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PREFACE.

THE history of Chemistry as an exact science may be said to

date from Lavoisier, who first used the balance in investigating

chemical phenomena, and the progress of the science since his

time has been owing, in great measure, to the improvements

which have been made in the processes of weighing and measur-

ing small quantities of matter. These processes are now the

chief instruments in the hands of the chemical investigator, and

it is evidently essential that he should be familiar with the causes

of error to which they are liable, and should be able to deter-

mine the degree of accuracy of which they are capable. All this,

however, requires a theoretical knowledge of the principles which

the processes involve ; and the chemical investigator who, without

it, relies on mere empirical rules, will be exposed to constant

error.

This volume is intended to furnish a full development of

these principles, and it is hoped that it will serve to advance

the study of chemistry in the colleges of this country. In order

to adapt the work to the purposes of instruction, it has been pre-

pared on a strictly inductive method throughout ; and any stu-

dent who has acquired an elementary knowledge of mathematics

will be able to follow the course of reasoning without difficulty.

So much of the subject-matter of mechanics has been given at

the beginning of the volume as was necessary to secure this

object ;
and for the same reason, each chapter is followed by a

large number of problems, which are calculated, not only to test

the knowledge of the student, but also to extend and apply
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IV PREFACE.

the principles discussed in the work. Regarding a knowledge
of methods and principles as the primary object in a course of

scientific instruction, the author has developed several of the

subjects to a much greater extent than is usual in elementary

works, solely for the purpose of illustrating the processes and the

logic of physical research. Thus, the means of measuring tem-

perature and the defects of the mercurial thermometer have been

described at length, in order to show how rapidly the difficulties

multiply when we attempt to push scientific observations beyond
a limited degree of accuracy ;

so also the history of Mariotte's

law has been given* in detail, for the purpose of illustrating the

nature of a -physical law, and the limitations to which all laws

are more or less liable
;
the condition of salts when in solution,

and the nature of supersaturated solutions, have in like manner

been fully discussed as examples of scientific theories; and, lastly,

the method of representing physical phenomena by empirical for-

mulas and curves, which are the preliminary substitutes for laws,

has been illustrated in connection with Regnault's experiments

on the tension of aqueous vapor.

Although, for the reason just given, it has not been the aim of

the author to make a mere digest of facts, care has been taken

to include the latest results of science, and where it was impos-

sible to enter into details, references are given to the original

memoirs. The author would earnestly recommend the advanced

student to extend his study to these memoirs, and not to spend

much time in reading text-books. All compendiums are unavoid-

ably incomplete. They can only give general results, which are

necessarily stated in definite terms, and are apt to convey a false

notion of the true character of the phenomena and laws of nature.

A student who desires to train his powers of observation cannot

expend labor more profitably than in looking up fully in a large

library one or more of the subjects mentioned above, and reading

all the original memoirs that have been written upon it. It is

only in this way that he can learn what scientific investigation has

really done, as well as what can be expected from it, and can thus

prepare himself to work with advantage in extending the bounda-
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ries of knowledge. Moreover, that peculiar scientific power which

is so essential to the "successful interpretation of natural phenom-

ena can be acquired only at these fountain-heads of knowledge.

In preparing the work, the author has used freely all the ma-

terials at his command. Most of the woodcuts in the book have

been transferred from the pages of different standard works, but

especially from the TraitS de Physique of Ganot. The excel-

lent work of Buff, Kopp, and Zamminer has been repeatedly

consulted, as well as those of Miller, of Graham, of Daguin, of

Jamin, of Mtiller, of Bunsen, of Dana, and of Silliman, and all

that is suitable for the illustration of his subject has been

borrowed from them.* Whenever it was possible, the original

memoirs were consulted, especially those of Regnault in the

twenty-first volume of the Memoires de I'Academic des Scien-

ces. Indeed, this distinguished experimentalist has so greatly

improved the methods of investigation in this department of

Physics, that any text-book on the subject must necessarily be

in. great measure an abstract of his labors.

A large number of valuable tables are included in an Ap-

pendix at the end of the volume. Several of these have

been re-calculated ;
but the rest are selected with care from

standard authors. The authority for each table, and the page

on which the method of using it is described, are given at the

commencement of the Appendix. A list of numerous other

tables distributed through the body of the work will be found,

tinder the word "Tables," in the Index. The author is in-

debted to Captain Charles Henry Davis, Superintendent of

* Buff, Kopp, und Zamminer. Lehrbuch dcr physikalischen und theoretischen

Chemie. Braunschweig, 1857.

Miller. Elements of Chemistry. Part I. Chemical Physics. London, 1855.

Graham. Elements of Chemistry. Vol. I., London, 1850. Vol. IL, 1857.

Daguin. Traite' de Physique. Tom. I. Paris, 1855.

Jamin. Cours de Physique. Tom. I. Paris, 1858.

Miiller. Lehrbuch der Physik und Meteorologie. Braunschweig, 1856.

Bunsen. Gasometry. Translated by Roscoe. London, 1857.

Dana. System of Mineralogy. Vol.1. New York, 1854.

Silliman. First Principles of Physics. Philadelphia, 1859.
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the Nautical Almanac, for the use of a table of logarithms of

natural numbers to four places of decimals, which will be

found sufficient for solving most of the problems in this book.

The greater number of the problems were prepared by the

author ; the rest have been selected from various works, but

especially from Kahl's Aufg-aben aus der Physik, and from the

Appendix to Ganot's Traite de Physique. Solutions of these

problems will be published hereafter, though for an obvious

reason they are not included in this volume. For the purpose

of ready reference, the sections and equations have been num-

bered ; the numbers of sections are given in parentheses, those

of equations in brackets ;
and in order still further to facilitate

reference, a list of the formulae is included in the Index.

Great pains have been taken in the printing of the book to

avoid errors, and the author is under especial obligation to

his friend, Professor Henry W. Torrey, for a careful revision

of the proof-sheets. The difficulties of securing perfect accu-

racy in printing formulae and tables are almost insurmountable,

and many misprints have undoubtedly occurred. Such as may
be discovered will be corrected in the next edition

;
and the

author will feel under obligations to any of his readers who will

have the kindness to send him a note of such as they find.

Although the present volume is a complete treatise in itself

of the principles involved in the processes of weighing and meas-

uring, it is also intended to serve as the first volume of an

extended work on the Philosophy of Chemistry. The arrange-

ment of the chapters and sections has been adopted with this

view, and the inductive method begun in this volume will be con-

tinued through the whole work. The second volume will treat

of Light in its relations to Crystallography (including Mathemat-

ical Crystallography), and also of Electricity in its relations to

Chemistry. The third and last volume will be on Stoichiometry

and the principles of Chemical Classification. This volume is

now in preparation, and will be published next.

J. P.O.
CAMBRIDGE, February 1, 1860.
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PART I.

CHEMICAL PHYSICS

CHAPTER I .

INTRODUCTION.

(1.) Matter, Body, Substance. That of which the universe

consists, which occupies space, and which is the object of our

senses, is named matter. Any limited portion of matter, whether

it be a grain of sand or the terrestrial globe, is called a body ;

and the different kinds of matter, such as iron, water, or air, are

termed substances. The number of distinct substances already
described is exceedingly large ; but they are all formed by the

combination of a few simple substances, called Elements, or else

consist of one element alone. The tendency of science for the

last fifty years has been to increase the number of the elements
;

at present sixty-two are admitted. But those recently discovered

exist only in minute quantities on the surface of the globe, and

appear to play a very subordinate part in the economy of na-

ture. In regard to the essential nature of matter, or of the

elements of which it consists, we have no knowledge ; but we
have observed the properties of almost all known substances,
as well elements as compounds, have studied their mutual rela-

tions and their action on each other, and have discovered many
of the laws which they obey.

(2.) General and Specific Properties. If we study the

properties of iron, we shall find that they may be divided into

two classes
; one class, which iron possesses in common with

all substances
;
the other, which are peculiar to iron, and dis-

tinguish it from other kinds of matter. A mass of iron occupies

space, or, in the language of geometry, possesses extension ;
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it gravitates towards the earth, that is, it has weight. But ev-

ery other substance as well as iron, gases and liquids as well as

solids, possess both extension and weight. Such properties as

these, which are common to all kinds of matter, are called

General Properties. Besides these general properties, iron is

endowed with other qualities, which are peculiar to itself. Thus

iron not only possesses extension, but it has a peculiar crystal-

line form. It not only possesses weight, but every piece of iron

weighs 7.8 times as much as the same bulk of water. It has

also a certain hardness and a familiar lustre. Properties like

the last, which are peculiar to a given substance, and serve to

distinguish it from other kinds of matter, are called Specific

Properties.

(3.) Physical and Chemical Changes. If, next, we study the

various changes to which all substances are liable, we shall find

that they also may be divided into two classes
; first, those

changes by which the specific properties are not altered
; and, sec-

ondly, those by which the specific properties are essentially modi-

fied, and the identity of the substance lost. Thus a mass of copper

may be transported to a distant part of the globe, it may be di-

vided into exceedingly small particle's, it may be melted and cast

into nails, it may be coined
;
but yet, although the position, the

size, or the external shape is thus entirely changed, those quali-

ties which distinguish copper, which make it to be copper, are

not altered. Water may be frozen by cold or converted into

steam by heat, yet the water is not destroyed ;
for if the ice be

melted, or the steam condensed, fluid water reappears, with all

its characteristic properties. A bar of iron, when in contact

with a magnet, becomes itself magnetic, and acquires the power
of attracting small particles of iron. So also a stick of sealing-

wax, if rubbed with a silk handkerchief, becomes electrified, and

endowed with the power of attracting light pieces of paper ;
but

the peculiar properties of iron and sealing-wax are not essentially

modified by these changes. Such changes, which do not destroy

the identity of substance, are called Physical Changes.
On the other hand, if copper filings are heated for some time

in contact with the air, they fall into a black powder (oxide of

copper) ; if heated with sulphuric acid, they are converted into

a blue crystalline solid (sulphate of copper) ;
and in either case

the properties of copper entirely disappear. If steam is passed
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over metallic iron heated to a red heat, it yields a combustible

gas (hydrogen) . If an iron bar is exposed to moist air, it slowly

crumbles to a red powder (iron-rust). If sealing-wax is heated

to a red heat, it burns, and is apparently annihilated
; but, as we

shall hereafter see, it changes by burning into invisible gases

(vapor of water and carbonic acid). Changes like these, by
which the distinguishing properties of a substance are altered,

and the substance itself converted into a different substance, are

called Chemical Changes.

(4.) Physical and Chemical Properties. Corresponding to

the two classes of changes above described are two classes of

properties, into which we may divide the specific properties of a

substance. Those properties which a substance may manifest

without undergoing any essential change itself, or causing any
essential changes in other substances, are generally called Phys-
ical Properties. On the other hand, those properties which " re-

late essentially to its action on other substances, and to the

permanent changes which it either experiences in itself, or which

it effects upon them,"
* are called Chemical Properties. Thus,

among the physical properties of iron we should include its great

tenacity and malleability, its specific gravity, its peculiar lustre,

its great infusibility, the facility with which it may be forged at

a high temperature, its power of transmitting electricity and of

assuming magnetic polarity. Among its chemical properties, on

the other hand, we should enumerate the ease with which it rusts

in the air, the readiness with which it dissolves in dilute acids,

its combustibility in oxygen gas, and many others. This last

class of properties evidently cannot be manifested by iron with-

out its losing its essential properties and ceasing to be iron.

The first class, on the other hand, do not involve any such radi-

cal changes.

(5.) Chemistry and Physics. It is the province of Chemistry
to observe the chemical properties of substances, and to study the

chemical changes to which they are liable. Physics, on the

other hand, deals with the physical properties and the physical

changes of matter. The study of Chemistry involves the discus-

sion of at least three questions in regard to each substance. The
chemist asks, in the first place, What are the specific properties

* Miller's Elements of Chemistry, Part I., page 2.

1*
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of the substance ? in the second place, What are the chemical

changes to which it is liable, or which it is capable of producing'
in other substances ? and, in the third place, What are the

causes of these changes, and according- to what laws do they

take place ? An answer to the first of these questions must ob-

viously be obtained before the chemist can approach the other

two, and indeed the whole of Chemistry is based upon the accu-

rate observation of the specific or distinguishing properties of

substances. These properties, as we have seen, are physical as

well as chemical, and when the substances can only be observed

in a state of chemical rest, the chemist is obliged to depend on

the physical characteristics alone in distinguishing between them
;

and under all circumstances he relies upon these characters to a

greater or less degree. Hence the study of Chemistry necessa-

rily implies some acquaintance with Physics, and a thorough

knowledge of Physics will always be found useful to the investi-

gator of chemical phenomena. There are, however, some portions

of the subject which are more closely connected with Chemistry
than the rest, and which, therefore, it is particularly convenient

to study in connection with this science. This portion of Phys-

ics, which is frequently called Chemical Physics, is the subject of

Part I. of this work. Chemical Physics is entirely an arbitrary

division of the science, including a variety of subjects which are

only grouped together because they are closely connected with

Chemistry in its present condition. It treats more especially of

those physical properties of matter which are used by chemists

in defining and distinguishing substances, and which, therefore,

it is exceedingly important for the student of Chemistry thor-

oughly to understand. It . treats also of the action of heat on

matter, and of the various methods by which the weight and

volumes of bodies, whether solids, liquids, or gases, are accu-

rately measured.

(6.) Force and Law. The axiom, that every change must

have an adequate cause, leads us to refer all the phenomena of

nature to what we term forces ; thus, we refer the falling of

bodies towards the earth to the force of gravitation, the motion

of a steam-engine to the expansive force of heat, and the burn-

ing of a candle to the force of chemical affinity. The only clear

conception of the origin or nature of force to which man can

attain, is derived from studying those limited phenomena of
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matter which can be traced back to human agency. These phe-

nomena, as we are conscious, result from the mysterious action

of mind on matter ;
and we are thus led to infer that the grand

phenomena of nature result in like manner from the action of

the Infinite Mind on matter. In this view, force is only another

name for the volition either of man or of God, and the varied

phenomena of nature are only the manifestations of His all-

pervading will.

A careful study of material phenomena frequently leads us

to the discovery of unexpected analogies between those which

seemed at first sight entirely disconnected. No two phenomena
are apparently less related than the motion of our planet through

space and the falling of a stone to its surface ;
and yet it has

been discovered that all the phases of both phenomena can be per-

fectly explained, by assuming that every particle of matter in the

universe attracts every other particle with a force varying directly

as the mass and inversely as the square of the distance. So also

the ripples on the surface of a still lake have no apparent resem-

blance to the rays of light which play upon them
;
but neverthe-

less it has been found that all the phenomena of light can be

fully explained, by the assumption that they are caused by a sim-

ilar undulatory motion in an ethereal medium. Such generaliza-

tions as these, by which the phenomena of nature are linked

together and in a measure explained, are called laws. A law is

the mode of action of some assumed force ; thus, the law of gravi-

tation is the mode of action of the force of gravitation, and the law

of undulations is the mode of action of the force which produces

light. But if force is, as above considered, a direct emanation of

Divine Power, then law must be regarded as the uniform and

unchanging mode of action of the Divine Mind. It must be no-

ticed, however, that what we call a natural law is merely our
human expression of the Divine mode of action in the universe,
and that this is accurate in proportion to the extent and clear-

ness of our knowledge of the phenomena and of their relations.

The great differences which exist in this respect are implied in

the very language of science. The words hypothesis, theory,
and law stand for the same thing, that is, our conception of the

mode in which God acts in nature, and we use the one or the

other according to our own conviction of the accuracy of our

conception. If we suppose that it is merely possibly correct, or
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only iii part true, we call it an hypothesis or a theory ; but

if we are fully convinced of its truth, we say that it is a law of

nature.

One criterion by which we judge of the correctness of our

ideas of the Divine mode of action in the material universe, and

by which we determine whether a proposed explanation of mate-

rial phenomena should be regarded as an hypothesis, a theory, or

a law of nature, is the completeness with which it explains the

class of phenomena in question. A law of nature must not only

cover all known phenomena of the class, but must also include all

those which may hereafter be discovered, and even predict their

existence before they are actually observed. This has been the

case with the laws of nature already discovered, and with none

more remarkably than with the law of gravitation, which may be

regarded as the most perfect of all. This law was first advanced

by Newton to explain the phenomena of planetary motion then

known, by connecting them with those of falling bodies on the

surface of the earth. As Astronomy advanced, this law was not

only found able to explain all the complicated perturbations of

lunar and planetary motions as they were successively discovered,

but it even went before the observer, and enabled the astronomer

to calculate with absolute exactness the extent and the periods of

these irregularities of motion, although it will require centuries

on centuries to verify his results. The same is also true of the not

less remarkable law of undulations advanced by Huyghens to ex-

plain the comparatively few facts of optics known in his time. As

these facts have been rapidly multiplied by the wonderful discov-

eries of Malus and of Young, the law has not only been found

fully adequate to explain all, but it has also predicted the existence

of phenomena, which, like that of conical refraction, would hardly

have been noticed had they not been thus pointed out. To hy-

potheses and theories we do not look for the sam,e full explana-

tion of all the facts which we require of a law. They are re-

garded as merely provisional expedients in science until the law

shall be discovered, as guesses at truth before the truth is known.

Laws have been said to be the thoughts of God manifested in

nature and expressed in human language. Hypotheses, then,

are our first imperfect comprehensions of these thoughts. They
are also the shadowing forth of laws, and the progress of science

has always been from the dim glimmerings of truth in the
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hypothesis and the theory, to the full light of knowledge in the

law.

Another criterion of the validity of a law, no less important

than the one we have considered, is to be found in the analogies

of nature. The force of analogy is the great directing principle

in the mind of the successful student. It is this which leads

him to pronounce some theories unsound, although apparently

sustained by facts, and to accept others, which, although not fully

verified by experiment, are yet in harmony with the general plan

and order of creation, and with those convictions of the truth

which are based on an enlarged knowledge and an extended ob-

servation of natural phenomena.
In thus defining law as the thoughts of God manifested in na-

ture, and force as the constant action of his infinite will, we must

be careful to remember that this is a conclusion of metaphysical

rather than of physical science. The demonstrations of physical

science unquestionably point to the same result ;
but it is the

goal towards which they tend, rather than one which they have

attained. In the present condition of science, we are obliged to

use language which implies the existence of separate and dis-

tinct forces
; but this is unimportant so long as we keep the truth

in view, and do not allow ourselves to be led into materialism by
the unavoidable imperfections of scientific language.



CHAPTER II.

GENERAL PROPERTIES OF MATTER.

(7.) Essential and Accidental Properties. Of the general

properties of matter, I shall consider in this chapter the follow-

ing, which are common to all bodies, solids, fluids, and gases,

and which it is important for us to study early in our course :

Essential Properties. Accidental Properties.

1. Extension, implying, 4. Weight.

a. Volume. 5. Divisibility.

b. Density. r 6. Porosity.

2. Impenetrability. 7. Compressibility and Expansibility.

3. Mobility. 8. Elasticity.

The first three of these properties are evidently more essential

than the rest. We cannot conceive of a kind of matter which

would be destitute of them. Attempt to conceive of a variety

of matter which would not occupy space, which would not resist

an effort to condense it into a smaller volume, or which would be

incapable of motion, and it will be seen at once that these prop-
erties form an essential part of the very idea of matter. The
last five are as universal properties of matter as the first three ;

but they do not seem to our minds to be so essential, for we can

conceive of matter which would not possess them. It is not

difficult to conceive of matter without weight, so hard as to be

indivisible, at least in a physical sense, without pores, incom-

pressible, and therefore unelastic. Indeed, some physicists refer

the phenomena of light and heat to an imponderable variety of

matter, and the Atomic Theory supposes that the assumed atoms

are indivisible, incompressible, and without pores.

(8.) Extension and Volume. When we say that matter has

extension, we merely mean that it occupies space, and the amount

of space which a given body occupies we call its volume. We
study extension without any reference to the matter of
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which it is a property, and we shall thus arrive at the principles
of Geometry. This science distinguishes three degrees of ex-

tension : the solid, or extension in three dimensions
; the surface,

or extension in two dimensions
;
and the line, or extension in

one dimension. Only the first of these, however, can be said to

be represented in matter, for a surface is only the boundary of a^

solid, and a line the boundary of a surface.

(9.) The Measure of Extension. In order to measure the

Volume of a solid, the Area of a surface, or the Length of a line,

we adopt some arbitrary unit of extension of the same order, and

by the principles of Geometry compare all other extensions with

it. The unit of length is the only one which must be arbitrary,

because we can use a square of this unit in measuring surfaces,

and a cube of this unit in measuring solids. Various units both

of length and of volume have been adopted in different countries.

Of the numerous systems of measure there are two which it is

important for us to study.

ENGLISH SYSTEM OF MEASURES.

(10.) Units of Length. The unit of length which has been

adopted in this country is the same as that of England. It is

called a yard^ and is said to have been introduced by King Henry
the First,

" who ordered that the ulna or ancient ell, which

corresponds to the modern yard, should be made of the exact

length of his own arm, and that the other measures of length
should be based upon it. This standard has been maintained

without any sensible variation, and is the identical yard now used

in the United States, and is declared by an act of Parliament,

passed in June, 1824, to be the standard of linear measure in

Great Britain." * The clause in the act is as follows :

" From and after the first day of May, 1825, [subsequently
extended to the first of January, 1826,] the straight line, or the

distance between the centres of the two points in the gold studs

in the straight brass rod now in the custody of the clerk of the

House of Commons, whereon the words and figures
' Standard

Yard, 1760,' are engraved, shall be the original and genuine
standard of length or lineal extension called a yard ;

and the

* Hunt's Merchant's Magazine, Vol. IV. p. 334.
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same straight line, or distance between the centres of the said two

points in the said gold studs in the said brass rod, the brass being

at the temperature of sixty-two degrees by Fahrenheit's ther-

mometer, shall be and is hereby denominated the i

Imperial

Yard,' and shall be and is hereby declared to be the unit and

only standard measure of extension, wherefrom or whereby all

other measures of extension whatsoever, whether the same be

lineal, superficial, or solid, shall be derived, computed, and ascer-

tained
;
and that all measures of length shall be taken in parts

or multiples or certain proportions of the said standard yard ;

and that one third part of the said standard shall be a foot, and

the twelfth part of such foot shall be an inch ; and that the pole

or perch in length shall contain five and a half such yards, the

furlong two hundred and twenty such yards, and the mile one

thousand seven hundred and sixty such yards."

And the act further declares, that "if at any time hereafter

the said imperial standard yard shall be lost, or shall be in any
manner destroyed, defaced, or otherwise injured, it shall be re-

stored by making, under the direction of the Lords of the Treas-

ury, a new standard yard, bearing the proportion to a pendulum

vibrating seconds of mean time in the latitude of London in a

vacuum and at the level of the sea, as 36 inches to 39.1393

inches."

The event contemplated by the last clause of the act actu-

ally happened in less than ten years after its passage, for the

standard was destroyed by the fire which consumed the Par-

liament House in 1834. It was then found that this clause

was entirely nugatory, and that the country was left without a

legal standard ;
for the restoration of the lost yard could not be

effected with any tolerable certainty in the manner prescribed by

the act. The measurement of the seconds pendulum, which was

made the basis of the peremptory enactment, was executed with

extraordinary precaution and skill by Captain Kater
;
but this

measurement was subsequently found to be incorrect, owing to

the neglect of certain precautions in the determination of the

length of the pendulum, which more recent experiments have

shown to be indispensable. On account of these sources of error,

the yard could not be restored with certainty in the prescribed

manner within one five-hundredth of an inch, an amount which,

although inappreciable in all ordinary measurements, is a large
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error in a scientific standard. The commissioners appointed, in

1838,
" to consider the steps to be taken to restore the lost

standard," recommended the construction of a standard yard, and

four "
Parliamentary copies" from the best authenticated copies

of the imperial standard yard which then existed. They also

prescribed the manner in which the standard and the four Par-

liamentary copies should be preserved, and recommended further

that authenticated copies, prepared with all the refinements of

modern art, should be distributed throughout the realm, and

placed in the custody of certain government officers. The recom-

mendations of this commission have in general been followed,*

and by an act of Parliament, which received the royal assent

July 30, 1855, the restored standard yard was legalized.

The actual standard of length of the United States is a brass

scale eighty-two inches in length, prepared for the survey of

the coast of the United States, by Troughton of London, in 1813,

and deposited in the Office of Weights and Measures at Wash-

ington. The temperature at which this scale is a standard is

62 Fahrenheit, and the yard measure is between the 27th and

63d inches of the scale.f From recent comparisons of this scale

with a bronze copy of the new British standard, presented to the

United States by the British government, it appears that the Brit-

ish standard is shorter than the American yard by 0.00087 of an

inch, a quantity by no means inappreciable. Carefully adjusts

ed copies of the United States standard yard have been prepared,

by the order of Congress, under the direction of Professor A. D.

Bache, Superintendent of Weights and Measures, and distributed

to the different States of the Union ; but up to 1859 the standard

had not been denned by any act of Congress. The subdivisions

and multiples of the yard are given in Table I. at the end of

this volume, with their respective numerical relations.

(11.) Units of Surface and of Volume. All the English
units of surface are squares whose sides are equal to the units of

length, with the exception of a few, which, like the perch or the

acre, are used in the measurement of land, and in other coarse

measurements. The square inch is the most convenient unit of

* Account of the Construction of the New National Standard of Length and of its

principal Copies. By G. B. Airy, Esq., Astronomer Royal. Philosophical Transac-

tion< of the Royal Society of London, Vol. CXLVII. p. 621.

t Report of the Secretary of the Treasury on Weights and Measures, 34th Congress,
3d Session. Ex. Doc. No. 27, 1857.

2
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surface for scientific purposes. The circular inch is also some-

times used by engineers.

When volume can be calculated from linear measurements by

the principles of Geometry, it is usual to estimate it in cubic

yards, cubic feet, or cubic inches, and it is in this way that earth-

work and masonry are measured. In measuring the volume

of gases, liquids, and of many varieties of solids, however, an

arbitrary unit is more frequently employed. Several such units,

entirely independent of each other, were formerly used in dif-

ferent trades ; but the Imperial Gallon, established by an act

of Parliament, has been substituted for all other arbitrary meas-

ures of volume. It is equal to 277.274 cubic inches, and con-

tains ten avoirdupois pounds of water at 62 of the Fahrenheit

thermometer. A table showing the relations of the units both

of surface and of volume, will be found in connection with the

table of linear measure.

FRENCH SYSTEM OF MEASURES.

(12.) History. The decimal metrical system of France origi-

nated with her Revolution. "It is one of those attempts to

improve the condition of human kind, which, should it ever be

destined ultimately to fail, would in its failure deserve little less

admiration than in its success." * Previous to the Revolution,

he metrical system of France was even more complex than that

of England, almost every province having distinct standards of

weight and measure of its own, a condition of things which

was productive of the most serious inconveniences in trade and

commerce. The first effective movement to reform this extreme

diversity was made by Talleyrand in the Constituent Assembly
of 1790, and the new system was developed by a commission

of members of the Academy of Sciences, consisting of Borda,

Lagrange, Laplace, Monge, and Condorcet. In their report,

which appeared in the following year, they proposed that the

ten-millionth part of the quadrant of a meridian of the globe
should be adopted as the basis of a new metrical system, and

called a Metre ; that the subdivisions and multiples of all

measures should be made on the decimal system ; that, in

* Report upon Weights and Measures, by John Quincy Adams, which may be con-

sulted for a full history of this subject.
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order to determine the metre, an arc of the meridian, extend-

ing from Dunkirk to Barcelona, six and a half degrees to the

north and three degrees to the south of the mean parallel of 45,
should be measured, and that the weight of a cubic decimetre of

distilled water at the temperature of melting ice should be deter-

mined and adopted as the unit of weight. They also proposed
a new subdivision of the quadrant into one hundred degrees,

the degree into one hundred minutes, and the minute into one

hundred seconds. This report was accepted, and the execution

of the great work was intrusted to four separate commissions,

including the names of the most celebrated men of science of

France. The measurement of the arc was assigned to De-

lambre and Me'chain, and the determination of the weight of

water to Lefevre-Gineau and Fabbroni.

Delambre met with great difficulties in the measurement of the

French portion of the arc. The work was commenced at the

most violent period of the Revolution, and was repeatedly ar-

rested by the suspicions of the people and the fickleness of the

government. But, after repeated interruptions, the work was

completed in 1796, when the whole of the records of the survey
were submitted to a special commission, consisting of Delambre,

Me'chain, Laplace, and Legendre, of France, Von Swinden, of

Holland, and Trails, of Switzerland, who found the length of

the metre to be 443.259936 lignes.*

The determining of the unit of weight led to a most impor-
tant discovery. The commission discovered that water was most

dense, not, as had been previously supposed, at the temperature
of melting ice, but at a temperature nearly five degrees of the

centigrade scale higher. They therefore determined the weight
of a cubic decimetre of distilled water at its greatest density, and

not, as had been first proposed, at
;
and to this weight was

given the name of Kilogramme. On the 19th of August, 1798,

the original metre and kilogramme were presented, with an ad-

dress, to the two councils of the legislative body.
In order to avoid sources of error which might arise from the

ellipticity of the earth, the measurement of the arc from Dunkirk

to Montjouy (Monjuich), near Barcelona, was subsequently ex-

tended by Biot and Arago, in accordance with the original design

* The French standard then in use.
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of Me*chain, to Formentera, one of the Balearic Isles, so as to com-

prehend an arc of more than twelve degrees between the extreme

stations, which would be almost exactly bisected by the parallel of

45
;

it being well known that from the length of any given arc

which is bisected by the parallel of 45 may be deduced a length

of a quadrant of a meridian, and therefore of the metre, which

would be independent of the earth's ellipticity. The observations

of Biot and Arago were calculated by the same methods prescribed

by Delambre in the previous survey, and the result appeared to

verify the accuracy both of the method and of the original work,
since the length of the metre, which was the result of the entire

arc between Dunkirk and Formentera, was found to be almost

identical with that which had been previously determined. The

perfect accuracy of the base of the French metrical system
seemed thus to be established ; but, unfortunately, later exam-

inations have not verified this conclusion.

In the year 1838, Puissant, who was then engaged in con-

structing the Carte Geographique de la France, announced that

there existed an important error in the calculated length of the

arc of the meridian on which the length of the metre was based,

and that the calculated metre differed from the one ten-millionth

part of the quadrant the metre by definition by -5^Vu of *ne

whole
;
and that the provisional metre hastily adopted on the 1st

of August, 1793, during the heat of the Revolution, and based

on an old measurement of an arc of the meridian by Lacaille,

was in reality more accurate than that which was established by
the labors of the great commission. Puissant's results were sub-

sequently verified by a careful re-examination of the calculations

of the commission, when it appeared that the error he had de-

tected, great as it was, resulted from two greater errors, which

had in part balanced each other in the final result. It was not,

however, thought best to correct the length of the actual metre,

and it still remains the same as that adopted by the commission.

Thus, then, it appears that the metre of France is no less an ar-

bitrary standard of measure than the English yard, and that, like

the last, if destroyed, it cannot be restored in conformity to its

definition. Like all other results of human labor, it bears the

mark of imperfection and fallibility ;
and the singular history

*

* See the Edinburgh Review, Vol. LXXVII. page 228, for a full account of this

subject.
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of the work teaches most impressively the limitation and uncer-

tainty of the best human powers of observation and reasoning.

(13.) Subdivisions and Multiples of the Metre. The subdi-

visions and multiples of the metre are all decimal. The names

of the multiples are derived from the Greek numerals, and

those of the subdivisions from the Latin. They are as fol-

lows :

Measures of Length.

Kilometre = 1000 metres. Metre (m.) = 1.000 metre.

Hectometre= 100 " Decimetre (d. m.) = 0.100 "

Decametre = 10 " Centimetre (c. m.) = 0.010 "

Metre 1 " Millimetre (m.in.)= 0.001 "

In this work, the abbreviations in the table will be used to desig-

nate these units of length.

(14.) Units of Surface and of Volume. The French units of

surface are squares whose sides are equal to the units of length.

They are named squares of these units, and will be designated by
the abbreviations as above with an exponent 2

; thus, 5 m? stands

for five square metres, and 3 cTni? for three square centimetres.

The common French measure of land is the square decametre,

which is called an are, and the names of its decimal multiples
and subdivisions are formed like those of the metre.

The units of volume are in like manner cubes of the units

of length, and are named cubic metres, cubic centimetres, etc.

They will be designated as before, using the exponent 3
; thus,

5 cTm.3 stands for five cubic centimetres. The cubic decimetre is

the common measure of liquids, and is called a litre= 0.001 m:3
.

So also the cubic metre, which is the measure for bulky materials,

such as fire-wood, has received the separate name stere. Both the

litre and the stre have decimal multiples and subdivisions named
like those of the metre. The very simple decimal relations of

the French system render it exceedingly valuable in all scientific

calculations, and it will therefore be exclusively used in this

book. The relation between the French and English units is

given in Table L, and with the aid of the annexed logarithms the

reduction from one to the other can easily be made. A similar

table has also been added, which gives the means of reducing
the metre to several of the most important standards in use on

the continent of Europe.
2*
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The methods of determining approximately length, surface, and

solidity, by means of the units of measure just described, are

known to all who have studied Geometry, and need not there-

fore be described. When great accuracy, however, is required,
as in most scientific investigations, these methods become less

simple, and cannot be fully understood until the student is famil-

iar with the action of heat on matter. This will be described in

the chapter on Weighing and Measuring.

(15.) Density and Mass. The idea of volume involves that

of density, since a given volume may be filled with a greater or

a less amount of matter. The amount of matter contained in a

cubic centimetre of hydrogen gas, for example, is many thousand

times less than that which fills a cubic centimetre of gold. As
used in Physics, the word density means the amount of matter

contained in the unit of volume. This quantity will always be

represented by D.

The amount of matter which a body contains is termed its mass,
and is represented by M. For example, the amount of matter

which the sun, the earth, a locomotive, a cannon-ball, or a grain

of sand contains, is called the mass of that body. When the

body is homogeneous, there is a very simple relation between its

mass and its density. Its density, as we have seen, is the amount

of matter which one cubic centimetre of the body contains. Its

mass is the amount of matter which the whole body contains.

If, then, we represent by Fthe volume of the body, that is, the

number of cubic centimetres which it occupies, it follows that

M=DV. [l.J

This, translated into ordinary language, means that the amount

of matter which a body contains is equal to the amount of matter

which one cubic centimetre of the body contains, multiplied by
the number of cubic centimetres which the body occupies. The

mass of a body is determined from its weight ;
for it will *be

hereafter proved that the weight of a body is proportional to the

amount of matter it contains. It must, however, be carefully

kept in mind, that weight, although proportional to mass, is not

the mass, just as the arc of a circle is an entirely different quan-

tity from the angle which it measures.

From equation [1] we obtain D = =
; that is, the density

is the mass of the unit of volume, or, as above, the amount of
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matter in the unit of volume. In order to estimate mass and

density, we assume a certain amount of matter as a unit of mass

and compare all other amounts with it. When we say that the

mass of a given volume of iron is 10, we mean that the amount

of matter it contains is ten times as great as the amount of matter

contained in this assumed unit of mass. In like manner, when
we say that the density of mercury is equal to 1.386, we mean
that one cubic centimetre of mercury contains 1.386 times as much
matter as the unit of mass. In every case, the numbers express-

ing mass and density stand for units of mass. The unit of mass

is derived from the unit of weight, as will be explained in the

section on Gravitation.

The terms Mass and Density will be constantly used through-
out this work, and their meaning should, therefore, be clearly

impressed upon the mind.

(16.) Impenetrability. Matter not only occupies space, but it

also resists, with differing degrees of force, any attempt to reduce

it into a smaller volume.' Thus, one litre of air can be made to

occupy a volume, so far as we can see, indefinitely smaller, but

only by great mechanical force. This resistance which all bodies

offer to any attempt to condense them, is termed Impenetrability.

PROBLEMS.

1. What is the length of one degree on the meridian at the latitude of

45 in French linear measure ?

2. The latitude of Dunkirk was found by Delambre to be 51 2' 9";

that of Formentera, as determined by Biot, is 38 39' 56". What is the

distance between these parallels in metres ?

3. The distance between the parallels of Dunkirk and Formentera, as

determined by triangulation, is 730,430 toises of 864 lignes each. What
is the length of a metre in fractions of a toise, and in lignes ?

4. The equatorial and polar diameters of the globe are to each other in

the proportion of 299.15 to 298.15. What is the length of each in metres ?

5. Had the decimal division of the circle mentioned on page 15 been

adopted, what would have been the length of one degree, one minute, and

one second in metres ?

6. To how many cubic centimetres do five litres correspond ? To how

many do 3.456 litres, 0.0034 litre, and 5.674 litres correspond?
7. To how many cubic metres do 564.82 litres, 3240.85> litres, 0.675

litre, and 0.032 litre correspond ?

8. A box, measuring ten centimetres in each direction, will' hold how

many litres, and what portion of a cubic metre?
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9. Reduce, by means of the table at the end of the book,

a. 30 inches to fractions of a metre.

b. 76 centimetres to English inches.

c. 36 feet to metres.

d. 10 metres to feet and inches.

10. Reduce, by means of the table at the end of the book,

a. 8 Ibs. 6 oz. to grammes.
b. 7640 grammes to English apothecaries' weight.

c. 45 grains to grammes.
11. Reduce, by means of the table at the end of the book,

a. 4 pints to litres and cubic centimetres.

b. 5 gallons to litres and cubic centimetres.

c. 5 litres to English measure.

d. 4 cubic centimetres to English measure.

MOTION.

(17.) Position. We conceive of a body, not only as occupying
a certain portion of space, but also as existing in space, and there-

fore as being in a determinate Position with reference to other

bodies. A book, for example, not only fills a certain amount

of space, but also holds a certain position with reference to the

surface of the table on which it lies, or with reference to the

walls of the room in which the table stands. If we select a

point of that book, its position on the table can easily be de-

fined by measuring its distance from each of two adjacent

edges of the table along a line parallel to the other of the

two edges, and its position in the room can, in like manner,

be defined by measuring its distance from two adjacent walls

and the ceiling along lines parallel to the three edges formed

by the meeting of these three surfaces. This is the method

most commonly used in Geometry of defining the position

of a point. The distances

which determine the position

of a point are called co-ordi-

nates, and the edges and sur-

faces to which the position is

referred are called co-ordinate

axes and co-ordinate planes.

In Fig. 1, the position of the

point p is determined by the



GENERAL PROPERTIES OP MATTER. 21

distances p b = b and p a = a from the two co-ordinate axes o x
and o y ;

and in Fig. 2, the position of the same point is determined

by the distances p c = c, p b= b, and pa= a from the planes xy,
x z, and y z. In Part II. of

this work, the use of co-ordi-

nates will be fully illustrated

in their application to the

study of crystallography.

The position of points on

the surface of the globe is

referred to the equator and

the meridian of Greenwich.

In this case, however, the

position is not defined by
the distance from these planes, as in the example just taken, but

by the latitude and longitude ;
the first being the angular dis-

tance of the place from the equator measured on its own merid-

ian, and the second the angle made by its meridian with that of

Greenwich. In like manner, the position of a body in the solar

system is defined by stating its distance from the sun and its angu-
lar position with reference to the ecliptic and the vernal equinox,
to which its heliocentric latitude and longitude are referred.

(18.) Mobility. The idea of position necessarily involves

that of change of position, which we call motion. We cannot,

for example, conceive of the book as having a definite position on

the table, without also connecting with it the idea that its posi-

tion could be changed, or, in other words, that it could move.

A body is said to be moving when it is constantly changing its

position with reference to the co-ordinate lines to which its posi-

tion is referred ; and when no such change is taking place, it is

said to be at rest. Rest and motion are relative terms ; for abso-

lute rest is not known in nature. Every body on the surface of

the globe partakes, not only in a motion of revolution round the

axis of the earth, but is also moving round the sun, and per-

haps accompanying the sun in its revolution round a more dis-

tant centre. All known matter is in motion, and when, in any
case, we say that it is at rest, we merely mean to assert that it is

at rest with reference to certain lines or planes, which were arbitra-

rily assumed for co-ordinates. A body on the deck of a steamboat

may be at rest with reference to the boat, but in rapid motion with
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reference to the earth. In like manner, a body on the surface of

the globe, which is said to be at rest because it is not changing
its position with reference to the equator and first meridian, is yet
in. very rapid motion with reference to the ecliptic and the vernal

equinox. So, on the other hand, a body may appear to be in

rapid motion, and yet at rest with 'reference to the earth or the

sun. For example, a ship, which is sailing through the ocean at

the rate of ten kilometres an hour, while the ocean current is

flowing at the same rate in the opposite direction, is at rest with

reference to the earth, although it would appear to be in motion to

persons on board the ship. Again, any point on the surface of the

globe at the latitude of 50 is moving from west to east, in con-

sequence of the rotation of the globe on its axis, about 289 metres

each second, but is, relatively to the surface of the globe, at rest.

If a cannon-ball is, at the same latitude, moving 289 metres each

second from east to west, it will appear to be in rapid motion

to an observer at this point, while it is at rest with reference

to the sun.

Experience teaches us that a body may move on the surface

of the globe with equal readiness in any direction, and therefore

that this motion is not influenced by the motion of the earth itself.

The same\amount of gunpowder which would drive the cannon-

ball 289 metres each second from west to east, would drive it with

the same velocity from east to west, or in any other direction.

It is evident, from these and similar considerations, that a body

may partake of several motions at once, and yet that each may
be entirely independent of the rest.

(19.) Time and Velocity. All the phenomena of nature

may be referred to motion
;
and the succession of natural phe-

nomena gives us the idea of duration, or time. In order to

measure the duration of phenomena, we select the duration of

some one as our unit, and compare the duration of others with it.

It is essential that our unit should be invariable, and such inva-

riable units of time we find in the motions of the heavenly bodies

and in that of the pendulum. The duration of a single oscilla-

tion of a pendulum 0.99394 m. long, at the latitude of Paris, is a

second, the smallest unit in use, and the one which we shall

have most occasion to use in this book. Therefore, when the

unit of time is spoken of, it is always to be understood to mean
one second. The duration* of the revolution of the earth on its
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axis is the next larger unit, which we call a day, and that of the

revolution of the earth round the sun, the largest unit in com-

mon use, is called a year.

The distance passed over by a moving body in the unit of time

measures its Velocity, which we will represent by t). When,
then, a body is said* to have a velocity of ten metres, we merely
mean that, if it continue to move at the same rate, it will pass

over ten metres in each second of time.

(20.) Uniform and Varying' Motions. The motion of a body
is said to be uniform when its velocity does not change. In such

motion the body will pass over the same distance in each second,

or, in other words, the distance passed over in uniform motion is

proportional to the time. Denoting, then, by d the distance

passed over, and by T the number of seconds, we have

d=bT, or 1)= ^,
and T=~. [2.]

We have an example of uniform motion in a railroad train

moving with a constant speed.

In varying motions, the distances passed over in successive

seconds are unequal. The body has no longer a constant ve-

locity, and its velocity at any moment is the distance it would

pass ov^r in each second, if, with the velocity then acquired, its

motion suddenly became uniform. The motion of a body may
vary according to different laws. There are two kinds of varying
motion which it is important to study. They are called uniform-

ly accelerated motion and uniformly retarded motion.

(21.) Uniformly Accelerated Motion. The motion of a body
is said to be uniformly accelerated, when its velocity increases

by an equal amount each second. This amount is called the ac-

celeration, and will be represented by u. The most familiar ex-

ample of such a motion is that of the fall of a stone to the earth.

Starting from the state of repose, its velocity at the end of the first

second is 9.8088 m., which we may call in round numbers 10 m. ;

at the end of the second second, its velocity is 20 m. ;
at the end

of the third, 30 m.
;
at the end of T seconds, its velocity is

10 X T metres. To make the case general, if, starting from a

state of rest, the body acquires a velocity each second represented

by t), then its velocityr \), after T seconds will be,

[3.]
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In order to find the distance passed over at the end of T
seconds, we make use of the principle proved by Galileo, that

this distance is the same as if the body had moved at a uniform

rate with a mean velocity. In the case of a falling stone, the

velocities at the end of successive seconds are,

0" I" 2" 3" 4" 5" 6" 7" n"

Om. 10m. 20m. 30m. 40m. 50m. 60m. 70m..... (10w)m.

At the end of five seconds, the velocity is 50 m.
;
at the com-

mencement, the velocity is m. According to the principle just

stated, the distance passed over is the same as if the body had

moved uniformly during the five seconds with the mean velocity

of 25 m. In like manner, the distance passed over between the

end of the third and the end of the seventh second will be

J (30 + TO) 4= 200 metres. Representing, then, the accelera-

tion of velocity during each second by u, as above, we shall have,

for the distance passed over during T seconds by a body moving
with a uniformly accelerated motion, and starting from a state

of rest,

T=|t) T2
. [4.]

The truth of this principle can be proved in the following way .

Let us suppose the time T divided into a large number (n) of very
T

small intervals. Each of these intervals will be represented by .

These intervals we will take so small, that the motion during this

minute fraction of a second may be regarded as uniform, and as

having the same velocity which it really has only at the end of

the interval. Representing the velocity at the end of one second
T T

by a, the velocity at the end of seconds will be, by [3], t) ;

T T
the velocity at the end of 2 seconds will be 2 t> ; at the

n n
T T

end of 3 seconds, 3 tJ, etc.
n n

Regarding this velocity as uniform during the interval, we have,

by equation [2] ,
for the distance passed over during the first in-

rpz

terval, the value dt
= -^ t). In the same way, we shall find,

yr2 /yr2

for the second interval, dt= 2 -^ t) ;
for the third, c?3= 3

-^-t) ;

rpl
and for the last, dn= w t). The space passed over during the

whole time T will be equal to the sum of these values.
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7*2 7*2 7^2

+ 3 + 4+ ..... +n).

The quantity within the parenthesis, being the sum of the

terms of an arithmetical progression, is equal to \ (n -f- 1) n ;

and substituting this value, we obtain,

This value of d will be the more accurate the smaller are the

intervals of time, or the larger the number into which T is

divided
;
and it will be absolutely accurate when the number is

infinitely large. In this case n= cc, and the last equation be-

comes the same as [4],

c/=|t)T
2

. [5.]

For another time T', we should have d' = \ t) T' 2

, and, com-

paring the two equations,

d: d'= % t) T2
: J t) T' z = T2

: T' 2
;

that is, in a uniformly accelerated motion, the distances passed
over by a moving body startingfrom a state of rest are propor-
tional to the squares of the times employed. By substituting
in [5] the value of T obtained from [3] ,

it gives,

i i)'
2

for another velocity t)', we should have d' = ~, and comparing
this equation with the last,

which shows that, in a uniformly accelerated motion starting-

from a state of rest, the distances passed over by a moving body
are proportional to the squares of the final velocities. By trans-

position we obtain from [6],

which is an expression for the final velocity in terms of the dis-

tance passed over, and the constant increment of velocity for

each second.

3
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Returning to the previous illustration, if we represent by a

the distance through which a stone falls in the first second, we
can easily find the following values for the distances it will fall

through during each succeeding second, and also for the whole

distance it will have fallen through at the end of each second.

I" 2" 3" 4" 5" 6" 7" n"

Successive distances, a 3 a 5 a 7 a 9 a II a 13a....(2?i 1) a.

Whole distances, a 4 a 9 a 16 a 25 a 36 a 49 a n2
a.

The co-efficients in the last series are to each other as the squares

of the times
;

which has already been proved. Those in the

first series are as the series of odd numbers, and can be deduced

from the last series, by subtracting from each of its terms the

one next preceding it.

(22.) Uniformly Retarded Motion. When a stone is thrown

vertically from the earth, its velocity diminishes by an equal
amount each second, and such a motion may be said to be uni-

formly retarded. The velocity of the stone rapidly diminishes

until it becomes zero, when for a moment it is at rest, and then

it falls back to the point where it started. The law which gov-
erns the upward motion will be most readily discovered if we

regard the stone as moving, at the same time, in two opposite
directions ; rising in the air in virtue of the initial velocity it

has received, and at the same time falling to the earth in con-

sequence of the force of gravitation (compare next section).

The first is a uniform motion, and obeys the law expressed by

[2] ;
the second is a uniformly accelerated motion, and obeys

the laws expressed by [3] and [4] . Since, now, all uniformly
retarded motions may be resolved in a similar way, it is evident

that the velocity of the motion and the distance passed over by
the moving body after a given number of seconds may be found

by subtracting from the velocity and distance which would be

due to the forward motion alone, the loss caused by the uniformly
accelerated motion in the opposite direction. If, then, we use

v to denote the initial velocity, it is evident that the residual

velocity at the end of T seconds will be expressed by the equa-
tion (compare [2] and [3])

b= tV nZl [8.]

The body will evidently come to rest when t) T equals {)' ; when

T=$L [9.]
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In the case of the stone, t) is equal, as before, to about ten metres ;

so that a stone thrown upwards with a velocity of one hundred
metres a second would come to rest in ten seconds. At the end
of five seconds its velocity would be 100 10 X 5 = 50 metres.

In like manner, the distance passed over at the end of ^seconds

will be the difference between the values of d in [2] and [4] ,
or

d=b> T JtjT
2

. [10.]

The height to which the stone of the previous example would

rise in five seconds is, then, 100 X 5 J 10 X 25= 375 metres.

To find how far the uniformly retarded body will move before

coming to rest, substitute in [10] the value of T given in [9],
which gives

, b"d=
jv-

The stone .will then rise to -^-
= 500 metres, before it begins

to fall.

(23.) Compound Motion. It has already been stated, that a

body may be moving in several directions at once, and moving
with perfect freedom in each. The movements of the passengers
on the deck of a vessel sailing over a calm sea preserve the same
relations of direction and velocity, relatively to the different parts
of the vessel, as if it were at rest. So also, the motions on the

surface of the globe are not influenced by its rotation on its axis,

or its motions through space. A point on the rim of a wagon-
wheel partakes of the forward motion of the wagon, while it is

also revolving round the axle. The actual motion of a body
which is the result of two or more motions, is termed a com-

pound motion ; and we will now inquire what must be the path
and velocity of such motions, commencing with the simplest case,
where there are but two motions, and where both are uniform.

(24.) Parallelogram of
Motions. Let us then sup-

pose that a body, starting
from a, is moving towards

m with a uniform motion,
and that at the same time

the line a f is moving par-
allel to itself, and also with

K=



28 CHEMICAL PHYSICS.

a uniform motion, towards e s, the point a always keeping on the

line a e. Let us also suppose that the velocities are so adjusted,

that, when the body reaches the point ,
the line will have reached

the position e s. It is easy to show that the path described by
the body is the diagonal a s of the parallelogram, of which a e and

e s are two sides.

Lay off, in the direction am, a line, a s
, equal to the velocity

of the moving body, and on the line a n a distance, a e, equal to

the velocity of the moving line. Divide both of these lines into

the same number of equal parts. Each of these will be equal to

the space passed over by the moving body or line in a small frac-

tion of a second, which we may take as small as we choose. At

the end of the first of these intervals, the body will evidently

reach the point p ;
at the end of the next, the point q ;

at the

end of the third, r
;
and so on, until the end of the second, when

it will reach the point s. By making the number of intervals

larger and larger, we can prove that the body will pass succes-

sively a larger and larger number of points on the line a s
;
and

by making the number of intervals infinite, that it will pass

every point on the line, or, in other words, that it will move on

the line itself.

It will be noticed, that the proof is general for any velocities

when the two motions are uniform
;
and moreover, that the line

a s represents, not only the direction, but also the velocity of the

moving body. Hence follows the well-known proposition, first

enunciated by Galileo, and generally termed the Composition of
Velocities : The velocity resulting

1

from two simultaneous ve-

locities is represented, both in direction and in amount, by the

diagonal of a parallelogram constructed on two straight lines,

which represent the direction and amount of these velocities.

The reverse of this must also be true
;
and any given motion

may be considered as resulting from two others which stand in

the same relations to it, both as regards direction and velocity,

that the sides of a parallelogram do to its diagonal. Hence the

converse proposition : A velocity in any given direction may
be resolved into two others, represented both in direction and
amount by* the two sides of a parallelogram, of which the first

velocity is the diagonal.

As the same line may be the diagonal of an infinite number of

different parallelograms, it follows that a given motion may be
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composed of, or may be resolved into, an infinite number of dif-

ferent pairs of uniform motions.

We have considered, above, a motion as resulting from two

other uniform motions ;
but a motion may result from three or

more motions. As these motions are entirely independent of

each other, we can obviously find, by the above method, what

would be the result of two alone ;
and then, by combining this

resultant with the third motion, we shall obtain a second result-

ant, which would be the result of three alone
;
and by combining

the second resultant with the fourth motion, we should obtain a

third resultant
;

and so we can proceed until we obtain the

final resultant of all the motions.

What has been proved to be true in regard to the resultant of

two or more uniform motions, is also true in regard to two or more

uniformly varying motions, provided the variations of both follow

the same law. This truth can easily be proved in the case of two

uniformly accelerated or uniformly retarded motions, by laying

off, on two lines representing the directions of the motions, the

spaces passed over during successive intervals of time, taken so

small that the motion during each interval may be considered

uniform. We can thus find the points at which the moving body
will be at the end of these successive intervals, as above

;
and it

will then be easy to prove that the resulting motion may be rep-

resented, both in direction and velocity, by the diagonal of a

parallelogram, of which the two sides represent the velocities at

the end of one second.

In the case where the original motion is uniform, it is easy to

prove that the resulting motion is also uniform ;
and where it is

varying, that the resulting motion varies according to the same

law as its two components. Thus, in the last example, the result-

ing motion will be uniformly accelerated or retarded, as the case

may be.

(25.) Curvilinear Motion. In the cases above considered,

the resulting motion is rectilinear ; if, however, any one of the

motions of which a compound motion is composed obeys a differ-

ent law from the rest, the resulting motion is curvilinear. As

the velocity of a moving body may vary according to many dif-

ferent laws, and as an infinite number of combinations of such

varying motions may be made, an infinite variety of curvi-

linear motions may result. We can only consider here one, and

3*
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that one of the simplest cases, which will serve as an example
of the rest. Let us, then, suppose a body moving from a to m (Fig.

4) with a uniform motion, and at the same time moving in the

direction a n with a uniformly
accelerated motion. An ex-

ample of such a motion would

be that of a cannon-ball, fired

horizontally from the embra-

sure of a fort, at some height

above the general surface of

the ground. In virtue of the

projectile force, it would move

horizontally along the line a m
with a uniform motion, while

in obedience to the force of

gravity it would rapidly fall to

?t *'
the earth, in the direction a n,

with a uniformly accelerated motion. To find the path of the re-

sulting motion, let fa be the velocity of the uniform motion, and

t) the acceleration of velocity of the falling body for each second.

Lay off on the line a m the distances a
ft, ft /, 7 #, etc., each equal

to t). Lay off on the line a n the distances ab,bc,cd, etc., equal
to J t), J t), f D, etc., the distances through which the ball will fall in

successive seconds. Draw through each of the points j3> y> #? etc.,

lines parallel to a n, and through 6, c, d, etc., lines parallel to

am. The points P, Q, R, etc., where the first set of lines inter-

sect the second, are evidently points through which the ball must

pass. Join these points by a curved line, and this line will repre-

sent the path of the ball. It is easy to show that this path is a

parabola. For this purpose, let the lines a m and a n be the aies

of co-ordinates. The co-ordinates of any point, as s, are s e= x
and s = y ;

and we know that x= s a= t) T, and also y= e a

= t) T 2
. Equating the values of T obtained from these equa-

tions, we have, by reduction,

2 )
2

Since - is a constant quantity, this is the equation of a

2 to
2

parabola, in which 4p=- .
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PROBLEMS.

Velocity and Uniform Motion.

12. A locomotive runs 36 kilometres in l
ht

20'. What is the velocity

of the locomotive ?

13. A horse trots 11 kilometres in one hour. What is his velocity?

14. A man walks 5.6 kilometres in l
h '

10'. What is his velocity?

15. From the extremities, A and B, of a straight line 24,000 m. long,

two bodies start at the same time. The one from A moves in the direc-

tion A B with a velocity of 2m.; the other from B, in the direction

B A, with a velocity of 3m. 'At what distance from A, and after what

time, will they meet ?

1 6. From the extremities, A and B, of a straight line a m. long, two

bodies start ; the one from A, t" after the one from B. The one from A
moves with a velocity of c m., the one from B with a velocity of c

t
m. At

what distance from A will they meet ?

Uniformly Accelerated or Retarded Motion.

17. Find the space through which a body falls in 7", and the velocity

acquired. The increment of velocity each second is t) = 9.8 m.

18. A stone falls from the top of a tower to the earth in 2.5". How
high is the tower when JJ = 9.8 m. ?

19. On the surface of the moon, the increment of velocity of a falling

body is t) = 1.654; on the surface of the planet Jupiter, tJ = 26.243.

Find the answers to the last two problems with these values.

20. A stone is let fall into a pit 100m. deep. With what velocity will

it strike the bottom of the pit ? With what velocity would it strike the

bottom of a similar pit on the moon, and on Jupiter ?

21. A stone is projected vertically with a velocity of 50m. How
high will it rise from the earth ? How high would it rise from the

moon, and from Jupiter ? After how many seconds will it again reach

the ground in the three cases ?

22. A body is projected vertically from the bottom of a tower 80 m.

high, with a velocity of 48 m. In what time will it reach the top, and

what will be its velocity at that time ? Also, to what height above the

top of the tower will it rise, and after what time will it again reach the

bottom ?

23. A body is projected vertically with 30 m. velocity. A second later,

another body, with 40 m. velocity, is projected vertically from the same

point. At what point of elevation will the two meet ?

24. A cannon-ball, being projected vertically upwards, returned in

20" to the place from which it was fired. How high did it ascend, and

what was the velocity of its projection ? Solve the problem also for t) =
1.654, and t) = 26.243.
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FORCE.

(26.) Force. Matter, of itself, is incapable of changing its

state, either of rest or of motion. If a body be at rest, it cannot

put itself in motion
;

if a body be in motion, it can neither

change that motion nor reduce itself to rest. Any such change
must be produced by some external cause independent of the

body. This quality of matter we term Inertia ; and the external

cause we term Force. In discussing the origin and nature of

force in the introductory chapter, we used this word for the cause

of all the phenomena of nature. We shall use it, in this section,

in a more limited sense, as meaning
"
any agency which, applied

to a body, imparts motion to it, or produces pressure upon it, or

causes both of these effects together." In studying the action of

a force upon a body, we must consider three tilings. First, the

point of the body to which it is applied, its point of application ;

secondly, its intensity; thirdly, its direction. The action of

forces on bodies is the subject-matter of Mechanics. We shall

only be able to consider here those elementary principles of

this science which we shall have occasion to use in this book,

referring the student to works on Mechanics for a full exposition

of the subject.

(27.) Direction of Force. When a force applied to any

point of a body causes it to move, the direction of the motion is

the direction of the force. If the point cannot move, the direc-

tion of the force is the direction of the pressure exerted by it, or

the direction in which the point would move if it were free.

When two or more forces are applied to any point of a body,
each of these produces the same effect as if it were acting alone.

This is a necessary consequence of what has already been stated,

in regard to the perfect freedom with which a body may move in

several directions at once. Each of these motions may be the

result of a separate force, which thus acts in producing motion as

if it were acting alone. Hence, also, the action of a force upon
a body is not aifected by its condition of rest or motion, because

the result which it produces is by the above principle entirely in-

dependent of the motions which other forces have impressed upon
it. For example, if a body moving with a given velocity, under
the influence of a given force, is suddenly acted upon by another

and equal force, in a direction at right angles to the first, it will
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move in the new direction with the same velocity as if it had

been previously at rest. The path it describes can be found by

combining the two motions according to the principles already

described.

It follows from this principle, that a body under the in-

fluence of a force which is constant, both in direction and

intensity, moves with a uniformly accelerated velocity. That

this must be the case can be seen by reflecting that, if this

force imparts to the body a velocity t) during the first second,

it will, from the principle just stated, impart the same velocity

during each succeeding second. At the end of the second

second, the body will then have the velocity gained during two

seconds, or 2 t)
;
at the end of the third second, it will have

the velocity gained during three seconds, or 3 t)
;
and so on.

In other words, the velocity will be proportional to the time,

which is the characteristic of uniformly accelerated motions.

The reverse of this also must be true ;
that is, a body moving

with a uniformly accelerated velocity in a straight line, must be

under the influence of a force of constant intensity acting in the

direction of its motion.

If, when a body has acquired a given velocity, the force ceases

to act, the body will continue to move with the same velocity and

ill the same direction which it had when the action of the force

ceased ;
in other words, it will have a uniform motion, and the

motion will continue until it is arrested by an equivalent force,

acting for an equal time in the opposite direction. This, which

is a necessary consequence of the principle of inertia, is illus-

trated by many familiar facts. A train of cars continues to

move after the action of the steam has ceased, and until the fric-

tion of the wheels and the resistance of the atmosphere destroys

the motion. Were it not for these opposing forces, a body once

set in motion on the earth would continue to move indefinitely

with the same velocity, and in the same direction, which it had

when the force which produced the motion ceased to act. This

does not admit of direct experimental illustration ; because, on

the surface of the earth, we can never entirely remove a body from

the influence of the resistance of the air or of friction. But

even here, the more completely these influences are removed, the

longer motion continues ;
and in the heavenly bodies, where they

do not exist, at least to any sensible degree, the. motion, is per-
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petual. A uniform motion in a straight line does not, therefore,

necessarily imply the existence of a force still acting ;
it only

shows that a force has acted at some previous time.*

(28.) Equilibrium. When two or more forces arc acting on

a body, or on a system of bodies, in such a way that they exactly

balance each other's effects, they are said to be in equilibrium.

Forces so adjusted will not communicate motion to a body at rest,

or alter its motion, if already in motion. That portion of the

science of Mechanics which treats of the conditions of equilibri-

um, is termed Statics ; that part, of which the object is to deter-

mine the motion which a body assumes when the forces which

are applied do not constitute an equilibrium, is called Dynamics.

(29.) Measure of Forces. We conceive of forces as having
different intensities, and hence as quantities, which can be ex-

pressed in numbers, selecting one of them as the unit. As,

however, we only know forces through their effects, we can only

compare them together by comparing their effects ;
that is, by

comparing together the amounts of motion they cause, or the

amounts of pressure they exert. Let us then seek for a measure

of force in the amount of motion which it causes. In discussing

this subject we can assume as axioms, first, that two forces

are equal which will give equal velocities to equal amounts of
matter in the unit, of time ; secondly, that two forces are equal

which, when applied in opposite directions to any point of the

same body, or to any two points situated in the line of the forces

and inseparably united, leave it at rest. The following proposi-

tions can now be easily proved.

Proposition 1. Two constant forces, which in the unit of time

impart to unequal masses of matter equal velocities, must be to

each other as these masses. Let us suppose that we have n

equal masses of matter, each represented by m, on which are

acting n equal forces in directions parallel to each other, each

represented by /. By the axiom above, each of these masses

* This statement does not apparently agree with the principle of the introductory

chapter, in which it is maintained that all phenomena imply a continuously acting
cause

;
but it must be remembered that rest and motion are merely relative terms,

and that the last is as much a state or condition of matter as the first. Any change
of condition, whether from rest to motion, from motion to rest, or from one mode of

motion to another, implies the intervention of some force
; but the mere continuance

in a given condition implies a continuously acting cause only so far as such a cause

is implied by the continued existence of all created things.
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will receive the same velocity in the unit of time
; they will, there-

fore, all move in the same direction and with the same velocity,

and must preserve the same relative position. We may then

regard them as united in a single body, whose mass is equal to

n X m, on which is acting a force equal to n X /. Hence it

follows, that the force n X / will give to the mass n X m the

same velocity that the force / will give to the mass m. It is evi-

dent that

n X / : /= n X m : m.

To make this proof more general. Let M and M '

represent the

two masses of matter, which we will suppose to be commensu-

rable, and let m be their common measure
;
so that

Mnm, and M' = n'm.

Represent by/ the value of the force which will impart to m the

given velocity in the unit of time
; then, by what precedes,

nf will give the same velocity to n m, or M, and

rif
" " " n1

m, or M'.

Represent nf by F, and n'f by F', and we have

nf:n'f=nm:n'm, or F : F' = M : M 1

, [11.]

which was to be proved. If the masses are not commensurable,
we can take m infinitely small.

Proposition 2. Two constant forces, which in the unit of time

impart to equal masses of matter unequal velocities, must be

to each other as these velocities. Represent the two forces by
F and F', which we will suppose to be commensurable, and let

/ be their common measure ; so that F=nf, and F' = n'f.

Represent also by o and u' the velocities which these forces re-

spectively impart to the common mass, M, in the unit of time.

The force / will be capable of imparting to M a velocity, which
we will represent by t)". It follows now, from the last proof,

that jP = ft /will impart to M a velocity n v" =
t), and

that F'= n'f
" " n1 v" = D' ;

hence,

nf:n'f=nv":n'v", or F : F' = t) : V. [12.]

Proposition 3. Two constant forces are to each other as the

products of the masses by the velocities which they impart to

these masses in the unit of time. Let F and F1 be the two forces
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acting on the masses M and M', and imparting to them the

velocities u and t)' in the unit of time. Represent by / a force

which imparts to the mass M the velocity t)' in the unit of time.

F and / are, then, two forces which, in the unit of time, impress
on equal masses, Mand M, unequal velocities, t) and t)' ; hence,

from Proposition 2,

F:f=v : *'.

Moreover, f and F' are two forces which impress on unequal

masses, M and M', equal velocities, D'andn'; hence, from Prop-
osition 1,

/: F' = M: M'.

Multiplying the two proportions, term by term, we obtain

F: F' = Mv: M'

D', [13.]

which was to be proved.
In order to measure a force, we have then only to select some

one force for our unit, and, by the principles of the above propo-

sitions, compare all other forces with it. We will then assume,
as the unit of force, that force which, acting on the unit of mass

during one second, will impress upon it a velocity of one metre,

or that force which causes an acceleration of one metre in the

velocity of the unit of mass each second. If then a given force,

F, acting during one second, impresses on a given mass of mat-

ter, M9
a velocity, t), we can easily find the relation it bears to

the unit of force by the above proportion,

F: F' = Mv: M' V.

If F 1

is the unit of force, then, by definition, Mf and t)' are both

equal to unity ; and the proportion gives

F=Mv. [14.]

It will be remembered (21), that the quantity fl is termed

technically the acceleration. Hence, the measure of a force is

the product of the mass moved by the acceleration. For example,
if the mass moved is equal to four units of mass, and the accel-

eration is equal to six metres, the intensity of the force is equal

to twenty-four ;
that is, the intensity of the force is twenty-four

times as great as the unit of force.

If a constant force continues to act upon a body during a given

time, it imparts to it each second, as we have seen, as much ve-

locity as it gave to it the first. This velocity we have called the
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acceleration, and represented by u. At the end of T seconds the

velocity is Tt), which has been represented by t). If now the

force ceases to act, the motion becomes uniform, and the body
continues to move with the velocity t) = Tu. In order to stop
this motion, it would be necessary to apply to the body, in an op-

posite direction, a force of the same intensity, for an equal time.

If M represents the mass of the body, M v represents the inten-

sity of the original force
;
and hence it would require a force of

the intensity M v acting during T seconds to destroy the mo-

tion. Evidently, however, the same effect could be produced by
a force of T times the intensity, acting for one second. The

intensity of this force would be

[15.]

Hence the product of the mass of a body by its velocity repre-

sents the intensity of a force which, acting during one second,

will bring the body to rest. This product is usually called the

momentum of a moving body. We say, for example, that a body
whose mass is equal to five units, and which is moving with

a velocity of four metres, has a momentum equal to 20 ; and

we mean by this, that it would require a force twenty times as

intense as the unit of force, and acting for one second in a direc-

tion opposite to that of the motion, to bring the body to rest.

The momentum is also frequently called the moving' force of the

body, because it not only represents the intensity of the force re-

quired to overcome its motion, but also because the body itself

would exert a force of this intensity against any obstacle tending
to resist its motion. In this view, momentum may be regarded
as representing the accumulated intensity of force in a body ; the

product M v representing the intensity of force in a body after

one second
; the product M t) representing the accumulated in-

tensity after T seconds.

It must be carefully noticed, that we have considered in this

section solely the measure of the intensities of forces, and not

the measure of their quantities. The quantity of a force, or, as

this is frequently called, its power, is measured in a different

way, as will be shown in (42). In this woik, we shall have to

deal almost solely with the intensities of forces, and when the

measure of force is referred to, it must be always understood

to mean the measure of its intensity, unless the reverse is ex-

pressly stated.

4
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COMPOSITION OF FORCES.

(30.) Components and Resultant. In mechanical problems
we frequently have two or more forces acting at once on the same

point of a body, or on several points which are immovably united

together ;
and it becomes important to consider what will be their

combined effect. This problem, which is termed the composition

of forces, reduces itself to that of finding the direction and

amount of a single force which would produce the same motion

as that resulting from the action of all the forces combined.

This single force is called the resultant, and the forces to which

it is equivalent in effect are called its components. It follows,

from this definition, that a force is mechanically equivalent to

the sum of its components, and, on the other hand, that any
number of forces are mechanically equivalent to their resultant ;

because, as we only know forces through their effects in pro-

ducing motion, any forces which produce the same motions are

to us equivalent.

(31.) Forces may be represented by Lines. The unit of

force has been defined as that force which causes an acceleration

of one metre in the motion of the unit of mass each second ; and,

further, it has been shown that the product of the mass moved,

by the acceleration, is the number of units of force to which any

given force is equivalent. If, then, we represent the unit of

force by a line one centimetre long, any other force will be repre-

sented by a line as many centimetres long as the number which

is obtained by multiplying the mass it moves by the acceleration

it imparts each second. Moreover, since these lines may be

made to represent the directions as well as the amounts of the

forces, the problems of resolution of forces may be reduced to

problems of geometry.

(32.) The point of application of a force may be changed to

any other point of the body on the line of the direction of the

force, ivithout altering- in any respect the action of the force on

the body, provided only that the two points are immovably united

together. The truth of this proposition

seems almost self-evident
;
for it amounts

only to this, that a given force acting
in the direction A B (Fig. 5) will pro-

Flg' 5*

duce the same effect, whether it is applied
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in pushing the body forward at A, or in pulling it forward from

B. The following illustration may make the matter still clearer.

We will assume that the force applied at A is equal to five units

of force, and is in the direction A B. We will now apply two

forces, each of the same value as the last, to the point B ; one in

the direction A B, and the other in the direction B A, as we can

obviously do, without changing the condition of the body. The
second of these forces will, by the axiom of (29), exactly counter-

balance the force applied at A, and we shall then have left a

force of five units applied at B, and acting in the direction A B,

producing an equivalent effect to that of the first force.

(33.) Resultant of Forces in the same Straight Line. The
resultant of a number of forces acting in the same straight line

on a point of a body, is obviously equal to the sum of the forces

acting in one direction less the sum of the forces acting in the

opposite direction
;
and this resultant is in the direction of the

largest sum. If, for example, we have three forces applied to

the point A (Fig. 5) in the direction A B, equal respectively to

4, 6, and 7 units, and two forces in the opposite direction equal
to 18 and 10 units, then the resultant force will be equal to

(4 + 6 + 7) (18 + 10) = 11 units, and, as the nega-

tive sign indicates, will act in the direction B A. The validity

of this principle follows from the fact, that eacli force acts as if

it were the only force acting (27). As was shown in the last

section, it is unimportant whether all the forces are applied

at A^ or whether they are applied at different points along the

line A B.

(34.) Resultant of Forces acting- in differ-

ent Directions
,
but applied at the same Point)

or Parallelogram of Forces. Let us sup-

pose that we have two forces, F' and F",

applied to the point A (Fig. 6), in the di-

rections A b and A b' respectively, and let us

inquire what will be their resultant. It has

already been proved, that two forces acting
on the same or equal masses of matter are

to each other as the accelerations ; or,

F' : F" = t>' : t)".

What therefore is true in regard to the two
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velocities must be true relatively in regard to the two forces,

so that if we can, by any method, find the resultant of the two

velocities, this same method will give us the resultant of the two

forces. -Now it has been proved (24), that the resultant of two

velocities is represented, both in direction and amount, by the

diagonal of a parallelogram whose sides represent the directions

and velocities of the two motions ;
and hence it follows, that the

resultant of tivo forces is represented, both in direction and in-

tensity, by the diagonal of a parallelogram whose sides represent

the directions and intensities of the component forces. The re-

sultant of two forces can, therefore, always be found by a very

easy geometrical construction. It can also be calculated
;
for we

have, by a well-known principle of trigonometry, from Fig. 6,

JTC
2 = AB2

+ BC Z

2 AB . B~C . cos A B C ;

or, since B A B' = 180 ABC, and therefore cos A B C=
cos B A B', we have

AC* = ABZ

+ BC
2

+ 2 AB . B~C cos B A B'.

Representing the two component forces by F 1 and F", their re-

sultant by F, and the angle between the components by en, the

last equation becomes

Fz = F'* + F" 2 + 2 F' F" cos a. [16.]

In many cases with which we meet in nature, the directions of the

two components make a right angle ; then the last term of [14]

disappears, and the equation becomes

F2 = F/Z + F" 2
. [17.]

(85.) Decomposition of Forces. As any given motion may
be the result of an infinite number of pairs of motions (24), so

any given force is the equivalent of an infinite number of pairs

of forces. It follows from what has been proved above, that

we can replace a given force acting on the point A (Fig. 7), and

represented in direction and intensity by A P, by the two forces

represented by either of the pairs of lines A B and A B', A C
and AC', AD and AD, A E and A E, or indeed by any other

pair of forces which can be represented by the sides of a par-

allelogram, of which the line representing the given force is

the diagonal. As the sides of a parallelogram may have any
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angular position whatsoever with reference to the diagonal, it

follows that a given force may be decomposed into two others in

any required directions. If, then, the value of a force in units,

and two directions, are given,

the value in units of two

components in these direc-

tions can always be found.

The problem can be solved

geometrically thus. Draw a

line, A C (Fig. 6), as many
centimetres long as there

are units in the given force.

Draw two indefinite lines, A b

and A b', in the required di-

rections, making the given

angles with A C. Finally, draw through C lines parallel to

A b and A b'. These lines will intersect the first at the points
B and B', and the length in centimetres of A B and A B' thus

determined will be the values in units of the reqiiired forces.

The problem can also be solved by trigonometry. Denote the

value in units of the given force by F, and those of the required

components by x and y. Denote also the angles which x and y
are required to make with F by a and

ft respectively. In the

triangle A B C, we have

A B : A C= sin A CB : sin A B C ;

and also, since A B' = B C,

A B1

: A C= sin B A C : sin A B C.

Substituting in these proportions the equivalent values A B= .r,

AB'=y, BAC=a, A CB=
p,
A B C= 180 (a

they become

x : F=smp : sin (a + /3), and y : .F=sin a : sin

Hence,
T- sin /? j T- sin a ri & ->x=F-

7
tt-r, and y = F- 7 ^. [18.1

sin (-f-/?)' sin (-|- /?)

When the two components are at right angles to each other, then

a + ft
= 90, and

x = F sin
j3,

and y = F sin a.

4*
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The decomposition of a force into two others is very frequently

applied in mechanics, in order to determine the action of a force

when it does not act in the direction in which its point of appli-

cation moves. The case of a canal-boat affords an illustration of

its application. The power is

applied to the boat at the

point A (Fig. 8), through the

cord A C, which is attached

at the other end to the horses

Fig g
on the tow-path. The boat is

prevented from approaching
the bank by the action of the rudder, and can only move in the

direction A a. Knowing the force exerted in the direction Af,
and the angle a, it is required to find the effective force by which

the boat is propelled. Decompose the force F into two com-

ponents, x in the direction A a, and y in the direction A b. The
last force is balanced by the resistance of the water

; but the

first, acting in the direction of least resistance, that of the boat's

length, propels it through the water. This force, or x, is equal to

F cos a, and will evidently be larger as the value of a is smaller,

or, in other words, as the towing-line is longer.
It follows, from what has been said, that a force can produce

motion in any direction between its own original direction and

one perpendicular to it. It cannot produce motion in a direction

perpendicular to itself, because, as can be easily deduced from

[18], the perpendicular resultant would in such a case be equal
to zero.

In general, when the point of application is made to move in

a different direction from that of the force applied to it, the effect

of this force is determined by resolving the force into two others :

one in the new direction, which represents the effect sought ;
the

other perpendicular to it, which is destroyed by the resistance to

the motion in that direction.

(36.) Composition of several Forces acting" in different Di-

rections. The course of reasoning used above, in regard to

the composition of two forces, applies equally to the composi-

tion of any number of forces acting on the same point. Hence,
the resultant of several forces can be found in the same way as

the resultant of several motions (24). Let us suppose, for ex-

ample, that the forces acting on the point O (Fig. 9) are
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represented both in direction and amount by the lines O A, O B,
O C, and O D. We can find their resultant in the following

manner. We first seek the resultant, Or, of O A and O B.

The force represented by this line

being in all respects equivalent to

its two components, we can com-

bine it with O C and obtain a sec-

ond resultant, O r f
. This result-

ant, combined with the last force,

O Dj will give us the final resultant

of all the forces.

The trigonometrical formulae of

(35) can easily be applied by the

student, in solving problems on the

composition of several forces.

(37.) Composition of Parallel Forces. We will consider, in

the first place, the case where there are but two parallel forces,

F' and F". Let A and B (Figs. 10, 11) be the points of appli-

cation of these forces, which are immovably united. Join these

points by the line A B. Draw the parallel lines A P and B Q,
so as to represent the direction and intensities of the two forces

F' and F 1

-, respectively. In Fig. 10, the forces are supposed to

act in the same direction, and in Fig. 11 in opposite directions.

The figures have been so lettered, that the following demonstra-

tion applies equally to both cases. We wish to find the direc-

tion, the intensity, and the point of application of a single force,

F, which would be equivalent to the two forces F' and F".

Fig. 9.

Fig. 10. Fig. 11.

Apply to the points A and B, and in the direction of the line

uniting them, two equal and opposite forces,/' and/", which we

will represent by drawing A =/', and B S=f". As these

forces exactly balance each other, they cannot change the ve-
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locity or the direction of the motion resulting from the parallel

forces F' and F", and hence will not affect our demonstration.

The line A r, found by completing the parallelogram A S r P,

Fig. 10. Fig. 11.

evidently represents the direction and intensity of the resultant

of the two forces F' and /', and the line B I the direction and

intensity of the resultant of the two forces F" and/". Produce

these lines until they cross, at a point m. By (32) it follows

that the effect of these resultants is the same as if they were both

applied directly to the point m, in the directions m A and m B.

We can now decompose each of these resultants, at the point m,
into two components parallel, and hence also equal, to the origi-

nal forces F' and/', F" and/". The two components parallel

and equal to A S and B S will be applied to the point m in op-

posite directions
;
and since, by construction, A S is equal to

B S, these two components must also be equal, and will therefore

neutralize each other. The two components parallel and equal
to A P and B Q will also both be applied at the point m. In

Fig. 10, where the original forces were in the same direction, the

two components will be in the same direction, and will conspire

to move the point m in the direction m C. In Fig. 11, where

the original forces were in opposite directions, the two compo-
nents will be in opposite directions, and will tend to move the

point m in the direction of the greater component with a force

equal to their difference. Hence, the final resultant will be a

force in the direction m C, parallel to the original forces, in the

one case equal to their sum, and in the other to their difference.

The point of application of this force may obviously be transferred

to the point C, without altering the conditions of its action.

To find the position of the -point C. By construction, the sides

of the triangle A Pr are parallel to those of the triangle m C A,
and likewise the sides of the triangle B Q t are parallel to those
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of the triangle m C B, and hence their homologous sides are pro-

portional ;
so that we have the proportions,

A C : m C= r P : A P, and B C : m C = t Q : B Q.

We have, by construction,

rP=A S= t Q= BS=f, AP= F', and BQ=F'",

hence, by substitution,

A C : m C=f : F', and B C : m C=f" : F" ;

or,

m C=A
Cj,

= BC^, or A C X F>= B C X F"
;

or, AC:BC= F":F'. [20.]

Hence it appears that, when the two forces have the same direc-

tion, as in Fig. 10, the point of application, C, of the resultaht

force divides the straight line A B, which joins the points of ap-

plication of the components, into two parts, which are inversely

proportional to the amounts of the given forces. When, on the

other hand, the forces are in opposite directions, as in Fig. 11,

the point of application of the resultant is still on the same line,

but -beyond the point of application of the larger of the compo-

nents, and at distances from the points A and B, which are, as

before, inversely proportional to the intensities of the two forces.

Our general result, then, is the following :

I. In regard to the resultant of two parallel forces acting in

the same direction. 1. The intensity of this resultant is equal
to the sum of the intensities of its components. 2. The direc-

tion is the same as the common direction of the components.
3. The point of application divides the line joining- the points of

application of the components into two parts, which are inversely

proportional to the intensities of the forces.

II. In regard to the resultant of two parallel forces acting in

opposite directions. 1. The intensity of this resultant is equal
to the difference of the intensities of its components. 2. The

direction is the same as that of the larger component. 3. The

point of application is on the line joining- the points of applica-

tion of the components, produced beyond the point of application

of the larger of the two, and is at distances from these points
which are inversely proportional to the intensities of the given

forces.
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Fig. 12.

It follows, from the nature of a resultant force, that a force

applied at C, Figs. 10, 11, which is equal and opposite to the re-

sultant of the two forces F and F', ought exactly to balance this

resultant. This obvious truth will enable us to put the validity

of our conclusions to the test of experiment. The experiment

may be arranged as in Fig. 12. P and P' are two points at

the ends, for example, of

a wooden rod. To these

points are attached cords,

which, passing over the two

pulleys M and M'
9
are at-

tached to the two weights
A and A'. A third weight,

R, is suspended by means

of a looped cord to the rod,

so that its position can be

easily shifted. In this ex-

periment the weights cor-

respond to the forces F' and

F" of Fig. 10, while the cords indicate the directions in which

the forces act. By varying the amount of the weights, and also

the position of the weight R on the rod, it will be found that

equilibrium can be maintained only when the conditions above

stated are fulfilled. Thus, if the weight R be 20. grammes,
the sum of the weights A and A 1 must also be 20 grammes. If

A' is equal to 12 grammes, then A must equal 8, and the position

of the loop on the rod must be such, that O P' shall be to O P
as 8 is to 12. If, then, the distance P P' is equal to 20 c. m.,

the distance P O will be 12 c. m., and P' O will be 8 c.m.

This same experiment also illustrates the case represented in

Fig. 11, where the two components are acting in opposite direc-

tions ; for, as the system of weights is in equilibrium, it follows

that the force exerted by any one may be regarded as equal in

intensity to the resultant of the other two ;
this resultant, how-

ever, acting in the opposite direction to the force exerted by the

weight. Hence, we may consider the forces exerted at the points

O and P' to be the components of a force equal to that exerted

by the weight at P, but in a direction opposite to P M. Taking
the values of the weights when the system is in equilibrium, as

given above, it is evident that the amount of the resultant, and
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the position of its point of application, $, are the same as would

be found by the rule
; for, in the first place, the weight A is

equal to the difference of the two weights R and A, and, in the

second place, the distances P O and P P are inversely propor-

tional to the values of the two weights R and A'.

(38.) Couples. When the two parallel forces are exerted in

opposite directions, there is one set of conditions which presents

a case of peculiar interest ; and that is, when the two compo-
nents are equal. In this case, the value of the resultant is evi-

dently equal to zero
; and, moreover, the point of application is

at an infinite distance from the points of application of the two

equal components. The last fact follows from the proportion

[20] ,
A C : B C= F" : F'. This, by the theory of proportions,

may be written,

A C B C : F" F' = A C : F" = B C : F'
;

or, substituting (see Fig. 11) AB=A C B C, andF= F" F',

AB: F=AC: F" = BC: F1

.

Hence,
ABX IAC= and B C= F [21.]

When the two components are equal, the resultant F = 0,
and both the distances A C and B C become equal to infin-

ity. In this case, therefore, there is no single resultant, and

therefore no tendency to produce in a body any progressive mo-

tion. Such a system of forces is termed a couple, and its ten-

dency is to make the body rotate. The theory of couples is of

great importance in mechanics
;
but as we shall not have occasion

to apply it in this work, we shall not dwell upon it.

(39.) Composition of several Parallel Forces. We can evi-

dently find the resultant of several parallel forces, by combining
them two by two, as in the case of forces

acting in different directions. In Fig.

13, the points m, ra', ra", and m'" are the

points of application of the parallel

forces F, F1

, F", and F'", all acting
in the same direction. In order to find

a common resultant, we first combine

F with F'
; let o be the point of appli-

cation of the first resultant. We next
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combine the first resultant with F"
9
and let o' be the point of

application of the second resultant. Lastly, we combine the

second resultant with F'"
9
and we shall then find a final result-

ant of all the forces. This is evidently equal in amount to the

sum of all the components, and its point of application will be

on the line o
1 m'"

9
at an intermediate position between the two

points, which may be determined by means of the proportions

given above.

Where all the parallel components are not in the same direc-

tion, we combine each set separately, and thus obtain two partial

resultants, acting in opposite directions. If these are equal, we
shall have a couple ,

and no final resultant. If they are not

equal, we can find a resultant by the method already described.

(40.) Centre of Parallel Forces. By referring to Figs. 10,

11, and the demonstration following, it will be seen that the

position of the point C does not depend on the common. direction

of the forces represented by A P and B Q, but only on their rel-

ative intensities. If we suppose these components to revolve

round their points of application, A and B, the resultant will

still pass through C in any position they may assume, provided

only that they remain parallel. Moreover, it will be seen that

the point of application of the resultant, which we transferred for

convenience from m to (7, may be at any point on the line of its

direction. In other words, it is not fixed by the conditions of the

problem, except so far as this, that it must be on the line m C R.

It follows, then, that if, in the system of parallel forces of Fig. 13,

we suppose the components to revolve about their points of ap-

plication, their resultants will always pass through the point G,

provided only that they remain parallel. In Fig. 14, all the

components have been revolved through an angle equal to

P 1 G P. The direction of the resultant

has changed from P'GtoP G, but it still

passes through the point G. In the posi-

tion of the components represented by

Fig. 13, the point of application may be

at any point of the body on the line G P
which corresponds to the line G P 1 of

Fig. 14. In the second position of the

components in Fig. 14, it may be at any

point on the line G P. The point G, in
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which all the successive directions of the resultant intersect when
its components revolve about their points of application, is called

the centre of parallel forces. It follows, from this definition,

that if the forces remain parallel, and their points of appli-

cation invariable, this system of points may be turned round

the centre of parallel forces without changing the point of appli-

cation of the resultant ;
so that, if this point were supported, the

system would remain in equilibrium in any position we could

give it in turning it round this point.

(41.) Action and Reaction. The simplest case of the action

of one body upon another, is when a body in motion, which we

may call M, strikes upon another at rest, which may be termed

M'. IfM1
is free to move, it will be put in motion by the action

of Mj and in any case the reaction of M', in retarding M"
1

s mo-

tion, will be precisely equal to the action ofM in communicating
motion to M'. This principle, which is a necessary result of the

inertia of matter, is generally expressed thus : Action and re-

action are always equal and opposite.

The changes in the motion and in the moving force of both

bodies, which result from collision, are in general of a complicated

kind, and depend on the degree of elasticity of the bodies, their

form, mass, and other circumstances. To simplify the question,

we shall consider the bodies as completely devoid of elasticity,

and so constituted that after the collision they shall move as one

body. Let us then inquire what will be the direction and velocity

of the united mass after the impact.
The mass M

', being previously at rest, can have no motion

save what it may receive from the mass M
9
and consequently

must move in the same direction as the mass M moved in before

the collision. Again, since bodies cannot generate or destroy
motion in themselves, it follows that whatever motion the mass

M' may acquire must be lost by the mass M ; and also, that the

total momentum of the united masses after the collision must be

exactly equal to the momentum of the mass M before it. If b
and t)' represent the velocities before and after impact, then, by

(29), M\) and (Jf+ -M"') t)' represent the momentum before

and after impact ; and since these are equal, we have

Jlfb= (Jtf+Jf
/

)b /

, whence fr= b M^ ,. [22.]
I

Let us next suppose that the two bodies are both moving, and

6
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in the same direction ; the mass M with a velocity fo, and the

mass M' with a velocity Jb', less than t). What will be the com-

mon velocity after impact ? The momenta of the two bodies are

M b and M1 b. Since these motions are in the same direction,

they cannot be either diminished or increased by the collis-

ion, and hence the momentum of the united bodies will be

Mb + M' b'. If, then, b" be the unknown velocity of the

united masses, we have

" and b"

Let us now suppose that the two bodies are both moving, but

in opposite directions, and that the momentum of M is greater

than that of M'. On their collision, the momentum of M' will

destroy just so much of that of M as is equal to its own amount
;

for it is evident that equal and opposite momenta must destroy

each other. The momentum left after collision must, therefore,

equal M b M' fa', and, using b" as before, we shall have

')", and '/= -. [24.]

In the last case, as in the first, the reaction of the mass M' is

equal to the action of the mass M. The action of the mass M
has consisted, first, in destroying the momentum of M', equal to

M' b ; second, in giving to it the momentum M' b". The total

action is therefore expressed by M' b + M' b". The reaction of

M' has consisted, first, in destroying a portion of the momentum
of M, equal to M' b ;

and second, in subtracting from the re-

mainder of the momentum ofM the amount which it has after

the collision, orM 1

b". The total reaction is therefore, as before,

M' b + M' b'.

We will now suppose that the two masses are moving in differ-

ent directions
;
M in the direc-

tion A B, Fig. 15, with a velocity

t), and M1 in the direction A 1 B1

,

with a velocity b'> The direc-

tion of the motion after collision,

and the momentum of the united

masses, can be easily ascertained

by the application of the prin-

ciple of the parallelogram of

Kg. 15. forces already explained (33).



GENERAL PROPERTIES OP MATTER. 51

Let the distance CD represent the momentum M fa, and the dis-

tance C D' the momentum M'

t)', and complete the parallelogram

&DED'. Draw its diagonal C E. This diagonal will then

represent the direction of the common motion and the momen-

tum of the combined masses, which is equal to (-M"+ M') t)".

To find the velocity, it will be necessary to divide the number

expressed by this diagonal by the sum of M and M'.

If, in the first case, we suppose the body M'^ at rest, to be in-

finitely large, as compared with the moving mass M, then the

value of t)' [22] becomes 0, which shows that the whole momen-
tum is destroyed. This is practically the case when the moving
mass impinges against a fixed obstacle, which is either very much

larger than itself, or which is firmly fastened to the earth. The

body must, however, be supposed to strike the surface of the ob-

stacle from a direction at right angles to this surface. Should it

strike the surface at an oblique angle, we may have a different

result. Let us suppose an unelastic sphere impinges against an

unyielding surface, D B C, in the

direction A B, with a velocity t)

and a momentum M t) ;
what

would be the result ? By the

principle of the parallelogram of

force, the momentum M t) is equiv-

alent to two others, one in the di-

rection A Z), and the other in the
Fig 16

direction D B. The first will be

destroyed at the impact ; but the second, which is equal to

M t) cos a, will give the sphere a motion with the velocity t) cos a
in the direction B C. In the figure the surface is a plane, but

the demonstration is true for any curved surface
;
in such cases,

however, the plane D B C of the figure is the tangent plane to

the surface at the point of contact.

It follows from the above discussion, that the loss of mo-

mentum in a mass, M, impinging on another mass, M', when at

rest, is always proportional to its velocity. This loss, as can

easily be deduced from [22] ,
is equal to

V
M+M>'

a quantity whose value is evidently proportional to that of t).

In all the above cases, it can easily be shown that the re-
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action of the body M'
is always exactly equal and opposite to the

action of the body M. The same is also true, when the body M
acts on the body M' through the forces of gravitation, electri-

city, magnetism, etc., and not by direct impact. A needle, for

example, attracts a magnet with exactly the same force with

which the magnet attracts the needle ;
and were both free to

move, the magnet would move towards the needle as well as the

needle towards the magnet. It is also true, when a body does not

strike, but merely presses against, an obstacle, as, for example,
when a weight rests on a table, that the reaction of the obstacle

is exactly equal to the pressure.

(42.) Power, or Living Force. It has been shown (14), that

the intensity of a force is measured byM t). ,In the case of a loco-

motive, for example, M represents the whole mass of the locomo-

tive and train, and t) the acceleration of velocity imparted by the

moving force each second. Were the motion not retarded by
friction and other causes, its velocity would increase indefinitely,

according to the laws of uniformly accelerated motion already de-

scribed. In fact, however, with a given force, .F, this velocity soon

comes to a maximum, which it does not exceed
;
and so long as the

force and the resistance do not vary, the train moves with a uni-

form motion. During this time the action of the force is exactly

balanced by the resistance arising from friction and other causes,

and the train moves in virtue of the momentum, -M"t), previously

acquired. In the space passed over by the train each second, the

counteracting forces just neutralize the force jP, exerted by the

moving agent during the same period. It might now be supposed,

that, if this force were suddenly quadrupled, so as to equal 4 F,
the velocity would again increase until it attained to four times its

present amount. In fact, however, its velocity rapidly increases,

but only to twice its present amount ;
and then it is found that the

resistance is again just balanced by the greater force. That this

must be the case can be seen by reflecting, that, with a double

velocity, the moving train passes over double the space each sec-

ond, and therefore encounters twice as many points of resistance.

Moreover, it strikes each of these points with double the velocity,

and hence meets at each point twice the resistance. It there-

fore meets, during a second, twice as many points of resist-

ance, and suffers at each point twice as much resistance. The

resistance during a second is thus four times as great as before,
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and must require four times as much force to overcome it. In

order to obtain three times the velocity, it would be necessary to

increase by nine times the force ;
and in general the force re-

quired will be proportional to the square of the velocity to be

attained. What is true of the motion of a train of cars is true

also of the motion of a steamboat, and indeed of all motion

whatsoever by which work is or may be accomplished. Hence
the ability of a force to do work is proportional, not to the

velocity, but to the square of the velocity which it imparts to

the moving body.
The space passed over during a second by a body starting from

a state of rest, is equal to t) [5]. The intensity of the force

which has moved it over this space is equal toM u The product
of the intensity of the force by the space passed (the number of

points at which it has acted), represents the work accomplished

by the force. This product, equal to J M o
2

,
was named by

Leibnitz vis viva, or living force, to distinguish it from force

which does not produce motion, but only pressure ;
and which he

named dead force. A discussion was excited by Leibnitz on this

subject, in which all the mathematicians of the eighteenth cen-

tury took part, and which continued for more than forty years;
one party claiming, with Leibnitz, that force was proportional to

the square of the velocity ;
and the other, that it was propor-

tional to the simple velocity, the first party measuring force

by the vis viva, and the other by the momentum. As not unfre-

quently happens in such cases, both parties were right ; and their

two opinions were harmonized by introducing the element of

time. For, as we have seen, the living force represents, not

the intensity of the force at any instant, which is always meas-

ured by M D, but the work which the force will accomplish dur-

ing a second of time.

It represents, in other words, the power or quantity of the force,

in distinction from the intensity of the force. The intensity of a

force has been represented by F. The power or quantity of a

force may be denoted by P. Hence,

and P= J M u2
. [25.]

The word /oree is generally used in a restricted sense, as in (29),
to denote only the intensity of any effort, the quantity of the force

exerted being called power. These terms will be adopted with
their usual sense in this volume.

5*
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PROBLEMS.

NOTE. The following problems should be solved both by geometrical construction

and by trigonometry, whenever both methods are applicable.

Measure of Force.

25. A mass of matter equal to 10 units of mass receives an acceleration

from a given force of 5 metres. What is the intensity of the force ?

26. A mass of matter equal to 7 units of mass receives an accelera-

tion from a given force of 9.8 metres. What is the intensity of the

force ?

27. A mass of matter equal to 15 units of mass receives an accelera-

tion from a given force of 1.654 metres. What is the intensity of the

force ?

28. A mass of matter equal to 20 units of mass receives an accelera-

tion from a given force of 26.243 metres. What is the intensity of the

force?
Momentum.

29. A railroad train whose mass equals 1000 units is travelling with

a velocity of 50 kilometres an hour. What is its momentum ? How

many units of force would be required to stop the train in ten minutes,

supposing the moving power to cease acting ?

30. A vessel whose mass equals 120,000 units is moving with a ve-

locity of 2.25 metres. What is its momentum ? How many units of

force would be required to stop it in five minutes, supposing the moving

power to cease acting ? If the resistance of the water and other causes

of retardation are equivalent, on an average, to a force of 900 units, how
soon would the vessel come to rest after the moving power ceased ?

Composition of Forces.

31. Three forces are acting on a point in the direction A B, equal re-

spectively to 20, 35, and 70 units. In the opposite direction, B A, are

acting four forces, equal respectively to 10, 45, 15, and 30 units. What
is the intensity, and what the direction, of the resultant ?

32. A force equal to 1000 units is acting on a point in the direction

B A. What is the intensity of each of two components, which are to

each other as 3 : 5, and both of which are acting in the same direction as

the resultant ? What is the intensity of each of two components, one of

which acts in the direction of the resultant and the other in an opposite

direction, and which are to each other in the relation of 3 : 5 ?

33. It is required to resolve a force equal to 441 units into six compo-

nents, in the same direction as the resultant, whose intensities shall be to

each other as 1 : 2 : 22 : 2 3
: 24

: 25.

34. It is required to resolve a force equal to 44 units into six compo-
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nents. Three of these, which have the same direction as the resultant,

are to each other as 1 : 3 : 5 ; while the three others, which have an op-

posite direction, are to each other as 1 : 2 : 3. Moreover, the sum of the

first is 5.4 times greater than the sum of the last

35. Two forces are acting at right angles to each other on one point.

The force F 1 = 5 units, and the force F" = 5 \/~3 units. What is

the intensity of the resultant ? and what is the angle which its direction

makes with the direction of F 1
?

36. Two forces acting at right angles on one point are equal, F 1 to 3

units, and F" to 4 units. What is the intensity of the resultant ? and

wrhat is the angle which its direction makes with the direction of F' ?

37. It is required to resolve a force, F = 100 units, into two compo-

nents, F 1 and F", making with F the angles 65 and 25 respectively.

What must be their intensities ?

38. It is required to resolve a force, F = 100 units, into two compo-
nents at right angles to each other, one of which which shall be equal to

30 units. What must be the value of the second component ? and what

the values of the angles which both components make with the resultant ?

39. Two forces, each equal to 100 units, act on one point. The angle
made by the directions of the two forces equals 45. What is the value

of the resultant ?

40. The directions of two forces, F' = 100 and F" = 50, acting on

one point, make an angle of 145. What is the value of the resultant

F? and what are the angles which F makes with F' and F"?
41. It is required to decompose a force, F = 125, into two compo-

nents, the direction of each of which shall make, with the direction of F,
an angle of 25. What will be the value of each component ?

42. It is required to resolve a force, F= 100, into two components,
F' and F", whose direction shall make, with the direction of F, the an-

gles of 10 and 20 respectively. What will be the value of each com-

ponent ?

43. Five forces, whose directions are in the same plane, act on one

point The intensities of the forces, and the angles which their directions

make with a fixed direction passing through the point of application in

the same plane, are given in the following table :

Intensity of the Forces. Inclination to the fixed Direction.

90 50

100 120

120 170

50 250

40 290

What is the intensity of the resultant ? and what is the angle which its

direction makes with the fixed direction ?
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44. The force F = 100 is resolved into two components, F 1 =100
and F" = 150. What are the angles which the directions of these com-

ponents make with the direction of F ?

45. At the extremities of a straight line 44 c. m. long, two parallel

forces, F 1 = 15 and F" ===
7, are acting in the same direction. What

is the intensity of the resultant ? and what is the position of the centre of

the two forces ?

46. At the extremities of a straight line 12 c. m. long, two parallel

forces, F 1 19 and F" =13, are acting in opposite directions. What
is the intensity of the resultant ? and what is the position of the centre of

the two forces ?

Action and Reaction.

47. A mass M= 20 units, moving with a velocity of 5 m., meets

a second mass M1 =15 units, which is at rest. What will be the ve-

locity of the combined masses after collision ? In this and in the few

succeeding problems the masses are supposed to be unelastic, and so

constituted that after the collision they will move on together as one

body.

48. A mass M= 500 units, moving with a velocity of 15 m., strikes

another mass M1 = 50 units, moving with a velocity of 10m. in the

same direction. What will be the velocity of the combined masses

after the collision ?

49. A mass M= 250 units, moving with a velocity of 20 m., meets

another mass M1 = 300 units, moving with a velocity of 2 m. in the op-

posite direction. What will be the velocity of the combined masses after

the collision ?

50. A mass M= 25 units, moving with a velocity of 5m., meets an-

other mass M' = 30 units, moving with a velocity of 2 m. The direc-

tions of the two motions before collision make with each other an

angle of 75. What will be the velocity of the combined masses

after the collision ? and what will be the angle made by the direction

of the resulting motion with the directions of the two motions before

collision ?

GRAVITATION.

(43.) Definition. When bodies near the surface of the earth

are left unsupported, they fall to the ground ; or, if supported,

they exert a downward pressure, which we term their weight.

The cause of these phenomena is called the force of gravity.

This force is the attraction which the earth exercises upon all

bodies on or near its surface, and is only a particular case of a
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general force of nature, in virtue of which all bodies in the uni-

verse attract each other, with a force depending on their masses

and their mutual distances. Astronomy exhibits the grandest

examples of this force, in the motions of the heavenly bodies
; but

it can also be shown that the same force acts upon the smallest

masses of matter with which we experiment on the surface of the

globe. The existence of this force of attraction between the heav-

enly bodies was first recognized by Newton, who discovered the

law which it obeys, and gave to it the name of Universal Gravi-

tation. In this work, we shall only have occasion to study those

phenomena of gravitation which are caused by the attraction

which the earth exerts for bodies on or near its surface. Let us

then inquire what is the direction, what the point of application,

and what the intensity of this force. Compare (26).

(44.) Direction of the Earth's Attraction. It has been

stated (27), that the direction of a force is the direction of the

motion which it causes, or the direction of the pressure which it

exerts. When bodies fall freely, they move on a line which, if

extended, would pass through a variable point near the centre

of the globe, called its centre ofattraction. Hence, the direction

of the force of gravitation is that of a line joining the centre

of attraction of the earth to the point of application of the body.
This direction is given by a. plumb-line ,

which is merely a small

weight, generally of lead, suspended by a light

and flexible thread (Fig. 17). When the weight
thus freely suspended is at rest, it is easy to show
that the pressure exerted by the force

of gravitation is in the direction of

the line. In Fig. 18, for example,
this pressure must be in the direc-

tion A C. To prove this, suppose for

a moment the force exerting the pres-

sure were in any other direction, as

A B
;
then the force in the direction

A B could be decomposed into two

components, one in the direction A C, which would
be neutralized by the resistance of the point of

suspension, the other in the direction A D, which

would cause motion. As by supposition the weight rig. is.

is at rest, it follows that the direction of the pressure, and hence
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also the direction of the force of gravitation, must be that of the

plumb-line.

If several plumb-lines be placed near each other, it will be

found that the lines when at rest will all be sensibly parallel to

each other
;
because their distances apart are inconsiderable in

comparison with the length of the radius of the earth. Hence
the directions of the forces of gravity exerted by the earth on

neighboring bodies are parallel. The direction of the plumb-
line at any place is called the vertical direction, and the di-

rection perpendicular to this the horizontal direction. The
surface of a liquid at rest, as will be proved hereafter, is always

horizontal, and therefore perpendicular to the plumb-line.

(45.) Point of Application of the Earth's Attraction. As

every particle of a body is similarly situated towards the earth, it

follows that every particle must be equally attracted, and that

there must be as many points of application as there are parti-

cles of the body. The action of the earth's attraction may there-

fore be regarded as the action of an infinite number of parallel
and equal forces on as many distinct points of application. The
resultant of these forces can be easily found by extending the

method, discussed in (39), of finding the resultant of several

parallel forces, to the case where the number of forces is infinite.

As the general conclusions of (39) are independent of the num-
ber of parallel forces, it follows that the direction of the result-

ant of the forces of gravity, acting on the particles of a body, is

parallel to the common direction of the forces, and also that the

intensity of the resultant is equal to the sum of the intensities of

the components.

If, for example, A B (Fig. 19) represents a mass of matter,
and the small arrows pointing vertically downwards represent
the directions of the gravitating forces acting on the particles com-

posing such mass, then it follows, from what has been explained,
that the resultant of all these forces will have a direction, D E,

parallel to their common direction, and will have an intensity

equal to their sum. The position of this resultant remains yet to

be determined. The principles of mathematics enable us, in many
cases, to combine together the forces acting on all the particles

of a body, by extending the method used in (39), Fig. 13, and

thus to calculate the exact position of the resultant
;
but its posi-

tion can in most cases be determined more readily by experi-

ment.
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If, in Fig. 19, we suppose that the line represented by the large

arrow is the direction of the resultant, it is evident that, if any

point, such as (7, on that line, is supported, the

body will remain at rest ; because the resultant

of all the forces acting upon the body having the

direction D E, will be expended in pressure on

the fixed point C. It is not essential that the

point of support should be in the body, for the

same would be true for any point in the direc-

tion of the arrow D E. If, for example, D were

a pin, from which the body was suspended by
a thread attached to the body at any point in the

line D C, then the body would still remain at Fi - 19-

rest ; for, as before, the resultant having the direction DE would

be expended in pressure on the pin at D. It would be different,

however, with a point of support not in the direction of the arrow,
such as P. If the body be connected with this point by a string

attached at C, it will no longer remain at rest
; for the resultant

jD .E, acting at the point C, can be decomposed into two compo-

nents, the first in the direction of C H, which would be ex-

pended in pressure on the point P, and the second in the direction

C I, which would move the body towards the vertical line. It

follows, therefore, that, if a body be supported by a fixed point,

it cannot remain at rest, unless the resultant of all the parallel

forces which gravity exerts upon its particles passes through that

point.

This fact gives us the means of ascertaining experimentally
the position of the resultant of the parallel forces which gravity
exerts upon the particles of a body. We have

only to suspend it by a string attached to any

point of the body, and the direction which the

string assumes will be the direction of the re-

sultant of the forces of gravity when the body
is in that position. In Fig. 20, for example, the

resultant of the forces which gravity exerts upon
the particles of the chair is the line A .?, when
the chair is in the position represented in the

figure. If we attach the string to another

point, the chair will take another position, and

the resultant will also change its position to the
2Q
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line CD, Fig. 21. We should find, by experiment, that for

every point of suspension there would be a different position of

the chair, and also a different position of

the resultant.

When, in any given position of a body,
we have determined the position of the

resultant of the forces of gravity, we have

also determined a line on which the point

of application of the earth's attraction must

be ; because, by (32), this point may be

any point on the line of the resultant. The

position of the line, however, will depend
on the position of the body ;

and there-

pi 21 fore, in order to determine it, the position

of the body must be given.

(46.) Centre of Gravity. When a body is turned round in.

any direction, it is easy to see that the lines of direction of the par-

allel forces, which gravity exerts on its particles, revolve about

their points of application, retaining their parallelism. Hence it

follows, from (40), that, in any position which the body may as-

sume, the resultant of these forces will always pass through the

same point. This common point of intersection of the resultants

of the forces of gravity, in any position which the body may as-

sume, is termed the centre of gravity. This point has several

important relations, which we will now consider.

The centre of gravity may always be regarded as the point

of application of the resultant of the forces which gravity exerts

upon the particles of a body, because it has been proved, first,

that the point of application may be any point on the line of the

resultant ; secondly, that the centre of gravity is a point common
to all the resultants.

When the centre of gravity is supported, the body remains at

rest. If the centre of gravity be supported on a point or axis,

and the body is free to turn round such axis, the body will re-

main at rest in any position in which it can be placed. This

result follows necessarily from the last
; for, as the point of appli-

cation of the resultant is fixed, the whole intensity of the forces

of gravity must be expended in pressure against this point.

The whole attractive force exerted by a mass of matter may
be regarded as emanatingfrom its centre of gravity. The prin-
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ciple, that action and reaction are always equal and opposite,

applies to the attraction of gravity exerted by one mass of matter

over another. The earth is attracted, by a body near its surface,

with a force exactly equal to the attraction exerted by the earth

on this body. Now, since the attraction of the body must be

equal and opposite to that of the earth, it follows that the re-

sultant of the force must be on the same line with the centre of

gravity, and hence may always be regarded as emanating from

it. Hence, also, the attraction of the earth may be regarded as

emanating from some one point, which is not, however, the

same as the centre of its figure, and, moreover, it is variable.

A singular result follows from the principle of reaction above

stated, since it must be, when a body falls to the ground, that

the earth must rise to meet the body, and this is true
; but the

extent of the motion of the earth is as much less than that of

the body, as the mass of the earth is greater than the mass of the

body. Representing by m the mass of the body, we have for the

intensity of the earth's attraction m t) ;
and representing by M

the mass of the earth, we have for the intensity of the body's at-

traction for the earth M t)' ;
and since these are equal, wo have

mv = Mv', or v':v = m:M;
that is, the velocity acquired by the earth at the end of one sec-

ond is as much less than that acquired by the body, as the mass

of the body is less than that of the earth.

(47.) Position of the Centre of Gravity. For tho methods

of calculating the position of the centre of gravity, we must refer

the student to works on Mechanics, since these methods depend
on the principles of the higher mathematics. The position of

the centre of gravity can be found experimentally by suspending
the body by a cord from two points successively, as represented
in Figs. 20, 21. The point where the line of the cord produced
in one position intersects the line of the cord produced in the

second, is, by (46), the centre of gravity. It can thus be proved,

that, when a homogeneous body has a regular form, the centre of

gravity is at the centre of the figure. This is the case with the

sphere, the cube, the octahedron, and the other regular solids of

geometry. So also, when a homogeneous body has a symmetrical

axis, the centre of gravity will be a point of this axis. Thus, in

a cone, the centre of gravity is in the axis of tho cone, and it can

6
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easily be seen that, if a cone be suspended by a string from its

apex, the direction of the line of suspension would coincide with

the direction of the axis of the cone
; because, as the matter is

uniformly distributed round this axis, the gravity of its particles,

acting equally on every side, will have no tendency to move it

when in this position.

The centre of gravity is not necessarily in the body. Thus,
the centre of gravity of a hoop is at its centre, and the cen-

tre of gravity of a hollow sphere, an empty box, or a cask, is

within it.

The centre of gravity of two separate and independent bodies

immovably united is a point between them. This point can be

very easily determined mathematically, from principles already

established.

Let A and B, Fig. 22, be the two bodies, and let a and b be their

centres of gravity. Connect the two by a line. From what has

been said, it follows that the

attraction of the earth on this

system may be regarded as the

action of two parallel forces at

a and b. Hence, the point of

application of the resultant, the

centre of gravity of the system, must be on the line a b, and

must divide the line into two parts, which are inversely pro-

portional to the intensities of the forces. It will be shown in

(49) that the two forces are proportional to the masses, and

hence the centre of gravity must divide the line a b into two

parts which are inversely proportional to the masses of the two

bodies A and B.

(48.) Stable, Unstable, and Neutral Equilibrium. It is a

necessary consequence of what has been said, that the centre of

gravity of a body has always a tendency to move into the lowest

position of which the conditions will admit. Hence, if the body
is supported at only one point, it cannot remain at rest, unless

this point of support is either at the centre of gravity or is in the

same vertical with it. If the centre of gravity is below the

point of support, the body is in a stable equilibrium ; because,

if by any means the centre is displaced, the force of gravity will

tend to restore it to its original position. If, however, the centre

of gravity is above the point of support, the body will be in an
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unstable equilibrium ; for the slightest displacement will remove

the centre out of the vertical, and it will then move to the lowest

possible position. The chair suspended by a string in Fig. 20 is

in a stable equilibrium, because the centre of gravity is below

the point of support. The same chair could, with great care, be

balanced on the end of one of its legs, but its equilibrium would

then be unstable
;
because the centre of gravity would be above

the point of support, and the slightest displacement of the centre

of gravity would cause the chair to fall.

When a body rests on a base, it is stable, when the vertical

passing through the centre of gravity falls within the base. The

stability of the body in such a position is estimated by the mag-
nitude of the force required to overturn it. If its position can

be disturbed or deranged without raising its centre of gravity,

the slightest force will be sufficient to move it
;
but if its position

cannot be changed without causing its centre of gravity to rise

to a higher position, then a force will be required which would be

sufficient to raise the entire body through the height to which its

centre of gravity must be elevated. This is illustrated in Figs.

23, 24, 25. To turn the cylinder over the edge B, it would bo

Fig. 23. Fig. 24. Fig. 26.

necessary in either case to move the centre of gravity, G 9
over

the arc G E, and hence to raise it through the height HE.
This distance is greater, and hence the force required to over-

turn the cylinder is greater, the larger the base of the cylinder

relatively to its height. It can also easily be seen that the sta-

bility is greatest when the vertical, passing through the centre of

gravity, passes also through the centre of the base. If it passes
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through tho edge of the base, as in Fig. 26, the slightest force

will overturn it. If it passes outside of the base (Fig. 27), then

Fig. 26. Fig. 27.

the centre will be unsupported, and the cylinder will fall. These

principles, which have been illustrated by a cylinder, may be

readily extended to other bodies.

When a body rests on two or more points, it is not necessary
for its stability that its centre of gravity should be directly

over one of these points ;
it is only necessary that its vertical

should fall between them. If a body rests on two points, it

is supported as effectually as if it rested on an edge coinciding

with the straight line which unites the two. If it rests on three

points, it is supported as firmly as it would be by a triangular

base coinciding with the triangle of which the three points are

vertices.

A familiar condition of equilibrium is presented by a sphere

resting on a level plane. Such a sphere has but ,one point of

support, and this is directly under the centre of gravity. If the

sphere is rolled upon the plane, the centre of gravity will neither

rise nor fall. Hence any force, however slight, will cause it to

move
; and, on the other hand, the body will have no tendency,

of itself, to change its position when it is disturbed. This condi-

tion is called neutral equilibrium. A cylinder resting with its

edge on a plane and level surface is another example of neutral

equilibrium.

(49.) Intensity of the Earth's Attraction. The falling of a

stone to the earth is, as has been stated (21), an example of a

uniformly accelerated motion. Hence, the force of gravitation
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must be a force of constant intensity (27). The amount of ac-

celeration, as was also stated (21), at the latitude of Paris, is

$ = 9.8088 metres. This acceleration is the same for all masses

of matter, whether large or small. The apparent contradiction

to this statement in common experience arises from the fact, that

the fall of light bodies is more retarded by the resistance of the

air than that of heavy bodies. If, however, the experiment is

made in a vacuum, it will be found that a gold eagle and a feather

will fall with equal rapidity. The intensity of a force is, as we
have seen, equal to M V. Representing the intensity of the force

of gravity, which acts on a given mass of matter, Jf, by Cr, we
shall have, for the latitude of Paris,

G = M 9.8088 (units offorce). [26.]

For any other mass of matter, M1

,
we shall have, in the same

way,
G 1 = M ' 9.8088 (units offorce).

Hence,
G: G' = M: M'. [27.]

The intensity of the earth's attraction is therefore proportional
to the quantity of matter on which it acts. In other words, the

force increases with the quantity of matter to which it is applied.

In this respect gravity differs from many other forces with which

we are familiar, from muscular force and the force of a steam-

engine, for example, since these have a constant value, and do not

vary with the amount of matter to which they are applied.

We assumed (45) that the earth's attraction acts equally on

every particle of matter. If this is true, it follows that the re-

sultants of all the forces of gravity acting on the separate parti-

cles of two bodies must be proportional to the number of par-
ticles in each

;
in other words, to the masses of the two bodies.

That this is the case, is proved by the experiment on falling

bodies alluded to above, arid by the proportion [27] which fol-

lowed. Hence the assumption of (45) was correct.

As the intensity of the force of gravity varies with the amount
of matter on which it acts, we must, in estimating the strength
of this force in different places, always compare the intensities

of the force when acting on equal masses of matter. It simpli-
fies the subject, to take a quantity of matter equal to the unit of

mass in each case. Representing then by # the intensity of the

6*
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attraction of gravitation for the unit of mass, we can easily de-

duce from [26],

g = 9.8088 (units offorce) ; [28.]
and also

G = Mg (units offorce). [29.]

In this book, g will always be used to express the intensity of the

force of gravity acting on the unit of mass, or, in general, the

intensity of the force of gravity ;
and G will always be used to

express the intensity of the force of gravity acting on a given

mass, M. In every case they both stand for a certain number of

units of force. The intensity of the earth's attraction varies

slightly at different points of its surface
; thus, at the equator,

g = 9.7806 ;
at the latitude of Paris, as above, g = 9.8088

;

and at the pole, g = 9.8314.

In order to determine the intensity of gravity at different

places, it might be supposed that we could measure the dis-

tance through which a heavy body would fall the first second,

and then, by the principles of uniformly accelerated motion (21),

twice this distance would be equal to the value of g at the given

place. On account of the great rapidity with which bodies fall,

it is impossible to measure this distance with any accuracy ;
nor

is this necessary, since we have in the pendulum an instrument

by which we can determine indirectly the value of g with great

precision.

(50.) Pendulum. A pendulum is a heavy body, suspended
from a fixed point by a rod or cord. If the centre of gravity of

the body is directly under the point of support, the body remains

at rest ;
but if the body be drawn out of this position, so that

the centre of gravity will be on either side of the vertical line

passing through the point of support, then the body, when disen-

gaged, will fall towards the vertical line, and in consequence of

its inertia will continue its motion beyond the vertical line until

it comes to rest. It will then return to the vertical, and thus

oscillate from side to side. In order to investigate the phe-

nomena of this kind of motion, the mathematicians study at first

an ideal pendulum, which they call a simple pendulum, to distin-

guish it from the actual material pendulum, which they call a

compound pendulum.

(51.) Simple Pendulum. A simple pendulum consists of a

material point suspended to a fixed point by means of a thread
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without mass or weight, perfectly flexible and inextensible.

Such a pendulum is of course only a mathematical abstrac-

tion ;
but we can approach sufficiently near to it, for purposes

of illustration, by suspending a small lead bullet to a fixed point

by means of a fine silk thread.

Let O A, Fig. 28, be such a simple pendulum, in a vertical po-

sition, and' therefore at rest. If we now withdraw it to the posi-

tion O B, the force of gravity act-

ing on the point B in the direction

B g- may be decomposed into two

components; one, B a, which will be

destroyed by the resistance of the

thread and of the fixed point O ; the

other, B 6, perpendicular to O B,

which, being unresisted, will move
the point B towards the vertical

O A. If the line B g" represents

the intensity of the force of grav-

ity, then B b represents the in-

tensity of the second component. FIR. 28.

Hence, if we suppose the amount

of matter concentrated at B to be equal to the unit of mass, and

represent the angle BOA by a, we shall have, for the value of

the second component, g- sin a. This component will evidently
diminish in intensity as the pendulum approaches the vertical,

and at the vertical will become nothing. It appears, therefore,

that this force will be continuous, but not constant ;
and hence,

that the pendulum will move with an accelerated, but not with

a uniformly accelerated motion (20) ,
in the arc of a circle whose

radius is equal to O B.

Having reached the vertical O A, the pendulum, in virtue of its

momentum, will rise with a retarded motion toward O B'
;
and

since the action of gravitation in retarding the motion must be

exactly equal to its previous action in accelerating it, it follows

from (27) that the momentum will not be destroyed until the

pendulum has moved over an arc, A B 1

, equal to A B. At B1
it

will be for an instant at rest, and then fall back again to A, re-

mount to By and thus continue indefinitely, supposing there were

no resistance. In actual practice, however, with a compound

pendulum, the resistance of the air, the rigidity of the thread,
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and the friction at the point of support, rapidly diminish the

arc through which it moves, and finally arrest the motion al-

together. By diminishing these resistances, the motion may be

made to continue for a proportionally longer time ;
and a pendu-

lum has been known to continue oscillating in a vacuum for

several hours.

Each motion of the pendulum from B to B', or from B' to B,

is called one oscillation, and the angle B O B' is called the ampli-

tude of the oscillation.

(52.) Isochronism of the Pendulum. : It is evident that the

length of time required for a single oscillation of the pendulum
O A, Fig. 28, must be absolutely the same, so long as the ampli-

tude of the oscillation remains constant ;
but also, what is more

remarkable, it is true that the time required for each oscillation

of the pendulum is but little influenced by the amplitude of the

oscillation ; and, for all practical purposes, the time of oscilla-

tion may be regarded as equal for all amplitudes not exceeding

three or four degrees. This singular property of the pendulum
is termed isochronism, from two Greek words signifying equal

time, and the oscillations of the pendulum are said to be iso-

chronous. Two oscillations of the pendulum are not, however,

absolutely isochronous, unless the difference between their am-

plitudes is infinitely small.

(53.) Formula of the Pendulum. If we represent by T the

time of oscillation of a pendulum in seconds, by / its length in

fractions of a metre, by g- the acceleration produced by gravity

each second, and by it the ratio of the circumference of a circle

to its diameter, the value of T may be found to be

21=^
N)p

when the amplitude of the oscillation is infinitely small. If the

amplitude is not infinitely small, but only very small, then we

have

T=;

when a is the ratio of the length of the arc A B, Fig. 28, to the

length of the pendulum. The truth of these formulae cannot

readily be demonstrated without the aid of the higher mathe-

matics, and we must therefore refer the student to works on

Analytical Mechanics for the demonstration.
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Several important truths are expressed in these formulae :

1. The duration of an oscillation does not depend on its ampli-
tude when this is infinitely small, and is but slightly influenced

by the amplitude even ivhen it is as large as three or four de-

grees. By substituting, in [CO], /=!, and g-
= 9.809, we

should obtain, for the time of vibration of a pendulum one

metre long, at the latitude of Paris, T= 1.003085. By sub-

stituting in [31] the same values, and also a = 3.1416 -r- 90 =
0.0349, we should obtain, for the time of vibration when the am-

plitude was four degrees, T= 1.003161, which differs from the

first value by only the 0.000076 of a second.

2. The duration of the oscillation is proportional to the square
root of the length of the pendulum. Substituting, in equation

[30] ,
C= -

,
which is a constant quantity at any given

place, the equation becomes T= C */T. For a pendulum of

another length, as /', we have T' = C A/I7 , and, comparing
the two,

T : T1 = VT : VI7
J [32.]

and also

/ : /' = T2
: T1

*. [33.]

3. The duration of the oscillation of a pendulum of an inva-

riable length is inversely proportional to the square root of the

intensity ofgravity. Substituting, in equation [30],
= ^/^1,

which is a constant quantity when / is supposed invariable, we

obtain T== C' _. For another place, where the intensity of

\

gravity is g/

,
we have T= C IJL ; hence,

N*3

(54.) Compound Pendulum. We have hitherto supposed
that the pendulum is a heavy mass, of indefinitely small magni-

tude, suspended by a string or a rod, having no weight. Such

a pendulum is, as has been stated, a pure abstraction, and can

never be realized in practice. The pendulum which must be

used in all our experiments is a compound pendulum, consisting

of a heavy weight, suspended to a fixed point or axis, by means

of a rigid rod of wood or metal. The particles of such a pendu-



70 CHEMICAL PHYSICS.

lum must necessarily be at different distances from the point of

suspension, and must therefore tend to oscillate in different times.

