIPLES OF ARITHMETIC. § 31-33.

I 2 3 4 5 6 7 8 9

I 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 II

3 4 5 6 7 8 9 10 11 12

4 5 6 7 8 9 10 II 12 13

5 6 7 8 9 10 II 12 13 14

6 7 8 9 10 II 12 13 14 15

7 8 9 10 II 12 13 14 15 16

8 9 10 11 12 13 14 15 16 17

9 10 II 12 13 H •5 16 17 18

The use of this table is as follows : Suppose you want to find the

sum of 8 and 7. Look in the left-hand column for either of them,

8, for example; and look in the top column for 7. On the same line

as 8, and underneath 7, you find 15, their sum.

32. When this table has been thoroughly committed to memory, so

that you can tell at once the sum of any two numbers, neither of which

exceeds 9, you should exercise yourself in adding and subtracting two

numbers, one of which is greater than 9 and the other less. You should

write down a great number of such sentences as the following, which

will exercise you at the same time in addition, and in the use of the

signs mentioned in (23).

12+6=18 22+6 = 28 19+8 = 27

54+9 = 63 56+7 = 63 22+8 = 30

100—9 = 91 27—8=19 44—6=38, &c,

33. "When the last two articles have been thoroughly studied, you

will be able to find the sum of any numbers by the following process,*

which is the same as that in (29).

• In this and all other processes, the student is strongly recommended to look at

and follow the first Appendix.
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Rule I. Place the numbers under one another, units under units,

tens under tens, and so on.

II. Add together the units of all, and part the whole number thus

obtained into units and tens. Thus, if 85 be the nimiber, part it into

8 tens and 5 units ; if 136 be the number, part it into 13 tens and

6 units (20).

III. Write down the units of this number under the units of the

rest, and keep in memory the number of tens.

I V. Add together all the numbers in the column of tens, remember-

ing to take in (or carry, as it is called) the tens which you were told to

recollect in III., and divide this number of tens into tens and hundreds.

Thus, if 335 tens be the number obtained, part this into 33 hundreds

and 5 tens.

V. Place the number of tens under the tens, and remember the

number of hundreds.

VI. Proceed in this way through every column, and at the last

column, instead of separating the number you obtain into two parts,

write it all down before the rest.

PixAMPLK.
—
"What is

1805+36+ 19727+3+1474+2008

1805 The addition of the units' line, or 8+4+3+7+6+5, gives

36 33, that is, 3 tens and 3 units. Put 3 in the units' place, and

19727 add together the line of tens, taking in at the beginning the

3 3 tens which were created by the addition of the units* line.

1474 That is, find 3+0+7+2+3+0, which gives 15 for the number

2008 of tens ; that is, i hundred and 5 tens. Add the line of hun-

25053 dreds together, taking care to add the i hundred which arose

in the addition of the line of tens ; that is, find 1+0+4+7+8, which

gives exactly 20 hundreds, or 2 thousands and no hundreds. Put a

cipher in the hundreds' place (because, if you do not, the next figure

will be taken for hundreds instead of thousands), and add the figures in

the thousands' line together, remembering the 2 thousands which arose

from the hundreds' line ; that is, find 2+2+1+9+1, which gives 15

c2
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thousands, or i ten thousand and 5 thousand. Write 5 under the

line of thousands, and collect the figures in the line of tens of thousands,

remembering the ten thousand which arose out of the thousands' line

;

that is, find i+i, or 2 ten thousands. Write 2 under the ten thousands'

line, and the operation is completed.

34. As an exercise in addition, you may satisfy yourself that what I

now say of the following square is correct. The numbers in every row,

whether reckoned upright, or from right to left, or from comer to

corner, when added together give the number 24156.

zoi6 4212 1656 3852 1296 3492 936 3132 576 2772 2,6

252 2052 4248 1692 3888 1332 35^8 972 3168 612 2412

2448 288 2088 4284 1728 3924 1368 3564 1008 2808 648

684

2880

1116

2484

720

2916

3M

2520

756

2124

360

2556

4320

2160

396

1764

4356

2196

3960

1800

3996

1404

3600

1836

3204

1440

3636

1044

3240

1476

2844

1080

3276

3312 1152 2952 792 2592 36 2232 4032 1872 3672 1512

1548 3348 u88 2988 432 2628 72 2268 4068 1908 3708

3744 1584 3384 828 3024 468 2664 108 2304 4104 1944

1980

4176

3780

1620

1224

3816

3420

1260

864

3456

3060

900

504

3096

2700

540

144

2736

2340

180

4140

2376

35. If two numbers must be added together, it will not alter the

sum if you take away a part of one, provided you put on as much to

the other. It is plain that you will not alter the whole number of a

collection of pebbles in two baskets by taking any number out of one,

and putting them into the other. Thus, 15+7 is the same as 12+10,

since 12 is 3 less than 15, and 10 is three more than 7. This was the

principle upon which the whole of the process in (29) was conducted.

36. Let a and h stand for two numbers, as in (24). It is impossible

to tell what their sum will be until the numbers themselves are known.

In the mean while a+6 stands for this sum. To say, in algebraical
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language, that the sum of a and i is not altered by adding c to a, pro-

vided we take away c from b, we have the following equation

:

(a+c)+(b—c) = a+b ;

which may be written without brackets, thus,

a+c+b—c = a+b.

For the meaning of these two equations will appear to be the same, on

consideration.

37. If a be taken twice, three times, &c., the results are represented

in algebra by 2a, 3a, 4a, Sec. The sum of any two of this series may

be expressed in a shorter form than by writing the sign + between

them ; for though we do not know what nrmiber a stands for, we know

that, be it what it may, 2a+2a=4a, 3a+2a=5a, 40+90=130 ; and gene-

rally, if a taken m times be added to a taken n times, the result is a

taken m+n times, or

ma+na = (m+n)a.

38. The use of the brackets must here be noticed. They mean,

that the expression contained inside them must be used exactly as a

single letter would be used in the same place. Thus, pa signifies that

a is taken p times, and (^m+n)af that o is taken w+n times. It is,

therefore, a different thing from m+na, which means that a, after

being taken n times, is added to m. Thus (3+4) X2 is 7x2 or 14 ; while

3+4x2 is 3+8, or II.

39. When one number is taken away from another, the number

which is left is called the difference or remainder. The process of

finding the difference is called subtraction. The number which is to

be taken away must be of course the lesser of the two.

40. The process of subtraction depends upon these two principles.

I. The difference of two numbers is not altered by adding a number

to the first, if you add the same number to the second ; or by sub-

tracting a number from the first, if you subtract the same number from

the second. Conceive two baskets with pebbles in them, in the first

of which are 100 pebbles more than in the second. If I put 50 more
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pebbles into each of them, there are still only 100 more in the first than

in the second, and the same if I take 50 from each. Therefore, in

finding the difference of two numbers, if it should be convenient, I

may add any number I please to both of them, because, though I alter

the numbers themselves by so doing, I do not alter their diference.

II. Since 6 exceeds 4 by 2,

and 3 exceeds 2 by i,

and 12 exceeds 5 by 7,

6, 3, and 12 together, or 21, exceed 4, 2, and 5 together, or 11, by 2,

1, and 7 together, or 10: the same thing may be said of any other

numbers.

41. If a, b, and be three numbers, of which a is greater than b

(40), I. leads to the following,

{a+c)—{b+c) = a—b.

Again, if c be less than a and i,

(a—c)—(ft—c) = a—b.

The brackets cannot be here removed as in (36). That is, p—{q—r)

is not the same thing as p—q—r. For, in the first, the difference of y

and r is subtracted from p ; but in the second, first q and then r are

subtracted from p^ which is the same as subtracting as much as q and r

together, or q+r. Therefore p—q—r is p—{q+r). In order to shew

how to remove the brackets from p—{q—r) without altering the value

of the result; let us take the simple instance 12—(8— 5). If we subtract

8 from 12, or form 12—8, we subtract too much ; because it is not 8

which is to be taken away, but as much of 8 as is left after diminishing

it by 5. In forming 12—8 we have therefore subtracted 5 too much.

This must be set right by adding 5 to the result, which gives 12—8+5

for the value of 12—(8—5). The same reasoning applies to every case,

and we have therefore,

p-(q-\-r) =p-q-r.

p—{q—r) —p—q+r.

By the same kind of reasoning,
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a-'ijb-i-o—d—e) = a—b—c-i-d+e.

2a+3J—(a—2i) = aa+36—a+ai = a+fJ.

4j?+jr— ( I TX—f^y) = 4J?+y— 1 70^+9^ = ioy— 13a?.

42. I want to find the difference of the numbers 57762 and 34631.

Take these to pieces as in (29) and

57762 is 5 ten-th. 7 th. 7 hund. 6 tens and 2 units.

34631 is 3 ten-th. 4 th. 6 hund. 3 tens and i unit.

Now 2 units exceed ... i unit by 1 unit.

6 tens 3 tens 3 tens.

7 hundreds .... 6 hundreds ... i hundred.

7 thousands .... 4 thousands ... 3 thousands.

5 ten-thousands . . 3 ten-thous. ... a ten-thous.

Therefore, by (40, Principle II.) all the first column together exceeds

all the second column by all the third column, that is, by

2 ten-th. 3 th. i hund. 3 tens and i unit,

which is 23131. Therefore the difference of 57762 and 34631 is 23131,

or 57762—34631 = 23131.

43. Suppose I want to find the difference between 61274 and 39628.

Write them at length, and

61274 is 6 ten-th. 1 th. 2 hund. 7 tens and 4 units.

39628 is 3 ten-th. 9 th. 6 hund. 2 tens and 8 units.

If we attempt to do the same as in the last article, there is a difii-

culty immediately, since 8, being greater than 4, cannot be taken from

it. But from (40) it appears that we shaU not alter the difference of

two nimibers if we add the same number to loth of them. Add ten tO

the first mimber, that is, let there be 14 units instead of four, and add

ten also to the second number, but instead of adding ten to the number

of units, add one to the number of tens, which is the same thing. The

numbers will then stand thus,

6 ten-thous. i thous. a himd. 7 tens and 14 wnite.*

3 ten-thous. 9 thous. 6 hund. 3 tens and 8 units.

• Those numbers which have been altered are put in italics.
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You now see that the units and tens in the lower can be subtracted

from those in the upper line, but that the hundreds cannot. To remedy

this, add one thousand or 10 hundred to both numbers, which will not

alter their difference, and remember to increase the hundreds in the

upper line by 10, and the thousands in the lower line by i, which are

the same things. And since the thousands in the lower cannot be

subtracted from the thousands in the upper line, add i ten thousand

or 10 thousand to both numbers, and increase the thousands in the

upper line by 10, and the ten thousands in the lower line by i, which

are the same things ; and at the close the numbers which we get

will be,

6 ten-thous. 11 thotis. 12 hund. 7 tens and 14 units.

4 tenrthous. 10 thous. 6 hund. 3 tens and 8 units.

These numbers are not, it is true, the same as those given at the

beginning of this article, but their difference is the same, by (40).

With the last-mentioned numbers proceed in the same way as in (42),

which will give, as their difference,

a ten-thous. 1 thous. 6 hund. 4 tens, and 6 units, which is 21646.

44. From this we deduce the following rules for subtraction :

I. Write the number which is to be subtracted (which is, of course,

the lesser of the two, and is called the subtrahend) under the other, so

that its units shall fall under the units of the other, and so on.

II. Subtract each figure of the lower line from the one above it, if

that can be done. Where that cannot be done, add ten to the upper

figure, and then subtract the lower figure ; but recollect in this case

always to increase the next figure in the lower line by i, before you

begin to subtract it from the upper one.

45. If there should not be as many figures in the lower line as in

the upper one, proceed as if there were as many ciphers at the begin-

ning of the lower line as will make the number of figures equal. You

do not alter a number by placing ciphers at the beginning of it. For

example, 00818 is the same number as 818, for it means

o ten-thous. o thous. 8 hunds. i ten and 8 units;
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the first two signs are nothing, and the rest is

8 hundreds, i ten, and 8 units, or 8i8.

The second does not differ from the first, except in its being said that

there are no thousands and no tens of thousands in the number, which

may be known without their being mentioned at all. You may ask,

perhaps, why this does not apply to a cipher placed in the middle of a

number, or at the right of it, as, for example, in 28007 and 39700 ?

But you must recollect, that if it were not for the two ciphers in the

first, the 8 would be taken for 8 tens, instead of 8 thousands; and if it

were not for the ciphers in the second, the 7 would be taken for 7 imits,

instead of 7 hundreds.

46, EXAMPLE.

What is the difference between 370829 1640030 174

and 30813649276188

Diflterence 3677477990753986

EXERCISES.

I. What is 18337+149263200—6472902?

—

Answer 142808635.

What is 1000—464+3279—646 ?

—

Ans. 3169.

II. Subtract

64+76+144—18 from 33—2+100037.

—

Ans. 99802.

III. What shorter rule might be made for subtraction when all the

figures in the upper line are ciphers except the first ? for example,

in finding

looooooo—2731634.

IV. Find 18362+2469 and 18362—2469, add the second result to

the first, and then subtract 18362; subtract the second from the first,

and then subtract 2469.

—

Answer 18362 and 2469.

V. There are four places on the same line in the order a, b, c,

and D. From a to d it is 1463 miles; from a to c it is 728 miles ; and

from B to D it is 1317 miles. How far is it from a to b, from b to c,

and from c to d ?

—

Answer, From a to b 146, from b to c 582, and

from c to D 735 miles.
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VI. In the following table subtract b from a, and b from the re-

mainder, and so on imtil b can be no longer subtracted. Find how

many times b can be subtracted from a, and what is the last remainder.

A B No. of times. Remaii

23604 . • • • 9999 ., . 2 . . . 3606

209961 37173 5 24096

74712 6792 II

4802469 654321 7 222222

18849747 3141592 6 195

987654321 123456789 S 9

SECTION III.

MULTIPLICATION.

47. I have said that all questions in arithmetic require nothing

but addition and subtraction. I do not mean by this that no rule

should ever be used except those given in the last section, but that all

other rules only shew shorter ways of finding what might be found,

if we pleased, by the methods there deduced. Even the last two rules

themselves are only short and convenient ways of doing what may be

done with a number of pebbles or counters.

48. I want to know the sura of five seventeens, or I ask the

17 following question : There are five heaps of pebbles, and seven-

17 teen pebbles in each heap; how many are there in all? Write

17 five seventeens in a column, and make the addition, which gives

17 85. In this case 85 is called the product of 5 and 17, and the

17 process of finding the product is called multiplication, which

85 gives nothing more than the addition of a number of the same

quantities. Here 17 is called the multiplicand, and 5 is called the

multiplier.

49. If no question harder than this were ever proposed, there would

be no occasion for a shorter way than the one here followed. But if
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there were 1367 heaps of pebbles, and 429 in each heap, the whole

number is then 1367 times 429, or 429 multiplied by 1367. I should

have to write 429 1367 times, and then to make an addition of enor-

mous length. To avoid this, a shorter rule is necessary, which I now

proceed to explain.

50. The student must first make himself acquainted with the pro-

ducts of all numbers as far as 10 times 10 by means of the following

table,* which must be committed to memory.

I 2 3 4 5 6 7 8 9 10 II 12

2 4 6 8 10 12 14 16 18 20 22 24

3 6 9 12 x5 18 21 24 27 30 33 36

4 8

10

12
1 16 20
i

24

30

28

35

32

40

36

45

40

50 55

48

605 15 20 25

6 12 18 24 30 36 42 48 54 60 66 72

7

8

9

14

16

18

21

24

27

28

32

36

35

40

45

42

48

54

49

56

63

56

64

72

63

72

81

70

80

90

77

8S

99

84

96

108

10 20

22

30

33

40

44

50

55

60

66

70

77

80

88

90

99

100

no

no

121

120

132

144

II

12 24 36 48
1

60 72 84 96 108 120 132

If from this table you wish to know what is 7 times 6, look in the

first upright column on the left for either of them ; 6 for example.

Proceed to the right until you come into the column marked 7 at the

top. You there find 42, which is the product of 6 and 7.

51. You may find, in this way, either 6 times 7, or 7 times 6, and

for both you find 42. That is, six sevens is the same number as seven

• As it is usual to learn the product of numbers up to 12 times 12, I ba^'e

extended the table thus far. In my opinion, all pupils who shew a tolerable capacity

should slowly commit the products to memory as far as 20 times 20, in the course

of their progress through this work.
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sixes. This may be shewn as follows: Place seven counters in a line,

and repeat that line in all six times. The number of counters in the

whole is 6 times 7, or six sevens, if I reckon the rows from the top to

the bottom ; but if I count the rows that stand

side by side, I find seven of them, and six in each

row, the whole number of which is 7 times 6, or

seven sixes. And the whole number is 42, which-

ever way I count. The same method may be

applied to any other two numbers. If the signs

of (23) were used, it would be said that 7x6= 6x7.

52. To take any quantity a number of times, it will be enough to

take every one of its parts the same number of times. Thus, a sack of

com will be increased fifty-fold, if each bushel which it contains be

replaced by 50 bushels. A country will be doubled by doubling every

acre of land, or every county, which it contains. Simple as this may

appear, it is necessary to state it, because it is one of the principles on

which the rule of multiplication depends.

53. In order to multiply by any number, you may multiply sepa-

rately by any parts into which you choose to divide that number, and

add the results. For example, 4 and 2 make 6. To multiply 7 by 6

first multiply 7 by 4, and then by 2, and add the products. This will

give 42, which is the product of 7 and 6. Again, since 57 is made up

of 32 and 25, 57 times 50 is made up of 32 times 50 and 25 times 50,

and so on. If the signs were used, these would be written thus :

7x6 = 7x4 + 7x2.

50x57 = 50x32+50x25.

64. The principles in the last two articles may be expressed thus

:

If a be made up of the parts j?, y, and z^ ma is made up of mx^ my,

and mz ; or,

if a = X +1/ +z.

ma = mx+vit/+mz.

or, m{x+y+z) = mx+my+mz.

A similar result may be obtained if a, instead of being made up of
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a*, y, and z, is made by combined additions and subtractions, such as

x-^y—z, x—y-VZy x—y—z^ &c. To take the first as an instance

:

Let a = X +y —%.

then ma = mx+my—mz.

For, if a had been x+y-, ^na would have been mx-k-my. But since a

is less than x-¥y by ar, too much by z has been repeated every time

that x+y has been repeated ;—that is, mz too much has been taken

;

consequently, ma is not mx+my^ but mx+my—mz. Similar reason-

ing may be applied to other cases, and the following results may be

obtained

:

m{a+b+c—d) = ma+mb+mc—md.

a{a—b) = aa—ab. 70(7+2^) = 490+1406.

b{a—b) = ba—bb. {aa-^a-\-i)a = aaa+aa-¥a.

3(20—46) = 6a— 12b. {iab—zc)/yzbc = izaabbc—Sabcc.

55. There is another way in which two numbers may be multiplied

together. Since 8 is 4 times 2, 7 times 8 may be made by multiplying

7 and 4, and then multiplying that prodttct by 2. To shew this, ilace

7 counters in a line, and repeat that line in all 8 times, as in figures

I. and II.

II.

The number of counters in all is 8 times 7, or 56. But (,as in fig. I.)

enclose each four rows in oblong figures, such as a and b. The num-
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ber in each oblong is 4 times 7, or 28, and there are two of those ob-

longs; 80 that in the whole the number of counters is twice a8, or

28x2, or 7 first multipled by 4, and that product multiplied by 2.

In figure II. it is shewn that 7 multiplied by 8 is also 7 first multiplied

by 2, and that product multiplied by 4. The same method may be

applied to other numbers. Thus, since 80 is 8 times 10, 256 times 80

is 256 multiplied by 8, and that product multiplied by 10. If we use

the signs, the foregoing assertions are made thus :

7x8 = 7x4x2 = 7x2x4.

256x80 = 256x8x10 = 256x10x8.

EXERCISES.

Shew that 2x3x4x5 = 2x4x3x5 = 5x4x2x3, &c.

Shew that 18x100 = 18x57+18x43.

56. Articles (51) and (55) may be expressed in the following way,

where by ab we mean a taken b times ; by abc, a taken b times, and

the result taken times.

ab = ba.

abc = acb = bca — bac^ &c.

abc = ax{bc) = bx{ca) = ex (ab).

If we would say that the same results are produced by multiplying

by J, 0, and rf, one after the other, and by the product bod at once, we

write the following

:

a><bxcyd = axbcd.

The fact is, that if any numbers are to be multiplied together, the

product of any two or more may be formed, and substituted instead of

those two or more; thus, the product abcdefm&y be formed by mul-

tiplying

ab cde f

abf de o

abo de/ &c.

57. In order to multiply by to, annex a cipher to the right hand of

the multiplicand. Thus, 10 times 2356 is 23560. To shew this, write

2356 at length which is
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2 thousands, 3 hundreds, 5 tens, and 6 units.

Take each of these parts ten times, which, by (52), is the same as

multiplying the whole ntmaber by 10, and it will then become

2 tens of thou. 3 tens of hun. 5 tens of tens, and 6 tens,

which is 2 ten-thou. 3 thous. 5 hun. and 6 tens.

This must be written 23560, because 6 is not to be 6 units, but 6 tens.

Therefore 2356x10 = 23560.

In the same way you may shew, that in order to multiply by 100

you must affix two ciphers to the right; to multiply by 1000 you must

affix three ciphers, and so on. The rule will be best caught from the

following table

:

13X 10 = 130 I4.2X 1000 = 142000

I3X 100 = 1300 23700X 10 = 237000

I3X 1000= 13000 3040X 1000 = 3040000

13x10000 = 130000 10000x100000 = I000000000

58. I now shew how to multiply by one of the numbers, 2, 3, 4, 5,

^9 7» ^> or 9. I do not include 1, because multiplying by 1, or taking

the number once, is what is meant by simply writing down the number.

I want to multiply 1368 by 8. Write the first number at full length,

which is

I thousand, 3 hundreds, 6 tens, and 8 units.

To multiply this by 8, multiply each of these parts by 8 (50) and (52),

which will give ^

.

8 thousands, 24 hundreds, 48 tens, and 64 units.

Now 64 units are written thus ... 64

48 tens 480

24 hundreds 2400

8 thousands 8000

Add these together, which gives 10944 as the product of 1368 ;.nd 8, or

1368x8= 10944.. By working a few examples in this way you vv-ill see

for following rule.

d2
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59. I. Multiply the first figure of the multiplicand by the multiplier,

write do^vn the units' figure, and reserve the tens.

II. Do the same with the second figure of the multiplicand, and

add to the product the number of tens from the first ; put down the

units' figure of this, and reserve the tens.

III. Proceed in this way till you come to the last figure, and then

write down the whole number obtained from that figure.

IV. If there be a cipher in the multiplicand, treat it as if it were

a number, observing that oxi = o, 0x2 = o, &c.

60. In a similar way a number can be multiplied by a figure which

is accompanied by ciphers, as, for example, 8000. For 8000 is 8x1000,

and therefore (55) you must first multiply by 8 and then by 1000,

which last operation (57) is done by placing 3 ciphers on the right.

Hence the rule in this case is, Multiply by the simple number, and

place the number of ciphers which follow it at the right of the product.

EXAMPLE.

Multiply 1679423800872

by 60000

100765428052320000

61. EXERCISES.

What is 1007360x7? Answer, 70^1 ^zo,

123456789x9+10 and 123x9+4?

—

Ans. iiiiimii

and I III.

What is 136x3+129x4+147x8+27x3000?

—

Ans. 83100.

An army is made up of 33 regiments of infantry, each containing

800 men; 14 of cavalry, each containing 600 men; and 2 of artillery,

each containing 300 men. The enemy has 6 more regiments of infantry,

each containing 100 more men; 3 more regiments of cavalry, each con-

taining 100 men less ; and 4 corps of artillery of the same magnitude as

those of the first : two regiments of cavalry and one of infantry desert

from the former to the latter. How many men has the second army

more than the first ?

—

Answer, 13400.

62. Suppose it required to multiply 23707 by 4567. Since 4567 is
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is 1422420

is "853500

is 94828000
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made up of 4000, 500, 60, and 7, by (53) we must multiply 23707 by

each of these, and add the products.

Now (58) 23707X 7

(60) 23707X 60

23707X 500

23707x4000

The sum of these is 108269869

which is the product required.

It will do as well if, instead of writing the ciphers at the end of each

line, we keep the other figures in their places without them. If we take

away the ciphers, the second line is one place to the left of the first, the

third one place to the left of the second, and so on. "Write the multiplier

and the multiplicand over these lines, and the process will stand thus :

23707 63. There is one more case to be noticed ; that is,

4567 where there is a cipher in the middle of the multiplier.

165949 The following example will shew that in this case

142242 nothing more is necessary than to keep the first figure

118535 of each line in the column under the figure of the

94828 multiplier from which that line arises. Suppose it re-

10S269869 quired to multiply 365 by 101001. The multiplier is

made up of icoooo, 1000 and 1. Proceed as before, and

365x1 is 365

(57) 365x1000 is 365000

365x100000 is 36500000

The sum of which is 36865365

and the whole process with the ciphers struck off is

:

365 64. The following is the rule in all cases :

loiooi I. Place the multiplier under the multiplicand, so

365 that the units of one may be under those of the other.

365 II. Multiply the whole mvdtiplicand by each figure

365 of the multiplier {59), and place the unit of each line in

36865365 the column under the figure of the multiplier from which

it came.
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III. Add together the lines obtained hj II. column by column.

65. When the multiplier or multiplicand, or both, have ciphers on

the right hand, multiply the two together without the ciphers, and then

place on the right of the product all the ciphers that are on the right

both of the multiplier and multiplicand. For example, what is 3200

XI 3000? First, 3200 is 32x100, or one hundred times as great as 32.

Again, 32x13000 is 32x13, with three ciphers affixed, that is 416, with

three ciphers affixed, or 416000, But the product required must be

100 times as great as this, or must have two ciphers affixed. It is

therefore 41600000, having as many ciphers as are in both multiplier

and multiplicand.

66. When any number is multiplied by itself any number of times,

the result is called a power of that number. Thus

:

6 is called the first power of 6

6x6 . . second power of 6

6x6x6 . . third power of 6

6x6x6x6 . fourth power of 6

&c. &c.

The second and third powers are usually called the square and cube,

which are incorrect names, derived from certain connexions of the se-

cond and third power with the square and cube in geometry. As exer-

cises in multiplication, the following powers are to be found.

ttber proposed. Square. Cube.

97* 944784 918330048

1008 1016064 1024192512

3H» 9872164 31018339288

3163 10004569 31644451747

5555 30858025 171416328875

6789 46090521 312908547069

The fifth power of• 36 is 60466176

... fourth . . 50 6250000

... fourth . . 108 ... 136048896

... fourth . . 277 ... 5887339441
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67. It is required to multiply a+b by c+d, that is, to take a+b as

many times as there are units in c+d. By (53) a+b must be taken c

times, and d times, or the product required is {a+b)c-\-{a+b)d. But

(52) {a+b)c is ac+bc^ and {a+b)d is ad+bd; whence the product required

is ac+bc+ad+bd ; or,

(a+b){c+d) = ac+bc+ad+bd.

By similar reasoning {a—b)(c+d) is {a—b)c+{a—b)d; or,

(a—b){c+d) — ac—bc+ad—bd.

To multiply a—b by c—rf, first take a—b c times, which gives ac—bc.

This is not correct ; for in taking it times instead of c—d times, we

have taken it d times too many ; or have made a result which is {a—b)d

too great. The real result is therefore ac—bc—{a—b)d. But {a—b)d is

ad—bd^ and therefore

(a—6)(c—c?) = ac—bc—{ad—bd)

= ac—bo—ad+bd (41)

From these three examples may be collected the following rule for

the multiplication of algebraic quantities : Multiply each term of the

multiplicand by each term of the multiplier ; when the two terms have

both + or both — before them, put + before their product; when one

has + and the other —, put — before their product. In using the first

terms, which have no sign, apply the rule as if they had the sign +

.

68. For example, {a+b) {a+b) gives aa+ab+ab+bb. But ab+ab is

zab ; hence the square of a+b is aa+zab+bb. Again (a—i)(a—6) gives

aa—ab—ab+bb. But two subtractions of ab are equivalent to subtract-

ing lab ; hence the square of a—b is aa—zab+bb. Again, (a+b){a—b)

gives aa+ab—ab—bb. But the addition and subtraction of ab makes no

change ; hence the product of a+b and a—b is aa—bb.

Again, the square of a+b+c+d or {a+b+c+d){a+b+c+d) will be found

to be aa+zab+zac+zad+bb+zbc+zbd+cc+zcd+dd; or the rule for squaring

such a quantity is : Square the first term, and multiply all that come

after by twice that term ; do the same with the second, and so on to

the end.
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SECTION IV.

69. Suppose 1 ask whether 156 can be divided into a number of

parts each of which is 13, or how many thirteens 156 contains; I pro-

pose a question, the solution of which is called division. In this case,

156 is called the dividend, 13 the divisor, and the number of parts re-

quired is the quotient; and when I find the quotient, I am said to

divide 156 by 13.

70. The simplest method of doing this is to subtract 13 from 156,

and then to subtract 13 from the remainder, and so on; or, in common

language, to tell offi^^ by thirteens. A similar process has already

occurred in the exercises on subtraction. Art. (46). Do this, and mark

one for every subtraction that is made, to remind you that each sub-

traction takes 13 once from 156, which operations will stand as follows :

156 Begin by subtracting 13 from 156, which leaves 143. Sub-
13 I-—— tract 13 from 143, which leaves 130; and so on. At last 13

13 ^ only remains, from which when 13 is subtracted, there remains

J.J nothing. Upon counting the number of times which you have

J 17 subtracted 13, you find that this number is 12 ; or 156 contains

13 I—-— twelve thirteens, or contains 1 3 twelve times.

13 ' This method is the most simple possible, and might be done

J- J
with pebbles. Of these you would first coimt 156. You would

78 then take 13 from the heap, and put them into one heap by

-77

—

themselves. You would then take another 13 from the heap,

13 ^ and place them in another heap by themselves ; and so on until

J- J
there were none left. You would then count the number of

39 heaps, which you would find to be 12.

13 I

-r?
—

71. Division is the opposite of multiplication. In multi-

^3 ' plication you have a number of heaps, with the same number

,^ I
of pebbles in each, and you want to know how many pebbles

o there are in all. In division you know how many there are
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in all, and how many there are to be in each heap, and you want

to know how many heaps there are.

72. In the last example a number was taken which contains an

exact number of thirteens. But this does not happen with every num-

ber. Take, for example, 159. Follow the process of (70), and it will

appear that after having subtracted 13 twelve times, there remains 3,

from which 13 cannot be subtracted. We may say then that 159 con-

tains twelve thirteens and 3 over ; or that 159, when divided by 13,

gives a quotient 12, and a remainder 3. If we use signs,

159 = 13x12+3.

EXERCISES.

146= 24x6+2, or 146 contains six twenty-fours and 2 over.

146 = 6x24+2, or 146 contains twenty-four sixes and 2 over.

300 = 42x7+6, or 300 contains seven forty-twos and 6 over.

39624=7277x5+3239.

73. If a contain b q times with a remainder r, a must be greater

than bq by r ; that is,

a= bq+r.

If there be no remainder, a = bq. Here a is the dividend, b the divisor,

q the quotient, and r the remainder. In order to say that a contains

b q times, we write,

- = q,ora:b = q^

which in old books is often found written thus :

a-i-b = q.

74. If I divide 156 into several parts, and find how often 13 is

contained in each of them, it is plain that 156 contains 13 as often as

all its parts together. For example, 156 is made up of 91, 39, and 26.

Of these

91 contains 137 times,

39 contains 133 times,

26 contains 13 2 times;

therefore 91+39+26 contains 13 7+3+2 times, or 12 times.

Again, 156 is made up of 100, 50, and 6.
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Now 100 contains 137 times and 9 over,

50 contains 13 3 times and 11 over,

6 contains 130 times* and 6 over.

Therefore 100+50+6 contains 13 7+3+0 times and 9+11+6 over; or

156 contains 13 10 times and a6 over. But 26 is itself 2 thirteens;

therefore 156 contains 10 thirteens and 2 thirteens, or 12 thirteens.

75. The result of the last article is expressed by saying, that if

,,,,,, a b c d
a= 6+c+rf, then — =—+—+—

.

m m m m
76. In the first example I did not take away 13 more than once at

a time, in order that the method might be as simple as possible. But

if I know what is twice 13, 3 times 13, &c., I can take away as many

thirteens at a time as I please, if I take care to mark at each step how

many I take away. For example, take away 13 ten times at once from

156, that is, take away 130, and afterwards take away 13 twice, or take

away 26, and the process is as follows :

156

130 10 times 13.

~e
26 2 times 13.

o

Therefore 156 contains 13 10+2, or 12 times.

Again, to divide 3096 by 18.

3096 Therefore 3096 contains 18 100+50+20+2, or

1800 100 times 18. 172 times.

1296 77. You will now understand the following

900 50 times 18. sentences, and be able to make similar assertions

396 of other nimfibers.

360 20 times 18. 450 is 75x6; it therefore contains any number,

36 as 5, 6 times as often as 75 contains it.

36 2 times 18.

o

* To speak always in the same way, instead of saying that 6 does not contain IS,

I say that it contains it times and 6 over, which is merely saying that 6 is 6

more than nothing.
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135 3 26 times; therefore.

Twice 135 .1 3 - 5^ or twice 26 »

10 times 135 o 3 I 260 or 10 times 26 -B

50 times 135 3 1300 or 50 times 26

472 contains 18 more than 21 times ; therefore,

4720 contains 18 more than 210 times,

47200 contains 18 more than 2100 times,

472000 contains 18 more than 21000 times.

32 12 2 3 3

320

3200
I

12

12
1

20

200
1

1

30

300

[2000 12 a 20C0 i 3000

&c. &c. •B &c.

78. The foregoing articles contain the principles of division. The

question now is, to apply them in the shortest and most convenient way.

4068
Suppose it required to divide 4068 by 18, or to find——- (23).

lo

If we divide 4068 into any number of parts, we may, by the process

followed in (74), find how many times 18 is contained in each of these

parts, and from thence how many times it is contained in the whole.

Now, what separation of 4068 into parts will be most convenient ?

Observe that 4, the first figure of 4068, does not contain 18 ; but that

40, the first and second figures together, does contain 18 more than ttoice^

but less than three times* But 4068 (20) is made up of 40 hundreds,

and 68 ; of which, 40 hundreds (77) contains 18 more than 200 times,

and less than 300 times. Therefore, 4068 also contains more than 200

times 18, since it must contain 18 more times than 4000 does. It also

contains 18 less than 300 times, because 300 times 18 is 5400, a greater

number than 4068. Subtract 18 200 times from 4068 ; that is, subtract

3600, and there remains 468. Therefore, 4068 contains 18 200 times,

and as many more times as 468 contains 18.

It remains, then, to find how many times 468 contains 18. Proceed

* If you have any doubt as to this expression, recollect that it means " contains

more than two eighteens, but not so much as three."

B
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exactly as before. Observe that 46 contains 18 more than t^nce, and

less than 3 times ; therefore, 460 contains it more than 20, and less

than 30 times (77) ; as does also 468. Subtract 18 20 times from 468,

that is, subtract 360 ; the remainder is 108. Therefore, 468 contains

18 20 times, and as many more as 108 contains it. Now, 108 is found

to contain 18 6 times exactly ; therefore, 468 contains it 20+6 times,

and 4068 contains it 200420+6 times, or 226 times. If we write down

the process that has been followed, without any explanation, putting

the divisor, dividend, and quotient, in a line separated by parentheses,

it will stand, as in example (A).

Let it be required to divide 36326599 by 1342 (B).

B.

342)36326599(20000+7000+60+9

26840000

9486599 18)4068(200+20+6

9394000 3600

92599

80520

468

360

12079

12078

108

108

1 o

As in the previous example, 36326599 is separated into 36320000

and 6599 ; the first four figures 3632 being separated from the rest,

because it takes four figures from the left of the dividend to make a

number which is greater than the divisor. Again, 36320000 is found to

contain 1342 more than 20000, and less than 30000 times ; and 1342X

20000 is subtracted from the dividend, after which the remainder is

9486599. The same operation is repeated again and again, and the

result is found to be, that there is a quotient zoooo+7000+60+9, or

27069, and a remainder i.

Before you proceed, you should now repeat the foregoing article at

length in the solution of the following questions. What are

10093874 66779922 2718218

3207 ' 1 14433
'

13352
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the quotients of which are 3147, 583, 203; and the remainders 1445,

65483, 7762.

79. In the examples of the last article, observe, ist, that it is useless

to write down the ciphers which are on the right of each subtrahend,

provided that without them you keep each of the other figures in its

proper place : 2d, that it is useless to put down the right-hand figures

of the dividend so long as they fall over ciphers, because they do not

begin to have any share in the making of the quotient until, by con-

tinuing the process, they cease to have ciphers under them : 3d, that

the quotient is only a number ^vxitten at length, instead of the usual

way. For example, the first quotient is 200+20+6, or 226; the second

is 20000+7000+60+9, or 27069. Strike out, therefore, all the ciphers

and the numbers which come above them, excej)t those in the first

line, and put the quotient in one line ; and the two examples of the

last article will stand thus :

i8)ao68(226 1342)36326599(27069

36 26S4

46 9486

36 9394

108 9259
ic8 8052

1 2079

12078

80. Hence the following rule is deduced

:

I. Write the divisor and dividend in one line, and place parentheses

en each side of the dividend.

II. Take of}' from the left hand of the dividend the least number of

figures which make a number greater than the divisor ; find what num-

ber of times the divisor is contained in these, and write this number as

the first figure of the quotient.

III. Multiply the divisor by the last-mentioned figure, and subtract

the product from the number which was taken off at the left of the

dividend.
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IV. On the right of the remainder place the figure of the dividend

which comes next after those already separated in II. : if the remainder

thus increased be greater than the divisor, find how many times the

divisor is contained in it ; put this number at the right of the first

figure of the quotient, and repeat the process : if not, on the right place

the next figure of the dividend, and the next, and so on until it is

greater ; but remember to place a cipher in the quotient for every figure

of the dividend which you are obliged to take, except the first.

V. Proceed in this way until all the figures of the dividend are

exhausted.

In judging how often one large number is contained in another, a

first and rough guess may be made by striking off the same number of

figures from both, and using the results instead of the numbers them-

selves. Thus, 4,732 is contained in 14,379 about the same number of

times that 4 is contained in 14, or about 3 times. The reason is, that

4 being contained in 14 as often as 4000 is in 14000, and these last only

differing from the proposed numbers by lower denominations, viz. hun-

dreds, &c. we may expect that there will not be much difference be-

tween the number of times which 14000 contains 4000, and that which

14379 contains 4732: and it generally happens so. But if the second

figure of the divisor be 5, or greater than 5, it will be more accurate to

increase the first figure of the divisor by 1, before trying the method

just explained. Nothing but practice can give facility in this sort of

guess-work.

81. This process may be made more simple when the divisor is not

greater than 12, if you have sufficient knowledge of the multiplication

table (50). For example, I want to divide 132976 by 4. At full length

th J process stands thus ?
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4)132976(33244 But you will recollect, without the necessity of

^
writing it down, that 13 contains 4 three times with

'^ a remainder i ; this 1 you will place before 2, the

next figure of the dividend, and you know that 12

9 contains 4 3 times exactly, and so on. It will be more
8

convenient to write down the quotient thus :

^7 4)132976

^ 33244

16 While on this part of the subject, we may men-

^"
tion, that the shortest way to multiply by 5 is to

o annex a cipher and divide by 2, which is equivalent

to taking the half of 10 times, or 5 times. To divide by 5, multiply by

2 and strike off the last figure, which leaves the quotient ; half the last

figure is the remainder. To multiply by 25, annex two ciphers and

divide by 4. To divide by 25, multiply by 4 and strike off the last

two figures, which leaves the quotient ; one fourth of the last two

figures, taken as one number, is the remainder. To multiply a number

by 9, annex a cipher, and subtract the number, which is equivalent to

taking the number ten times, and then subtracting it once. To mul-

tiply by 99, annex two ciphers and subtract the number, &c.

In order that a number may be divisible by 2 without remainfler,

its units' figure must be an even number.* That it may be divisible

by 4, its last two figures must be divisible by 4. Take the example

1236: this is composed of 12 hundreds and 36, the first part of which,

being hundreds, is divisible by 4, and gives 12 twenty-fives ; it depends

then upon 36, the last two figures, whether 1236 is divisible by 4 or

not. A number is divisible by 8 if the last three figures are divisible

by 8 ; for every digit, except the last three, is a number of thousands,

and 1000 is divisible by 8 ; whether therefore the Avhole shall be divi-

sible by 8 or not depends on the last three figures: thus, 127946 is not

divisible by 8, since 946 is not so. A number is divisible by 3 or 9

only when the sum of its digits is divisible by 3 or 9. Take for example

1234 ; this is

• Among the even figures we include 0.

e2
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I thousand, or 999 and 1

z hundred, or twice 99 and 2

3 tens, or three times 9 and 3

and 4 or 4

Now 9, 99, 999, &c. are. all obviously divisible by 9 and by 3, and so

will be any number made by the repetition of all or any of them any

number of times. It therefore depends on 1+2+3+4, or the sura of the

digits, whether 1234 shall be divisible by 9 or 3, or not. From the

above we gather, that a number is divisible by 6 when it is even, and

when the sum of its digits is divisible by 3. Lastly, a number is divi-

sible by 5 only when the last figure is o or 5.

82. Where the divisor is unity followed by ciphers, the rule becomes

extremely simple, as you will see by the following examples :

100)33429(334 This is, then, the rule: Cut off as many
3°o figures from the right hand of the dividend

342 as there are ciphers. These figures -will be

3°° the remainder, and the rest of the dividend

429 will be the quotient.

^° Or we may prove these results thus : from

29 (20), 2717316 is 271731 tens and 6; of which
10)2717316

the first contains 10 271731 times, and the

271731 and rem. 6. , , ,, , . . , „
second not at all ; the quotient is therefore

271731, and the remainder 6 (72). Again (20), 33429 is 334 hundreds

and 29 ; of which the first contains 100 334 times, and the second not

at all ; the quotient is therefore 334, and the remainder 29.

83. The following examples will shew how the rule may be short-

ened when there are ciphers in the divisor. With each example is

placed another containing the same process, all unnecessary figures

being removed ; and from the comparison of the two, the rule at the

end of this article is derived.
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I. 1782000)6424700000(3605 1782)6424700(3605

5346000 5346

10787000 10787

10692000 10692

9500000 9500

8910000 8910

590000 590000

II. 12500000)42176189300(3428 123)421761(3428

36900000 369

52761893 527

49200COO 492

35618930 356

24600000 ^46

I10IS9300 1101

984CCOOO 984

43

117893C0 1789300

The rule, then, is : Strike out as many figures* from the right of the

dividend as there are ciphers at the right of the divisor. Strike out all

the ciphers from the divisor, and divide in the usual way ; hut at the

end of the process place on the right of the remainder all those figures

which were struck out of the dividend.

54. EXERCISES.

Dividend. Divisor. Quotient. Remainder.

9694 47 206 12

175618 3136 56 2

23796484 13C000 183 6484

14C02564 1871 7484

3 103 14420 7878 39390

3939040647 6889 571787 4

22876792454961 43046721 531441

Including both ciphers and others.
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Shew that

^ looxiooxioo—4':x4.3x4i
I. = 100x100+100x43+43x43.

100—43

^, 100x100x100+43x43x43
II. = 100x100—100x43+43x43.

100+43

jjj
76x76+2x76x52+52x52 ^ ^^_^

76+52 '
^"*

,„ I2XI2XI2XI2—

I

IV. 1+12+12X12+12X12X12 =
12—

I

What is the nearest number to 1376429 which can be divided by

36300 without remainder ?

—

Answer, 1379400.

If 36 oxen can eat 216 acres of grass in one year, and if a sheep eat

half as much as an ox, how long will it take 49 oxen and 136 sheep

together to eat 17550 acres ?

—

Answer, 25 years.

85. Take any two numbers, one of which divides the other without

remainder; for example, 32 and 4. Multiply both these numbers by

any other number ; for example, 6. The products will be 192 and 24.

Now, 192 contains 24 just as often as 32 contains 4. Suppose 6 baskets,

each containing 32 pebbles, the whole number of which will be 192.

Take 4 from one basket, time after time, until that basket is empty.

It is plain that if, instead of taking 4 from that basket, I take 4 from

each, the whole 6 will be emptied together : that is, 6 times 32 contains

6 times 4 just as often as 32 contains 4. The same reasoning applies

to other numbers, and therefore we do not alter the quotient if we mul-

tiply the dividend and divisor by the same number.