Hence, the time of oscillation of the whole pendulum will not be

the same as that of a simple pendulum of the same length, and

the difference becomes of much importance.
The theory of the simple pendulum may be extended to the

compound pendulum, by regarding the last as consisting of as

many simple -pendulums as it contains material particles. Were

these free to move, they would oscillate in different times, deter-

mined by their distances from the point of suspension ;
but they

form parts of a rigid system, and they are therefore all compelled
to oscillate in the same time. Consequently, the oscillations of

the particles near the point of suspension are retarded by the

slower oscillations of those below them
; and, 011 the other hand,

the oscillations of the particles near the lower end of the pendu-
lum are accelerated by the more rapid oscillations of those above

them. At some point on the axis of the pendulum, intermediate

between these, there must be a particle whose natural oscillation

is neither accelerated nor retarded, and where the several effects

will be all balanced, all the particles above it having exactly the

same tendency to oscillate faster that the particles below it have

to oscillate slower. This point is called the centre of oscillation,

and it is obvious that the time of oscillation of a compound pen-
dulum is exactly the same as that of a simple pendulum whose

length is equal to the distance of the centre of oscillation from

the point of suspension. This distance is the virtual or acting
1

length of the pendulum, and equations [30] and [31] will apply
to compound pendulums, by substituting for / their virtual

length. By the length of a pendulum, no matter what may be

its form, is always to be understood the virtual length, unless

the reverse is expressly stated.

(55.) Position of the Centre of Oscillation. When the form

of the pendulum is given, the position of the centre of oscillation

can be calculated
; but as the methods of calculation involve the

principles of the higher mathematics, they cannot readily be ex-

plained in this connection. The centre of oscillation can also be

found experimentally, by making use of the following remarka-

ble property of the compound pendulum, first demonstrated by
Huyghens.

If a pendulum be inverted and suspended by its centre of os-
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dilation, its former point of suspension will become its new centre

of oscillation, and the time of vibration will remain the same as

before. This property is usually expressed by saying, that the

centres of oscillation and suspension are interchangeable.
This property of the pendulum may be verified by

means of a reversible pendulum, Fig. 29. This pendu-
lum is furnished with two knife-edges, a and b, which,

when the pendulum is in use, rest on plates of steel or

agate. If a is the axis of suspension, and b the axis of

oscillation, determined by calculation, the pendulum will

be found to oscillate in the same time on either knife-

edge. If the position of the axis of oscillation is not

known, it can easily be found by shifting the position of

the lower knife-edge, until, on trial, the pendulum is

found to oscillate in equal times on both. The lower

knife-edge is then in the axis of oscillation. A pen-
dulum of this kind was used by Captain Kater, in his

determination of the length of the seconds pendulum,
mentioned on page 12.

When the pendulum consists of a fine thread and a

heavy ball, the centre of oscillation very nearly coin-

cides with the centre of gravity, and such a pendulum
can be used for ascertaining approximatively the virtual

length of a compound pendulum. By shortening or

lengthening the thread, a length can easily be found

with which the pendulum will oscillate in the same

time with the compound pendulum. This length will

then be approximatively the virtual length sought.

(56.) Use of the Pendulum for Measuring- Time.

If in the equation T= it ,
we substitute for T

unity, and for n and g* the values already given, we shall I
1

find, for the length of a pendulum vibrating seconds at
||T3"

Paris, the value /= 0.993839 m. The lengths of pen-

dulums vibrating in 2, 3, and 4 seconds would be by (33)

4, 9, and 16 times this length. In order to use the

seconds pendulum for measuring time, it is only necessary to con-

nect with it a mechanism by which its beats may be recorded and

its motion maintained. Such a mechanism constitutes a common

clock, the essential parts of which are represented in Fig. 30.
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The toothed wheel R, called the scape-wheel, is turned by a

weight or spring, either directly, as in the figure, or through the

intervention of other wheels. The revolution of the scape-wheel
is regulated by means of a peculiar contrivance, a b, called the

escapement, which oscillates on an axis

o o'. The oscillations are communi-
cated to the escapement by the pen-
dulum P, through the forked arm of.
When the pendulum hangs vertically,

one of the teeth of the scape-wheel,
cut obliquely for the purpose, rests on

the upper side of the hook 6, and the

clock remains at rest. If now the

pendulum is set in motion, so that

the hook b is moved from the wheel,
the tooth which rested upon it is set

free, and the wheel begins to revolve ;

but it is soon arrested by the hook a,

which has moved up to the wheel as

b moved from it, and catches on its

under surface the tooth immediately
below. As the pendulum oscillates

back the hook a moves away, the

wheel again commences to revolve,

but is arrested a moment after on the

opposite side by the hook b, which
catches the tooth next to the one it held before ; and thus contin-

uously, so that each oscillation of the pendulum allows the scape-
wheel to move forward through a space equal to one half of one

of its teeth. If, then, the wheel has thirty teeth, it will com-

plete one revolution in sixty beats of the pendulum, moving for-

ward one sixtieth of a revolution at each beat. This wheel is

the one on whose axis the second-hand is placed. It is connected

by cogs with another wheel, which is made to occupy sixty times

as long in revolving, and this carries the minute-hand ; and this is

connected with another wheel, which revolves in twelve times the

period, and carries the hour-hand. Thus the second-hand regis-

ters the beats of the pendulum up to sixty, or one minute
; the

minute-hand registers the number of revolutions of the second-

hand up to sixty, or one hour
; and the hour-hand registers the

Fig. 30.
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number of revolutions of the minute-hand up to twelve, or half

a day.

If the pendulum and escapement were removed from a clock,

there would be nothing to prevent the train of wheels from being
turned round with great rapidity by the weight or spring acting
on it, and the clock would speedily run down. On the other

hand, were there not some means of communicating to the pen-
dulum occasional impulses, it would soon be brought to rest by
the resistance of the air and the resistance due to the mode of

suspension. To prevent this, the escapement is so constructed as

to give a very slight additional impulse to the pendulum at each

oscillation. The ends of the two hooks, a, 6, are cut so as to pre-

sent to the teeth of the scape-wheel inclined surfaces. As the

tooth of the wheel leaves one of these hooks, its extremity
slides over this inclined plane with a considerable force, commu-
nicated by the weight, so as to throw the escapement forward

with a slight impulse the moment the tooth is set free. This im-

pulse is communicated, through the axis o o 1 and the arm o/, to

the pendulum. If the weight is increased, the force with which
the impulse is given will be greater ; and the pendulum, receiv-

ing a greater impulse at each oscillation, will swing through a

greater arc. As this will slightly increase the time of each oscil-

lation (53), the addition of weight will make the clock go slower.

The change of rate in a clock caused by the expansion and con-

traction of the pendulum, will be considered in the chapter on
Heat.

(57.) Use of Pendulum for Measuring" the Force of Grav-

ity. By transposing, we obtain from equation [30] the value

of #:

e = i^; [35.]

from which, when we know the length of a pendulum which os-

cillates in a given time, T, we can easily calculate the value of g-

for the place of experiment. If, in the last equation, we placeT= 1, then / denotes the length of the seconds pendulum, and
we obtain for the value of g;

ff
= ln2

. [36.]

In order, then, to measure the intensity of gravity at any place, we
have only to oscillate a pendulum whose virtual length is known,

7
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and observe the time of a single oscillation. This observation

is readily made by counting a large number of oscillations, and

observing the time occupied by the whole number. This time,

divided by the number of oscillations, gives the duration of a

single oscillation with great accuracy, because any error we may
have made in observing the time is thus greatly divided.

By this method Borda and Cassini, in 1790, measured with

.great accuracy the intensity of gravity at the Observatory of

Paris. The pendulum which they used consisted of a sphere of

platinum, suspended to a knife-edge by means of a fine platinum
wire. The knife-edge rested on an agate plate, and the whole

pendulum was about four metres long. Instead of counting di-

rectly the number of oscillations, Borda compared the motion of

his pendulum with that of a clock placed behind it. On the ball

of the clock's pendulum a vertical mark indicated the position of its

axis, and a small telescope^ placed a few metres in front, enabled

him to observe when the wire of his pendulum exactly coincided

with the vertical mark. Starting from a moment when the two

coincided, he observed the number of seconds before such coin-

cidence occurred again ;
and knowing this, he was able at once to

calculate the number of oscillations of the pendulum which oc-

curred during an observed number of seconds by the clock. Let

v be the number of oscillations of the seconds pendulum between

the coincidences, then v 2 will be the number of oscillations

of the experimental pendulum in the same interval, that is, in

v seconds, and will be the number in one second. Hence,

if p is the number of oscillations of the pendulum, and t the

number of seconds observed by the clock, we shall have

j,-i*4W<fc!2i [ST.]V V L J

an equation by which we can calculate the number of oscillations

in a given time, without being obliged to count them. In these

experiments, the pendulums were enclosed in glass cases to pro-

tect them from currents of air, and separated from each other

by glass, so that they should not react on each other through
this fluid.

As the amplitude of the oscillations is not infinitely small, but

only very small, in such experiments, it is important to correct

the number of oscillations observed as above, and substitute for
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it in the calculation the number which would have occurred had

the amplitude been really infinitely small. If we call the duration

of an oscillation which is infinitely small T, and that of one which is

only very small T', we have from [80] and [31] T'=T(l +^\\ /

where a is equal to one half the arc which measures the am-

plitude. Now, as the number of oscillations in a given time is

inversely as their duration, we have T' : T= n : n' ; and hence,

[38.]

where n is the required number of oscillations, and n' the ob-

served number. The amplitude is measured by means of a hori-

zontal scale placed behind the pendulum, and, as it sensibly

diminishes during the experiment, we take for the value of a

in [38] the mean amplitude during the time of observation.

The value of g found by the above formulae is a little too

small, owing to the fact that the force of gravity acting on the

mass of the pendulum is balanced to a slight degree by the buoy-

ancy of the air, and it is necessary to correct the result jbr this

cause of error. The principles from which this correction may
be calculated will be explained in Chapter III. It will there be

shown that a body is buoyed up in a fluid by a weight equal to

the weight of fluid which it displaces. Hence, if W represents
the weight of a body in a vacuum, and w the weight of air it

displaces at a given temperature and under a given pressure,
then W w is the weight of the body in the air at this temper-

ature and pressure. If we put 8 =
-^ ,

the small fraction

which represents the ratio of the weight of the air to the weight
of the body, we shall easily obtain

W w=W 8 W= W(\ 8).

Representing the weight of the body in air (W w) byW 1

)
we obtain, for the relation between the weight of a body

in air and in a vacuum, the equation W 1 = W (1 8). It

will be shown, in one of the following sections, that the weights
of the same body under different circumstances are proportional

W 1 &'
to the intensities of gravity, and hence that

-^
=

; substi-

tuting this, we have, for the relation between the actual intensity
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of gravity, g-, and the apparent intensity when the experiments
are inade in air, g-',

" "' ''"'' !1
''

It appears, however, from the experiments of Bessel, which were

confirmed by the calculations of Poisson, that the loss of weight
which the pendulum suffers in air is much greater when it is in

motion than when at rest, so that a still further correction must

be made to eliminate this source of error ;
but for the details of

this and of the other corrections which are required, we must

refer the student to Bessel' s original Memoirs.

(58.) Value of g-. By the method described in the last sec-

tion, Borda and Cassini found for the intensity of gravity at the

Observatory of Paris the number g 9.8088. This value has

since been redetermined by Biot, Arago, Mathieu, and Bouvard,
who used the same process, except that they employed a shorter

pendulum, and obtained almost absolutely the same results.

Bessel, by correcting for the loss of weight in the air due to the

motion of the pendulum, found for the value of the intensity of

gravity at Paris, ,
T'

g = 9.8096,

which is probably the most accurate.

The value of g has also been determined at different points on

the earth's surface, with more or less accuracy, by different ob-

servers. Some of these results are collected in the following

table, which has been taken from Daguin's Traite de Physique.
The length of the seconds pendulum is easily calculated from the

values of g- by means of equation [36] .

Stations.
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equator towards either pole. In general, the value of g- for any
latitude can be determined sufficiently near for all purposes of

Physics, by means of the formula,

s = 9.80604 (1 0.0025935 . cos 2 A), [40.]

in which A is the latitude of the place, and 9.80604 the value

of g at the latitude of 45. By substituting for A, or 90,
we obtain at the equator g= 9.780642, and at the poles g =
9.83146. It does not appear, however, that the intensity of

gravity is rigorously the same at all points on the same parallel of

latitude, or at corresponding points in the northern and southern

hemispheres. Irregularities in this respect were noticed in the

measurement of the arc of the meridian in France, and also by
Lacaille at the Cape of Good Hope.

These variations in the intensity of gravity on the earth's sur-

face depend mainly on two causes ; first, on the centrifugal

force due to the earth's revolution on its axis, which is at its

maximum on the equator, and gradually diminishes towards the

poles, where it disappears ; secondly, on the spheroidal character

of the earth, in consequence of which a body at the poles is more

strongly attracted by the mass of the earth than it is at the

equator. We will consider the effect of each of these causes

in turn.

(59.) Centrifugal and Centripetal Force. It has already

been stated (25), that a curvilinear motion is the resultant of two

motions which obey different

laws. Thus, in Fig. 31, the

parabolic motion of a ball shot

horizontally from a fort is the

resultant of a uniform motion

in the direction of a m, and of

a uniformly accelerated motion

in the direction of an. We
also know that this motion is

the result of two forces, one

which has acted, and the other

which is still acting, on the

ball
; first, the projectile force

of gunpowder, which has given
to the ball a certain momentum, Tlft), in virtue of which it will
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continue to move until its motion is arrested by an equivalent

force acting for an equivalent time in the opposite direction;

second, the force of gravity, a constant force both in direction

and intensity. Compare (27) and (29).

Let us now consider the conditions of Fig. 31 to be so far

changed, that the constant force no longer acts in directions par-

allel to itself, but in directions which all converge to one point.

Such a force may be regarded as

an attractive force emanating
from this point, and is there-

fore frequently called a cen-

tralforce. Let us then suppose
that in Fig. 32 we have, as be-

fore, a ball moving with a cer-

tain momentum in the direction

a m, communicated to it origi-

nally by a force acting for a

given time with a given intensi-

ty, but which has ceased to act.

Let us also suppose that the

same ball is attracted towards a given point, (7, by a force con-

stant in intensity. What will be the resulting motion of the ball ?

Let t) be the velocity in the direction a m, and u be the accelera-

tion of the given force. In a small fraction of a second, which

we may take as small as we please, the ball will move in the di-

rection a m over a space a
/3, equal to

,
where n is the number

of intervals into which the unit of time has been divided. In the

same time it will move in the direction a C over a space a b, equal

to J 2
-

[5] . The resultant of these motions, on the principle

of (25), will be a curved line passing through the point P, which

can be found by completing the parallelogram a
ft
Pb. Arrived

at the point P, the direction of its original motion has so far

changed, that, if the central attraction ceased to act at that mo-

ment, the original momentum would cause it to move in the

direction P n, tangent to the curve at the point P, which, accord-

ing to the principle of geometry, may be regarded as the contin-

uation of the direction in which it was moving at the instant.

The central force, however, does not cease to act, and during the
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next small interval of time the same thing is repeated. In virtue

of the momentum, the ball will pass over the distance P^, equal

to ,
and in virtue of the central force will move towards the

n
t)

centre by an amount, PC, equal to J ^. The resultant of

these motions will be a second curved line, similar to the first,

and a continuation of it, passing through Q. The same thing

will be again repeated every succeeding interval of time, and

thus the motion resulting from the two forces will be a curved

line bending towards the central point C, the central force con-

stantly changing the direction of the original momentum. It is

easy to see, that, with a certain relation between the momentum
and the intensity of the central force, the distance of the ball

from the centre would keep always the same, and the path of the.

ball would be a circle. If the central force were greater rela-

tively to the momentum than this, then the ball would be drawn

each second nearer to the centre, and the radius of the curvilinear

path would as regularly shorten
;

if the central force were relative-

ly less, the ball would evidently recede from the centre, and the

radius of its path would lengthen. If, however, we suppose that

the central force diminishes as the body recedes from the centre,

and increases as it approaches it, so that the intensity is always

inversely as the square of the distance, then it can easily be

proved mathematically that the path of the ball will return into

itself, and will be an ellipse. We shall have only to deal with that

particular case where the path is a circle. In this case, the

ball remaining constantly at the same distance from the centre,

the whole central force is expended in changing the direction of

the original motion, and is evidently just balanced every instant

by the inertia of the mass of the ball.

The force which arises from the inertia of the ball is called

the centrifugal force, while the central force by which it is re-

strained and kept on the circumference is called the centripetal

force. The term centrifugal force is very liable to be misunder-

stood. It is frequently supposed to imply a force which, acting

alone, would cause the ball to fly directly from the centre ;
but

we must bear in mind that the centrifugal force cannot act alone,

since it has no independent existence. When the centripetal

force ceases to act, then the centrifugal force ceases to exist, and

the momentum of the moving body tends to carry it forward in
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the straight line tangent to the circle at the point at which

the centripetal force ceases to draw it from the circumference.

The body will, it is true, then recede from the centre ;
but it

will only do so by passing along the tangent, the distance of

which from the centre is continually increasing, and not by

flying in a direction opposite to the centre of attraction. Its

action, however, will be to cause the particles of a body in rapid

revolution to take their places at the greatest possible distance

from the centre.

The measure of the centrifugal force in Fig. 32 is obviously
the amount of restraint required to keep the ball on the circum-

ference of the circle, and it is measured by the intensity of the

centripetal force, which, on our supposition, just balances it.

Calling, then, the centrifugal force (, the acceleration of the cen-

tripetal force t), and the mass of the ball M, we have, by [14],

C = ^Tt). [41.]

Since, however, we only know, as a general rule, the velocity of

the motion of a ball on the circle and the radius of the circle, it

is important to obtain, if possible, an expression of the intensity

of the centrifugal force in terms of these two quantities. This

can easily be obtained by the principles of geometry.

Let a P, Fig. 32, be the arc described by the ball in an interval

of time so small that the arc may be considered as equal to the

chord. Call this interval of a second, where n may be as large

as you please. Represent by t) the velocity of the ball on the

circumference ; then is equal to the length of the arc a P.

Represent next, by tJ, the unknown acceleration of the cen-

tripetal force
;
then the distance a b, through which the ball

would move under the influence of this force alone in of a

u
n

second, will be, by [5], \ %. We have, by geometry, a b : a P=
a P : aD\ from this proportion, by substituting the above val-

ues, we obtain -^ : = :2R, or
t)==-^-;

and substi-

tuting this value oft) in [41], we obtain, for the intensity of

the centrifugal force,

OT = M -. [42.]
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We can give this expression another form, which is more con-

venient for use. The expression t), which represents the velocity

of the ball, denotes the number of metres which it passes over in

one second. If, then, we represent by T the number of seconds

occupied by the ball in going once round the circle (its period of

revolution), and by 2 R yr, as usual, the circumference of the

circle, we shall have t) = ^-^. Substituting this value in

[42], we obtain

which is an expression for the intensity of the centrifugal force

in terms of the time of revolution, the radius of the circle de-

scribed, and the mass of the body.
If a weight is whirled round at the end of a string, the action

of the centrifugal force is shown in the tension of the string, and

the only difference between this and the previous example is, that

the resistance of the string takes the place of the attractive force.

If the string breaks, the weight flies off on a line which is a tangent
to the circle which the weight had described. In like manner,
the particles of water on the rim of a revolving grindstone tend

to fly off from the surface, but are kept in place by the adhesive

attraction of the stone ; when, however, the revolution becomes

rapid, the centrifugal force overcomes the adhesion, and the

water is thrown off in lines which are tangent to the cylindrical

surface. Not unfrequently, when the revolution is very rapid,

the centrifugal force overcomes the cohesion between the parti-

cles of the stone itself, and serious accidents have resulted from

this cause.

Since the earth is revolving rapidly on its axis, we should ex-

pect to find, especially at the equator, a manifestation of this

same force
;
and in fact we do. All bodies on the globe not sit-

uated exactly at the poles tend to fly off from its surface on lines

tangent to the parallels of latitude on which they revolve, and

are only prevented by the force of gravity. Were the rapidity of

the earth's revolution more than seventeen times increased, the

force of gravity would not be sufficient to restrain bodies on

the equator from obeying this tendency. As it is, however, the

centrifugal force only acts to diminish the intensity of the force

of gravity ; and this action, which is greatest at the equator,
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gradually diminishes as we go towards the poles, where it is

nothing.

We can easily find the intensity of the centrifugal force at the

equator, by substituting in [43] ,
for J, the value of the equato-

rial radius, 6,377,398 metres, and for T the number of seconds

in a day, 86,400. The value of the centrifugal force then be-

comes, for the mass M,

C = M x 0.03373,

and for the units of mass,

C = 0.03373 (units offorce). [44.]

The apparent value of g at the equator is less than its true

value by exactly the amount of this force. Hence the full value

of the earth's attraction at the equator is

9.78062 + 0.03373 = 9.81435.

For any other latitude, the value of the centrifugal force is

easily found by assuming that the earth is a perfect sphere. In

Fig. 33, let m be the position of the body
on the globe ;

then mOB = AmO=
amfis the latitude of the place, which

we will indicate by A ; also A m= R cos A
is the radius of the parallel of latitude on

which the bodym is revolving. The value

of the centrifugal force, in terms of the lat-

itude, will be found by substituting this

Fig ^
last value for R in [43] . Making this sub-

stitution, and using for R the mean radius of the globe, we obtain,

for the value of the centrifugal force,mf 0.03367 cos A. This,

however, is the value of the centrifugal force acting in the direc-

tion mf. The force of gravity acts in the direction m O, and in

order to ascertain to what extent the force of gravity is influenced

by the centrifugal force, we must decompose the last into two com-

ponents. Let mf represent the intensity of the centrifugal force,

then m a and m b will represent the intensities of two components ;

the first of which, being opposite in direction, will tend to neutral-

ize the force of gravity, while the second, being perpendicular in

direction, will produce no effect on it. The value of the compo-
nent maisma = mf cos A ;

and substituting for mf its value

as above, and representing always by c that component of the
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centrifugal force which is opposite in direction to gravity, we
have

C = 0.03367 cos2
A. [45.]

We can easily find how rapid the rotation of the globe must

be, in order that the centrifugal force at the equator should just

balance the attractive force of gravity. For this purpose we
have only to substitute for <E, in [43], the value of the attractive

force just found, and calculate the corresponding value of T, which

will be found to be 5,065 seconds. Hence, if the earth revolved

once in 5,065 seconds, or in l h - 24m -

25'-, that is, a little more

than seventeen times faster than it does, the force of gravity

at the equator would be just balanced by the centrifugal force.

(60.) The Spheroidal Figure of the Earth. The second

cause, mentioned in (58), of the variation of gravity with the

latitude, is the spheroidal figure of the earth, in consequence
of which a body at the poles is more strongly attracted by gravity

than at the equator. The form of the earth, as has been before

intimated, is not a perfect sphere. It is flattened at the poles,

and its figure is best described as an oblate ellipsoid or spheroid.

A section of the earth through a meridian circle is therefore not

a circle, but an ellipse of very small eccentricity, and the figure

of the earth may be conceived as generated by the revolution of

such an ellipse round its shorter diameter as an axis. The flat-

tening at the poles amounts in round numbers to about 7fa of

the equatorial radius
;
in other words, the polar radius is about

3^ shorter than the equatorial. This deviation from a true

sphere is so small, that it could not be detected by the eye in

a common globe, but in the earth it nevertheless amounts to

over thirteen English miles. The dimensions of the earth are

accurately as follows :
*

Volume of the earth, 1,082,842,000,000.000 cubic kilometres.

Surface of the earth, 509,961,000.000 square
"

Length of a quadrant, 10,000.857 kilometres.

Equatorial radius, 6,377.398
"

Mean radius (lat. 45), 6,366.738
"

Polar radius, 6,356.079
"

Difference between the equa-
torial and polar radius, 21.319 "

* These data are all taken from the table of constants in Kohler's "
Logarithmisch-

Trigonometrisches Handbuch."
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Were the earth perfectly spherical, a plumb-line at any point
on its surface would point exactly to its centre, and the centre of

figure would then be also the centre of attraction. The earth

being spheroidal, the phenomena of gravity upon its surface be-

come less simple. The plumb-line does not point exactly to the

centre of the earth, except at the equator or at the poles, and,

moreover, there is no fixed centre of gravity. In Fig. 34, the

line A P is supposed to represent
a quadrant of a meridian, of which

O P is the polar, and OA the equa-
torial radius. Starting from the

equator, let us take stations only
one degree distant from each other

on this meridian, and at each sta-

tion continue the direction of the

plumb-line until it intersects the

plumb-line similarly produced at

the previous station. If, in the fig-

ure By C, and D are three such

points, then &, 6, and c are the three points of intersection, and

it is easy to see, from the figure, that the ninety points of inter-

section, which would be obtained by producing the plumb-lines
from all the ninety stations, would form when united a curved

line, a b c p. By making the number of stations infinite, we
should of course have an infinite number of points of intersec-

tion ;
and for every point on the quadrant A P, there would be

a corresponding point on the curve a p. The points #, 6, c, etc.

are termed in geometry centres of curvature ; the lines A a,

B b.> C c, etc. are called radii of curvature ; and the curve a p
is called the evolute of the curve A P. Now it can be easily seen

that what we call the centre of attraction of the earth for any

point on the quadrant A P is the corresponding centre of curva-

ture on the evolute a p. At A, for example, the attraction of

the earth acts as if it originated at the point a ; at j5, as if it

originated at the point 6, etc. The intensity of the force which

resides at these different centres is not, however, the same
; the

intensity at a, for example, is less than at 5, at b less than at
<?,

etc. It gradually increases at the different points on the evolute

from a to p.
What is true of the quadrant A P must be true of every
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quadrant ; hence, if the evolute a p is revolved on its axis, O p,

the surface generated would be the locus of all the centres of

attraction for points on the upper hemisphere of the globe ;
and if

the evolute a p' is revolved, the surface generated would be the

locus of all the centres of attraction for points on the lower hemi-

sphere of the globe.

It is evident, from the above, that a body placed at the equa-

tor, and a similar one placed at the pole of the globe, stand in

different relations to its mass as a whole, and we should natu-

rallj expect that they would be attracted with different degrees

of force. Newton, Maclaurin, Clairaut, and many other eminent

geometers, have calculated how great the variation of gravity,

owing to the elliptic form of the earth alone, ought to be, in going

from the equator to the pole, and the results of their calcula-

tions coincide almost precisely with those of observation given

above.

It has also been proved by the same mathematicians, that the

actual form of the earth is almost precisely that which would re-

sult from the revolution of a liquid mass of the same volume and

density once in twenty-four hours ;
and since we have every reason

to believe that the globe was once fluid, and that it is even so

now, with the exception of a comparatively thin crust on its sur-

face, it follows that the cause of the variation of gravity just

considered is itself an indirect result of the centrifugal force.

(61.) Variation of the Intensity of Gravity as we rise above

the Surface of the Earth. The law by which the intensity of

gravity varies with the distance from the centre of force, can be

discovered by studying the effect of the earth's attraction on the

moon, as compared with its effect on bodies near its surface. The
mean distance of the moon from the centre of the earth, is about

sixty times the earth's equatorial radius, and it revolves round the

earth, in an orbit which is very nearly circular, in 27.322 days.

By (59), it follows that the intensity of the earth's attraction at

the moon is just equal to the centrifugal force, and it can therefore

be calculated by substituting in [43] the values of R and T just

given. Making these substitutions, we obtain, for the value of the

earth's attraction on the moon, where M equals the mass of the

moon, G=Mx 0.0027. For the unit of mass, then, the intensity

of the earth's attraction at the distance of the moon is g= 0.0027.

The intensity of the earth's attraction for bodies on the equator

8
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is, as we have seen, g-
= 9.7806, which is about 3,600 times greater

than 0.002T. For bodies as distant as the moon, we may consider

the attraction of the globe as concentrated at its centre of figure,

and hence we may regard the moon as about sixty times as distant

from the centre of attraction as a body on the equator. At sixty

times the distance, then, the force is 3600 (= 60 2

) times less ;

that is, the intensity of the force of gravity varies inversely with

the square of the distance from the centre of attraction. Repre-

senting, then, by g and g' the intensity of gravity at the distances

R and R', we have always the proportion,

g- : g> = R>* : R*. [46.]

It follows from the above discussion, that the intensity of

gravity must vary at different heights above the sea-level on

the surface of the earth. The amount of this variation can

easily be calculated by means of the above proportion. Repre-

senting by g- the intensity of gravity at the sea-level, by g' the

intensity at an elevation, A, and by R the radius of the earth,

we have, from [46], neglecting the variation in the centrifugal

force at the two heights,

g : g' = (12 + A)
2

: # 2
,

and g = g> . [47.]

When h = 1000 m., we have from [47], g = g1 1.0003. The

amount of variation is therefore perceptible at any considerable

elevation above the sea-level. Hence, in studying the variation of

the intensity of gravity on the surface of the earth, it is impor-
tant to reduce the results of observations at different elevations

to the sea-level before comparing them. This can always be done

by [47] ,
when the elevation is known.

(62.) Law of Gravitation. We proved, in (49), that the

intensity of the force of gravitation is directly proportional to

the quantity of matter (the mass) on which it acts, and in the

last section we have shown that the intensity of the force of grav-

itation is inversely proportional to the square of the distance of

the masses, on which it acts, from the centre of attraction. By
combining the two, we have the well-known law of gravitation,

which is expressed in the following terms : All masses of mat-

ter attract one another with forces directly proportional to the

quantity of matter contained in each, and inversely proportional

to the squares of their distances from each other.
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This law was discovered in 1666 by Sir Isaac Newton, who,
while reflecting on the power which causes the fall of bodies to

the earth, and considering that this power is not sensibly dimin-

ished, even at the top of the highest mountains, conceived that it

might extend far beyond the limits of the atmosphere, and even

exert its influence through all space. It may be, he thought, this

very force by which the moon is retained in her orbit round the

earth, and the whole planetary system round the sun. In order

to verify his' conjecture, he calculated, on the same principle used

in the last section, the attraction of the earth on the moon, as-

suming that the force must diminish in the inverse ratio of the

square of the distance, an assumption to which he was led by
the relation, previously discovered by Kepler, between the times

of revolution of the planets and their distances from the sun.

The result, at first, did not answer his expectations, because he

had used in the calculation a value of the earth's radius, and

hence also of the moon's distance, which was much too small,

and he therefore rejected the hypothesis as not substantiated.

Several years later, Picard measured, with great accuracy for the

times, an arc of the meridian in France
;
and from his measure-

ment it appeared that the radius of the globe was nearly one sev-

enth greater than had previously been supposed. Furnished with

these new data, Newton resumed his calculations with complete

success, and in 1687 published his great work, the Principia, in

which the consequences of this great law were developed as far

as the astronomical and mathematical knowledge of the times

would permit.

(63.) Absolute Weight. When a body is not free to fall, the

force which gravity exerts upon it is expended in pressure against
its support. This pressure is called absolute weight. The abso-

lute weight of a book, for example, is the pressure which it exerts

against the table on which it rests. It is evident that this pressure
is equal to the intensity of the force with which the book is attract-

ed by the earth. The intensity of the force which gravity exerts on

a given mass of matter we have represented by G (49). If, then,

we represent the pressure caused by this force, or the absolute

weight of the same mass of matter, by tO ,
we have to= G. Hence,

we can substitute to for G in [26] and [27] ,
and shall then have

to=3f.-, [48.]
and

to : to
7 = 31 : M'. [49.]
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In these formulae, to represents weight or pressure ;
while in

[26] and [27] G represents the intensity of the force which is

the cause of the pressure. In this work, to always stands for a

certain number of grammes, and G for a certain number of units

of force. For example, let us suppose that the quantity of mat-

ter in the book just referred to is equal to 50 units of mass
; we

should then know, from [26], that the intensity of the force ex-

erted by gravity upon it was equal to 490 units of force, and,
from [48], that its weight was equal to 490 grammes. In the

first case, G = 50 X 9.8 = 490 units of force. In the second

case, to = 50 X 9.8 = 490 grammes. The numbers in the two

cases are precisely the same, but they signify different kinds of

units. The identity of the numbers arises from the fact that the

unit of force is equivalent to a pressure of one gramme, so that

the difference between G and to is rather nominal than real.

It follows from [49], that the weights of bodies are propor-

tional to the quantities of matter which they contain
;
in other

words, that a body which contains two, three, or four times as

much matter as a given body, will also weigh two, three, or four

times as much. This fact has a most important bearing on

chemistry, since the chemist is enabled, in consequence of it,

to compare the various quantities of matter on which he experi-

ments, by comparing their weights. So close is this relation,

that in common language we confound the weight of a substance

with its mass
; thus, we speak of ten grammes of iron, mean-

ing thereby a quantity of iron which exerts a pressure of ten

grammes. It must be remembered that, in scientific language,

weight always means pressure, and not quantity of matter. The
word is most commonly used, however, to denote the quantity
of matter which exerts the pressure.

So long as matter is neither taken from nor added to a body,
its mass, from the very definition of the term, remains constant.

It is not so, however, with the absolute weight. This varies with

the force of gravity, and, as follows from [48], it is directly pro-

portional to the intensity of this force. Hence, the absolute

weight of a body increases as we go from the equator to the

poles, and diminishes as we rise above the surface of the earth,

ft is very different on the different planets and on the sun. A
body weighing a kilogramme on the earth would weigh about 28

kilogrammes on the sun, about 2.6 kilogrammes on Jupiter, and
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only about 160 grammes on the moon. On the surface of the

globe, however, the possible variation of weight is but small,

amounting at most to T y of the whole. Calling this in round

numbers 3-^, it will be found that a body weighing one kilo-

gramme at the equator would weigh 1 kilog. 5 gram, at the poles.

(64.) French System of Weights. Weight is estimated by

arbitrarily assuming a unit of weight, and then comparing the

pressure exerted by other bodies with that exerted by the unit.

If, for example, this pressure in a given case is found to be ten

times as great as that of the unit, the body is said to weigh ten

grammes, or ten pounds, as the unit may be denominated. The
French have assumed, as their unit of weight, the pressure ex-

erted by one cubic centimetre of pure water at 4 C. (its point of

maximum density) in a vacuum, and at the latitude of Paris.

This unit they call a gramme. The gramme is multiplied and

subdivided decimally, and the names given to these multiples and

subdivisions are analogous to those used in the case of the metre.

Thus we have the

French System of Weights.

Kilogramme, 1000 gram. Gramme, 1.000 gram.

Hectogramme, 100 "
Decigramme, 0.100 "

Decagramme, 10 u
Centigramme, 0.010 "

Gramme, 1 "
Millegramme, 0.001

It follows from the last section, that a mass of brass whose

weight is one gramme at Paris would weigh less than a gramme
at a lower latitude, and more than one gramme at a latitude

higher than that of Paris. Hence, the weight of one cubic

centimetre of water at 4 C., and in, a vacuum, is the standard

gramme only at the latitude of Paris.

The great advantage of this system of weights in all scientific

investigations arises from the very simple relation which exists

between it and the system of measures already described. This

is so simple, that it is almost always possible to calculate the

weight of a substance from its volume, and the reverse, mentally,
when the specific gravity of the substance is known. The French

system, both of weights and measures, is exclusively used in this

volume.

(65.) System of Weights of the United States and of Eng-
land. In this country and in England two entirely distinct

8*
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units of weight are in use, called the Troy Pound and the

Avoirdupois Pound. These units are entirely arbitrary, and

are represented by certain masses of metal, which have been

declared by law to be the legal standard of weight. These units

bear to each other the relation of 144 to 175, and do not agree
in any of their subdivisions except the grain. The Troy pound
contains 5,760, and the avoirdupois pound 7,000 grains, all of the

same value. The actual legal standard of weight in the United

States is the Troy pound, copied by Captain Kater, in 1827, from

the imperial Troy pound, for the United States Mint, and pre-

served in that establishment. This pound is a standard at 30

inches of the barometer and 62 of the Fahrenheit thermometer.*

The English standard of weight is connected with that of meas-

ure, by the enactments that 277.274 cubic inches shall constitute

the Imperial Gallon, and that the weight of this volume of pure

water, weighed in air of 30 inches' pressure at 62 F., shall be

taken as 10 avoirdupois pounds, or 70,000 grains. Tables of the

subdivisions of the two units, showing their relations to the

French system, will be found at the end of this Part, in connec-

tion with the other tables of weights and measures.

(66.) Specific Weight. The specific weight of a substance

is the weight of one cubic centimetre of the substance, and there-

fore bears the same relation to the weight that the density does

to the mass (15). If, then, we represent specific weight by
Sp. tD, we have

Sp.to = Q. [50.]

The specific weight of copper, for example, at Paris, is equal to

8.921 grammes. The term specific weight must not be con-

founded with specific gravity, which will be explained in (69).
The specific weight of a substance is evidently variable, and,

like the absolute weight, depends on the intensity of the force of

gravity.

(67.) Unit of Mass. In assuming a unit of weight, we have

also established a unit of mass. If, in [48], we substitute forM
unity, and for g the intensity of gravity at Paris, the value of

to becomes

* Report on Weights and Measures, by Professor A.D. Bache. Thirty-fourth Con-

gress, Third Session. Ex. Doc. No. 27.
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tn = 9.8096 grammes ; [51.]

that is, the unit of mass weighs at Paris 9.8096 gram. Any
quantity of matter, then, which weighs at Paris 9.8096 gram.,
is the unit of mass. The weight of the unit of mass evidently

varies with the intensity of gravity ; thus, at the poles the unit

of mass weighs 9.8315 gram., at the equator it weighs 9.7806

gram. The differences are very much greater on the surfaces

of the sun, moon, and planets ; thus, on the sun the unit of

mass weighs about 277.5 gram., on the moon about 1.654 gram.,
and on the planet Jupiter about 26.243 gram. In general, a

quantity of matter which weighs as many grammes as the number
which expresses the intensity of gravity at the place of observa-

tion, is equal to the unit of mass.

From equation [48] we have, by transposition,M= . Hence,

in order to find the number of units of mass of which a body

consists, we have only to divide its weight in grammes by the in-

tensity of gravity at the place of observation. For example, 500

grammes of iron at Paris contain s
5

fty
= 50.98 units of mass.

(68.) Density. The density of a substance has been defined

as the mass of one cubic centimetre of the substance (15), and
n/r IYI

from [1] we have D=
-p., or, substituting for M its value, ,

M\~\

and then for
-^

the symbol Sp. fcp, we obtain

D = - -
r = ^? (units of mass). [52.]

D * 6

8 921
The density of copper, for example, is equal to ^-^ = 0.909

unit of mass. Density has, therefore, the same relation to spe-

cific weight that mass has to weight. It is always equal to the

weight of one cubic centimetre of the substance divided by the

intensity of gravity. It is evidently a constant quantity, and
does not vary with the intensity of gravity.

(69.) Specific Gravity. The specific gravity of a substance

is the ratio of its absolute weight to that of an equal volume of

pure water at 4 C. and at the same locality. If to represents
the absolute weight of the substance at any place, and to' the

weight of an equal volume of water at the same place, then

^.GV.= . [53.]
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Moreover, since tD = M. g-, and ID' = M' . g, we have, also,

~ M . g M rr A .,^ Gr - =
M'-g =M'- t54']

Hence the specific gravity of a substance is likewise the ratio of

its mass to the mass of an equal volume of water. It is, there-

fore, like the density, a constant quantity, and does not vary with

the intensity of gravity.

In the French system, one cuhic centimetre of water at 4 C.

weighs at Paris one gramme, and hence at Paris the weight in

grammes of a given volume of water at 4 C. is always equal to

the number of cubic centimetres. We may therefore substitute

in [53], for ill', the volume in cubic centimetres. If we also

designate by W the absolute weight of a body at Paris, and by

Sp. W. the specific weight at Paris, we can obtain from [53]
and [50],

Sp.Gr.= ~= Sp.W. [55.]

From this equation, it appears that the numbers expressing
the specific gravity of a substance and its specific weight at

Paris are always the same in the French system. The difference,

however, between the two is an essential one. Sp. W. always
stands for a certain number of grammes, but Sp. Gr. is a ratio.

When we say that the specific weight of copper is 8.921 grammes,
we mean that one cubic centimetre of copper weighs at Paris

this number of grammes ;
but when we say that the specific

gravity of copper is 8.921, we merely mean that a volume of

copper weighs 8.921 as much as the same volume of water. The
first number is variable, depending on the unit of weight used

;

the last is invariable, and hence the same with all systems of

weights. It is only in the French system of weights that the two

numbers are the same.

We can easily obtain from [55],

Y
=-S^G-r.'

and W~r.Sp.Gr. [56.]

These simple formulae should be remembered, as they will be

constantly used in the course of this work.

It is more usual to refer the specific gravity of gases to air,

as a standard of comparison, than to water. It will be shown

hereafter that the weight of a given volume of air varies very
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greatly, both with the temperature and the atmospheric pressure

to which it is exposed ;
and it is therefore essential, in using air

as a standard of comparison, to adopt arbitrarily a certain tem-

perature and pressure, at which it shall be considered as the stand-

ard. The temperature which has been generally agreed upon
is C., and the pressure which has been adopted is that cor-

responding to a height of 76 c. m. of the barometer.

We may then define the specific gravity of a gas as the ratio of

its weight to that of an equal volume of air at C. and under a

pressure of 76 c. m. Representing by W the weight of a given
volume of gas at Paris, and by W and W" the weights respec-

tively of the same volumes of water and air at the standard tem-

peratures and pressure, also representing by Sp. Gr. the spe-

cific gravity of the gas referred to water, and by Sp. Gr. the

specific gravity referred to air, we have

Sp.Gr. = ^, and Sp. Gr. =-^. [57.]

"When the specific gravity of a given substance is referred to

one standard, it is frequently required to calculate its specific

gravity with reference to the other, or, in technical language, to

reduce the specific gravity to the other standard. For this pur-

pose, we know that the specific gravity of air with reference to

water is equal to 0.00129363. Hence, -^ = 0.00129363, and

by substituting the value of W, obtained from this in [57] ,
we

can easily obtain

Sp. Gr. = Sp. Gr. 0.00129363, [58.]

a formula by means of which the reduction can easily be made.

A table giving the specific gravities of some common substances

will be found at the end of this Part.

(70.) Unit of Force. The unit of force has been defined as

that force which, acting on the unit of mass during one second,

will impress upon it a velocity of one metre (29). Since the

unit of mass weighs at Paris 9.810 grammes, we can also define

the unit of force as that force which, acting during one second,

will impress on 9.810 grammes of matter a velocity of one metre.

Moreover, it follows from [14] that a force which will impress

during one second a velocity of one metre on 9.810 grammes of

matter, is equal to the force which will impress a velocity of 9.810
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metres on one gramme of matter. But this force is the same as

the force exerted by gravity on one gramme of matter. In other

words, it is equal to the weight of one gramme. We have, then,
a new measure for our unit of force. The unit of force is the

force exerted in pressure by the unit of weight. When a weight
of ten grammes, for example, is suspended to a fixed point,

the pressure exerted by that weight is equivalent to ten units of

force.

(71.) Relative Weight. There are, in general, two methods

by which the weight of a body (that is, the pressure which it ex-

erts) may be determined.

The first method consists in balancing the pressure against a

spring, and determining the weight from the amount by which the

spring is bent. An instrument for this purpose is represented in

Fig. 35. It consists of a steel spring, bent in the form of a V.

To the end of the lower arm is fastened an iron arc, which passes

freely through an opening in the upper arm, and ends in a ring.

To the end of the upper arm a similar iron arc is fastened, which

passes through an opening in the lower arm, and terminates

in a hook. In using the instrument, the body to be weighed
is suspended by the hook, as in Fig. 35, and

the number of grammes by which the spring
is bent is then read off on the graduated
arc. Such an instrument is called a spring bal-

ance, and indicates at once the absolute weight
of a body. Could it be made sufficiently deli-

cate, it would show that the absolute weight of

a body varied on the earth's surface, gradually

increasing from the equator towards the poles.
Such an instrument would give the absolute

weight of a body.
Fig. 35. The second method consists in preparing a set

of so-called weights, which are masses of brass or platinum weigh-
ing exactly one gramme, or some multiple or fraction of a gramme,
at Paris. The weight of a body is then estimated by balancing it

against these weights in a well-known instrument called the bal-

ance. The balance is merely a form of the lever, so constructed

that, when equal pressures are exerted on its two pans, the beam
stands in a horizontal position. The body to be weighed is

placed in one pan, and then weights are added to the other until
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the beam of the balance rests in a horizontal position. The sum
of these weights then indicates the weight of the body. At Paris

the balance indicates at once the absolute weight of a body, but

not necessarily so at other places on the earth's surface. To il-

lustrate this point, let us suppose that, in weighing at Paris, it

required ten grammes' weight in one pan of the balance to equi-

poise the body in the other pan. Suppose, now, that we trans-

port the whole apparatus to some point on the equator. It is

evident that our gramme weights no longer weigh one gramme
each, but something less, by an amount easily calculated from

the diminution in the intensity of gravity. Nevertheless, since

the body has lost weight in the same proportion, it will still

be balanced by the ten gramme weights, and so it would be all

over the globe. This weight, which is frequently called relative

weight, will always be designated in this work by TF, in order to

distinguish it from the absolute weight at other localities, which

we have already designated by to. Hence we have, from [48],

W=M. 9.8096, and to = M . g, [59.]

Since the force of gravity at any given locality, and hence at

Paris, does not vary, it follows that the relative weight of a body,

or TF", is a constant quantity ;
the same at any point on the sur-

face of our globe, and the same on the sun, moon, and planets
as it is on the earth.

"We can easily find the absolute weight of a body at any local-

ity, when its relative weight is known. Representing, as above,

by W the relative weight of the body, and by to the absolute

weight required at the place in question, we have, from [59],

t) : TF= M .g : M . 9.8096, [60.]
and

that is, the absolute weight of a body at any place is equal to the

absolute weight at Paris (or the relative weight of the body at the

place) multiplied by the ratio between the intensity of gravity at

the place and that at Paris.

Relative weight is the direct measure of the mass of a body.

Representing by m the mass of the unit of weight, we have

1 yr.= m. 9.8096. By comparing this equation with JF=
m . 9.8096 we obtain W=

;
that is, the relative weight of a
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body indicates the quantity of matter which it contains, compared
with that contained in one cubic centimetre of water at 4 C. It

is therefore a legitimate measure of the quantity of matter con-

tained in a body, and the word weight is almost exclusively used

in this sense in chemistry, as it is in common life.

MECHANICAL POWERS.

(71 bis.) Machines. By the aid of wheels, rods, bands or

cords, and inclined surfaces, power may be readily transmitted

from one point to another, and the intensity, direction, point,

and mode of application of the acting force varied in a multi-

plicity of ways. The numerous contrivances by which such

changes are effected are termed, in general, machines. All ma-

chines, however complicated their structure, will be found on

examination to consist of a limited number of simple parts, gen-

erally called mechanical powers, or simple machines. Among
these we usually distinguish six

;
viz. the lever, the wheel and

axle, the pulley, the inclined plane, the wedge, and the screw.

Of each of these, however, there are many varieties
;
and the

skill of the inventor is shown no less in adapting these parts of

his machine to their special purpose, than in combining the parts

so that they shall act harmoniously together to produce the de-

sired result. A description of the various mechanical powers,
or of their important applications, is entirely beyond the scope
of this work. There is, however, one important general princi-

ple connected with the subject which may be noticed in passing.

A machine transmits power without increasing it in the slightest

degree. Indeed, more or less power is always lost during the

transmission, in overcoming friction and other causes of resist-

ance. The use of a machine is to adapt power to the work to

be done. It may change the direction or the velocity of the

motion caused by the power ;
it may change the mode of action

of the power ;
it may change the intensity of the power, and

enable a feeble force, by acting through a great distance, or

during a long time, to overcome a great resistance. It may
modify the action of the power in an infinite variety of ways, so

as to produce the useful effects of which machinery is capable,

but it will be found in every case that the work done by the ma-

chine is the exact equivalent of the power it receives. One only

of the mechanical powers requires further notice in this work.
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THE BALANCE.

(72.) Lever. Before studying the theory of the balance, it

is important to consider the general theory of the lever, of which

the balance is only a single example.
A lever is any rigid bar, A B (Fig. 36), resting on a point, c,

round which two forces tend to turn it in opposite directions.

Fig. 36. Fig. 37.

The point c is called the fulcrum. The force applied at A is called

the power, and the force applied at B is called the resistance, or

the weight. Levers are commonly divided into three kinds, ac-

cording to the position which the fulcrum has in relation to the

power and the weight. If the fulcrum is between the power and

the weight, as in Figs. 36, 3T, the lever is of the first kind. If

1BI

Fig. 38.

the weight is between the fulcrum and the power, as in Fig. 38,

the lever is of the second kind. If the power is between the

9
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fulcrum and the weight, as in Fig. 39, the lever is of the third

kind.

In the three kinds of lever, the perpendicular distances from

the fulcrum to the lines of direction of the two forces are called

the arms of the lever. If the lever is straight, and perpendicular
to the directions of both of the two forces, the two portions of

the lever, A c and B c, Fig. 36, are themselves the arms of the

lever. If, however, the lever is not straight, or is inclined to

the direction of one or both of the forces, the arms of the lever

are the perpendiculars, a c and b c, Fig. 37, a O and b O, Fig. 40,

let fall from the fulcrum on these directions.

In order that the two forces applied to the lever should be in

equilibrium, three conditions are essential :

1st. The lines of direction of the two forces must be in the

same plane with the fulcrum.

2d. The two forces must tend to turn the lever in opposite di-

rections.

3d. The intensity of the two forces must be to each other in-

versely as the lengths of the arms of the lever to which they may
be regarded as applied.

That these three conditions are essential to equilibrium can

easily be proved. In the first place, it is evident that the two

forces cannot be in equilibrium, unless the direction of their

resultant passes through the fulcrum. Now it can easily be

proved, that, unless the

two forces are in the

same plane, they can

have no single result-

ant; and hence follows

the necessity of the first

condition. In the second

place, let us suppose, Fig.

40, that A Q and B P
are the lines of direction

of two forces in the same

plane with the fulcrum

O, and that C is the point
where these directions in-

tersect ; then, in order that the direction of the resultant O R
should pass through O, it is evident that the directions of the

Fig. 40.
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components should be such that they would tend to turn the

lever in opposite directions.

The necessity of the third condition will be most readily seen

if studied under two cases. In the first place, let us take the

case where the two forces are parallel, as in Fig. 37. It has been

proved (37) that the point of application of the resultant of two

parallel forces divides the line joining the points of application

of the components into two parts, which are inversely propor-
tional to the intensities of the forces. Hence it follows, that,

in order that the direction of the resultant in Fig. 37 should pass

through the fulcrum, the two forces applied at A and B must be

inversely proportional toA c

and Be, and hence also to

a c and b c, which are the

arms of the lever. In the

second place, let us suppose
that the directions of the

forces are not parallel, as

in Fig. 41. In this figure,

A Q and B P represent Fi

the directions of the forces,

which we will represent by F and F 1

,
and a O and b O the arms

of the lever. By the principle of (32), the effect of these forces is

the same as if they were applied respectively at a and b, points

which we may consider as immovably united to the lever. From
extend the line b until it intersects the direction A Q at a

point c. By the same principle as above, the effect of the force

F is the same as if it were applied at c. We can now evidently

consider this force as made up of two others perpendicular to

each other, one acting in the direction c, which will be neu-

tralized by the resistance of the fixed point 0, and the other in

the direction c q parallel to B P. Complete the parallelogram,

and let us suppose that F= c (?, and hence that the component

parallel to B P is equal to c q. It follows now, from the proof

given above, that there can only be equilibrium when

or c=
But from the similarity of the triangles c q Q and c a, we have

cq : Oa= c Q : c, and by substituting for c Q and c q their

values just given
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F' : Oa = F : Ob. [65.]

It is, then, also a condition of equilibrium, that the two forces

should be to each other inversely as the lengths of the arms of

the lever, the point which was to be proved. We have proved
the validity of the three conditions of equilibrium for the first

kind of lever only ;
but this proof can easily be extended to the

second and third kinds of lever.

It follows from what has been said, that the tendency of the

power to turn the lever may be augmented either by increasing

the amount of the power, or by increasing the length of the arm

of the lever on which it acts ;
that is, by increasing the perpen-

dicular distance of the direction of the force from the fulcrum.

In either case, the effect will be increased in a corresponding

proportion. Thus, if we remove the power to double its distance

from the fulcrum, we shall double its effect
;
and if we remove it

to half the distance, we shall diminish its effect by one half. The

perpendicular distance of the direction of a force from the ful-

crum is called its leverage ; and it is evident that the effect of

any force applied to a lever will be proportional to its leverage.

From proportion [65] we obtain, by multiplying together the

extremes and the means, F X O a = F' X Ob. The product
of the intensity of a force by the length of the perpendicular let

fall from a fixed point to the line of direction of the force, is

called the moment of the force with respect to the point. Since

O a and O b are such perpendiculars, it follows that, when a lever

is in equilibrium, the moments of the power and resistance are

equal.

(73.) The Balance. The instrument by means of which the

weight of a substance is compared with the unit of weight, is

called a Balance. It is generally made of brass, and consists

essentially of an upright pillar supporting a beam, B B, Fig.

42, which turns upon a knife-edge, placed exactly at the mid-

dle of its length. From the two ends of the beam are sus-

pended the pans, in which the weights to be compared are

placed. The knife-edge is formed by a triangular steel prism

passing through the beam, whose axis is exactly at right angles
with the plane of the beam. The lower edge of the prism is

sharp, and rests upon an agate plane, so as to make the friction as

small as possible. For the same reason, the hooks by which the

pans are suspended rest also on knife-edges. These knife-edges
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are adjusted perpendicularly to the plane of the beam, and on the

same level as the fulcrum. The fulcrum is so placed
that the

centre of gravity of the beam shall be slightly below it, so that

Fig. 42.

when in equilibrium the beam will tend to come to rest in a

horizontal position. The centre of gravity can be adjusted by
means of the button (7, Fig. 42, which can be moved up or down
on the screw to which it is fastened. The long index-rod attached

to the beam below the knife-edge indicates, by the graduated arc,

when the beam is horizontal. When the balance is not in use,

the beam can be lifted off from its bearing, and supported upon
the brass arms E, E. These are attached to the cross-piece a a,

which can be raised or lowered by turning the thumb-screw O.

The motion of the cross-piece is directed by the two pins A, A,
which play loosely through holes at its twq ends.

A balance is evidently a lever with equal arms, and, according
to the principle of the lever, if equal weights are placed in the two

pans, they will exactly balance each other. The balance, there-

fore, enables us to compare the weight of a substance with the

unit of weight. We have simply to place the substancQ in one

pan of the balance, and then add weights, which have been ad-

justed by the standard unit, to the other, until the beam assumes

a horizontal position, or until it vibrates to an equal distance on

9*



102 CHEMICAL PHYSICS.

both sides of this position, as can be observed by the motion of

the index over the graduated arc. The sum of the weights re-

quired to balance the substance is, then, its relative weight in

terms of the unit of weight employed.
The usefulness of a balance depends upon two points, 1st, its

accuracy, and, 2dly, its sensibility to slight differences of weight.
An examination of the conditions on which these depend, will

lead us to understand better the principle of this very important
instrument. From the mode in which the pans of a balance are

suspended, it is obvious that we may regard their whole weight
as concentrated on the knife-edges at the ends of the beam. In

a theoretical consideration of the subject, we may therefore leave

the pans entirely out of view, and consider any weight placed in

them as directly applied to the knife-edges, thus reducing the

balance to a straight lever. From another point of view, the

whole weight of the beam and pans may be considered as con-

centrated at the centre of gravity, when the balance becomes a

pendulum, whose point of suspension is the fulcrum of the beam.

These two mechanical principles, combined in the balance, have

constantly to be kept in view in studying its theory. It will then

be easy to understand the following circumstances, on which the

accuracy and sensibility of the instrument depend.
1. It is necessary that the distances of the two knife-edges

from the fulcrum should be exactly equal; for if the distance from

the fulcrum of the point of suspension of one pan were greater
than that of the other, then a weight placed in the first, acting
under a greater leverage, would balance a larger weight in the

last, and the larger in proportion to the inequality of the two

arms of the beam.

2. It is necessary that the centre of gravity of the beam and

pans should be below the fulcrum, and as near to it as possible.

Were the centre of gravity at the fulcrum, the beam would not

oscillate, but remain in whatsoever position it were placed.
Were it above the fulcrum, the beam would be overset by the

slightest impulse. When it is below the fulcrum, the beam, as

already stated, may be regarded as a pendulum, whose axis co-

incides with the line joining the fulcrum and centre of gravity.

As this line forms right angles with the axis of the beam in what-

ever position the latter may be placed, and as the pendulum
tends always to fall back to the perpendicular position whenever
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removed from it, it follows that, if we impart an impulse to the

beam of a properly adjusted balance, it will, after vibrating for

some time, invariably return to a horizontal position. The centre

of gravity of the beam is exactly under the fulcrum, and in a line

at right angles to the axis only when the two pans are equally

loaded. If unequally loaded, the centre of gravity is to the right

or to the left of this line
;
and in that case the beam tends to

come to rest at an angle to the horizontal position, rapidly in-

creasing with the inequality of the weight until the beam is entirely

overset. In weighing with a delicate balance, it is not necessary
to wait until the beam comes to rest, in order to ascertain whether

the pans have been equally loaded. This can be ascertained more

promptly by noticing the amplitude of the vibrations of the index

on either side of the perpendicular, by means of the graduated
arc. They will be equal only when the weights in the two pans
are equal.

The sensibility of a balance depends in great measure on the

nearness of the centre of gravity to the fulcrum. In order that

a small weight, placed in one pan of a balance, should turn the

beam, it must evidently overcome two forces
; first, the friction

of the knife-edges on their bearings, and, secondly, the tendency
of the beam to remain in a horizontal position. This tendency

depends, as has already been shown, upon the position of the

centre of gravity below the point of support. Let us now com-

pare two cases in which the centres of gravity are at different

distances from the fulcrum,
and ascertain in which case

the force required to turn

the beam will be the least.

In Fig. 43, suppose the line

a b to be the axis of the

beam, O the fulcrum, and

or G the centre of grav-

ity. AVe have now to in-

quire in what position of

the centre of gravity it will

require the least force to bring the beam to a new position, a' b 1
.

In order to bring the axis of the beam to this position, it will be

necessary to bring the centre of gravity from g* to g-', or from G
to G'. In the first case, it will be necessary to raise the whole
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Fig. 44.

weight of the beam and pans, which we suppose concentrated at

g, through the perpendicular distance g e
;
and in the second

case, to raise the same weight through the distance G E. Since

the distance g- e is much less than the distance G E, it is evi-

dent that it will require a less force in the first case than in

the second. Hence, the sensibility of the balance is the greater,
the nearer the centre of gravity is to the fulcrum.

3. It is important that the points of suspension of the pans
should be on an exact level with the fulcrum. The importance

of this condition may be seen,

by remembering that an in-

crease of weight in the pans
is equivalent to adding just

so much weight upon the

points of suspension, and

therefore tends to draw. the

centre of gravity towards

the line (Fig. 44) connect-

ing the two. If this line

passed above the fulcrum, as

in Fig. 45, then, by increas-

ing the weight in the pans,
the centre of gravity might
be brought to coincide with,

or even be carried above, the

fulcrum, when the balance

would become useless. If

this line, as in Fig. 45, passed
below the fulcrum, an increase of weight in the pans would tend

to draw down the centre of gravity ; and thus, by increasing its

distance from the fulcrum, would diminish the sensibility of the

balance. When, however, the line passes through the fulcrum,
as in Fig. 46, the points of suspension of the pans are on an ex-

act level with the fulcrum, and an increase of load always tends

to raise the centre of gravity towards the fulcrum in proportion to

its amount ; so that a well-adjusted balance theoretically should

turn with the same weight, whatever may be the load placed upon
it, from the smallest to the largest of which its construction admits.

This last point can be still further illustrated in the following
manner. It has already been shown, that the weight required to

Tig. 45.

Fig. 46.
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turn the balance, when unloaded, may be measured by the force

required to raise the centre of gravity of the beam and pans

through a small arc, G G 1

(Fig. 43), when applied at b'. Let us

suppose that the pans are loaded with a weight of one kilogramme
each. It is evident, from what has been said, that this is equiv-
alent to condensing a mass of matter equal to one kilogramme
at each of the points a and b. The centre of gravity of these

masses must evidently be at the middle of the line a 6, that is,

at the fulcrum of the balance. Since, then, this additional weight
is supported in any position of the beam, it follows that the weight

required to turn the balance is still measured only by the force

required to raise the centre of gravity of the beam and pans

through the arc (7, G', or, to generalize, the absolute weight re-

quired to turn the balance is the same, whatever may be the load.

This, however, is only theoretically true, for in practice the

weight required increases with the load, in consequence of the

increased friction and the slight bending of the beam which it

causes. While, however, the absolute weight required to turn the

balance increases from these causes with the load, the proportion
of this weight to the whole load diminishes. This is what is

usually meant by the sensibility of the balance, and in this sense,

evidently, the sensibility increases with the load.

4. It is important that the friction of the knife-edges on their

bearings should be as slight as possible. The importance of this

circumstance is so evident, that it does not require illustration.

It is secured by a careful construction of the knife-edges, and by

making the beam as light as is consistent with rigidity.

In endeavoring to combine these conditions, the balance-maker

meets with many practical obstacles. If he endeavors to increase

the sensibility of his balance by diminishing the weight of the

beam, he soon finds that he loses as much as he gains, by the in-

creased flexure. If, again, he attempts to increase the sensibility

by lengthening the beam, he soon comes to a limit, beyond which

the increased leverage is more than compensated by the increased

friction due to the necessarily increased weight of the beam.

Nevertheless, by carefully attending to the necessary conditions,

balances may be constructed with a remarkable degree of sensi-

bility. They have been made so delicate, that, when loaded with

ten kilogrammes, they will turn with one milligramme, that is,

with one ten-millionth of the load.
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PROBLEMS.

Centre of Gravity.

51. Two masses of matter are immovably united, A = 14 units of

mass, and B = 10 units of mass. What is the position of their common
centre of gravity ?

52. A mass of matter, A, = 15 units of mass, is immovably united to

a second mass, B. It is found by experiment that the common centre of

gravity of the two masses is nearest to A, and divides the line connecting

the masses into two parts, which are to each other as 2 is to 3. What
is the mass of B ?

Intensity of the Earth's Attraction.

In these problems, the student is expected to use the values of g given in the table

on page 76.

53. What is the intensity of the earth's attraction, at Paris, on a body
whose mass is equal to 25 units of mass ? What is the intensity of the

force of gravity, at Paris, on bodies whose masses are respectively 20, 60,

720, 430, and 510 units of mass?

54. What is the intensity of the earth's attraction, at Paris, on a body
whose mass is equal to 0.1019 unit?

Pendulum.

55. What is the time of vibration, at Paris, of a pendulum which is

0.99394 metre long? What are the times of vibration of pendulums
which are respectively twice, three times, four times, five times, and nine

times this length ? The amplitude in each case is supposed to be infi-

nitely small, and the pendulum to oscillate in a vacuum.

56. If the amplitude of the oscillation of the pendulum of the last ex-

ample is 9, how much would the duration of an oscillation be increased ?

Solve the same problem for amplitudes of 1, 2, 4, and 5.

57. If the pendulum of a clock, beating seconds at Paris, were length-

ened by expansion one ten-thousandth of its length, how many seconds

would it lose each day ?

58. If a clock, keeping perfect time at Paris, were carried to Spitzber-

gen, how much would it gain each day, on the supposition that all the

conditions, with the exception of the intensity of gravity, remained the

same ? How much would it lose if carried to the equator ?

59. A pendulum on the equator, 0.990934 metre long, was found to

oscillate in one second. What is the intensity of gravity ?

60. A pendulum at Paris one metre long was found to oscillate in

1.00304 seconds. What was the intensity of gravity ?

61. A pendulum at Paris four metres long was found to oscillate in

2.00608 seconds. What was the intensity of gravity ?
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62. What is the intensity of gravity at the latitude of 42 21' ? What
is the length of the seconds pendulum at this latitude ?

63. What is the intensity of gravity, and what the length of the sec-

onds pendulum, on the following parallels of latitude, viz. 15, 22, 56,
and 74 ?

64. What is the intensity of the centrifugal force on the parallels of

latitude of 5, 20, 30, 50, and 70 ? What is the absolute intensity of

gravity on these parallels ?

65. What is the intensity of gravity at the summit of Mt. Washington,
New Hampshire? Latitude of Mt. Washington, 44 15'. Height of

summit above the sea-level, 2,027 metres.

66. What is the intensity of gravity at the summit of Mt. Blanc ? Lat-

itude of Mt. Blanc, 45 50'. Height of summit above the sea-level,

4,814 metres.

Weight.

67. What is the weight of a body containing 10 units of mass at Paris ?

What is the weight of the same body at Boston ? The latitude of Boston

is 42 21'.

68. What is the weight of a body containing 500 units of mass, at the

equator and at the poles ?

69. What is the specific weight of iron at Paris ? What are the spe-

cific weights of lead, tin, mercury, sulphur, sodium, and lithium, at Paris ?

and also at Boston ?

Mtiss.

70. What is the mass of 100 kilogrammes of iron ? What are the

masses of 50 grammes of sulphur, of 40 grammes of mercury, of 90 kilo-

grammes of granite, when the value of g is 9.810 ?

71. What is the mass of 75 kilogrammes of ice, of 20 kilogrammes of

common salt, of 50 grammes of air, when g = 9.810 ?

72. What is the mass of a cubic decimetre of lead ? What is the mass

of a cubic decimetre of ice ? Sp. Gr. of Ice= 0.930.

73. What is the mass of 1,000 cubic metres of atmospheric air ? What
that of the same volume of hydrogen gas ?

Density.

74. What is the density of hammered copper ? What is the density

of the following substances, lead, tin, mercury, sulphur, sodium, and

lithium ? Calculate the density from the Sp. W. as obtained by solving

the 69th example, or else from the Sp. Gr. given in the Table at the end

of this volume.

75. What is the density of air, of oxygen, of hydrogen, and of nitrogen,
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at the temperature of C. and under a pressure of 76 c. m. ? The

relative weight of one cubic decimetre of these gases will be found in

Table II. at the end of this volume.

Relative Weight.

76. The absolute weight of a body at Paris is 500 gram. What is its

relative weight ?

77. The relative weight of a body at New Orleans is 450 gram. What
is its absolute weight at the same place ? The latitude of New Orleans

is 29 57'.

78. The relative weight of a body at Paris is 1,250 gram. What is its

absolute weight at Boston ?

79. The relative weight of a body is 12,300 gram. What is its absolute

weight at Quito? The latitude of Quito is 13'.5, and its elevation

above the sea-level is 2,908 metres.

80. The relative weight of a body is 5,450 gram. What is its mass ?

Find also the masses of the bodies whose weights are respectively 560

gram., 4,945 gram., and 500 gram.
81. The relative weight of a body is 5,255 gram., its volume is 500 cTniu3

What is its mass ? what is its density ? and what is its specific gravity ?

82. The specific gravity of a body is 7.248, and its volume 500 c7m~.3

What is its density, mass, and weight ?

83. The mass of an iron cannon is 5,000 units, and its specific gravity

7.248. What is its volume and density ?

84. The specific gravity of a gas referred to water is 0.00143028, and

its volume 500 nT3 What is its density, mass, and weight ?

85. What is the specific weight, the mass, and the density of 500 c. m.s

of mercury?

Unit of Force.

86. A body having a density of 2 units and a volume of 1,000 cTnf.3

acquires, under the influence of a given force, an acceleration of 8 c. m.

each second. What is the intensity of the force ?

87. A body whose weight is 100 kilogrammes acquires an acceleration

of 8 m. each second. What is the intensity of the force ?

88. A body whose specific gravity is 2 and whose volume is 50 nT.3 ac-

quires an acceleration of 10 m. each second. What is the intensity of

the force ?

89. On a body weighing 100 kilogrammes a force of 15 kilogrammes
is constantly acting. What acceleration does it impart to the body ?

90. To a body whose volume equals 10 m.3 a force of 300 kilogrammes

imparts a constant acceleration of 10 m. What is the density of the

body?
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ACCIDENTAL PROPERTIES OF MATTER.

(74.) Divisibility. We have now considered the first four

of the general properties of matter enumerated in (7). All

of these, with the exception of weight, are essential properties,

and are necessarily associated with the very idea of matter.

The four general properties which remain to be studied do not

seem to be so essential, for we can conceive of a kind of matter

which should not possess them. This is true, for example, of

divisibility. We can easily conceive of a kind of matter so hard

as to be physically indivisible, although no such matter is known
to exist. In fact, all kinds of matter, even the hardest, can be

subdivided, and, so far as we know, indefinitely ;
the only limit

to our power of subdivision being that fixed by the imperfection

of our senses.

The extent to which, in some cases, the subdivision may be

carried is almost incredible. The goldbeater can hammer out a

single gramme of gold until it covers a surface of 4,364 cTml
2

,
when

the gold-leaf is so thin, that fifteen hundred such leaves placed

upon one another would not equal in thickness a single leaf of ordi-

nary writing-paper. The surface of gold on the gilt wire used in

embroidery is much thinner even than this. It has been calcu-

lated that its thickness does not exceed one ten-millionth of a

centimetre
;
and if so, with the aid of the microscope magnifying

five hundred diameters, a particle of gold can be distinguished

upon it not weighing more than one forty-two-million-millionth

of a gramme.
The organic kingdom presents us with examples of the subdi-

vision of matter which are still more remarkable. The micro-

scope has proved the existence of animals which are as minute as

the particle of gold mentioned above, and yet each of these crea-

tures is composed of organs of locomotion and nutrition, like

the larger animals. The finest human hair is about one two-

hundred-and-fortieth of a centimetre in diameter. This is gen-

erally considered very fine ;
but the hair is a massive cable in

comparison with many animal fibres. The spider's thread is in

some instances not more than one twelve-thousandth of a cen-

timetre in diameter, and yet each of these threads is formed

by the union of from four to six thousand fibrils. It has been

calculated that one gramme of this thread would reach about

fifty miles.

10



110 CHEMICAL PHYSICS.

Science has not succeeded in discovering a limit to the divisi-

bility of any one kind of matter. Nevertheless, the opinion has

been maintained, and is still held by many scientific men, that

matter is not indefinitely divisible, and that all bodies are made

tip of an exceedingly large number of absolutely hard, and hence

indivisible particles, called atoms. According to the atomic the-

ory, as this hypothesis is called, the ultimate particles of matter

are indestructible and unchangeable, and hence all physical and

chemical phenomena are caused by changes in their relative posi-

tion or grouping.
As these atoms are supposed to be far smaller than the minut-

est portions of matter which we can distinguish with the micro-

scope, they are beyond the limits of direct observation, and their

existence is therefore a matter of inference from physical and

chemical phenomena. It is not necessary, however, in order to

explain these phenomena, to suppose that these atoms have any
absolute size. We may, with Newton, regard them as infinitely

small, that is, as mere points, or, as Boscovisch called them, va-

riable centres of attractive and repulsive forces
;
and all the phe-

nomena can be as fully explained on this supposition as on the

other. According to this view, matter is purely a manifestation

of force, and only continues to exist through the constant action

of that Infinite Will with whom all force originates. As it will

be constantly necessary to refer to these centres of attractive

and repulsive forces in matter, we will, for convenience, term the

minute portions of matter in which they may be supposed to re-

side molecules, and the forces themselves molecular forces.

(75.) Porosity. The interstices between the different parts

of bodies are called pores. The visible cavities of the sponge,

for example, are pores of a large size
;
the meshes, of which its

tissues consist, are pores of a smaller size
;
but in addition to

these, there are pores between the fibres of the sponge themselves,

although they are so minute that they cannot be seen. In like

manner, a thin slice of the hardest wood, examined under the

microscope, is found to be full of pores (see Figs. 47, 48) ;
and

the same is true, to a greater or less degree, of all organic struc-

tures, as well as of the tissues which are manufactured with

animal or vegetable fibres. The porosity of such substances is

well illustrated by the process of filtering. The filters which are

used in the arts and in chemical experiments are simply porous
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Fig. 47. Fig. 48.

bodies, whose pores are large enough to allow fluids to pass

through them, but, on the other hand, small enough to arrest

the solid particles, which they hold in

suspension. The simplest and most

useful form of a filter is a cone of

porous paper supported in a glass

funnel.

The porosity of organic substances

may also be illustrated by the appa-
ratus represented in Fig. 49. It con-

sists of a glass tube, A, closed from

above by a plug of hard wood cut

transversely to its fibres, or by a piece

of chamois skin, as is represented at o.

The whole is surmounted by a tunnel-

shaped cup, which may be filled with

mercury. On exhausting the tube by
means of an air-pump, the pressure of

air on the surface of the mercury
forces it through the pores of the dia-

phragm > so that it falls in showers

through the tube.

A lump of chalk plunged under

water, and placed under the receiver

of an air-pump, will, on withdrawing
the air, expel a torrent of air-bubbles, which had been concealed

Fig. 49.
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in the internal pores of the stone. The same is true of many
other varieties of stone. There is a kind of agate, called hydro-

phane, which in its ordinary state is only semi-transparent, but

after being plunged in water takes up about one sixth of its bulk

of that fluid, and becomes nearly as transparent as glass. The

porosity of metals was proved by the Academicians of Florence

in the year 1661. They filled a hollow ball of gold with water,

and submitted it to great pressure, by which the liquid was

made to ooze through the pores of the metal. The same exper-

iment has since been repeated on different metals, and with like

success.

The porosity of gases and liquids is proved by their power of

penetrating each other without a corresponding change of vol-

ume. This is illustrated by an experiment devised by Reau-

mur. He filled a long tube closed at one end, half with water

and the remainder with alcohol. Having carefully closed the

mouth of the tube, he inverted it in order to mix the two

liquids, when he found that a contraction of the liquids took

place.

Another experiment, illustrating the same property in regard

to gases, is the following. A globe containing air is so arranged

that small quantities of liquids can be introduced into it without

allowing the air to escape. If, now, a few drops of alcohol are

made to enter the globe, this alcohol will evaporate to as great an

extent as if the globe were empty, and the space, which before

contained only air, will now contain both air and alcohol vapor.

If, next, some ether is forced into the globe, this liquid will also

evaporate, and exactly as much ether vapor will be formed as if

the globe had contained previously neither air nor alcohol vapor,

and we shall then have the space occupied simultaneously by

air, alcohol vapor, and ether vapor. In like manner, we may in-

troduce any'number of volatile liquids into the globe, and yet, so

far as we know, each of these will evaporate to the same extent

as if the globe were entirely empty, provided only that these sub-

stances do not act chemically on each other. We may thus have,

as the result of spontaneous evaporation, twenty or thirty differ-

ent vapors, all existing simultaneously in the same space.

By the experiments which have been cited, the porosity of most

substances can be abundantly proved. The porosity of glass,

however, and of many other substances, does not admit of such
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proof; yet in these substances the porosity is rendered quite evi-

dent by the changes of bulk which they undergo under the in-

fluence of heat and cold.

We make an obvious distinction between the large pores, which

exist especially in organized bodies, and the intermolecular spa-

ces. The first arise from the want of continuity of the matter,

and may be regarded in a measure as accidental, varying with

the structure and organization of the body. They are frequently

visible to the naked eye, or at least become evident with the aid

of the microscope. The last arc the exceedingly minute and in-

visible spaces which exist between the molecules of matter. Those

philosophers who have admitted the existence of atoms, have gen-

erally concurred in the belief that the atoms even of the densest

solids are very much smaller than the spaces which separate

them. Sir John Herschel asks why the atoms of a solid may not

be imagined to be as thinly distributed through the space it oc-

cupies, as the stars that compose a nebula
;
and compares a ray

of light penetrating glass to a bird threading the mazes of a

forest.

(76.) Compressibility and Expansibility. The property of

porosity necessarily implies that of compressibility and expansi-

bility. According to the atomic theory, any body is capable of

an indefinite expansion, because we may conceive of the dis-

tance between the atoms as being indefinitely increased. It

could only, however, be compressed till the atoms come in con-

tact. According to the other theory of the constitution of mat-

ter, advanced in (74), a body is capable of being both con-

tracted and expanded indefinitely. These changes of volume
are most readily effected by the action of heat, and, so far as we

know, all bodies may be indefinitely expanded by heat and con-

tracted by cold. These effects of heat will be considered at

length in Chapter IV., and we shall therefore only allude in this

place to a few examples of compression produced by mechanical

means.

Pieces of oak, ash, or elm, plunged into the sea to the depth
of 2,000 metres, and drawn up after two or three hours, have

been found to contain four fifths of their weight of water, and to

acquire such an increase of density as to indicate the contraction

of the wood into about half its previous volume. Some of the

metals have their bulk permanently diminished by hammering ;

10*
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and so also in the process of coining, the volume of the metal is

sensibly diminished by the pressure to which it is submitted under

the die. The stone columns of buildings, also, when they sus-

tain great weights, are frequently very sensibly shortened. This

was the case with the columns which support the dome of the

Pantheon at Paris.

It was long supposed that liquids were incompressible ;
but

they are now known to be compressible, although only to a slight

degree. The compressibility of liquids

may be illustrated by the apparatus rep-

resented in Fig. 50. It consists of a

very thick cylindrical vessel of glass,

eight or nine centimetres in diameter,

which is closed at the bottom and sup-

ported on a basement of wood. To the

top is cemented a brass cap, into which

screws a copper plate, which, when in its

place, completely closes the cylinder ;

but which can be unscrewed at pleas-

ure, in order to remove and replace the

tubes A and B within the cylinder. To

this plate are adapted the tunnel R, for

introducing water into the cylinder, and

a cylinder with a piston for exerting

pressure, which can be moved by the

screw P. Within the apparatus is the

elongated glass bulb A, which is filled

with the liquid on which the experiment
is to be made. This bulb opens into a

bent capillary glass tube, whose open
end is plunged in the mercury which covers the bottom of the

vessel. At the side of this apparatus is a manometer tube, B,
which indicates, in a way which will be hereafter described, the

amount of pressure.

In using the apparatus, the bulb A is first filled with the liquid

to be compressed. This is then supported, as represented in the

figure, in the interior of the cylinder, with the open end of the

tube dipping under the mercury. The cylinder is now filled

with water, and the pressure applied by turning the screw P.

The mercury will then be seen to rise in the capillary tube, indi-

Fig. 50.
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eating a compression of the fluid contained in the bulb. In

order to measure the amount of compression, the capillary tube

is graduated into parts of equal capacity, each of which bears a

known relation to the capacity of the bulb. The total amount
of compression, however, which we can thus produce, amounts

only to a few millionths of the original volume.

The compressibility of gases is far greater than that of either

of the other conditions of matter. If we take a glass cylinder
closed at one end, Fig. 51, and insert into

it an accurately-fitting piston, it will be

found impossible to force the piston into

the tube, if it be full of water
;
but if full

of air, the force of the arm is sufficient to

drive the piston down so as to reduce the

volume of air ten or twenty times, if the

piston is small. We feel the resistance

increase in proportion to the compression ;

but, whatever may be the force exerted,

we cannot make the piston touch the bot-

tom of the tube. The compressibility of

many gases is also limited by the fact that

they are reduced by great pressure to a

liquid state.

(77.) Elasticity. The property which

all bodies possess to a certain extent, of

resuming their original form or volume

when the force which altered this form or

volume ceases to act, is called elasticity.

This property is the manifestation of a ten-

dency which the particles of bodies possess, to maintain a certain

distance or position with regard to each other, and to resume that

distance or position when they have been disturbed. The phe-

nomena of elasticity may be developed in solids by compression,

by tension, by flexure, or by torsion. In fluids, however, elasticity

can be developed only by compression, and it is only this form

of elasticity, therefore, which can be regarded as a general prop-

erty of matter.

All fluids, both liquid and gaseous, are perfectly elastic ;
and

this elasticity is unlimited in extent, since they resume exactly

their original volume as soon as the pressure by which this was

Fig. 61.
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diminished is removed, however long it may have been ap-

plied.

Gases tend to expand indefinitely, and, other circumstances

being equal, a definite volume always corresponds to a given

pressure. If the pressure is increased, the volume diminishes,

and if the pressure is diminished, the volume increases. Hence,

gases are frequently called permanently elastic fluids.

The elasticity of solids is not perfect and unlimited, like that

of fluids. In some solids, such as glass, it appears to be perfect ;

for no force, however great or long continued, will cause glass to

take a set, as it is called, that is, will cause a permanent change
either in form or bulk. But then this elasticity is confined within

very narrow limits
;
for if the displacement of the particles ex-

ceeds a very small amount, the body is crushed. In other solids,

as in India-rubber or the metals, the elasticity is less limited ;

but in these, if the compressing force exceeds a certain amount,
or is continued beyond a limited time, there remains a permanent

change of form or bulk. Within these limits, however, which

differ very greatly in different substances, all solids appear to

be perfectly elastic. It is in the limit of elasticity that we find

the great differences between bodies. Thus, a ball of steel or of

ivory will be as elastic up to a certain point as a ball of India-

rubber, as may be proved by dropping the three balls upon a

hard surface from the same height, and then marking the heights
to which they rebound ;

but while the elasticity of the India-rubber

extends to almost any degree, that of the others is very limited.

Even lead and pipe-clay, which are generally considered as en-

tirely devoid of elasticity, show an elasticity as perfect as that of

the best-tempered steel, but within very narrow limits.



CHAPTER III.

THE THREE STATES OF MATTER.

(78.) Molecular Forces. The forces which are supposed to

emanate from the molecules of matter, and which we have termed

molecular forces, are either attractive, tending to draw together

the molecules of a body, or repulsive, tending to drive them apart.

The three states of matter seem to depend on the relative inten-

sity of these forces. When the attractive forces are in excess, tho

molecules of a body are held together more or less firmly, and we
have the solid state. When the attractive forces are nearly bal-

anced by the repulsive forces, the molecules are in equilibrium
and endued with freedom of motion among themselves, and we
have the liquid state. Finally, when the repulsive forces are in

excess, the molecules tend to recede from each other, and we
have a state of permanent tension, which we call a gas.

In regard to the mode of action of these molecular forces, we
have little or no accurate knowledge, and all our theories in re-

gard to them are inferences from the phenomena which the

aggregations of these molecules, the masses of matter, exhibit.

The attractive forces act only through extremely small distances.

Several facts may be cited in illustration of this. If, when the

flat surfaces of two hemispheres of lead are tarnished, they are

pressed together, they will not adhere. If, however, the super-
ficial coating of oxide is removed with a sharp knife, and the

two clean surfaces are then pressed together, they adhere with

great force. The process of welding iron affords an illustration

of the same fact. In order to unite two bars of iron, the ends

to be joined are first softened, by heating them to a white heat in

a forge, and then hammered together on an anvil. The com-

plete union of the bars cannot be attained in this process unless

the coating of oxide, which forms in the forge on the heated

surfaces, is dissolved by sprinkling on the ends of the bars pow-
dered borax, or some similar substance. So also pieces of wax,

dough, India-rubber, and other soft substances, cannot be made
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to adhere when their surfaces are covered with dust, but can be

united firmly together when the surfaces are clean. Finally,

plates of polished glass have been known, simply from resting on

each other in the warehouse, to adhere so firmly as to resist all

efforts to separate them, breaking as readily in any other direc-

tion as at the plane of junction. The thinnest film of tissue-

paper interposed between them is sufficient to prevent any such

adhesion.

The repulsive forces do not appear to be so inherent in the par-

ticles of matter as the attractive force. They seem to be due to

the action of an external agent, called heat. This opinion is sup-

ported by many facts^ The first effect of heat on a solid is to

expand it, that is, to separate the molecules from each other ; but

as it accumulates in the body, it changes its condition, first into the

liquid, and subsequently into the gaseous state. So also, when

two plates of glass are pressed firmly together, the minute interval

which still separates them is increased by heating. The particles

of finely divided and infusible powders repel each other when

intensely heated, and the powders roll round in the crucible as if

they were liquid ; and lastly, when water is dropped into a heated

metallic dish, it does not moisten the sides of the dish, but is

repelled by it and assumes a globular form. The repulsion is

so great, that, if the dish is pierced with holes, like a sieve, the

water will not run out. Since, then, heat evidently increases the

repulsive forces between the molecules of matter, it is natural to

conclude that it is the cause of these forces, and this hypothesis

is generally admitted.

In studying the phenomena of matter due to these molecular

forces, it will be convenient to class them under two heads :

first, those phenomena caused by the action of these forces be-

tween homogeneous molecules, such as the molecules of the same

substance ; secondly, those phenomena caused by the action of

the forces between heterogeneous molecules, such as those of dif-

ferent substances. To the first class belong those phenomena
which characterize the solid, liquid, and gaseous conditions of

matter ;
to the second, the phenomena of capillarity (or adhe-

sion) and diffusion.
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MOLECULAR FORCES BETWEEN HOMOGENEOUS MOLECULES.

I. CHARACTERISTIC PROPERTIES OF SOLIDS.

Among the characteristic properties of solids, we shall consider

the. following: Crystalline Form, Elasticity, Resistance to Rup-

ture, and Hardness.

Crystallography.

(79.) Crystalline Form. The force which holds together

the molecules of solids is called cohesion; and the most ob-

vious effect of this force is to retain the molecules in a fixed

position with reference to each other, and hence to give to the

solid a more or less permanent form. Almost all solids, when

they are formed slowly, under circumstances such that the

molecules are free to arrange themselves in accordance with

the tendencies of the molecular forces, assume definite external

forms. These forms, with certain limitations, are always the

same for the same substance, but may differ in different sub-

stances. They are, therefore, essential forms, depending upon
the nature of the substance. Such forms are called crystals, and

the processes by which they are obtained are called processes of

crystallization.

The larger number of inorganic solids which we meet with in

every-day life, do not appear to have any regularity of outward

form. Their form is generally accidental, one which has been

given by art, or which is due to the accidental circumstances

under which the solid has been placed. In some cases, how-

ever, if we break the solid and examine the fracture, it will be

seen that the solid is an aggregation of minute crystals closely

packed together. This is the case with granite and many other

rocks. Other solids split readily along certain planes, called

planes of cleavage. Both these classes of bodies are said to

have a crystalline structure. In many cases, however, no indi-

cations of a crystalline structure can be seen
;
but in almost all,

the solid can be made to assume a regular crystalline form by
one of the processes described in the next section.

(80.) Processes of Crystallization. The conditions of crys-

tallization are freedom of motion in the molecules from which

the solid is forming, and sufficient time for the molecules to ar-
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range themselves in obedience to the molecular forces. These

conditions are* generally obtained in one of four ways.
T^liQ first consists in dissolving the solid in water or some other

solvent, and allowing the liquid to evaporate slowly. As the solid

is slowly deposited, it assumes the crystalline form. This method

is the most universally applicable, and the one by which crystals

are usually formed in nature. The best method of applying it

consists in making a concentrated solution of the substance in

water, placing the solution in a shallow dish, covering the dish

with porous paper fastened tightly round the edges to prevent
dust from settling upon the liquid, and leaving it in a moderately
warm place until the crystallization is completed. When the

substance is not soluble in water, it can generally be dissolved in

alcohol, ether, sulphide of carbon, or melted boracic acid, instead

of water. Sulphur, for example, may be crystallized from a so-

lution in sulphide of carbon ;
and alumina may be crystallized

by dissolving it in melted boracic acid, and exposing the solution

to the intense heat of a porcelain furnace. At this very high

temperature the boracic acid slowly evaporates. Most substances

are more soluble in hot water than in cold, and these can also be

crystallized by making a concentrated hot solution, and allowing
it to cool

; the excess of the solid in solution over that which cold

water will dissolve, is deposited in crystals. Unless, however,
the quantity of the solution is very considerable, large and per-

fect crystals are not so frequently formed in this way as by slow

evaporation. A small quantity of solution cools so rapidly, that

sufficient time is not afforded for perfect crystallization.

The second method consists in melting the solid in a crucible,

and allowing the liquid to cool very slowly. When a solid crust

forms on the surface, this is broken, and the remaining liquid

turned out, when the inside of the crucible is found lined with

crystals. Sulphur and many of the metals may be crystallized

in this way.
The third method consists in converting the solid into vapor,

and subsequently condensing the vapor in a cool receiver, a

process which is called sublimation. Iodine, arsenic, arsenious

acid, and many other substances, can be crystallized by this

method.

The fourth method consists in very slowly decomposing some

chemical compound containing the substance, either by electricity
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or by the action of some chemical agent. The crystals of metals

formed in the processes of electro-metallurgy are the best exam-

ples of this method.

(81.) Definitions. A crystal is always bounded by plane

faces, and is therefore a polyhedron. The faces of the diamond

and of some other crystals are at times curved ;
but in such

cases the apparently curved surface can generally be seen to be

made up of a large number of very small planes. The terms

of solid geometry are used, without change of meaning, in crys-

tallography. Thus we speak of faces, edges, plane angles, intor-

facial angles, and solid angles. The axis of a crystal is a line

passing through its centre, round which two or more faces arc

symmetrically arranged. In every crystal, at least three such

lines can be distinguished. In Figs. 52, 53, and 54, the axes are

indicated by dotted lines.

Fig. 52. Fig. 53. Fig. 54.

(82.) Systems of Crystals. A crystal is a solid bounded by

planes arranged symmetrically round one or another of six sys-

tems of axes.

1. The first system (Fig. 55) is

called the Monometric System, and

consists of three axes, of equal

length and at right angles to each

other. The length of each semi-

axis we shall represent in this work

by ,
and the system of axes by the

symbol a : a : a. It is hardly ne-

cessary to observe, that, as crystals

may vary very greatly in size, the

absolute lengths of the axes must rig. 55.

vary to the same extent, and that it is the relative lengths only
which are constant.

11
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2. The second system (Fig. 56) is called the Dimetric System,

and consists, like the last, of three axes at right angles to each

other. The two axes in the horizontal

plane of the figure are called the lateral

axes, and are equal to each other. We
shall represent the length of each half of

these axes by a. The third is called the

vertical axis, and is either longer or short-

er than the other two. We shall represent

the length of each half of this axis by b.

The symbol representing this system of

axes is a : a : b. The ratio between a

and b is irrational. Thus, in crystals of

tin, the ratio between the axes is a : b =
1 : 0.3857. In the monometric system there can be but one set of

axes
;
but in this system there can be as many sets of axes as

the number of possible irrational ratios between a and b, which

is of course infinite. The ratio for crys-

tals of the same substance is always the

same
;
but it differs for crystals of different

substances, no two substances having the

same ratio.

3. The third, system (Fig 57) is called

the Hexagonal System, and consists of

four axes. Three of these are in the

same plane, the horizontal plane of the

figure, and are called lateral axes. They
are equal in length, and have the same

relative position as the diagonals of a reg-

ular hexagon (Fig. 58). The common length of the six halves

of these lateral axes we shall represent by a. The fourth axis,

called the vertical axis, is at right angles to the other three, and

is either shorter or longer than their common

length. The length of one half of this axis we
shall represent by b, and the symbol of the sys-

tem of axes is a : a : a : b. The relation be-

tween a and b is, as in the last system, irrational.

Fi 5g Thus, in crystals of antimony, a : b= 1 : 1.3068,
and in crystals of carbonate of lime (calcite),

a : b = 1 : 0.8543. Here, as in the last system, the ratio is con-
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stant in crystals of the same substance, but differs in crystals of

different substances.

4. The fourth system (Fig. 59) is called the Trimetric System,

and consists of three axes, all at right angles to each other, but

all of unequal length. One of these

axes is selected as the vertical axis, and

the length of one half of this axis will

be represented in this work by b. The

shorter of the two lateral axes is

called the brachydiagonal, and its half-

length will be represented by a. The

longer is called the makrodiagonal, and

its half-length will be represented by c.

The symbol of this system of axes is
Fi 59

a : b : c. The relation between a, b,

and c is irrational. In crystals of sulphur, a : b : c = 1 :

2.340 : 1.233.

5. The fifth system (Fig. 60) is called the Monoclinic System,

and consists of three unequal axes. The two lateral axes are at

right angles to each other. The third

axis, called the vertical axis, is at right

angles to one of the lateral axes, but is

inclined to the other. The length of one

half of the vertical axis we shall repre-

sent by b. The one of the lateral axes

which is at right angles to the vertical

axis is called the orthodiagonal, and its

half-length will be represented by a.

The lateral axis which is inclined to the

vertical axis is called the klinodiagonal,
and its half-length will be represented by c. The value of the

acute angle which the vertical axis b makes with the klinodiago-
nal c will be represented by a. The symbol of this system is the

ratio a : b : c, with the angle a. For the crystals of the same

substance, the ratio between a, b, and c, and the value of a, are

constant
; but they differ in crystals of different substances. In

crystals of sulphate of iron, for example, a : b : c =1 : 1.495 : 1.179,

and a= 75 40', while in crystals of gypsum a : b : c= 1 : 0.413 :

0.691, and a= 81 26'.

6. The sixth system (Fig. 61) is called the Triclinic System,
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Fig. 61.

and consists of three unequal axes, which are all inclined to each

other. One of these axes is selected as the vertical axis, and the

half-length of this axis will be represent-

ed by b. The half-lengths of the two

lateral axes will be represented by a and

c. The angles of inclination between the

axes will be represented as follows :

a on b by ^/,

a on c by ft,

b on c by a.

The symbol of this system is the ratio

a : b : c, with the angles a, ft, y. In

crystals of sulphate of copper, a : b : c =
1 : 0.9738 : 1.7683, and a = 82 21'.5, ft

= 77 37'.5, -y
=

73 10'.5. In crystals of bichromate of potash, a : b : c =
1 : 0.9886 : 1.794, and a = 82, ft

=83 47', ;/= 89 8'.5.

All crystals which have the same system of axes are said to

belong to the same crystalline system; and hence all crystals

may be classified under six crystalline systems, corresponding to

the systems of axes just described. The systems of crystals have

the same names as the systems of axes.

(83.) Centre of Crystal, and Parameters. The point at

which the axes of a crystal intersect is called the centre of the

crystal.

If we suppose the axes of a crystal indefinitely produced, it is

evident that each of its planes, if also produced, must intersect

each of the axes, either at a finite or at an infinite distance from

its centre. The distances of the points of intersection from the

centre are called the parameters of the

planes. Each of the planes of the crystal

represented in Fig. 62, for example, would,
if produced, intersect the three axes of the

monometric system at distances from the

centre equal to a : 3 a : 3 a respectively,

a representing, as stated above, the length

of any semi-axis. These lengths are the

parameters of each plane of the crystal.

When a plane is parallel to a given axis, it may be regarded as

intersecting it at an infinite distance from the centre, and hence

Fig. 62.
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Fig. C3.

Fig 64.

its parameter measured on this axis is infinity. The faces of a

cube, for example, intersect one axis of the monometric sys-

tem at the distance a from the centre (Fig.

63), and are parallel to the other two.

The parameters of each face are therefore

a : oo a : cca. So, also, each of the faces

of the dodecahedron (Fig. 64) intersects

two of the axes of the monometric system
at the distance a from the centre, and is

parallel to the third axis. Hence the pa-

rameters of each face are a : a : oo a.

It has already been stated that the crys-

tals of a given substance have always axes

of the same relative lengths, and with the

same relative inclination. It is also true

that the parameters of the planes of any

crystal of a given substance are always

equal, either to the lengths of the semi-

axes on which they are measured, or else to some simple multi-

ples or submultiples of these lengths. Hence it follows, that the

parameters of any plane of a crystal may always be expressed

very simply in terms of its axes, as above. ,

(84.) Similar Axes. In any system of axes, one axis or one

semi-axis is said to be similar to another axis or to another semi-

axis^ when the two have the same length and the same inclina-

tions to the other axes or semi-axes. It is important to apply this

definition to the different systems, and distinguish the similar

axes in each.

1. In the monometric system, all the axes and all the semi-axes

are similar.

2. In the dimetric system, the two lateral axes are similar, and

also the four halves of these axes are similar. The two halves of

the vertical axis are also similar to each other, but they are not

similar to the halves of the lateral axes.

3. In the hexagonal system, the three lateral axes are similar,

and their six halves are also similar. The two halves of the ver-

tical axis are also similar to each other, but not similar to the

halves of the lateral axes.

4. In the trimetric system, all three axes are dissimilar, but the

two halves of each axis are similar to each other. By referring

11*
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to the notation given in the previous sections, it will be seen that

in the first four systems similar semi-axes have in every case been

designated by the same letter, and that the dissimilar semi-axes

have been distinguished by different letters.

5. In the monoclinic system, not only the three axes are all

dissimilar, but moreover the two halves of the same axis are not

in all cases similar to each other. The two halves of the ortho-

diagonal are similar, but the two halves of the klinodiagonal, al-

though they have the same length, have not the same inclination

to any one half, say the upper half, of the vertical axis, and are

therefore dissimilar. The same is true reciprocally of the two

halves of the vertical axis. In order to distinguish the dissimilar

halves of these axes, we will accent the b when it refers to the

lower half of the vertical axis, and also accent the c when it

refers to the half of the klinodiagonal, which is inclined to b at

an obtuse angle. The notation of the monoclinic system of axes

is, then, as follows :

a = either half of the orthodiagonal.
b = the upper half of the vertical axis.

b' = the lower half of the vertical axis.

c = the half of the klinodiagonal which

is inclined to b at an acute angle.

c' = the half of the klinodiagonal which

is inclined to b at an obtuse

angle.

a = angle of b on c.

It is evident that the angle of b on c

is equal to the angle of b' on c', being
vertical angles ;

and hence, that b and c together are similar in

position to b' and c' together.

6. In the triclinic system, all the semi-axes are dissimilar, and

the two halves of each axis may be distinguished by accentuation,

as in the monoclinic system.

(85.) Similar Planes. Similar planes are those whose param-

eters, measured on similar semi-axes, are equal. There is no diffi-

culty in distinguishing similar planes, by means of this definition,

in any except the last two systems of axes, since in all the other

systems those planes are similar which in the notation here

adopted have equal parameters, and none others.

In the monoclinic and triclinic systems, however, two planes
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Fig. 66.

are similar, not only when they have equal parameters, but

also when the parameters, measured on the dissimilar halves of

the same axes, are in both cases oppositely accented. For ex-

ample, in the monoclinic system, two planes are similar whose

parameters are a : 2 b : c, and a : 2 b 1

: c'. In the two symbols,

the two halves of the dissimilar axes are oppositely accented.

On the other hand, two planes whose parameters are a : 2 b : c,

and a : 2 b : c', are not similar.

In the triclinic system, since the six semi-axes are all dissimi-

lar, no two planes are similar, unless the three parameters of the

one are all accented oppositely to the three parameters of the

other. Thus, two planes are similar whose parameters are

a : b : 2 c, and a' : b' : 2 c', respectively.

(86.) Holohedral Crystalline Form.

A holohedral crystalline form is the union

of all the possible similar planes which can

be arranged around a given system of axes.

Thus, the form of Fig. 66 is the union of all

the possible planes having the parameters
a : a : 2 a, which can be arranged round

the monometric system of axes. So also

the form of Fig. 67 is the union of all

the possible planes having the parameters
a : a : oo a : b, which can be arranged round

the hexagonal system of axes. Both of

these are therefore holohedral forms.

It must not, however, be inferred from

these examples that a crystalline form is al-

ways a crystal, and that it always encloses

space. The word form is used in crystal-

lography in the technical sense, as defined

above. A form may consist of only two planes,
basal planes of the hexagonal prism (Fig. 68)
are a crystalline form, because they are all the

possible planes, having the parameters oo a :

oo a : GO a :
,
which can be arranged round the

hexagonal system of axes. In like manner, the

six planes on the convex surface of the prism,

being all the planes having the parameters
a: a: oo a : oo 6, which can be arranged round

FL'. 67.

Thus, the two

Fig. 68.
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the same system of axes, form another holohedral crystalline

form. In neither case does the form enclose space. It requires

the combination of the two forms to complete the crystal. In the

triclinic system no crystalline form can consist of more than two

planes ;
and hence the combination of at least three crystalline

forms is required in this system to complete a crystal.

The parameters of one of the planes are used as the symbol of

the holohedral crystalline form. Thus, the parameters printed

below the Figs. 66 and 67 not only denote the position of each

plane of the form with reference to the axes, but they are also

used as the symbol of the form itself. "When a crystal consists

of two or more crystalline forms, like the one represented in

Fig. 68, we use as the symbol of the crystal the several symbols
of the crystalline forms of which it consists, written one after

the other, or one beneath the other, as convenience may dictate.

Examples of these symbols may be seen beneath the figures of

crystals on this and the few following pages.

(87.) Hemihedral Crystalline Form. A hemihedral crystal-

line form is the union of one half of the possible similar planes,

which can be arranged round a given system of axes. The form

represented in Fig. 69 is the union of all the possible planes hav-

ing the parameters a : a : a, which can be arranged round the

Fig. 69.

Kg. 70. Fig. 71.

(a : a : a). % (a : a : a).

monometric system of axes, and is therefore a holohedral form.

The form of Fig. 70 is the union of one half of the planes hav-

ing the same parameters, and arranged round the same system

of axes. It is, therefore, a hemihedral form. This form is called

the tetrahedron, and it may be regarded as derived from the oc-

tahedron, by suppressing every other plane of this form and pro-

ducing the rest. Hence, it is frequently called the hemihedral

form of the octahedron. The form of Fig. 70 is obtained by pro-
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ducing one set of the alternate planes of the octahedron of Fig. 69.

If, now, we suppress this set of planes, and produce the other set

of the alternate planes of the octahedron, we shall obtain a second

tetrahedron ; differing, however, from the first only in relative

position. This form is said to be the negative of the first. We
use, as the symbol of a hemihedral form, the symbol of the cor-

responding holohedral form, preceded by the fraction J, and we

distinguish between the two hemihedral forms of which the

holohedral form may be supposed to consist, by means of the

signs plus and minus, as shown by the symbols beneath Figs.

70 and 71.

(88). Tetartohedral Crystalline Forms. A tetartohedral crys-

talline form is the union of one quarter of the possible similar

planes which can be arranged round a given system of axes.

Such forms are met with among crystals, but they are of compar-

atively rare occurrence. They are designated by writing the

fraction J before the symbol of the corresponding holohedral

form.

(89.) Simple and Compound Crystals. A crystal is said to

be simple, when it is bounded by the planes of one crystalline

form only ;
and to be compound, when it is bounded by the planes

of several crystalline forms. Thus, the crystals represented by

Fig. 74

Fig. 72.

: oo a : oo a. a : a : 6. a : a : ao a :

Figs. 72, 73, and 74 are simple, because in each case all the

planes which bound the crystal have the same parameters. On
the other hand, the crystals represented by Figs. 75, 76, and 77

are compound crystals, because there are two or more sets of

planes on each crystal, of which the planes have different param-
eters. The faces of the crystals are lettered, and below each

crystal the parameters of each set of planes are given opposite to

the corresponding lettering.
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Fig. 75.
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Fig. 76.

Fig. 7<

a = a : oo a : oo 6,

o = a : a : b,

3 = a : a : 3 6.

4 (a : a : co a : .', &),

2 7-* == i (a : a : oo a : 2 fc).

Most of the crystals which we meet with are compound crys-

tals. Indeed, in the monoclinic and triclinic systems, we cannot

have a simple crystal, because in these systems no single crys-

talline form will enclose space, and simple crystals are seldom

found in any of the systems, with the exception of the mono-

metric and hexagonal.

(90.) Dominant and Secondary Forms. It is seldom that

the faces of the various forms of which a compound crystal

consists are equally developed and conspicuous. As a general

rule, the faces of one form are more prominent than those of the

others, and give to the crystal its general aspect. This form is

then called the dominant form, and the others are called sec-

ondary forms. Figs. 78, 79, and 80 represent three compound

crytals, each of which consists of faces of a cube combined with

Fig 78. Fig. 79.

: oo a : oo a,

Fig. 80.

a : a : a,

a : oo a : oo a.

those of an octahedron. In Fig. 78, the faces of the cube are dom-

inant, and those of the octahedron are secondary. In Fig. 79,

the two sets are equally developed, and in Fig. 80 the faces of

the octahedron are dominant. In writing the symbols of com-

pound crystals, we always write the symbols of the dominant

form first, and the symbols of the secondary forms in the order

of their prominence.
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When the faces of the dominant form are so much developed
as to give their general aspect to the crystal, it is usual to de-

scribe the crystal as having the dominant form modified by the

faces of the secondary forms. For example, the crystal repre-

sented in Fig. 78 would be described as a cube modified by an

octahedron, and the crystal of Fig. 80 as an octahedron modified

by a cube. In Fig. 78, the solid angles of the cube have been

replaced by planes of an octahedron, and in Fig. 80 the solid an-

gles of the octahedron have been replaced by planes of a cube.

(91.) Definitions. A crystalline form may modify another

in different ways, and several technical terms are used in de-

scribing these modifications, which it is important to understand.

Truncation. When the edge of a crystal is replaced by a plane

equally inclined to the adjacent faces, and forming with them

parallel edges, the edge is said to be truncated. In like manner,
a solid angle is said to be truncated when it is replaced by a

plane equally inclined to the similar adjacent faces. Figs. 81,

Fig 83.

Fig 81.

Fig 82.

a : oo a : oo a,

a : a : oo a.

Fig. 84.

82, 83 are examples of truncation of edges, and Figs. 78, 79, 80

are examples of truncation of solid angles.

Bevelling. If an edge is replaced by two

planes, as in Fig. 84, each of which is in-

clined to the adjacent face at the same angle,
and which form with these faces parallel in-

tersections, the edge is said to be bevelled.

Similar edges are those formed by the in-

tersection of two planes which are similar

each to each. Similar solid angles are

those formed by the union of three or more

planes which are similar each to each.
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The modifications on crystals follow one of two simple laws :

1. All the similar parts of a crystal are simultaneously and

similarly modified.

2. Half the similar parts of a crystal are simultaneously and

similarly modified independently of the other half.

It sometimes, although more rarely, happens, that only one

quarter of the similar parts of a crystal are simultaneously and

similarly modified.

The modifying planes which are distributed on the edges and

solid angles of the dominant form in accordance with the first

law, are the planes of holohedral forms ; those which are distrib-

uted in accordance with the second law, are the planes of hemi-

hedral forms.

(92.) Forms of Crystals belonging- to the various Systems.

We shall only be able, in this place, to give figures of the most

important forms in each system, and must refer the student to

the special works upon Mathematical Crystallography, for a

full development of the subject. As it is difficult for unpractised

persons to obtain a perfect conception of solids from projections,

the student is advised to prepare models of the more important

forms. These can be readily made with the outlines of crystal

forms which are given in several German works on Crystallogra-

phy, and which have in several cases been published separately.*

Crystal models of wood or of porcelain can be obtained from

dealers in philosophical instruments
;
but by far the most in-

structive models are made with glass faces fastened together with

strips of colored paper pasted on the edges. Each set of similar

edges is distinguished by its special color, and the axes are indi-

cated by colored strings within the model. The mode of com-

position of compound forms may be beautifully illustrated by

making the dominant form of card, and then, outside of this

and enclosing it, the secondary form of glass.

MONO-METRIC SYSTEM.

The simple holohedral forms of the monometric system are

seven in number, and are named as follows, the numbers above

the figures corresponding to the numbers before the names.

* Krystallformennetze zum Anfertigen von Krystallmodellen, von Dr. Adolf Kenn-

gott. Wien, 1856. To be procured from B. Westermann & Co. of New York.
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Simple Holohedral Forms.

i.

a : m a : oo a.

1. a

2. a

3. a

4. a

5. a

6. a

7. a

Octahedron.a : a.

a : m a. Trigonal triakis-octahedron.

ma \ma. Tetragonal triakis-octahedron.

m a : n a. Hexakis-octahedron.

a : oo a. Rhombic dodecahedron,

m a : oo a. Tetrakis-hexahedron.

oo a : oo a. Hexahedron (cube).

12

Kg. 85.

Solid bounded by 8 equilateral triangles.
" "

"

3 x 8 isosceles
"

" 3X8 quadrilaterals.
" 6x8 scalene triangles.
" 12 rhombs.
" 4x6 isosceles triangles.
" 6 squares.
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Three of these forms the octahedron, a : a : a, the dodecahe-

dron, a : a : GO a, and the hexahedron, a : co a : GO a have inva-

riable parameters, and therefore do not admit of any variation

in the relative position of their planes. They are frequently
called the fundamental forms of the system. The parameters
of the remaining four forms are variable, and the exact position

of their planes depends on the values given to m and w, which

are always very simple rational numbers. The relation between

the forms can easily be seen from the disposition of the crystals

in the above figures. For example, in the trigonal triakis-octahe-

dron, when the value of m is unity, the solid angle o disappears,
and the form becomes an octahedron. As we give to m larger and

larger values, the angle o becomes more and more prominent ;

and, finally, when m = oo, the two planes, meeting at the edge

d, coincide, and the form becomes the dodecahedron. There

may, therefore, be an infinite number of trigonal triakis-octahe-

drons, varying between the two limits of the octahedron on the

one side, and the dodecahedron on the other. By drawing a

series of these forms with gradually increasing values of m, the

relation can easily be made evident to the eye. In like manner,
the tetragonal triakis-octahedron is an intermediate form between

the octahedron and the cube, and within these two limits there

may be an infinite number of forms with different values of m.
In fact, however, only a very few of the possible varieties of

either of these forms have been found in nature, the most fre-

quent occurring values of m being f, 2, f, and 3.

Again, the tetrakis-hexahedron is a variable form, intermediate

between the dodecahedron and the cube. When m= 1, the pair
of faces meeting at m coincide, and we have the dodecahedron.

As the value of m increases, the solid angle at A becomes more
and more obtuse, until, when m = oo, the four planes meeting at

A coincide, and we have a cube. Finally, the hexakis-octahedron

is the central form of the triangular group. It can easily be seen

that it is intermediate between the octahedron and the tetrakis-

hexahedron, between the cube and the trigonal triakis-octahedron,

and, lastly, between the dodecahedron and the tetragonal triakis-

octahedron. To trace out these relations, both in the symbols
and the forms, is left for an exercise to the student.
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Simple Hemihedral Forms.

1. Oblique Hemihedral Forms.

-j- i (a : a : oot/) -f- j (a : m a : oo

Fig. 86.

-f i(<: ' ").

There are two groups of simple hemihedral forms in the reg-

ular system. The opposite planes of the characteristic forms

of the first of these groups are inclined to each other, while
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those of the second are parallel. Hence the forms of the first

group have been called oblique hemihedral forms ; those of the

second, parallel hemihedral forms. The symbols of the oblique
hemihedral forms are formed by writing J before the symbol of

the corresponding holohedral form enclosed in parentheses, thus :

\ (a : m a : m a). The symbols of the parallel hemihedral forms

are formed by writing before the symbol of the corresponding
holohedral form enclosed in brackets, thus : J [a : m a : m

a~\
.

The oblique hemihedral forms of the monometric system,

which are seven in number, are represented in Fig. 86. Each

of these forms has a holohedral form corresponding to it in posi-

tion in Fig. 85. They are named as follows :

a : a). Tetrahedron.

: ma). Tetragonal triakis-tetrahedron.

m a : m a). Trigonal triakis-tetrahedron.

main a). Hexakis-tetrahedron.

a : oo a). Dodecahedron.

ma : oo a). Tetrakis-hexahedron.

oo a : oo a). Hexahedron (cube).

Solid bounded by
4 equilateral triangles.

3x4 quadrilaterals.

3X4 isosceles triangles.

6X4 scalene "

12 rhombs.

4x6 triangles.

6 squares.

The mode by which the tetrahedron is derived from the oc-

tahedron has already been explained. In Fig. 87, the planes

of the octahedron which are suppressed are

shaded, and those which are extended are left

light. By comparing this figure with the fig-

ure of the hexakis-octahedron (Fig. 88), in

which the parts corresponding in position to the

shaded parts of the octahedron have also been

shaded, and the reverse, it will be seen that a

group of six planes corresponds in position,

on this form, to a single plane on the octahe-

dron. If, now, we extend the parts on this

form corresponding to the parts which were

extended on the octahedron, that is, every
other set of six planes, those left light in the

figure, we shall obtain the hexakis-tetrahedron,

a form which bears the same relation to the

tetrahedron that the hexakis-octahedron does

to the octahedron.

In like manner, if we apply the same principle to the trigonal

triakis-octahedron and to the tetragonal triakis-octahedron, extend-

Fig. 88.

a : m a : n a.
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Fig 89.

a : oo : GO a.

fig. 90.

ing in these cases every other set of three planes, and suppressing

the alternate sets, we shall obtain the tetragonal triakis-tetrahe-

dron and the trigonal triakis-tetrahedron. It will be noticed,

however, that the trigonal triakis-octahedron gives the tetragonal

triakis-tetrahedron, and the reverse.

On Fig. 89, the portions of the cube corresponding in position

to the planes of the octahedron which were suppressed are shaded,
and it can be easily seen, that, if those portions

of the cube faces which are not shaded are ex-

tended, they will form again a cube. The same

is true of the tetrakis-hexahedron, as may be

seen by Fig. 90, and also of the dodecahedron.

In other words, the same process by which the

tetrahedron is derived from the octahedron, ap-

plied to these three forms, reproduces these

forms again. These forms are at once both

holohedral and oblique hemihedral forms, and

have therefore a place in both groups.
The seven oblique hemihedral forms bear

similar relations to each other to those sus-

tained by the holohedral forms, which have

been already fully explained. The tetrahedron,
the dodecahedron, and the cube are invariable

forms. The rest admit of limited variation in the position of

their faces, depending on the values of their parameters. Thus,
the tetragonal triakis-tetrahedron is an intermediate form between

the tetrahedron and the dodecahedron, admitting of every possible

variation between these two limits. So also tlie trigonal triakis-

tetrahedron is an intermediate form between the tetrahedron and

the cube, and the hexakis-tetrahedron an intermediate between all

the forms of the groups. These relations can easily be studied

out by the student, both by means of the symbols and also by
means of the figures of the forms.

Corresponding to each of the hemihedral forms of Fig. 86,

there is an inverse form, which would be generated by extending

the alternate planes, or sets of planes, which were suppressed

before. The negative forms differ from the corresponding posi-

tive forms only in their position. In any case, if the negative

form is turned round on its vertical axis one quarter of a revolu-

tion, it will coincide with the positive form.

12*
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2. Parallel Hemihedral Forms.

\ -{- % [a : ma: na],

6.

-f i [a : a : oo a]. -f- i [a :m a : oo a].

Fig. 91.

[a : c a : co a].

The parallel hemihedral forms of the monometric system may
be generated by extending alternate pairs of planes of the hexakis-

octahedron, or the portions of planes which correspond to these pairs

on the other forms. In Fig. 92, the planes of the hexakis-octahe-
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dron, which are suppressed in this process, are

shaded, and those to be extended left light. The

extension of the latter set of planes leads to the

central form of Fig. 91, which is called the diakis-

dodecahedron. If, now, we extend the portions of

planes on the other forms which correspond to the

alternate pairs on the hexakis-octahedron in po-

sition, we shall obtain in the case of the tetrakis-hexahedron the

pentagonal dodecahedron; but in all the remaining five forms

this extension will reproduce the original form. In Figs. 93, 94,

Fig. 93. Fig. 94. Fig. 95. Fig. 96.

a :ma : na.

a : a : m a. : oo a : oo a.

95, 96, the portions which correspond in position to the alter-

nate pairs of the hexakis-octahedron, on the octahedron, the two

triakis-octahedrons, the dodecahedron, and the cube, are left light,

and it can easily be seen that the extension of these portions

will reproduce the original form. It appears, therefore, that the

same process by which the diakis-dodecahedron is derived from the

hexakis-octahedron, and the pentagonal dodecahedron from the

tetrakis-hexahedron, applied to the other five simple holohedral

forms, reproduces these forms again. These forms are, therefore,

at once holohedral and parallel hemihedral forms, and have a

place in both groups. It will also be noticed that the rhombic

dodecahedron and the cube belong to all three groups.
It is not necessary to enumerate the names of the seven

simple forms of this group, since they are the same as those

of the holohedral group, with the exception of the two whose

names have just been given. The symbols of the parallel hemi-

hedrons are the same as those of the corresponding oblique hemi-

hedrons, with the exception that the bracket is used in place of

the parenthesis. The forms of Fig. 91 are all positive, but a cor-

responding group of negative forms can easily be constructed, by

extending the alternate planes or portions of planes which were

suppressed before, that is, those which are shaded in Figs. 92,

93, 94, 95, 96.
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The relations between the seven parallel hemihedral forms are

similar, in all respects, to those which exist between the forms in

the other two groups. The octahedron, the rhombic dodecahe-

dron, and the cube are, as before, invariable forms. The remain-

ing four are variable forms, the exact position of the planes de-

pending on the values of the parameters. Since, after the details

already given, the relations of these forms can easily be traced by
the student, we need not dwell upon the subject.

Compound Forms.

It is only the forms of the same group which arc found united

on the same crystal. For example, we find the cube and the

rhombic dodecahedron, which are common to the three groups,
combined with any one of the other simple forms of the system, but

we never find the octahedron combined with the hexakis-tetrahe-

dron, nor the pentagonal dodecahedron combined with the tetra-

hedron. In order to become familiar with the compound forms of

this system, the best method is to study each form in succession,

and consider how it will be modified by each of the other forms

of the system, when it is the dominant form in the combination.

After the description which has been given of the simple forms of

the system, the student will be able, with a little study, to dis-

cover the nature of the modifications in each case, and he can

confirm his results by referring to the figures of the compound
forms given in the larger works on Crystallography.* We will

take the case of the octahedron as an illustration.

The cube modifies the octahedron by truncating its solid angles.

The rhombic dodecahedron modifies it by truncating its edges ;

the tetragonal triakis-octahedron by replacing its solid angles

by four planes, which are variously inclined on the faces of the

octahedron, the inclination depending on the value of m in the

symbol of the modifying form, a: ma: m a. The trigonal triakis-

octahedron bevels the edges of the octahedron, the interfacial

angle between the bevelling planes and the faces of the octahe-

dron depending on the value of m in the symbol of the modifying

form, a : a : m a. The hexakis-octahedron replaces the solid an-

gles of the octahedron by eight planes, whose inclination on the

faces of the dominant form depends on the values of m and n in

* See the plates of Naumann's " Lehrbuch dcr Krystallographie." Leipzig. 1 830.
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the symbol of the modifying form, a: ma in a. Finally, the

tetrakis-hexahedron replaces the solid angles of the octahe-

dron by four planes inclined on the edges of the dominant

form at angles which depend on the value of m in the symbol
a : m a : oo a.

We give below several figures of compound crystals. The

symbols, which are also added, will furnish a sufficient descrip-

tion of the forms.

a : oo a : oo a,

a : a : a.

a : oo a : oo a,

a : a : oo a.

a : oo a : oo a,

a : m a . ao a.

a : a : a,

a : oo a : oo a.

a : oo a : oo a,

a : a : ooa,

+ Ha:a:a),
(a : a : a).

Fig. 97.
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DIMETRIC SYSTEM.

Simple Holohedral Forms,

The most important simple forms of the dimetric system are

represented in Fig. 98, and the forms have been grouped so that

the relation between them can be easily seen. We can study this
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relation to the best advantage, by commencing with No. 2, which

is called the square octahedron, and whose symbol is a : a : b.

When the length of the semi-axis b is greater than that of o, as

is the case in crystals of sulphate of nickel, where a : b =
1 : 1.906, then the octahedron is acute, like No. 3. When,
however, the length of the semi-axis b is less than that of a, as

is the case in crystals of acid phosphate of potassa, where

a : b = 1 : 0.664, then the octahedron is obtuse, like No. 2.

In the monometric system, we can have only one octahedron
;

but in the dimetric system the same substance frequently pre-

sents several octahedrons. In all cases, however, if we reduce

the octahedrons to the same base, the lengths of their vertical

axes will bear to each other very simple and rational ratios.

Thus, for example, on crystals of sulphate of nickel we find octa-

hedrons, where the ratio of the two semi-axes is not only 1 : 1.906,

but also 1 : 0.953 and 1 : 0.635. The first of these octahedrons

has been selected as the principalform of this substance, because

it is the one which is the most frequently seen, and which, in com-

pound crystals, is generally the dominant form. To the planes
of this form we give the symbol a : a : b, and then the symbols
of the other octahedrons are a : a : \ b, and a : a : b.

When a substance presents several octahedrons, we are guided
in the selection of one of these for the principal form by many
circumstances. Among these may be mentioned the frequency
of occurrence, the predominance of the planes of the different

octahedrons on compound crystals, the position of the planes of

cleavage, and the crystalline form of other substances which are

analogous in composition and homceomorphous* with it. The
selection is in all cases, however, more or less arbitrary, and we
must be careful in comparing the crystalline forms of different

substances to keep this fact in view, since otherwise we might be

led to erroneous conclusions, f

Having, then, in the case of a given substance crystallizing in

the dimetric system, selected one octahedron as the principal

form, and given to it the symbol a : a : b, we may have on crys-

tals of this same substance an infinite number of other octahe-

drons, having the general symbol a : a : mb, where m is always

* Two substances are said to be homceomorphous, when they crystallize in forma

which arc closely allied.

t See Dana's System of Mineralogy, Vol. I. p. 192 and following.
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a very simple rational integer or fraction. Thus we may have

octahedrons whose symbols are

a : a : 2 b, or a : a : J b. ,

a : a : 3 6, a : a : $ b.

a : a : 4 6,
" a : # : J 6.

As the value of w increases, the octahedrons become more and

more acute
;
and finally, when m = oo, the octahedral planes

become parallel to the vertical axis, and we have the square

prism whose symbol is a : a : co b (No. 4, Fig. 98). This we

may regard as one limit of the series of octahedrons. On the

other hand, as the value of m diminishes, the octahedrons be-

come more and more obtuse ;
and finally, when m = o, the octa-

hedral planes coincide with the basal plane, No. 1, which we may
regard as the other limit of the series. The symbol of the basal

plane may be written either a : a : &, or, as is more usual,

oo a : oo a : b, which is obtained from the first by multiplying each

parameter by oo, remembering that X co = 1.

It will be noticed that neither the square prism nor the basal

plane encloses space, and therefore neither can alone constitute

a crystal. The two combined form a square prism with its basal

plane, which is therefore a compound crystal.

In the monometric system, the axes of the octahedron always
unite the vertices of the opposite solid angles. In the dimetric

system, also, the vertical axis always unites the vertices of the

two solid angles forming the summits of the octahedron, but the

lateral axes may have two positions. They may either unite the

solid angles or the centres of opposite basal edges. The two posi-

tions which these axes may assume are represented in Figs. 99,

100, which represent sections through the base of the octahedron.

We may thus have two octa-

hedrons, such as Nos. 3 and

11, of different dimensions,

but yet having axes which

are perfectly equal. The fa-

ces of the octahedron whose
Fl*- 99 - F|s-m base is represented by Fig.

100 have the same position as the edges of the octahedron whose

base is represented by Fig. 99. We distinguish the two octahe-

drons by calling the one represented in No. 3 the direct octahe-
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dron, and the one represented in No. 11 the inverse octahedron.

Since the external appearance of the two octahedrons is precisely

the same, it is not always possible to determine to which form a

given crystal belongs ;
and this fact introduces a still further

difficulty in determining the principal form of a substance.

The general symbol of the inverse octahedron is a : oo a : m 6,

where m represents any simple rational integer or fraction. Thus
we may have inverse octahedrons on crystals of the same sub-

stance, whose symbols are

a : oo a : b, or a : oo a : \ b.

a : & a : 2b,
" a : oo a : J b.

a : GO a : 3 b,
" a : oo a : J b.

The limit of this series of octahedrons on one side is a square

prism, No. 12, whose symbol is a : oo a : oo b
;
and on the other

side the basal plane, whose symbol is a : oo a : o 6, or oo a : oo a : b.

Between the direct octahedron, No. 3, and its corresponding
inverse octahedron, No. 11, there is an intermediate form, No. 7,

which may be called the dioctahedron. The parameters of the

faces of this form are a : m a : n b. When m = 1 this form

becomes the direct octahedron, and when m = oo it passes into

the inverse octahedron. Again, for any constant value of m, for

example, m = 2, as in the figure, we may have an infinite series

of dioctahedrons with different values of n. As the value of n

increases, these dioctahedrons become more and more acute ;
and

when n = oo, they pass into the octagonal prism, No. 8. As the

value of n diminishes, they become more and more obtuse
;
and

when n = 0, they pass into the basal plane, No. 5. For any
other value of w, for example, m = 3, we may have a similar

series
;
and hence there may be an infinite number of series of

dioctahedrons and an infinite number of forms in each series.

Hemihedral Simple Forms.

By extending the alternate planes of the square octahedron,
two tetrahedrons may be obtained similar to the two tetrahedrons

of the monometric system, but differing from them in the rela-

tive length of their vertical axis. We may evidently have a

series of either positive or negative tetrahedrons, corresponding
with the system of octahedrons, and varying between a square

prism on one side and the basal plane on the other. In like

13
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manner, by extending the alternate planes or the alternate sets

of planes of the dioctahedron, we may obtain several hemihedral
forms. The hemihedral forms of this system, however, rarely
occur except as modifying holohedral forms.

Compound Forms.

Fig 102.

Fig

Fig. 101

a : co a : 006,

a : a : b.

a : a : 6,

a : oo a : oo 6,

co a : oo a : b.

a : oo a : oo &,

a : a : 6,

a : 3 a : 3 6.

When the two principal octahedrons combine, the inverse octa-

hedron truncates the edges of the direct octahedron, as in Fig. 101,
which also presents the two basal planes. Fig. 102 represents a

combination of the principal octahedron, o, with an octahedron

of the same class, ,
and with an octahedron of the second class,

2 d. Fig. 103 represents a combination of the square prism of the

first class, g*, with the principal octahedron, o. Fig. 104 represents
a combination of the square prism of the second class, a, with

the principal octahedron, o, in which the prism is the dominant

form. Fig. 105 represents the same combination, in which the

octahedron is the dominant form, with the addition of the basal

planes. The composition of the two remaining crystals can easily

be mado out from tlio symbols below the figures.
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HEXAGONAL SYSTEM.

Simple Holohedral Forms.

2 3.

14T

a : a : oo u : o &. a : a : oo a : 6. a : a : ao u : 6. a : a : oc a : m 6. a : a : oo a : ao 6.

tn a '. a. : p a : Q b. m a : n : p a : ~ b. in a \ a : p <i : b. in a : a : p a : n b m a : a : p a '. <x, b.

11 12. 13. 14. 16.

2a:a:2a:oi. 2a:a:2 17: 6. 2a : n :2n : b. 2a:a;-a:m&. 2a:a:2a:x6.

The simple forms of the hexagonal system are closely allied to

those of the dimetric system. They are represented in Fig. 108,

and the relation between them is indicated by the arrangement of

the forms in the figure. The fundamental form of this system is

called the hexagonal pyramid* No. 3. The crystals of the same

substance may present a number of these hexagonal pyramids, but

we always find that, when they have the same base, the lengths of

their vertical axes stand to each other in very simple ratios. As

* The term pyramid is not used here in the geometrical sense.
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in the dimetric system, we select one of these for the principal

form, and give to it the symbol a : a : oo a : b. The general

symbol of the other hexagonal pyramids of the same substance

is then a : a: oo a : m &, in which m is always some very simple

integer or fraction. As the value of m increases, the pyramid
becomes more and more acute

;
and when m= oo, it passes into

the hexagonal prism, No. 5. On the other hand, as the value of

m diminishes, the pyramid becomes more and more obtuse, and

finally passes into the basal plane, No. 1 This series of pyramids
are called hexagonal pyramids of the first order, to distinguish
them from the hexagonal pyramids represented in the lower

row of forms in Fig. 108, which are called hexagonal pyramids

of the second order.

In the hexagonal pyramids of the second order, the lateral

axes unite the centres of edges, as in Fig. 110, while in those of

the first order they unite

opposite solid angles, as

in Fig. 109. The lengths

of the axes in the two fig-

ures are the same. The

intersection of one of the

faces of the pyramid of

the second order with the
Fig'm Fi=- 110 '

basal plane, is the line

E E, Fig. 110, and it can easily be seen that this plane, if ex-

tended, would intersect the three lateral axes at distances from

the centre of 2 a, #, and 2 a respectively. The symbol of the

principal pyramid of this class (No. 13 of Fig. 108) is therefore

2 a : a : 2 a : b, and the general symbol of other pyramids of the

second class 2 a : a : 2 a : m 6, where m is always some simple

rational integer or fraction. As the value of m increases or

diminishes, this series of pyramids passes through the same va-

riations of form as those of the first class. The two limits are

the hexagonal prism, where m= oo, and the basal plane, where

w= o.

It will be noticed that the planes of the hexagonal pyramid and

prism of the second order have the same position as the edges of

the corresponding forms of the first order, and will therefore

truncate these edges when the two forms enter into combination.

Intermediate between the two classes of hexagonal pyramids
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Mm
m a : a : p a : n b.

are the dihexagonal pyramids (Fig. 111).
rig. in.

This form is bounded by twenty-four sca-

lene triangles, and the symbol of the prin-

cipal form of the class is m a : a :p a : b, in

which m and p are so related that p = ^-^
When m = 1 then p = oo, and this form

passes into the hexagonal pyramid of the

first order, and when m 2 then p = 2,

and it passes into the hexagonal pyramid of

the second order. The general symbol of

other dihexagonal pyramids is ma: a: pa:
n by where n is any rational fraction or in-

teger. When n= oo, the form passes into the dihexagonal prism,
No. 10 of Fig. 108, and when m ==o, it passes into the basal plane,

No. 6 of Fig. 108.

Simple Hemihedral Forms.

The hemihedral forms of this system occur more frequently in

nature than the holohedral forms, and therefore demand special

attention. The most important of them are represented in Fig.

115 (see next page), in which the forms have been grouped
so as to show the relations between them. In studying these

forms, we will commence with the rhombohedron, Nos. 2, 3, 4 of

Fig. 115.

Rhombohedron. The rhombohedron is bounded by six equal
and similar rhombs. Its edges are of two kinds

; first, six sim-

Fig. 112. Fig. 113. Fig. 114.

+ i (a : a : oo a : b). a : a : ao a : b. | (a : a . oc a : 6).

ilar terminal edges, marked X in Fig. 112 ; secondly, six similar

lateral edges, which are lettered Z. The solid angles are also of

two kinds
; first, two similar vertical solid angles, lettered C,

consisting of three equal plane angles ; secondly, six lateral solid

13*
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angles, lettered J, which are similar to each other, but do not

consist of equal angles. The vertical axis of the rhombohedron

connects the vertical solid angles. The lateral axes connect the

centres of opposite edges.

The interfacial angles formed at the terminal edges X are all

equal to each other. This angle is one of the most important
characters of the rhombohedron, and we shall call it the rhombo-

hedral angle, and distinguish it by the same letter which we have

used to denote the edge. When this angle is acute, the rhombo-

hedron is said to be acute, and when it is obtuse, the rhombohe-

dron is said to be obtuse.

The sections of the rhombohedron passing through two opposite
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terminal edges are rhombs which are perpendicular to two of the

faces of the form. There are three such sections in every rhom-

bohedron, and they are called principal sections. One of these,

CE C'E 1

,
is represented in Fig. 112.

The crystals of a given substance frequently present a number

of rhombohedrons, both obtuse and acute
;
but when these rhom-

bohedrons have the same lateral axes, their vertical axes always
bear to each other a very simple proportion. One of these rhom-

bohedrons, which is selected on the same grounds as those already

stated in connection with the diinetric system, is termed the

principal rhombohcdron.

The principal rhombohedron may be regarded as formed from

the principal hexagonal pyramid, by extending the alternate planes

until they cover the rest. As there are two sets of alternate

planes, it is evident that we can obtain by this method two rhom-

bohedrons which are perfectly equal, and which differ from each

other only in position. We shall call them the positive and nega-
tive rhombohedrons, and distinguish them by writing the signs

plus and minus before the symbols. These symbols are given
below Figs. 112, 114, and it will be seen that they are formed

after the analogy of the symbols of the hemihedral forms in the

monometric system.

Since every hexagonal pyramid will give by this method two

rhombohedrons, it is evident that, corresponding to the series of

hexagonal pyramids, Fig. 108, we have two series of rhombohe-

drons. The general symbols of these two classes of rhombohe-

drons are

-f- \ (a : a : oo a : m Z>), and J (a : a : oo a : m b).

As the value of m increases, the rhombohedrons become more and

more acute, and finally, when m = oo, they pass into the hex-

agonal prism, No. 5, Fig. 115. On the other hand, as the value

of m diminishes, the rhombohedrons become more and more

obtuse, and when m = o they pass into the basal plane, No. 1,

Fig. 115.

Of the series of possible rhombohedrons with any given values

of the axes, there are several which stand to each other in an im-

portant relation. Commencing with the principal positive rhom-

bohedron, -)- J (a : a : co a : b), No. 3, Fig. 115, we find that the

planes of the negative rhombohedron \,(a : a : oo a : \ &), No. 2,
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have the same position as its terminal edges, and therefore

truncate them This rhombohedron is called the first obtuse

rhombohedron. Again, the faces of the positive rhombohedron

+ i ( fl : a ' a : i &) truncate the edges of the first obtuse

rhombohedron, and it is called the second obtuse rhombohe-

dron, and so on. On the other hand, the faces of the principal

rhombohedron truncate the edges of the negative rhombohedron

J (a : a : cca : 2 6), No. 4, which is called the first acute

rhombohedron. The faces of the first acute rhombohedron trun-

cate the edges of the positive rhombohedron ~[~ \ (&
' a '

oo a : 4 6),

which is called the second acute rhombohedron, and so on.

The rhombohedrons which form this series are, then, as fol-

lows :

Third obtuse rhombohedron, J (a

Second " " + J (a
First " "

\ (a

Principal rhombohedron, -J- \ (a

First acute rhombohedron, \ (a

Second " + 1 (a
Third "

\ (a a

oo a : | 6) = i R.

oo a : J b) = + J R.

oo

oo a : b) = + R.

oo a : 2 b) = 2 R.

oo a : 4 b) = + 4 JS.

oo a : 8 ^ = 8 R.

And in this series each rhombohedron truncates the terminal

edges of the one which follows it. In crystals of the mineral

calcite, almost all the above rhombohedrons have been observed,

and a large number of others, not belonging to the series, but in-

termediate between the members of it. The general appearance
of these crystals varies from almost flat plates, where the ter-

minal angle X= 160 42', to sharp needles, where the angle

X= 60 20'.

As the regular symbol of the rhombohedron is inconveniently

long, we frequently abbreviate it in practice, and write, as the

symbol of the principal rhombohedrons of a given substance,

db R. For other rhombohedrons we use the general symbol
db m R, in which m is the same quantity as the m in the reg-

ular symbol. The abbreviated symbols of the series of acute and

obtuse rhombohedrons have been given after the corresponding

regular symbols in the above table, and by comparing the two the

use of the abbreviation can be easily understood.

Intermediate between the obtuse and acute rhombohedrons

there is a possible form, where X= 90. This is the case when
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Fig 117.

a : m b = 1 : A/j . The rhombohedron then becomes the cube,
which may therefore be regarded as a form of the hexagonal

system. In like manner, all the other simple forms of the mono-

metric system may be regarded as forms of the hexagonal system,

but in this system they are compound forms. In consequence of

this analogy, the crystals of the two systems frequently resemble

each other very closely, especially when they have been irregu-

larly formed.

Scalenohedron. By comparing together Figs. 116 and 117,

on which the similar parts have been similarly lettered, it will be

seen that in the posi-

tion occupied by one

plane on the hexagonal

pyramid there are two

planes on the dihex-

agonal pyramid ;
and

hence, that we must

extend the alternate

pairs of planes on the

dihexagonal pyramid,
in order to apply to it

the same method by
which we obtained the

rhombohedron from the hexagonal pyramid. If, then, we extend

the alternate pairs of planes on the dihexagonal pyramid, commen-

cing with the two front upper planes of Fig. 116,

we shall obtain the form represented in Fig. 118,
and called a scalenohedron; or, by extending the

planes suppressed in the last case, a second scale-

nohedron, differing from the first only in position.

The two are distinguished, like the rhombohe-

drons, as positive and negative scalenohedrons.

The scalenohedron, which is derived from the

principal dihexagonal pyramid, will be called

the principal scalenohedron, and its symbol is

(m a : a : p a : b). The general symbol of

other scalenohedrons is | (m a : a :pa : nb).
As the value of n diminishes, the scalenohedron

becomes more and more obtuse, and finally, when n= o, merges

m a : a :p a

Fig. 118.

-f- J (m a : a : p a : b).
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in the basal plane. On. the other hand, with increasing values

of w, the scalenohedron becomes more and more acute, and when
n = oo merges into the hexagonal prism.

By bringing together the rhombohedron and the scalenohedron,

as has been done in Fig. 119, it will be noticed that the lateral

edges of the two forms have a similar position
towards the axes, so that for every scalenohe-

dron there must be a rhombohedron whose lat-

eral edges coincide with the lateral edges of the

other form. This rhombohedron is called the

inscribed rhombohedron of the scalenohedron.

The scalenohedron may evidently be formed

from the inscribed rhombohedron by prolong-

ing the vertical axis, and then drawing lines

from the ends of the vertical axis thus pro-

duced to the lateral solid angles of the rhom-

bohedron. It is evident that we may thus

make from every rhombohedron #n infinite

number of scalenohedrons, whose form will

depend upon the extent to which the vertical

axis has been elongated. We find, however,
that the semi-vertical axis of the scalenohe-

dron is always some simple multiple of that

of the inscribed rhombohedron. Hence we

may use, as the abbreviated symbol of the scalenohedron, the ab-

breviated symbol of the corresponding inscribed rhombohedron,
with an exponent indicating how many times its semi-vertical

axis is greater than that of the rhombohedron. If, as in Fig. 119,

the inscribed rhombohedron is the principal rhombohedron, -f- -K,

and the semi-vertical axis of the scalenohedron is three times

that of the rhombohedron, the abbreviated symbol of the rhombo-

hedron is -f- -R 3
. The general symbol for any scalenohedron is

m R n
,
in which m R is the symbol of the inscribed rhom-

bohedron. It has already been stated, that the number of the

possible rhombohedrons on the crystals of a given substance is

infinite, and it now appears that for every rhombohedron there

may be an infinite number of scalenohedrons ; so that the num-
ber of possible scalenohedrons on the crystals of a given sub-

stance is infinitely greater than the infinite number of possible

rhombohedrons. The mineral calcite has a great tendency to
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crystallize in scalenohedrons (dog-tooth crystals), and no less

than thirty-eight rhombohedrons and seventy-six scalenohedrons

have been observed among the crystals of this substance.*

Besides the two hemihedral forms which have been described,

there are two other hemihedral forms in the hexagonal system,
which may be derived from the dihexagonal pyramid.
The first of these is obtained by extending the alternate pairs

of planes, united at a lateral edge, A E, Fig. 120, where the al-

ternate planes are distinguished by the shad-

ing. As we extend the shaded or the un-

shaded planes of Fig. 120, we obtain one

or the other of two hexagonal pyramids,
which differ from each other and from the

hexagonal pyramids already described only
in the position of the axes. The lateral

axes of the pyramids thus derived do not

unite the opposite solid angles, as is the case

with pyramids of the first order (Fig. 100) ;

nor yet the centres of opposite edges, as is

the case with pyramids of the second order

(Fig. 110) ;
but points on the lateral edges intermediate between

the centre and the ends.

The second of these hemihedral forms is obtained by extend-

ing the alternate pairs of planes united at a lateral solid angle,

Fig. 120.

Fig. 121. Fig. 122. Fig. 123.

as shown by the shading in Fig. 121. According as the un-

shaded or the shaded planes are extended, we obtain the two

forms represented in Figs. 122, 123. They are called the hex-

* See Dana's System of Mineralogy, Vol. II. p. 437, for the symbols of these forms.
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agonal trapezohedrons. The two forms derived from the same

dihexagonal pyramid differ from each other, not only in the abso-

lute position of the form, but also in the relative position of their

planes. They are distinguished as the rig-lit and left trapezohe-

drons, and their symbols are respectively

r \ (m a : a : p a : w6), and / | (m a : a :p a : nb).

Tetartohedral Forms.

By extending the alternate planes of the right hexagonal tra-

pezohedron (Fig. 121), we can obtain two forms, differing from

each other only in position, whose symbols are

r J (m a : a : p a : n &) ;

and, in like manner, from the left hexagonal trapezohedron two

other forms may be obtained, whose symbols are

I J (m a : a : p a : n &) .

Each of these four forms is bounded by six isosceles trapeziums,
and they are therefore called trigonal trapezohedrons. They
are evidently tetartohedral forms of the dihexagonal pyramid.

These tetartohedral forms are never found isolated in nature
;

but they appear very frequently on crystals of quartz in combina-

tion with other forms. The crystals of this mineral are usually a

combination of a hexagonal prism with a hexagonal pyramid of

the same order (Fig. 125), and the trigonal trapezohedrons ap-

pear as modifying planes on the solid angles. In Fig. 124, the

Fig. 124. Fig. 125. Fig. 126.

lateral solid angles are modified by the planes of the positive

right-trigonal trapezohedrons, and in Fig. 126, by the planes of
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the positive left-trigonal trapezohedron. The two negative forms

would modify in a similar way the set of solid angles, which are

not modified in the figures.

The difference of form between the right and left trapezohe-

dron is found to be accompanied with remarkable differences of

optical properties, which will be explained in the section on the

circular polarization of light.

Compound Forms.

The crystal represented by Fig. 127 is a combination of the

hexagonal prism with the basal plane, the symbols of which are

given in this order below the figure. On the crystal represented by

Fig. i2a

Fig. 127.

Fig. 128.

a : a : co a : oo b,

CD a : oo a : oo a : b.

J (a : a :oo a : J b),

-f- ^ (
a : a : oo a : b).

+ R -f 2 B.

Fig 130. Fig 131.

(a:a:ao a : b),

4- j (
ooa : oo a : oo a : b).

Fig. 128 there are evident-

ly the faces of two rhom-

bohedrons, the one positive

and the other negative. If

we assume that the faces let-

tered r are those of the prin-

cipal rhombohedron, 72, then

it is evident that the faces

lettered
r

/2 are those of the

first obtuse rhombohedron,

J R, because they truncate the vertical edges of the rhombohe-

dron R. As the planes of the first obtuse rhombohedron are

much larger than those of the principal rhombohedron, it is not

at once evident from the figure that the first are truncating

planes ; but on a model this fact could easily be discovered, by

noticing that the edges formed by any plane,
r

/2 5
with the two

adjacent planes, r, are in every case parallel (91). If, in Fig.

129, we assume that the faces r are those of the principal rhom-

bohedron, then the faces
r

/8 ,
which truncate the edges of the prin-

14
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Fig. 132. Fig. 133.

cipal rhombohedron, belong to the first obtuse rhoinbohedron,

4 R, and the faces 2 r to the first acute rhombohedron 2 R
;

because the edges of this form are truncated by the faces r of the

principal rhombohedron. Fig. 130 represents a combination of the

principal rhombohedron with its second acute rhombohedron, 4 R.

Fig. 131 represents the combination of the principal rhombohedron

with the basal plane. It will be noticed how closely this form re-

sembles the octahedron of the monometric system, audit, i:i fact,

merges into the octahedron when the angle of a on r is equal

to 109 28' 16", which is the

case when the axes of the

rhombohedron are to each oth-

er as 1 : 2.4495. It will be

remembered that the cube

may be regarded as a rhom-

bohedron, in which a : b =
I :>1.2247. Hence the octa-

hedron may be regarded as

+ .R3 + R. the first acute rhombohedron

of the cube combined with the

basal plane. The compound form of Fig. 132 consists of a

hexagonal prism of the first order combined with the rhombo-

hedron | R. Finally, Fig. 133 represents a combination of

a scalenohedron, R 3

,
with the rhombohedron R.

TRIMETRIC SYSTEM.

Simple Forms.
Fig. 134.

Fig. 135. Fig. 136.

The fundamental form of this system is the rhombic octahedron,

so called because the three principal sections made by planes
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passing through the axis are all rhombs.* This fact is illustrated

by Figs. 135, 136, 137, which represent these sections, and which

have been lettered to correspond with Fig. 134. The same sub-

stance frequently crystallizes in several octahedrons. In such

cases we select one of these as the principal octahedron, giving to

it the symbol a : b : c, and we then find that the parameters of

the planes of the other octahedrons always stand in some simple
relation to those of the one thus selected. Besides the octahe-

drons, the only other simple forms of this system are rhombic

prisms and terminal or basal planes.f The relation of these

forms can be best understood by studying their symbols.

Having given to the principal form the notation a : b : c, then

the other octahedrons which the same substance can present
will be expressed by the following symbols :

1. a : m b : c, 3. m a : b : c,

2. a : b : m c, 4. m a : b : n c,

in which m and n are always very simple rational numbers. The
first three of these symbols may evidently be regarded as partic-

ular cases of the third.

The number of possible octahedrons in which a given sub-

stance may crystallize in the trimetric system is evidently infinite ;

but the number which have in any case been observed is ex-

tremely limited, including only a few of the possible values of

m and n, together with the rhombic prisms and terminal planes
which result when m and n are made equal either to infinity or

zero.

If in No. 1 we put m = oo, the symbol becomes a : oo b : c
9

which represents a rhombic prism whose axis is the axis of b. If

m = o, the symbol becomes a : o b : c = oo a : b : oo e, which is

the symbol of the basal planes of the same prism. If in No. 2

we put m = oo, we obtain the symbols of a rhombic prism whose

axis is the axis of c
;
and if we put m = o, we obtain the symbol

of the basal planes of the same prism. So also, if in No. 3 we

put m equal to infinity and zero, we obtain the symbols of a

rhombic prism parallel to the axis of a and of its basal planes.

* A section of a crystal is called a principal section when it contains two of the axes.

t Planes placed at the ends of any axis, and parallel to the plane of the other two,

are called terminal planes. Such planes, when they form the base of a crystal, are

called basal planes.
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The general symbol No. 4 maybe put in the three following forms:

nc.1. a : nb : mc
y

2. n a : m b : c, 3. m a : b

If in No. 1 we put n = o>, we obtain a rhombic prism parallel

to the axis of ft, whose symbol is a : oo b : m c
;

if n = o, we ob-

tain the basal plane of this prism. If in No. 2 we put n = oo,

we obtain a rhombic prism parallel to the axis of a, whose sym-
bol is oo a : m b : c

;
if n = o, we obtain the basal planes of

this prism. If in No. 3 we put n = oo, we obtain a rhombic

prism parallel to the axis of c, whose symbol is m a : b : GO c ; if

n = o, we obtain the basal planes of this prism.

Compound Forms.

We give below several figures of the compound forms of this

system, and beneath each the symbols of the simple forms of

Fig. 138. Fig. 139. Fig. 140. Fig. 141.

o = a : b : c,

ooa : b : e,

oo a : 6 : oo c.

Fig 142.

f = QO a : b : c,

2/ = ooa : 2 b : e.

Fig. 143.

o = a : b : c,

a = a : 006 :oo c,

b = oo a : oo 6 : e.

a : as b : c,

a:Kb: we,
oo : b : oo c.

Fig. 144.

_/"= oo a : 6 .- c.

c = oo a : i : ooe.

Fig. 145.
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which it consists, opposite to the letters on the faces of the crys-

tal. With the aid of these symbols, the student will easily be

able to see the relations of the forms without any further de-

scription.

Hcmihedral Forms.

FJg. 146. Fig. 147. Fig 148.

+ i (a : 6 : c). -l(a-.b:c).

The most important hemihedral form of this system is the

rhombic sphenoid, Figs. 147, 148. It may be developed by ex-

tending the alternate planes of the rhombic octahedron, Fig. 146.

If we extend the shaded planes, we obtain the positive sphenoid,

Fig. 147 ; and if we extend the planes which arc not shaded, the

negative sphenoid, Fig. 148. The rhombic sphenoid is a tetra-

hedral form, and is bounded by four scalene triangles. It will

be remembered that the two tetrahedrons, derived from the octa-

hedron of the monometric system, differed from each other only
in position, and that, by turning one round the vertical axis

through a quarter of a revolution, the two would coincide. It is

different with the two sphenoids. They differ from each other

in the relative position of their planes, and by turning one on its

axis it cannot be brought into a position in which it will coincide

with the other. The two forms are related to each other as the

left hand is to the right hand, or as an object is to its image in a

mirror. Hence, we call the positive a right form, and the nega-
tive a left form.
The two sphenoids never occur in nature except in combination

with other forms, and the presence of one or the other of these

14*
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forms on a crystal is associated with certain remarkable optical

properties. By neutralizing a solution of racemic acid, half with

soda and half with ammonia, a bibasic salt is formed, called the

racemate of soda and ammonia, which can be readily crystallized

by evaporating the solution. The crystals thus formed are of two

kinds, part resembling Fig. 149, and part Fig. 150. The two

Fig. 149. Fig. 150.

kinds of crystals resemble each other in their general appear-

ance. They both have the planes of the vertical rhombic prisms

(i and i 2"), the terminal planes (i I and i I), the basal planes

(o), the planes of two prisms parallel to the brachydiagonal

(I and 2 z) ;
but in addition to these, there appear on the first

kind of crystals (Fig. 149) the planes of the positive sphenoid,

-f- J, and on the second kind of crystals (Fig. 150) those of the

negative sphenoid, J. If, now, we arrange a crystal of each

sort, as in the figures, with the terminal planes i I in front, it

will be seen that the upper sphenoid plane is in the first figure on

the right, and in the second on the left, of the observer
;

so that,

if we place one form before a mirror, the image will have ex-

actly the second form. In these two forms there are present two

varieties of tartaric acid, into which the racmic acid di-

vides in the process of crystallization. In the crystals of Fig.

149, the two bases are united with a variety of tartaric acid,

which has the power of rotating the plane of polarization of a

ray of light to the right ;
and in Fig. 150, with a variety of tar-

taric acid resembling the other in all its chemical relations, but

differing in its crystalline form, and rotating the plane of polari-

zation to the left.

The sphenoid is the only hemihedral form in this system which

encloses space, and which therefore could alone form a crystal.

Other hemihedral forms have been observed, but they never ap-



THE THREE STATES OF MATTER. 163

pear except in. combinations modifying one half of the similar

edges or solid angles of the dominant form, and they can there-

fore be easily recognized.

Fig 151.

MONOCLINIC SYSTEM.

Simple Forms.

In the monoclinic system, as has been already stated, no single

crystalline form can enclose space ;
and hence we have no simple

crystals. Fig. 151 represents an octahedron belonging to this

system ;
but this is not a simple crystal,

because it is bounded by faces of two kinds.

The triangular faces B A C, B A 1

C,

B' AC', and B' A' C' arc not similar to

the faces B A C", B A 1

C", D A C, and

B1 A' C, and therefore belong to a different

form. The first set of faces, if extended,
would evidently form a rhombic prism ;

and the second set of faces, if extended,
would also form a rhombic prism differing

from the first. These two prisms may
be appropriately termed hemi-octahedrons ;

and in order to distinguish them, we shall name the one whoso

planes are over the acute angle a, Fig. 151, the positive hemi-

octahedron, and the other the negative hemi-octahedron. This

distinction is necessary, because it frequently happens that one of

these hemi-octahedrons is present on a

crystal without the other, or at least that

the faces of one are far more dominant

than those of the other.

Adopting the notation of Fig. 152, al-

ready described (85), the symbol of the

positive hemi-octahedron is a : b : c, or

a : b' : c'. The first symbol consists of

the parameters of the two upper right-

hand planes of the form, Fig. 151, and the

second of those of the two lower left-hand

planes ; either symbol may be used at pleasure. The symbol of the

negative hemi-octahedron is a : b : c', or a : b' : c ;
the first being

the parameters of the two upper left-hand planes, and the second
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those of the two lower right-hand planes. Either symbol, as be-

fore, may be used as the symbol of the form, but for the sake of

uniformity we shall use in both cases the first of the two symbols.

The symbols of the two hemi-octahedrons, of which the octa-

hedron of this system consists, are, then,

a : b : c, and a : b : c'
;

but it must be remembered that these symbols include not only
the planes whose parameters they actually express, but also the

planes which have the same parameters oppositely accented.

In this system, as has been already stated (82-85), not only
the relative length of the axes may vary, but, moreover, the angle
of inclination of the vertical axis b to the klinodiagonal c varies

also. When, however, the crystals of the same substance pre-

sent planes of several pairs of hemi-octahedrons, we always find

that, although the relative lengths of the axes of these forms

may differ, yet the angle of inclination, cc, is the same in all.

We select in this system, as in the last three, one pair of these

hemi-octahedrons as the principal form, and give to it the sym-
bols a : b : c and a : b : c'. The general symbol of other hemi-

octahedrons of the same substance is, then,

m a : n b : p c, or m a : n b : p c',

the quantities m, w, and p being always simple rational integers

or fractions, and one of them being always unity.

The forms which are most frequently met with in this system
are those which result when either m=oo, w = cc, or p= 00,

or when m = o, n = o, or p = o, in the general symbols.

In making n = co, and p i, the general symbols become

m a : co b : c, and m a : GO b' : c
1

.* Since the dissimilar semi-axes

are oppositely accented in the two symbols, they are both equiva-

lent symbols of the same oblique rhombic prisms parallel to the

axis b. When, also, m= i, we obtain the symbol of the principal

of these oblique prisms, a : co b : c.

In making m = co and p=i, in the general symbols, we

obtain the two symbols co a : n b : c, and co a : n b : c'. These

symbols are not equivalent, and each represents two opposite and

parallel planes, which are also parallel to the orthodiagonal.

The two planes represented by the first symbol are over the acute

* Since 6 and b' are halves of the same straight line, the parameters oo b and oo b 1

are in all respects equivalent, and may therefore be substituted for each other.
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anglo a, and arc therefore narrower than the two planes repre-

sented by the second symbol, which are over the obtuse anglo
180 a. The two sets of planes evidently bear the same rela-

tion to each other as the two hemi-octahedrons, and may therefore

be called the positive and negative orthodiagonal Jicmi-prisms.

AVhcn n = i, the two symbols become cca : b : e, and co a : b : c'.

Finally, if we put p = ex, and m= i, in the general symbols,
we obtain a : n b : co c in both cases, which is the symbol of

horizontal rhombic prisms parallel to the kliiiodiagonal, called

the klinodiagvnal prisms. When n = i, the symbol becomes

a : b : oc c.

Substituting m= o, and multiplying all the parameters by oo,

the general symbols become in both cases a : co b : oo c, which is

the symbol of a form consisting of two terminal planes parallel

to the planes of the axes b and c. In like manner, if we put
n = o, or p = o, we obtain the symbols of terminal planes par-
allel to the planes of the axes <z, c or a, b respectively.

Fig. 153.

Compound Forms.

tout Fig. 155.

i ses a : oo 6 : c,

= oo a : b : oo e.

t = a : oo 6 : e,

= oo a : /; : oo c,

t'=a: 006: oo e.

t = n : a> 6: e,

= oo a : 6 : oo c,

* r = ooa: ao 6 : c.

Fig. Io3 represents the combination of the principal oblique

rhombic prism, with its basal planes. Fig. 154 represents tho

Fig 156. Fig 157. Fig Ii8.

t = a : ooft:c,
= oo a : 6 : ooe,

i oo a : b : e1
.

i = <r : oo 6 : e,

= oo a : 6 : oc c,

C ' = a : oo 6 : oo et

+ = oo : 6 : e.

t = n : oo A : c,

= oo a : ft : oo c,

+ 1 = a : !, : c.
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same combination, with the addition of two terminal planes at the

end of the orthodiagonal. Fig. 155 represents the same combina-

i = a. : oo b : e,

= oo a : b : oc e,

1 = a : b : e*.

Fig. 160. Fig. Id.

i = a r oo ft : c,

= oo a : b : <x> er

1 = a : oo b : oo c,

f = a : oo A : e,

* ?' = a : oa 6 : os c,

-f 1 = a : ft : c,

Fig 162

tion, with the addition of two planes at the end of the klino-

diagonal. Fig. 156 represents still the same combination, with

the addition of the two planes of

the negative orthodiagonal hemi-

prisin. Fig. 157 represents the

same combination as Fig. 154,

with the addition of the two

planes of the positive orthodiago-

nal hemi-prism. Fig. 158 is the

same combination as Fig. 153,

with the addition of the positive

0=ooo:6:cf,
= a : 6 : o c.

principal hemi-octahedron.

Fig 163

Fig. 159 is also the same combina-

Fig. 164.

4- = oo a : : et
i = QO a : b : e',

t' = a : 6 : oo e.
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tion, with the addition of the negative hemi-octahedron. Fig.
160 is the same combination as Fig. 154, with the negative
hemi-octahedron. Fig. 161 is the same with both hemi-octahe-

drons. Fig. 162 represents the same combination as Fig. 153,
with the addition of the four planes of the prism parallel to the

klinodiagonal. Fig. 163 is the same combination as Fig. 160, ex-

cept that the planes of the negative hemi-octahedron are more

dominant, and the basal planes do not appear. Lastly, Fig. 164

represents a combination of all the forms which have appeared
on the previous figures of this system.

Hemihedral Forms.

The hemihedral forms of this system only appear as modifying

planes on the edges or solid angles of the holohedral forms, and

Fig. 165. Fig. 166. Fig. 167.

can easily be distinguished, because they modify only one half of

the similar edges or solid angles of the form. Fig. 165 represents
a compound form, in which ordinary tartaric acid frequently crys-

tallizes. It is a combination of an oblique rhombic prism t with

the terminal planes ii and the two hemi-prisms -\-i and i.

On these crystals there are four solid angles, e, which are evi-

dently similar, and we should therefore expect that they would

in any case be similarly modified. But on the crystal of the

variety of tartaric acid which rotates the plane of polarization
of light to the right, we find only the two front planes, as on

Fig. 166
;
and on the crystals of the variety of tartaric acid which

rotate the plane of polarization of light to the left, only two

back planes, as on Fig. 167. These two forms are evidently re-

lated to each other in the same way as the two forms of Figs.
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149, 150, and cannot be made to coincide by any change of

position.

Such hemihedral modifications occur chiefly on crystals of sub-

stances which have the power of rotating
1

the plane of polariza-

tion of light. Common cane-sugar has this property, and on its

crystals we find the two back planes of the klinodiagonal prism,

without the corresponding front planes. Fig. 168 represents the

common form of the crystals of this substance. They have all

Fig. 168. Fig. 169.

the planes of Fig. 169, with the addition of the planes of the pos-

itive hemi-prism + (oo a : b : c), and the two back planes of

the klinodiagonal prism a : b : CO C.

TRICLINIC SYSTEM.

In the triclinic system, a simple form consists of only two

opposite parallel planes. These planes may have any position

towards the three axes, and these axes may have any incli-

nation towards each other, and any relative

lengths. In all crystals of the same sub-

stance, however, the axes have always the

same relative length, and are inclined to

each other at the same angles. Moreover, of

the possible positions in which the two paral-

lel planes of a simple form may be placed

towards the axes, only a very few are ever

observed
; the most frequently seen are those

in which the planes are parallel either to one

or to two of the axes.

Fig. 170 represents an octahedron belonging to this system,
and formed by uniting the ends of the axes by planes. It is com-
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fig 17L

Fig. 172.

posed of four simple forms : first, the form consisting of the plane
ABC and its opposite, which has the symbol a : b : c, or a' : b' : c' ;

secondly, the form consisting of the plane ABC' and its oppo-

site, which has the symbol a : b : c', or a' : b' : c ; thirdly, the

form consisting of the plane A B' C and its opposite, which has

the symbol a : b' : c, or a' : b : c' ; fourthly, the form consisting
of the plane A B' C' and its opposite,

which has the symbol a : b' : c', or

a' : b : c. Fig. 171 represents an ob-

lique prism belonging to this system, in

which the axes have the same position

as in Fig. 170. It is composed of

three forms : first, the form consisting

of the plane A B CD and its opposite,

which has the symbol a : oo b : c, or

a' : oo &' : c'; secondly, the form consisting of the plane A A' BE'
and its opposite, which has the symbol a : oo b : c', or a' : oo b' : c ;

thirdly, the form consisting of the plane
B B' C C and its opposite, which has the

symbol oo a : b : oo c, or oo a' : b' : oo c'.

Since, however, the relative lengths and

inclinations of the axes in this system

may have any possible values, it is evi-

dent that we may suppose the axes of

this oblique prism to unite the centres

of opposite planes, as in Fig. 172, or in

fact to have any other position whatso-

ever. Indeed, the position of the axes

in the crystals of any given substance

is in a great measure arbitrary, and we

assign such a position in every case as

will render the symbols of the observed

forms of the substance as simple as

possible. Fig. 173 represents a crystal

of sulphate of copper, and the symbols
below the figure indicate the position
of each pair of parallel faces towards

the three lines which have been assumed
as the axes of the crystals of this substance. The relative

lengths of these axes are a : b : c = 1 : 0.974 : 1.768 and the

15

Fig. i:a
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angles of inclination are a = 82 21', ft
= 77 87', y =

73 10'.

(93.) Irregularities of Crystals. The crystalline forms,

which we have studied in the last section, have been perfect and

regular. Not only the similar angles have been equal, but also

the similar faces and the other similar dimensions of the crystals

have been in like manner equal. Such, however, is very seldom

the case with the crystals which we find in nature or form in our

laboratories
; indeed, this perfection and equality are so uncom-

mon, that the figures which we have studied can hardly be con-

sidered other than as ideal. Crystals are very generally distorted,

and often their forms are so much disguised, that an intimate fa-

miliarity with the possible irregularities is required in order to

unravel their complexities.

Crystals are rarely terminated on all sides, one or more of the

faces being obliterated where the crystal is implanted on the

rock, or where it is merged in other crystals. Frequently, also,

some of the faces have been disproportionately developed, and so

much so as to change entirely the general aspect of the crystal ;

but in all such cases the relative directions of the faces remain

constant, and we can always easily construct the ideal form which

corresponds to the imperfect crystal, by projecting it on paper,
and placing all the similar faces at equal distances from the

centre of the crystal, taking care to preserve their relative di-

rection.

A few examples will give an idea of the nature and extent of

these irregularities.

The common form of alum is the octahedron of the mono-

metric system, and we sometimes find perfect octahedrons among
the minute crystals which have been formed

freely in the midst of a solution of the salt
;

as, for example, at the end of a thread sus-

pended in the liquid. The crystals which

form against the sides of a vessel are always
more or less united with each other, so that

only a few of their faces, and sometimes only
FJg 17*.

portions of these faces, are free. Fig. 175

represents a group of alum crystals, such as is found in the

large Tats in which the salt is crystallized, and will give an
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Fig. 175.

idea of f.ie mode in which the individual crystals are grouped

together.

If a small and perfect crystal of alum is placed on the bottom

of a vessel filled with a saturated solution of this substance, the

crystal will gradually enlarge, and in a

regular manner, on all sides except on that

on which it rests. Fig. 1TG represents a

crystal which has been thus formed
; the

shaded face, m n p q r s, being the one

which rested on the bottom of the vessel.

And it will be noticed that the form is pre-

cisely the same as would be obtained by

removing from the regular octahedron a

slice parallel to one of its faces.

Frequently the growth of the crystal,

under such circumstances, is much greater
in a horizontal direction than it is in the

direction perpendicular to the face on

which it rests
;
and the crystal then pre-

sents an appearance similar to Fig. 177,
in which the two faces which were hori-

zontal in the solution have the same form.

We sometimes meet with octahedrons belonging to the mono-

metric system, which have the form of Fig. 178. Four of tho

Fig. 176.

Fig. 177.
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Fig 178.

faces of this octahedron have

been abnormally developed, and

so much so that we might even

mistake the system to which

the crystal belongs ;
but on

measuring the interfacial an-

gles, we should find that they
were all equal to 109 28 7

,

which is the angle of the octa-

hedron.

Fig. 179 represents a compound form, already described, con-

sisting of an octahedron and a cube, a form in which the sul-

phide of lead, galena, frequently crystallizes. We sometimes,

also, find crystals of this min-

eral, having the form repre-

sented in Fig. 180, which we

might mistake for a form of

the dimetric system. It is,

however, the same form as

that of Fig. 179, only abnor-

mally developed in the direc-

tion of one of the axes, as

could easily be proved by

measuring the interfacial angle

between any two faces, o, which would be found in every case

to be 109 28'.

The common form of quartz is a hexagonal prism, terminated

by a hexagonal pyramid. The interfacial angle between any two

consecutive prismatic faces is 120
;
that between any two con-

secutive pyramidal faces, 133 40'. Fig. 181 represents a perfect

Fig. 179. Fig. 180.

Fig. 182. Fig. 183. Fig. 184.
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crystal of this form
;
but it is very rarely that we find crystals

so perfect, unless they are very minute. One or more of the

faces are usually abnormally developed, and forms like those

represented by Figs. 182, 183, 184 are the results. Here, as in

the other case, it would be found, on measuring the interfacial

angles, that they are the same as those between the faces of the

regular form.

In the oblique system, the irregular development of faces pro-

duces even greater changes in the general aspect of the crystal

than those which have been

noticed. Figs. 185 and 186

represent two crystals of fel-

spar belonging to the mono-

clinic system, which have ex-

actly the same faces, but very

differently developed.

Most of the difficulties in the

study of crystals arise from

similar distortions to those

which have been described,

and it requires practice to be

able to unravel the complex-
ities which they present. This practice is best acquired by

studying actual specimens whose form is known, and comparing
them with the perfect models of the same forms.

(94.) Groups of Crystals. We frequently find two or more

crystals imited in such a way as to produce a symmetrical com-

bination. These collections of crystals, when consisting of only

two individuals, are called twin crystals. They have regular

faces, and the same perfection of outline and angles as simple

crystals, for which they might sometimes be mistaken by un-

practised observers. There is, however, a simple criterion by

which they can be generally distinguished. Simple crystals

never have re-entering angles ; so that, whenever such angles

occur, there must be present on the specimen two or more indi-

vidual crystals.

Fig. 187 represents a twin crystal, consisting of portions of

two octahedrons united at the plane m n p tf, which is parallel

to an octahedral face. It may be formed from the regular octa-

hedron (Fig. 188), by cutting it into two equal parts by the

15*

Fig. 186. Fig. 186.
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Fig. 187. Fig. 188.

plane m n p q r s, and

then revolving one half

on the axis uniting the

centres of the two oc-

tahedral faces through
an angle of 60 or 180,
and then uniting the

two halves again hy
the surfaces at which

they were separated.

Fig. 189 represents a common form of the crystals of gypsum
(sulphate of lime). It consists, as the re-entering angle shows,
of parts of two crystals, and may he

formed by cutting a complete crystal

(Fig. 190) into two equal parts by the

plane p q r m n o, and revolving one

half of the crystal through an angle
of 185, on an axis at right angles to

the plane of section, and then again

uniting the two halves. Twin crys-

tals like these are called hemitropes.

We may suppose that such crystals

were formed from two nuclei, which

became originally united, one being in an inverted position as

regards the other, and that one grew only in one direction, and

the other in the opposite direction.

In the trimet-

ric system, cruci-

form crystals, like

those represented
in Figs. 191, 192,
are very common.
The crystals rep-

resented in the

figures consist, in

each case, of four

simple crystals. For a fuller development of this subject, we
refer the student to Dana's "

System of Mineralogy," Vol. I.

p. 127.

(95~.) Determination of Crystals. In order to determine a

Fig. 189. Fig. 190.

Fig. 191. Fig 192.
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crystal, it is essential to ascertain two points : first, the crystal-

line system to which it belongs, and, if not of the monometric

system, the relative lengths and inclinations of the axes
; sec-

ondly, the simple forms of which it consists.

When the crystal has been regularly formed, a simple in-

spection is generally sufficient to determine the crystalline sys-

tem to which it belongs ;
but when, as is most generally the

case, the crystal is more or less distorted by the enlargement
of a portion of the planes at the expense of others, the deter-

mination of the crystalline system is frequently very difficult.

In studying out the crystalline system in such cases, it is, first

of all, important to distinguish the different sets of similar planes,

each of which constitutes a simple form. The following indica-

tions give important aid in this respect.

1. Similar planes are alike in lustre, hardness, strise, what-

ever may be the variations in size. For example, if a cubical

crystal has like striae on all its six faces, these faces are all simi-

lar, and the form belongs to the monometric system.

2. Most crystals may be split (cleaved) with more or less read-

iness parallel to certain of their faces. This property, which will

be considered in a future section, frequently enables us to distin-

guish similar planes when the crystallization is very imperfect ;

for we find that cleavage is obtained with equal ease or difficulty

parallel to similar faces, and with unequal ease or difficulty par-

allel to dissimilar faces
;
and again, that cleavage parallel to

similar planes affords planes of similar lustre and appearance,
and the converse.

3. Planes equally inclined to the same plane are similar, and

planes equally inclined to similar planes are similar.

Having, by means of these indications, studied out the simi-

lar planes of the crystal, the student will very probably be able

to recognize the crystalline system at once ; but if not, he will

generally find an unerring guide to the system of crystallization

in the modifications of the crystal. The law which governs these

modifications has already been stated (91), and the mode of ap-

plying it is evident. If, for example, we find a cubical crystal

whose basal edges are differently modified from the lateral edges,

we know that these edges are not similar, and hence that the

crystal does not belong to the monometric system. If the basal

edges are all modified alike, the crystal belongs to the dimetric
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system ;
but if only the opposite basal edges are modified alike,

it belongs to the trimetric system. The following table, for which
I am indebted to Professor Dana,* will aid the student in the

examination of crystals.

MONOMETRIC
System.

Two adjacent or
'

two approximate
(

sim. pi. impossible. ,

Two adjacent or

two approximate
sim. pi. possible.
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relative lengths and inclinations of the axes. There is obviously
a direct relation between these values and the interfacial angles,
and this relation can be expressed mathematically, so that the

one can be calculated from the other. It is the especial object

of works on the subject of Mathematical Crystallography to ex-

plain these relations, and to develop the formulae by which the

calculations can be made.

The last point in the determination of a crystal is to ascertain

the simple forms of which it is composed, so as to give the sym-

bol, that is, the parameters of each set of similar planes. In

many cases, the forms may be discovered by inspection ; but in

other cases the exact parameters of any one form can only be

ascertained by calculation from the value of the interfacial an-

gles, or from the parameters of other forms already known. The
method of making these calculations is also explained in the

works on Mathematical Crystallography.

(96.) Use of Goniometers. It is evident, from the last sec-

tion, that the interfacial angles are the most important elements

in the determination of crystals. These angles are measured by
means of instruments called Goniometers. The simplest of these

instruments, called the Common or Application Goniometer, is

represented by Fig. 193. It

consists of a semicircular

arc, graduated to half-de-

grees, and of two arms, ar-

ranged as represented in the

figure. The first of these

arms, a b, is fixed at the ze-

ro division
;
but the second,

d /, turns on c, the centre
"e~^^

Fig. 193.

of the arc, as an axis, and

indicates on the limb the angle of the crystal. In using the in-

strument, the faces whose inclination is to be measured are

applied between the arms, which are opened until they just admit

the angle, taking care that the edge made by the two faces is

perpendicular to the plane of the instrument. It is easy to de-

termine when the arms are closely applied to the faces of the

crystal, by holding the instrument between the eye and the light,

and observing that no light passes between the arms and the faces

of the crystal. The two arms, a b and df, slide in the slits i k,
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g A, / #i, and can be shortened at pleasure, a provision which is

frequently important in the case of small crystals. Moreover,
for measuring crystals partially imbedded, the arc is jointed at

,

so that the part a t may be folded back on the other quadrant.
Sometimes the arms admit of being separated from the arc, an

arrangement which is more convenient than the one represented

in the figure.

When a regular goniometer is not at hand, approximate results

may be obtained by means of an extemporaneous pair of arms

made of thin sheet-metal, mica, or even of card. The arms are

first applied to the faces of the crystal, as already described
;

then, carefully retained in their relative position, they are placed

on a sheet of paper, and the angle is laid off by drawing lines

with a pencil and ruler parallel with, or in the direction of, each

of the arms. This angle may then be measured by means of a

common protractor, or a scale of cords.

The common goniometer is at best a rough instrument ; for,

even when delicately used, it seldom furnishes results within a

quarter of a degree of the truth.* For polished crystals we have

a much superior instrument, called the Reflective Goniometer.

There are several varieties of this instrument, but we shall only

describe the one which is most generally used. This was origi-

nally devised by Wollaston, and is called by his name.

The principle of all reflective goniometers is illustrated by

Fig. 194. Let a b c be the section of a crystal made by a plane

perpendicular to the edge
formed by the intersection

of the two faces whose

angle we wish to meas-

ure, and a b, a c, the sec-

tions of the two faces.

The angle required is ev-

idently the same as the

plane angle b a c. Let

S S and MM be two ob-

jects at some distance from the crystal, which may be used as

signals. The eye of an observer at O, looking at the face of the

Fig. 194.

* A more accurate form of the Application Goniometer, devised by Adelmann, is

described in Dufrenoy's
" Traite de Mineralogie," Vol. I. This instrument may also

be used as a Reflective Goniometer.
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crystal, sees a reflected image of the upper signal in the direction

O My and coinciding with the lower signal, seen by direct vision.

If, now, the crystal is revolved on the edge whose projection is

the point a, until it assumes the position a' b' c
1

',
it is evident

that the reflected image of the upper signal will again be seen

in coincidence with the lower signal. But in order to bring the

crystal to the second position, it is obviously necessary to revolve

the face a c through the arc m np, which is the supplement of

the required angle. If, then, we can measure the angle through
which the crystal must be turned in order to reproduce the coin-

cidence, we can easily calculate the angle of the crystal. This

object is readily accomplished by the goniometer of Wollaston.

The instrument consists of a vertical brass circle, L Z/, Fig.

195, about twelve centimetres in diameter, whose axis is mounted

Fig. 195.

on a firm support, p q r. The circle is graduated on its rim to

half-degrees, and may be revolved by means of the milled head

v, which is fastened to one end of the axis. A vernier,* w, per-

manently attached to the support at w, indicates the angle through
which the circle is revolved, and also subdivides the half-degrees

into minutes. The axis on which the circle revolves is hollow,

* The vernier will be described in the chapter on Weighing and Measuring.
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and through it passes, with slight friction, an interior axis, a c.

At one end of this interior axis is fastened the milled head s, by
means of which it may be revolved, and at the other end the

contrivances for supporting and adjusting the crystal, z, which is

fastened with wax to a thin metallic plate, d c. From this con-

struction it is evident that, if we turn the milled head v, the

circle and crystal will both revolve ;
but if we turn the milled

head 5, the crystal may be revolved independently of the circle.

Any distinct horizontal line, such as the bar of a window, may be

used for the upper signal ;
and for the lower signal, a black line

drawn on white paper, placed several feet below, and adjusted

parallel to the first.

In use, the instrument is placed on a table about ten or twelve

feet in front of the signals, and adjusted by means of the level-

ling-screws, until its axis is perfectly horizontal and parallel with

the lines forming the signals. The crystal, which has been pre-

viously attached to the movable plate d c, is next adjusted, so

that the edge of the interfacial angle to be measured shall exactly

coincide with the axis of the instrument produced. This is the

most difficult adjustment, and requires some skill. The crystal

should first be brought into place as nearly as possible by the

eye, either by shifting its position on the plate dc, or by changing
the position of the plate by means of the axis b d and the joint g*.

When apparently adjusted, the eye should be brought as near the

crystal as possible, and directed towards the lower signal. The
milled head s should next be turned until the image-'of the upper

signal is seen reflected from one of the faces, which includes the

angle to be measured. If the crystal is perfectly adjusted, the

image will appear horizontal, and may be brought into perfect

coincidence with the lower signal, seen by direct vision. If there

is not a perfect coincidence, the adjustment must be altered until

it is obtained. The milled head is next revolved until the reflec-

tion of the upper signal is seen in the second face, and if this

image also coincides with the lower signal, seen in direct view,

the adjustment is complete ; if not, the adjustment must be

made perfect, by altering the position of the plate d c, and the

first face again tried. A few successive trials of the two faces

will enable the observer to obtain a perfect adjustment. When
the two images are perfectly horizontal, the edge formed by the

intersection of the two faces must be parallel to the axis of the
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circle, but it will not necessarily coincide with it. A slight vari-

ation from exact centring in the position of the edge is not,

however, of importance, when the goniometer is placed ten or

twelve feet distant from the signals, so that this adjustment may
be made sufficiently near by the eye. The method of adjustment

which has been described depends on the laws of reflection, which

will be explained in the chapter on Light.*

The crystal thus adjusted, the angle is very easily measured.

The zero division of the limb is first made to coincide with the

zero division of the vernier. The eye is then brought as near

to the crystal as possible, and directed towards the lower sig-

nal. The crystal is then revolved by the milled head s until

the image of the upper signal, reflected from one of the faces

enclosing the required angle, coincides with the lower signal seen

by direct vision. This coincidence obtained, the circle and

crystal are turned together by means of the milled head v,

taking care to keep the eye in exactly the same position until

the same coincidence is observed with the second face. The angle

through which the circle has been turned may now be read off

by means of the vernier
;
and this, as we have seen, is the sup-

plement of the angle of the crystal. When the faces of a crystal

are highly polished, we can determine its angles by means of the

Wollaston goniometer within a few minutes, f Unfortunately,

however, the faces of most crystals are not sufficiently polished
to give, under ordinary circumstances, a distinct image of the

signal. In many such cases, good results can be obtained by

making the measurements in a partially darkened room, and

using as the upper signal a narrow slit in the screen covering one

of the windows, and as the lower signal, a horizontal black line

drawn on the casement below. The slit is best made by covering
a rectangular aperture in the screen with a parallel ruler, which

* Another method of adjusting the goniometer and the crystal is described by Pro-

fessor W. H. Miller, of Cambridge, England, in his work on Crystallography, and also

in the last edition of Phillips's Mineralogy, London, 1852. This method is preferable
to the one described in the text in most cases, and especially when the crystals are mi-

nute or the lustre of the faces dim.

t For the methods of rectifying the instrument and of determining the probable
errors of measurement, the student may consult Naumann, Lehrbuch der reinen und

angewandten Krystallographie, Leipzig, 1830, Band II
; Neumann, Das Krystallsys-

tem des Alhites
( Abhandlungen der koniglicheu Akademic der Wissenschaften in

Berlin, vom Jahre 1830).

16
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may be opened more or less, as circumstances require. When
the faces are very dull, the slit may be illuminated by means oi

a heliostat. In such cases, when we can see no image, we can

sometimes get an impression of light imperfectly reflected from

the faces of the crystal, and this enables us to measure the angle

within ten or twelve minutes. We can sometimes render the

faces of crystals reflecting, by fastening on them very thin pieces

of mica by means of some interposed liquid, such as water or oil

of turpentine.

The Wollaston goniometer has been modified by Rudberg*
and Mitscherlich, f and the instrument, as thus improved, is con-

structed by Oertling, of Berlin. The modifications consist

chiefly, First, in an improved apparatus for centring and

adjusting the crystal. Secondly, in substituting for the distant

signals cross-wires at the focus of the eye-piece of a telescope

which is firmly attached to the stand of the instrument. The

object-glass, which is directed towards the crystal, is so adjusted
that the rays of light emanating from a lamp placed before the

eye-piece and illuminating the cross-wires are rendered parallel

before they strike upon the face of the crystal, and thus produce
the same effect as if they emanated from a signal ten or twelve

feet distant. Thirdly, in directing the eye by means of a second

telescope, furnished with cross-wires, whose optical axis is in the

same plane as that of the first telescope, and is parallel to the

plane of the graduated circle. In using this instrument, the

crystal is first carefully adjusted, and then turned until the re-

flected image of the cross-wires of the first telescope is seen to

coincide with those of the second, seen by direct vision. The

whole circle is then turned until the same coincidence is obtained

with the image reflected from the second face. The angle is then

read off on the graduated limb, which, in the large goniometer
constructed by Oertling, is divided into sixths of a degree, and

each of these divisions subdivided by a vernier into sixths of a

minute. This goniometer gives very accurate measurements;

but on account of the loss of light produced by the lenses, it can

only be used with crystals whose faces are highly polished. In-

* Vorschlag zu einem verbesserten Reflexionsgoniometer (Annalen der Phys. und

Chem. von Poggendorf, IX. s. 517).

t Abh. der kon. Akad. der Wiss., Berlin, 1825, 1839. Also Dufrenoy, Traite' de

Mineralogie, Vol. I.
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deed, it is seldom that such nicety is required, since the angles

of crystals are liable to accidental variations amounting to several

minutes, and the ordinary Wollaston goniometer will in most cases

measure the angles as accurately as they are formed by nature.

For descriptions of the various forms of reflective and other

goniometers, which have been proposed by Babinet,* Haidinger,f

and others, J the student is referred to the original memoirs.

(97.) Identity of Crystalline Form. It was stated in (79),

that, with certain limitations, the crystalline form is always the

same for the same substance, and we are now prepared to under-

stand what the limitations are. It is not true, in the ordinary

acceptation of the word, that the same substance always crystal-

lizes in the same form ; but the same substance, with the excep-

tions hereafter to be noticed, always crystallizes in the same

system. Common salt, for example, usually crystallizes in cubes
;

but when it is crystallized from a solution containing urea, it

takes the form of the regular octahedron, or else a compound
form, on which the cube and octahedron are united. Both of

these forms belong to the Monometric System. So also, M. le

Comte de Bournon, in a monograph of two volumes, has de-

scribed eight hundred different forms of the mineral calcite ;
but

all of these belong to the Hexagonal System. When a substance

crystallizes in the Monometric System, the relative lengths of the

axes of the different forms must necessarily be the same ; but in

the other systems, the relative lengths of the axes of the different

forms of the same substance may be different. We have seen,

however, that these lengths always bear to each other a very sim-

ple numerical ratio (compare pages 143, 147, 159, and 104), and

that in the oblique systems the axes of the different forms of the

same substance have always the same relative inclinations (com-

pare pages 164 and 168). It follows, therefore, that when we say

that a substance always crystallizes in the same form, we only
mean that it crystallizes in forms belonging to the same system.
The number of possible forms in which a given substance may
crystallize (although it is restricted to forms of one system) is,

*
Dufre'noy, Traite de Mineralogie, Vol. I.

t Sitzungsberichte der mathem.-naturw. Classe der kais. Akademie der Wissen-

schaftcn zu Wien. Novemberhefte des Jahrganges 1855.

t Suckow, Vorschlag zu einem Goniometer (Journal fur praktische Chemie von

Erdmann, Band II.). Gilbert's Annalen der Physik, Jahrgang 1820. Also Kolinati,

Elemente der Krystallogrnphie, Brunn, 1855.
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of course, infinite ; but the number of actual forms in which it

is observed to crystallize is generally very limited, seldom ex-

ceeding two or three. Under similar circumstances, a given

substance almost invariably takes the same form; so that this

form is one of the most characteristic properties by which a

substance may be recognized. Moreover, we also find that in

any given system the possible forms of a substance are limited

to either holohedral or hemihedral forms. For example, we

always find iron pyrites crystallized in the parallel hemihedral

forms of the Monometric System, and gray copper in the oblique

hemihedral forms of the same system.

(98.) Dimorphism and Polymorphism. There are several

substances, which, under widely different conditions, may be

made to crystallize in the forms of two systems, and a few

which may be made to crystallize in those of three systems.

Such substances are said to be dimorphous or polymorphous.

Sulphur, for example, at the ordinary temperature of the air,

crystallizes in the forms of the Trimetric System ;
but at the tem-

perature of 113 C. it crystallizes in the forms of the Monoclinic

System. Carbon, also, is found in nature as diamond, whose

crystals belong to the Monometric System, and as graphite, whose

crystals belong to the Hexagonal System. Again, carbonate of

lime occurs in forms of the Hexagonal System, when it is called

calcite
; and in forms of the Trimetric System, when it is called

arragonite. Lastly, titanic acid crystallizes in the forms of the

Dimetric System, in which a : b = 1 : 0.6442 (rutile) ;
in forms

of the same system, in which a : b = 1 : 1.7723 (antase) ;
and

also in forms of the Trimetric System (brookite).

When, however, a substance crystallizes in the forms of differ-

ent systems, we find that in the several states its other properties

differ as widely as the forms ; and so much so, that it may be

questioned whether they can properly be regarded as the same

substances. No two substances could differ more widely than

the two states of carbon (diamond and graphite) ;
and similar

differences, although not quite so striking, exist between the

different states of other substances. It becomes, then, a question

of considerable interest, whether these states can properly be re-

garded as the same substance. But this discussion must be re-

served for another portion of this work.
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Elasticity.

(99.) Elasticity of Solids. Having considered the effect of

cohesion in retaining the molecules of solids in a determinate po-
sition with reference to each other (79), we come next to consider

the effect of this molecular force in determining phenomena of

elasticity. It has been stated (77), that the phenomena of elas-

ticity could be developed in all matter by compression, and that in

solid matter they could also be developed by tension, by flexure,

and by torsion. The laws of elasticity in solid bodies may, for the-

most part, be developed both by mathematical analysis and by

experiment ; but we shall be obliged to confine ourselves, in this

work, to a simple enunciation of them, referring the student to

the works on Physics which have been previously cited, for a

full development of the subject.

(100.) Elasticity of Tension. In experimenting on the elas-

ticity developed in solids by tension, we suspend the rod or wire

by its upper extremity to a

firm support, and attach to its

lower extremity a pan to re-

ceive weight (Fig. 196). The

elongation caused by the addi-

tion of weight to the pan can

then be measured by means of

a cathetoraeter.* If the elon-

gation does not exceed a cer-

tain amount for any given

rod, and the experiment is not

continued too long, the rod

will resume its original length
when the weight is removed.

If, however, the elongation
exceeds the limit of elastici-

ty, or if the strain is contin-

ued beyond a limited time, a

permanent change of length
and bulk will ensue. When
the limits of elasticity are

Fig 196

* This instrument will be described in the chapter on Weighing and Measuring.

16*
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not exceeded, it will be found that the following laws will hold

true in all experiments of this kind.

1. The elongation caused by an increase of tension is the same

for the same subtance, whatever may have been the original ten-

sion. For example, if we are experimenting on a rod of iron,

we shall find that the elongation caused by the addition of one

kilogramme to the pan is the same, whether the pan was before

empty, or was loaded with fifty kilogrammes or any other amount

of weight.

2. The elongation is proportional to the increase of tension.

If the rod is elongated one millimetre by one kilogramme, it will

be elongated ten millimetres by ten kilogrammes, and so on.

3. The elongation is proportional to the length of the rod.

A. rod of the same substance, of the same size, but twice as long

as another, will be elongated twice as much by the same increase

of weight.

4. The elongation is inversely proportional to the area of the

* section made at right angles to the length of the rod. If, for

example, two rods of the same substance have the same length,

and if the area of the section of the first is twice as great as that

of the second, it will only be elongated one half as much by the

same strain.

(101.) Coefficient of Elasticity. It follows from these laws,

that the elongation of a given rod, which we will represent by /,

is proportional, first, to a constant quantity, (7, depending on the

nature of its substance ; secondly, to the weight, to, by which it

is stretched ; thirdly, to its length, L ; and, fourthly, is inversely

proportional to the area of the section, S. This, expressed in

mathematical language, is

I = C . to . L .
1

;

hence,

/_ q^ L
r C= l S

If in these equations we put K= ^-, they will become,

i to L rr L to
I =

-g
^~-

,
or K==

-j-

This quantity, JT, is called the coefficient of elasticity. If in the

last equation we put /= L, that is, if we suppose the elongation
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to be equal to the original length, and also make S= 1 m. m.*,

the equation becomes K= tP ; which shows that the coefficient

of elasticity of any homogeneous substance is equal to the abso-

lute weight required to double the length of a bar of that sub-

stance, whose section is equal to one square millimetre, supposing
such an increase of length were possible, which is not the case

except with threads of India-rubber. The following table gives

the coefficients of elasticity of a number of metals, as deter-

mined by M. Wertheim.

Coefficients of Elasticity of Annealed Metals at different Temperatures.

150 to 20o. 10(P. 2000.

Lead, . . . 1,727 1,630 . .

Gold, . . . 5,584 5,408 5,482

Silver, . . . 7,140 7,274 6,374

Copper, . . 10,519 9,827 7,862

Platinum, . . 15,518 14,178 12,964

Iron, . . . 20,794 21,877 17,700

Cast-Steel, . . 19,561 19,014 17,926

English Steel, . 17,278 21,292 19,278

It appears from this table, that, as a general rule, the coeffi-

cients diminish as the temperature rises from 15 to 200.

M. Wertheim has also made experiments on metals which have

been submitted to various mechanical agencies, and has found

that all circumstances which increase the density increase also

the coefficient of elasticity, and the reverse.

The coefficient of an alloy is sensibly the mean of the coeffi-

cients of the metals which enter into its composition, even when
a change of volume accompanies the formation of the alloy. A
current of electricity diminishes momentarily the elasticity, inde-

pendently of the diminution caused by the elevation of temper-
ature which it produces.

(102.) Elasticity of Compression. If a bar is compressed
in the direction of its length by a force acting at the extremities,

it is found that the amount by which it is shortened is exactly

equal to the amount by which it would be lengthened, were the

force applied so as to stretch it. It follows, from this equality in

the effects produced, that the laws of elasticity developed by com-

pression are the same as the laws of the elasticity of tension.

(103.) Elasticity of Flexure. The simplest case of elas-

ticity developed by flexure is illustrated by Fig. 197. It repre-
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,

sents a rectangular bar, A B,
fastened at one of its extremi-

ties in a horizontal position.

If, now, we press upon the free

extremity of the bar at JS, so

,. 197t as to curve it a little, the bar

will tend to return to its first

position, in consequence of the elasticity developed by the flex-

ure
;
and if left to itself, will resume the horizontal position after

a few oscillations.

The elasticity of flexure is, in great measure, a mixed effect of

the elasticity of compression and tension. Since, by the bending
of the bar, the particles of the convex surface A B' are drawn

apart, while those of the concave surface CD' are forced to-

gether, and it is in consequence of the elasticity thus developed
that the bar tends to return to its original position. But, more-

over, the particles of the bar have changed their position, inde-

pendently of the change of their relative distances apart, since

the particles, which were previously situated on a straight line,

are now on a curved line
;
and we know that such a change

of position must be accompanied with a development of elas-

ticity.

Starting from these data, the laws of elasticity of flexure can

be deduced by mathematical analysis. They are comprised in

the formula,

a== tos or to = ~a -3
-

T67]

in which L is the length of the bar
; tD, the weight acting per-

pendicularly, and tending to bend it
; 6, the breadth of the bar

measured perpendicularly to the direction of this force
; e, the

thickness of the bar
; a, the arc described B B'

; and K, a con-

stant quantity depending on its substance. If in [67] we put
L = 1 m., b = 1 c. m., e = 1 c. m., a = 1 c. m., it becomes

tO = K. The number K is called the coefficient of the elas-

ticity of flexure, and it is evidently equal to the weight which

will bend a bar of a given substance one metre long and one

centimetre square through an arc of one centimetre. When the

values- of a, 6, e, and L have been determined by experiment in

the case of any substance, the value of K for this substance can

easily be calculated.
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Equation [67] shows that the flexure of the bar, or a, is pro-

portional to the force tD. It follows from this, that, as the rod is

bent, it tends to restore itself to the position of equilibrium with

a force which increases with the distance of each of its points

from their position of equilibrium. Now it can be proved that,

when this condition exists, the oscillations which the bar makes

in returning to the position of equilibrium will be isochronous,

whatever may be their amplitude. Hence reciprocally it will

follow, that, if the oscillations of such a bar are isochronous, the

condition under consideration must exist. It is easy to verify the

isochronism of the oscillations experimentally, because, being very

rapid, they produce a sound whose pitch depends on the number
of oscillations in a second, and hence in any case would vary, if

the isochronism were not preserved. Now it is well known that

this pitch is constant for a given bar, whatever may be the ampli-

tude of the oscillations ; and thus this is at once a consequence
and a proof of the law, that the flexure is proportional to the

force.

It has been assumed in this discussion, that the section of the

bar is a rectangle, and that the force is applied in a direction per-

pendicular to one of its sides. When these conditions are not

fulfilled, the formulae [67] no longer hold true. It has been also

assumed that the bar returns exactly to its first position when it

is freed, or, in other words, that the flexure does not exceed the

limit of elasticity.

(104.) Applications. Almost all springs for example,

watch-springs and carriage-springs are appli-

cations of the elasticity of flexure. The bow
is another example. The elasticity of a hair

cushion is due to the elasticity of flexure devel-

oped in the single hairs. The spring balance,

Fig. 198, which has been already described (71),
is an application of the law that the flexure is

proportional to the weight.
The elasticity of flexure has been applied by

Bourdon in the construction of a metallic ma-
nometer and barometer, which bear his name.
It is a familiar fact, that, if we force air into

Fig 198

a flexible tube, closed at one end, which is

flattened and coiled up on its flat side, the pressure tends to
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Fig. 199.

uncoil it
; and, on the other hand, that, if we exhaust the

air, the exterior pressure tends to coil it still further. If the

tube is also elastic, it is evident that, when the pressure is re-

moved or restored, it will

return to its former condi-

tion, provided that the lim-

its of elasticity are not

passed. These facts are

the basis of the two instru-

ments represented in Figs.

199 and 200.

The chief object of the

manometer (Fig. 199) is to

measure the pressure exert-

ed by confined steam, al-

though it might be used for

any similar purpose. It

consists of an elastic tube,

a
ft, made of brass, and

coiled as represented in the

figure. A section of this tube is represented at S. The end of

the tube, #, is firmly fastened to the stopcock, w, by which it

connects with the steam-boiler. To the closed end of the tube,

ft,
is attached a hand, e, which

moves over an index. As the

pressure of the steam on the inte-

rior surface of the tube increases,

it gradually uncoils, arid the hand

points to the number of atmos-

pheres of pressure. When the

pressure is removed, the tube,

in virtue of its elasticity, resumes

its original position, and the hand

points to the first division of the

scale.

The barometer (Fig. 200) is a

more delicate instrument, con-

structed on the same principle.

The tube is here closed at both ends, and when the pressure of

the atmosphere is just equal to the tension of the confined air, it

Fig. 200.
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is in the condition of equilibrium. When, however, the pressure

of the atmosphere diminishes, there is an excess of pressure on the

interior surface of the tube, and it tends to uncoil
;
on the other

hand, when the atmospheric pressure increases, there is an ex-

cess of pressure on the exterior surface, and the tube tends to

coil still more. As constructed, the air is partially exhausted

from the tube, and hence the pressure of the atmosphere always
tends to coil it more or less, as compared with the condition of

equilibrium. The tube is fastened, at the middle of its length, to

the upper part of the instrument, and its free ends are connected,

by the metallic threads a, ft, with the hand, which serves to mul-

tiply the motion, while a small spiral spring, c, causes the needle

to follow with accuracy any change of position in the ends of the

tube. The arc is graduated to correspond with a mercurial ba-

rometer, and denotes the number of centimetres of mercury to

which the atmospheric pressure corresponds.

(105.) Elasticity of Torsion. It is a fact of frequent obser-

vation, that, when a metallic wire, a b (Fig. 201), fastened at one

end, is twisted by a force applied at the

other, it strives to return to its original

position, and when free returns to this po-

sition, after having made a number of os-

cillations. This of course supposes that

the strain has not exceeded the limit of

elasticity.

It is easy to see how elasticity is devel-

oped in a wire by torsion. Suppose m n,

Fig. 201, to be a line of particles parallel
to the axis of the wire when in a state of

equilibrium. It is evident that, when the

wire is twisted, these particles will be dis-

tributed on the helix m ri ; but in order to

assume this position, the distances between
the successive molecules must be increased,
which will develop the elasticity of tension,

ticity is also developed by the fact that the particles resist any
change of position, even when the relative distances are pre-
served.

The angle a, through which a radius of the lower base of the

wire is turned, is termed the angle of torsion. The force which,

Fig 201.

Besides, this elas-
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applied at the extremity of a lever equal to the unit of length
and perpendicular to the wire, will maintain it in a position

which corresponds to a certain angle of torsion, is called the

force of torsion. And when the angle of torsion is such that the

arc described by the extremity of the lever is also equal to unity,

the force of torsion is called the coefficient of torsion.

The laws of the elasticity of torsion were investigated by Cou-

lomb, and are expressed in the following formulae .:

4 -rr *> W I~Q 1
t = n r __ , bo.

'Vi 9 7r

or

which apply to the case represented in Fig. 201, of a cylindrical

weight suspended by a cylindrical wire to a fixed support, a, so

that the axis of the cylinder and the wire correspond. In this

case, W represents the weight of the cylinder ; r, its radius
; g+

the force of gravity ; F, the coefficient of torsion of the wire ;

and t, the time of the oscillations which the cylinder makes on

its axis, in returning to the state of rest after the wire has been

twisted. The laws of torsion discovered by Coulomb are as

follows.

1. The force of torsion is proportional to the angle of torsion.

In order to establish this law, Coulomb made experiments on the

oscillations of the weight W on its axis caused by the torsion of

the wire, using wires of different substances, and loading them

with different weights. He found that in each case the times of

the oscillations were independent of the amplitudes, or, in other

words, that they were isochronous ; and it can readily be shown,

by the same course of reasoning used in (103), in regard to the

elasticity of flexion, that the law is a necessary consequence of

this fact.

The isochronism of the oscillations caused by torsion is ex-

pressed by [68], since the value of the second member of the

equation is independent of the amplitude.

2. The force of torsion is independent of the tension of the

wire. It has been proved by experiment, that the square of the

time of oscillation is proportional to the weight, W9 or, in other

W
words, that -3- is a constant quantity ;

and hence it follows, that
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the value of F [69] is not changed by any variation of the

weight.
The coefficient of torsion depends upon the substance of the

wire, and also upon its diameter and its length, it being inversely

proportional to the length and directly proportional to the fourth

power of the diameter of the wire.

(106.) Applications of the Elasticity of Torsion. One of

the most beautiful applications of the laws of torsion is the tor-

sion-balance, contrived for measuring
the intensity of feeble attractive and

repulsive forces. One form of this

balance, which is used for measuring
the intensity of the attractive or repul-

sive force between electrified bodies, is

represented in Fig. 202. The general

structure of the apparatus is evident

from the figure, and does not require

description. The most essential part

of it is a fine silver wire, attached,

at its upper end, to the brass circle

e, and from the lower end of which

is suspended a shellac needle. The
circle e is movable, and turns on the

cap, which is cemented to the glass

tube d. This circle is graduated on

the exterior rim into degrees, and the index-mark at a, which is

fastened to the cap, indicates the angle through which the circle e

has been turned. The glass tube also turns in a brass socket,

which is cemented to the glass cover of the apparatus. The re-

pulsive or attractive force between the two electrified balls m and

w, is measured by the angle through which it is necessary to twist

the wire (by turning the circle e), in order to balance it, the force

exerted being always proportional to the angle of torsion. A
modification of the torsion-balance was employed by Cavendish,
and subsequently by Bayly, in the determination of the density
of the earth.

(107.) Limit of Elasticity. It has been several times stated

in the previous sections, that the laws of elasticity only hold true

so long as the strain does not exceed the limit of elasticity',
and

it was stated in section (77), that, within more or less narrow

17

Fig. 202.
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limits, all solids were perfectly elastic. The phenomena of elas-

ticity may be developed by torsion in those substances which seem

the most destitute of this property. Thus, if we take a leaden

wire two millimetres in diameter and three metres long, fix one

end of it firmly to the ceiling, and fasten an index to the other,

it will be found that, if we twist the wire twice round and let

it go, it will, after a number of oscillations, come to rest in its

original position ; showing that the elasticity in this leaden wire

is perfect up to the point mentioned. But if we twist the wire

four times instead of two, it will not return to its first position,

but to a position short of that by nearly two revolutions. The

particles of a leaden wire of this length and thickness will bear

a displacement measured by two revolutions of the index
;
but

the displacement occasioned by four turns is more than its

particles can bear, and they remain permanently displaced,

the wire having taken what is technically called a set. So

also, a thin cylinder of pipe-clay (which is generally consid-

ered as destitute of elasticity as almost any substance can be)
shows the existence of elasticity as perfect as can be found in the

best-tempered steel
;
but here again the limit of elasticity is soon

reached. A steel wire, similar to the lead one just mentioned,

might be twisted a great many times before its particles would

receive such a set as to prevent it from completely untwisting

again ;
but after it had been twisted a certain number of times,

the limit of its elasticity would be passed, and it would not come

to rest again at its first position.

The same phenomena appear in all the cases we have studied.

A wire, which, when stretched by a light weight, will resume its

original length when the weight is removed, will be permanently

lengthened if the weight exceeds a limited amount. So also a

steel spring, if bent beyond a certain point, is forced, and re-

mains permanently bent to a greater or less extent.

It is a remarkable fact, that even when the limit of elasticity

has been exceeded, so that the particles have taken a permanent

set, the elasticity of the whole mass remains the same as before.

Thus, when a wire has been permanently lengthened by a great

strain, it is as perfectly elastic in its new condition as before,

readily recovering from the effects of smaller degrees of exten-

sion. So also it was found by Coulomb, that, after he had given

a set to the lead wire already referred to, by twisting it four
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times round, the wire was as elastic in its new condition as be-

fore, requiring the same force to give it a further twist, and

recovering itself as completely when that force was withdrawn.

The limits of elasticity have been determined only in the case

of the elasticity of tension. The method of experimenting was

to take wires of any length, but whose section was equal to

one square millimetre, and to determine the amount of weight

required to extend them permanently 0.05 m. m. for each

metre of length. This investigation was more difficult than

would appear, on account of the fact that the duration of the

strain has an important influence on the permanent elongation
which results

; for, when once commenced, this elongation slowly

increases, and although it may not be sensible at the end of a few

minutes, yet after several hours it may become very evident.

This principle is illustrated by the well-known facts, that the best

springs are worn out with long use, that the beams of floors bend

little by little, and that buildings settle with time. The limit of

elasticity is not, therefore, a value which can be rigorously de-

termined, and hence the numbers in the following table must be

regarded as only approximate.

Metals.
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principles of acoustics, Savart* has determined in a few in-

stances the differences of elasticity which the same crystals

present, when examined on different lines of direction with

reference to their crystalline axes. As neither the methods nor

the results of his investigations could be made intelligible in

this connection, we must refer the student to the memoirs cited

below. These differences of elasticity in crystals give rise to

some of the most beautiful phenomena of optics, and we shall

have occasion to refer to the subject again in that connection.

(109.) Collision of Elastic Bodies. The effects of collision,

described in (41), are greatly modified when the bodies are elas-

tic, and in a way which it is im-

portant to study. Let us then

suppose, in order to make the

case simple, that the bodies are

two elastic spheres, a and b,

Fig. 203, with different masses,

Fig . 203. M and M', which are moving in

the same direction, from left to

right, with the velocities V and to' re-

spectively, to being greater than to'.

When the balls come together, they will

flatten each other (Fig. 204), until the

velocities of the two become equal. If

the bodies are soft, this flattening will

be permanent, and the balls will move
on together with a velocity which, as we have found, [23,] is

r23
,

'

If the bodies, on the contrary, are elastic, and the limit of elas-

ticity is not exceeded during the impact, we have the same result

as before up to the moment of greatest flattening, and at that

moment the velocity is to", as given above. But after this moment
a new set of phenomena appears. The two balls thus flattened

act as springs, and in resuming their original form impart recip-

rocally to each other as much momentum as was expended in

producing the compression. At the moment of greatest com-

* Annales de Chimie et de Physique, 2" Serie, Tom. XL. Also Dufrenoy, Traite

de Mineralogie, Tom. I. p. 289.
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pression, it is evident that the ball a has lost in velocity an

amount equal to b D" ; and, on the other hand, the ball b

has gained in velocity an amount equal to b" b'. In recover-

ing its form, the ball b tends to drive a to the left, and therefore

to retard its motion ; and, on the other hand, the ball a tends to

throw b forward, and therefore to accelerate its motion. More-

over, by the principle just stated, this retardation and accelera-

tion will be just the same as that caused between the first contact

of the balls and the moment of greatest compression. Hence,
after the impact, the velocity of a will be diminished by an

amount equal to 2(b I)"), and that of b increased by an

amount equal to 2 (b" I)'). Representing, then, the veloci-

ties after the impact by bo and il,, we have

t) d
= t) 2(b b"), and b l=== b> + 2(tr b 1

)- [70.]

Subtracting the second of these equations from the first, we ob-

tain

b h = b' b. pi.]

This equation shows that the difference of velocity is the same

after the impact that it was before ; but the relation has been re-

versed, the velocity of a being now less than that of b. Hence
it follows, that, after the impact, the two balls will recede from

each other as rapidly as they approached each other before ; and

this is true in every case of the impact of two spheres, when
both are perfectly elastic. In order to find the actual velocities

after impact, we have only to substitute in [70] the value of b"

given by [23], when we obtain

h -W M') b

and
[72.]

h (M1 M) b' + 2 Jl/b

M+M'
In obtaining these values, we have supposed that both balls were

moving from left to right, the mass M, whose velocity is the

greatest, being at the left of the other. The same formulae, how-

ever, hold true for all cases of direct impact ; except that, when
one of the balls is moving from right to left, the sign of its velocity
must be changed. A few examples will illustrate the application
of the formulae.

17*
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Let us suppose, then, for the first case, that the masses of the

two balls are equal, and that the ball b is at rest. We shall

then have M1 = M, and b' = 0. Substituting these values in

[72], we have

bo = 0, and bi = b. [73.]

Hence, after the impact, the ball a remains at rest, and the ball

b moves on with the velocity which a had before the impact.
Let us suppose, as the second case, that the masses are equal,

and that .the motions are in opposite directions, that of a posi-

tive, and that of b negative. We shall then have M' = M, and

b' = b'. Substituting, we obtain

b = b', and bl==b. [74.]

Here, after the impact, the ball a will move from right to left

with the previous velocity of &, and b will move from left to right

with the previous velocity of a ;
and in general, when the masses

are equal, the two spheres will interchange velocities.

Let us suppose, as a third case, that the velocities are equal, and

the motions in, opposite directions, as before ;
and further, that

the mass of b is greater than that of a. We then have 1)'= b,
and M1 > M. Substituting, we obtain

(M 3 M1

) b . (3 M M1

) b= -- and bl = -

In this case, after the impact, the ball a must always move from

right to left, when, as supposed, M1 > M,'. If M' < 3 M, the

ball 6, after the impact, will move from left to right. If, how-

ever, M' > 3 M, it will move from right to left. When
M' = 3 M

y
we have

b = 2b, and t)i = ; [76.]

that is, the ball a will move from right to left with twice its pre-

vious velocity, and the ball b will remain at rest.

We can also apply the formula to the case where an elastic

ball strikes vertically on a fixed obstacle, as when an India-

rubber ball is let fall on the ground. In this case, M1 =
oo,

and b'= 0. Substituting these values, [72] becomes bo=
that is, the body moves, after impact, with the same velocity as

before, but in an opposite direction. Hence the India-rubber ball

should, by (22), rebound to the same height from which it fell.
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Fig. 206.

This is not practically true, because the surface on which it falls

is never perfectly elastic, and, moreover, because the ball does

not recover promptly from the compression.

Let us next suppose that the sphere strikes the obstacle in an

oblique direction (Fig. 205), and that its velocity at the moment
of collision is represented by the

line i a', which represents also

the direction of the motion. This

motion is, by (24), equivalent to

two others, one in a direction

which is tangent to the surface,

and whose velocity at the mo-

ment of collision is represent-

ed by the line i c, and another,

which is normal to the surface,

and whose velocity at the mo-

ment of collision is represented

by the line i n'. The lines i c

and i n' are sides of a parallelo-

gram, of which i a1

is the diagonal. The first motion will con-

tinue, after the impact, with the same velocity, without changing
its direction. The second motion, as we have just seen, will be

changed by the impact into a motion in the opposite direction,

but with the same velocity. In order to find the resulting path
and velocity of the ball after the impact, we need only to combine

these two motions. For this purpose, we have already drawn

the line t c, which represents the velocity and the direction of the

first component. The line i n, drawn equal to the line i n', and

in an opposite direction, will represent the velocity and direction

of the second component. Completing the parallelogram and

drawing its diagonal, we find that the body moves, after the im-

pact, in the direction i 6, with a velocity represented by the length
of this line. Moreover, since the parallelograms c n and c n1 are

equal, their diagonals are also equal, proving that the velocity

after the impact is the same that it was before. Further, since

i n is in the same plane as i ri, it follows that the diagonals

must be in the same plane, which shows that after the impact the

ball moves in the same plane in which it moved before. Lastly,

it follows, from the equality of the parallelograms, that the an-

gles b i n and a 1

i n1 are equal, and consequently the angles bin
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and a in are equal. The angle a i n, which the original direc-

tion of the motion makes with the normal to the surface of the

fixed obstacle, is called the angle of incidence ; and the angle
b i n, formed by the direction of the motion after impact with

this normal, is called the angle of re/lection. Hence, the angle

of incidence is equal to the angle of reflection.

The absolute equality of the angles of incidence and reflection

is only realized when both the body and the obstacle are perfectly

elastic. When this is not the case, the component t n is less than

i n' y and hence the angle b i n greater than a i n, the angle of re-

flection becoming greater in proportion to the deficiency of elas-

ticity ; and when the bodies are unelastic, it becomes equal to

90, and the ball moves, after the impact, in the direction i c.

Compare (41).

Finally, let us suppose that two elastic spheres, A and .B, Fig.

206, moving in the same plane with the different velocities t)

and t)', meet each other obliquely.

In order to find the directions and ve-

locities of their motions after impact,
we may extend the method adopted in

the case just discussed. We first de-

compose the velocity of J., repre-

sented by the line n v, into two com-

ponents at right angles to each other,

n /==&, and n V=b. In like man-

ner, we decompose the velocity of B
into two components, n U1= a', and

n V= b'. It is now evident that the effect of collision will not

be felt in the directions n U and n U', since the balls will slide

over each other in the direction of these components, and hence

we shall obtain for the two velocities after contact in the direc-

tion n U or n U' two quantities, aQ and a1? equal to a and a' re-

spectively. It is, however, entirely different with the other two

components. The velocities in the directions Vn and Vn are

reversed and changed by the collision, and we therefore seek by

(72) what will be the velocities after the collision in the direc-

tions n V for J., and n Ffor B, and obtain two quantities, b and

bi. Lastly, by combining together on the principle of the com-

position of velocities the components a and 5
,
we shall obtain

the final direction and velocity of A ; and by combining i and
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b the final direction and velocity of B. This calculation can

easily be made in any special case, and does not, therefore, re-

quire further illustration. When the masses of the two spheres

are equal, as follows from [74], they exchange velocities in the

directions n V and n V, and, the velocities in the directions

n U and n V being the same as before, the calculation then

becomes quite simple.

The laws of the collision of elastic bodies may be illustrated

in a great variety of ways ;
but the best of all illustrations is

found in the game of billiards, which is based almost entirely

upon them. This game is played with balls of ivory, which are

in themselves elastic, and on a table whose raised edges are cov-

ered with elastic cushions. The object of the game is to hit

one ball with another, set in motion with a stick moved by the

hand, so that one or both shall afterwards move toward a certain

point or points. To effect this, in the various positions of the

balls, requires an empirical knowledge of the laws of the col-

lision of elastic bodies, and great skill in their application. The
results obtained in this game do not conform exactly to the

theory, on account of the imperfect elasticity of the balls and

cushions. Thus we have seen [73] that, when an elastic body
encounters another of the same mass at rest, the last is set in

motion, and the former remains stationary. This is not generally
the case with billiard-balls, for usually both balls move after

the impact ; but nevertheless, when the stroke is very sharp, this

result does at times occur. This is probably owing to the fact,

that the friction of the ball on the cloth covering of the table,

the imperfect elasticity of ivory, and other causes of disturbance,

have the least influence when the ball is moving with a powerful
force. So also, when the ball rebounds from the elastic cushion,
the angles of incidence and reflection are not exactly equal,
but they are very nearly so when the ball is driven with a

powerful stroke.

Resistance to Rupture.

(110.) When a rod is stretched in the direction of its length,

with a gradually increasing force, it finally breaks, the force re-

quired to break it depending on the substance of the rod, and its

size. The smallest weight required to part it is the measure of
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the resistance of the rod, and the weight required to part a rod

of any substance, whose section is equal to one square millimetre,

is the measure of the tenacity of that substance.

The resistance to rupture can be conveniently determined by
means of the dynamometer, represented in Fig. 207. It consists

Fig 207.

of an iron frame, P, on which slide two carriages, a and b. The

first of these is connected with a powerful spring, contained in

the box H. When the carriage a is drawn forward, the spring

is bent, and communicates motion to the index, (7, which moves

on a graduated arc, and indicates in kilogrammes the inten-

sity of the force. The second carriage, 6, is united with the

frame at A by means of the screw o, and may be moved for-

wards or backwards by turning the handle M. The rest of the

apparatus consists of a train of wheels and pinions, which con-

nect the spring with the fly-wheel F, and prevent it from flying

back too suddenly when the tension is removed.

In order to determine the resistance to rupture of a given wire

by means of this apparatus, the two ends of it are fastened to the

carriages by means of the vices which they carry. The handle,

M, is then slowly turned until the wire breaks, when the needle,

O, indicates in kilogrammes the amount of force which has pro-

duced the rupture.

By means of this apparatus, we can easily establish the truth

of the following laws : 1. The force required to produce

rupture is proportional to the section of the bar. 2. It is inde-

pendent of the length of the bar.
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In determining the resistance of bars to rupture, we meet

with the same difficulty already referred to in connection with

the determination of the limit of elasticity. Tlie rupture is not

caused by the action of a constant force. As. soon as the strain

exceeds the limit of elasticity, the rod elongates little by little,

the particles are at first slowly displaced, but finally they sud-

denly separate and the rod breaks
;
so that a moderate force

applied for a long time will frequently cause the rupture of a rod

which would resist a much greater force applied for a short time.

This slow diminution of tenacity is a fact to which it is essential

to pay regard in the construction of buildings.

(111.) Tenacity. The tenacity of a substance is the resist-

ance to rupture, measured in kilogrammes, which a rod will ex-

ert, whose section is just one square millimetre. In determining

the tenacity of solids, we may obviously experiment on rods or

wire of any convenient size, the area of whose section is known,
and then calculate the tenacity by the principles of the last sec-

tion. The tenacity of the different metals differs very greatly,

between that of lead, in which it is very feeble, and that of steel,

which has the greatest tenacity of all, as will be seen by referring

to the table on' page 195, in which the tenacity of the useful

metals is given at the side of the numbers expressing the limit

of elasticity. It will also be noticed, that there is a very great

difference between the tenacity of the same substance when
drawn into wire and when annealed, it being greatest in the

first condition. The process of drawing wire will be described

in (113). The change of form which it produces is accompa-
nied by another very curious result. Although the particles of

the wire are really less close together after the operation of

drawing than they were before, yet they hold together more

firmly, so that the tenacity of the wire is greatly increased.

The cohesion of iron is increased, in drawing, to a very remark-

able degree, so that fine iron wire is the most tenacious of all

materials. " Thus a bar one inch square of the best cast-iron

may be extended by a weight of nine tons and three quarters ;

a bar of the same size of the best wrought-iron will sustain a

weight of thirty tons
;
a bundle of wires one tenth of an inch in

diameter, of such size as to have the same quantity of material,

will sustain a weight of from thirty-six to forty tons ;
and if the

wire be drawn more finely, so as to have a diameter of only one
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twentieth or one thirtieth of an inch, a bundle containing the

same quantity of material will sustain a weight of from sixty to

ninety tons." Hence cables made of fine iron wire twisted to-

gether will sustain, a far greater weight than chains containing
the same quantity of iron. The cables of suspension bridges are

usually made in this way.

(112.) Cleavage. In crystalline bodies, the resistance to

rupture is not equally great in all directions. Most crystallized

bodies are found to break most readily in certain planes affording
a more or less smooth fracture or cleavage, while, if they are

broken in any other direction, the fracture is rough and jagged.
These planes are called planes of cleavage. They are always

parallel either to actual faces on the crystal, or to possible faces.

Cleavage can generally be reproduced on the same crystal to an

indefinite extent, in planes parallel to each other, thus dividing
the crystal into a series of thin laminae. Generally the same

crystal may be cleaved in several directions, and the union of the

several planes of cleavage forms what is called a solid of cleav-

age, which is constant for the same substance, and is always one

of the simple forms of the system to which the crystal belongs.

Compare (93).

Crystals differ very greatly from each other in the facility with

which they may be cleaved. In some cases, the laminae can be

separated by the fingers. This is the case with mica and several

other minerals. At other times, a slight blow of the hammer is

required, as, for example, with galena and calc-spar ;
while not

unfrequently cleavage can be obtained only by using some sharp

cutting-tool and a hammer. When other means fail, it can some-

times be effected by heating the crystal and immersing it while

hot in cold water. When cleavage is easily obtained, it is said to

be eminent.

In crystals of the Monometric System, cleavage is obtained

with equal ease in the direction of any one of the planes of cleav-

age ;
but in crystals of the other systems, cleavage is obtained

with equal ease only in planes which are parallel to the similar

planes of the crystal. The cubic crystals of galena, for example,
which belong to the Monometric System, may be cleaved with equal

readiness in either of the three directions which are parallel to

*
Carpenter's Mechanical Philosophy.
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the faces of the cube. On the other hand, the crystals of gypsum,
which belong to the Monoclinic System, may be cleaved with

great facility in one direction, less readily in a second, and only

with some difficulty in a third ;
in thick crystals, the last two

cleavages are scarcely attainable.

The general laws with respect to cleavage are stated by Pro-

fessor Dana* as follows :

1. Cleavage in crystals of the same species yields the same

form and angles.

2. Cleavage is obtained with equal ease or difficulty parallel

to similar faces, and with unequal ease or difficulty parallel to

dissimilar faces.

3. Cleavage parallel to similar planes affords planes of similar

lustre and appearance, and the converse.

(113.) Ductility and Malleability. Some substances will

not allow a permanent displacement of their molecules, and

break whenever the strain exceeds the limit of elasticity. Such

substances are called brittle bodies, and to this class belong

glass, tempered steel, marble, sulphur, and many others. There

are other substances, on the contrary, which, when submitted to

various mechanical processes, allow a permanent displacement,

more or less considerable, of their molecules, which then assume

new positions of equilibrium. This property is possessed in a

high degree by the metals, and is called ductility or malleability,

according as it is applied in drawing out wire, or in reducing
the metal to sheets and leaves in a rolling-mill or under the

hammer.

The machine for drawing wire consists essentially of a plate

of hardened steel pierced with a number of conical holes of dif-

ferent sizes. Through one of these holes is passed the end of a

metallic rod, which has been reduced in size for the purpose.
This end is then seized with a pair of pliers and pulled with con-

siderable force. In being thus forced through the hole, the rod

becomes lengthened, and diminished in size. It is then passed
in like manner through a smaller hole, and thus successively,
until the- wire is reduced to the requisite fineness. Fig. 208
is a representation of a mill used for drawing iron wire. The
coarser wire is unwound from the reel F, and, after having

* System of Mineralogy, Vol. I. p. 103.

18
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Fig. 208.

passed the drawing-plate A B, is received on the drum (7, to

which the force is applied through the cog-wheels r p, n q (see

Fig. 209).
In order that a substance should read-

ily yield to this mechanical action, it is

evidently essential, not only that its par-

ticles should have the power of readily

changing their position, but also that it

should be endowed with great tenacity.

Hence those metals whose particles ad-

mit most readily of change of position

are not necessarily the most ductile.

A rolling-mill consists of two steel

rollers, arranged as represented in Fig.

210, so that their distance apart can be

varied at pleasure, and so that they may
be turned together in unison, but in op-

posite, directions. The plate of metal is

applied between the two rollers, and is forced to accommodate its

thickness to the distance between them, which is adjusted so as

to be a little less than the thickness of the plate. This distance

may then be diminished, and the process repeated until the thick-

ness of the plate is reduced to the desired amount.

Many of the metals can be reduced to leaves of exceeding te-

nuity under the hammer. It is in this way that the goldleaf

used in gilding is prepared. The gold plate is first reduced in

a rolling-mill to the thickness of about one millimetre. Several

Fig. 209.
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Fig. 210.

of these plates are now piled on each other, and spread out by

beating the pile with a heavy mallet until they are reduced to

the thickness of a sheet of paper. The leaves are next separated
from each other by sheets of paper, and the pile beaten again.

Finally, the sheets of paper are replaced by others made of gold-

beaters' skin. In this, as in all similar processes, the metal be-

comes brittle, and would infallibly break or tear were it not

frequently reannealed. The process of annealing consists in

heating the substance to a high temperature, and then allow-

ing it to cool very slowly.

The relative malleability of the metals is not the same when
hammered as when rolled, and the difference appears to arise

from the sudden shocks which accompany the blows of the ham-

mer. In the following table, the relative malleability of the

useful metals by both methods is given side by side, together

with the relative tenacity and ductility. A comparison of the

columns will illustrate what has been stated above.

Tenacity.

Iron

Copper
Platinum

Silver

Zinc

Gold

Lead

Tin

Ductility.

Platinum

Silver

Iron

Copper
Gold

Zinc

Tin

Lead

Malleability
under the
Ilrunmor.

Lead

Tin

Gold

Zinc

Silver

Copper
Platinum

Iron

Malleability
under the

Rolling-Mill.

Gold

Silver

Copper
Tin

Lead

Zinc

Platinum

Iron

The action of heat modifies, in a most marked manner, both the

ductility and malleability of many bodies. Iron, for example, is
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very malleable at a red heat, and in this condition it can be read-

ily forged or rolled into sheets. Glass, again, which is brittle at

the ordinary temperature, is both malleable and ductile to the

highest degree at a red heat. Copper, on the other hand, is most

malleable when cold, and zinc cannot be rolled out with success

except between the temperatures of 130 and 150 C. Above

this last temperature, it becomes very brittle.

The malleable metals are capable of receiving impressions from

blows
;
a property which is continually made use of in various

processes of the arts. The processes of stamping coins and em-

bossing figures on surfaces of various kinds are an illustration of

the fact. The impression is made by means of a die, in which the

design is sunk, just as the raised impression which the wax is to

present is sunk in the seal. The die, which is made of the hardest

steel, is forced down upon the blank coin by means of a powerful
screw or lever, and the metal of the coin, being comparatively

soft, is driven with great force into the cavities of the die, and

retains the impression.

Hardness.

(114.) Scale of Hardness. Hardness is the resistance which

bodies oppose to being scratched or worn by other bodies. Of

two substances, that one is said to be the hardest which will

scratch the other. The hardness of a body is closely related

to its ductility and tenacity, all circumstances which increase

the ductility or diminish the tenacity rendering the body softer,

and the reverse. In order to distinguish a harder body from a

softer, we either attempt to scratch the one with the other, or we

try each with a file. The last method is generally to be pre-

ferred ;
but both should be employed when practicable, since

some bodies "
give a low hardness under the file, owing either to

impurities or imperfect aggregation of the particles, while they

scratch a harder species, showing that the particles are hard,

although loosely aggregated."
*

Hardness is an important character of a substance, and is

much used by mineralogists as a means of distinguishing between

mineral species. In order to fix a common standard of compari-

son, the distinguished German mineralogist, Mohs, introduced a

* Dana's System of Mineralogy, Vol. I. p. 130.
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scale of hardness. This scale consisted of ten minerals, which

gradually increase in hardness, marked from 1 to 10. It has

been since modified by Breithaupt, who has introduced two ad-

ditional degrees of hardness, one between 2 and 3, the other

between 5 and 6, as these intervals were larger than the rest.

The numbers of Mohs, however, have been retained. The scale

is as follows :

1. Talc ; common laminated, light-green variety.

2. Gypsum ; a crystallized variety.

2.5. Mica; variety from Zinnwald.

3. Calcite ; transparent variety.

4. Fluor- Spar ; crystalline variety.

5. Apatite ; transparent variety.

5.5. Scapolite ; crystalline variety.

6. Felspar (orthoclase) ; white, cleavable variety.

7. Quartz; transparent.

8. Topaz; transparent.

9. Sapphire ; cleavable varieties.

10. Diamond.

In determining the hardness of a mineral, we draw a file over

it with considerable pressure. If the file abrades the mineral

with the same ease as No. 4, and produces an equal depth of

abrasion with the same force, the hardness is said to be 4 ; if less

readily than 4, but more readily than 5, it is said to be between

4 and 5 (written 4 - 5) ; or we may determine it with more accu-

racy as 4.25 or 4.50. Several successive trials should be made,
in order to insure accuracy, and the student should practise him-

self in the use of the file with specimens of known hardness,
until he can obtain constant results.*

(115.) Sclerometer. In testing the hardness of the dissim-

ilar faces of the crystal, very marked differences are frequently
observed. Differences may also be perceived on the same face

when examined in different directions. For the purpose of

measuring with great accuracy the differences in hardness which
the faces of a crystal present, an apparatus has been contrived

by Grailichf and Pekarek, called a sclerometer. It consists

* Boxes containing the twelve minerals of the Mohs scale can be procured from

the dealers in philosophical apparatus.

t Sitzungsberichte der mathem.-naturw. Classe der kais. Akad. der Wissen., (Wien,

1854,) Band XIII. s. 410.

18*
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essentially of a hard steel point attached to the under side, at

one end, of a balance beam, which is carefully poised on its

knife-edge. Above the point, and on the upper side of the beam,
there is a pan to receive weights, by which the steel point may
be pressed down upon the face of a crystal with a regulated
force. At the other end of the beam there is fastened a spirit-

level, and the whole is so adjusted that the beam with the

point and pan at one end, and with the spirit-level at the other

is just in equilibrium.

By means of the sclerometer, it appears, for example, that the

rhombohedral faces of crystals of calcite, r (Fig. 211), are softer

Pig. 211. Fig. 212.

than the end faces, a. It has also been found that the hardness

is not the same in all directions on the rhombohedral face. From
a series of determinations made by Grailich and Pekarek with

theft sclerometer, it appears that the greatest hardness is in the

direction of the shorter diagonal of the face, from C to E (Fig.

212), and the least hardness in the opposite direction, from E to

C on the same diagonal. The weights required in the pan above

the hard point, in order to scratch the face in various directions,

were as follows :

Angle.* Weight.

Shorter diagonal from C to E, 285 centigrammes.
39 Perpendicular to edge ar,

250 "

51 Parallel to edge z, 213 "

90 Longer diagonal from E to C, 152 "

129 Parallel to edge x, 135 "

141 Perpendicular to edge z, 126 "

180 Shorter diagonal from E to C, 96 "

These numbers are in each case the mean of several observa-

tions. Similar differences have been observed on a large number

* These angles are those made by the given direction with the shorter diagonal.
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of other crystals, and they lead to the following general con-

clusions :

1. That the hardest planes of a crystal are those which are

perpendicular to the plane of most perfect cleavage.*

2. That on a given plane the direction of greatest hardness is

that which is most inclined to the direction of most perfect

cleavage.

(116.) Annealing and Tempering. The hardness of many
substances may be greatly modified by the action of heat, and by
various mechanical processes. The effects of change of tempera-
ture in varying the degree of hardness are most important in re-

gard to steel, since it is on this influence that the application of

steel to so great a variety of useful purposes depends. If steel

is heated to a red heat, and then very slowly cooled, it becomes

ductile, flexible, soft, and comparatively unelastic.* This pro-

cess is called annealing, and, when thus annealed, steel can read-

ily be drawn into wire, rolled into sheets, or manufactured into

its numerous useful forms. If, however, the articles thus manu-
factured are heated to a white heat, and then suddenly cooled by

plunging them into water or mercury, the steel becomes very

hard, brittle, highly elastic, and less dense.

In its state of greatest hardness, steel is scarcely fit for any

purposes in the arts, since it is so brittle that its points or edges
are broken by a very slight resistance. But by reheating it to a

lower temperature, and then slowly cooling it, this extreme

hardness may be reduced, and the flexibility of the steel propor-

tionally increased. The amount of the reduction is greater, the

higher the temperature to which the articles are heated, and if

heated to a red heat, they again become soft.

This process of reheating is termed letting down or tempering,
and the workman is guided to the effects he wishes to produce by
the changes of color which the surface of polished steel exhibits

at different temperatures. The tints which correspond approxi-

matively to the different temperatures are as follows :

Light straw, 220 Violet-yellow, 265 Blue, 293

Golden-yellow, 230 Purple-violet, 277 Deep Blue, 317

Orange-yellow, 240 Feeble blue, 288 Sea-green, 330

* Lehrbuch der Krystallographie von Miller ubersetzt und erweitert durch Dr. J.

Grailich, (Wien, 1856,) Seite 229.
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The hardest steel is used for little else than the making of dies

for coining. The steel of the hardest files is but little let down.

The first shade of yellow indicates that the reheating has been

carried sufficiently far for lancet and other small surgeons' instru-

ments, on which the keenest edge is required. Razor and pen-
knife blades are heated until they exhibit a light straw-color.

Scissors, shears, and chisels, in which a greater tenacity is required,

are tempered at the first shade of orange. Table cutlery, in which

flexibility is more desirable than the hardness, which would give a

fine but brittle edge, are heated to the violet. Watch-springs are

heated to a full blue, and coach-springs to a deep blue. In many
manufactories the temper is given by immersing the hardened

steel articles in a bath of mercury or oil, the heat of which can

be exactly regulated by a thermometer. The bath is heated up
to the required temperature, and then allowed to cool slowly.

In this way, any number of articles which are to receive the

same temper may be equably heated and gradually cooled.

Most other metals are acted upon by heat and cold in some-

what the same manner, although to a much less degree. Copper,

however, is a remarkable exception to the rule, its properties

being exactly the reverse of those of steel
;

for when cooled

slowly it becomes hard and brittle, but when cooled rapidly, soft

and malleable. This same property is possessed to a still higher

degree by bronze, which is an alloy of copper and tin.

Glass undergoes, from the action of heat and cold, the same

changes as steel. When heated to a red heat, and suddenly

cooled, it becomes more brittle, harder, and less dense than in its

annealed condition. When a glass vessel is first blown, it cools

rapidly and irregularly, and the varying hardness of its different

parts gives to it such a degree of brittleness, that the slightest

shock or a small change of temperature would break it. In

order to prevent this, it is annealed, by passing it through a long

furnace, of which the heat is very great at one end and slowly

diminishes towards the other, and it is thus cooled gradually and

equably.
, The properties of unannealed glass are illustrated

Y by Prince Rupert's drops. These are made by drop-

// ping melted glass into water, which of course cools

ll them suddenly, and gives to the glass a high degree of

Fig 213. hardness and a proportionate brittleness. They have a
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long oval form, tapering to a point at one end (Fig. 213). The

body of the drop is so hard that it will bear a smart stroke
; but

if a portion be broken off from the small end, the whole imme-

diately flies into minute particles with a loud snap.

The cause of the changes in hardness produced by the action

of heat has not been as yet satisfactorily explained. The expla-

nation usually given is this. When a bar of steel highly heated,

and hence greatly expanded, is immersed in cold water, the ex-

terior layers suddenly contract, and are compelled to adapt them-

selves, by a permanent displacement of their molecules, to the

core, which is still in an expanded state within. Subsequently,
when the interior of the mass cools, its particles cannot approach
each other freely, because they are more or less united to the ex-

ternal crust, which has been already fixed in position. Hence,
these particles remain in a state of tension, and this is supposed
to give rise to the peculiar change of properties.

Were this explanation correct, the effects of a sudden change
of temperature ought to be greatest on thick bars of steel, but in

fact the reverse is the case. The change is most probably con-

nected with the phenomena of dimorphism (98), but in what way
is not yet understood.

Most metals are hardened, not only by sudden cooling, but also

by such mechanical processes as tend to condense them perma-

nently, and thus increase their density. The processes of stamp-

ing coin, of wire-drawing, of rolling out metallic plates, and of

hammering, are all evidently of this nature. This change is

usually called hammer-hardening, and its effects are the same on

almost all ductile bodies. They become denser, more tenacious,

harder, more brittle, and more elastic. All these effects can be

removed by annealing ; and hence the necessity of continually

reannealing the metals, during the processes just mentioned.

PROBLEMS.

Elasticity of Tension.

91. A rectangular iron bar 2 m. in length, and whose section is equal
to 2 c. m.2

,
is suspended by its upper extremity to a firm support, and to

its lower extremity is attached a weight of 1,000 kilog. How much is it

temporarily elongated by the strain, when the temperature is 15 ?

92. An annealed iron wire 2 m. m. in diameter and 2.25 m. in length is

suspended as in the last example. How much weight is required to elon-

gate it 0.25 m. m., when the temperature is 15 ?
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93. A silver wire 0.75 m. m. in diameter and 5 m. long is elongated by
a weight 0.25 m. m. How great is this weight when the temperature is

15?
Tenacity.

94. "With how much weight in kilogrammes must a copper wire be

loaded, in order to part it, when the diameter of the wire is equal to

1 m. m. ? Calculate both for annealed and unannealed wire.

95. In a pendulum experiment, it is required to suspend a weight of

50 kilog. by a copper wire. What must be the diameter of the wire,

allowing -g$ for security beyond the diameter absolutely essential ? Cal-

culate both for annealed and unannealed wire.

Collision of Perfectly Elastic Bodies.

In thefollowing problems marked with a
(
*

),
the masses and velocities of the two balls are

indicated as described in (109). The motion is from left to right, unless the reverse is indi-

cated by a negative sign. In each problem it is required to jind the velocities of the two balls

after the impact, and also the direction of the motion.

*96. M = 6. t) = 3 m. M1 = 17. ft' = 1 m.

*97. Jf=10. t) = 5m. M' = 20. t)' = 2.5 m.

*98. M = 10. fa = 10 m. M' = 100. 6' = m.

*99. M = 20. fa = 10 m. M1 = 10. ()' = 5 m.

100. M=15. 6 16m. M'=W. \)> = 32m.

101. A ball whose mass is M, with a velocity ft, meets a second ball

moving in the same direction, whose mass is M'. What must be the

velocity of the second ball, when the first ball remains at rest after the

collision ?

102. A ball strikes on a plane making an angle of incidence equal to

60. What will be the angle of reflection when, in consequence of the

imperfection of the elasticity both of the plane and the body, one third of

the vertical velocity is lost by the impact ? Solve the same problem, sup-

posing that one fourth of the velocity is lost.

103. An elastic ball falls from the height of 2 m. How high will it re-

bound, supposing that one fifth of the final velocity is lost at the impact, in

consequence of imperfect elasticity ?

104. Two perfectly elastic balls, moving in the same plane, meet each

other obliquely. The angles made by the two directions of their motions

with the line n 7" (Fig. 206), lying in the same plane and tangent to both

balls at the point of contact, are = 60 and /?
= 30. The masses

are M = 10 and M'= 5 ; the velocities are fa = 2.5 and {)' = 5. It

is required to find the velocities of the two balls after collision, and the

angles which the directions of their motions make with the given line.

105. Solve the same problem for the following values :

= 40. = 30. M = 5. M> = 10. t) = 4 m. t)' = 6 m.
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II. CHARACTERISTIC PROPERTIES OP LIQUIDS.

(117.) Mechanical Condition of Liquids. Fluidity. The

liquid has not, like the solid (79), a definite form; but it takes

the form of the vessel in which it is placed. Its particles are in

a condition of equilibrium between the attractive and repulsive

forces (78), and instead of being bound together, as in a solid,

they possess a perfect freedom of motion ;
and under the influ-

ence of the slightest force, they move among each other without

friction and without disturbing the general equilibrium. This

mechanical condition of matter is termed fluidity, and belongs

both to liquids and gases. Liquids are not, however, perfect

fluids, for there always exists between their particles a certain

amount of adhesion, owing to an excess of attractive force which

renders them more or less viscous. Between an almost perfect

fluid, like water, and a condition like dough, we have every grade
of fluidity. This is illustrated by the well-known series of or-

ganic acids, commencing with formic acid and ending with me-

lissic acid. The series consists of over twenty members, and pre-

sents every grade of condition. Formic acid is as fluid as water ;

but as we descend in the series, the numbers are found to be

more and more viscous, becoming first oily, then soft fats, next

hard fats, and finally solids, like wax.

(118.) Elasticity of Liquids. It has already been stated

(76), that liquids are compressible, and, moreover, that they- re-

sume exactly their original volume as soon as the pressure by
which this was diminished is removed. It follows from these

facts, that liquids are perfectly elastic, and that this elasticity is

unlimited in extent.

In the early experiments on compressibility made by Oersted,
it was assumed that the capacity of the bulb A, of the appara-
tus already described (Fig. 214), remained invariable. This as-

sumption was based on the fact, that the walls of this reservoir

were equally pressed by the fluid on both sides. It is easy,

however, to see that this assumption is incorrect
; for if we

suppose the interior of the bulb to be filled with solid glass, it is

evident that the volume of the interior core, and hence that of

the bulb, would be diminished by the exact amount that this

glass core would be compressed by the given pressure. In such

a case, the pressure on the exterior surface of the bulb would be
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exactly balanced by the reaction of the glass core. If, now, the

place of the glass core is supplied by water, the pressure on the

exterior surface remaining the same, it is evident that the reac-

tion of the water core must be exactly the same as that exerted

by the glass core
;
for otherwise the law of action and reaction

(41) would not be obeyed. The conditions, then, with respect to

the bulb, are not changed, and it is evident that its volume will

be just as much reduced when filled with water as when filled

with glass ;
that is, by the amount to which a glass core just fill-

ing it would be compressed by the given force.

It follows from this, that the apparent condensation of any fluid

tinder a given pressure, when determined by the apparatus repre-

sented in Fig. 214, is not so great as the

real condensation, and that it is neces-

sary to correct the determinations thus

made by adding to the observed compres-
sion an amount equal to the compres-

sion, under a given pressure, of a glass

core which would just fill the interior

of the bulb. This amount can in any
case be calculated from data furnished

by experiments on the elongation of

glass rods by tension, since, according
to M. Wertheim, the diminution, under

a given pressure, of one cubic cen-

timetre of glass, in fractions of a cubic

centimetre, is just equal to the elonga-

tion of a glass rod one centimetre long,

in fractions of a centimetre, under an

equivalent tension. M. Grassi has

carefully redetermined the compressi-

bility of several liquids, making use of

an improved apparatus contrived by

Regnault, and correcting his observa-

tions for the compressibility of the reservoir used according to the

formulae of Wertheim. He has also studied the influence of a

variation of temperature on the compressibility, as well as the

influence of different pressures. The most important results ob-

tained -

by M. Grassi are given in the following table. In every

case, the numbers expressing the compressibility of a liquid

Fig. 214.
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indicate the fraction of its volume by which it is condensed when
submitted to a pressure of one atmosphere.

Table of the Coefficients of Compressibility*

Liquid.
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Consequences of the Mechanical Condition of Liquids.

(119.) We have seen, in the last two sections, that the mole-

cules of a liquid are in a condition of equilibrium, and also that

all liquids are but slightly compressible and perfectly elastic. Of
the characteristic properties of liquids, we shall only consider

those which are a necessary consequence of these conditions.

These naturally divide themselves into two. classes: first, those

which are independent of the action of gravity ; and, secondly,
those which depend upon it.

(120.) Liquids transmit Pressure in all Directions. This

most important quality of liquids was first clearly stated by Blaise

Pascal, in the following terms : Liquids transmit equally in all

directions a pressure exerted at any point of their mass.

We may illustrate what is meant by this statement of Pascal,

by means of Fig. 215, which represents the section of a vessel

which may be of any shape filled with

water, on the sides of which are several

apertures closed by movable pistons. Let

us suppose that the two pistons d and c

present the same surface
; and, further,

that the piston a presents twice, and the

piston b five times, the area of c. If, now,
we press in the piston c with the force of

Fig . 215.

one kilogramme, this force will be trans-

mitted in every direction to the sides of the vessel, and every

portion of the interior surface whose area equals that of the

piston will be pressed upon with a force of one kilogramme;
the piston d will be pressed out with a force of one kilogramme ;

the piston a, with a force of two kilogrammes ; the piston ,

with a force of five kilogrammes. And so will it be with any
other portion of surface, either on the side of the vessel or im-

mersed in the fluid
; it will be pressed upon with a force as many

times greater than one kilogramme, as it is itself greater than
the surface of the piston c.

It is easy to see that this is a necessary consequence of the

constitution of liquids. Since fluids are compressible and elastic,
it follows that, on pressing in the piston d, the liquid is very
slightly condensed, and the elasticity of compression developed in

its particles. Each particle at once becomes like a bent spring,
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and presses in all directions. If the particle is in the midst of

the fluid mass, it presses against the neighboring particles ;
if

it is on the side of the vessel, it presses in one direction against

the vessel, but in all others against similar particles. Since

the same is true of every particle, it follows that the pressure ex-

erted by the condensed liquid against any two surfaces will be

proportional to the number of particles in contact with these sur-

faces
;
and as the particles have the same size, it will also be

proportional to the area of the surface. Hence the pistons d and

c will be pressed out each by the same force, the piston a by a

force twice as great, and the piston b by a force five times as

great, as this. From the principle of equality between action and

reaction, it follows that the outward pressure on the piston c is

exactly equal to the force applied to press it in
;
so that, if this

piston is pressed in with a force of one kilogramme, the piston
d is pressed out with the same force, the piston a with a force of

two kilogrammes, etc.
; which was the proposition to be proved.

Representing the area of any portion of the interior surface of

a vessel by S
9
and that of any other portion by S'

; representing
also by and ' the pressure exerted against these surfaces by a

confined liquid, in consequence of any compression ; we have

:

' = S : S'. [77.]

Moreover, it is evident from the principle involved, that this

equation is true, not only for the surface of the vessel itself, but

also for that of any solid immersed in the compressed liquid, or

for any section of liquid particles whatsoever in the vessel.

(121.) The line indicating the direction of the pressure ex-

erted by any liquid particle against the surface with which it is

in contact, is always a perpendicular to this surface at the point

of contact. If the surface is a plane, the line is a perpendicular

to this plane ; if the surface is curved, the line is a normal to this

curve. The truth of this principle will be seen, if we consider

what must be the result if the direction of the pressure were

oblique. It is evident that such oblique pressure would be re-

solved into two forces (35), one perpendicular to the surface, and

the other tangent to it. The second component could of course

exert no pressure against the surface ;
so that the whole pressure

exerted by the liquid particle would be that of the first compo-

nent, which is, as the proposition requires, perpendicular to the

surface at the point of contact.
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When the surface is plane, the directions of the pressures ex-

erted by the particles are all parallel. It is then always possible,

by (39), to find a common resultant of all these parallel forces.

The point of application of this resultant is called the centre of

pressure. When the pressures exerted by the separate particles

are all equal, the centre of pressure is always the centre of figure

of the surface. In the case of the pistons (Fig. 215), the centre

of pressure is in each one the centre of the circular base, and in

studying its mechanical effects we may regard all the pressure as

concentrated at that point. Were the base of the piston con-

cave, then the directions of the pressures exerted by the separate

particles would no longer be parallel ;
since the lines indicating

these directions would diverge from the centres of curvature.

Compare (60) . Moreover, as the area of the curved surface would

be greater than that of the plane surface, it is evident that the

total amount of pressure which it would sustain under the same

circumstances would be greater ; but it can be proved that the

pressure available in moving the piston would be the same as

before. For this purpose, it is only necessary to decompose the

pressure exerted by each particle into two forces, one acting in a

direction which is parallel to the axis of the cylinder, and the

other at right angles to this direction. The forces acting parallel

to the axis of the piston are obviously the only ones which are

available in moving it
;
and the sum of these forces will be found

to be the same as the total pressure which would be exerted if

the base of the cylinder were a plane.

(122.) Hydrostatic Press. This most beautiful application

of the equality of pressure was conceived by Pascal ;
but the

difficulty of avoiding the escape of water

from the joints of pistons prevented him
from realizing his conception, and the

press was first constructed by Bramah, in

1796, at London.

It is perfectly evident that the principle

of equality of pressures deduced in the

last section is entirely independent of the

form of the vessel, and we may therefore

give to the vessel the form of Fig. 216, in

which the area of the piston b c is twenty times as large as that

of the piston a. Hence it follows, that, if we press in the pis-
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ton a with a force of five kilogrammes, the piston b will be

forced out with twenty times as much force, or one hundred kilo-

grammes ; and, on the other hand, if we press in the piston b c

with a force of one hundred kilogrammes, the piston a will be

forced out with a force of only five kilogrammes. It is evidently

unimportant that the connection between the piston should be so

direct as in Fig. 216. If it is effected by a long and narrow tube,

the principle will still hold true, provided only that the joints are

tight and the material of the vessel unyielding.

The hydrostatic press, which is used in the arts for producing

great pressure, is only a modification of the apparatus represented

by the diagram, Fig. 216. One of the most usual forms of this

machine is represented in perspective by Fig. 217, and in section

Fig 217.

by Fig. 218. The same parts are lettered alike on the two figures.

It consists of two cylinders, A and J5, connected together by a tube,

K. In the larger cylinder moves the large piston P, which is

made in the form of a plunger, touching the walls of the cylinder

only at the top, where it passes through a water-tight packing.