86. Again, suppose that 200 is to be divided by 50. Divide both

the dividend and divisor by the same number ; for example, 5. Then,

200 is 5 times 40, and 50 is 5 times 10. But by (85), 40 divided by 10

gives the same quotient as 5 times 40 divided by 5 times 10, and there-

fore the quotient of two numbers is not altered by dividing both the diin-

dend and divisor by the same number,

87. From (55), if a number be multiplied successively by two others,

it is multiplied by their product. Thus, 27, first multiplied by 5, and

the product multiplied by 3, is the same as 27 multiplied by 5 times 3,

or 15. Also, if a number be divided by any number, and the quotient
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be divided ly anothei, it is the same as if the first number had been

divided by the product of the other two. For example, divide 60 by 4,

which gives 15, and the quotient by 3, which gives 5. It is plain, that

if each of the four fifteens of which 60 is composed be divided into three

equal parts, there are twelve equal parts in all ; or, a division by 4, and

then by 3, is equivalent to a division by 4x3, or la.

88. The folloAving rules will be better understood by stating them

in an example. If 32 be multiplied by 24 and divided by 6, the result

is the same as if 32 had been multiplied by the quotient of 24 divided

by 6, that is, by 4 ; for the sixth part of 24 being 4, the sixth part of

any number repeated 24 times is that number repeated 4 times ; or,

multiplying by 24 and dividing by 6 is equivalent to multiplying by 4.

89. Again, if 48 be multiplied by 4, and that product be divided by

24, it is the same thing as if 48 were divided at once by the quotient of

24 divided by 4, that is, by 6. For, every unit which is repeated 6

times in 48 is repeated 4 times as often, or 24 times, in 4 times 48,

or the quotient of 48 and 6 is the same as the quotient of 48x4 and

6x4.

90. The results of the last five articles may be algebraically express > I

thus

:

If n divide a and b without remainder,

a a

-Ji-=« (86) -^ = iL (87)
^ b c bo

ab b etc a- = «x- (88) T ==~T
(89)

It must be recollected, however, that these have only been proved

in the case where all the divisions are without remainder.

91. When one number divides another without leaving any re-

mainder, or is contained an exact number of times in it, it is said to be

a measure of that number, or to measure it. Thus, 4 is a measure of

136, or measures 136 ; but it does not measure 137. The reason for
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using the word measure is this : Suppose you have a rod 4 feet long,

with nothing marked upon it, with which you want to measure some

length ; for example, the length of a street. If that street should

happen to be 136 feet in length, you will be able to measicre it with

the rod, because, since 136 contains 4 34 times, you will find that the

street is exactly 34 times the lengtli of the rod. But if the street should

happen to be 137 feet long, you cannot measure it with the rod ; for

when you have measured 34 of the rods, you will find a remainder,

whose length you cannot tell without some shorter measure. Hence 4

is said to measure 136, but not to measure 137. A measure, then, is a

divisor which leaves no remainder.

92. When one number is a measure of two others, it is called a

common measure of the two. Thus, 15 is a common measure of 180

and 75. Two numbers may have several common measures. For

example, 360 and 168 have the common measures 2, 3, 4, 6, 24, and

several others. Now, this question may be asked : Of all the common

measures of 360 and 168, which is the greatest .? The answer to this

question is derived from a rule of arithmetic, called the rule for finding

the GREATEST COMMON MEASURE, which we procccd to consider.

93. If one quantity measure two others, it measures their sum and

difference. Thus, 7 measures 21 and 56. It therefore measures 56+21

and 56—21, or 77 and 35. This is only another way of saying what

was said in (74).

94. If one number measure a second, it measures every number

which the second measures. Thus, 5 measures 15, and 15 measures 30,

45, 60, 75, &c. ; all which numbers are measured by 5. It is plain

that if

15 contains 5 3 times,

30, or 15+15 contains 5 3+3 times, or 6 times,

45, or 15+15+15 contains 5 3+3+3 or 9 times
;

and so on.

95. Every number which measures both the dividend and divisor

measures the remainder also. To shew this, divide 360 by 112. The

quotient is 3, and the remainder 24, that is (72) 360 is three times 112
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and 24, or 360 = 112x3+24. From this it follows, that 24 is the differ-

ence between 360 and 3 times 112, or 24 = 360—112x3. Take any num-

ber which measures both 360 and 112 ; for example, 4. Then

4 measures 360,

4 measures 112, and therefore (94) measures 112x3,

or 112+112+112.

Therefore (93) it measures 360—112x3, which is the remainder 24. The

same reasoning may be applied to all other measures of 360 and 112 ;

and the result is, that every quantity which measures both the dividend

and divisor also measures the remainder. Hence, every common measure

of a dividend and divisor is also a cammon measure of the divisor and

remainder.

dQ. Every common measure of the divisor and remainder is also a

common measure of the dividend and divisor. Take the same example,

and recollect that 360 = 112x3+24. Take any common measure of the

remainder 24 and the divisor 1 12 ; for example, 8. Then

8 measures 24

;

and 8 measures 112, and therefore (94) measures 112x3.

Therefore (93) 8 measures 112x3+24, or measures the dividend 360.

Then every common measure of the remainder and divisor is also a

common measure of the divisor and dividend, or there is no common

measure of the remainder and divisor which is not also a common mea-

sure of the divisor and dividend.

97. I. It is proved in {95) that the remainder and divisor have all

the common measures which are in the dividend and divisor.

II. It is proved in (96) that they have no others.

It therefore follows, that the greatest of the common measures of

the first two is the greatest of those of the second two, which shews how

to find the greatest common measure of any two numbers,* as follows :

98. Take the preceding example, and let it be required to find the

g. 0. m. of 360 and 112, and observe that

For shortness, I abbreviate the words greatest common measure into their initial

letters, g. c. m.
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360 divided by 112 gives the remainder 24,

112 divided by 24 gives the remainder 16,

24 divided by 16 gives the remainder 8,

16 divided by 8 gives no remainder.

Now, since 8 divides 16 without remainder, and since it also divides

itself without remainder, 8 is the g. c. m. of 8 and 16, because it is im-

possible to divide 8 by any number greater than 8 ; so that, even if

16 had a greater measure than 8, it could not be common to 16 and 8,

Therefore 8 is g. c. m. of 16 and 8,

(97) g. c. m. of 16 and 8 is g. c. m. of 24 and 16,

g. c. m. of 24 and 16 is g. c. m. of 112 and 24,

g. c. m. of 112 and 24 is g. c. m. of 360 and 112,

Therefore 8 is g. c. m. of 360 and 112.

The process carried on may be written down in either of the follow-

ing ways

:

1 12)360(3 The rule ftr finding the greatest common mea-

^^ sure of two numbers is,

24)1 12(4 I. Divide the greater of the two by the less.

"
II. Make the remainder a divisor, and the

16)24(1 divisor a dividend, and find another remainder.

III. Proceed in this way until there is no

8)16(2 remainder, and the last divisor is the greatest

common measure required.

° 99, You may perhaps ask how the rule is to

shew when the two numbers have no common

measure. The fact is, that there are, strictly

speaking, no such numbers, because all numbers

tire measured by i ; that is, contain an exact

number of units, and therefore i is a common

measure of every two nimibers. If they have no other common mea-

sure, the last divisor will be i, as in the following example, where the

greatest common measure of 87 and 25 is found.

112 360 3

96 336 4

16 24 1

16 i6 2

8
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EXERCISES.

*

Numbers. g. c. ra.

6197 9521 I

58363 26C2 I

5547 147008443 1849

6281 326041 571

28915 31495 5

1509 300309 3

§ 99-102. .

DIVISION. 49

45)87(3

75

12)25(2

24

1)12(12

12

o

What are 36x36+2x36x72+72x72

and 36x36x36+72x72x72;

and what is their greatest common measure ?—Answer, 11664.

100. If two numbers be divisible by a third, and if the quotients be

again divisible by a fourth, that third is not the greatest common mea-

sure. For example, 360 and 504 are both divisible by 4. The quotients

are 90 and 126. Now 90 and 126 are both divisible by 9, the quotients

of which division are 10 and 14. By (87), dividing a number by 4, and

then dividing the quotient by 9, is the same thing as dividing the num-

ber itself by 4x9, or by 36. Then, since 36 is a common measure of 360

and 504, and is greater than 4, 4 is not the greatest common measure.

Again, since 10 and 14 are both divisible by 2, 36 is not the greatest

common measure. It therefore follows, that when two numbers are

divided by their greatest common measure, the quotients have no com-

mon measure except i {^0). Otherwise, the number w^hich was called

the greatest common measure in the last sentence is not so in reality.

101. To find the greatest common measure of three numbers, find

the g. c. m. of the first and second, and of this and the third. For

since all common divisors of the first and second are contained in their

g. c. m., and no others, whatever is common to the first, second, and

third, is common also to the third and the g. c. m. of the first and second,

and no others. Similarly, to find the g. c. m. of four numbers, find the

g. c. m. of the first, second, and third, and of that and the fourth.

102. When a first number contains a second, or is divisible by it

without remainder, the first is called a multiple of the second. Th©

words mult'ple and measure are thus connected: Since 4 is a n:easi!re

F
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of 24, 24 is a multiple of 4. The number 96 is a multiple of 8, 12, 24,

48, and several others. It is therefore called a common multiple of 8,

12, 24, 48, &c. The product of any two numbers is evidently a common

multiple of both. Thus, 36x8, or 288, is a common multiple of 36 and

8. But there are common multiples of 36 and 8 less than 288 ; and

lecause it is convenient, when a common multiple of two quantities is

wanted, to use the least of them, I now shew how to find the least

common multiple of two numbers.

103. 'Take, for example, 36 and 8. Find their greatest common

measure, which is 4, and observe that 36 is 9x4, and 8 is 2x4. The

quotients of 36 and 8, when divided by their greatest common measure,

are therefore 9 and 2. Multiply these quotients together, and multiply

the product by the greatest common measure, 4, which gives 9x2x4, or

72. This is a multiple of 8, or of 4X2 by (55) ; and also of 36 or of

4x9. It is also the least common multiple; but this cannot be proved

to you, because the demonstration cannot be thoroughly understood

without more practice in the use of letters to stand for numbers. But

you may satisfy yourself that it is the least in this case, and that the

same process will give the least common multiple in any other case

which you may take. It is not even necessary that you should know

it is the least. Whenever a common multiple is to be used, any one

will do as well as the least. It is only to avoid large numbers that the

least is used in preference to any other.

When the greatest common measure is i, the least common multiple

of the two numbers is their product.

The rule then is : To find the least common multiple of two num-

bers, find their greatest common measure, and multiply one of the num-

l)ers by the quotient which the other gives when divided by the gieatest

common measure. To find the least common multiple of three num-

bers, find the least common multiple of the firet two, and find the least

common multiple of that multiple and the third, and so on.
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EXERCISES.

51

Numbers proposed.

14, 21

16, 5, 24

I, 2, 3» 4, 5^ 6, 7, 8, 9, 10

6, 8, II, 16, 20

876, 864

868, 854

Least common multiple.

42

240

2520

2640

63072

52948

A convenient mode of finding the least common multiple of several

numbers is as follows, when the common measures are easily visible:

Pick out a number of common measures of two or more, which have

themselves no divisors greater than unity. "Write them as diviscrr, and

divide every number which will divide by one or more of them. Bring

down the quotients, and also the numbers which will not divide by any

of them. Repeat the process with the results, and so on until the num-

bers brought down have no two of them any common measure except

unity. Then, for the least common multiple, multiply all the divisors

by iill the numbers last brought down. For instance, let it be required

to find the least common multiple of all the numbers from 11 to 21.

2» ^» 3? 5» 7)11 12 13 14 15 16 17 18 19 20 21

II I 13 1 I 4 17 3 19 I I

There are now no common measures left in the row, and the least com-

mon multiple required is the product of 2, 2, 3, 5, 7, 11, 13, 4, 17, 3, and

19 ; or 232792560.

SECTION V.

FRACTIONS.

104. Suppose it requiied to divide 49 yards into five equal parts, or,

r.8 it is called, to find the fifth part of 49 yards. If we divide 45 by 5,

the quotient is 9, and the remainder is 4 ; that is (72), 49 is made up of

5 times 9 and 4. Let the line a b represent 49 yards

:
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A_ B

C J _
D ^K —
E L —
F M—
G N —

I K L ]M N
H

f I I I I I

Take 5 liiiep, C, D, e, f, and G, each 9 yards in length, and the line 11,

4 yards in length. Then, since 49 is 5 nines and 4, c, d, e, f, g, and h,

are together equal to a b. Divide h, which is 4 yards, into five equal

parts, I, K, L, M, and n, and place one of these parts opposite to each

of the lines, c, d, e, f, and g. It follows that the ten lines, c, d, e,

F, G, I, K, L, M, N, are together equal to a b, or 49 yards. Now d and k

together are of the same length as c and i together, and so are e and l,

F and M, and G and N. Therefore, c and i together, repeated 5 times,

will be 49 yards ; that is, c and i together make up the fifth part of 49

ya:\ls.

105. c is a certain number of yards, viz. 9 ; but i is a new sort of

quantity, to which hitherto we have never come. It is not an exact

number of yards, for it arises from dividing 4 yards into 5 parts, and

taking one of those parts. It is the fifth part of 4 yards, and is called

4
a FRACTION of a yard. It is written thus, - (23), and is what we must

add to 9 yards in order to make up the fiftli part of 49 yards.

The same reasoning would apply to dividing 49 bushels of com, or

49 acres of land, into 5 equal parts. We should find for the fifth part

of the first, 9 bushels and the fifth part of 4 bushels ; and for the second,

9 acres and the fifth part of 4 acres.

"NVe say, then, once for all, that the fifth part of 49 is 9 and -, or

9+^ ; which is usually written 9-, or if we use signs, — = 9-.
5

'5
5 5

EXERCISES.

What is the seventeenth part of 1237 ?

—

Answer, 7a—.
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What are ^221i, 552!l2, and iiZIMi? ,

1974 13710 2424.

162 23649 2343
Answer, c , 27 -, 9394 -,

1974 23710' ^^^^2424

106. By the term fraction is understood a part of any number, or the

sum of any of the equal parts into which a number is divided. Thus,

49 4 20—, -, —, are fractions. The terra fraction even includes whole num-557 17 34 51
bers :* for example, 17 is — , —, —, &c.123

The upper number is called the numerator, the lower number is

called the denominator, and both of these are called terms of the fraction.

As long as the numerator is less than the denominator, the fraction is

6
less than a unit: thus, — is less than a unit; for 6 divided into 6 parts

17
.

gives I for each part, and must give less when divided into 17 parts.

Similarly, the fraction is equal to a unit when the numerator and de-

nominator are equal, and greater than a unit when the numerator is

greater than the denominator.

2
107. By - is meant the third part of 2. This is the same as twice

the third part of i.

To prove this, let a n be two yards, and divide each of the yards a c

and c B into three equal parts.

I
^ 1

^ -r 1
1

A D E C F G B

Then, because a e, e f, and f b, are all equal to one another, a e is

2
the third part of 2. It is therefore -. But a e is twice a d, and a d

I 3 2 1

is the third part of one y.ard, or - ; therefore - is twice -
; that is, in

2 3 3 3

order to get the length -, it makes no difference whether we divide tuo

yards at once into threv^ parts, and take one of them, or whether we

divide one yard into three parts, and take two of them. By the same

reasoning, - may be found either by dividing 5 into 8 parts, and taking

one of them, or by dividing i into 8 parts, and taking five of them. In

future, of these two meanings I shall use that which is most convenient

at the time, as it is proved that they are the same thing. This prin-

* Numbers which contain an exact number of units, such as 5, 7, 100, &c., dtq

called whole numbers or integers, when we -wish to distinguish them from fractions.

f2
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ciple is the same as tlie following : The third part of any number may

be obtained by adding together the thirds of all the units of which it

consists. Thus, the third part of 2, or of two units, is made by taking

one-third out of each of the units, that is,

2 I
- = -X2.
3 3

This meaning appears ambiguous when the numerator is greater than

the denominator : thus, — would mean that i is to be divided into 7
7

parts, and 15 of them are to be taken. We should here let as many

units be each divided into 7 parts as will give more than 15 of those

parts, and take 1 5 of them.

1 08. The value of a fraction is not altered by multiplying the nume-

rator and denominator bv the same quantity. Take the fraction -, mul-
15 4-

tiply its numerator and denominator by 5, and it becomes —, which is the

same thing as - ; that is, one-twentieth part of 15 yards is the same
4

thing as one-fourth of 3 yards : or, if our second meaning of the word

fraction be used, you get the same length by dividing a yard into 20

parts and taking 15 of them, as you get by dividing it into 4 parts and

taking 3 of them. To prove this.

I I I M I I I

*
I I I I

*
I I I I

A C D E B

let A B represent a yard ; divide it into 4 equal paits, a c, c d, d e, and

E B, and divide each of these parts into 5 equal parts. Then a e is -.

4
But the second division cuts the line into 20 equal parts, of which a b

15 15 3
contains 15. It is therefore —. Therefore, — and - are the same thin^r.

3 20 20 4 *

Again, since - is made from — by dividing both the numerator and
4 20 *

denominator by 5, the value of a fraction is not altered by dividing both

its numerator and denominator by the same quantity. This principle,

which is of so much importance in every part of arithmetic, is often

used in common language, as when we say that 14 out of 21 is 2 out of

3, &.C.

't If
109. Though the two fractions - and — are the same in value an I

4 20
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either of them maybe used for the other without error, yet the first is

more convenient than the second, not only because you have a clearer

idea of the fourth of three yards than of the twentieth part of fifteen

yards, but because the numbers in the first being smaller, are more con-

venient for multiplication and division. It is therefore useful, when a

fraction is given, to find out whether its numerator and denominator

have any common divisors or common measures. In (98) was given a

rule for finding the greatest common measure of any two numbers ; and

it was shewn that when the two numbers are divided by their greatest

common measure, the quotients have no common measure except i.

Find the greatest common measure of the terms of the fraction, and

divide them by that number. The fraction is then said to be reduced to

its lowest terms, and is in the state in which the best notion can be

formed of its magnitude.

EXERCISES.

With each fraction is written the same reduced to its lowest terms.

2794. 22x127 ^%

2921 23x127 23

2788 17x164 11
4920 30x164 30

93208 764x122 764

13786 113x122 113

888800 22x40400 22

40359600 999x40400 999

95469

359784

121x789

456x789

121

456

110. "When the terms of the fraction given are already in factors,*

nny one factor in the numerator may be divided by a number, provided

some one factor in the denominator is divided by the same. This fol-

lows from (88) and (108), In the following examples the figures altered

by division are accented.

* A factor of a number is a number which divides it without remainder : thus,

4, 6, 8, are factors of 2^, and 6x4, 8x3, 2x2x2x3, are several ways of decom losing

24 inro factors.
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I2XIIXIO 3'xiixio i'xiix5'
55-

2X 3X 4
~

2 X 3X i' I'xi' xi'

18x15x13 2'x3'xi' I'xi'xi' 1

20x54x52 4'x6'x4' z'xz' x^' i6*

27x28 3'x4' 3^x2'

9x70 I'xio' i'x5'

6

5*

111. As we can, by (108), multiply the numerator and denominator

of a fraction by any number, without altering its value, we can now

readily reduce two fractions to two others, which shall have the same

value as the first two, and which shall have the same denominator.24 2
Take, for example, - and - ; multiply both terms of - by 7, and both

4 3 7
terms of- by 3. It then appears that

3

2 . 2x7 14
- IS or -^
3 3x7 21

4 . 4x3 12
- IS -^-^ or —

.

7 7x3 21

14 12 24
Here are then two fractions — and —, equal to - and -, and

21 ^i 2 4 3 7
having the same denominator, 2 1 ; in this case, - and - are said to be

3 7
reduced to a common denominator.157

It is required to reduce —, ~, and - to a common denominator.
10 6 9

Multiply both terms of the first by the product of 6 and 9 ; of the se-

cond by the product of 10 and 9 ; and of the third by the product of

10 and 6. Then it appears (108) that

I . 1x6x9 54— IS ;r^ or -^^—

10 10x6x9 540

6 6x10x9 540

7 . 7xrox6 420
- IS or .

9 9x10x6 540

On looking at these last fractions, we see that all the numeratois

and the common denominator are divisible by 6, and (108) this division

will not alter their values. On dividing the numerators and deno-

54 450 420 9 75
minators of^^-^, ^^^-, and ~— by 6, the resulting fractions are, -^, —

,

70 540 540 540 90 90
and —. These are fractions with a common denominator, and which

90
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are the same as — . 7, and -
; and therefore these are a more simple

10 6 9
answer to the question than the first fractions. Observe also that 540

is one common multiple of 10, 6, and 9, namely, 10x6x9, but that 90 is

the least common multiple of 10, 6, and 9 (103). The following pro-

cess, therefore, is better. To reduce the fractions—, -, and -, to others
10 6 9

having the same value and a common denominator, begin by finding the

least common multiple of 10, 6, and 9, by the rule in (103), which is

90. Observe that 10, 6, and 9 are contained in 90 9, 15, and 10 times.

Multiply both terms of the first by 9, of the second by 15, and of the

third by 10, and the fractions thus produced are —, — , and —, the same
90 90 90

as before.

If one of the numbers be a whole number, it may be reduced to a

fraction having the common denominator of the rest, by (106).

EXERCISES,

Fractions proposed reduced to a common denominator.

2

3

I

5

I

6

20

30 30 30

I 2

3 7

_3_

14

12

21

3

4

28 24

84 84

18 48 63

84 84 84

3 A
10

5

100

6

ICOO

30CO 400

ICCO ICCO

50 6

1000 ICCO

33 281 22341 106499

379 677 256583 256583

112. By reducing two fractions to a common denominator, we are

able to compare them; that is, to tell which is the greater and which

the less of the two. For example, take - and —. These fractions

reduced, without alteration of their value, to a common denominator,

15 14
are — and —. Of these the first must be the greater, because (107) it

may be obtained by dividing i into 30 equal parts and taking 15 of them,

but the second is made by taking 14 of those parts.

It is evident that of two fractions which have the same denominator,

the greater has the greater numerator ; and also that of two fractions

which have the same numerator, the greater has the less denominator.
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8 . 8 .

Thus, -is greater than -, since the first is a 7th, and the last onlv a
7 9

9th part of 8. Also, any numerator may be made to belong to as small

a fraction as we please, by sufficiently increasing the denominator.

Thus, is—, is , and is (108).
100 10 1000 100 lOOOOOO lOOOOO

We can now also increase and diminish the first fraction by the

second. For the first fraction is made up of 15 of the 30 equal parts

into which i is divided. The second fraction is 14 of those parts. The

8um of the two, therefore, must be 15+14, or 29 of those parts; that

is, -H— is — . The difference of the two must be 15—14, or i of those

parts ; that is, = -,
2 15 30

113. From the last two articles the following rules are obtained :

I. To compare, to add, or to subtract fractions, first reduce them to

a common denominator. When this has been done, that is the greatest

of the fractions which has the greatest numerator.

Their sum has the sum of the numerators for its numerator, and the

common denominator for its denominator.

Their difference has the difference of the numerators for its nume-

rator, and the common denominator for its denominator.

EXERCISES.

2345 60

44

3

153 18329

427 128

1

8
1

3
,

4 _. 1834

10 ICO ICCO lOCO
2 V^-^^l

7 ^3 91

1 8 ^ 94 _ 3

2 16 188 2

163

521

97 93066

881 459C01

114." Suppose it required to add a whole number to a fraction, lOr

example, 6 to -. By (106) 6 is —, and —+- is— ; that is, 6+-, or as
9 4 . 58 9 9 9^

. 9 . 9
it is usually written, 6-, is—. The rule in this case is: Multiply the

whole number by the denominator of the fraction, and to the product

add the numerator of the fraction ; the sum will be the nimicrator of

the result, and the denominator of the fraction will be its denominator.

Thus, 3- = —, 22- = —-, 74— =
. This rule is the opposite of

' '*4 4 9 9 55 55
that in (105).



§ 115-118. FRACTIOXS. 59

907 . 17230907
115. From the last nile it appears that 1723 is ,

^^ 225 . 667225 ^ 99 . 230C099 ^ ^°°^° '^^°°.
667 — IS ——-, and 23

—

^^— IS — ^. Hence, when a whole
1000 1000 I00000 iCocco

number is to be added to a fraction whose denominator is i followed by

ciphers, the number of wiiich is not less than the number oi figures in

the numerator, the rule is ; Write the whole number first, and then the

numerator of the fraction, with as many ciphers between them as the

number of ciphers in the denominator exceeds the number of figures in

the numerator. This is the numerator of the result, and the denomi-

nator of the fraction is its denominator. If the number of ciphers in

the denominator be equal to the number of figures in the numerator,

write no ciphers between the whole number and the numerator.

EXERCISES.

Reduce the following mixed quantities to fractions : i , 2457—

,

299 , 2210 i^ccoo ^^^o'
1207 , and 233 .

lOOOOCOO lOOCO
J

116. Suppose it required to multiply - by 4, This by (48) is taking

2 , . 2 2 2 2 3 g
- four times ; that is, finding -+-H—h-. This by (112) is -; so that to
3

.
3 3 3 3 3.

multiply a fraction by a whole number the rule is : Multiply the nu-

merator by the whole number, and let the denominator remain.

117. If the denominator of the fraction be divisible by the whole

number, the rule may be stated thus: Divide the denominator of the

fraction by the whole number, and let the numerator remain. For

7 4^
example; multiply— by 6. This (11(5) is — , which, since the numerator

and denominator are now divisible bv 6, is (lOH) the same as -. It is

7 . 7 .

'

.

plam that - is made from —7 in the manner stated in the rule.
6 36

118. Multiplication has been defined to be the taking as many of

one number as there are units in another. Thus, to multiply 12 by 7

b to take as many twelves as there are units in 7, or to take 12 as many

times as you must take i in order to make 7. Thus, what is done with

I in order to make 7, is done with 12 to make 7 times 12. For example,

7 13 1+141-1+1 + 1 + 1.

7 times 12 is 12+12+12+12+12+12+12.

When the same thing is done with two fractions, the result is still
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called their product, and the process is still called multiplication. There

is this difference, that whereas a whole number is made by adding i to

itself a number of times, a fraction is made by dividing i into a number

of equal i)arts, and adding one of these parts to itself a number of times.

This being the meaning of the word multiplication, as applied to frac-

3 7
tions, what is - multiplied by - ? Whatever is done with i in order to74 8 -

^
make - must now be done with - ; but to make -, i is divided into 8

^

4
3 7 3

parts, and 7 of them are taken. Therefore, to make -x-, - must be di-

484,
vided into 8 parts, and 7 of them must be taken. Now -is,byCI08),

24 c:„„„ =^4 4
the same thing as - . Since — is made by dividing 1 into 32 parts, and

3* 3^
tfiking 24 of them, or, which is the same thing, taking 3 of them 8 times,

. 24 , .3
if— be divided into 8 equal parts, each of them is — ; and if 7 of these

3^ 21 3
32'

7 21
parts be taken, the result is — (116j : therefore - multiplied by - is —

;

32 4 8 32

and the same reasoning may be applied to any other fractions. But
21 3 7— is made from - and - by multiplying the two numerators together
32 4 8

for the numerator, and the two denominators for the denominator

;

which furnishes a rule for the multiplication of fractions.

21
119. If this product — is to be multiplied by a third fraction, for

5
^^ 105

example, by -, the result is, by the same rule, -—- ; and so on. The
5 280

general rule for multiplying any number of fractions together is therefore :

Multiply all the numerators together for the numerator of the pro-

duct, and all the denominators together for its denominator.

jC g
120. Suppose it required to multiply together -7 and —. The pro-

iqxS 120 ^ ^°

duct may be written thus : -7 , and is —r-, which reduced to its lowest

^
16x10 160

terms (109) is-. This result might have been obtained directly, by
4

observing that 15 and 10 are both measured by 5, and 8 and 16 are both

measured bv 8, and that the fraction may be written thus: ---^
.

2x8x2x5
Divide both its numerator and denominator by 5x8 (108) and (87), and

3
the result is at once -

; therefore, before proceeding to multiply any
4

number of fiactions together, if there be any numerator and any deno-

minator, whether belonging to the same fraction or not, which have a

common measure, divide them both by that common measure* and uso

tbo quotients instead of the dividends.
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A whole number may be considered as a fraction whose denominator

is I ; thus, i6 is — (106) ; and the same rule will apply when one or

more of the quantities are whole numbers.

7470

268 36448

'919" 6864930

18224

3432465

I 2 3

a 3 4

^ I

"5-5' Ax^7^-^
17 45 45

2 13 241

59 7 19

6266

7H7'

13 601 7813

461 II 5071

Fraction proposed. - Square. Cube.

701 49 140

1

344472101

158 24964 39443 la

140 196CO 2744c 00

141 19881 2803221

355

115

126025

12769

44738875

1442897

From 100 acres of ground, two-thirds of them are taken away ; 50

acres are then added to the result, and - of the whole is taken ; what
7 II

number of acres does this produce ?

—

Answer, 59—

.

121. In dividing one whole number by another, for example, ic8

by 9, this question is asked,—Can we, by the addition of any number

of nines, produce 108 ? and if so, how many nines will be sufficient for

that purpose ?

2 4
Suppose we take two fractions, for example, - and -, and ask. Can

4 ^ ^ .

we, by dividing - into some number of equal parts, and adding a num-
5 2

ber of these parts together, produce - ? if so, into how many parts must

we divide -, and how many of them must we add together ? The
5 .24,

solution of this question is still called the division of - by -
; and the

3 5
^.

fraction whose denominator is the number of parts into which - is

divided, and whose numerator is the number of them which is taken,

is called the quotient. The solution of this question is as follows

:

Reduce both these fractions to a common denominator (111), which
10 12

does not alter their value (108) ; they then become — and —. The
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question now is, to divide — into a number of parts, and to produce —
by taking a number of these parts. Since — is made by dividing i

^5 12
into 15 parts and taking 12 of them, if we divide — into 12 equal

1 '5
parts, each of these parts is — ; if we take 10 of these parts, the result

10 ^5 10 2
is —. Therefore, in order to produce — or - (108), we must divide

12 '5 4 ,
15 3 10— or - into 12 parts, and take 10 of them; that is, the quotient is —

.

15 5 2 4
'

» 1 j^

If we call - the dividend, and - the divisor, as before, the quotient in

this case is derived from the following rule, which the same reasoning

will shew to apply to other cases

:

The numerator of the quotient is the numerator of the divideml

multiplied by the denominator of the divisor. The denominator of the

quotient is the denominator of the dividend multiplied by the numerator

of the divisor. This rule is the reverse of multiplication, as will be

seen by comparing what is required in both cases. In multiplying -

10 4 5
by — , I ask, if out of- be taken 10 parts out of 12, how much of a unit

^?' 5 40 2 24
IS taken, and the answer is 7-, or -. Again, in dividing - by -, I ask

42 °° 3 10 3 5
what part of - is -, the answer to which is —

.

5 3 la

122. By taking the following instance, we shall see that this rule

can be sometimes simplified. Divide — by —. Observe that 16 is

33 15
4x4, and 28 is 4x7

; 33 is 3x11, and 15 is 3x5 ; therefore the two frac-

tions are and , and their quotient, according to the rule, is

4x4x3x5 3^^^
, 3^5,

, in which 4x3 is found both in the numerator and denominator.
3x11x4x7 ^

2Q
The fraction is therefore (108) the same as --^—^, or—. The rule of

11x7 77
the last article, therefore, admits of this modification : If the two nume-

rators or the two denominators have a common measure, divide by that

common measure, and use the quotients instead of the dividends.

123. In dividing a fraction by a whole number, for example, - by
15 .2 3

15, consider is ss the fraction —. The rule gives — as the quotient.

Therefore, to divide a fraction by a whole number, multiply the deno-

minator by that whole number.
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EXERCISES.

Dividend. Divisor. Quotient.

33 II 189

467

151

937

ICI

47157

136957

7813

5071

601

II

13

461

I I I

-x-x

What are ^ ^
^

I

5

2
X

17

2

"17

2 2 8

''^'\
and

^^'

8

II

£
II II

63

559
Answer^ —=^^, and i.

7225

A can reap a field in 12 days, B in 6, and C in 4 days ; in what time

can they all do it together?*

—

Answer^ 2 days.

In what time would a cistern be filled by cocks which would sepa-

rately fill it in 12, II, 10, and 9 hours .'

—

Answer^ 2-^- hours.
763

124. The principal results of this section may be exhibited algebrai-

cally as follows ; let a, 6, c, &c. stand for any whole numbers. Then

(107) - = --.„ (108) - =-
f^^^\ ^ :i ^ xu ad bo
(111) - and - are the same as -— and —

-

ha bd Id

,,,«, a b a-hb a b a—b
(112) - + - = =

c c c c c c

(113)
a c ad+bc a c ad—be

b d bd b d bd

("«) ^3=^ (-i)3<'^v.M.«o.±.0

* The method of solving this and the folloMdng question may be shewn thus : If

the number of days in which each could reap the field is given, the part which each

could do in a day by himself can be found, and thence the part which all could do

together ; this being known, the number of days which it would take all to do the

whole can be found.
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125. These results are true even when the letters themselves re-

a

present fractions. For example, take the fraction —, whose numerator

1
and denominator are fractional, and multiply its numerator and deno-

ae

minator by the fraction -, which gives , which (121) is •

,
^.

'

>

''Z ad
which, dividing the numerator and denominator by ef (108), is —-.

a a e be

But the original fraction itself is -r- ; hence — = — which corre-
'^

be lit
d d^f

spends to the second formula* in (124). In a similar manner it may

be shewn, that the other formulae of the same article are true when the

letters there used either represent fractions, or are removed and fractions

introduced in their place. All formulae established throughout this

work are equally true when fractions are substituted for whole numbers.

For example (54), {;m+n)a = ma+na. Let m, w, and a be respectively

^1 r i.- P ^ J ^ rr.i_ , p r ps+qr . , . .

the fractions -, -, and -. Then m+n is - +-, or —, and (m+n)a is

g s c q s g»

ps+qr b (ps+qr)b psb+qrb ^ ,. ,,,^. . psb qrb ,.,^-—i- X -, or ^^ ^
'

or -^ '—, But this (112) is
''— + i—, which

qs c qsc qsc qsc qsc

. pb rb . psb pb , (/'>b rb ,,^^^ ^ pb p h , rb
18 — + —, since ^—- = —, and-— = —(108). Buf^ =-x.-, and —

qc sc qsc qc qsc sc qc q c sc

= -X-. Therefore (m+w)a, or (-+ )- = -x +-x . In a similar man-
s c \q f-/c q c s c

ner the same may be proved of any other formula.

The following examples may be useful

:

a e c g

acfh+bdeg

aedh+bqfy

1

b

ob+1

I I _ bc+r

b+-

<" abc+a+c
bc+l

• A formula is a name given to any algebraical expression which is commonly used.
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Thus, _L_ = _L^ = JL

The rules that have been proved to hold good for all numbers may

be applied when the numbers are represented by letters.

SECTION VI.

DECIMAL FUACTIONS.

126. We have seen (112) (121) the necessity of reducing fractions

to a common denominator, in order to compare their magnitudes. We
have seen also how much more readily operations are performed upon

fractions which have the same, than upon those which have different,

denominators. On this account it has long been customary, in all those

parts of mathematics where fractions are often required, to use none but

such as either have, or can be easily reduced to others having, the same

denominators. Now, of all numbers, those which can be most easily

managed are such as 10, 100, 1000, &c., where i is followed by ciphers.

These are called decimal numbers ; and a fraction whose denominator

is any one of them, is called a decimal fraction, or more commonly, a

DECIMAL.

127. A whole number may be reduced to a decimal fraction, or one

decimal fraction to another, with the greatest ease. For example,
. 040 9400 94000 „„^. 3 . 30 300 3000 ,,„ ,

94 is^ or 22_ or^^^^^ (106) ;
-^ is -^—, or-^—, or-^ (108).^ 10 100 1000 10 100 1000 lOOOO

The placing of a cipher on the right hand of any number is the same

thing as multiplying that number by 10 (57), and this may be done as

often as we please in the numerator of a fraction, provided it be done as

often in the denominator (108).

128. The next question is. How can we reduce a fraction which is

not decimal to another which is, without altering its value ? Take,

for example, the fraction —^^ multiply both the numerator and deno-
10

minator successively by 10, 100, 1000, &c., which will give a series of

fractions, each of which is equal to —r (108"), viz. -V-» -^—•, -^—•>

16 ' 160 1600 160C0

o2
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70000
-7 , &c. The denominator of each of these fractions can be divided
160000
without remainder by 16, the quotients of which divisions form the series

of decimal numbers 10, 100, 1000, 10000, &c. If, therefore, one of the

numerators, be divisible by 16, the fraction to which that numerator be-

longs has a numerator and denominator both divisible by 16. When

that division has been made, which (108) does not alter the value of

the fraction, we shall have a fraction whose denominator is one of the

series 10, 100, 1000, &c., and which is equal in value to -7. The ques-
16

tion is then reduced to finding the first of the numbers 70, 700, 7000,

70000, &c., which can be divided by 16 without remainder.

Divide these numbers, one after the other, by 16, as follows :

16)70(4 16)700(43 16)7000(437 16)70000(4375

64 64 64 64

6 60 60 60

48 48 48

12 120 120

112 112

80

80

It appears, then, that 70000 is the first of the numerators which is

divisible by 16. But it is not necessary to write down each of these

divisions, since it is plain that the last contains all which came before.

It will do, then, to proceed at once as if the number of ciphers were

without end, to stop when the remainder is nothing, and then count the

number of ciphers which have been used. In this case, since 70000 is

- 70000 , . , , 16x4375 4375 . ,•. « X. • ,
io'<437S» -h which is .

^^^-' or
•"

, gives the fraction required.
160000 16x10000 10000

Therefore, to reduce a fraction to a decimal fraction, annex ciphers

to the numerator, and divide by the denominator until there is no re-

mainder. The quotient will be the numerator of the required fraction,

and the denominator will be unity, followed by as many ciphers as were

used in obtaining the quotient.
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EXERCISES.

Reduce to decimal fractions

I I a I 39^-7 ^^^^453
2 4' ^5' 50' 1250' 625*

5 25 8 a 31416 7^48
Answer. —, , , , , and .

10 ICO 100 100 lOCOO lOCOO

129. It will happen in most cases that the annexing of ciphers to

the numerator will never make it divisible by the denominator without

remainder. For example, try to reduce - to a decimal fraction.

7)1000000000000000000, &c.

142857142857142857, «Scc.

The quotient here is a continual repetition of the figures i, 4, 2,

8, 5, 7, in the same order ; therefore - cannot be reduced to a decimal
7

fraction. But, nevertheless, if we take as a numerator any nimiber

of figures from the quotient 142857142857, &c., and as a denominator

I followed by as many ciphers as were used in making that part of the

quotient, we shall get a fraction which differs very little fit)m -, and
7

which will difier still less from it if we put more figures in the numerator

and more ciphers in the denominator.

Thus, ±P«Wl by ll'^'^^<^^^^^^otsolj_
10 ( than ) 7 70 ( much as j 10

14 I 2 1

100 *
' ' 7

*
• 700 100

142 16 I

1000 • ' * 7 ' * 7000 1000

1428 14 I

loooo *
' 7

* 70000 10000

14285 I 5 I

icooco '
* * 7 ' 7C0000 icoooo

142857 J I I

lOOOOCO * * 7 70C0000 * * • • lOOOOOO

&c. &c. &c. &c.

In the first column is a series of decimal fractions, which come nearer

and nearer to -, as the third column shews. Therefore, though we can-
7 1

not find a decimal fraction which is exactly -, we can find one which
7

differs from it as little as we please.
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This may also be illustrated thus : It is required to reduce - to a
7

decimal fraction without the error of say a millionth of a unit ; multiply

the numerator and denominator of - by a million, and then divide both
7

by 7 ; we have then

I loooooo 1428574-

7
~"

7C00000
""

loooooo

If we reject the fraction - in the numerator, what we reject is really
7

the 7th part of the millionth part of a unit ; or less than the millionth

142857
part of a unit. Therefore — is the fraction required.

EXEUCISES.

Make similar tables with ) 3 17 .1
these fractions (91' ^43' H7*

The recurring) 3 . , , „

quotient of
I
-^s 3^9670,329670, &c.

17

143'

I

247'

118881,118881, &c.

404858299595141700,4048582 &c.

130. The reason for the recurrence of the figures of the quotient

in the same order is as follows : If 1000, &c. be divi'^ed by the number

247, the remainder at each step of the division is less than 247, being

either o, or one of the first 246 numbers. If, then, the remainder never

become nothing, by carrying the division far enough, one remainder

will occur a second time. If possible, let the first 246 remainders be

all diiferent, that is, let them be i, 2, 3, &c., up to 246, variously dis-

tributed. As the 247th remainder cannot be so great as 247, it must be

one of these which have preceded. From the step where the remainder

becomes the same as a former remainder, it is evident that former figures

of the quotient must be repeated in the same order.

131. You will here naturally ask. What is the use of decimal frac-

tions, if the greater number of fractions cannot be reduced at all to

decimals ? The answer is this : The addition, subtraction, multiplica-

tion, and division of decimal fractions are much easier than those of
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common fractions ; and though we cannot reduce all common fractions

to decimals, yet we can find decimal fractions so near to each of them,

that the error arising from using the decimal instead of the common

fraction will not be perceptible. For example, if we suppose an inch

to be divided into ten million of equal parts, one of those parts by itself

will not be visible to the eye. Therefore, in finding a length, an error

of a ten-millionth part of an inch is of no consequence, even where the

finest measurement is necessary. Now, by carrying on the table in

(129), we shall see that — does not differ from - by ;
^ ' locccoco 7 lOOOOOOO

and if these fractions represented parts of an inch, the first might be

used for the second, since the difference is not perceptible. In applying

arithmetic to practice, nothing can be measured so accurately as to be

represented in numbers without any error whatever, whether it be

length, weight, or any other species of magnitude. It is therefore un-

necessary to use any other than decimal fractions, since, by means of

them, any quantity may be represented with as much correctness as by

any other method.

EXERCISES.

Find decimal fractions which do not differ from the following frac-

tions by
icococcco

3 locooccoo

4 57142857

J13 ^ 31830985

355 ICOOOOOOO

355 31415929a

113
* ' * lOOOGOOOO*7 ICOCCCCGO

132. Every decimal may be immediately reduced to a quantity con-

sisting either of a whole number and more simple decimals, or of more

simple decimals alone, having one figure only in each of the numerators.

I47'J26 147326 326
Take, for example, -^^-^^— . By (115) -^-^— is 147^^— ; and since^ loco ^ ^ icoo 1000

326 is made up of 300, and 20, and 6 ; bv (112) ~— = -^— -1- +'
' TCCO 1000 lOCO

6 -.^ . X
'?co .3 , 20 . 2 ^, „ 147326

. But ( 1 08) -— IS -i-, and is . Therefore, -^^— is
1000 1000 10 1000 100 100032 6
made up of 147+— + 1- . Now, take any number, for example,^

10 ICO ICOO * ^

147326, and form a number effractions having for their numerators this

number, and for their denominators i, 10, ico, 1000, looco, &c., and
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reduce these fractions into numbers and more simple decimuls, in the

foregoing manner, which Avill give the table below.

DECOMPOSITION OF A DECIMAL FRACTION.

147326
147326

147326 6~^'-^—= 14732+

—

10 10

147326

100

'473^6

1000

147326

10000

147326

I00000

H7326
I000000

'47326

I0000000

2 6
1473+— +

10 100

326
147 + -^+ +

10 100 1000

73214+—+-^+
10 ICO lOGO lOOOO

4 7 3 *

10 100 1000 lOOOO lOOOOO

.i-+^+^+- 5 .+.
^

10 100 loco loooo loocoo 1000000147
ICO 1000 ICCCO lOOOOO lOOOOOO lOOOOOOO

N.B. The student should write this table himself, and then proceed

to make similar tables from the following exercises.

EXERCtSES.

Reduce the following fractions into a series of numbers and more

simple fractions

:

31415926

10 '

2700031

10 '

20730C0

10 '

3331303

1000 '

3I4I5926
&c.

100 '

2700031

100
* &c.

2073000

100
' &c.

3331303
&c.

133. If, in this table, and others made in the same manner, you look

at those fractions which contain a whole number, you will see that they
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may be made thus : Mark ofif, from the right hand of the numerator,

as xnaxiy figures as there are ciphers in the denominator by a point, or

any other convenient mark.

147326
This will give i4732'6 when the fraction is

. . . . i473'26

. . . . i47'326

10

100

147326

ICOO

&c. &c.

The figures on the left of the point by themselves make the whole

number which the fraction contains. Of those on its right, the first is

the numerator of the fraction whose denominator is 10, the second of

that whose denominator is ico, and so on. We now come to those

fractions which do not contain a whole number.

134. The first of these is , in which the number ot ciphers in
lOOOOOO

the denominator is the same as the number oi figures in the numerator.