On the top of this piston is a platform, which rises and falls with

19*
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it, and the articles to be submitted to pressure are placed between

this and a second platform, Q, which is firmly fastened to the

floor by means of four iron columns, which also serve to guide

the motion of the lower platform. The small piston p is con-

Fig. 218.

structed exactly like the larger, and is moved up and down in

the cylinder by the pump-handle M. The small cylinder acts

as a force-pump. It connects with a reservoir of water below

by means of a tube terminating with a rose, a. This tube is

guarded by a valve, c, which allows the water to flow up into the

pump, but not in the reverse direction. It is evident from this de-

scription, that, on working the handle Jf, water will be alternately

sucked up from the reservoir and forced into the large cylinder

B, through the pipe K, from which it is prevented from returning

by a valve at o. The large piston will thus be forced up by a pres-

sure which will be as much greater than that exerted on the small

piston as the area of its section is greater. If, for example, it is

a hundred times as large, it will be pressed up with a force one

hundred times greater than that exerted on p. This force can

be so much increased by the lever M
9
that a man can easily exert

a downward pressure of 150 kilogrammes on />, and the piston P
will then be pressed up with a force equal to 15,000 kilogrammes.

It must be noticed, however, that the piston P will rise very

slowly, and as much more slowly than the motion of p as the area

of its section is greater. This is in accordance with a well-known

principle of mechanics, which is true of all machines, that what is

gained in force is lost in velocity (or extent of motion). In the

present case, in order to raise the piston P one metre under a force
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of 15,000 kilogrammes, it is necessary to push down the piston p
through one hundred metres with a force of 150 kilogrammes.
This is accomplished by repeated motions of the handle M.
The tube K is furnislved with a safety-valve, i (Fig. 218), kept

in place by a weight acting on it through a lever (Fig. 217).
There is also a valve-cock at r, by which the,water in the cylinder

B may be vented into the reservoir H, in order to lower the pis-

ton
; and, lastly, a third valve-cock, by which the communication

between the cylinders may be closed when it is desirable to keep
the articles under pressure for some time. The peculiar form of

the packing at n is also deserving of notice. It is made of thick

leather saturated with oil, in the form of an inverted U, and

the more the water is compressed, the more firmly the leather is

pressed against the sides of the cylinder and piston.

The hydraulic press is applied in the arts for a great variety of

purposes, such as packing dry goods in bales, pressing out printed

sheets, extracting oil from grains, and testing steam-boilers. It

was also used for raising the iron tubes of the Britannia Bridge
over the Menai Strait.

(123.) Pressure exerted by Liquids in Consequence of their

Weight. In the first place, let us consider what will be the

pressure exerted by a liquid on the bottom

of the containing vessel. Let arm, Fig. 219,

be a conical vessel, which we will suppose filled

with water to the point o. Let us suppose
the liquid to be divided into a number of

strata by the planes b c, e d, ig, p n, which

we may take as thin as we wish, and only

consider in each stratum the cylindrical mass
, ,. T . . Fig. 219.

enclosed in dotted lines. It is now evi-

dent that the pressure exerted by each cylindrical mass on its

own base will be equal to its own weight. Then, from the prin-

ciple of Pascal, the pressure exerted by the weight of the first

mass will be transmitted to the whole section b c, so that this will

have to support a pressure as much greater than the weight of the

first mass as the area of this section is greater than the area of the

base of the first cylinder. Hence it follows, that it will support

a pressure equal to the weight of a column of water whose base

equals b c, and whose height is that of the first cylinder. This

pressure will then be added to the weight of the second cylinder,
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which, on the same principle, will be transmitted to the whole

section e d\ and hence the resulting pressure exerted on the sec-

tion e d is equal to the weight of a column of water whose base

equals this section, and whose height equals the sum of the

heights of the first and second cylinders. The same course of

reasoning may be extended to the sections i g*, p n, and also to

the base, r m. Hence the pressure on the base, r m, is equal to

the weight of a column of water whose base equals this base,

and whose height equals the sum of the heights of all the cylin-

ders, or o m.

This demonstration is evidently independent of the number of

strata, and must therefore hold when this number is infinite and

the vessel conical. It is also evident that it is independent of the

form of the vessel. It would hold if the vessel, remaining conical,

were placed in an inverted position, or for a vessel of any shape

whatsoever. We may therefore conclude, as the general result

of this discussion, that the pressure exerted by a liquid on the

horizontal base of the containing vessel is equal to the weight of
a column of this liquid whose base equals the base of the vessel,

and whose height equals the depth of the liquid in the vessel.

The fact, that the pressure exerted by a liquid on the bottom of

the vessel containing it is independent of the form of the vessel,

may be demonstrated experimentally by means of the apparatus

represented in Fig. 220, which was invented by Haldat, and is

known by his name. It consists of a bent glass tube, A B C, at

one end of which, J., is a brass cap, to which may be screwed either

of the glass vessels M and P. There is also a cock by which the

liquid in the vessel may be drawn off. In order to make the ex-

periment, we fill the bent tube with mercury, and then screw into

its place the larger of the two vessels, which we fill with water.

This presses up the mercury in the branch (7, and we mark the

level to which it rises by means of the ring a. We also mark the

level of the water in the vessel by means of the index-rod c, which
we push down until it just touches the surface. We then draw off

the water, and, having replaced the vessel M by the smaller ves-

sel P, we fill this with water to the same height as marked by the

index, when we find that the mercury rises in the branch C to

precisely the same level as before. As the effect produced by the

pressure of the water in the two cases is the same, we have a

right to conclude that the two pressures are equal. This pres-
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Fig. 220.

sure, then, is independent of the form of the vessel or of the

quantity of water ; and, since the base of the vessel is the same in

both cases, (that is, the surface of the mercury in the tube A,)
and the height of the liquid also the same, it is evident that the

equality of pressure is a necessary result of the principle before

proved.

(124.) Upward Pressure. If we
consider any given section of liquid,

as p n, Fig. 219, it is evident that the

particles on this section are com-

pressed by the weight of the liquid

above them, and hence must be ex-

erting pressure in every direction,

and just as much upward pressure
as downward pressure. If, then, we
immerse in the liquid a cylindrical

body, such as c d, Fig. 221, it is plain
that the particles of water in contact

with the base, d, of the cylinder, be-

ing in a compressed condition, must

exert an upward pressure on the base

of the cylinder equal to the pressure

they exert on the section of liquid next below them. This
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pressure, by the last section, is equal to the weight of a column

of liquid having the same base as the cylinder, and having a

height equal to the depth of the section below the surface of the

liquid.

(125.) Pressure on the Sides of a Vessel. This same course

of reasoning may also be extended to the pressure exerted by a

liquid against the sides of the containing vessel. It is evident, for

example, that the particles of the liquid in contact with the

piston 6, Fig. 221, are in a state of

tension caiised by the pressure of

the weight of liquid above them.

They are therefore exerting pressure

in all directions, and hence also against

the surface of the piston in directions

which are perpendicular to that sur-

face. Now the pressure of any one

particle is, by the principle of (123),

equal to the weight of a column

of similar particles whose height is

equal to the depth of this particle be-

low the surface. And since the total

pressure against the piston is equal to

the sum of the pressures of the sep-

arate particles, it follows that the total

pressure is equal to the weight of a

column of liquid, the area of whose base is equal to the area of the

surface of the piston, and whose height is equal to the mean depth

of the various particles below the surface. This mean depth, in

the example under consideration, is evidently the depth of the

centre of the piston, and hence e g is a column of liquid whose

weight is equal to the pressure. In the same way, the pressure

against the piston a is equal to the column represented by h i.

It is easy to extend this demonstration to any portion of the

sides of a vessel, whether plane or curved. It can also easily be

proved that the mean depth of the various particles of liquid in

contact with any surface is in every case equal to the depth of the

centre of gravity of these particles.

Were the pressure exerted by each of the particles of water in

contact with the piston (Fig. 221) the same, the centre of pres-

sure (121) would, as in Fig. 215, coincide with the centre 01

Fig. 221.
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figure. This, however, is not the case ; the particles below

the level of the centre of the piston, being at a greater depth,

exert a greater pressure than those above this level. Hence

the point of application of the parallel forces which they ex-

ert, (being nearest to the greater forces [20],) must be below

the centre of figure. In any similar case, the position of the

centre of pressure is below the centre of gravity of the particles

composing the section against which the pressure is exerted, and

it can always be found by calculation when the form of the sur-

face is known.

(126.) Generalization. The separate results at which we

have arrived in the last three sections may be generalized as fol-

lows : The pressure exerted by a liquid on any section ivhatso-

ever is equal to the weight of a column of the liquid, the area of
ivhose base is equal to the area of the section, and whose height

is equal to the depth of the centre of gravity of the section below

the surface of the liquid.

(127.) The pressures exerted by two liquids on equal sections

at equal depths are proportional to the specific gravities of these

liquids. It follows, from the last section, that the two pressures

are equal to the weights of equal columns and hence of equal

volumes of the two liquids. But it follows from (69), that

the weights of equal volumes of two liquids are to each other as

their specific gravities, and hence the pressures exerted by
them on equal sections at equal depths must be in the same pro-

portion.

If we represent by S the area of any section in square cen-

timetres, by H the depth of the centre of gravity in centimetres,

we have, by geometry, for the volume of the column of liquid

whose weight represents the pressure, V=H. S, in which V
stands for a certain number of cubic centimetres. But we know

by [56], that W= V . Sp. Gr., and hence, if we represent the

pressure exerted on any section by f, we have

$= W=H. S. (Sp.Gr) [78.]

For any other section, having the same area and at the same

depth, we have

f=H. S. <iSp.Gr.y-, [79.]

and, comparing,

:
'= ( Sp. Gr.) : ( Sp. Gr.y. [80.]
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(128.) Hydrostatic Paradox. It is evident from (123), that

the pressure of a liquid on the bottom of the containing vessel

may be very much greater than the weight
of liquid it contains. For example, the

pressure of the liquid on the bottom of the

vessel D <7, Fig. 222, is the same as if its

diameter were equal throughout to that of

the lower part ;
and from this it would seem

to follow, that, if the vessel were placed in

the pan of a balance, M N, it ought to

produce the same effect as a cylindrical

vessel of the same weight, containing the

same height of water, and having through-
out the diameter of the part D. But it has

been shown, that the liquid presses on the walls n o as well as on

the bottom, and, since this pressure is in an upward direction, it

will tend to make the vessel rise, while the pressure on the bot-

tom tends to make it fall. The difference of these two pressures
is all that is exerted on the pan of the balance, and this in every
case is just equal to the weight of the vessel and that of the

liquid which it contains.

This fact is usually called the Hydrostatic Paradox. It is,

however, evidently no paradox, but only a necessary consequence
of the mechanical condition of liquid matter.

Equilibrium of Liquids.

(129.) In order that there should be a condition of equi-

librium in a liquid mass, it is essential that each particle of the

liquid should be pressed on all sides equally. This principle

the first statement of which is attributed to Archimedes is a

necessary consequence of the mobility of liquid particles. For,

suppose that any one particle were not pressed on all sides equal-

ly, it is evident that, being free to move, it must move in the

direction of the greatest pressure, and there would not be an

equilibrium (28).
When a liquid mass under the influence of gravity is sup-

ported in a vessel, it is essential, in order that each particle may
be pressed on all sides equally (in other words, in order that

there may be a condition of equilibrium), that two conditions

should be fulfilled, which we will now consider.
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1. The surface of the liquid must be perpendicular at each

point to the direction of gravity ; that is to say, it must be hori-

zontal.

To prove this, let us suppose that the surface of the liquid

has any other form, as in Fig. 223. It is then evident, that

the force of gravity acting on any particle,

m, and represented by the line mp (31),

will be decomposed into two others (35).

One of these, represented by m q, is nor-

mal to the surface at the point m, and,

being balanced by the resistance of the

fluid particles, would not cause motion. The second compo-
nent is tangent to the surface, and, not being balanced, tends to

move the particles in the direction mf. Hence, under these

circumstances, there could not be an equilibrium. If, however,

the surface is horizontal, the tendency of the force of gravity is

solely to sink the particles under the surface, and since all the

particles at the surface are solicited equally by this force, the

equilibrium is maintained.

It follows from this, that the surface of still water is horizontal

when its extent is so limited that we can regard the directions of

the forces of gravity as all parallel (44). Such is not, however,

the case with the surface of the ocean when at rest, or of a large

sea. For since this surface must be perpendicular at every point

to the plumb-line, and since all plumb-lines, if extended, pass ap-

proximatively through the centre of the earth, it follows that the

surface must be sensibly spherical (60).

The principle just illustrated is only a particular case of a

more extended principle, which may be thus stated :

When a liquid mass is in equilibrium, the resultant of all the

forces acting at any point of its surface is normal to the surface

at that point.

2. The pressure must be equal over the whole surface of

any horizontal section. The necessity of this condition is easily

shown. For suppose this not to be the case, then there must be

somewhere on the same horizontal section for example, p n,

Fig. 219 two adjacent particles which are not equally pressed

by the superincumbent liquid. But two such particles must ex-

ert, in consequence of their elasticity, an unequal pressure on

each other, a condition which is evidently not consistent with a

state of equilibrium.

20
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At the surface of a liquid the pressure must be everywhere

zero, and hence, in a state of equilibrium, the surface must be

horizontal
; so that the first condition may be regarded as a

special case of the last.

This condition is also a particular case of a general principle,
which may be thus stated :

Any liquid mass in equilibrium may be regarded as consisting
1

of an infinite number of lamince, normal at each point of their

surface to the resultant of all the forces which act at this point,
and sustaining at every point exactly the same pressure.

It is a consequence of this principle, that any liquid mass, which
is not acted upon by external forces, will take the form of a sphere
in consequence of the mutual attraction of its own particles. In

this case, the infinitely thin laminae are concentric spherical sur-

faces, and the resultant of all the forces acting on any particle

in every case passes through the centre of the sphere, and is nor-

mal to the spherical surface on which the point is situated. By
no other form than the sphere would the conditions of equilibrium
be satisfied.

Observation confirms this result of theory. Drops of water or

mercury, so small as not to be sensibly deformed by their own

weight, take a spherical 'form when placed on surfaces they do

not wet. The rain-drop also is spherical, and in like manner the

drops of melted lead become spherical while falling in the shot-

towers. But the theory is still more beautifully illustrated by an

experiment devised by Plateau.

By mixing alcohol and water, a liquid can be obtained having
the same density as oil. If, now, we add drops of oil to the liquid,

these drops, as we shall soon see, are in the same condition as

if they had no weight, and in conformity with the theory take

a spherical form. By carefully introducing the oil, a sphere of

considerable size can be formed, suspended in the alcoholic fluid.

Plateau succeeded in giving to this liquid sphere a rotation by
means of very simple machinery, and found that, by regulating
the velocity, he could cause it to become flattened at the poles, to

throw off rings and satellites, and thus in various ways illustrate

the nebular hypothesis of Laplace.

(130.) A liquid when in equilibrium always maintains the

same level,in vessels communicating with each other. This fa-

miliar fact is illustrated by Fig. 224, which represents four ves-
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sels, A, B, Cy Z>, communicating through the tube m n, in all of

which the liquid stands at the same level. That this must neces-

sarily be the case, is easily shown. Consider any vertical section

in the tube m n, separating the

liquid in D from that in O,

and let us denote the area of

its surface by S. Now it is

evident that this section can be

in equilibrium only when the

pressures on its two faces are

equal. The pressure on the

face towards D is, by [78],

f= S.H.(Sp. Gr.) ,
in which

H is the depth of the centre of

gravity of the section below the

level of the liquid in D. The "r 224

pressure on the face towards C
is, in like manner, = S . H'

. (Sp.Gr.), in which H' equals

the depth of the centre of gravity below the level of the liquid

in C. Since these two pressures are equal when there is an

equilibrium, it follows thatH= H', which demonstrates the prin-

ciple in question.

(131.) When two vessels communicating together are filled

with different liquids, which will not mix or combine chemically
with each other, the heights of the

two liquid columns when in equi-

librium are inversely proportional
to the specific gravities of the

liquids. This principle may be il-

lustrated by means of the apparatus

represented in Fig. 225. It consists

of two tubes, m and w, connected

together by a smaller tube below.

The lower portion of both tubes is

filled with mercury, and on the

surface of the mercury in the tube

n rests a column of water, A B. If

Fig. 225. now we conceive a horizontal line,

B C, drawn, across the apparatus
from the surface of the mercury at B, it is evident, from the
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last section, that the liquid below this line is in equilibrium ;

and hence it follows, that the column of water B A is just bal-

anced by the column of mercury D C. On measuring these two

heights, it will be found that D C is thirteen and a half times

smaller than A B ; and by referring to the table of specific grav-

ities, it will be found that the specific gravity of mercury is thir-

teen and a half times greater than that of water ; or, in other words,
the heights are inversely proportional to the specific gravities.

The truth of this principle can easily be proved. If we

represent the surface of the mercury at B by ,
and the

height of the column of water B A by H, the specific gravity of

water by Sp.Gr., then by [78] the pressure on the surface is

= S . H . (Sp.Gr.). In the same way, the pressure of the

column of mercury, C D, is
'= S' . H' . ( Sp. Gr.y, where S1

is

the area of the section at C, H' the height of the column C D,
and (Sp.Gr.y the specific gravity of the mercury. Now, it fol-

lows from (120), that there can be an equilibrium only when the

pressures exerted on the two surfaces at B and C are proportional

to the area of these surfaces, or when :
' = S : S'. Substi-

tuting the value of and 4P, we find that when this is the case,

H. (Sp.Gr.) == H' . (Sp.Gr.y,
or [81.]

H: H'*=(8p.Gr.y : (Sp.GrJ.

Hence, there can be an equilibrium only where the heights of the

two columns are inversely as the specific gravities of the liquids.

(132.) Spirit-Level. We have seen that the surface of a

liquid at rest is always horizontal, that is to say, perpendicular to

the direction of gravity.

We have, therefore, in

this fact a ready means

of determining the hor-

izontal plane. The spir-

it-level, which is used

for this purpose, con-

sists of a tube of glass

(Fig. 226) very slightly

curved, and filled with

alcohol,* leaving only a227.

* Alcohol does not freeze even at the lowest temperatures.
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small bulb of air, which always tends to occupy the highest part.

The tube is hermetically sealed, and mounted on a brass or

wooden stand, D (7, Fig. 227, the base of which is carefully ad-

justed, so that when it rests on a horizontal plane, P, the air-

bubble, Jf, shall rest just at the middle of the tube.

(133.) Artesian Wells. The tendency of water to seek its

own level is illustrated by all seas, lakes, springs, and rivers,

which are so many vessels connecting with each other. One of

the most remarkable of this class of illustrations is the Artesian

well, named from the old province of Artois, in France, where

these wells were first made. They are narrow tubes sunk in the

earth to various depths, in which the water frequently rises many
feet above the surface of the ground.
The principle of the Artesian well is illustrated by Fig. 228.

The crust of our globe is formed of numerous strata, some

Fig. 228.

of which are permeable to water, like sand and gravel, while

others, such as clay, are impermeable. Let us suppose, then,

that in a geological basin we have an alternation of such strata,

for example, two beds of clay-rock, A and B, enclosing a bed

of some permeable material, Jf, as sand
; and let us also suppose

that the sand bed comes

to the surface at some

higher level (Fig. 229),
where it will receive the

rain-water. This water

will filter through the

sand and collect under

the geographical basin,

without being able to rise to the surface, on account of the clay

bed A. But if we sink a tube through this bed, it is evident

.20*

Fig. 229.
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that the water will rise to a height as much above the soil as is

the level at which it stands in the peculiar reservoir formed by
the clay beds.

These wells are sunk with a peculiar form of auger, which is

worked within an iron tube, the tube be-

ing driven down as fast as the auger de-

scends. One of the most remarkable of

these wells is that of Grenelle, on the out-

skirts of Paris. It is 548 metres deep,
and yields 3,000 litres of water each min-

ute. The water has a constant tempera-
of 27 C.

(134.) Salt Wells. An illustration

of the principles of section (131) is fur-

nished by the mode in which salt wells are

worked in some parts of Germany. It not

unfrequently happens, that beds of rock-salt

occur in the midst of impermeable strata

(see Fig. 230). It can then be extracted

Fig. 230.

in the following way. An Artesian well

(Fig. 231) is first sunk to about the mid-

dle of the bed. Within this well is en-

closed a smaller tube of copper, descend-

ing to the bottom of the bed of salt, and

therefore considerably lower than the iron

tube forming the sides of the well. The

lower end of the copper tube is closed, but

it is perforated with little holes to the

height of a few metres, which allow the

water, but not dirt, to enter. From
some convenient source fresh water is made to flow into the well,

and descends outside of the copper tube to the salt bed. It

Fig. 231.
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dissolves the salt, and the heavy brine sinks to the bottom of the

bed, where it finds the lower end of the copper tube. This tube

then fills with salt water
;
but the brine does not rise to the sur-

face of the soil, but only to such a level that the column of brine

in the interior copper tube shall be in equilibrium with that of

water in the annular space outside. The specific gravity of sat-

urated brine is about 1.20, that of water being 1
; hence, if we

represent the heights of the two columns by H and U', we shall

have II: H1 = 1.20 : 1. If, then, the depth of the well is 200

metres, the brine will rise ^ . 200 = 166, and consequently to

a level 34 m. below the surface of the soil. Through this dis-

tance it is raised by a pump.

Buoyancy of Liquids.

(135.) Principle of Archimedes. All liquids buoy up solids

immersed in them with a force equal to the weight of the liquid

displaced. This very important fact was discovered by Archime-

des, and is generally known under the name of the Principle of
Archimedes. It is generally stated that the discovery was made

by this renowned philosopher of antiquity while reflecting on the

buoyancy of the water on his own body when he was bathing ;
and

he is said to have been so much elated by the discovery, that he

rushed from the bath through the streets of Syracuse, exclaiming,

Evprjrca ! evpyfca !

The principle of Archimedes may be illustrated by means of

the apparatus represented in Fig. 232. The brass cylinder B
is made so as to fit accurately the brass cup A. In experi-

menting with the apparatus, the cylinder and cup, having been

suspended to one pan of a balance arranged for the purpose,
are carefully poised, by placing weights in the opposite pan;
the cylinder is then immersed in water, as represented in the

figure. In consequence of the buoyancy of the liquid, the pan
containing the weights will preponderate. According to the prin-

ciple, this buoyancy is equal to the weight of the water which

the cylinder has displaced. But from the construction of the

apparatus, the cup A will hold exactly this amount of water ;

and hence, if the principle is correct, the equilibrium will be re-

stored on filling the cup A with water, and this we find to be

the case. The same result would also be obtained with alcohol,

or with any other liquid.
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Fig 232.

It appears, then, that the cylinder is buoyed up by a force

equal to the weight of the liquid which it displaces. But this

statement expresses only
one half of the truth

; for

it is a necessary result of

the equality of action and

reaction, that the upward

pressure of the water on the

cylinder must be accompa-
nied by an equivalent down-

ward pressure of the cylin-

der on the water
; or, in

other words, not only that

the cylinder loses in weight,
but also that the water gains
the weight which the cyl-

inder loses. In order to il-

lustrate this fact, we can
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arrange the experiment as represented in Fig. 233. "We first

balance the vessel of water, and then immerse in the liquid the

brass cylinder, supported as represented in the figure. The

water will be found to have gained in weight, and in order to

restore the equilibrium it will be necessary to remove from the

vessel sufficient water to just fill the cylinder A.

(136.) Demonstration. The principle of Archimedes is a

necessary consequence of the law enunciated in (126), as can

easily be proved. Let us, in the first

place, suppose that the body im-

mersed in the liquid is a right cyl-

inder, as c d, Fig. 234, suspended so

that its bases shall be horizontal.

Consider now the pressure exerted

by the liquid at any one point on the

side of this cylinder. By (121) the

direction of this pressure is normal

to the surface at this point. But, as

is well known, this normal, if pro-

duced, will coincide with the diam-

eter of the circular section of the

cylinder which would be made by
a horizontal plane cutting the cylin-

der at the point in question. Now,
as the other end of this diameter is

in contact with the liquid, and at the same depth below its surface,

it is evident that this point will sustain a pressure equal in amount

and opposite in direction to that sustained by the first point.

These two pressures will consequently balance each other, and,

since the same holds true of every other similar point, it follows

that the whole pressure of the liquid on the convex surface of the

cylinder is in equilibrium.
It is different, however, with the pressure on the two horizon-

tal bases. The pressure exerted on the base d is, by (126), equal
to the weight of the liquid cylinder represented by e g-, and the

pressure on the base c to the weight of the liquid cylinder h i.

There is, therefore, an excess of upward pressure equal to the

weight of the liquid cylinder /g-, which is equal in size to the

cylinder c d. The cylinder, then, is buoyed up with a force equal

to the weight of liquid displaced.

Fig. 234.
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(137.) This demonstration may readily be extended to a body
of any form whatsoever. Let s s' s" be the body, and o x, o y,

o z three co-ordinate axes perpendicular with each other, to which

we can refer position. The pressure exerted by a liquid on any

infinitely small element of surface,

5, is by [78] f= s.H.(Sp.Gr.').
This pressure, which by (121) is nor-

mal to the surface, may be resolved

into three forces, at right angles to

each other and parallel to the co-or-

dinate axes. Representing the nor-

mal by JP, and the angles which it

makes with x, y, z, as p
x ,

p
,

p
z ,

we have, for the three components,

4F
'= $ cos p

x ,

"= cos p
,
and

Fig ' 235 '

JF'" = f cos { . Substituting for

its value given above, the three components become

. Or.) . s cos p
x ; [82.]

. GV.) . * cos ^ ; [83.]
o'

IF'" s=H .(Sp.G.-) .s cos{ . [84.]

But 5 cos
-^

is the projection of the surface s on the plane of y z,

and this projection is equal to the right section of an infinitely

small cylinder parallel to the axis of x. Representing the area

of this section by r", we have, for the value of the first compo-

nent,
' = H . (Sp.Gr.) r". But this pressure will obviously

be balanced by the pressure exerted on the element of surface, s",

which, decomposed in the same way, will give a component also

equal to H . ($/?. 6rr.) r", and parallel to the axis of x, but act-

ing in the opposite direction. It can easily be shown that the

same is true of the component parallel to the axis of z. This

will be balanced by an opposite and equal component of the

pressure exerted on the element s" 1
. Let us, lastly, consider

what will be the effect of the component parallel to the axis

of y. In the value of "
[83], the quantity of s cos *

is
u

the projection of the surface s on the plane of x z. This pro-

jection is equal to the right section of the vertical cylinder s s'.
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Representing the area of this section by r', we have, for the value

of the vertical component,
" = H (Sp. Gr.) r', a force which

tends to raise the body. This force is in part balanced by the

pressure exerted on the element s'. By decomposing this force,

it will be found that the vertical component which exerts a down-

ward pressure in the direction s' s, is equal to 2=H1

( Sp. Gr.} r'.

The vertical cylinder of the body s s' is then buoyed up by
a force equal to the difference of these two values, that is,

"
jf2
= (J/ H') (Sp.Gr.) r', which is the weight of a

column of liquid of the same volume as the cylinder.

By extending the same course of reasoning to each of the in-

finitely small elements of surface which the body presents, we
should decompose the body into an infinite number of vertical

cylinders similar to s s', each of which is buoyed up by a force

equal to the weight of its own volume of liquid. The whole

body is of course buoyed up by a force equal to the sum of the

forces acting on the elementary cylinders, that is, by a force

equal to the weight of the liquid which it displaces.

(138.) The correctness of the principle of Archimedes can be

proved in another way, which more directly connects it with the

condition of equilibrium which exists among
the particles of all liquids when at rest.

Consider, for example, any cubic centimetre

of the liquid contained in the vessel, Fig.

236, such as A B. Since the liquid is at

rest, it is evident that this liquid cube is ex-

actly sustained in its position by the pres-

sure of the surrounding particles. But the

mass of liquid, of which it consists, has

weight ;
and it is therefore also evident,

that the liquid cube is sustained because it

is buoyed up by a force which is just equal
to its weight. Let us now suppose the

liquid cube to be suddenly solidified without changing its volume ;

it is evident that it will be buoyed up by the same force as be-

fore ; for no change has taken place either in the position or the

conditions of the surrounding particles. Whatever, therefore,

may be the substance or weight of the solid cube, it will be buoyed

up by a force equal to the weight of one cubic centimetre of the

liquid in which it is immersed. This demonstration can evident-

ly be extended to any other body, of whatsoever size or shape.
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(139.) Centre of Pressure. It has been proved (45), that

the resultant of all the forces which gravity exerts on the parti-

cles of a body is a single force represented by the weight of

the body directed vertically downwards. And it has further

been proved (46), that this force may always be regarded as ap-

plied at the centre of gravity, whatever position the body may
assume. Now, since the supposed liquid

cube (Fig. 236) is exactly supported, it fol-

lows that the resultant of all the pressures

which it receives from the surrounding par-

ticles of liquid must also be a single force

equal to the weight of the cube, but di-

rected vertically upwards. Moreover, if our

ideal cube could be turned in the liquid, it

would evidently still remain in equilibrium,

in whatever position it might be placed.

Since in all possible positions the resultant

f the forces of gravity may be regarded as

applied at the centre of gravity, it follows

that in the different positions the resultant of all the pressures

may also be regarded as applied at the same point. The same

point, then, which is common to all the resultants of the forces

of gravity in the different positions which a body may assume, is

common, also, to all the resultants of pressure ;
in other words,

the centre of gravity of our liquid cube is also the centre of

pressure.

If, now, we replace the ideal cube of liquid with a cube of brass

having the same size and volume, it is evident that the conditions

of the particles exerting the pressure have not been changed.
Hence the resultant of the pressures exerted by these particles

will still be a force acting vertically upwards ; and, further, in

any position which the brass cube may assume, the direction of

this resultant will pass through what would be the centre of grav-

ity of a liquid cube of the same form and volume. This com-

mon point, through which the resultant of the pressure passes,

in any position of the brass cube, is its centre ofpressure. We
have made use of a brass cube in this discussion, merely to give

distinctness to our conceptions ;
but it is evident that the same

reasoning would apply to a body of any shape whatsoever. In

any case, the centre of pressure is always the same point which
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was previously the centre of gravity of the liquid which has been

displaced by the body.

If the body is homogeneous and entirely immersed in water,

the centre of pressure coincides with the centre of gravity of the

body. If, however, the body is not homogeneous, if, for ex-

ample, it is loaded on one side, then the centre of gravity will

no longer coincide with the centre of pressure ; because it will

not coincide with the centre of gravity of a liquid body of the

same shape and volume.

(140.) Floating Bodies. If the weight of a body is less

than that of the liquid which it displaces, then, the buoyancy be-

ing greater than the weight, the body will rise to the surface of

the liquid, and float. On the other hand, if the weight of a body
is greater than that of the liquid which it displaces, it will sink.

Moreover, since the specific gravities of any two substances are

to each other as the weights of equal volumes of these substances,

it is also true that a homogeneous solid will float when its spe-

cific gravity is less than that of the liquid, and that it will sink

when these conditions are reversed.

An iron bar sinks in water, but floats in mercury, because a

given volume of iron weighs less than the same volume of mer-

cury, and more than the same volume of water. For a similar

reason, a piece of boxwood will float in water, but sink in alco-

hol. The bar of iron, however, can be made into a hollow vessel,

which will float on water ; and, in the same manner, boxwood
can be made to float on alcohol. The volumes of the bodies will

thus be increased without increasing the weight, and since the

weight of the liquid they displace is now greater than their own

weight, they will float. Steamships are frequently made of iron,

and loaded with heavy machinery ; but nevertheless, since their

whole weight is less than that of the water which they displace,

they float. The specific gravity of the human body is very nearly
the same as that of water, and can readily, therefore, by a little

effort, be kept at the surface in the act of swimming. By in-

creasing slightly the volume of water displaced, without increas-

ing sensibly its weight, the body will float without effort. Most

persons can expand the chest, by a little effort, sufficiently to make
the specific gravity of the body less than that of water, and it is

well known that good swimmers can float their bodies by lying

back on the surface of the water and expanding the chest. This is

21
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also the theory of life-preservers, which are bags filled with air,

or pieces of cork worn under the arms. They so far increase the

volume of the body as to make the specific gravity of the life-

preserver and the body together, as a whole, less than that of

water.

The large floating tanks, called camels, which are used to lift

large vessels over the sand-bars that obstruct the mouths of many
harbors, are an ingenious application of the same principle. These

tanks, which are closed on all sides and water-tight, having been

filled with water, are fastened under the sides of the vessel. The
water is then pumped out, when the tanks rise, and raise the ves-

sel with them. A similar contrivance, called a floating dock, is

very much used in the United States for raising ships completely
out of water, for repairs. It consists of a large platform, on

which the ship is to rest, beneath which are hollow and water-

tight tanks, so loaded that, when full of water, they will sink.

The platform is, in the first place, sunk to the depth of several

fathoms, and the ship to be raised is then floated over it. The
water is now pumped out of the tanks beneath the platform,

which then rises, and raises the vessel with it.

(141.) Equilibrium of Floating Bodies. When a body is at

rest, floating on the surface of a liquid, there must be an equi-

librium between the weight of the body and the buoyancy of the

liquid. Hence it follows, from (135), that the weight of the

liquid actually displaced by a floating body is equal to its own

weight. We can always determine the weight of a ship by

measuring the volume which is below the water-level, and mul-

tiplying this by the specific gravity of the liquid. This will, by

[56], give the weight of water displaced, which, as we have just

seen, is the same as the weight of the ship. We can also deter-

mine the weight of the cargo by determining the volume of water

displaced by the ship both before and after loading. The differ-

ence between these two volumes, multiplied by the specific gravity

of the liquid, will give the weight of the cargo.

The centre of pressure of a floating body is, by (139), the

same point as the centre of gravity of the fluid it displaces. It

is obviously, therefore, an entirely different point from the centre

of gravity of the body, and must always be below this point when

the body is a homogeneous solid. For example, in Fig. 237, the

centre of gravity of the homogeneous floating body a b c d is
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the point G. The centre of pressure, P, is the centre of gravity

of the liquid displaced, and this is obviously below the centre of

gravity of the whole body. When
the floating body is not homoge-

neous, the centre of gravity may
be below the centre of pressure.

For example, if we should attach

to the bottom of the body abed
a piece of lead, this would sink

the body still deeper in the water,

and thus raise the centre of pres-

sure, while at the same time it

would lower the centre of gravity,

and thus might change the relative position of the two points.

In order that a floating body should be in equilibrium, it is not

only necessary that it should displace its own weight of liquid,

but it is also essential that the

centres of gravity and pressure

should be situated on the same

vertical. If, as in Fig. 238, the

two points are not situated on the

same vertical, then the resultants

of the forces of gravity and pres-

sure will be represented by two

opposite vertical forces, as P q
and G r. Since these forces are

equal, they will neither tend to

raise nor depress the body in the liquid ; but nevertheless, as the

two forces form a couple (38), they will tend to rotate the body.

Hence, although the body will neither rise nor fall, it will turn in

the liquid until the centre of pressure falls in the same vertical

with the centre of gravity, but in such a way that the amount of

water displaced by the body shall be always the same.

(142.) Stable and Unstable Equilibrium. When the cen-

tres of pressure and gravity are in the same vertical, there will be

a condition of equilibrium, but this equilibrium may be either

stable, unstable, or neutral. The equilibrium is said to be stable

when, on turning the floating body slightly in the water, it tends

to return to its first position ;
it is said to be unstable, when,

under these circumstances, it continues to turn until it passes

Fig. 238.
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into a new condition of equilibrium ;
and it is said to be neutral,

when it will remain at rest in any position indifferently.

The condition of a floating body is always stable when the

centre of gravity is below the centre of pressure. The truth

of this statement is an immediate consequence of the princi-

ples of the last section. The centre of pressure is a point
at which the whole upward pressure of the liquid may be re-

garded as concentrated. It may therefore be considered as the

point of support of the floating body ;
and it has already been

shown (48), that the condition of a body is stable when the

centre of gravity is below the point of support. It does not fql-

low, however, that the condition is necessarily unstable when the

centre of gravity is above the point of support. In this case, the

stability of the body depends upon the position of a variable point,

which is called the metacentre ; and the equilibrium is still stable,

when the centre of gravity is below this point. The position of

the metacentre depends on the form and position of the body.
"We shall only be able to point out its position in the case of one

of the simplest solids ;
but this example will serve to illustrate

the general principle.

Let us suppose, then, that the floating body is a homogeneous

rectangular prism (Fig. 239). The centre of gravity will then

BiS.Ls
"-* ^i'.-His-fl

-- : i.~r^'=r=:=r%"=:S5=iiI||
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Fig 239. Fig. 240.

be the same as the centre of its figure, or <2, and the centre of

pressure the centre of gravity of the part immersed in the liquid,

a variable point, depending on the position of the body. If, now,
when it is floating on its broadest side, we turn it through the

angle e o c (Fig. 240), the portion represented by the triangle

e o c is raised out of the liquid, and that represented by b' of sub-

merged ;
and since the quantity of water displaced must be the
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same in every position of the body, it follows that the portion e o c

is equal to the portion b of. But now the form of the submerged

portion is entirely changed, and the centre of gravity of the sub-

merged portion, which is the centre of pressure, is also changed,
and moved to the point P. If in this position we draw through
the point P a perpendicular, it will intersect the perpendicular
drawn through the point P in the previous position, namely, O #,

at a point #, and this point is the metacentre. In the case before

us, the metacentre is above the centre of gravity ;
and it is evi-

dent from the figures, that the couple formed by the resultants

of the forces of gravity and of the pressure tends to restore the

floating body to its first position (Fig. 239).
Let us now suppose that the rectangular prism is floating on

its narrow side, as in Fig. 241 ;
and that, as before, we turn it to

a

Fig. 241.
Fig. 242.

the right through a small angle. The centre of pressure will

then be shifted to a new position, at the right of the plane of

symmetry (Fig. 242). If, now, we erect a perpendicular, it will

intersect the perpendicular drawn through the centre of pressure
in the previous position, at a point q, below the centre of gravity;
and it can easily be seen that the couple formed by the force of

gravity and the pressure will tend to turn the body still fur-

ther, and it will only come to rest when it falls back into the

position of stable equilibrium, floating on its broad side, as in

Fig. 239.

What has now been illustrated in the case of a rectangular

prism, is true of all floating bodies. In general, the metacentre

may be defined as the point ivhere the vertical passing" through
the centre of pressure in the position of equilibrium, meets the

vertical drawn through the new centre ofpressure after the body
21*
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has been slightly displaced from this position. A floating body
is in a stable condition when the metacentre is above the centre

of gravity, and unstable when this condition of things is reversed.

When the centre of gravity is below the centre of pressure, the

metacentre must evidently always be above the centre of gravity,

and, as before shown, this condition is always stable. It is also

evident, from the above discussion, that the stability of a floating

body is the greater the broader the submerged part and the

lower the position of the centre of gravity.

It is of great importance to pay attention to the conditions of

stable equilibrium in the construction and loading of ships.

Vessels which are used to transport passengers or light cargoes

require to be ballasted, by depositing immediately above the keel

a quantity of heavy matter, such as stones or pigs of iron. The
centre of gravity may thus be brought so low, as to give the

vessel such stability that no lateral force of the wind acting on

its sails can capsize it. So, also, the heaviest part of a cargo
should always be deposited in the lowest possible position, in or-

der that its centre of gravity may be immediately over the keel.

When this is the case, any inclination of the vessel causes the

centre of gravity to rise ; and to accomplish this requires a force

proportional to the weight of the vessel, and to the height through
which the centre is elevated.

The equilibrium of a boat may be rendered unstable by the

passengers standing up in it
;
and this is not unfrequently the

cause of accidents to light sail-boats.

If the centre of gravity of a vessel be not directly over the

keel, the vessel will incline to that side at which it is placed ;
and

if this displacement is considerable, danger may ensue. The

rolling of a vessel in a storm may so derange the ballast or cargo,

as to throw the vessel on her beam-ends.

(143.) Neutral Equilibrium. In some cases, the position of

the centre of pressure is not changed by any change of position

of the body which is compatible with displacing its own weight
of fluid. In such a case, the body will float in equilibrium in

any position indifferently, and is said to be in a condition of neu-

tral equilibrium. A sphere of uniform density is an example of

this ; for in whatever position it floats, the part immersed is

always a segment of the sphere of precisely the same magnitude
and shape, so that the centre of pressure has always the same posi-
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tion with reference to the centre of gravity of the sphere. Con-

sequently, the sphere will float indifferently in any position in

which it may be placed.

Methods of determining Specific Gravity.

(144.) The specific gravity of a substance has been defined

as the ratio of its weight to that of an equal volume of pure
water at 4 C., the temperature at which the volume of the

solid is measured being C. 'As most of the methods used for

determining specific gravity are illustrations of the principles of

hydrostatics, we will briefly describe them in this connection,

reserving, however, for the chapter on Weighing and Measuring,
the practical details of the subject.

(145.) First Method. Specific- Gravity Bottle. The most

obvious method of determining the specific gravity of a substance

is to weigh equal volumes of the substance and of water, and

then divide the first weight by the last. When the substance is

a liquid, this method is readily applied. We use for the purpose
a small glass bottle, such as is represented in Fig. 243. The
bottle is closed by a perforated ground-glass stopper
of peculiar construction, terminating in a fine tube,

on which is marked, with a file, a point to which

the bottle is to be filled at each experiment. The

bottle, whose tare has been previously ascertained)

is first of all filled with pure water, and the stopper

inserted, when the water rises in the glass tube.

The excess of water above the mark is now removed

with a piece of bibulous paper, and the bottle care-

fully weighed. By substracting from this weight
the tare of the bottle, we have the weight of a given rig. 243.

volume of water, which is thus ascertained once for

all. If, then, we wish to obtain the specific gravity of any other

liquid, we fill the bottle with this liquid in the same way as be-

fore, and weigh it
; then, having subtracted the weight of the

bottle, we have the weight of a volume of this liquid equal to

the volume of the water. Representing these two weights byW and W
9
we have, by definition,

($*Gr.) = -. [85.]
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If we repeat this process at different temperatures, we obtain

different results, owing to the expansion both of the liquids and of

the glass. It is, therefore, essential to observe carefully the tem-

perature of the liquids at the time of filling the bottle, and then

to calculate, by means of tables prepared for the purpose, what

would have been the result had the temperature of the water

been at 4 C. and that of the substance at C. This is called

reducing' the results to the standard temperature, and the method

of making the reduction will be described in the chapter just re-

ferred to.

The specific-gravity bottle may also be applied to determin-

ing the specific gravity of solids, when they can be broken into

small pieces. For this purpose, we take a specific-gravity

bottle and determine the weight of the bottle when filled with

water, as before described. Call this weight TF,. We then in-

troduce into the bottle a known weight of the solid, W, and fill

up the remainder of the bottle with water. The weight of the

bottle, solid and water, which we then ascertain, we will repre-

sent by W*. It is then evident that the weight of water dis-

placed by the solid is W1= W
: -f- W W2 ,

and hence we have

W
W [86.]

Fig. 244.

Here, as before, it is necessary to reduce

the results obtained to the standard tem-

perature.

(146.) Second Method. The Hydro-
static Balance. We suspend the body by
a fine thread to the pan of a balance (Fig.

244), and, having equipoised it by means

of a tare in the other pan, immerse it

in water, as represented in the figure.

The weight which it loses, being exactly

equal to that of the water which it dis-

places, is the weight of a volume of

water equal to that of the body which

we wish to find. Hence, in order to de-

termine this weight, we have only to add

weights to the pan from which the body
is suspended, until the equilibrium is es-
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tablished. It is evidently essential to the accuracy of this meth-

od, that the water used should be pure, and the thread so fine

that we can, without sensible error, neglect the weight of water

which it itself displaces.

Representing by W the weight of the body, and by W the

weight required to restore the equilibrium, we have, by defini-

tion,

(4*0%) ip- [87.]

The value thus obtained must be reduced to the standard tem-

perature.

This method may also be applied to liquids as well as to solids.

For this purpose we prepare a closed glass tube, and enclose in

it sufficient mercury to sink the tube beneath any

liquid, with the exception of the two heaviest, mer-

cury and bromine. To this tube we attach a fine

platinum wire, as in Fig. 245, which represents the

apparatus of its full size. We commence by deter-

mining once for all, by the method just described, the

weight of the volume of water at 4 C. which the glass

tube displaces. This we may call C, as it is a con-

stant quantity for each apparatus. In order, now, to

determine the specific gravity of a liquid, we suspend
the tube to the pan of a balance, and, having equi-

poised it by placing a weight, prepared for the pur-

pose, in the other pan, immerse it in the liquid. The

amount of weight required to restore the equilibrium
is the weight of the volume of this liquid which the

tube displaces, and the weight of the same volume of

water at 4 C. is known to be C. Hence the specific

gravity of the liquid is
-^

. This value must be cor-

rected for the temperature at which the experiment is made.

(147.) Third Method. Hydrometers. In this method, the

balance is not used, but its place is supplied by floating bodies of

peculiar construction, called hydrometers. A. few of these we
will now describe. They may, for convenience, be divided into

two classes, Hydrometers with a Constant Volume, and Hy-
drometers with a Constant Weight.
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HYDROMETERS WITH A CONSTANT VOLUME.

1. Nicholson's Hydrometer. This instrument is represent-

ed in Fig. 246. It consists of a hollow, cylindrical vessel, B,
made usually of sheet brass or tinned iron. To the lower end

of this vessel is fastened a cone filled with lead, O, the base of

which forms a pan on which the body whose. specific gravity is to

be determined is placed. The object of

the lead is to load the apparatus so that

the centre of gravity may be below the

centre of pressure, which, as we have seen

(142), is a condition of stable equilibrium.

To the top of the vessel is fastened a wire,

which supports the pan A, and on this

wire is marked a fixed point, o.

In using this apparatus, we commence

by determining the weight which, placed
in the pan A, will sink the hydrometer to

the fixed point o. This is a constant

quantity for the same apparatus, and may
be represented by (7. Let us suppose that

in any given case it is 125 grammes, and

that it is required to determine the spe-

cific gravity of sulphur. We take a piece

of sulphur, weighing less than 125 grammes, and place it on

the pan A, and then add weights until the hydrometer sinks

again to the fixed point o. If it requires 55 grammes to sink

it to the fixed point, it is evident that the weight of the sul-

phur is 125 55 = 70 grammes. Having determined the

weight of the sulphur in the air, it only remains to determine

the weight of an equal volume of water. For this purpose, we

raise the hydrometer, and, without disturbing the weights, shift

the piece of sulphur to the pan C, and replace the instrument in

the water. It will not, of course, sink to the fixed point ;
be-

cause the piece of sulphur, which is now submerged, is buoyed

up by a force equal to the weight of its volume of water. If,

now, we add weights to the pan A, until the hydrometer again

sinks to the point o, we shall find that 34.4 grammes are re-

quired. This is then the weight of its volume of water, and the

specific gravity is ^i
= 2.03. Representing the successive

Fig. 246.
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weights described above by (7, TF, and W'
9
we have in every case

Q_ JJ7"

. Gr.) = T^ . If the instrument is to be used for sub-

stances lighter than water, a perforated cover is adapted to the

pan (7, to prevent them from rising to the surface of the liquid.

2. Fahrenheit's Hydrometer. This instrument (Fig. 247) is

used for determining the specific gravity of liquid, and differs

from the one just described only in being made
of glass, and in having no lower pan. In using
this instrument, we commence by weighing it

in a balance. Let us call its weight C. Then,

having placed it in water, we determine the

amount of weight required to sink it to a fixed

point, marked on the stem, which we will rep-

resent by c. The sum of these constant weights,
or (7-f- c, is, by (141), equal to the weight
of the water displaced. We then float the hy-
drometer in the liquid whose specific gravity
we wish to find, and determine the weight re-

quired to sink it in this liquid to the fixed point.

Call this weight W. Then C + W is equal to

the weight of the liquid displaced, and since

C -j- c and C -\-W are the weights of the same volumes of

water and the liquid, the specific gravity of the liquid is easily

found ; since

.]

Fig. 247.

HYDROMETERS WITH A CONSTANT WEIGHT.

In the two hydrometers just described, the volume of the

instrument, which is submerged, remains constant during the

experiment, and the specific gravity is determined from the

amount of weight required to keep the volume constant under

different circumstances. The hydrometers in most general use

are constructed on a different principle. In these the weight is

constant, and the specific gravity of a liquid is determined by

measuring the volume of this liquid which the instrument dis-

places when floating in it. The weight of this volume is, by

(141), the same as the weight of the instrument. If, then, we

represent by V the volume of water which the instrument dis-

places when floating in this liquid, and by V the volume of any
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other liquid which it displaces, it is evident that the volumes V
and V of the two liquids have the same weight, namely, that of

the hydrometer. But it follows from [56], that when the weights
of different volumes of two liquids are equal, V . (Sp.Gr.) =
V . ( Sp. Gr.y. When one of the liquids is water, ( Sp. Gr.y= 1,

and we obtain, for the specific gravity of the other liquid,

(Sp.Gr.) = ~. [89.]

From this it appears, that, when we know the volumes of equal

weights of water and any given liquid, we can find the specific

gravity of the liquid by dividing the volume of the water by the

volume of the liquid.

3. Gay-Lussac's Volumeter. This is the best instrument of

its class. In its simplest form (Fig. 248), it consists of a glass

tube closed at both ends, which is graduated
into parts of equal capacity. The size of

the parts is unimportant, it being only neces-

sary that they should all be equal. The di-

visions are numbered from 1 to 100, or to

150, as the case may require, commencing at

the lower end of the tube. Before the tube

is finally closed, it is loaded with mercury, so

that, when floating on water, it will sink to

the 100th division on the scale
; or, in other

words, so that it will displace 100 measures of

water. If, now, we float it on sulphuric acid,

it will only sink to the 54th division. Hence
100 measures of water and 54 measures of

sulphuric acid have the same weight, and the

specific gravity of sulphuric acid is, there-

fore, J&- = 1.85. If we float the hydrome-
ter on alcohol, it will sink to the 125th divis-

ion. Hence the specific gravity of alcohol

is |f = 0.80. Since a definite specific grav-

ity corresponds to each of the divisions of the scale, it is usual

to calculate these, and inscribe them on the scale in place of

the simple numbers denoting the volume. The instrument,

when so prepared, is generally called a densimeter. As there

are no liquids which have a less specific gravity than 0.60, and

only two (mercury and bromine) which have a greater specific

70

40

10

150

100

Fig. 248 Fig. 249
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gravity than 2, it is evident that the divisions on the scale need

only extend from 50 to 166. It is not usual, however, to have

the whole scale on a single instrument, and, as a general rule,

the scale is divided over three separate hydrometers. The first

one, for liquids lighter than water, is graduated from 100 (cor-

responding to the specific gravity 1.00), near the middle of the

tube, to 166 (corresponding to 0.60), at the top of the tube ; the

second, for saline solutions, is graduated from 100 (corresponding
to 1.00), at the top of the tube, to 75 (corresponding to 1.33),
near the middle ; finally, the third instrument is graduated from

75 (corresponding to 1.33), at the top of the tube, to 50 (cor-

responding to 2.00), near the middle of the tube. In graduating
each instrument, it is so loaded that it shall sink in water to the

100th division of the centesimal scale, and in all cases the spe-

cific gravities are subsequently calculated, and inscribed on the

scale against each division.

It is more usual to give to the hydrometer the form rep-

resented in Fig. 249. This shortens the instrument very great-

ly, since the volume of the long tube in Fig. 248 is herd re-

placed by a short bulb. The principle of the two forms of the

instrument is precisely the same, but it is more difficult to grad-
uate the second pattern. The easiest method is the following.

If the instrument is to be used for liquids heavier than water,

we first load it with mercury until it sinks to a point A, near

the top of the tube, which we mark 100. We next float it in

a liquid of known specific gravity, for example, 1.333, and it will

sink to a point B. Now, by [85], 1.333 =
*-ja,

and x = 75.

This division is, therefore, the 75th, and we divide the space
between the two into 25 equal parts, and continue the divisions of

the same size to the base of the stem. Each of these divisions

will then be T g- of the whole volume of the apparatus below the

100th division first marked at A. If the instrument is to be

used for liquids lighter than water, we adjust it so that the

100th division shall be at the base of the stem, and then, by

floating the instrument in alcohol of known specific gravity,

determine a higher point, and then divide the stem as before.

4. Baume's Hydrometer. This hydrometer belongs to the

same class with that of Gay-Lussac, but it is graduated in a man-

ner which is entirely arbitrary, and does not indicate the specific

gravity of the liquid. There are two methods used in graduat-

22
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ing it, according as it is to be used for liquids heavier or lighter

than water. In the first case, it is loaded so that it will sink in

water to a point A, near the top of the stem, which we mark 0.
A second point is now obtained by floating the instrument in a

solution of fifteen parts of common salt in eighty-five parts of

water. This solution having a greater specific gravity than pure

water, the instrument rises until the level of the liquid stands at

a point By which we mark 15. Lastly, we divide the distance

between A and B into fifteen equal parts, and continue the divis-

ions to the bottom of the stem of the same

size as one of these parts. It is essential

that the diameter of the stem should be the

same throughout. This instrument is called

Pese-Sels. To prepare a hydrometer for

liquids lighter than water, Baume floated

the hydrometer in a solution of ninety parts

of water and ten parts of common salt, and

marked the point to which it sank as 0.

He next floated the instrument in water, and

marked this point 10. The interval between

these points he divided into ten equal parts,

and continued the divisions of the same size

to the top of the tube. This instrument is

called Pese-Liqueurs. Although the graduation of Baume is

entirely arbitrary, yet this hydrometer is in more general use

than any other. It is principally used for determining when
a solution or an acid has reached the proper degree of con-

centration. For example, it has been found by experiment, that

in a well-manufactured syrup the pese-sels of Baume stands at

35 when the liquid is cold, and also that in the strongest sul-

phuric acid it stands at 66
;
so that the instrument enables the

manufacturer to tell when his syrup or acid has reached the

proper strength. The instrument, therefore, serves as a useful

indicator in the arts, but it has no scientific value. Correspond-

ing to each degree of the Baume scale is a definite specific grav-

ity, which can be found by referring to appropriate tables,

as can also those corresponding to the degrees of the scales of Car-

tier and Beck, which, like that of Baume, are purely arbitrary.

5. Gay-Tjussac's Alcoometer. This is a kind of hydrometer,

which is used for measuring the strength of alcoholic liquids.
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The form of the instrument is precisely the same as that of

Baume ;
but the graduation, which is made at 15, is different.

The scale on the stem is divided into one hundred degrees, each

of which represents one per cent of pure alcohol in volume.

The hydrometer sinks to in pure water, and to 100 in pure
alcohol. If in any given alcoholic liquid it sinks to 30, the

liquid contains 30 per cent by volume of pure alcohol. The in-

strument is graduated by floating it in liquids of known strength,

and marking the points on the stem to which it sinks. It is only
accurate at the temperature of 15. If the temperature is dif-

ferent from this, the indications of the instrument must be cor-

rected by means of tables, which have been prepared for the

purpose.

There are a great variety of other hydrometers, which are

graduated so as to give the strength of milk, beer, vinegar, and

other liquids. They are all similar in principle to the alco-

ometer, and do not require description.

6. Rousseau? s Hydrometer. All the hydrometers which have

been described require a sufficient amount of liquid to fill a glass

of some size
;
but there are many cases in which it is desirable

to ascertain promptly the specific gravity of a liquid, when only a

few grammes of it can be obtained. The form

of hydrometer represented in Fig. 251 has

been contrived by Rousseau for this purpose.
The general form of the instrument is similar

to the others which have been described ; but

it differs in having on the top of the stem a

small cup, A, which holds the liquids to be

experimented upon. On the side of this cup
is a mark which indicates a capacity of one

cubic centimetre.

In order to graduate the instrument, it is

floated in pure water at 4, and loaded with

mercury until it sinks to a point, B, marked
at the base of the stem, which is the zero of

the scale. The cup A is next filled up to the

mark with distilled water at 4, or, what amounts to the same

thing, a weight of one gramme is placed in the cup. The instru-

ment is so constructed that it will then sink to a point near the

middle of the stem, which is marked 20. The interval be-

Fig. 251.
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tween these divisions is now divided into twenty equal parts, and

the divisions are continued to the top of the stem. Since this

has exactly the same size throughout, each division corresponds
to one twentieth of a gramme, or 0.05 gram.

According to this graduation, if we wish to obtain the density
of any liquid, bile, for example, we fill the cup with the

liquid to the point marked on the side. The instrument will now

sink, perhaps, to the 20.5 division on the stem. The weight of

one cubic centimetre of bile is, then, 0.05 X 20.5= 1.025 gram.
Since the weight of the same volume of water at 4 is one

gramme, the specific gravity of bile is 1.025 -r- 1 = 1.025. In

general, then, the specific

gravity of a liquid is found

with this instrument by

multiplying 0.05 by the

number of the division to

which it sinks in water,

when loaded with one cubic

centimetre of the liquid.

The indications of all hy-
drometers are very much
influenced by capillary at-

traction, and the more so

the more delicately they are

constructed. They are not,

therefore, instruments of

precision ;
but they are use-

ful, since they give rapidly

approximate results.

(148.) Fourth Method.

A fourth method of find-

ing the specific gravity of a

liquid, which may be ad-

vantageously used under

certain circumstances, is il-

lustrated by Fig. 252. It

depends on the principle of

the equilibrium of liquids
in connected vessels (131).
The apparatus consists of
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two tubes connected above with each other and with the chamber

of an air-syringe. The lower ends of these tubes dip, the one into

a glass of water, and the other into a glass containing the liquid

whose specific gravity is required. On partially exhausting the

air from the top of the tubes by means of the syringe, the liquids

will rise in the two tubes. If, now, we close the stopcock con-

necting with the syringe, the liquids will stand permanently at a

certain height in either tube. Moreover, it is evident, from the

construction of the apparatus, that the two columns of liquid are

in equilibrium with each other. Using, then, the notation of

(131), we have, from [81],

H:H' = l:(Sp.Gr.), or (%GV.)=-^'; [90.]

that is, the specific gravity of the liquid is found by dividing the

height of the column of water by that of the liquid. The heights
of the columns may be measured either by means of a scale on

the tube, or by a cathetometer (see Fig. 196). If the liquid were

alcohol, for example, and the height of the water column meas-

ured 60 c.m., the height of the alcohol column would be found

to measure 75 c.m. Hence, the specific gravity of alcohol

is fi = 0.80.

PROBLEMS.

Buoyancy of Liquids.

106. A man, exerting all his force, can raise a weight of 50 kilog.

What would be the weight of a stone (Sp. Gr. = 2.5) which he could

just raise under water ?

107. How much force in kilogrammes would be required to raise under

water a mass of asphaltum (Sp.Gr. = 1.10) weighing 500 kilogrammes?
108. How many kilogrammes will 100 kilogrammes of cast-iron

(Sp. Gr. = 7.25) Weigh under water ?

109. How much will the same amount of iron weigh under alcohol

(Sp. Gr. = 0.798) ?

110. If a given piece of gold be balanced by its weight of brass in a

vacuum, what addition must be made to the brass so that they may be in

equilibrium when immersed in water ? Sp. Gr. of Brass 8.55 ; of Gold 19.36.

111. How much force in kilogrammes would be required to sustain

under mercury at a cubic decimetre of platinum ? The specific grav-

ity of platinum is 21.5 ; that of mercury, 13.598.

22*
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Floating Bodies.

112. How much bulk must a hollow vessel of copper fill, weighing one

kilogramme, which will just float in water ?

113. How much bulk must a hollow vessel of iron occupy, weighing
10 kilogrammes, which sinks one half in water ?

114. A boat displaces 10m.3 of water. What is the weight of the

boat?

115. A cube of wood, weighing 100 kilogrammes, sinks three quarters

in water. What is the specific gravity of the wood, and what is the size

of the cube ?

116. What portion of a cube of solid iron (Sp. Gr. = 7.7) will sink

in mercury (Sp. Gr. = 13.G) ?

117. A life-boat contains 100 m".
3 of wood, whose specific gravity is

equal to 0.8, and 50 mT3 of air, whose specific gravity is 0.0012. When
filled with fresh water, what weight of iron ballast, whose specific gravity

is 7.G45, must be thrown into it before it will begin to sink ?

118. If the specific gravities of a man, of water, and of cork be 1.120,

1.000, and .240 respectively, find what weight of cork must be connected

to a man, weighing 75 kilogrammes, that he may just float in the water.

119. Determine the weight of a hydrometer, which sinks as deep in

rectified spirits, whose specific gravity is 0.866, as it sinks in water when

loaded with 4 gram.

120. A ship, sailing into a river, sinks 2 c. m., and, after discharging

12,000 kilogrammes of her cargo, rises 1 c. m. ;
determine the weight of

the ship and cargo, the specific gravity of sea-water being to that of

fresh as 1.026 is to 1.

121. If a solid, whose specific gravity = 6, float in a liquid, whose spe-

cific gravity =15, determine the proportion of the parts immersed.

122. If a globe of wood, when placed in a vessel of water, rise 5 c. m.

above the surface, but, when placed in a liquid whose specific gravity is

0.80, rise only 3 c. m. above the surface of the liquid, determine the di-

ameter of the globe.

123. Having given the specific gravities of iron and water, determine

what proportion the thickness of a hollow iron globe must bear to its

diameter, that it may just float in water.

124. A parallelepiped of ice, whose three dimensions are 10.5 m.,

15.75 m., and 20.45 m., is floating in sea-water on its broadest face ; the

specific gravity of sea-water is 1.026, and that of ice 0.930. Required the

height of the parallelepiped above the surface of the water.

125. A cone, 1.5 m. high and 1.2 m. in diameter at the base, is floating

on its base in a liquid in a vertical position, and sinks in it 20 d. m. How
much of the liquid is displaced by the cone ? If the cone is inverted, and

made to float on its apex, how deep will it then sink ?
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126. A hollow cylinder of iron plate is 2.5 m. in diameter and 1.75 m.

high. The plate is 1 c. m. thick, and its specific gravity 7.79. Will it

float on water, and if so, how deep will it sink when its axis is vertical ?

127. A cube of lead measures 4 c. m. on each side. It is required to

sustain it under water by suspending it to a cube of cork. What must

be the size of a cube of cork which just sustains it, assuming that the

specific gravity of cork equals 0.24, and that of lead 11.35 ?

Elasticity of Liquids.

128. A cubic metre of water is submitted to a pressure of 15 atmos-

pheres. Ilow great is the condensation ? and what is the specific gravity
of the condensed liquid ?

129. At a depth in the ocean of a little over 5 kilometres, the pressure
amounts to 500 atmospheres. What is the specific gravity of the water

at that depth, assuming that the specific gravity of sea-water is 1.026,

and the compressibility 0.0000436 ?

Hydrostatic Press.

130. In the hydrostatic press are given the diameters of the two cylin-

ders d and c?', and the force applied to the pump F. Determine the

pressure produced.

131. In the hydrostatic press, suppose the diameters to be 4 c. m. and

80 c. m. respectively, the length of the pump-handle to be 1 m., and the

distance of the pump from the fulcrum of the handle 10 c. m. Deter-

mine in what proportion the pressure exerted is increased.

Pressure exerted by Liquids in Consequence of their Weight.

It is assumed, in thefollowing problems, that liquids are incompressible, and hence that their

specific gravity is not increased, however great may be the pressure to which they are exposed.

132. The whole pressure on the bottom of a tub of water, the radius

of which is 30 c. m., is 50 kilogrammes. What is the depth of the

water in the pail?

133. What is the pressure exerted by the water on every square cen-

timetre of the base of a cylindrical vessel, in which the liquid stands at

the height of 10.336 m. above the base ? If the water in the vessel were

replaced by mercury, how high must the liquid stand, so that the pressure
should be the same as before ?

134. The horizontal and circular bottom of a flask, 15 c. m. in diame-

ter, is filled with mercury to the depth of 20 c. m. How great is the

pressure on the bottom ?

135. What height must a column of water have, which will exert a

pressure of 1,000 kilogrammes on every square decimetre ?

136. A cubical vessel is filled with water, and into its side a bent tube
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is inserted, filled with water, and communicating with the water in the

vessel. Determine the pressure on the top of the vessel, the vertical

height of the extremity of the tube above the vessel being (m) tunes the

height of the vessel.

137. A sphere, 10 c. m. in diameter, is sunk to the depth of 100 m. in

a fresh-water lake. Determine the total pressure exerted on its surface.

138. A cylinder, 15 c. m. in diameter and 20 c. m. high, is sunk so

that its centre is at the depth of 1 m. below the surface of the water. De-

termine the total pressure exerted on its surface.

139. A hollow cone, 10 c. m. in diameter at the base and 5 c. m. high,

is filled with water. Determine the pressure on the base and on the con-

vex surface. Centre of gravity of convex surface is in the axis of the

cone at of the altitude from the base.

140. A cylindrical vessel, 10 c. ra. in diameter and 10 c. m. high, is filled

with water. Determine the pressure on the base and on the convex surface.

141. A hollow cone, without a bottom, stands on a horizontal plane,
and water is poured in at the vertex. The weight of the cone being

given, how far may it be filled so as not to run out below ?

142. A hemispherical vessel, 10 c. m. in diameter, without a bottom,

stands on a horizontal plane. When just filled with water, the liquid

begins to run out at the bottom. Determine the weight of the vessel.

143. A straight line is just immersed vertically in a liquid. Re-

quired to divide it into three portions, which shall be equally pressed.
144. Compare the pressures on the three sides of an equilateral tri-

angle, just immersed in a liquid in such a manner that one side may be

perpendicular to its surface.

Specific Gravity.

145. Determine the specific gravity of absolute alcohol from the fol-

lowing data :

Weight of bottle empty, . , . ^ .
. .. ;> . 4.326 gram.

" "
filled with water at 4, . 19.654 "

" "
filled with alcohol at 0, . . 16.741

146. Determine the specific gravity of sulphuric acid from the follow-

ing data :

Weight of bottle empty, . .,..,,-, .;...,.: . 4.326 gram.
" "

filled with water at 4, , 19.654 "

" "
filled with sulphuric acid at 0, 28.219

147. Determine the specific gravity of lead shot from the following
data :

Weight of bottle filled with water at 4, . 19.654 gram.
"

shot, . >_., /: ,.../ . . 15.456

bottle, shot, and water, . . 33.766 "
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148. Determine the specific gravity of gold from the following data :

"Weight of gold in air, .... 4.213 gram.

Loss of weight in water, .... 0.2205 "

149. Determine the specific gravity of hammered copper from the fol-

lowing data :

Weight of copper in air, .... 1.809 gram.
" " under water, . . 1.608 "

150. Determine the specific gravity of saltpetre from the following

data :

Weight of saltpetre in air, . . . .1.216 gram.
" under alcohol, . . 0.734

Specific gravity of alcohol, . . . . 0.792

151. Determine the specific gravity of ash wood from the following
data :

Weight of wood in air, . . . 25.350 gram.
" " a copper sinker, . . 11.000 "

" " wood and sinker under water, 5.100 *

Specific gravity of copper, . . . 8.950 u

152. A sphere of platinum weighs in air 84 gram., and in mercury 31

gram. What is the specific gravity of platinum ?

153. A piece of metal weighs 5.219 gram, in air, 4.132 gram, in water,

and 4.009 gram, in a given liquid. What is the specific gravity of the

metal and of the liquid ?

154. A body, A, weighs in air 7.55 gram., in water 5.17 gram., in an-

other liquid 5.35 gram. What is the specific gravity of the body and of

the liquid ?

155. A body weighs 14 gram, in a vacuum and 9 gram, in water ; an-

other weighs 8 gram, in a vacuum and 7 gram, in water. Compare their

specific gravities.

156. A glass ball, weighing 10 gram., loses 3.636 gram, in water, and

2.88 gram, in alcohol. What is the specific gravity of alcohol ?

157. A glass ball, weighing 10 gram, and whose Sp.Gr. = 2.75, weighs,

under rape-seed oil, 6.658 gram. What is the specific gravity of this oil ?

158. A glass ball, as above, weighs under water 6.364 gram., and under

another liquid 7.12 gram. What is the specific gravity of this liquid?

159. A volumetre, whose stem is exactly cylindrical, sinks in a liquid

whose Sp. Gr. = 1.1 to a point 5, and in pure water at 4 C. to a point a.

The distance from a to b is 4 c. m. How far from a must the divisions

be placed to which the hydrometer will sink in liquids whose Sp. Gr.

1.01, 1.02, 1.03, 1.04, 1.05.

160. A similar volumeter sinks in a liquid whose *Sj. Gr. =*= y to a

point 5, and in a liquid whose Sp. Gr. = y
1 to a point a, higher on the

stem. What is the specific gravity of a liquid in which it sinks to an in-

termediate point, rf, when b d = A, and a b = L
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161. A column of water 1.55 m. high is in equilibrium with a column

of liquid 2.17 m. high. What is the specific gravity of the liquid?

Miscellaneous.

162. An alloy of gold and silver weighs 10 kilogrammes in air, and

9.375 kilogrammes in water. What are the proportions of gold and

silver? The specific gravity of gold = 19.2, of silver =10.5.

163. An alloy of copper and silver weighs 37 kilogrammes in the air,

and loses 3.666 kilogrammes when weighed in water. What are the pro-

portions of silver and copper ?

164. The specific gravity of zinc is 7, and that of copper 9, nearly.

What amounts of zinc and copper must be taken to form an alloy weigh-

ing 50 gram., and having a specific gravity equal to 8.2, assuming that

the volume of the alloy is exactly the sum of the volumes of the two

metals ?

165. Required the specific gravity of a mixture of 18 kilogrammes of

sulphuric acid and 8 kilogrammes of water, assuming that the specific

gravity of the acid is equal to 1.84, and that the volume of the mixture

is condensed ^.
166. Into a cylindrical vessel with a horizontal base 10 c.m. in diame-

ter, there are poured 12 kilogrammes of mercury. At what height will the

liquid rise in the cylinder? The specific gravity of mercury is 13.596.

167. Plow much mercury will a conical vessel hold which is 87 c.m.

high and 46 c*. m. in diameter at the base ?

168. A cylinder of oak wood is 30 c.m. in diameter and 2.5 m. long ;

the specific gravity of the wood is 1.17. What is the volume and the

weight of the cylinder ?

169. A cylindrical vessel is 36.9 c.m. high, and 24.6 c.m. in diameter,

interior measure. How much alcohol of specific gravity 0.863 will the

cylinder contain ?

170. Leaves of gold are made only 0.001 m. m. in thickness ; the spe-

cific gravity of gold equals 19.632. How much surface can be covered

with 10 gram, of gold ?

171. A cast-iron ball weighs 12 kilogrammes ; the specific gravity of

cast-iron is 7.35. What is the radius of the ball ?

172. What is the diameter of a platinum wire which weighs 28 gram,
for each metre of length ? The specific gravity of platinum is 22.06.

173. A silver wire 125 m. long weighs 6 gram.; the specific gravity of

silver is 10.474. What is the diameter of the wire ?

174. In a capillary tube is contained a column of mercury, weighing
0.500 gram., which measures 13.700 c. m. at C. What is the diameter

of the tube ?

175. A wire 0.785 m. long, and weighing 0.364 gram., loses 0.017 gram,

when weighed under water. What is the diameter of the wire ?
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III. CHARACTERISTIC PROPERTIES OP GASES.

(149.) Mechanical Condition of Gases. The peculiar prop-

erties of a gas seem to depend on the fact, that the repulsive

forces existing between its particles are greater than the attrac-

tive forces (78). Consequently, the particles of a gas tend to

recede from each other, and were it not for extraneous causes the

gas would expand so far as is known indefinitely into space.

This natural tendency of gases is restrained on the surface of our

globe by the pressure which the atmosphere exerts in consequence
of its weight ; but when this pres-

sure is removed, the expansive ten-

dency becomes at once manifest.

The air which is contained in the

India-rubber bag (Fig. 253), for

example, is prevented from expand-

ing by the pressure of the atmos-

phere on its exterior surface. If,

however, we place the bag under

the receiver of an air-pump, and

remove the pressure by exhausting
the air, the bag will at once ex-

pand ;
and this expansion will con-

tinue until the expansive tendency
of the air is balanced by the elas-

ticity of the bag.

The force with which a gas tends to expand is called its ten-

sion ; and it is evident that, when in a state of rest, the tension

of a gas must be exactly equal to the pressure to which it is ex-

posed ;
for were this not the case, the force which was in excess

would cause a motion in the particles, which is inconsistent with

the supposition. It appears, therefore, that in a gas, as in a

liquid, the particles are in a condition of equilibrium ;
the only

difference being, that in a liquid the equilibrium exists between

the attractive and repulsive forces in the liquid itself, but in the

gas, between the excess of repulsive forces in the body and an ex-

ternal pressure. In consequence of this condition of equilibrium,
the particles of gases are endowed with perfect freedom of motion,

and gases are therefore fluids (117). Moreover, since they are

both elastic (77) and ponderable (7), it follows that all those

Fig. 253.
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properties which are the necessary consequence of these mechan-

ical conditions must belong to gases as well as to liquids. These,
as before (119), naturally divide themselves into two classes :

first, those which are independent of the action of gravity ; and,

secondly, those which depend upon it. As these properties have

been so fully discussed in the case of liquids, it will only be

necessary to extend the principles already established to the case

of gases.

Properties Common to Gases and Liquids.

(150.) Pressure which is independent of the Action of Grav-

ity. Let us now suppose that the vessel (Fig. 254) already
described (120) is filled with air, instead of water. As this air

is in a permanent state of tension, it will,

in consequence of its elasticity, exert pres-

sure in all directions
; and it is evident,

from the same course of reasoning used

in the case of water (120), that the pres-

sures it exerts against the pistons , &, c, d
will be proportional to their areas. In

like manner, the same will be true of any

portion of the interior surface of the ves-

sel, and also of any ideal section in the interior of the vessel. If

two sections are equal, they will receive equal pressures ;
if un-

equal, the pressures will be proportional to their areas.

If the air in the interior of the vessel is in the same condition

as the external atmosphere, it is evident, from what has been

said, that the pressure of the air on the interior surface of the

vessel will be exactly balanced by the pressure of the atmosphere
on the outside. The piston, therefore, being pressed equally on

their inner and outer surfaces, will have no tendency to move.

This being the condition of the air in the vessel, let us suppose
that we condense the air still further, by pressing in one of the

pistons ;
it is evident that we shall thus develop a greater elas-

ticity in the particles, and each particle will in consequence exert

a greater pressure. The increased pressures now exerted against

the inner surfaces of the pistons will be proportional to the num-

ber of gaseous particles in contact with them, or, in other words,

proportional to their areas. The pressures on the inner sur-

faces being also greater than those on the outer surfaces, the
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pistons will tend to niove out with forces varying in the same

proportion.

From these considerations, it appears that gases, like liquids,

transmit pressure equally in all directions ; the only difference

being this, that in our experiments on gases we start with a cer-

tain initial pressure due to their permanent elasticity. Gases,

like liquids, will transmit pressure through long tubes and

through any passages, however circuitous, provided only that

there is a line of gaseous particles. A good example of this is

furnished by the gas-pipes of large cities. Any pressure applied

at the gasometer is transmitted almost instantaneously through

hundreds of miles of pipe distributed in a most circuitous man-

ner over several square miles of area. The close resemblance

which gases bear to liquids is also shown by the fact that they

transmit pressure from one to the other indifferently. We shall

have occasion to notice several examples of this farther on.

Since the proof used in (121) applies to gases as well as to

liquids, it follows that the line indicating" the direction of the

pressure exerted by any gaseous particle against the section with

which it is in contact, is always a perpendicular to this section

at the point of contact.

(151.) Pressure depending on the Action of Gravity. The

facts in regard to the pressure exerted by liquids in consequence

of their weight are, as we found in sections (123) to (129), all

necessary consequences of the one fundamental property, that

they transmit pressure equally in all directions ;
and it therefore

follows, that each of these facts must be true of gases. Let us

commence with an ideal case. Suppose a closed cylindrical ves-

sel, several kilometres high, filled with air of the same density

through its whole extent, and rising vertically from the surface

of the globe. It would be true of such a vessel, that the pres-

sure exerted by the. air on the base of the cylinder, or on any por-

tion of its side, or, in fine, on any section whatsoever, ivould be

equal to the weight of a column of air, the area of whose base is

equal to the area of the section, and whose height is equal to the

vertical distance of the centre of gravity of the section from the

top of the cylinder. Moreover, the pressure on any given sec-

tion would be entirely independent of the form or size of the

vessel, provided only that the height remained the same.

This last circumstance is one of great importance, because it

23
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enables us to extend our conclusions at once to the case of the

atmosphere. The atmosphere is a mass of air retained upon the

surface of the globe by the force of gravitation, and rising to a

height which is estimated at the lowest at forty-seven kilometres.

It is supposed to have, like the ocean, a definite surface, which,

when at rest, is perpendicular at each point to the direction of

gravity. It partakes of the rotation of the globe on its axis, and

would remain at rest relatively to terrestrial objects were it not

for local causes, which produce winds and disturb at each mo-

ment its equilibrium. Neglecting these disturbances, we may
regard the atmosphere as a gaseous ocean in equilibrium covering
the earth to a certain level, and exerting the same effects of pres-

sure as if it were a liquid having a very small density. It fol-

lows, therefore, that each particle of the air exerts a pressure

equal to the weight of a vertical line of superincumbent particles

rising to the surface of the atmosphere. This pressure will be

constant on surfaces at the same level
;

it will increase as we de-

scend in the atmosphere, and diminish as we rise in it. At any
one position, it will be equal on surfaces of the same area, what-

ever may be their direction
;
and on surfaces of unequal area it

will be in proportion to the extent of the areas. It will be the

same in the interior of any vessel or room as in the outer air,

provided only there is a connection with the exterior atmosphere

by some aperture, however small. Finally, the air will buoy up
all bodies immersed in it with a force which will be equal to the

weight of the volume of air displaced. As the validity of these

conclusions has already been established in regard to liquids, it

will only be necessary, in the case of gases, to illustrate the gen-
eral facts by a few experiments.

(152.) Pressure of the Atmosphere. The pressure exerted

by the atmosphere on all bodies near the surface of the globe is

exceedingly great, amounting, as we shall soon prove, to over one

kilogramme on every square centimetre of surface, and to about

16,000 kilogrammes on the surface of the body of a man of or-

dinary stature. But since this pressure is exerted equally in all

directions, and since the cavities of the body are filled either by
air or other gases, which exert a pressure on the one surface of

its delicate membranes exactly equal to that exerted on the other,

this great pressure is not perceptible, and indeed was not known
to exist until it was discovered by Torricelli in 1643. If, how-
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Fig. 256.

ever, by any means, we can remove the pressure from one side

only of a membrane, then the pressure on the other side will be-

come evident.

We can readily remove the pressure from the interior surface

of a vessel, by removing the air by means

of an air-pump (175), and thus remov-

ing the fluid medium through which

the pressure is transmitted. For exam-

ple, if we remove the air from the cylin-

drical glass vessel which is represent-

ed in Fig. 255, resting on the plate of

an air-pump, we shall also remove the

pressure from the lower surface of the

thin animal membrane which covers

and closes the cylinder from above.

Then the great pressure on the upper

surface, being no longer balanced, will

exert its full effect, first, by depressing

the membrane, and afterwards by bursting it, if it be not too

strong.

That the pressure of the atmosphere is exerted upwards as

well as downwards, may be further illustrated by means of the

apparatus represented in Fig. 256.

It consists of a glass vessel supported
on a tripod stand, having a large

opening below, and a small tubulature

above. The lower opening is closed

by a bag of India-rubber cloth, as

represented in the figure, and the tu-

bulature is connected with an air-

pump by means of a flexible hose.

On exhausting the air, the bag is

pressed up into the glass vessel with

sufficient force to raise the heavy

weight which is attached to. it by
means of a leather strap. By modi-

fying the apparatus, it is easy to show that the pressure is

exerted, not only upwards and downwards, but also in all direc-

tions. These various forms of apparatus, however, only demon-

strate the existence of pressure. They do not enable us to

measure it.

Fig. 256.
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Fig. 257.

(153.) Buoyancy of the Air. The general fact, that air,

like liquids, buoys up all bodies immersed in it, may be illus-

trated by means of the apparatus

represented in Fig. 257. It con-

sists of a closed globe suspended
to one arm of a delicate balance,

equipoised by a weight suspend-
ed to the other. The two are in

equilibrium in the air, but only

because the globe, being larger

than the weight, is buoyed up

by a greater force. If, now, the

apparatus is placed upon the

plate of an air-pump and covered

with a glass bell, we shall find,

on removing the air, that the

globe will preponderate, as is

shown in the figure. By remov-

ing the air, we increase the ap-

parent weight both of the globe and of the counterpoise by just

the weight of the air displaced by each ; but as the globe is much
the largest, we increase its weight more than that of the smaller

brass counterpoise, and hence the result. If we allow the air

to re-enter the bell, it will buoy up the globe, as before, so much
more than the counterpoise, as to restore the equilibrium.

(154.) Weight of a Body in Air. An important consequence
of the principle just illustrated is evident. The balance does not

give us the true relative weight, TF, of a body, but a slightly dif-

ferent weight, depending on the weight . of air displaced by the

body compared with the weight of air displaced by the brass or

platinum weights used in weighing. As the volume of these

weights is generally less than that of the body, the weight indi-

cated by the balance is almost always too small
;
but when the

volume of the weights is greater than that of the body, the weight

indicated by the balance is too large. When the two volumes

are equal, the balance will indicate the same weight in air as in

a vacuum. It is easy to ascertain the correction which it is

necessary to add to or subtract from the weight of a body in air,

in order to obtain its true weight.

It must be remembered that the brass and platinum weights
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which are used in delicate determinations of weight are only

standard when in a vacuum (64). Let us, then, represent the

various values as follows :

W weight of the body in air as estimated by standard weights, and

also the weight of the standard weights themselves in a

vacuum.

V = volume of the standard weights in cubic centimetres.

V = volume of the body in cubic centimetres.

w = weight of one cubic centimetre of air at the time of the weighing.

W = weight of the body in a vacuum, which we wish to find.

We can now easily deduce the following values :

V w buoyancy of air on the weights.

Vw = buoyancy of air on the body.

W V w = actual weight of standard weights in air.

W Vw = actual weight of body in air.

Since these weights just balanced each other, we have

W Vw = W V w, or W = W + w ( V V). [91.]

The correction w (V F'), which must be made to the weight
determined by a balance in air in order to obtain the weight in a

vacuum, is evidently additive when the volume of the body is

greater than that of the weights, and subtractive when these con-

ditions are reversed. When the volumes are equal, the correc-

tion becomes 0.

In all ordinary cases of weighing, the correction is so small

that it may be neglected without sensible error ;
but it becomes

of the greatest importance in determining the weight of a gas.

In such cases, we have to determine the weight of a large glass

globe when completely vacuous and when filled with gas ;
and it

not unfrequently happens that the buoyancy of the air is greater

than the weight of the gas itself, and it is always a considerable

part of it. If the buoyancy of the air is the same when the

globe is weighed in its vacuous condition and when filled with

gas, it would not affect the weight of the gas, which would be

obtained by subtracting the first weight from the last. But,

unfortunately, the buoyancy is constantly changing; and it is

therefore necessary to determine the amount carefully at each

weighing, and reduce the weights of the globe in the two condi-

tions to what they would be if the experiments had been made

in a vacuum.

23*
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When the temperature is C. and the barometer stands at

76 c. m., and when the air contains neither vapor of water nor

carbonic acid, w is equal to 0.001293 gram. Were the atmos-

phere always in this condition, nothing would be easier than to

calculate the actual weight of a body from the weight found by

weighing in this normal atmosphere. But this is far from being
the case ; for the temperature, the pressure, and the composition
of the atmosphere are changing at each moment, and the value

of w varies with all these atmospheric changes. We shall here-

after show in what way the value of w may be ascertained, at any

given time, when the condition of the atmosphere is known.

It is frequently possible to conduct the process of weighing in

such a way that the correction for the buoyancy of the atmos-

phere, always some-

what uncertain, may
be avoided. For ex-

ample, in weighing
a gas, instead of

equipoising the glass

globe when empty,

by means of ordina-

ry weights, we may
equipoise it by means

of a second globe,

hermetically closed,

and having the same

volume as the first,

in the manner repre-

sented in Fig. 258.

It is evident that in

this case, whatever

may be the buoyancy
of the atmosphere, it

will equally affect both globes, and we shallonly have to consider

the buoyancy of the air on the small weights necessary to restore

the equilibrium after the globe is filled with the gas to be weighed ;

but this is so small that it may always be neglected.

(155.) Balloons. If the weight of a body is less than that of

the gas which it displaces, it is evident that the body will rise in the

gas ; and hence the phenomena of floating bodies, which we have

Fig. 258.
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already studied in the case of liquids (140), must be repeated in

the case of gases. It is not difficult to construct a body which

shall be, taken as a whole, specifically lighter than air, and which

will therefore rise in the atmosphere as wood rises in water. Hy-
drogen gas is 14J times lighter than air, and by enclosing a large
volume of this gas in a light bag made of oiled silk, called a

balloon, we shall have a body which will displace a weight of air

much greater than its own weight. For example, let us suppose
that the balloon, when fully inflated, forms a sphere two me-
tres in diameter. It is easy to calculate that it will contain

4.1887902 m.3 of hydrogen, which will weigh 374.436 gram.

Neglecting the volume occupied by the material of the balloon,

it will displace an equal volume of air, weighing 5,418.75 gram.
The difference between these weights, or 5,044.31 gram., will

represent the excess of the buoyancy of the air over the weight
of the hydrogen ;

and hence, if the balloon and its attachments

weigh less than this, it will, when inflated with hydrogen, rise in

the atmosphere. The difference between the weight of the bal-

loon inflated with hydrogen and that of the air displaced by it is

termed the ascensional force of the balloon. If the balloon is

ten metres in diameter, and weighs 100 kilogrammes, it would
have an ascensional force of 530.5 kilogrammes, and therefore

sufficient to raise a car with several passengers into the atmos-

phere.

In practice, a balloon is never at first more than two thirds filled

with hydrogen ; because, as it rises in the atmosphere, the gas

rapidly expands, and it is necessary to allow for this expansion.

Moreover, the hydrogen used is mixed, to a greater or less extent,

with air and vapor, which greatly increase its weight. These causes

diminish the ascensional force to such an extent, that in practice

the ascensional force of a balloon ten metres in diameter would
not be more than one half of what it is estimated above.

Since the introduction of coal-gas as an illuminating material,
this is almost exclusively used for inflating large balloons. The

specific gravity of this gas is on an average about 0.5, and it is

only, therefore, about twice as light as air. Hence, in order to

obtain the same ascensional force with coal-gas as with hydrogen,
it is necessary to use very much larger balloons. When the spe-

cific gravity of a gas is given, it is easy to calculate the ascensional

force which in any given case may be obtained with it.
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Let us represent by d and d' the specific gravities of air and
the gas to be used, referred to water [58] ; by W, the weight of the

material of the balloon and its attachments; and by F, its volume
when inflated. Then, by [56], we have for the weight of the

gas in grammes Yd', and for the weight of the air it displaces Vd.

Neglecting, for the moment, the weight of the balloon itself, we
should have for the ascensional force F (d d1

) . Subtracting
the weight of the balloon and its attachments, we have, for the

total ascensional force -F,

F= F(d d!}W. [92.]

If the balloon is a sphere of which R is the radius, then we
should have for the value of F, when the balloon was fully in-

flated, it R3

,
and for the value of .F,

F= f 7t R* (d d1

) TF. [93.]

When the gas used is pure hydrogen, d = 0.00129363, and d'

0.00008939. Substituting these values, and also for n its well-

known value, the expression becomes

F= 0.00504431 R3

TF, [94.]

in which R stands for a certain number of centimetres, and W
for a certain number of grammes.
As we live at the bottom of the ocean of air which surrounds

the globe, we cannot, from the nature of the case, imitate with it

the condition of a vessel floating on the surface of the water
;

but with other gases this condition of things may be, at least in a

small way, very nearly approached.
The large fermenting-vats of breweries and distilleries are al-

most constantly filled with carbonic acid gas, which, being heav-

ier than the air, remains in the tank, and has a surface like that

of water, although it is not quite so definite. By exploding a

little gunpowder in the gas, and thus filling it with smoke, the

surface becomes distinctly visible. A very illustrative experiment
can be made at such vats, by allowing soap-bubbles, blown with a

common tobacco-pipe, to fall on the gas thus clouded. They will

for a few moments float on the surface, and illustrate in a most

striking manner the analogy between gases and liquids.
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Differences between Liquids and Gases.

(156.) We shall fail to give an accurate idea of the nature

of a gas, if, after having dwelt upon the analogies between liquids

and gases, we do not point out those qualities which distinguish

these two conditions of matter.

1. Difference of Specific Gravity. The most obvious differ-

ence between gases arid liquids is to be found in their relative-

weight. A litre of water weighs 1,000 grammes, and the weight
of the same volume of other liquids varies from 600 to 3,000

grammes, leaving out of account mercury and other metals, when
in a melted state, which are much heavier. Between these limits

we find almost every possible gradation. One litre of air weighs
1.294 gram., and the weight of one litre of other gases varies

between 0.089 gram, and 20 gram. There is, therefore, a wide

gap between the lightest liquid and the heaviest gas, but yet
this difference is one entirely of degree ; and although this gap
is not filled by any known substance in its normal condition on
the globe, yet Natterer, in his experiments on the condensation of

gases,* must have had atmospheric gas in every degree of density
between its ordinary density and that of water.

2. Compressibility. Gases are also distinguished from liquids

by being far more compressible. When by means of a piston we

attempt to condense a liquid, we find that we can only reduce its

volume very slightly.
*

But this almost insensible diminution of

volume develops a very great elasticity ; for it is only necessary
to reduce the volume one forty-five-millionth to produce a resist-

ance equal to the pressure of our atmosphere. It is different with

gases. When, for example, we press down a piston into a cylinder

containing air (Fig. 51), it is necessary to reduce the volume to

one half in order to double the resistance, and to one third in

order to treble it. As the pressure is increased, the volume of a

gas is diminished almost in the same proportion ;
as the pressure

is diminished, on the other hand, the volume of the gas is

proportionally increased. For this reason, gases are frequently
called compressible, and liquids incompressible fluids

;
but here

again the difference is one of degree rather than of kind.

This difference of compressibility gives rise to an important dif-

*
Poggendorff, Annalen, XCIV. 436.
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ference of condition between the atmosphere, regarded as an

ocean of gas, and the liquid oceans of our globe. As we de-

scend in the ocean, although the pressure increases with great

rapidity, yet the density of the water is not materially increased.

It is very different with the atmosphere. As we rise in this ocean

of gas, the air becomes less dense in proportion as the pressure is

diminished, and when at a height of about 5,520 m. the pressure is

reduced one half, the density is also reduced one half. On the

other hand, when we descend into mines, and the pressure from

above is increased, the density of the air increases in the same

proportion. The atmosphere does not, therefore, like the sea,

consist of a fluid of nearly uniform density throughout, but its

density very rapidly diminishes as we rise above the surface of

the globe. It would not, then, be possible to have a cylin-

drical vessel filled with air of uniform density throughout its

whole height, as we supposed in (151). Such a condition of

things is wholly ideal, and was introduced merely for the sake

of illustration. Were the atmosphere, like the sea, of nearly

uniform density, its height would be only about eight kilome-

tres, instead of forty-seven, as already stated. The pressure
exerted by such an ideal fluid would be precisely the same as

that exerted by the atmosphere ; so that, while merely studying
the pressure on the surface of the earth, we may conceive of the

pressure as exerted by a fluid of uniform density, without com-

mitting any material error
;
but it must be remembered that the

real state of the case is very different. We shall return to this

subject in a future section.

3. Permanent Elasticity. We have already dwelt at some

length on this property of gases, which distinguishes them pre-

eminently from liquids (149) ;
but even here the difference is

not so strongly marked as it would at first sight seem. A
simple experiment will illustrate this point, and at the same

time make the distinction between the two fluid conditions of

matter clearer.

Let us take, then, a volume, F, of water, contained in a vessel

of much greater capacity, and let us suppose that its temperature
is 100, and that it is exposed to a given pressure, for example
of ten atmospheres. If, now, we diminish the pressure succes-

sively by one atmosphere each time, the volume F will increase by
a very small amount, represented by F^i, at each operation. As
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soon, however, as the pressure is reduced to one atmosphere, this

law of expansion ceases abruptly, and the water, without any
intermediate transition, takes a volume 1,200 times greater than

before, changing into a gas having all the properties of air, and

preserving these properties at any pressure less than one at-

mosphere.
We may now reverse this experiment. Let us, then, increase

the pressure upon this gas formed by water
;
we shall find that,

when the pressure is doubled, the volume of the gas will be re-

duced one half, but as soon as the pressure exceeds one atmos-

phere it will suddenly take a volume 1,200 times smaller than be-

fore, and a density 1,200 times greater, collecting in the lower part
of the vessel in a liquid form. After this, it can be compressed
but very slightly by increasing pressures. We have taken, as an

example, water at 100, because the change of state which it

undergoes at this temperature is a familiar fact to every one.

We might have cited sulphurous acid gas, which liquefies at

10, or carbonic acid gas, which liquefies at 78 ; but what-

ever might be the body examined, the result would be the same.

What has now been stated in regard to gases may be summed

up in a few words. They are bodies constituted, like liquids, of

molecules which repel each other, bodies which transmit pressure

equally in all directions, which arrange themselves under the influ-

ence of gravity in strata whose density and elasticity increase as we

descend, which buoy up all bodies immersed in them with a force

equal to the weight of the fluid displaced, and in which the laws

of the equilibrium of floating bodies are reproduced. These ,are

the analogies. On the other hand, they are bodies having a very
small density, obeying a special law of compressibility, and which,
when submitted to a sufficient pressure, change into liquids.*

Such, then, are the characteristic properties of gases ;
but before

studying these more in detail, we must consider the mode by
which the pressure of a gas may be accurately measured.

THE BAROMETER.

(157.) Experiment of Torricelli. Before the middle of the

seventeenth century, the phenomena which we now refer to

the pressure of the air were explained by a principle invented

* We shall hereafter learn that there are some gases which have not been liquefied.
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by the Aristoteleans, namely, that " Nature abhors a vacuum."
These ancient philosophers noticed that space was always filled

with some material substance, and that, the moment a solid body
was removed, air or water always rushed in to fill the space thus

deserted. Hence they concluded that it was a universal law of

nature that space could not exist unoccupied by matter, and the

phrase just quoted was merely their figurative expression of this

idea. When, for example, the piston of a common pump was

drawn up, the rise of the water was explained by declaring that,

as from the nature of things a vacuum could not exist, the water

necessarily filled the space deserted by the piston.

This physical dogma served the purposes of natural philosophy
for two thousand years, and it was not until the seventeenth cen-

tury that men discovered any limit to Nature's horror of a vacuum.

Even as late as 1644, Mersenne speaks of a siphon which shall

go over a mountain, being then ignorant that the effect of such an

instrument was limited to a height of ten metres. This limit

appears to have been first discovered by Galileo. Some Floren-

tine engineers, being employed to sink a pump to an unusual

depth, found that they could not raise water higher than ten me-

tres in the barrel. Galileo was consulted, and he is said to have

replied, that Nature did not abhor a vacuum above ten metres.

However this may be, it appears that Galileo did not understand

the cause of the phenomenon, although he had previously taught
that air has weight ; and it was left for his pupil, Torricelli, to

discover the true explanation. Torricelli reasoned that the force,

whatever it is, which sustains a column of water ten metres high
in a cylindrical tube, must be equivalent to the weight of the mass

of water sustained ; and consequently, if another liquid were

used, heavier than water, the same force could only sustain a

column of proportionally less height. The weight of mercury

being 13J times greater than that of water, Torricelli argued that,

if the force imputed to the abhorrence of a vacuum could siistain

a column of water 10 metres high, it could only sustain a column

of mercury 13J times lower, or about 76 c. m. high. This led to

the following experiment, which has since become so celebrated

in the history of science.

Torricelli took a long glass tube, open -at one end, such as d c,

Fig. 259, and, having filled it with mercury, closed the open end

with his thumb, and, inverting the tube, plunged this end into
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a basin of mercury. On removing his thumb, the mercury, in-

stead of remaining in the tube, fell, as he expected, and after

a few oscillations came to rest at a height of about 76 c. m.
above the level of the mercury
in the basin. The correctness

of his induction having been thus

completely verified, Torricelli

soon discovered the real nature

of the force which sustained both

the water in the pump and the

mercury in his tube.

This experiment excited a

great sensation among the sci-

entific men of Europe ; but, as

might have been expected, the

explanation given of it by Torri-

celli was very generally rejected.

It was opposed to a long-estab-

lished dogma, and Nature's hor-

ror of a vacuum could not be

so easily overcome. The cele-

brated Blaise Pascal, however,

had the sagacity to perceive the

force of Torricelli's reasoning,
and devised an experimentum
crucis which put an end to all

controversy on the subject.
"

If," said Pascal,
"

it be really the

weight of the atmosphere, under which we live, that supports the

column of mercury in Torricelli's tube, we shall find, by trans-

porting this tube upwards in the atmosphere, that in proportion
as it leaves below it more and more of the air, and has conse-

quently less and less above it, there will be a less column sus-

tained in the tube, inasmuch as the weight of the air above the

tube, which is declared by Torricelli to be the force which sus-

tains it, will be diminished by the increased elevation of the

tube." *
Accordingly, Pascal carried the tube to the top of a

church-steeple in Paris, and observed that the height of the

mercury in the tube fell slightly ; but, not satisfied with this

Fig. 259-

* Lardner's Hand-Book of Natural Philosophy.

24
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result, he wrote to his brother-in-law, who lived near the high
mountain of Puy de Dfane, in Auvergne, to make the experiment

there, where the result would be more decisive. " You see," he

writes,
" that if it happens that the height of the mercury at the

top of the hill be less than at the bottom, (which I have many
reasons to believe, though all those who have thought about it

are of a different opinion,) it will follow that the weight and

pressure of the air are the sole cause of this suspension, and not

the horror of a vacuum : since it is very certain that there is

more air to weigh on it at the bottom than at the top ;
while we

cannot say that Nature abhors a vacuum at the foot of a moun-

tain more than on its summit." M. Perrier, Pascal's cor-

respondent, made the observation as he desired, and found a

difference of nearly eight centimetres of mercury,
"
which," he

replies,
" ravished us with admiration and astonishment." *

Pascal still further varied and extended the original experi-

ment of Torricelli, and deduced the theory of the equilibrium of

liquids and gases, which he left almost perfect.

(158.) Theory of the Barometer. It is hardly necessary

to state that the tube of Torricelli is the instrument which is

now so well known as the Barometer. This name, indeed, is de-

rived from two Greek words, fiapv?
and

nt-Tpov,
which indicate

its use as a measure of the pressure of the air. The theory of

the barometer can be readily deduced from the principles of the

equilibrium of fluids, already established. The mercury is sus-

tained in the tube by the pressure of the air on the surface of

the mercury in the basin. Let us consider how much of this

pressure is effective in producing the result.

Consider, then, a section made across the tube at the level of

the mercury in the basin. All the liquid below this level is evi-

dently in equilibrium (130 and 131). Represent the area of

the surface of the mercury in the basin by S', and that of the

section of the tube by S. The pressure, 4F', exerted by the air on

',
is transmitted through the liquid mercury to S. The pressure

thus exerted on the under face of the section will be, by [77], as

many times less than f as S is less than ',
or :

' = S : /S',

and f=f . For example, if S'= 100c^2 and S= 1 cTml2
,

* Whewell's History of the Inductive Sciences, Vol. II. pp. 67, 68.
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then =f yj-g-.
The pressure, therefore, which is exerted

by the air on the lower face of this section is the same as

that it would exert if applied directly to the section itself.

As this pressure just sustains a column of mercury whose

height we may represent by H, it is evidently just equal
to the pressure exerted by this column on the upper side

of the same section. But by [78] this pressure is equal to

H. S. (Sp.Gr.). Substituting, then, for Sp. Gr., the value for

mercury at 0, or 13.596, we have for the pressure of the air on a

given surface, $, the value,

f = 13.596 . S . H, [95.]

in which H denotes the height of the mercury in the barometer

at 0. For any other height we should have '= 13.596 . S . H',

and, comparing the two equations, we obtain

:' = H:H'; [96.]

that is, the pressure of the air on a given surface is proportional

to the height of the barometer column. We may, therefore, use

the height of the barometer as a measure of the pressure, in the

same way that we use an arc as a measure of an angle, or weight
as a measure of mass. The height is not the same sort of quan-

tity as the pressure, but it is sufficient for any measure that it

should be proportional to the quantity measured. It is there-

fore customary to speak of the pressure of the air as amounting
to so many centimetres of mercury ; meaning thereby, that it

will support a column of mercury of that height. The use of

the barometer is not confined to measuring the pressure exerted

by the atmosphere. We may use it for measuring the pressure
exerted by any gas ;

and here, as before, we speak of the pres-

sure as amounting to so many centimetres of mercury. When
the pressure is equivalent to seventy-six centimetres of mercury,
we say that it is equal to one atmosphere. When two, three, or

four times as great as this, we say that it is equal to two, three,

or four atmospheres.
It is always easy to reduce pressure expressed in centimetres

of mercury to weight. For this purpose, it is only necessary to

substitute in [95] the values of H and S in the given case, and

the result will be the amount of pressure in grammes. For ex-

ample, in the air the height of the barometer column is, on the
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average, 76 c. m. Substituting this value, and also for S
9
1 cTm.*,

we obtain

= 1,033.296 gram. ; [97.]

which is the pressure exerted by the atmosphere on every square
centimetre of surface. The height of the barometer column varies

on the surface of the earth from about 72 c. m. to 78 c. m., and
hence the pressure on the square centimetre varies from 978.9

grammes to 1,060.5 grammes. The total pressure exerted by the

atmosphere on large objects is therefore exceedingly great ; that

on a man of ordinary stature amounts, as already stated, to about

16,000 kilogrammes.

Having studied the theory of the barometer, we will now ex-

amine a few of the most useful forms of the instrument, pre-

mising that the essential parts are a tube over seventy-six

centimetres long, a basin of mercury, and a graduated scale

for determining the height of the column.

(159.) RegnauWs Barometer. The simplest and most accu-

rate form of the barometer is the one represented in Fig. 260,
which was invented by Regnault. The basin of mercury is

formed by an iron trough, which is divided by a partition into

two parts ;
but the partition does not rise to the top of the trough,

and is covered by the mercury which fills the basin. The basin

is supported on a shelf, attached to the lower part of a wooden

plank, to which the glass tubes are securely fastened by means
of clamps. This plank is itself immovably fastened to a brick

wall. The barometer tube at the left of the figure dips into the

left-hand compartment of the trough. The tube on the right is

called a manometer, and its use will soon be explained. The

height of the mercury in the barometer is measured by means of

the cathetometer, represented on the right-hand side of the fig-

ure, which is placed on a firm support in front of the instrument.

In order to obtain the measure with the greatest possible accu-

racy, a vertical screw, M, with two points and of a known length,

is attached to the basin, as represented in the figure. At the mo-

ment of observation, we lower the screw by turning it on its axis

until the lower point just touches the mercury. This contact can

be obtained with the most perfect precision, for until it takes place

the observer sees at the same time the point and its image reflect-

ed by the mercury. The two seem to approach each other until
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contact is attained, and the surface of the mercury is seen de-

pressed the moment this point is passed. The contact obtained,

Fig. 260.

we measure the distance, with the cathetometer, between the

upper surface of the mercury in the tube and the upper point of

the screw, and we have only to add to this length the known

length of the screw. Of all barometers this one is the simplest,
and of all methods of measuring the height of the column the

one just described is the best. We thus measure directly the

vertical height, and it is no matter whether the instrument is in-

24*
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clined or not. We thus avoid instrumental errors
; and, more-

over, with a good cathetometer, the difference of level can be

determined within the fiftieth part of a millimetre.

(160.) Barometer of Fortin. It is not always possible to

fix a barometer permanently to a wall in the way just described.

For example, in using the instrument

for measuring the heights of moun-

tains, it is necessary that it should be

portable ;
and without diminishing

materially the accuracy, it is impor-
tant to simplify the method of meas-

uring the height of the mercury
column. The barometer of Fortin

(Fig. 261) satisfies completely all

these requirements. The glass tube

is enclosed, for protection, in a brass

case, towards the upper part of which

two longitudinal o-

penings are provided

opposite to each oth-

er for observing the

height of the mercu-

ry column, by means

of a scale graduated
on the case, as rep-

resented in Fig. 262.

A vernier,B C, moves

up and down in the

opening, and its po-

sition can be care-

fully regulated by
means of the rack

and pinion work represented in the figure. To the lower end of

the case is fastened, by a screw, the reservoir of mercury, in

which the glass tube dips, as represented in Fig. 263. This

reservoir is formed principally by a cylinder of glass cemented at

both ends to wooden caps surmounted by brass mountings, which

last are kept in place by three long screws (Fig. 261). The

bottom of the reservoir is formed by a leathern bag, m n (Fig.

263), which can be raised or lowered by the screw C. To the

Fig. 261. Fig. 262. Fig. 2G3.
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cover of the cylinder is fastened an ivory pin, a, whose point

corresponds exactly to the zero of the scale graduated on the

case. The reservoir is closed above, also, hy a leathern cover,

firmly tied both to the glass tube and the

wooden cap, which, while it prevents the mer-

cury from escaping when the barometer is

reversed, nevertheless gives free passage to

the air. All the parts of the reservoir are

represented in Fig. 264, in perspective, un-

screwed and inverted.

In using this barometer, it is first suspended

by the ring (7, so that the instrument may
swing freely, when, like a plumb-line, it will

come to rest with the scale perfectly vertical.

Next, the level of the mercury in the reservoir is

brought to correspond with the point of the

ivory pin, by turning the screw C (Fig. 263) in

one direction or the other. This coincidence

can be attained with great accuracy in the way
already described in the last section. Since

the level of the mercury in the basin now co-

incides with the zero of the scale graduated on

the brass case, it only remains to read off the

height of the column of the mercury in the tube

by means of the scale at its side. For this pur-

pose, the vernier is raised or lowered by means

of the thumb-screw until its lower edge is just

tangent to the convex surface of the mercury
in the tube (Fig. 262). This adjustment can

also be obtained with great accuracy by sus-

pending the barometer in front of a light wall,

sighting across the front and back edge of the

brass tube carrying the vernier, which moves
within the brass case of the instrument. It

only remains, then, to read on the scale the position of the ver-

nier, to obtain the height of the barometer within a tenth of a

millimetre.

A great advantage of this form of barometer is the facility and

safety with which it may be transported. By raising the screw C

sufficiently, the whole interior of the tube and reservoir may be

Fig. 264.
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filled with mercury, and then the instrument may be reversed

and transported from place to place without danger ;
and even if

the tube is accidentally broken, it is always possible, with a little

skill, to replace it.

A thermometer is always attached to the barometer, since

the height of the mercury column varies slightly with the tem-

perature ; for heat, by expanding the mercury, changes slight

ly its specific gravity, and on this the height of the column

depends. The standard temperature which has been adopted
is C., and all barometrical observations are corrected so as to

reduce them to the standard temperature. A table for applying

this correction will be found in most works of meteorology,* and

the method of calculating it will

be explained in the chapter

on Heat. A second correction

is also required for capillarity,

the nature of which will be

explained in a future section.

This correction, however, is a

constant quantity for the same

instrument, and is generally

allowed for by the instrument-

maker f in adjiisting the scale

of the instrument.

(161.) Common Barometer.

Having described at length

the two most useful and accu-

rate forms of the barometer, it

will not be necessary to do

more than allude to the nu-

merous modifications of the

instrument which have been

devised by Gay-Lussac and

other physicists, for the pur-

pose of obviating the correc-

tion for capillarity. They will Fig ' 265 ' Fig266'

be found described at length in the large works on physics.

A very common form of barometer, which is much used as a

* See Guyot's Meteorological Tables, published by the Smithsonian Institution,

t Good barometers, like the one described, are made by Green, of New York.
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weather-indicator, is represented in Fig. 265. The glass tube

has the form of a siphon, as represented in Fig. 266. When the

mercury falls in the barometer, it must of course rise to a pro-

portional height in the short arm of the siphon, and it raises a

float resting upon it. This float is fastened to a cord which

passes round a wheel, O, and is attached to a weight, P, on the

other side. The motion of the float thus communicates motion

to the wheel, and this, in its turn, moves the index over the dial-

plate of the instrument. Such barometers admit of no precis-

ion, and are of little value except as ornaments.

A variety of barometer depending on the laws of elasticity

has already been described (104), and is represented in Fig. 267.

Another form of barometer, dif-

ferently constructed, but depend-

ing on the same principle, is the

aneroid* barometer, invented by
M. Yidi. Both of these barome-

ters, on account of their small

volume and the absence of any

fragile material in their construc-

tion, are very portable. They are

very sensible, and more ^regular
in their indication than the com-

mon mercury barometers, especial-

ly when the differences of pressure
are not great ; but they cannot be

relied upon where high scientific

accuracy is required. They can, however, be highly recom-

mended as common house or ship barometers. Since the elas-

ticity of the metal of these barometers is liable to change with

long use, it is important to adjust the instruments from time to

time, by comparing them with a standard mercury barometer.

In case of disagreement, they can easily be made to accord, by

turning a screw provided for the purpose.

(162.) Uses of the Barometer. The barometer is, without

question,.one of the most useful instruments in the hands of the

chemist. The volumes of the gases on which he experiments
are liable to considerable variations, depending on changes in the

Fig. 267.

* From a and vepos, without moisture, since the instrument is constructed without

any liquid.
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pressure of the atmosphere ;
the boiling points of liquids are also

materially influenced by them
;
and it is therefore essential to

observe the height of the barometer at each experiment, and to

correct the results by reducing them to that which would have

been obtained had the barometer stood at 76 c. m. at the time of

observation. These uses of the barometer will all be explained
in future sections of this volume, and it is not therefore neces-

sary to dwell upon them here. As a meteorological instrument,
the barometer is the most important means of investigating the

Jaws of the changes which are constantly taking place in the at-

mosphere, a problem which is of the greatest interest to man-

kind. This atmosphere, as has been already stated, may be

regarded as a great liquid sea, and its waves are constantly roll-

ing over our heads. When the crest of one of its immense tidal

waves is over the barometer, the instrument rises, and when the

depression follows, the barometer falls
;
and thus, by watching

the height of the mercury column, we are able to follow changes
in the atmosphere which would otherwise escape notice. For

many years the height of the barometer has been registered at

stated hours, night and day, at a large number of meteorological
stations all over the world

;
and although but few general results

have been obtained, yet sufficient has been learned to warrant us

in expecting much in the future.

The mean height of the barometer during a year at any one

place is constant
;
but it varies at different latitudes, gradually

increasing from the equator to the thirty-sixth parallel, and thence

diminishing to the pole. During the same day, the barometer

undergoes very regular oscillations, which are greatest at the

equator. According to Humboldt, at the equator there are two

maxima, at ten o'clock, morning and evening, and two minima,
at four o'clock, morning and evening ;

the amplitude of the os-

cillation during the day amounting to 2.55 m.m., but that during
the night, from four o'clock in the evening to four o'clock in the

morning, being only 0.84 m. m. The same oscillations are no-

ticed all over the torrid zone ;
but in the temperate zone they

have a less amplitude, and are more masked by accidental

changes. But nevertheless, by comparing the means of a large

number of observations continued during a long interval, they

can be detected, and nearly at the same hours. It has been

further discovered that their amplitude is variable, being greater

in summer than in winter.
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Besides these regular oscillations, the barometer in temperate

climates is liable to apparently irregular changes, produced by
storms in the atmosphere. As a general rule, it may be stated

that during fair weather the barometer is high, while it is gen-

erally very much depressed during a rain-storm. So, also, a

sudden fall of the barometer usually indicates the approach of a

storm ; and, on the other hand, the clearing up of a storm is

frequently preceded by a rise in the mercury column. Hence

one of the most valuable uses of the instrument, in forewarning

the navigator of the approach of a storm. Those who have

studied the indications of the barometer know that they are fre-

quently at fault, and that they are only probably correct. It is

hardly necessary to add, that the words "
Fair,"

"
Rainy," etc.,

which are frequently placed against certain points of the scale

of common barometers, have no further foundation in fact than

what has just been stated, and are therefore simply useless.

Sufficient has now been said to show the importance of baromet-

ric observations in meteorology, and we must refer to the works

on this science for the details of the subject.

Mariettas Law.

(163.) Statement of Mariotte's Law. We have already stated

that gases obey a special law of compressibility. This law was

discovered independently by the Abbe* Mariotte in France, and

by the famous English philosopher Boyle, during the last half

of the seventeenth century. It may be thus stated: The vol-

ume of a given weight of gas is inversely as the pressure to

which it is exposed ; that is, the greater the pressure, the smaller

is the volume, and the less the pressure, the larger is the volume.

This may be illustrated by an India-rubber bag holding one litre

of air or any other gas. This is exposed to a pressure, under the

ordinary conditions of the atmosphere, of a little over one kilo-

gramme on every square centimetre of surface. If this pressure
is doubled, the volume of the bag will be reduced to one half; if

trebled, to one third, etc. On the other hand, if the pressure is

reduced to one half, the volume will be doubled
;

if to one third,

the volume will be trebled,* etc. The principle is expressed in

mathematical language by the proportion,

V : V = H1
: H, [98.]

* We suppose the bag to have no elasticity.
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in which H and H' are the heights of the barometer which meas-

ure the pressure to which the gas is exposed under the two

conditions of volume F and V.
It follows from [52], that the density of a given weight of

gas is inversely as the volume, or F : V = D' : D
;

and by

comparing this proportion with the last, we obtain

D : D' = H : H'
; [99.]

or the density of a gas is proportional to the pressure to which

it is exposed. Moreover, since the weight of a given volume of

gas is proportional to the amount of matter which it contains (its

density), and its density, as just proved, proportional to the pres-

sure, it follows that the weight of a given volume ofgas is directly

as the pressure to which it is exposed; or

TF : W = H : H'. [100.]

These three proportions are very important, and will be con-

stantly referred to in the following pages. The student must be

careful to notice, that in [98] the weight of gas is supposed to

be constant and the volume to vary, and in [100] the volume is

supposed to be constant and the weight to vary. It is unneces-

sary to add, that, as the volumes of gases vary also with the

temperature, the law of Mariotte is true only so long as the

temperature remains constant.

The variations in the pressure of the atmosphere, amounting
at times to one tenth of the whole, necessarily cause equally great

changes in the volume of gases which are the objects of chemical

experiment. Hence, in order to compare together different vol-

umes of gas, it is essential that they should have been measured

when exposed to the same pressure. A standard pressure has

therefore been agreed upon, that measured by seventy-six cen-

timetres, to which the volumes of gases measured under any
other pressure must always be reduced.

(164.) Experimental Illustration. The law of compressibil-

ity of gases may be readily illustrated by the following experi-

ments, which were devised by Mariotte himself.

For pressures greater than the atmosphere, we use the appara-

tus represented in Fig. 268, which consists of a glass tube bent

in the form of a siphon, closed at the end jB, and fastened to a

wooden support. At the side of each arm of the bent tube is
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placed a graduated scale, the zero point of the two scales being on

the same horizontal line. The scale at the right of the long arm

indicates centimetres, and measures the heights of the mercury

columns, while that at the left of the short

arm measures the volume of confined gas in

the closed end of the tube. In commencing
the experiment, mercury is poured into the

tube at the end C, and by inclining the

apparatus is brought, with a little manipu-

lation, to stand at the zero point on both

scales. The volume of air confined in

the tube A B is now evidently exposed to

the pressure of the atmosphere, which is

equivalent to about 76 c. m. of mercury.

If, now, we pour mercury into the tube C
until the difference of level of the mercury
in the tubes is 76 c. m., the confined air

will be exposed to a pressure of two atmos-

pheres, and its volume will be reduced one

half, as is represented

in the figure. If the

tube were sufficiently

long, so that we could

make the difference of

the two columns equal
to 152 c. m., the vol-

ume would be reduced

to one third. Were the

difference made equal

to three or four times 76 c. m., the volume

would be reduced to one fourth or one fifth.

For pressures less than an atmosphere,

we use the apparatus represented in Fig.

269, consisting of a barometer tube divided

into cubic centimetres, and a deep mercury

cistern, to the side of which is fastened a

scale divided into centimetres for meas-

uring the differences of level. The experi-

ment is commenced by filling the barom-

eter tube nearly to the top with mercury,
25

Fig. 268.

Fig. 269.
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leaving a space of only ten cubic centimetres filled with air.

The tube, being closed with the thumb and inverted, is sunk in

the mercury cistern until the mercury in the tube and the cistern

stands at the same level and at the tenth division on the tube.

The confined air in the tube, measuring in volume ten cubic

centimetres, is now evidently exposed to the pressure of the at-

mosphere, which we will suppose equivalent to 76 c. m. of mer-

cury. If, now, we raise the tube in the reservoir, the level of the

mercury in the tube will rise above that in the cistern, as rep-

resented in the figure. The confined air is now exposed to a less

pressure than 76 c. m. by exactly the difference of level
; because,

as can easily be seen, the pressure of the atmosphere is in part

expended in supporting the column of mercury, and only the re-

mainder of its pressure is exerted on the confined air. When,
therefore, the height of the column of mercury in the tube above

the mercury level in the cistern is 38 c. m., the pressure on

the confined air is 76 38c.m., or one half of an atmosphere,
and its volume will be found to have doubled. When the differ-

ence of level is equal to 50.666+ c. m., the pressure on the con-

fined air is 76 50.666+ = 25.3+ c.m., or one third of an

atmosphere, and its volume will be found to have trebled. When
the difference of level is equal to 57 c. m., the air is exposed to

the pressure of only one fourth of an atmosphere, and its volume

will be found to have quadrupled.

(165.) History of Mariotte's Law. The law of the com-

pressibility of gases, as established by Mariotte,* was for a long
time received as absolute and invariable; for although Boyle f

and Musschenbroek J found that the compressibility diminished

with the pressure, on the other hand Sulzer and Robinson
||

found that it increased with the pressure ; and these obviously

inaccurate results do not appear to have diminished the general

confidence in the law. In 1826, Oersted and Swendsen ^f re-

peated the experiments of Mariotte, extending their investigation

* CEuvres de Mariotte, (La Haye, 1740,) Tom. I. p. 152.

t Boyle's Defence of his Doctrine touching the Spring and Weight of the Air.

Works, Vol. I. (folio.)

| Cours de Physique, (Paris, 1759,) Tom. III. p. 142.

Me'moires de 1'Academic de Berlin, 1753, p. 116.

|| System of Mechanical Philosophy, Vol. III. p. 637. Also, Encyclopaedia Britan-

nica, Article Pneumatics, Vol. XVI. p. 700.

1 Edinburgh Journal of Science, Vol. IV. p. 224.
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to pressures of eight atmospheres, and apparently confirmed the

accuracy of the law ;
for although the numbers they obtained in-

dicate a greater compressibility than would accord with the law,

yet they attributed the differences to errors of observation. They
afterwards extended their investigation to greater pressures than

eight atmospheres ;
but the method of experimenting* which they

employed was too rude to establish the absolute accuracy of the

law, although it was sufficiently exact to show that the law was

approximative^ true up to very high pressures.

At the time when the law was thus universally admitted as

absolutely accurate, M. Despretz f investigated the subject from a

new point of view. Without questioning the law in regard to

air, he merely sought to ascertain whether all gases obeyed ex-

actly the same law, or whether, when submitted to the same

pressure, they indicated different degrees of compressibility.

His experiments were conducted in the following way. He took

a number of cylindrical tubes, closed at the top and of the same

height, and filled one of them with air, but the rest with different

gases. These were then arranged side by side, standing in a res-

Fig. 270. Fig. 271.

ervoir of mercury, and supported against a graduated scale, as

represented in Fig. 270. The apparatus thus arranged was in-

* They condensed the air, by means of a force-pump, into the chamber of an air-gun.

Then by means of a balance they determined the weight of air introduced, and, knowing
the volume of the chamber, they easily calculated its density. Lastly, they determined

the elastic force of the condensed air with the aid of a safety-valve. This valve was

closed by a weight acting on the arm of a lever
; and in the experiments the weight

was moved along the arm until the elastic force of the confined air raised the valve.

t Bullet, des Sciences, Sect. I. Tom. VIII. p. 325. Also, Annales de Chimie et de

Physique, 2 e
SeVie, Tom. XXXIV. pp. 335, 448.
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troduced into a glass cylinder full of water, similar to that repre-
sented in Fig. 271. This cylinder is connected with a small force-

pump, by which water may be forced into it, and a pressure thus

exerted on the surface of the mercury in the basin. Before com-

mencing the experiment, the level of the mercury is made the

same in all the tubes as in the basin, so that the gases they
contain are submitted to the pressure of the atmosphere. On

increasing the pressure by forcing water into the cylinder, it is

evident that, if the gases all obeyed Mariotte's law, they would

all suffer the same amount of condensation
;
for example, when

the pressure had reached two atmospheres, the volume of each

gas would be reduced to one half, and so on. Moreover, since

the tubes are perfectly cylindrical, an equal condensation would

be indicated by an equal rise of the mercury ; and therefore, if

the law were general, the level of the mercury would be the

same in all the tubes, however great the pressure. It is evident,

also, that, if the law is not absolutely general, the apparatus was

exceedingly well calculated to detect the discrepancy ; since a

very slight difference in the level of the mercury could easily be

distinguished. In fact, Despretz found, on increasing the pressure

progressively, that the mercury rose in each tube, but rose un-

equally. Carbonic acid gas, sulphide of hydrogen, ammonia gas,

and cyanogen, were compressed under the same circumstances

more than air, and the difference increased as the pressure was

augmented. With hydrogen, on the other hand, a contrary effect

was observed. This gas acted like air until the pressure rose

to fourteen atmospheres ;
but under greater pressure than this

it was compressed less than air, and consequently maintained a

greater volume.

These experiments, in which errors are almost impossible,

since the gases are placed under identically the same conditions,

proved that the law as enounced by Mariotte is not universal,

and that each gas has a special law of compressibility.* More

recently these results have been confirmed by Pouillet,f who

constructed an apparatus on a similar principle, by which he was

enabled to continue the experiment up to very great pressures.

* Oersted, loc. cit., had previously noticed that sulphurous acid gas was condensed

more than air, when submitted to the same pressure in an apparatus very similar to that

described above ; but he attributed the phenomena he noticed to a partial condensation

of the gas to a liquid, and not to a deviation from Mariotte's law.

t Pouillet, Elements de Physique, 5me edition, Tom. I. p. 339.
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The experiments of Despretz had proved that the law of Mari-

otte was not general ;
but it was still supposed to hold true of air,

and of the gases of which air consists. This opinion was soon

after apparently confirmed by the celebrated investigation of

Arago and Dulong on the elastic force of steam at high temper-

atures, made under the direction of the French Academy of Sci-

ences, at the request of the government.
As a preliminary to the main object, these distinguished physi-

cists determined the amount of diminution of volume of at-

mospheric air under increasing pressure up to twenty-seven

atmospheres. The method which they employed was precisely

the same as that of Mariotte. The volume of the air was meas-

ured in a vertical glass tube one hundred and seventy centimetres

long, graduated into parts of equal capacity, and forming the short

arm of an inverted siphon. The pressure was exerted by means

of a column of mercury in a glass tube twenty-six metres high,

forming the longer arm of the siphon ; and it was determined by

measuring the difference of level of the mercury in the two tubes.

Although this apparatus was precisely similar in principle to

that of Mariotte, it was a vast improvement upon it, and would

stand in the same relation to Mariotte's simple tube that a mod-
ern chronometer does to a common watch. If we had space, it

would be interesting to describe the apparatus in detail, in order

to illustrate the advance which was made in experimental science

during the century and a half which had elapsed since the death

of Mariotte in 1684 ; but we must refer the student to the origi-

nal memoir,* which was presented to the French Academy of

Sciences on the 30th of November, 1829.

Arago and Dulong made three different series of observa-

tions. In each they commenced with the gas in the measuring-
tube under the pressure of an atmosphere, and condensed it

progressively by increasing the column of mercury in the long
tube until it attained the height of several metres ;

and after

each increase of pressure they measured the volume of the gas
and the difference of level of the mercury in the two tubes.

In one of these series of experiments, the temperature of the gas
was kept constant (at 13) during the whole time, and the pres-

* Memoires de 1'Academic des Sciences, Tom. X. ; and Annales de Chimie et de

Physique, 2< Serie, Tom. XLIII. p. 74.

25*
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sure increased to twenty-seven atmospheres. It was the best

of the three, and we have copied the results in the following
table :

Pressure in

Atmospheres.
(Approxi-
mate.)
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with the pressure, as would naturally be expected, if they were

owing to an actual deviation from the law.

As in any investigation of natural phenomena it is impossible to

measure quantities with absolute accuracy, a limited amount of

error in the observations is to be expected ;
and since the differen-

ces just mentioned are very small, it was natural to conclude that

they would have disappeared if the measurements could have been

made with absolute accuracy. So concluded Dulong and Arago,
and it was generally conceded that the validity of the law of

Mariotte in regard to air had been fully established by their in-

vestigations. There were, nevertheless, strong grounds for ques-

tioning the accuracy of this conclusion. In the first place, there

was no reason, in the nature of things, for supposing that the law

of Mariotte was absolutely true
;
and since it was not exact in

the case of so many gases, it was reasonable to conclude that it

was not absolutely so in the case of the air. In the second place,

the volumes observed by Dulong and Arago were in every case less

than the calculated volumes, a fact not sufficiently accounted for by
the construction of their apparatus, though they were inclined to

believe that it was. Then, lastly, their method of experimenting
was open to serious objections. They measured the volume of the

air, by means of a graduated scale at the side of the tube, with a

degree of accuracy which was evidently entirely independent of the

volume occupied by the gas in the tube, whether large or small.

At the commencement of the experiment, this volume occupied
a length of nearly two metres ; and hence any error which could

be made in reading the scale would be an insensible portion of

the whole
; but when, at the end of the experiment, the pressure

was equal to thirty atmospheres, the volume occupied in the

tube a length of only one fifteenth of a metre, so that the same

error in reading the scale would now correspond to a portion of

the whole volume thirty times as great as before, and might be

very important.
The results of Dulong and Arago were not destined long to re-

main the last word of physical science on this subject. The French

government, in 1841, ordered a revision of the principal laws

and numerical data connected with the theory of the steam-

engine. This work was intrusted to Victor Regnault, and the

results of his investigation occupy nearly the whole of the twenty-
first volume of the Memoirs of the French Academy of Sciences.
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This volume is a monument of scientific industry and skill, and

marks an epoch in the history of physical science. Among the

other numerical data, Regnault carefully redetermined the

amount of diminution of volume of atmospheric air under in-

creasing pressure. He repeated the experiments of Dulong and

Arago with a greatly improved apparatus, and extended his in-

vestigations to other gases. It will not be possible, in this text-

book, to enter into a description either of the method or of the

apparatus employed. Suffice it to say, that, although they were

similar in general to those adopted by Dulong and Arago, they
differed in one important detail. Instead of keeping the quan-

tity of the gas in the measuring-tube constant during the whole

experiment, as his predecessors in the same line of investigation

had done, he continually forced fresh gas, by means of a condens-

ing-pump, into the measuring-tube as the pressure increased, and

thus had the volume of gas in the tube the same preparatory to

each measurement. The apparatus was so delicately constructed,

that he could measure the difference of level of the mercury in the

two tubes to nearly the half of a millimetre, and also the volume

of the gas in the measuring-tube with as great an accuracy at the

highest as at the lowest pressures. We would most earnestly

recommend the student to examine the original memoir of

Regnault,* as one of the best examples of a successful scientific

investigation on record. From the results which Regnault ob-

tained, the following table has been calculated :

Volumes.
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twentieth of its primitive volume. It is evident, that, if Mari-

otte's law were invariable, it would require, in the case of any gas,

pressures corresponding to columns of mercury respectively five,

ten, fifteen, and twenty metres high to produce this result. Now,
in the table, opposite to each volume, are given the heights of

the columns of mercury in metres, which are actually required,

as deduced from the experiments of Regnault on air, carbonic

acid, and hydrogen. In the case of air and carbonic acid,

it will be noticed that less pressure is required than that indi-

cated by the law. In the case of hydrogen, on the other hand,

more is required. We might put these results in a form simi-

lar to that of the table on page 294, and give opposite to each

pressure the observed volume and the calculated volume. It

would then appear that air and carbonic acid are condensed

more by a given pressure, and hydrogen less, than the amount

required by Mariotte's law.

It appears, then, from these experiments, that Mariotte's law is

not an exact expression of the truth, even for air. The deviation

from the law in the case of air, however, is exceedingly small,

and it required all the precautions with which Regnault guarded
his experiments to detect and measure it. In a theoretical point

of view, this deviation is of the greatest importance ; but in the

practical application of Mariotte's law in the manometer, and in

the determination of the volumes of gases, it may be entirely

overlooked.

By carefully examining the table on page 296, it will be noticed

that the deviation from the law, in the case of all three of the

gases, increases rapidly with the increase of the pressure. This

is the general law in regard to all gases which have been studied.

Hence we may conclude that, as the pressure diminishes and the

gas expands, the deviation from the law of Mariotte becomes

gradually less, until, at an infinite degree of expansion, this law

would be the exact expression of the truth. Regnault did not,

however, extend his experiments to pressures less than that of

the atmosphere, because the precision of his method was not

sufficient to detect at such pressures any deviation from the

law.

The table will also lead us to another important conclusion.

On comparing the numbers of hydrogen and of air, it will be

found, as we have already remarked, that they deviate from
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the law of Mariotte in opposite directions. Starting from a

state of infinite expansion, at which both would exactly obey,
as just stated, the law, it would be found, on gradually in-

creasing the pressure, that the volume of the air diminished in a

greater proportion, but that of hydrogen in a less proportion, than

the pressure. Here, then, are two gases, one varying from the

law on one side, and the other on the opposite side. Between

these two we may conceive of a gas which should have a com-

pressibility exactly conforming to the law. This hypothetical

gas being taken as the limit, we have on the one side a class of

gases, comprising air, nitrogen, oxygen, carbonic acid, etc., which

have a greater and constantly increasing compressibility, and on

the other side a single gas, hydrogen, forming a class by itself,

and having a less and constantly diminishing compressibility.

The law of Mariotte may, therefore, be regarded as a limit, not

realized in nature, from which the different gases deviate on

either side more or less, according to their nature, as well as ac-

cording to the pressure to which they are exposed.
Some experiments of Kegnault seem to show that the class to

which a gas belongs depends upon the temperature. He noticed

that, although carbonic acid, as shown by the table, deviates very

markedly from the law of Mariotte at the temperature of 0, yet

that it conforms almost precisely to it at the temperature of 100.

He also noticed a similar fact in regard to air, which was found

to deviate from the law much less at an elevated temperature
than at the ordinary temperature of the atmosphere ;

and he

concludes that a temperature could easily be attained, at which

the deviation would become insensible to our means of observa-

tion. He even thinks it probable, that, at a very high tempera-

ture, the air would again deviate from the law of Mariotte, but

in the opposite direction, namely, that in which hydrogen devi-

ates at the ordinary temperature.*

Generalizing these observations, it is supposed that the same

would be true of all the gases belonging to the first class. As

the temperature is increased, it is supposed that their compres-

sibility would gradually diminish, and that they would finally

conform exactly to Mariotte's law, at different temperatures,

determinate for each one. If the temperature were pushed

* Memoires de 1'Acade'mie des Sciences, Tom. XXI. p. 403.
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beyond this limit, it is supposed that they would deviate anew

from the law, but in an opposite direction, passing over into

the class of gases of which at the ordinary temperature we have

but one example, hydrogen. On the other hand, since hydrogen

possesses at the ordinary temperature of the air the character

which those gases have at a high temperature, it is natural to

conclude that, by lowering the temperature sufficiently, we should

bring this gas to the condition in which they exist at the ordinary

temperature. We should expect to find, that, at a certain degree

of cold, it would conform exactly to the law of Mariotte ;
and that,

at a still lower temperature, it would deviate from that law again,

but in an opposite direction. It must be admitted, however, that,

although these conclusions are in conformity with the analogies

of science, they are based upon too slight experimental data to

make them of much value
;
and further experiments on the com-

pressibility of gases at high temperatures are among the most

important desiderata of this branch of science.

Within the last few years, further experiments on the condensa-

tion of air, nitrogen, oxygen, hydrogen, and oxide of carbon have

been made by Natterer with a very powerful condensing-appara-

tus, with which he has been able to exert a pressure of nearly three

thousand atmospheres. Even with this immense pressure, he did

not succeed in condensing these gases to liquids ; but, on the

contrary, he found that the compressibility in all the five cases

was less than that required by Mariotte's law. From his results,

the following table * has been calculated by interpolation :

Pressure in

Atmospheres.
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Opposite to the number of atmospheres of pressure is given for

each of the five gases the number of volumes which are con-

densed by the different pressures into one volume. In other words,
these numbers represent the number of volumes into which one

volume of the condensed gas would expand, if allowed to expand

freely under the pressure of the atmosphere. If the gases fol-

lowed the law of Mariotte, the number of volumes would always
be equal to the number of atmospheres of pressure. According
to these experiments, the number is very much less than this,

showing that at these high pressures the compressibility is very

greatly diminished. It will be noticed that these results are in

accordance with those of Regnault in regard to hydrogen, but

directly opposite to them in regard to the other gases. Since,

however, the experiments of Naterer were conducted in a man-

ner not calculated to give accurate numerical results, they re-

quire further confirmation.

We have dwelt at some length on the history of Mariotte's law,

both because it furnishes one of the best examples of refined sci-

entific investigation, and also because it illustrates in a very
forcible manner the character of a very large class of the so-called

laws of nature. The compressibility of gases was in the first

place studied with a comparatively rude apparatus, and a simple
law was discovered, which was accepted as the absolute truth.

Later, when the methods of investigation had become more ac-

curate, it was found that the law was not general, but it was still

maintained in regard to air, until finally the refined experiments
of Regnault proved that it failed here also. Still the law remains

as an ideal truth towards which nature tends, but which is never

fully reached, and we can even trace the action of the agents
which produce the perturbations. So is it with most physical laws.

They are not relations realized with mathematical exactness, but

ideal truths always more or less false in each particular case. In

another place,* the author has termed this class of laws, which

are merely expressions of external phenomena, phenomenal laws.

In some few cases, as in the law of gravitation, we have been

able to go behind the phenomena to their proximate cause
; and

in such cases the very variations have been seen to be neces-

sary consequences of the law itself. So, possibly, it will be with

* Memoirs of the American Academy of Arts and Sciences, Vol. V. p. 369.
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the law of Mariotte, when we understand the constitution of the

gaseous condition of matter. But even in regard to the law of

gravitation, there always have been residual phenomena unex-

plained by the law, and so probably there always will be
; until,

as we go on widening our generalizations, the last generaliza-

tion of all brings us into that Presence of which all natural phe-

nomena are the direct manifestation.

(166.) Limit to the Compressibility of Gases. It has been

shown that all gases, when submitted to pressure, are, with one

exception, compressed to a smaller volume than that calculated

from the law of Mariotte
;
and we have also seen that the devia-

tion from the law increases rapidly with the pressure. With most

gases, however, experiments prove that the compressibility does

not increase indefinitely ;
but that, when the pressure reaches a

certain point, the gas changes into a liquid. This change of state

takes place suddenly, but it is preceded by the increase of the

compressibility of the gas, which has just been noticed, and which

becomes very rapid as the point of condensation is approached.
Some persons have been led by this fact to the opinion that

the deviation from the law. of Mariotte is owing to a partial

liquefaction of the gas ; but the experiments of Regnault and

Despretz, already cited, tend to disprove this theory. The pres-

sure under which the condensation to the liquid state takes place

depends upon the nature of the gas, and also especially on the

temperature. We shall, therefore, defer the consideration of this

subject to the chapter on Heat.

Application of Mariotte
1

s Law.

(167.) Pressure of the Atmosphere at different Heights.

Having become familiar with Mariotte's law, we are prepared to

study the variation of pressure as we rise in the atmosphere,
which has been already noticed in (156. 3). This question is

evidently one of great importance ; because, if we can discover

the law by which the pressure varies, we can easily deduce from

two observations of the barometer made at different heights the

difference of level of the two stations.

It is evident, from the nature of the case, that the density of

the atmosphere must vary constantly with the elevation above

the surface of the earth, and hence that it is not absolutely the

same at any two levels, however near to each other. Neverthe-

26
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less, for convenience, we will suppose that the atmosphere con-

sists of a series of very thin concentric layers, having a common

thickness, which we will represent by d
;
and that the density is

uniform throughout each layer, changing abruptly as we pass

from one to the next. Moreover, in order to reduce the ques-

tion to its simplest form, we will suppose that the temperature
of the atmosphere at the different elevations is the same, and at

C. We may now represent the different quantities to be used

in our problem thus :

d = the common thickness of the concentric layers.

o?i, #2, x3 . . . . xn = the distances of the lower surfaces of the successive

layers from the centre of the earth.

ff
l9
ff2, Jf2 . . . . Hn = the heights of the barometer in the successive layers.

(iSp. r.) b (Sp. GV.) a .... (Sp. Gr.) n = the specific gravity of the air in

the successive layers, referred to mercury.

We have, then, for the thickness of the first layer, #2 x\ = d,

and for the fall of the column of mercury in the height of the first

layer, JHi Ht . It is therefore evident, that a column of atmos-

pheric air equal to x* x
{ supports a column of mercury equal

to Hi HI. Now, since the air acts in all respects, so far as

regards pressure, like a liquid of a very small specific gravity

(151), it follows that the proportion [81] is true for these two

columns of air and mercury. Eepresenting, then, the specific

gravity of mercury by unity, we have

TT TT TT
/ cr

** ^* -

( o. L

Moreover, since the pressure is proportional to the density [99] ,

it is also proportional to the specific gravity ;
and we have, for

any two layers, such as the first and the wth,

(Sp. r.)i

or

Representing by C a constant quantity, we may evidently put

(Sp.Gr.^=CHh and (Sp.Gr.) n= CHn . [102.]

The value of C depends upon the latitude of the place and on

the conditions of the atmosphere, as will hereafter be shown.
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Comparing the two values of (Sp. <2r.),, [101] and [102], we

obtain

?^J^ = CH19 or H, = Hl (l Cd).

By the same course of reasoning we should obtain

g--#3 =C H^ or H,= H2 (l Cd) =Hl (lCdy.
"We can in like manner readily form the following table :

X = ffl = ffi'

x-x, = nd, ffn+l = Hn (l Cd) = H, (1
- Cd)\

The values d, 2 c?, 3 d ---- nd, which represent the elevations

above any given level, are evidently terms of an increasing arith-

metical progression ;
and the values of JETi, H^ H^ . . . . HnJ which

represent the pressures at these elevations, are evidently terms of

a geometrical progression, since each value is formed from the

preceding by multiplying by the constant quantity (1 <7d).

Moreover, since the value of this quantity is less than unity, the

progression is decreasing.

From the equation Hn + ,= HY (1 C d)
n

,
we can easily ob-

tain a formula for calculating the difference of elevation from the

height of the barometer at any two stations. Taking the loga-

rithms of the two members, this equation becomes

log Hn+l log .Hi = n log (1 C d), or, developing,

"We have assumed that the common thickness of the atmospheric

layers (d) was only very small. We may now pass at once to the

actual condition of the atmosphere by making d infinitely small.

The d2

,
d3

. . . ., being all infinitely less than d, may be taken at

zero, and the equation becomes

log Hn+ l loQHl
=

nd-^f
-

9

or, changing the signs of all the terms,,

log H, log Hn + !
= n d -^ ;
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from which can be easily deduced

, , H, M

In this formula, n d is obviously the sum of the thicknesses of the

infinitely thin layers between the levels of the two stations, and
is therefore the quantity required. We will represent it by x.

M is the modulus of the common tables of logarithms, or

2.302585.* C is the constant already mentioned. Hn _ l
is the

height of the barometer of the upper station, which we can more

conveniently represent simply by h
;
and HI the height at the

lower station, which we can more conveniently represent by H.
The formula then becomes

The constant, (7, in this equation is a quantity which, multi-

plied by the height of the barometer, will give the specific grav-

ity (relatively to mercury) of the air in which the barometer is

immersed [102]. "We shall hereafter have occasion to show that

the weight of one cubic centimetre of air, and hence also its spe-

cific gravity, varies not only with the pressure H9
but also with

the elastic force of the vapor which it contains, with the tempera-

ture, and with the intensity of the force of gravity at the place
of observation. All these circumstances must, therefore, modify
the value of the constant C. If, however, we reduce the condi-

tions to their simplest form, and suppose that the temperature
is C. at both stations, that the place of observation is on the

parallel of 45, and that the atmosphere is one half saturated

with vapor, we have, for the value of the constant, -^
= 18,336

metres ; and, neglecting the variation of the intensity of gravity
with the elevation, [103] becomes f

x= log ^18336
= log H 18336 log h 18333 ; [104.]

* Some writers use as M the reciprocal of this value.

t It is evident that these conditions are never realized in the atmosphere. The tem-

perature diminishes very rapidly as we ascend
;
and the force of gravity varies with the

elevation, as well as with the latitude of the place of observation. In the practical

application of this method in determining differences of level, it is necessary to pay re-

gard to all these circumstances. The eminent mathematician La Place calculated a

formula for finding the value of x, in which all the causes which may modify the pres-
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in which H and h denote the height of the barometer in millime-

tres. If, further, we suppose that the lower station is at the sea

level, and that the barometer at this level is at its mean height,

or TGO m. m., the formula becomes

x = 52,822.6 metres log h 18336. [105.]

sure of the different layers of the atmosphere have been considered. In this formula,

the letters denote the following values :

H = height of barometer at the lower station.

T = temperature of barometer at the lower station.

t = temperature of the air at the lower station.

k> = height of barometer at the upper station.

T' = temperature of barometer at the upper station.

t
1 = temperature of the air at the upper station.

A = latitude of the place of observation.

x = in the fourth factor the approximate height determined from the previous factors.

The formula of La Place is then as follows :

4.

1 2. 3

[log // 18336 log h' 18336 (T T') 1.2843] X \ (1 + 0.00265 cos 2 A),

6.
' z + 15926%

. 6366198 /'

which does not differ materially from the complex equation of the Mtamiqne Celeste

(CEuvres de La Place, Tom. IV. p. 328, Paris, 1845). The terms and factors of

the formula have been numbered for the sake of reference. The first two terms are the

same as in [104], and give the approximate elevation. The third term is a correction

for the difference of temperature of the mercury columns at the stations. The correct-

ed altitude is now to be multiplied by three factors. The first (marked 4) corrects it

for the difference of temperature of the air at the two stations
;
the second (5), for the

variation of gravity with the latitude
;
and the third (6), for the variation of gravity

with the elevation. The calculation of the value of x is rendered exceedingly easy by
means of a set of tables, originally prepared by Oltmans, which are given in the Annu-

aire du Bureau des Longitudes of Paris. Similar but more extended tables, calculated

by Delcros, Guyot, and Loomis, are contained in the collection of Meteorological

Tables prepared by Professor Arnold Guyot, and published by the Smithsonian Insti-

tution.

M. Babinet (Comptes Rendus de TAcade'mie des Sciences for March, 1857) has pro-

posed a modification of La Place's formula, which dispenses both with the use of loga-
rithms and with tables of any kind. The notation is the same as before, but the two
.barometers are supposed to be reduced to the same temperature, and the small correc-

tion for the latitude is omitted. The modified formula is as follows :

Hi A'o / . 2(f + tf)\
x = 16,000 metres rr^r-r: ( 1 H WA^ j

x/o ~r o ^ 1000 /

In using this formula, the two heights of the barometer must first be reduced to zero,

and it will then give accurate results for elevations of less than 1000 metres, and ap-

proximate results even for much greater elevations. For further information on thia

26*
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equal to the earth's radius), fill the whole orbit of Saturn
; and,

on the other hand, if a mine could be dug forty-six miles deep

into the earth, that the air at the bottom would be as dense as

quicksilver.

It has already been stated, that there is probably a limit to the

upper surface of our atmosphere, as definite as that of the sur-

face of the ocean. At this elevation, the repulsive force of the

particles is supposed to be balanced by their gravitation towards

the earth. If we assume that, at this point, the repulsive force

is equal to a column of mercury one millimetre high, we can

easily calculate the height of the atmosphere. The second term

of the second member of [105] disappears, since log 1 = 0, and

we obtain x = 52,822.6 metres. But this assumes that the tem-

perature is the same at this high elevation as at the surface,

namely, 0. The probability is that the temperature is about

60 C. We must, therefore, make a correction for this differ-

ence, amounting, as follows from La Place's formula, (see note,

p. 304,) to 0.12 of the whole, which reduces the height to

46,483.9 metres.

Instruments illustrating' the Properties of Gases.

(168.) Manometers. This name (derived from Awnxk, rare,

and perpov, measure) is applied to a class of instruments which

are used for measuring the elastic force or pressure of confined

gases and vapors. Of the numerous forms of the manometer,
we shall describe but three.

1. For pressures less than the atmosphere, the most convenient

form of manometer for the laboratory is that represented in Fig.

272, at the side of the barometer. It consists simply of a tube,

open at both ends. The lower end dips into a reservoir of mer-

cury, and the upper end connects, by a flexible hose, with the

vessel containing the gas or vapor whose pressure we wish to

measure. If the gas exerts no pressure, or, in other words, if

there is a vacuum in the vessel, it is evident that the mercury
will stand at the same height in the tube as in the barometer ;

and, on the other hand, if the gas exerts pressure, the mercury
will be depressed by the exact amount of this pressure. By
measuring with a cathetometer the difference of level in the

barometer and manometer tubes, we can ascertain the exact

amount of the pressure, or tension, of the confined gas.
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Fig. 272.

2. The form of manometer represented in Fig. 273, which we

owe to Regnault, may be used both for pressures greater and less

than that of the atmosphere. It consists of two glass tubes, g h

and i k, which are cemented into an iron U, (made as represent-

ed in Figs. 276, 277, and 278,) and form together an inverted

siphon. Between the two arms of the siphon, and forming a

part of the iron U, is placed a three-way cock, whose construc-

tion is sufficiently explained by the figures. According to the

position which we give to this cock, we may either open or close

the communication between the glass tubes, or vent the mercury
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from either tube alone, or from both together, at pleasure. The

tube i k is open at the top, and the mercury column which it

contains receives the pressure of the atmosphere. The tube g* h

Fig. 273. Fig 276.

terminates in a capillary tube, which is bent at right angles, and

connected with the vessel, a 6, containing the gas or vapor whose

elasticity we wish to measure, by a connection of peculiar con-

struction, and admirably adapted for experiments of this kind.

To the end of the tube bg is cemented the steel cap a1

b' d,
which is represented in Fig. 274. The face of this cap is formed

276. Fig. 277. Fig. 278.

by a plane surface, a' b', and by a hollow cone, o'. On the other

hand, the face of the stopcock which closes the reservoir has

exactly a reverse form, and the two are carefully ground to-

gether. In order to secure a joint which is absolutely hermeti-

cal, it is only necessary to press the two together by means of
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a brass collar (Fig. 275), which is tightened by means of the

screws, after having interposed a little melted India-rubber.

The elasticity of the gas in the reservoir a b is measured by
the difference of the level of the mercury in the two arms of the

tube, and by the height of the barometer. If the level is the

same, then it is evident that the elasticity is exactly equal to

the atmospheric pressure, and is measured by the height of the

barometer. If the level is higher in the tube h g- than in i k,

then the elasticity is measured by the height of the barometer

less the difference of level. On the other hand, if the level is

highest in the tube * &, then the elasticity is measured by the

height of the barometer plus the difference of level. Represent-

ing the elasticity by $, the height of the barometer reduced to

by H, and the difference of level, also reduced to the stand-

ard temperature, by h
,
we have in every case

% = H h . [106.]

3. The form of manometer just described, although an ex-

ceedingly accurate instrument, cannot be conveniently used

when the elasticity is greater than two atmospheres, because,

when the difference of level exceeds 76 c. m.,
the tube i k must be made inconveniently long,

and the instrument becomes difficult to manage.
Where great accuracy is not necessary, we can

then use with advantage a form of the manom-
eter which is represented in Fig. 279, and which

is based on Mariotte's law
;
for although, as we

have seen, this law is not rigorously true, even

in regard to air, yet the deviation is so small

that it may be regarded as exact for all prac-

tical purposes.
This third form of manometer consists of a

cylindrical glass tube, closed at the top and

filled with dry air. The lower end of the tube

passes through the collar of a cast-iron reservoir,

and dips under the surface of the mercury, with

which it is in part filled. At the side of the

rig. 279. reservoir is an opening which connects by the

tube A with the closed vessel or boiler contain-

ing the gas or vapor whose elastic force is to be measured.
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The whole apparatus is fastened to a wooden plank for con-

venience and security.

The quantity of the air contained in the glass tube is such

that, when the opening at A communicates with the atmosphere,

the mercury stands at the same level in the tube and reservoir.

Consequently, opposite to this level on the plank is marked the

figure 1. If, now, a pressure is transmitted through A equal to

two atmospheres, the mercury will rise in the tube until the ten-

sion of the confined air, added to the pressure of the mercury

column, just balances it. Were it not for the weight of the mer-

cury, it would rise to just one half of the height of the tube ; but

in fact it rises .to somewhat less, because a part of the pressure is

supported by the mercury column itself. In like manner, if the

pressure is increased to four atmospheres, the mercury does not

rise to three quarters of the height of the tube, because the pres-

sure is in part sustained by the column of mercury, and is not,

therefore, all transmitted to the confined gas. It is easy to cal-

culate the exact point to which it will rise when the height of the

tube is known, and to graduate the instrument by inscribing the

number of atmospheres at the side of the tube. This instrument

is not sufficiently delicate for high pressures ; for, the volume of

the air becoming smaller and smaller, the divisions become pro-

portionally close together.

The metallic manometer of Bourdon, based on the elasticity of

metals, has been already described (104).

(169.) Pneumatic Trough, This simple contrivance, which

we owe to Dr. c

Priestley, for col-

lecting and trans-

ferring gases, is

one of the most

valuable instru-

ments of chemis-

try. It consists

usually of a rec-

tangular trough,
made of glass or

of any other suit-
, ,

. , . Fig. 280.
able material, in

which is suspended a shelf, as represented in Fig. 280. The
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shelf is perforated with one or more holes, and its under surface

is concave. When in use, the trough is filled with water to a

level which is one or two inches above the shelf. In order to col-

lect a gas, a glass jar or bell is first filled with water, and then

placed on the shelf with its mouth downwards and over the hole.

The tube conducting the gas is now adjusted so that its mouth
shall open under the shelf, when the gas, as it escapes, will bubble

up and displace the water sustained in the jar by the pressure of

the air. After one jar is filled with gas, it may be moved to one

side, and its place supplied with another, previously filled with

water, as before
;
or the jar may be removed from the trough by

sliding under its open mouth, still immersed in water, a plate.

On lifting the plate from the trough, it will hold sufficient water

to retain the gas in the bell standing on it. We can also readily

transfer gases from one jar to another by filling the jar to receive

the gas with water, placing its mouth over the hole in the shelf,

and then pouring up the gas from the other jar.

A very simple pneumatic trough may be made with an earthen-

281.

.V "

ware basin of water, as represented in Fig. 281. The jar in

which the gas is to be collected can be readily put in its place in

the following way. It is first filled with

water, and a glass plate pressed with the

hand over the mouth. It is then inverted,

the mouth plunged under the water of the

basin, and the glass plate removed. The

mouth of the jar may be conveniently supported on an inverted

Fig. 282.
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saucer, in which two holes have been perforated, as represented in

Fig. 282. Through the hole at the side passes the end of the

tube conducting the gas.

There are many gases which are absorbed by water, and in ex-

perimenting on these we use a trough filled with mercury. Such

a trough is represented in Fig.

283, and two vertical sections

of the same in Fig. 284. On
account of the cost of mer-

cury, the mercury trough is

made in such a form as to

economize as far as possible

the metal. In other respects,

it is precisely similar to the

water-trough, and does not

require a detailed descrip- Fig. 288.

tion.

Fig. 284.

In measuring the volume of a gas standing in a graduated bell

over the pneumatic trough, it must be remembered that the gas

is ndt exposed to the pressure of the atmosphere as indicated by
the barometer, except when the level of the liquid is the same

both in the bell and in the trough. When the level is higher in

the bell, then the pressure exerted on the gas is evidently meas-

ured by the height of the barometer H less the height of a col-

umn of mercury A
,
which is equivalent to the difference of level.

If the trough is filled with mercury, this height is equal to the

difference of level
;

if with water, we can always easily find, by

[81], the height of the column of mercury, which is equivalent
to the difference of water level, or, more readily, by inspection

from Table XIX. Let us call this difference of level, reduced to

centimetres of mercury at C., h . In order, then, to reduce the

27
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volume of gas to the standard pressure of 76 c. m., we have, by

[98J, the proportion

'=H h : 76, or [107.]

The difference of level may always be measured by a cathe-

tometer, or more rudely by a graduated scale. We can also

avoid this measurement by sinking
or raising the bell in the trough
until the level is the same in both

(see Fig. 285). This is not, how-

ever, so accurate a method.

Fig. 285. Fig- 286.

(170.) Gasometers. These are instruments for collecting

and preserving larger volumes of gas. They have various forms,

but that represented in Fig. 286 is one of the most useful. It

consists of a closed and air-tight cylindrical vessel, A, made of

copper or zinc, which is surmounted by a basin, C. This basin is

supported on the cylinder by five columns of copper, two of which,

a and 6, are hollow, and furnished with stopcocks. The tube a

opens at once into the the top of the cylinder ;
but the tube b, on

the contrary, descends quite to the bottom. At c, there is a small

stopcock for drawing off the gas ; and at d, a short curved tube,

which can be hermetically closed by the screw-plug k.

In order to use the instrument, we commence by pouring

water into the basin C, having first closed the opening d, and

opened the stopcocks a and b. The water now flows into the

cylinder by the long tube ft, and the air escapes by the tube
,

and we continue pouring water into C until the cylinder A is
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completely filled, when we close the stopcocks a and b. In order,

now, to fill the cylinder with gas, we open the tubulature &, and

introduce the mouth of the tube connecting with the vessel from

which the gas is evolved. The pressure of the air sustains the

water in the gasometer, and the gas, as it bubbles up, collects in

the upper part, displacing the water, which slowly flows from the

tubulature. When the evolution of gas has ceased, we remove

the tube and close the tubulature d.

If now we open the cock &, a portion of the water from the

vessel C descends into the cylinder, and the confined gas is com-

pressed by the force of a column ofwater equal in height to the dif-

ference of level of the water in the two vessels A and C. Hence,
on opening the cock c, the gas will flow out, and its place will be

supplied with water from the vessel C. Or, if we wish to fill a

bell with gas, we first fill it with water, cover the mouth with a

glass plate, and, having inverted it in the vessel C, place it over

the tube a. On opening the cock, the gas will rise into the bell

and displace the water it contains, while an equivalent amount

of water will descend by the tube b into the cylinder.

(171.) Safety- Tubes. These tubes, which are frequently

connected with chemical apparatus for the purpose of avoiding

explosions, or preventing the mixing of liquids which the vessels

composing the apparatus contain, are excellent illustrations of the

properties of gases. Let us suppose, for example, that we are

preparing chlorine gas from hyperoxide of manganese and chlo-

rohydric acid, in the flask A (Fig. 287),
and that connected with this flask by the

bent tube a b c is a test-glass filled with

a solution of caustic soda, on which we
wish the gas to act, and which absorbs

it rapidly. So long as the chlorine is

evolved with great rapidity the process

goes on with regularity, and the gas bub-

bles up through the solution.

The elastic force of the chlorine gas in

the flask is evidently greater than the

pressure of the atmosphere ; because it

balances not only the atmospheric pressure on the solution of

caustic soda, but also a column of this solution whose height,

a (Fig. 287), is equal to the difference of level between the surface

of the liquid in the test-glass and the open mouth of the gas-

Fig. 287.
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tube c. The pressure of the atmosphere is measured by H^ the

height of the column of mercury which it supports. We may
also measure the pressure exerted by the column of liquid a in

the same way ;
for when we know its specific gravity, it is easy,

by [81], to find the height of a column of mercury which

would exert the same pressure. Let hQ represent the height of

this column of mercury, and (Sp.Gr.) and (Sp. Gr.y the specific

gravities of mercury and the solution respectively ;
we shall

have a : h = ( Sp. Gr.) : ( Sp. Gr.y, and h = a ^|y Then

the elastic force of the gas in the balloon is equivalent to a col-

umn of mercury whose height equals the sum of H and //, or

fi--7! + <,(*<*>' nofti^ H + a
-^
s
~
Gr)

[108.]

Let us suppose, now, that from any cause, such as the exhaus-

tion of the materials, or the cooling of the flask, the evolution of

chlorine ceases
;

it is evident that, if the solution continues to

absorb the gas contained in the flask A, the elastic force of this

gas will constantly diminish, and the pressure of the atmosphere,

remaining constant, will cause the liquid to rise in the tube b c.

If the experimenter is present, he can prevent accident by uncork-

ing the flask
;
but if the absorption continues, the greater part of

the solution may be pressed over into the flask, and the experi-

ment defeated.

Such an accident can be prevented by adjusting to the flask

the safety-tube efg^ having the form rep-

resented in Fig. 288. Into this tube we

pour a quantity of the same liquid which

is contained in the flask, and which in the

present case would be chlorohydric acid.

When the process is going on regularly,

and the gas is escaping from the mouth of

the tube c, the tension of the gas in the

flask will raise a column, A, of chlorohy-

dric acid in the tube/% which must ne-

cessarily exert a pressure equal to this

tension less the pressure of the air on

^g 288. the top of the column. Hence by [108]

this pressure is measured by a column of mercury which equals

a VfaGr-Y-
f Moreover, if (Sp. Gr.y represents the specific

(bp.Gr.)
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gravity of the acid, a column of mercury exerting an equiva-

lent pressure will also be equal to h
' ^ ,

and we shall have

h (Sp.Gr.)" _ (Sp.Gr.y h __ a (^Gr.y
h
(S^)

' a
(^Gr.)

'
a

(Sp7Gr.)
'

If now the evolution of gas ceases, and the tension of the gas

in the flask becomes less than the pressure of the atmosphere, as

before, the liquid will rise in the tube b c. But it will also fall

in the tubeg*/; and if the parts are properly proportioned, the

chlorohydric acid will fall to the lowest point, /, of the safety-

tube, before the solution reaches the point 6, when air will enter

the flask by the safety-tube and prevent any accident. A bulb is

blown, at the point u, sufficiently large to hold all the liquid con-

tained in the tube/g* ;
and the air, in entering the flask, bubbles

through the liquid in this bulb.

This safety-tube is also a security against the bursting of the

flask. It not unfrequently happens, in experiments similar to

the one just described, that the mouth of the exit-tube becomes

clogged by a deposition of solid matter. If, now, the evolution of

gas continues, the pressure rapidly increases on the interior of

the flask, and soon becomes greater than the thin walls of the

vessel can resist, when an accident would result. A safety-tube

effectually prevents such a possibility ; for when the tension of the

gas- becomes much greater than the pressure of the atmosphere,
the liquid will be driven out of the safety-tube, and the gas can

then escape freely into the atmosphere.

The safety-tube also enables

us to introduce liquids into the

flasks during the experiment,

without removing the cork.

When the vessel used for mak-

ing gas is a retort, the safety-

tube may be attached to the exit-

tube, as represented in Fig. 289.

This peculiar form of safety-tube

is called Welter's tube, from the

name of the chemist who in-

vented U -

In making hydrogen or car-

bonic acid, we frequently use a two-necked bottle, such as is

27*



318 CHEMICAL PHYSICS.

represented in Fig. 290. The safety-tube may then be a simple

straight tube surmounted by a funnel, and dipping a few milli-

metres below the surface of the liquid in the bottle. If, as be-

Fig. 290. Fig. 291.

fore, we pass the gas into some solution contained in a test-glass

(Fig. 291), the tension of the gas in the bottle will raise a column

of liquid, A, in the safety-tube, whose height will bear the same

proportion to that of the column a (Fig. 289) which the specific

gravity of the liquid in the test-glass has to that in the bottle.

It not unfrequently happens, that we wish to transmit the same

gas through a series of flasks containing the same or different

solutions. Let us suppose that we used the arrangement of

three-necked bottles represented in Fig. 292, containing solutions

Fig. 292.

which absorb the gas evolved from the flask A, and let us exam-

ine what would be the tension of the gas in the successive jars.

The gas in the jar E communicates directly with the atmosphere

through the tube o, and its tension is therefore represented by
the height of the barometer, or H . The tension of the gas in

the jar D must evidently be measured by the height H plus the

height of a column of mercury which is equivalent to the column
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of the liquid in the jar 72, indicated by a"" in the figure. In like

manner, the tension of the gas in the jar C will be equal to the

tension in D plus a quantity which is measured by a column of

mercury equivalent to a"'
;
and so on for C and B. Finally, the

tension of the gas in the flask will be equal to the tension in B plus
a quantity which is measured by a column of mercury equivalent
to a 1

. If, then, we represent the specific gravities of the liquids in

the four bottles by d 1

,
d"

', d'", and d"", and that of mercury by #,
d1 d"

we shall have for the equivalent mercury columns, a 1

--, a"
,

d1" d""
a'"

,
and a"" . The measures of the tension of the gas in

the four bottles and the flask are, then, as follows :

In the bottle E....H<>.

D H.-\-a*"'.
tjini jin

C 77 + a"" -f a'" -- .

d d
fjnii jiti Jn

B 77 + a"" + a'" +a"-.
d d d

In the flask A ff + a"" + a'" + alldL-+a' -. [110.]

If, now, the evolution of gas ceases in the flask, while the ab-

sorption continues in the bottles, it is evident that there will be

a transfer of liquid from right to left through the bottles, and
from the first bottle to the flask

; or, on the other hand, if either

of the tubes be
,
b'c'

,
should become clogged, the pressure

would increase indefinitely in the apparatus, until one of the ves-

sels in front of the obstruction bursts. This would usually be

the flask, because it is weaker than the rest. Both of these dan-

gers may be avoided, by arranging the apparatus with safety-

tubes, as represented in Fig. 293
; for then, if the pressure in

the bottles or flask becomes considerable, a portion of the liquid
will be forced out at these tubes ; or, on the other hand, if it be-

comes much less than that of the atmosphere, air will bubble in

through the same channels.

When the gas is flowing freely from the flask through the

apparatus, and bubbling in each bottle, it is easy to calculate

the heights to which the liquid will rise in the safety-tubes,

since, the tension of the gas in the different parts of this ap-

paratus must be the same as in the other. For example, the

d""
tension of the gas in D is measured by H> + a"" ;

but it
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Fig. 293.

must also be measured by H plus a column of mercury equiv-

alent to the column of liquid h 1" in the safety-tube. This

column of mercury, as is evident from what has been said,
d"1

'

d1" d""
is equal to h'"

;
and hence we have h"1 ~ = a""

,

or

And in like manner we can easily find

h'

h

^
df

d1" '

tjiu

d!"

d1"

[111.]

The apparatus thus constructed is usually called Woolfs appa-

ratus.

(172). Siphon. The principle of this well-known instru-

ment is illustrated by Fig. 294. The siphon-tube a b c is filled

, with the same liquid as the two beaker-

glasses in which its ends are dipped, and

the liquid is sustained in the tube by the

pressure of the air. If the level of the

liquid in the two vessels is on the same hori-

zontal plane, it is evident that the columns

Fig. 294. of liquids in the two legs of the siphon will
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have the same vertical height, and will be in equilibrium. If,

however, the liquid stands at a lower level in one vessel than in

the other, as in the figure, then the two columns of liquid in the

legs of the siphon will not have the same height, and a difference

of pressure will result, corresponding to the difference of level.

In order to ascertain what will be the result of this difference of

pressure, take a section through the tube at the highest point, b,

and consider the amount of pressure on the two faces of this sec-

tion. On the face towards the vessel a, this pressure is equal to

the pressure of the atmosphere (measured by the height of the

barometer), or H, less the pressure of a column of the liquid used

whose height is equal to the difference of level between b and the

surface of the liquid in the vessel a. Let us represent the height

of a column of mercury which is equivalent to that of the liquid

by A
,
and the surface of the section by s. "We shall then have,

for the pressure on this surface of the section, the value

* = *(!& *.) [112.]

On the surface of the section towards the vessel c, we have for

the pressure a value

in which h' represents the height of a column of mercury which is

equivalent to a column of the liquid used whose height is equal

to the difference of level between b and c. When the level of the

liquid is the same in both vessels, it is evident that h =h' . Hence

the pressures on the two surfaces are equal, and, as already stated,

there will be an equilibrium. If the level in the vessel c is lower

than in
,
then hQ< 7i'

,
and H^ h >H h' . There will,

therefore, be an exc
f
ess of pressure in the direction of the vessel c

equal to h' A
,
which will cause a constant flow of liquid in

the direction of the greatest pressure. This flow will continue

until h = A'
, or until the level is the same in both vessels. If

the vessel c is removed, then h' represents the height of a column

of mercury equivalent to a column of the liquid used whose

height equals the vertical distance between the mouth of the

tube and b. If this mouth is below the level of the bottom of

the vessel a, it is evident that A can never equal A'
;
and hence

the flow in this case will continue until the surface of the liquid

in the vessel falls below the mouth of the tube at a. It is evi-

dent, that, other things being equal, the velocity of the flow will
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depend on the difference between 7i' and h . In the ordinary
method of using a siphon, as represented in Fig. 294, this differ-

ence is constantly diminishing ;
and hence the velocity of the flow

is constantly diminishing.
The siphon is frequently employed in the laboratory for de-

canting liquids. Before using the instrument, it is necessary to

fill it with the liquid to be decanted. If this liquid is water, the

siphon is easily filled by closing the end of the short leg with the

finger, and, after inverting the instrument, by pouring in water at

the other end, the air being allowed to escape from the short leg

by lifting for a moment the finger. When the tvibe is filled, it

can easily be reversed, and the end, still closed with the finger,

plunged under the liquid in the vessel ; when, on removing the

Fig. 295.

finger, the water will begin to flow. The siphon can also be filled

by dipping the end of the short leg in the liquid, and sucking

out the air from the other leg with the mouth. In the iabora-

tory, the siphon is frequently used for decanting corrosive liquid ;

and it is then necessary to resort to various contrivances for fill-

ing it. The one represented in Fig. 295, which can easily be

made of glass tubes and cork, is one of the best. The short leg

is plunged, as usual, into the liquid. The end of the long leg is

then closed by the finger, which can be protected by a piece of

India-rubber, and the air is sucked out by the mouth applied at
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the end of the side tube. As soon as the liquid descends into

the enlargement at the end of the long leg, the finger is with-

drawn.

(173.) Mariettas Flask. It is sometimes important to ob-

tain with the siphon a uniform flow of liquid. This can be easily

secured by means of the apparatus represented in Fig. 296,

called Marlottos flask. It consists of a bottle with two necks,

into one of which a straight tube, and into the

other a bent tube, have been adjusted air-tight,

both reaching nearly to the bottom of the bot-

tle. The siphon-tube is filled by blowing in air

through the straight tube, when the flow contin-

ues of uniform velocity until the surface of the

liquid in the bottle has fallen to the level b c d,

the air constantly entering the bottle by the

straight tube at b.

It can easily be shown that the flow in this

case must be uniform in velocity. Consider, as

before, a section through the siphon-tube at the highest point.

The pressure on the surface of this section towards o is evi-

dently

f'= s (HQ /*'); [114.]

where h'Q is the height of a column of mercury equivalent to a

column of the liquid used whose height equals the vertical dis-

tance from o to the centre of gravity of the section.

The surface of the section towards c is evidently exposed to

the pressure exerted by the confined air on the surface of the

liquid in the bottle, less the pressure of a column of the liquid

whose height equals the vertical distance between this surface

and the centre of gravity of the section. If we represent the

tension of the confined air by |j, and the height of a column

of mercury equivalent to the column of liquid by h"09 we easily

obtain for the pressure on the surface of the section,

When the apparatus is in use, and air is freely entering through

6, it is evident that the pressure of the atmosphere at b is bal-

anced by the pressure of the confined air on the surface of the

liquid, and by the pressure of the column of liquid above b.
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Representing the equivalent of this column in centimetres of

mercury by A'"
,
and the height of the barometer by H^ we ob-

tain H = f) + A'"o >
an(i by substitution,

=
Subtracting from this value [114], we obtain

J- - f' = [A'.- (/.".+ A0].

The value A"o-f- A'" represents the height of a column of mer-

cury equivalent to a column of the liquid used whose height

equals the vertical distance between c and the centre of gravity

of the section. As this height remains constant, and is indepen-
dent of the height of the liquid in the bottle, it is evident that

the difference of pressure [116] which determines the velocity

of the flow will also be constant. It is also evident that the dif-

ference of pressure is always equal to a column of the liquid

used whose height equals the difference of level between b and o.

A very useful application of Mariotte's bottle is represented in

Fig. 297. It is frequently necessary, in the laboratory, to wash

for several hours, or even

days, a precipitate which has

been collected on a filter.

This is done by keeping the

filter constantly full of wa-

ter, which slowly percolates

through the porous mass on

the filter, and washes out

everything which is soluble.

Mariotte's bottle furnishes

an automatic machine, by
which the water in the fil-

ter can be maintained at a

constant level. The disposi-

tion of the apparatus is suf-

ciently explained by the fig-
Fig - 297 '

ure. The difference of level

between b and o is made very small, and the water flows from

the bottle to the filter, until the level rises to the lower dotted

line in the figure. Then the flow ceases, but recommences as

soon as the level falls.
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Fig. 298.

The principle of Mariotte's bottle

is also applied to produce a uniform

flow of air through the tube apparatus
which is frequently used in chemical

analysis. Fig. 298 represents what is

termed an aspirator jar. The tube,

which passes air-tight through the

cork in the neck, has a free communi-
cation with the atmosphere, and the

current of air is caused by the flow of

water from the cock at r. The veloci-

ty of the flow of water from the cock,

other things being equal, depends

upon the pressure exerted on a sec-

tion of the stopcock ; and it can easily be seen that this will be

the same until the level of the water in

the jar has fallen below the mouth of the

tube V.

(174.) Wash-Bottle. This simple in-

strument (Fig. 299), which is so much
used in the laboratory, is one of the most

useful applications of the properties of gas-

es. By condensing the air over the water

in the bottle, by blowing in at the tube a,

the liquid is forced out at o in a fine jet,

which can be directed at pleasure. ^i
Fig. 299.

Machines for Rarefying and Condensing Air.

(175.) The Air-Pump. One of the simplest forms of the

air-pump is represented in Fig. 300. It consists of a hollow

brass cylinder, in which a piston moves readily up and down by
a handle attached to the piston-rod above. The inner surface of

the cylinder is perfectly smooth and true, so that the piston,

which is formed of yielding materials, moves air-tight through
its whole course. Moreover, the under surface of the piston fits

exactly the bottom of the cylinder, so that, when the piston is in

the lowest position, there can be no air between it and the cylin-

der bottom. The upper end of the piston is closed by a brass cov-

er, through which the piston-rod passes freely, and the atmosphere
28
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has free access to the upper surface of the piston. The lower end

of the cylinder opens into a narrow tube, which connects, at one

end, with the glass bell on the plate of the air-pump through the

Fig. 300.

stopcock u, and at the other, with the atmosphere through the

stopcock p. Just below the bottom of the cylinder there is

placed a stopcock of peculiar construction. The core of the

cock is bored with two holes, one of which has the same position

as in ordinary stopcocks, and as is shown in the figure. The po-

sition of the second is shown in the small section at the side.

When the cock has the position indicated in the main figure,

there is a direct connection between the interior of the cylinder

and the glass bell. If the cock be now turned through ninety de-

grees, till it takes the position shown in the small section, the con-

nection with the glass bell will be closed, and direct communica-

tion with the atmosphere opened through the channel s v. The

channel r m opens in the centre of a round plate made of brass,

or, still better for chemical uses, of glass. This plate is ground on

its upper surface perfectly plane. The lower edges of the glass
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bell-receivers are also carefully ground, and may be made to

adhere air-tight to the plane by interposing a little oil.

The principle of the air-pump can now be easily explained.
Let us suppose that the piston is in its lowest position, and that

the stopcock is in the position represented in the figure. If now
we draw up the piston by the hand, the air contained in the bell-

receiver and in the tube connecting it with the cylinder will

expand until it fills the cylinder ;
and its volume being thus

increased, its density will be proportionally diminished. Let us

next turn the stopcock q into the position represented in the sec-

tion. The bell is thus hermetically closed, but a connection is

opened between the cylinder and the atmosphere. Now, on press-

ing down the piston, all the air in the cylinder will be forced

into the atmosphere. The stopcock may then be turned back

to its first position, and the same motion repeated, which will fur-

ther rarefy the air in the bell
;
and thus the process may be con-

tinued until the required degree of exhaustion is obtained.

(176.) Degree of Exhaustion. It is obvious that the effect

of the air-pump depends upon the expansive force of air, and

that each motion of the piston is accompanied with a certain

amount of expansion of the air in the bell. This amount is evi-

dently determined by the size of the cylinder, as compared with

that of the bell and the tube leading to it. With these data, we
can easily calculate the degree of exhaustion after each stroke

of the piston.

Let us then represent the volume of the bell-receiver and of the

tube connecting it with the cylinder by V\ and that of the cylin-

der itself, when the piston is at its highest position, by v. Let us

suppose that the piston starts from its lowest position, and let us

take the quantity of air contained in the receiver and the tube as

unity. When now the piston is raised, the volume occupied by
this quantity of air (taken as unity) becomes V -{-v. When the

stopcock is turned and the piston lowered, the volume v is ex-

pelled, which is a portion of the original quantity (or unity)

represented by yqj- The piston is now in its initial position,

and the quantity of air remaining in the receiver and tube, after

the first stroke, is

' -' '
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Reversing the stopcock, and raising again the piston, this quan-
7/

tity of air, v .

, occupying the volume F, expands to the vol-

ume F-f- v. When the piston descends, the volume v is ex-

pelled, which is
-^r-j of the whole, or of -j-r-r

-
',
that is,

-
, r^y -(- v v -\-v ( r-\-v)

of unity. There remains, therefore, after the second stroke,

y+7~~ (Y+v)2== (K+v) 2
'

At the third stroke of the piston, the same proportion of the air

now remaining is expelled as before ;
and there is consequently

left, after the third stroke,

F2 v F2 F3

In like manner there will remain, after the ntli stroke,

17" -1 Vnl T7ny v y
_ v

r-i 90 1

(F+t-)' (K+t*)"-- (V+v)-

If, for example, the volume of the receiver is equal to ten litres,

and that of the cylinder to one litre, we shall have, for the amount
1Q50

of air left after the fiftieth stroke,
--

To
= 0.0085 of the original

quantity.

Since the value of [120] never can become zero until n= oo
,

it is evident that we can never, even theoretically, by means of

the air-pump, exhaust the whole of the air. Nevertheless, theo-

retically we ought to be able to approach a perfect vacuum in-

definitely by continuing the process for a sufficiently long time.

Practically, however, the limit is soon reached
;
and even with

the best pumps, we can never obtain a degree of exhaustion

greater than that when -njWth of the original quantity of air is

left in the receiver. It is not difficult to explain the cause of the

discrepancy between the theoretical and the practical results.

In any machine, however well made, there must be a number

of joints which are never absolutely hermetical. There are fre-

quently, even in the metal itself, imperceptible pores which trans-

mit air. During the first few strokes of the piston, this minute

leakage produces no perceptible effect
;
but when we attain a high

degree of exhaustion, the air enters by these minute crevices as

fast as we can remove it by the pump.
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But besides this imperfection, the capability of the instrument

is limited in still another way. In calculating the degree of ex-

haustion, we supposed that at each descent of the piston the

whole of the air was expelled from the cylinder ;
and this would

be the case, if the base of the piston adhered exactly to the base

of the cylinder. In practice, however, there is never an absolute

adhesion
;
and a small amount of air remains between the two,

which no force applied to the piston is able to expel. When,
therefore, after working the pump for some time, this small

amount of air, expanded through the whole interior of the cylin-

der, exerts a pressure equal to that of the air remaining in the

receiver, it is evident that the air from the receiver can no longer

expand into the cylinder, and the pump will cease to exhaust.

But although a perfect vacuum can never be obtained with an

air-pump, yet a sufficient degree of exhaustion for all practical

purposes is easily attained.

Fig. 301.

(177.) Air-Pump with Valves. The form of air-pump de-

scribed in (175) is exceedingly simple in its construction, and not

liable to get out of order. It is therefore well adapted for use in

28*
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the chemist's laboratory, where it is exposed to vapors which are

likely to injure any delicate valves. It is open, however, to two
serious objections. In the first place, the stopcock q must be

turned by the hand at each stroke of the piston ;
and although

this motion may be obtained by means of cranks and levers, yet
this machinery renders the instrument unnecessarily complicated.
In the second place, the piston must be raised through the whole

length of each stroke, against a great pressure of air, which

rapidly increases as the

exhaustion proceeds, an

objection which would be

very serious in a large

pump, rendering a great

force necessary to work

it. Both of these difficul-

ties are overcome in the

pump represented in Fig.

801. A section of this

pump is represented in

Fig. 302, and the details

of the upper valve in

Fig. 303.

In this air-pump there

are three valves, all open-

ing upwards : one at the

bottom of the cylinder,

covering the mouth of

the tube connecting with

the receiver (a in Fig.

302); one at the top of

the piston, b, covering the

holes perforated through

it; and, finally, one at the

top of the cylinder, c, cov-

ering the aperture which opens into the atmosphere. The piston-

rod passes through a packing-box, &, in which it moves air-tight,

and the power is applied to the piston-rod by means of a lever,

which facilitates the working of the pump. Let us now sup-

pose that we start with the piston at the bottom of the cylinder,

and proceed to raise it. The air from the receiver expands

Fig. 302.
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into the empty space thus formed in the cylinder, raising the

valve a. As now the piston descends, the valve a closes and

prevents the air from re- .

turning to the receiver
;
and

this air passes up, through
the holes in the piston, into

the upper part of the cylin-

der, raising the valve d.

When next the piston rises,

this same air, now in the up-
F g- 303 -

per part of the cylinder, is forced out into the atmosphere by rais-

ing the valve c. At the same time, a fresh amount of air from

the receiver expands into the space below the piston, which air is

forced out by the next stroke at the valve c, as before, and thus

continuously.
It is evident from the construction, that, as the piston rises, the

air above it is gradually condensed, and the valve c does not open
until the density of the air is equal to that of the atmosphere.
D uring the first few strokes, the fprce required to raise the piston

is considerable
;
but as the exhaustion proceeds, the effort neces-

sary becomes less and less, until at last only sufficient force is

required to overcome the friction, and a sudden pressure at the

end of the stroke to expel the air condensed at the top of the

cylinder. In pumps like the one represented in Fig. 300, the

size of the piston and cylinder is necessarily very limited
; be-

cause, if the area of the piston exceeds a very limited extent, the

pressure of the air on the upper surface becomes so great, as the

exhaustion proceeds, as to require an impracticable amount of

force to work the pump. With pumps of the construction just

described, this pressure is in great measure removed
;
and it is

possible to increase very greatly their size advantageously. Fig-
ure 304 is a representation of a large air-pump of this descrip-

tion, made by Ritchie,* of Boston. The piston is 10 c. m. in

diameter, and the length of the stroke 26 c. m. The ground
brass plate is 37 c. m. in diameter, and" admits of as large a bell-

receiver as can be readily made. The efficiency of the pump
depends in great measure upon the valves. These are best made

* The two representations of air-pumps, Fig. 301 and Fig. 304, are from the cata-

logue of Mr. E. S. Kitchie, a very expert philosophical-instrument maker of Boston.
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of delicate oil-silk. The details of the upper valve of the pump,
as made by Ritchie, are shown in Fig. 303. The oil-silk disk, a,

Fig. 304.

is kept in its place by the pin 6, and the whole is protected by the

dome-shaped covering c d. The tube at the side discharges the

air, and the oil which escapes with it is conducted into a reser-

voir placed below the basement of the pump. This pump is

furnished with a manometer similar in principle to the one repre-

sented in Fig. 272, by which the degree of exhaustion can be

ascertained. It is represented in the figure on the left-hand side

of the pump.
Besides those already enumerated, there is obviously another

limit to the degree of exhaustion which can be obtained with

this pump. This arrives when the elasticity of the air left in the

receiver is insufficient to raise , the lower valve a, Fig. 302. In

order to overcome this difficulty, the lower valve in the French

form of air-pump* is opened and shut mechanically. Babinet

* For a description of the French form of air-pump, see any of the French works

on physics.
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lias still farther improved the French air-pump, by so connecting

the two barrels that, after a certain degree of exhaustion has

been attained, the second is made to exhaust the first. There

can be no doubt that a higher degree of exhaustion can be ob-

tained with the French pump, thus arranged, than with the pump
just described

;
but this gain is hardly compensated by the greater

complexity and consequent liability to derangement, more espe-

cially since a sufficient degree of exhaustion for all practical

purposes can be obtained without these complications.

(178.) Condensing-Pump. This instrument is just the re-

verse of the air-pump, and it is used for increasing the density

of air in a receiver, while the air-

pump is used for diminishing it. Any
air-pump may be converted into a

condensing-pump by changing the

direction of all the valves. For ex-

ample, we may use the pump repre-

sented in Fig. 300 as a condensing-

pump. Starting with the piston at

the bottom of the cylinder, we give

the stopcock the position represented

in the section at the side. Then, on

raising the piston, the air enters at v

and fills the cylinder. We now turn

the cock into the second position,

when, on pushing down the piston,

this air is forced into the receiv-

er. We can then reverse the stop-

cock and repeat the process, until

the required degree of condensation

is obtained. Instead, however, of

placing the receiver on the brass

plate, as before, we screw it on be-

yond the stopcock p, opening this

stopcock, and closing the stopcock u.

The most convenient form of con-

densing-pump for the laboratory is

represented in Fig. 305. It consists of a cylinder, and a piston,

which is moved by the handle M. The two valves, which are

both at the bottom of the cylinder, are represented in section in

Fig. 305.
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Fig. 306. They are made to fit exactly the conical openings at

the bottom of the cylinder, and are kept in place by very delicate

Fig. 306.

spiral springs. When the piston rises, the valve A opens and

admits the air through the tube c a into the cylinder. On the

other hand, when the piston descends, the valve A closes, while

B opens, and the air is forced out, through the tube b d, into the

receiver placed at d. It is evident, that if two receivers are con-

nected with the pump, one at c and the other at d, the air will

be exhausted from one and condensed in the cither. The pump
may, therefore, be used either for condensing or rarefying. In

using the pump, it is fastened firmly to a table, or some other

solid support, and the handle M is moved up and down alter-

nately with the two hands.

This simple machine is sufficient for almost all purposes. If,

however, a more powerful apparatus is required for condensing

gases into large reservoirs, it is best not to increase the size of the

pump ;
but to combine several cylinders, connecting them all with

the same receiver. The piston-rods of all these cylinders can be

united by cranks to one axis, and a handle connected with a

fly-wheel can be used to give this axis a regular and uniform

motion.

(179.) Water-Pump. Entirely analogous in its principle to

the air-pump is the common water-pump, a glass model of which

is represented in Fig. 307. It consists also of a hollow cylinder,

in which moves a piston, B. It has two valves, both opening up-

wards ; one at the bottom of the cylinder, covering the mouth of

the tube leading to the water of the well, and the other at the
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top of the piston, covering the hole with which it is pierced. If

the piston and valves are sufficiently tight, this pump will act as

an air-pump, and on moving the piston by the handle P alter-

nately up and down, it will ex-

haust the air from the tuhe A.

But since the end of the tube

dips under water, the pressure

of the air will force up the water

until it fills both the tube and

the cylinder below the piston.

Then, on lowering the piston,

the water in the cylinder will

raise the valve o, and pass above

the piston. Afterwards, on rais-

ing the piston, this water will

be lifted and discharged into the

pipe C, while a fresh quantity of

water will be forced up by the

atmospheric pressure through
the valve S. Thus, at each

stroke of the piston, a quantity
of water is lifted equal to the

capacity of the cylinder less the

volume occupied by the piston

itself. If the piston and valves

are not sufficiently tight to pump
out the air, they can be made so by pouring a little water into

the pump. This is what is called the drawing of water, and the

philosophy of this well-known process is evident.

It follows from this description, that the pump will not work, if

the bottom of the piston, in its highest position, is over ten metres

above the level of the water in the well
;
and it was an attempt

of some Florentine engineers to raise water in the suction-tube

of a pump above this height, which led to the discovery of the

pressure of the atmosphere. On account of the imperfections of

the valves and piston, a pump will seldom work in practice higher
than eight metres. The height of the tube (7, in which the water

is lifted by the piston, may be very considerable, and the whole

height through which the water is raised by the pump is fre-

quently very much over ten metres ; but the difficulty of working

Fig. 307.
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a pump, and keeping it in order, increases very rapidly with the

height of the column of water which is lifted.

PROBLEMS.

Unless otherwise stated, the temperature in all thefollowing problems is to be taken as C.,

and the height of the barometer at 76 c. m.

Weight of a Body in Air.

176. A mass of metal, whose Sp. Gr. = 11.35, weighs 0.575 gramme
in a vacuum. How many milligrammes will it lose when weighed in air ?

177. A brass weight (Sp. Gr. 8.55) weighs in a vacuum one kilo-

gramme. How many milligrammes does it lose when weighed in air ?

178. A body loses in carbonic acid gas 1.15 gramme of its weight.

What would be the loss of its weight in air and in hydrogen ?

179. A body loses 7 grammes of its weight in air ; how much of its

weight would it lose in carbonic acid and in hydrogen ?

1 80. What is the weight of hydrogen contained in a glass globe whose

surface is equal to 10 in.
2
?

181. A glass globe from which the air has been exhausted weighs
254.735 gram. When full of air, it weighs 289.621 gram. When
full of another gas, 308.078 gram. What is the capacity of the globe,

and what is the specific gravity of the gas ?

182. A glass globe 30 c. m. in diameter, filled with air, and hermeti-

cally sealed, is balanced in the atmosphere by brass weights amounting to

356.225 gram. How much would it weigh in a vacuum ? How much

would the globe weigh in a vacuum, if it were opened so that the air

could be exhausted from the interior? Sp. Gr. of brass 8.55, and of

glass 3.33.

183. A glass globe hermetically sealed weighs in the air 25.236 gram,

and gains in a vacuum 0.632 gram. What is its diameter ?

Buoyancy of Air.

184. What is the ascensional force of a balloon one metre in diameter,

three quarters filled with hydrogen, when the balloon itself weighs one

hundred grammes ?

185. Calculate the ascensional force of a spherical balloon made of

prepared silk and filled with impure hydrogen, knowing that the bal-

loon itself weighs 63,620 gram., that the prepared silk weighs 250 gram,

the square metre, and that a cubic metre of impure hydrogen weighs 100

gram.
186. What would be the ascensional force of a spherical balloon seven

metres in diameter, two thirds filled with hydrogen, when the balloon and

attachments weigh twenty kilogrammes ?
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187. The material of a balloon containing 1229 c. m.3
weighs 1.5 gram.

The balloon is filled with hydrogen, whose specific gravity referred to

water is 0.00009003. The specific gravity of the surrounding air is

0.0013105. Will the balloon rise in the atmosphere ?

188. The material of a spherical balloon and its attachments weighs

400 kilogrammes. This balloon is 15 m. in diameter, and is three

fourths filled with gas whose specific gravity equals 0.0005. The specific

gravity of the surrounding air is 0.0013. What is the ascensional force

of the balloon ?

Barometer.

1 89. When the surface of a column of mercury in a barometer stands

at 76 centimetres above the mercury in the basin, with what weight is the

atmosphere pressing on every square centimetre of surface ? Sp. Gr. of

mercury = 13.596.

190. To what difference of pressure does a difference of one centi-

metre in the barometric column correspond ?

191. When the water barometer stands at ten metres, what is the

pressure of the air if the temperature is 4 ?

192. How high would an alcohol barometer, and how high a sulphuric-

acid barometer, stand under the same circumstances, disregarding in each

case the tension of the vapor ? Sp. Gr. of alcohol = 0.8095 ; Sp. Gr.

of sulphuric acid = 1.85.

193. When the mercury in a barometer stands 75.2 c. m., with what

weight is the atmosphere pressing on every square centimetre of surface ?

How high would barometers stand under the same circumstances, filled

with liquids of the following specific gravities, viz. 1.12, 1.45, 2.36, 3 ?

194. When the mercury barometer stands at 76 c. m., what must

be the length of a water barometer inclined to the horizon at an angle

of 30 ?

195. If a barometer, having its lower end immersed in a basin of mer-

cury, be suspended from the beam of a balance, and weighed, is its weight
altered by weighing it again when inverted and containing the same

quantity of mercury as before ?

Pressure of the Atmosphere.

196. When the barometer stands at 76 c. m., how great is the pres-

sure of the air upon a plane surface having an area of one square

metre ?

197. The body of a man of ordinary stature exposes a surface of about

one square metre. How great a pressure does the body sustain when the

barometer stands at 72 c. m. ? If the barometer rises to 78 c. m., how

great is the increase of pressure ?

29



338 CHEMICAL PHYSICS.

198. When the barometer stands at 72 c. m., how great is the pres-

sure of the air on a sphere whose radius is equal to 6675 c. m. ?

199. When the barometer stands at 76 c. m., what is the pressure ex-

erted in the vertical direction on a sphere 125 c. m. in diameter ?

Mariotte's Law.

In all these problems the law is to be regarded as invariable.

200. A volume of hydrogen gas was measured and found to be equal
to 250 cTnT.

3 The height of the barometer, observed at the same time, was

74.2 c. m. What would have been the volume if observed when the ba-

rometer stood at 76 c. m. ? What would be the- volume at an elevation at

which the barometer stands at 56 c. m. ?

201. A volume of nitrogen gas measured 756 c. m.3 when the barometer

stood at 77.4 c. m. What would it have measured if the barometer

had stood at 76 c. m. ?

202. A volume of air standing in a bell-glass over a mercury pneumatic

trough measured 568 c. m.3 The barometer at the time stood at 75.4

centim., and the surface of the mercury in the bell was found, by meas-

urement, to be 6.5 c. m. above the surface of the mercury in the trough.

What would have been the volume had the air been exposed to the pres-

sure of 76 c. m. ?

203. A volume of air standing in a tall bell-glass over a mercury pneu-
matic trough measured 78 cTrn.

3 The barometer at the time stood at 74.6

c. m., and the mercury in the bell at 57.4 c. m. above the mercury in

the trough. What would have been the volume had the pressure been

76 c. m.?

204. What would be the answers to the last two problems, had the

pneumatic trough been filled with water instead of mercury ?

205. The specific gravity of air at and 76 c. m. referred to water

is 0.00129206. What is the specific gravity when the barometer stands

at the following heights, viz. 72.65 c. m., 74.23 c. m., 75.54 c. m.,

77.82 c. m. ?

206. The specific gravity of carbonic acid gas at and 76 c. m. re-

ferred to water is 0.00196663. What is the specific gravity when the

barometer stands at the heights given in the last problem ?

207. A glass globe 10 c. m. in diameter hermetically sealed weighs

45.120 gram, when the barometer stands at 74.5 c. m. What would it

weigh if the barometer stood at 76 c. m. ?

208. A glass globe hermetically sealed, 30 c. m. in diameter, suspended

to one pan of a balance, is poised by 325.422 grammes in brass weights

when the barometer stands at 76.21 c. m. After several hours it is found

to have lost in weight 0.022 gram. What is now the height of the ba-

rometer, supposing the temperature not to have changed ? Sp. Gr. of

brass 8.55.
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209. A glass globe hermetically closed was found to weigh 354.567

gram, when the barometer stood at 73 c. m., and to weigh 353.917

gram, when the barometer stood at 77 c. m. What is the diameter of

the globe?
210. A glass globe 25 c. m. in diameter contains how many grammes

of hydrogen at the following pressures, viz. 72.2 c. m., 74.6 c. m., 76 c. m.,

77.2 c. m. ?

211. Two glass globes are connected by a tube in which there is a

stopcock. In the first globe there are 250 cTm.3 of air at a tension of 2 c. m.

In the second, 340 c- m.3 of air at a tension of 10 c. m. After opening
the stopcock, what will be the tension in both globes ?

212. Into an exhausted jar having a capacity of 60 litres there have

been poured 30 litres of nitrogen at the pressure of 72 c. m., 15 litres of

oxygen at the pressure of 64 c. m., and 5 litres of carbonic acid gas at

the pressure of 78 c. m. What is the elastic force of the mixture ?

213. A glass globe contains 8.548 gram, of air. It is afterwards filled

with protoxide of nitrogen whose Sp. Gr. = 1.52, that of air being unity.

What is the weight of the gas, 1st. when the tension of the two gases is

the same, 2d. when the tension of the air is 76 c. m. and that of the pro-

toxide of nitrogen 78 c. m. ?

214. A glass globe weighs, when completely empty, 152.475 gram. ; full

of air, it weighs 168.386 gram., and full of another gas, 157.235 gram.
What is the Sp. Gr. of the gas, supposing the pressure the same at all the

weighings ? Also, what correction must be made if the pressure was 76

c. m. during the weighing of the globe, 77 c. m. during the weighing of the

air, and 74 c. m. during the weighing of the gas ? The tension of the air

and gas in the balloon is supposed to be 76 c. m., and the temperature is

supposed invariable at 0.

Atmosphere.

The folloioing prddems may be solved by Babinefs formula. See note to page 304.

215. Find the difference of level of two stations from the following

data :

Height of barometer at lower station reduced to C., 755 m. m.

Temperature of air " " 15 C.

Height of barometer at upper station reduced to C., 695 m. m.

Temperature of air " 10 C.

216. Find the difference of level of two stations from the following

data :

Height of barometer at lower station reduced to C., 730 m. m.

Temperature of air " 20 C.

Height of barometer at upper station reduced to C., 635 m. m.

Temperature of air " " 15 C.

217. Find the height of Mount Washington above sea level from the

following observations of Prof. Arnold Guyot, Aug. 8, 1851, 4 P. M. :



340 CHEMICAL PHYSICS.

Height of barometer at Gorham reduced to C., 740.70 m. m.

Temperature of air at Gorham, ^^ <rv , . 22.25

Height of barometer near the summit of Mount

Washington reduced to C., . . . 608.93 m. m.

Temperature of air at summit, .... 10 .30

Barometer at Gorham above sea level, . . 251 m.

Air-Pump*
218. The capacity of the cylinder of a pump is one tenth of that of the

receiver. What will be the tension of the air in the receiver after 1, 2, 3,

4, 5, 10, and 40 strokes of the piston, the original tension being 76 c. m.?

219. The capacity of the cylinder of a pump is one third of the ca-

pacity of the receiver. After how many strokes of the piston will the ten-

sion of the air in the receiver be reduced to yfo of its primitive amount ?

220. If the air in the receiver of an air-pump is by two strokes of the

piston made four times rarer than it was at first, what is the ratio of the

capacity of the receiver to that of the barrel ?

221. If in an air-pump the density before is to the density after three

strokes of the piston as 35 is to 8, determine the ratio of the capacity
of the receiver to that of the barrel.

222. If, in an air-pump similar in construction to Fig. 300, an interval

be left between the piston and the base of the cylinder at the lowest pos-
sible position of the piston, determine the density of the air in the re-

ceiver after n strokes and after an infinite number.

223. The piston of a common pump is 6 c. m. in diameter, and the

vertical height of the mouth from the surface of the water in the well is

6.250 m. How great is the intensity of the force required to raise the

piston, assuming that there is no gain by leverage ? Is there any gain
in power in the use of a pump over a bucket in raising water ?

224. What are the conditions under which the common pump will not

draw, when the piston does not descend to the fixed valve ?

225. If a body when placed under the receiver of a given air-pump

weighs a gram., and after n strokes weighs b gram., determine the weight
of the body in a vacuum ; and, supposing the specific gravity of the body
known, determine the specific gravity of the air in the receiver at first.

Miscellaneous.

226. A cylinder, the height of which is 6 c. m. and the radius of the

base 1 c. m., is filled with atmospheric air. To what depth will a piston

sink in the cylinder which weighs 10 kilogrammes? To what depth
would it sink if it weighed 1000 kilogrammes ?

227. In the cylinder described in the last example, a piston is forced

down 2 c. m. ; determine the pressure of the confined air. Determine

also the pressure of the air when it is forced down 5.64 c. m.
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228. Calculate the total weight of the atmosphere in kilogrammes, sup-

posing the height of the barometer 76 c. m., and the radius of the earth

considered as a sphere equal to 6,366 kilometres. Calculate also the

volume of an equivalent mass of gold, knowing that the Sp. Gr. of gold= 19.363, and that of mercury = 13.596.

229. If the altitude of the mercury in a barometer placed in an ordi-

nary diving-bell be observed at the beginning and end of a descent, deter-

mine the depth descended.

230. Determine the tension of the rope by which an iron diving-bell

is suspended at any depth below the surface.

231. If a cylindrical tube 152 c. m. long be half filled with mercury,
and then inverted, determine how high the mercury will stand when the

barometer stands at 76 c. m.

232. Having given the quantity of air left in a barometer tube be-

fore immersion, find the height at which the mercury is supported after

immersion.

233. If in an imperfectly filled barometer tube, of which the length is

80 c, m., the mercury stands at 74 c. m., when in a well-filled tube it

stands at 76 c, m., determine at what height it will stand in the imperfect
one when it stands at 70 in the perfect one.

234. Two barometers of the same given length, /, being imperfectly
filled with mercury, are observed to stand at the heights H and H1 on

one day, and h and h1 on another. Determine the quantity of air left in

each, supposing the temperature invariable.

235. A bell partly filled with gas is standing over a pneumatic trough.

Its interior diameter is 6 c. m. ; its weight, one kilogramme ; and the level

of the mercury in the bell is 22.8 c. m. above the level of the mercury in

the trough. Neglecting the weight of the gas, how much force in grammes
is required to sustain the bell in its position, supposing that no portion

dips under the mercury, and that the temperature is at ?

236. A body of known specific gravity is floating between two immis-

cible fluids, whose specific gravities are also given. Determine the por-
tion immersed in each.

237. A cylinder of known specific gravity and magnitude floats with

its axis vertical in a vessel of water. What will be the effect of remov-

ing the atmospheric pressure ?

238. An hydrometer similar to Fig. 248 is divided into 150 parts of

equal capacity, and so constructed that when in vacua it sinks in pure
water at 4 C. to the 100th division. When immersed in sulphuric acid,

at the standard temperature and pressure, it sinks to the 54th division.

To what point would it sink were the experiment made in vacua, and

what is the true specific gravity of the acid ?

29*
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MOLECULAR FORCES BETWEEN HETEROGENEOUS MOLECULES.

(180.) Adhesion. Having studied the phenomena caused

by the action of molecular forces between homogeneous mole-

cules, as manifested in the characteristic properties of solids,

liquids, and gases, we come next to consider those phenomena
which are caused by the action of molecular forces between hete-

rogeneous molecules. As we have already seen, the molecular

forces are either attractive or repulsive (78). To the attractive

force, when exerted between homogeneous molecules, like those

of the same body, whether it be solid, liquid, or gaseous, we give

the name of cohesion (79). But when the attractive force is

exerted between heterogeneous molecules, like those of different

bodies, and still does not produce any chemical change, we call

it adhesion. It must not, however, be supposed that these

attractive forces are essentially different in the two cases. The
distinction between cohesion and adhesion is only made for the

sake of classification, and it is at least possible that they are

merely different manifestations of the one force of universal

gravitation already considered.

The phenomena of adhesion are quite numerous, and they can

be most conveniently classified according to the mechanical con-

dition of the masses of matter between which the force acts.

"We will, therefore, consider in order the phenomena caused by
the action of,

First, solids on solids {cements').

Secondly, solids on liquids (capillarity, solution).

Thirdly, solids on gases {absorption of gases').

Fourthly, liquids on liquids (liquid diffusion, osmose).

Fifthly, liquids on gases {solution of gases).

Sixthly, gases on gases {gaseous diffusion) .

. Solids on Solids.

(181.) Adhesion between Solids. Many of the most famil-

iar phenomena of daily life are owing to the attractive forces

which exist between heterogeneous particles of solids. Thus

the particles of dust floating in a room adhere to the ceiling in

opposition to the force of gravity. In like manner, the particles

of chalk adhere to the vertical surface of a blackboard, and the
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particles of plumbago abraded from a lead pencil adhere to a

sheet of writing-paper. So also the adhesion of paint to wood

or canvas, that of the tin amalgam to the backs of glass mirrors,

and that of gold-leaf to picture-frames, belong to the same class

of phenomena. The numerous important applications of india-

rubber in the chemical laboratory furnish still further illustra-

tions of adhesive force.

India-rubber adheres very strongly to glass, and this property
renders it invaluable for making stoppers to glass bottles and air-

tight joints between glass tubes. The common method of unit-

ing together glass tubes in adjusting chemical apparatus consists

in stretching over the ends of the tubes a short tube of india-

rubber called a connector, e /, (Fig.

308,) so that the ends of the two glass

tubes shall meet within it. On binding
the india-rubber to the glass by means of

*"""

3"r "~"^'

a silk cord or fine copper wire, the adhe-

sion is sufficient to resist the action of most gases, unless the pres-

sure is considerably greater than that of the atmosphere. These

connectors can easily be made of the required dimensions from

sheet india-rubber. We apply a strip of india-rubber previously

softened by heat, to the

glass tube, as represented in

Fig. 309, and then cut the

two edges with a pair of

scissors, which should have

broad, flat blades, and be

perfectly clean. The cut Fig. 309.

edges immediately unite, and

the union can be made more solid by pressing them together

between the thumb-nails. The india-rubber connector will ad-

here at first firmly to the glass tube, but it can be easily removed

after dipping the tube into water. The water is drawn up
between the glass and the india-rubber by capillary attraction,

and the adhesion is destroyed.

(182.) Cements. The use of cements not only illustrates

the existence of an attractive force between the molecules of

heterogeneous solids, but also the additional fact, that the

strength of this force varies with the nature of the solids. In

order to unite two pieces of wood, we first fit together carefully
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the surfaces to be joined, and then interpose between these sur-

faces, perfectly cleaned, a thin layer of melted glue. When the

glue hardens, it firmly cements together the two pieces of wood,

first, by the adhesion between the glue and the wood, and,

secondly, by the cohesion between the particles of the glue itself.

This same glue, however, would fail to cement together pieces of

glass or of stone, because the adhesion of glue to these solids is

much feebler than its adhesion to wood ;
but fragments of glass

and porcelain may be united by some resinous material, such as

shellac, and those of stone and brick by mortar or some cal-

careous cement.*

It is evident that in all these cases the phenomena of adhesion

are mixed with those of cohesion. The adhesion only takes

place at the surfaces, where the heterogeneous particles are

brought in contact, while the particles of the solids, and those

of the cement, are alike held together by the force of cohe-

sion. The thinner the layer of cement, the more perfectly does

it fulfil its office, since, when a thick mass is used, the unequal

expansion of the different solids in contact, caused by changes in

temperature, tends to destroy the cohesion of the particles of the

cement. It not unfrequently happens that the adhesion between

the particles of a cement and the bodies which it unites, is

greater than the cohesion which holds together the particles of

the body itself. On attempting to separate two pieces of wood

along a glued seam, we often see a film of wood split off adhering
to the surface of the glue ; and the feat of splitting a bank-note

is accomplished by cementing it firmly between two flat surfaces,

and then forcibly separating them, when, the cohesion of the

paper being feebler than the adhesion of the cement, the paper is

split through the middle.f

Solids and Liquids.

(183.) Adhesion of Liquids to Solids. That the surfaces of

solids are generally wetted when dipped into a liquid is a fact

universally known, arid it is self-evident that the liquid mole-

cules are held to the solid surface by a mutual attraction between

* For a description of the various cements used in the laboratory, the student is

referred to the works on chemical manipulations by Faraday, Morfit, and others.

t Miller, Elements of Chemistry, page 59.
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the liquid and solid particles. The strength of this attraction,

which is much greater than is generally supposed, can be made

evident by a simple experiment. If a disk of glass is suspended
to the pan of a hydrostatic balance, and, having been exactly

counterpoised by weights in the opposite pan, is applied to the

surface of a liquid capable of wetting it, it will be found neces-

sary to add a very considerable weight to the counterpoise in

order to separate the disk. Moreover, when the separation takes

place, the disk will be found wet, showing that the separation

has been between the particles of liquid, and not between the

solid and liquid surfaces, and indicating that the adhesion was

greater than the cohesion of the liquid.

In experiments made by Gay-Lussac, at a temperature of 8,
with a circular plate 118.366 m. m. in diameter, 59.4 gram, were

required to separate it from water, 31.08 to separate it from alco-

hol (Sp. Gr. = 0.8196), and 34.1 to separate it from oil of tur-

pentine. It was also found that the substance and thickness of

the plate had no influence on the result, proving, as before, that

the force overcome by the weight was the cohesion between the

particles of the liquid, and further showing that the distance

through which the force acted was less than the thickness of the

liquid film which remained adhering to the plate. These num-

bers cannot, however, be regarded as a direct measure of the rel-

ative cohesion of the three liquids, as could easily be shown by a

further examination of the conditions of the experiment.
Adhesion also exists between liquids and such solid surfaces as

they have not the power of wetting. Gay-Lussac found that a

disk of glass adhered to the surface of mercury with a very con-

siderable force. In an experiment made as just described, with

a disk of glass 118 m. m. in diameter, resting on the surface of

a basin of mercury, it required in one case 296 gram., and in

another 158 gram., to effect a separation, the amount of weight

required depending on the manner in which the surfaces were

applied to each other. In these experiments, when the surfaces

were parted, the separation took place between the mercury and

the glass, indicating that the weight overcame the adhesion of the

heterogeneous particles, and not the cohesion of the liquid, as in

the other experiments. Moreover, the force required to effect

the separation was no longer independent of the material of tho

disk.
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Fig. 310.

(184.) Capillary Attraction. When a solid body is par-

tially immersed in a liquid, the force of adhesion produces im-

portant modifications in the laws of liquid equilibrium as already

enunciated. Thus, for example, if we dip the . end of a fine

glass tube, 2 or 3 millimetres in diameter, into water, the liquid

will not maintain the same level within and without the tube as

required by the principle of (130), but will be elevated in the

interior of the tube, and maintained at a height which is very

considerably above the exterior level, and which is the greater the

smaller the diameter of the tube. Moreover, the surface of the

water does not remain horizontal near the walls of the tube, as

required by (129), but on the' outside it curves

towards the tube, as represented in Fig. 310, and

in the interior it assumes a concave form, which,
for tubes less than 2 millimetres in diameter, is

sensibly hemispherical. If now we dip the end

of the same tube into liquid mercury, we shall

obtain a result equally opposed to the laws of

liquid equilibrium, but of a reversed order.

The column of mercury in the interior of the

tube will be depressed below the outside level, and its surface

will assume a convex shape, which for a small tube is as before

sensibly hemispherical, while on the outside the surface of the

liquid will curve from the tube, as if repelled by
it (Fig. 311). By repeating these experiments
with different liquids, and with tubes of various

kinds, we shall obtain results like the first when-

ever the liquid has the power of wetting the

walls of the tube, and results like the second

when the reverse is the case
;
while in some few

cases (as, for example, when the tube is polished

steel, and the liquid is alcohol) the level will not

be changed, and the surface of the liquid will remain horizontal

both within and without the tube. These phenomena are termed

in general capillarity, and the curved surfaces which the liquids

assume in the proximity of solid bodies are called, respectively,

concave and convex meniscuses. In studying this subject, we
will first consider what changes the molecular forces must be ex-

pected to produce a priori in the laws of liquid equilibrium, and
afterwards we will examine the phenomena and see how closely

Fig 311.
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the facts coincide with our theoretical deduction. Let us com-
mence with the simplest case possible, and consider how the sur-

face of a liquid must be disturbed by the

contact of a solid bar.

Take, for example, a liquid particle, m
(Fig. 312), in contact with a solid bar,

dipping under the surface of any liquid.

This particle is evidently acted upon by
the force of gravity, g-, and by three other

forces. The first of these, /, is the result-

ant of the attractive forces exerted by the

liquid particles included in the quarter-

sphere m a b. The other two,/' and/", are the resultants of the

attractive forces exerted by the solid particles included in the

two quarter-spheres mo c and m o b, the radius of the sphere in

each case being the insensible distance through which the mole-

cular forces can act. We can now decompose eacli of these three

forces into a vertical and a horizontal component. Considering
the components which act in the directions m a or m b positive,

we shall have for the horizontal components (35),

/ cos 45, /' cos 45, -/" cos 45
;

and remembering that /" = /', we shall also have for the single
resultant of the three horizontal components (/ 2 /') cos 45.
In like manner, for the vertical components, including gravity,

we shall have,

, / cos 45, /' cos 45, /" cos 45,

and for the single vertical resultant, g +/ cos 45. Let us next

inquire what will be the direction of the final resultant of the

horizontal and vertical forces, whose values are

(1.) (/ 2 /') cos 45
; (2.) g- + / cos 45. [121.]

It is evident that the vertical force must always be positive, and
hence directed downwards

;
but the direction of the horizontal

force will depend on the relative values of/and/', that is, on the

relative strength of the cohesive and adhesive attractions. There

may be three cases, according as / is less than, is greater than,

or is equal to 2 /'. We will consider each case separately.

1st. When / <; 2 /'. If the cohesive force is less than twice

the adhesive force, then the horizontal force [121. 1] is negative,

and the resultant of this force with the vertical force [121. 2] will
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fall within the angle b m 0, and take, for example, the direction

MR (Fig. 313). Now, since the surface of a liquid must at

every point be normal to the resultant of all

the forces acting at that point (129), it fol-

lows that the liquid surface will be drawn

up towards the solid bar, so as to be per-

pendicular to the line MR, and tangent to

the line M N, making with the bar an angle

DM N, which is constant for the same sub-

stances, and is called the angle of contact.

If next we consider the liquid particles M' M", <fcc. adjacent
to M on the surface of the liquid, it is evident that on account

of their greater distance they will be acted upon less strongly

by the solid bar, and hence the resultants M1

R, M"R", &c.

will approach more and more nearly the vertical, with which

they will soon coincide. Thus it appears that the liquid surface,

which must be at each point perpendicular to these resultants,

will be curved up towards the bar, but will become horizontal at

a certain small distance from it. It is easy to see that, if a sec-

ond bar is dipped into the liquid parallel to the first, the surface

of the liquid between the bars will take the form of a concave

cylindrical surface, in case the bars are sufficiently near together,

and that in a tube it would take the form of a concave meniscus,

formed by the revolution of the curve MM1 M" round the axis

of the tube.

2d. When/>2/'. If the cohesive force is greater than

twice the adhesive force, then the horizontal force [121. 1] is

positive, and consequently directed towards the liquid. Hence

the resultant of this force and the ver-

tical force [121. 2] will fall within the

angle amb (Fig. 312), taking, for ex-

ample, the direction MR (Fig. 314),
and the surface of the liquid will be per-

pendicular to this resultant, making with

the solid bar an angle D MN less than
Fig 3U 90. Moreover, for the particles M', M",

&G. adjacent to M on the surface of the liquid, it can be proved
that the resultants of the molecular forces and gravity will ap-

proach the vertical nearer and nearer the farther we recede from

the bar, and will soon coincide with it. Hence it follows that
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the liquid surface will, in this case, be convex, taking the form

of a convex cylinder between two parallel bars, and of a convex

meniscus in a fine tube.

3d. When /= 2 /'. When the cohesive force exactly equals

twice the adhesive force, then the horizontal force [121. 1J becomes

zero, and the resultant of all the molecular forces and gravity,

acting on the particle w, coincides with the vertical. In this

case alone the surface of the liquid is horizontal, even to the line

of contact with the solid bar, and consequently, likewise, hori-

zontal between two bars, or in the interior of a tube.

(185.) Form of the Meniscus. It is evident from the last

section, that the exact form of the meniscus, and the angle of

contact, depend upon the relative values of/and 2/' [121], and

hence upon the nature of the solids and liquids used. The con-

ditions are changed, however, when, as is usual in such experi-

ments, the solid bar or tube lias been previously rinsed with the

liquid. In such cases the action takes place between the parti-

cles of the thin film of liquid covering the solid, and those of the

same liquid into which it is dipped, the solid itself serving only

to sustain the liquid film, and it is then found that the result is

entirely independent of the nature of the solid. Moreover, when

the solid has not been previously moistened, the phenomena are

rendered very irregular by the film of air which covers the sur-

face of the bar or tube, and which it is almost impossible to

remove without moistening the whole surface. So also, when the

liquid has not the power of wetting the solid surface, as in the

case of mercury and glass, there may be a film of air between

the two of sufficient thickness to keep the liquid particles beyond
the sphere of action of the adhesive force. In such cases the

form of the liquid surface will be determined by the action of

the cohesive force alone, and this action will be entirely similar

to that which gives to the rain-drop its spherical form (129).

Since it has been observed that the surface of a liquid in a

tube is concave when it wets the walls of the tube, and convex

when it has not the power of thus wetting them, it follows from

the last section that a liquid will wet a solid surface when the

force of cohesion between its particles is less than twice the force

of adhesion of these particles to the solid.

(186.) Pressure exerted by the Molecular Forces. Having
seen how the molecular forces may modify the form of a liquid

30
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surface, and produce either a concave or a convex meniscus, let

us further inquire how the form of the surface may modify the

law of liquid pressure already enunciated (126). In discussing

the subject of liquid pressure, caused by the force of gravity

(123 seq.}, we left out of view any action which might be

exerted by the molecular forces emanating from the liquid

particles themselves. This leads us into no error, so long as the

surface of the liquid is horizontal
;
but when, as in capillary

tubes, this surface is curved, the action of the molecular forces

can no longer be disregarded. In order to investigate the man-

ner in which the molecular forces may influence the pressure

exerted by a liquid mass,
terminated by a given

surface, XY (Fig. 315),
lot us study the action

which they would exert

on any particle taken on

Fig . 315.
or near this surface. If

this molecule is on the

surface, as M, it will evidently be attracted by all the particles

of liquid comprised within the hemisphere described round the

point M, with a radius equal to the distance of sensible attrac-

tion^ and it is easy to see that the res-ultant of all these attractive

forces will be in the direction M P, normal to the surface. If

the molecule is within the surface, as at M1

,
then the active por-

tion of the liquid will be the mass enclosed by the sphere of sen-

sible attraction, ABC. This may be divided into three
'

parts

by an equatorial plane, P Q, and by a surface, A 1 B1

, symmetrical
with A B, and equidistant from the equator. The attraction ex-

erted by the portion A B P Q is evidently balanced by the equal
and opposite attraction exerted by A' B' P Q, so that the result is

the same as if the molecule were only attracted by the portion
A' B' C. The resultant of all the attractive forces exerted by
the particles contained in this portion of the sphere is evidently

much less than before, but still it is normal to the surface. Fi-

nally, if we take a molecule, M", at a distance from the surface

equal to the radius of sensible attraction, it is evident that the

attractive forces acting upon it will balance each other. If then

we draw a surface, X' Y', parallel to X Y, and at a distance from

it equal to the radius of sensible attraction, we shall have com-
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prised between these two surfaces a liquid film whose particles
are under the influence of forces acting perpendicularly to the

surfaces, and exerting an effect similar to that of gravity. There
must then result from the action of these molecular forces a

pressure, which will be transmitted in all directions, according to

the principle of (120), and whose effect must be added to those

of gravity and atmospheric pressure.

(187.) Amount and Effect of the Molecular Pressure.

Let us now inquire whether the form of the surface exerts any
influence on the amount of the molecular pressure. For this

purpose let us take a molecule, M' (Fig. 316), at a distance

below the surface, M1

II, less than M '

C,

the radius of sensible attraction, and con-

sider what will be the relative amount
of molecular pressure exerted by this

molecule, 1st, when the surface is

plane; 2dly, when it is concave; and

Sdly, when it is convex.

If the surface is plane, as A B, the

attraction exerted by the liquid mass

ABPQ is balanced by that of A'B1 PQ,
and the only force which produces pres-

sure is the attraction exerted by A' B1

C. Let us represent the

value of this force by A.

If now the surface is concave, as D E, it is evident that the

only portion of the liquid within the sphere of sensible attraction,

whose attractive force is not neutralized, is the portion D' E'C,
cut off by a surface D' E', drawn symmetrically to D E. Since

this liquid mass is less than A' B1

(7, the attractive force which

it exerts must be less by an amount we will call B, and it is evi-

dent that the value of B will increase as the radius of curvature

of the surface diminishes. The value of the force which is ex-

erted in molecular pressure may then be represented by A B,
when the surface is concave.

If, lastly, the surface is convex, as KL, and we draw K' L 1

symmetrical with this, it is equally evident that the active por-

tion of the liquid is now K 1 L 1

C\ and since this mass is greater

than A 1 B' C, the value of the molecular pressure may be repre-

sented by A -f- B1

,
when the surface is convex.

Since what has been shown to be true of the pressure exerted
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by the molecule M1

is true of all the molecules contained in the

thin film bounded by the surfaces X Y, and X' Y (Fig. 315), it

follows that, when the surface of a column of liquid is concave,

it exerts a less pressure, and conversely, when the surface is

convex, it exerts a greater pressure than when it is plane, as-

suming always that the radius of curvature of the surface is

comparable with the radius of sensible attraction.

(188.) Effects of Molecular Pressure. It is now easy to

see in what way the molecular pressure may modify the prin-

ciple of (130), when one of the vessels is very small. Let us

suppose, then, that we have a fine tube of

glass, dipping into a liquid (Fig. 317). By
the principles of hydrostatics, the level of

the liquid should be the same within and

without the tube, because it is a necessary

condition of equilibrium that the pressure on

any given section, as M'N
9
should be the

same, whether exerted by the column of liquid

in the tube, or by the liquid mass outside, and

this can only be when

S . II. (Sp. Gr.) = S . II' . (Sp. Gr.) [122.]

or when J/= H' (compare 130). This equation, however, only
has regard to the pressure exerted by liquids in consequence of

their weight, although, as we have just said, the molecular forces

exert a pressure themselves whose effect must be added to that

of gravity. As the surface of the liquid outside the tube is hori-

zontal, the molecular pressure transmitted by it to the section

M N may be represented by A, and the whole pressure on the

section will be S . JJ. (Sp.Gr.) -f- A. If, however, the liquid

wets the tube, the interior surface will be concave, and the pres-

sure transmitted from the interior of the tube to the section will

be S .//'.( Sp. Gr.)+ (A B) . Evidently there can only be

an equilibrium when

or

that is to say, when the level* in the tube is above the level

outside. The difference of level, A, measures the difference of

S'. H. (Sp. GV.) + A=*S. II' . (Sp.Gr.*) + (4 ),

h; [123.]
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pressure, ,
caused by the concavity of the

surface.

If the liquid does not wet the tube (Fig.

318), then the interior surface will be con-

vex, and the pressure transmitted from the

interior of the tube to the section will be

S. H' . (Sp.Gr.) + (4 + #)
then have equilibrium when

S. $>. GV. .S. dr

or

[124.]

that is to say, when the level in the tube is below the level out-

side ;
and here, as before, the difference of level measures the

difference of pressure, which is caused in this case by the con-

vexity of the surface.

Between these two conditions there is a third, in which the

liquid surface is level within the tube. In this case it is evident

that the molecular pressures will balance eacli other, and there

can be equilibrium only when H' = H\ or when the level is the

same within and without the tube.

These results, which we have now deduced theoretically, are

fully confirmed by observation ;
for we find, as has already been

stated (184), that a concave meniscus is always accompanied by

an elevation of the liqiiid column in a capillary tube, and a con-

vex meniscus by a corresponding depression. The phenomena
of capillarity may be illustrated not only

by means of a simple tube, as represented

in Figs. 310 and 311, but also by a siphon

tube, one of whose branches is very small,

while the other is at least 20 millimetres

in diameter (Figs. 319 and 320). The

depression or elevation of the liquid in

the smaller tube becomes then very evi-

dent, and can easily be measured. A
number of these tubes may be mounted

together for comparison, as represented
in Fig. 321.

These phenomena are entirely independent of the pressure

30*

Fig 319. Fig- 390.
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to which the apparatus is ex-

posed. They are the same in

compressed air as in a vacuum,
and are not influenced by the

thickness of the walls of the

tube. They vary, on the oth-

er hand, with the material of

the tube, and with the nature

of the liquid. When, how-

ever, the tube has previously

been wet with the liquid, the

phenomena are also entirely

independent of the material

of which it is formed, and at

any given temperature vary

only with the nature of the

liquid and the diameter of

the tube.

If we take tubes of the same

diameter, and dip their ends

in different liquids, capable of

moistening the walls, we find that the heights to which the liquid

columns are elevated differ very greatly. If the tube is 1.8 m. m.

in diameter, the height is 23.1 m. m. for water, 9.8 m. m. for oil

of turpentine, 7.07 m. m. for alcohol, and still less for ether. It

is essential in these experiments that the tubes should be pre-

viously cleaned, and carefully rinsed out with the liquid to be

used. Otherwise the phenomena are also influenced by the ma-

terial of the tube, and are rendered very irregular by the film of

air adhering to the surface. This is especially true when the

liquid has not the power of wetting the surface, and the order of

the phenomena is reversed. The amount of depression in such

cases not only varies with the nature of the tube and of the

liquid, but, moreover, it is not the same for the same tube and

liquid under different circumstances. For example, in the case

of mercury and glass, the form of the meniscus, and the depres-

sion of the mercury column, which depends upon this form, vary
so' greatly with the impurity of the metal, the presence of the air,

and the nature of the glass, that it is not possible to calculate the

amount from any general measurements, but it is necessary to de-

rig. 321.
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termine it by experiment for each particular instrument. Thus,
in the same tube the mercury column will be more depressed in

a vacuum than in the air, especially when the air is moist. So,

also, mercury which has been boiled in the air forms a less con-

vex meniscus than mercury which has been boiled in an atmos-

phere of hydrogen or carbonic acid. And lastly, a small amount
of oxide dissolved in the mercury may even invert the order of

the phenomena, causing it to assume a plane, or even a slightly

concave surface.

In determining the amount of pressure from the height of

a mercury column in a barometer tube, or in other forms of

tube-apparatus used in experiments on gases, it is important
to correct the observations for the capillary depression ; but

since, from the causes just stated, the amount is uncertain, it is

best either to use tubes so large that it is rendered insensible,

or else so to arrange the apparatus that the effect of capillarity in

one arm of a siphon is balanced by an equal effect in the other.

In the barometers of Rcgnault and Fortin the amount of depres-
sion is a constant quantity, and is determined once for each instru-

ment (159 and 160) ; but even in a well-made barometer the

surface of the mercury is liable to changes, which alter the form

of the meniscus, and consequently cause a variation in the

amount of depression. The convexity of the meniscus can gen-

erally be restored by tapping on the glass ; but when the surface

of the mercury is badly soiled, it is necessary to refill the tiibe.

(189.) Numerical Laics. Although the theory of capillarity,

as thus far developed, explains and predicts the general order

of the phenomena, it does not yet enable us to calculate the

amount of the elevation and depression in different

tubes. This, as we have seen, varies with the na-

ture of the liquid, and, when the walls of the tube

have not been previously moistened with the liquid,

also with the nature of the tube. But assuming
that all other conditions are equal, let us in-

vestigate the relation between the capillary effect

and the size of the tube.

For this purpose let us take the simple case

of a capillary tube (Fig. 322) dipping in a mass

of liquid which is capable of wetting its surface,

and which consequently rises in its bore to a Fig 322.
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mean height AB. In the first place, it is evident that the

mass of the tube just above this level must attract the liquid

molecules below, and that there will thus result a vertical force,

which will tend to raise the liquid column. Since this force is

proportional to the number of solid particles within the sphere
of attraction, and hence to the perimeter of the tube, we may
represent it by the expression pa, in which a is a constant

quantity depending on the nature of the tube and the liquid, and

p the perimeter of the tube. If now, in the second place, we con-

sider the portion of the tube between A B and CD, it is equally
evident that the attractive forces exerted by the solid particles

will balance each other, and can therefore produce no effect either

in elevating or depressing the column. Finally, the molecules of

the tube placed just above CD will attract the particles situated

just below in the prolongation of the liquid column, and will evi-

dently exert a force tending to raise this column, which equals, as

before, pa, arid which added to the first gives us 2pa as the

whole value of the upward pressure.

But we have thus far left out of view the liquid mass below

the end of the tube. If we conceive of the solid tube as pro-

longed by a tube of liquid, CDM N, it is evident that the

liquid particles forming the walls of this tube will attract those

of the liquid column just above C Z), and will thus exert a force

tending to depress it. Representing by a' a constant depending
on the nature of the liquid, we shall have for this downward
force the value p a', and for the whole vertical force the value

p (2 a a'), a force which will raise or depress the column

according as (2 a a') is positive or negative. This force must

evidently be equal to the weight of the column of liquid which

it elevates or depresses ; and since this weight may be found

by multiplying together the area of the section of the tube, s, the

height of the column, h, and the specific gravity of the liquid,

Sp. Gr.j we obtain

p (2 a a')
= s . h . (Sp. r.),

or

= a [125.]

in which last a" = ~ ~ , and is constant so long as the liquid

and substance of the tube are the same.
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If the tube is cylindrical,
* =

jv
== n an(^ ^ == ^

7T
a"'

For another tube of the same material, but different diameter,

D1

,
we obtain h 1 = db

-^/ #", whence we deduce

db h : db A' = D1

: D, [126.]

or in words, The elevations or depressions of a given liquid in

cylindrical tubes of the same material, but of different diameters,
are inversely proportional to the diameters of the tubes.

If the tube has a rectangular section, the perimeter is equal
to 2 (m -\- n), the lengths m and n being those of the sides of

the rectangle, and we have *= '

. When the length
s mn

p 2
of one side is infinite, we have also n = oo

,
*- =

, and
2

s m
h = a", from which we can deducem

dbA : db h' =m': m. [127.]

The case supposed is evidently that of two plates parallel to each

other, and separated by a distance m. Hence the elevation

or depression of a given liquid between two parallel plates is

inversely proportional to their distance apart.

If, lastly, we compare the effect produced by a cylindrical tube
4 2

when h= =t -~ a", and that by parallel plates when h'= db a",

we obtain the proportion

A:/i' = 2i: D, [128.]

by which we find, that when m = D, then A 2
/*', or in

words, The variation of level caused by two plates is one half

of that caused by a tube of the same nature, whose diameter is

equal to the distance between the plates.

(190.) Verification of the Laws. First Law. It follows

from [126] , that, if the first of the three numerical laws, which

have thus been deduced theoretically, is correct, the product of

the elevation or depression of the liquid column into the diam-

eter of the tube must be always a constant quantity for the same

liquid. That this is approximatively, at least, the case, is shown

by the following table, taken from Jamin's Cours de Physique,
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to which we are indebted also for the general method followed

in the discussion of this subject.

Diameter D. Elevation h. Product D h.

in. m. ID. m.
( 1 9Q 9'-4 1 f\ 9Q ftT

Water J
^o.io ^y.o/

(1.90 15.58 29.GO

A , , , (1.29 9.18 11.84
Alcohol, .-_..;., j o() ^ ^
Parallel Plates and Water, . 1.069 13.57 14.52

This law is not, however, exact, when the diameter of the

tube is so large that we can no longer neglect the curvature

of the surface which terminates the liquid column (we assume

always that the height of the column is measured to the lowest

point of the concavity, or to the highest point of the con-

vexity). When the diameter of the tube is not greater than

one or two millimetres, the surface is approximatively hemi-

spherical, and we can then easily estimate the amount of devi-

ation. If, as above, we represent by h and h' the heights of

two columns of the same liquid in tubes of different diameters,

measured to the lowest point, w, of a concave meniscus, it is evi-

dent that, in order to obtain exactly the weight of these liquid

columns, we must add to the weights of the liquid cylinders

s . h . (Sp.Gr.) and s' . h' . (Sp.Gr.) the weight of liquid above

the point n. The volume of this liquid is evidently equal to

the difference of volume between a hemisphere and a cylin-

der of the same diameter and of a height equal to the radius

of the hemisphere. Using the notation of the last section, we
find for this volume the value & Z)3 n rV D3

it = ^ D3

it,

and for the total weights of the liquid columns the values

J I>2
Ji (h+ ^\ ( Sp. GV.), and * D'*7t

(/<'
+ \ ( Sp. dr.), and

by the same course of reasoning as before [125] ,
we deduce

* + : *' + = D' : D. [129.]

The double sign is used, because, as can easily be proved, the

proportion is equally true when the meniscus is convex. Hence

it follows, that, when the tubes are not more than one or two mil-

limetres in diameter, the law of inverse proportions is correct,

when we add to the observed heights one sixth of the diameter
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of the tube, the correction required for the meniscus
;
and obser-

vation confirms this result of theory.

When the tubes are very small, and the elevations or depres-

sions correspondingly large, we can neglect the very small value

j,
and regard the law as accurate without this correction. When,

however, the tubes are extremely small, a new cause of devia-

tion from the law is introduced. In experiments on capillarity,

as already stated, we can obtain constant results only when the

surfaces of the tubes have been previously moistened with the

liquid to be used, and the results are then the same as if the

experiment were made with a liquid tube of less diameter,
the solid wall serving only to support the liquid particles. If

the tube is one or two millimetres in diameter, the thickness

of the liquid film may be neglected ;
but when the tube is very

small, this thickness sensibly diminishes its effective size, and we
should therefore expect that it would raise a liquid column to a

greater height than that required by the law, as we find to be

the case.

When, on the other hand, the tubes are more than three milli-

metres in diameter, the surface of the liquid column differs so

considerably from that of a hemisphere, that the proportion [129]
no longer holds true, and the deviation from the law becomes

very large. Even in such cases, however, the heights to which

liquids will rise can be calculated when the precise form of the

meniscus is given ; but the methods are too complicated for an

elementary treatise.

Second Law. The second law of (189) can be verified by a

very instructive experiment. If we take

two glass plates, united by hinges at one

side, and, having very slightly opened these

hinges, dip the ends of the plates, as repre-

sented by Fig. 323, in colored water, we
find that the liquid rises between these

plates to a variable height, depending on

the interval which separates them, its up-

per surface taking the form of a curve, Fig. 323.

known in geometry under the name of an

equilateral hyperbola. Let us inquire whether the form of this

curve does not furnish a confirmation of the law under discussion.
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We may evidently regard the two glass plates as consisting

of an infinite number of infinitely narrow parallel strips, as

shown by Fig. 324. If then the law is

correct, it follows [127] that the heights

to which the liquid is elevated, at any two

points, will be proportional to the interval

between the plates at these points, so that

2 of1

at every point we must have h = . If now we take form
the axis of y the vertical line of intersection of the two planes,

and for the axis of x the line of contact

of the water level with one of them, we

shall have (Fig. 325), MP=h = ij,

A P= x, and P Q = m = C x, in

which C is a constant quantity depend-

ing on the angle between the planes.
2 ct"

Substituting these values in h =
,

, . . 2 a"
m

we obtain y = ,

Fig. 825. 2 a"
or x y= 77-

= a constant,o

which is the equation of an equilateral hyperbola referred to its

asymptotes as co-ordinate axes. Since this is the curve which

the liquid surface always assumes, it is evident that the second

law is verified by the experiment.
Third Law. When the ends of two parallel glass plates,

maintained at a small distance from each other, are dipped into

water, and the difference of level measured, it lias been found that

the product of the distance between the plates by the elevation

of the liquid is one half of that obtained with glass tubes. This

fact is shown in the table on page 358, and verifies the third law.

(191.) Influence of Temperature on Capillary Phenomena.

The general expression for the elevation or depression of the

liquid column in a capillary tube [125] may be written

4 2 a a>
' D '

IS^Gr.)
'

and it is evident that any cause which changes either the spe-

cific gravity of the liquid, or the relative values of the cohesive

and adhesive forces, will produce variations in the value h.

Hence an increase of temperature, which diminishes the specific
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gravity by expanding the liquid, would of itself alone increase

the elevation or depression of the column
;
but since this increase

of temperature produces changes in the molecular forces, and

hence affects the value of the term 2 a a', we find that the

elevation or depression, instead of increasing with the tempera-

ture, actually diminishes. This decrease is not, however, simply

proportional to the temperature, but follows much more compli-

cated laws. The following table shows the height at which the dif-

ferent liquids enumerated stand at C. in a tube two millimetres

in diameter, together with the coefficient of correction for tempera-

ture, which, multiplied by ,
the number of degrees above 0,

gives the amount in millimetres to be deducted from the height

at 0, in order to find the height of the capillary column at the

temperature required. The last column gives the limits of tem-

perature between which the formulas hold true.
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cohesive and adhesive forces, we can easily conceive how it may
so far alter their relative values as entirely to change the rela-

tions of a liquid to a solid surface. This result is readily ob-

tained with water, alcohol, and similar liquids, which, at the

ordinary temperature, wet metallic surfaces.

It will hereafter be shown, that we cannot heat a liquid in the

open air above its boiling point, and hence we cannot diminish the

cohesive force, except to a limited extent
; while, on the other hand,

we can heat the metals to a far higher temperature, and thus di-

minish the adhesion, until the force becomes less than twice that

of cohesion, when the liquid will assume the spheroidal state.

Thus, for example, if water is dropped into a metallic vessel heat-

ed above 171 C., it rolls along the surface of the metal like mer-

cury on glass, and remains in that state until the temperature falls

to 142
;
then it moistens the metallic surface, and evaporates

rapidly. Alcohol acts in the same way when the temperature of

the vessel is above 134, and ether when it is above 61. The

temperature of the liquid itself, under these circumstances, is

nearly constant, being always several degrees below its boiling

point : thus 96.5 is the temperature of water, 75.8 that of

absolute alcohol, 34.2 that of ether, and 10.5 that of liquid

sulphurous acid. The temperature of the liquid may there-

fore be several hundred degrees below that of the metallic

vessel, as is well illustrated by liquid sulphurous acid, which in

the spheroidal state retains a temperature 10.5 degrees below

the freezing point of water, even when the metallic crucible

containing it is visibly red-hot. If water is slowly dropped
into this singular liquid under these circumstances, it is at once

congealed, thus exhibiting the apparent paradox of freezing
water in a red-hot crucible.

One of the most instructive illustrations of the spheroidal con-

dition of water is the rude method used in laundries for testing

the degree of heat of a flat-iron. If a drop of water let fall upon
it does not boil, but runs along the surface of the metal, the iron

is considered sufficiently hot
; but if the drop adheres, and rapidly

boils away, the temperature is known to be too low. We shall

have occasion to return to this subject in the chapter on Heat.

(193.) Examples and Illustrations of Capillarity. One
of the most familiar examples of capillary action is seen in

the wicks of lamps and candles. These consist of very fine
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vegetable tubes, through which the oil or melted combustible is

elevated to the flame, and supplied as fast as it is burnt. This

same principle also influences the circulation of the liquid juices

in the porous tissues of organized beings, and it is the principal

means by which water, with the substances it holds in solution, is

supplied to the growing plant. It is the capillary action, which,

during the droughts of summer, draws up to the surface of the

soil the water necessary for vegetation, which had penetrated into

it during the heavy rains of spring. When the water holds salts

in solution, these are deposited as it subsequently evaporates,

forming those incrustations which are frequently seen on the

brick walls of old houses and on the surfaces of saltpetre beds.

The laws of capillary action furnish the explanation of many
other remarkable phenomena. A platinum wire will float on the

surface of mercury, although its specific gravity is very much

greater than that of the liquid metal. So also a very fine metal-

lic wire, which has been slightly greased by passing it between the

fingers, can be made to float upon water, and the same is true of

many metallic powders. This singular result is explained by
the fact, that the floating body is not wet by the liquid, and con-

sequently there forms around it a meniscus, which displaces a

large volume of liquid in comparison with that of the solid ;

and since the volume of water thus displaced weighs as much
as the floating body, it cannot sink. There are some insects

which walk on the surface of water, but which would almost

entirely sink in the liquid were it not that the capillary depres-
sion formed by their extended feet (which are kept from being
wet by a greasy coating) displaces a weight of water equal to

that of the insect.

(194.) Absorption. The power which porous solids, like

wood, cloth, paper, or animal membrane, possess of absorbing

liquids, is also a phase of capillary action. These solid bodies

are filled with minute channels, into which the liquid is drawn

with great force, as before explained. We may gain an idea of

the intensity of this force by reflecting that in a tube 1 millimetre

in diameter it is measured by a column of water 80 m.m. high,

and hence in a tube T ^ a millimetre in diameter by a column of

water 3 metres in height. Now since the minute channels with

which these porous solids are filled are as small as this, or even

smaller, it is evident that they will absorb water with an almost
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irresistible force ; hence the difficulty of pressing out the liquid

when it has once been imbibed. In many cases the absorp-

tion of a liquid is attended with an increase of volume, and

the intensity of the capillary force is rendered evident by the

expansive power which is thus exhibited. A common method

of splitting granite rock consists in drilling a number of holes

along the line of fracture, and subsequently plugging them up
with dry wood. Water is then poured over the plugs, which

expand and split the stone.

The amount of liquid absorbed by a given solid varies with the

nature of the liquid used ; thus it has been found that 100 parts

by weight of the dried bladder of an ox absorbed in twenty-four

hours

2G8 parts of pure water,

133 " water saturated with common salt,

38 "
alcohol, 84 per cent.

17 " bone oil.

It has also been found, that, if the bladder saturated with oil is

soaked in water, the oil is after a while entirely replaced by water,

and by as much water as the bladder is capable of absorbing.

These facts indicate not only that porous solids exert an unequal
attraction for different liquids, but also that they attract most

powerfully those of which they absorb the. greatest volume.

In connection with these facts may be mentioned the singular

property which many kinds of charcoal possess, of absorbing color-

ing-matters and other organic principles. Thus, if water colored

by litmus is shaken up with pulverized charcoal, nearly the whole

of the coloring-matter will be retained by the charcoal, and, on

filtering, the liquid will run through colorless. A variety of char-

coal called bone-black possesses this power in a high degree, and

is used for removing the color from the brown syrups in the pro-

cess of refining sugar. The syrups are filtered through a layer of

charcoal twelve or thirteen feet in thickness, contained in a tall

iron cylinder, and are thus obtained perfectly colorless. Bone-

black is prepared by calcining bones in close vessels, and does not

contain more than one tenth or one twelfth of its weight of char-

coal ;
the remainder consists of earthy matter, chiefly phosphate

of lime. Whether the peculiar property under consideration is

due to the charcoal alone, or whether it is also shared by the

earthy salts, is not known. Other animal substances, especially
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dried blood, furnish when calcined a charcoal, which, if well

washed, is even more efficacious than bone-black, and the addi-

tion of carbonate of potash to the mass before calcining still

further increases the decolorizing power of the charcoal.

The absorbing power of charcoal is not, however, confined to

the coloring principles alone. Many inorganic substances when
in solution, especially of feeble solubility, are absorbed in the

same way. Professor Graham has shown that this is the case

with the metallic oxides when dissolved in potash or ammonia,
and with arsenious acid when dissolved in water. It is also true

of most organic extractive matters. Thus, if porter is filtered

through lampblack, it will be found to have lost the greater part
of its bitterness, as well as its color, and in the preparation of

organic extracts much of the active principle is lost, if, as is not

unfrequently the case, the liquid is digested with animal char-

coal for the purpose of removing the color.

(195.) Solution. When the adhesion of a liquid to a solid is

sufficiently strong to overcome the force of cohesion, the solid

enters into solution
;
that is, it diffuses throughout the mass of

the liquid, without destroying its transparency. Thus salt or

sugar dissolves in water, resins dissolve in alcohol, fats dissolve in

ether, and most of the metals dissolve in mercury. The solvent

power of a given liquid for different solids varies almost indefi-

nitely. Thus sulphate of baryta is almost insoluble in water
;

sulphate of lime dissolves in the proportion of about one part in

400 parts of water, and sugar in one third of its weight of water,
while hydrate of potassa may be dissolved in this liquid to almost

any extent.

If we add a solid body, in successive portions, to a liquid

capable of dissolving it, we find that the first portions disap-

pear very rapidly, but each succeeding portion dissolves less

rapidly, until at length a point is reached when the solid is no

longer dissolved. The liquid is then said to be saturated with

the particular solid. It would appear that the adhesion of the

liquid had the power of overcoming the cohesion of the solid to

a limited extent, until the two forces were in a condition of

equilibrium. A liquid, however, which is saturated with one

substance may still continue to dissolve others.

The solvent power of a given liquid for the same solid, as a

general rule, varies very greatly with the temperature. Since

31*
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heat tends to weaken the force of cohesion, we should naturally

expect that it would increase the solvent power of a liquid, and

we find that in most cases it does. There are, however, many
striking exceptions to this rule. Thus water at the freezing

point dissolves nearly twice as much lime as it does when boiling ;

and in like manner sulphate of lime, citrate of lime, sulphate of

lanthanum, and several other substances, are known to be more

soluble in cold than in hot water.

The increase of solubility with the temperature is very unequal
in different cases. The solubility of common salt scarcely in-

creases between and 100. Thus 100 parts of water dissolve

at the ordinary temperature 36 parts of common salt, and at the

boiling point a little over 39 parts. With a few salts the increase

of solubility is exactly proportional to the temperature, and may
be represented by the general formula, S = A + B

,
in which

A represents the solubility at 0, and B the increase of solubility

for each degree of temperature. This is the case with the fol-

lowing three salts. One hundred parts of water dissolve at t,

Parts.

of Sulphate of Potash, S = 8.36 + 0.1741 1,

" Chloride of Potassium, S = 29.23 -f- 0.2738 *,

Chloride of Barium, S = 32.62 + -2711 '

In most cases, however, the solubility increases more rapidly than

the temperature. This is the case with common nitre, as may be

seen in the following table, in which the solubilities both of nitre

and chloride of potassium are given side by side for every 20 be-

tween the freezing and boiling points of water.

Chloride of Potassium. Nitre.

Temperature. *$$%% Difference. Temperature. ^^^ Difference.

29.23 13.32

20 34.70 J 20 31.70 gg40 40.18
5AS 40 63.97 4O6

60 45.66
5

60 110.33
59 ^

80 51.14 80 170.25

100 56.62 100

Since the solubility of a salt is always some function of the tem-

perature, it can in every case be expressed by the general formula,
into which every algebraic function may be developed :

Dt* + &c. [130.]
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In this formula, A is the solubility at 0, and B, Gf

, D, <fcc. are

empirical coefficients, which can be easily calculated in any given
case from the results of experiment. Thus, for example, 100

parts of water dissolve at the temperature t an amount of nitre

represented by

S= 13.32 + 0.5T38 1 + 0.017168 1* + 0.0000035977 /
3

,

and of nitrate of baryta an amount

S= 5.00 + 0.17179 + 0.0017406 1
9

0.0000050035 1
9
.

The values of the coefficients of the powers of t are calculated

by substituting in the general equation [130] the value of A,
and also the values of S and

,
for each temperature at which

the solubility has been determined. We shall thus obtain as

many separate equations as there are separate determinations,

and, by combining them together according to the well-known

methods of algebra, we can easily calculate the coefficients re-

quired. It is evident that we can only ascertain as many co-

efficients as there are equations, and also that the resulting
formula is purely empirical, and can only be trusted for tem-

peratures between those at which the experiments were made.

The solubility of a salt at different temperatures can be also

expressed graphically, according to the method of analytical

geometry, as represented in Fig. 326. The horizontal axis,

which corresponds to the axis of abscissas, is divided into equal

parts, which indicate degrees of temperature, and the vertical
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axis, which corresponds to the axis of ordinates, is also divided

into equal parts, which indicate the number of grammes of salt

soluble at the given temperatures in 100 parts of water. In

order to form the curve, we fix as many points as possible from

the experimental data, and then through the points thus deter-

mined we draw a line, which is the curve required. We can now,

by inspection, easily determine the solubility of the salt at any

temperature which is within the limits of our experiments. Sup-

pose, for example, we wish to know the solubility of nitre at 40,
we follow up the vertical line marked 40 until it crosses the

curve
;
and then, opposite to the point of intersection, we find on

the axis of ordinates the number 64, indicating that at this tem-

perature 64 parts of salt dissolve in 100 parts of water. Such

curves convey at a glance a general idea of the law which the

solubility of a given salt follows, and also the relative solubility of

different salts at any given temperature. Thus it will be noticed

that the curve of common salt is a straight line parallel to the

horizontal axis, indicating that its solubility does not vary with

the temperature. The curves of chloride of barium and chloride

of potassium are also straight lines, inclined at a certain angle

to the horizontal axis, showing that the increase of solubility is

directly proportional to the temperature. The curve of sul-

phate of magnesia is also a straight line, but more inclined to

the horizontal than the last, proving that the solubility of this

salt increases proportionally to the temperature, but at a more

rapid ratio than that of the last two. The curves of nitrate

of baryta, of chlorate of potassa, and of nitrate of potassa, in-

dicate that their solubility increases more rapidly than the tem-

perature, and according to very different laws. Lastly, it will

be noticed that the order of relative solubility of the three salts,

sulphate of potassa, nitrate of baryta, and chlorate of potassa, is

completely inverted in passing from 35 to 55.
The relative solubility of chemical compounds is one of the

most important circumstances in determining chemical changes ;

and it can be easily seen how important these tables of curves

must be to the chemist. Unfortunately, full determinations

of the solubility of substances at different temperatures have

only been made in a few cases, and these have been mostly
limited to solubility in water.

From a knowledge of the solubility of a solid in one liquid,

we can draw no conclusions in regard to its solubility in an-
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other, and this is also true in regard to the law according to

which the solubility changes with the temperature. This gener-

ally differs entirely for different liquids, even when the solid is

the same, and must therefore be determined separately for each.

In several cases the solubility of substances has been deter-

mined both above and below their melting point ;
but no sud-

den change of solubility has been noticed at this point, as might
have been expected. Thus the melting points of spermaceti,

paraffine, and of several other similar solids, are below the boil-

ing point of alcohol, so that we can determine the solubility of

these substances in alcohol, both above and below their melting

points. In each case, the solubility has been found to increase

gradually throughout the whole range of temperature, and the

melting of the solid does not appear by itself alone to produce

any change.