If we still folloAv the same rule, and mark off all the figures, by placing

the point before them all, thus, '147326, the observation in (133) sti'l

holds good ; for, on looking at — in the table, we find it is

-L+-^+
10 ICO ICOO ICCOO ICCCOO lOCCCOO

The next fraction is , which we find by the table to be

1 4 7

100 loco ICCOO loocoo 1000000 lOOOOOOO

Tn this, I is not divided by 10, but by 100 ; if, therefore, we put a

point before the whole, the rule is not true, for the first figure on the

left of the point has the denominator which, according to the rule, the

second ought to have, the second that which the third ought to have,

and so on. In order to keep the same rule for this case, we must con-

trive to make i the second figure on the right of the point instead of

the first. This may be done by placing a cipher between it and the
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point, thus, "0147326. Here the rule holds good, for by that rule this

fraction is

01473 ^ ^

10 100 1000 10000 lOCOOO lOOOOOO lOOOOOOO

o
which is the same as the preceding line, since — is o, and need not be

10

reckoned.

Similarly, when there are two ciphers more in the denominator than

there are figures in the numerator, the rule will be true if we place two

ciphers between the point and the numerator. The rule, therefore,

stated fully, is this :

To reduce a decimal fraction to a whole number and more simple

decimals, or to more simple decimals alone if it do not contain a whole

number, mark off by a point as many figures from the numerator as

there are ciphers in the denominator. If the numerator have not places

enough for this, write as many ciphers before it as it wants places, and

put the point before these ciphers. Then, if there be any figures before

the point, they make the whole number Avhich the fraction contains.

The first figure after the point with the denominator 10, the second with

the denominator 100, and so on, are the fractions of which the first

fraction is composed.

135. Decimal fractions are not usually written at full length. It is

more convenient to write the numerator only, and to cut off from the

numerator as many figures as there are ciphers in the denominator,

when that is possible, by a point. When there are more ciphers in the

denominator than figures in the numerator, as many ciphers are placed

before the numerator as will supply the deficiency, and the point is

placed before the ciphers. Thus, 7 will be used in future to denote

7 7—, "07 for , and so on. The following tables will give the whole of
10 ICO ** ^

this notation at one view, and will shew its connexion with the decimal

notation explained in the first section. You will observe that the

numbers on the right of the units' place stand for units divided by lo,

100, 1000, &c. while those on the left are units multiplied by 10, 100,

1000, &c.
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The student is recommended always to write the decimal point in

a line with the top of the figures or in the middle, as is done here, and

never at the bottom. The reason is, that it is usual in the higher

branches of mathematics to use a point placed between two numbers

or letters which are multiplied together; thus, 15.16, a.6, a+b.c+d stand

for the products of those numbers or letters.

O OJ
O 14^

8U oh 51*

»*
00
00

^

II II II " II

§
M i_' ^ ,j 1"

tj M
00

UJ
+ »- + + + 8
d

s d
8

'^ w
00 00

00 00

II II II
+ + 8
d ^

N ^ 00
CX) u 00

8+ + + + 4
d d d ^
a 00 g

- °

+

O i

+

+
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I is 1000 inches

2 is 200 . .

3 is 30 . .

4 is 4 • •

IV. In I234.-56789
5 is

10
of an inch

inches the 6 is
6

100
• • •

7 is
7

1000
• . .

8 is
8

•

lOCOO
•

n la .
9

136. The ciphers on the right hand of the decimal point serve the

same purpose as the ciphers in (10). They are not counted as any thing

themselves, but serve to shew the place in which the accompanying

numbers stand. They might be dispensed with by writing the numbers

in ruled columns, as in the first section. They are distinguished from

the numbers which accompany them by calling the latter significant

figures. Thus, '0003747 is a decimal of seven places with four signi-

ficant figures, '346 is a decimal of three places with three significant

figures, &c.

137. The value of a decimal is not altered by putting any number

of ciphers on its right. Take, for example, '3 and '300. The first (135)

3 300
is —, and the second , which is made from the first by multiplying

both its numerator and denominator by 100, and (108) is the same

quantity.

138. To reduce two decimals to a common denominator, put as many

ciphers on the right of that which has the smaller number of places as

will make the number of places in both fractions the same. Take,

54 43^97
for example, '54 and 4'3297. The first is -^^—^ and the second ^.r > JT T J y/ jpq' iocco

Multiply the numerator and denominator of the first by 100 (108),

^400 43297
which reduces it to — , which has the same denominator as ^.

But
5400

is '5400 (135). In whole numbers, the decimal point should
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be placed at the end : thus, 129 should be written 129*. It is, however,

usual to omit the point ; but you must recollect that 129 and 129*000

129000
are of the same value, since the first is 129 and the second — .

1000
139. The rules which were given in the last chapter for addition,

subtraction, multiplication, and division, apply to all fractions, and

therefore to decimal fractions among the rest. But the way of Avriting

decimal fractions, which is explained in this chapter, makes the appli-

cation of these rules more simple. We proceed to the different cases.

Suppose it required to add 42*634, 45*2806, a'ooi, and 54. By (112)

these must be reduced to a common denominator, which is done (138)

by writing them as follows : 42*6340, 45*2806, 2*0010, and 54*0000.

These are decimal fractions, whose numerators are 426340, 452806,

20010, and 540000, and whose common denominator is loooo. By
i-i^c^\ xi- • • 426340+452806+20010+540000 ,,, . 1439156
(112) their sum is -———— ^—

, which is
^^^ ^

I0000 I0000
or 143*9156. The simplest way of doing this is as follows: write the

decimals down under one another, so that the decimal points may full

under one another, thus :

42*634

45*2806

2*OOI

5+

143-9156

Add the diiferent columns together as in common addition, and place

the decimal point under the other decimal points.

EXERCISES.

What are i527+64*732094+2-ooi3+*ooooi974;

2276*3+* io7+*9+26*3 172+56732*001 ;

and i*ii+7-7+*oo39+-ooi42+*8838 ?

Answer^ 1593*73341374, 59035*6252, 9*69912.

140. Suppose it required to subtract 91*07324 from 137*321. These

fractions when reduced to a common denominator are 91*07324 and

137*32100 (138). Their difference is therefore
^373^100-9^07324^

4624776 lOOOOO
which is or 46*24776, This may be most simplv done as fol-
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lows : write the less number under the greater, so that its decimal point

may fall under that of the greater, thus :

137-321

91-07324

4624776

Subtract the lower from the upper line, and wherever tliere is a figure

in one line and not in the other, proceed as if there were a cipher in the

vacant place.

EXERCISES.

What is 12362—274"22io7+*5 ;

9976-2073942—"00143976728

;

and i'2+'o3+-oo4—'0005 ?

Answer^ 12088*27893, 9976-20595443272; and i'2335.

141. The multiplication of a decimal by 10, 100, 1000, &c., is per-

formed by merely moving the decimal point to the right. Suppose, for

132079
ex-'.mple, 13*2079 is to be muUiplied bv 100. T,he decimal is ,

132c ^9
^°°°°

which multiplied by ico is (117) '—, or 1320*79. Again, i*309x

. 13*^9 /,,/^\ 130900000 ^ ,

icoooo IS ^xiooooo, or (116) or 130900. From these
1000 lOCO

and other instances we get the following rule : To multiply a decimal

fraction by a decimal number (126), move the decimal point as many

places to the right as there are ciphers in the decimal number. When

this cannot be done, annex ciphers to the right of the decimal (137) until

it can.

142. Suppose it required to multiply 17*036 by 4*27. The first of

17036 427
these decimals is —^ and the second . By (118) the product of

1000 100
these fractions has for its numerator the product of 17036 and 427, and

for its denominator the product of 1000 and 100 ; therefore this product

. 7274372
IS , or 72*74372. This may be done more shortly by multiply-

ing the two numbers 17036 and 427, and cutting off by the decimal

point as many places as there are decimal places both in 17*036 and

4*27, because the product of two decimal numbers will contain as many

ciphers as there are ciphers in both.
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143. This question now arises: What if there should not be as

many figures in the product as there are decimal places in the multiplier

and multiplicand together? To see what must be done in this case,

172 lOI
multiply '172 by 'lo I, or by , The product of these two is

17372
JOOO "^ ICOO

"

, or '017372 (135). Therefore, when the number of places in
looooco /J/ \ / > r

the product is not sufficient to allow the rule of the last article to be

followed, as many ciphers must be placed at the beginning as will make

up the deficiency.

ADDITIONAL EXAMPLES.

•ooix'oj is 'OOOOI

56x*oooi is '0056.

EXERCISES.

Shew that

3'002X3*OOZ = 3X3+2X3X"002+'0O2X*002

n"56o9X5'3i9i = 8*44x8"44—3* 1209x3* 1209

S'aiyxio'ooi = 8xio+8x"ooi+iox*2i7+*ooix*2i7

Cube.

570i35"a33o88

•000005 1777 17

2-924207

•000000729

•I5625X '64 = •!

i562*5x'o64 = 100

•oi5625x*oo64 = 'oooi i5625ooox'o64 = loooooo

144. The division of a decimal by a decimal number, such as 10,

100, 1000, &c., is performed by moving the decimal point as many

places to the left as there are ciphers in the decimal number. If there

are not places enough in the dividend to allow of this, annex ciphers

to the beginning of it until there are. For example, divide 1734-229
1734229

by 1000: the decimal fraction is -, which divided by 1000 (123)

1734229
^^°°

is ———^, or 1-734229. If, in the same way, 1*2106 be divided bv
1000000

locoo, the result is -00012106.

145. Before proceeding to shorten the rule for the division of one

11 2

Fraction. Square.

82-92 6875-7264

•0173 •00029929

»*43 2-0449

•009 •ooooS I

IS-625X 64 = 1000

i*5625x -64 = I
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decimal fraction by another, it will be necessary to resume what was

said in (128) upon the reduction of any fraction to a decimal fraction.

It was there shewn that —z is the same fraction as or '4375.
16 , lOOOO

As another example, convert -^ into a decimal fraction. Follow the

same process as in (128), thus

:

a

128)300000000000(234375 480

256 384

440 960

384 896

560 , 640

512 640

480 o

Since 7 ciphers are used, it appears that 30000000 is the first of the

series 30, 300, &c,, which is divisible by 128 ; and therefore —-^

30000000 23437c ^

or, which is the same thing (108), — is equal to ^-^— or
1280000000 lOOOOOOO

•0234375 (135).

From these examples the rule for reducing a fraction to a decimal

is : Annex ciphers to the numerator ; divide by the denominator, and

annex a cipher to each remainder after the figures of the numerator are

all used, proceeding exactly as if the numerator had an unlimited num-

ber of ciphers annexed to it, and was to be divided by the denominator.

Continue this process until there is no remainder, and observe how many

ciphers have been used. Place the decimal point in the quotient so as

to cut off as many figures as you have used ciphers ; and if there be

not figures enough for this, annex ciphers to the beginning until there

are places enough.

146. From what was shewn in (129), it appears that it is not every

fraction which can be reduced to a decimal fraction. It was there

shewn, however, that there is no fraction to which we may not find a

, . , - . , rr,, I 14 14* 14^8
decimal fraction as near as we please. Thus, —, , , ,

j.^gr 10 100 1000 10000
, &c., or •!, -14, '142, '1428, '14285, were shewn to be fractions

lOOOOO •> -n T •> -r •) -r Ji

which approach nearer and nearer to -. To find either of these frac-

7
tions, the rule is the same as that in the last article, with this exception.
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that, I. instead of stopping when there is no remainder, which never

happens, stop at any part of the process, and make as many decimal

places in the quotient as are equal in number to the number of ciphers

which have been used, annexing ciphers to the beginning when this can-

not be done, as before. II. Instead of obtaining a fraction which is

exactly equal to the fraction from which we set out, we get a fraction

which is very near to it, and may get one still nearer, by using more

of the quotient. Thus, '1428 is very near to -, but not so near as

•142857 ; nor is this last, in its turn, so near as -142857142857, &c.

147. If there should be ciphers in the numerator of a fraction, these

must not be reckoned with the number of ciphers which are necessary

in order to follow the rule for changing it into a decimal fraction. Take,

for example, ; annex ciphers to the numerator, and divide by the
125

denominator. It appears that 1000 is divisible by 125, and that the

quotient is 8. One cipher only has been annexed to the numerator, and

therefore 100 divided by 125 is '8. Had the fraction been , since
•' ^

125

1000 divided by 125 gives 8, and three ciphers would have been annexed

to the numerator, the fraction would have been "ooS.

148. Suppose that the given fraction has ciphers at the right of its

denominator; for example, . The annexing a cipher to the nu-
2500

merator is the same thing as taking one away from the denominator
;

310 31 310 31
for, (108) is the same thing as , and as —. The rule,^ 2500 ° 250 250 25

therefore, is in this case : Take away the ciphers from the denominator
;

EXERCISES.

Keduce the following fractions to decimal fractions

:

1 36 297 I

:;—» > -7~» and —-.
8co 1250 64 128

Answer, "00125, '0288, 4*640625, and '0078125.

Find decimals of 6 places very near to the following fractions

:
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1
50.

27 156 22 194 2617 I I
, _3_

49' 33' 37000' 13' 9907* 29C8* 466* 277

Answer, -551020, 4727272, -000594, 14923076, -266175, '000343,

•002145, ^^^ •010S30.

149. From (121) it appears, that if two fractions have the same

denominator, the first may be divided by the second by dividing the

numerator of the first by the numerator of the second. Suppose it

required to divide 17-762 by 6-25. These fractions (138), when reduced

17762 6250
to a common denommator, are 17 762 and 6 250, or and .

17762 ^°°° ^°°°
Their quotient is therefore -^—, which must now be reduced to a

6250
decimal fraction by the last rule. The process at full length is as

follows : Leave out the cipher in the denominator, and annex ciphers

to the numerator, or, which will do as well, to the remainders, when it

becomes necessary, and divide as in (145).

625)17762(284192 Here four ciphers have been annexed to the

'^^° numerator, and one has been taken from the

5262 denominator. Make five decimal places in the

5000
quotient, which then becomes 2-84192, and this

is the quotient of 17-762 divided by 6-25.

150. The rule for division of one decimal by
1200

6-jc another is as follows: Equalise the number of

._„ decimal places in the dividend and divisor, by

5625 annexing ciphers to that which has fewest places,

1250 Then, further, annex as many ciphers to the

'^3° dividend * as it is required to have decimal places,

° throw away the decimal point, and operate as in

common division. Make the required number of decimal places in

the quotient.

Thus, to divide 67173 by "014 to three decimal places, I first write

6 7173 and -0140, with four places in each. Having to provide for three

decimal places, I should annex three ciphers to 6-7173; but, observing

* Or remove ciphers from the divisor; or make up the number of ciphers partly

by removing from the divisor and annexing to the dividend, if there be not a iulB-

clent number in the divisor.



§ 130. ^ DECIMAL FRACTIONS. 81

that the divisor '0140 has one cipher, I strike that one out and annex

two ciphers to 67 17 3. Throwing away the decimal points, then divide

6717300 by 014 or 14 in the usual way, which gives the quotient 479807

and the remainder 2. Hence 479*807 is the answer.

The common rule is : Let the quotient contain as many decimal

places as there are decimal places in the dividend more than in the

divisor. But this rule becomes inoperative except when there are more

decimals in the dividend than in the divisor, and a number of ciphers

must be annexed to the former. The rule in the text amounts to the

same thing, and provides for an assigned number of decimal places. But

the student is recommended to make himself familiar with the rule of

the characteristic given in the Appendix, and also to accustom himself

to reason out the place of the decimal point. Thus, it should be visible,

that 26*1
1 9-^7*243 6 has one figure before the decimal point, and that

26*ii9-T-724'36 has one cipher after it, preceding all significant figures.

Or the following rule may be used: Expunge the decimal point of

the divisor, and move that of the dividend as many places to the right

as there were places in the divisor, using ciphers if necessary. Then

proceed as in common division, making one decimal place in the quotient

for every decimal place of the final dividend which is used. Thus I7'3i4

divided by 61-2 is 173*14 divided by 612, and the decimal point must

precede the first figure of the quotient. But 17*314 divide.! by 6617-5

is I73'i4 by 66175 5 ^^^d since three decimal places of 173-14000 . .

.

must be used before a quotient figure can be found, that quotient figure

is the third decimal place, or the quotient is "002

EXAMPLES.

3 I -00062— 1240, —--— = -00096875
-0025

EXERCISES,

e, ^i_ ^ 15-006x15-006— •004X-OCA
bhew that ; = 1 5-002, and that

•OIXOIX-OT+2-9X2-9X2 9
-; = 2 9x2-9 — 2 9X-OI+-OIX-01
2 91
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What are , ^ ^ , and —;
, as far as 6 places

3-14159 27182818 '1^349

of decimals?

—

Answer, '318310, '367879, and i989'20922i.

Calculate 10 terms of each of the following series, as far as 5 places

of decimals.

I I I = 1-71824.
2 2x3 2x3x4 2x3x4x5

I

I+- +
2

I I I
- + - + -+ &C.
3 4 5

= 2-92895.

80 81 82 83 84 ^

81 82 83 84 85
= 988286.

151. "We now enter upon methods by which unnecessary trouble is

saved in the computation of decimal quantities. And first, suppose a

number of miles has been measured, and found to be 17-846217 miles.

If you were asked how many miles there are in this distance, and a rough

answer were required which should give miles only, and not parts of

miles, you would probably say 17. But this, though the number of

whole miles contained in the distance, is not the nearest number ofmiles;

for, since the distance is more than 17 miles and 8 tenths, and therefore

more than 17 miles and a half, it is nearer the truth to say, it is 18

miles. This, though too great, is not so much too great as the other

was too little, and the error is not so great as half a mile. Again, if

the same were required within a tenth of a mile, the correct answer is

17-8; for though this is too little by -046217, yet it is not so much too

little as 17-9 is too great; and the error is less than half a tenth, or

—
, Again, the same distance, within a hundredth of a mile, is more

correctly I7'85 than 17-84, since the last is too little by '006217, which

is greater than the half of 'oi; and therefore i7'84+*oi is nearer the

truth than 17*84. Hence this general rule : When a certain number of

the decimals given is sufficiently accurate for the purpose, strike off the

rest from the right hand, observing, if the first figure struck off be equal

to or greater than 5, to increase the last remaining figure by i.

The following are examples of a decimal abbreviated by one i)lace at

a time.
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''•^159' 3'i4i6, 3-142, 3-14, 3'T, 3-0

2*7182818. 2718282, 2*71828, 2*7183, 2718, 2*72, 2*7, 3*o

1*9919, 1*992, 1*99, 2*00, 2*o

15*2. In multiplication and division it is useless to retain more places

of decimals in the result than were certainly correct in the multiplier,

&c., which gave that result. Suppose, for example, that 9*98 and 8*96

are distances in inches which have been measured correctly to two places

of decimals, that is, within half a hundredth of an inch each way. The

real value of that which we call 9*98 may be any where between 9*975

and 9*985, and that of 8*96 ma> be any where between 8*955 and 8*965.

The product, therefore, of the numbers which represent the correct dis-

tances will lie between 9'975x8*955 and 9'985x8*965, that is, taking

three decimal places in the products, between 89*326 and 89*516. The

product of the actual numbers given is 89*4208. It appears, then, that

in this case no more than the whole number 89 can be depended upon

in the product, or, at most, the first place of decimals. The reason is,

that the error made in measuring 8*96, though only in the third place of

decimals, is in the multiplication increased at least 9*975, or nearly

10 times; and therefore affects the second place. The following simple

rule will enable us to judge how far a product is to be depended upon.

Let a be the multiplier, and b the multiplicand; if these be true only

to the first decimal place, the product is within of the truth ; if to

two decimal places, within ; if to three, within ; and so on.
200 2COO

Thus, in the above example, we have 9*98 and 8*96, which are true to

two decimal places: their sum divided by 200 is *0947, and their product

is 89*4208, which is therefore within '0947 of the truth. If, in fact, we

increase and diminish 89*4208 by '0947, we get 89*5155 and 89*3261,

which are very nearly the limits found within which the product must

lie. We see, then, that we cannot in this case depend upon the first

place of decimals, as (151) an error of '05 cannot exist if this place

be correct ; and here is a possible error of '09 and upwards. It is

hardly necessary to say, that if the numbers given be exact, their product

* These are not quite correct, but suiRciently so for every practical purpose.
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is exact also, and that this article applies where the numbers given are

correct only to a certain number of decimal places. The rule is : Take

half the sum of the multiplier and multiplicand, remove the decimal

point as many places to the left as there are correct places of decimals

in either the multiplier or multiplicand ; the result is the quantity

within which the product can be depended upon. In division, the rule

is : Proceed as in the last rule, putting the dividend and divisor in

place of the multiplier and multiplicand, and divide by the square of

the divisor ; the quotient will be the quantity within which the division

of the first dividend ai;d divisor may be depended upon. Thus, if

17*324 be divided by 53*809, both being correct to the third place, their

half sum will be 35*566, which, by the last rule, is made '035566, and

is to be divided by the square of 53'8o9, or, which will do as well for

our purpose, the square of 50, or 2500. The result is something less

than '00002, so that the quotient of i7'324 and 53*809 can be depended

on to four places of decimals.

153. It is required to multiply two decimal fractions together, 50

as to retain in the product only a given number of decimal places, and

dispense with the trouble of finding the rest. First, it is evident that

we may write the figures of any multiplier in a contrary order (for

example, 4321 instead of 1234), provided that in the operation we move

each line one place to the right instead of to the left, as in the following

example

:

2221 2221

1234 4321

8884 2221

6663 4442

444.2 6663

2221 8884

2740714 2740714

Suppose now we wish to multiply 348*8414 by 51*30742, reserving

only four decimal places in the product. If we reverse the multiplier,

and proceed in the manner just pointed out, we have the following

:



3488414

2470315

17442070

3488414

1046524 2

24418 89S

1395 3656

69 76828

i7898'i522 23188

§ 153.
« DECIMAL FRACTIONS. 85

Cut off, by a vertical line, the first four places

of decrmals, and the columns which produced

them. It is plain that in forming our abbre-

viated rule, we have to consider only, I. all that

is on the left of the vertical line; II. all that is

carried from the first column on the right of

the line. On looking at the first column to the

23188 jeft of the line, we see 4, 4, 8, 5, 9, of which the

first 4 comes from 4x1',* the second 4 from 1x3', the 8 from 8x7', the

5 from 8x4', and the 9 from 4x2'. If, then, we arrange the multiplicand

and the reversed multiplier thus,

3488414

2470315

each figure of the multiplier is placed under the first figure of the

multiplicand which is used with it in forming the first four places of

decimals. And here observe, that the units' figure in the multiplier

51-30742, viz. I, comes under 4, the fourth decimal place in the multi-

plicand. If there had been no carrying from the right of the vertical

line, the rule would have been : Reverse the multiplier, and place it

under the multiplicand, so that the figure which was the units' figure

in the multiplier may stand under the last place of decimals in the

multiplicand which is to be preserved
;
place ciphers over those figures

of the multiplier which have none of the multiplicand above them, if

there be any : proceed to multiply in the usual way, but begin each

figure of the multiplier with the figure of the multiplicand which comes

above it, taking no account of those on the right: place the first figures

of all the lines under one another. To correct this rule, so as to allow

for what is carried from the right of the vertical line, observe that this

consists of two parts, 1st, what is carried directly in the formation of

the diflferent lines, and 2dly, what is carried from the addition of the

first column on the right. The first of these may be taken into account

by beginning each figure of the multiplier with the one which comes

• The r here means that the 1 is in the multiplier.
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on its right in the multiplicand, and carrying the tens to the next

figure as usual, but without writing down the units. But both may be

allowed for at once, with sufficient correctness, on the prmciple of (151),

by carrying i from 5 up to 15, 2 from 15 up to 25, &c.; that is, by

carrying the nearest ten. Thus, for 37, 4 would be carried, 37 being

nearer to 40 than to 30. This will not always give the last place quite

correctly, but the error may be avoided by setting out so as to keep one

more place of decimals in the product than is absolutely required to be

correct. The rule, then, is as follows

:

154. To multiply two decimals together, retaining only n decimal

places.

I. Reverse the multiplier, strike out the decimal points, and place

the multiplier under the multiplicand, so that what was its units' figure

shall fall under the ry^ decimal place of the multiplicand, placing ciphers,

if necessary, so that every place of the multiplier shall have a figure or

cipher above it.

II. Proceed to multiply as usual, beginning each figure of the multi-

plier with the one which is in the place to its right in the multiplicand:

do not set down this first figure, but carry its nearest ten to the next,

and proceed.

III. Place the first figures of all the lines under one another ; add

as usual ; and mark off n places from the right for decimals.

It is required to multiply 136-4072 by 1-30609, retaining 7 decimal

jlaces.

1364072000

906031

1364072000

409221600

81844.32

122766

I7}?*t6oo798
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In the following examples the first two lines are the multiplicand

and multiplier; and the number of decimals to be retained wUl be

seen from the results.

•447I6I8 33-166248 3-4641016

377I92I4. 1-4142136 1732-508

377192 14 033166248 346410 I 60

8161744 63I2414I

3316625

8052371

15087686 346410160

1508768 1326650 242487112

264034 33166 10392305

3772 13266 692820

2263 ' 663 173205

38 33 2771

30 10

z
6001-58373

1-6866591

46-90415

Exercises may be got from article (143).

165. With regard to division, take any two numbers, for example,

16-80437921 and 3'i42, and divide the first by the second, as far as

any required number of decimal places, for example, five. This gives

the following

:

3-142)16-80437 921(5-34830

15710

10943

9426

15177

(A) 12568

2609 2609 9

2514 ^5136

95 9632

94 9A6— — -

1 2 061
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Now cut off by a vertical line, as in (153), all the figures which

come on the right of the first figure 2, in the last remainder 2061. As

in multiplication, we may obtain all that is on the left of the vertical

line by an abbreviated method, as represented at (A). After what has

been said on multiplication, it is useless to go further into the detail

;

the following rule will be sufficient: To divide one decimal by another,

retaining only n places : Proceed one step in the ordinary division, and

determine, by (150), in what place is the quotient so obtained; proceed

in the ordinary way, until the number of figures remaining to be found

in the quotient is less than the number of figures in the divisor: if this

should be already the case, proceed no further in the ordinary way.

Instead of annexing a figure or cipher to the remainder, cut off a figure

from the divisor, and proceed one step with this curtailed divisor as

usual, remembering, however, in multiplying this divisor, to carry the

nearest ten^ as in (154), from the figure which was struck off; repeat

this, striking off another figure of the divisor, and so on, until no

figures are left. Since we know from the beginning in what place the

first figure of the quotient is, nnd also liOAV many decimals .are required,

we can tell from the beginning how many figures there will be iu the

whole quotient. If the divisor contain more figures than the quotient,

it will be unnecessary to use them : and they may be rejected, the rest

being corrected as in (151) : if there be ciphers at the beginning of the

divisor, if it be, for example, '003178, since this is — , divide by
100

•3178 in the usual way, and afterwards multiply the quotient by 100,

or remove the decimal point two places to the right. If, therefore, six

decimals be required, eight places must be taken in dividing by '3178,

for an obvious reason. In finding the last figure of the quotient, the

nearest should be taken, as in the second of the subjoined examples.
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Places required.

Divisor,

Dividend,

iiuotieut.

z

•41432

673-1489

41432

258828

248 592

10237*

8286

1 951

1657

294

290

4

4

162471

3-1415927

271828180

2-51327416

20500764

18849556

1651208

1570796

80412

62832

17580

15708

1872

^571

301

283

18

19

•86525596

Examples may be obtained from (143) and (150).

SECTION VII.

ON THE EXTRACTION OF THE SQUARE ROOT.

156. We have already remarked {66)y that a number multiplied by

itself produces vrhat is called the square of tliat number. Thus, 169,

or 13x13, is the square of 13. Conversely, 13 is called the square root

of 169, and 5 is the square root of 25 ; and any number is the square root

of another, which when multiplied by itself will produce that other.

The square root is signified by the sign V or v' ; thus, V25 means

the square root of 25, or 5; V16+9 means the square root of 16+9,

and is 5, and must not be confounded with v'16+^9, which 134+3, ^^ 7-

• This is written 7 instead of 6, becaue the figure which is abaDdoned in the divi-

dend is 9 (151).

I 2
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157. The following equations are evident from the definition

:

Va-uVa = a

w aa = a

waby. w ab = ah

(v'axv'6)x( Vax /v/6) = -v/ax -/ax V'ixV'i = ah

whence ^/ay-Vb = ^/ab

158. It does not follow that a number has a square root because it

has a square; thus, though 5 can be multiplied by itself, there is nc

number which multiplied by itself will produce 5. It is proved in

algebra, that no fraction* multiplied by itself can produce a whole

number, which may be found true in any number of instances ; therefore

5 has neither a whole nor a fractional square root; that is, it has no

S(iuare root at all. Nevertheless, there are methods of finding fractions

whose squares shall be as near to 5 as we please, though not exactly

15 127
equal to it. One of these methods gives , whose square, viz.

15127 15127 228826120 ,.^ „ ,
"705 4 , . , .

-r-T—X-——- or —— -, differs from 5 by only :;:
, which is

6765 6765 45765225 45765225
less than '0000001: hence we are enabled to use V^ in arithmetical

and algebraical reasoning : but when we come to the practice of any

p.roblem, we must substitute for Vs one of the fractions whose square

is nearly 5, and on the degree of accuracy we want, depends what

fraction is to be used. For some purposes, may be sufficient, as its

4 ^^
square only differs from 5 by -—=>-

; for others, the fraction first given
3025

might be necessary, or one whose square is even nearer to 5. We
proceed to shew how to find the square root of a number, when it has

one, and from thence how to find fractions whose squares shall be as

near as we please to the number, when it has not. We premise, what

is suflficiently evident, that of two numbers, the greater has the greater

square ; and that if one number lie between two others, its square lies

between the squares of those others.

159. Let 0? be a number consisting of any number of parts, for

example, four, viz. a, i, c, and d; that is, let

7 15
» Meaning, of course, a really fractional number, such as - or— , not one which,

ihough fractional in form, is whole in reality, such as — or —.,

5 d
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The square of this number, found as in (68), will be

aa+2a(6+j+rf)

+bb+zb{c+d)

•¥cc-k zed

-t-dd

The rule there found for squaring a number consisting of parts was*

Square each part, and multiply all that come after by twice that part,

the sum of all the results so obtained will be the square of the whole

number. In the expression above obtained, instead of multiplying 2a

by each of the succeeding parts, 6, c, and d, and adding the results, we

multiplied za by the sum of all the succeeding parts, which (52) is the

same thing ; and as the parts, however disposed, make up the number,

we may reverse their order, putting the last first, &c. ; and the rule for

sc^uaring will be : Square each part, and multiply all that come before

by twice that part. Hence a reverse rule for extracting the square root

presents itself with more than usual simplicity. It is : To extract the

square root of a number N, choose a number A, and see if N will bear

the subtraction of the square of A; if so, take the remainder, choose a

second number B, and see if the remainder will bear the subtraction of

the square of B, and twice B multiplied by the preceding part A : if

it will, there is a second remainder. Choose a third number C, and see

if the second remainder will bear the subtraction of the square of C, and

twice C multiplied by A+B : go on in this way either until there is no

remainder, or else until the remainder will not bear the subtraction aris-

ing from any new part, even though that part were the least number,

which is 1. In the first case, the square root is the sum of A, B, C,

&c. ; in the second, there is no square root.

160. For example, I wish to know if 2025 has a square root. I

choose 20 as the first part, and find that 400, the square of 20, sub-

tracted from 2025, gives 1625, the first remainder. I again choose 20,

whose square, together with twice itself, multiplied by the preceding

part, is 20x20+2x20x20, or 1200 ; which subtracted from 1625, the
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first remainder, gives 425, the second remainder. I choose 7 for the

third part, which appears to be too great, since 7x7, increased by 2x7

multiplied by the sum of the preceding parts 20+20, gives 609, which

is more than 425. I therefore choose 5, which closes the process, since

5x5, together with 2x5 multiplied by 20+20, gives exactly 425. The

square root of 2025 is therefore 20+20+5, or 45, which will be found,

by trial, to be correct; since 45x45 = 2025. Again, I ask if 13340

has, or has not, a square root. Let 100 be the first part, whose square

is loooo, and the first remainder is 3340. Let 10 be the second part.

Here 10x10+2x10x100 is 2100, and the second remainder, or 3340—

2100, is 1240. Let 5 be the third part; then 5x5+2X5x(ioo+io) is

1125, which, subtracted from 1240, leaves 115. There is, then, no

square root ; for a single additional unit will give a subtraction of

ixi+2xix(ioo+io-f5), or 231, which is greater than 115. But if the

number proposed had been less by 115, each of the remainders would

have been 115 less, and the last remainder would have been nothing.

Therefore 13340— 115, or 13225, has the square root 100+10+5, or

115; and the answer is, that 13340 hsis no square root, and that 13225

is the next number below it which has one, namely, 115.

16L It only remains to put the rule in such a shape as will guide

us to those parts which it is most convenient to choose. It is evident

(57) that any number which terminates with ciphers, as 4000, has

double the number of ciphers in its square. Thus, 4000x4000 =

16000000 ; therefore, any square number,* as 49, with an even number

of ciphers annexed, as 490000, is a square number. The rootf of

490000 is 700. This being premised, take any number, for exanijilc,

76176 ; setting out from the right hand towards the left, cut off two

figures ; then two more, and so on, until one or two figures only are

left: thus, 7,61,76. This number is greater than 7,00,00, of which the

first figure is not a square number, the nearest square below it being

4. Hence, 4,00,00 is the nearest square number below 7,00,00, which

• By square number I mean, a number which has a square root. Thus, 25 is a

square number, but 26 is not.

f The term ' root' is frequently used as an abbreviation of square root.
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lias four ciphers, and its square root is 200. Let this be the first part

chosen: its square subtracted from 76176 leaves 36176, the first re-

mainder ; and it is evident that we have obtained the highest number

of the highest denomination which is to be found in the square root

of 76176; for 300 is too great, its square, 9,00,00, being greater than

76176 : and any denomination higher than hundreds has a square still

greater. It remains, then, to choose a second part, as in the examples

of (160), with the remainder 36176. This part cannot be as great as

100, by what has just been said ; its highest denomination is therefore

a number of tens. Let N stand for a number of tens, which is one of

the simple numbers i, 2, 3, &c. ; that is, let the new part be loN,

whose square is loNxioN, or looNN, and whose double multiplied by

the former part is 2oNx2oo, or 4000N ; the two together are 4000N+

icoNN. Now, N must be so taken that this may not be greater than

36176 : still more 40C0N must not be greater than 36176. We may

therefore try, for N, the number of times which 36176 contains 4000, or

that which 36 contains 4. The remark in (80) applies here. Let us try

9 tens or 90. Then, 2x90x200+90x90, or 44100, is to be subtracted,

which is too great, since the whole remainder is 36176. We then try

8 tens or 80, which gives 2x80x200+80x80, or 38400, which is likewise

too great. On trying 7 tens, or 70, we find 2x70x200+70x70, or 32900,

which subtracted from 36176 gives 3276, the second remainder. The

rest of the square root can only be units. As before, let N be this

number of units. Then, the sum of the preceding parts being 200+70,

or 270, the number to be subtracted is 270X2N+NN, or 540N+NN.

Hence, as before, 540N miist be less than 3276, orN must not be greater

than the number of times which 3276 contains 540, or (80) which 327

contains 54. We therefore try if 6 will do, which gives 2x6x270+6x6,

or 3276, to be subtracted. This being exactly the second remainder,

the third remainder is nothing, and the process is finished. The square

root required is therefore 200+70+6, or 276.

The process of forming the numbers to be subtnicted may be

hortened thus. Let A be the sum of the parts already found, and N
a new part: there must then be subtracted 2AN+NN, or (54) 2A+N
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multiplied by N. The rule, therefore, for forming it is: Double the

sum of all the preceding parts, add the new part, and multiply the

result by the new part.

162. The process of the last article is as follows

:

7,6i,76(:

40000
iOO

70

6

7,6i,7'

4

40o\3,6i,76

70J3 29 00

47)361

329

400 32 76

140 32 76

6/

546)3276

3276

In the first of these, the numbers are written at length, as we found

them ; in the second, as in (79), unnecessary ciphers are struck off, and

the periods 61, 76, are not brought down, until, by the continuance of

the process, they cease to have ciphers under them. The following

is another example, to which the reasoning of the last article may be

applied.

34,86,78,44,01(50000 34,86,78,44,01(59049

25 00 00 00 00 9000 25

40
looooo] 986784401 109) 986

9000^ 9 8 1 00 00 00

loooocX 57844.01 11804) 57844
iSoool 4721600 47216

47
iooooc\ 1 06 28 01 118089)1062801

I8000I 1 06 28 01 1062801

80

9/ ° °

163. The rule is as follows: To extract the square root of a

Dumber ;

—

I. Beginning from the right hand, cut off periods of two figures each,

until not more than two are left.

II. Find the root of the nearest square number next below the

number in the first period. This root is the first figure of the requiretl
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root ; subtract its square from the first period, which gives the first re-

mainder.

III. Annex the second period to the right of the remainder, which

gives the first dividend.

IV. Double the first figure of the root ; see how often this is con-

tained in the number made by cutting one figure from the right of the

first dividend, attending to IX., if necessary ; use the quotient as the

second figure of the root ; annex it to the right of the double of the

first figure, and call this the first divisor.

V. Multiply the first divisor by the second figure of the root ; if the

product be greater than the first dividend, use a lower number for the

second figure of the root, and for the last figure of the divisor, until the

multiplication just mentioned gives the product less than the first

dividend ; subtract this from the first dividend, which gives the second

remainder.

VI. Annex the third period to the second remainder, which gives the

second dividend.

VII. Double the first two figures of the root ;* see how often the

result is contained in the number made by cutting one figure from the

right of the second dividend ; use the quotient as the third figure of

the root ; annex it to the right of the double of the first two figures,

and call this the second divisor.

VIII. Get a new remainder, as in V., and repeat the process until

all the periods are exhausted ; if there be then no remainder, the square

root is found ; if there be a remainder, the proposed number has no

square root, and the number found as its square root is the square root

of the proposed number diminished by the remainder.

IX. When it happens that the double of the figures of the root is

not contained at all in all the dividend except the last figure, or when,

being contained once, i is found to give more than the dividend, put a

cipher in the square root and in the divisor, and bring down the next

period ; should the same thing still happen, put another cipher in the

root and divisor, and bring down another period ; and so on.

• Or, more simply, add the second figure of the root to the first divisor.
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EXERCISES.
Numbers proposed.

73441

4991900

6414247921

903687890625

42420747482776576

13422659310152401

Square roots.

271

1730

80089

950625

205962976

II5856201

164. Since the square of a fraction is obtained by squaring the

numerator and the denominator, the square root of a fraction is found
2 c ?

bjr taking the square root of both. Thus, the square root of — is -,
64 8

since 5 x 5 is 25, and 8 x 8 is 64. If the numerator or denominator, or

both, be not square numbers, it does not therefore follow that the

fraction has no square root; for it may happen that multiplication or

division by the same number may convert both the numerator and
27

denominator into square numbers (108). Thus, —, which appears at

first to have no square root, has one in reality, since it is the same as

-7, whose square root is -.
10 4

165. We now proceed from (158), where it was stated that any num-

ber or fraction being given, a second may be found, whose square is

as near to the first as we please. Thus, though we cannot solve the

problem, " Find a fraction whose square is 2," we can solve the fol-

lowing, " Find a fraction whose square shall not differ from 2 by so

much as 'oooocooi." Instead of this last, a still smaller fraction may

be substituted ; in fact, any one however small : and in this process we

are said to approximate to the square root of 2. This can be done to

any extent, as follows: Suppose we wish to find the square root of

2

within — of the truth ; by which I mean, to find a fraction - Avhose
57 a I

*

square is less than 2, but such that the square of -+— is greater than

2. Multiply the numerator and denominator of- by the square of 57,
1-. ^ . 6498 ^ .

I

or 3249, which gives . On attempting to extract the square root

of the numerator, I find (163) that th re is a remainder 98, and that the

square number next below 6498 is 6400, whose root is 80. Hence,

tlie square of 80 is less than 6498, while that of 81 is greater. The
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square root of the denominator is of course 57. Hence, the square of

— is less than , or 2, while that of— is greater, and these two
57 3249 1 57
fractions only differ by — ; which was required to be done.

166. In practice, it is usual to find the square root true to a certain

number of places of decimals. Thus, 1*4142 is the square root of 2 true

to four places of decimals, since the square of i"4i42, or i'99996i64, is

less than 2, while an increase of only i in the fourth decimal place,

giving 1*4143, gives the square 2*00024449, which is greater than 2.

To take a more general case : Suppose it required to find the square

1637
root of 1*637 true to four places of decimals. The fraction is ,

J
lOCO

whose square root is to be found ^vithin *oooi, or . Annex ciphers
10000

to the numerator and denominator, until the denominator becomes the

I , . , . 1637C0000
, „ ,

square of , which gives . extract the square root of the
ICCOO ICOOCOOOO

numerator, as in (1G3), which shews that the square number nearest to

it is 163700000 — 13564, whose root is 12794. Hence, —^ or 1*2794,
lOOCO

gives a square less than 1*637, while 1*2795 gives a square greater. In

fact, these two squares are 1*63686436 and 1-63712025.

167. The rule, then, for extracting the square root of a number

or decimal to any number of places is : Annex ciphers until there are

twice as many places following the units' place as there are to be decimal

places in the root ; extract the nearest square root of this number, and

mark off the given number of decimals. Or, more simply : Divide the

number into periods, so that the units' figure shall be the last of a

period
;
proceed in the usual way ; and if, when decimals follow the

units' place, there is one figure on the .ight, in a period by itself, annex

a cipher in bringing down that period, and afterwards let each new

period consist of two ciphers. Place the decimal point after that figure

in forming which the period containing the units was used.

168. For example, what is the square root of i~ to five places of
o

decimals? This is (145) 1*375, and the process is the first example

over leaf. The second example is the extraction of the root of *o8i to

seven places, the first period being 08, from which the cipher is omitted

as useless.
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> 4

21) 37 48)410

ai 384

227)1650 564) 2600

1589 2256

2342) 6100 5686) 34400

4684 341 16

23446)141600 569204) 2840000

140676 2276816

23452) 92400 569208) 56318400

•00000241 367222 i(*oo 1 55 3599

^5) 141

125

305) 1636

1525

3103) III72

9309

^1065) 186322

155325

310709) 30997 If

2796381

30332900

169. When more than half the decimals required have been found,

the others maybe simply found by dividing the dividend by the di-

visor, as in (155). The extraction of the square root of 12 to ten

places, which will be found in the next page, is an example. It must,

however, be observed in this process, as in all others where decimals are

obtained by approximation, that the last place cannot always be de-

pended upon I on which account it is advisable to carry the process so

far, that one or even two more decimals shall be obtained than arc

absolutely required to be correct.
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12(3*46410161513

9

64) 300

256

6S6) 4400

4116

6524) 284CO

27696

B
«92?20?23026)53725355o83i (77545870549

4849742261 18

52279324713

4849742261

1

3781902102

3464101615

6928 1

;

70400

69281

6928201) 111900C0

6928201

69282026) 4261799

4156921

692820321) 104877

69282

6928203225) 3555;

3464 J

69282032301) 95439177500

692

317800487

277128129

40672358

34641016

6031342

5542562

4400

0321

4079C0

016125

8203230]

488780

484974

3806

3464

34*

Z77

692820323023) 261

207

53

57145 1990c

8460969069

6S
62

7253550831

If from any remainder we cut off the ciphers, and all figures which

would come under or on the right of these ciphers, by a vertical line,

we find on the left of that line a contracted division, such as those in

^155). Thus, after having found the root as far as 3 "464101, we have

the remainder 4261799, and th*> divisor 6928202. The figures on the

left of the line are nothing more than the contracted division of this

remainder by the divisor, with this difference, however, that we have to

begin by striking a figure off the divisor, instead of using the whole

divisor once, and then striking oif the first figure. By this alone we

might have doubled our number of decimal places, and got the addi-
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tional figures 615 137, the last 7 being obtained by carrying the con-

tracted division one step further with the remainder 53. We have,

then, this rule : When half the number of decimal places have been

obtained, instead of annexing two ciphers to the remainder, strike off a

figure from what would be the divisor if the process were continued

at length, and divide the remainder by this contracted divisor, as

in (155).

As an example, let us double the number of decimal places already

obtained, which are contained in 3*46410161513. The remainder is

537253550831, the divisor 692820323026, and the process is as in (B).

Hence the square root of 12 is,

3-464ioi6i5i377545870549;

which is true to the last figure, and a little too great ; but the sub-

stitution of 8 instead of 9 on the right hand would make it too small.

EXERCISRS.

Numbers. Square roots.

•001728 •04
1
56^2 194

64'34 8-02122185

.8074 89-8554394

10 3-16227766

J'57 1-2529964086141667788495

SECTION VIII.