(196.) Determination of Solubilities. In order to deter-

mine the solubility of a substance at a given temperature, a

saturated solution is first prepared at the temperature required.
This may be prepared in one of two ways. We may either keep the

liquid in contact with a large excess of the solid for a long time,

at the given temperature, until it has dissolved all that it can, or

we may prepare a saturated solution at a slightly higher temper-

ature, and, after having cooled it to the required temperature,

keep it at that point until the excess of the solid has been depos-

ited. Experiments have proved that we obtain the same result

by both methods ;
but in employing the second, it is necessary to

take certain precautions. It has been observed, that a liquid,

when not in contact with the solid particles themselves, will

retain in solution an amount of the solid which is greater than

it can normally dissolve at the given temperature. But if a few

crystals of the solid are dropped into it, the excess will be at once

deposited. Violent agitation favors the separation, but we can-

not in any case be certain that the excess has been completely
removed until after several hours.

Having prepared a saturated solution, by either of these pro-

cesses, we next transfer a quantity of it to a tared flask, and care-

fully determine its weight, which should be about 50 grammes.
We then evaporate the liquid by placing the flask over a sand-

bath or a small furnace, as represented in Fig. 327, taking care

to keep the neck of the flask, which should be quite long, in-



370 CHEMICAL PHYSICS.^

clined at an angle of about 45, in order to prevent loss by spirt-

ing. The evaporation is continued until both the water of crys-

tallization and that of solution have been driven off, and the salt

left in an anhydrous condition. The last traces of moisture

are best removed by blowing into the flask a stream of dry air,

through a glass tube attached to the nozzle of a pair of bellows.

When the flask is cold, we weigh it, and thus obtain the weight
of the anhydrous salt which the solution contained, and from

Fig. 327.

this weight it is easy to calculate the weight of salt dissolved by
100 parts of water at the given temperature.

Let us represent the weight of solution used in our ex-

periment by W, and the weight of dry salt obtained by W'.

W W is then the weight of water which dissolves a weightW of the anhydrous salt. The amount of salt which 100 parts

of water will dissolve may then be ascertained by the proportion,

WW:W'= 100 : X, from which we get X= 100 w^_ w,-

If the salt contains water of crystallization, we shall wish to cal-

culate from the weight of the anhydrous residue the weight of

crystallized salt which 100 parts of water dissolved at the tem-

perature of the experiment. Let us represent by w the weight

of water of crystallization with which the weight W of anhy-

drous salt combines. W1

-f- w then evidently represents the

weight of crystallized salt which was dissolved in the weight of

water W -
(W1

-f- w). Hence we get the proportion, as before,

the amount of crystallized salt which will dissolve at the given

temperature in 100 parts of water.
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Instead of evaporating the solution, it is frequently more con-

venient to determine the weight of salt dissolved by precipitating

one of its constituents, as in the ordinary method of chemical

analysis. Thus the amount of sulphate of soda in a solution

may be ascertained by precipitating the sulphuric acid as sul-

phate of baryta, and afterwards collecting and weighing the pre-

cipitate in the usual way ;
and the same method may be followed

with any sulphate. In like manner, the solubility of any chloride

in water may be determined by precipitating the chlorine as

chloride of silver. In either case, from the weight of the pre-

cipitate we can easily calculate, by the rules of stochiometry, the

weight of salt which was in solution, whether in an anhydrous or

a crystalline condition. When a salt is easily decomposed by

heat, this chemical method of determining its solubility is always
to be preferred.

(197.) Solution and Chemical Change. Solution is gener-

ally regarded as merely a mechanical separation of the particles

of a solid, which are diffused through the liquid solvent. Thus,
when sugar dissolves in water, its particles are diffused through-
out the liquid ;

but they are not supposed to undergo any essen-

tial change, for the syrup retains the sweetness of the sugar, and

on evaporation yields -solid sugar, with all its peculiar properties.

So also a solution of camphor in alcohol partakes of the proper-

ties of both substances, and when evaporated deposits the solid

camphor entirely unchanged. Such a change is supposed to be

entirely mechanical, and to differ widely from true chemical com-

bination, in which the properties of the combining substances

are entirely merged and lost in those of the compound. Thus,
when we add lime to dilute nitric acid, it apparently dissolves,

as sugar dissolves in water, and the result is a clear solution ; if,

however, we examine the solution, we find that the properties of

lime have disappeared, and on evaporating it we obtain, not lime,

but a new substance called nitrate of lime. These examples
would seem to indicate that there is a very marked distinction

between solution and chemical combination, and this conclusion

is apparently confirmed by the fact, that whereas chemical com-

bination takes place most easily between those substances which

are most unlike, solution generally occurs most readily when

the solvent is more or less closely allied in its properties to

the body dissolved
; thus mercury dissolves the metals, alcohol
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the resins, and oils dissolve the fats. Bat if, instead of compar-

ing these extreme cases, we study the whole range of chemical

phenomena, we shall find that the distinction between solution

and chemical combination is by no means so clearly marked, and

that it is impossible to say where the one ends and the other begins.

In many cases, what seems to be an example of simple solution

can be shown to be a mixed effect, at least, of solution and chem-

ical combination ;
and between this condition of things, where the

evidence of chemical combination is unmistakable, and a simple

solution like that of sugar in water, we have every degree of

gradation. To such an extent is this true, that the facts seem to

justify the opinion that solution is in every case a chemical com-

bination of the substance dissolved with the solvent, and that

it differs from other examples of chemical change only in the

weakness of the combining force. There are many remarkable

phenomena connected with the solution of salts in water, which

are probably caused by the intervention of chemical affinity.

There are but few anhydrous salts which dissolve in water

without entering into chemical combination with it
;

in such

cases we obtain, not, properly speaking, a solution of the anhy-

drous salt, but a solution of a compound of the anhydrous salt

and water. Thus, for example, if we dissolve anhydrous sul-

phate of soda in water, every 44.2 parts of the salt combine with

55.8 parts of water, and we obtain a solution, not of Na 0, S03 ,

but of Na 0, S Oj . 10 HO
;
and on evaporating the solution at

the ordinary tempsrature, crystals of the hydrated salt are de-

posited. The water which is thus combined with the salt is

termed water of crystallization. It is combined in definite pro-

portions, but is united by so feeble an affinity, that it is entirely

driven off when the crystallized salt is heated to 33 in the open
air. It is true that it is difficult, and frequently impossible, to

ascertain the condition in which a salt exists when in solution,

and that the condition in which it is deposited on evaporation

is not necessarily the same as that in which it was dissolved.

Even in the case just cited, it is impossible to determine with

certainty whether the hydrated salt exists as such, in solution,

or whether it is first formed at the moment of crystallization.

Several facts, however, seem to support the first hypothesis.

On examining the curve of solubility of anhydrous sulphate

of soda (Fig. 328), it will be noticed that the solubility rapidly
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increases with the temperature up to 33, where it reaches its

maximum, and then diminishes as the temperature rises above this

point. Such a sudden break in the continuity of the curve as

this is inexplicable, at least with our present knowledge, if we

suppose that the water holds in solution one and the same body

throughout the whole range of temperature ;
while it is easily

explained, if we assume that the composition, of the salt in solu-

tion changes with the temperature ; for if, as would naturally

be the case, the solubility of the salt is different in its hydrated

Fig. 328.

and its anhydrous conditions, the sudden change in its solubility

may be caused by a change of composition commencing at a par-

ticular point. That this is the case with sulphate of soda is

substantiated by the fact, that the sudden change in the law of

its solubility takes place at 3, the temperature at which the

hydrated salt loses its water in the air. It is not supposed, how-

ever, that the change of composition is completed at that tem-

perature, but only that it commences at that point, and becomes

more complete as the temperature rises. Below 33, the change
of solubility is owing to the natural effect of heat in increasing

the solubility of the hydrated salt. Above 33, the change is

a mixed effect of the cause just mentioned and of the change of

the hydrated into the less soluble anhydrous salt.

It is obvious, from what has been stated, that the curve of

solubility of anhydrous sulphate of soda given in Fig. 328 is a

32



374 CHEMICAL PHYSICS.

pure fiction, since below 33 it is NaO, S03 . 10 HO, and not

Na 0, S03 ,
which is in solution

;
and the same is true also of sul-

phate of magnesia and chloride of barium, both of which form

crystalline compounds in water. Indeed, in order that such a

curve should be a representation of actual facts, it is essential

to know in what condition the salt exists in solution at each tem-

perature, and to calculate the solubility solely for the hydrate
which is known to be present. A separate curve should then be

constructed for each definite compound, between the limits of

temperature at which it is known to exist. This has been done

in the case of sulphate of soda, by Loewel,* who has determined

separately the solubility of the three compounds Na 0, S03 ,

NaO, S03 . 7 HO, and NaO, S03 . 10 HO, between the limits of

temperature at which they are capable of existing. His numer-

ical results are given in the table on page 375,f and from them

the curve may easily be drawn.

In the case of the two hydrates, the table gives in each in-

stance the amount of anhydrous salt corresponding to the hydrate

dissolved, and by comparing the three columns headed "
anhy-

drous salt," it will be seen that the amount of NaO, S03 which

100 parts of water will dissolve at 20, for example, varies very

considerably with the condition of hydration in which it exists.

It will also be noticed, that the change of solubility for each com-

pound follows a uniform law throughout ; the solubility increas-

ing with the temperature in the case of the two hydrates, and

diminishing with the temperature in that of the anhydrous salt.

It is the combination of these two phenomena which causes the

seeming irregularity in the curve of anhydrous sulphate of soda,

as determined by Gay-Lussac, and represented in the figure above.

Similar irregularities, which have been observed in seleniate of

soda, carbonate of soda, and many other salts, are probably to bo

explained in the same way, although the subject has not been

as yet sufficiently investigated to furnish the data for a satisfac-

tory conclusion in all cases.

Loewel, whose memoirs on the solubility of sulphate of soda

we have just cited, has investigated with equal care the solubil-

ity of a few other salts.J In the case both of carbonate of soda

* Annalcs de Cliimie et dc Physique, Tom. XXIX. p. 62
; Tom. XXXIII. p. 334.

t Il)id., Tom. XLIX. p. 32.

J Ibid., Tom. XXXIII. p. 334 ; Tom. XLIII. p. 405
; Tom. XLIV. p. 313.
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and sulphate of magnesia, he found, very remarkably, that the

solubility not only differed for the different hydrates, but also

was different for the different states of the same hydrate. Thus

the salt NaO, CO* . 7 HO can be obtained in two different con-

ditions or allotropic modifications, which we may distinguish as

a and 6, the salt a crystallizing in rhombohedrons, the salt b in

tabular prisms. Loewel observed that the solubility of the salt

was very different in these two modifications, that of a being nearly

twice as great as that of b. The table on page 377, which has

been taken from the original memoir,* gives the solubility at dif-

ferent temperatures, not only of these two modifications, but also

of the ordinary crystallized carbonate of soda, which contains

ten equivalents of water of crystallization. In the case of each

salt, the corresponding amounts of anhydrous salt are given for

the sake of comparison.
This table illustrates even in a more marked manner than the

last the fact on which we have insisted so strongly in this section,

that the solubility of a salt varies not only with the temperature,
but also with its state of hydration ;

and it illustrates an addition-

al fact, that the solubility may also be altered by a mere change
of molecular condition, without any change in composition. Phe-

nomena analogous to those just described were also observed by
Loewel in the case of sulphate of magnesia, but for the details in

regard to them we must refer to the original memoir.f

(198.) Supersaturated Solutions. Water is said to be su-

persaturated when it contains in solution more of a salt than it

would dissolve if presented to the salt at the given temperature.
That saturated solutions do not at once deposit the excess of salt

which they hold in solution, when cooled to a lower temperature,
is a fact familiar to every one who has experimented on this sub-

ject ; but there can be also no doubt that the prominent exam-

ples, which are frequently cited as illustrations of this fact, are

to be referred to the intervention of the force of chemical affinity

in a manner similar to that explained in the last section.

If we prepare a boiling saturated solution of sulphate of soda

in a glass flask, and, having corked the flask while the solution is

boiling, allow it to cool to the temperature of the air, it may be

* Annales de Chimie et de Physique, Tom. XXXIII. p. 334.

t Ibid., Tom. XLIII. p. 405.
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kept for months without crystallizing ;
but the moment a glass

rod or a crystal of Glauber's salt is dipped into it, the whole mass

becomes semi-solid from the sudden formation of crystals, which

ray out from the solid nucleus in every direction. This singular

phenomenon was formerly supposed to be similar to what is fre-

quently observed during the freezing of water and the solidify-

ing of monohydrated acetic acid, melted phosphorus, and many
other substances. It is well known that these liquids, if kept

perfectly still, may be cooled several degrees below the melting

point without losing their liquid condition, but that if disturbed

when in this state, they at once become solid. These phenomena
have been referred to the inertia of the particles, which tends

to retain the substance in a liquid condition below the usual

temperature, and the same explanation has been extended to the

sudden crystallization of sulphate of soda, as above described.

Loewel, in the memoir already referred to,* has investigated

this subject with great care. He found that, if a supersatu-
rated solution of sulphate of soda is cooled to a low tempera-

ture, it deposits crystals containing seven equivalents of water,
which are much more soluble than the ordinary crystals of

Glauber's saltf (Na 0, S03 . 10 HO). From this fact he con-

cluded that the so-called supersaturated solution is not a super-

saturated solution of Glauber's salt, but merely a saturated solu-

tion of the more soluble hydrate (Na 0, S03 . 7 HO). That the

solution is not at all changed by the deposition of the crystals

Na 0, S03 . 7 HO, is proved by the fact, that, if it is exposed to

the air or touched by a glass rod, it becomes suddenly semi-solid

from the deposition of Glauber's salt. These, and a large number
of additional facts which Loewel $ has observed, all tend to sup-

* Annales de Chimie et de Physique, Tom. XXIX. p. 62.

t See table on page 375.

$ In a more recent memoir, Loewel inclines to the opinion, that sulphate of soda

always dissolves in water as an anhydrous salt, and hence that in a solution made
with Na 0, SOa . 10 HO, or Na O, SOa . 7 HO, none of the water is combined chemi-

cally with the salt as water of crystallization. Such a change of views does not, how-

ever, seem to be a necessary inference from the facts cited, and, as he admits, the new

hypothesis leaves the unequal solubilities of the different hydrates entirely unexplained.
The author, therefore, does not think it necessary to change the opinion expressed
above in the text, although it is true that these later investigations of Loewel seem to

show that at certain temperatures sulphate of soda exists in the so-called supersaturated

solutions in an anhydrous condition. See Annales de Chimie et de Physique, (3
e
Se'rie,)

Tom. XXIX. p. 32, and compare Jahresbericht der Chimie, &c. fur 1857, S. 321. See

also an article by Dr. Hugo Schiff, Ann. der Chem. und Pharm., Band CXI. S. 68.
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port the conclusion, that in the so-called supersaturated solution

of sulphate of soda the salt exists in solution combined with

seven equivalents of water, and does not crystallize until some

circumstance causes it to combine with three equivalents more of

water, and to change into the less soluble compound which we

have called Glauber's salt. What the circumstances are which

produce this singular change, or in what way they act, we do

not yet fully understand. Some very remarkable facts in con-

nection with it have been noticed by Loewel and others. Thus

a glass rod, if heated and afterwards cooled, loses its power of

causing the crystallization. Alcohol, if poured into the flask so

as to form a layer over the solution, generally causes it to crys-

tallize
;
but if previously boiled, it no longer produces this effect.

It slowly, however, withdraws the water from the solution, and

causes it to deposit crystals of Na 0, S03 . 7 HO ;
and it was in

this way that Loewel obtained the largest and purest crystals of

this hydrate. The opinion has been advanced by Lieben,* that

it is the dust floating in the air, or adhering to the glass rod,

which causes the sudden crystallization of supersaturated solu-

tion ; and he has endeavored to show that neither the air nor a

solid body will produce the effect after they have been freed from

dust, by heating, by washing with sulphuric acid, or by any
other means. This theory, although ingenious, and supported

by experiment, does not meet all the facts of the case, and the

subject requires further investigation.

The phenomena of "
supersaturated

"
solutions, which are

so marked in the case of Glauber's salt, have also been noticed in

the case of carbonate of soda, of sulphate of magnesia, of acetate

of soda, of chloride of calcium, and of many other salts.f In some

of these cases, they are to be explained as in the case of Glauber's

salts, by the formation x>f a hydrate more soluble than the one

dissolved, while in others they may be caused by the formation

of a more soluble modification of the same hydrate; but the

whole subject is still involved in great obscurity.

Solids on Gases.

(199.) Absorption of Gases by Porous Solids. If apiece
of well-burnt boxwood charcoal is plunged while red-hot under

mercury, and when cold passed up into a jar of gas confined over

* Wien. Acad. Ber., XII. 771 and 1087.

t See the memoirs of Loewel, just cited.
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the same liquid, it will be found to absorb the gas to a greater

or less extent, varying with the nature of the gas used. Accord-

ing to Saussure's experiments, one cubic centimetre of charcoal

will absorb the number of cubic centimetres of the different gases

given in the following table :

Absorption of Gases by Charcoal.

Ammonia, . . .90 cTirT
3

Olefiant Gas, . . 35 c~in.3

Chlorohydric Acid, . 85 "

Sulphurous Acid, . . 65 "

Sulphide of Hydrogen, 55 "

Protoxide of Nitrogen, . 40 "

Carbonic Acid, . . 35 "

Carbonic Oxide, . 9.4 "

Oxygen, . . .9.2 "

Nitrogen, . . 7.2 "

Marsh Gas, . . 5.0

Hydrogen, . . 1.7 "

In some cases the volume of the gases thus condensed is less

than that which they would occupy in a liquid state, and as

a general rule, the more readily a gas can be condensed to a

liquid, the greater is the volume absorbed by the charcoal. It

will also be noticed, that the above results follow very nearly the

same order as the solubility of the gases in water.

A piece of freshly burnt charcoal, if exposed to the air, con-

denses the gases and moisture of the atmosphere to such an

extent, that its weight frequently increases one fifth in a few days.

The presence of condensed air in common wood charcoal can

easily be made evident by plunging it under hot water. The
heat of the water expands the confined air, which is thus driven

out of the pores of the wood, and bubbles up through the water.

Owing to this absorbing power of charcoal, water saturated with

many gases may be freed from them by filtering it through ivory-

black. Water impregnated with sulphide of hydrogen may be

in this way so perfectly purified, that its presence cannot be de-

tected either by the nauseous odor or by the ordinary tests.

This power of absorbing gases is not confined to charcoal, but

belongs in a greater or less degree to other porous solids. The

following table gives the number of cubic centimetres of different

gases absorbed respectively by one cubic centimetre of Meer-

schaum, plaster of Paris, and silk, when the temperature is 15

and the pressure of the air 73 c. m. By comparing this table

with the last, it will be noticed that not only the absolute quan-
tities of the gases absorbed are different for different solids, but

also that the relative power of absorption of these solids for the

different gases is different in every case.
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Absorption of Gases by Meerschaum, Plaster of Pan's, and Silk.

Meerschaum. Plaster of Paris. Silk.

Ammonia, 15. cTm.3 78.1 cTm.3

Protoxide of Nitrogen, 3.75 "

Carbonic Acid, 5.26 " 0.43 cTm.3 1.1 "

Oxide of Carbon, 1.17 "
0.3

Oxygen, 1.49 0.58 " 0.44

Nitrogen, 1.60 0.53 " 0.13 "

Hydrogen, .44 " 0.50 0.3
v

In like manner the metals in the state of fine powder, lead,

iron, and platinum, for example, absorb gases in very large
amounts. The finely divided platinum called platinum-black,
which is obtained by precipitating a solution of chloride of plati-

num with alcohol, absorbs, according to Doebereiner, 250 times

its own volume of oxygen. The latent heat which is set free by
this great condensation is sufficient to ignite the metallic mass.

Platinum sponge, and even platinum plate, possess the same power,

although to a less degree, and it is probable that all solid surfaces

exert a similar influence to a limited extent.

The absorption of gases by solids is very greatly influenced

both by the temperature and the pressure to which they are

exposed. The higher the temperature, the smaller is the amount
of gas absorbed, and the most efficient means of expelling the

gas from a porous solid is to expose it to a red heat. It is how-

ever uncertain whether even in this way we can remove all the

gas condensed on the surfaces of solid substances, and at all

events to do this requires a considerable time. Charcoal and

other porous solids absorb the largest amount of gas only after

a prolonged ignition in a vacuum. In filling a barometer tube

the mercury is boiled in the tube in order to remove the air

and moisture, not only from the mercury, but also from the

surface of the glass.

The greater the pressure to which a gas is exposed, the great-

er is the quantity which is absorbed by a solid
; but then the

quantity does not increase so rapidly as the pressure. On the

other hand, under a diminished pressure a solid body absorbs

a less quantity of gas, but a greater volume. Hence it is not

possible by means of an air-pump to remove all the air from

a porous solid.

If a porous body, which is saturated with one gas, is put into
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a different gas, it gives up a portion of the gas which it had
first absorbed, and takes in its place a quantity of the second.

Sometimes the presence of one gas increases the power of a

solid for absorbing a second. Tims charcoal saturated with

oxygen will absorb more hydrogen, and charcoal saturated with

hydrogen will absorb more nitrogen, than it would if the other

gas was not present. But as a general rule, the presence of

one gas diminishes the power of a solid for absorbing others.

Thus charcoal, which after ignition will absorb thirty-five times

its volume of carbonic acid, will only absorb about fifteen times

its volume if it has been previously exposed to the atmosphere,
and thus saturated with air and moisture.

From the analogous constitution of liquids and gases, we
should naturally expect that solids would act on these two

forms of fluid matter in an analogous way. The same adhesive

force which attracts liquids to the surfaces of solids we should ex-

pect would also attract gases ; and, moreover, since gases are

very compressible, we should further expect that the adhesion

would condense the gas upon the surface in proportion to the

strength of the attraction. Moreover, as in the case of liquids,

we should expect that the amount of gas adhering to the sur-

face or absorbed into the pores of a solid would vary with the

nature both of the solid and of the gas, with the extent of the

surface, with the fineness of the pores, and, lastly, with the tem-

perature, becoming less as the temperature rose.

The phenomena just described, it will be noticed, coincide

perfectly, as far as they go, with these natural inferences, thus

showing that they are merely phases of adhesion and capillary

action. The force of surface attraction, and hence the amount

of gas absorbed, varies even more markedly than in the case of

liquids, both with the nature of the solid and that of the gas.

It varies also with the extent of the surface
; and, other things

being equal, it is greatest with porous bodies or fine powders, which

expose the greatest surface
; finally heat, which lessens the at-

tractive force, diminishes the amount of gas absorbed by a solid,

as it does the amount of liquid. There are, it is true, phenomena
connected with the adhesion of gases to solids which liquids do

not present, but these are such as may be supposed to arise

from the special law of compressibility, which all gases obey.

The phenomena described in this section, like those both of
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capillarity and solution, are greatly influenced, it will be noticed,

by the chemical nature of the bodies concerned, and in fact

pass by insensible gradations into those which we should class

among purely chemical changes. Like most phenomena which

occupy the debatable ground between chemistry and physics,

they present great complexity, and are difficult to investigate,

so that our knowledge in regard to them is exceedingly in-

complete.*
There are many phenomena besides those of absorption which

are connected with the adhesion of gases to solids. The fact

that iron filings, and many other fine powders, sifted over the

surface of water, will float, though very much heavier than the

liquid, has already been mentioned. This was then explained

by the principles of capillary action. The water is prevented
from wetting the solid, and therefore forms around the particles
a concave meniscus which buoys them up. But it is solely the

thin film of air adhering to these particles which prevents them
from becoming wet, when they would at once sink. The same
is true also of the platinum wire floating on mercury/ and of

other seemingly paradoxical phenomena. In all cases, if the

liquid is boiled, the film of air is removed and the paradox

disappears.

Liquids on Liquids.

(200.) Liquid Diffusion. As a general rule, the adhesion

between the particles of different liquids is so much greater than

the cohesion between their own molecules, that they may be mixed

together in any proportion. This is not, however, always the

case
;
for after the liquids have been mixed to a limited extent,

the cohesion may balance the adhesion, and the liquids will then

be mutually saturated. Thus ether and water cannot be mixed

indefinitely, and if shaken up together, they will separate in a

great measure on being allowed to stand, the water dissolving

only about one eighth or one tenth of its bulk of ether, and

the ether dissolving about the same amount of water. So also

the volatile oils, if shaken up with water, separate from it al-

most entirely if the mixture is allowed to stand, although the

water retains in solution a sufficient amount to acquire the

flavor and odor of the essence.

*
See a recent paper by Quincke, Fogg. Ann., CVIII. 326.
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The tendency of liquids to mix with each other has been

termed liquid diffusion, and can be made evident by a simple

experiment. A tall glass jar is about two thirds filled with a

solution of blue litmus, and then, by means of a tube funnel

reaching to the bottom, oil of vitriol is cautiously poured in, so

as to occupy the lower portion of the jar. The plane of separa-

tion of the two liquids will be at first distinctly marked. But

this will soon disappear : the colored water, will sink, and the

acid will rise, until the two liquids have become perfectly incor-

porated. This will require, however, two or three days, and, if

watched at intervals, the progress of the diffusion may be traced

by the gradual change of color in the water from blue to red,

commencing at the bottom and slowly progressing towards the

top. A similar experiment can be made with alcohol, or with

brine, and water
;

also with oil of turpentine and alcohol, and

indeed with almost any two liquids which differ considerably in

their specific gravities. By coloring one of the liquids, the pro-

cess may be readily traced.

(201.) Experiments of Professor Graham. The subject of

liquid diffusion has been investigated with care in regard to sa-

line solutions, and we are chiefly indebted to Professor Graham
of London for our knowledge on the subject. His experiments
were made with a very simple apparatus.

" It consisted of a set

of phials of nearly equal capacity, cast in the same mould, and

further adjusted by grinding to a uniform size of aperture. The

phials were 3.8 inches high, with a neck

0.5 inch in depth, and aperture 1.25 inch

wide, capacity to base of neck equal to

2080 grains of water, or between 4 and 5

ounces. For each diffusion-phial a plain

glass water-jar was also provided, 4 inches

in diameter and T inches deep."* (Fig.

329.)
The diffusion-phial was in the first place

filled with the saline solution to the base of

the neck, or, more accurately, to a level

exactly half an inch below the ground surface of the lip. The
neck was then filled with distilled water, and a light float

* Graham's Elements of Chemistry, edited by Watts, Vol. II. p. 604.
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placed upon the surface. Thus prepared, the phial was trans-

ferred to the jar, which was then filled with water to the height

of an inch above the mouth of the phial, which was opened by
the floating of the cover. This required about 20 ounces of

water. The apparatus was then left undisturbed, and kept at a

constant temperature for several days. At the end of the re-

quired time, the diffusion was interrupted by closing the mouth

of the phial with a ground-glass plate, and the amount of salt

diffused ascertained, by evaporating the water in the jar to dry-

ness, and weighing the residue.

From these experiments, and a number of others made in a

similar manner, the following important conclusions have been

deduced.

1. With solutions of the same substance, but of different

strengths, the quantity of salt diffused in equal times is propor-

tioned to the quantity in solution. For example, four solutions

of common salt were prepared, containing, respectively, 1, 2, 3,

and 4 parts of salt to 100 of water. The experiments continued

for eight days, and the quantities diffused were respectively 2.78

grains, 5.54 grains, 8.37 grains, and 11.11 grains. These num-

bers are almost exactly proportional to the first.

2. With solutions of different substances of the same strength,

the quantity diffused varies with the chemical nature of the sub-

stance. This is shown by the following table, which gives the

weight in grains of the substance diffused in eight days, from

solutions containing, in each case, 20 parts of the solid dis-

solved in 100 parts of water, and exposed to a temperature
of 60.5 F.

Diffusion of Solids in Solution.

Substances used. Sp. Gr. at 60o F. Weight in Grains diffused.

Sulphate of Magnesia, 1.185 27.42

Chloride of Sodium, 1.126 58.68

Nitrate of Soda, 1.120 51.56

Oil of Vitriol, 1.108 69.32

Sugar-Candy, 1.070 26.74

Barley Sugar, 1.066 26.21

Starch Sugar, 1.061 26.94

Gum Arabic, 1.060 13.24

Albumen, 1.053 3.08

33
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The substances have been arranged in the order of the specific

gravities of the solution, and the table also shows that there is

no apparent connection between the amount of diffusion and the

specific gravity of the solution.

3. If, instead of comparing together, as in the last table, the

amounts of different substances diffused in equal times, we com-

pare together the times required for the equal diffusion of these

same substances, we discover some remarkable numerical rela-

tions. There exist classes of equi-diffusive substances, and, as a

general rule, those substances which have an analogous chemical

composition, and crystallize in closely allied forms, have equal
rates of diffusion. Several such groups have been distinguished,

and the rate of diffusion in each group is connected with the rate

of diffusion in the other groups by a simple numerical relation,

as is shown in the following table. The first column gives the

number of the group, with the name of the most characteristic

substance belonging to it. The second gives the relative diffu-

sion of these substances in equal times, in other words, the rate

of diffusion. The third gives the times of equal diffusion ; and

the fourth, the squares of these times, which stand to each other

very nearly in the simple relation expressed in the last column.

- Rate of Times of Equal Squares -,,
. .

Groups. Ditfusion. Diffusion. of Times.

1. Chlorohydric Acid, 1.000 3.960 15.682 2

2. Hydrate of Potash, 0.800 4.950 24.502 3

8. Nitrate of Potash, 0.565 7.000 49.000 6

4. Nitrate of Soda, 0.462 8.573 73.496 9

5. Sulphate of Potash, 0.400 9.900 98.010 12

6. Sulphate of Soda, 0.326 12.125 147.015 18

7. Sulphate of Magnesia, 0.200 19.800 392.040 48

4. The rate of diffusion increases with the temperature, but

increases in an equal proportion for all substances, so that the

ratio between the diffusion of different bodies is the same for all

temperatures.
5. If two substances, which do not combine chemically and

have different rates of diffusion, are placed in the diffusion-phial,

they may be partially separated by the process of diffusion, since

the more diffusible passes out the most rapidly, although the

relative rate of diffusion may be somewhat changed.

Chemical decomposition may be even effected in this way, one

ingredient of the compound diffusing more rapidly than the other.
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From a solution of bisulphate of potash saturated at 20 C
,
there

were diffused in fifty days 31.8 parts of bisulphate of potash, and

12.8 parts of hydrated sulphuric acid. From a solution of 8

parts of anhydrous alum in 100 parts of water there were dif-

fused in eight days, at 17.9 C., 5.3 parts of alum and 2.2 parts of

sulphate of potash ;
and other similar examples might be cited.*

6. The diffusion of a salt into the solution of another salt

takes place with nearly the same velocity as into pure water, at

least when the solutions are dilute. Here, as in all experiments
on liquid diffusion, uniformity of action takes place only in dilute

solution. As the solution becomes saturated, the cohesion of the

particles of the solid appears to introduce irregularities.

7.
" The velocity with which a soluble salt diffuses from a

stronger into a weaker solution, is proportional to the difference

of concentration between two contiguous strata." This law has

been experimentally demonstrated by Frick in the case of chlo-

ride of sodium, but it cannot as yet be regarded as completely

established.!

(202.) Osmose. When two liquids are separated by a

porous diaphragm, diffusion may still

take place, although the phenomena
are modified in a remarkable manner

by the presence of the septum. This

is best illustrated by means of the

apparatus called an osmometer. It

may be constructed in various ways,
but as represented in Fig. 330 it con-

sists of a membranous bag or bladder

opening into a glass tube, to which it

is fastened hermetically. The bladder

is filled with a concentrated solution

of common salt, and suspended in a

jar filled with pure water. Since the

animal membrane is readily penetrat-

ed by the water, it is evident that

the water on the one side, and the

salt solution on the other, must be in

direct contact, and hence a diffusion of Fig' 33 -

Graham's Chemistry, Vol. II. p. 614. t Ibid., p. 610.
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the salt must take place, following the laws of liquid diffusion

enunciated in the last section. We should, therefore, expect
that the salt would pass out into the water of the jar, as we
find to be the case ; but the remarkable fact in connection with

this experiment is, that a volume of water enters the bladder

which is very much greater than could be introduced by simple

liquid diffusion, amounting in some cases to several hundred

times that of the salt displaced, the liquid slowly rising in the

glass tube of the osmometer until it attains a very considerable

height. The flow of water through the membrane is termed

osmose, and the unknown power which produces it, osmotic

force. It is a force of great intensity, capable of supporting a

column of water several metres high. The first important phe-

nomenon to be studied in this connection is this remarkable flow

of water. The movement of the salt in the opposite direction

appears to follow the laws of liquid diffusion, and, according to

Graham's experiments, is not influenced by the presence of the

membrane, unless it is quite thick.

We have supposed that the bladder in this experiment con-

tained a solution of common salt
;
but we may use in its place

alcohol, or solutions of cane sugar, of Glauber's salt, and of

many other saline bodies, with precisely the same result. The

conditions of osmose appear to be, that the liquids are capable of

mixing, and that the membrane or septum which separates them

has a greater adhesion for one liquid than for the other.

When the osmose takes place between Water and solutions of

salts, the quantity of salt which passes through the membrane
into the water is always replaced by a definite quantity of water,
and the ratio obtained by dividing the last quantity by the first

has been termed the osmotic equivalent of the salt. This ratio

varies with the nature of the salt, and also, to some extent cer-

tainly, with that of the membrane. It moreover increases with

the temperature, but it appears to be independent of the density

of the solution. The osmotic equivalent for Glauber's salts, for

example, when the pericardium of the calf is used as the septum,
was found by Hoffmann *

to be 5.1.

The action of the septum in osmose has been explained in

various ways. The simplest explanation which has been given

* Untersuchungen tiber das endosmotische Aequivalent des Glaubersalzes. Giessen,

1858.
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is based on the unequal adhesion of the two liquids to the porous

septum. Let us suppose that the septum is a piece of the blad-

der of an ox, and that on one side it is in contact with alcohol,

and on the other with water. As was stated (194) the mem-

brane has a very much greater attraction for water than for

alcohol, and would therefore absorb the first to the entire exclu-

sion of the second, were it not for the adhesion between the two

liquids. In consequence of this, the alcohol is slowly diffused

through the water contained in the membrane, which thus be-

comes saturated with greatly diluted alcohol. Hence, on the

side of the membrane towards the alcohol, nearly pure water is

in contact with strong alcohol, and a rapid diffusion of the first

into the last necessarily results. The place of the water thus

escaping is supplied by fresh water, and a current of water is

thus established flowing in towards the alcohol. On the side of

the membrane towards the water, we have, on the other hand,

very dilute alcohol in contact with water, so that, although dif-

fusion takes place, it is very much less rapid than that in the

opposite direction. The flow of the water is then the result of

two forces, first, the excess of the attraction of the bladder

for water over its attraction for alcohol, and, secondly, the diffu-

sive force between the two liquids ;
while the flow of the alcohol

is due to the diffusive force alone, and must therefore be less

rapid.

This subject of osmotic action has also been carefully investigated

by Professor Graham, who has established several important facts in

relation to it.

The most remarkable conclusion is, that all substances may be divided

into two classes, which he names crystalloids and colloids. The first class

are capable of crystallizing, and as a general rule they form perfectly

fluid solutions, which have a decided taste. The second class, on the other

hand, are incapable of crystallizing, and give insipid viscid solutions,

which readily form into jelly. Hence the name colloid, from <eo'XX;, glue.

Moreover, while crystalloid bodies, like sugar or salt, diffuse with com-

parative rapidity, the colloids, such as gum, starch, caramel, gelatine, and

albumen, are characterized by a remarkable sluggishness and indisposi-

tion to diffusion. This fact is made evident by the following table, and

it will be noticed that sulphate of magnesia and cane-sugar, which are

among the least diffusible of crystalline bodies, diffuse seven times as

rapidly as albumen, and fourteen times as rapidly as caramel, both well-

marked colloids.

33*
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Approximate Times of Equal Diffusion.

Hydrochloric Acid 1.

Chloride of Sodium ........ 2.33

Cane-Sugar '. 7.

Sulphate of Magnesia . * 7.

Albumen . . ;> ,

"

> . . . . . .

"

. 49.

Caramel , ,-,' ,.*.,*, .98.

Upon this marked difference of qualities, Graham has based a most

valuable method of separating the two classes of bodies from each other,

which he terms dialysis. A shallow tray is prepared by stretching parch-
ment paper (which is itself an insoluble colloid) over one side of a gutta-

percha hoop, and holding it in place by a somewhat larger hoop of the

same material. The solution to be dialysed is poured into this tray, which

is then floated on pure water in a shallow dish, the volume of the water

being from six to ten times greater than that of the solution. Under
these conditions, the crystalloid will diffuse through the porous septum
into the water, leaving the colloid on the tray, and in the course of one

or two days the separation will have taken place more or less completely.
The value of this process, both in chemistry and pharmacy, can be

readily understood. In examining organic mixtures for poisons, it affords

a ready means of separating the mineral acids and the vegetable alka-

loids (all crystalline bodies) from the vegetable colloids, with which

they are mixed, and which would obscure their chemical reactions ; and

again it furnishes an equally efficient means of freeing silicic acid, cara-

mel, albumen, and other colloid bodies, from saline impurities, which it is

very difficult, if not impossible, to remove in any other way. It is not

essential for the success of this process that the solution of the colloid

should remain fluid, for even after the solution has set into a firm jelly

the diffusion will continue apparently as rapidly as before.

The best-known colloid bodies, such as gum, starch, fruit-jelly, and

glue, the type of the class, are substances of organic origin, and this

condition of matters seems to be especially adapted in the plan of crea-

tion for forming the tissues of living beings ; but there are also many
inorganic colloids, and one at least which plays a very important part in

the mineral kingdom. The soluble form of silicic acid is a true colloid.

It can readily be obtained by pouring a solution of silicate of soda into

diluted hydrochloric acid, the acid being maintained in great excess.

When, now, the resulting liquid is placed on a dialyser, the excess of

hydrochloric acid and the common salt formed by the chemical reaction,

together with a small amount of silica, diffuse into the water below, leav-

ing on the tray a solution containing the great mass of the silica in a

pure condition.
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In this way a solution can readily be obtained containing 10 or 12 per

cent of silica. Such a solution gelatizes spontaneously in a few hours

even at the ordinary temperature, and immediately when heated. The
more dilute the solution the longer it can be kept without change, and a

solution holding only one per cent of silica is practically unalterable by
time. In a like manner Professor Graham has obtained alumina, sesqui-

oxide of iron, sesquioxide of chromium, and stannic, meta-stannic, titanic,

tungstic, and molybdic acids, dissolved in water in a coloidal condition,

and presenting properties similar to those of silicic acid in the same state.

All these substances usually exist in the crystalline condition. The col-

loid condition is an abnormal state, and in all colloids there is usually a

tendency to approach the crystalloid form. The water of crystallization

in a crystalloid is represented in a colloid by what has been called water

of gelatinization.

Liquids on Gases.

(203.) Adhesion of Liquids to Gases.

The adhesion of liquids to gases is ex-

emplified by the familiar fact, that, when

liquids are poured from one vessel to an-

other, bubbles of air are carried down with

the descending stream, which rise and break

upon the surface of the liquid. The adhe-

sion of water to air is a force of considerable

power, and is applied in some places for

producing the constant blast which is re-

quired for working an iron forge. In Fig.

331 is represented the machine which is

used for this purpose at some iron forges

in Catalonia. Water is discharged from

the reservoir A, into which it flows from

a higher level,

into the tube

J5, through a

conical orifice,

a a. The op-

enings c c ad-

mit air to the

upper part of

tne tut)e ^>

Fig. 331.
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which is carried down by the stream of water into the reservoir C,
and then forced through the tube EF G and the tuyere TU
into the crucible of the forge. The stream of water is broken

on a projecting ledge, and escapes by the opening Z>. By rais-

ing or lowering the stopper g*, the quantity of water which

falls, and hence also the intensity of the blast, can easily be

regulated.

An aspirator for establishing a current of gas through various

forms of chemical apparatus, founded on the principle of this

blast machine, has been described by M. W. Johnson.* It con-

sists merely of a tube ten or twelve inches in length, attached by
means of an india-rubber connector to a water-cock. Near the

top of this tube there is a lateral tubulature, which is connected

by an india-rubber hose with the vessel through which the air is

to be drawn. When the water-cock is partially opened, a very
uniform and abundant current of gas is drawn in at the lateral

opening, and its velocity can be regulated by varying the length
of the tube.

(204.) Solution of Gases. Another effect of adhesion, still

more important in its chemical relations than the one just con-

sidered, is the absorption of gases by water and other liquids.

Water has the power of dissolving all gases, although in very
different proportions, varying from one thousand times its own

volume, in the case of ammonia, to only about one fiftieth of its

volume, in that of nitrogen.

The amount of gas dissolved by a liquid on which it exerts no

chemical action depends upon,
1st. The peculiar nature of the gas and the absorbing liquid.

2d. The pressure to which the gas is exposed.
3d. The temperature.
The volume of a gas (reduced to and to 76 c. m. pressure)

which is absorbed by one cubic centimetre of a liquid under the

pressure of 76 c. m. is called the coefficient of absorption. This

coefficient of absorption varies with the temperature, but for any

given temperature it is a constant quantity for the same gas and

liquid. The coefficients of absorption at of a few of the best

known gases are given in the following table, both for water and

for alcohol :

* 'Journal of the Chemical Society of London, Vol. IV. p. 186.



THE THREE STATES OF MATTER. 393

Name of Gas.

Nitrogen, . .

Hydrogen,

Oxygen,
Carbonic Acid, .

Sulphide of Hydrogen,

Sulphurous Acid,

Ammonia, .

Volume in HTml3 absorbed by one c . m.3 of

Water.

0.02035

. 0.01930

0.04114

. 1.79670

4.370GO

. C8.86100

1049.GOOOO

Alcohol.

0.12634

0.06925

0.28397

4.32950

17.89100

328.62000

(205.) Variation of the Coefficient of Absorption with the

Temperature. In a solid, the force which the solvent power
of a liquid has to overcome is that of cohesion

;
in a gas, on

the other hand, it is that of repulsion ;
and we should therefore

naturally expect, contrary to what is true of solids, that the sol-

ubility of gases would diminish with the increase of the tempera-
ture. This we find to be the case, and, with a few exceptions,
the solubility of a gas is greater the lower the temperature. As
in the case of solids, however, the law of the variation depends

upon the nature of the gas, and must therefore be determined for

each special case. In Table VII. of the Appendix, the coefficients

of solubility of the most familiar gases are given for different tem-

peratures within the limits of ordinary observation. By compar-

ing together the results of observation at different temperatures,
we can obtain, as in the case of the solubility of solids, interpo-
lation formula by means of which the coefficients may be cal-

culated for other temperatures within certain restricted limits.

Thus in the case of the absorption of nitrogen by water, the

results of five experiments were as given in the following table

from Bunsen's Gasometry.*

No. of the

Experiment.
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e = 0.020346 0.00053887* + 0.000011156*% [131.]

by means of which the numbers of Table VII. may be calcu-

lated. For the interpolation formulae by which the coefficients

of absorption of other gases may be calculated, as well in alcohol

as in water, we must refer the student to the excellent work
of Professor Bunsen already cited, from which Table VII. has

been taken.

To the general law that the solubility of a gas diminishes

with the increase of the temperature, there are several excep-
tions. Thus, the coefficient of absorption of oxygen in alcohol is

constant at 0.28397 for temperatures between and 24, and

the same is true also for hydrogen in water. So also one vol-

ume of water at 5 absorbs less chlorine gas than at 8
; but here,

as in similar cases, the apparent exception to the law is caused

by the intervention of chemical affinity. Chlorine forms at

a definite crystalline compound with water, and the solubility

of this solid increases with the temperature up to 10. Above

this temperature the crystalline hydrate cannot exist, the chlo-

rine dissolves as a gas, and its solubility follows the general

law, diminishing with the temperature.

Although the solubility of a gas increases as the tempera-
ture falls, yet at the moment the liquid freezes, the absorbed

gas is almost entirely set free. During the freezing of water

the air dissolved separates from it, forming bubbles in the ice.

So also the oxygen which is absorbed in large quantity by melted

silver is evolved when it solidifies. But when at the freezing

point the dissolved gas forms a definite compound with the

water, it sometimes happens that no gas is evolved when the

water freezes, as is the case with the solution of chlorine just

mentioned.

(206.) Variation of the Solubility of a Gas with the Pres-

sure. This variation follows a very simple law. The quan-

tity of gas
* absorbed by a liquid varies directly as the pressure

which the gas exerts upon it. If now, instead of considering
the quantity of gas absorbed, we consider the volume absorbed

under any given pressure, it follows, from Mariotte's law, that

this volume must be the same in all cases. Thus, for example, at

one cubic centimetre of water absorbs 1.797 cTm.
3 of carbonic

* By the term quantity ofa gas is always to be understood the number of cubic cen-

timetres measured at C. and under a pressure measured by 76 c. m. of mercury.
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acid gas, whatever may be its pressure. If the pressure is 76 c. m.,
the quantity of gas absorbed measures, at the standard tempera-
ture and pressure, exactly 1.797 c. m.

3
. If now the pressure is

doubled, the volume of gas absorbed is the same as before, but

the quantity (measured at C. and 76 c. m.) will be found equal
to twice 1.797 or 3.594 c. m.

3
,
and the same is true for all pres-

sures within the limits at which Mariotte's law holds good.

(165.) It is true that the law has not been demonstrated ex-

perimentally except in a few cases and within very restricted

limits, but it is highly probable that it is as constant as that of

Mariotte. Representing by V and V ' the quantities of a given

gas absorbed by a given volume of liquid corresponding to the

pressures H and //
',
we have for the mathematical expression of

this fundamental law of gasometry the proportion

V. : V,' = B. : HJ. [132.]

The principles of this section are illustrated by the apparatus

represented in Figs. 332 and 333, used for saturating water with

carbonic acid gas under

pressure (soda-water). It

is made of earthenware
;

and the two chambers A
and B

9
as shown in the

section, are connected to-

gether by the fine tube

a b. Through the neck of

the apparatus at w, water is

introduced into the upper

chamber, B, which is then

closed by a screw plug.

Through this plug passes a
Fig. 332. Fig. 333.

tube, p t, closed by a valve

stopcock, by means of which the water may be drawn off when

saturated with gas. Through a tubulature at 0, which can also

be closed by a screw plug, the materials for making carbonic

acid gas (bicarbonate of soda, tartaric acid, and water) are in-

troduced into the lower chamber, A. The gas, as it is evolved,

escapes through the tube b a into the upper part of the chamber

B, where it comes in contact with the surface of the water, and

is in part dissolved, while the rest exerts a pressure upon it
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amounting to several atmospheres. On opening the stopcock,

the water charged with gas is driven out with force, and the

amount of gas dissolved is found to be exactly proportional to

the pressure which it exerted on the surface of the water.

When the water thus surcharged with gas is drawn out into a

glass tumbler, the excess of gas escapes with effervescence. If

the process is closely examined, it will be noticed that the bubbles

of gas rise from the sides and bottom of the tumbler, and if, while

the water is still saturated, we drop into it a solid body with a

rough surface, a piece of bread, for example, there will ensue a

brisk effervescence around the body. The cause of this phenom-
enon is thus explained. The gas, as we have assumed, is held

in solution by the adhesion of the liquid particles. In the midst

of the water the particles of carbonic acid are surrounded on all

sides by particles of liquid, but immediately in contact with the

solid they are only attracted on one side by the liquid, since on

the other they are in contact with the solid surface. It is evident

that the adhesive force, and hence also the solvent power, must be

less in the last case than in the first, so that the particles of gas

in contact with the solid surfaces will be the first to assume

the aeriform condition. These particles uniting together form a

small bubble of gas, which, as it rises through the solution, con-

stantly enlarges, and acquires a considerable size before it breaks

on the surface. The bubble increases in size as it ascends, be-

cause, as is evident, it must have the same effect as a solid body
on all the particles of the solution with which it comes in contact,

diminishing the adhesive force between the water and gas.

If water saturated with carbonic acid is placed under a glass

bell resting on the plate of an air-pump, the carbonic acid will

escape from the solution, and collect in the bell, until the quantity

remaining in solution corresponds to the pressure exerted by
the carbonic acid which has escaped. The presence of air in

the bell does not in any way affect the final result, and precisely

the same quantity of carbonic acid, and no more, would rise into

the bell if the air were completely removed. It is true, how-

ever, that, if the bell were exhausted, this quantity would escape

instantaneously, while, if it is filled with air, the equilibrium is

only attained after a considerable time. The same is true if the

bell is filled with other gases than air. Let us now suppose that,

after the equilibrium has been attained, a portion of the mixture
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of carbonic acid and air is removed by the pump. The pressure
which the carbonic acid exerts on the solution will thus be di-

minished, and more gas will escape from the solution, until the

equilibrium between the gas dissolved and the pressure of gas in

the bell is again restored. It is evident that the whole gas can-

not be removed from a solution by the air-pump, since we can

never remove the whole of the gas from the surface of the liquid,

and cannot therefore entirely remove the pressure which the gas

escaping from the solution exerts. This object, however, can

be readily attained by placing at the side of the glass holding the

solution another glass, containing some chemical reagent which

has the power of absorbing the gas. Thus, if we place under

the same bell containing a solution of carbonic acid a concen-

trated solution of caustic potash, this reagent will keep the bell

free from carbonic acid, and reduce the pressure it exerts to

nothing, so that the gas will continue to escape from the solution

until the whole is removed. If at the same time we exhaust the

air with the pump, we shall greatly hasten the process, although
the final result is not affected by the presence of the air, or any
other chemically inactive gas.

The amount of carbonic acid present in the atmosphere is so

small, that it exerts no appreciable pressure ; so that, if a solu-

tion of this gas is exposed to the atmosphere, the whole of the gas

should according to the law escape. This we find to be the case,

although, on account of the slow diffusion of carbonic acid into

air, it requires a long time before the whole has disappeared.

The same must, of course, also be true of solutions of all gases

with the exception of those composing the atmosphere.

The most available means of driving out a gas from a solution

is boiling. The high temperature diminishes the coefficient of

absorption, and moreover the escaping vapor carries away with

it the gas from the surface of the liquid, so that the pressure

which the gas exerts on this surface is constantly diminishing,

and with it also the amount of the gas which the liquid can hold

in solution. On this same principle, protoxide of nitrogen can

be entirely removed from water by passing through it a current

of air.

There are a few gases, such as chlorohydric acid, which have

so strong an affinity for water that they cannot be removed by

boiling, since, after the solution is reduced to a certain degree

34
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of concentration, the liquid and gas evaporate together as a

whole.

(207.) As a general rule, the solubility of a gas is diminished

by the presence of other substances in the solution. Tims, for

example, water containing sulphuric acid or any salt will absorb,

in most cases, less gas than when pure. As a necessary conse-

quence, the gas which water holds in solution can in great meas-

ure be driven out by the addition of oil of vitriol, or by dissolving

in it some salt. So also melted silver, which absorbs from the

atmosphere a large volume of oxygen, disengages with efferves-

cence the whole of the dissolved gas, on the addition of an equal

weight of melted gold.

Whenever, on the other hand, as is sometimes the case, the

solubility of a gas is increased by the presence of salts or other

substances in solution, this exception to the general rule is appar-

ently caused by the chemical affinity of the dissolved substance.

The presence of phosphate of soda increases greatly the solubility

of carbonic acid, and the presence of sulphate of copper and sul-

phate of protoxide of iron, the solubility of oxide of carbon and

deutoxide of nitrogen, respectively. It is true that in all these

cases the gas can be driven out of the solution by boiling, but

nevertheless it is probable that unstable compounds are in each

case formed ;
and this opinion is substantiated in the last case by

the very remarkable change of color which the solution of green
vitriol undergoes by absorbing deutoxide of nitrogen gas.

The principles of this section, it should be noticed, apply only
to solid and liquid bodies, since the coefficient of absorption of

one gas is not apparently influenced by the presence in the solu-

tion of another gas on which it is chemically inactive. This last

principle will be considered in detail in section (209).

(208.) Determination of the Coefficient of Absorption. As has

been already stated, the coefficient of absorption is the volume of

gas (measured in cubic centimetres at and 76 c. m.) absorbed

by one cubic centimetre of liquid. Since this coefficient varies with

the temperature, it must be determined for each temperature, or

we may determine it with accuracy for several temperatures at

suitable intervals, and then from these results deduce an interpo-
lation formula by which we may calculate the coefficient for all

intermediate temperatures, and prepare tables like Table VII.

of the Appendix. It is only then necessary to inquire how the
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coefficient is determined for any given temperature, t. There are,

in general, two methods which are used for this purpose.
First Method. The first method consists in passing a current

of the gas through the liquid under experiment, until the last is

Fig. 334.

saturated; then, having carefully observed the temperature of

the solution, transferring with proper precautions a measured

volume to a glass beaker, and determining the weight of the dis-

solved gas by some process of chemical analysis. This method
will be better understood if illustrated by an example, and we
will select for the purpose the determination of the coefficient of

absorption of sulphide of hydrogen in alcohol, which was made

by Drs. Schonfeld and Carius, with the apparatus represented in

Fig. 334.*

The flask a a is closed by a tight cork, through which four

holes have been bored. Through the first of these passes a ther-

* See Bunsen's Gasometry, page 160.
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mometer, 5; through the second, the tube, c, conducting the gas;

through the third, a short tube, d, serving as a vent to the gas,

and ending in a small india-rubber tube, which can be easily

closed by a glass rod
; lastly, through the fourth hole passes a

siphon tube, e. These tubes exactly fit the holes in the cork, so

that if the tube d is closed while the current of gas is flowing

into the flask through the tube c, the solution will be forced out

through this siphon tube, e.

In making the determination, the sulphide of hydrogen was

generated from sulphide of iron and dilute sulphuric acid, and,

having been washed with water, was passed through alcohol in

the flask, which had been previously boiled in order to expel all

the air it contained in solution. The alcohol in the mean time

was kept at a constant temperature by placing the flask in a wa-

ter-bath, and this temperature, which was carefully observed by
the thermometer &, we will call t. The tube d was also left

open, so that the sulphide of hydrogen gas, which filled the iipper

part of the flask, exerted the same pressure on the surface of the

alcohol as that indicated by the barometer at the time of the

experiment. We will represent this by H. At the end of two

hours, when it was assumed that the liquid was saturated with

the gas, the india-rubber connector at d was closed by a glass

rod, and the solution, as it was forced out through the siphon e,

collected in a measuring-glass. The tube e was so adjusted as

to reach to the bottom of the measuring-glass, and after the glass

was full, the solution was permitted to overflow the mouth for

some time, and until the upper layers of the liquid, which had

been exposed to the air, and consequently lost a portion of their

gas, had been replaced by the saturated solution rising from

below. The glass was then quickly closed by its stopper, and its

contents immediately after transferred to a beaker containing a

solution of chloride of copper. The volume of the solution used

was, of course, the same as that of the measuring-glass, and we
will represent it by F. Lastly, the sulphur of the precipitated

sulphide of copper was converted into sulphuric acid by nitric

acid, and weighed in the usual way as sulphate of baryta. From
the weight of sulphate of baryta the weight of sulphide of hydro-

gen contained in the solution was easily calculated. Represent
this weight by W, and the known weight of one cubic centimetre

of sulphide of hydrogen gas at and 76 c. m. by w (Table II.) ,
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and we have all the data for calculating the coefficient of absorp-

tion at the temperature of the experiment.

Y = volume of solution saturated with H S at t and If c. m.

W = weight of II S in ditto, at t and H c. m.

Then by [132],

W-ff-
= weight of H S in ditto at t and 76 c.m.

Dividing by w, we get

. = volume of H S (measured at and 76 c. m.) dissolved at

t and 76 c. m.

It was assumed in this determination that the volume of alcohol

underwent no change by absorbing sulphide of hydrogen, so that

V represents not only the volume of the solution, but also the

volume of the alcohol it contained. Hence, V cubic centime-
W 76

tres of alcohol at t dissolve . -^. cubic centimetres of sulphidew H
of hydrogen, measured at and 76 c. m. Consequently, the

coefficient of absorption, or

As is evident, this formula is not only applicable to the particu-
lar case under consideration, but may also be used in all similar

cases, in which the volume of the liquid is not sensibly altered

by dissolving a gas.

If, however, we seek to determine the solubility of sulphurous
acid gas in alcohol by the same method, it will be found that the

assumption made in the last example is no longer correct, and

that it is essential to pay regard to the change of volume. As
for the rest, the determination may be conducted in precisely

the same manner, only the weight, IF, of sulphurous acid gas
contained in a measured volume, F, of the solution, must be de-

termined by some special method of chemical analysis. As we
cannot conveniently measure the volume of alcohol before the ab-

sorption corresponding to the measured volume, F, of the solution,

we determine carefully the specific gravity of the alcohol and

of the solution, and thus obtain all the data for our calculation.

34*
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V = volume of alcohol saturated with S O2 at t and H c. m.

(Sp. Gr.)
=

specific gravity of ditto.

V. (Sp. Gr.)
= weight of ditto. See [56].

W =
weight of S O2 dissolved at t and He. m. in F"nT.3 of

solution.

.V . (Sp. Gr.) W= weight of alcohol in Fc. m.
3
of solution.

(Sp. Gr.y =
specific gravity of alcohol before absorption.

Hence by [56],

lA^CLJ/- = volume of alcohol in Fc.m.3 of saturated solution.

(bp. Gr.y
w = weight of one cubic centimetre of S O2 gas measured at

and 76 c. m.

= volume of S O2

(measured at and 76 c. m.) dissolved in

7fi

FcTm-8 of solution at t and He,, m.

. - = volume of ditto dissolved in Fc. m.8 of solution at t and 76 c.m.
w H

Hence -/!> \r~ c.m.
3 of alcohol dissolve, at t and 76

(bp.

c. m., -jr
c7m.

3 of S 2 gas.

Whence
W 76 (Sp.Gr.)'"

w H' V7(Sp.Gr.)

This formula may be used in all similar determinations of the

coefficient of absorption, where the volume of the liquid is sensibly

changed by the absorption of the gas. When there is no change

of volume, F= '

/' ^\T , which, substituted in [134],
(Sp.Gr.)'

reduces it to [133] .

The method of determining the coefficient of absorption just

described is the best whenever the gas dissolves in large quanti-

ties in the liquid, and when it is of such a nature that the

amount in solution can be readily determined by the methods of

chemical analysis. In the practical application of this method,

peculiar precautions are required in each special case. For a

description of these, we must refer the student to the work of

Professor Bunsen, already noticed.

Second Method. The second method of determining the co-

efficient of absorption consists in shaking up in a graduated glass

tube a measured volume of gas with a measured volume of
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liquid, and carefully observing the volume of gas absorbed. A
very elegant apparatus for this purpose, called an absorption-

metre, is described and figured by Bunsen in his work on Gasom-

etry, and a diagram illustrating its principle is given here in Fig.

335. The gas is collected in the gradu-

ated glass tube a a over a mercury pneu-

matic trough, and its volume carefully

determined. We will call this volume

corrected for temperature, F . At the

same time, we observe the height of the

barometer, and the height of the surface

of the mercury in the tube above the

surface of the mercury in the pneumatic

trough. The difference of these heights

gives us a quantity, H, which is the pres-

sure to which the gas confined in the

tube is exposed (169). Next, a volume

of liquid from which all the air has been

expelled by boiling is passed up into the

tube, still standing over the mercury Fig. 335.

trough. This volume is also carefully observed, and we will

represent it by V. The tube is now closed by screwing on

to the iron ring c c (which is cemented to the tube a short dis-

tance from its mouth) the iron cap bbdd. The surface dd is

covered with a piece of sheet india-rubber, which is pressed by
the screw against the mouth of the tube, and hermetically closes

it. The tube (filled with mercury, gas, and the liquid) is now
transferred to the glass cylinder gg. This cylinder is cemented

to a base A, and a rectangular projection/, at the bottom of the

iron cap, exactly fits a corresponding hole in the upper surface

of the base. The cylinder may be closed by an iron lid, which

turns on a hinge f
,
and which may be fastened by the thumb-

screw n. To the under surface of the cover a piece of india-

rubber, m, is cemented, which, when the cover is closed, presses

against the top of the glass tube and keeps it in place. The

graduated tube having been introduced and adjusted, mercury is

poured into the cylinder until it covers the bottom to the depth of

several centimetres, and the rest of the cylinder is then filled with

water. The cover is now closed and fastened, and the whole

apparatus violently shaken in order to facilitate the solution of
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the gas. The lid is next opened, and by turning the tube the

cap is unscrewed, and the mouth of the tube opened under the

mercury, which rises to take the place of the gas which has been

absorbed. By turning the tube in the reverse direction the

mouth is now closed, and, the cover having been shut down and

fastened, the apparatus is again shaken ;
and this process is

repeated until no further absorption of gas is perceptible. When
the absorption is completed, the volume of gas remaining in the

tube is carefully observed. This volume corrected for tempera-
ture we will call F' . The pressure H1

,
to which the gas is

exposed, can now be calculated from the height of the barometer,
the difference of level of the mercury in the tube and in the cyl-

inder, and, lastly, the heights of the columns of water in the two

vessels. These quantities having been carefully observed, we
commence the calculation by finding from Table XIX. the equiv-

alents of the two water columns in centimetres of mercury.

Eepresenting these values by h 1 and h", the difference of level

of the mercury by A, and the height of the barometer by H, we
have for the value of the pressure H1 = H h -f- Qi' h").

A. thermometer placed within the cylinder gives the temperature
of the water, and hence the temperature at which the coefficient

is determined. We have now determined all the data required

for calculating the coefficient.

VQ = volume of gas before absorption, at and pressure H c. m.

F ^- = u " " " " " 76 c. m.

F ' = " " after " " S! c. m.

F '
H> = " " " " " " 76 c. m.
76

TT J-f1

VQ VQ = reduced volume ofgas absorbedunder thepressure If.

By [132],

V ff
- - F ' = reduced volume of gas absorbed under the pressure 76

c. m. by Fc7~m.
3 of liquid.

In making determinations of the coefficient of absorption by
this method, it is necessary to correct the measured tensions of
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gas both for temperature and for the tension of vapor, and to

reduce the measured columns of mercury to C. The method

by which these reductions are made will be explained in the next

chapter, and examples illustrating the whole subject will be

found in Bunsen's work on Gasornetry, already noticed, to which

we must refer for further details.

(209.) Partial Pressure. If we conceive of three masses of

different gases, occupying the volumes vi9 v2 ,
v3 ,

and each exerting
a pressure measured by jff, and then suppose that the diaphragms
which separate them are removed, the three gases will mix. per-

fectly together, as is well known, until each is equally diffused

through the whole space F, which equals v
{ + ua -\- v3 ,

and
the mixture will then exert the same pressure as that exerted by
each gas separately, or H. It is evident, then, from Mariotte's

law (163), that each gas of this mixture must exert, by itself,

a pressure which bears the same relation to the whole pressure
that the original volume of this gas bears to its expanded vol-

umes. It is easy, then, to calculate that the pressures exerted by
the three gases of the mixture are respectively

i-^
1

-, H, ^-, H, and ,-* - H. [136.1Vl+Vz + 8 >l + *>2 + "3 V, + l>2 -f V3 J

These pressures are called partial pressures, in distinction from

the total pressure, which is equal to the sum of these partial

pressures, or

H + _,

Va
, H+ ,

v*
,

- H. [137.]

If now a volume of liquid, which we will represent by FJ ,
is

exposed to this gaseous mixture, it will absorb of each gas a

quantity which is exactly proportional to the partial pressure
which this gas exerts. In. other words, the law of (206) holds

true in regard to each gas, and the solubility of one gas is not

influenced by the presence of the rest.

Representing then by cl9 c2 ,
and c3 the coefficients of absorp-

tion of the three gases respectively, and assuming that the total

volume of the mixture is so large, or so frequently renewed, that

the partial pressures are not altered by the absorption, we can

easily calculate that the absolute volume of each gas in cubic

centimetres absorbed by the given volume, FI, of the liquid,

will be, respectively,
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r V Vl
r V V*

c F
I

t,
1 + (7j| _|_ v, 76'

C* Kl
Vl +vt+ v,' 76'

and _^_ ^ [138.]

-76- t

The sum of these quantities, or the total volume of mixed gases

absorbed, is

"

Dividing each of the quantities [138] by this sum, we shall ob-

tain the composition of the absorbed gas, or, in other words, the

amount of each gas composing one volume of the mixed gases

dissolved. These are

V l + CZ VZ -f-

If there were but two gases, the values v3 ,
w3 ,

and c3 must evi-

dently be cancelled in all the above equations ; and, on the other

hand, the formulae may readily be extended to any number of

gases by introducing additional terms.

The solution of atmospheric air in water furnishes a good illus-

tration of the principles of this section. Let it be required to

determine the absolute volumes of oxygen and nitrogen absorbed

by F! volume of water at the temperature of 15. The air is a

mixture of oxygen and nitrogen, exerting on the water a variable

pressure, which we will assume, at the time of the determination,

is 76 c. m. ;
and its mean composition in volume is

Oxygen, . .-- -. -^
. . . 0.2096

Nitrogen, <.& | . $ W ( . 0.7904 [141.]
1.0000

The coefficients of absorption at 15 are, by Table VII.
,
of

oxygen 0.02989, and of nitrogen 0.01478. The absolute vol-

umes of the two gases absorbed by Fj volume of water are, then,

of oxygen,

0.02989 F, X 0.2096 = 0.006265 F
l ;

and of nitrogen,

0.01478 F! X 0.7904 = 0.011682 Ft .

The composition of the dissolved gas in one volume is, then,

by [140],
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Oxygen, ...... 0.3491

Nitrogen, ..... 0.6509 [142.]
1.0000

We can also, evidently, reverse the above calculation, and from

the composition of the dissolved gas calculate the composition of

the gaseous mixture to which the liquid has been exposed. Rep-

resenting the denominators of the fractions [140] by A, we

easily obtain the values,

Vi== ^A, vt
= ^A, and v3 = ^A, [143.]

<?l
C2 C3

which are the volumes of the respective gases composing V c. m.8

of the mixture. Dividing each of these quantities by the sum
of the whole, we obtain the composition of one volume of the

mixture.*
ui a

W l
=

Hi -I- -f H -L ^t -L HI
Cl C-2 C3 ft *fc l

and s
[144.]

3

L1

4. "A _i_ !f!

Cl C2 C3

From the composition of the mixture of oxygen and nitrogen
dissolved in rain-water, we can easily calculate, by these formulae,

the composition of the air. Evidently, when there are only two

gases, the third value, tv3 ,
and the last term of the denominators

of w
l
and w2 are cancelled.

All the above formulae are based upon the supposition, that the

volume of the gaseous mixture is so large that the partial pres-

sures of its constituent gases are not essentially changed by
the absorption. This is true in regard to the atmosphere, as

already stated
;
but when we experiment upon a very limited

volume of a gaseous mixture, as in the absorption-tube of appa-
ratus (Fig. 335), such an assumption is far from being correct,

and we must then pay regard to the change of composition and

of pressure in the gaseous mixture. In order to make the case

as simple as possible, let us take a mixture of only two gases, and

consider the changes it will undergo by absorption if in contact

* It will afford the student assistance, in following out the course of reasoning in this

section, to remember that, in the notation adopted, v\ -f vt + vs = FcTm? of the mixed

gases before solution, u\ -f- z -f U3 = 1 c.m.
3 of the mixed gases in solution, and

wi -f M?S -f it's = 1 <^m.
3 of the mixed gases before solution.
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with a volume of liquid, adopting for the purpose the following

notation, and assuming that the volumes of all the gases entering
into the calculation are measured at 0.

F = volume of mixed gases before absorption, measured at pres-

sure H.

V = volume of mixed gases after absorption, measured at pressure H'.

Fx
= volume of absorbing liquid.

*>i> ^a = volumes respectively of the two gases in the unit volume of the

mixed gases before absorption, so that v
l -|- vz= 1 cTnT.

3
.

MU u^= volumes respectively of the two gases in the unit volume of the

mixed gases remaining unabsorbed, so that u^ -\- u.2= 1 c . m.
3

.

clt c2= coefficients of absorption of the two gases respectively.

It is now evident that the volume V of the mixed gases con-

tains Vi Fc7nT.
3 of the first gas measured under the pressure H.

Under a pressure of 76 c. m. this same volume would measure,

by [98] ,
v l
V =- c.m. 3

By the absorption, this quantity of gas

is divided into two parts : first, a quantity, x,, ,
which remains un-

dissolved
; second, a quantity, x2 ,

which dissolves in the liquid ;

rr

so that we have x l + ^ = v\ V ^ . The value of x
z may now

readily be determined by the laws of absorption, since we know
the coefficient of absorption c

1?
and can easily calculate the par-

tial pressure which the gas exerts on the liquid after the absorp-
tion. The quantity x^ of gas, if measured at the pressure JEZ"',

7fi

would equal x
-^ ;

and since the whole volume of mixed gases

remaining unabsorbed, or F', exerts a pressure H'
,
the partial

pressure of the portion of this volume xv ~yt
must be - 76.

At the pressure of 76 c. m., we know that FJ c7m.s of liquid ab-

sorbs Ci FI c.m.3 of the gas. Hence, under the pressure of

Y,
76 c. m., the same volume of liquid will absorb

Cl ' Xl
cTm:3

of gas. This is the value of xz ; and substituting it above,
we obtain

or .1=

By a similar course of reasoning, we should obtain, for the vol-

ume of the second gas remaining unabsorbed, the value
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_V, VH
76

If, for the sake of abbreviation, we put A
Y
= vi VH and A2 =

v.z V H, also B^= ( 1 -f ^-W)
and &== f1+ xr/

1

) >
we sna^

have a;i = _,
' and ?/i= ?r-^- and from these we can easily76 ^i 76 i?2

calculate the composition of the unit of volume of the unab-

sorbed gas, which we shall find to be

and .
,, [146.]

(210.) Analysis of a Mixture of two Gases by the Absorption
Meter. It is evident, from the computations of the last section,

that we can even determine the unknown composition of a gase-
ous mixture from the change of volume it undergoes by absorp-
tion in a known volume of liquid. This leads us to a method of

gas analysis, which, under certain circumstances, admits of great

accuracy, and enables us to solve problems which cannot be re-

solved by the ordinary methods of chemical investigation. Let

us suppose, then, that we have given the following data, all

reduced to C., as before.

V =. the original volume of the gaseous mixture, measured under the

pressure H.

V = the volume of the mixture after absorption, measured under the

pressure H1
.

Vi = the volume of absorbing liquid.

Cj, c3= the coefficients of absorption of the two gases composing the

mixture.

It is required, from these data, to determine the relative pro-

portions of the two gases in the original mixture. Let us repre-

sent, then, by the unknown quantities x and y the volumes of

the two constituent gases measured under the pressure 1
; by #'

and #', the volumes of these gases after absorption measured

under the same pressure.
It follows directly from the law of Mariotte, that the volume

x', if measured under the pressure H', would be -^ ; and since

35
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this volume, after the absorption, is expanded through the whole

volume F', it is evident that the partial pressure it then exerts on
X1

the absorbing liquid is as much less than H' as
-yr,

is less than
x1

V, and must therefore be equal to ^. The volume of the

first gas which would be absorbed by F
t HTm? of liquid iinder

the pressure of 76 c. m. and at (when measured at and

76 c. m.) is c
l
Vi . As after the absorption the pressure exerted

by the first gas on the liquid is
-^ >

the volume which is actu-

ally absorbed (measured at and 76 c. m.) is, by [132],
c V x'

~*firv*~'
^ ^s vo^ume *s measured under the pressure 1 c. m.,

it will become c^ Fj -. Hence we have

d Vl
= the volume offirst gas absorbed measured under the pressure 1.

Hence, also,

or *'=-
[147.1

From this value of x' we can easily calculate the partial pres-

sure which the unabsorbed portion of the first gas exerts 011 the

absorbing liquid. If measured under the pressure H', the vol-

ume [147] becomes

and the partial pressure it exerts is as much less than H' as

this volume is less than V. A simple proportion gives us, for

the value of this pressure, T//

'

^ . In like manner, by a
V -f- c

{ K!

precisely similar course of reasoning, we shall obtain, for the par-

tial pressure exerted by the unabsorbed portion of the second gas,

-yrv_ y. Now, since it is these two pressures which make up

the observed total pressure .H"', we have

Returning now to the condition of the gas before absorption,

it is evident that the volume of the first gas, which measures x
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under the pressure 1, would measure
-^

under the pressure H.

Hence the partial pressure which this gas exerted before the

absorption was as much less thanH as the volume
-^

is less than

F, and must therefore have been
-y

. In like manner, we find

that the partial pressure exerted by the second gas was
-y- ; so

that we also have

tf=+f. [149.]

It will be noticed that equation [149] may be derived directly

from [148], by making c
{
and c2 equal to zero, which would be

the case where there was no absorption. These equations may
also be written in the forms

'/ I / 17 /

i
x

' y
''

V~H
"

V~H'

If for the sake of abbreviation we put

W= VH,
A =

(
V + Cl Fj) #',

B = (V' + c, Fl) ^T',

the equations become

^ ==
~~T ~\r jii

an(i 1 ==
rif "f~ w--

By combining the two, we easily obtain

x_
WB A^ m

or, calculating the percentage composition,

x WB A v AW B .-.,.,

As an example of this method of analysis, we will take the

data obtained in an experiment with the absorption-meter on a

mixture of carbonic acid gas and hydrogen, as given by Bunsen.
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related to their specific gravities ;
and to these phenomena has been

given the name of effusion. In his experiments, the gases were

made to flow through an aperture in a very thin metallic plate,

not more than one three-hundredth of an inch in diameter, into

a bell-glass on the plate of an air-pump, which was kept vacuous

by continued exhaustion. The velocity of the flow was found

to increase with the degree of exhaustion, (that is, with the pres-

sure,) until it amounted to about one third of an atmosphere ;

but higher degrees of exhaustion were not found to produce a

corresponding increase of velocity ;
and when the vacuum was

nearly perfect, a difference of one inch in the height of the mer-

cury column of the pump-gauge scarcely affected the rate at

which the gas entered the bell. Through an aperture in a thin

plate, such as described, sixty cubic inches of dry air were found

to enter the vacuous or nearly vacuous receiver in one thousand

seconds, and in successive experiments the time of passage did

not vary more than one or two seconds. The times required for

equal volumes of different gases to flow through this aperture
were found to be very nearly proportional to the square roots of

their specific gravities. Thus, the time required for sixty cubic

inches of oxygen to flow through the aperture was observed to be

1,051.9, 1,051.9, 1,050.6, 1,050.2 seconds, in four different ex-

periments. The mean of these numbers is 1,051.1, which bears

almost precisely the same relation to 1,000, the time occupied

by the same volume of air, as 1.0515, the square root of the spe-

cific gravity of oxygen, bears to 1, the square root of the specific

gravity of air.

Since the times occupied by equal volumes of different gases

in flowing through a fine aperture are proportional to the square
roots of their specific gravities, it follows that the velocity of

the flow must be inversely proportional to the square roots of the

specific gravities, or directly proportional to the reciprocals of

these quantities. Representing, then, by T and T', the number
of seconds required by equal volumes of two gases in flowing

into a vacuum, we have

T : T' = t/(sp. Gr.) : */(* <*)' [152

Also representing by t) and t)' the velocity of the flow, (that is,

the volume of gas entering the vacuum in one second,) we have,

since T : T' = \)' : fo,

85*



414 CHEMICAL PHYSICS.

: 1)' = . Gr.y =. [153.1M L J

If we assume that the velocity of air is unity, it follows from

[153] ,
that the velocity of any other gas, as compared with air,

must be the reciprocal of the square root of its specific gravity,

if the principle just enunciated is correct. That this is really

the case is shown by the following table, taken from Miller's

Chemical Physics. Jn the last column of this table, headed
" Rate of Effusion," the velocities of different gases compared
with air as unity are given, as deduced from the experiments of

Professor Graham
;
and it will be noticed that they very closely

coincide with the reciprocals of the square roots of the specific

gravities given in the fourth column. The coincidence is almost

absolute in the case of those gases whose specific gravities vary
but slightly from that of the air. With very light or very heavy

gases the deviation is much greater ; but this can be shown

to be occasioned by the tubularity of the aperture, arising from

the unavoidable thickness of the metallic plate.

Effusion of Gases.
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gravity of gases, which is exceedingly simple, and of especial value

where only a small quantity of the gas can be obtained. The

process consists in observing carefully the times required by the

same volumes of any given gas and air in flowing through a fine

aperture in a thin plate when under the same pressure. Repre-

senting these times by T and T', we have, from [152] ,

(Sp.Gr.*) : (Sp.Gr.y = T2
: T' 2

;

since air is the standard of specific gravity, (Sp. Gr.y= 1
;
and

we easily obtain

(^.Gr.)=. [154.]

The apparatus used by Bunsen in these deter-

minations is represented in Fig. 336. It consists

of a glass bell, a a, holding about seventy cubic cen-

timetres, and closed above by the glass stopcock c.

To the neck of the bell, at e?, there is adjusted, by

grinding with emery, the short tube e, and to the

top of this tube there is cemented a small piece of

platinum-foil, in which a very fine hole has been

perforated. In order that the plate should be as

thin, and the hole as fine, as possible, the platinum-
foil is first pierced with a very fine cambric needle,

and then hammered out with a polished hammer
on a polished anvil, until the hole is no longer

perceptible to the naked eye, and can only be seen

when the plate is held between the eye and a

bright light. The edges of the plate are next cut

away, so as to leave a small round disk, having
the hole in its centre. The diameter of this disk

should be a little less than that of the top of the

tube, to which it can easily be cemented with a

blowpipe. Within the bell, when in use, is placed
the glass float, b b, made of thin glass, in order

that it may be as light as possible. At the top of

this float there is a small knob of black glass, /3,

surmounted by a thread of white glass ;
and at

the points /3,
and

j3 2 two black glass threads are

melted around 'the stem of the float, which serve

as index-marks.
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In using this instrument, the glass bell, filled with the gas

whose specific gravity is to be determined, is depressed in a

mercury trough until the index-mark ^, on its side, is on a

level with the surface of the mercury. This index-mark is so

placed that, when the bell, previously filled with gas, is de-

pressed as just described, the float will be below the surface of

the mercury in the trough. The bell is now fastened securely in

this position, and the telescope of a cathetometer so adjusted that

its axis shall graze the surface of the mercury in the trough, one

side of which, being made of glass, enables the observer, looking

through the telescope, to see the bell distinctly. The apparatus

being thus arranged, the observer opens the stopcock c, and then

closely watches the tube through the telescope. After some time,

the white thread of the float rises into the field, and forewarns

the observer that the black knob will soon appear. The moment

this is seen, he commences his observation, and notes the exact

number of seconds before the index-mark
ft* appears in the field

of his telescope, of the approach of which he is forewarned by

previously seeing the mark
|3,.

From the construction of the instrument, it is evident that the

time thus observed is the time required for the flow, through the

fine hole in the plate e, of a given volume of gas, under a given,

although varying, pressure ; and, moreover, that this volume and

pressure must be the same in all experiments with the same

instrument. Hence the squares of the times, in the case of dif-

ferent gases, must be proportional to their specific gravities ; so

that, having once for all determined the time required by air, we
can easily, by means of [154] ,

calculate the specific gravity of

any given gas from a single observation of the time of its effusion.

It is always best, however, to repeat the observation several times,

and take the mean of the results.

The following table will give an idea of the degree of accuracy
which can be attained by this process. Column I. gives the

mean specific gravities calculated from several effusion experi-

ments on each gas, and Column II. the specific gravities of the

same gases calculated from their chemical equivalents.

The agreement between the calculated and the observed re-

sults is very satisfactory ; so that, although this process is not

comparable in accuracy with the direct method of determining

specific gravities hereafter to be described, it is nevertheless, on
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account of its great simplicity, recommended by Bunsen for

in the arts when only approximate results are required.

use

Gases.
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tube of the same diameter four metres long would allow the

passage of only fifty cubic centimetres in the same time.

Thirdly. The velocity of transpiration of equal volumes, cceteris

paribus, diminishes as the temperature rises.

Fourthly. The velocity of transpiration was found to be the

same, whether the tubes were of copper or of glass, or even when
a porous mass of stucco was used.

Fifthly. The velocity of transpiration varies with different

gases, and appears to be a constitutional property of an aeriform

substance, like the density or the specific heat, not depending, as

is the case with effusion, on the specific gravity.

Of all gases which have been tried, oxygen has the slowest rate of

transpiration ;
and hence it may be conveniently taken as a stand-

ard of comparison for the other gases. In the first column of the

following table, the times of transpiration of equal volumes of the

best-known gases are given, as compared with that of oxygen ;

and in the second column, the corresponding velocities of trans-

piration, which are the reciprocals of the first quantities. In each

case the gas was transpired through the same tube, and under

precisely the same circumstances of temperature and pressure.

Transpirdbility of Gases.

Oases.
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equal weights of oxygen, nitrogen, air, and carbonic oxide are

transpired in equal times ; the velocities of nitrogen, binoxide of

nitrogen, and carbonic oxide, are equal ; the velocity of hydro-

gen is double that of the three just mentioned
;

the velocities

of chlorine and of oxygen are as three to two. Many other

similar cases might be cited
;
but these relations seem to be

merely accidental, and have not as yet been connected with the

other properties of the substances. " Professor Graham consid-

ers, at present, that it is most probable that the rate of transpi-

ration is the resultant of a kind of elasticity depending upon the

absolute quantity of heat, latent as well as sensible, which differ-

ent gases contain under the same volume, and therefore that it

will be found to be connected more immediately with the specific

heat than with any other property of gases."*

Lastly. The velocity of transpiration of a mixture of equal
volumes of two gases is not always the mean of the velocities of

the two gases when separate. For example, the velocity of a

mixture of equal volumes of oxygen and hydrogen is 1.110, in-

stead of 1.383, which would be the mean velocity of the two

gases.

(214.) Diffusion. The tendency of gases to mix with each

other is so strong, that it will overcome the

greatest differences of specific gravity; and,

contrary to what a superficial consideration

would lead us to expect, the more widely
two gases differ in specific gravity, the more

rapid is the process of intermixture. This

process is termed diffusion, and may be

illustrated by means of the apparatus rep-

resented in Fig. 337, consisting simply of

two bottles, A and H, connected together

by a long glass tube. If we fill the upper
bottle with hydrogen and the lower bottle

with chlorine, we shall find, in the course

of a few hours, that the two gases have been

perfectly mixed together, although the ra-

tio of their specific gravities is three times

as great as the ratio of the specific grav-

ity of mercury to that of water. The Fig.337.

* Miller's Elements of Chemistry, Part I. p. 86.
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chlorine, although thirty-six times heavier than hydrogen, will

be found to have made its way into the upper bottle, as may
be seen by its green color, while the hydrogen will have passed
downwards into the lower one

;
and when once mixed, the two

gases will never separate, however long they may remain at

rest.

What has been shown to be true of hydrogen and chlorine is

equally true of all other gases and vapors, which do not act chem-

ically on each other. The only differences observed with differ-

ent substances are the times required to effect a perfect mixture
;

but when once made, this mixture, in all cases, continues uni-

form and permanent. This subject may be still further illus-

trated by filling two tall, narrow glass bells of equal diameters

over a pneumatic trough, the one half full of hydrogen, and the

other half full of air, so that the water shall stand at the same

level in both. If, now, we pass up a few drops of ether into each

jar, the same quantity of ether will evaporate in both, and cause,

ultimately, the same depression of the water-level
;
but the ex-

pansion of the hydrogen will take place much the soonest,

because, being fourteen and a half times lighter than air, the

heavy ether vapor will mix with it more rapidly.

The law which governs the rapidity of gaseous diffusion was
discovered by Graham, by means of the apparatus represented

in Fig. 338, and called by him
a diffusion, tube. It consists of

a glass tube thirty or forty cen-

timetres in length, one end of

which is closed by a plug of

plaster of Paris, which should

be as thin as is consistent with

strength. This tube serves as a

bell for holding the gas under

experiment over the water con-

tained in a tall glass jar; and

it may be easily filled without

wetting the porous diaphragm,

by means of a glass siphon-tube,

as represented in the figure. While filling the tube, the top is

closed by means of a glass plate, which has previously been care-

fully ground with emery on to the upper edge above the plaster

Fig. 338.
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diaphragm. The tube, when filled with gas, should be so sup-

ported that the water may be on the same level within and

without the tube. If then the glass covering-plate is removed,
the gas will be found to mix with the air through the thin

plaster diaphragm, the gas passing out into the atmosphere, and

the air, on the other hand, entering the tube. The relative ve-

locity of the two currents will be found to depend on the relative

density of the gas as compared with air. If the gas is lighter

than air, the outer current will be the most rapid, and the water

column will rise in the tube to supply the vacuum thus formed
;

while, on the other hand, if the gas is heavier than air, the

inward current will be the most rapid, and the water column will

be depressed. If the gas is hydrogen, which is fourteen and a

half times lighter than air, the outer current will be so much the

most rapid, that in the course of a few minutes the water column,
under favorable circumstances, will rise to over one half the

height of the tube. In all cases, after a certain time, varying
with the specific gravity of the gas and the thickness of the dia-

phragm, the gas in the tube will have been replaced entirely by
a volume of air, which will be greater or less than the original

volume of gas, according as the velocity of diffusion of the air is

greater or less than that of the gas. By comparing, then, the

original volume of the gas with the volume of the air remaining
in the tube at the close of the experiment, we shall have at once

the relative velocity of diffusion of the two gases. In making
experiments for the purpose of determining the velocity of diffu-

sion, it is evidently essential to maintain the water at the same

level, both within and without the tube, since otherwise the effects

of diffusion would be modified by the hydrostatic pressure.
As an illustration of the method of determining the velocity of

diffusion, let us suppose that the tube was filled with 100 ^Tm!3 of

hydrogen gas, and that at the end of the experiment, during
which the surface of the water within and without the tube was

carefully maintained at the same level, there remained in the

tube 26.1 c^m. 3 of air. It is evident, then, that during the time

100 (Tin.
3 of hydrogen escaped from the tube through the porous

diaphragm, 26.1 ^n.3 of air entered. Hence, the velocity of

the diffusion of hydrogen is 3.83 times (equal to 100 -f- 26.1)
more rapid than that of air. In the same way, all the numbers

in the column of the following table headed "
Velocity of Difiri-

36
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sion
" were found. They in each case indicate the velocity of

iiffusion as compared with air
;
and it will be noticed that they

\ery nearly coincide with the velocity of effusion.

Diffusion of Gases.
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of two or more gases into the diffusion-tube, each gas will be

found to preserve its own rate of diffusion. Thus, if the mixture

consists of hydrogen and carbonic acid, the hydrogen will escape
from the tube much more rapidly than the carbonic acid, and a

partial mechanical separation of the two gases may thus be

effected.

It is not essential that the top of the diffusion-tube should be

closed with plaster of Paris. Any dry porous substance, such as

charcoal, wood, unglazed earthen-ware, or dried bladder, may be

substituted for the stucco
;
but few of them answer so well.* The

diaphragm is best prepared by casting a very thin disk of plaster

on a glass plate, and, after it is thoroughly dried, cutting it to

the required size with a sharp knife, and cementing the edges
with sealing-wax to the inner rim of the tube.

The ascent of a column of water in the tube, when hydrogen
is diffused, forms a very striking experiment. This may read-

ily be shown to an audience with a Gra-

ham's diffusion-tube about a metre in height

and four or five centimetres in diameter,

resting the bottom in a pan of colored

water. The tube can easily be filled with

hydrogen by displacement, and the gas re-

tained in its place by covering the top with

a ground-glass plate, which should be re-

moved at the time of the experiment. The
same principle can be even more strikingly

illustrated by means of an apparatus de-

scribed by Professor Silliman, Jr., and

represented in Fig. 389. It is made by

cementing the open mouth of a porous
earthen-ware cell (such as are used in a

galvanic battery) to the mouth of a glass

funnel, and then lengthening the spout by

attaching to it a long glass tube of the

same diameter. When in use, the appa-
ratus is supported as represented in the rig. 339.

figure, so that the end of the tube shall dip
into a glass filled with colored water. If, now, we hold over the

* Later experiments have shown that the best material is compressed plumbago.
A film of collodion on paper also gives excellent results.
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porous cell a bell-glass filled with hydrogen, there will he an

immediate rush of air from the tube through the water, because

the hydrogen diffuses into the cell nearly four times as rapidly as

the air passes out ; but upon removing the bell of hydrogen the

conditions are reversed, the hydrogen, which the cell now con-

tains, diffuses into the atmosphere, and the colored water imme-

diately rises into the tube.

As all gases are expanded by heat, and therefore rendered

specifically lighter, it follows that the absolute velocity of diffu-

sion of any gas (measured by volume) increases with an increase

of temperature ;
but since an elevation of temperature does not

increase the rate of diffusion as rapidly as it does the volume of

a gas, it is also true that the same weight of any gas will be dif-

fused more rapidly at a low than at a high temperature. It will

hereafter be shown that heat expands all gases equally, so that

their relative densities are preserved, however great the change of

temperature. Hence the relative velocities of diffusion, which

are given in the table on p. 422, are the same for all tempera-

tures, provided, of course, the gases be heated equally.

This diffusive power of gases is of the greatest importance in

preserving the purity of our atmosphere. As it is, the noxious

carbonic acid from our lungs, the deleterious fumes from our

factories, and the miasmatic emanations from the marshes, are

rapidly spread through the atmosphere and rendered harmless by
extreme dilution, until they can be removed by the beneficent

means appointed for this end. Moreover, the more they differ

in density from the air, and the more, therefore, they would tend

to separate from it, the stronger is the force by which they are

compelled to mix. Were it not for this provision in the consti-

tution of gases, these injurious substances would remain where

they were formed, and might produce the most disastrous conse-

quences. If we consider, also, the oxygen and nitrogen of which

the atmosphere essentially consists, they differ in density in the

proportions of 1105 to 971
; but yet they are so perfectly mixed,

that the most accurate chemical analysis has been able to detect

no difference between the air brought from the top of Mont
Blanc and that from the deepest mine of Cornwall. Were the

force of diffusion much less than it is, these two gases would sep-

arate partially, and the atmosphere be unfitted for many of its

important functions.
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Bunsen,* who has more recently studied the phenomena of

gaseous diffusion, has obtained results which do not coincide with

the simple law discovered by Graham, and enunciated above.

The discrepancy between the results of these two eminent observ-

ers probably arises from the great thickness of the plaster dia-

phragm in the apparatus used by Bunsen ;
in consequence of

which the phenomena of diffusion were modified by those of

transpiration. Compare (213). The same must be true, to a

certain extent, of the diffusion-tube of Graham ;
and the experi-

mental results will probably approach the law in proportion as

the thickness of the diaphragm is diminished, actually coinciding

with it only when the diaphragm is entirely removed and the

gases expand freely into each other.

(215.) Passage of Gases through Membranes. If a bladder

half filled with air, and having its mouth tied, is passed up into

a bell-glass of carbonic acid standing over water, it will become,
in the course of twenty-four hours, fully distended, and may even

burst, owing to the passage of carbonic acid gas through the

pores of the bladder. This is not, however, a simple phenom-
enon of diffusion, since the carbonic acid enters the bladder as a

liquid dissolved in the water permeating the substance of the

membrane, and evaporates from the inner surface of the bladder

like any other volatile liquid. A similar transfer takes place

with a jar of gas standing on the shelf of a pneumatic trough.

The water dissolves, to a slight extent, the gases of the atmos-

phere, which subsequently evaporate into the jar, while at the

same time the gas in the jar slowly passes out, in a similar way,
into the atmosphere. For this reason, gases confined over water

cannot be kept pure for any length of time. Analogous phenom-
ena have been observed with membranes of india-rubber, a sub-

stance which has the power of absorbing many gases to a remark-

able extent, especially those which are more easily liquefied. It

is probable that the gases are always liquefied in the india-rubber,

and pass through it in this condition, evaporating subsequently
on the interior surface of the membrane. A similar absorption

must take place, to a greater or less extent, with any diaphragm ;

even with plaster of Paris it is appreciable, and slightly modifies

the experimental results of diffusion.

Bunsen's Gasometry, p. 198.
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CHAPTER 1Y.

HEAT.

(215 bis.) Theory of Heat. All natural substances are, in

certain conditions, capable of producing on our bodies peculiar

sensations, which we designate by the words heat and cold. These

sensations may result from direct contact with the substance, as

when we touch a heated stove
; or they may be produced at a

great distance from it, as when we are warmed by the radiation

from burning fuel or by the rays of the sun.

To the cause of these effects we give the name of heat; but

according to the most generally received theory heat is not a dis-

tinct agent, but merely an affection of matter, and the phenomena
of heat are thought to be caused by the motion of the molecules

of which all matter must be supposed to consist. Not only are

the molecules of all bodies assumed to be in rapid motion among
themselves, but the motion of the molecules is supposed to obey
the same laws as the motion of large masses of matter. More-

over, the molecules are assumed to be perfectly elastic, so that

motion may be transferred from one molecule to another, as from

one billiard-ball to another. Again, when a moving body is

suddenly arrested, it is supposed that the motion of the body is

distributed among the surrounding atoms ; and on the other hand
it is inferred that moving atoms may transfer their motion to

masses of matter, and the atoms of steam, it is thought, thus

impart motion to the piston of the steam-engine.

According, then, to this view, a heated body differs from a cold

body only in the fact that its molecules are moving more rapidly
within its mass. The moving power of the individual molecules

represents what we call the temperature, and this is the measure

of the force with which they would impress the nerves of feeling.

The higher the temperature, the greater is the moving power, and

for the same temperature the molecules of all bodies are assumed

to have the same moving power. The zero of absolute cold would

be the temperature at which the molecules are at rest, but such a
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point has never been reached, even if it is a possible condition of

matter. While the moving power of the individual molecules

represents the temperature of a body, the total moving power of

all the molecules represents the amount of heat which it contains.

Quantity of heat, then, is simply quantity of motion ; and, as we
shall hereafter see, the quantity of motion corresponding to each

heat unit is capable of exact measurement.

The transfer of heat from one body to another is simply the

transfer of motion from the molecules of the one body to the

molecules of the other. This transfer may result either from

the direct collision of the molecules, as when one ivory ball

strikes another, or it may be effected through the intervention

of the ether atoms by which the molecules of all bodies are

assumed to be surrounded, the line of ether atoms along which

the motion may be supposed to be transmitted, as along a line of

ivory balls, representing the rays of heat. Such is thought to be

the difference between the conduction and the radiation of heat ;

although it may be that motion cannot pass even from molecule

to molecule except through the contiguous atoms of ether.

The difference between the three states of aggregation of mat-

ter, according to the theory we are considering, depends upon
the relative freedom of motion of the material molecules. In a

gas this motion is wholly unrestrained, and the tension of the gas
is supposed to be due to the collision of the atoms against the

walls of the containing vessel. If the walls are unyielding, the

atoms recoil without losing any moving power, as any elastic ball

would rebound from a fixed obstacle (109). When, however,
the walls yield to the atomic blows, then the atoms lose a portion

of their moving power, and a lower temperature is the result. In

both solids and liquids the motion is supposed to be more or less

circumscribed by the molecular forces, just as the force of gravita-

tion restrains the motion of the planets and keeps each in a fixed

orbit. In the solid the motion is more circumscribed than in

the liquid, but in regard to the mode of motion in eitiier case

there is no uniformity of opinion. As the temperature of a body

increases, the moving power of its molecules may become great

enough to overcome the molecular forces, and then the molecules,

freed from the restraint which bound them, will move among each

other with more or less freedom, the solid changing first into a

liquid and afterwards into a gas. Since, however, the molecular
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forces can only be overcome by the expenditure of moving power,
such a change must be attended with the absorption of heat

;
and

when, on the other hand, in consequence of the reduction of tem-

perature, and consequently of the moving power of the molecules,

these are brought again under the influence of the molecular

forces, an equivalent amount of heat is set free
; just as a stone,

which, thrown from the earth, falls again to the ground, acquires,

while falling, the same momentum which it lost while rising.

It will hereafter appear that the change of state of aggregation

is always accompanied by such an absorption or evolution of heat

as the theory predicts. Moreover, it will also appear that the

arrest of motion is always attended with the evolution of heat,

and that the amount of heat evolved is the exact equivalent of the

moving power which has disappeared ;
as must necessarily be the

case, if, as the theory assumes, the moving power is transferred to

the neighboring molecules at the moment of collision, and their

motion manifests itself in the phenomena of heat.

According to the modern theory of chemistry, equal volumes

of all substances in the state of gas contain precisely the same

number of molecules, or, what amounts to the same thing, the

molecules of all bodies in the state of gas occupy exactly equal
volumes. Hence it follows that the weights of the molecules of

any two substances must be to each other in the same proportion
as the specific gravities of these substances when in the state of

gas, or

m:m
t
= Sp. Gr. : Sp. Gr.'

If, then, we assume that the hydrogen molecule shall be the unit

in our system of molecular weights, we can easily calculate the

molecular weights of all other bodies as compared with that of

hydrogen. The molecular weights thus obtained are either the

same numbers as those which express in chemistry the combining

proportions of the different elements, or else they are some simple

multiple of these numbers.

If, now, we represent by V and V, the velocities with which the

molecules of any two substances in the state of gas are moving at

any given temperature, for example, Centigrade, then, since,

according to our theory, the moving power of any two such mole-

cules must be the same at the same temperature, we shall have
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and from this we can readily deduce the proportion

V: V, =
that is, the velocities of the motion of the molecules of any two

substances in the state of gas are inversely proportional to the

square roots of the weights of these molecules, or to the square

roots of the specific gravities of the gases. The diffusion of gases

(214) is evidently a necessary result of molecular motion, and

the relative velocity of diffusion must be the same as the relative

velocity of the molecular motion, and hence must be inversely

proportional to the square roots of the specific gravities of the

different gases. This is the simple law already enunciated on

page 422.

According to the theory here adopted, the value \ m F2
,
which

represents both the moving power of a given molecule and the

temperature of the body of which the molecule is a part, repre-

sents also the quantity of heat which that molecule contains.

Hence, as all molecules at the same temperature have the same

moving power, they must have also the same quantity of heat.

It must, therefore, require the same quantity of heat to raise the

temperature of a single molecule of any substance the same num-

ber of degrees. And if this is true of single moleculeSj it must be

true of equal numbers of such molecules, or, in other words, of

weights of different substances which bear to each other the same

relation as the weights of their respective molecules. If, then,

the weights of two substances,M and M', are to each other in the

same proportion as the weights of the molecules of these sub-

stances, m and m', then the same quantity of heat will raise the

temperature of the unequal weightsM and M1 the same number

of degrees. Or, if we represent by S and S' the quantities of heat

which are required to raise the temperature of one kilogramme
of each of two substances one degree, and by m and m' the relative

weights of their respective molecules, then - and -; will represent

the relative number of molecules of each substance in one kilo-

gramme ; and since the quantity of heat required must be pro-

portional to the number of molecules, we shall have

:. = $ :#, or m & = m' #.m m'

The quantities S and & are called the specific heats of the
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substances ; and hence, according to the theory, the products
obtained by multiplying together the specific heats of different

substances and their molecular weights (or combining propor-

tions) should be equal. In the case of the chemical elements

this is very nearly true
;
and it would probably be found precisely

true for all substances, could the comparison always be made
under precisely the same conditions, and when the substances

were in the state of gas.

Again, since equal volumes of different gases always contain

the same number of molecules, our theory would lead us to

anticipate that equal quantities of heat would raise the tem-

perature of the same volume of any gas to an equal extent. This

also we find to be true of the permanent gases ;
and although in

the case of the vapors the deviations from this law are apparently

very great, yet such deviations are probably owing, in part at

least, to the imperfect aeriform condition of these bodies, and also

perhaps to the mechanical condition of the molecules themselves,
of which our th&ory has as yet taken no account.

Of the various theories which have been proposed to explain
the phenomena of heat, the one here stated is the simplest and

the most intelligible, predicting, as well as could be expected, the

general order of the phenomena. It must be admitted, however,

that, as here stated, this theory is open to grave objections, and,
like all theories in science, it should be regarded as a provisional

expedient, and not as an established principle. That the phe-
nomena of heat have a purely mechanical cause is most probable,
but the mode or the seat of the motion which causes them is

wholly a matter of conjecture. We shall discuss the phenomena
of heat in this chapter as far as is possible independently of any

theory, using for the purpose the ordinary language of science.

It must be remembered, however, that much of this language is

based on the old theory, now rapidly passing away, which re-

garded heat as a material, although an imponderable agent. No
difficulty, however, will arise, if it is remembered that quan-

tity of heat means simply quantity of motion, and that all terms

relating to quantity are as strictly applicable to motion as they
are to matter.

(216.) The Action of Heat on Matter. The mechanical effects

of heat on matter may be all explained by assuming that heat

acts as a repulsive force between the particles, and therefore
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opposes the attractive force of cohesion. The first effect of heat

on matter, in either of its three states, is to expand it. This

may be illustrated by a great variety of familiar facts and experi-

ments. A ball of metal, which exactly fits a ring when cold,

will not pass through it when heated. The parts of a wheel are

.bound together by the contraction of the tire, which is put on

while hot. Clocks go slower in summer than in winter, because

the. pendulum is lengthened by the heat.

Different substances expand unequally for the same increase of

temperature. We estimate the expansion either by measuring the

increase of length or the increase of bulk. The first is called the

linear expansion, the second the cubic expansion. In the case of

solids we generally measure solely the linear expansion, while

in the case of liquids and gases we as generally measure solely

the cubic expansion. The one, however, can easily be calculated

from the other, since the cubic expansion is about three times as

great as the linear expansion. The following table will give

an idea of the amount of expansion in different substances,

and will show that gases expand very much more than liquids,

and liquids very much more than solids.

Between the Freezing and Boiling Points of Water :

A rod of zinc increases in length 7J7, that is, 323 c. m. become 324.

lead siT , 351 352.

" tin tfa, 516 517.

silver
li

?Jf, 524 " 525.

"
glass (crown)

"
TI>JJ,

" 1142 " 1143.

Alcohol increases in volume , that is, 9 ~irT.
8 become 10.

Water "
fa " 23 " 24.

Mercury .fa 55 56.

Air and the permanent gases expand , that is, 30 ~nT.
8 become 41.

Before, however, we study the phenomena of expansion in

detail, it is important to examine the various means by which the

effects of expansion are used as a measure of temperature.
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THERMOMETERS.

(217.) Mercurial Thermometer. It is obvious that we might

use, as the measure of temperature, the effect caused by heat in

expanding either solids, liquids, or gases, and thermometers

have been constructed of each of these three forms of matter.

The expansion of solids, however, is so small, and that of gases

so difficult to measure, that their indications are not available for

the ordinary purposes for which a thermometer is required ;

while liquids, on the other hand, having an intermediate degree

of expansibility, and their changes of volume being readily meas-

ured, are well suited for thermometrical uses. Of the various

liquids which might be employed, mercury is much the best, not

only on account of the great range of temperature between its

freezing and boiling points, but also because its increase of vol-

ume is very nearly proportional to the increase of temperature.

In order to make a mercury thermometer, a capillary glass tube

is first selected, whose bore is of the same calibre throughout, so

that equal lengths of the tube will contain equal volumes of

mercury. The uniformity of the bore is readily tested by intro-

ducing into the tube a small amount of mercury, and moving
this short column gradually from one end to the other, measuring
its length in each successive position. This should, of course, be

the same in every case ;
and if not, the tube must be rejected.

The glass tube having been selected, and cut off to the required

length, a bulb is blown upon the end by the usual method of

glass-blowing, using, however, an india-rubber bag instead of the

mouth, in order to avoid moisture. The size of the bulb is varied

according to the degree of sensibility required in the instrument ;

but it is always made large in comparison with the tube, so that

a slight expansion of the enclosed liquid will cause it to fill a

considerable length of the bore. The form of the bulb may be

either spherical or cylindrical. The first is most easily made ;

but the last, from exposing a greater surface, is more readily

affected by changes of temperature. To facilitate the introduc-

tion of the mercury, a cup is sometimes cemented to the open
end of the tube, although a paper funnel fastened with twine will

answer every purpose.

The tube thus prepared is now easily filled with mercury.

Holding the tube in a vertical position, we pour mercury into the
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'cup, and heat the bulb with a lamp in order to expel a portion of

the air. On removing the lamp the glass soon cools, and the

mercury is forced in by the pressure of

the atmosphere, partially filling the

bulb. We now again apply the lamp,
as represented in Fig. 340, until the

mercury boils
;
and continue the boil-

ing for several minutes, in order that

the mercury vapor may drive out all

the air and moisture. The lamp is then

again removed, when the mercury,

pressed in by the atmosphere, descends

and fills completely the whole appara-
tus. The cup is then emptied of the

excess of mercury, and the tube just

below it drawn out to a narrow neck

in the flame of a blowpipe, when the.

cup may be broken off.

As the tube is now filled with mer-

cury, a greater or less portion of it

must be removed, depending on the

range to be given to the instrument.

This is accomplished by heating the

bulb to the highest temperature which

the thermometer is expected to measure, when the excess of

mercury is expelled through the minute aperture left in the neck

of the tube. The source of heat is now withdrawn
; and the

moment the column of mercury begins to descend, the flame of a

blowpipe directed against the end of the stem hermetically seals

the tube. It remains then only to graduate the instrument.

(218.) Graduation of the Thermometer. If the bore is uni-

form, it is evident that the rise of the mercury in the tube will

be proportional to the expansion, so that we have in the ther-

mometer an instrument with which we can measure any change
of volume of the included liquid ;

and if we assume that the

expansion is proportional to the increase of temperature, it is

evident that it will also serve as a very delicate measure of tem-

perature.

The thermometer is always graduated by means of two fixed

temperatures, those of melting ice and of boiling water. The

37

io.
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bulb and the portion of the tube filled with mercury are first sur-

rounded by pulverized ice, and the point to which the mercury falls

is marked with a file on the stem (Fig.

341) . The thermometer is next immersed

in steam escaping freely into the atmos-

phere, and the point to which the mercury
rises marked as before. The temperature
of free steam is always approximatively
the same as that of boiling water, and even

more constant, not being affected by many
circumstances, such as the nature of the

vessel and the presence of impurities, which

may change slightly the boiling-point.

The apparatus represented in Figs. 342

and 343, invented by Regnault, is admi-

rably adapted for fixing the boiling-point.

Its construction is sufficiently evident

from the drawing, and does not, there-

fore, require description. The steam ris-

ing from the boiling water circulates in the direction of the

arrows, escaping by the tube D ; and the object of the double

envelope is merely to prevent the steam from condensing in the

inner cylinder A.

Fig. 341.

Fig. 342. Fig. 343.
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Since the temperature of boiling water and of the steam escap-

ing from it varies with the atmospheric pressure, it is evidently
essential to pay regard to this circumstance in graduating the

thermometer. The fixed point adopted for the graduation is the

temperature at which water boils under a pressure of 76 c. m.
;

and if the barometer, at the time of graduation, indicates a dif-

ferent pressure, it is necessary to make a correction accordingly.
This correction is easily calculated, since Wollaston determined

that the boiling-point of water increases one Centigrade degree
for every increase of pressure measured by 2.7 c. m. of mercury
column. In determining the boiling-point with Regnault's ap-

paratus, it is necessary to guard against any accidental variation

of pressure in the interior ;
and for this reason, it is furnished

with the manometer-tube m.

The two fixed points having been marked on the tube, the

distance between them is next divided into equal parts, called

degrees. Two different scales are used in this country. In the

Centigrade scale, which is the one most generally used for scien-

tific purposes, the distance is divided into one hundred degrees,

which are numbered from the freezing-point of water. These

divisions are continued of the same size both above 100 and

below 0, the last being distinguished by a minus sign ; thus,

10 stands for ten degrees below zero. In the Fahrenheit scale,

which is used almost exclusively in common life, the distance

is divided into one hundred and eighty degrees, which are num-
bered from a point thirty-two degrees below the freezing-point of

water ; so that on this scale the freezing-point of water is at

32, and the boiling-point at 32 + 180 = 212.

The Fahrenheit scale originated with an instrument-maker of

Dantzic, from whom it is named, and appears to have been based

on some theoretical views in regard to the expansion of mercury
which have long since been forgotten. It is supposed that the

zero was chosen as marking the greatest cold which had been

observed at Dantzic, and which Fahrenheit regarded as the great-

est possible. We are now, however, able to reduce the tempera-
ture of bodies at least one hundred and fifty degrees below the

zero of Fahrenheit, so that this zero is far from marking the

greatest possible cold ; moreover, since cold is merely the absence

of heat, and since we cannot remove all the heat from matter,

we can never expect to reach the absolute zero. Indeed, the
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whole thermometric scale is to be regarded as purely arbitrary,

and may be compared to a chain, extending indefinitely both up-

wards and downwards. We select some point on the chain, and

begin to count the degrees from that. We fix the length of our

degrees by selecting a second point, at a convenient distance

above the first, and dividing the intervening length into an arbi-

trary number of equal parts. Thus all is arbitrary ;
and there

is no peculiar virtue in the two points which have been chosen,

other than that they can be easily determined with accuracy, and

include between them the range of temperature with which we
are usually most concerned.

The Centigrade scale has been adopted in this work, not only

because it has a decimal subdivision, but also because it is the one

most generally adopted in the scientific works both of this coun-

try and of Europe. At the end of the book there will be found

a table by which the degrees of the Centigrade scale may be con-

verted into those of the Fahrenheit. This reduction can easily

be made mentally, since 100 C. = 180 F., or 5 C. ?= 9 P.;

hence F. = | C. + 32. The 32 is added, because the zero of

Fahrenheit is 32 Fahrenheit degrees below the zero of the Centi-

grade. An easy rule for mental calculation is, Double the number

of Centigrade degrees, subtract one tenth of the whole, and add

thirty-two. When the Centigrade degrees are below zero, they
are marked with a minus sign ;

and this sign must be regarded
in using the above rule.

Besides the two just mentioned, the scale of Reaumur is also

used in some countries of Europe. On this scale the distance

between the freezing and boiling points of water is divided into

eighty equal parts, but the zero is the same as on the Centigrade.
It is, however, never used in this country, and is seldom referred

to in scientific works.

In all thermometers, after the length of a degree has been

ascertained by dividing the distance between the freezing and

boiling points of water into equal parts, the divisions are con-

tinued of the same size beyond the two fixed points on either

side. This method of graduation occasions a defect in the

instrument which must now be noticed.

(219.) Defects of the Mercury Thermometer. It will be

obvious, from a moment's reflection, that we do not observe in a

thermometer-tube the absolute expansion of mercury, but only
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the relative expansion as compared with that of the glass bulb.

Did the glass expand as much as the mercury, the column of

liquid would evidently remain stationary at all temperatures.
If it expanded more than the mercury, an increase of tempera-
ture would cause the column to fall. In fact, the expansion of

mercury is seven times greater than that of glass ;
so that its

apparent expansion, when enclosed in a glass vessel, is about one

seventh less than the absolute expansion. The rise of the column
of mercury in a thermometer-tube is, then, a mixed effect of the

expansion of the enclosed mercury and of the glass envelope.
It is further evident, that the whole value of the thermometer,

as a measure of temperature, rests upon the assumption that the

expansion of a given quantity of mercury is exactly proportional
to the amount of heat which enters it. If, for example, a given
amount of heat, entering the mercury of a thermometer, causes

it to expand 0.001 of its volume, and consequently to rise in

the stem one centimetre, it is assumed that twice, three times,

etc. as much heat will cause it to expand 0.002, 0.003, etc. of

its volume, and to rise in the stem 2, 3, etc. centimetres. This

assumption is not, however, absolutely correct, for the rate of

expansion of mercury gradually increases with the tempera-

ture; so that, in the example just cited, twice as much heat will

cause the mercury to expand a little more than 0.002, and three

times as much heat a little more than 0.003 of its original vol-

ume. Or, to take another illustration, let us suppose that a

certain amount of heat, entering the mercury of a thermometer,
causes the column to rise in the stem one centimetre, which we

may suppose, in a given case, to be the length of one Centigrade

degree ;
and let us also suppose that exactly equal amounts of

heat enter the same thermometer during successive intervals of

time. If the rate of expansion of mercury were uniform, each

addition of heat would cause the mercury to rise exactly one

centimetre
;
BO thatj if the stem were divided into centimetres,

each of these would indicate the same accession of heat. As it

is, however, the addition of the second quantity of heat causes

the mercury to rise a little more than a centimetre, the addition

of the third quantity causes a rise still greater than before, and

so on. Hence, in order that the degrees of the thermometer

may indicate equal accessions of heat, they should slowly in-

crease in length from zero up* In the case of mercury, the rate

37*
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18

Fig. 344.

of expansion changes so slowly, that the increase

in the length of the degrees would not be per-

ceptible to the eye within the usual range of the

scale ; but if the thermometer is filled with

water, whose rate of expansion increases very

rapidly, the effect becomes very evident. The
water thermometer, represented in Fig. 344, is

so graduated that each division on the scale

corresponds to an equal amount of heat
;
and it

will be noticed that the degrees near the top of

the scale are several times longer than those

near the zero point. This, then, is an exagger-
ated representation of the way in which a mer-

cury thermometer should be graduated, in order

to be perfectly accurate ; the length of the de-

grees should slowly increase from the zero point

up. In practice, however, as has been described,

they are made of the same length. The error,

thus caused, is not important between the two

fixed points ; since, by dividing the given dis-

tance into equal parts, we obtain a mean length

for the degree, which, although too long for the

degrees near the freezing-point, and too short

for the degrees near the boiling-point, is exact

for the intermediate degrees, and very nearly

correct for all. But above the boiling-point the

same is not the case
;

for while the degrees

marked on the scale have the same length as

those below, the true length of the degree is

constantly increasing, until the difference be-

comes very considerable. Hence a thermometer

above the boiling-point always indicates too high
a temperature ; and, for the same reason, below

the freezing-point indicates too low a temperature.
The value of the mercury thermometer as an

accurate instrument would not be materially im-

paired by the facts stated above, since it would

always be possible to estimate the amount of

deviation in any case, and apply the correction

to the observed results. Unfortunately, however,
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its indications are also affected by the unequal expansion of the

glass envelope. It so happens that the rate of expansion of glass

increases quite as rapidly as that of mercury ;
so that the error

induced by the increased rate of expansion of mercury is in part

corrected, indeed sometimes over-corrected, by the increasing

capacity of the glass bulb. Unfortunately, the rate of expansion
differs very considerably in different kinds of glass, and even in

the sairie glass under different circumstances ;
so much so, that

two thermometers, even when constructed with the greatest care,

seldom agree for temperatures very much above or below the

fixed points. It is thus evident, that, while the expansion of

the glass tends to correct the error which would be caused by
the unequal expansion of mercury, it nevertheless renders the

indications of the thermometer uncertain to a slight extent, and

sufficiently to deprive the instrument of that accuracy which is

desirable in a scientific investigation.

The facts stated in this section are illustrated by the following

table, from the well-known memoir of Regnault
* on this subject.

Comparison of Different Thermometers.

Air Thermometer.
True Tempera-

ture.
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tions to the true temperature. Column 2 gives the corresponding

temperatures which would be indicated by a mercury thermome-

ter, graduated in the usual way, if the glass did not expand at all ;

showing the error which would be caused by the varying rate of

expansion of the mercury alone. Column 3 gives the correspond-

ing temperatures indicated by a mercury thermometer made of

flint-glass (cristal de Choissy-le-Roi) , showing that this error is

in part corrected by the unequal expansion of the glass bulb.

Column 4 gives the corresponding temperatures indicated by a

thermometer of crown-glass (verre ordinaire de Paris), showing
that the indications of thermometers made with different varieties

of glass do not necessarily accord. Finally, column 5, giving the

coefficients of expansion of mercury at each temperature (250),
is added, in order to show how rapidly the rate of expansion in-

creases with the temperature.
It will be noticed that the thermometers agree perfectly at the

two fixed points to which they are graduated. Moreover, be-

tween these two points the differences are comparatively small,

since from the very method of graduation the errors are distrib-

uted ; but above 100 the differences between the indications of

the mercury thermometers and the true temperatures are contin-

ually increasing. The variations from the true temperature in

the case of the theoretical thermometer without glass are very

large. In the flint-glass thermometer the differences are less,

because the varying rate of expansion of mercury is partially

corrected by that of the glass. In the case of the crown-glass

thermometer, there is a singular anomaly. This, on account of

the remarkable law of expansion which crown-glass obeys, keeps

nearly in accord with the air thermometer up to 246.80, at

which point it coincides with it ; but above this point, at which

they separate, the differences between the two rapidly increase.

It will also be noticed, that the differences between the temper-
atures indicated by the thermometers of flint and crown glass

are quite large ;
and it is evident that the last are greatly to be

preferred in all scientific investigations. Smaller differences

have been observed between thermometers made of varieties of

crown-glass ;
but they are not of practical importance when

neither of the varieties contains lead.

The facts just stated will be rendered clearer by Fig. 345,

which is a geometrical construction of the results given in the
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table on page 439. The figures on the horizontal line, or axis of

abscissas, stand for the temperatures of an air thermometer;
those on the vertical line, or axis of ordinates, for the differences

Fig 345.

between the indications of this thermometer and of different

mercury thermometers. The curve On am shows the varia-

tions from the true temperature of the theoretical thermometer

without glass ; and the curves Onac, On av, Ona s, Onao,
the variations of thermometers made with flint-glass of Choissy-

le-Roi, green glass, Swedish glass, and "verre ordinaire de

Paris," respectively. The anomaly in the case of the thermom-

eter made with the common Paris glass is beautifully illustrated

by the last curve.

(220.) Change of the Zero Point. Mercury thermometers,
even when constructed with the greatest care, are liable to error

from another cause, which cannot be so easily explained as the

one just considered. The zero-point of the thermometer fre-

quently rises on the scale, the displacement amounting at times

even to two degrees. By this is meant, that when the thermom-

eter is surrounded by melting ice, as in Fig. 341, the mercury
will not sink to the original zero, but only to a point possibly

even two degrees above it. According to Despretz, this change

may continue for an indefinite period ;
and it is therefore impor-

tant to verify the position of the zero-point of a thermometer

before using it in an observation where great accuracy is required.

If the point has been displaced, the amount of the displacement
must be subtracted from the observed temperatures.

Besides this slow rising of the zero-point, sudden variations in

its position have been noticed after the thermometer has been ex-

posed to a higher temperature. These variations are sometimes

permanent, and at other times merely transient, the zero-point
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returning to its original position after the instrument has been

cooled for some time. All these facts tend to show, that determi-

nations of temperature with a mercury thermometer are liable

to sources of error which cannot always be guarded against ;
and

it is therefore best, when great accuracy is required, to substitute

for the mercury thermometer the air thermometer of Regnault,

which will be described in a future section.

(221.) Standard Thermometers. The causes of error in the

mercurial thermometer already noticed arise from the very na-

ture of the materials, and are inseparably connected even with

such instruments as have been constructed with all the refine-

ments of modern science. Ordinary thermometers are liable to

errors of construction of a far greater magnitude. It is evident,

from the theory of the instrument, that unless the bore of the

tube has the same calibre throughout, equal increments in the

volume of the mercury will not cause an equal rise of the column

in all its parts ;
and the indications of the instrument, graduated

in the usual way, will be more or less erroneous. Now it is

seldom, and probably never, the case, that a thermometer-tube

has an absolutely uniform bore. Hence, in making a standard

instrument, it is essential that the tube should be calibrated

throughout, and the size of the degrees proportioned to the vary-

ing diameter of the tube. This is done by introducing a short

column of mercury into the tube, gradually moving it from one

end to the other by means of a small elastic bag tied to the open

mouth, and dividing the tube into lengths equal to the lengths of

the mercury-column. This length is taken so short that the

diameter of the tube may be assumed, without appreciable error,

not to vary throughout the short distance
;
and when the tube is

graduated, each of these lengths is divided into the same number

of equal parts.

Regnault, who has very greatly improved the methods of grad-

uating standard thermometers, uses for the purpose a dividing

engine, similar to the one represented in Fig. 346, which is con-

structed by M. Duboscq, of Paris. It consists of the iron frame

A Q, in which is mounted the long steel screw H. This screw

is confined at its two ends by brass collars, in which it turns

freely. On the top of the iron frame moves the carriage B, to

which the tube to be divided is fastened. Motion is communi-

cated to this carriage by the screw /I, which plays through a
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socket fastened to the under side, and therefore invisible in the

drawing. By turning the screw, the carriage &, and the tube

fastened upon it, are moved forward under the graver, a, which

Fig. 346.

is attached to a very ingenious apparatus for regulating the

lengths of the division-lines, making every fifth and tenth line

longer than the rest. This dividing apparatus is supported on

the upright piece of iron, P, which is itself firmly fastened to the

frame of the engine.

The whole value of the apparatus depends on the long screw,

which is made with great care, and its threads so adjusted that

one revolution moves forward the carriage exactly one milli-

metre. Motion is communicated to the screw by the handle M,
acting through the cogs m and n on the broad wheel opr, and

this, in its turn, on a ratchet-wheel fastened to the head of the

screw, and moving within the first. The wheel o p r can revolve

in one direction independently of the ratchet-wheel and the

screw; but when turned in the opposite direction, a small detent,

fastened to the inner surface of its rim, catches in the teeth, and

moves the ratchet-wheel and screw with it. The rim of the

wheel opr is divided on both sides into degrees, and by means

of a set of stops its motion can be limited to any number of rev-
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olutions, or to any fraction of a revolution. Let us suppose that

the stops are so adjusted that the wheel opr can turn through
two revolutions and -^V Starting, then, from the first stop, and

turning the handle M until the motion is arrested by the second

stop, the screw H will be revolved twice and T
5/ -. Consequently,

the carriage B will be moved forward 2.54 millimetres. On
now turning the handle M in the opposite direction, the wheel

op r will be turned back to its first position, without moving the

screw, and then, on reversing the motion, the carriage will be

moved forward 2.54 m. m., as before, and so on indefinitely. If

at each advance we make a mark with the graver, a, it is evident

that our tube will be divided into lengths of 2.54 in. m., or into

any other lengths for which we may choose to adjust the stops.

This engine may also be used for measuring the length of di-

visions already made
; only for this purpose a small microscope,

furnished with cross-wires, should be attached to the upright, P,
at the side of the graver. The microscope having been adjusted
so that the cross-wire is just over the first mark on the tube, and

the stops which limit the motion of the wheel op r having been

removed, the handle M is turned until the cross-wire is exactly
over the second mark, the observer carefully noting the number
of revolutions and fraction of a revolution required, by means of

an index provided for the purpose. Let Us suppose 10.75 revo-

lutions are required ; then, evidently, the length of the division

is 10.75 millimetres.