ON THE PROPOUTION OF NUMBERS,

170. When two numbers are named in any problem, it is usually

necessary, in some way or other, to compare the two ; that is, by con-

sidering the two together, to esta1)lish some connexion between them,

which may be useful in future operations. The first method which

suggests itself, and the most simple, is to observe which is the greater,

and by how much it differs from the other. The connexion thus esta-

blished between two numbers may also hold good of two other numbers;

for example, 8 differs from 19 by 11, and ico differs from m by the
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same number. In this point of view, 8 stands to 19 in the same

situation in which 100 stands to 1 1 1, the first of both couples differing

in the same degree from the second. The four numbers thus noticed,

viz.:

8, 19, 100, III,

are said to be in arithmetical* proportion. When four numbers are

thus placed, the first and last are called the ecrtremes^ and the second

and third the means. It is obvious that 111+8 = 100+19, ^^^^ ^s» ^^^

sum of the extremes is equal to the sum of the means. And this is not

accidental, arising from the particular numbers we have taken, but

must be the case in every arithmetical proportion; for in 11 1+8, by

(35), any diminution of 111 will not affect the sum, provided a cor-

responding increase be given to 8 ; and, by the definition just given,

one mean is as much less than 1 1 1 as the other is greater than 8.

171. A set or series of numbers is said to be in continued arith-

metical proportion, or in arithmetical progression, when the difference

between every two succeeding terms of the series is the same. This

is the case in the following series

:

I» a. 3, 4, 5» &c.

3. 6, 9. 12, 15, &c.
I

I-,
2

2,
I

2-,
2

3»

I

3? &c.

The difference between two succeeding terms is called the common

difference. In the three series just given, the common differences

are, i, 3, and -.
2

172. If a certain number of terms of any arithmetical series be

taken, the sum of the first and last terms is the same as that of any

other two terms, provided one is as distant from the beginning of the

series as the other is from the end. For example, let there be 7 terms,

and let them be,

a b c d e f g.

* This is a very incorrect name, since the term « arithmetical' applies equally to

every notion in this book. It is necessary, hovrever. that the pupil should use words

in the sense in which they will be used in his succeeding studies.

k2
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Then, since, by the ir.iture of the series, b is as much above a as /is

below 1^ (170), a+g = b+f. Again, since c is as much above b as e is

below/ (170), b+f = c+e. But a+^ = b+f; therefore a+^ = c+e, and

80 on. Again, twice the middle term, or the term equally distant from

the beginning and the end (which exists only when the number of terms

is odd), is equal to the sum of the first and last terms; for since c is

P.S much l)elow d as e is above it, we have c+e = d+d = 2d. But c+e =

a+g; therefore, a-i-g = zd. This will give a short rule for finding the

sum of any number of terms of an arithmetical series. Let there be

7, viz. those just given. Since a+g, b+f, and c+e, are the same, their

sum is three times («+//), which with rf, the middle term, or half a+^,

is three times and a half a+g, or the sum of the first and last terms
I n

multiplied by 3-, or -, or half the number of teims. If there had been
z 2

an even number of terms, for example, six, viz. a, 6, c, rf, e, and/, we

know now that a+/, b+e, and c+d, are the same, whence the sum is three

times a+/, or the sum of the first and last terms multiplied by half tne

number of terms, as before. The rule, then, is : To sum any number of

terms of an arithmetical progression, multiply the sum of the first and

hist terms by half the number of terms. For example, what are 99

terms of the series i, 2, 3, &c. ? The 99th term is 99, and the sum

is (99+1)— , or , or 4950. The sum of 50 terms of the series
2 2

' ^ 4 5 n . /I 5o\ 50
-, -, T, -, -, 2, &c. IS

I
-+^^ ^ or 17x25, or 425.

3 3 3 3 \3 3/ 2*

173. The first term being given, and also the common difference

and number of terms, the last term may be found by adding to the first

term the common difference multij)lied by one less than the number of

terms. For it is evident that the second term differs from the first by

the common difference, the third term by twice, thefourth term by three

times the common difference ; and so on. Or, the passage from the

first to the nth term is made ijv n— i steps, at each of which the comroon

dih'erence is add(?d.
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EXERCISES.

Given. To find.

Series. No. of terms. Last term. Sura.

4. 6^, 9, &c. 33 84 1452

I, 3, 5, &c. 28 55 784

2, 20, 38, &c. IOO,OCO 1799984 8999930C000

174. The Slim being given, the number of terms, and the first term,

we can thence find the common difference. Suppose, for example, the

first term of a series to be one, the number of terms 100, and the sum

ic,cco. Since io,cco was made b}' multiplying the sum of the first and
ICO

last terms by , if we divide by this, we shall recover the sum of the
^ IC,COO ICO

first and last terms. Now, divided by is (122) 200, and the

first term being i, the last term is 199. We have then to pass from

I to 199, or through 198, by 99 equal steps. Each step is, therefore,

198
-^-, or 2, which is the common difference; or the series is i, 3, 5, &c.,
99
.ip to 199.

Given. To find.

Sum. No. of terms. First term. Last term. Common diif.

1809025 1345 I 2689 2

44

7075600

10

1330

3

4

29

5

1C&36
45
8

175. We now return to (170), in which we compared two numbers

together by their difference. This, however, is not the method of

comparison which we employ in common life, as any single familiar

instance will shew. For example, we say of A, who has 10 thousand

pounds, that he is much richer than B, who has only 3 thousand ; but

we do not say that C, who has 107 thousand pounds, is much richer

than D, who has 100 thousand, though tlie difference of fortune is the

same in both cases, viz. 7 thoii«ind pounds. In comparing numbers

we take into our reckoning not only the differences, but the numbers

themselves. Thus, if B and D both received 7 thousand pounds, B

would receive 233 pounds and a third for every 100 pounds which he

had before, while D for every ico pounds would receive only 7 pounds.
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And though, in the view taken in (170), 3 is as near to 10 as 100 is to

107, yet, in the light in which we now regard them, 3 is not so near to

10 as 100 is to 107, for 3 differs from 10 by more than twice itself,

while 100 does not differ from 107 by so much as one-fifth of itself.

This is expressed in mathematical language by saying, that the ratio or

proportion of 10 to 3 is greater than the ratio or proportion of 107 to

ICO. We proceed to define these terms more accurately.

176. When we use the term part of a number or fraction in the

remainder of this section, we mean, one of the various sets of equal

parts into which it may be divided, either the half, the third, the fourth,

&c. : the term multiple has been already explained (102). By the term

multiple-part of a number we mean, the abbreviation of the words

multiple of a part. Thus, 1, 2, 3, 4, and 6, are parts of 12 ;
- is also a

part of 12, being contained in it 24 times ; 12, 24, 36, &c., are multiples

of 12 ; and 8, 9, -, &c. are multiple parts of 12, being multiples of
2

some of its parts. And when multiple-parts generally are spoken of,

the parts themselves are supposed to be included, on the sfime principle

that 12 is counted among the multiples of 12, the multiplier being i.

The multiples themselves are also included in this term ; for 24 is also

48 halves, and is therefore among the multiple parts of 12. Each part

is also in various ways a multiple-part ; for one-fourth is two-eighths,

and three-twelfths, &c.

177. Every number or fraction is a multiple-part of every other

number or fraction. If, for example, we ask what part 12 is of 7, we

gee that on dividing 7 into 7 parts, and repeating one of these parts 12

times, we obtain 12 ; or, on dividing 7 into 14 parts, each of whicli

is one-half, and repeating one of these parts 24 times, we obtain 24

1

2

2A *X 6
halves, or 12. Hence, 12 is —, or — , or— of 7 ; and so on. Generally,

7 ' 14 „ 21 '

when a and b are two whole numbers, 7 expresses the multiple -part

b *

which a is of b, and - that which b is of a. Again, suppose it required
*

I . I 15 16
to determine what multiple-part 2- is of 3-, or — of — . These

^ ^ 7 5 7 5

fractions, reduced to a common denominator, are — and , of which
1 35 35

the second, divided into 112 parts, gives — , which repeated 75 tunes
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gives —, the first. Hence, the multiple-part which the first is of the
35 75 . . V ,

second is ——, which being obtained by the rule given in (121), anews

a '^^

that -, or a divided by i, according to the notion of division there given,

expresses the multiple-part which a is of h in every case.

178. When the first of four numbers is the same multiple-part of

the second which the third is of the fourth, the four are said to be

geometrically* proportional, or simply proportional. This is a word

in common use; and it remains to shew that our mathematical defini-

tion of it, just given, is, in fact, the common notion attached to it. For

example, suppose a picture is copied on a smaller scale, so that a line

of two inches long in the original is represented by a line of one inch

and a half in the copy ; we say that the copy is not correct unless all

the parts of the original are reduced in the same proportion, namely,

that of 2 to I-. Since, on dividing two inches into 4 parts, and taking
"^

1

3 of them, we get i-, the same must be done with all the lines in the
2

original, that is, the length of any line in the copy must be three parts

out of four of its length in the original. Again, interest being at 5 per

cent, that is, £5 being given for the use of £100, a similar proportion

of every other sum would be given ; the interest of £70, for example,

would be just such a part of £70 as £5 is of £100.
a

Since, then, the part which a is of 6 is expressed by the fraction -,

or any other fraction which is equivalent to it, and that which c is of rf

by -, it follows, that when cr, 5, c, and c?, are proportional, 7 = -:. This
a a

equation will be the foundation of all our reasoning on proportional

quantities ; and in considering proportionals, it is necessary to observe

not only the quantities themselves, but also the order in which they

come. Thus, a, 6, c, and rf, being proportionals, that is, a being the

same multiple-part of 6 which c is of </, it does not follow that a, rf, b,

and c are proportionals, that is, that a is the same multiple-part of of

* The same remark may be made here as was made in the note on the term

arithmetical proportion,' page 101. The word 'geometrical' is, generally speaking,

dropped, except when we wish to distinguish between this kind of proportion and

that which has teen called arithmetical.
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which b is of 0. It is plain that a is greater than, equal to, or less than

b, according as c is greater than, equal to, or less than d.

179. Four numbers, a, 6, c, and rf, being proportional in the order

written, a and d are called the extremes, and b and c the means, of the

proportion. For convenience, we will call the two extremes, or the

two means, similar terms, and an extreme and a mean, dissimilar terms.

Thus, a and d axe similar, and so are 6.and c; while a and 6, a and i/,

d and 6, d and c, are dissimilar. It is customary to express the pro-

portion by placing dots between the numbers, thus

:

a : b 11 I d

180. Equal numbers will still remain equal when they have been

increased, diminished, multiplied, or divided, by equal quantities. This

amounts to saying that if a = b and p = g, a+p = 6+7, Or-p — b—q, ap —
a b , ap a

bg, and - = -. It is also evident, that a+p—p, a—p+p, — , and -xja, are
p q P P

all equal to a.

181. The product of the extremes is equal to the product of the

means. Let 7 = -}? and multiply these equal numbers by the product

bd. Then, jxbd =^ ( 1 16) = arf, and -xbd=^ = cb: hence (180),
b b d d 63 3x7

ad = be. Thus, 6, 8, ai, and 28, are proportional, since -= =
21 04 4x7

= -— (180) ; and it appears that 6x28 = 8x21, since both products are
25

168.

182. If the product of two numbers be equal to the product of two

others, these numbers are proportional in any order whatever, provided

the numbers in the same product are so placed as to be similar terms

;

that is, if ab = pq^ we have the following proportions :

—

a '. p '.'. q '. b p I a :: b : q

a : g :: p : b p : b :: a : q

b : J) :: q : a q i a :: h l p

b '. q '.'. p '. a q '. b '.'. a '. p

To prove any one of these, divide both ab and pq by the product of its

second and fourth terms ; for example, to shew the truth ofa'.q'.'.plby

divide both ab and pq by bq. Then, — = -, and 7^ = 7 ; hence (180),
bq q bq



§ 182-184. ON PROPORTION OF NUMBERS. 107

- = -^ or a '. g '.

'. p '. b. The pupil should not fail to prove every one
g d

of the eight cases, and to verify them by some simple examples, such

as 1x6 = 2x3, which gives i : 2 : : 3 : 6, 3 : i : : 6 : 2, &c

183. Hence, if four numbers be proportional, they are also propor-

tional in any other order, provided it be such that similar terms still

remain similar. For since, when -= , it follows (181) that ad = be,
b a

all the proportions which follow from ad = be, by the last article, follow

also from 7 = ;}•

184. From (114) it follows that 1+- = -7—, and if 7 be less than i,Ob b

a b—a a a a—b
1—7 = —— , whileif7 be greater than i, 7— 1 = -r-. Also (122), if

b b b b b

-7— be divided by —— the result is—-. Hence, a, b, c, and d, being
b h a—b

proportionals, we may obtain other proportions, thus :

a c

Then (114) 1+2=. t+3
b d

a+b c+d

or a+b lb'.', c+d '. d

That is, the sum of the iirst and second is to the second as the sum

of the third and fourth is to the fourth. For brevity, we shall not state

in words any more of these proportions, since the pupil will easily supply

what is wanting.

Resuming the proportion a '. b '.'. c '. d

a c

a c .„a
, ,i_ = i__, if- be less than i,

b d o

b—a d—c•"— = -r

tliat is, b—a '. b :'. d—c '. d

a
or, a—b '. b ','. c—d '. d, if - be greater than i.



108 TRINCIPLES OF ARITHMETIC. § 184-187

An.o« • ^+* c+d , a—b c—d /a , . , ,Ago. n, since —- = __ and —- = —-- I - being gi eater than i)
o a a \o

dividing the first by the second we have =
,

a—i c—d

or a+b : a—b '.

'. c+d '. c—d

and also a+b : b-a '. : c+d .* rf—c, if- be less than i.
b

185. Many other proportions might be obtained in the same manner.

We will, however, content ourselves with writing down a few which can

be obtained by combining the preceding articles.

a+b la : : c+d : c

a '. a—h '.'. c '. c—d

a+c : a—c '.'. l+d '. b—d.

In these and all others it must be observed, that when such expressions

as a—b and c—d occur, it is supposed that a is greater than 6, and c

greater than d.

186. If four numbers be proportional, and any two dissimilar terms

be both multiplied, or both divided by the same quantity, the results aie

proportional. Thus, if o : 6 : : c I </, and m and n be any two num-

bers, we have also the following :

ma '. b '.'. mc '. d

a '. mb '.', c '. md

— \ mb : : - : md
n n

and various others. To prove any one of these, recollect that nothing

more is necessary to make four numbers proportional except that the

product of the extremes should be equal to that of the means. Take

the third of those just given ; the product of its extremes is -xmd, or

Mad ,..,,,„, . , c wAc T> ^ .
,^

, while that of the means is mbx -, or . But since a : A : : c : rf,

bv (181) ad — hCy whence, by (180), mad = wjic, and =
. Hence,

a c
n n

-
, wii, - , and mrf, are proportionals.

n n
187. If the terms of one proportion be multiplied by the terms of a

lecond, the products are proportional ; that is, if a : & : : c : </, and

ma '. nb : : mc :: nd

a b c d
— 1 — * * —

]\
—

m m m m
a b

. , c ^ d

m m n n
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p : q ','. r I s, it follows that ap I bq 11 cr '. ds. For, since ad»

be, and ps = jr, by (180) adps = bcqTf or apxds = bq^cr, whence (182)

ap : bq :: cr : ds.

188. If four mirabere be proportional, any similar powers of these

numbers are also proportional ; that is, if

a '. b :: c : d

Then aa '. bb '.'. cc '. dd

aaa '. bbb ', \ ccc '. ddd

&c. &c.

For, if we write the proportion twice, thus.

a : b :: c : d

a '. b :: c : d

by (187) aa : bb :: cc : dd

But a : b :: c : d

lence (187) aaa '. bbb ::: ccc '. ddd

189. An expression is said to be homogeneous with respect to any

two or more letters, for instance, a, 6, and c, when every term of it

contains the same number of letters, counting a, 6, and c only. Thus,

maab+nabc-irccc is homogeneous with respect to a, i, and c ; and of the

third degree, since in each term there is either a, i, and c, or one of

these repeated alone, or with another, so as to make three in all. Thus,

Suaabc, izabccc, maaaaa, naabbc, are all homogeneous, and of the fifth

degree, with respect to a, 6, and c only ; and any expression made by

adding or subtracting these from one another, will be homogeneous and

of the fifth degree. Again ma+mnb is homogeneous with respect to a

and b, and of the first degree ; but it is not homogeneous with respect

to m and n, though it is so with respect to a and ». This being pre-

mised, we proceed to a theorem,* which will contain all the results of

'184), (185), and (188).

190. If any four numbers be proportional, and if from the first two,

* A theorem is a general mathematical fact : thus, that every number is divisible

by four when its last two figures are divisible by four, is a theorem; that in every

proportion the product of the extra.no is equal to the product of the means, is another.

I.
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a and 5, any two homogeneous expressions of the same degree be formed

;

and if from the last two, two other expressions be formed, in precisely

the same manner, the four results Avill be proportional. For example, if

a I b '.: c : d, and if zaaa+^aab and bbb+abb be chosen, which are both

homogeneous with respect to a and i, and both of the third degree ; and

if the corresponding expressions zccc+lccd and ddd+cdd be formed, which

are made from e and d precisely in the same manner as the two former

ones from a and 6, then will

zaaa-Viaab '. bbb+abb 1 1 zccc+'^ccd I ddd+cdd

To prove this, let 7 be called a*. Then, since - = jr, and 7 = -, it

^
b b b d

follows that -^ — ^- But since a divided by h gives x, x multiplied

by b will give a, or a = bx. For a similar reason, c = dx. Put bx

and dx instead of a and c in the four expressions just given, recollecting

that when quantities are multiplied together, the result is the same

in whatever order the multiplications are made ; that, for example,

Ixhxbx is the same as bbbxxx.

Hence, zaaa+iaab = 7,hxbxbx\-ibxbxh

= •T.bbbxxx+'^bbbxx

which is Ibb multiplied by zxxx+^xx

or bbb (jzxxx+ixx)*

Similarly, zccc+iccd = ddd {zxxx+'r^xx)

Also. bbb-k- abb = bbb+bxbb

= bbb multiplied by 1+*

or bbb (i+x)

Similarly, ddd+cdd = ddd {j+x)

Now, bbb : bhb :: ddd: ddd

Whence (186), bbb(zxxx+2xx) : bbh{i+x) '.'. ddd(zxxx+^xx) I ddd

( i+x), which, when instead of these expressions their equals just found

are substituted, becomes zaaa+'^aab '. bbb+abb 11 zccc+iccd '. ddd+cdd.

» If bx be substituted for a In any expression which is homogeneous with re-

spect to a and b, the pupil may easily see that b must occur in every term as often as

there are units in the degree of the expression: thus, aa+-ab becomes bxhx+bxb

ot bb{xx+-x)', aaa-+bbb hecom^i hxbxbx+-bbb ox bbb{xxx+\)', and so on.



§ 190-I92. ON PROPORTION OF NUMBERS. Ill

The same reasoning may be applied to any other case, and the pupil

may in this way prove the following theorems

:

If a \ b :: c : d

za-rzb lb:: zc+id : d

aa+bb I aa—bb : : cc+dd I cc—dd

mab : zaa+bb : : mcd : 2cc+dd

191. If the two means of a proportion be the same, that is, if

a : b :: b : c, the three numbers, a, i, and c, are said to be in

continued proportion, or in geometrical progression. The same terms

are applied to a series of numbers, of which any three that follow one

another are in continued proportion, such as

1 2 4. 8 16 3a 64 &c.2222 2 2
2 _ ^ _ -^ Sec.

3 9 27 81 243 729

Which are in continued proportion, since

1 : 2 :: 2 : 4

2 : 4 :: 4 : 8

2 2 2
2 : - ;; - :

-

3 3 9222^ 2

3
•

9
••

9
•

27

&c. &c.

192. Let a, i, c, </, &c. be in continued proportion ; we have then

a b
a : b :: b : or t = - or ac = bb

b o

b
b : :: c : d ... - = - ... bd = co

d

c d
c : d :: d : e ... — = - ... ce = dd

d e

Each term is formed from the preceding, by multiplying it by the same
_, , b /,„»v c , , . a b b

number. Thus, b = -xa (180); c = 7x6; and smce - = -, - = -

b °' d d "
.

b
f^

c a b

or c = -x5. Again, d = -xc, but - = -, which is = - ; therefore,

f^
a c ^ c b a

d = -xc, and so on. If, then, - (which is called the common ratio of
a a

the series) be denoted by r, we have

b — ar c = br — arr d == cr = arrr

and so on ; Avhence the series
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a b ^ e d &c.

is a ar art arrr &c.

Hence a '. '.'. a ', arr

(186) '.I aa '. aarr

: : aa : Ib

because, b being ar, bb is arar or aarr. Again,

aid','. a ', arrr

(186) r: aaa '. aaarrr

:: aaa '. hbb

Also ale'.', aaaa ', bbbb, and so on
;

that is, the first bears to the n*** term from the first the same proportion

as the n'** power of the first to the n* power of the second.

193. A short rule may be found for adding together any number of

terms of a continued proportion. Let it be first required to add together

the terms i, r, rr, &c. where r is greater than unity. It is evident that

we do not alter any expression by adding or subtracting any numbers,

provided we afterwards subtract or add the same. For example,

p = p—q+q—r+r—s-i^s

Let us take four terms of the series, i, r, rr, &c. or,

i+r+ri'+rrr

It is plain that

rrrr—i = rrrr—rrr+rrr—rr-i-r7-—r+r—i

Now (54), ?-r—r = r(r— i), rrr—rr = rr{r—i), rrrr—rrr = rrr (r—i\

and the above equation becomes rrrr—i = rrr (r— i) + rr (r— i) + r (r— i)

+r-i ; which is (54) rrr+rr-^r+i taken r— i times. Hence, rrrr—i

divided by r—i will give i+r+rr-frrr, the sum of the terms required.

In this way may be proved the following series of equations

:

rr—i
i+r =

i+r+rr

i-\^r-\rrr-irrrT
r—i

•1

i-TT-^TT-^rrr+rrrr =
r-i
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If r be less than unity, in order to find J+r+rr+rrr, observe that

i—rrrr = j—r+r—rr+rr—rrr+rrr—rrrr

= I—r-fr(i—r)+j'r(i—r)+rrr(i—r)

;

W'hence, by similar reasoning, j+r+rr+rrr is found by dividing i—rrrr

by I—r ; and equations similar to these just given may be found,

which are.

i+r = i—rr

i—r

i+r+rr = i-rrr

i—r

i+r+rr+rrr = I—rrrr

I—r

i+r+rr-^rrr+rrrr __
i—rrrrr

The rule is: To find the sum of n terms of the series, i+r+rr+&c..

divide the difference between i and the (n+i)*'' term by the diff*erence

between i and r.

194. This may be applied to finding the sum of any number of

terms of a continued proportion. Let a, 6, c, &c. be the terms of which

it is required to sum four, that is, to find a+bi-c+d, or (192) a+ar

+arr+arrr, or (54) a{i +r+rr+rrr), which (193) is xa, or
r—

I

i-r
xa, according as r is greater or less than unity. The first fraction is

, or (192) . Similarlv, the second is . The rule,
r—

I

^ ' r—i ' I—r
therefore, is : To sum n terms of a continued proportion, divide the

difference of the 7i+i^^ and first terms by the difference between unity

and the common measure. For example, the sum of lo terms of the

series 1+3+9+27+&C. is required. The eleventh term is 59049, and
59049—

I

is 29524. Again, the sum of 18 tenns of the series 2+1+
3-1

II ,1 131072-+—h&c. of which the nineteenth terra is , is
2 4 131072 ^_i

1 3 1070 *

31072

EXAMPL"?.

9 terms of 1+4+ 16 + &c. aie 87381

l2
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6 12 „ 847422675
lo terms of ;: +-+— +&c. are 73—

-

•'

7 49 201768035

1 I I ^ 1048575
^° rrs^'^" - ^^J8i76

ly5. The powers of a number or fraction greater than unity increase;

for since 2- is gi-eater than 1, 2- x 2- is 2- taken more than once, that

is, is greater than a-, and so on. This increase goes on without limit

;

2 1

that is. there is no quantity so great but that some power of 2- is greater.

I
^.

To prove this, observe that every power of 2- is made by multiplying the

1 I
^

preceding power by 2-, or bv 1+1-, that is, by adding to the former
2

'
2

power that power itself and its half. There will, therefore, be more

added to the loth power to form the nth, than was added to the 9th

power to form the loth. But it is evident that if any given quantity,

however small, be continually added to 2 , the result vnll come in time
2

to exceed any other quantity that was also given, however great ; much

more, then, will it do so if the quantity added to 2- be increased at

^ 1

each step, which is the case when the successive powers of 2- are formed.

It is evident, also, that the powers of i never increase, being always i
;

thus, ixi = I, &c. Also, If a be greater than m times 6, the square of a

is greater than mm times the square of b. Thus, if a = 26+c, where

a is greater than 26, the square of cr, or aa, which is (68) ^b+^-bc+cc

is greater than 4ii, and so on.

196. The powers of a fraction less than unity continually decrease

;

thus, the square of-, or -x , is less than -, being only two-fifths of it.

This decrease continues without limit ; that is, there is no quantity so

2 521
small but that some power of - is less. For if - = ;p, - = -, and the211 5 2 ' 5 *
powers of - are —, , and so on. Since or is greater than i (195),

some power of d? may be found which shall be greater than a given

I 2
quantity. Let this be called m ; then — is the corresponding power of- ;m 5

and a fraction whose denominator can be made as great as we please, can

itself be made as small as wo please (112).

197. We have, then, in the series

1 r rr rrr rrrr &c.

I. A series of increasing terms, if r be greater than i. II. Of terms
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having the same value, if r be equal to i. III. A series of decreasing

terms, if r be less than i. In the first two cases, the sum

1+r+rr+rrr+ik.c.

may evidently be made as great as we please, by sufficiently increasing

the number of terms. But in the third this may or may not be the

case ; for though something is added at each step, yet, as that augment-

ation diminishes at every step, we may not certainly say that we can,

by any numbjr of such augmentations, make the result as great as we

please. To shew the contrary in a simple instance, consider the series,

I I I I n1+-+-+- +— + &c.
2 4 8 i6

Carry this series to what extent we may, it will always be necessary to

add the last term in order to make as much as a. Thus,

I I

I +-+- =1+1 — 2,

/ I I\ I II
( 1+- +-)+-= I +-+-
\ a 4/ 4 2 2

/ I 1 i\ 1

I
1+-+- + )+t; = ^•

\ 2 4^8
H—f -+-+—) +— = 2, &C.

2 4 8 i6/ i6

But in the series, every term is only the half of the preceding ; con-

sequently no number of terms, however great, can be made as great

as 2 bv adding one more. The sum, therefore, of i, -, -, -, &c. con-
' 24^

tinually approaches to 2, diminishing its distance from 2 at every step,

but never reaching it. Hence, 2 is called the limit of 1+- •r- + &c.
2 4

We are not, therefore, to conclude that everp series of decreasing terms

has a limit. The contrary may be shewn in tlie very simple series,

n— +- +—h&c. which may be written thus:234
[-r-+( -+-)+(-+•• -up to- )+( +...up to —T j+l —I-...UP to — )+&c

We have thus divided all the series, except the first two terms, into

lots, each containing half as many terms as there are units in the deno-

minator of its last term. Thus, the fourth lot contains 16 or -^ terms.

I
^

Eacli of these lots may be shewn to be greater than -. Take the third,
2
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for example, consisting of -, —, - , — , —, —, —, and — . All except^ ** 9 lo II 12 13 14 15 16

— , the last, are greater than -7; consequently, by substituting —^ for
10 ID 10

each of them, the amoimt of the whole lot would be lessened ; and aa81 I
it would then become —r, or -, the lot itself is greater than -. Now,

II 16 2 a
if to 1+-,- be continually added, the result will in time exceed any

2 2

given number. Still more will this be the case if, instead of -, the
2

several lots written above be added one after the other. But it is thus

that the series 1 +-+-, &c. is composed, which proves what was said,
2 3

that this series has no limit.

198. The series i+r+rr+rrr+&c. always has a limit when r is less

than I. To prove this, let the term succeeding that at which we stop

be a, whence (194) the sum is , or (112) . The terms
' 1—

r

I—r I—

r

decrease without limit (196), whence we may take a term so far distant

from tlie beginning, that a, and therefore , shall be as small as we
I—

r

please. But it is evident that in this case , though always
I—r I—

r

less than , may be brought as near to as we please ; that is, the
I

—

r I—r
J

series i+r+7T+&c. continually approaches to the limit . Thus

1+—h-+-+&c. where r = -, continuallv approaches to —- or 2, as248 2 . rr ,_^
was shewn in the last article.

+ &C.

+ ^ +&C.) is 3

+ &c. ... 10

EXERCISES.

of 2 +
2
- +
3

2

9

2(14
I
- +
3

I

9

. 1 +
10

81

100

5+^H ^+&c. ... 8^
7 49

199. "When the fraction - is not equal to -,but greater, a is said to
o " a c

have to J a greater ratio than has to d ; and when - is less than -, a
It

is said to have to i a less ratio than c has to J. We propose the fol-
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lowing questions as exercises, since they follow very simply from this

definition,

I. If a be greater than A, and c less than or equal to rf, a Avill have

a greater ratio to b than c has to d.

II. If a be less than b, and c greater than or equal to d, a has a less

ratio to b than c has to d.

III. If a be to 6 as c is to rf, and if a have a greater ratio to b than c

has to a?, d is less than x ; and if a have a less ratio to b than c to .r, d is

greater than of.

IV. a has to 6 a greater ratio than ax to hx-Vy^ and a less ratio than

ax to bx—y.

200. If a have to 6 a greater ratio than c has to rf, a+c has to b+d a

less ratio than a has to 6, but a greater ratio than c has to d; or, in

other words, if - be the greater of the two fractions - and -, will be
b

°
b d b+d

greater than -, but less than -. To shew this, observe that — must
d b m+n

lie between x and y, if j? and y be unequal : for if j? be the less of the

two, it is certainly greater than or than x ; and ify be the greater
m+n

7WV+7iV
of the two, it is certainly less than , or than ;/. It therefore lies

a "'-^"'
c

between x and y. Now let - be x, and let - be y : then a = bx^ c = dy.

bx+dy " "
Now is something between x and y, as was just proved ; therefore

u+c ,
^+"

,, . , ,
a n

, a , c
r—- IS somethmg between - and -. Again, smce 7 and - are respectively
b+d ap cq " ^ b d ap+co
equal to -— and —-, and since, as has just been proved, -r-—r lies be-^

bp dfj
' •' r > bp^dq

tween the two last, it also lies between the two first; that is, if/) and

Q be any numbers or fractions whatsoever, - lies between - and -.^ * bp+dq b d
201. By the last article we may often form some notion of the value

of an expression too complicated to be easily calculated. Thus,

1- , .
I J -^ J ' ax+by .. . , ax .by

lies between - and — , or i and - ;
—— lies between and —-—

,

I XX X axx+bbyy axx bbyy

1 I a+b
that is, between - and --. And it has been shewTi that lies between

X by 2

a and J, the denominator being considered as i+i.

202. It may also be proved that a fraction such as always
a b c d . .

p+q+r+s
lies among -, -, -, and -, that is, is less than the greatest of them, and

p q r s

greater than the least. Let these fractions be arranged in order of
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magnitude ; that is, let - be greater than -, - be greater than -, and -

d P 9 9 r r

greater than -. Then by (200)

a+b

P+9 c

a+b+o 6

a b , C
j3 - and -

P 1 q r

a+b , a
ht

c , d
and - M - and -

p+q p S)
r s

a+b+c a
•a

d
and - rt

p+q+r p s

p+q+r S
01

a+b+c+d

p+q+r+s

whence the proposition is evident.

203. It is usual to signify " a is greater than 6" by a > 5, and " a is

less than 6" by a<b; the opening of A being turned towards the greater

quantity. The pupil is recommended to make himself familiar vnih

these signs.

SECTION IX.

ON PERMUTATIONS AND COMBINATIONS.

204. If a number of counters, distinguished by different letters, be

placed on the table, and any number of them, say four, be taken away,

the qi;e8tion is, to determine in how many different ways this can be

done. Each way of doing it gives what is called a, combination of four,

but which might with more propriety be called a selection of four. Two

combinations or selections are called different, which differ in any way

whatever; thus, abed and abce are different, d being in one and e in

the other, the remaining parts being the same. Let there be six counters,

a, 6, c, rf, e, and/; the combinations of three which can be made out

of them are twenty in number, as follow

:

abo ace bed bef

abd acf bee cde

abe ade bef edf

abf adf bde cef

acd aef bdf def

The combinations of four are fifteen in number, namely.
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abed

abce

abcf

rnd so on.

205. Each of these combiuations may be written in several different

orders ; thus, abed may be disposed in any of the following ways

:

abde acde adef beef

abdf acdf bade bdef

ahef acef bcdf cd^

abed acbd aedb abde adbe adeb

bacd cabd cadb bade dabc dacb

bead cbad cdab bdac dbac dcab

bcda cbda cdba bdea dbca dcba

of which no two are entirely in the same order. Each of these is said

to be a distinct permutation of abed. Considered as a combination, they

are all the same, as each contains a, b, c, and d.

206. We now proceed to find how many permutations, each con-

taining one given number, can be made from the counters in another

given number, six, for example. If we knew how to find all the per-

mutations containing four counters, we might make those which contain

five thus : Take any one which contains four, for example, abcf, in which

d and e are omitted ; write d and e successively at the end, which gives

abvfd, abcfe, and repeat the same process with every other permutation

of four; thus, dabc gives dabee and dabef. No permutation of five can

escape us if we proceed in this manner, provided only we know those

of four ; for any given permutation of five, as dbfea, will arise in the

course of the process from db/e, which, according to our rule, furnishes

dbfea. Neither will any permutation be repeated twice, for dbfea, if

the rule be followed, can only arise from the permutation dbfe. If wo

begin in this way to find the permutations of two out of the six,

a b c d e f

each of these gives five; thus,

a gives ab ac ad ae af

b ba be bd be bf

and the whole number is 6x5, or 30.
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Again, ab gives abc abd abe ahf

ac ach acd ace acf

and here are 30, or 6x5 permutations of 2, each of which gives 4

permutations of 3 ; the whole number of the last is therefore 6x5x4,

or 120.

Again abc gives abed abce abcf

abd abdc abde abdf

and here are 120, or 6x5x4, permutations of three, each of which gives

3 permutations of four ; the whole number of the last is therefore

6x5x4x3, or 360.

In the same way, the number of permutations of 5 is 6x5x4x3x2,

and the number of permutations of six, or the number of different ways

in which the whole six can be arranged, is 6x5x4x3x2x1. The last

two results are the same, which must be ; for since a permutation of five

only omits one, it can only furnish one permutation of six. If instead

of six we choose any other number, j?, the number of permutations of

two will be x{x—\\ that of three will be x{a!—i){x—i.\ that of four

x{jx—\){x—%\x—i)^ the rule being : Multiply the whole number of

counters by the next less number, and the result by the next less, and

so on, until as many numbers have been multiplied together as there

are to be counters in each permutation : the product will be the whole

number of permutations of the sort required. Thus, out of 12 counters,

permutations of four may be made to the number of 12x11x10x9, or

1 1880.

EXERCISES.

207. In how many different ways can eight persons be arranged on

eight scats ? Answer^ 40320.

In how many ways can eight persons be seated at a round table, so

that all shall not have the same neighbours in any two arrangements ?*

Answer, 5040.

If the hundredth part of a farthing be given for every different

* The diffbrence between th*s problem and the last is left to the ingenuity of

the pupil.
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arrangement which can be made of fifteen persons, to how much wiU

the whole amount? Answer, £13621608.

Out of seventeen consonants and five vowels, how many words can

be made, having two consonants and one vowel in each ? Answer, 4080.

208. If two or more of the counters have the same letter upon them,

the number of distinct permutations is less than that given by the last

rule. Let there be a, a, a, b, c, d, and, for a moment, let us distinguish

between the three as thus, a, a', a". Then, ahca'a"d, and a"bcaa'd

are reckoned as distinct permutations in the rule, whereas they would

not have been so, had it not been for the accents. To compute the

number of distinct permutations, let us make one with b, c, and d,

leaving places for the as, thus, ( ) be { ) ( ) d. If the as had been

distinguished as a, a', a", we might have made 3x2x1 distinct per-

mutations, by filling up the vacant places in the above, all Avhich six

are the same when the as are not distinguished. Hence, to deduce

the number of permutations of a, a, a, b, c, d, from that of aa'a"bcd,

OX CX^X'^X2X I

we must divide the latter by 3x2x1, or 6, which gives —^—^^
3x2x1

or 120. Similarly, the number of permutations of aaaalbbcc is

9x8x7x6x5x4x3x2x1

4x3x2x1x3x2x1x2x1*

EXERCISE.

How many variations can be made of the order of the letters in the

word antitrinitarian ? Answer, 1261260CO.

209. From the number of permutations we can easily deduce the

number of combinations. But, in order to form these combinations

independently, we Avill shew a method similar to that in (206). If we

know the combinations of two which can be made out of a, b, c, d, e, we

can find the combinations of three, by writing successively at the end of

each combination of two, the letters which come after the last contained

in it. Thus, ab gives abc, abd, abe; ad gives ade only. No combination

of three can escape us if we proceed in this manner, provided only we

know the combinations of two ; for any given combination of three, as

acd, will arise in the course of the process from ac, which, according

to our rule, furnishes acd. Neither will any combination be repeated
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twice, for acd^ if the rule be followed, can only arise from ac, since

neither ad nor cd furnishes it. If we begin in this way to find the

combinations of the five,

a b c d e

a gives ab ac ad ae

b be bd be

cd ce

d de

Of these, ab gives abc aid abe

ac acd ace

ad ade

be bed bee

bd bde

cd cde

ae be ce and de give none.

Of these, ahe gives abed abee

abd abde

acd aede

bed bcde

Those which contain e give none, as before.

Of the last, abed gives abede, and the others none, which is evidently

true, since only one selection of five can be made out of five things.

210. The rule for calculating the number of combinations is de-

rived directly from that for the number of permutations. Take 7

ounters ; then, since the number of permutations of two is 7x6, and

since two permutations, ba and ai, are in any combination ai, the

7x6
number of combinations is half that of the permutations, or -

—

,

2

Since the number of permutations of three is 7x6x5, and as each

combination abc has 3x2x1 permutations, the number of combina-

tions of three is . Also, since any combination of four, abcd^
1x2x3

contains 4x3x2x1 peimutations, the number of combinations of four

is — , and so on. The rule is : To find the number of com-
1x2x3x4

binations, each containing n counters, divide the corresponding number
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of permutations by the product of i, 2, 3, &c. up to n. If x be the

whole number, the number of combinations of two is : that of
1x2

three is -^^
; that of four is -^^ — — ; and so on.

1x2x3 1x2x3x4
211. The rule may in half the cases be simplified, as follows. Out

of ten counters, for every distinct selection of seven which is taken, a

distinct combination of 3 is left. Hence, the number of combinations

of seven is as many as that of three. We may, therefore, find the

combinations of three instead of those of seven ; and we must moreover

expect, and may even assert, that the two formulae for finding these

two numbers of combinations are the same in result, though different

in form. And so it proves ; for the number of combinations of seven

, 10x9x8x7x6x5x4 . , . , ,

out of ten IS :;—, m which the product 7x6x5x4 occurs
1x2x3x4x5x6x7

in both terms, and therefore may be removed from both (108), leaving

—, which is the number of combinations of three out of ten. The
1x2x3

same may be shewn in other cases.

EXERCISES.

How many combinations of four can be made out of twelve things ?

Answer^ 495.

What number f ^ 1
f

^ 1 { ^^

of combinations
{ ^6 T

°^* °^
1 28 i

Answer^ I ^^

^

can be made of |_ 6 J I 15 J L 5005

How many combinations can be made of 13 out of 52 ; or how many

different hands may a person hold at the game of whist ?

Answer^ 635013559600.
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BOOK II.

COMMERCIAL ARITHMETIC.

SECTION I.

. WEIGHTS, MEASURES, &C.

212. In making the calculations which are necessary in commercial

affairs, no more processes are required than those which have been

explained in the preceding book. But there is still one thing wanted

—not to insure the accuracy of our calculations, but to enable us to

compare and judge of their results. "We have hitherto made use of a

siigle unit (15), and have troated of other quantities which are made

up of a number of units, in Sections II., III., and IV., and of those

which contain parts of that unit in Sections V. and VI. Thus, if we

are talking of distances, and take a mile as the unit, any other length

may be represented,* either by a certain number of miles, or a certain

number of parts of a mile, and (i meaning one mile) may be expressed

• It is not true, that if we choose any quantity as a unit, any other quantity of

the same kind can be exactly represented either by a certain number of units, or of

parts of a unit. To understand how this is proved, the pupil would require more

knowledge than he can be supposed to have; but we can shew him that, for any thing

he knows to the contrary, there may be quantities which are neither units nor parts

of the unit. Take a mathematical line of one foot in length, divide it into ten parts,

each of those parts into ten parts, and so on continually. If a point A be taken at

hazard in the line, it does not appear self-evident that if the decimal division be con-

tinued ever so far, one of the points of division must at last fall exactly on A : neither

would the same appear necessarOy true if the division were made mto sevenths, or

elevenths, or in any other way. There may then possibly be a part of a foot which

is no exact numerical fraction whatever of the foot ; and this, in a higher branch of
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either by a whole number or a fraction. But we can easily see that in

many cases inconveniences would arise. Suppose, for example, I say,

that the length of one room is -77- ofa mile, and of another of a" 180 174
mile, what idea can we form as to how much the second is longer than

the first ? It is necessary to have some smaller measure ; and if we

divide a mile into 1760 equal parts, and call each of these parts a yard,

7
we shall find that the length of the first room is 9 yards and - of a yard,

10 9
and that of the second 10 yards and — of a yard. From this we form

a much better notion of these different lengths, but still not a very

perfect one, on accoimt of the fractions - and --. To get a clearer

, . 9 , ^7
idea of these, suppose the yard to be divided into three equal parts, and

7 I
each of these parts to be called a foot ; then - of a yard contains 2-

10 30 9 3
feet, and —- of a yard contains -- of a foot, or a little more than
1 87 87
- of a foot. Therefore the length of the first room is now 9 yards,

2 feet, and - of a foot ; that of the second is 10 yards and a little more
I 3

than - of a foot. We see, then, the convenience of having large mea-

sures for large quantities, and smaller measures for small ones ; but this

is done for convenience only, for it is possible to perform calculations

upon any sort of quantity, with one measure alone, as certainly as with

more than one ; and not only possible, but more convenient, as far as

the mere calculation is concerned.

The measures which are used in this country are not those which

would have been chosen had they been made all at one time, and by a

people well acquainted with arithmetic and natural philosophy. We
proceed to shew how the results of the latter science are made useful in

our system of measures. Whether the circumstances introduced are

sufficiently well known to render the following methods exact enough

for the recovery of astronomical standards, may be matter of opinion

;

but no doubt can be entertained of their being amply correct for

commercial purposes.

mathematics, is found to be the case times without number. Wliat is meant in the

words on which this note is written, is, that any part of a foot can be represented as

nearly as we please by a numerical fraction of it ; and this is sutficient f^r practical

purposes.

m2
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It is evidently desirable that weights and measures should always

continue the same, and that posterity should be able to replace any one

of them when the original measure is lost. It is true that a yard, which

is now exact, is kept by the public authorities ; but if this were burnt

by accident,* how are those who shall live 500 years . hence to know

what was the length which their ancestors called a yard ? To ensure

them this knowledge, the measure must be derived from something

which cannot be altered by man, either from design or accident. We
find such a quantity in the time of the daily revolution of the earth, and

also in the length of the year, both of which, as is shewn in astronomy,

will remain the same, at least for an enormous number of centuries,

unless some great and totally unknown change take place in the solar

system. So long as astronomy is cultivated, it is impossible to suppose

that either of these will be lost, and it is known that the latter is

365-24224 mean solar days, or about 365- of the average interval which
4

elapses between noon and noon, that is, between the times when the sun

is highest in the heavens. Our year is made to consist of 365 days, and

the odd quarter is allowed for by adding one day to every fourth year,

which gives what we call leap-year. This is the same as adding - of a
4

day to each year, and is rather too much, since the excess of the year

above 365 days is not '25 but '24224 of a day. The difference is '00776

of a day, which is the quantity by which our average year is too long.

This amounts to a day in about 128 years, or to about 3 days in 4

centuries. The error is corrected by allowing only one out of four of the

years which close the centuries to be leap-years. Thus, a.d. 1800 and

1900 are not leap-years, but 2000 is so.

213. The day is therefore the first measure obtained, and is divided

into 24 parts or hours, each of which is divided into 60 parts or minutes,

and each of these again into 60 parts or seconds. One second, marked

thus, i»,t is therefore the 86400*'' part of a day, and the following is the

* Since this was first written, the accident has happened. The standard yard was

so injured as to be rendered useless by the fire at the Houses of Parliament.

+ The minute and second are often marked thus, 1', 1": but this notation is now

almost entirely appropriated to the minute and second of angular measure.
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MEASURE OF TIME.*

are I minute . , . im.

. . I hour , . . . ih.

. . 1 day . , . . Id.

. . 1 week . . . I wk

. . I year . . . . I yr.

6o seconds

6o minutes

24 hours .