In using the dividing engine for calibrating a thermometer, the

tube is adjusted on the carriage B so that its axis shall be per-

fectly parallel to the axis of the long screw H. A short column
of mercury having been previously introduced into one end, the

length of this column is carefully measured as just described,
and the position of its two extremities marked with a fine hair-

pencil on the tube. Adjusting the cross-wire of the microscope
to the head of the mercury-column, this is next pushed forward

in the tube through exactly its own length. The length is

again measured, and the position of the head of the mercury-
column having been marked as before, the same process is re-

peated until the tube is divided into lengths of equal capacity,
and their value known. Each of these lengths is next to be

divided into the same number of equal parts, and any convenient

number is selected, which shall give to the degrees as nearly as
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possible the size required. In order to illustrate the method, let

us suppose that the lengths between the pencil-marks are respect-

ively as follows :

18.45 in. m., 18.39 m.m., 18.32 m.m., 18.24 m.m., 18.15 m.m.,

and that it is decided to divide each length into thirty degrees.
The lengths of the degrees in the different divisions will then be,

respectively,

O.Glom.m., 0.613 m.m., O.Gllm.m., O.GOSm.m., O.G05m.m.

This calculation having been made, the tube is covered with a

varnish such as is used in etching, and the stops on the wheel

op r (Fig. 346) so adjusted as to limit its motion to 0.615 of one

revolution. The point of the graver is also adjusted to the first

pencil-mark, and a cut made through the varnish, exposing the

glass. The handle M is now turned until its motion is arrested

by the stop, and another cut made. The motion of the handle

having been reversed, the same process is repeated thirty times,

when the point of the graver will have reached the sqcond pencil-

mark, and thirty degrees, each 0.615 m. m. in length, are marked

on the tube. The adjustment of the stop must now be changed,
so as to limit the motion of the wheel to 0.613 of a revolution,

and thirty more divisions made ;
and so on until the graduation

is completed, when the tube is removed from the engine, and the

figures which serve to number the divisions are marked in with

the hand. It only remains, now, to expose the tube to the vapor
of fluohydric acid, which corrodes the glass wherever the graver
has exposed its surface, and subsequently to verify the work by

passing another column of mercury through the tube. This

should cover the same number of divisions in any position, and

will do so if the graduation has been carefully performed.
The stem of the thermometer thus adjusted, a bulb is blown

upon the end, or, what is better, a cylindrical reservoir previously

prepared is cemented to it with a blowpipe. The capacity of this

reservoir must be proportional to the size of the tube, and to the

range of temperature which the thermometer is intended to

cover. Let us suppose that it is required that N divisions of

the thermometer should correspond to 100 C., and we wish to

know what must be the size of the reservoir for a given graduated

tube. We first weigh the tube, both when empty and when con-

38
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taining a column of mercury which covers an observed number of

divisions. This gives us the weight of mercury, 10, occupying n

divisions of the tube. From this we obtain N
,
the weight of

mercury which will fill N divisions, and by [56] N , ~ y
the corresponding volume. But this volume represents the ex-

pansion which the mercury in the reservoir of our proposed ther-

mometer must undergo when heated from to 100. Now we

know that the apparent expansion of mercury, under these cir-

cumstances, is ^ of its volume at 0. Representing, then, by V
the unknown volume of the reservoir, we shall have

and-

, ,, -T-N-Go n (Sp.Gr.)
' n (Sp.Gr.)

If the reservoir is spherical, F= J ;r Z> 3

,
from which we can

calculate the required diameter
;

and if it is cylindrical,

F= ^ ?t D* A, from which we can approximative^ determine

the required length, 7t, when the diameter is known.

The tube and bulb are now filled with perfectly pure mercury,
and the fixed points marked upon it in the usual way, when the

thermometer is finished and ready for use. The divisions marked

upon a thermometer so constructed are not, of course, degrees of

either of the three scales mentioned in (218) ;
but it is always

easy to calculate from the indications of this arbitrary scale the

corresponding degrees of the Centigrade scale. We ascertain, by
observation, the number of divisions on the thermometer between

the freezing and boiling points, which we may represent by JV,

and also the number of the divisions on the arbitrary scale corre-

sponding to the freezing-point (the zero of the Centigrade scale).

Represent this number by w, the degrees of the Centigrade scale

by C, and those of the arbitrary scale by A. We have, then,

N= 100 C., and C = (A n): Suppose, for example,

that there are 354 divisions on the arbitrary scale between the

fixed points, and that the freezing-point is at the 132d division

from the bottom of the scale
; and let it be required to determine

to what temperature the 230th division corresponds in Centi-

grade degrees. We shall have, C = $ (230 132) = 27.68.

It is usual to prepare a table for each thermometer thus con-

structed, giving the temperature in Centigrade degrees corre-

sponding to every division of the tube.
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The scale of a standard thermometer should always be en-

graved on the glass stem, as in Fig. 347
; since, if it is engraved

on a strip of metal or ivory fastened to the

tube, the expansion of the scale introduces new

sources of error into the instrument. It is also

essential for a good standard, that it should in-

clude the boiling and freezing points upon its

scale. Where a large range is required, the

great length which this involves may be best

avoided by making several thermometers with

continuous scales, and enlarging the tube of each

instrument at those parts which are covered by
the scales of the other thermometers of the set.

A thermometer so constructed is represented in

Fig. 848, although the enlargement is very greatly

exaggerated. It is possible in this way to di-

vide each Centigrade degree into twenty parts,

and yet include both of the fixed points on tho

scale.

The length of the degrees of a thermometer,
and hence its sensibility to small differences of

temperature, depends upon the size of the reser-

voir as compared with that of the tube, and can

be increased by the maker at pleasure. No

advantage, however, is gained by increasing the

length of the degrees on the stem beyond a lim-

ited extent ; since, on account of the imperfec-
tions of the instruments noticed in the last section, it is useless

to subdivide the Centigrade degree into more than twenty parts,

and only the most carefully constructed standards will bear as

great a subdivision as this. Even when the scale is graduated to

twentieths, it is possible for a practised eye to estimate the hun-

dredth of a Centigrade degree.
It is evident that the smaller the absolute size of the bulb, the

more rapidly a thermometer will be affected by changes of tem-

perature ;
and hence it is always best to make the bulb as small

as circumstances will permit, and also to give to it a long cylin-

drical shape, which, for the same volume, exposes a much greater

surface for the entrance of heat than a sphere.

The size of the column of mercury in the stem of a thermom-

Fig. 347. Fig. 348.
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eter is so small, as compared with that of the stem itself, that it

is essential, in order to avoid the parallax caused by the thick-

ness of the glass, to place the eye in reading on a level with the

surface of the column. The scale of a delicate thermometer is

always best read through the telescope of a eathetometer (Fig.

260), placed at a sufficient distance to prevent the heat of the

body from affecting the instrument.

(222.) In using a standard thermometer, it is important to

immerse both the bulb and the stem in the medium whose tem-

perature is to be measured ;
for if the stem of the thermometer

is exposed to a lower temperature than the bulb, the whole of the

mercury will not be equally expanded, and the thermometer will

indicate too low a temperature. Since in testing the tempera-
ture of a small quantity of liquid this complete immersion of the

thermometer is impossible, it is necessary in such cases to add to

the observed temperature a small correction, which becomes very

important when the temperature of the medium greatly exceeds

that of the air.

In order to illustrate the method of calculating the correction,

let us suppose that the thermometer is used for testing the tem-

perature of an oil-bath ;
and that, while the bulb and a portion

of the stem are immersed, the greater part of the mercury-
column is above the surface of the liquid, as represented in Fig.

401. It is now required to determine how much higher the ther-

mometer would stand if the whole column were exposed to the

same temperature as the bulb. For this purpose, we will repre-

sent the different quantities entering into the calculations as

follows :

x = the unknown temperature of the bath.

t = the temperature indicated by the thermometer.

ti
= the mean temperature of the mercury in the stem, ascertained

by placing in contact with it the bulb of a small thermome-

ter at about mid-height of the column.

6 = the number of degrees which the portion of the mercury-column
above the surface of the bath occupies hi the thermometer-

tube.

t~tf=. the difference of temperature between the bulb and the stem

approximatively.

It is evident that, if the temperature of the mercury above

the surface of the bath were increased t ti 9
the thermometer
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would indicate the true temperature ; so that, to find the cor-

rection required, we have only to calculate how much a column

of mercury measuring 6 degrees on the scale will increase in

length when its temperature is raised t 1. The apparent

expansion in glass of a given volume of mercury, amounting for

each degree of temperature to ^jVu? will amount for t t to
jO_ f

O
1

of the whole. Hence, a quantity of mercury which fills
booU ,o_ . o

one degree of a thermometer-tube will fill 1 -|

'

degrees

of the same tube after its temperature has risen t 1
; and in

like manner a quantity of mercury which fills 6 degrees of a

thermometer-tube will fill, after the same rise of temperature,
A //O_ j

0\

6 H *oc degrees. In other words, the column of mer-
Q Sf _ (

0\

cury above the surface of the bath would rise -

A
l

- de-
boo'/

grees, if its temperature were raised to that of the bath. This,

then, is the correction required, and we have, in any case,

Since the mean temperature of the mercury-column can never

be accurately determined, there is always an uncertainty in re-

gard to the value of the correction
;
and it is therefore best, when

practicable, to avoid the necessity of any by immersing the whole

stem in the bath.

(223.) A thermometer indicates temperature by either receiv-

ing or imparting heat until its own temperature is the same as

that of the body tested. It is therefore evident that, unless the

temperature of the body is maintained constant by accessions of

heat from some external source, a thermometer will give correct

indications only when its own mass bears a very inconsiderable

proportion to that of the body. This very obvious fact must be

carefully borne in mind while using the instrument ; and when
the quantity of heat which the thermometer receives or imparts
is appreciable, the change of temperature which is thus caused

in the body must be calculated, and the observations corrected

accordingly. The student will be able to devise methods by
which the correction can in any given case be estimated, after

studying the sections on Specific Heat.

For further information in regard to the construction and use of

38*
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standard thermometers, we would refer the student to the vol-

ume of memoirs of Regnault already noticed, and to a note by
J. I. Pierre, published in the Annales de C/iimie et de Physique,
3

e

Serie, Tom. V. p. 428.

(224.) House Thermometers. The scales of ordinary ther-

mometers are graduated 011 strips of wood, metal, or ivory, to

which the tube is subsequently attached (Fig. 349).
Such thermometers are less fragile and more easily

read than those graduated on the stem, and at the

same time are sufficiently accurate for determining
the temperature of a bath or of a room, and for most

meteorological observations. They are not, however,

usually graduated from the two fixed points, as de-

scribed in (218), but by comparison with a standard

thermometer. For this purpose, the instrument to be

graduated and the standard are dipped together into

a bath of water. Care being taken to maintain the

water at the same temperature for some time, the

number of degrees indicated by the standard is then

marked on the stem of the new instrument at the

level of the mercury-column. In the same way, by

changing the temperature of the bath, several other

points are determined. These are subsequently
transferred to the strip on which the scale is to be

engraved, and the distance between them divided

into the number of degrees required.

It has been found almost impossible to maintain

a liquid bath at the same temperature in all its parts

for any length of time, when this temperature con-

siderably exceeds that of the air
; so that we cannot

be certain that two thermometers, dipped into the

bath side by side, have been exposed to exactly the

same degree of heat. The method of graduation

just described ought, therefore, never to be used for an instru-

ment of precision ; but it is sufficiently accurate for common
house thermometers. These instruments, when well made, may
be relied upon to within a Fahrenheit degree between the two

fixed points ;
but beyond these points, and especially below the

freezing-point, they are frequently very erroneous. Two ther-

mometers hanging side by side, which have been made by the best
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makers with their usual care, will not unfrequently differ several

degrees when the temperature is below F., a fact which

accounts for the great discrepancies in the observations of low

temperatures.

(225.) Thermometers filled with other Liquids. Mercury
boils at 360 C. and freezes at 40, and the range of a mer-

cury thermometer is necessarily confined within these limits of

temperature. Moreover, near its freezing-point the rate of ex-

pansion of mercury becomes very irregular, and its indications

cannot be relied upon below 86, or even 35 C. Degrees
of temperature above 360 are measured by means of a class of

instruments called pyrometers, which will be described in con-

nection with the laws of expansion of solids and gases ; while

for temperatures below 35, we use thermometers filled with

alcohol, or other liquids which do not freeze even at these great

degrees of cold.

There is no other liquid which can be compared with mercury
in its fitness for filling thermometers. The great range of tem-

perature between its freezing and boiling points, the fact that it

does not adhere to the surface of glass, and that it can readily
be obtained perfectly pure, are all circumstances which pecu-

liarly adapt it to thermometric purposes. It is true, as we have

seen, that the rate of its expansion increases with the tempera-
ture

; still, between the two fixed points the change is so slight

that the indications of the thermometer are not perceptibly af-

fected by it. This is not true of thermometers filled with any
other liquid. Such thermometers, when graduated on the same

principle as the mercury thermometer, give results which are

entirely at variance both with it and with themselves. For ex-

ample, Deluc obtained the following comparative results with

thermometers filled with mercury, oil, alcohol, and water. The
numbers in the same vertical column of the table are the tem-

peratures indicated by these several thermometers when immersed

in the same bath.

o o o o o

Mercury, 12.5 6.25 25.0 50.0 75.0 100

Oil, 24.1 49.0 74.1 100

Alcohol, 9.6 4.90 20.6 43.9 70.2 100

Water, 5.1 25.6 57.2 100
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Similar results were also obtained by M. Pierre, in his very
extended investigation of the expansion of liquids, during which

lie compared thermometers containing twelve different liquids

with the mercury thermometer. As is shown by the above ta-

ble, he found the water thermometer the most defective. Ther-

mometers filled with alcohol or with sulphide of carbon gave
less erroneous results

;
but of all the liquids he examined, com-

mon ether, chloride of ethyle, and bromide of ethyle, were least

irregular in their rate of expansion, and are therefore best

adapted, after mercury, for filling thermometers.

Nevertheless, alcohol thermometers are generally used for

measuring very low temperatures. They are graduated by com-

parison with standard mercury thermometers, in the way described

in the last section, taking care to have a large number of points

of comparison, which should be as near together as possible. But

even when graduated with the greatest care, such thermometers

do not give indications which accord with each other, or with a

mercury thermometer. Captain Parry, in his Arctic voyages, ob-

served differences of 10 C. between alcohol thermometers of the

best makers
;
and similar facts were noticed both by Franklin and

by Kane. These discrepancies unquestionably originated in part
from the impurity of the alcohol, or from other errors of con-

struction
;
but they are also, to a certain degree, inherent in the

thermometer itself. An accurate instrument for measuring low

temperatures is still one of the great desiderata of science.

(226.) Maximum and Minimum Thermometers. It is fre-

quently desirable to have the means of determining, without the

aid of an observer, the highest or lowest temperature which has

occurred during the night, or any other interval of time ; and

for this purpose a great variety of self-registering thermometers

have been invented. One of the simplest is that of Rutherford

(Fig. 350). This consists of two thermometers, fastened to a

plate of wood, or some other material. The tubes of the ther-

mometers are bent at, right angles just above the bulbs, as rep-

resented in the figure, and the instrument when in use is

suspended by a cord, so that the two stems shall be in a horizontal

position. The upper thermometer is filled with mercury, and in

front of the mercury-column a short piece of iron wire is placed
in the tube (seen at A), which is pushed forward by the mercury
and left at the highest point which the column reaches, thus indi-
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eating the maximum temperature. The lower thermometer is

filled with alcohol, and the tube contains a small enamel cylinder

(seen at jB), surrounded by the liquid. As the alcohol expands,
it readily passes by the enamel cylinder ;

but when it contracts,

20 40

40 30 20

10 20 50

40 40

Fig. 350.

the cylinder is drawn back with the receding column, and left at

the lowest point, indicating the minimum temperature during the

same period. After each observation, the enamel cylinder is

brought to the end of the alcohol-column by inclining the instru-

ment
;
and in like manner the iron wire is restored to the end

of the mercury-column by means of a magnet.
The iron wire in the tube of Rutherford's maximum thermom-

eter is liable to become immersed in the mercury, if the instru-

ment is not carefully handled ; and when this accident occurs, it

is very difficult to remedy the evil without refilling the tube.
'

Negretti and Zambra have invented a maximum thermometer

which is not open to the same objections. Between the bend d

Fig. 351.

and the bulb (Fig. 351) they insert into the tube of the ther-

mometer a small rod of glass, a Z>, which nearly fills the bore.

When the mercury expands, it pushes by this obstruction ;
but

when it contracts, the column breaks, leaving the head of the
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column at the highest point it had attained. On turning the

thermometer, so that its stem shall have a vertical position, the

mercury readily passes back to the bulb, in virtue of its weight.
Walferdin's maximum thermometer is represented in Fig. 352.

It is made like an ordinary mercury thermometer, only the upper

part of its stem is surrounded by a reservoir containing

mercury, which is so arranged that, when the instrument

is inverted, the end of its tube dips under the mercury
in the reservoir. No graduation on the stem is neces-

sary ;
but before the instrument is to be used, the bulb

must be heated until the mercury overflows the end of the

tube. It is then inverted
; when, on cooling, the mercury

rises from the reservoir by mechanical adhesion, com-

pletely filling the stem. If the thermometer is now

replaced in position, its bulb and tube being full of

mercury, it is evident that, as the temperature rises, the

mercury will gradually flow over from the tube into the

reservoir
;
and when the temperature subsequently falls,

the mercury, contracting, will leave an empty space at

the top of the tube. The highest temperature to which

the instrument has been exposed is, then, that at which

the mercury remaining in the bulb and stem just fills

them both completely ;
and this can be ascertained by

comparison with a standard thermometer, placing both

in a water-bath, gradually heating it, and observing the

temperature indicated by the standard when the mercu-

rial column reaches the top of the stem.

The same principle has been applied by Walferdin for

measuring very small differences of temperature. The
thermometer for this purpose may be constructed in pre-

cisely the same way, only it is made extremely sensitive, so that

an expansion corresponding to four Centigrade degrees would

raise the mercury-column through the whole length of the

stem. The stem is, moreover, very carefully graduated into

parts of equal capacity, each division corresponding to a very
small fraction of a degree. To show how this thermometer is

used, let us suppose that we wish to observe the temperature at

which water boils under different atmospheric pressures, where

the whole possible variation is between 101 and 98. We should,

in the first place, expose the instrument to a temperature of 101,
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as indicated by a standard thermometer, and wait until the ex-

cess of mercury had overflowed into the upper reservoir. On
now allowing the temperature to fall, the mercury-column
will rapidly sink in the tube, and at 97 will already have

receded into the bulb. The thermometer is now in con-

dition to measure with great accuracy differences of tem-

perature between 98 and 101
;
and in like manner it

may be adjusted to any other range of four degrees. If,

for example, the division on the stem correspond to

thousandths of a Centigrade degree, and we observe a

difference in the boiling-point of water under two differ-

ent pressures equal to fifteen of these divisions, we con-

clude that the temperature is 0.015 of a degree higher
in one case than in the other. Since the quantity of

mercury which forms the thermometer differs with the

range of the instrument, it is evidently necessary to de-

termine the value, in fractions of a Centigrade degree, of

one of its divisions after each adjustment. The form of

reservoir represented in Fig. 352 is difficult to make, and

there is generally substituted for it a simple enlargement
of the upper end of the tube, as represented in Fig. 353.

The neck of the bulb B is strangled at (7, so that a

slight tap given to the tube while the instrument is cool-

ing causes the column to break at that point, leaving the
Fig . 353.

excess of mercury in the bulb.

THERMOSCOPES.

(227.) Air Thermometers. The name thermoscope (Oeppr},

oveo7reo>) is a convenient designation for a class of instruments

which are used chiefly for detecting slight changes of temper-

ature, and not, like the thermometer (0e/>A?, /ierpoi/), for de-

termining its value in degrees. In a large number of thermo-

scopes, these variations are indicated by the change in volume

of confined air, which not only expands very regularly and

quickly, but also to a very much greater degree than liquids, for

tliB same increase of temperature. Such instruments are fre-

quently called air thermometers ; but they must not be con-

founded with the air thermometer of Regnault, which gives the

most accurate measures of temperature that we can attain.
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The air thermometer represented in Fig. 354 is ascribed to

Sanctorius, an Italian philosopher of the seventeenth century,
and is supposed by some to have been the first instrument used for

measuring temperature. It consists of a bulbed tube, whose ex-

tremity rests in an open vessel containing colored water, which

also partially fills the tube. When the bulb is

heated, the liquid falls in the tube, and rises

when the bulb is cooled. The tube is generally

fastened to an upright piece of wood, on which

a scale of equal parts is painted. In another

form of the same instrument (Fig. 355), the

expansion of the air is indicated by the motion

of a drop of colored liquid in the stem at A.

These instruments are evidently affected by
the varying pressure of the atmosphere, and

are necessarily imperfect.

The same objection does not apply to the dif-

ferential thermometer of Leslie, used by him

in his experiments on the radiation of heat.

This consists (Fig. 356) of two bulbs con-

nected together by a glass tube bent twice at right angles. The

bulbs contain air, and the connecting tube is half filled with col-

ored liquid, which, when the thermometer is at rest, stands at the

Fig. 354. Fig. 355.

Fig. 356. Fig. 357.

same height in the two limbs of the sipnon, and remains in this

position so long as the two bulbs are equally heated. Any dif-

ference in the temperature of the two bulbs, however, is at once

indicated, as represented in the figure, by a difference of level in
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the two liquid columns, and can be measured by means of the

scales painted on the wooden frame which supports the tube.

This is the only thermoscope, of its class, of any scientific value.

In a limited number of cases it furnishes an instrument of great

utility and delicacy, and its indications are comparable with each

other.

Rumford's differential thermometer (Fig. 357) is merely a

slight variation of Leslie's, the difference in the temperature of

the two bulbs being indicated by the motion of a drop of sul-

phuric acid along the horizontal tube, which is made somewhat

longer than in Leslie's instrument, and surmounted by a scale of

equal parts. There are several other forms of air thermometers,
but they are not of sufficient importance to require notice.

(228.) Thermo-multiplier. But of all instruments for detect-

ing and measuring slight differences of temperature, by far the

most delicate and accurate is the thermo-multiplier of Nobili and

Melloni. The principle on which this instrument is based was

discovered by Seebeck, of Berlin, in 1822, and may be briefly

stated thus.

If two metallic bars, of different crystalline texture and unequal

conducting powers, are united at one end by solder, and the point

of junction heated, a current of electricity is ex-

cited, which flows from the point of junction to-

wards the poorer conductor. Thus, if the junction

of two bars of bismuth and antimony (Fig. 358)
is heated, and their free ends are connected by

wires, the current flows from the antimony to the

bismuth at the junction, and from the bismuth to

the antimony on the conducting-wire connecting
the free ends of the bars. If cold, instead of heat,

is applied to the junction, a current is also established, but in the

opposite direction. Similar results can be obtained with other

metals, which may fee arranged in a thermo-electric series in the

following order : bismuth, platinum, lead, tin, copper or silver,

zinc, iron, antimony. The most powerful combination is formed

of those metals which are most distant from each other in the

list,*and in every case, when the junction is heated, the current

flows through the conducting-wire from those which stand first

to those which stand last.

The most powerful current is produced, as the above eeries
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shows, by the combination of bismuth and antimony ;
but a single

pair of bars, even of these metals, produces only a very feeble

effect. The force of the electric current can, however, be very

greatly increased by uniting together several pairs of these bars,

as represented at a b, Fig. 359, and connecting together the free

end of the first bismuth bar with that of the last antimony bar.

Such an arrangement is called a thermo-electric pile. Since the

Fig. 359.

force of the current is not found to depend on the size of the bars,

they may be made very small
;

in Melloni's thermo-multiplier

thirty pairs of bismuth and antimony bars are packed away in the

small brass case, c d, Fig. 359, not more than two or three centime-

tres long. The soldered ends of these pairs, called the faces of
the pile, are seen at c and d; and the two cups, o, o', called the

poles of the pile, are directly connected with the free ends of the

two terminal bars. Finally, the faces of the pile are protected from

any lateral action by a brass cap, t, blackened inside, and having
a movable screen, e, in front, or by a brass cone polished on its

interior surface, which serves to concentrate the rays of heat.

When the two faces of the thermo-electric pile are equally

heated, no electrical disturbance results
;
but the slightest differ-

ence of temperature causes a flow of electricity through the wire

connecting the two poles. The direction of the current is deter-

mined by the relative positions of the bars, always following the

rule stated above. The force of this current, although much

greater than that of the current from a single pair of bars, is

still feeble, and can only be detected by a very delicate galva-

nometer. This instrument will be described in detail hereafter.
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It is sufficient, for the present, to state that it is an application
of the remarkable facts discovered by Oersted in 1820. This

eminent physicist observed, that, if a conducting-wire through
which an electric current is passing is placed directly over and

parallel to a magnetic needle

(Fig. 361), the north pole of

the needle is deflected to the

right or to the left, according
to the direction of the current.

If the conducting-wire is placed
under the needle, it is also

deflected, but in the opposite

direction. Hence, if the con-

ducting-wire is formed into a
Fig. 301

loop, and placed around the

needle, and at the same time parallel to it, in such a manner that

the current may flow from north to south above the needle, and

from south to north below it, the two portions of the wire will

conspire to deflect the needle, and the effect of one and the same

current will be doubled. By turning the wire again round the

needle, the effect of the same current will be quadrupled, and by

repeating the turns, as in Fig. 362, the deflecting force may be

multiplied to a very great extent ;
and thus the deflections of a

magnetic needle may become the means of detecting a very feeble

electric current. The galvanometer represented in Fig. 360 is a

direct application of this principle. The

conducting-wire, which is covered with silk,

is wound round the ivory frame a b a great

number of times, and terminates at the two

ends, n, n'. The magnetic needle is sus-

pended, so as to oscillate freely within the rig 302.

ivory frame, by means of a single strand of

raw silk,/; and when at rest, its axis is parallel to the turns of

the conducting-wire. Parallel to the first needle, and immovably
connected with it, is a second needle, /, which oscillates just above

a graduated arc, and thus indicates the amount of deflection.

This needle also serves another purpose. Its north pole is placed

directly over the south pole of the first needle, and, both being

of equal force, the action of the earth's magnetism on one is bal-

anced by its action on the other. A needle so arranged is termed
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astatic, and will remain in any position in which it may be placed.

Moreover, the action of an electric current upon it is not influ-

enced by the magnetism of the earth. The graduated disk just

referred to rests on the ivory frame, and is made of copper, which

has the effect of deadening the oscillations of the needle. When
in use, the two poles of the thermo-electric pile (o, o'

7 Fig. 359)
are connected with the ends (n, n', Fig. 860) of the conducting-

wire, which is wound round the frame of the galvanometer.

Fig. 363.

The apparatus is so delicate, that the heat of the hand, placed

several feet in front of the conical cap G, will be at once percep-

tible, by deflecting the needle. Moreover, when the deflection is

not greater than twenty degrees, the angle of deviation is propor-

tional to the difference of temperature between the faces of the

pile, and may therefore be used as a measure of the intensity of

the calorific effect produced on one face when the other is exposed
to a constant temperature. Beyond twenty degrees, the angle

of deviation is no longer proportional to the temperature ;
but

a table can be easily constructed for each instrument, in which,

for each degree of deviation, are given the corresponding differ-

ences of temperature of the two faces. Melloni does not extend

these tables beyond thirty-five degrees, because the slightest

change in the position of the axis of suspension of the needle

would cause a great error in its indications. A deflection of

thirty-five degrees corresponds to a difference of from six to eight

degrees in the temperature of the two faces of the pile. The

instrument, as mounted for use, with its various screens and

appendages, is represented in Fig. 363.
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PROBLEMS.

Thermometers.

272. It is required to change into Fahrenheit and Reaumur degrees the

following temperatures in Centigrade degrees :

Temperature of maximum density of water, . -f- 3.87 C.

Boiling-point of liquid ammonia, 40
" "

sulphurous acid, 10

alcohol, -f-75
" "

phosphorus, 290
" "

mercury, 360

273. It is required to change into Centigrade and Reaumur degrees the

following temperatures in Fahrenheit degrees :

Melting-point of mercury, 40 F.
" "

bromine, 4

white wax, +158
" "

sodium, 194
" "tin, 442.4
" "

antimony, 771.8

Incipient red heat, 977

Clear cherry-red, heat, 1,832

Dazzling white heat, 9,732

274. How many degrees Centigrade and Reaumur are n Fahrenheit ?

275. How many degrees Fahrenheit and Reaumur are n Centigrade ?

276. At what temperatures do x C. equal x F. ? x R. equal_x p. ? x C. equal +x F. ? and x R. equal +x F. ?

277. The boiling-point was marked on the stem of a mercurial ther-

mometer when the barometer stood at 74.65 c. m. ; the distance between

this point and the freezing-point, previously determined, was found to be

21.54 c. m. It is required to determine the position of the true boiling-

point on the stem with reference to the first.

278. Solve the same problem, representing the height of the barometer

by If, and the distance between the freezing-point and the boiling-point

by/.
279. In order that a mercurial thermometer may measure temperatures

between 40 and +300, how many times must the capacity of the bulb

be greater than that of the tube ?

280. A thermometer-tube was divided into 1,500 parts of equal ca-

pacity, as described in (221). It was then weighed, first when empty,
and afterwards when containing a quantity of mercury occupying 73 di-

visions. The difference of these weights was 0.008 grammes. It is

desired that the distance between the fixed points should be divided into

about 1,000 parts, and it is required to find the volume of the reservoir

39*
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necessary to effect this object. If the reservoir is spherical, what must

be its diameter ? If it is cylindrical, what must be its length, assuming
that its diameter is 0.52 c. m. ?

281. After the thermometer of the last problem was made, it was found

that the zero-point corresponded to the 230th division from the bottom of

the scale, and the boiling-point to the 1,223d. To what temperature does

the 765th division correspond ? Prepare a table giving the temperature
in Centigrade degrees corresponding to every tenth division on the tube.

282. A thermometer was graduated with an arbitrary scale, as above ;

the zero-point was subsequently found to coincide with the 56th division,

and the boiling-point with the 245th division of this scale, when the

barometer stood at 74.25. It is required to prepare a table, giving the

temperature in Centigrade degrees corresponding to each division of the

scale.

283. The temperature of an oil-bath was observed with a mercury-
thermometer graduated to Centigrade degrees to be 260 ; the portion of

the mercury-column in the stem not immersed occupied 190, and the

mean temperature of this column was 94. Required the true tempera-
ture of the bath.

284. When the thermometer of problem 281 was immersed in an oil-

bath, the mercury rose to the 500th division of the scale ; the portion of

the mercury-column in the stem not immersed occupied 390 divisions, and

its mean temperature was 8.4. Required the true temperature of the bath.

285. Reduce the following temperatures, observed with a mercury-
thermometer made of crown-glass, to degrees of the air-thermometer : 260,

180, 230, 200, 300, and 320.

286. The coefficient of expansion of glass for one Centigrade degree
is 0.0000088482. How great is it for one Fahrenheit degree? How
great for one Reaumur degree ?

287. The French unit of heat is the amount of heat required to raise

the temperature of one kilogramme of water from C. to 1 C. ; the

English unit is the amount of heat required to raise the temperature of one

avoirdupois pound of water from 59 F. to 60 F. What is the relation

between the two ? (See table, p. 472.)
288. Convert into French units of heat 7.843 ; 234.62 ; and 52.796

English units.

289. Reduce to English units 52.34 ; 1,964.72 ; 0.6845 ; and 324.7

French units of heat.

290. Two thermometers are made of the same glass ; the spherical

bulb of the first has an interior diameter of 7.5 m. m., and its tube a diam-

eter of 0.25 m. m. ; the bulb of the second has a diameter of 6.2 m. m.,

and its tube a diameter of 0.15m. m. Required the relative size of a

degree on each.
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SPECIFIC HEAT.

(229.) Temperature. The amount of expansion which a hot

body is capable of producing in the air or mercury of a ther-

mometer measures what we term its temperature. This effect

is only indirectly connected with the amount of heat which the

body contains. If different masses of water, of mercury, of iron,

or of wood produce each the same expansion in the air or mer-

cury of the thermometer, we say that they all have the same

temperature, although, as we shall hereafter see, they may con-

tain very different amounts of heat. The thermometer, there-

fore, is an instrument for measuring the temperature of a body,
and not the amount of heat which it contains. It gives us,

though more accurately, the same kind of information as the

sense of touch, indicating that condition of a body which pro-

duces the sensation of heat and cold. It gives that information

which is alone wanted in the practical affairs of life
;
for it does

not concern us generally, how much heat a body contains, but

only what effect its heat will produce on our bodies.

The temperature of a body depends on two conditions : first,

on the amount of heat which the body contains
; secondly, on the

affinity of the body for heat, or, in other words, on the power
with which it holds the heat. In illustration of these principles,

several well-known facts may be adduced. Two thermometers in-

troduced, the one into a wine-glass and the other into a pail, each

of which is filled with water just drawn from a well, will indicate

the same temperature in both ; simply because, although the

water in the pail contains several hundred times as much heat

as the water in the wine-glass, it also holds the heat with a pro-

portionally greater force, and therefore gives up no more to the

bulb of the thermometer than the smaller amount of water in the

wine-glass. Again, two thermometers, introduced, the one into

a glass containing a kilogramme of water, and the other into a

glass containing a kilogramme of mercury, the glasses having
been standing together for some time, will, in like manner, indi-

cate the same temperature in both
;
for although, as will soon be

shown, the water contains thirty times as much heat as the mer-

cury, it holds it with thirty times as much power.

(230.) Thermal Equilibrium. If, as is sometimes the case

in a room, the heat is distributed through the different articles



464 CHEMICAL PHYSICS.

of furniture in proportion to their affinity for the imponderable

agent, it is evident that we shall have a condition of thermal

equilibrium ; for there will be no tendency for the heat to pass

from one body to another. If we now bring a thermometer in

contact with the various articles of furniture, we shall find that

they all have the same temperature. Let us next suppose that

the stove suddenly receives an accession of heat
;
we shall then

find that it will indicate a higher temperature than before, be-

cause it is in a condition to impart more heat to the mercury of

the thermometer. In the course of a short time, however, this

accession of heat will be distributed in various ways through the

different bodies in the room, in proportion to their relative affini-

ties, when it will be found that all again have the same tempera-

ture, although a little higher than before. It therefore appears,

first, that when bodies are at the same temperature they are in a

state of thermal equilibrium ; secondly, that when they are at

different temperatures, the warmer will impart heat to the colder

until an equilibrium of temperature has been established ; that

is, until the heat has been distributed through all in proportion

to their relative affinities.

(231.) Unit of Heat. In one condition only the thermom-

eter becomes a direct measure of the amount of heat ;
and that

is in the case of the same weight of the same substance. Thus,
if we take one kilogramme of water, it is true that, if a given
amount of heat will raise its temperature one degree, twice the

amount of heat will raise its temperature two degrees, etc.

Here, then, we have a unit for measuring amounts of heat ;

and it has been generally agreed to assume, as the unit of heat,

the amount of heat required to raise the temperature of one

kilogramme of water one Centigrade degree, in the same way
that a metre has been taken as a unit of length, and a minute as

a unit of time.

(232.) Specific Heat. Assuming, then, this unit of heat, we
shall be able to ascertain the relative amounts of heat which differ-

ent substances contain at the same temperature, or, what amounts

to the same thing, their relative affinities for heat. For this pur-

pose, let us in the first place take two vessels, one containing

one kilogramme and the other ten kilogrammes of water, and let

us expose them both to such a source of heat that equal quan-

tities of heat must enter each vessel during the same time. We
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shall find that, when a thermometer in the first vessel indicates

that the temperature of the one kilogramme of water has risen

ten degrees, a thermometer in the second vessel will have risen

only one degree. Since ten units of heat have, by our assump-

tion, entered the water in each vessel, it follows that it requires

ten times as much heat to raise the temperature of ten kilo-

grammes of water one degree as is required to raise the temper-

ature of one kilogramme of water to the same extent. Sim-

ilar results would be obtained with any other substance, and

hence we may conclude that the amounts of heat required to

raise the temperature of unequal weights of the same substance

one degree, are proportional to these weights.

As a second experiment, we will take five vessels, containing

respectively one kilogramme of water, one kilogramme of sul-

phur, one kilogramme of iron, one kilogramme of silver, one

kilogramme of mercury, and we will expose them all to such

a source of heat that equal amounts must enter each vessel

during the same interval. If, now, we observe thermometers

placed in these vessels, we shall find, when the temperature of

the water has risen one degree and consequently when one

unit of heat has entered each vessel, that the temperatures of the

other substances have increased by the number of degrees given

in the second column of the following table. By the principle

just established, it follows that, if one unit of heat will raise the

temperature of one kilogramme of mercury thirty degrees, it will

only require one thirtieth as much, or 0.033 of a unit of heat,

to raise the temperature of the same weight one degree. In

like manner, the fractional parts of a unit of heat required to

raise the temperatures of one kilogramme of each of the other

substances one degree can be easily calculated, and are given in

the third column of the table. This fraction is commonly called

the specific heat of the substance.

Water, . V
Sulphur,

Iron, .-
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much heat as the same weight of sulphur, 8.8 times as much
as the same weight of iron, 17.5 times as much as the same

weight of silver, and 30 times as much as the same weight of

mercury ;
and in like manner we should find that, at the same

temperature and for equal weights, water contains more heat

than any solid or liquid known. Hence, the specific heat of

solid or liquid substances is always expressed by fractions.

These fractions, as determined by Regnault for the chemical ele-

ments, are given in the following table. The numbers in each

case denote the fractional part of a unit of heat required to raise

the temperature of one kilogramme of the substance one degree.

They also represent the relative proportions in which heat is dis-

tributed among equal weights of these substances when in the

state of thermal equilibrium, and therefore indicate their relative

affinities for the imponderable agent.

Specific Heat of the Elements.

Names of Substances.



HEAT. 467

and is based upon the axiom, that the time required for equal

weights of different substances to cool through the same num-
ber of degrees, under exactly the same conditions, will be pro-

portional to the quantity of heat which they respectively contain,

or, in other words, to their specific heat. The only difficulty in

applying this principle to practice consists in securing precisely
the same conditions for all substances. In order to attain this

object, Regnault contrived a very ingenious apparatus, which is

described at length in the Annales de Chimie et de Physique,
3e Sdrie, Tom. IX.

;
but notwithstanding the utmost precautions

and most persevering efforts, this very skilful experimenter could

not obtain satisfactory results by this method. We shall not,

therefore, enlarge upon it here.

The second method, which is called the method of mixture,
consists in heating a substance to a known temperature, and
then throwing it into a vessel containing a known weight of

cold water. The amount of heat communicated to the water

will be proportional to the specific heat of the given substance,
and gives us the data for calculating it. This last method, which
is by far the most accurate of all the methods yet devised, re-

quires further illustration.

Example 1. If we mix one kilogramme of mercury at 20

with one kilogramme of water at 0, we shall find that the

temperature of the mixture will be 0.639. The water, there-

fore, has gained 0.639 of a unit of heat. This amount of heat,

also, is evidently sufficient to raise the temperature of one kilo-

gramme of mercury from 0.639 to 20, that is, through 19.361.

Hence, the amount of heat required to raise the temperature
of one kilogramme of mercury one degree must be equal to

| = 0.033 of one unit.

Example 2. If we mix 0.685 of a kilogramme of sulphur at 60

with 4.573 kilogrammes of water at 12, we shall find that the

temperature of the mixture will be 13.42. The temperature
of 4.573 kilogrammes of water has risen 1.42, and hence the

water has acquired 4.573 X 1.42 = 6.493 units of heat. These

6.493 units of heat were sufficient to raise the temperature of

0.685 of a kilogramme of sulphur from 13.42 to 60, or through
46.58. They would, therefore, raise the temperature of one kilo-

gramme of sulphur through 46.58 X 0.685= 31. 9. Hence, it

would require |~f = 0.203 of a unit of heat to raise the tempera-
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ture of one kilogramme of sulphur one degree. In like manner

all similar problems may be solved.

These solutions may easily be made general, and reduced to

an algebraic form, in the following way. Let

W= weight of water. w = weight of substance.

T = temperature of water. T = temperature of substance.

6 = temperature of mixture. x ==. specific heat required.

Then we shall have,

W = units of heat required to raise temperature of water

used one degree.

wx = units of heat required to raise temperature of sub-

stance used one degree.

(6 T) = number of degrees through which temperature of water

has been raised.

(T 0)
= number of degrees through which temperature of sub-

stance has fallen.

(6 T) W = units of heat water has gained.

(T 6) wx = units of heat substance has lost.

Since the gain and the loss must be equal, it follows that

(r 6)wx = (6 T)JF;
whence

* =
[rafT- c157 -]

The results obtained from this formula would be accurate,

were it not for the fact, that the vessel which holds the water

changes its temperature with that of the water, so that the heat

lost by the substance not only raises the temperature of the water

(0 T), but also the temperature of the vessel, by the same

amount. If we know the weight of the vessel and the specific

heat of the substance of which it is made, we can easily estimate

the amount of heat required for this purpose. The vessel used

is generally made of brass or silver, very light and brightly pol-

ished, so that these data can be readily obtained.

Let iv'= weight of the vessel, and c = specific heat of the

vessel; then

uf c = amount of heat required to raise its temperature one de-

gree.

(6 T}W'C = amount of heat required to raise its temperature (6 T).
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Since the heat lost by the substance is equal to that gained by the

water plus the amount gained by the vessel, it follows that

(T 6)wx=(0 r)

(d r) (W+w'c)
hence, x = >,^- '->

. [158.]

If, as is usually the case, the substance is enclosed in a glass

tube on a small basket of wire-work, it is also necessary to pay

regard to the weight and specific heat of these envelopes in the

calculation. Representing, then, by w" and c' the weight and

specific heat of the envelope respectively, we shall have, evi-

dently,

(
T 0)w"c' = units of heat the envelope has lost

Hence we obtain,

(T6) w"c' + (T6)wx = (0 T) (W+w'c),

and also

(0_ T
) (W+w'c) (T efw''* n , -

(T$fw
The above method of determining the specific heat of solids

and liquids admits of great accuracy, but its practical appli-

cation requires many precautions and great delicacy of ma-

nipulation. Regnault, who adopted this method in his very
extended investigations on specific heat, used, in making the

determinations, the apparatus represented in Fig. 364.* This

apparatus consists, first, of the vessel m, in which the heated

substance is mixed with water ; secondly, of a peculiarly con-

structed steam-bath, VP V, by which the substance is previously

heated to a known temperature of about 100.

The substance to be examined is placed in a small basket of

brass wire, P. If it is solid, it is broken into small lumps ;
but

if liquid, it is enclosed in tubes of glass, whose weight and spe-

cific heat are known. In the axis of the basket there is fastened

a small cylinder of wire-netting, which receives the bulb of a

delicate thermometer for determining the temperature of the

basket and its contents. During the process of heating, the

basket is suspended by means of silk cords in the interior of a

* Annales de Chimie ct de Physique, 2 e
Serie, Tom. LXXIII. p. 20.
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steam-bath, formed of three concentric cylinders of tin plate.

The space P, in which the basket is suspended, is filled with air,

and opens below into the chamber M by means of the slide r r,

which can be withdrawn at pleasure. The space V is filled with

Fig. 364.

steam, which is constantly supplied from the boiler C, and after-

wards condensed in the worm s ; and, lastly, the space between

the steam-chamber and the outer cylinder is filled with air, which,

being a non-conductor, diminishes the loss of heat by the bath,

and thus tends to keep its temperature constant.

A cylindrical vessel, w, made of very thin sheet-brass, contains

the water with which the substance is to be mixed. It is sus-

pended, by means of silk cords, to a movable support, which

slides in a groove, so that the vessel may be readily moved into

the chamber M, under the steam-bath. A delicate thermometer,

t, gives very accurately the temperature of the water, and a

second thermometer, T, that of the air. These thermometers

are observed by means of a telescope placed several feet distant,

and every precaution is taken to protect them from extraneous

influences.

In making a determination of the specific heat of a substance,

we wait until the thermometer P indicates a constant tempera-

ture, which requires about two hours. Then, in order to be sure

that the substance has the same temperature throughout, we
wait at least an hour longer, and carefully observe the thermom-

eters t and T. Having removed the screen e, we now push the

vessel m into the chamber M, and, withdrawing the slide r r
y
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quickly drop the basket containing the substance into the water.

The vessel is then at once returned to its former position, and,
while an assistant stirs up the water, we observe the elevation of

temperature indicated by the thermometer t, which reaches its

maximum in one or two minutes.

In calculating the specific heat of a substance from these

results by means of [159] ,
it is necessary to take into the ac-

count the quantity of heat received by the vessel m from the air

or neighboring bodies during the course of the experiment, as

well as that which it loses during the same time. The variation

of temperature arising from this cause is ascertained by means
of a series of preliminary experiments, made under the same

conditions as the final determination, and the observed tempera-
ture of t corrected accordingly ;

but as the value of this correc-

tion is necessarily somewhat uncertain, it is made very small by

reducing as much as possible the duration of the experiments,
and also by so regulating the temperature of the water that it

may be for an equal length of time above and below the temper-
ature of the air. Moreover, during the few seconds that the

vessel of water is in the chamber M, it is protected from the heat

of the steam-bath by the cold water which fills the space within

the hollow walls D D ; and when outside of the chamber, it is

also protected by the screen e.

In order to test the accuracy of this process, Regnault deter-

mined the specific heat of water with the apparatus just described.

In two experiments, in which the liquid was heated to 97, he

obtained the values 1.00709 and 1.00890, thus showing that the

specific heat of water increases with the temperature, and also

confirming the accuracy of the method.

(234.) General Results. From the numerous investigations
which have been made on the specific heat of solid and liquid

substances, several important general truths have been deduced.

First. The specific heat of substances is a distinguishing prop-

erty, closely connected with their atomic weights or combining

proportionals. The relation which exists between these two

qualities of matter has already been discussed in (215 bis) and

will also appear on solving Prob. 292.

Secondly. The specific heat of the same substance increases

with the temperature. This is true even in the case of water,

which has been selected as the standard to which the specific
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heat of other substances is referred. The unit of heat, it will

be remembered, is the quantity of heat required to raise the

temperature of one kilogramme of water one Centigrade degree.
Now it might be supposed that the same quantity of heat would

raise the temperature of a kilogramme of water one degree at all

parts of the thermometric scale ;. but this is not the case : to

raise the temperature of one kilogramme of water from 100 to

101 requires, for example, 1.0130 units of heat, and, as a general

rule, the amount required is greater the higher the temperature.
This is shown by the following table. In the second column,
headed c, opposite to each temperature, is given the specific heat

of water at that temperature ;
in other words, the number of

units of heat required to raise the temperature of one kilo-

gramme of water from t to (t -f- 1). In the third column,
headed C, are given the mean specific heats for the interval of

temperature between and t.

t.
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The change of the specific heat with the temperature becomes

very marked as the solid approaches its melting point ;
and this

is especially the case with those solids which soften before they
melt. Hence, in stating the specific heat of a substance, it is

important to name the temperatures between which the deter-

mination was made.

The specific heat of liquids varies with the temperature to a

much greater extent than that of solids. Thus bromine, according
to Regnault, has the specific heats 0.10513, 0.11094, 0.11294,
between the temperatures 6 and +10, 11 and 48, 13 and

58, respectively. So, also, oil of turpentine has the specific heat

of 0.426 between 15 and 20, and 0.4672 between 15 and 100.

Regnault* has also determined the specific heat of a large
number of other liquids by the method of cooling, which, as he

found, gives more accurate results with liquid than with solid

substances. Some of the most important of his results are given
in the following table. As a general rule, they show that the

specific heat increases with the temperature. But the difference

between the extreme temperatures is so small, that the slight
increase of the specific heat is, in some cases, more than over-

balanced by variations arising from other and accidental causes.

Names of Liquids.
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closely connected together. The best explanation which we can

give of the facts is this. If the volume of a solid or liquid mass

of matter remained the same at all temperatures, it is probable
that it would require exactly the same quantity of heat to raise

its temperature one degree at all parts of the thermometric scale.

As, however, both solid and liquid matter are expanded by heat

with an irresistible force, a portion of the quantity of heat re-

quired to raise the temperature of a given mass one degree is

rendered latent in producing this mechanical effect
;
and since

the rate of expansion increases with the temperature, the quan-

tity of heat thus rendered latent, and hence also the specific

heat, must be greater at high than at low temperatures.

Thirdly. All substances have a greater specific heat in the

liquid than in the solid state. This truth, which is rendered

evident by the following table, is probably connected with the

fact that the rate of expansion of liquids is greater than that of

solids, and hence the quantity of heat absorbed in producing this

mechanical effect is also greater.

Xunie of Substance.
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but after its density has been increased by hammering, the spe-

cific heat is found to be only 0.09360. On the other hand, the

specific heat of tin or lead is not increased by mechanical prej?-

sure
;
but then their density also remains unchanged.

The specific heat of a substance, moreover, is not the same in

its different allotropic modifications. The specific heat of car-

bon, for example, differs very greatly in its three allotropic condi-

tions, as is shown by the following results of Regnault. It will

be noticed that in these cases, also, the specific heat diminishes

with the density. Similar facts were observed by Regnault
* in

the case of sulphur and carbonate of lime.

Specific Gravity. Specific Heat.

Wood Charcoal, W|i| .
**'

. 0.300 0.2415

Graphite, . Vtf* . . . 2.300 0.2027

Diamond,
'' /i :

. . ,'. . 3.500 0.1469

Fifthly. By referring to the tables 011 pages 466, 475, it will be

seen that liquid water has the greatest specific heat of any of the

substances mentioned. In fact, for the same temperature, it

contains the greatest amount of heat of any solid or liquid

known. This property of water makes the oceans of the globe

great reservoirs of heat, and hence the important influence which

they exert in moderating and equalizing the climate of islands

and continents.

On the other hand, it will be noticed that mercury has a very
small specific heat. It is therefore rapidly heated or cooled, and

is in this respect also, as in others (225), well adapted for its

use in the thermometer.

(235.) Specific Heat of Gases. The determination of the

specific heat of gases involves the greatest practical difficulties,

and although several extended investigations of the subject have

been made by eminent physicists, yet the results obtained have

been generally very erroneous. Within a few years, the subject

has been reinvestigated by Regnault, and his determinations of

the specific heat of the gases are, unquestionably, far more accu-

rate than those of any previous experimenter. Unfortunately,

however, as no description of the process employed by Regnault
has yet been published, we can only state the general results at

which he has arrived.

The specific heat of a gas may be defined in two ways : first,

* Annales de Chimie et de Physique, 3e
Serie, Tom. I. pp. 182 and 202.
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as the amount of heat required to raise the temperature of one

kilogramme of the gas from to 1, allowing the gas to expand

freely and in such a manner that it shall preserve a constant

elasticity ; and, secondly, as the amount of heat required to

raise the temperature of one kilogramme of the gas from to

1 when the gas is compelled to preserve a constant volume, the

tension of course increasing. We may distinguish the specific

heats under these two conditions as the specific heat under con-

stant pressure, and specific heat under constant volume. In the

case of liquids and solids we can only determine the specific

heat under constant pressure, and in the case of gases it is only
this value which can be determined by direct experiment.

(236.) Specific Heat of Gases under Constant Pressure. As

preliminary to the determination of the specific heats of the sepa-

rate gases, Regnault has established two important principles :

First. The specific heat of a gas does not vary sensibly with

the temperature. This is illustrated by the following table, which

gives the specific heat of air between different limits of temperature.

Interval of Temperature. Specific Heat.

_30 to +10 0.2377

10 " 100 0.2379

100 225 0.2376

It will be noticed that the differences are inconsiderable, and the

same was found to be true of other gases.

Secondly. The specific heat of a gas does not vary with the

pressure, and hence is the same for all densities. Regnault ex-

perimented on air and on other gases under pressures which

varied from one to ten atmospheres, and found no sensible differ-

ence in the quantity of heat which the same weight of a gas

lost, when under these different pressures, in cooling the same

number of degrees. Nevertheless, he thinks it possible that

slight differences may exist.

The specific heats of the different gases and vapors, as de-

termined by Regnault, are given in the following table. The

numbers in the column headed "
Specific Heat by Weight

"

correspond to those given in all the preceding tables of specific

heats, and denote in each case the number of units of heat re-

quired to raise the temperature of one kilogramme of the gas

from to 1, assuming that the gas is allowed to expand freely,

and that the pressure is constant.
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Specific Heat of Gases and Vapors.

Name of Gas or Vapor.
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The specific heat of a substance, whether it be a solid, a liquid,

or a gas, is always, properly speaking, the number of units of

heat required to raise the temperature of one kilogramme from

to 1
;
and the term is invariably used in this sense in relation

to both solids and liquids. But in the case of gases some im-

portant truths have been discovered by comparing together the

amounts of heat required to raise the temperature of equal vol-

umes from to 1, irrespective of their weight. The number of

units required can in any case be readily calculated from the

specific heat and the specific gravity of the gas, and this quantity
is usually called the specific heat by volume.

By referring to Table II., it will be found that one cubic metre

of air at 0, and under a pressure of 76 c. m., weighs 1.29206

kilogrammes. Hence, by [100], one cubic metre of air at 0,
and under a pressure of 58.75 c. m., will weigh exactly one kilo-

gramme ;
and one cubic metre of any other gas as much more

or less than one kilogramme as its specific gravity is greater or

less than 1. In other words, the number which stands for the

specific gravity also expresses the weight of one cubic metre

under the above conditions of temperature and pressure. Now,
since the quantity of heat required to raise the temperature of

any mass of matter from to 1 may be found by multiplying
the specific heat of the substance by its weight (232), it is evi-

dent that we can find the quantity of heat required to raise from

to 1 the 'temperature of one cubic metre of any gas under

the pressure of 58.75 c. m., by multiplying together the specific

heat of the gas and the number representing its specific gravity.

For example, the specific heat of hydrogen is 3.4046, and its

specific gravity 0.0692. The product of these two numbers

equals 0.2356, which is the fractional part of a unit of heat

required to raise the temperature of one cubic metre of hydro-

gen, measured under a pressure of 58.75 c. m., from to 1.

In like manner all the numbers in the column of the last table

headed "
Specific Heat by Volume " were obtained. These

numbers evidently represent the relative quantities of heat re-

quired to raise the temperature of equal volumes of different

gases from to 1, and the absolute number of units of heat

required to raise the temperature of one cubic metre of the dif-

ferent gases measured under a pressure of 58.75 c. m. from

to 1.
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By comparing the numbers, it will be seen that the specific

heats by volume of the simple gases differ but slightly from each

other. Indeed, the difference is so small, that some experiment-

ers have concluded that the specific heats of all the simple gases

are the same. The results of Regnault do not confirm this

theory ;
for although the specific heats by volume of oxygen,

nitrogen, and hydrogen are by his 'determinations very nearly

equal, those of chlorine and bromine are much greater than the

rest, although equal to each other. These differences, moreover,

are too large to be accounted for by errors of observation, and

probably depend on inherent qualities of the gases themselves.

(237.) Specific Heat of Gases under Constant Volume. It

was stated in (234), that a portion of the quantity of heat re-

quired to raise the temperature of a given mass of matter one

degree was rendered latent in producing the mechanical effect

of expansion, and that, if this expansion could be prevented, the

same quantity of heat would probably cause the same elevation

of temperature at all parts of the thermometer-scale. In the

case of solids and liquids it is evidently impossible to verify this

theory, since they expand with an irresistible force. We do not

meet with the same difficulty in the case of gases. They are

easily compressed, so that their volume can be kept constant

by enclosing them in an unyielding vessel
;
and we should there-

fore naturally expect to be able to put our theory to the test of

experiment. Now it is a perfectly well-known fact, that a cer-

tain amount of heat is rendered latent in producing the expansion
of a given mass of gas, and that, on condensing the gas to its

original volume, the same amount of heat is set free. Indeed,
the temperature of a confined mass of air can be raised by sudden

mechanical condensation sufficiently high to ignite tinder.

If we could measure, then, the quantity of heat set free by
mechanical condensation, we should be able to determine the

quantity absorbed during the equivalent expansion ;
and since

we know the quantity of heat required to raise the temperature
of one kilogramme of gas from to 1 when allowed to expand

freely, we should be able to determine the quantity of heat re-

quired to raise its temperature from to 1 when confined and

not allowed to expand, by simply subtracting the amount ab-

sorbed during expansion.

It has been stated that at 0, and under a pressure of 58.75
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c.m., one cubic metre of air weighs one kilogramme ; and it has

been shown that, in order to raise the temperature of this mass

of air one degree, (the pressure remaining the same,) we must

impart to it 0.2377 unit of heat. But it is also true that, in

consequence of the increase of temperature, the volume of the

one kilogramme has increased ^1^, that is, from 1 to I^i 3 cubic

metres (216). If now, by increasing the pressure, we condense

the gas to its initial volume of one cubic metre, a certain amount

of heat will be set free, sufficient, as we will assume, to raise the

temperature of the kilogramme of air from 1 to 1.42. This

shows that although 0.2377 unit of heat will raise the tempera-
ture of one kilogramme of air only one degree, when allowed to

expand under a constant pressure, it will raise the temperature
of the same mass of air 1.42 when confined and preserving a

constant volume. If, then, 0.2377 unit of heat will raise the

temperature of one kilogramme of air 1.42, it is easy to calcu-

late how much will be required to raise its temperature one de-

gree by means of the proportion 1.42 : 1= 0.2377 : x= 0.1674.

This quantity is the specific heat of air under constant volume,
and the difference between 0.1674 and 0.2377, or 0.0703 unit, is

the amount of heat rendered latent in producing the expansion
when the air is under constant pressure.

It is evident from the above illustration, that, if we represent

by S the specific heat of a gas under constant pressure, and by t

the small increase of temperature which a mass of gas undergoes
when condensed ?$x of its volume, we can always calculate the

specific heat under constant volume, or /S', by the proportion
1 -f t : 1 = S : S', which gives for the value of S',

An obvious method of determining experimentally the specific

heat of a gas under constant volume would then be to condense

the gas by mechanical means, and observe the increase of tem-

perature. Such experiments have been made, but the results

have been in all cases erroneous, in consequence of the unavoid-

able loss of heat, which was absorbed by the walls of the con-

taining vessel. In like manner, when we attempt to determine

the specific heat of gases under constant volume by other direct

methods, we are met at once by practical difficulties of a similar

41
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kind, and no process has as yet been discovered which will give
accurate results. We are therefore obliged to resort to indirect

methods
;
and fortunately such a method is furnished by the

principles of acoustics.

By analyzing the condition of an elastic fluid during the trans-

mission of a sonorous wave, Newton obtained, for the value of the

velocity of sound in any gas, the expression

in which g- represents the intensity of gravity, H the height of

the barometer, and d the specific gravity of the gas referred to

mercury as unity. This formula gives for the velocity of sound

in dry air, at and when H= 76 c. m., the value t) = 279.3

metres, which is less than 332.25 metres, the true value as ascer-

tained by experiment, by over one sixth of the whole. The cause

of this great discrepancy between the observed and calculated

velocity remained for a long time unexplained, until Laplace
showed that the alternate expansion and contraction of the

elastic fluid, constituting the sound-wave, must produce a change
of temperature, which would increase the velocity of the trans-

mission of the wave itself. In order to take into account the
TT

effect thus produced, Laplace multiplied the quantity g . in

the formula of Newton by the quotient -^7,
obtained by dividing

the specific heat of the gas under constant pressure by the spe-

cific heat under constant volume.- As thus corrected, the formula

of Newton becomes

H
S_= *'* '

T" S 1

'

By transformation, we easily obtain from this equation the ex-

pression,

S' =s SL'-H'-_?, [163.]
t)

2
<5

by which we can calculate the specific heat of a gas under con-

stant volume, when the velocity of sound in the medium and

the other constants are known. Now the velocity of sound in

air has been several times carefully determined by direct experi-

ment, and is probably known within a metre ; and starting from
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the velocity in air, the science of acoustics furnishes the means
of determining the velocity in other gases. Thus it is that we
have been able to determine some of the most refined data con-

nected with the thermal condition of matter, by means of phe-
nomena which at first sight seem entirely independent of the

action of heat.

The specific heat under constant volume of several gases, as

determined by Dulong by means of the method just described,

is given in the second column of the following table ; but these

values must be regarded as only approximations. The corre-

sponding values of specific heat under constant pressure are

given in the first column, repeated from the table on page 472,
for the sake of comparison. The third column shows the differ-

ence between the specific heat under the two circumstances, and

the last gives the value of 1
-{- t in formula [160] .

Specific Heat of Equal Volumes.

Name of Gas.
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By comparing the quantity of heat thus rendered latent in

the case of air with that which remains free, and consequently
raises the temperature of the gas, it will be found that they stand

to each other very nearly in the proportion of 2 to 5. Hence, of

seven units of heat imparted to a mass of free air for the pur-

pose of increasing its temperature, as, for example, in warming
the air of a room, two units are absorbed in expanding the

air, so that the elevation of temperature results entirely from

the remaining five.

By comparing the values of S >', it will be noticed that the

quantity of heat absorbed by equal volumes of these different

gases, in expanding to an equal extent, is very nearly the same

in all cases. Dulong has verified this principle in the case of a

large number of gases not included in the above table, and has

stated the law in the. following simple terms :

1. Equal volumes of all gases, measured at the same tempera-

ture and pressure, set free or absorb the same quantity of heat

when they are compressed or expanded the same fractional part

of their volume.

If the specific heat of the gases were all equal, the same

change of volume, and consequently the same absorption or

liberation of heat, would cause the same change of temperature.

This, however, is not the case, except with oxygen, hydrogen, and

nitrogen. The specific heats of the compound gases differ very

considerably from each other, and the change of temperature
caused by the same change of volume is smaller in proportion as

the specific heat of the gas is greater. Hence the second law of

Dulong, which should be read in connection with the first.

2. The variations of temperature which result are in the in-

verse ratio of the specific heats under constant volume.

Whether these empirical laws of Dulong are the exact expres-

sions of the truth, or whether they are merely close approxima-

tions, remains yet to be ascertained by further investigation.

(238.) Mechanical Equivalent of Heat. The doctrine of the

conservation of the physical forces has furnished, through the

investigations of Joule on the mechanical equivalent of heat, a

most remarkable confirmation of the results of the last section.

According 'to this doctrine, there is an exact equivalency of cause

and effect between all the forces of nature. Thus, in the case

af heat, it would assume that a given mechanical effect would,
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under all circumstances, be accompanied by the absorption of

the same amount of heat
;
and conversely, that the same quantity

of heat should, under all conditions, do the same amount of

mechanical work for example, should raise a given weight

through the same height in whatever way it may be applied.

It is a well-known fact, that friction is, under all circum-

stances, attended with evolution of heat. Now, since friction

represents the expenditure of force, it follows that the quantity
of heat evolved by friction is the equivalent of the mechanical

force expended in overcoming it. Joule was therefore able to

fix the mechanical equivalent of heat, by measuring the quantity
of heat generated by friction, and comparing
this with the power (42) expended in over-

coming the friction. The heat was generated

by the friction of water, and the apparatus he

used for the purpose is represented in Fig.
365. It consisted of a brass paddle-wheel,
furnished with eight sets of revolving arms,

working between four sets of stationary vanes

affixed to a framework, also of sheet-brass.

This frame fitted firmly into a copper vessel

containing from six to seven kilogrammes of

water. In the lid of the vessel there were two necks, the first for

the axis to revolve in without touching, the second for the inseiv

tion of the thermometer. The paddle-wheel was set in motion

Fig. 305.

Fig. 366.

by means of two weights connected with its axis by a system of

cords and pulleys, as represented in Fig. 366. In making the

experiments, the weights were wound up by means of the handle

v
y attached to the wooden cylinder v s, and after observing the

41*
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temperature of the water in the vessel, the cylinder was fixed to

the axis of the paddle, which was then made to revolve by the fall

of the weights to the floor of the laboratory, causing a friction

against the water in the vessel. The cylinder was then removed

from the axis, the weights wound up again, and the friction re-

newed. After this had been repeated twenty times, the experi-

ment was concluded with another observation of the temperature

of the water. The mean temperature of the laboratory was

determined by observations made at the beginning, middle, and

end of the experiment, and the quantity of heat which the vessel

lost by radiation and other causes was determined in every case

by means of a second experiment, made under precisely the same

circumstances as the first, with the apparatus at rest. It was

then easy to calculate, by means of [159] ,
the number of units

of heat developed by the friction of the water, since the weights

of the copper vessel, of the brass paddle and frame, and of the

water, as well as their several capacities for heat, and the increase

of temperature caused by the friction of the particles of water,

were known. This quantity of heat was, then, evidently the

equivalent of the mechanical force expended in moving the

paddles and overcoming the friction. In order to estimate

the mechanical force thus expended, the value of the weights,

the height through which they fell, and the velocity of the

fall, were accurately measured.

In one series of experiments, the value of the weights was

406,152 grains, the total fall in inches 1,260.248, and the ve-

locity 2.42 inches per second. The weight, starting from the state

of rest, soon acquired the velocity of 2.42 inches, and afterwards

moved with a uniform motion until it reached the ground, where

the velocity was destroyed. During the uniform motion, it is

evident that the intensity of the force of gravity acting on the

weights was entirely expended in overcoming the friction of the

water (42) ; but before the motion became uniform, a portion
of the force was expended in imparting velocity to the weights.

The whole mechanical power expended in overcoming the fric-

tion of the water, and thus generating heat, is then the power gen-

erated by the force of gravity acting on the mass of the weights

through the whole distance fallen, less the power generated by
the same force acting through the distance required to impart
a velocity of 2.42 inches. By [6], we find that a fall through
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0.0076 of an inch would impart a velocity of 2.42
;
and since the

weights were wound up twenty times in each experiment, a fall

through twenty times 0.0076, or 0.152 inch, would represent

the entire loss due to the increase of velocity. Hence the me-

chanical power expended in overcoming the friction of the water

was a force having the intensity of 406,152 grains, acting through

1,260.096 inches. Compare (63).
We have assumed, in this estimate, that the intensity of the

force of gravity was entirely expended in overcoming the friction

of the whole
;
but this was not the case, for a portion of the force

was used in overcoming the friction of the pulleys and the rigid-

ity of the cord. This was ascertained by a separate experiment,
in which the pulleys and cord were disconnected from the paddle-

wheel, to be equal to 2,837 grains acting during the whole time,

which, deducted from the value of the weights, gives 403,315

grains for the actual force overcome by the friction. This

force, acting through 1,260.096 inches, is equivalent to a force of

6,050.186 pounds acting through one foot, or, using the technical

expression, to 6,050.186 foot-pounds. But in order to obtain the

whole power overcome by the friction, we must add to this amount
16.928 foot-pounds for the force developed by the elasticity of

the string after the weights touched the ground, making the

whole mechanical force expended in overcoming friction, and
thus developing heat, equal to 6,067.114 foot-pounds, as the mean
of all the experiments of the series. The same series of experi-
ments gave, for the mean value of the quantity of heat evolved,

7.842299 English units
;

* and hence, ^jj
= 773.64 foot-

pounds will be the force which is equivalent to one English
unit of heat.

In these experiments a portion of the force is used in over-

coming the resistance of the air, and, making the correction

necessary to reduce the results to a vacuum, and omitting the

fraction, we get 772 foot-pounds as the mechanical equivalent,
which Joule regards as the most probable value. Similar experi-

ments, in which the friction was produced by an iron paddle-

wheel revolving in mercury, and others, in which it was produced

by two cast-iron wheels, gave for the mechanical equivalent of heat

774 foot-pounds, a number which is surprisingly near the first.

* The English unit of heat is the quantity of heat required to raise one avoirdupois

pound of water one Fahrenheit degree between 55 and 60.
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"We have given the above calculation in English weights and

measures, because it is so given in the original memoir,* to

which we would refer for further details. In the French system,

these results correspond to 423 and 424 kilogramme-metres,

or, in other words, the unit of heat is equivalent to a force of

423 kilogrammes acting through one metre.

Let us now see in what way these results of Joule confirm

those stated in the last section. It will be remembered that the

value of the specific heat of air under constant volume was de-

duced from the velocity of sound. This value furnishes us with

all the data required for calculating the mechanical equivalent

of heat ;
and if the doctrine of the conservation of forces is cor-

rect, the equivalent calculated from the velocity of sound ought
to agree with that determined by Joule from his experiments on

friction. Such an agreement would not only confirm the value

which has been assigned to the specific heat of air, but it would

also tend to confirm the doctrine in question.

Let us suppose that we have a cylinder, the area of whose base

equals 1 cTm.
2

,
filled to the height of 273 c. m. with air at and

under a pressure of 76 c. m. By Table II. the weight of this

mass of air would be equal to 0.3531 gramme. If we raise the

temperature of this air from to 1, it will expand 2^3 of its

volume
,
and will rise in the cylinder one centimetre, thus lift-

ing the weight of the atmosphere on the base of the cylinder

1,033.3 grammes through this distance. The quantity of heat

required to raise the temperature of 0.3527 gramme of air from

to 1 is, by (236), equal to 0.3527 X 0.000237, or 0.0000836

unit. Of this amount, a part only is consumed in expanding
the air, the rest remaining free and increasing the temperature
of the mass of gas. By (237), the part which does the mechan-

ical work is equal to the difference between the specific heat under

constant pressure and the specific heat under constant volume.

Hence, in the present case, it is equal to [160]

0.0000836 (0.0000836
-~

1.417) = 0.0000246 unit of heat

It follows, then, that in the expansion of air 0.0000246 unit of

heat will raise 1,033.3 grammes one centimetre, or, what is equiv-

alent to this, one unit of heat will raise 419 kilogrammes oiie

* Philosophical Transactions, London, 1850, Part I. p. 61.
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metre. The difference between this value of the mechanical

equivalent of heat and that obtained by Joule (423 kilogramme-

metres) is very small, considering the entirely heterogeneous
data which enter into the calculation.

Assuming, then, that the doctrine of the mechanical equiva-

lency of heat is established, it follows that the law of Dulong
(237) holds in all cases where the same mechanical power, act-

ing on equal volumes of different gases, causes the same amount
of condensation. But, as we have seen, this is not always the

case ; hence the law of Dulong must be subject to the same limi-

tation as that of Mariotte (165). Indeed, the law of Dulong is

probably only an imperfect expression of the mechanical equiva-

lency of heat, and is true so far as the same expansion or com-

pression represents the same amount of mechanical work.

PROBLEMS.

Specific Heat.

291. How much heat is required to raise the temperature of

500 kilogrammes of water from 4 C. to 94 ?

235 " "
sulphur

" 20 " 100?
336 " " charcoal " 5 " 500?

9.467 grammes of alcohol " 3 " 20?
10.234 " " ether " 20 " 13?

292. Calculate the quantity of heat which is required to raise the tem-

perature of the weight of the different elements represented by their chem-

ical equivalents one degree.

293. The following quantities of water were mixed together :

2 kilogrammes of water at 10 C.,

5 " " "
30,

6 " *' "
20,

7 12.

What was the temperature of the mixture ?

294. The quantities of water w^ w^ w3 ,
wt , at the respective tempera-

tures of t
t

*2 ,
*3 , 24 , were mixed together. What was the tempera-

ture of the mixture ?

295. How much water at 99 and how much water at 11 must be

mixed together, in order to obtain 20 kilogrammes of water at 30 ?

296. Determine the temperature of a mixture of one kilogramme of

water at 100 and one kilogramme of mercury at ; also of one kilo-

gramme of mercury at 100 and one kilogramme of water at 0.
297. How many kilogrammes of mercury at 100 must be added to one
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kilogramme of water at in order that the temperature of the mixture

may be 50 ? Also, how much water at 100 must be added to one kilo-

gramme of mercury at to raise its temperature to 50 ?

298. Equal volumes of mercury at 100 and water at are mixed

together. Required the temperature of the mixture.

299. A mass of matter weighing 6.17 kilogrammes at the temperature
of 80 is mixed with 25.45 kilogrammes of water at the temperature of

12.5. The mixture is found to have the temperature of 14.17. What
is the specific heat of the body ?

300. How many kilogrammes of gold at 45 would be required to raise

the temperature of 1,000 grammes of water from 12.3 to 15.7 ?

301. The specific heat of an alloy containing one equivalent of lead

(103.6 parts) and one equivalent of tin (58.8 parts) was found by experi-

ment to be 0.0407. How does this value correspond with that which may
be calculated on the assumption that the alloy is a mechanical mixture of

the two metals ?

302. The specific heat of sulphide of mercury (Hg S) was found by

experiment to be 0.0512. How does this value agree with that calculated

on the assumption made in the last problem ?

303. A piece of iron weighing 20 grammes at the temperature of 98

is dropped into a glass vessel weighing 12 grammes, and containing 150

grammes of water at 10. The temperature of the water is thus raised to

11.29. Required the specific heat of iron, knowing that the specific heat

of glass is 0.19768.

304. The weights of different substances, w
t , w%, w3 ,

w4 ,
at the re-

spective temperatures ^, 2 , 3 , 4 ,
and having the respective specific

heats <?!, c2 ,
c3 ,

c4 ,
are supposed to be mixed together. Required the tem-

perature of the mixture in terms of the other values.

305. Calculate the specific heat of oil of turpentine from the follow-

ing data : 42.57 grammes of the oil at 33.7 were mixed with 470.3

grammes of water at 12.23 ; the temperature of the mixture was found

to be 13.07 ; the oil was enclosed in a glass tube weighing 5.25 grammes
and having a specific heat equal to 0.177 ; lastly, the water was contained

in a copper vessel weighing 45.25 grammes, and having a specific heat

equal to 0.095.

306. A platinum ball weighing 150 grammes is heated to 1,000, and

then plunged into one kilogramme of water at 10. After an equilibrium

is established, how high is the temperature of the water, assuming that

the water receives all the heat which the platinum ball loses ? If the

water is contained in a brass vessel weighing 200 grammes, how high
would be the temperature of the water ?

307. A platinum ball weighing 100 grammes, after having been ex-

posed for some time to the heat of a furnace, is thrown into a brass vessel
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containing 750 grammes of water at 5. The weight of the brass

amounted to 150 grammes, and the temperature of the water after the

equilibrium was established to 15. What was the temperature of the

furnace, assuming that no heat was lost from the vessel and water during
the experiment ?

308. How much heat is required to raise the temperature of one cubic

metre each of air, oxygen, carbonic acid, and hydrogen from to 15, as-

suming that the gas is allowed to expand freely, and that the pressure is

constant at 76 c. m.

309. A room measures 7 metres by 6 on the floor, and is 4 metres high.

How much heat is required to raise the temperature of the air in that

room from 5 to 18 when the barometer stands at 76 c. m. ? How much

heat is lost in expanding the air of the room ?

310. How much heat would be required to raise 1,000 kilogrammes of

water 100 metres, if the full effect of the heat were realized?

EXPANSION.

(239.) Coefficient of Expansion. It has already been stated

(216) that the first effect of heat on matter, in either of its three

states, is to expand it
;
and we have also examined the most

important means by which the effects of expansion are used as a

measure of temperature. We will now study the phenomena of

expansion more in detail ; but, first, we will establish a few for-

mulae by which the amount of expansion can be, in any case,

readily calculated.

Linear Expansion. The small fraction of its length by
which a rod of iron, or of any other solid, one metre long,

expands, when heated from to 1, is called the Coefficient of
Linear Expansion of the solid. A bar of iron one metre long at

becomes 1.0000122 at 1, and the small fraction 0.0000122 is

the coefficient of linear expansion of iron. If we assume that

the expansion is proportional to the temperature, then a bar of

iron one metre long at becomes 1.00122 metres long at

100, 1.00244 at 200, 1.0061 at 500, etc. Hence a bar of

iron 26.354 metres long at would become 1.0061 X 26.354

= 26.515 at 500. To make the solution general, let k = co-

efficient of expansion ;
then 1 + k increased length of a rod

which is one metre long at 0, when heated to 1, and (1 ~{-t k} =
increased length at t. Hence / (1 -f- / &) = increased length of
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a rod at t which is / metres long at 0. Representing, then, by

/',
this increased length, we have

/' = /(! + <&); [164.]

by which we can easily calculate the length of a rod of any
metal at t, when its length at and its coefficient of expansion

are given. The coefficients of expansion of the solids most fre-

quently used in the arts are given in Table XV.
It is frequently the case that we do not know the length of

the rod at 0, but only at some other temperature, ,
and it is

required to determine the length at a second temperature, t',

which may be either higher or lower than t. To obtain a formula

for the purpose, denote by / the unknown length of the rod at 0,

by /' the known length at
,
and by /" the required length at t'.

We have then, as above,

and /" =
By combining these equations, we obtain

v 1 * (e~

All the terms of the quotient after the first may be neglected,

because they contain powers of the already very small fraction k.

We have assumed that the expansion of solids is proportional

to the temperature, but this is not strictly true
;
for the rate

of expansion of solids, like that of mercury (219), increases,

although but very slightly, as the temperature rises. The co-

efficient of expansion is not, therefore, absolutely the same at

all parts of the thermometer-scale ;
but the difference is so small

that we can neglect it, except in the most refined investiga-

tions, more especially if we use, not the coefficient observed at

any particular temperature, but a mean coefficient obtained by

dividing by 100 the total amount of expansion between and

100, by which means we average the error.

Cubic Expansion. The small fraction of its volume by
which one cubic centimetre of a solid, liquid, or gas increases

when heated from to 1, is called the Coefficient of Cubic

Expansion of that substance. The coefficient of expansion of

mercury, for example, is 0.00018
; that is, one cubic centimetre

of mercury at becomes 1.00018 ~^? at 1. Assuming then
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that the expansion is proportional to the temperature, we obtain,

by the same course of reasoning as above, the formula

F'= F(l + * JT); [166.]

by which the increased volume ( F') of any mass of matter may
be calculated, when the volume at (F), the temperature (),
and the coefficient of cubic expansion (jK"), are known. In like

manner we easily obtain the formula

V" = V [1 + K (i
1

] , [167.]

which will enable us to calculate the volume of a body at t' from

the volume at t and the coefficient of expansion.

(240.) The Coefficient of Cubic Expansion is three times as

great as the Coefficient of Linear Expansion. The truth of this

simple principle, which enables us to calculate one coefficient

when the other is given, can easily be proved. For this purpose,
let us suppose that we have a cube of glass measuring one cen-

timetre on each edge at
; and let us inquire what will be its

increased volume at 1, assuming that the coefficient of linear

expansion is known. At 1 each edge of this glass cube will

be (1+ k) c. m. long. Hence the increased volume of the cube

wiU be equal to (1 + &)
3 = 1 + 3 k + 3 k* + k3

;
but as k

is an exceedingly small fraction, k1 and /c
3

may be neglected
in comparison without any sensible error, so that the volume

of a cube of glass which is one cubic centimetre at becomes

(1 -f- 3 &) ^m. 3 at 1. Since by [166] the volume of this same

cube at 1 would also be expressed by (1 -f- JC) cTm?, it follows

that K= 3 /c, which was to be proved.

(241.) The increased capacity of a hollow vessel, in conse-

quence of the expansion of its wall, may be found by calculat-

ing- the increased volume of a solid mass of the same substance

which would just Jill the interior of the vessel. A moment's

reflection will show the truth of this statement. Let the hollow

vessel be a glass globe, and let us conceive of it as filled with a

solid globe of glass. If this mass be heated, it is evident that

the glass vessel will expand just as if it formed the outside shell

of a solid globe ; the same must be true when the interior core is

not present.

42
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Expansion of Solids.

(242.) Measurement of Linear Expansion. The earliest

accurate determinations of the coefficients of linear expansion of

solids were made by Lavoisier and Laplace with the apparatus

represented in perspective by Fig. 367, and in section by Fig. 368.

This apparatus consisted of two parts : first, of a copper tank,

in which a bar made of the solid whose coefficient was to be

determined was heated to a uniform temperature by immersing
it in heated oil or water

; and, secondly, of four stone posts sup-

porting an ingenious contrivance for measuring the increase of

Fig. 367.

length. The solid bar, about two metres in length, rested in the

tank on rollers, with one end bearing against an upright immov-

able glass bar, ^(see Fig. 368), firmly fastened by cross-pieces to

the two stone posts on the left-hand side of Fig. 367, and with

the other end bearing against the lever, D. The upper end of

Fig. 368.

this lever was attached to a horizontal axis turning in sockets

inserted into the two stone pillars on the right of Fig. 367, and

having at one end the telescope, (7, adjusted with its axis perpen-
dicular to the lever D. The telescope was furnished with a

micrometer eye-piece, and as it was turned by the expansion of

the bar, the cross-wires moved over the divisions of a scale, A B,

placed in a vertical position at the distance of fifty metres or

more from the instrument.
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The apparatus was used in the following manner. The bar

having been placed in position, the tank was filled with ice-cold

water, and the observer noted the division of the scale on which

the cross-wire of the telescope was projected. The cold water

was then withdrawn by a stopcock, and its place supplied with

boiling water. The temperature soon became stationary and

was ascertained by thermometers placed at the side of the bar,

when the observer again noted the division on the scale with

which the cross-wire of the telescope coincided. Knowing, now,

the distance A B on the scale over which the cross-wire had

moved, also the distance A G of the scale from the axis of ro-

tation of the telescope, and, lastly, the length of the lever G H,
it was easy to determine the value of H C, the elongation of.

the bar. The two triangles A B G and H C G are similar

by construction, and we have H C : H G = A B : A G, or
TT S^l TT f^H C = A B
-j-.

The value of -^ depends, evidently, on

the dimensions of the apparatus. In that used by Lavoisier

and Laplace it was about T T ,
so that HC= =TT, and hence

any error in the measurement of A B was divided 744 times in

the result.

The length of the bar at being known, and the elongation

corresponding to an observed number of degrees having been

measured as just described, it was easy to determine the coeffi-

cient of expansion by dividing the elongation in fractions of a

metre by the length of the bar in metres and by the number of

degrees. For example, let us suppose that the length of the bar

at was 1.786 m., and that the elongation corresponding to 80

was 0.004
;
the coefficient of expansion would then be 0.004 -T-

(1.786 X 80) = 0.000028.

Since the experiments of Lavoisier and Laplace, the linear

coefficient of expansion of glass and of the metals most used in

the arts has been redetermined by a number of physicists, and

with various methods ; but as these methods do not involve the

application of any new principle, it is not important to describe

them.

(243.) Determination of Coefficient of Cubic Expansion.

We have already seen that the coefficient of cubic expansion is

three times that of linear expansion, so that the cubic expansion

of a homogeneous solid can always be easily calculated from the
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linear expansion. In many cases, however, the coefficient of

cubic expansion can be measured with more accuracy than the

other, and it is then best to reverse the calculation. The coeffi-

cient of cubic expansion of several solids can be determined with

great accuracy, by means of a process based on the apparent

expansion of mercury, which will be described in (254) . It can

also be determined in the following manner from the specific

gravity of the solid taken at different temperatures :

Let (Sp. Gr.) and (Sp. Gr.)' represent the specific gravity of the solid

at the temperatures t and t
1

respectively. Also let W represent the

weight of the solid mass used in the experiment, V the volume at 0,
and K the unknown coefficient which we wish to determine. We have

then, by [166], for the volume of the solid body at t and Z', the values

V(l-\-tK) and V(l -\-f K) ; by substituting these values in [55] we

obtain, for the value of the specific gravity at the two temperatures,

Combining these two equations, and reducing, we get for the value of the

coefficient of cubic expansion,

_ (Sp.Gr.)
- (Sp.Gr.y rl6g

,
- -

Kopp has determined, by the above method, the coefficient

of cubic expansion of a number of solids, and his results are

included in Table XY.

(244.) General Results. By examining Table XY. it will

be seen that the increase of length which a solid bar undergoes
when heated from to 100 is at most very small, amounting in

the case of zinc, the most expansible of all solids hitherto ob-

served, to only -s%v of the length at zero. The difference, how-

ever, between different solids is very great, zinc expanding over

three times as much as glass for the same increase of temper-
ature.

The relative expansibility of solids seems to be more nearly

related to their relative compressibility than to any other physical

quality ;
for we find, as a general rule, that those metals are

the most expansible which have the smallest coefficients of elas-

ticity (101) and are therefore most easily compressed. This

fact is shown by the two following series, in which the
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metals are arranged in the order of expansibility and compres-

sibility :

Zinc, Lead, Tin, Silver, Gold, Palladium, Copper, Platinum, Steel, Iron,

Glass.

Lead, Tin, Gold, Silver, Zinc, Palladium, Platinum, Copper, Steel, Iron,

Glass.

Although these two series are not perfectly parallel, they are

sufficiently so to indicate a close connection between the two

properties. This connection is also seen in the fact, that the

diminution of the coefficient of elasticity with the increase of

temperature, already noticed (101), is accompanied with a cor-

responding increase of the rate of expansion.
The increase of the coefficient of expansion between and

100 is hardly perceptible in solids ; but when the change of

temperature amounts to several hundred degrees, it is necessary
to take account of it in delicate physical measurements. This

is especially the case with the glass vessels which are used for

air thermometers or in determining the specific gravity of va-

pors ;
and in order to furnish the necessary data for such experi-

ments, Regnault has determined the mean coefficients of cubic

expansion of the common Paris glass, when blown into hollow

ware, between zero and different temperatures. His results are

as follows :

Between and 100 . . . K= 0.0000 276.
" 150 ;' 0.0000284.

200 ... 0.0000291.
" 250 ... " 0.0000298.

"300 ..." 0.0000306.

350 ... " 0.0000313.

From the fact that the rate of expansion of a solid increases

with the temperature, we should naturally infer that the rate for

any given solid would be greatest just below its melting-point ;

and of several solids taken at the temperature of the air, we
should expect, other things being equal, that those would be the

most expansible which are nearest their melting-points at this

temperature, or, in other words, which are the most fusible.

This we find, as a general rule, to be true ; the easily fusible

solids, like zinc and lead, being more expansible than the

42*
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difficultly fusible, like iron and platinum : but there is by no

means a perfect parallelism between the order of fusibility and

that of expansibility ; nor ought we to expect it, for different

metals are not equally expansible at temperatures equally dis-

tant from their melting-points.

(245.) Expansion of Crystals. We have hitherto assumed

that solid bodies expand equally in all directions, and this is

true of all homogeneous solids
;
but it is not necessarily the case

with crystals. Only tht>se crystals which belong to the Regular

System expand equally in all directions. Those belonging to

the other systems expand unequally in the direction of the un-

equal axes. This inequality in the expansion of crystals in the

directions of unequal axes can be readily detected, because an

alteration in the relative length of the axes must change the inter-

facial angles of the crystal, which can be measured with great

accuracy (96). Professor Mitscherlich,* of Berlin, who has very

carefully studied this subject, found that the interfacial angles of

all crystals, except those belonging to the regular system, were

slightly affected by changes of temperature. The rhombohedral

angle of calc-spar, for example, (page 150,) varies eight and a

half minutes between the freezing and boiling points of water.

Indeed, Mitscherlich has shown that, while a crystal is expanding
in length by heat, it may actually be contracting in another di-

mension. These facts are in entire harmony with the principles

of the last section ; for, since the elasticity of crystals is different

in different directions (108), we should naturally expect that the

rate of expansion would be different also.

In investigating the laws of expansion of solids, it is evidently

advisable to make choice of crystallized bodies ;
for when the

substance is not crystallized, the expansion of different specimens

may not be precisely the same, owing to variations of internal

structure. This is probably the cause of the discrepancies which

we find between the coefficients of expansion of the same sub-

stance as given by different experimenters. These discrepancies,

indeed, are the most marked in the case of substances like glass,

in which we should naturally expect the greatest variations of

structure.

The expansion of glass has been more carefully studied than

* Poggendorff's Annalen, I. 125, X. 137, XLI. 213.
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that of any other substance, on account of its use in physical

apparatus. Regnault has found, not only that the expansion of

glass varies with its composition, but also that it varies with the

manner in which it has been worked. Thus, the same glass ex-

pands more in the form of a solid rod than in that of a tube, and

a large vessel frequently expands at a different rate from a small

vessel made of precisely the same material. Indeed, Regnault
has shown that the coefficient of the same glass vessel is not

always absolutely the same between the same limits of temper-

ature, especially if between two observations it has been exposed
to great and sudden thermal changes. These variations are

probably due to changes in the molecular condition of the glass,

and are similar to those which cause the change in the zero point

of the thermometer (220).
It follows from the above facts, that, where very great accuracy

is required, it is important to determine the rate of expansion of

the actual vessel which is to be used in the experiment.

(246.) Force of Expansion. The force with which a body

expands is equal to the resistance which it would oppose to a

compression of an equal amount
;
we have already seen (101)

how very great this resistance is. A bar of iron one metre long

expands 0.0012 m. if heated 100. If now we assume that the

area of the section of the bar is equal to 2,500 m. m.
2

,
and that

the coefficient of elasticity of iron is equal in round numbers to

21,000, we can readily calculate by [66] the weight which would

be required to compress the bar 0.0012. This weight would be

21,000 X 2,500 X 0.0012 = 63,000 kilogrammes, and it would

be necessary to apply this enormous force in order to prevent
a bar of iron measuring 5 c. m. on each side from expanding,
when heated from to 100. It is not, therefore, at all won-

derful that iron bars used in buildings frequently destroy the

masonry they were intended to strengthen, where care has not

been taken to allow for the expansion.
The force with which a solid contracts when cooled is equal to

that with which it expands when heated. This force was first

used at the Conservatoire des Arts et Metiers, in Paris, for draw-

ing together the walls of an arched gallery which had bulged
outward from the pressure of the roof, and the experiment has

since been successfully repeated in several other buildings.

Stout iron rods were placed across the building, and their ends
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secured to the outside of the walls by means of plates and nuts.

Half of the number of rods were then strongly heated by char-

coal furnaces, and when they were expanded the plates were

screwed firmly up to the walls. As the bars cooled, they con-

tracted and drew the walls somewhat nearer together. The same

process was then repeated with the other half of the rods, and

so continued until the walls were restored to a perpendicular

position.

Applications of this same force may be seen in many of the

trades. The wheelwright binds the parts of a wheel together by

putting on the iron tire while hot, and allowing it to contract

round the wood
;
and even the large wrought-iron tires round

the wheels of locomotive engines are fastened in the same way.
The cooper insures the tightness of a cask by surrounding it

with heated iron hoops, which, by contracting, unite the staves

more firmly ;
and steam-boilers are riveted with red-hot rivets,

which, on cooling, draw the plates together more securely than

any other means could.

(247.) Illustrations. The expansion of solids by heat may
be illustrated by a great variety of experiments, but we shall

only be able to describe a few of the

most striking.

The cubic expansion may be shown

by means of the apparatus represent-
ed in Fig. 369. The brass ball a is

made so that it will just pass through
the ring m, when both have the same

temperature. If then we heat the

ball, it will no longer pass through in

Fig 369. any position, thus indicating an in-

crease of volume.

In order to illustrate the linear expansion of solids, we make
use of a class of instruments called pyrometers. One of the

simplest and most convenient of these is represented in Fig. 370.

It consists essentially of the metallic rod J, one end of which is

firmly secured to a brass pillar by means of the clamp-screw jB,

while the other end, which is free to expand, plays against the

shorter arm of a needle, K, moving on a graduated arc. The

rod is heated by an alcohol lamp of peculiar construction, and

its expansion is rendered visible by the motion of the needle over
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the graduated arc. Instruments constructed on the same prin-

ciple have been employed by Daniels and others for measuring

high temperatures ;
but since they have been superseded by the

Kg. 370.

far more accurate methods of the present day, it is not necessary
to describe them in detail.

The unequal expansion of different metals is best illustrated

by a compound bar, made by riveting together two bars of iron

and copper at different points

through their whole length, as rig. an.

represented in Fig. 371. When **-- '- -C-^-T-T r-r-? . . . -_^

such a bar is heated, the copper

expands more than the iron, ^-^^T^ ^'-^

^^^-^^^
and the bar curves, as repre- Kg. 372.

sented in Fig. 372, in order to

accommodate the inequality of length which thus results. If the

bar is cooled, it again curves, but in the opposite direction.

The expansion of solids is also illustrated by many phe-

nomena of every-day life. A nail driven into a brick wall be-

comes loose after a time, because the iron expands in summer
and contracts in winter more than the mortar, and thus the

opening is enlarged. Clocks go faster in winter and slower

in summer, because the pendulum elongates in summer, and

consequently vibrates more slowly ; while in winter it becomes

shorter, and vibrates more rapidly. The pitch of a piano or harp
rises in a cold room, in consequence of the contraction of the

metallic strings. A closely-fitting iron gate, which can be easily

opened on a cold day, can only be opened with difficulty on a

warm day, because both the gate and the adjoining railings have

become expanded by the heat. When iron pipes are employed
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to conduct steam through a factory, they are never allowed to

abut against a wall or other obstacle, which they might injure in

expanding ; and, for the same reasons, the rails of a railroad are

always laid at a little distance apart. A' kilometre of rails

expands seven metres between 20 and 40, and this allow-

ance must be made in the construction of the road. When a

metal is soft, and its expansion or contraction at all resisted, it

may become permanently expanded when repeatedly heated. A
waste steam-pipe of lead has been elongated several inches in a

few weeks, and the zinc or lead linings of bath tubs are fre-

quently gathered in ridges from the same cause.

The walls of buildings are also sensibly expanded by the action

of the sun's rays. Bunker Hill Monument, an obelisk of granite

two hundred and twenty-one feet high, moves at the top so as to

describe an irregular ellipse with the sun's motion. Professor

Horsford, who had an opportunity of studying the action of the

sun's rays on this structure, noticed that the movement com-

menced early in the morning on a simny day, and attained its

maximum in the afternoon. In a cloudy day no motion takes

place, and a shower restores the shaft to its position, showing
that the heat which produces the deflection penetrates but a short

distance.* A similar fact is also noticed when astronomical in-

struments are placed on elevated buildings, from the derangement
which they undergo by the unequal expansion of the walls.

"When hot water is poured on a thick plate of glass, the upper
surface is expanded before the heat reaches the under surface of

the plate. There is, therefore, an unequal expansion, and the

plate tends to bend, like the compound bar, with the hot surface

on the outside of the curve ;
and since the particles of glass do

not readily yield to such displacement, the glass breaks. Hence

is explained the fact, that hot vessels of glass or porcelain are

liable to break when cold water is poured into them, or when set

down on a cold surface which is at the same time a good con-

ductor of heat. Such accidents are avoided by resting the vessel

on rings of straw, or other poor conductors, and having them

made as thin on the bottom as is consistent with the necessary

strength.

This effect of heat on glass is used in the laboratory for dividing

* Silliman's Philosophy, p. 329.
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glass vessels which have been cracked or otherwise damaged,
since a crack once started may be conducted in any direction

by means of an iron rod heated to redness, or, still better, by
means of a burning slow-match prepared expressly for the pur-

pose.* In like manner the round necks of glass retorts, flasks,

and other chemical vessels, can be cut off by means of an iron

ring, which is first heated to a red heat in a furnace, and then

held for a few moments around the neck. As soon as the neck

is thus heated, a few drops of water let fall upon the heated part
will cause the neck to crack off.

But by far the most remarkable illustration of the expansion
of solids by heat is furnished by the Britannia Tubular Bridge.
This bridge consists of two rectangular iron tubes (made of boiler

plates firmly riveted together) 1,510 feet 1| inches long at 32 F.,

and varying from 23 feet in height at either end to 30 feet at the

centre. These tubes, which are placed parallel to each other,
are secured permanently to the central stone pier of the bridge,
called the Britannia Tower ;

but at the other points of support

they rest on friction rollers, and the free ends move backwards

or forwards as the length of each tube changes with the tem-

perature. An increase of temperature of 26, viz. from 32 to

58 F., gives an increase of 3J inches in the whole length of the

bridge, and the daily expansion and contraction varies from half

an inch to three inches, usually attaining its maximum and
minimum about three o'clock in the afternoon and morning.
Since the tubes are immovably secured in the centre, only one

half of this motion is visible at either end. " But the most in-

teresting effect is that produced by the sun shining on one side

of the tube or on the top, while the opposite side and the bottom

remain shaded and comparatively cool. The heated portions of

the tube expand, and thereby warp or bend the tube towards the

heated side, the motion being sometimes as much as two and a

half inches vertically and two and a half inches laterally."! The
same phenomena may be seen at the Victoria Tubular Bridge,

recently built at Montreal
; but as the tubes of this bridge are

* For a recipe by which these slow-matches may be prepared, see Mohr's Phar-

macy.
t For a very interesting and detailed account of these phenomena, see the large work

on the Britannia and Conway Tubular Bridges, by Edwin Clark, Resident Engineer.
2 vols. and Atlas, London, 1856.
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Fig. 373.

much shorter than those of the Britannia bridge, the extent of

the motion is not so great.

(248.) Applications of the Expansion of Solids. Bre*guet's

metallic thermometer (Fig. 373) is an application of the principle

of the compound bar. The essen-

tial part of the instrument is a

spiral, formed of a metallic ribbon

which is constructed in the fol-

lowing way. Three small bars,

one each of platinum, gold, and

silver, are, in the first place, sol-

dered together throughout their

whole length. This compound
bar is next rolled out in a rolling-

mill until it is reduced to a rib-

bon not more than one sixtieth

of a millimetre in thickness, and

from one to two millimetres broad.

The ribbon thus prepared is wound
into a spiral, having the silver face towards the interior, and this

spiral is suspended to the upright arm of the instrument. To
its lower end there is fastened a needle, which traverses an arc

graduated into Centigrade degrees, and the whole instrument is

covered with a glass bell for protection.

Although the ribbon is rolled out to the extreme degree of

thinness just stated, yet the continuity of the three metals re-

mains unbroken ; so that the spiral may be regarded as consist-

ing of three spirals of different metals united throughout their

whole length. The silver spiral, which is the most dilatable, is

surrounded, first, by a gold spiral, which expands less than the

silver, and lastly by a platinum spiral, which expands the least

of all. As the temperature rises, the silver expanding more than

the platinum or the gold, each coil of the spiral tends to unbend,
and the effect is evidently partially to uncoil the whole, causing
the needle to move over the graduated arc from left to right in

the above figure. The opposite effect ensues when the tempera-
ture falls. The gold band is placed between the two others,

because it has an intermediate rate of expansion. Were plati-

num and silver used alone, the great inequality of their rates

of expansion might cause the bands to separate. On account
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of the small mass of metal of which the spiral consists, Bre*guet's

thermometer is exceedingly sensitive to very slight changes of

temperature, and may be used in some cases with great ad-

vantage.

Some of the most ingenious applications of the expansion of

metals are to be found among the numerous contrivances for

retaining the pendulums of clocks of

an invariable length at all tempera-
tures. One of these, called Harrison's

gridiron pendulum, is represented in

Fig. 374. The large disk of this pen-
dulum is suspended by a series of steel

and brass rods, alternating with each

other, and connected at the ends by

cross-pieces. The manner in which

these are arranged will be best -under-

stood by studying the figure, in which

the steel rods are distinguished from

the brass by being shaded. The length

of the pendulum is evidently equal to

the sum of the lengths of the steel rods,

including the steel ribbon, 6, which sup-

ports the whole pendulum and bends at

each oscillation, less the sum of the

lengths of the brass rods. Moreover,
it will also be seen, by examining the

figure, that, while the expansion of the

steel rods lengthens the pendulum, the

expansion of the brass rods shortens it.

If, then, the lengths of the rods are so

adjusted that the expansion in one di-

rection will just balance that in the other, the pendulum will

remain of an invariable length. It is easy to determine, ap-

proximatively, the length required to produce this compen-
sation.

Representing by L and L1 the sum of the lengths of the steel and the

brass rods respectively, and by k and k1 their coefficients of expansion, we

should have, since the amount of expansion is the same in both,

fig. 374

L1 1J.

43
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Moreover, since at the latitude of Paris the length of the seconds pendu-

lum is 0.99394 metre (58), we must also have

L L' = 0.99394.

Combining these two equations, and substituting for k and k' their values

from Table XV., we should find that the pendulum would remain of an

invariable length when the sum of the lengths of the steel rods, or

L, =. 2.31919 metres, and when the sum of the lengths of the brass rods,

or L', 1.32525 metres. It is evident, therefore, that compensation

could not be effected with fewer rods than are represented in the figure,

namely, three of steel and two of brass.

The above calculation, however, only gives approximate re-

sults, since the virtual length of the pendulum depends on the

position of the centre of oscillation, and may vary, even when the

apparent length remains the same (54). In practice, the rods

are constructed as nearly as possible of the required length, and

the compensation is afterwards completed by varying tlie position

of the weight o, until, after successive trials, the right point is

attained.

A clockmaker by the name of Martin effected the compensa-
tion in pendulums by means of a compound bar of iron and

copper, fixed transversely on the pendulum rod, as represented
in Fig. 375. To the ends of this compound bar small weights
are attached, movable on a screw, and the bar is so placed that

the copper is lowest. Hence, when the temperature rises, its ends

Fig. 375. Fig. 376.

curve upwards, as represented in Fig. 376
; and, on the other

hand, they curve downwards, as in Fig. 377, when the tempera-
ture falls. The rising and falling of these masses of matter will

evidently change the virtual length of the pendulum, by raising or

lowering the centre of oscillation. Moreover, this change will be

just the reverse of that caused by the action of heat on the pen-
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dulum itself
; and, by varying the position of the small weights

on the transverse bar, the two changes may be made exactly to

counteract each other.

An arrangement precisely similar to that of Martin has long
been employed for compensating the balance-wheels of chronom-

eters and watches. It is well known that the

motion of a watch is regulated by a balance-

wheel, as that of a clock is by the pendulum,
and that the oscillations of this balance-wheel

are maintained by a fine spiral spring, whose

elasticity takes the place of the force of grav-

ity acting on the pendulum of the clqck. Now,
the duration of an oscillation of a balance- Fig 373.

wheel depends on the elasticity of the spring,

on the radius of the wheel, and on the mass of matter in its rim.

The effect of heat is to increase the radius, and thus to retard

the watch by increasing the duration of each oscillation. This

effect, however, can be entirely counteracted by the arrangement

represented in Fig. 378. The three metallic arcs, a, a, a, are each

made of two metals, the most expansible being placed outside ;

and as the temperature rises, they curve in and carry the three

small masses of matter, n, n, n, nearer to the axis of the wheel,
thus diminishing the virtual length of the radius as much as the

expansion increased it. The position of the small masses n, n, n,

in which the effect of expansion is just compensated, is found by
trial

;
and they are adjusted by turning them on the small screws

which form the extremities of the arcs.

Expansion of Liquids.

(249.) Absolute and Apparent Expansion. In considering
the expansion of a liquid, it is important to distinguish between

the absolute expansion and the apparent expansion when the

liquid is enclosed, in a glass vessel. From the very nature of a

liquid, it is evident that its absolute expansion cannot be directly

observed, but must be determined by indirect methods. It is

also evident, that the absolute expansion must be equal, in any

case, to the apparent expansion, increased by the amount of ex-

pansion of the glass vessel containing the liquid; compare (219)
and (241) ; and hence, when any two of these quantities arc

known, the third can always be calculated.
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(250.) Absolute Expansion of Mercury. The coefficient of

absolute expansion of mercury is one of the most important
constants of physics ; for not only does it enter indirectly into the

determination of the expansion of most other substances, solids,

liquids, and gases (254), but it also has a direct bearing on

the theory and use of both the thermometer and barometer

(219) and (160). It is therefore essential that this constant

should be determined with the greatest care.

The most accurate method of determining the coefficient of

absolute expansion of mercury is based upon the principle in

hydrostatics (131), that, when two tubes filled with different

liquids communicate together, the heights of the two liquid col-

umns if in equilibrium are inversely proportional to the specific

gravities of the liquids. What is true of different liquids must

also be true of the same liquid at different temperatures ;
and

we can therefore determine the relative specific gravity of mer-

cury at such temperatures by measuring the heights of the mer-

cury-columns in the legs of an inverted siphon, so arranged
that each column may be exposed to the temperature required.

When the specific gravity at two different temperatures has been

thus determined, we can easily calculate the coefficient of expan-
sion by [168].
The apparatus used by Dulong and Petit, who determined the

absolute expansion of mercury by the hydrostatic method, is

Fig. 379.

represented in Fig. 379. It consisted of two glass tubes, A and

J5, supported vertically on an iron basement, and united below

by a capillary tube, so as to form together an inverted siphon.
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The two tubes were each enclosed in a metallic vessel. The

^allest of these, Z), was filled with pulverized ice, and the other,

E, contained oil, which was gradually heated by a small fur-

nace, which the figure represents in section, in order to show the

construction. Lastly, the tubes were filled with mercury, which

preserved the same level in both as long as the tubes were ex-

posed to the same temperature, but which rose in the tube B in

proportion as it was heated. In making an observation with this

apparatus, the bath was first heated to the required temperature,

which was indicated by the thermometer P, and then the heights

of the two columns were measured by the cathetometer K.

In order to calculate from such an observation the coefficient

of absolute expansion, let us represent by H and (Sp.Gr.^) the

height and specific gravity of the mercury-column A at 0, and

by H' and (Sp.Gr.y the height and specific gravity of the mer-

cury-column B at t. Then we have, by [81], H . (Sp.Gr.) =
H' (Sp. Gr.y. Moreover, representing the coefficient of absolute

expansion of mercury by K, we have, by [166] and [56],

(^p.GV.) = (Sp.Gr.y (l + Kt). [169.]

Combining the two equations, we obtain, for the value of K,

By this method, Dulong and Petit found that the mean abso-

lute expansion of mercury between and 100 was ^v =
0.000 18018. Regnault has since redetermined this coefficient

with an apparatus based on the same principle, but very greatly

improved, and has obtained, for the mean value between and

100, 0.000 18153, a number which differs but little from that of

Dulong and Petit. The apparatus of Regnault, although very

simple in principle, is quite complicated in construction, and it

would require more space to describe it than we are able to

give ; but the student will find it described in full in Regnault's
memoir on the subject.*

As has already been stated (219), the coefficient of expansion
of mercury increases with the temperature. This is shown by
the following table, which contains the results obtained by Reg-
nault.

* Memoires de 1'Academie des Sciences de 1'Institut, 1847.

43*
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True Tempera-
ture by

Air-Thermometer.
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F= 1 -f 0.0001T9007 t + 0.0000000252316 1*. [172.]

It is unnecessary to add that tins formula is purely empirical,

and can only be trusted for temperatures within the limits be-

tween which the experiments were made.

(251.) Correction of the Observed Height of the Barometer

for Temperature. Since the height of a barometer is affected

by changes of temperature (160), it becomes essential, before

comparing together different observations, to reduce each to the

standard temperature of
;
in other words, to calculate what

would have been the height had the temperature at the time of

the observation been at the freezing-point. The principles of

the last section furnish us with a ready method of making the

reduction.

The pressure of the air being constant, it follows from (158) and [81]
that the height of a mercury barometer at different temperatures will be

inversely proportional to the specific gravity of mercury at these tempera-
tures. Hence we shall have Hi H' = (Sp.Gr.)' : (Sp.Gr.), a propor-
tion in which /f and (Sp.Gr.) represent the height of the column and the

specific gravity of mercury at 0, while H' and (Sp.Gr.)
1

represent the

same values at f. But we also have (Sp.Gr.) = (Sp.Gr.)
1

(1 -f- Kt),
and combining this with the last proportion, we at once deduce H1 =
J5T(l-fjn), and

or, substituting for K its mean value between and 100 (0.00018 =

The last term of the above formula is the correction which must be sub-

tracted from the observed height, in order to reduce the observation to

zero.

The reduction as thus made, however, would not be quite correct, since

we have not taken into account the change in the length of the scale of

the barometer caused by the expansion of the material on which it is

engraved. If, as in the barometer of Fortin (160), this scale is engraved
on the brass casing of the tube, which extends quite down to the cistern,

it is easy to make allowance for the effect of its expansion, assuming that

the scale agrees with the standard of length at 0. Let us assume that the

divisions on the scale are in centimetres. It is evident that the effect of
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heat will be to increase the length of each division, and thus to make the

apparent height of the mercury-column less than the real height. If the

brass expanded as much as the mercury, the two effects would balance

each other, and there would be no correction to make. But this is not the

case ; and the expansion of the brass scale only in part compensates for

the increased height of the mercury-column caused by the change of tem-

perature. Representing by Ic the coefficient of expansion of brass, we

shall have, for the length of each division of the scale at t, the value

1 -j- k t ; and since the apparent height of an invariable mercury-column
must be inversely proportional to the length of the divisions of the scale,

by which it is measured, we deduce the proportion H: ff = 1 : 1 -[- k t,

in which H and HQ represent respectively the apparent heights of the

column at t and respectively. Substituting in this proportion the

value ofH [173], we readily deduce

H _ . -fji Lufcif - - H' -- ft1 ^ ^-. ri7^ i^- Y+Kt- 'l+Kt
'

The second term of the above formula gives a correction, to be

subtracted from the observed height of a mercury-column, which

eliminates the expansion of the scale as well as that of the column

itself, and reduces the observations strictly to 0. The value of

this correction, in centimetres, corresponding to one degree of

temperature, is given in Table XVIII. for every five millimetres

in the height of the mercury-column from 0.5 c. m. to 100 c. m.,
and not only for a barometer with a brass scale, but also for a

barometer with the scale engraved on the glass tube. The cor-

rection for any given temperature is found by multiplying the

number from the table opposite to the observed height by the

number of degrees. If the degrees are above zero, the correc-

tion is to be subtracted from the observed height ; if below, to be

added to it. This same table, as well as the formula [175], may
also be used for reducing to the height of any mercury-
column ; for example, that in a manometer-tube (168), or in a

glass bell over a mercury pneumatic trough (169). If the height
of the column is measured by means of a cathetometer, as in

Fig. 272, it is equivalent to using a barometer with a brass scale,

and the correction must be taken from the column headed " Brass

Scale
"
in Table XVIII. If, on the other hand, it is measured by-

means of graduation on the glass bell or tube itself, the column

headed " Glass Scale
"
should be used.



HEAT. 513

Fig. 380.

(252.) Apparent Expansion of Mercury. The apparent ex-

pansion of mercury will evidently vary with the nature of the

vessel in which it is enclosed. But since the vessels

used for the purpose are almost invariably made of

glass, we understand by the term apparent expan-
sion the apparent expansion in glass, unless it is

otherwise stated. The apparent expansion of mer-

cury in glass can readily be determined experimen-

tally by means of the apparatus represented in Fig.

380. It consists of a cylindrical reservoir opening
into a capillary tube, which is drawn out at the end

to a fine point, and bent into the form of a hook.

The apparatus is in the first place weighed, and then

filled with pure mercury, like a thermometer-tube

(Fig. 340), taking care to boil the mercury in the

reservoir in order to expel the last traces of air and

moisture. It is next surrounded with melting ice,

the orifice of the tube, o, dipping under mercury,
which is thus drawn into the apparatus as the temperature falls

until the whole is filled with mercury at 0. Having weighed
the apparatus again, and subtracted the weight of the glass,

we obtain the weight of the mercury at 0, which we will repre-

sent by W. Finally, we expose the apparatus to a constant and

known temperature, , (for example, to that of the steam from

boiling water,) and collect and weigh the mercury which escapes.

Call this weight w ;
then W w is the weight of mercury which

just fills the apparatus at t. We have now all the data required
for calculating the apparent coefficient of expansion.
The volume of W w grammes of mercury at is, by [56] ,

V= ^ . Neglecting the expansion of the glass, this

weight of mercury occupies at t the same volume which was

filled by W grammes of mercury when the temperature was
zero

;
viz. the volume of the apparatus. Hence, the volume of

WW w grammes at t is V' = r . . But if J repre-

sents the coefficient of apparent expansion, we have, by (239),
V = V (1 + K ;

and substituting the values of V and V,
we get, by reducing,

K = w
n.76.1n

(TT w)t
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Dulong and Petit found, by this method, that the apparent

coefficient of expansion of mercury in the common glass of

Paris is ^^ ff ;
but evidently this coefficient depends on the

expansion of glass, and is liable to all its variations (245).

(253.) We can also easily determine the apparent expansion
of mercury by a thermometer-tube, whose stem has been divided

into parts of equal capacity (221). For this purpose, we in

the first place ascertain the relation between the volume of the

reservoir and that of one of the divisions of the tube in the fol-

lowing way :

The tube, having been weighed, is partially filled with mer-

cury, and the point on the lower part of the stem at which the

mercury stands in melting ice is carefully marked. Now re-

weighing the tube, we find the weight of mercury which the tube

and bulb contain below this index-mark. Call this weight W.
An additional quantity of mercury is then introduced, so that,

when the apparatus is again immersed in ice-water, the column

stands at the wth division above the mark. A third weighing now

gives the weight of mercury occupying, at 0, n divisions of the
rtrt

tube. Call this weight w
; then is the weight of mercury

which fills one division of the tube. Assuming the volume of

one division of the tube as our unit of measure, and representing

by N' the number of such units of volume which the bulb and

tube contain below the index-mark, we have

and knowing the number of these arbitrary units of volume

below the index-mark on the tube, we can by simple addition

or subtraction find the number below any other division. Let us

represent this number in general by N.

The bulb and tube having been thus gauged, in order to meas-

ure the apparent expansion of mercury we have only to deter-

mine the two fixed points, as in making a thermometer (218).
The number of divisions on the stem between these points is the

niimber of units of volume which N units of volume expand be-

tween and 100. Representing by n the number of divisions

between the fixed points, we have, by [166],

100), whence fi =~'y [178.]
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which is the coefficient required. This method, although not so

accurate in the case of mercury as the one described in the last

section, is much the more accurate of the two for other liquids.

(254.) Relation between the Apparent and Absolute Coeffi-

cient of Expansion. It has already been stated (249), that the

apparent increase of volume of mercury in a glass vessel is equal

to the actual increase of volume diminished by the amount of

expansion of the glass. A simple algebraic calculation will show

that the apparent coefficient of expansion of mercury is also equal
to the absolute coefficient diminished by the coefficient of expan-
sion of the glass. Representing these quantities respectively by

l\, JT, and K 1

,
we have, in every case,

it = K K' (1), or K 1 = K K (2) ; [179.]

so that we can always calculate either coefficient when the other

two are known. Now the absolute coefficient of mercury is

known with great accuracy, and we can therefore use the pro-

cesses described in the last two sections for determining the

coefficient of expansion of glass. Indeed, this is much the most

accurate method we have, and the careful determinations made

by Regnault of the coefficients of expansion of different kinds of

glass, and of the same glass under different circumstances, were

made in this way.
We can also use the method of (252) for determining the

coefficient of expansion of any solid not acted on by mercury,
when the coefficient of the glass used is known. For this pur-

pose, a weighed amount of the solid (either in fragments or

in the form of a bar) is introduced into a glass tube closed

at one end, and the other end is then heated in a lamp and

drawn out into the form represented in Fig. 380. The tube is

next filled with mercury, and the experiment conducted in all

respects as described in (252). We shall then have the follow-

ing data for calculating the coefficient of expansion of the solid :

1. the weight of the solid (W^), and its specific gravity (#) ;

2. the weight of mercury in the tube at ( W'), and its specific

gravity (5') ;
3. the weight of mercury in the tube at t (W1

w)\
4. the coefficients of mercury and glass (K and A"'), Represent-

ing also by x the unknown coefficient of the solid, we can easily

obtain it from the following equation, remembering that the vol-

ume of the tube either at or t must be equal to the volume of
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the enclosed solid plus the volume of the mercury it contains

at the temperature. See also [56] and [166] .

=7 (1+ x + ""a7
"

(*+ *<> [130.]

From this we obtain the value of the coefficient,

1 S w
, (< P1Q1 -.

=7'W~ ~d'W~ ~6rW~

This method of determining the coefficient of expansion of

solids admits, in many cases, of great accuracy. It was used by

Dulong and Petit for determining the coefficients of cubic expan-
sion of iron, platinum, and copper.

(255.) Laws of the Expansion of Liquids. The fullest in-

vestigations on the expansion of liquids have been made by

Kopp,* in Germany, and by Pierre,f in France. These experi-

menters followed essentially the same method. They deter-

mined, in the first place, the apparent expansion by means

of a thermometer-tube, as described in (253), and afterwards

corrected the results for the expansion of the glass. The follow-

ing are the most important facts which are known in regard to

the expansion of this class of bodies.

Liquids, like solids, expand with an almost irresistible force,

which may be measured by the mechanical effort required to

condense the expanded liquid to its initial volume (118). For

the same increase of temperature, all liquids expand more than

the most expansible solid. This we should naturally expect,

from (244), because liquids are more compressible than solids
;

and in support of the same principle, we find that the order of

expansibility of different liquids is nearly the same as the order

of compressibility, although by no means identical with it. It

may also be stated as a general rule, but one to which there are

many exceptions, that the most expansible liquids are those

which have the lowest boiling-points ; this is especially true

in regard to liquids which are allied in their chemical proper-

* Poggendorff, Annalen, Band LXXIL S. 223. Also Ann. Chern. und Pharm.,

Band XCIV. S. 257
;
Band XCV. S. 307.

t Annales de Chimie et de Physique, 3 Serie, Tom. XV., XIX., XX., XXI.,

XXXL, XXXIII.
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ties. The difference between the coefficients of expansion of

different liquids for the extreme cases is very great. Thus,
while the coefficient of mercury is only 0.00019 at the boiling-

point, that of aldehyde is 0.002025, only one third less than that

of air. The amount of expansion of different liquids for the

same interval of temperature may therefore differ immensely.
The rate of expansion of all liquids increases with the tempera-

ture ;
but it varies according to different laws with different sub-

stances, and these laws appear to be very complicated. Of all

liquids, the coefficient of expansion of mercury increases the most

slowly, that of water the most rapidly, the difference between

the mean rate of increase in the two cases being (according to

Regnault and Kopp) as 28 to 1,408. The following table, which

includes also a few of the results of Pierre's investigation, will

illustrate these facts.

Name of Liquid.
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separate instances
;
but unfortunately these groups consisted of

only two or three liquids, and hence 110 general conclusions can

be drawn from the facts.

The expansion of most liquids can be represented by a formula

of the general form [171] ,
with the same numerical coefficients

for all temperatures between the limits of the experiment. The

following are the formulae for alcohol, ether, and oil of turpentine,
as calculated by Kopp from the results of his own experiments :

Alcohol, Sp. Gr. = 0.80950 ; B. P. = 78.4 ; to 79.6.

V= 1+ 0.00104139 1+ 0.0000007836 1
2
-f 0.00000001 7G18 1

3
.

Ether, Sp. Gr. = 0.73658 ; B. P. = 34.9 ; to 33.

V= 1 -f 0.00148026 1-\- 0.00000350316^-f- 0.000000027007 *
3
.

Oil of turpentine, Sp. Gr. = 0.884 ; B. P. 156
; 9.3 to 105.6.

F= I -f 0.0009003* + 0.0000019595 1
2
-f 0.0000000045 1*.

In each case are given the specific gravity, the boiling-point, and
the limits of temperature between which the experiments from

which the formula is deduced were made.

Strictly speaking, the formula only holds

between these limits
; but, nevertheless,

it can be used without any important
error for temperatures a few degrees
either above or below the extreme lim-

its, as, for example, to determine the

volume of a liquid at the boiling-point.

The law of expansion which any given

liquid obeys may also be expressed by
means of a curve applying the principle

already explained in (195). Fig. 881

represents three such curves, those of

mercury, water, and alcohol. Here the

numbers on the horizontal axis indicate

degrees of temperature, and the numbers
on the vertical axis the corresponding
amount of expansion, expressed in frac-

tions of the unit of volume. These

curves illustrate several of the facts just

stated. It is evident, for example, that alcohol expands much
more rapidly than either of the other two liquids. It will also
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be noticed, that, although above 40 water expands more rap-

idly than mercury, yet below this temperature the order is re-

versed. Moreover, it will be seen that the curve of mercury is a

straight line, showing that the amount of its expansion is propor-
tional to the temperature, or, in other words, that the rate is uni-

form. (The small variation which actually exists is not sensible,

on account of the reduced scale of the figure.) The curve of

alcohol, on the other hand, bends in towards the vertical axis,

indicating that its rate of expansion increases with the tempera-
ture ;

and the curve of water, bending much more strongly,

points to a still more rapid variation.

(256.) Expansion of Liquids above the Boiling-Point. It

is a well-known fact, that, when a liquid is confined in a strong
and hermetically-sealed vessel, its temperature may be raised very

greatly above its boiling-point ;
and it becomes a very interesting

subject of inquiry, whether the rate of expansion, which increases

so rapidly as we approach this point, increases with equal rapid-

ity above it. This subject has recently been investigated by
C. Drion,* and he has arrived at the very remarkable conclusion,

that under these circumstances the coefficient of expansion of a

liquid not only increases at a constantly accelerated rate, but also

that it may even surpass the coefficient of expansion of the gases.

The experiments of Drion were made on chloride of ethyle,

hyponitric acid, and sulphurous acid, and his results are given in

the following table, which shows the coefficients of expansion of

all three liquids at the temperatures indicated.

Temperature.
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It will be noticed that the coefficients of all three liquids in-

crease with very great rapidity above their boiling-points, and that

those of the first two soon exceed the coefficient of air. The

same is undoubtedly the case with hyponitric acid ; but it was

impossible to push the experiment above 90, because the deep
color of the vapor obscured the position of the summit of the

liquid column in the thermometer-tube.

These results confirm the following observation made by Thi-

lorier, in 1835, in regard to the expansion of liquid carbonic

acid, which has been hitherto received with great mistrust on

account of its paradoxical nature, but which is now shown by

Dripn to be in perfect harmony with the laws of liquid expan-

sion :

"This liquid presents the strange and paradoxical fact of a

liquid more expansible than the gases ;
in a word, its ex-

pansion is four times greater than air, which between and 30

expands only ^y, while the expansion of liquid carbonic acid

reduced to the same scale amounts to f ."
*

(257.) Expansion of Water. The expansion of water is far

more irregular than that of any known liquid, although the total

amount of expansion between and 100 is comparatively small.

This fact is shown by the table on page 517, from which it

appears that the coefficient of water increases as the temperature
rises vastly more rapidly than that of any other liquid mentioned,

although this coefficient, even at the boiling-point, is the smallest

in the table with the single exception of that of mercury ;
and not

only does the coefficient increase with this unparalleled rapidity,

but also the rate of increase varies so irregularly, that it has been

found impossible to express the volume of water at different

temperatures by any single empirical formula. All this is true

of the expansion of water between 10 and 100, and below 10

the expansion is still more irregular than it was above ;
for water

alone of all liquids has a point of maximum density above its

freezing-point (4 C.), and from this temperature it expands,
whether it be heated or cooled.

(258.) Point of Maximum Density. This last fact, which is,

so far as we know, a unique property of water, and seems to

be a special adaptation in the plan of creation, can be very well

* Annales de Chimie et de Physique, 2e
Se'rie, Tom. LX. p. 427.
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illustrated by means of the apparatus represented in Fig. 382.

The apparatus is essentially a largo water thermometer, a

glass flask of about one litre capacity form-

ing the bulb, and the tube being secured

by leather packing in a brass cap, which

screws into a collar of the same metal,

cemented to the neck of the flask (see Fig.

383). The temperature of the water in

the flask is given by a thermometer sus-

pended from a hook on the under side of

the cap, and the height of the column in

the tube is observed by means of a wooden

scale divided into millimetres, counting

from a zero-point near the

lower end.