7 days

365 days

214. The second having been obtained, a pendulum can be con-

structed which shall, when put in motion, perform one vilration in

exactly one second, in the latitude of Greenwich.+ If we were in-

venting measures, it would be convenient to call the length of this

pendulum a yard, and make it the standard of all our measures of

length. But as there is a yard already established, it will do equally

well to tell the length of the pendulum in yards. It was found by

commissioners appointed for the purpose, that this pendulum in London

was 39'i393 inches, or about one yard, three inches, and — of an inch.

The following is the division of the yard.

MEASURES OF LENGTH.

The lowest measure is a barleycorn.^

I inch3 barleycorns are

12 inches . . . . .

3 feci ,

5- yards
2

40 poles or 220 yards . .

8 furlongs or 1760 yards .

\ foot .

I yard .

I •pole .

I furlong

I mile .

1 in.

1 ft.

1 yd.

I po.

I fur.

I mi.

* ITie measures in italics are those which it is most necessarj- that the student

should learn by heart.

+ The lengths of the pendulums which will vibrate in one second are slightly dif-

ferent in different latitudes. Greenwich is chosen as the station of the Royal Ob-

servatory. We may add, that much doubt ia now entertained as to the system of

standards derived from nature being capable of that extreme accuracy which was

once attributed to it.

X The inch is said to have been originally obtained by putting together three grains

of barley.
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I nail . I nl.

I quarter (of a yard) . iqr.

I Flemish ell . . I Fl. e.

1 English ell . . I E. e.

I French ell . . I Fr. e.

Also 6 feet i fathom . i fth.

69- miles I degree . i deg. or 1®.

A geographical mile is ^^-th of a degree, and three such miles are one
60

nautical league.

In the measurement of cloth or linen the following are also used :

2— inches arc

4
4 nails . . .

3 quarters . .

5 quarters . .

6 quarters . .

215. MEASURES OF SURFACE, OR SUPERFICIES.

All surfaces are measured by square inches, square feet, &c.; the

square inch being a square whose side is an inch in length, and so on.

The following measures may be deduced from the last, as will afterwards

appear.

I square foot . 1 sq. ft.

I square yard . i sq. yd.

I square pole . i sq. p.

I rood ... I rd,

4 roods I acre ... i ac.

Thus, the acre contains 4840 square yards, which is ten times a

square of 22 yards in length and breadth. This 22 yards is the length

which land-surveyors' chains are made to have, and the chain is divided

into 100 links, each '22 of a yard or 7*92 inches. An acre is then 10

square chains. It may also be noticed that a square whose side is

4 1

69- yards is nearly an acre, not exceeding it by - of a square foot.

144 square inches are

9 square feet . . .

30- square yards . .

40 square poles . .

216. MEASURES OF SOLIDITY OR CAPACITY.*

Cubes are solids having the figure of dice. A cubic inch is a cube

each of whose sides is an inch, and so on.

* ' Capacity' is a term which cannot be better explained than by its use. When

one measure holds more than another, it is said to be more capacious, or to have a

greater capacity.
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1728 cubic inches are 1 cubic foot . . i c. ft.

27 cubic feet . . . i cubic yard . . i c. yd.

This measure is not much used, except in purely mathematical

questions. In the measurements of different commodities various mea-

sures were used, which are now reduced, by act of parliament, to one.

This is commonly called the imperial measure, and is as follows :

MEASURE OF LIQUIDS AND OF ALL DRY GOODS.

4 gills are I pint . . . ipt.

2 pints . . 1 quart . . . iqt.

4 quarts . I gallon . I gall

a gallons . . I peck* . ipk.

4 pecks . . I bushel . I bu.

8 bushels . I quarter . . iqr.

5 quarters 1 load . . . lid.

The gallon in this measure is about 277*274 cubic inches; that is,

very nearly 277- cubic inches.+
4

217. The smallest weight in use is the grain, which is thus deter-

mined. A vessel whose interior is a cubic inch, when filled vnth

water,t has its weight increased by 252*458 grains. Of the grains so

determined, 7000 are a pound averdupois, and 5760 a pound troi/. The

* This measiure, and those which follow, are used for dry goods only.

t Since the publication of the third edition, the heaped measure, which was part

of the new system, has been abolished. The following paragraph from the third

edition will serve for reference to it

:

"The other imperial measure is applied to goods which it is customary to sell by

heaped measure, and is as follows

:

2 gallons 1 peck

4 pecks 1 bushel

3 busliels 1 sack

12 sacks 1 chaldron.

The gallon and bushel in this measure hold the same when only just filled, as in the

last. The bushel, however, heaped up as directed by the act of parliament, is a little

more than one-fourth greater than before."

t Pure water, cleared from foreign substances by distillation, at a temperature of

62» Fahr.
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first pound is always used, except in weighing precious metals and

stones, and also medicines. It is divided as follows :

AVERDUPOIS WEIGHT.

27— grains are i dram 1 dr.

16 drams, or drachms . . 1 ounce* . . . . i oz,

16 ounces i pound .... i lb.

28 pounds 1 quarter . . . i qr.

4 quarters i hundred-weight , i cwt,

20 hundred-weight . . i ton i ton.

The pound averdupois contains 7000 grains. A cubic foot of watei

weighs 62*3210606 pounds averdupois, or ^^j'l-^SgB^i ounces.

For the precious metals and for medicines, the pound troy, con-

taining 5760 grains, is used, but is differently divided in the two cases.

The measures are as follow :

TROY WEIGHT.

24 grains are i pennyweight . . . i dwt.

XQ pennyweights . . . i ounce i oz.

12 ounces i pound i lb.

The pound troy contains 5760 grains. A cubic foot of water weighs

75' 7 374 pounds troy, or 908*8488 ounces.

apothecaries' weight.

20 grains are i scruple 3

3 scruples . . . . i dram 5

8 drams .... i ounce 5

12 ounces i pound ft

218. The standard coins of copper, silver, and gold, are,—the penny,

which is 10- drams of copper ; the shilling, which weighs 3 penny-
3

weights 15 grains, of which 3 parts out of 40 are alloy, and the rest

pure silver; and the sovereign, weighing 5 pennyweights and 3- grains,
4

of which I part out of 12 is copper, and the rest pure gold.

* It is more common to divide the ounce into four quarters than into sixteen

drams.
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MEASURES OF SIONEY.

The lowest coin is a farthing, which is marked thus, -, being one
4

fourth of a penny.

2 farthings are i halfpenny ~d.
2

2 halfpence i penny id.

12 pence i shilling is.

20 shillings i pound* or sovereign , £ i

21 shillings i guinea.f

219. When any quantity is made up of several others, expressed in

different units, such as £i . 14. 6, or 2cwt. iqr. 3 lbs., it is called a

compound quantity. From these tables it is evident that any compound

quantity of any substance can be measured in several different ways.

For example, the sum of money which we call five pounds four shillings

is also 104 shillings, or 1248 pence, or 4992 farthings. It is easy to

reduce any quantity from one of these measurements to another ; and

the following examples will be sufficient to shew how to apply the same

process, usually called Reduction, to all sorts of quantities,

I. How many farthings are there in £18 . 12 . 6- ? J
4

Since there are 20 shillings in a pound, there are, in £18, 18x20, or

360 shillings; therefore, £18 . 12 is 360+12, or 372 shillings. Since

there are 12 pence in a shilling, in 372 shillings there are 372x12,

or 4464 pence ; and, therefore, in £18 . 12 . 6 there are 4464+6, or

4470 pence.

Since there are 4 farthings in a penny, in 4470 pence there are

• The English pound is generally called a powwd sterling, which distinguishes it

from the weight called a pound, and also from foreign coins.

t The coin called a guinea is now no longer in use, hut the name is still given,

from custom, to 21 shillings. The pound, which was not a coin, hut a note promising

to pay 20 shillings to the bearer, is also disused for the present, and the sovereign

supplies its place ; but the name pound is still given to 20 shillings.

J Farthings are never written but as parts of a penny. Thus, thr:e farthings

3 3 2
being - of a penny, is written —, or %. One halfpenny may be written either as -

or -; the latter is most common.
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4470x4, or 17880 farthings; and, therefore, in £18 . 12 , 6- there
4

are 17880+3, or 17883 farthings. The whole of this process may be

written as follows

:

£iS . 12 . 6^

360+12 = 372
12

44.64+6 = 4470

4

17880+3 = 17883

II. In 17883 farthings, how many pounds, shillings, pence, and

farthings are there ?

Since 17883, divided by 4, gives the quotient 4470, and the remainder

3, 17883 farthings are 4470 pence and 3 farthings (218).

Since 4470, divided by 12, gives the quotient 372, and the remainder

6, 4470 pence is 372 shillings and 6 pence.

Since 372, divided by 20, gives the quotient 18, and the remainder

12, 372 shillings is 18 pounds and 12 shillings.

3 9
Therefore, 17883 farthings is 4470-</., which is 3725. 6-rf., which is

-I 4 4
£18 . 12 . 6^.

4
The process may be written as follows

:

4)17883

12)4470 ... 3

20)372 ... 6

£18 . 12 . 6-
4

EXERCISES.

A has £100 . 4 . 11-, and B has 6439a farthings. If A receive 1492
2 1

farthings, and B £1 . 2 . 3-, which will then have the most, and by how

much ?

—

Answer, A will have £33 . 12 . 3 more than B.

In the following table the quantities written opposite to each other

are the same : each line furnishes two exercises.
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£iS .18.9-
2

1 1 q"* I"^ gtlwt

2 bs j^oj gdr

3™ 149>''* 2^' 9'"

j^bii jPits igall ^qt*

i6'' zs"" 47*

15302 fhrthings.

663072 grains.

ICO I drams.

195477 inches.

1260 pints.

59027 seconds.

220. The same may be done where the number first expressed is

fractional. For example, how many shillings and pence are there in

4 4 4 4— of a pound ? Now, — of a pound is — of 20 shillings ; — of 20
15

*^

15
^

15 " ' 15

. 4x20 4x4 16 I I
18 , OT ^^—^ (HO), or —, or (105) 5- of a shilling. Again, - of

a shilling is - 0T12 pence, or 4 pence. Therefore, £— = 5*. 4^.

Also, "23 of a day is '23x24 in hours, or 5'"52 ; and '52 of an hour

is '52x60 in minutes, or 3i"''2; and '2 of a minute is '2x60 in seconds,

or 12* ; whence '23 of a day is 5'* 31™ 12*.

Again, suppose it required to find what part of a pound 6s. Sd. is.

Since 6s. Sd. is 80 pence, and since the whole pound contains 20x12

or 240 pence, 6s. M. is made by dividing the pound into 240 parts, and

taking 80 of them. It is therefore £ (107), but = - (108):
J

240 ^ ' 240 3 ' ^

therefore, 6s. 8c?. = £-.

EXERCISES.

- of a day is 9'' 36"*

•i284iofaday . . . 3*' 4'" 54* '624*

'257ofacwt. . . . 28"'« 12°^ S"''- 704

£•14936 2« I iJ 3^-3856

221, 222. I have thought it best to refer the mode of converting

shillings, pence, and farthings into decimals of a pound to the Appendix

(See Appendix On Decimal Money). I should strongly recommend

the reader to make himself perfectly familiar with the modes given in

* When a decimal follows a whole number, the decimal is always of the same unit

as the whole number. Thus, 5''5 is five seconds and five-tenths o{ a, second. Thus,

0*'5 means five-tenths of a second ; 0^-3, three-tenths of an hour.



134 COMMERCIAL ARITHMETIC, §222-224.

that Appendix. To prevent the subsequent sections from being altered

in their numbering, I have numbered this paragraph as above.

223. The rule of addition* of two compound quantities of the same

sort will be evident from the following example. Suppose it required

to add £192 . 14 . 2- to £64 . 13 . II-. The sum of these two is the

^ 4
whole of that which arises from adding their several parts. Now

h.+ ^. = ^d. = £0.0. I- (219)424 4
Ilrf.+ 2rf. = 13^. = O.T.I

13s. + 14s. = 27s. = 1.7.0

£64 +£192 = 256 .0.0

The sum of all of which is £257 . 8 . 2-
4

This may be done at once, and written as follows :

£192 . 14 . 2

'^ 64 . 13 . II-
4

£257, 8. 2-
4

Begin by adding together the farthings, and reduce the result to

pence and farthings. Set down the last only, carry the first to the line

of pence, and add the pence in both lines to it. Reduce the sum to

shillings and pence ; set down the last only, and carry the first to the

line of shillings, and so on. The same method must be followed when

the quantities are of any other sort ; and if the tables be kept in me-

mory, the process will be easy

.

224. SuBTRAcnoN is performed on the same principle as in (40),

namely, that the difference of two quantities is not altered by adding the

same quantity to both. Suppose it required to subtract £19 . 13 . i<>5

from £24 .5.7-. Write these qu.intities under one another thus :

• Before redding this article and the next, articles (29) and (42) should be read

again carefully.
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£24. 5. 7;2

3
19 . 13 . 10^

4

3 12
Since - cannot be taken from - or -, add id. to both quantities,

.4 =^4 4
,

which will not alter their difference ; or, which is the same thing, add

4 farthings to the first, and id. to the second. The pence and farthings

in the two lines then stand thus : j-d. and 1 1^. Now subtract -
6 .^44 4

from -, and the difference is -, which must be written under the
.4 . .

4-

fai-things. Again, since i id. cannot be subtracted from ^d., add is. to

both quantities by adding 12c?. to the first, and is. to the second. The

pence in the first line are then 19, and in the second 11, and the

difference is 8, which write under the pence. Since the shillings in the

lower line were increased by i, there are now 145. in the lower, and 55.

in the upper one. Add 2cs. to the upper and £1 to the lower line, and

the subtraction of the shillings in the second from those in the first

leaves 115. Again, there are now ^"'20 in the lower, and ^^24 in the

upper line, the difference of which is £^ ; therefore the whole difTerence

of the two sums is £4. . 11 . 8-. If we write do\vn the two 8uu:s with
4

all the additions which have been made, the process will stand thus

:

6
£24 . 25 . 19-

4

20 . 14 . II-
4

Difference £4. . i:

4
225. The same method may be applied to any of the quantities in

the tables. The following is another example

:

From 7 cwt. 2 qrs. 2 1 lbs. 14 oz.

Subtract a cwt. 3 qrs. 27 lbs. 12 oz.

After alterations have been made similar to those in the last article, the

question becomes

:

From 7 cwt. 6 qrs. 49 lbs. 14 oz.

Subtract 3 cwt. 4 qrs. 27 lbs. 12 oz.

The difference is 4 cwt. 2 qrs. 22 lbs. 2 oz.

In this example, and almost every other, the process may be a little
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shortened in the following way. Here we do not subtract 27 lbs. from

21 lbs., which is impossible, but we increase 21 lbs. by i qr. or 28 lbs.

and then subtract 27 lbs. from the sum. It would be shorter, and lead

to the same result, first to subtract 27 lbs. from 1 qr. or 28 lbs. and add

the difference to 21 lbs.

226. EXERCISES.

A man has the following sums to receive: £193 . 14 . 11-,

3 I 4
£22 . o . 6-, £6473 .0.0, and £49 . 14 . 4 ; and the following debts

4 I
2

I

to pay: £200 . 19 . 6-, £305 . 16 . 11. £22, and £19 .6.0-. How
4 ^

5much will remain after paying the debts ? Answer, 166190 . 7 . 4-.
4

There are four to^vns, in the order A, B, C, and D. If a man can

go from A to B in 5'' 20'" 33*, from B to C in 6i> 49™ 2% and from A
to D in jg^ o™ 17% how long will he be in going from B to D, and from

C to D ? Answer, 13'' 39"" 44% and 6'» 5o«n 42".

227. In order to perform the process of Multiplication, it must

be recollected that, as in (52), if a quantity be divided into several

puts, and each of these parts be multiplied by a number, and the

products be added, the result is the same as would arise from multi-

plying the whole quantity by that number.

It is required to multiply £7 . 13 . 6- by 13. The first quantity ia

4
made up of 7 pounds, 13 shillings, 6 pence, and i farthing. And

I farth. X 13 is 13 farth. or £0. o . 3- (219)
4

6 pence x 13 is 78 pence, or 0.6.6

13 shill. X13 is 169 shill. or 8.9.0

7 pounds X 13 is 91 pounds, or 91 . o . o

The sum of all these is £99. 15
X

which is therefore £7 . 13 ^-3 •

This process is usually written

£7 .

£99 •

as follows

,5.9;
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228. Division is performed upon the same principle as in (74),

viz. that if a quantity be divided into any number of parts, and each

part be divided by any number, the diiFerent quotients added together

will make up the quotient of the whole quantity divided by that number.

Suppose it required to divide £99 . 15 . 9- by 13. Since 99 divided by
4

13 gives the quotient 7, and the remainder 8, the quantity is made up

of £13x7, or £91, and £8 . 15 . 9- The quotient of the first, 13 being
4

the divisor, is £7 : it remains to find that of the second. Since ^8 is

1605., £S . 15 . 9- is 1755. g-d.^ and 175 divided by 13 gives the quotient
4 4 . I

13, and the remainder 6; that is, 175s. g-d, is made up of 1695. and
1 4

6s. 9-rf., the quotient of the first of which is 13s., and it remains to find

4 * I I ,

that of the second. Since 65. is jzd.^ 6s. g-d. is 81-J., and 81 divided
4- 4 I .

bv 13 gives the quotient 6 and remainder 3; that is, %i-d. is "jM. and
I 4 12

3 -</., of the first of which the quotient is 6c?. Again, since 3c?. is —

,

4 I . , .
4

or 12 farthings, 3-</. is 13 farthings, the quotient of which is 1 farthing,

or -, without remainder. We have then divided £gg • 15 . 9- into

4
.

4
four parts, each of which is divisible by 13, viz. jfc'91, 1695., 78(/., and

13 farthings ; so that the thirteenth part of this quantity is ^^7 . 13 . 6-.

4
The whole process may be written down as follows ; and the same sort of

process may be applied to the exercises which follow

:

£ s. d. £ s. d.

13)99 15 97(7 13 6-
.

91 ^ 4-

~8

20

160+15 = ^75

IL
45
39

6

12

72+9 = 81

78

3

_4

124-1 = 13

o

n2
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Here, each of the numbers 99, 175, 8i, and 13, is divided by 13 in

the usual way, though the divisor is only written before the first of

them.
EXERCISES.

2 cwt. I qr. 21 lbs. 7 oz. x 53 = 129 cwt. i qr. 16 lbs. 3 oz.

2d ^h ^m 27»x 109 = 236^ lO** l6'» 3«

£27 . 10 . 8 X 569 = £15666 .9.4

£7.4. 8 X 123 = £889. 14

8 6
£166 X — = £40 . 4 . 10

—

33 33

£187. 6. 7 X -1- = £5. 12.4I—
100 -^ ^425

4s. 6-d.x 1 121 = £254 .11.2-
2 2

4s. 4rf. X 4260 = 65. 6d, X 2840

229. Suppose it required to find how many times i*. ^.-d. is contained

3
^

m £3.19. 10-. The way to do this is to find the number of farthings
4

in each. By (219), in the first there are 65, and in the second 3835

farthings. Now, 3835 contains 65 59 times; and therefore the second

quantity is 59 times as great as the first. In the case, however, of

pounds, shillings, and pence, it would be best to use decimals of a

pound, which will give a sufficiently exact answer. Thus is. 4-rf. is

3 4
£•067, and £3 . 19 . 10- is £3*994, and 3*994 divided by '067 is 3994

by 67, or 597-. This is an extreme case, for the smaller the divisor,
67

the greater the effect of an error in a given place of decimals.

EXERCISES.

How many times does 6 cwt. 2 qrs. contain i qr. 14 lbs. x oz, ? and

jd jh Qva ^jt contain 3°' 46*? Answer^ 17*30758 and 4i4'367257,

If 2 cwt. 3 qrs. I lb. cost £150 . 13 . 10, how much does i lb. cost ?

. 13Answer^ gs. 90. ——,
309

A grocer mixes 2 cwt. 15 lbs. of sugar at iirf. per pound with 14 cwt.

3 lbs. at $d. per pound. At how much per pound must he sell the

3 ^53
mixture so as not to lose by mixing them P Answer, Kd. .

4905
230. There is a convenient method of multiplication called Prac-

tice. Suppose I ask. How much do 153 tons cost if each ton cost

£2.15.7 ? It is plain that if this sum be multiplied by 153, the
2
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product is the price of the whole. But this is also evident, that, if I

buy 153 tons at £2 . 15 . 7- each ton, payment may be made by first
2

putting down £1 for each ton, then 105. for each, then 55., then 6</.,

[5 . 7-, and theand then \-d. These sums together make up £2
2

J

reason for this separation of £2 . 15 . 7- into different parts will be soon
2

apparent. The process may be carried on as follows :

1. 153 tons, at £2 each ton, will cost £306 o o

2. Since \os. is £-, 153 tons, at \os. each, will cost

£-^^, which is 76 10 c
2 1

3. Since 5s. is - of 10*., 153 tons, at 55., will cost half
2

as much as the same number at 10s. each, that

is, - of £-](> . 10, which is
2

I

4. Since 6d. is — of 5s., 153 tons, at 6d. each, will

I '°
cost — of what the same number costs at 5s.

10
J

each, that is, — of £38 . 5, which is ....
1

^°
I

5. Since i- or 3 halfpence is - of 6d. or 12 halfpence,
^

I 4 I

is3 tons, at i-rf. each, will cost - of what the
2 4.1

same number costs at 6d. each, that is, - of
4

£3.16. 6, which is

38 5

3 i*"^ 6

o 19

The sum of all these quantities is . .

which is, therefore, JS2.15.7-X153.

425 10 7-

The whole process may be written down as follows

:

iei53 £i per ton.

£2 is 2 X £1 306 2

los. is - of £1
2

76 10
1
3

10

$s. is - of 105. 38 5 5

6rf. is — of 5s.
10

i-d. is - of Sd.
2 4

3 16

19

6

1

2

2
6

1
i-
2

Sum , . . £V^5 10
^\

£2 5 7j
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ANOTHER EXAMPLE.

What do 1735 lbs. cost at 9*. lo^rf. per lb. ? The price q*. 10^.
I 4 I I 4

is made up of 5s., 4*., lorf., -</., and -d.; of which 55. is - of £1^24 4

4s. is - of jg*!, loJ. is -: of 5s., -rf. is — of 10c?., and -d. is - of -</.^5 ' 6-^2 20 4 22
Follow the same method as in the last example, which gives the fol-

lowing :

£1735 £1 per lb.

Ss. is - of £1 433 15 5

4 ^

45. is - of£i 347

1

4

lod. is - of 55.
6

72 5 10

T

10

I

-d. is — of lod. 3 12 3-- i-» 0-
2 20

3
2

-d. is - of -d. I 16 il
5

0-422 4 4

by addition ... £2sS 9 i
£0 9 id

4

In all cases, the price must first be divided into a number of parts,

each of which is a simple fraction* of some one which goes before. No

rule can be given for doing this, but practice will enable the student

immediately to find out the best method for each case. When that is

done, he must find how much the whole quantity would cost if each of

these parts were the price, and then add the results togetlier.

EXERCISES.

What is the cost of

243 cwt. at ^'14 . 18 . 8- per cwt. ?—Answer, ;f3629 . 1 . c»-.

4 4

169 bushels at £z .1.3- per bushel ?

—

Jtuwer, ^34^ . 14 . 9--.

4 4
273 qrs. at 19*. 2c?. per quarter ?

—

Answer, £7.61 . 12 . 6.

2627 sacks at 7*. %-d. per sack ?—Answer, £ioiz .9.9-.

• Any fraction of a unit, whose numerator Is unity, 1b generally called an aliquot

part of that unit. Thus, 2s. and lOf. are both aliquot parts of a pound, being £

andjej-.
2

JO
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231. Throughout this section it must be observed, that the rules

can be applied to cases where the quantities given are expressed in

common or decimal fiactions, instead of the measures in the tables.

The following are examples :

What is the price of 272-3479 cwt. at ^2 . i . 3- per cwt. ?

Answer^ ^^562*2849, or ^^562 . 5 . 8-

.

II I +
66-lbs. at IS. 4.-d. per lb. cost £^ . 1 1 . 5-.22 4
How many pounds, shillings, and pence, will 279*301 acres let for

if each acre lets for ^3-1076 ?

—

Ansioer, £867-9558, or £^67 . 19 . 1-.

13 12 4-

"What does - of -^ of 17 bush, cost at - of - of ii'17 . 14 per bushel ?

4 13 5 3 I

Answer, £z'ii/^6^ or £z . 6 . 3-.

What is the cost of 19 lbs. 8oz. i2dwt. 8gr. ati^4 .4.6 per ounce?

—

Answer, j^999 . 14 . i—

.

4 5

232. It is often required to find to how much a certain sum per day

will amount in a year. This may be shortly done, since it happens that

the number of days in a year is 240+120+5 ; so that a penny per day

is a pound, half a pound, and 5 pence per year. Hence the following

rule : To find how much any sum per day amounts to in a year, turn it

into pence and fractions of a penny ; to this add the half of itself, and

let the pence be pounds, and each farthing five shillings ; then add five

times the daily sum, and the total is the yearly amount. For example,

3 • 3what does 125. 3-</. amount to in a year.? This is 147-d, and its half7.4 3.5 ^
IS TZji., which added to 147-c?. gives 221-rf., which turned into pounds

'^
3 3

is £^^l . 12 . 6. Also, 125. 3-rf.x5 is ^£"3 . 1 . 6^, which added to the
34 4

former sum gives £224 . 14 . o- for the yearly amount. In the same
4

:3.>vay the yearly amount of zs. 3 d, is £j^i . 16 . 5-; that of 6^d. ia

3
^ ^4

jgio .5.3-; and that of iirf. is £"16 . 14 . 7.
4

.

233. An inverse rule may be formed, sufficiently correct for every

purpose, in the following way : If the year consisted of 360 days, or

3- of 240, the subtraction of one-third from any sum per year would give

the proportion which belongs to 240 days ; and every pound so obtained

would be one penny per day. But as the year is not 360, but 365 days,

if we divide each day's share into 365 parts, and take 5 away, the whole

of the subtracted sum, or 360/5 such parts, will give 360 parts for each
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of the 5 days which we neglected at first. But 360 such parts are left

behind for each of the 360 first days ; therefore, this additional process

divides the whole annual amount equally among the 365 days. Now,

5 parts out of 365 is one out of 73, or the 73d part of the first result

must be subtracted from it to produce the true result. Unless the daily

sum be very large, the 72d part will do equally well, which, as 72

farthings are 18 pence, is equivalent to subtracting at the rate of one

farthing for i8(/., or -d. for 35., or lod. for £3. The rule, then, is as

follows : To find how much per day will produce a given sum per year,

turn the shillings, &c. in the given sum into decimals of a pound (221)

;

subtract one-third ; consider the result as pence ; and diminish it by one

farthing for every eighteen pence, or ten pence for every £3. For

3
example, how much per day will give £224 . 14 . o- per year ? This

4
is 224*703, and its third is 74*901, which subtracted from 224703, gives

149*802, which, if they be pence, amounts to 12s. 5-8o2c?., in which

IS. 6d. is contained 8 times. Subtract 8 farthings, or 2rf., and we have

12s. 3'8o2c?., which differs from the truth only about — of a farthing. In

the same way, £100 per year is 5s. s~^' Pcr day.
4

234. The following connexion between the measures of length and

the measures of surface is the foundation of the application of arithmetic

to geometry.

Suppose an oblong figure, a, b, c, d, as here drawn (which is called a

rectangle in geometry), with the side a b 6 inches, and the side a c 4

K

inches. Divide a b and c d (which are equal) each into 6 inches by

the points a, 6, c, /, «i, &c. ; and a c and b d (which are also equal)

into 4 inches by the points /, g. A, a?, y, and z. Join a and /, b and m.
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&.C., and /and a?, &c. Then, the figure a b c d is divided into a number

of squares ; for a square is a rectangle whose sides are equal, and

therefore a a/E is square, since a a is of the same length as a/, both

being i inch. There are also four rows of these squares, with six

sfiuares in each row; that is, there are 6x4, or 24 squares altogether.

Each of these squares has its sides i inch in length, and is what was

called in (215) a square inch. By the same reasoning, if oiijg side had

contained 6 yards^ and the other 4 yards^ the surface would have

contained 6x4 square yards ; and so on.

235. Let us now suppose that the sides of a b c d, instead of being

a whole number of inches, contain some inches and a

fraction. For example, let a b be 3- inches, or (1 14)

7 .
^ I . 9- of an inch, and let a c contain 2- inches, or -

2
' 44

of an inch. Draw a e twice as long as a b, and a y

four times as long as a c, and complete the rectangle

A E F G. The rest of the figure needs no description.

Then, since a e is twice a b, or twice - inches, it is 7
2

. 9
inches. And since a f is four times a C, or four times -

4
" inches, it is 9 inches. Therefore, the whole rectangle

A E F G contains, by (234), 7x9 or 63 square inches. But the rectangle

A E F G contains 8 rectangles, all of the same figure as a b c d ; and

63
therefore a b c d is one-eighth part of a e f g, and contains — square

inches. But -r- is made by multiplying - and - together (118). From
5 42

this and the last .article it appears, that, whether the sides of a rectangle

be a whole or a fractional number of inches, the number of square inches

in its surface is the product of the numbers of inches in its sides. The

square itself is a rectangle whose sides are all equal, and therefore the

number of square inches which a square contains is found by multiplying

the number of inches in its side by itself. For example, a square whose

side is 13 inches in length contains 13x13 or 169 square inches.

236. exercises.

What is the content, in square feet and inches, of a room whose

sides are 42 ft. 5 inch, and 3 1 ft. 9 inch. ? and supposing the piece from

c D

1
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which its carpet is taken to be three quarters of a yard in breadth, what

length of it must be cut off?

—

Answer^ The content is 1346 square feet

105 square inches, and the length of carpet required is 598 feet 6-

inches.

The sides of a rectangular field are 253 yards and a quarter of a

mile ; liow many acres does it contain ?

—

Answer, 23.

What te the difference between 18 square miles^ and a square of 18

miles long, or 18 miles square 1—Answer^ 306 square miles.

237. It is by this rule that the measure in (215) is deduced from

that in (214); for it is evident that twelve inches being a foot, the

square foot is 12x12 or 144 square inches, and so on. In a simihar way

it may be shewn that the content in cubic inches of a cube, or paral-

lelepiped,* may be found by multiplying together the number of inches

in those three sides which meet in a point. Thus, a cube of 6 inches

contains 6x6x6, or 216 cubic inches ; a chest whose sides are 6, 8, and <;

feet, contains 6x8x5, or 240 cubic feet. By this rule the measure in

(216) was deduced from that in (214).

SECTION II.

RULE OF THREE.

238. Suppose it required to find what 156 yards will cost, if aa

yards cost 175. ^d. This quantity, reduced to pence, is 2c8d. ; and if

22 yards cost 2c8rf., each yard costs d. But 156 yards cost 156
^^ 208

times the price of one yard, and therefore cost x 156 pence, or

'^^ ^^^
pence (117). Again, if 25- French francs be 20 shillings

22 '^
I

sterling, how many francs are in £20. 15? Since 25- francs are 20

shillings, twice the number of francs must be twice the number of

shillings; that is, 51 francs are 40 shillings, and one shilling is the

* A parallelepiped, or more properly, a rectangular parallelepiped, Is a figure of

the form of a brick; its sides, however, may be of any length; thus, the figure of a

plank has the same name. A cube is a parallelepiped with equal sides, such as

U a die.
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fortieth part of 51 francs, or — francs. But £20 15s. contain 415
40 CI 51

shillings (219); and since i shilling is — francs, 415 shillings is —
X415 francs, or (117) francs.

40
239. Such questions as the last two belong to the most extensive

rule in Commercial Arithmetic, which is called the Rule of Three,

because in it three quantities are given, and a fourth is required to be

found. From both the preceding examples the following rule may be

deduced, which the same reasoning will shew to apply to all similar

It must be observed, that in these questions there are two quantities

which are of the same sort, and a third of another sort, of which last

the answer must be. Thus, in the first question there are 2Z and 156

yards and 208 pence, and the thing required to be found is a number of

pence. In the second question there are zo and 415 shillings and 25
2

francs, and what is to be found is a number of francs. Write the three

quantities in a line, putting that one last which is the only one of

its kind, and that one first which is connected with the last in the

question.* Put the third quantity in the middle. In the first question

the quantities will be placed thus

:

22 yds. 156 yds. 175. 4^.'

In the second question they will be placed thus

:

20«. £20 155. 25- francs.
2

Reduce the first and second quantities, if necessary, to quantities of

the same denomination. Thus, in the second question, £zo 15s. must

be reduced to shillings (219). The third quantity may also be reduced

to any other denomination, if convenient ; or the first and third may

be multiplied by any quantity we please, as was done in the second

* This generally comes in the same member of the sentence. In some cases the

ingenuity of the student must be employed in detecting it. The reasoning of (238)

is the best guide. The following may be very often applied. If it be evident that

the answer must be less than the given quantity of its kind, multiply that given

quantity by the less of the other two ; if greater, by the greater. Tims, in the first

question, 156 yards must cost more than 22 ; multiply, therefore, by 156.

O
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question ; and, on looking at the answer in (238), and at (108), it will

be seen that no change is made by that multiplication. Multiply the

second and third quantities together, and divide by the first. The

result is a quantity of the same sort as the third in the line, and is the

answer required. Thus, to the first question the answer is (238)
208x156 17s. 4d.xis6

pence, or, which is the same thmg, .

22 '^ ' '
°

22

240. The whole process in the first question is as follows :*

yds. yds. s. d.

22 : 156 :
•• 17.4

12

208 pence.

156

1248

" 1040

208

a2)32448(i474-rf. and —, or — of a farthing,

"
or (2 19) £6. 2. 10^-^.

' 411
104

88

'54

108

88

oo

(228) 4

80

66

The question might have been solved without reducing 17*. ^d, to

pence, thus

:

* It is usual to place points, in the manner here shewn, between the quantities,

Those who have read Section VIII. will see that the Rule of Three is no more than

the process for finding the fourth term of a proportion from the other three.
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yds. yds. «. d.

22 :; 156 :: 17.4
156 (2:

a2)£i35.4.o(£6.2. lolX
,3. ^"

(2

3x20+4 = 64

44

20x12 = 240

220

20x4 = 80

66

*4

The student must learn by practice which is the most convenient

method for any particular case, as no rule can be given.

241. It may happen that the three given quantities aie all of one

denomination ; nevertheless it will be found that two of them are of

one, and the third of another sort. For example: What must an

income of £400 pay towrads an income-tax of 45. 6d. in the pound ?

Here the three given quantities are, £400, 45. 6rf., and £1, which are

all of the same species, viz. money. Nevertheless, the first and third

are income ; the second is a tax, and the answer is also a tax ; and

therefore, by (152), the quantities must be placed thus :

£1 : £400 :: 4s. 6rf.

242. The following exercises either depend directly upon this rule,

or can be shewn to do so by a little consideration. There are many

questions of the sort, which will require some exercise of ingenuity

before the method of applying the rule can be found.

EXERCISES.

If 15 cwt. 2 qrs. cost £198 . 15 . 4, what does i ^r. 22 lbs. cost?

3 185
Answer, £5 . 14 . 5 ~.

4217
If a horse go 14 m. 3 fur. 27 yds. in 3'' 26" i2«, how long will he be

2462
in going 23 miles ? Answer^

5" 29™ 34* .

Two persons, A and B, are bankrupts, and owe exactly the same
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sum ; A can pay 15s. 4-rf. in the pound, and B only 75. 6-rf. At the
2 4

same time A has in his possession £1304. 17 more than B; what do

the debts of each amount to ? Answer, £3340 .8.3-—.
I 4^5

For every 12-- acres which one country contains, a second contains

1
2

56-. The second country contains 17,300 square miles. How much
4

does the first contain? Again, for every 3 people in the first, there

are 5 in the second ; and there are in the first 27 people on every 20

acres. How many are there in each country ?

—

Answer, The number

4
of square miles in the first is 3844-, and its population 3,321,600; and

the population of the second is 5,536,000.

If 42- yds. of cloth, 18 in. wide, cost £59 . 14 . 2, how much will

1 * 4
118- yds. cost, if the width be 1 yd. ? Answer, £332 . 5 . 2—.

If £9 . 3 . 6 last six weeks, how long will £100 last .J*

Ansioer^ 65-— weeks.
3 367

How much sugar, worth 9-rf. a pound, must be given for 2 cwt. of
4 «r

tea, worth lod an ounce ? Answer, 32 cwt. 3 qrs. 7 lbs. —

.

39
243. Suppose the following question asked : How long will it take

15 men to do that which 45 liien can finish in 10 days? It is evident

that one man would take 45x10, or 450 days, to do the same thing,

and that 15 men would do it in one-fifteenth part of the time which it

450
employs one man, that is, in , or 30 days. By this and similar

reasoning the following questions can be solved.

EXERCISES.

If 15 oxen eat an acre of grass in 12 days, how long will it take 26

oxen to eat 14 acres ? Answer, 96— davs.

If 22 masons build a wall 5 feet high in 6 days, how long will it

take 43 masons to build 10 feet ? Answer, 6— days.
43

244. The questions in the preceding article form part of a more

general class of questions, whose solution is called the Double Rule

OF Three, but which might, with more correctness, be called the Rule

of Five, since five quantities are given, and a sixth is to be found.

The following is an example : If 5 men can make 30 yards of cloth in

3 days, how long will it take 4 men to make 68 yards? The first



§ 244- RULE OF THREE. 149

thing to be done is to find out, from the first part of the question, t?ie

time it will take one man to make one yard. Now, since one man, in

3 days, will do the fifth part of what 5 men can do, he will in 3 days

30 3 3x5
make^ or 6 yards. He will, therefore, make one yard iri - or m

5
- "^

6 30
of a day. From this we are to find how long it will take 4 men to make

68 yards. Since one man makes a yard in —^ of a day, he will make 68

3^5 .0 ^ Mi^x :_
3x5x68 30

yards in x68 days, or (116) in days ; and 4 men will do this

3x5x68 . I— days, or m 8
30x4 2

Again, suppose the question to be : If 5 men can make 30 yards in

3 days, how much can 6 men do in 12 days ? Here we must first find

the quantity one man can do in one day, which appears, on reasoning

similar to that in the last example, to be ^— yards. Hence, 6 men,

J -11 1
6x30 , , ,

"^^S 12x6x30m one day, will make yards, and m 12 days will make =-
5x3 ^

'

^
5X3

or 144 yards.

From these examples the following rule may be drawn. Write the

given quantities in two lines, keeping quantities of the same sort under

one another, and those which are connected Avith each other, in the

same line. In the two examples above given, the quantities must be

written thus

:

5 men. 30 yds. 3 days.

5 men.

68 yds.

SECOND EXAMPLE.

30 yds. 3 days.

6 men. 12 days.

Draw a curve through the middle of each line, and the extremities

of the other. There will be three quantities on one curve and two on

the other. Divide the product of the three by the product of the two,

and the quotient is the answer to the question.

o2
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If necessary, the quantities in each line must be reduced to more

simple denominations (219), as was done in the common Rule of

Three (238).

EXERCISE'S.

If 6 horses can, in 2 days, plough 17 acres, how many acres will

I 7
93 horses plough in 4- days ? Answer^ 59^o*

J
2 o

If 20 men, in 3- days, can dig 7 rectangular fields, the sides of each
4

of which are 40 and 50 yards, how long will 37 men be in digging 53

fields, the sides of each of which are 90 and 125- yards ?

^
A ^451 ,
Answer, 75 davs.

20720
If the carriage of 6ocwt. through 20 miles cost 3614 los., what weight

ought to be carried 30 miles for 1^5 . 8 . 9 ? Answer, 15 cwt.

If jgioo gain £^ in a year, how much will £850 gain in 3 years and

8 months ? Answer, ^i?*; . 16 . 8.

SECTION III.

INTEREST, ETC.

245. In the questions contained in this Section, almost the only

process which will be employed is the taking a fractional part of a sum

of money, which has been done before in several cases. Suppose it

required to take 7 parts out of 40 from £16, that is, to divide £16 into

40 equal parts, and take 7 ofthem. Each of these parts is £—, and 7 of

them make —X7, or pounds (116). The process may be written
40 40

as below

:

£16

7_

40) II 2(^2 . 164.

80

32
20

640

4<|_

240
%40

c
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Suppose it required to take 13 parts out of a hundred from

^-56..13.7^.

56 . 13 .

I

13

. 7 ' >5o100)736 . 17 , i^(£7

700

36A20+17 = 737

700

37>«it2+l -445
400

45x4+2 = 1S2

100

82

Let it be required to take 2- parts out of a hundred from £3 125.

The result, by the same rule is — '-—-^ or (123) —
; so

/ 100 '^ ' 2CO

that taking 2- out of a hundred is the same as taking 5 parts out of 200.

EXERCISES.

1 12.9
Take 7- parts out of 53 from £1 10s. Answer^ as. i d.

'3
3

159
Take 5 parts out of 100 from £107 13s. ^-d.

4 3
Answer, £5.7.8 and — of a farthmg.

1^56 3s. zd. is equally divided among 32 persons. How much does

the share of 23 of them exceed that of the rest ?

Answery £24. .11.4—

.

22
246. It is usual, in mercantile business, to mention the fraction

which one sum is of another, by saying how many parts out of a hun-

dred must be taken from the second in order to make the first. Thus,

instead of saying that £16 ixs. is the half of ^^33 4s., it is said that the

first is 50 per cent of the second. Thus, £$ is 2- per cent of £200

;

because, if £200 be divided into 100 parts, 2- of those parts are £$.
2

Also, £13 is 150 per cent of £8 . 13 . 4, since the first is the second

and half the second. Suppose it asked, How much per cent is 23
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parts out of 56 of any sum ? The question amounts to this: If he who

has £56 gets £100 for them, how much will he who haa 23 receive ?

This, by (238), is -^^—, or -^, or 41—. Hence, 23 out of 56 is

41— per cent.

Similarly 16 parts out of 18 is — , or 88- per cent, and 2 parts

„ . 2x100 " 9
out of 5 IS , or 40 per cent.

From which the method of reducing other fractions to the rate per

cent is evident.

Suppose it asked, How much per cent is £6 . 12 . 2 of £12 . 3 ?

Since the first contains 1586^, and the second i^iSd., the first is 1586
. 158600

out of 2916 parts of the second; that is, by the last rule, it is ———,
11^6 I

^910
or 54—^, or £54 .7.9- per cent, very nearly. The more expeditious

way of doing this is to reduce the shillings, &c. to decimals of a pound.

Three decimal places will give the rate per cent to the nearest shil-

ling, which is near enough for all practical purposes. For instance, in

the last example, which is to find how much £6*608 is of £12*15,

6'6o8xioo is 66o'8, which divided by I2'i5 gives £54'38, or £54. 7.

Greater correctness may be had, if necessary, as in the Appendix.

EXERCISES.

How much per cent is 198- out of 233 parts?—Jn*. £85 .1.8-.
4 4

Goods which are bought for £193 . 12, are sold for £216 . 13 .4;

how much per cent has been gained by them ?

Answer, A little less than £11 . 18 . 6.

A sells goods for B to the amount of £230 . 12, and is allowed a

commission* of 3 per cent ; what does that amount to ?

Answer^ £6 . 18 4

—

-.

1 4 25
A stockbroker buys £1700 stock, brokerage being at £- per cent;

o

what does he receive ?

—

Answer. £2.2.6.

• Commission Is what is allowed by one merchant to another for buying or sell-

ing goods for him, and is usually a per-centage on the whole sum employed. Broker-

age is an allowance similar to commission, under a diflerent name, principally used

in the buying and selling of stock in the funds.

Insurance is a per-centage paid to those who engage to make good to the payers
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2
A ship whose value is ^615^23 is insured at 19- per cent; what

3 12
does the insurance amount to?

—

Answer, JS3033 . 3.9—

.

247. In reckoning how much a bankrupt is able to pay his creditors,

as also to how much a tax or rate amounts, it is usual to find how many

shillings in the pound is paid. Thus, if a person who owes jgioo can

only pay JS50, he is said to pay los. in the pound. The rule is easily

derived from the same reasoning as in (246). For example, £50 out

50 50x20 I 15
of J882 is £:r- out of £1. or —-— shillings, or 125. 2 in the

82 8a
*'

441
pound.

248. Interest is money paid for the use of other money, and is

always a per-centage upon the sum lent. It may be paid either yearly,

half-yearly, or quarterly ; but when it is said that £100 is lent at 4

per cent, it must be understood to mean 4 per cent per annum j that is,

that 4 pounds are paid every year for the use of £100

The sum lent is called the principal^ and the interest upon it is 01

two kinds. If the borrower pay the interest as soon as, from the agree-

ment, it becomes due, it is evident that he has to pay the same sum

every year ; and that the whole of the interest which he has to pay in

any number of years is one year's interest multiplied by the number of

years. But if he do not pay the interest at once, but keeps it in his

hands until he returns the principal, he will then have more of his

creditor's money in his hands every year, and (if it were so agreed)

will have to pay interest upon each year's interest for the time during

which he keeps it after it becomes due. In the first case, the interest

ia called simple, and in the second compound. The interest and principal

together are called the amount.

248. What is the simple interest of ^£1049 .16.6 for 6 years and

one-third, at 4- per cent ? This interest must be 6- times the interest
*

3

any loss they may sustain by accidents from fire, or storms, according to the agree-

ment, up to a certain amount which is named, and is a per-centage upon this amount.

Tare, tret, and cloff, are allowances made in selling goods by wholesale, for the weight

of the boxes or barrels which contain them, waste, &c.; and are usually either the

price of a certain number of pounds of the goods for each box or barrel, or a certain

allowance on each cwt.
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of the same sum for one year, which (245) is found by multiplying the

sum by 4-, and dividing by 100. The process is as follows :

(230)

(82) ., .

^^ICO
20

(228)

(a) £1049 . 16.6

ax4 4199. 6.0
1

ax-
2

524. 18.3

100)47,24 , 4 . 3(^47 . 4 . 10

20

4^*

6x6

5x1
3

io,ijt

(b) £47 . 4.10—- Int. for one yr.
100

66
283 . 9.0

15 . 14. II -^
100

€299 .4.0— Int. for 6^ yrs.
100 3

EXERCISES.

What is the interest of £105 . 6 . 2 for 19 years and 7 weeks at 3

fter cent? Answer, £60 . 9, very nearly.

What is the difference between the interest of J650 . 19 for 7 years

at 3 per cent, and for 8 years at 2- per cent ? Answer, los. z-d.
2

What is the interest of £157 . 17 . 6 for one year at 5 per cent ?

Answer, £7 . 17 . 10-.
2

Shew that the interest of any sum for 9 years at 4 per cent is the

same as that of the same sum for 4 years at 9 per cent ?

250. In order to find the interest of any sum at compound interest,

it is necessary to find the amount of the principal and interest at the

end of every year ; because in this case (248) it is the amount of bo .h

• Here the 4«. from the dividend is taken in.

t Here the Zd. from the dividend is taken in.
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principal and interest at the end of the first year, upon which interest

accumulates during the second year. Suppose, for example, it is re-

quired to find the interest, for 3 years, on £100, at 5 per cent, compound

interest. The following is the process

:

£100 First principaL

5 First year's interest.

105 Amount at the end of the first year.

(249) 5 . 5 Interest for the second year on £105.

1 10 . 5 Amount at the end of two years.

5 . 10 . 3 Interest due for the third year.

115 • 15 • 3 Amount at the end of three years.

100 . 0.0 First principal.

15 . 15 . 3 Interest gained in the three years.

When the number of years is great, and the sum considerable, this

process is veiy troublesome; on which account tables* are constructed

to shew the amount of one pound, for different numbers of years, at

different rates of interest. To make use of these tables in the present

example, look into the column headed "
5 per cent ;" and opposite to

the number 3, in the column headed " Number of years," is found

i'i57625 ; meaning that £1 will become £1*157625 in 3 years. Now,

€100 must become 100 times as great; and 1*157625x100 is 115*7625

(141) ; but (221) £'7625 is 155. 3d. J therefore the whole amount of

£100 is £115 . 15 . 3, as before.

251. Suppose that a sum of money has lain at simple interest 4

years, at 5 per cent, and has, with its interest, amounted to £350 ; it is

required to find what the sum was at first. Whatever the sum was, if

we suppose it divided into 100 parts, 5 of those parts were added every

year for 4 years, as interest ; that is, 20 of those parts have been added

to the first sum to make £350. If, therefore, £350 be divided into

120 parts, 100 of those parts are the principal which we want to find,

* Sufficient tables for all common purposes are contained in the article on Interest

in the Penny Cyclopaedia; and ample ones in the Treatise on Annuities and Re-

versions, in the Library of Useful Know ledge.
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and 20 parts are interest upon it ; that is, the principal is £11^11122.
150 '

or ^291 .13.4.

252. Suppose that A was engaged to pay B £350 at the end of four

years from this time, and that it is agreed between them that the debt

shall be paid immediately ; suppose, also, that money can be employed

at 5 per cent, simple interest ; it is plain that A ought not to pay the

whole sum, £350, because, if he did, he would lose 4 years' interest of

the money, and B would gain it. It is fair, therefore, that lie should

only pay to B as much as will, with interest, amount in four years to

£350, that is (251), ^^291 .13.4. Therefore, £58 .6.8 must be struck

oft the debt in consideration of its being paid before the time. This is

called Discount;* and ^^291 . 13 . 4 is called the present value of £350

due four years hence, discount being at 5 per cent The rule for finding

the present value of a sum of money (251) is : Multiply the sum by

100, and divide the product by 100 increased by the product of the

rate per cent and number of years. If the time that the debt has yet

to run be expressed in years and months, or months only, the months

must be reduced to the equivalent fraction of a year.

aXERCISES.

What is the discount on a bill of £138 . 14 . 4) due 2 years hence,

discount being at 4- per cent ? Answer, £11.9.1.
2

What is the present value of £1031 . 17, due 6 months hence,

interest being at 3 per cent ? Answer, £1016 , 12.

253. If we multiply by a+b, or by a—b, when we should multiply

by a, the result is wrong by the fraction —-, or—7-, of itself: being
a+o a—o

too great in the first case, and too small in the second. Again, if we

divide by a+b, where we should have divided by a, the result is too

small by the fraction - of itself; while, if we divide by a—b instead
a

of a, the result is too great by the same fraction of itself. Thus, if we

divide by 20 instead of 17, the result is — of itself too small ; and if

* This rule is obsolete in business. When a bill, for instance, of ^£"100 having

a year to run, is discounted (as people now say) at 5 per cent, this means that 5 per

cent of £100, or £5, is struck off.
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we divide by 560 instead of 365, the result is too great by -^, or —

-

365 73
of itself.

If, then, we wish to find the interest of a sum of money for a portion

of a year, and have not the assistance of tables, it will be found con-

venient to suppose the year to contain only 360 days, in which case its

73d part (the jzd part will generally do) must be subtracted from the

result, to make the alteration of 360 into 365. The number 360 has so

large a number of divisors, that the rule of Practice (230) may always

be readily applied. Thus, it is required to find the portion which

belongs to 274 days, the yearly interest being £18 . 9 . 10, or 18*491.

274 18-491

tSo is - of 360 9-246

94

90 is - of 180 4-623

4 is— of 360
90

•205

9)14-074

8)1-564

-196

13-878 = £13 . 17 . 7 Answer.

But if the nearest farthing be wanted, the best way is to take

2-tenths of the number of days as a multiplier, and 73 as a divii-or;

2
since m-f-365 is 2m-^73o, or —771-1.73. Thus, in the preceding instance,

we multiply by 54*8 and divide by 73 ; and 54-8x18-491 = 1013*3068,

which divided by 73 gives 13-881, very nearly agreeing with the fonner,

and giving £13 . 17 . 7-, which is certainly within a farthing of the

truth.

254. Suppose it required to divide jgioo among three persons in

such a way that their shares may be as 6, 5, and 9 ; that is, so that

for every £6 which the first has, the second may have £5, and the

third £^. It is plain that if we divide the £100 into 6+5+9, or 20

parts, the first must have 6 of those parts, the second 5, and the third 9.

Therefore (245) their shares are respectively, £ , £ and
^icoxo ^ ^ , ^ 20 20
£ -, or £30, £25, and £45.

20
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EXERCISES.

Divide JS394 . l^ among four persons, so that their siiares mav be

as I, 6, 7, and 18.

—

Answer, £12 .6.7-; £73 . 19 . 9 ; £86 . 6 . 4-;
2 2

£221 . 19 . 3.

Divide £20 among 6 persons, so that the share of each may be as

much as those of all who come before pat together.

—

Answer, The first

two have 12s. Sd.; the third £1.5; the fourth £2 . 10 ; the fifth £5 ;

and the sixth £10,

255. When two or more persons employ their money together, and

gain or lose a certain sum, it is evidently not fair that the gain or loss

should be equally divided among them all, unless each contributed the

same sum. Suppose, for example, A contributes twice as much as B,

and they gain £15, A ought to gain twice as much as B ; that is, if the

whole gain be divided into 3 parts, A ought to have two of them and

B one, or A should gain jgio and B £5. Suppose that A, B, and C

engage in an adventure, in which A embarks £250, B £130, and C

£45. They gain £1000. How much of it ought each to have? Each

one ought to gain as much for jgi as the others. Now, since there are

250+130+45, or 425 pounds embarked, which gain £1000, for each

, - . . « ^1000 m, « .11-. . 1000x250
pound there is a gam of £ . Therefore A should gam

425 4^5
1000x130 1000x45

pounds, B should gain pounds, and C pounds. On
425

_
425

these principles, by the process in (245), the following questions may be

answered.

A ship is to be insured, in which A has ventured £1928, and B

£4963. The expense of insurance is £474 . 10 . 2. How much ought

each to pay of it ? Answer, A must pay £132 . 15 . 2-.
2

A loss of £149 is to be made good by three persons. A, B, and C.

Had there been a gain, A would have gained 4 times as much as B,

and C as much as A and B together. How much of the loss must each

bear? Answer, A pays £59 . 12, B £14 . 18, and C £74 . 10.

266. It may happen that several individuals employ several sums of

money together for different times. In such a case, unless there be a

special agreement to the contrary, it is right that the more time a sum
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is employed, the more profit should be made upon it. If, for example,

A and B employ the same sum for the same purpose, but A''s money is

employed twice as long as B's, A ought to gain twice as much as B.

The principle is, that one pound employed for one month, or one year,

ought to give the same return to each. Suppose, for example, that A

employs 1^3 for 6 months, B £j^ for 7 months, and C j6i2 for 2 months,

and the gain is £100 ; how much ought each to have of it ? Now,

since A employs £1 for six months, he must gain 6 times as much as if

he employed it one month only ; that is, as much as if he employed

ig6x3, or jgi8, for one month; also, B gains as much as if he had

employed 1^4x7 for one month; and C as if he had employed £12x2

for one month. If, then, we divide £100 into 6x3+4x7+12x2, or 70

parts, A must have 6x3, or 18, B must have 4x7, or 28, and C

12x2, or 24 of those parts. The shares of the three are, therefore,

6x3x100 4x7x100 12x2x100
a*"7 » ^~c. > and i,-
6x3+4x7+12x2 6x3+4x7+12x2 6x3+4x7+12x2

EXEUCISES.

A, B, and C embark in an undertaking ; A placing £1 . 6 for

a years, B £100 for i year, and C £12 for 1- years. They gain

^£4276 . 7 How much must each receive of the gain ?

Answer^ A £226 . 10 . 4 ; B £3432 .1.3; C £617 .15.5.

A, B, and C rent a house together for 2 years, at ^150 per annum.

A remains in it the whole time, B 16 months, and C 4- months, during

the occupancy of B. How much must each pay of the rent ?*

Answer^ A should pay £190 . 12 . 6 ; B £90 . 12 . 6; C £18 . 15.

257. These are the principal rules employed in the application of

arithmetic to commerce. There are others, which, as no one who under-

stands the principles here laid down can fail to see, are virtually con-

tained in those which have been given. Such is what is commonly

called the Rule of Exchange, for such questions as the following ; If

* This question does not at first appear to fall under the rule. A little thought

will serve to shew that what probauly will be the first idea ct the proper method of

solution is erroneous.



160 COMMERCIAL ARITHMETIC. §257-

20 shillings be worth 25- francs, in France, what is £160 worth ? This
2

may evidently be done by the Rule of Three. The rules here given

are those which are most useful in common life ; and the student who

understands them need not fear that any ordinary question will be above

his reach. But no student must imagine that from this or any other

book of arithmetic he will learn precisely the modes of operation which

are best adapted to the wants of the particular kind of business in which

his future life may be passed. There is no such thing as a set of rules

which are at once most convenient for a butcher and a banker's clerk,

a grocer and an actuary, a farmer and a bill-broker ; but a person with

a good knowledge of the principles laid down in this work, will be able

to examine and meet his own future wants, or, at worst, to catch with

readiness the manner in which those who have gone before him have

done so for themselves.
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FIFTH EDITION

CF

DE MORGAN'S ELEMENTS OF ARITHMETIC.

I. ON THE MODE OF COMPUTING.

The rules in the preceding work are given in the usual form, and the

examples are worked in the usual manner. But if the student really

wish to become a ready computer, he should strictly follow the methods

laid down in this Appendix ; and he may depend upon it that he will

thereby save himself trouble in the end, as well as acquire habits of

quick and accurate calculation.

I. In numeration learn to connect each primary decimal number,

lo, loo, looo, &c. not with the place in which the unit falls, but with

the number of ciphers following. Call ten a one-cipher number, a

hundred a two-cipher number, a million a six-cipher number, and so

on. If five figures be cut off from a number, those that are left are

hundred-thousands ; for 100,000 is a ^v^-cipher number. Learn to

connect tens, hundreds, thousands, tens of thousands, hundreds of thou-

sands, millions, &c. with i, 2, 3, 4, 5, 6, &c. in the mind. "What is a

seventeen-cipher number ? For every 6 in seventeen say million^ for the

remaining 5 say hundred-thousand: the answer is a hundred thousand

millions of millions. If twelve places be cut off from the right of a

number, what does the remaining number stand for?

—

Answer^ As many

millions of millions as there are units in it when standing by itself.

II. After learning to count forwards and backwards with rapidity,

&t> in I, 2, 3, 4, &c. or 30, 29, 28, 27, &c., learn to count forwards or

backwards by twos, threes, &c. up to nines at least, beginning from

any number. Thus, beginning from four and proceeding by sevens, we

P 3
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have 4, ii, i8, 25, 32, &c., along which series you must leam to go as

easily as along the series i, 2, 3, 4, &c. ; that is, as quick as you can

pronounce the words. The act of addition must be made in the mind

without assistance : you must not pennit yourself to say, 4 and 7 are

11, II and 7 are 18, &c. ; but only 4, 11, 18, &c. And it would be

desirable, though not so necessary, that you should go back as readily

as forward ; by sevens for instance, from sixty, as in 60, 53, 46, 39, &c.

III. Seeing a number and another both of one figure, leam to catch

instantly the number you must add to the smaller to get the greater.

Seeing 3 and 8, learn by practice to think of 5 without the necessity

of saying 3 from 8 and there remains 5. And if the second number be

the less, as 8 and 3, leam also by practice how to pass up from 8 to

the next number which ends with 3 (or 13), and to catch the necessary

augmentation. Jive, without the necessity of formally undertaking in

vtords to subtract 8 from 13. Take rows of numbers, such as

42605C1864
and practise this rule upon every figure and the next, not permitting

yourself in this simple case ever to name the higher one. Thus, say 4

and 8 (4 first, 2 second, 4 from the next number that ends with 2, or

12, leaves 8), 2 and 4, 6 and 4, o and 5, 5 and 5, o and 1, i and 7,

8 and 8, 6 and 8.

IV. Study the same exercise as the last one with two figures and one.

Thus, seeing 27 and 6, pass from 27 up to the next number that ends

with 6 (or 36), catch the 9 through which you have to pass, and allow

yourself to repeat as much as "27 and 9 are 36." Thus, the row offigures

17729638109 will give the following practice: 17 and o are 17 ; 77 and

5 are 82 ; 72 and 7 are 79 ; 29 and 7 are 36 ; 96 and 7 are 103 ; 63 and

5 are 68
; 38 and 3 are 41 ; 81 and 9 are 90 ; 10 and 9 are 19.

V. In a number of two figures, practise writing down the units at

the moment that you are keeping the attention fixed upon the tens.

In the preceding exercise, for instance, write down the results, repeating

the tens with emphasis at the instant of writing down the units.

VI. Leam the multiplication-table so well as to name the product
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the instant the factors are seen ; that is, until 8 and 7, or 7 and 8, suggest

56 at once, without the necessity of saying "7 times 8 are 56." Thus

looking along a row of numbers, as 39706548, learn to name the pro-

ducts of every successive pair of digits as fast as you can repeat them,

namely, 27, 63, o, o, 30, 20, 32.

VII. Having thoroughly mastered the last exercise, learn further, on

seeing three numbers, to augment the product of the first and second

by the third without any repetition of words. Practise until 3, 8, 4,

for instance, suggest 3 times 8 and 4, or 28, without the necessity of

saying " 3 times 8 are 24, and 4 is 28." Thus, 179236408 will suggest

the following practice, 16, 65, 21, 12, 22, 24, 8.

VIII. Now, carry the last still further, as follows : Seeing four figures,

as 2, 7, 6, 9, catch up the product of the first and second, increased

by the third, as in the last, without a helping word ; name the result,

and add the next figure, name the whole result, laying emphasis upon

the tens. Thus, 2, 7, 6, 9, must immediately suggest " 20 and 9 are

29." The row of figures 773698974 will give the instances 52 and

6 are 58 ; 27 and 9 are 36 ; 27 and 8 are 35 ; 62 and 9 are 71 ; 81 and

7 are 88
; 79 and 4 are 33.

IX. Having four numbers, as 2, 4, 7, 9, vary the last exercise as fol-

lows : Catch the product of the first and second, increased by the third
;

but instead of adding the fourth, go up to the next number that ends

with the fourth, as in exercise IV. Thus, 2, 4, 7, 9, are to suggest "15

and 4 are 19." And the row of figures 1723968929 will afford the in-

stances 9 and 4 are 13 ; 17 and 2 are 19 ; 15 and i are 16
; 33 and 5

are 38 ; 62 and 7 are 69 ; 57 and 5 are 62 ; 74 and 5 are 79.

X. Learn to find rapidly the number of times a digit is contained

in given units and tens, with the remainder. Thus, seeing 8 and 53,

arrive at and repeat " 6 and 5 over." Common short division is the

best practice. Thus, in dividing 236410792 by 7,

7)236410792

33772970, remainder 2.

All that is repeated should be 3 and 2 ; 3 and 5 ; 7 and 5 ; 7 and 2

2 and 6
; 9 and 4 ; 7 and o •, o and 2.



1 64 APPENDIX.

In performing the several rules, proceed as follows

:

Addition. Not one word more than repeating the numbers written

in the following process : the accented figure is the one to be written

down ; the doubly accented figure is carried (and don't say " carry 3,^'

but do it).

47963 6, 15, 17, 23, 31, 3'V; ", i2> 2i» 22, 31, 3V; 9»

]}^\ 17, 24, 27, 32, 4''i'; 10, 14, 20, 2i» 2"8'; 7, 9r i'3'-

26316
. In verifying additions, instead of the usual way of

819 omitting one line, adding without it, and then adding

66^6
^ the line omitted, verify each column by adding it both

1 38 1 74 upwards and downwards.

SuBTBACTiON. The following process is enough. The carriages, being

always of one^ need not be mentioned.

From 79436258190 8 and 2', 4 and 5', 7 and 4', 3 and 5', 6 and

Take 58645962738 ^'^ 10 and 2', 6 and o', 4 and 9', 7 and 7',

20790295452 p and o', 5 and 2'. It is useless to stop and

say, 8 and 2 make 10 ; for as soon as the 2 is obtained, there is no

occasion to remember what it came from.

Multiplication. The following, put into words, is all that need be

repeated in the multiplying part ; the addition is then done as usual

The unaccented figures are carried.

670383

9876

4022298 18', 49', 22', 2', 42', 4'o',

4692681 21', 58', 26', 2', 49', 4'6\

5363064 24', 66', 30', 3', 56', 5'3',

6033447 27', 74', 3/, 3', 63', 6V.

6620702508

Verify each line of the multiplication and the final result by casting

out the nines. {Appendix II. p. 166.)

It would be almost as easy, for a person who has well practised the

8th exercise, to add each line to the one before in the process, thus

:
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670383

9876

4022298 8 ; 21 and 9 are 30'
; 59 and 2

50949108 are 6i'; 27 and 2 are 29 ; 2

587255508 and 2 are 4' ; 49 and o are 49';

6620702508 46 and 4 are 5V.

On the right is all the process of forming the second line, which

completes the multiplication by 76, as the third line completes that by

876, and the fourth line that by 9876.

Division. Make each multiplication and the following subtraction

in one step, by help of the process in the 9th exercise, as fol-ows:

a7693)44i9728o9662( 15959730

165042

265778

165410

269459

202226

83756

6772

The number of words by which 26577 is obtained from 16540a (the

multiplier being 5) is as follows : 15 and 7' are 2^2
; 47 and 7' are 5"4 j

35 and 5' are 4''o
; 39 and 6' are 4''5 ; 14 and 1' are 16.

The processes for extracting the square root, and for the solution

of equations {Appendix XI.)» should be abbreviated in the same manner

as the division.*

• The teacher will find further remarks on this subject in the Companion to the

Almanac for 1844, and in toe Supplement to thePenny Cycloptediat article Computation,
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APPENDIX II.

Olf VERIFICATION BY CASTING OUT NINES AND ELEVENS,

The process of casting out the ninesy as it is called, is one which the

young computer should learn and practise, as a check upon his com-

putations. It is not a complete check, since if one figure were made

too small, and another as much too great, it would not detect this double

error; but as it is very unlikely that such a double error should take

place, the check furnishes a strong presumption of accuracy.

The proposition upon which this method depends is the following

:

If a, i, c, d be four numbers, such that

a = bc+d,

and if m be any other number whatsoever, and if a, 6, c, rf, severally

divided by wi, give the remainders jo, y, r, s, then

p and qr+s

give the same remainder when divided by m (and perhaps aie themselves

equal).

For instance, 334= 17x19+11;

divide these four numbers by 7, the remainders are 5, 3, 5, and 4. And

5 and 5x3+4, or 5 and 19, both leave the remainder 5 when divided by 7.

Any number, therefore, being used as a divisor, may be made a check

upon the correctness of an operation. To provide a check which may

be most fit for use, we must take a divisor the remainder to which is most

easily found. The most convenient divisors are 3, 9, and 11, of which

9 is far the most useful.

As to the numbers 3 and 9, the remainder is always the same as that of

the sum ofthe digits. For instance, required the remainder of 246120377

divided by 9. The sum of the digits is 2+4+6+1+2+0+3+7+7, or 32,

which gives the remainder 5. But the easiest way of proceeding is by

throwing out nines as fast as they arise in the sum. Thus, repeat a,

6 (2+4), 12 (6+6), say 3 (throwing out 9), 4, 6, 9 (throw this away), 7,

14, (or throwing out the 9) 5. This is the remainder required, as would

appear by dividing 246120377 by 9. A proof may be given thus: Ik
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is obvious that each of the numbers, i, lo, loo, looo, &c. divided by 9,

leaves a remainder i, since they are i, 9+1, 99+1, &-c. Consequently,

2, 20, 200, &c. leave the remainder 2 ; 3, 30, 300, the remainder 3 ;

and so on. If, then, we divide, say 1764 by 9 in parcels, 1000 will be

one more than an exact number of nines, 700 will be seven more, and

60 will be six more. So, then, from i, 7, 6, 4, put together, and the

nines taken out, comes the only remainder which can come from 1764.

To apply this process to a multiplication : It is asserted, in page 32,

that 10004569x3163 = 31644451747.

In casting out the nines from the first, all that is necessary to repeat

is, one, five, ten, one, seven ; in the second, three, four, ten, one, four ;

in the third, three, four, ten, one, five, nine, four, nine, eight, twelve,

three, ten, one. The remainders then are, 7, 4, i. Now, 7x4 is 28,

which, casting out the nines, gives i, the same as the product.

Again, in page 43, it is asserted that

23796484 = 130000x183+6484.

Cast out the nines from 13000, 183, 6484, and we have 4, 3, and 4.

Now, 4x3+4, with the nines cast out, gives 7 ; and so does 23796484,

To avoid having to remember the result of one side of the equation,

or to write it down, in order to confront it with the result of the other

side, 'proceed as follows: Having got the remainder of the more com-

plicated side, into which two or more numbers enter, subtract it from

9, and carry the remainder into the simple side, in which there is only

one number. Then the remainder of that side ought to be o. Thus,

having got 7 from the left hand of the preceding, take 2, the rest of

9, forget 7, and carry in 2 as a beginning to the left-hand side, giving

a, 4, 7, 14, 5» ii»2, 6, 14, 5,9,0.

Practice will enable the student to cast out nines with great rapidity.

This process of casting out the nines does not detect any errors in

which the remainder to 9 happens to be correct. If a process be

tedious, find some additional check be desirable, the method of casting

out elevens may be followed after that of casting out the nines. Ob-

serve that lo+i, 100— I, looo+i, 10000— I, &c. are all divisible by

eleven. From this the following rule for the remainder of division by
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II may be deduced, and readily used by those who know the algebraical

process of subtraction. For those who have not got so far, it may be

doubted whether the rule can be made easier than the actual division

by II.

Subtract the first figure from the second, the result from the third,

the result from the fourth, and so on. The final result, or the rest of

1 1 if the figure be negative, is the remainder required. Thus, to divide

1642915 by II, and find the remainder, we have i from 6, 5 ; 5 from

4, —I ; — I from 2, 3 ; 3 from 9, 6 ; 6 from i, —5 ; —5 from 5, 10; and 10

is the remainder. But 164 gives—-i, and 10 is the remainder; 164291

gives—5, and 6 is the remainder. With very little practice these re-

mainders may be read as rapidly as the number itself. Thus, for

127619833424 need only be repeated, i, 6, o, i, 8, o, 3, o, 4, —2, 6, and

6 is the remainder.

When a question has been tried both by nines and elevens, there

can be no error unless it be one which makes the result wrong by a num-

ber of times 99 exactly.

APPENDIX III.

ON SCALES OF NOTATION.

We are so well accustomed to 10, 100, &c., as standing for ten, ten

tens, &c., that we are not apt to remember that there is no reason why

10 might not stand for five, 100 for five fives, &c., or for twelve, twelve

twelves, &c. Because we invent different columns of numbers, and let

units in the different columns stand for collections of the units in the

preceding columns, we are not therefore bound to allow of no collections

except in tens.

If 10 stood for 2, that is, if every column had its unit double of the

unit in the column on the right, what we now represent by i, 2, 3, 4,

5, 6, &c., would be represented by i, 10, 11, 100, 10 1, no, in, 1000,

looi, loio, ion. iioo, &c. This is the binary scale. If we take the

ternary scale, t which 10 stands for 3, we have i, 2, 10, 11, 12, 20,
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21, 22, lOO, loi, X02, no, &c. In the quinary scale^ in which lo n

five, 234 stands for 2 twenty-fives, 3 fives, and 4, or sixty-nine. If we

take the duodenary scale, in which 10 is twelve, we must invent new

symbols for ten and eleven, because 10 and 1 1 now stand for twelve and

thirteen ; use the letters t and e. Then 176 means i twelve-twelves,

7 twelves, and 6, or two hundred and thirty-four ; and ite means two

hundred and seventy-five.

The number which 10 stands for is called the radix of the scale

oj notation. To change a number from one scale into another, divide

the number, written as in the first scale, by the number which is to

be the radix of the new scale ; repeat this division again and again,

and the remainders are the digits required. For example, what, in

the quinary scale, is that number which, in the decimal scale, is

17036?

5)17036

5)3407 Rem'. I Answer . . 1021 121

5)681 2 Quinary. Decimal.

Verification^ loooooo means 15625

5/^3 I 20000 1250

5)27 1 1000 125

— 100 25
5)5 2
^ _ 20 10

5)^ o I I

O I I02II2I 17036

The reason of this rule is easy. Our process of division is nothing

but telling off 17036 into 3407 fives and i over; we then find 3407

fives to be 681 fives of fives and 2 fives over. Next we form 681 fives

of fives into 136 fives of fives of fives and i five of fives over; and so on.

It is a useful exercise to multiply and divide numbers represented

in other scales of notation than the common or decimal one. The

rules are in all respects the same for all systems, the number carried

being always the radix of the system. Thus, in the quinary system we

carry fives instead of tens. I now give an example of multiplication

and division

:
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Quinary. DeciniaL

42143 means 2798

1^34 194

324232 11192

232034 25184

I 34341 2798

42143

I 143 32222 , 542812

Duodecimal. Decimal.

4^9)76^4^08(16687 705)22610744(32071

4^9 1460

2814 5074

2546 1394

^?,te 689

2546

3650
3320

3308
2^33

495

Another way of turning a number from one scale into another is as

follows : Multiply the first digit by the old radix in the new scale^ and

add the next digit; multiply the result again by the old radix in the

now scale, and take in the next digit, and so on to the end, always

using the radix of the scale you want to leave, and the notation of the

scale you want to end in.

Thus, suppose it required to turn 16687 (duodecimal) into the

decimal scale, and 1643a (septenary) into the quaternary scale :

16687 16432

Duodecimals into Decimals. Septenarics into Quaternaries.

IXI2+6 = 18 1x7+6 = 31

XI2+6 X7+4

222 "33
X12+8 X7+3

1672 22130

XI2-7 X7+2

\nswer .... 32071 102101a
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Owing to our division of a foot into iz equal parts, the duodecimal

scale often becomes very convenient. Let the square foot be also divided

into 12 parts, each part is la square inches, and the 12th of the 12th

is one square inch. Suppose, now, that the two sides of an oblong

piece of ground are 176 feet 9 inches 7-i2ths of an inch, and 65 feet

II inches 5-i2ths of an inch. Using the duodecimal scale, and duo-

decimal fractions^ these numbers are i28'97 and SS'^S- Their product,

the number of square feet required, is thus found :

128*97 Answer, 68^8*1446 (duod.) square feet, or

55'^5 1 1660 square feet 16 square inches — and^12 144

617^5 of a square inch.

116055 It would, however, be exact enough to allow

6175^ 2-hundredth8 of a foot for every quarter of an

^'7^^ inch, an additional hundredth for every 3

68e8i44e inches,* and i-hundredth more if there be a

12th or 2-i2ths above the quarter of an inch. Thus, 9— inches

should be •76+-o3+'oi, or '80, and 11— would be '95 ; and the preceding

might then be found decimally aa I76'8x65'95 as 11659-96 square feet,

near enough for every practical purpose.

APPENDIX IV.

ON THE DEFINITION OF FRACTIONS.

The definition of a fraction given in the text shews that -, for

instance, is the ninth part of seven, which is shewn to be the same

thing as sevenrninths of a unit. But there are various modes of speech

under which a fraction may be signified, all of which are more or less

in use.

7
1. In - we have the 9th part of 7.

9
2. 7-9ths of a unit.

3. The fraction which 7 is of 9.

• And at discretion one hundredth more for a large fraction of three inches.



172 APPENDIX.

4. The times and parts of a time (in this case part ot a time only)

which 7 contains 9.

5. The multiplier which turns nines into sevens,

6. The ratio of 7 to 9, or the proportion of 7 to 9.

7. The multiplier which alters a number in the ratio of 9 to 7.

8. The 4th proportional to 9, i, and 7.

The first two views are in the text. The third is deduced thus^

If we divide 9 into 9 equal i)art8, each is i, and 7 of the parts are 7 ;

7
consequently the fraction which 7 is of 9 is -. The fourth view follows

immediately : For a time is only a word used to express one of the

repetitions which take place in multiplication, and we allow ourselves,

by an easy extension of language, to speak of a portion of a number

as being that number taken a part of a time. The fifth view is nothing

more than a change of words : A number reduced to - of its amount

has every 9 converted into a 7, and any fraction of a 9 which may

remain over into the corresponding fraction of 7. This is completely

7 . a .

proved when we prove the equation - of a = 7 times -. The sixth,

9
.

9
,

seventh, and eighth views are illustrated in tlio chapter on proportion.

When the student comes to algebra, he will find that, in all the

applications of that science, fractions such as 7 most frequently require
o

that a and b should be themselves supposed to be fractions. It is,

therefore, of importance that he should learn to accommodate his views

of a fraction to this more complicated case.

Suppose we take — . We shall find that we have, in this case, a
4l

better idea of the views from and after the third inclusive, than of the

first and second, which are certainly the most simple ways of conceiving

-. We have no notion of the f 4- j th part of 2-, nor of 2- (4.-^ ths of a

unit ; indeed, we coin a new species of adjective when we talk of the

(4-)th part of anything. But we can readily imagine that 2- is some

fraction of 4- ; that the first is some part of a time the second ; that

5 3 . . I

there must be swne multiplier which turns every 4- m a number mto 2-

;

and so on. Let us now see whether we can invent a distinct mode of

applying the first and second views to such a compound fraction as

the above.
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We can easily imagine a fourth part of a length, and a fifth part,

meaning the lines of which 4 and 5 make up the length in question ; and

there is also in existence a length of which four lengths and two-fifths

of a length make up the original length in question. For instance, we

might say that 6, 6, 2 is a division of 14 into 2- equal parts— 2 equal
3

parts, 6, 6, and a third of a part, 2. So we might agree to say, that

the (2-jth, or f 2-|rd, or (2-jst (the reader may coin the adjective

as he pleases) part of 14 is 6. If we divide the line a b into eleven

equal parts in c, d, e, «&;c., we must then say that a c is the nth part,

1 i i i I i i i r ~,
i IACDEFGH IKLMB

A D the ( 5- )th, A E the { 3- )th, a f the { 2- Jth, a g the ( 2- Jth, a h the

/ .\ Vw /,\ V^3/ /,\ V4//2X ^ sy / i\
( i^ )th, A I thef I- 1th, AK thef i| 1th, al the ( i- 1th, am thef i— Itli,

and AB itself the ist part of ab. The reader may refuse the language

if he likes (though it is not so much in defiance of etymology as talking

of multiplying by -) ; but when a b is called i, he must either call

1
^

A F —-, or make one definition of one class of fractions and another of
^*

another. Whatever abbreviations they may choose, all persons will

agree that - is a direction to find such a fraction as, repeated b times,

will give I, and then to take that fraction a times.

So, to get — , the simplest way is to divide the whole unit into 46
4f

3
parts ; 10 of these parts, repeated 4- times, give the whole. The

|liilliill[illiillil|llilill!l|llilllill|ilill|e
A _i

J. ^ J. Jl it
4f 4i 4f 4l 4|

( 4- )th is then — , and 2- such parts is -7, or a c. The student should
V 5/ 46 2

'^

46
try several examples of this mode of interpreting complex fractions.

But what are we to say when the denominator itself is less than

unity, as in
"Y

? Are we to have a (7)^^ part of a imit P and what

is it ? Had there been a 5 in the denominator, we should have taken

Q.2
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the part of which 5 will make a unit. As there is - in the denominator,

we must take the part of which - will be a unit. That part is larger

I I 5 2
than a unit ; it is 2- units : 2- is that of which - is 1. The above

* ^ I I 5
fraction then directs us to repeat 2- unite 3- times. By extending our

* 4
word ' multiplication' to the taking of a part of a time, all multiplica-

tions are also divisions, and all divisions multiplications, and all the

terms connected with either are subject to be applied to the results of

the other.

If 2- yards cost 3- shillings, how much does one yard cost ? In

such a case as this, the student looks at a more simple question. If

5 yards cost 10 shillings, he sees that each yard costs —, or 2 shillings,

and, concluding that the same process will give the true result when
,1 7 1

the data are fractional, he forms ^, reduces it by rules to - or i-, and
2^ •'22

concludes that i yard costs 18 pence. The answer happens to be

correct ; but he is not to suppose that this rule of copying for fractions

whatever is seen to be true of integers is one which requires no demon-

stration. In the above question we want money which, repeated 2-

1 ... 3
times, shall give 3- shillings. If we divide the shilling into 14 equal

parts, 6 of these parts repeated 2- times give the shilling. To get 3-
3 I

2

times as much by the same repetition, we must take 3- of these 6 parts

21 I 2
at each step, or 21 parts. Hence, —, or 1-, is the number of shillings

in the price.

APPENDIX V.

ON CHARACTERISTICS.

When the student comes to use logarithms, he will find what follows

very useful. In the mean while, I give it merely as furnishing a rapid

rule for finding the place ot a decimal point in the quotient before the

division is commenced.

When a bar is written over a number, thus, 7, let the number be

called negative, and let it be thus used : Let it be augmented by addi-

tions of its own species, and diminished by subtractions ; thus, 7 and

2 give 9, and let 7 with 2 subtracted give 5. But let the addition of a
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number without the bar diminish the negative number, and the sub-

traction increase it. Thus, 7 and 4 are 3, 7 and 12 make 5, 7 with 8

subtracted is 15. In fact, consider i, 2,, 3, &c., as if they were gains,

and I, 2, 3, as if they were losses : let the addition of a gain or the re-

moval of a loss be equivalent things, and also the removal of a gain and

the addition of a loss. Thus, when we say that 4 diminished by 1 1 gives

7, we say that a loss of 4 incuned at the moment when a loss of 1 1 is

removed, is, on the whole, equivalent to a gain of 7 ; and saying that 4

diminished by 2 is 6, we say that a loss of 4, accompanied by the removal

of a gain of 2, is altogether a loss of 6.

By the characteristic of a number understand as follows : "When

there are places before the decimal point, it is one less than the number

of such places. Thus, 3'2i4, 1*0083, 8 (which is 8'oo...) 9*999, all have

o for their characteristics. But 17*32, 48, 93*116, all have i; 126*03

and 126 have 2; 11937264-666 has 7. But when there are no places

before the decimal point, look at the first decimal place which is sig-

nificant, and make the characteristic negative accordingly. Thus, '612,

•121, "9004, in all of which significance begins in the firsft decimal place,

have the characteristic 1; but 'oiS and '099 have a; '00017 has 4-,

•00000000 1 has 9.

To find the characteristic of a quotient, subtract the characteristic

of the divisor from that of the dividend, carrying one before subtraction

if the first significant figures of the divisor are greater than those of the

dividend. For instance, in dividing 146*08 by •00279. The character-

istics are 2 and 3 ; and 2 with 3 removed would be 5. But on looking,

we see that the first significant figiires of the divisor, 27, taken by them-

selves, and without reference to their local value, mean a larger number

than 14, the first two figures of the dividend. Consequently, to 3 we

carry i before subtracting, and it then becomes 2, which, taken from 2,

gives 4. And this 4 is the characteristic of the quotient, so that the

quotient has 5 places before the decimal point. Or, if abcdefhe the

first figures of the quotient, the decimal point must be thus placed,

abcde'f. But if it had been to divide '00279 ^Y 146*08, no carriage

would have been required ; and 3 diminished by 2 is 5 ; thai is, the first;
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significant figure of the quotient is in the 5th place. The quotient, then,

has "oooo before any significant figure. A few applications of this rule

will make it easy to do it in the head, and thus to assign the meaning

of the first figure of the quotient even before it is found.

APPENDIX VI.

ON DECIMAL MONEY.

Of all the simplifications of commercial arithmetic, none is comparable

to that of expressing shillings, pence, and farthings as decimals of a

pound. The rules are thereby put almost upon as good a footing as if

the country possessed the advantage of a real decimal coinage.

Any fraction of a pound sterling may be decimalised by rules whicli

can be made to give the result at once.

Two shillings is jg'ioc

One shilling is £'050

Sixpence is £'025

One farthing is £'ooi 04-
6

Thus, every pair of shillings is a unit in the first decimal place ; an odd

shilling is a 50 in the second and third places ; a farthing is so nearly

the thousandth part of a pound, that to say one farthing is 'ooi, two far-

things is '002, &c., is so near the truth that it makes no error in the first

three decimals till we arrive at sixpence, and then 24 farthings is exactly

•025 or 25 thousandths. But 25 farthings is "026, 26 farthings is '027^

/v.c. Hence the rule for the^rst three places is

One in the fir&i for every pair oj shillings ; 50 in the second and third

for the odd shilling, if any ; and i for every farthing additional v'ith

I ewtra for sixpence.
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Thu.^.̂, OS. 3^. = £-oi4 OS. 6rf. = £'izs

O.S\ 7^. = £-03z zs. ^-d. = £-139

1*. 2-rf. = £-o6o
2

3.*. 2-rf. = £-i6i
4

IS.

4
Z3.. lo^d. = £-694

In the fourth and fifth places, and those which follow, it is obvious

that we have no produce from any farthings except those above six-

pence. For at every sixpence, '00004- ^s converted into "ooi, and this
o

has been already accounted for. Consequently, to fill up the/oMWA and

fifth places.

Take \for every farthing* above the last sixpence^ and an additional

1 for every six farthings^ or three halfpence.

The remaining places arise altogether from 'ooooo- for every farthing

above the last three halfpence ; for at every three halfpence complete,

•ocooo- is converted into 'ooooi, and has been already accounted for.
6

Consequently, to fill up all the places after the fifths

Let the number offarthings above the last three halfpence be a nu-

merator, 6 a denominator, and annex the figures of the correspondirig

decimal fraction.

It may be easily remembered that

The figures of 7 are 166666...
6

333333..

The figures of 2 are 666666.
o

.... |... 833333.

OS. 3-rf. =^ '01458 3333,.. zs. 6d. = '12500 0000...

OS. -J-d. = 'O32I29I1666... 25. 9-rf. = •1395813333..-

The studeut should remember all the multiples of 4 up to 4x25, or 100.
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z-d.
2

15. ii-d.
4

060416666... 3«. z^d. = •i6i;45|83333...
4 I

•096J87I5
13s. 10-d.

4-

69J79 1666 ...

The following examples will shew the use of this rule, if the student

will also work them in the common way.

To turn pounds, &c., into farthings : Multiply the pounds by 960,

or by 1000—40, or by 1000(1-
100/

•

that is, from 1000 times the pounds

subtract 4 per cent of itself. Thus, required the number of farthings in

^1663

i663"59o625xiooo

4 per cent of this.

1663590*625

66543-625

No. of farthings required, 1597047

What is 47- per cent of jgi66 [3 . 10 and •6148 of £2971 .16.9?

i66'69i

£79 . 3 . 6

2971-837

40 P.O. 66-6764 •6 1783*1022

5 p. c. 8-3346 •01 29*7184

H p. c. 4-1673 •004 11*8873

•0008 2*3775
79-1783

1827-0854

£1827

The inverse rule for turning the decimal of a pound into shillings,

pence, and farthings, is obviously as follows

:

A pair of shillings for every unit in the first place ; an odd shilling

for 50 {if there be 50) in the second and third places ; and a farthing

for every thousandth left^ after alating 1 if the number of thousandths so

left exceed 24.

The direct rule (with three places) gives too little, the inverse rule

too much, except at the end of a sixpence, when both are accurate.

Thus, £*i83 is rather less than 35. 8rf., and 6s. 4-rf. is rather greater than
4

£•319; or when the two do not exactly agree, the common money ts the

greatest. But £'125 and £'35 are exactly 2*. 6d. and 7*.
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I 3
Required the price of ijcwt. 8ilb. 13-oz. at£;3 .11 9- per cwt.

true to the hundredth of a farthing.

3-590625

17

61-040625

lb. 56
I

2
1795313

16
I

7
•512946

7
I

8
•224414

2
I

8
•C64118

oz. 8
I

4
•016029

4
2

•C08015

1

1

4
•C02004

I

2 2
•001002

if^63'664466

£63.13.3-
2

Three men. A, B, C, severally invest £191 . 12 . 7-, £61 . 14 , 8,

1 . 4 1
and £122 . 1.9- in an adventure which yields £511 . 12 . 6-. How

a 2
ought the proceeds to be divided among them?

A, I9I-63229

B, 6173333
C, 122-08958 Produce of £1.

375-4552o)5ir627o8( 1-362686

136 17188
i^362686 1-362686 23 53532 1-362686

92236191 3333716 locHoi 85980221

1 362686
1 226417

13627
S176

409
27

3
I

z 611346

8I76I2 25710
1 362686

13627 3J83
180

272537
9538 27254
409 1090
41 122

4 7

84^^31 I

663697
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26i'i346 . . . A's share i.^^^. 2 . si
4

84*1231 . . . B'8 „ . . . 84. 2 ,-:

166-3697 . . . C's „ . . . 166. 7 .

12

.4^
4

511-6274 .61
4

If ever the fraction of a farthing be wanted, remember that the

coinage-result is larger than the decimal of a pound, when wo use

only three places. From 1000 times the decimal take 4 per cent,

and we get the exact number of farthings, and we need only look at

the decimal then left to set the preceding right. Thus, in

134*6 123*1 369*7

5*38 4*92 14*79
.

•22 *i8 91

we see that (if we use four decimals only) the pence of the above results

are nearly 8</. *22 of a farthing, 5-rf. *i8, and /\.--d. *9i.
2

J
2 m

A man can pay £2376 .4.4-, his debts being £3293 . 11 . o-.
2

^
4

How much per cent can he pay, and how much in the pound ?

3293*553)2376-2i8o(-72i4756

70 7309
48598

2488 Answer^ £72 . 2 . 11- per cent.

183 I

1% o . 14 . 5- per pound.
4

APPENDIX VII.

ON THE MAIN PRINCIPLE OF BOOK-KEEPING.

A BRIEF notice of the principle on which accounts are kept (when

they are properly kept) may perhaps be useful to students who are

learning book-keeping, as the treatises on that subject frequently give

too little in the way of explanation.

Any person who is engaged in business must desire to know accu-

rately, whenever an investigation of the state of his aftairs is made.
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1, What he had at the commencement of the account, or immediately

after the last investigation was made ; 2, What he has gained and lost

in the interval in all the several branches of his business ; 3, What he

is now worth. From the first two of these things he obviously knows

the third. In the interval between two investigations, he may at any

one time desire to know how any one account stands.

An account is a recital of all that has happened, in reference to any

class of dealings, since the last investigation. It can only consist of

receipts and expenditures, and so it is said to have two sides, a debtor

and a creditor side.

All accounts are kept in money. If goods be bought, they are

estimated by the money paid for them. If a debtor give a bill of

exchange, being a promise to pay a certain sum at a certain time, it

is put down as worth that sum of money. All the tools, furniture,

horses, &c. used in the business are rated at their value in money.

All the actual coin, bank-notes, &c., which are in or come in, being

the only money in the books which really is money, is called cash.

The accounts are kept as if every difierent sort of account belonged

to a separate person, and had an interest of its own, which every

transaction either promotes or injures. If the student find that it helps

him, he may imagine a clerk to every account : one to take charge of,

and regulate, the actual cash ; another for the bills which the house is

to receive when due; another for those which it is to pay when due;

another for the cloth (if the concern deal in cloth) ; another for the

sugar (if it deal in sugar) ; one for every person who has an account

with the house ; one for the profits and losses ; and so on.

All these clerks (or accounts) belonging to one merchant, must

account to him in the end—must either produce all they have taken

in charge, or relieve themselves by shewing to whom it went. For all

that they have received, for every responsibility they have undertaken

to the concern itself, they are bound, or are debtors; for everything

which has passed out of charge, or about which they are relieved from

answering to the concern, they are unbound, or are creditors. These

words must be taken in a very wide sense by any one to whom book-

R
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keeping is not to be a mystery. Thus, whenever any account assumes

responsibility to any parties out of the concern^ it must be creditor in

the books, and debtor whenever it discharges any other parties of their

responsibility. But whenever an account removes responsibility from

any other account in the same books it is debtor, and creditor whenever

it imposes the same.

To whom are all these parties, or accounts, bound, and from whom

are they released ? Undoubtedly the merchant himself, or, more properly,

the balance-clerk
y presently mentioned. But it is customary to say

that the accounts are debtors to each other, and creditors by each other.

Thus, cash debtor to bills receivable, means that the cash account (or

the clerk who keeps it) is bound to answer for a sum which was paid

on a bill of exchange due to the house. At full length it would be

:

" Mr. C (who keeps the cash-box) has received, and is answerable for,

this sum which has been paid in by Mr. A, when he paid his bill of

exchange." On the other hand, the corresponding entry in the ac-

count of bills receivable runs— bills receivable, creditor by cash. At full

length :
" Mr. B (who keeps the bills receivable) is freed from all

responsibility for Mr. A's bill, which he once held, by handing over to

Mr. C, the cash-clerk, the money with which Mr. A took it up." Bills re-

ceivable creditor by cash is intelligible, but cash debtor to bills receivable

is a misnomer. The cash account is debtor to the merchant by the sum

received for the bill, and it should be cash debtor by bill receivable.

The fiction of debts, not one of which is ever paid to the party to

whom it is said to be owing, though of no consequence in practice, is

a stumbling-block to the learner ; bxit he must keep the phrase, and

remember its true meaning.

The account which is made debtor, or bound, is said to be debited;

that which is made creditor, or released, is said to be credited. All

«vho receive must be debited ; all who give must be credited.

No cancel is ever made. If cash received be afterwards repaid, the

sum paid is not struck off the receipts (or debtor-side of the cash

account), but a discharge, or credit, is written on the expenditure (or

credit) side.
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The book in which the accounts are kept is called a ledger. It

has double columns, or else the debtor side is on one page, and the

creditor side on the opposite, of each account. The debtor-side is

always the left. Other books are used, but they are only to help in

keeping the ledger correct. Thns there may be a waste-book, in which

all transactions are entered as they occur, in common language ; a

journal^ in which the transactions described in the waste-book are

entered at stated periods, in the language of the ledger. The items

entered in the journal have references to the pages of the ledger to

which they are carried, and the items in the ledger have also references

to the pages of the journal from which tney come ; and by this mode

of reference it is easy to make a great deal of abbreviation in the ledger.

Thus, when it happens, in making up the journal to a certain date,

that several different sums were paid or received at or near the same

time, the totals may be entered in the ledger, and the cash account

may be made debtor to, or creditor by, sundry accounts, or sundries

;

the sundry accounts being severally credited or debited for their shares

of the whole. The only bock that need be explained is the ledger.

All the other books, and the manner in which they are kept, important

as they may be, have nothing to do with the main principle of the

method. Let us, then, suppose that all the items axe entered at once

in the ledger as they arise. It has appeared that every item is entered

twice. If A pay on account of B, there is an entry, "A, creditor by

B ;" and another, " B, debtor to A." This is what is called double-

entry ; and the consequence of it is, that the sum of all the debtor

items in the whole book is equal to the sum of all the creditor items.

For what is the first set but the second with the items in a different

order ? If it were convenient, one entry of each sum might be made

a double-entry. The multiplication table is called a table of double-

entry, because 42, for instance, though it occurs only once, appears in

two different aspects, namely, as 6 times 7 and as 7 times 6. Suppose,

for example, tliat there are five accounts. A, B, C, D, E, and that

each account has one transaction of its own with every other account

;

and let the debits be in the columns, the credits in the rows, as follows

:
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2 S S S S
'S 'S "S '2 'S
Q Q Q Q Q

A, Creditor

B, Creditor

C, Creditor

D, Creditor

E, Creditor

A B C D E

23 19 32
!

4

17 6 II 25

9 41 10 2

14 28 16 3

15 4 60 I

Here the 16 is supposed to appear in D's account as D creditor

by C, and in C's account as C debtor to D. And to say that the sum

of debtor items is the same as tl.r.t of creditor items, is merely to say

that the preceding numbers give the same sum, whether the rows or

the columns be first added up.

If it be desired to close the ledger when it stands as above, the fol-

lowing is the way the accounts will stand : the lines in italics 'vvill pre-

sently be explained.

A, Debtor. A, Creditor. B, Debtor. B, Creditor.

To B . . 17 ByB . . 23 To A . . 23 By A . . 17

To C . . 9 ByC . . 19 ToC . . 41 ByC . . 6

To D . . 14 ByD . . 32 ToD . . 28 ByD . . II

To E . . 15 ByE . . 4 ToE . . 4 ByE . . 25

To Balance 23 Bjf BaJance 37

78 78 96 96
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C, Debtor. C, Creditor. D, Debtor. D, Creditor.

To A . . 19 By A . . 9 ] To A . . 32 By A . . 14

ToB . . 6 By B . . 41
1
ToB . . 11 By B . . 28

ToD . . 16 ByD . . 10 To C . . 10 ByC . . 16

To.E . . 60 By E . . 2 ToE . . I ByE . . 3

By Balance 39 To Balance 7

lOI lOI
f 61 6^

E, Debtor. E, Creditor. Balance, Debtor. Balance, Cred.

ToA . . 4 ByA . . 15 ToB . . 37 ByA . . 23

To B . . 25 ByB . . 4 ToC . . 39 ByD . . 7

ToC . . 2 ByC . . 60 ByE . . 46

ToD . . 3 ByD . . I 76 76

To Balance 46

80 80

In all the part of the above which is printed in Roman letters we

see nothing but the preceding table repeated. But when all the accounts

have been completed, and no more entries are left to be made, there

remains the last process, which is termed balancing the ledger. To get

an idea of this, suppose a new clerk, who goes round all the accounts,

collecting debts and credits, and taking them all upon himself, that he

alone may be entitled to claim the debts and to be responsible for the

assets of the concern. To this new clerk, whom I will call the balance-

clerk, every account gives up what it has, whether the same be debt or

credit. The cash-clerk gives up all the cash ; the clerks of the two

kinds of bills give up all their documents, whether bills receivable or

entries of bills payable (remember that any entry against which there

is money set down in the books counts as money when given up, that is,

as money due or money owing) ; the clerks of the several accounts of

goods give up all their unsold remainders at cost prices ; the clerks of

the several personal accounts give up vouchers for the sums owing to or

from the several parties ; and so on. But where more has been paid

out than received, the balance-clerk adjusts these accounts by giving

b2
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instead of receiving ; in fact, he so acts as to make the debtor and

creditor sides of the accounts he visits equal in amount. For instance,

the A account is indebted to the concern 55, while payments or dis-

charges to the amount of 78 have been made by it. The balance-clerk

accordingly hands over 23 to that account, for which it becomes debtor,

while the balance enters itself as creditor to the same amount. But

in the B account there is 96 of receipt, and only 59 of payment or

discharge. The balance-clerk then receives 37 from this account, which

is therefore credited by balance, while the balance acknowledges as much

of debt. The balance account must, of course, exactly balance itself,

if the accounts be all right ; for of all the equal and opposite entries

of which the ledger consists, so far as they do not balance one another,

one goes into one side of the balance account, and the other into the

other. Thus the balance account becomes a test of the accuracy of

one part of the work : if its two sides do not give the same sums, either

there have been entries which have not had their corresponding balan-

cing entries correctly made, or else there has been error in the additions.

But since the balance account must thus always give the same sum

on both sides, and since balance debtor implies what is favourable to

the concern, and balance creditor what is unfavourable, does it not

appear as if this system could only be applied to cases in wliich there

is neither loss nor gain ? This brings us to the two accounts in which

are entered all that the concern began with, and all that it gains or

loses— the stock account, and the profit-and-loss account. In order to

make all that there was to begin with a matter of double entry, the open-

ing of the ledger supposes the merchant himself to put his several clerks

in charge of their several departments. In the stock account, stock, which

here stands for the owner of the books, is made creditor by all the pro-

perty,,and debtor by all the liabilities ; while the several accounts are

made debtors for all they take from the stock, and creditors by all the

responsibilities they undertake. Suppose, for instance, there are ;6'5oo

in cash at the commencement of the ledger. There will then appear

that the merchant has handed over to the cash-box :f500, and in the

stock account will appear, " Stock creditor by cash, iffoo ;*' while in
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the Gash account will appear, " Cash debtor to stock, ^^500." Suppose

that at the beginning there is a debt outstanding of ^^50 to Smith and

Co., then there will appear in the stock account, " Stock debtor to

Smith and Co. 5^50," and in Smith and Co.'s account will appear

" Smith and Co. creditors by stock, £50." Thus there is double entry

for all that the concern begins with by this contrivance of the stock

account.

The account to which everything is placed for which an actual

equivalent is not seen in the books is the profit-and-loss account. This

profit-and-loss account, or the clerk who keeps it, is made answerable

for every loss, and the supposed cause of every gain. This account,

then, becomes debtor for every loss, and creditor by every gain. If

goods be damaged to the amount of £zo by accident, and a loss to

that amount occur in their sale, say they cost £%o and sell for £()0

cash, it is clear that there is an entry " Cash debtor to goods j6'6o,'*

and " Goods creditor by cash i^6o." Now, there is an entry of ^80

somewhere to the debit of the goods for cash laid out, or bills given, for

the whole of the goods. It would affect the accuracy of the accounts

to take no notice of this ; for when the balance-clerk comes to adjust

this account, he would find he receives £zo less than he might have

reckoned upon, without any explanation of the reason ; and there

would be a failure of the principle of double -entry. Since it is

convenient that the balance-account of the goods should merely re-

present the stock in hand at the close, the account of goods there-

fore lays the responsibility of £zo upon the profit-and-loss account,

or there is the entry " Goods creditor by profit-and-loss, ^£'"20," and

also "Profit-and-loss debtor to goods, £'2.0.'"' Again, in all pay-

ments which are not to bring in a specific return, such as house and

trade expenses, wages, &c. these several accounts are supposed to ad-

just matters with the profit-and-loss account before the balance begins.

Thus, suppose the outgoings from the mere premises occupied exceed

anything those premises yield by ^200, or the debits of the house

account exceed its credits by ^^200, the account should be balanced

by transferring the responsibility to the profit-and-loss account, under
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the entries "House expenses creditor by profit-and-loss, jSzoo," " Profit-

and-loss debtor to house expenses, jf200." In this way the profit-and-

loss account steps in from time to time before the balance account

commences its operations, in order that that same balance account may

^onsbt of nothing but the necessary matters of account for the next year'^s

ledger.

This transference of accounts^ or transfusion of one account into

another, requires attentive coiuideration. The receiving account be-

comes creditor for the credits, and debtor for the debits, of the trans-

mitting account. The rule, therefore, is : Make the transmitting account

balance itself, and, on whichever side it is necessary to enter a balancing

sum, make the account debtor or creditor, as the case may be, to the

receiving account, and the latter creditor or debtor to the former. Thus,

suppose account A is to be transferred to account B, and the latter is

to arrange with the balance-accouut. If the two stand as in Roman

letters, the processes in Italic letters will occur before the final close.

A, Debtor.

To sundries £100

ToB .... 400

£500

A, Creditor.

By sundries £500

£500

B, Debtor.

To sundries £600

To Balance 200

£800

B, Creditor.

By sundries £400

By A ... . 400

£800

And the entry in the balance account will be, " Creditor by B, £200,"

shewing that, on these two accounts, the credits exceed the debits by

£200.

Still, before the balance account is made up, it is desirable that the

profit-and-loss account should be transferred to the stock account; for

the profit and loss of this year is of no moment as a part of next year's

ledger, except in so far as it affects the stock at the commencement of

the latter. Let this be done, and the balance account may then be

made in the form required.

The stock account and the profit-and-loss account, the latter being

the only direct channel of alteration for the former, differ in a peculiar

manner* from the other preliminary accounts, and the balance account

• The treatises on book-keeping have described this difference In as peculiar a
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is a species of umpire. They represent the merchant : their interests

are his interests ; he is solvent upon the excess of their credits over

their debits, insolvent upon the excess of their debits over their credits.

It is exactly the reverse in all the other accounts. If a malicious person

were to get at the ledger, and put on a cipher to the pounds in various

items, with a view of making the concern appear worse than it really

is, he would make his alterations on the debtor sides of the stock and

profit-and-loss accounts, and on the creditor sides of all the others.

Accordingly, in the balance account, the net stock, after the incor-

poration of the profit-and-loss account, appears on the creditor side

(if not, it should be called amount of insolvency, not stock), and the

debts of the concern appear on the same side. But on the debit side

of the balance account appear all the assets of the concern (for which

the balance-clerk is debtor to the clerks from whom he has taken them).

The young student must endeavour to get the enlarged view of the

words debtor and creditor which is requisite, and must then learn by

practice (for nothing else will give it) facility in allotting the actual

entries in the waste-book to the proper sides of the proper accounts.

I do not here pretend to give more than such a view of the subject as

may assist him in studying a treatise on book-keeping, which he will

probably find to contain little more than examples.

manner. They call these accounts the fictitious accounts. Now they represent the

merchant himself; their credits are gain to the business, their debits losses or liabi-

lities. If the terms real and fictitious are to be used at all, they are the real accounts,

and all the others are as fictitious as the clerks whom we have suppoeed to keep

them.
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APPENDIX VIII.

ON THE REDUCTION OF FRACTIONS TO OTHERS OP NEARLY EQUAL VALUE.

There is a useful method of finding fractions which shall be nearly

equal to a given fraction, and with which the computer ought to be

acquainted. Proceed as in the rule for finding the greatest common

measure of the numerator and denominator, und bring all the quotients

into a line. Then write down,

I 2d Quot.

ist Quot. 1st Quot. X 2d Quot.+

1

Then take the third quotient, multiply the n iraerator and denominator

of the second by it, and add to the products the preceding numerator

and denominator. Form a third fraction with the results for a nume-

rator and denominator. Then take the fourth quotient, and proceed

with the third and second fractions in the same way ; and so on till

the quotients are exhausted. For example, let the fraction be -^—^—

.

13128

9131)13128^1,2 This is the process for finding the

1137 3997(3, I
, , f ,

5CI 586(1 ic greatest common measure of 9131 and

201 35(i»2, 13128 in its most compact form, and
20 9(^1, 5

8 I the quotients and fractions are

:

12311 15 I 2 I 8

127 9 16 249 265 779 1044 913

1

I 3 10 13 23 358 381 1120 1501 13128

It will be seen that we have thus a set of fractions ending with

the original fraction itself, and formed by the above rule, as follows

:

ist Fraction =
I I

ist Quot. I

2d Fraction =
2d Quot. 2

1st Quot. X 2d Quot. + 1
~

3

3d Fraction « ad Num'.x 3d Quot. + ist Num'.

2d Den'. X3d Quot. + ist Den^

2x3+1

3x3+1
r 2-

10

4th Fraction = 3d Num'.x4th Quot. + 2d Num'.

3d Den'. X4th Quot. + zd Den'.

7x1+2

10x1+3
3 -1
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and so on. But we have done something more than merely reascend to

the original fraction by means of the quotients. The set of fractions,

-, -, —, —, &c. are continually approaching in value to the original
I 3 lo 13

fraction, the first being too great, the second too small, the third too

great, and so on alternately, but each one being nearer to the given
I 2

fraction than any of those before it. Thus, - is too great, and - is

2
,

^ I 3

too small; but - is not so much too small as - is too great. And
7 3

_

I 2
again, —, though too great, is not so much too great as - is too small.

10 3

Moreover, the difference of any of the fractions from the original

fraction is never greater than a fraction having unity for its numerator

and the product of the denominator and the next denominator for its

I 12
denominator. Thus, - does not err by so much as -, nor - by so much17 ' 19 3i3
as —, nor — by so much as , nor — by so much as , &c.

30 10 130 13 299
Lastly, no fraction of a less numerator and denominator can come

so near to the given fraction as any one of the fractions in the list.

Thus, no fraction with a less nximerator than 249, and a less denominator
9i'?i 249

than 358, can come so near to -—— as —~.
13128 358

The reader may take any example for himself, and the test of the

accuracy of the process is the ultimate return to the fraction begun

with. Another test is as follows : The numerator of the difference of

any two consecutive approximating fractions ought to be unity. Thus,
1 6 249

in our instance, we have — and—^, which, with a common denominator,
23 358

23x358, have 5728 and 5727 for their numerators.

As another example, let us examine this question : The length of

the year is 365-24224 days, which is called in common life 365- days.

24224 4
Take the fraction —-^-—^, and proceed as in the rule.

100000

24224)100000(4, 7, I, 4, 9, 2

2496 3 104
64 608

o 32

I 2. A _i2_ ill 757

4 29 33 161 1482 3125

and is '24224 in its lowest terms. Hence, it appears that the
3^2.5

excess of the year over 365 days amounts to about i day in 4 years,
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which is not wrong by so much as i day in ii6 years ; more accurately,

to 7 days in 29 years, which is not wrong by so much as i day in 957

years ; more accurately still, to 8 days in 33 years, which is not wrong

by 80 much as i day in 5313 years ; and so on.

This method may be applied to finding fractions nearly equal to

the square roots of integers, in the following manner

:

V43 = 6 + ....
S®* down the number whose

I 545 545 I 66

7639293671
I I 3 I 5 I 3

154, &c. square root is wanted, say 43.

7 " 3i *^c. rpjjjg
square root is 6 and a frao-

I 3> &c. tion. Set down the integer 6 in

the first and third row, and i in the second row always. Form the

successive rows each from the one before, in the following manner

:

One row The next row has 6', a', c', formed in this order,

being thus,

a a' = excess of iV, already formed, over a.

b b' = quotient of 43—a'* divided by b.

e c' = integer in the quotient of 6+a divided by b'.

Thus the second row is formed from the first, as under

:

excess of 7x1 (both just found) over 6.

43—6x6 divided by 1.

1 1 1 = integer of 6+6 divided by 7 (just found).

The third row is formed from the second, thus

:

15= excess of 1x6 over i.

76= 43— IX I divided by 7.

11= integer of 6+1 divided by 6

;

and so on. In process of time the second column, i, 7, i, occurs

again, after which the several columns are repeated in the same order.

As a final process, take the set in the lowest line (excluding the first, 6),

namely, i, i, 3, i, 5, i, 3, &c. and use them by the rule given at the

beginning of this article, as follows

:

1131513 1 I, &c.

I I 4 5 29 34 131 165 296

I 2 7 9 52 61 235 296 531



GENERAL PROPERTIED OF NUMBERS. 193

Hence, 6—- is very near the square root of 43, not erring by so much as

I ^96

I I

z z

^96x531 i6c 1941
If we try it, we shall find 6 ; to be -^-r, the square of which h

3767481 7
^96 296

^7616 '""""^^'ITeTe-
This rule is of use when it is frequently wanted to use one square

root, and therefore desirable to ascertain whether any easy ajiproximation

exists by means of a common fraction. For example, a/z is often used.

29
^2 = i-i-

Here it appears that i— does not
*"*

I 70 99
err bv r- ; consequently, — or

100- i 70x169.
.

70
is, considering the ease of the

70122222 2 operation, a fair approximation. In

99
1 2 5 12 29 70 fact, — is 1-4142857... the truth being

2 5 12 29 70 169
1.4142135...

The following is an additional example

:

V19 = 4+...

4123 3 2 442
I

I
3 5 2 5 313

41213 I 2821312, Sec.

1*4 5 14- „- - — — —,&(;.
2 3 II 14 39

APPENDIX IX.

ON SOME GENERAL PROPERTIES OF NUMBERS.

Prop. 1. If a fraction be reduced to its lowest terms, so called,* that

is, if neither numerator nor denominator be divisible by any integer

greater than unity, then no fraction of a smaller numerator and deno-

minator can have the same value.

Let - be a fraction in which a and b have no common measure

greater than unity : and, if possible, let ;; he a fraction of the same value,
** a c a b

c being less than a, and d less than b. Now, since 7 = -, we have - = -

;

o a c a

• This theorem shews that what is called reducing a fraction to its lowest terms

(namely, dividing numerator and denominator by their jfreatest common measure),

is correctly so called.

B
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let m be the integer quotient of these last fractions (which must exist,

since a > c, 6 > rf), and let e and/ be the remainders. Then

a mc+e c me

b md+f d md

Hence, - and —- must be equal, for if not,
, , would lie between

/ md md +j
—— and -, instead of being equal to the former. Hence, t = ":.»
md J

o 1 of
so that if a fraction whose numerator and denominator have no com-

mon measure greater than unity, be equal to a fraction of lower

numerator and denominator, it is equal to another in which the nume-
a e ,

rator and denominator are still lower. If we proceed with - = - m a
d (J

"J
similar manner, we find 7 = 7 where g<e^ h<f, and so on. Now, if

o h
there be any process which perpetually diminishes the terms of a frac-

tion by one or more units at every step, it must at last bring either the

numerator or denominator, or both, to o. Let -7 = — be one of the
h w

steps, and let a = kv+x, b = kw+v ; so that = — . Now, if a? = o
kw+y w

but not v, this is absurd, for it gives -: = •;— . A similar absurdity
kw+y kw

follows if y be o, but not x ; and if both x and y be = o,then a = kv^ b =

kw^ or a and b have a common measure, k. Now k must be greater

than I, for v and w are less than c and cf, which by hypothesis are less

than a and b. Consequently a and b have a common measure k greater

than I, which by hypothesis they have not. If, then, a and b be in-

tegers not divisible by any integer greater than i, the fraction - is really
b

in its lowest terms. Also a and b are said to be prime to one another.

Prop. 2. If the product ab be divisible by e, and if c be prime to i,

it must divide a. Let— = rf, then- = -. Now - is in its lowest terms

;

c c a c

therefore, by the last proposition, d and a must have a common mea-

sure. Let the greatest common measure be A:, and let a = kl, d = km.
-y, b km m , wi . , . ., , , , , . b
1 nen - = —— = -—, and — is also in its lowest terms; but so is -;

C nt It C
therefore we must have m = b, I = c, for otherwise a fraction in its

lowest terms would be equal to another of lower terms. Therefore

a = kc^ or a is divisible by c. And from this it follows, that if a num-

ber be prime to two others, it is prime to their product. Let a be prime
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to b and c, then no measure of a can measure either b or c, and no

such measure can measure the product be ; for any measure of be which

is prime to one must measure the other.

Prop. 3. If a be prime to b, it is prime to all the powers of A.

Every measure* of a is prime to J, and therefore does not divide L

Hence, by the last, no measure of a divides 6^ ; hence, a is prime to

b'^, and so is every measure of it ; therefore, no measure of a divides bb'K

consequently a is prime to b^, and so on.

Hence, if a be prime to b, a cannot divide without remainder any

power of b. This is the reason why no fraction can be made into a

decimal unless its denominator be measured by no primef numbers ex-

a c
cept 2 and 5. For if -7 = , which last is the general form of a deci-

a "
^°"

io"a '

mal fraction, let - be in its lowest terms ; then —-— is an integer, whence
b b

(Prop. 2) b must divide lo", and so must all the divisors of 6. If, then,

among the divisors of b there be any prime numbers except 2 and 5,

we have a prime number (which is of course a number prime to 10) not

dividing 10, but dividing one of its powers, which is absurd.

Prop. 4. If 6 be prime to a, all the multiples of 6, as b, 26, .. . up to

(a— 1)6 must leave different remainders when divided by a. For if, m
being greater than n, and both less than a, we have mb and nb giving the

same remainder, it follows that mb—nb^ or (jn—n)b, is divisible by a;

whence (Prop. 2), a divides m—n, a number less than itself, which is

absurd.

If a number be divided into its prime factors, or reduced to a pro-

duct of prime numbers only (as in 360 = 2x2x2x3x3x5), and if a, 6, c,

&c. be the prime factors, and a, ^8, 7, &c. the number of times they seve-

rally enter, so that the number is a*xi'^ xc''x&c., then this can be done

in only one way : For any prime number «, not included in the above

• For that which measures a measure is itself a measure; so that if a measure of

a could have a measure in common with b, a itself would have a common measure

with 6.

t A prime number is one which is prime to all numbers except its own multiples,

or has no divisors except 1 and itself.
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list, is prime to a, and therefore to a*, to b and therefore to 5^, and there-

fore to a'^'y.l^ . Proceeding in this way, we prove that v is prime to the

complete product above, or to the given number itself.

The number of divisors which the preceding number a'^'b^c^ .... can

have, o and itself included, is (a+i)(i8+i)(7+i).... For o* has the

divisors i, a^a^ ...a* and no others, a+i in all. Similarly, b^ has $+1

divisors, and so on. Now as all the divisors are made by multiplying

together one out of each set, their number (page 202) is (a+i)(j8+i)

(7+1)....

If a number, w, be divisible by certain prime numbers, say 3, 5, 7, 1 1,

then the third part of all the numbers up to n is divisible by 3, the fifth

part by 5, and so on. But more than this: when the multiples of 3

are omitted, exactly the fifth part of those which remain are divisible

by 5 ; for the fifth part of the whole are divisible by 5, and the fifth

part of those which are removed are divisible by 5, therefore the fifth

part of those which are left are divisible by 5. Again, because the

seventh part of the whole are divisible by 7, and the seventh part of

those which are divisible by 3, or by 5, or by 15, it follows that when

all those which are multiples of 3 or 5, or both, are removed, the seventh

part of those which remain are divisible by 7 ; and so on. Hence, the

number of numbers not exceeding w, which are not divisible by 3, 5, 7,
10 6 4 2

or 1 1, is — of - of - of - of n. Proceeding in this way, we find that the

number of numbers which are prime to w, that is, which are not divisible

by any one of its prime factors, a, d, c,. . . is

n^Zi izi £Z! or a'^-^b^^c'^'^ ...{ar-i)(b-i){c-i)....
a b c \ f\ j\ J

Thus, 360 being a'3'5, its number of divisors is 4x3x2, or 24, and there

are 2^3. 1.2.4 or 9^ numbers less than 360 which are prime to it.

Prop. 5. If a be prime to 6, then the terms of the series, o, a'*, a',...

severally divided by J, must all leave different remainders, until i

occurs as a remainder, after which the cycle of remainders will be again

repeated.

Let a-hb give the remainder r (not unity) ; then a^-i-b gives the same

remainder as ra-i-b, which (Prop. 4) cannot be r : let it be s. The

»
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a^-i-b gives the same remainder as «a-^i, which (Prop. 4) cannot be

either r or s, unless « be i : let it be t. Then a*-i-b gives the same

remainder as ta-i-b ; if < be not i, this cannot be either r, s, or ^ : let

it be u. So we go on getting different remainders, until i occurs as

a remainder ; after which, at the next step, the remainder of a-v-b is

repeated. Now, i must come at last; for division by b cannot give

any remainders but o, i, 2,.... h—i ; and o never arrives (Prop. 3),

so that as soon as 6—2 different remainders have occurred, no one of

which is unity, the next, which must be different from all that precede,

must be i. If not before, then at ah'^ we must have a remainder i

;

after which the cycle will obviously be repeated.

Thus, 7, 7"^, 7^, 7*, &c. will, when divided by 5, be found to give

the remainders 2, 4, 3, i, &c.

Prop. 6. The difference of two wth powers is always divisible with-

out remainder by the difference of the roots ; or a"*—6'" is divisible by

a—b ; for

a"»-i"' = ar'-ar-^b+a'^-^b-b'" = ar-\a-b)+b{ar-'^-h^-^)

From which, if a"'—i—6"*-* is divisible by a—i, so is a*"—i*". But a—b

is divisible by a—b ; so therefore is a^—b^ ; so therefore is a^—b^ ; and

so on.

Therefore, if a and 5, divided by c, leave the same remainder, a^

and 6^, a^ and i^, &c. severally divided by c, leave the same remainders;

for this means that a—b is divisible by c. But o*"—6"* is divisible by

a—J, and therefore by every measure of a—6, or by c ; but a^—b"* cannot

be divisible by c, unless a*" and J"*, severally divided by c, give the

same remainder.

Prop. 7. If 6 be a prime number, and a be not divisible by 6, then

a' and (a— i)*+i leave the same remainder when divided by b. This

proposition cannot be proved here, as it requires a little more of algebra

than the reader of this work possesses.*

Prop. 8. In the last case, a'^^ divided by b leaves a remainder i.

* Expand (a—l)*by the binomial theorem; shew that when b is a prime number

every coeflBcient which is not unity is divisible by b ; and the proposition follows.

82
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From the last, a^—a leaves the same remainder as (a— i)*+i—a or

(a—i)*—(a— i) ; that is, the remainder of af'—a is not altered if a be

reduced by a unit. By the same rule, it may be reduced another unit,

and so on, still without any alteration of the remainder. At last it

becomes i*— i, or o, the remainder of which is o. Accordingly, a^—a^

which is a(a*~^— i), is divisible by b\ and since b is prime to a, it

must (Prop. 2) divide o*-*— i ; that is, o*-^, divided by 6, leaves a

remainder i, if i be a prime number and a be not divisible by b.

From the above it appears (Prop. 5 and 7), that if a be prime to

6, the set i, a, a^, a\ &c. successively divided by 6, give a set of

remainders beginning with i, and in which i occurs again at a*~^, if

not before, and at a!'~^ certainly (whether before or not), if 6 be a

prime number. From the point at which i occurs, the cycle of re-

mainders recommences, and i is always the beginning of a cycle. If,

then, a"* be the first power which gives i for remainder, m must either

be 5— I, or a measure of it, when b is a prime number.

But if we divide the terms of the series m, »»a, ma^, ma^^ &c. by

A, m being less than J, we have cycles of remainders beginning with m.

If I, r, *, ?, &c. be the first set of remainders, then the second set is

the set of remainders arising from »n, mr, ms, mt, &c. If i never

occur in the first set before a*~* (except at the beginning), then all

the numbers under b—z inclusive are found among the set i, r, *, /,

&c. ; and ifm be prime to b (Prop. 4), all the same numbers are found,

in a different order, among the remainders of wi, wir, &c But should

it happen that the set i, r, s, <, &c. is not complete, then wi, wir, nw,

&c. may give a different set of remainders.

All these last theorems are constantly verified in the process for

reducing a fraction to a decimal fraction. If m be prime to 6, or the

fraction -r- in its lowest terms, the process involves the successive
b

division of m, mxio, toxic*, &c. by b. This process can never come

to an end unless some power of lo, say lo", is divisible by b ; which

cannot be, if b contain any prime factors except 2 and 5. In every

other case the quotient repeats itself, the repeating part sometimes

commencing from the first figure, sometimes from a later figure. Thus.
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- yields '142857 142857, &c., but — gives •07(142857X142857), &c.,
7 I

14
snd — gives •03(57i428)(57i428), &c.

In -—, the quotient always repeats from the very beginning whenever

6 is a prime number and m is less than b ; and the number of iigures

in the repeating part is then always 6—1, or a measure of it. That it

must be so, appears from the above propositions.

Before proceeding farther, we write down the repeating part of a

quotient, with the remainders which are left after the several figures

are formed. Let the fraction be —, we have

Oio5i 581484^639552169742^31137116841271

This may be read thus : lo by 17, quotient o, remainder 10 ; 10* by

17, quotient 05, remainder 15 ; lo^ by 17, quotient 058, remainder 14;

and so on. It thus appears that lo'^ by 17 leaves a remainder i, which

is according to the theorem.

If we multiply 0588, &c. by ant/ number under 17, the same cycle

is obtained with a different beginning. Thus, if we multiply by 13, we

have 7647058823529411

beginning with what comes after remainder 13 in the first number. If

we multiply by 7, we have 4117, &c. The reason is obvious: — X13,
13 '7

or —, when turned into a decimal fraction, starts with the divisor 130,
^7 I . .

and we proceed just as we do in forming—, when within four figures of
17

the close of the cycle.

It will also be seen, that in the last half ofthe cycle the quotient figures

are complements to 9 of those in the first half, and that the remainders

are complements to 17. Thus, in 0^05^58^484, &c. and 974213113,

&c. we see 0+9 = 9, 5+4 = 9, 8+i = 9, &c., and 10+7 = 17, 15+2 = 17,

14+3 = 17, &c. "We may shew the necessity of this as follows: If

the remainder i never occur till we come to use a*~^, then, b being

prime, b—i is even; let it be rk. Accordingly, a'''*— i is divisible by

b\ but this is the product of a*— i and a*+i, one of which must be

divisible by b. It cannot be a*— i, for then a power of a preceding the

{h—i)\h would leave remainder i, which is not the case in our instance;

it must then be a*+i, so that a^ divided by b leaves a remainder 6—1;
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and the kth step concludes the first half of the process. Accordingly,

in our instance, we see, b being 17 and a being 10, that remainder i6

occurs at the 8th step of the process. At the next step, the remainder

is that yielded by 10(6—1), or 96+6—10, which gives the remainder 6— 10.

But the first remainder of all was 10, and io+(6— 10) = b. If ever this

complemental character occur in any step, it must continue, which we

shew as follows : Let r be a remainder, and b—r a subsequent remainder,

the sum being b. At the next step after the first remainder, we divide

lor by 6, and, at the next step after the second remainder, we divide

106— lor by b. Now, since the sum of lor and 106— icr is divisible

by b, the two remainders from these new steps must be such as added

together will give 6, and so on ; and the quotients added together must

give 9, for the sum of the remainders lor and 106— lor yields a quotient

10, of which the two remainders give i.

If— and 7- be taken, the repeating parts will be found to contain
59 61

58 and 60 figures. Of these we write down only the first halves, as

the reader may supply the rest by the complemental property jxist

given.

01694915254237288135593220338, &c.

0163934426229508 1967213 I 147540, &c.

Here, then, are two numbers, the first of which multiplied by any

number under 59, and the second by any number under 61, can have

the products formed by carrying certain of the figures from one end to

the other.

But, b being still prime, it may happen that remainder i may occur

before 6—1 figures are obtained ; in which case, as shewn, the number

of figures must be a measure of 6—1. For example, take —. Tlie

repeating quotient, written as above, has only 5 figures, and 5 measures

41-1.

Oio*i84ie3379i

Now, this period, it will be found, has its figures merely transposed, if

we multiply by 10, 18, 16, or 37. But if we multiply by any other

number under 41, we convert this period into the period of another
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fraction whose denominator is 41. The following are 8 periods which

may be found.

Ol0^184l63379l

030436^32733^2

"-"so/iaS? ^973

04093172352564

^9'^8'39921 Ss

119426^1431746

2286348122-38911

327624535^22515

To find —, look out for m among the remainders, and take the period
41 34

in which it is, beginning after the remainder. Thus, — is '8292682926,
ic 41

&c., and — is '3658536585, &c. These periods are complemental,
41

four and four, as 02439 ^^^ 975^0, 07317 and 92682, &c. And if

the first number, 02439, ^^ multiplied by any number under 41, look

for that number among the remainders, and the product is found in the

period of that remainder by beginning after the remainder. Thus,

02439 multiplied by 23 gives 56097, and by 6 gives 14634.

The reader may try to decipher for himself how it is that, with no

more figures than the following, we can extend the result of our division.

The fraction of which the period is to be found is —

.

87
87)100(01149425

130

430
820

- 01149425x25

370 28735625x25
220 718390625x25
460 17959765625x25

25 448994140625
OII49425287356 ^5

7 [8390625

1795976 5625

448994

01149425287356321839080459771011494

APPENDIX X.

ON COMBINATIONS.

There are some things connected with combinations which I place in

an appendix, because I intend to demonstrate them more briefly than

the matters in the text.

Suppose a number of boxes, say 4, in each of which there are
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counters, say 5, 7, 3, and 11 severally. In how many ways can one

counter be taken out of each box, the order of going to the boxes not

being regarded. Answer^ in 5x7x3x11 ways. For out of the first box

we may draw a counter in 5 different ways, and to each such drawing

we may annex a drawing from the second in 7 different ways—giving

5x7 ways of making a drawing from the first two. To each of these

we may annex a drawing from the third box in 3 ways— giving 5x7x3

drawings from the first three ; and so on. The following statements may

now be easily demonstrated, and similar ones made as to other cases.

If the order of going to the boxes make a diflference, and if a, 6, c, d

be the numbers of counters in the several boxes, there are 4X2X3XIX

ax6xcx(/ distinct ways. If we want to draw, say a out of the first box,

3 out of the second, i out of the third, and 3 out of the fourth, and if

the order of the boxes be not considered, the number of ways is

a— 1 ,6— li— 2 ,rf— irf—

2

a X X c X a223 i 3

If the order of going to the boxes be considered, we must multiply the

preceding by 4x3x2x1. If the order of the drawings out of the boxes

makes a difference, but not the order of the boxes, then the number

of ways is

a{ar-i)b{b-i)[h-z)cd{d-x){d-z)

The nth power of a, or a", represents the number of ways in which

a counters differently marked can be distributed in n boxes, order of

placing them in each box not being considered. Suppose we want to

distribute 4 differently-marked counters among 7 boxes. The first

counter may go into either box, which gives 7 ways ; the second counter

may go into either ; and any of the first 7 allotments may be combined

with any one of the second 7, giving 7x7 distinct ways; the third

counter varies each of these in 7 different ways, giving 7x7x7 in all;

and so on. But if the counters be undistinguishable, the problem is a

very different thing.

Required the number of ways in which a number can be compounded

of other numbers, different orders counting as different ways. Thus,



ON COMBINATIONS. 203

1+3+1 and 1+1+3 are to be considered as distinct ways of making 5.

It will be obvious, on a little examination, that each number can be

composed in exactly twice as many ways as the preceding number.

Take 8 for instance. If every possible way of making 7 be written

down, 8 may be made either by increasing the last component by a

unit, or by annexing a unit at the end. Thus, 1+3+2+1 may yield

1+3+2+2, or 1+3-12+1+1: and all the ways of making 8 will thus be

obtained ; for any way of making 8, say a+b+c+d, must proceed from

the following mode of making 7, a+b+c+(d—i). Now, (d—i) is either

o— that is, d is unity and is struck out— or (d—i) remains, a number

I less than d. Hence it follows that the number of ways of making

n is 2"~'. For there is obviously i way of making i, 2 of making

2 ; then there must be, by our rule, z^ ways of making 3, 2^ ways of

making 4 ; and so on.

{
\ 1+2+1

I1+3
2+1+1

/2+2

\r
This table exhibits the ways of making i, 2, 3, and 4. Hence it

follows (which I leave the reader to investigate) that there are twice

as many ways of forming a+b as there are of forming a and then

annexing to it a formation of b ; four times as many ways of forming

a-i-b+c as there are of annexing to a formation of a formations of b and

of c ; and so on. Also, in summing numbers which make up a+i, there

are ways in which a is a rest, and ways in which it is not, and as many of

one as of the other.

Required the number of ways in which a number can be compounded

of odd numbers, different orders counting as different ways. If a be

the number of ways in which n can be so made, and b the number of

ways in which w+i can be made, then a+b must be the number of

ways in which n+z can be made; for every way of making 12 out of

odd numbers is either a way of making 10 with the last number
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increased by 2, or a way of making 11 with a i annexed. Thus,

1+5+3+3 gives 12, formed from 1+5+3+1 giving 10. But 1+9+1+1 is

formed from 1+9+1 giving 11. Consequently, the number of ways

of forming 12 is the sum of the number of ways of forming 10 and of

forming 11. Now, i can only be formed in i way, and 2 can only

be formed in 1 way; hence 3 can only be formed in i+i or 2 ways, 4

in only 1+2 or 3 ways. If we take the series 1, 1, 2, 3, 5, 8, 13, 21,

34> 55» ^9* &c. in which each number is the sum of the two preceding,

then the wth number of this set is the number of ways (orders counting)

in which n can be formed of odd numbers. Thus, 10 can be formed

in 55 ways, i.i in 89 ways, &c.

Shew that the number of ways in which mk can be made of numbers

divisible by m (orders counting) is 2*-^

In the two series, 11 12 3469 13 19 28, &c.

01011122 3 4 5, &c.,

the first has each new term after the third equal to the sum of the

last and last but two ; the second has each new term after the third

equal to the sum of the last but one and last but two. Shew that

the nth number in the first is the number of ways in which n can be

made up of numbers which, divided by 3, leave a remainder i ; and

that the nth number in the second is the number of ways in which

n can be made up of numbers which, divided by 3, leave a remainder 2.

It is very easy to shew in how many ways a number can be made

up of a given number of numbers, if difi*erent orders count as different

ways. Suppose, for instance, we would know in how many ways la

can be thus made of 7 numbers. If we write down 12 units, there

are 1 1 intervals between unit and unit. There is no way of making

12 out of 7 numbers which does not answer to distributing 6 partition-

marks in the intervals, i in each of 6, and collecting all the units

which are not separated by partition-marks. Thus, 1+ 1+3+2+ 1+2+2,

which is one way of making 12 out of 7 numbers, answers to
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in which the partition-marks come in the ist, 2d, 5th, 7th, 8th, and

loth of the II intervals. Consequently, to ask in how many ways iz

can be made of 7 numbers, is to ask in how many ways 6 partition-

marks can be placed in 11 intervals; or, how many combinations or

selections can be made of 6 out of 1 1. The answer is,

11x10x9x8x7x6
—, or 462.

1x2x3x4x5x6

Let us denote by wi„ the number of ways in which m things can

be taken out of n things, so that m„ is the abbreviation for

n— 1 W—

2

. 71—7«+l
nx X ....as far as23 m

Then »n„ also represents the number of ways in which m+i numbers

can be put together to make 71+ 1. What we proved above is, that 6j j

is the number of ways in which we can put together 7 numbers to make

12. There will now be no difficulty in proving the following

:

2"= n-i„+2„+3„,

In the preceding question, o did not enter into the list of numbers

used. Thus, 3+1+0+0 was not considered as one of the ways of putting

together four numbers to make 5. But let us now ask, what is the number

of ways of putting together 7 numbers to make 12, allowing o to be

in the list of numbers. There can be no more (nor fewer) ways of doing

this than of putting 7 numbers together, among which o is not included,

to make 19. Take every way of making 12 (o included), and put on

I to each number, and we get a way of making 19 (o not included).

Take any way of making 19 (o not included), and strike off i from

each number, and we have one of the ways of making 12 (o included).

Accordingly, 6^3 is the number of ways of putting together 7 numbers

(o being allowed) to make 12. And (tti— i)„+m-i is the number of

ways of putting together m numbers to make n, o being included.

This last amounts to the solution of the following: In how many

ways can n counters (undistinguishable from each other) be distributed

into m boxes ? And the following will now be easily proved : The

number of ways of distributing undistinguishable counters into b boxes
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is I—i)6+c_i, if any box or boxes may be left empty. But if there

must be i at least in each box, the number of ways is (6— i)e_i; if

there must be 2 at least in each box, it is (6— I)e_^_l ; if there must

be 3 at least in each box, it is (6— i)c_2fr-i ; and so on.

The number of ways in which m odd numbers can be put together

to make n, is tlie same as the number of ways in which m even numbers

(o included) can be put together to make n—m ; and this is the number

of ways in which m numbers (odd or even, o included) can be put

together to make -(n—m). Accordingly, the number of ways in which
2

m odd numbers can be put together to make n is the same as the

number of combinations of m—i things out of -(w— »») + »»— i, or

-(w+m)— I. Unless n and m be both even or both odd, the problem

is evidently impossible.

There are curious and useful relations existing between nimibers ol

combinations, some of which may readily be exhibited, under the simple

expression of m„ to stand for the number of ways in which m things

may be taken out of n. Suppose we have to take 5 out of 12 : Lot

the 12 things be marked a, b, c, &c. and set apart one of them, a.

Every collection of 5 out of the 12 either does or does not include a.

The number of the latter sort must be 5^; the number of the former

sort must be 4^, since it is the number of ways in which the otherfour

can be chosen out of all but a. Consequently, S12 ™ust be 5ii+4n»

and thus we prove in every case,

mn — mn-l-r{m— 1 )n-l

o„ and n„ both are i ; for there is but one way of taking none^ and

but one way of taking all. And again «i„ and (n—m)n are the same

things. And if m be greater than n, »w« is o ; tor there are no ways of

doing it. We make one of our precedmg results more symmetrical if

we write it thus,

2'' = o„+i„+2„+....+n„

If we now write down the table of symbols in which the m+ith
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&c.

^1 3i. &c.

^3 33» &C.

number of the nth row represents m„^ the

number of combinations ofm out of w, we

see it proved above that the law of for-

mation of this table is as follows : Each

number is to be the sum of the number&c. I&c. &c, &c. &c.

above it and the number preceding the number above it. Now, the

first row must be i, i, o, o, o, &c. and the first column must te i, i, i, i,

&c. 80 that we have a table of the following kind, which may be carried

as far as we please

:

o I 2 3 4 5 6 7 8 9

I I O

2 2 I .0

3 3 3 1

4 4 6 4 I

5 5 lO 10 5 1

6 6 15 20 15 6 I

7 7 21 35 35 21 7 I

8 8 28 56 70 56 28 8 1

9 9 36 84 126 126 84 36 9 I

lO lO 45 120 210 252 210 120 45 10

Thus, in the row 9, imder the column headed 4, we see 126, which

is 9x8x7x6-^(1x2x3x4), the number of ways in which 4 can be chosen

out of 9, which we represent by 49.

If we add the several rows, we have i+i or 2, 1+2+ 1 or 2^, next

1+3+3+1 or 2^, &c. which verify a theorem already announced; and the

law of formation shews us that the several columns axe formed thus

:

I I

I I

121
I 2

I 3 3 I

I 3 3

121 1331 1464 I, &c.

so that the sum in each row must be double of the sum in the precedinij;.

But we can carry the consequences of this mode of formation further.

If we make the powers of i+a- by actual algebraical multiplication, we
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see that the process makes the same oblique addition in the formation

of the numerical multipliers of the powers ot r.

Here are the second and third powers of i-vx : the fourth, we can tell

beforehand from the table, must be i+^je+Sai^+^j^+a* ; and so on.

Hence we have

(l+.2')" = 0„+l^+2^+2nX^+..'-+n„X'*

which is usually written with the s3Tiibol8 o„, i„, &c. at length, thus,

(i+xY = i+nx+n x^+n x^+Scc.
2 23

This is the simplest case of what in algebra is called the binomial

theorem. If instead of i+x we use x+a, we get

(^f«)" = x"+i„ax''-^+z„a^x"-^+ina^x"-^+....+nna"

We can make the same table in another form. If we take a row of

ciphers beginning with unity, and setting down the first, add the next,

and then the next, and so on, and then repeat the process with one

step less, and then again with one step less, we have the following

:

I n

I I I I I I 1

I 2 3 4 J 6

^ 3
6 10 T5

I A 10 20

I 5 15

I 6

In the oblique columns we see i i, i 2 i, i 3 3 i, &c. the same as in

the original table, and formed by the same additions. If, before making
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the additions, we had always multiplied by a, we should have got the

several components of the powers of i+a, thus.

o o o o

a d^ a^ a'

za 3«2 ^^

Za ea^

.4«

where the oblique columns i+a, i+za+a\ i+^a+^a^+a^ &c., give the

several powers of ifa. If instead of beginning with i, o, o, &c. we

had begun with p, o, o, &c. we should have got p, ^0x4^, px6a^, &c.

at the bottom of the several columns ; and if we had written at the

top .r^, a;\ j?^, j?, i, we should have had all the materials for forming

p{je+ay by multiplying the terms at the top and bottom of each column

together, and adding the results.

Suppose we follow this mode of forming j9(a?+a)^+j(a?+a)-+r(j?+a)+*.

ar^ a; I x i 1

5^ o o r o 3

q qa qa^ r ra

q zqa r

9

pa^+ T^paa^-k-zpara^+pe^+qa^+zqax+qa^+ra^+ra+s

— pa^+('ipa+q) r^+( zpa^+2qa+r)a;-i^pa^+qa"+ra'rs

Now, observe that all this might be done in one process, by entering

q, r, and * under their proper powers of a; in the first process, as follows •

x^ or X I

p q r 8

p pa+q pa"+qa+r pa^+qar+ra+s

p 2pa+q 3^a-+2ya^ r

p 3pa+q
f

P
t2

*3 a=- X I

p

p pa pd^ pa^

p zpa Zpa'

p Zpa

p
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This process* is the one used in Appendix XI., with the slight altera-

tion of varying the sign of the last letter, and making subtractions

'

instead of additions in the last column. As it stands, it is the most

convenient mode of writing w+a instead of j? in a large class of alge-

braical expressions. For instance, what does zx^+x^+^^'^+ja^+g become

when ir+5 is written instead of d? ? The expression, made complete, is,

zx^ + la* + oa^ + 3^- + 70? + 910375
278 1397 6994

1078 6787

z II 55

z 21 160

z 31 315

z 41 520

^ 51

Answer^ zx^-\-^ia^+^203^+z6^ia^+6'j2>'jx-{-6g<)^

APPENDIX XL

ON HORNER'S METHOD OF SOLVING EQUATIONS.

TiiK rule given in this chapter is inserted on account of its excellence

as an exercise in computation. The examples chosen will require but

little use of algebraical signs, that they may be understood by those who

know no more of algebra than is contained in the present work.

To solve an equation such as

zx*+x^—ix = 416793,

or, as it is usually written,

2<r*+a?^—3J?—416793 = o,

we must first ascertain by trial not only the first figure of the root, but

also the denomination of it : if it be a 2, for instance, we must know

whether it be 2, or 20, or 200, &c., or '2, or "02, or "002, &c. This must

• The principle of this mode of demonstration of Horner's method was stated in

Young's Algebra (1823), being the earliest elementary work In which that method

was given.
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be found by trial ; and the shortest way of making the trial is as follows:

Write the expression in its complete form. In the preceding case the

form is not complete, and the complete form is

aj?*+c.t'3+ lar^— 3J?—41 6793.

To find what this is when x is any number, for instance, 3000, the best

way is to take the first multiplier (2), multiply it by 3000, and take in

the next multiplier (o), multiply the result by 3000, and take in the

next multiplier (i), and so on to the end, as follows :

2x3000+0 = 6000 ; 6000x3000+1 = 1800000

1

18000001x3000—3 = 54000002997

54000002997x3000—416793 = 162000008574207

Now try the value of the above when x — 30. We have then, for the

steps, 60 (2x30+0), 1801, 54027, and lastly,

1620810-416793,

or J? = 30 makes the first terms greater than 416793. Now try jr = ao

which gives 40, 801, 160 17, and lastly,

320340-416793,

or X — 20 makes the first terms less than 416793. Between 20 and 30,

then, must be a value of of which makes 2x*+a^—^x equal to 416793.

And this is the preliminary step of the process.

Having got thus far, write down the coefiicients J-s, o, -ri, —3, and

—416793, each with its proper algebraical sign, except the last, in which

let the sign be changed. This is the most convenient way when the

last sign is —. But if the last sign be +, it may b more con venient

to let it stand, and change all which come before. Thus, in solving

a?^— i2j?+i = o, we might write

—I o +12 I

whereas in the instance before us, we write

+2 o +1 —3 416793

Having done this, take the highest figure of the root, properly named,

which is 2 tens, or 20. Begin with the first column, multiply by 20,
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and join it to the number in the next column ; multiply that by 20,

and join it to the number in the next column ; and so on. But when you

come to the last column, subtract the product which comes out of the

preceding column, or join it to the last column after changing its sign.

When this has been done, repeat the process with the numbers which

now stand in the columns, omitting the last, that is, tlie subtracting

step ; then repeat it again, going only as far as the last column but two,

and so on, until the columns present a set of rows of the following ap-

pearance :

a b c d e

f g h i

k I m

n

P

to the formation of which the following is the key

:

/= zoa+b, g = 20/+ c, A = 20^+rf, t = e-2oA,

A: = 2oa+/, l^'i.ok-kg^ m = 2o/+7i,

n = 2oa+Ar, = 20W+ /,

p = 2oa+n.

We call this Horner''s Process^ from the name of its inventor. The

result is as follows

:

201-3 416793 (20

40 801 16017 96453

80 2401 64037

120 4801

160

We have now before us the row

2 160 4801 64037 96453

which fiimishes our means of guessing at the next, or units' Hgure of the

root.

Call the last column the dividend^ the last but one the divisor^ and

all that come before antecedents. See how often the dividend contains

the divisor; this gives the guess at the next figure. The guess is a true
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one,* if, on applying Homer's process, the divisor result, augmented as

it is by the antecedeirt processes, still go as many times in the dividend.

For example, in the case before us, 96453 contains 64037 once ; let i

be put on its trial. Horner's process is found to succeed, and we have

for the second process,

a 160 4801 64037 96453

162 4963 69000 27453

164 5127 74127

166 5293

168

As soon as we come to the fractional portion of the root, the process

assumes a more+ methodical form.

The equation being of the fourth degree, annex four ciphers to the

dividend, three to the divisor, two to the antecedent, and one to the

previous antecedent, leaving the first column as it is ; then find the new

figure by the dividend and divisor, as before,J and apply Homer's pro-

cess. Annex ciphers to the results, as before, and proceed in the same

way. The annexing of the ciphers prevents our having any thing to do

with decimal points, and enables us to use the quotient-figures without

paying any attention to their local values. The following exhibits the

whole process from the beginning, carried as far as it is here intended

to go before beginning the contraction, which will give more figures, as

in the rule for the square root. The following, then, is the process as

far as one decimal place

:

* Various exceptions may arise when an equation has two nearly eqxial roots.

But I do not here introduce algebraical diflSculties ; and a student might give himself

a hundred examples, taken at hazard, without much chance of lighting upon one

which gives any difficulty.

+ This form might be also applied to the integer portions ; but it is hardly needed

in such instances as usually occur. See the article Involution and Evolution in the

Supplement to the Penny Cyclopcedia.

X After the second step, the trial will rarely fail to give the true figure.



214 APPENDIX.

o I -3 416793(21 3

40 801 16017 964S3
Ho

120

160

2401

4801

64037

690CO

274530000

47339778

4963 74127C00

162

164

166

51^7

529300
75730074

77348376

1680
534358

539434
r686 544528

1692

1698

1704

If we now begin the contraction, it is good to know beforehand on

what number of additional root-figures we may reckon. We may be

pretty certain of having nearly as many as there are figures in the divisor

when we begin to contract—one less, or at least two less. Thus, there

being now eight figures in the divisor, we may conclude that the con-

traction ^vill give us at least six more figures. To begin the contraction,

let the dividend stand, cut off one figure from the divisor, two from the

column before that, three from the one before that, and so on. Thus,

our contraction begins with

|ooo2 i[704 5445]28 7734837[6 47339778

The first column is rendered quite useless here. Conduct the process

as before, using only the figures which are not cut oflF. But it will be

better to go as far as the first figure cut oif, carrying from the second

figure cut off. We shall then have as follows

:

I 704 5445p8 7734837
• c^cc

^ 77675705455
5465

5475

7 7800364

6 47339778(6

6 734354

At the next contraction the column 1I704 becomes I00X704, and ia quite

useless. The next step, separately written (which is not, however, neces-

sary in working), is
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541759 78003648 734354(0

Here the dividend 734354 does not contain the divisor 780036, and we,

therefore, write o as a root figure and make another contraction, or begin

with

I,54759 78003
7800S
7S013

648

5

4

734354(9
32277

At the next contraction the first column becomes 100547 59, and is quite

useless, so that the remainder of the process is the contracted division.

7801 34)32277(4137
1072
292
58

3

and the root required is 2i'36o94i37.

I now write down the complete process for another equation, one

root of which lies between 3 and 4 : it is

•loai'+i

30
31

32

33 o

33 I

33 2

33 300
33 30 3

9 33 30 6

9 33 30 90

9 33

9 33

09I33 17

— 10
— I

1700

1791
1S8300

189231
190163C0

19025631
19034963CO o o

1903524299 o 9
1903552298 2700
1903560698 o 5

1903569097 8 5

1903569144 5 2

1903569191 I

1903569193 o

1903569194I9

—
1( 3" 1 1 10390520730990796
2000
209000
19769000
743369000000
172311710273000

991247447681
39462875420
1391491559
58993123
1886047
172835

1515
183
1%
I

The student need not repeat the rows of figures so far as they come

under one another : thus, it is not necessary to repeat 190356. But he

must use his own discretion as to how much it would be safe for him

to omit. I have set down the whole process here as a guide.
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The following examples will serve for exercise:

1. 2.t^—locr—7 = o a?= 7"io58ii33.

2. a^*-ta!^+a;^+x = 6ooo j? = 8-531437726.

3. «^+3<r'—4<r— 10 = o a? = 1-895694916504.

4. a?^+iood;-2—5jp—2173 = o .T = 4-582246071058464,

6. v2 = 1*259921049894873164767210607278.*

6. J?''—6a?= 100 d? = 5-071351748731.

7. <2'^+2a?'^+3,r = 300 0? = 5-95525967122398.

8. ar^+x = 1000 X = 9-96666679.

9. 27oooa?^+270ooa^ = 26999999 ^ ~ 9*9666666

10. tT^—6a? = 100 x= 5-0713517487.

11. ar*—4<r'*+7J?^—863 = a? = 4-5195507.

12. x^—%ox-V% = 0? = 4-66003769300087278,

13. .2?^+a''+d?— 10 = o 07=1-737370233.

14. a^—46^?^^—36d?+i8 = X = 46*7616301847, or a- = -3471623191.

15. jr'+^6j;'2—360?— 18 = d? = 1*1087925037.

16. 899:0?^— i62838A'^+74627i.r—81000 = d?=*iii222333444555.,. ..,

17. 729<r3—486d:'^+99J?—6 =0 a? = •iiii..., or •2222.,.., or '3333 ,.,

.

18. 2d?^+3<2'2—40? = 500 X = 5-93481796231515279.

19. a'^+2a?''+a?— 150 = o .t- = 4-668409014554198325374299120170589^.

20. o^-^rx = a?^+5oo x = 8-240963558144858526963.

21. d?^+2af'+3ar—loooo = x = 20*852905526009.

22. 4?*—4J*—2000 = X = 4-581400362,

23. lOiF^— 330?^— iij-— 100 = X = 4*146797808584278785.

24. x*+x^+x'^+x = 127694 X = 18*64482373095.

25. ioa?3+iia?2+i2a' = looooo a? = 21*1655995554508805.

26. x^-i-x =13 X = 2*209753301208849.

27. x^+x^—/^—i6oo = x= 11*482837157.

28. x^-zx = 5

X = 2*094551481542326591482386540579302963857306105628239.

• The solution of jfl+Ox^+Ox—i — 0.
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29. a?*—8o^3+24u?^—6j7—80379639 = X = 123,*

30. 0?^—242a?''^—63i5a?+2577096 = a' = 123.*

31. 20?*—3a?'+6a'—8 = o J? = i'4i42i35623730950488o3.*

32. a?^— 19^^+1 32a?*'*—302a'+2oo = o x= 1*02804, 014, or 6-57653, ar

7*39543t.

33. 'jx*—iix^+6x'^+sx = 21$ 4: = 27o648o4938579i.t

34. 7jrV6^*+5<r'+4a?'^+3<r = 11 j; =«7707688i9622658522379296505.t

35. 4<*^+7J?*+9d?*+6j?34.5^2^3^ = 792

j?=2'052042i768796o53652i40434oi28i2oi97346o27559954554i7242i4.+

36. 2187^?*—24303^+9454?^—150^+8 = o a? = *iiii..., or "2222 , or

•3333...., or -4444....

APPENDIX XII.

RULEi FOR THE APPLICATION OF ARITHMETIC TO GEOMETRY.

The student should make himself familiar with the most common terms

of geometry, after which the following rules will present no difficulty.

In them all, it must be understood, that when we talk of multiplying

one line by another, we mean the repetition of one line as often as

there are units of a given kind, as feet or inches, in another. In any

other sense, it is absurd to talk of multiplying a quantity by another

quantity. All quantities of the same kind should be represented in

numbers of the same unit ; thus, all the lines should be either feet

and decimals of a foot, or inches and decimals of an inch, &c. And

in whatever unit a length is represented, a surface is expressed in the

corresponding square units, and a solid in the corresponding cubic units.

This being understood, the rules anply to all sorts of units.

To find the area of a rectangle. Multiply together the units in

• These examples are taken from a paper on the subject, b)- Mr. Peter Gray, in

the Mechanics' Magazine.

t These examples are taken from the late Mr. Peter Nicholson's Essay on Invo-

lution and Evolution.
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two sides which meet, or multiply together two sides which meet ; the

product is the number of square units in the area. Thus, if 6 feet and

5 feet be the sides, the area is 6. 5, or 30 square feet. Similarly, the

area of a square of 6 feet long is 6x6, or 36 square feet (234).

To find the area of a parallelogram. Multiply one side by the per-

pendicular distance between it and the opposite side ; the product is the

area required in square units.

To find the area of a trapezium.* Multiply either of the two sides

which are not parallel by the perpendicular let fall upon it from the

middle point of the other.

To find the area of a triangle. Multiply any side by the perpen-

dicular let fall upon it from the opposite vertex, and take half the

product. Or, halve the sum of the three sides, subtract the three sides

severally from this half sum, multiply the four results together, and find

the square root of the product. The result is the number of square

units in the area ; and twice this, divided by either side, is the perpen-

dicular distance of that side froni its opposite vertex.

Tofind the radius of the internal circle which touches the three sides

of a triangle. Divide the area, found in the last paragraph, by half the

sum of the sides.

Given the two sides of a right-angled triangle, tofind the hypothenuse.

Add the squares of the sides, and extract the square root of the sum.

Given the hypothenuse and one of the sides, to find the other side.

Multiply the sum of the given lines by their difference, and extract the

square root of the product.

To find the circumference of a circle from its radius, very nearly.

Multiply twice the radius, or the diametor, by 3* 141 5927, taking as

many decimal places as may be thought necessary. For a rough com-

putation, multiply by 22 and divide by 7. For a very exact computation,

in which decimals shall be avoided, multiply by 355 and divide by 113.

See (131), last example.

To find the arc of a circular sector, very nearly, knowing the radius

• A four- sided figure, which has two sides parallel, and two sides not paraileL
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and the angle. Turn the angle into seconds,* multiply by the radius,

and divide the product by 206265. The result will be the number of

units in the arc.

To find the area of a circle from its radius^ very nearly. Multiply

the square of the radius by 3-1415927.

Tofind the area of a sector, very nearly, knowing the radius and the

angle. Turn the angle into seconds, multiply by the square of the

radius, and divide by 206265x2, or 412530.

To find the solid content of a rectangular parallelepiped. Multiply

together three sides which meet : the result is the number of cubic miits

required. If the figure be not rectangular, multiply the area of one

of its planes by the perpendicular distance between it and its opposite

plane.

To find the solid content of a pyramid. Multiply the area of the

base by the perpendicular let fall from the vertex upon the base, and

divide by 3.

To find the solid content of a prism. B-'ultiply the area of the base

by the perpendicular distance between the oijposite bases.

To find the surface of a sphere. Multiply 4 times the square of the

radius by 3*1415927.

To find the solid content ofa sphere. Multiply the cube of the radius

by 3-I4I5927X-, or 4*18879.
3

To find the surface of a right cone. Take half the product of the

circumference of the base and slanting side. To find the solid content^

take one-third of the product of the base and the altitude.

Tofind the surface of a right cylinder. Multiply the circumference

ofthe base by the altitude. To find the solid content, multiply the area

of the base by the altitude.

The weight of a body may be found, when its solid content is known,

if the weight of one cubic inch or foot of the body be known. But it

* The right angle is divided into 90 equal parts called degrees, each degree into

60 equal parts called minutes, and each minute into 60 equal parts called tecortd*.

Thus, 2° 1^' 40" means 2 degrees, 15 minutes, and 40 seconds.
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is usual to form tables, not of the weights of a cubic unit of different

bodies, but of the proportion which these weights bear to some one

amongst them. The one chosen is usually distilled water, and the

proportion just mentioned is called the specific gravity. Thus, the

specific gravity of gold is 19*362, or a cubic; foot of gold is 19*362 times

as heavy as a cubic foot of distilled water. Suppose now the weight of

a sphere of gold is required, whose radius is 4 inches. The content of

this sphere is 4x4x4x4.' 1888, or 268'o832 cubic inches; and since, by

(217), each cubic inch of water weighs 252*458 grains, each cubic inch

of gold weighs 252*458xi9'362, or 4888091 grains; so that 268*0832

cubic inches of gold weigh 268*08 32x4888*091 grains, or 227- pounds
2

troy nearly. Tables of specific gravities may be found in most works

of chemistry and practical mechanics.

The cubic foot of water is 908*8488 troy ounces, 75*7374 troy pounds,

997*1369691 averdupois ounces, and 62*3210606 averdupois pounds.

For all rough purposes it will do to consider the cubic foot of water as

being 1000 common ounces, which reduces tables of specific gravities to

common terms in an obvious way. Thus, when we read of a substance

which has the specific gravity 4*1172, we may take it that a cubic foot

of the substance weighs 4117 ounces. For greater correctness, diminish

this result by 3 parts out of a thousand.

THE END.
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The London Latin Grammar ; including the Eton Syntax
and Prosody in English, accompanied with Notes. Sixteenth Edition. 12mo. Is.Gd.

Robson's Constructive Latin Exercises, for teaching the
Elements of the Language on a System of Analysis and Synthesis ; with Latin
Reading Lessons and Copious Vocabularies. Third and Cheaper Edition, tho-
roughly revised. 12mo. 4s. 6d. cloth.

Robson^s First Latin Reading Lessons. With Complete
Vocabularies. Intended as an Introduction to Caesar. I2mo. 2s. 6d. cloth.

Smith's Tacitus; Germania^ Agricola, and First Book of
the Annals. With English Notes, original and selected, and Botticher's remarks
on the style of Tacitus. Edited by Dr. Wm. Smith, Editor of the Dictionary ol

Greek and Roman Antiquities, etc. Third Edition, greatly improved. 12mo. 68.

Caesar. Civil War. Book I. PVith English A'otes for the
Use of Students preparing for the Cambridge School Examination. 12mo. Is. 6d.

Terence. Andria. With English Notes^ Summaries, and
Life of Terence. By Newenham Tbavebs, B.A., Assistant-Master in University
College School. Fcap. 8vo. 3s. 6d.

HEBEEW.
Hurwitz's Grammar of the Hebrew Language. Fourth

Edition. 8vo. 13s. cloth. Or in Two Parts, sold separately :—Elements. 4s. Gd.

cloth. Etymology and Syntax. 9s. cloth.

FRENCH.
Merlefs French Grammar. By P. F. Merlet, Professor of

French in University College, London. New Edition. 12mo. 5s. 6d. bound.
Or sold in Two Parts:—Pkondnciation and Acciuencb, 3s. 6d.; Syntax, 3s. 6d.

(Key, 3s. 6d.)

Merlet's Le Traducteur ; Selections, Historical, Dramatic,
and Miscellaneous, from the best French WKiTtas, on a plan calculated to

render reading and translation peculiarly serviceable in acquiring the French Lan-
guage ; accompanied by Explanatojy Notes, a Selection of Idioms, etc. Four-
teenth Edition. 12mo. 5s. 6d. bound. *

Merlet's Exei'cises on French Composition. Consisting of
Extracts from English Authors to be turned into French ; with Notes indicathig

the Differences in Style between the two Languages. A List of Idioms, with

Explanations, Mercantile Terms and Correspondence, Essays, etc. 12mo. 3s. 6d.

Merlefs French Synonymes, explained in Alphabetical
Order. Copious Examples (from the " Dictionary of Diflaculties"). 12mo. 28. 6d.

Merlefs Apergu de la Litterature Frangaise. l2mo. 2s. 6d.

Merlet's Stories from French Writers; in French and
English InterUnear (from Merlet's" Traducteur"). Second Edition. 12mo. 2s. cl.
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Lombard De Lues Classiques Frangais, a V Usage de la

Jeunesse Protestante ; or, Selections from the best French Classical Works, pre-
• ceded, by Sketches of the Lives and Times of the Writers. 12mo. 3s. 6d. cloth.

ITALIAN.
Smith's First Italian Course ; being a Practical and Easy

Method of Learning tlie Elements of the Italian Language. Edited from tlie

German of Filippi, after the method of Dr. Ahn. 12mo. 3s. 6d. cloth.

INTERLINEAR TRANSLATIONS.
Jjocke's System of Classical Instruction. Interlinear

Tkanslations. Is. 6d. each.
Latin.

Phaedrus's Fables of ^sop.
Virgil's JEneid. Book I.

Parsing Lessons to Virgil.

Caesar's Invasion of Britain.

Greek.
Lucian's Dialogues. Selections.
Homer's Iliad. Book I.

Xenophon's Memorabilia. Book I.

Herodotus's Histories. Selections.

French.

Sismondi; the Battles of Cressy and
Poictiers.

German.

Stories from Grerman Writers.

Also, to accompany the Latin and Greek
Series.

The London Latin Grammar. 12mo. Is.Gd.

The London Greek Grammar. 12mo. ls.6d.

HISTORY, MYTHOLOGY, AND ANTiaUITIES.
Creasy s {Professor) History of England. With Illustrations.

One Volume. Small 8vo. Uniform with Schmitz's " History of Rome," and Smith's
•' History of Greece." (Preparing).

Schmitz's History of Rome, from the Earliest Times to the
Death of Commodds, a.d. 192. Kinth Edition. One Hundred Engravings.
12mo. 7s. 6d. cloth.

Smith's History of Greece, from the Earliest Times to the
Roman Conquest. With Supplementary Chapters on the History of Literature
and Art. New Edition. One Hundred Engravings on Wood. Large 12mo.
7s. 6d. cloth.

Smith's Smalle?' History of Greece. With Illustrations.
Fcp. 8vo. 3s. 6d. cloth.

Smith's Dictionary of Greek and Roman Antiquities. By
various Writers. Second Edition. Illustrated by Several Hundred Engravings
on Wood. One thick volume, medium 8vo. £2 2s. cloth.

Smith's Smaller Dictionary of Greek and Roman Antiqui-
ties. Abridged from the larger Dictionary. New Edition. Crown Svo.

,
7s. 6d.

cloth.

Smith's Dictionary of Greek and Roman Biography and
Mythology. By various Writers. liledium Svo. Illustrated by numerous E)i-
gravings on Wood. Complete in Three Volumes. Svo. £5 15s. 6d. cloth.

Smith's New Classical Dictionary of Biography, Mythology,
and Geography. Partly based on the " Dictionary of Greek and Roman Biography
and Mythology." Third Edition. 750 Illustrations. Svo. 18s. cloth.

Smith's Smaller Classical Dictionary of Biography^ My-
thology, and Geography. Abridged from the larger Dictionary. Hlustrated by
200 Engravings on Wood. New Edition. Crown Svo. 7s. 6d. cloth.

Smith's Dictionary of Greek and Roman Geography. By
various Writers. Hlustrated with Woodcuts of Coins, Plans of Cities, etc. Two
Volumes Svo. £4. cloth.
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Niebuhr's History of Rome. From the Earliest Times to
the First Punic War. Fourth Edition. Translated by Bishop Thielwall, Auch-
DEACON Hare, Dr. Smith, and Dr. Schmitz. Three Vols. 8vo. £1 16s.

Niehuhr's Lectures on the Historij of Rome. From the
Earliest Times to the First Punic War. Edited by Dr. Schmitz. Third Edition.

8vo. 83.

Newman (F. W.) The Odes of Horace. Translated into
Unrhymed Metres, with Introduction and Notes. Crown 8vo. 5s. cloth.

Newman (F. W.) The Iliad of Homer ^ Faithfully trans-
late^ into Unrhymed Metre. 1 vol. crown 8vo. 6s. 6d. cloth.

Akerman^s Numismatic Manual, or Guide to the Collection
and Study of Greek, Roman, and English Coins. Many Engravings. 8vo. £1 Is.

Ramsay^s (^George) Principles of Psychology, Svo. 1 Os. 6d.

PURE MATHEMATICS.
De Morgan^s Elements of Arithmetic.

Fifteenth Thousand. Royal 12rao. 5s. cloth.

De Morgan^s Trigonometry and Double Algebra.
Royal 12mo. 7s. 6d. cloth.

Ellenherger's Course of Arithmetic^ as taught in the Pes-
talozzian School, Worksop. Post Svo. 5s. cloth.
*^* The Answers to the Questions in this Volume are now ready, price \s. 6d.

Masons First Book of Euclid. Explained to Beginners.
Fcap. Svo. Is. 9d.

Reiner's Lessons on Form ; or, An Introduction to Geo-
metry, as giveu in a Pestalozzian School, Cheam, Surrey. 12mo. 3s. 6d.

Reiner s Lessons on Number, as given in a Pestalozzian
School, Cheam, Suirey. Master's Manual, 5s. Scholar's Praxis, 2s.

Tables of Logarithms Common and Trigonometrical to
Five Places. Under the Superintendence of the Society for the Diffusion of Us^ul
Knowledge. Fcap. Svo. Is. 6d.

Four Figure Logarithms and Anti-Logarithms. On a
Card. Price Is.

Barlow's Tables of Squares, Cubes, Square Roots, Cube
Roots, and Reciprocals of all Integer Numbers, up to 10,000. Royal 12nio. 88.

MIXED MATHEMATICS.
Pottej'^s Treatise on Mechanics, for Junior University

Students, By Richard Potter, M.A., Professor of Natural Philosophy in

University College, London. Third Edition. Svo. 8s. 6d.

Pottei'^s Treatise on Optics. Part I. All the requisite
Propositions carried to First Approximations, with the construction of Optical
Instruments, for Junior University Students. Second Edition. Svo. 9s. 6d.

Potter's Treatise on Optics. Part II. The HigJier Pro-
positions, with their application to the more perfect forms of Instruments. Svo.
128. 6d.

Potter s Physical Optics ; or, the Nature and Properties of
Light. A Descriptive and Experimental Treatise. 100 Illustrations. Svo. 6s. 6d.
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Newth's Mathematical Examples. A graduated series of
Elementary Examples, in Arithmetic, Algebra, Logarithms, Trigonometrj', and
Mechanics. Crown 8vo. Witli Answers. 8s. Gd. cloth.

Sold also in separate Parts, witltout Answers

:

—
Arithmetic. 2s. 6d. I Trigonometry and Logarithms, '2s. 6d.

Algebra, 2s. 6d. | Mechanics, 2s. 6d.

Newth's Elements of Mechanics, including Hydrostatics,
with numerous Examples. By Samuel Newth, M.A., Fellow of University Col-

lege, London. Second Edition. Large 12mo. 7s. Gd. cloth.

Newth's First Book of Natural Philosophj ; or an Intro-
Auction to the Study of Statics, Dynamics, Hydrostatics, and Optics, with numer-
ous Examples. 12mo. 3s. 6d. cloth.

NATURAL PHILOSOPHY, ASTRONOMY, Etc.

Lardner's Museum of Science and Art. Complete in 12
Single Volumes, 18s., ornamental boards ; or 6 Double Ones, £\ Is., cl, lettered.

*#* Also, handsomely hidf-hound morocco, 6 volumes, £1 lis. 6d.

Contents :—The Planets ; are they inhabited Worlds? Weather Prognostics. Po-

pular Fallacies in Questions of Physical Science. Latitudes and Longitudes. Lunar
Influences. Meteoric Stones and Shooting Stars. Railway Accidents. Light. Com-
mon Things.—Air. Locomotion in the United States. Comeiary Influences. Common
Things.—Water. The Potter's Art. Common Things.—Fire. Locomotion and Trans-

port, their Influence and Progress. Tlie Moon. Common Things.—The Earth. The
Electric Telegraph. Terrestrial Heat. The Sun. Earthquakes and Volcanoes. Baro-

meter, Safety Lamp, and Whitworth's Micrometric Apparatus. Steam. The Steam
Engine. The Eye. The Atmosphere. Time. Common Things.—Pumps. Common
Things.—Spectacles— The Kaleidoscope. Clocks and Watches. Microscopic Dra^v^ng

and Engraving. The Locomotive. Thermometer. New Planets.—Leverrier and Adams's
Planet. Magnitude and Mhmteness. Common Things.—The Almanack. Optical

Images. How to Observe the Heavens. Common Things.—The Looking Glass. Stellar

Universe. The Tides. Colour. Common Things.—Man. Magnifying Glasses. In-

stinct and Intelligence. The Solar Microscope. The Camera Lucida. The Magic
Lantern. The Camera Obscura. The Microscope. The White Ants ; their Manners
and Habits. The Surface of the Earth, or First Notions of Geography. Science and
Poetry. The Bee. Steam Navigation. Electro-Motive Power. Thunder, Lightning,
and the Aurora Borealis. The Printing-Press. The Crust of ihe Earth. Comets.
The Stereoscope, The Pre-Adamite Earth. Eclipses. Sound.

Lardners Animal Physics, or the Body and its Functions
familiarly Explained. 520 Illustrations. 1 vol., small 8vo. 12s. 6d. cloth.

Lardners Animal Physiology for Schools {chiefly taken
from the " Animal Physics"). 190 Illustrations. 12mo. 3s. 6d. cloth.

Lardners Hand-Book of Mechanics.
357 niustrations. 1 vol., small Svo., 5s.

Lardners Hand-Book of Hydrostatics, Pneumatics, and
Heat. 292 Illustrations. 1 vol., small 8vo,, Ss.

Lardner's Hand-Book of Optics.
290 Illustrations. 1 vol., small 8vo., 5s.

Lardners Hand-Book of Electricity, Magnetism, and
Acoustics. 395 Illustrations. 1 vol., small Svo. 5s.

Lardner's Hand-Book of Astronomy and Meteorology,
forming a companion work to the " Hand-Book of Natural Philosophy." 37 Plates,
and upwards of 200 Illustrations on Wood. 2 vols., each 5s., cloth lettered.

Lardner^s Natural Philosophy for Schools.
328 Illustrations. 1 vol., large 12mo., 3s. fid. cloth.

Lardner's Chemistry for Schools.
170 Illustrations. 1 vol., large I2mo. 33. 6d. cloth.
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Pictorial Illustrations of Science and Art. Large Printed
Sheets, each containing from Sffto 100 EnRi-aved Figures
Part I. Is. 6(1

1. Mechanic Powers.
2. Machinery.
3. Watch ana Clock Work

Part in. Is. 6d.

7. Hydrostatics.
8. Hydraulics.
9. Pneumatics.

Parr II. Is. 6d.

4. Elements of Machinery.
5. Motion and Force.
6. Steam Engine.

Lardner's Popular Geology. {From " The Museum of
Science and Art.") 201 Illustrations. 2s. 6d.

Lardners Common Things Explained. Containing

:

Air-Earth—Fire—Water—Time—The Almanack—Clocks and Watches—Spec-
tacles—Colour—Kaleidoscope—Pumps—Man—The Eye— The Printing Press—
The I'otter's Art—Locomotion and Transport—The Surface of the Earth, or First
Notions of Geography. (From "The Museum of Science and Art.") With 233
Illustrations. Complete, 5s., clotli lettered.

*»* Sold also in Two Series, 2s. 6d. each.

Lardner''s Popular Physics. Containing: Magnitude and
Minuteness—Atmosphere—Thunder and Lightning—Terrestrial Heat—M-teoric
Stones—Popular Fallacies—Weather Prognostics—Thermometer— Barometer

—

Safety Lamp — Whitwortli's Micrometric Apparatus— Electro-Motive Power—
Sound—Magic Lantern—Camera Obscura—Camera Lucida—Looking Glass—Ste-
reoscope -Science and Poetry. (Fi-ora " The Museum of Science and Art.") With
85 Illustrations. 2s, 6d. cloth lettered.

Lardners Popular Astronomy. Containing : How to
Observe the Heavens—Latitudes and Longitudes— The Earth—The Sun—The
Moon—The Planets: are tlicy Inhabited?—The New Planets—Leverrier and
Adams's Planet—The Tides—Lunar Influences—and tlie Stellar Universe—Light
—Comets—Cometary Influences—Eclipses— Terresti'ial Rotation— Lunar Rota-
tion—Astronomical Instruments. (From "The Museum of Science and Art.")
182 Illustrations. Complete, 4s. 6d. clotli lettered.

*** Sold also in Two Series, 2s. Gd. and 2s. each.

Lardner on the Microscope. {From *' The Museum of
Science and Art.") I vol. 147 Engravings. 23.

Lardner on the Bee and White Ants; their Manners
and Habits; with Illustrations of Animal Instinct and Intelligence. (From " The
Museum of Science and Art.") I vol. 135 Illustrations. 2s., cloth lettered.

Lardner on Steam and its Uses ; including the Steam
Engine and Locomotive, and Steam Navigation. (From " The Museum of Science
and Art.") I vol., with 89 Illustrations. 2s.

Lardner on the Electric Telegraph, Popularised. fVith
100 lUnstrations. (From "The Museum of Science and Art.") 12mo., 250 pages.
28.. cloth lettered.

*^* Thefollowing Works from " Lardner's Museum of Science and Art," may
also be had arranged as descnbed, handsomely halfbound morocco, cloth sides.

Common Things. Two series in one vol 7s. 6d.
Popular Astronomy. Two series in one vol 7s. Od.
Electric Telegra])h, with Steam and its Uses. In one vol. . 7s. Od.
Microscope and Popular Physics. In one vol 7s. Od.
Popular Geology, and Bee and White Ants. In one vol. . 7s. 6d.

Lardner on the Steam Engine, Steam Navigation, Roads,
and Railways. Explained and Illustrated. Eighth Edition. With numerous Illus-
trations. 1 vol. large 1 2mo. 8s. 6d.

A Guide to the Stars for every Night in the Year. In
Eight Planispheres. With an Introduction. 8vo. 6s., cloth.

Minasi's Mechanical Diagrams, For the Use of Lee-
turers and Schools. 15 Sheets of Diagrams, coloured, 15s., illustrating the follow-
ing subjects: 1 and 2. Composition of Forces.—3. Equilibrium.—4 and 5. Levers.
—6. Steelyard, Brady Balance, and Danish Balance.—7. Wheel and Axle.—8.

Inclined Plane.—9, 10, 11. Pulleys.— 12. Hunter's Screw.—13 and 14. Toothed
Wheels.—15. Combination of the Mechanical Powers.
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LOGIC.

De Morgaris Formal Logic; or. The Calculus of Inference^
Necessary and Probable. 8vo. 6s. 6d.

NeiVs Art of Reasoning: a Popular Exposition of the
Principles of Logic, Inductive and Deductive; with an Introductory Outline of
the History of Logic, and an Appendix on recent Logical Developments, with
Notes. Crown 8vo. 4s. 6d., cloth.

ENGLISH COMPOSITION.
NeiVs Elements of Rhetoric ; a Manual of the Laius of

Taste, including the Theory and Practice of Composition. Crown 8vo. 4s. 6d., cl.

DRAWING.
Lineal Drawing Copies for the earliest Instruction. Com-

prising upwards of 200 sutjects on 24 sheets, mounted on 12 pieces of thick paste-
board, in a Portfolio. By the Author of " Drawing for Young Children." 6s. 6d.

Easy Drawing Copies for Elementary Instruction. Simple
Outlines without Perspective. 67 subjects, in a Portfolio. By the Author of
" Drawing for Young Children." 6s. 6d.

Sold also in Two Sets.

Set I. Twenty-six Subjects mounted on thick pasteboard, in a Portfblio. 3s. 6d.
Set II. Forty-one Subjects mounted on tliick pasteboard, m a Portfolio. 3s. 6d.
The copies are suflficiently large and bold to be drawn from by forty or fifty children

at the same time.

SINGING.
A Musical Gift from an Old Friend, containing Twenty-

four New Songs for the Young. By W. E. Hickson, author of the Moral Songs of
" The Singing Master." Svo. 2s. 6d.

The Singing Master. Containing First Lessons in Singing,
and the Notation of Music ; Kudiments of the Science of Harmony ; The First
Class Tune Book; The Second Class Tune Book; and the Hymn Tune Book.
Sixth Edition. Svo. 6s., cloth lettered.

Sold also in Five Parts, any of which may be had separately,

I.

—

First Lessons in Singing and the Notation of Music.
Containing Nineteen Lessons in the Notation and Art of Reading Music, as adapted
for the Instruction of Children, and especially for Class Teaching, with Sixteen
Vocal Exercises, arranged as simple two-part harmonies. Svo. Is., sewed.

II.

—

Rudiments of the Science of Harmony or Thorough
Bass. Containing a general view of the principles of Musical Composition, the
Nature of Chords and Discords, mode of applying them, and an Explanation of
Musical Terms connected with this branch of Science. Svo. Is., sewed.

III.

—

The First Class Tune Book. A Selection of Thirty
Single and Pleasing Airs, arranged with suitable words for yoimg children. Svo.
Is., sewed.

Iy.

—

The Second Class Tune Book. A Selection of Vocal
Music adapted for youth of different ages, and arranged (with suitable words) as
two or three-part harmonies. Svo, Is. 6d.

V.

—

The Hymn Tune Book. A Selection of Seventy
popular Hymn and Psalm Tunes, arranged -with a view of facilitating the progress
of Children learning to sing in parts. Svo. Is. 6d.

*»* The Vocal Exercises, Moral Songs, and Hymns, with the Music, may also be had,
printed on Cards, price Twopence each Card, or Twenty-five for Three Shillings.
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CHEMISTRY.
Gregori/s Hand-Book of Chemistry. For the use of

Students. By William Geegory, M.D., late Professor of Chemistry in the
University of Edinburgh. Fourth Edition, revised and enlarged. lllu.strated by
Engravings on Wood. Complete in One Volume. Large 12mo. I8s. cloth.

*»* The Work may also be hud in two Volumes, as under.
* Inorganic Chemistry. Fourth Edition, revised and enlarged. 6s. 6d. cloth,

OaoANic Chemistry. Fourth Edition, very carefully revised, and gieatly
enlarged. 12s., cloth.

(Sold separately.)

Chemistry for Schools. By Dr. Lardner. 190 AliLStra-
tions. Large 12mo. 3s. 6d. cloth.

Liebig's Familiar Letters on Chemistry, in its Relations
to Physiology, Dietetics, Agi-iculture, Commerce, and Political Economy. Fourth
Edition, revised and enlarged, with additional Letters. Edited by Dr. Blytu.
Small 8vo. 7s. 6d. cloth.

Liehig^s Letters on Modern Agriculture, Small Svo. 6s.

Liehig's Principles of Agricultural Chemistry ; with Special
Reference to the late Researches made in England. Small 8vo. 38. Cd., cloth.

Liebig's Chemistry in its Applications to Agriculture and
Physiology. Fourth Edition, revised. Svo. 6s. 6d., cloth.

Liebig^s Animal Chemistry ; or, Chemistry in its Appli-
cation to Physiology and Pathology. Third Edition. Part I. (the first half of the
work). Svo. 6s. 6d., clotii.

Liebig's Hand-Book of Organic Analysis ; containing a
detailed Account of the various Methods used in determining the Elementary
Composition of Organic Substances. Illustrated by 85 Woodcuts. 12mo. 5s., cloth.

Bunsen's Gasometry ; comprising the Leading Physical and
Chemical Properties of Gases, together with the Methods of Gas Analysis. Fifty-

nine Illustrations. Svo. 8s. 6d., cloth.

W'ohlers Hand-Book of Inorganic Analysis ; One Hundred
and Twenty-two Examples, illustrating the most important processes for deter-

mining the Elementary composition of Mineral substances. Edited by Dr. A. W.
HoFMANN, Professor in the Royal College of Chemistry. Large 12rao.

Parnell on Dyeing and Calico Printing. (Reprinted from
Parnell's " Applied Chemistry in Manufactures, Arts, and Domestic Economy,
1844.") With Illustrations. Svo. 78., cloth.

/ GENERAL LITERATURE.
De 'Morgans Book of Almanacs. With an Index of

Reference by which the Almanac may be found for every Year, whether in Old
Style or New, fVom any Epoch, Ancient or Modem, up to a.d. 2000. With means
of finding the Day of New or Full Moon, from b.c. 2000 to a.d. 2000. 6s., cloth

lettered.

Guesses at Truth. By Two Brothers. New Edition.
With an Index. Complete 1 vol. Small Svo. Handsomely bound in cloth with

red edges. lOs. 6d.

RudalVs Memoir of the Rev. James Crabb ; late of South-
ampton. With Portrait. Large 12mo., 6s., cloth.

Herschell (R.H). The Jews; a brief Sketch of their

Present State and Future Expectations. Fcap. Svo. Is. 6d., cloth.
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