If this apparatus is placed

in a cold room, whose tem-

perature is below the freez-

ing-point, and carefully

watched, the column of

water in the tube will be

seen to fall, until the ther-

mometer in the flask marks

about G. It will then be

at its lowest point ; for as

the temperature falls still

lower, the liquid column

will begin to rise in the tube, and continue to rise until the

water freezes, although by keeping the apparatus perfectly still

the water may be cooled several degrees below its normal freez-

ing-point before this takes place.

The course of this very remarkable phenomenon may be best

represented to the eye by means of a curve. In Fig. 384, the

abscissas of the curve a b c represent degrees of temperature,
and the . ordinates the corresponding height of the column of

water in the tube of the apparatus (Fig. 382), measured from

the zero-mark on the scale
;
and it will be noticed that the curve

bends towards the axis of abscissas, reaching its lowest point at

the temperature of about 6. This curve does not, however,

represent faithfully the variation in the volume of the water,

Fig 3C3 tig. 382.
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since the height of the liquid column in the tube depends on the

expansion of the glass as well as on that of the enclosed liquid.
But since we know the volume of the glass flask and its coeffi-

cient of expansion, it is easy to

calculate the effect produced by
its expansion ;

and thus we can

reduce the observed heights of the

column of water to what they
would be, were the volume of the

vessel absolutely constant. If, then,

we construct a curve with these

corrected heights, we shall obtain

the curve adf, which represents

accurately the variation in the vol-

ume of water between and 16
;

and it will be seen that the liquid

has the smallest volume (or is most

dense) at 4.

There is another singular fact

connected with this phenomenon.

Starting from the point of maxi-

mum density, the rate of expansion
of water increases with very nearly equal rapidity, whether we
heat or cool the liquid. This is illustrated by the water ther-

mometer (Fig. 385), in which, as before described (219), the

dagrees have been proportioned to the rate of expansion. In this

thermometer, as in the apparatus of Fig. 382, the water will be

at the lowest point at 6, and from this temperature the water will

rise whether the instrument be heated or cooled, the length of

the degrees in either case rapidly increasing. The temperatures
below 6 are marked in the figure on the left-hand side of the

scale of the instrument
;
but here, as before, the phenomenon is

obscured by the expansion of the glass, so that the rate of expan-
sion on either side of the point of maximum density cannot be

directly compared. It is evident, however, that it increases in

both cases with great rapidity ;
and were the tube and bulb inex-

pansible, the lowest point on the scale would be 4, and the

degrees on either side would be of equal lengths.

The fact that water has a point of maximum density was

first noticed by the Florentine Academicians as early as 1670 ;

Fig. 384.
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but the phenomenon was first carefully inves-

tigated by Lefebre Gineau, while determining
the French unit of weight, at the close of the

last century (12). He fixed the point of maxi-

mum density, by weighing a mass of brass in

water (135) and comparing the loss of weight at

different temperatures, taking care to reduce

the results to what they would have been if the

volume of the brass had remained absolutely
constant. He found that water was most dense

at 4.5 C., and this result was confirmed subse-

quently by Hallstrom,* who, using essentially

the same process, fixed the point of maximum

density at 4.l. Still later, Despretz,f in a very
extended investigation, published in 1839, on

the expansion of water from 9 to +100, al-

so fixed the point of maximum density at 4.

Despretz used in his experiment thermometer-

tubes, and measured the change of volume by
the method described in (253), correcting, of

course, the observed results for the expansion
of the glass. These observations were evidently

exposed to all the uncertainties connected with

the expansion of glass, already noticed (245) ;

and since, near the point of maximum density,

the expansion of glass bears a very large propor-

tion to that of water, a small error in the de-

termination of this quantity may have caused

an important error in the final result. In order

to avoid this source of error, Pliicker and Geiss.

ler,J who have made the most
'

recent investi-

gations on this subject, used thermometer-tubes

very ingeniously contrived so that the expansion
of mercury should correct that of the glass.

They found it, however, impossible to deter-

mine with absolute accuracy the point of

* Annales do Chimie et de Physique, 2 Serie, Tom.
XXVIII. p. 56.

t Comptes Rcndus, Tom. IV. p. 124
;
Tom. X. 131

J Poggendorff's Annalen, Band LXXXVL

18

Fig. 385.
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maximum density by direct observation
;
but they concluded

that it must be very near 3. 8, and that it might be regarded
for all practical purposes as at 4 without sensible error. In-

deed, it is impossible with our present methods of observation

to fix the point of maximum density within a quarter of a

Centigrade degree ; nor is this important, since the volume of

water does not vary perceptibly for a degree on either side of

this point.

Fig. 386 gives a graphic delineation of the expansion of water

between 4 and +12, according to the method of analytical

Fig. 386.

geometry. The curve drawn with a heavy line has been plotted
from the results of Pliicker and Geissler, and that with a light

line from those of Despretz. The abscissas of the curves are

tho degrees of temperature, and the ordinates are the amounts of

expansion, the number on the vertical axis being in each case
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so many million tlis of the volume at 0. It will be noticed that

the two branches of the curve on either side of the abscissa of

4 are similar, showing, as stated above, that the expansion
increases at the same rate from the point of maximum density,
whether the water be heated or cooled.

This provision in the constitution of water, that its point of

maximum density is four degrees above the freezing-point, is one

of great importance in the economy of nature ; for were it not

for this apparent exception to an otherwise universal law, all the

ponds and lakes of our northern climates would be converted

every winter into a solid mass of ice. It must be remembered,
that all liquids are poor conductors of heat, and that they can

only be heated or cooled by a circulation of their particles, by
which each in its turn is brought in contact with some hot or

cold surface. Jlence we cannot cool a liquid by removing the

heat from below. The lowest stratum of liquids, it is true,

readily yields its heat
;
but since its density is thus increased, it

remains persistently at the bottom, and then its poor conducting

power comes into play, and prevents the escape of the heat from

the great mass of the liquid above. We can easily, however,
cool a liquid by removing the heat from the upper surface, for

then the particles of liquid sink as fast as they are cooled, until

the whole mass is reduced to a uniform temperature.
Such a circulation as this takes place in every pond as the

winter's cold increases, and continues until the temperature of

the mass of water has been reduced to 4
;
but as the tempera-

ture approaches the point of maximum density, the circulation

slackens, and is entirely arrested when that point is fully reached.

The surface water cools still lower, and finally freezes
;
but then

the ice, being a poor conductor of heat, and floating on the sur-

face, serves as a cloak to the pond, so that during the coldest

winter a thermometer will always indicate a temperature of 4

if sunk only a few feet below the ice.

If water had been constituted like other liquids, the circula-

tion just described would have continued down to the freezing-

point, and the ice, being now heavier than the water, would have

first formed at the bottom of the pond, and gradually accumu-

lated until the whole mass of water was frozen. On such a body
of ice the hottest summers would have produced but little effect ;

and as now during the winter the water freezes only to the depth
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of a few feet, so then during the summer the ice would only have

melted on the surface. Thus it is that the order of creation de-

pends on an apparent exception to a general law, so slight and so

limited in its extent that it can only be detected by the most

refined experiments.
A point of maximum density has not been observed with cer-

tainty in any liquid except water
; but, nevertheless, it is possible

that such a point may exist in a few melted metals, such as cast-

iron, antimony, and bismuth, which, like water, expand on becom-

ing solid. These substances, however, are liquid only at high

temperatures, at which it is impossible to make accurate meas-

urements. On the other hand, it has been proved in the case of

many liquids, which, like olive-oil, contract on solidifying, that

there is no point of maximum density.

Despretz has carefully studied * the effect of alts dissolved in

water on its point of maximum density. He found, in general,

that aqueous solutions have a point of maximum density, which

may be, however, below the normal freezing-point of the solution

when the quantity of salt dissolved is considerable. The point

of maximum density sinks very nearly in proportion to the quan-

tity of salt dissolved, and more rapidly than the freezing-point,

so as finally to fall below it (271). A table will be found in the

memoir just referred to, giving the point of maximum density,

as well as the freezing-point, in solutions of various salts at dif-

ferent degrees of concentration.

(259.) Volume of Water at different Temperatures. Several

experimenters, but especially Despretz, Pierre, and Kopp, have

determined the volume of the same quantity of water at differ-

ent temperatures between 15 and 100 ;
and then, by means

of interpolation formulae, calculated the volume for every degree

between these limits. The volumes and corresponding specific

gravities, as thus calculated by Kopp, are given in Table XVI.

As already stated, it is impossible to express the volume of

water at all temperatures by any single formula; but the fol-

lowing formulas will give the volume very closely over an in-

terval of twenty-five degrees. The first of these was calculated

by Frankenheim from Pierre's experiments, the rest are by

Kopp.

* Comptes Rendus, Tom. IV. p. 435.
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Between 15 and 0,

V 1 0.0000941 7 1 -f- 0.000001 449*2 0.0000005985 **.

Between and 25,

F= 1 0.000061045* -f- 0.0000077183 *
2 0.00000003734 1*

Between 25 and 50,

V 1 0.000065415* -f 0.0000077587 *
2 0.000000035408 1*.

Between 50 and 75,

F= 1 -f. 0.00005916* + 0.0000031849*2 + 0.0000000072848**.

Between 75 and 100,

V= 1 -f 0.00008645* -f. 0.0000031892 *
2 + 0.0000000024487 *

3
.

(260.) The Coefficient of Expansion of Water. We Lave

assumed that the coefficient of expansion of a substance at any

given temperature, ,
is the small fraction of its volume by which

one cubic centimetre of the substance will increase when heated

from t to (t -f- 1) ;
and this assumption is sufficiently correct in

the case of most substances, for we may regard the rate of expan-
sion as constant through one degree. The coefficient of expan-
sion of water, however, increases so rapidly, that we cannot

without error regard it as absolutely the same even for one

degree ;
and we must therefore define the coefficient of water

at any given temperature, ,
as the small fraction of its volume

by which one cubic centimetre would expand, when heated from

t to (/ + 1)> tf the rate of expansion were the same during the

interval that it is at t.

We easily obtain from [166], for the value of the coefficient of

expansion at any given temperature, t, the value

v
[182.]

in which F is the volume of the liquid at a given temperature, ,

and F' the volume at a temperature, 2', a few degrees higher.

This formula, like our first definition, assumes that the coefficient

is constant between t and f degrees. We may evidently, how-

ever, conform the formula to the definition just given, by making
the interval of temperature /' t infinitely small. It may then

be expressed by d t, and the corresponding difference of volume,
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or V --
F, will be d F. Making these substitutions, [182]

becomes

l^fci^ '-r-TF-
Since now we can easily obtain the value of -7 by differen-

tiating one or the other of the values of F on page 527, we can

easily calculate the coefficient of expansion of water at any given

temperature, by simply dividing this differential coefficient by the

value of F for the given temperature, calculated by means of the

formulae just referred to. Such calculations would show that

the coefficient of expansion of water varies from zero at the

point of maximum density to 0.00076487 at 100, the rate of

expansion increasing far more rapidly than that of any other

liquid known.

Expansion of Gases.

(261.) The differences between the amounts of expansion of

different gases for the same increase of temperature are far less

than with either liquids or solids
; indeed, they are so small, that,

previous to the refined investigations of Regnault on this sub-

ject, the coefficient of expansion of all gases was supposed to be

absolutely the same. The annexed table gives the results of

Regnault' s determinations of the coefficients of expansion of a

few of the best-known gases ;
and it will be noticed that the

coefficients of the first four, which have not yet been condensed

to liquids, are all sensibly the same, while the coefficients of the

last three, all condensible gases, are considerably greater, and
the greater in proportion to the readiness with which they may be

condensed.

Coefficients of Expansion of Gases.

Under Under
Constant Volume. Constant Pressure.

Air, . . . . . 0.003665 0.003670

Nitrogen, .... 0.003668 0.003670

Hydrogen, .... 0.003667 0.003661

Oxide of Carbon, . . 0.003667 0.003669

Carbonic Acid, . . . 0.003688 0.003710

Cyanogen, .... 0.003829 0.003877

Sulphurous Acid, . . . 0.003845 0.003903
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The first four coefficients, those of the constituents of air and

water, may be regarded as identical, at least for all practical

purposes ;
and if considered equal to 0.0036664-

,
the expansion

for one hundred degrees will be represented by the vulgar frac-

tion
,
which can be easily remembered. In like manner, the

expansion for one degree may be represented very closely by the

vulgar fraction ?f3 . Hence 273 cTiu.
3 of any permanent gas at

become 274 cTnf.
8 at 1

;
and if we assume that the expansion

is exactly proportional to the temperature, they will become

(273 + t) cTFri.
3 at t. Moreover, representing by V any volume

of a permanent gas at 0, we shall have by [166], for the volume
at t

9
the expression,

F'= F(l + 0.003660- [184.]

The values of (1 + 0.00366 for every tenth of a degree from

-^2 to 40, with their corresponding logarithms, are given in

Tables XL and XII. for convenience of computation.
The coefficient of expansion of a gas may be estimated in two

ways. In the first place, we may measure the increase of volume

which the gas undergoes, supposing the pressure on the gas to

remain constant while the volume expands ; or, in the second

place, keeping the volume the same, we can measure the in-

creased tension which the gas exerts owing to the increased

temperature ; and we can then calculate by [98] what would

have been the increased volume had the gas been allowed to

expand. The difference between these two methods will be better

understood by experimental illustration.

In Fig. 387, B is a glass globe

holding from 1,000 to 800 cT^8

of perfectly dry gas, whose coeffi-

cient of expansion is to be meas-

ured. This globe is filled by

exhausting the air by means of

an air-pump, connected by a flex-

ible hose with the tube jo, and
then allowing the gas to enter

through tubes filled with pumice-

stone, moistened with sulphuric

acid, or with chloride of calcium,
Fi - 387-

two substances which have a very strong attraction for water (see

45
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Fig. 388). The exhaustion is repeated, and fresh gas admitted,

twenty or thirty times, until the gas in the globe and the con-

necting tubes is known to be pure and dry. The connection

between the globe and the pump is now closed by turning a

three-way stopcock at #, leaving, however, the connection be-

tween the globe and the manometer-tube a
/3 / still open. The

construction of this manometer has already been described

(168, 2). When the apparatus has been thus filled with a

gas, the coefficient of expansion may be readily determined by
either of the two methods just mentioned.

First Method. We begin the determination by surrounding
the globe, supported in a copper boiler, as represented in the

figure, with pounded ice, so as to reduce the temperature of the

enclosed gas to 0. We then regulate the quantity of mercury
in the manometer so that the columns in the two tubes shall

stand at the same height, as, for example, a, which is carefully

noted. This is readily effected by either drawing out mercury at

the lower stopcock, or by pouring it in at the mouth of the open
tube. When the adjustment is perfect, we build a fire under the

copper boiler and surround the globe with steam, by which the

temperature of the gas is soon raised to 100. The increased

elasticity of the gas due to the increased temperature will drive

out a portion into the manometer-tube, forcing down the mercury-
column. A quantity of mercury is now drawn off at the lower

stopcock, until the columns in the two tubes again stand at the

same level. When this is the case, the gas is exposed to the

same pressure as before, and we then read off the increased

volume by means of graduations on the tube provided for the

purpose.

Let us represent the observed increase of volume in this experiment

by v, and let us assume that the pressure of the atmosphere, as indi-

cated by the barometer, remained constant at 76 c. m. during the ex-

periment. If now we represent the volume of air in the globe at by
F, it is evident that, if heated so that it could expand freely, this volume

would become at 100, V (1 -f-K 100) ; an expression in which K is the

coefficient of expansion required. In the apparatus before us, however,

the excess of gas due to the expansion escapes into the tube da
/?,

where

it is exposed to a much lower temperature. Call this temperature, which

is always carefully observed, t. The volume of this small amount of gas,

had its temperature been maintained at 100, would evidently have been

v (1 -(-
K [100 *]), so that we have the equation
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K 100) =' F+ v (1 + K [100 *]) [185.]

It must be remembered, however, that the glass globe expands as well as

the gas, and therefore contains at 100 a larger volume of gas than at 0.

This increased volume can be readily calculated from the coefficient of

expansion of glass (^T'), and is V (1 -)- K' 100). Substituting this value

for Fin the second member of [185], we obtain

V (\-\-K 100)=V (\-\-K
1

100)+ v (1 +K [100 <]);

which gives, for the coefficient of expansion of gas under constant pres-

sure, the value

v lOOVK'+vK -- -~

m~(v^) + rv
*

Second Method. In order to determine the coefficient of ex-

pansion by the second method, we arrange the apparatus exactly

as before, so that the mercury stands at the same level (a, Fig.

387) in both tubes of the manometer when the globe is sur-

rounded by ice. We then, as before, raise the temperature of

the globe to 100
;
but instead of allowing the gas to expand into

the tube d a a, we pour mercury into the tube fl y, in order to

balance the increased tension of the gas and retain the volume

constant. Lastly, we carefully measure, by means of a cathe-

tometer, the difference of height (a, y) of the mercury columns

in the two tubes of the manometer
; and, having observed the

temperature of the apparatus, reduce the observed height to

what it would have been at 0. Represent this height by 7t .

Knowing now the volume of the globe at (F), the height of

the barometer at the time of the experiment (->), and the co-

efficient of expansion of glass (A"'), we have all the data required

for calculating the coefficient of expansion of air.

When the globe was at 0, the gas was exposed to the pressure of the

atmosphere, or ff ; but after the globe had been heated to 100, the pres-

sure required to retain the volume of the gas the same as before was

JfQ _|_ hv "We can now easily calculate from Mariotte's law [98] what

would be the volume of this gas if exposed only to the pressure of the

atmosphere ; in other words, if allowed to expand freely. It will be found

to be

F' = F^+ - [187.]
//o

But by [166] the increased volume of the gas at 100, or F', is also equal
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to V (1+K 100), so that V(l + K 100) = V H + h
. We must

remember, however, that although the volume of the gas has been appar-

ently kept constant during the experiment, it has not been so in reality,

owing to the expansion of the glass globe. In consequence of this expan-

sion, the volume of the globe at 100 is F(l +K1

100) ; and this value

should evidently be substituted for V in the second member of the last

equation. Making this substitution, we obtain

1 + K 100 = (1+ K' 100) -^jEr
2

whence

.

[188.]
- J.Q

* V V

In this example, as in the last, we have assumed that the pressure of

the atmosphere was constant during the experiment. When this is not

the case, certain obvious changes must be made in the formulae. More-

over, in the practical application of these methods, certain precautions

must be taken, which will be found described at length in Regnault's

original memoir* on the subject, as well as the peculiar modifications of

the apparatus best adapted for each method.

(262.) General Results Regnault found that the two meth-

ods just described for determining the coefficient of expansion of

gases yielded slightly different results. This will be seen by re-

curring to the table on page 528. The first column gives the

coefficient as determined from the increased elasticity, the volume

remaining constant The second column gives the coefficient as

determined from the increased volume, the pressure remaining
constant. It will be noticed that the difference between the

two results, although very small with the permanent gases, is

quite large with those that can be easily reduced to the liquid

state , and it will be remembered that it is these very gases which

yield most readily to compression, and hence deviate most mark-

edly from the law of Mariotte. Moreover, the fact that, with the

exception of hydrogen, the coefficients under constant volume
are less than those under constant pressure, is easily explained.
In the method employed, the gases are exposed to a greater

pressure at 100 than at By this pressure they are con-

densed more than we assumed by applying the law of Mariotte

* Me'moires de I'Academie de Sciences de 1'lnstitut, Tom. XXI.
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in our calculation as if it were exact, and consequently the effect

of the increased temperature is really greater than appears. In

other words, the mercury-column h measures, not simply the

increased tension of the gas caused by the increased temperature,
but the difference between the increased tension and the in-

creased compressibility. In the case of hydrogen, which, unlike

all other gases, is compressed less than the law of Mariotte re-

quires, the variation is in the opposite direction. (Compare

page 296.)

Regnault also discovered, what indeed might be inferred from

the facts already stated, that the coefficients of expansion of all

gases except hydrogen increase with the pressure to which they

are exposed. The greater the pressure on a mass of gas, and

hence the greater its density, the greater is the amount of its

expansion for the same difference of temperature ; and, on the

other hand, the less the pressure and density, the smaller the

amount of expansion. The coefficient of expansion in any case

increases with the pressure in proportion as the compressibility

of the gas deviates from the law of Mariotte, and hence the dif-

ferences between the coefficients of different gases are the more

decided the greater the pressure to which the gases are exposed.

On the other hand, as the pressure diminishes, the coefficients of

expansion of different gases approach equality ; and it is probable,

therefore, that all gases in the state of extreme expansion would

have the same coefficient. (Compare page 297.)

It appears, therefore, that all gases have the same coefficient of

expansion, in so far as they obey the law of Mariotte. In the

case of those gases which have not been liquefied, and which con-

form very closely to Mariotte's law, the coefficients of expansion
tinder the pressure of the atmosphere are sensibly equal, and

even in the case of the condensible gases the differences are

very small, amounting in no case to more than three units in the

fourth decimal figure. We may therefore say that the coeffi-

cient of expansion of all gases under the pressure of the atmos-

phere is equal to 0.0036, within three ten-thousandths.

(263.) Air- Thermometer. We have seen that the defects

of the mercury-thermometer arise from two causes ; first, the

slowly increasing rate of expansion of mercury as the tempera-

ture rises, and, secondly, the irregular and uncertain expansion

of the glass bulb. Both of these defects may be avoided by using

45*
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air as the thermometric material : the first, because the expan-
sion of air is exactly proportional to the temperature ;

and the

second, because the expansion of air is so much greater than that

of glass that the irregularities in the expansion of the latter

may be overlooked. It is, however, by no means so easy to meas-

ure the volume of a gas as that of a liquid. The volume of a

liquid is not affected by the changing pressure of the atmos-

phere, while that of a gas is
; so that while a small increase in

the volume of a quantity of mercury enclosed in a common ther-

mometer can be measured by the mere inspection of the divis-

ions on the stem, the amount of expansion of a quantity of air

confined in a glass bulb, although much larger, can only be

determined with certainty by a tedious process, occupying sev-

eral hours. Thus, although with an air-thermometer we can

measure temperatures with accuracy to the hundredth of a Centi-

grade degree, yet it requires a day to make a single observation.

The air-thermometer is, therefore, of no use, except in the few

cases which require the very highest degree of scientific precision.

In such cases it is an invaluable instrument
;
but even then, as

in all other scientific measurements, the greatest attainable accu-

racy can only be gained at the cost of time, labor, and skill.

Fig. 388.

(264.) RegnauWs Air- Thermometer. The air-thermometer,

which is used only in delicate measurements of temperature, is

represented in Figs. 388 and 389. It consists of a cylindrical

reservoir of glass, B, opening into a capillary tube bent at right
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angles and drawn out to a fine point. In order to estimate tem-

peratures with this instrument, it is first filled by means of an

air-pump and drying-tubes, as shown in Fig. 388, with perfectly

dry air, and then exposed to the temperature to be measured,
which we will call T. When an equilibrium of temperature
has been established between the thermometer and the heated

substance, the fine opening is closed

with a blowpipe, and at the same time

the height of the barometer is noted,

which we will call 7J . The air in the

thermometer is now expanded to the

extent corresponding to T, and the next

step is to ascertain the amount of this

expansion, since we can easily calculate

from this the temperature T. For this

purpose, we place the thermometer upon
the metallic support represented in Fig.

389. The reservoir of the thermometer

rests upon three brass knobs, and is kept

in its place by means of a binding screw.

The tube of the thermometer passes

through a hole in the centre of the

brass stage A, and the end dips under

mercury contained in the glass dish C.

The bent end of the tube is adjusted opposite to an iron spoon, a,

filled with wax, which can be pushed forward on its support, s,

so as to close the end of the tube while under mercury, when

necessary. These adjustments having been completed, the tip

end of the tube is broken off with a pair of pliers, when the

mercury immediately rushes up into the thermometer and par-

tially fills it. The thermometer is next surrounded with pulver-

ized ice, which is piled up on the stage, G ; and when the air in

the reservoir has fallen to 0, the end of the tube a is carefully

plugged up by means of the wax in the iron spoon, and at the

same time the height of the barometer (#') is carefully noted.

The ice is now removed, and when the temperature of the mer-

cury in the thermometer has been restored to that of the air, the

height of the mercury in the thermometer above that in the

reservoir is carefully measured. We will call it h , and hence

the air in the thermometer, at the moment the tube was plugged

Fig. 389.
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with wax, must have been exposed to the pressure of H' h.

This measurement is easily made by means of a cathetometer

and the screw g*, in the manner previously explained in connec-

tion with Regnault's barometer (159).

It is next necessary, in order to determine the temperature to which

the thermometer has been exposed, to ascertain, first, the volume of air

remaining in the thermometer after contraction, and, secondly, the volume

originally contained in it. For this purpose, the thermometer is removed

from its support and weighed ; call this weight W. The thermometer is

then filled completely with mercury at and weighed ; call this second

weight W. Lastly, it is completely emptied, and the glass weighed by
itself; call this last weight w. We have now all the data for calculating

the amount of expansion of the air, and consequently the temperature

required. Before commencing the calculation, we must reduce the ob-

served heights of the barometer (//and H') and mercury-column (h) to

by the method given in (251). We will call these corrected heights

HQ, H'fr hQ. We can then readily calculate the following quantities.

W w = weight of mercury which fills the thermometer at 0.
~ari_ ,j0

--- = capacity of thermometer at when d = Sp. Gr. of mercury.

-~ -
(1 +K1

T) = capacity of thermometer at T70
, when K1= co-

efficient of expansion of glass.

W w =. weight of mercury which entered the thermometer on break-

ing the tip, the temperature of the thermometer being 0.

-- volume of mercury which entered the thermometer on break-

ing the tip, the temperature of the thermometer being 0.
trr/_ TTT

- = volume of air in the thermometer at the moment of plugging
with wax, exposed to a pressure H' A and to a tem-

perature of 0.

W W H _h-- ^ volume which same air would have under 76 c.m.
S 76

and 0.
-rrrf -TJTT TT/ i-r

!W -

(\.-\-K T) =. volume which same air would have

under Jf c. m. and T.

By the conditions of the problem, this volume of air just filled the ther-

mometer at T and under barometric pressure ff
;
hence

W'~ W
- Zy* (1 +KT) = ^^ (1 + JT< T) = the capaci-

ty of thermometer at T ;
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W' W ff'n ha

and we have

", and A^= 0.00367; [190.]

'" [191.]

By means of [189] and [190] we can easily calculate the temperature
from the experimental data. The coefficient of expansion of glass is the

only uncertain element which enters into the calculation. When the ther-

mometers are made of the common crown-glass of Paris, the coefficients

of expansion may be taken from the table on page 497, estimating roughly
the required temperature, as can easily be done by means of a common

mercury-thermometer. When, however, such thermometers cannot be

obtained, it is best to have a number made from the same pot of glass,

and ascertain carefully the coefficient of expansion of this glass between

and every fifty degrees up to 350. These coefficients can afterwards

be used in all experiments with the same set of thermometers.

(265.) By substituting T for 100, we can easily obtain from

[186] and [188], by transposition, the value of Tin terms of the

coefficient of expansion of air; and since this coefficient is accu-

rately known, either of the methods of (261) may be used for

determining temperature. The form which has been given by

Regnault to the manometric apparatus, when used for this pur-

pose, has already been represented in Fig. 273. The glass tube

a b c, which serves as an air-thermometer, is closed by a stopcock

r, and can be connected to the manometer by a brass collar of

peculiar construction, as before described (see Figs. 274 and 275).

The air-thermometer having been exposed to the temperature to

be measured, the stopcock r having been closed at the moment of

observation, and the height of the barometer noted, we can easily

determine the temperature in the following way.

In the first place, mercury is poured into the manometer at K until the

tube h gf is completely filled, and when the mercury begins to drop from

the open end aty, the air-thermometer is connected. The thermometer is

now surrounded with melting ice in order to reduce its temperature to 0,
and before the stopcock r is opened, a quantity of mercury is drawn out of

the manometer at 7?, in order to make a great difference of level between

the two columns. On opening the stopcock r, a portion of the air in

the thermometer passes into the tube g h ; and mercury must be again
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poured into the tube k i, until the surface of the column in the tube g h

coincides exactly with a mark, ,
on the side of the tube. The determi-

nation is then completed by measuring with a cathetometer the difference

of level of the two mercury-columns, noting the temperature of the ma-

nometer by means of the thermometer Z, and observing the height of the

barometer. We have now the following data for calculation, the heights

of the mercury-columns having been reduced to :

Jf'o = height of barometer at the moment of observing the temperature.

HO = height of barometer at the moment of measuring the difference of

level.

hQ = difference of level as measured by the cathetometer.

V =. capacity of air-thermometer at 0.

v = capacity of manometer-tube between/ and the mark .

t = temperature of the manometer at the time of the experiment.

T = required temperature to which the thermometer was exposed.

K = coefficient of expansion of glass.

0.00367 = coefficient of expansion of air.

0.0012921 gram.= weight of one cubic centimetre ofair at and 76 c. m.

The volume of air in the air-thermometer and in the manometer-tube,

when the value h was measured, was evidently V-\- v ; the portion V at

the temperature of 0, the portion v at t, and the whole under a pres-

sure ff -thQ [106]. Reducing by [166] the volume v to what it would

be at 0, and reducing by [107] the sum of the volumes at to what

this total volume would be under the normal pressure of the atmosphere,

we easily obtain for the weight of this mass of air,

0.0012921 ' ^ ' - A
' ^fl A

1_|_ 0.003 67 1\ 76

But we know that this same mass of air at the temperature T (that is,

at the moment of closing the stopcock r), and under the pressure H'Q (the

height of the barometer at the time), occupied just the volume of the air-

thermometer at that temperature, or V (\-\-K T). Reducing this volume

to what it would be at and 76 c. m., and multiplying this reduced

volume by the weight of one cubic centimetre of air, we obtain a second

expression for the weight of the given mass of air, which, in the following

equation, is put equal to the first :

0.0012921 ^
1+o^ 7

r
T ^ = 0.0012921

or reducing

I+KT__ r
__ _j I H -h

1 -f 0.0036 7. T" V 1-f 0.0036 7 ,t\ H'
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All the terms of the second member of this equation are known quantities

except Fand v, and these can easily be obtained in the following way.
In the first place, we fill the manometer-tube with mercury, as before, and

then slowly, by the stopcock JR, draw off the mercury into a tared vessel

until the surface of the column coincides with the mark . The weight
of this mercury divided by its specific gravity [5G] is equal to v. We
then attach the air-thermometer (the stopcock r being open), and observe

the height of the barometer, ff . Since the mercury is at the same level

in both tubes of the manometer, the confined volume of air
( V-\- v) is of

course exposed to the pressure ffQ . We next draw off more mercury
at It until the the level of the column in the tube h g sinks to a second

mark, #. The weight of this mass of mercury divided by its specific

gravity gives the volume of the tube between a and #, which we will call

v'. Lastly, we measure the difference of level of the mercury-columns in

the two tubes of the manometer, which we will call 7/ . At this moment

the volume of the confined air is V-\- v -(- v 1

, and, assuming that the

height of the barometer has not changed during the short interval occu-

pied by the experiment, this volume is exposed to the pressure HQ h .

The values V-\-v and V -\-v-\-v' are then the volumes of the same

mass of air under the pressures Ji and Jf A respectively. Hence,

by [98],

I 4~ V ~\- V' HQ

and from this equation we can easily deduce the value of V, since all the

other terms are known.

(266.) Air-Pyrometer. By substituting for the glass ther-

mometer (a b c, Fig. 273) a thermometer made of some refrac-

tory substance, the apparatus described in the last section may be

used for measuring very high temperatures. Pouillet* employed
for the purpose a small globe of platinum at the end of a long
and narrow tube of the same metal

;
but a thermometer made of

porcelain, as proposed by Regnault, would be less expensive, and

even better adapted to the purpose. In the use of platinum
there is a liability to error arising from its power of condensing

gases on its surface at the ordinary temperature.

(267.) The True Temperature. It is generally admitted that

the expansion of a given mass of air under constant pressure is

absolutely proportional to the quantity of heat it receives. If so,

* Comptes Rendus, Tom. III. p. 782.
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the temperatures given by the air-thermometer are the true tem-

peratures ; but although this assumption is highly probable, it is

impossible, in the present state of our knowledge, fully to establish

its truth by experimental proof. Nevertheless, the temperatures

given by the air-thermometer are the nearest approach we can

at present make to the true temperature, and it is important
in all scientific investigations to substitute for the indications of

a mercury-thermometer the corresponding temperatures of the

air-thermometer. When we know the nature of the glass of the

mercury-thermometer, we can readily make the reduction by
means of Regnault's table on page 435

;
but since the expansion

of glass is always more or less uncertain, it is always best to use

the air-thermometer in observing high temperatures if great accu-

racy is required. .^ \

(268.) Effects and Applications of the Expansion of Air.

One of the simplest effects of the expansion of air is seen in the

action of a stove on the air of a room. The particles of air in

contact with the heated iron are expanded, and, becoming thus

specifically lighter, rise and give place to the colder particles

which flow in from below. Thus a circulation is established

by which all the air in the room is finally brought in contact

with the source of heat and warmed. Were the air visible, the

heated air would be seen to rise from the stove, spread itself

over the ceiling, descend along the walls, and flow back over the

floor to the stove. In like manner, every furnace-flue, gas-light,

or candle, and every human body, would be seen to be the centre

of an ascending column of heated air ; indeed, such is the perfect

freedom of motion in air, that a single lighted candle will set in

motion the whole atmosphere of a quiet apartment. Similar cur-

rents are established whenever a door is opened by which a warm
room is connected with a cold entry. The heated and lighter

air pours out from the room at the top of the door, while the

colder air flows in over the door-sill. The flame of a lighted
candle may be used (as represented in Fig. 390) to detect the

direction of the currents. A current of air may always be

noticed flowing towards the sunny side of a building, which

supplies the current rising along the heated wall. But by far

the grandest exhibition of this aeriform circulation is the trade-

winds. These are caused by the unequal action of the sun on

different parts of the earth's surface. At the equator, the
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Fig 890

strongly heated air rises, and its place is supplied by colder air,

which flows in on both sides from the temperate zones
; thus

currents are established which would blow directly north and

south, were it not that the rota-

tion of the globe causes them to

deviate from this direction, while

other and local causes come in to

produce the irregularities which

are observed.

The effect of a glass chimney
on the flame of a candle is an-

other illustration of the action of

heat in expanding air. By the

chimney, the heat generated by
the burning combustible is con-

fined within the glass walls, and

consequently the air surround-

ing the flame becomes more in-

tensely heated than it would be

without the chimney. Moreover, the heated air is also confined

by the walls of the chimney, and prevented from mixing with the

atmosphere, thus forming a column of heated air whose height is

equal to the height of the chimney. This column of air will evi-

dently be buoyed up by a force equal to the difference between

the pressure of the air at the bottom and at the top of the cylin-

der, and this force has been shown (136 and 155) to be equal to

the weight of a column of the exterior cold air of the same area

and height. Hence the heated air will rise, for the same reason

that a balloon rises, and with a velocity proportionate to the ex-

cess of the buoyancy over its own weight. The quantity of air

passing through such a chimney in a given time can readily be

calculated, when the area of the section of the chimney, and the

difference of temperature between the inner and exterior air, are

known.

The draught of an ordinary brick flue is caused in the same

way as that in the glass chimney of a lamp. The weight of the

column of heated gas CD (Fig. 391) is less than that of the

column of exterior air A B, and hence there results an excess of

upward pressure which forces the products of combustion up the

chimney the more rapidly the greater the difference of weight

46
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Fig 391.

between the two masses of gas. A good draught depends on the

following obvious conditions: 1. The size of the flue should be

proportional to the amount of gas it is

required to carry ;
for if too large,

cold currents may descend in the

angles of the flue, while a heated one

ascends in the axis. 2. The height

of the chimney should be as great as

possible ;
for the greater the height,

the greater will be the excess of the

upward pressure on which the draught

depends. 3. The room with which

the flue connects should not be so

tight that air cannot enter as fast as

it escapes by the chimney. 4. Any
direct communication between sepa-

rate flues in adjoining rooms should

be avoided, because, if one flue draws better than the other, a

downward current may be established in the last.

Still another application of the ascensional force of heated air

is to be seen in the hot-air furnaces which are so universally used

in this country for heating buildings. They

usually consist of a brick chamber placed in

the cellar, connected by the cold-air box with

the exterior air, and communicating by tin

tubes with the different apartments above.

The interior of this brick chamber is nearly

filled with a large cast-iron stove, constructed

of various patterns, so as to expose a large

heating surface to the air surrounding it.

This heated air ascends, in virtue of its buoy-

ancy, through the tin conducting-tubes, and

cold air is pressed in from the outside of the building to supply
its place. A furnace of this kind (Chilson's) is represented in

Fig. 392, and the arrows indicate the direction of the currents

of air.

The ascensional force of heated air is not only applied in

warming buildings, but it is also used for producing ventila-

tion. One of the best arrangements for the purpose, which

may be used with great efficiency in connection with a hot-air

Fig. 392.



HEAT. 543

furnace, is represented in Fig. 393. The smoke-flue of the fur-

nace, formed by a cast-iron pipe A, rises in the centre of a

large brick shaft B
r with which the different rooms

of the building connect. The radiant heat of this

iron flue heats the air in the shaft, and thus causes

a powerful ascending current, which draws in the

foul air from the room at the openings D and D ;

while at the same time fresh air enters the room

from the furnace to take the place of that which

is thus removed.

It is evident, from what has already been

stated, that a lump of ice sustained near the top
of a room would cause a descending current of

air, and thus give rise to a circulation in the at-

mosphere of the apartment similar to that pro-

duced by a stove. This principle has been applied

in the construction of refrigerators for preserving
food in warm weather. One of these (Winship's)
is represented in Figs. 394 and 395. The ice is

sustained upon a shelf (D D) in the upper part
of a chest, the hollow walls of which are filled

with pulverized charcoal, a very poor conductor .of heat. The
air enters at a register (C), and, coming in contact with the

ice, is cooled and falls to the bottom of the chest, where it finds

Fig. 393.

Fig 394. Fig. 395.

egress at E between the hollow walls, and finally escapes at F.

In this way a gentle current of cold air is steadily maintained

as long as the ice lasts.
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PROBLEMS.

Expansion of Solids.

311. A bar of iron one metre long at is heated to 15 ;

increased length of the bar ?

312. A bar of railway iron is 3.425 metres long at 20 ; what would

be its length at 10 ?

313. In laying the iron rails of a railroad, it is necessary to make an

allowance for the expansion of the metal by heat. How much allowance

is necessary on a distance of 100 kilometres ? How much on a distance

of 20 English miles, assuming that the road is laid at a temperature of

5, and that it is liable to be exposed to a temperature of 20 ?

314. The length of one of the tubes of the Britannia Bridge over the

Menai Strait is 1,510 feet 1 inches at 0; what would be its length at

20? Determine also the difference of length between 10 and 15.

315. A bar of metal is 3.930 m. long at and 3.951 m. long at the

temperature of 83 D
. Calculate the coefficient of expansion.

316. A bar 7 m. long made of a metal whose coefficient of expansion is

TJ^ increases in length from the same increase of temperature as much

as a bar made of another metal 9 m. long. Required the coefficient of

expansion of the second metal.

317. A platinum bar 2 m. in length is divided at one of its extremities

into fourths of a millimetre ; a copper bar 1.950 m. long placed over the

first at differs from it in length 0.050 m., or 200 of the divisions on

the platinum bar. Required the temperature of the two bars at which

the difference would be equal to 164 divisions on the platinum bar.

318. A pendulum made of brass vibrates seconds at C. How many
seconds would it lose each day if the temperature were 20.

319. It is required to make a compensating pendulum of steel and

brass rods, whose constant length shall be 0.50 m. What disposition must

be given to these rods, and what must be their lengths, in order to effect

the compensation ?

320. A brass tube is 5.436 m. long at 20. How long will it be at 0?
321. A plate of sheet-iron has at a superficial area of 560 cTm.

2

Required its area at 15.

322. The iron tire of a wheel is 1.123 m. in diameter at a red heat

(1,200). What will be its diameter when cooled to 10 ?

323. An iron ball has a diameter of 15 c. m. at 0. What will be its

cubic contents at 100?

324. A glass cylinder has a capacity of 100 ~in.
8 at 15. What will be

its capacity at 150 ?

325. With what force does a bar of copper expand, the area of whose

section equals 1 H^.2
,
if heated from to 15 ?
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326. The specific gravity of a solid at 5 was found to be 7.788
; at

20 it was found to be 7.784. Required the coefficient of expansion of

the solid.

Expansion of Liquids.

327. The height of the mercury-column in the tube A, Fig. 379, was

found to be 54 c. m. The difference of level of the two columns A and

B was found by measurement to be 0.972 c. m. Required the coefficient

of absolute expansion of mercury, knowing that the temperature A was 0,
and that of B 100.

328. Reduce the following heights of the barometer observed at the

annexed temperatures to :

1. 77 c. m. t = 20 C.

2. 74 "
t = 10.

3. 75 "
t = 25.

4. 73 "
t = -10.

5. 75.85 c. m. t = -13.55 C.

6. 46.23 '
t 15.2.

7. 78.65
"

t = 14.6.

8. 75.21 "
t = -120.3.

Calculate the reduced height, first, on the assumption that the scale is in-

expansible ; secondly, on the assumption that the height is measured with

a brass cathetometer graduated at ; thirdly, that it is measured on a

glass scale also graduated at 0.

329. Reduce the following barometric observations made at 8 to the

temperatures indicated, making the same assumptions as in the last

problem :

1. 76.9 c. m. t = 30.

2. 76.8 "
t = 29.

3. 76.7 "
t = 28.

4. 76 c. m. t = -10.
5. 75.9

"
t = -9.

6. 75.8 "
t = -8.

330. A glass cylinder 4 c. m. in diameter is filled at to the height of

0.5 m. with mercury. How high is the centre of gravity at 0, and how

high at 30 over the base of the cylinder ?

331. Required the volumes of the following liquids at the temperatures

indicated, knowing that the volume at is in each case 100 cTm.
8

:

Alcohol, . . . t = 20. I Oil of Turpentine, . t = 100.

Ether, . . . t = 15.
| Water, . t = 50.

332. Prepare a table giving the volume of water for each ten degrees
from to 100, the volume at being taken as unity.

333. Construct the curves of expansion of alcohol, ether, and oil of tur-

pentine from the equations on page 518.

334. Construct a curve of expansion for water corresponding to each

equation on page 527.

335. A glass flask whose neck has been drawn out to a point contains

at 1,000 cTm.
8 of mercury. Required the weight of mercury which

will flow from the flask if its temperature is raised to 100.

46*
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336. A weight thermometer, Fig. 380, contained 254.263 grammes of

mercury at ; when heated to 100, 3.864 grammes of the mercury es-

caped. What is the apparent coefficient of expansion of mercury ?

Assuming that the coefficient of expansion of glass is 0.00003, what is

the coefficient of absolute expansion ?

337. A glass thermometer-tube was carefully calibrated and divided

into parts of equal capacity. The weight of mercury which the bulb and

tube contained below the 6th division on the stem, measured at 0, was

found to be 20.125 grammes. After introducing an additional quantity of

mercury, which filled 25 divisions of the stem at 0, this weight was in-

creased to 20.156 grammes. Subsequently, in order to measure the

apparent expansion of mercury, the two fixed points were carefully de-

termined on the stem. The difference between the two was found to be

250 divisions. Required the coefficients both of absolute and of apparent

expansion, using for the coefficient of glass the value given in the last

problem.
338. A spherical vessel having an internal diameter equal to two thirds

of a metre at 0, is made of a material whose coefficient of expansion is

equal to 3315 TT- Required the weight of mercury which the vessel will

hold at 0" and at 25.

339. A cylinder of brass immersed in water is suspended from the pan
of a hydrostatic balance, and counterpoised at 4 D

. The temperature is

then raised to 9, and it is required to determine the weight necessary to

restore the equilibrium. The circumference of the cylinder is 0.135 m. ;

its height, 0.12 m.

340. A spherical glass vessel, whose diameter is equal to 0.28 m., is

filled with mercury at 70. This mercury is turned into a quantity of

water which half fills a cylindrical vessel 0.40 m. high and 0.40 m. in

diameter. Required the temperature of the mixture, neglecting the tem-

perature of the glass.

341. Determine the coefficient of expansion of platinum from the fol-

lowing data: Grammes

"Weight of the platinum bar, 198.0
" "

glass bulb and platinum bar enclosed, .... 240.5
" " " " " when filled with mercury at 0, . 390.1
" "

mercury expelled on heating the tube to 100, . >.. ; . , 7.97

This problem can be most readily solved by first calculating the values of

HL, Jl, and IT > an(* afterwards substituting these values in [180].

Expansion of Gases.

342. To what temperature must an open vessel be heated before one

half of the air which it contains at
D

is driven out ? The pressure is as-

sumed to be constant.
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343. An open vessel is heated to 1,000. What portion of the air which

the vessel contained at remains in it at this temperature ? The pres-

sure is assumed to be constant.

344. A closed glass vessel, which at was filled with air having a

tension of 76 c. m., is heated to 500. Determine the tension of the

heated air.

345. Required the temperature at which one litre of air would weigh
one gramme, the pressure being 76 c. m.

346. An iron bomb-shell was filled with nitrogen gas at 0, and after

having been hermetically sealed was heated white-hot (1,300 C.). Re-

quired the tension of the heated gas.

347. Reduce the following volumes of gas, measured at the tempera-
tures and pressures annexed, to and 76 c. m. :

1. 10 ^T.3 H= 74 c. m. t = 10.

2. 7.5
" H= 73 "

t = 12.

3. 10 " H= 80 "
t = 10.

4. 12 C7S.3 J7=38c. m. * = 30.

5. 1 1
" H = 50 "

t = 20.

6. 9 " #=60 "
* = -10.

348. It is required to determine the temperature to which an air-ther-

mometer was exposed from the following data :

Weight of the glass thermometer, w = 25.364 grammes.
" " thermometer filled with mercury at 0, . W = 705.164 "

" " "
partially filled with mercury at0, W =251.964 "

Height of the barometer reduced to 0, . . . . H'o = 75.64 c. m.
" "

mercury-column in thermometer, . . . ho = 13.54 "

" " barometer at the time of closing thermometer, Ho = 76.22 "

Ans. 232.7.

349. It is required to determine the temperature to which the air-ther-

mometer of Fig. 273 was exposed from the following data :

Height of barometer at the moment of observing the temperature, H'o = 76.22 c. m.
" " " "

measuring difference of level,H = 76.54 "

Difference of level as measured by a cathetometer, . . . Ao = 40.34 "

Volume of the air-thermometer at 0, V = 254 cTnT
3

" " manometer-tube between / and o, . . . v = 20 "

Temperature of the manometer, t = 10.

Ans. 265.

350. It is required to determine the volume of the air-thermometer

from the following data :

Weight of mercury above mark o, .... 81 .600 grammes.
" between a and #, . . . 272.000

Height of barometer, 76 c. m.

Difference of level of the two columns, . . . 39.4
"

351. A glass tube, the area of whose section is T^ of a square cen-

timetre, is connected, as in Fig. 355, with a glass bulb whose capacity

equals 0.75 cTm".
8 At the temperature of 40 and under a pressure of

76 c. m. the small thread of liquid, A, stands at the lowest part of the

tube. It is required to determine how long the tube must be, in order

that we may measure with the instrument a temperature of 120.
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CHANGE OF STATE OF BODIES.

1. Solids to Liquids.

(269.) Melting-Point. If we heat a solid, the first effect of

heat is, as we have seen, to expand it ; the second effect is to

change its mechanical condition, to melt it. The temperature
at which solids melt differs very greatly for different substances ;

but it is always constant for the same substance. Moreover, the

temperature remains absolutely constant during the whole period

of melting. This temperature is termed the melting-point.

Melting-Points.

Mercury....
Oil of Turpentine
Ice ....
Lard ....
Phosphorus
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degrees below its melting-point without its solidifying ; thus, by

keeping water perfectly still, we can succeed in cooling it to

15, or even to 17, before it freezes. If, however, when in

this condition, we drop into the water an angular body, like a

piece of sand, or gently jolt the vessel containing it, congelation

begins at once, and the temperature suddenly rises to 0. It has

already been stated (258) that water continues to expand when

cooled below 0, while ice under the same circumstances con-

tracts. Despretz has followed its expansion to 20.

This singular phenomenon seems to be caused by the inertia

of the particles of the liquid, and is exhibited to a still greater

degree in viscid liquids, like the fats, where, on account of the

imperfect fluidity, the inertia is greater. Such liquids uniformly
do not begin to freeze until they are cooled several degrees below

the melting-point ; but as soon as the change commences, the

temperature at once rises to this point.

It has been noticed that the phenomenon just described is most

readily produced when the liquid is enclosed in a capillary tube,

and this circumstance has been thought to explain the fact that

plants and many of the lower animals frequently seem to resist the

action of frost without any apparently adequate protection ; for,

as is well known, their liquid juices circulate through exceedingly
minute capillary vessels.

(272.) Effect of Sails on the Freezing-Point of Water. The

freezing-point of water is depressed by the presence of salts in

solution. Thus sea-water freezes at about 3, and a saturated

solution of common salt must be cooled as low as 20 before

freezing. The freezing-points of various saline solutions at dif-

ferent degrees of concentration have been given by Despretz in a

memoir already referred to (258). In all these cases pure ice is

formed by the freezing, and a more saturated solution of the salt

is left. The change may in fact be regarded as a process of crys-

tallization, in which the water crystallizes out, leaving the salt

behind. In like manner, alcohol, which when mixed with water

very greatly reduces the freezing-point, is entirely eliminated

from it in the process of freezing. Hence weak alcoholic liquids

like wine or beer may be concentrated by exposing them to cold

and removing the layers of ice as they form.

To the same class of phenomena belongs the fact, that the

melting-point of several alloys is lower than that of either of the
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metals of which they consist. The most remarkable example of

this kind is Rose's fusible metal, consisting of two parts bismuth,
one part tin, and one part lead, which melts between 95 and

98, although the melting-points of its constituents are all be-

tween 235 and 334. The following table, which gives the melt-

ing-points of several alloys of tin and lead, furnishes another

example of the same fact. The lowest melting-point corre-

sponds to an alloy of three equivalents of tin and one equivalent
of lead. Compounds of two equivalents of sulphur and three

equivalents of phosphorus, of two equivalents of bismuth and

three equivalents of tin, show similar relations.

Percentage Composition. Melting-Point.

Tin. Lead.

100 235

73.7 26.3 194

69.3 30.7 189

63.0 37.0 186

53.2 46.8 196

36.2 63.8 241

15.9 84.1 289

100 334

(273.) Effect of Pressure on the Melting-Point. Since the

effect of an external pressure must be to resist the expansive
force of heat, we might naturally expect that it would tend to

raise the melting-point. That this is indeed the fact is shown

by the following table, which gives the results of experiments
made by Mr. Hopkins* on this subject.

Pressure in

Atmospheres.

1

520

793

On the other hand, it has been shown by Professor Thompson
that the effect of pressure on water is exactly opposite to that

just described. He found that a pressure of 8.1 and 16.8' atmos-

pheres caused a depression of the freezing-point of 0.059 and
0.129. But it will be shown in the next section, that, while the

* Silliman's American Journal, Second Series, Vol. XIX. p. 140.

Spermaceti.

51.1
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volume of the substances on which Mr. Hopkins experimented in-

creases by melting, that of water diminishes. We should, there-

fore, expect an opposite result in the two cases ;
in fact, not

only the general effect of the pressure, but also the amount to

which the melting-point of ice is depressed by it, are in accord-

ance with the theory. Indeed, the phenomenon was predicted by
Professor Thompson* on purely theoretical grounds, and the

experimental results since obtained have agreed very closely with

his predictions.

(274.) Change of Volume. At the moment of melting

there is a sudden change of volume, which is usually an ex-

pansion ;
but in the case of water and a few metals the effect

is a condensation. This subject has been carefully investigated

by Kopp,f who used in his experiments the simple appara-

tus represented in Fig. 396. The small test-tube

a a, containing the substance to be examined, was

placed within a somewhat larger tube of the same

shape ;
and this, having been filled with water or some

other suitable liquid, was closed by a cork provided
with a capillary glass tube divided into parts of equal

capacity. It is evident that any -change of volume

of the solid in the tube a a could be measured by
the rise or fall of the enclosed liquid in the capillary

tube. In practice, the apparatus was heated at the

side of a thermometer in an oil-bath, so arranged that

the temperature could be kept constant for a few min-

utes at any point, and at each stationary point the

temperature and the height of the liquid in the capil-

lary tube were observed. The weight of the substance

and of the liquid used (commonly water) having been

previously determined, and the rate of expansion of

glass and of the liquid being known, and also the vol-

ume of the tube between any two divisions, it was

easy to calculate the volume of the substance at eacli Fig 398.

observed temperature, and of course to measure the

change of volume which took place at melting. Some of the

results obtained by Kopp are represented in Figs. 397, 398,

399, and 400. Here, as in Figs. 381 and 386, the abscissas of

*
Philosophical Magazine, 1850, Vol. XXXVII. p. 123.

t Annalcn der Chemie und Pharmacie, Bund XCIII. * 5.



552 CHEMICAL PHYSICS.

the curves indicate degrees of temperature, and the ordinates tho

corresponding volumes of the substance, the volume at being
taken as unity. Solid phosphorus (Fig. 397), it will bo noticed,

Fig. 397. Fig. 398.

expands very regularly, like other solids, until it reaches 44, its

melting-point, when a sudden expansion, amounting to about

0.035 of the original volume, takes place. After melting, the

expansion continues, with tolerable regularity, as before. Ice, on

the other hand (Fig. 398), which, so long as it remains solid, is

expanded by heat, suddenly contracts in melting, the con-

traction amounting to about 0.1 of the volume of the water at

0. After melting, the water

expands according to the

laws before stated, but the

total amount of expansion
between the freezing and

boiling points is less than

one half as great as the con-

traction in melting. Hence

ice will float on water, even

when at the boiling-point.

The expansion of water in

freezing takes place with ir-

resistible force. Thick iron

Fig ggg
bomb-shells have been burst

by exposing them to great
cold when filled with water and tightly plugged.
The law of the expansion of wax while melting is shown by

the curve in Fig. 399. Since wax does not change suddenly into

a liquid, but passes through an intermediate pasty condition, we
should not expect to find a point of sudden expansion. As tne
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curve indicates, the expansion is very rapid during the melting,
and vastly more rapid than the expansion above 64, the point
at which the wax becomes perfectly liquid.

Fig. 400 represents the curve of stearine, which is exceedingly

irregular. The substance

has in fact two melting-

points. It melts first at

50, and this change is at

tended with a sudden con-

densation. But as the tern

pcrature rises higher, the

substance again thickens,

owing undoubtedly to a

change in its molecular

condition
;

and this new
condition of stearine melts

at GO
,
when the change

is attended with a sudden
rig. 400.

expansion.
Besides water, the only substances known to expand in so-

lidifying, which do not contain water as a chief constituent, are

cast-iron, bismuth, antimony, and a few alloys, such as type-

metal, brass, and bronze. These metals and alloys all give

sharp casts, because the expansion, which takes place when
the metal sets, forces it into the minute cavities of the mould

;

and on this fact depend many of their useful applications in

founding.

(275.) The melting of solids, like their expansion, may be

explained by the expansive force exerted by heat. When this

expansive force becomes equal to the cohesive force, we evi-

dently have a condition of matter in which the particles are in

perfect equilibrium between two forces, and are therefore free

to move at the slightest impulse ;
in a word, we have the condi-

tion of liquidity. We may define, then, a liquid as that condition

of matter in which the cohesive force is balanced by the expan-
sive force of heat. With a few exceptions, all solids which can

bear the requisite change of temperature without undergoing
chemical change, may be melted. Many substances which are

generally regarded as infusible such, for example, as platinum,

flint, and siliceous minerals readily melt before the compound
47
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blowpipe, or between the poles of a powerful galvanic battery.

Carbon is, indeed, almost the only substance which has not

yielded to these high temperatures ;
and it is probable that even

this will be melted when the means of obtaining still higher tem-

peratures shall be Discovered.* There are, however, a great
number of substances, especially organic compounds, which

cannot be melted, because they are decomposed by the action

of heat. Thus wood, when heated, is decomposed into certain

gases and acid vapors, which escape, and. into carbon, which is

left behind. In like manner carbonate of lime (chalk), when

heated, is decomposed into carbonic acid gas and lime at a tem-

perature below its point of fusion. If, however, we prevent the

gas from escaping, by confining the carbonate of lime in a gun-
barrel hermetically closed, it can be melted in a furnace fire.

As, with very few exceptions, all solids may be melted, we
have every reason to infer that all liquids might be frozen if a

sufficient degree of cold could be attained. There are, however,
several liquids which have never yet been frozen. Such, for

example, are sulphide of carbon, alcohol, and several others of

organic origin ; but even alcohol becomes very thick and oily

when exposed to the intense cold produced by a mixture of solid

carbonic acid and ether.

(276.) Determination of the Melting-Point. The melting-

point is an important physical property of a substance, and the

chemist has frequent occasion to determine it. The simplest

method is to heat the solid in a convenient vessel until it begins

to melt, and then test the temperature with a thermometer before

it is fully melted. It is always well, however, also to reverse the

experiment, and, by cooling down the liquid, test the temperature
while it is freezing. But if there is a difference between the two

temperatures, the melting-point should be taken as the physical

constant rather than the freezing-point, for the reasons already

stated (271).

The apparatus represented in Fig. 401 will be frequently found

very convenient for determining the melting or freezing .point of

many organic substances, especially when only a small quantity

* Both Silliman and Despretz have obtained evidence of the partial fusion and vola-

tilization of carbon, when exposed to the action of a galvanic battery of great intensity.

For a description of the best means of producing intense furnace heat, see a memoir

by Deville, Annales de Chimie et do Physique, 3e
Serie, Tom. XLVI. p. 182.
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Fig. 401.

is available for the experiment. It consists of a water or oil bath,
made with two beaker glasses (one supported within the other, as

represented in the figure), so that the conduction of heat from the

lamp to the inner vessel may be as uni-

form as possible. A thermometer in the

inner glass gives the temperature of the

bath at each instant, and the substance

under experiment, enclosed in a capilla-

ry glass tube, is immersed in the bath at

the side of the thermometer. By slowly

heating and then cooling the bath, it is

easy to catch the exact point at which

the solid melts and the liquid again
freezes

;
and the experiment can read-

ily be repeated a great number of times.

(277.) Heat of Fusion. It has al-

ready been stated, that while a solid

is melting the temperature remains the

same. This fact can be easily verified

by watching a thermometer immersed in a tumbler filled with

melting ice, when it will be found that the thermometer will

stand at until the whole of the ice has disappeared. During
all this time, which may be several hours, heat has been continu-

ally entering the water from the air, and the question naturally

arises, What has become of this heat ? The answer is, that it

has been used up in melting the ice.

In order to study this phenomenon more closely, let us take

two vessels, the first containing one kilogramme of ice-cold water,

and the second, one kilogramme of coarsely pulverized ice. A
thermometer placed in each vessel will indicate that both the

ice and the water have exactly the same temperature, viz. 0.

Let us now expose both to such a source of heat, that the same

amount of heat must enter each vessel during the same time.

It will be found that the thermometer in the first will remain

stationary while the ice is melting ;
but the thermometer in the

second will gradually rise. If at the moment the last particle of

ice has melted we examine the two thermometers, we shall find

that the one in the first vessel marks still 0, while that in the

second has risen to 79. From the definition of the unit of heat

(231), it follows that 79 units of heat must have entered both
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vessels. This heat has not raised the temperature of the first,

because it has all been consumed in melting the ice. The differ-

ence, then, between one kilogramme of ice at and one kilo-

gramme of water at the same temperature is 79 units of heat.

The same truth may be illustrated in another way. If we take

one kilogramme of water at 79, and one kilogramme of ice at 0,
and mix the two together, we shall find, on testing the water with

a thermometer after the ice has melted, that its temperature is 0.

What then has become of the 79 units of heat that the kilo-

gramme of water contained ? It is evident that they have disap-

peared in the melting of the ice. What is true of ice and water

is also true of other substances. All solids, in melting, absorb a

large amount of heat, without any corresponding change of tem-

perature. The heat which is thus absorbed is sometimes called

the heat of fusion-, but more frequently the latent heat of the

liquid, because it is not sensible to the thermometer. The heat

of fusion of a few solids is given in the following table :

Melting- Heat absorbed by 1 kilo-

Point, gramme in melting.

Ice, . . -,'** . . . 0.0 7 1J.25 units.

Phosphorus, k * * 44.2 5.03 "

Sulphur, . .., ,,,>. . 115.2 9.37

Lead, . <>.,. . . 326.2 5.37 "

Bismuth, . .
j

. . 266.8 12.64 "

Tin, .

'

V
,

. . 237.7 14.25 "

Silver, . / I. . 999. 21.07 "

Zinc, . . . . 415.3 28.13 "

The principle under discussion is well illustrated by the so-

called freezing* mixtures. The most common of these is a mix-

ture of equal parts of snow or pounded ice and salt, which pro-

duces a degree of cold of about 16. The salt causes the ice to

melt and the water dissolves the salt, so that both become liquid,

and in consequence a large amount of heat is absorbed. This

mixture is used, as is well known, for freezing ice-creams. A
much more powerful freezing mixture is formed by mixing

together three parts of crystallized chloride of calcium, previ-

ously cooled to 0, and two parts of snow. A degree of cold

may be thus produced equal to 45, and sufficient to freeze

mercury.
The solution of most salts in water is attended with the ab-
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sorption of heat, because the salt, in dissolving, changes from a

solid to a liquid condition. Nitre, for example, cools the water

in which it is dissolved eight or ten degrees. One part of chlo-

ride of potassium dissolved in four parts of water also cools the

water about the same amount. The depression of temperature
is frequently more considerable when we dissolve the salt in an

acid liquid instead of pure water. A very convenient method of

freezing water without the use of ice consists in mixing together

finely pulverized Glauber's salt and the common muriatic acid

of commerce. The salt dissolves to a greater extent in the acid

than in water, and a depression of temperature results which

may amount to 28. An apparatus (Fig. 402) is constructed at

Paris for freezing water by this process, and it is found to require

Fig. 402.

about six kilogrammes of Glauber's salt and five kilogrammes
of muriatic acid to freeze five kilogrammes of water. The freez-

ing mixture is placed in the cylindrical chamber C, while the

hollow walls of this chamber, as well as the interior cylinder -4,

are filled with the water to be frozen. The crank at the top of

the apparatus serves to turn the cylinder A and the vanes at-

tached to it, by which means the acid and salt are kept constantly

mixed and the surfaces of contact renewed. After the ke forms,

the freezing mixture is drawn off into the lower chamber V
9

where it may be further used for cooling bottles of wine.

47*
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As the change of state from solid to liquid is attended with the

absorption of a definite amount of heat, we should naturally

expect that, when the fluid changes hack again to a solid, the

same amount of heat would be evolved. That this is really the

case, may be proved by reversing the experiments just described.

If we take two vessels, the first containing one kilogramme of

water at 79, and the second, one kilogramme of water at zero,

and expose them to the air during a cold winter day, so that

equal amounts of heat shall escape from both during any given

time, we shall find that the temperature of the water in the first

vessel will immediately fall, while that of the water in the sec-

ond vessel will remain stationary. In the mean time, however,
the water in the second vessel will begin to freeze

;
but so long

as the water remains liquid, the temperature will continue sta-

tionary at zero. If at the moment the last particle of water has

frozen, and before the temperature begins to fall, we observe the

temperature of the water in the first vessel, we shall find that

the thermometer stands exactly at zero. Evidently, then, 79

units of heat have escaped from the water in the first vessel.

The same amount also must have escaped from the water in the

second vessel. Why, then, has it not changed the temperature ?

Simply because it is the heat of fusion, which has been given up

by the water in changing into ice.

In like manner, as the solution of a salt in water is attended

with absorption of heat, so the separation of a salt from its

state of solution (the process of crystallization) is attended with

evolution of heat. As a general rule, however, the crystalli-

zation is so slow, that the heat escapes as fast as it is liberated,

and therefore does not raise sensibly the temperature of the mass.

"We can, however, so arrange the experiment as to make it very

perceptible. We prepare for this purpose a supersaturated solu-

tion of Glauber's salt, as described in (198), and when the so-

lution is cold make it crystallize suddenly by uncorking the flask.

On grasping the flask with the hand as soon as the crystallization

has been completed, it will be found that its temperature has

risen very perceptibly, thus proving that crystallization is at-

tended with liberation of heat.

As a last illustration of the principle under discussion, we may
cite the well-known process of slaking lime in the preparation

of mortar. If we add to one kilogramme of quicklime one half
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a kilogramme of water, the lime rapidly combines with the water

and falls into a loose white powder, a portion of the water at the

same time escaping as steam. The water is thus changed, by

entering into combination with the lime, from the liquid to the

solid state
; and, as we might anticipate, a great amount of heat

is suddenly evolved. The elevation of temperature which is

thus caused is sometimes sufficiently high to inflame gunpowder.
The heat which is liberated in this process is not, however,

wholly caused by the solidifying of the water. A portion of it

results from the chemical combination between the lime and the

water, in accordance with the general law that chemical combi-

nations are attended with the evolution of heat.

The quantity of heat which becomes latent during the fusion

of solids is ascertained by pouring a known weight of the melted

solid, at its melting-point, into a mass of water whose weight and

temperature are known. The temperature of the water will evi-

dently be increased by the addition of the amount of heat which

the liquid gives out in solidifying, plus the amount which the

solid gives out in cooling from the melting-point to the increased

temperature of the liquid. This last quantity may be easily cal-

culated when the specific heat of the solid is known. From the

increased temperature and weight of the water, we can also easily

calculate the amount of heat which the water has gained ;
and then

the difference between these two quantities will be the amount of

heat which the liquid gave out in solidifying, in other words, the

heat of fusion. The method may be made clear by an example.
In order to determine the latent heat of melted tin, 25

grammes of the liquid metal at its melting-point (238) were

poured into 1,500 grammes of water at 15. After an equilib-

rium of temperature was established, a thermometer dipping in

the water indicated 15.45. Hence it followed that the water

had gained in temperature 15.45 15 = 0.45, and must

therefore have absorbed 0.45 X 1.5= 0.675 units of heat (231).
On the other hand, the tin had lost in temperature 238 15.45
= 222.55

; and, since the specific heat of tin is equal to 0.0562

(page 466), it must have given out, in cooling from the melting-

point after solidifying, 222.55 X 0.025 X 0.0562= 0.313 units of

heat. Subtracting this quantity from 0.675, we find that the

amount of lueat given out, in solidifying, by 25 grammes of tin,

is equal to 0.362 units
;
and a simple calculation will show that
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one kilogramme of the melted metal would give out, under the

same circumstances, 14.48 units of heat, a quantity which, by

definition, is the heat of fusion of the substance. This result

corresponds with the number given in the table on page 556.

A general formula for such calculations may be readily derived.

Using the notation of (233), and also representing the specific

heat of the substance by JV, and the required heat of fusion by

x, we shall have

TT(0 = w . N . (T ff) + wx\

that is, the heat which the water lias gained, W
'

(0 0> is

equal to the heat which the solid has lost in cooling from its

melting-point, iv . JV(T -
0), plus the heat which the liquid

lost in solidifying, w x. From this equation we get the value

w

Here, as in determining the specific heat of a substance, it is

necessary to take into account the heat absorbed by the vessel in

which the experiment is conducted, and also the heat lost by
radiation and from other causes. In order to insure that the

temperature of the liquid is at its melting-point when poured into

the water, it is best to pour it from a vessel which still contains

some of the unmelted solid, since so long as any of the solid

remains unmelted the temperature of the mass is constant at

the melting-point. In other respects, the experiment may be

conducted precisely as in determining the specific heat of a sub-

stance by the method of mixture (233), so that further details

are unnecessary.

(278.) Person's Law. It has already been stated (234) that

the specific heat of the same substance is greater in the liquid

than in the solid state, and by referring to the table on page 475

it will be seen that the difference, which is very considerable in

the case of non-metallic substances, is very slight in the case of

metals. Moreover, it has also been stated that a liquid may
sometimes be cooled several degrees below the normal freezing-

point without solidifying ;
and it is a possible, although not a

probable supposition, that under certain circumstances a liquid

might be reduced to the lowest possible temperature without
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undergoing this change. Let us now assume that at N degrees
below zero we should reach the lowest possible temperature, or

absolute zero, a condition in which bodies would contain abso-

lutely no heat, and let us suppose that we start at this tempera-
ture with one kilogramme of any given substance in the solid

condition, and one kilogramme of the same substance in the

liquid condition. Also let us represent by C the specific heat

of the liquid, by C' the specific heat of the solid, and by T the

normal freezing or melting point of the substance. If then we
assume as we may without any great probable error that the

specific heat does not vary between the absolute zero and T, it

follows (232) that (-ZV+ T) C units of heat would be required
to raise the temperature of the one kilogramme of the substance

in the liquid condition from the absolute zero to the melting-

point, and that (^V+ T) C' units of heat would be required to

raise the temperature of the one kilogramme of the substance

in the solid condition to the same extent. Furthermore, it is

evident that the first of these expressions represents the actual

quantity of heat which one kilogramme of the substance at the

melting-point contains in the liquid state
;
and the second, the

quantity of heat which one kilogramme of the same substance

contains at the same temperature in the solid state. The differ-

ence between these quantities is, then, the number of units of

heat which would be required to convert one kilogramme of the

substance at the melting-point from the solid to the liquid state ;

or, in other words, the heat of fusion. Representing the heat of

fusion by L, we have L= (.2V+ T) C (JV+ T) C', which

may be written

L=(7\T+T) (C C'). [195.]

If, then, the theory on which this formula is based is cor-

rect, it follows that the heat of fusion of a substance is equal to

the difference in the specific heat in the two states of aggrega-

tion, multiplied by the number of degrees above the absolute

zero at which the substance melts. By giving to N the value

of 160, Person found that the heat of fusion of many non-

metallic substances calculated by the above formula agreed al-

most precisely with the results of direct experiment, as is shown

by the following table :
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constant (101) we do not have regard to equal weights. It is

evidently, however, a function of this coefficient, and Person

(2 \
1 + ) ,

in which K
A/ d /

is the coefficient of elasticity, and 8 the specific gravity of the

metal. Representing also by K' the coefficient of elasticity of

a second metal, and by L and L' the corresponding heat of fusion,

we obtain the proportion

This formula is the expression of a second law which may be

thus stated : The heat of fusion of metals is sensibly propor-
tional to their coefficients of elasticity corrected for the differ-

ence of density.

If we substitute, in [196], for L', K', and #', the known values

for zinc, taken as a standard of comparison, we obtain for the

heat of fusion of any other metal the value,

L = 0.001669 K (l + -L) ; [197.]v \/ <j/

and the heat of fusion, calculated by this formula, agrees very
well with the observed result. As the value of L [195] is based

on the assumption, that the heat required to overcome the te-

nacity of the solid may be neglected, so [197] is founded on the

assumption that the specific heat of a metal is the same in the

liquid as in the solid state. Evidently, however, the true value of

L, in any case, should include both terms, that depending
on the specific heat, as well as that depending on the tenacity.

Hence we obtain Person's general formula for the heat of fusion

of all solids,

L = (160+ T) ( (7 C') + 0.001669 K
(l + -~) . [198.]

In the case of the metals the first term may be neglected, and in

the case of non-metallic substances the same is true of the sec-

ond term. There are substances, however, for which both terms

have definite values
;
but we have not the experimental data in

regard to them which would enable us to test the formula.
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We may then admit that the heat of fusion consists of two

parts, one of which is used in overcoming the force of cohesion,

the other furnishing the additional specific heat required in the

liquid state.

We have been able to give in this section only a very imperfect

abstract of Person's remarkable investigations on this subject,

and we must refer the student for further information to the

original memoirs.*

(280.) Absolute Zero. If Person's theory is correct, the

absolute zero, as we have seen, is situated 160 degrees below the

Centigrade zero. This theory is not a little confirmed by the

remarkable results obtained by Pouillet,f with an instrument

called an actinometer, in regard to the temperatures of the celes-

tial space. If we eliminate the effects of the rays of the sun, it is

evident that the temperature of the space around the earth must

be very near the absolute zero ; for this space is traversed only by
the rays of the stars, which, coming from such immense distances,

are exceedingly feeble ; and Pouillet has concluded, from his

experiments and from various terrestrial phenomena, that this

temperature must be between the limits of 175 and 115, at

the same time fixing on 142 as the most probable value. On
the other hand, Clement and De'sormes fixed on 273 as the

absolute zero, on the ground that, since the permanent gases

expand for each degree of temperature ^fg- of their volume at

0, the amount of contraction when the temperature was reduced

to 273 would be equal to the initial volume, and the gases

would cease to exist. Moreover, since a gas heated from

to 273 doubles its volume, they thought it evident that the

quantity of heat added must be equal to that contained in the

primitive volume.

Even if matter can exist without heat, which there is great rea-

son to doubt, it is impossible to predict what would be its condition

under such circumstances. It is supposed by some, who hold

the atomic theory, that the molecules of matter would be brought
into absolute contact, and that phenomena of a new and unex-

pected nature would appear. The violent explosion experienced

by Chenot, while submitting silver in powder to a pressure of

* Annales de Chiraie et de Physique, 3" Se'rie, Tom. XXI., XXIV., XXVII.
t Comptes Rendus, Tom. VIL p. 56.
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three hundred atmospheres in an hydraulic press, is frequently

cited in this connection. But these are mere assumptions,

for we are as yet far from having realized experimentally an

absolute zero of heat. The lowest temperature ever observed

in the arctic region is 57, and the lowest we can artificial-

ly produce is 140
;
at these temperatures several liquids still

retain their fluid condition, which could hardly be the case if

we had removed the greater part of the heat which they con-

tain.

Change of State. Liquids to Gases.

(281.) Boiling-Point. It has been shown, that, when a solid

is heated to such a temperature that the expansive force of heat

between its particles is equal to the cohesive force, it melts. If

the liquid be now heated above its melting-point, the expansive

force will become greater than the cohesive force, and by con-

tinuing to raise the temperature we shall finally attain to a point

where the excess of expansive force is equal to the atmospheric

pressure. Then we have the condition of a gas, and a phe-

nomenon presents itself which we term boiling. Bubbles of gas

form beneath the surface of the fluid, and rise tumultuously

through its mass.

This phenomenon can best be studied by heating water in a

glass flask over the flame of a spirit>lamp. The first action of the

heat is to expand the portion of the liquid immediately in contact

with the bottom of the vessel, which, becoming specifically lighter,

rises and gives place to colder water, which is heated and rises in

its turn
;
and thus a circulation is established by which each par-

ticle of liquid is brought, in its turn, in contact with the heated

surface. As the temperature of the mass rises, the air which is

dissolved in the water separates in bubbles on the inner surface

of the flask (compare page 396), and these, when they have at-

tained sufficient size, disengage themselves and escape through

the liquid. They are followed by bubbles of steam, which form

on the heated surface of the flask, where, in consequence of the

close proximity of the source of heat, the temperature is higher

than that of the mass of the liquid ;
but as the bubbles rise

through the cooler water above, they are condensed, and the

shock produced by the sudden collapse gives rise to a peculiar

48
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noise, an instance of which appears in the singing of a tea-kettle.

After the whole mass of water has been heated to 100, the bub-

bles of steam are no longer condensed, but rise to the surface

and break, allowing the steam to escape ;
and as the tension of

this steam is equal to the pressure of the air, it drives out the

air from the upper part of the flask, and takes its place.

What is so familiar in the case of water, is equally true of

other liquids. There is for each a temperature at which the

expansive force of heat becomes equal to the pressure of the

air, and at which this phenomenon of boiling invariably appears.
This temperature, which is constant for the same substance under

the same atmospheric pressure, is called the boiling-point. As
the boiling-point varies with the atmospheric pressure, it is neces-

sary, in describing the boiling-point of a substance, to state the

pressure under which it was observed. In the following table,

the boiling-points of some of the best-known liquids are given for

the mean pressure of 76 c. m. :

Soiling-Points under the Pressure of 76 c.m.

v

Protoxide of Nitrogen, . 105

Carbonic Acid, . . 78

Cyanogen, . . . 22

Sulphurous Acid, . . 10

Chloride of Ethyle, . . +11
Common Ether, ... 35

Sulphide of Carbon, . 47

Bromine, .... 63

Chloroform, ... 63

Alcohol, . . . .78
Water, .... 100

Nitric Acid (1.42), . . 120

Oil of Turpentine, . . 157

Phosphorus, . . .290
Sulphuric Acid (1.843), . 325

Mercury, . . . . 350

Sulphur, . , . 440

The influence of pressure upon the boiling-point of liquids may
be illustrated by a great variety of experiments. If we place a

glass of lukewarm water under the receiver of an air-pump and

exhaust the air, the water will at once begin to boil violently.

The same experiment may be tried even more simply in the fol-

lowing way.
Take a glass flask, to which a cork has been carefully fitted,

fill it about one half full of water, and heat the water to boiling

by means of a spirit-lamp. When the water is boiling rapidly,

and the upper part of the flask is filled with steam, remove the

lamp and quickly insert the cork. If now the flask is inverted
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and cold water poured upon it, as represented in Fig. 403, the

boiling will be renewed, and continue for some time.

This apparent paradox of boiling water by cold is thus ex-

plained. The cold water condenses the steam, producing a

vacuum in the upper part of the flask, and, the pressure of the

atmosphere being thus removed, the water

continues to boil at a greatly diminished

temperature. In the experiment of Leslie,

hereafter to be described, water is made to

boil at its freezing-point. Common ether

boils under the receiver of an air-pump,
from which the air lias been partially ex-

hausted, with explosive violence, even at

the lowest natural temperatures. Such

experiments as these may be multiplied

indefinitely.

The ordinary variations of atmospheric

pressure exert a very sensible influence on

the boiling-point of water. The extreme

heights of the barometer observed at Paris

for the last thirty years have been 71.9c.m.

and 78.1 c. m. Under the first pressure,

water boils at 98.5, under the second, at 100.8 ; so that the

boiling-point is liable to a variation of about two degrees at that

place. Hence the importance of regarding the height of the

barometer in determining the boiling-point on the scale of the

thermometer (218). Much greater variations in the boiling-

point than these arise from differences of pressure at different

elevations on the earth's surface. At the city of Quito, which is

at an elevation of 2,908 metres above the level of the sea, and

where the mean barometric pressure is equal to 52.7 c. m., water

boils at 90.l. At the city of Mexico, at an elevation of 2,277

metres and under a pressure of 57.2 c. m., it boils at 92. 3.

Boiling water is not, therefore, equally hot at all places of the

earth. At high elevations, as at Quito, for example, its tempera-
ture is much too low for cooking many substances 'which can be

cooked at one hundred degrees.

It follows from the facts already stated, that a difference of

pressure of 0.25 c. m. will cause a difference in the boiling-point

of water of one tenth of a degree ;
so that from the boiling-point

Fig. 403.
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of water, determined with accuracy, we can ascertain the pres-

sure of the atmosphere at the time. An instrument has been

constructed for this purpose, consisting essentially of a very deli-

cate thermometer, made with an enlargement in the

centre of the stem, as represented in Fig. 348. Its

scale is limited to five or six degrees around the

freezing-point and eight or ten degrees around the

boiling-point, and each degree is subdivided into

one hundred parts. This instrument is much more

portable than a barometer, but on account of the

shifting of the zero point, to which even the most

carefully constructed thermometers are liable, it is

much inferior to it in accuracy. A metallic vessel

and a lamp for boiling the water accompany the in-

strument (Fig. 404).

(282.) Variations of the Boiling-Point. The

boiling-point of liquids is influenced by other cir-

cumstances, whose action is not so readily explained
as that of the atmospheric pressure. Thus a sub-

stance dissolved in a fluid more volatile than itself

increases the boiling-point in proportion to the

amount dissolved. Water, for example, which boils

at 100 when pure, boils only at a considerably

higher temperature when it contains salt in solution, viz. :

i\

Fig. 404.

"Water saturated with Common Salt,
" " Nitrate of Potash, .

" " " Carbonate of Potash,
" Nitrate of Lime,

" Chloride of Calcium,

Boiling-Point.

. 109

116

. 135

151

179

Substances, however, held simply in suspension, like shavings of

wood or earthy particles, do not alter the boiling-point.

Again, Gay-Lussac observed that water boiled in a glass vessel

at a higher temperature than in a metallic vessel ; and, more re-

cently, Marcet has established, first, that water boils in a glass
vessel coated with sulphur or gum-lac at a temperature a little

less than in a metallic vessel
; secondly, that in a glass vessel the

boiling-point of water is 1 or 1.25 higher than in a metallic

vessel ; thirdly, that after sulphuric acid has been boiled in a
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glass flask, the boiling-point is increased to a much greater extent

than before, this increase sometimes amounting to five or six

degrees. By throwing into the water, in either of these cases,

pieces of metal, the boiling-point is at once reduced to 100.
The same variation of the boiling-point in glass vessels takes

place with other liquids as well as water, and with some of them
to a much greater extent. It is only in metallic vessels that the

boiling-point is regular.

It follows from what has been said, that in any case the expan-
sive force of the vapor formed during boiling is equal to the

pressure to which the liquid is exposed, and it is also true, that

the temperature of the vapor is the same as that of the boiling

liquid. Two thermometers, the bulb of one dipping under the

surface of a boiling liquid, and the other immersed in the vapor

just above it, will, therefore, always indicate the same temper-

ature, unless the boiling-point has been unnaturally increased by
one of the causes just mentioned.

(283.) Determination of the Boiling-Point. The causes

mentioned in the last section, which influence the temperature
of the boiling liquid, do not affect at all, or affect very slightly,

the temperature of the vapor which rises from it. This at once

adjusts itself to the pressure of the atmosphere, and is always
constant for the same liquid under the same pressure. Hence
the temperature of the vapor is more

fixed than that of the liquid, and it is

for this reason that, in graduating a

mercury-thermometer, the tube is ex-

posed to the steam from boiling water,

and not dipped into the liquid itself.

So also, in determining the boiling-point

of other liquids, it is always best to

measure the temperature of the vapor,
and not that of the liquid, taking care

that the pressure of the atmosphere is

transmitted freely to its surface while

boiling. The arrangement represented
in Fig. 405 is very well suited to this

purpose, the size of the glass boiler

being adapted to the circumstances of

the case. When the liquid under experiment is very costly, all

48*
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loss can be avoided by connecting the exit-tube with a Liebig's

condenser (see Fig. 416).

(284.) Formation of Vapor of Low or High Tension. The

vapors or gases which are formed during the boiling of liquids

have always the same tension as the atmospheric air, and are

therefore able to retain their gaseous condition when exposed to

its pressure. It is the formation of vapors of this kind that we
have considered in the preceding sections. Liquids, however,

yield vapors both of a lower and of a higher tension than that of

the atmosphere, and we propose next to consider the conditions

and laws under which these are formed.

In order to make the conditions as simple as possible, let us

suppose a vessel having the capacity of one cubic metre, and let

us dispose in it a barometer and thermometer, so that we can

observe the tension and temperature of the confined gas. More-

over, let us pour into it a few kilogrammes of water and perfectly

exhaust the air. If now we expose this vessel to various tem-

peratures, it will be found, first, that for every giveli temperature
a certain fixed weight of water will evaporate, and, secondly, that

the vapor thus formed will have a certain definite tension which

is invariable for that temperature. If we increase the tempera-

ture, the weight of the vapor formed will be greater, and the

tension greater. If we diminish it, the weight will be less and

the tension less, provided always that some liquid water remains

in the vessel. The table on the opposite page gives for each

temperature, first, the weight of vapor in grammes which the

cubic metre will contain, and, secondly, the tension of the vapor.

By inspecting this table, several remarkable facts will be dis-

covered. It will be seen, in the first place, that a very sensible

amount of water will evaporate even at a temperature of ten

degrees below the freezing-point, when, of course, the water in

the vessel is in the state of ice. In the second place, it will be

noticed that the tension of the vapor is less than the pressure
of the atmosphere for all temperatures under 100, and greater

than the pressure of the atmosphere for all temperatures above

100 ; so that for all temperatures under 100 the pressure ex-

erted by the vapor on the inner surface of the vessel is less than

the atmospheric pressure on the outside, while for all tempera-
tures over 100 it is greater. In the third place, it will be

noticed that at 100 the tension is exactly equal to 76 c. m., the
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Tension of the Vapor of Water, according to Regnault.

Tempera-
ture.
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pressure of the atmosphere. This is the boiling-point of water,

the temperature at which bubbles of steam can form beneath the

surface and rise to the top without being condensed. Lastly, it

will be noticed that above 100 the tension of the vapor increases

very rapidly with the temperature ; so that at 121.4 it is equal

to 2 atmospheres, or twice the pressure of the atmosphere, and at

201.9 to 16 atmospheres. Steam of greater tension than the

atmospheric pressure is called high-pressure steam, and it is this

condition of steam which is found above the water in a steam-

boiler, and which is used with so much effect in the steam-

engine.

(285.) Daltotfs Apparatus. The experiment described above,

for determining the tension and weight of a cubic metre of the

vapor of water at different temperatures, was merely devised for

simplicity of illustration. In order to obtain even" approximate

results, it is necessary to experiment in a different manner and

on a very much smaller scale. The tension of the vapor of water

between and 100 can be measured quite accurately by means

of a common barometer-tube. If the tube is filled with mercury
and inverted, as described in (157), the column of mercury will

stand in the tube at the height of 76 c. m., more or less, above

the mercury in the basin, according to the varying pressure of

the air. Suppose, now, that we fill the tube again with mercury,

only adding at the top a few drops of water, and invert it as

before. The water will of course rise to the surface of the mer-

cury, and a portion of it, varying with the temperature, will

evaporate into the vacuum above. This vapor will exert a certain

pressure, and depress the mercury-column ; the amount of the de-

pression will be equal to the difference between the present height

of the column and that of the barometer at the beginning of the

experiment. Moreover, it will be exactly the same as the height
to which the vapor would raise the mercury of a barometer, if im-

mersed in it, and will therefore be the measure of the tension.

The apparatus used by Dalton in his determinations of the

tension of the vapor of water, and based on the principles just

explained, is represented in Fig. 406. It consists of two barom-

eter-tubes dipping into the same basin of mercury. The first of

these tubes, 7?, is a perfect barometer. The second, J., is a ba-

rometer with a small amount of water above the mercury-column.
These two tubes are enclosed hi a tall glass cylinder, standing in
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the basin of mercury and filled with water, whose temperature
can be regulated by means of the furnace below. This tempera-

ture, observed by means of the ther-

mometer T conveniently disposed, is

of course the common temperature of

the two barometers and of the vapor at

the top of the second. In order, then,

to determine the elastic force of this

vapor, it is only necessary to meas-

ure the difference of height of the

two columns, since this height re-

duced to is the measure of its

tension.

The apparatus of Dalton can be

used so long as the elastic force of

the vapor does not exceed the pres-

sure of the atmosphere. When the

tension is equal to 76 c. m., the sur-

face of the mercury-column will be

depressed to the level of the mercury
in the basin, and the experiment is

at an end. In order to continue the

determination above this point, we
can use a siphon-

tube, inverted and

closed at the shorter end, as represented in Fig.

407. The tube is filled with mercury, with

the exception of a small amount of water

above the mercury in the shorter branch, and

heated in an oil-bath. The tension of the

vapor is evidently equal, at each moment, to

the pressure of the atmosphere increased by

the weight of the column C D.

On account of the difficulty of preserving a

constant and uniform temperature throughout

the whole height of the cylinder of water, the

method of Dalton is not calculated to give

accurate results, although in a modified form

it was used by Regnault with great success for

rig. 407. temperatures between and 60. The two

Fig 406.
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forms of apparatus just described may, however, be used for

illustration with advantage ; only in this case it is as well to

substitute for the water some more volatile liquid.

(286.) Marcet's Globe. The tension of the vapor of water

above 100 may be roughly estimated by means of the apparatus

represented in Fig. 408. It consists of a stout

brass globe containing water, and serving as a

boiler. Through a tight packing-box passes

a glass manometer-tube of about a metre in

length, whose lower end opens under mercury

resting on the bottom of the brass boiler. The

globe has also two other openings ;
one of these

may be closed by a stopcock, and through the

other passes the tube of a thermometer, having
its bulb within the globe. On commencing the

experiment, the water is boiled for some time

in order to expel all the air, and the stopcock is

then closed. At this moment the temperature
of the steam is 100, and the tension 76 c. m.

more or less, according to the pressure of the

air. As soon, however, as the steam is pre-

vented from escaping freely, the temperature
of the globe will begin to rise, and at the same

time the tension of the confined steam will

increase, raising the mercury in the manome-
ter-tube. For any temperature indicated by
the thermometer, the corresponding tension

of the vapor will be found by adding to the

height of the barometer for the time being the height of the

mercury in the tube, measured by a scale provided for the pur-

pose. This apparatus, like the last, is only calculated for illus-

tration, and yields but approximate results.

(287.) Apparatus of Gay-Lussac. For measuring the ten-

sion of the vapor of water below zero, Gay-Lussac employed the

apparatus represented in Fig. 409. It consists, like the appara-

tus of Dalton, of two barometer-tubes filled with mercury, the

open ends dipping under mercury in the same basin
;
one of

these, A, which is straight, and perfectly freed from air and mois-

ture by boiling the mercury in the tube, serves to measure the

pressure of the air
;
the other contains a few drops of water above

Fig. 408.
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the mercury-column, and its closed end is bent so that it can be

surrounded by a freezing mixture, as represented in the figure.

A thermometer, t, indicates the temperature of the vapor above

the mercury-column, and the tension of

this vapor, corresponding to each temper-

ature, is readily determined by measur-

ing with a cathetometcr the difference of

level of the mercury in the two tubes A
and C. It will be noticed at once, that

only a portion of the vapor in the tube C
is exposed to the freezing mixture ;

but

it is an established principle of hygrom-

etry, that, when the temperatures of two

vessels communicating- with each other

are unequal, the tension of the vapor is

the same in both, and is always that

which corresponds to the lowest temper-

ature. The application of this principle

in the above method is evident.

(288.) Apparatus of Regnault. The
accurate determination of the tension of

the vapor of water at high temperatures
is attended with great difficulties

; but

on account of the importance of the sub-

ject, arising from its connection with the
Fig 409.

steam-engine, no subject has been the

object of more careful scientific investigation. It was first care-

fully investigated, in 1830, by a commission of the French Acad-

emy, consisting of Arago and Dulong ; and more recently it has

been reinvestigated by Regnault with his usual perseverance and

skill. The results of his investigations were published in the

twenty-first volume of the Memoires de /'Academic des Sciences,
to which we have so frequently had occasion to refer in these

pages. Indeed, the determinations made by Regnault of the

compressibility of gases (165), of their coefficients of expansion

(261), and of the coefficients of expansion of mercury and glass

(250 and 254), were merely preliminaries to this main investi-

gation.

For temperatures below 60, Regnault made use of the same

method as Dalton, but modified his apparatus so as to avoid the
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cause of error mentioned in (285). The apparatus, as thus

modified, is represented in Fig. 410. The open ends of the two

barometer-tubes t and f dip into the same basin of mercury,
which is furnished with an adjusting-

screw, O, similar to that described in

(159). The upper ends of these tubes

are enclosed within a cylindrical vessel,

F, made of sheet-metal, and provided

with a glass front, through which the

height of the mercury-columns may
be observed. The tubes pass through
tubulatures in the bottom of the vessel,

and are secured in their places by
india-rubber connectors. The vessel

V is filled with water, and its tempera-
ture is readily kept constant and uni-

form, at any point below 60, by means

of a spirit-lamp and by constant agita-

tion.

In one series of experiments, Reg-
nault employed two simple barometer-

tubes, one filled with perfectly dry

mercury, and the other containing, in

addition, a small quantity of water above the mercury-column.
For each temperature of the bath as indicated by the thermom-

eter, T, he determined the difference of level of the mercury in

the two barometer-tubes. This height reduced to was evi-

dently the measure of the tension of the vapor.

In another series of experiments, he connected with the upper
end of the barometer-tube t, by means of a copper connector, a

glass globe, B, having a capacity of about 500 c. m.
3

. A branch

of this connector, e i, served also to connect the globe with

an air-pump, through a U tube, n, filled with pieces of pumice-
stone moistened with sulphuric acid ;

but before finally adjusting

the apparatus, a small glass bulb, completely filled with water

and hermetically sealed, was introduced into the glass globe.

After the adjustments were completed, the interior of the globe
was first perfectly dried by exhausting the air, and allowing it to

re-enter a great number of times through the tubes e, t, n. It

was then exhausted for the last time as perfectly as possible, and

Fig. 410.
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the tube i hermetically sealed by the flame of a blowpipe. The

globe was next surrounded by melting ice, and the tension of the

small amount of air left in it carefully determined by measuring
with a cathetometer the difference of level of the mercury in the

two barometers. The ice having been removed, some pieces of

burning charcoal were now brought near the bottom of the globe,

so as to break the glass biilb within and liberate the water, which

at once evaporated, and filled the globe and the upper part of the

barometer-tube t with vapor. It only remained then to fill the

vessel F with water, and to heat the bath to different tempera-

tures, when the depression of the column of mercury, measured
in the usual way, gave the tension of the vapor corresponding to

each temperature.
It has been already stated, that the use of the apparatus just

described is limited to temperatures below 60. In order to de-

termine the tension of the vapor of water at higher temperatures,

Regnault resorted to an entirely different method. We have

before seen (282) that the temperature of the vapor rising from

a boiling liquid is the same as that of the liquid, and that its

tension is always equal to the pressure to which the liquid is

exposed. By boiling water, then, under different pressures, and

determining the temperature at which it boils, we shall have at

once the tension of the vapor corresponding to each tempera-
ture. The apparatus represented in Fig. 411 was used by

Regnault for this purpose. It consists of a copper boiler, (7,

connected by the tube A B with a large globe, My
and further

connected by the flexible hose HH' with an air-pump, by which

the pressure on the surface of the water in the boiler may be

varied at pleasure. This steam, as it rises from the boiler, is

condensed in the tube A B, which is kept surrounded by cold

water for the purpose, and the temperature of the globe M is

also retained at a constant point in a similar way. The pressure
under which the water boils is accurately measured by the ma-

nometer O, and the temperature at which it boils, when under

this pressure, is determined with equal accuracy by means of

four thermometers, whose indications serve to correct each other.

They are inserted into iron tubes closed at the bottom and filled

with mercury, which pass hermetically through the top of the

boiler and descend to different depths in the steam and water it

contains.

49
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The method of using the apparatus will be made clear by an

example. Let us suppose, then, that we wish to measure the

tension of the vapor of water at temperatures between 150 and

100. We should, in the first place, connect the hose HH1 with

a condensing-pump, and force air into the globe and boiler until

Fig. 411.

the manometer indicated a pressure in the interior of about four

atmospheres. We should then, by means of a charcoal-furnace,

boil the water in the vessel (7, taking care so to regulate the heat

that the steam will condense in the tube A B as fast as it forms

in the boiler. When this is the case, the height of the ma-

nometer will remain constant during the whole course of the

experiment, provided, of course, that the pressure of the atmos-

phere does not vary. The tension of the steam forming in the

boiler can now easily be determined, for it must evidently be

equal to the height of the barometer added to the difference of

level of the two mercury-columns of the manometer. The tem-

perature of the steam corresponding to this tension is then ascer-

tained, by merely inspecting the thermometers connected with

the copper boiler. Let us suppose that the difference of level of
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the mercury-column of the manometer when reduced to is

found to be 254.524 c. m., and that the height of the barometer

at the time, also reduced to 0, is 76.209 c. m. The tension of

the steam is then equal to 830.733 c. m. On inspecting the four

thermometers, they were found to indicate respectively 147.50,

147.49, 147.54, and 147.35, the mean of the four being equal
to 147.48, which we take as the true temperature. Hence it

follows that at 147.48 the tension of the vapor of water is equal
to 330.733 c. m.

Having determined, as just described, the tension of the vapor
of water at one temperature, we should next diminish the pres-

sure on the surface of the water in the boiler, by allowing a

portion of the air to escape from the globe. The boiling-point

of the water would at once fall, and we should then measure the

tension and temperature corresponding to the new conditions;

and by repeating this process several times, we should be enabled

to fix the tension and corresponding temperature at several points

between 150 and 100.

The apparatus just described was constructed by Regnault

chiefly to test the method on which it is based, and to discover

the causes of error to which the method is liable. The appa-
ratus actually used in the determination of the tension of the

vapor of water at temperatures above 100, although on precisely

the same principle, was constructed on a very much greater scale,

and capable of sustaining a very great pressure. The copper boiler

had a capacity of about 70 litres, and its walls, 5 millimetres

thick, were strengthened by bands of iron. The glass globe M of

Fig. 411 was replaced by a very strong copper chamber, having a

capacity of 280 litres, and this was connected with the boiler by
a tube arranged exactly as in the smaller apparatus. The upper

part of the chamber was also connected, on the one side with a

pump for condensing air, and on the other with a manometer.

This manometer was the same as that used by Regnault in his

experiments on the compressibility of gases, to which we have

already referred in connection with that subject (page 296).

We have not space, however, to enter into a detailed descrip-

tion of the apparatus. This will be found in Regnault's original

memoir. Suffice it to say, that every precaution was taken to

secure accuracy which physical science could suggest, both in

the apparatus and in the method of experimenting. Regnault
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was able to experiment with this apparatus up to a pressure of

twenty-eight atmospheres. Unfortunately, at thirty atmospheres
one of the bolts which fastened the iron bands broke, in con-

sequence of the distention of the boiler, and it was thought

imprudent to continue the experiments.

(289.) Discussion of the Results. By the methods described

in the last section, Regnault determined the tension of the vapor

of water at different temperatures between 32 and 230. The

intervals of temperature between the numerous determinations

were necessarily very irregular, the precise temperature in each

case depending on accidental circumstances. This is shown by
the following table, which gives the results of a few only of the

observations made by Regnault :

Temp. Tension.

32.84 0.028

12.53 0.161

0.00 0.454

-f-20.51 1.781
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intermediate between those at which it has been actually observed,
consists in using empirical formulae similar in principle to those

which we have previously em-

ployed to express the solubility

of salts in water, or the rate of

expansion of liquids at different

temperatures. At least thirty

such formulae have been proposed
at different times for the purpose,
which agree, with more or less

accuracy, with different sets of ob-

servations. The determinations

of Regnault agree very nearly
with the following exponential
formula proposed by Biot :

A ? s*x t~i (3x= AtiCL -
-C//P,

in which

The five constants of this for-

mula were calculated by Reg-
n a u 1 1

from 5

observ-

ed val-

ues of t

and $,
taken
at in-

terval s

of sixty Fig. 412.

degrees

between 20 and 220, and were found to be

A = 6.2640348

log B = 0.1397743

log O = 0.6924351

log = 9.9940493

log /?
= 9.9983438

By means of this formula we can calculate the tension of the



582 CHEMICAL PHYSICS.

vapor of water at any temperature within the limits of the obser-

vations, with as great accuracy as that of the experimental data

on which the formula is based
; but, like other empirical formulae,

it cannot be relied upon if the temperature much exceeds these

limits on either side. In calculating the table on page 571,

Regnault used the formula and constants just given for all tem-

peratures between 100 and 230, but for lower temperatures he

found it best to use two similar formulae with different constants.

(290.) Formation of Vapors of different Liquids. The laws

of the formation of the vapor of water, which have been enun-

ciated in the last few sections, also hold true for the vapors of

other liquids. If instead of water we should introduce into

the vessel of one cubic metre capacity assumed in (284) a small

amount of alcohol, ether, sulphide of carbon, or any other

liquid, it would be found that for any given temperature a cer-

tain fixed weight of each of these liquids would evaporate, and

that the vapor formed would have a certain fixed tension. If the

temperature were increased, more liquid would evaporate into

the cubic metre, and the atmosphere of vapor formed would have

a greater tension
;
and if the temperature were diminished, both

the weight of the cubic metre of vapor and its tension would be

less. Furthermore, the tension of the vapor at different temper-
atures could be determined by the same methods used in the case

of water, and we could make for each liquid a table similar to

that on page 571. Regnault* has furnished us with such a table

for five of the most familiar liquids. This table, which gives,

however, only the tensions of the vapors, will be found on the

opposite page. The weight of one cubic metre of each vapor
can readily be calculated for each temperature by means of the

formulae which will be developed in the next chapter.

It has already been stated (282), that at the boiling-point the

tension of the vapor of any liquid is exactly equal to the pressure
of the atmosphere, and Dalton supposed that at temperatures

equally distant from their respective boiling-points the vapors of

all liquids were approximatively equal in tension. If this principle

(which is usually known under the name of Dalton's law) were

true, we could easily calculate from the tension of the vapor of

water that of any other liquid. Suppose, for example, it was re-

quired to find the tension of the vapor of ether at 50, which is 15

* Comptes Renclus, Tom. XXXIX. p. 301.
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Tempera-
ture.
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ABCDE

Fig. 413.

and, moreover, that in any one case

the tension must be the greater the

lower the boiling-point and hence the

more volatile the liquid. These facts

may be illustrated by means of the

apparatus represented in Fig. 413.

It consists of four barometer-tubes,

all dipping into the same basin of

mercury. The first at the left is a

perfect barometer, and therefore in-

dicates the pressure of the air
;
but

the others contain a few drops of

some volatile liquid above the mer-

cury-column. The tension of the va-

por of these liquids is measured, of

course, by the depression of the mer-

cury; this will be found to be greater

in proportion as the boiling-point is lower.

(291.) Maximum Tension of Vapors. The vapor of any

liquid which forms in a confined space and in the presence of
an excess of the liquid, has always the greatest tension which

the vapor can have at the given temperature. To recur, for ex-

ample, to our previous illustration : at the temperature of 20,
there would form in the vessel described in (284) a cubic metre

of vapor weighing 17.155, and having a tension equal to 1.739

c. m., provided only an excess of water were present. Now this

is the greatest tension which the vapor of water can have at 20.

If by mechanical means, as by sinking a piston in a" cylinder, we

attempt to increase the elasticity of the vapor without changing
the temperature, we find that it is at once condensed to liquid

water, and that its tension remains constant at 1.739 c. m. until

all the vapor has disappeared. On now raising the piston, the

space will be filled again with vapor ;
but so long as a drop of

water remains in the cylinder, the tension of this vapor will

still be equal to 1.739 c. m. If, however, after all the water has

evaporated, we still continue to enlarge the capacity of the cylin-

der, then the vapor will act like a gas, and its tension will dimin-

ish, in accordance with the law of Mariotte ; compare (156. 3) and

(163). In the above illustration we have assumed that the tem-

perature of the vessel was constant at 20
;
but the same principle
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is equally true at all temperatmes and for all liquids, and all the

tensions given in the tables on pages 571 and 583 are the maxi-

mum tensions possible at the respective temperatures.

This principle may be illustrated experimentally by means of

the apparatus represented in Fig. 414. It consists of a barom-

eter-tube and a deep mercury cistern, in which

the tube can be entirely immersed. In order

to mount the apparatus, the tube is, in the

first place, nearly filled with mercury, which

is boiled to expel the air, and then the rest of

the tube filled with ether. On inverting the

tube and plunging the open end under the

mercury of the cistern in the usual way, the

ether rises to the top of the tube, and a part

remains liquid, while the rest forms a va-

por which, at the ordinary temperature of

the air, depresses the mercury-column about

36 c. m. ;
so that the mercury stands in the

tube at 40 c. m., instead of 76 c. m., above

the level of the mercury in the cistern. The

tension of ether vapor at the ordinary temper-
ature is consequently 36 c. m. If now we

attempt to increase the tension of this vapor,

and consequently diminish its volume, by sink-

ing the tube in the cistern (Fig. 414), we
shall find that a portion of the vapor will con-

dense ;
but the mercury-column will remain

at the same height in the tube, proving that

the vapor which is still uncondensed has the

same elasticity as before. On continuing to

depress the tube, it will be found that the

height of the mercury-column, and conse-

quently the tension of the vapor, will remain Fig.4u.

absolutely the same until the last bubble has

been condensed. This proves that 36 c. m. is the maximum
tension which the vapor of ether can be made to assume at the

ordinary temperature of the air.

(292.) Gases and Vapors. The principles of the last section

furnish a convenient ground of distinction between gases and

vapors. It is usual to apply the term vapor to such aeriform
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substances as are easily condensed, either by pressure or by cold,

into liquids, and which, under the ordinary conditions of atmos-

pheric temperature and pressure, exist in the liquid state. This

definition, however, is purely artificial, and makes no essential

distinction between a gas and a vapor ;
and we therefore prefer

to distinguish by the word vapor the peculiar condition of aeri-

form matter when it is at the point of maximum tension. Ac-

cording to this definition, a vapor is a condition of aeriform mat-

ter which obeys the law of Mariotte when its volume is increased,

but which, if the volume be diminished, is in part changed into

a liquid ;
a gas, on the other hand, is a condition of aeriform

matter which obeys the law, whether its volume be increased or

diminished. We may also define a vapor as that condition in

which a gas exists the moment before its change of state.

This distinction between a gas and a vapor will be made clearer

by pursuing still further the illustration of the last section. Let

us suppose that we have a cylindrical vessel exposed to the tem-

perature of 130, and filled with steam having a tension equal to

98.956 c. m. By referring to Table IX. of the Appendix, it will

be seen that the maximum tension of the vapor of water at 130

is 203.028. Now, if there were in the vessel a supply of water,
the liquid would continue to give off vapor until this tension was

attained. But we will assume that there is no liquid water pres-

ent, and that the cylinder is filled with expanded steam. Under
these circumstances, the steam must retain the tension of 98.956

c. m. so long as both the temperature and the volume remain

unchanged.
If now, keeping the temperature constant, we increase the ca-

pacity of the cylinder by raising the piston, the steam will expand,
and its tension will diminish in accordance with Mariotte' s law.

When the volume is doubled, the tension will be found to be

49.478 c. m.
; when quadrupled, the tension will be reduced to

24.739 c. m. ; and in any case we can find the tension corre-

sponding to the increased volume by the proportion
*

V : V = %':$. [200.]

* This equation is merely [98], substituting {$ and fy' for H and H1
. The stu-

dent must be careful to bear in mind that the tension of a gas is always equal to the

pressure to which it is exposed (149). We here leave out of the account any deviation

from Mariotte's law, which, nevertheless, may be very considerable as the point of con-

densation is approached (165 and 166).
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Moreover, when the volume has been only so far increased that

the tension of the steam has been reduced to 76 c. m., it is then

in the same condition as that in which a gas (like sulphurous

acid, for example) exists at the ordinary temperature. It will

sustain the pressure of the atmosphere, and, were the tempera-
ture of the laboratory as high as 130, it might be collected over

a mercury trough and transferred from one jar to another, like

any other gas.

Again, if, still keeping the temperature constant at 130, we
now lessen the capacity of the cylinder by sinking the piston,

the tension of the confined steam will be increased up to a cer-

tain point in accordance with Mariotte's law
;
in other words,

it will manifest all the characters of a gas, and its tension at

any degree of condensation may be calculated by the same for-

mula as before. If, however, we continue to sink the piston

until the volume of the steam is reduced to a little less than one

half of its original volume, and the tension increased to 203.028

c. m., we shall reach a point at which the steam suddenly ceases

altogether to obey the law of Mariotte ;
and if we sink the piston

still further, the tension will not increase in the slightest, but a

portion of the steam will be changed into water, and this change
will proceed until the piston reaches the bottom of the cylinder,

the tension all the time remaining constant at 203.028 c. m. It

is to this peculiar condition of aeriform matter that we give the

name of vapor.

Returning now to the initial condition of the cylinder, when it

is filled with steam at the tension of 98.956 c. m., let us vary the

temperature, while we keep the volume absolutely constant. If

we increase the temperature, we shall increase the tension of the

confined steam, according to the same law by which the tension

of a confined mass of air would be increased under the same

circumstances. If, on the other hand, we lessen the tempera-

ture, we shall diminish the tension of the confined steam, accord-

ing to the same law as before, until we reach a temperature at

which the tension of the steam is the maximum tension for that

temperature. Then, on still further cooling the cylinder, a por-

tion of the steam will change into water, and the tension of the

remaining vapor will be found to be the maximum tension corre-

sponding to the reduced temperature.
If we know the tension of a confined mass of gas at any given



588 CHEMICAL PHYSICS.

temperature, we can always readily calculate its tension for any
other temperature, assuming, as we have above, that the volume

does not change. Let V represent the volume of a gas which

has a tension at t. The volume of this mass of gas at J', if

allowed to expand freely, the tension remaining- constant, would

be, by [184], F(l + 0.00366
[*' *]). If now this increased

volume is reduced by pressure again to F, the tension (which
was before $) will of course be increased, and we shall evidently
have the same condition as if the gas had not been allowed to

expand. But we have, by [200],

V (1 + 0.00366
[*' *]) : F= '

: 4} ,

and hence we obtain for the value of the increased tension,

' =
fj (1 + 0.00366 [*' *]). [201.]

Applying now this formula in the example under discussion,

we should find that the steam, whose tension was equal to

98.956 c, m. at 130, would have at 105 a tension of

$ == 98.956 -*-(! + 0.00366 X 25) = 90.641 c. m.
;

and on referring to the table, it will be seen that this is the

maximum tension which steam can have at 105. Hence at this

point the steam assumes the condition of vapor. By the same

formula, it will appear that at 104 the tension of the steam would

be 90.334 c. m., but by the table 87.541 c. m. is the maximum
tension possible at 104

;
as much vapor will, therefore, be con-

densed to water as is necessary to reduce the tension to this

amount. The same will be true, to a still greater degree, at

any lower temperature.

(293.) Distillation. It has now been shown, first, that the

tension of the vapor which rises from a boiling liquid is always

equal to the pressure of the atmosphere ; secondly, that this ten-

sion is the maximum tension possible for the temperature, so that

if the volume is reduced by mechanical means the tension is not

increased, but a portion of the vapor is condensed to the liquid

state. From these two facts it follows, as a necessary conse-

quence, that a vapor will be condensed to a liquid by the pres-

sure of the atmosphere, if its temperature falls below the boiling-

point of this liquid (except under the conditions hereafter to be

considered, when the vapor is diffused through the atmosphere



HEAT. 589

The process of distillation, which is used in the arts for the

purpose of separating a volatile substance from one that is fixed

or less volatile, is a direct illustration of this principle. The

simplest apparatus for the purpose is represented in Fig. 415.

Fig 415

The liquid is boiled in a glass retort, and the vapor which is thus

formed is conducted into a receiver, where it is cooled below the

boiling-point, and again reduced to the liquid state. Since glass

vessels when exposed to a naked fire are liable to break, the body
of the retort is usually protected by placing it within an iron pot
and surrounding it with saiid. Such ail arrangement is termed

Fig. 416.

a sand-bath, or, when water is used in the place of sand, a water-

bath. Another form of distillatory apparatus is represented in

Fig. 416. Here the neck of the retort is connected with what is

50
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usually termed a Liebig-'s condenser. It consists of a tube

of glass, which is kept cold by a current of water circulating

through a copper cylinder, which surrounds it. In the corn-

Fig. 417.

mon still, Fig. 41T, a large copper boiler supplies the place of

the retort, and the vapor is condensed in a spiral tube of cop-

per, called a worm, which is kept immersed in a tank of cold

water.

Since the boiling-point of a liquid is reduced in proportion as

the atmospheric pressure is removed, it is sometimes advantageous
to conduct the process

of distillation in a par-

tial vacuum. This is

especially the case with

some organic substances

which have a high boil-

ing-point and are de-

composed by heat. The

apparatus represented
in Fig. 418 is adapted-

for this purpose. The retort A is connected by an hermetically

sealed joint with the receiver B, and this again, through the tube
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r, with an air-pump, by which the pressure on the surface of the

liquid in the retort may be very greatly reduced. The same

principle is applied in the sugar refineries in order to concen-

trate syrups at a low temperature (vacuum-pans).

(294.) Steam-Bath. The fact, that the temperature of boil-

ing water and of the steam rising from it is constant at 100,
is frequently applied in the laboratory when it is important to

maintain a moderate and constant degree of heat for a length

of time. The arrangement which is usually adopted for evapo-

rating liquids at 100 is represented in Fig. 419. The porcelain

evaporating-dish rests on the rim of a hemispherical vessel of

copper, in which water is kept constantly boiling by means of a

spirit>lamp.

Fig. 419. Fig. 420.

For drying precipitates, or for expelling the water of crystalli-

zation from a salt, the chemist frequently uses a steam-bath like

the one represented in Fig. 420. This is simply a copper oven

with double sides, which is maintained at 100 by boiling the

water which partially fills the cavity between the inner and outer

lining of the oven.

(295.) Papirfs Digester. Water, when enclosed in a strong

vessel, can be heated, as we have seen, to a temperature very
much above 100

;
and this fact is advantageously applied in

Papin's Digester, which is very useful in the laboratory when it

is required to expose substances to the action of water at a tem-

perature between 100 and 200 for a length of time. It consists
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generally of a thick cylindrical vessel of brass, Z>, Fig. 421,

closed by a thick cover of the same material, which is kept in

its place by the screw B S. A safety-valve, o p A, serves to

regulate the pressure, and thus

the temperature of the water,

as well as to insure the safety

of the apparatus. The details

of the construction of the safety-

valve are given in Fig. 440. This

digester can also be used with

great advantage to produce chem-

ical reactions which could not be

readily obtained under the pres-

sure of the air. For this pur-

pose, the substances are sealed

up together in glass tubes, and

exposed to the temperature of the

overheated water, and any inte-

rior pressure resulting from the

evolution of gas in the tube is

more or less balanced by the ex-

terior pressure of the confined steam.

(296.) Condensation of Gases. There are many substances

which boil at so low a temperature that they retain, at the ordi-

nary temperature of the atmosphere and under the usual pressure,

the condition of a gas. The boiling-points of a number of such

substances are given in the following table :

421.

Sulphurous Acid, ;'.; *; 10

Cyanogen, . .
4

*. 20

Ammonia, ; . 36

Arsenide of Hydrogen, . 58

Sulphide of Hydrogen, . 73

Hydrochloric Acid, .>-. 80

Carbonic Acid, < . 80

Protoxide of Nitrogen, 87.2

All these substances manifest, at the ordinary temperature of

the air, the same physical properties which steam would manifest

at 130, as described in (292) ; and if in either case the temper-

ature of the gas is reduced below the boiling-point, then the

tension of the vapor will be reduced to less than 76 c. m., and

the gas will be condensed to a liquid by the pressure of the air,

exactly as in the process of distillation.
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This fact is illustrated by the common method of preparing

liquid sulphurous acid. This gas, which is generated by heating

together metallic mercury
and strong sulphuric acid

in a glass retort (Fig. 422),
is passed into a U tube

surrounded by a mixture

of ice and salt, where it

collects as a liquid. Had
we the means of pro-

ducing readily a sufficient

degree of cold, we might

easily condense to liquids

the other gases in the same way.
For any given temperature, the vapor of each of the substances

included in the above table has, like the vapor of water, a definite

maximum tension, which it cannot exceed
; and if we had the

requisite data, we could make out for each one a table of maxi-

mum tensions at different temperatures similar to the tables on

pages 571 and 583. Bunsen has furnished us with such a table

for the first three substances.

Fig. 422.

Temperature.

-37
20

15

10

5

+5
10

15

20

25

Sulphurous Acid.

Tension in c. in.

78

111

148

191

239

293

354

420

Cyanogen.
Tension in c. :

80

110

141

173

207

244

283

333

380

Ammonia.
Tension in c. m.

74.9

304

361

426

498

578

667.4

Moreover, what was shown in (292) to be true in regard to

steam at 130 is equally true of these gases at the ordinary tem-

perature of the air. If, for example, we suppose the cylinder, so

often referred to, to be filled with sulphurous acid gas, and
maintained at a constant temperature of 15, we should find, on

pressing down the piston, that the tension would increase as the

50*
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volume diminished, until it became equal to 293 c. m.
;
but on

still further reducing the volume, the gas would liquefy. The

same would be true of cyanogen when the tension became equal

to 333 c. m., and of ammonia when it became equal to 578 c. m.,

assuming, of course, that the temperature of the cylinder is

maintained constant at 15. If the temperature is diminished,

the gases cannot acquire so great a tension
;

if it is raised, the

tension may be greatly increased.

These facts may be very elegantly illustrated by means of the

apparatus represented in Fig. 423. It consists of an iron cistern,

A, filled with mercury, and closed

on all sides with the exception of

five circular apertures through the

top. Into four of these may be

screwed the iron tubes a, 6, c, and

d, which reach to the bottom of

the cistern. These tubes are pro-

vided with a broad shoulder, and

are screwed down upon lead wash-

ers with a wrench, so as to enable

the joint to resist a pressure of

ten or twelve atmospheres with-

out yielding. Into the open ends

of these iron tubes the glass tubes

1, 2, 3, and 4 are cemented. They
are about one centimetre in diam-

eter and closed at the top. When
the apparatus is in use, one of the

tubes may be filled with air, and the other three with ammonia,

cyanogen, and sulphurous acid, respectively. By the fifth aper-

ture, e, the interior of the mercury-cistern connects with the

force-pump P, through the tube g ; and by this water may be

forced in upon the surface of the mercury. The pressure thus

exerted will cause the mercury to rise in the several tubes, and

as the volumes of the confined gases are diminished, it will be

noticed that their tension rapidly increases. This tension, which

is evidently the same in all four tubes, is measured by the tube

containing air, which serves as a manometer (168. 3). If the

temperature of the apparatus is kept constant at 15, the tension

will increase until it is equal to 293 c. m.
; then the sulphurous

Fig. 423.
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acid will begin to liquefy, and the tension will remain equal to

293 c. m. until all this gas has disappeared. It will then again
increase until it reaches 333 c. m., when the cyanogen will

liquefy ; and, finally, after this gas has also been reduced to a

liquid, the tension will increase again until it becomes equal to

578 c. m., when, last of all, the ammonia will liquefy. If now
we remove the pressure by opening the stopcock, which vents the

water from the cistern, the liquids will be seen, one after the

other, to boil violently, and return to the condition of gas.

Since the tension of a gas is always equal to the pressure to

which it is exposed, it follows that any gas will be condensed to

a liquid if it is exposed to a pressure which is greater than its

maximum tension at the given temperature. The maximum
tensions of a number of gases at are approximatively as fol-

lows :

Maximum Tension at C.

Atmospheres.
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Fig. 424.

one end of a strong glass tube, bent at the middle, as represented

in Fig. 424, and hermetically sealed. The gas accumulating in

the confined space exerted a great pressure

against the sides of the tube, and when this

pressure became equal to the maximum ten-

sion, a portion of the gas was condensed to a

liquid. This collected in the other end of the

tube, which was immersed in a freezing-mixture to facilitate the

process. With this simple apparatus Faraday succeeded in

liquefying sulphurous acid, cyanogen, chlorine, ammonia, sul-

phide of hydrogen, carbonic acid, muriatic acid, and nitrous

oxide gases.

The principle of Faraday's condensing tubes was afterwards

applied by Thilorier to condensing carbonic acid gas on a large

Fig. 425.

scale. The apparatus which he devised for the purpose is repre-

sented in Fig. 425. It consists of two cylindrical vessels of iron,

made exceedingly strong, and of the capacity of about eight litres

each. They are closed by valve stopcocks of peculiar construc-

tion, which screw into the necks of the two vessels and can be re-

moved at pleasure. By means of the copper connecting-tube F,

which can be attached by couplers to the discharging orifice of the

valves D and N
9
the two cylinders may be united when necessary.
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In order to use the apparatus, the valve C is removed from

the cylinder J., called the generator, and a charge is introduced,

consisting of one kilogramme of pulverized bicarbonate of soda

mixed with a litre of lukewarm water. After this has been

poured into the cylinder, a long cylindrical vessel (J2), contain-

ing about 650 grammes of common oil of vitriol, is carefully let

down by a hook without spilling. The valve-cock, having been

first carefully closed, is now screwed down tightly to the mouth
of the generator, which is then turned upon its supporting-pivots
so as completely to invert it, and thus mix the acid with the car-

bonate of soda. The carbonic acid of the salt, which amounts

to more than half of its weight, is now rapidly disengaged, and

accumulates in the vacant part of the generator, exerting great
elastic force. The generator is next connected, as represented in

the figure, with the second large cylinder (^B), which serves as a

receiver, and which is surrounded by a mixture of ice and salt.

On op9ning the two valves, the condensed gas rapidly passes over

and collects in the cold receiver. The cylinders are then dis-

connected, after first closing the valves, and, the generator having
been carefully emptied, the same process is repeated. After two

or three charges have been in this way conveyed into the receiver,

the pressure becomes sufficient to liquefy the gas ; and after ten

or twelve charges the receiver may contain several litres of liquid

carbonic acid. The receiver is then finally detached, and the

liquid which it contains preserved for use. If this liquid is al-

lowed to flow out into the air, a portion of it evaporates, and, as

we should expect, with great rapidity ; but, what is more won-

derful, the cold caused by the evaporation is so great, that the

larger part of the liquid freezes, changing into a white flocculent

solid resembling snow. This very remarkable phenomenon will

be best studied, however, in connection with the latent heat of

vapors. In order to show the substance in its liquid condition,

a small quantity may be drawn off from the receiver into the

thick glass tube P, which is then closed by a valve-cock like that

of the receiver itself. It is always dangerous, however, to con-

fine liquid carbonic acid in glass.

Although the apparatus of Thilorier is exceedingly conven-

ient, and yields, with little labor, a large supply of liquid carbonic

acid, yet its use is not unattended with danger ;
and a fatal acci-

dent, caused by the bursting of one of the iron generators, at the
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School of Pharmacy in Paris, has brought it into general dis-

favor. The danger arises from the circumstance that the chem-

ical action of the sulphuric acid on the carbonate of soda is

Fig. 427.

Fig. 426.

attended with the evolution of heat, which raises the tempera-
ture of the generator, and very greatly increases the maximum
tension of the gas. In the receiver, when surrounded by ice

and salt, the tension is comparatively feeble, and all danger may
be avoided by condensing the gas with a force-pump directly into

the cold receiver. An apparatus for this purpose is constructed

both by Natterer, in Vienna, and by Bianchi, in Paris. It con-

sists of a condensing-pump (ITS), represented at / in Fig. 426,
which draws the gas from a gasometer through the flexible hose

s, and forces it into an iron receiver, which is represented in

Fig. 427, of one fifth of its usual size. This receiver screws
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upon the upper end of the pump-barrel, and it is closed below

by a self-acting valve, and above by the valve-cock g*, as shown

in Fig. 427. A crank and fly-wheel facilitate the working
of the pump ;

but it requires several hours of hard work to

liquefy only 500 grammes of gas. After the receiver is about

two thirds filled with liquid, it is unscrewed from the pump-

barrel, and the liquid can then be drawn out by inverting it and

opening the valve g. This apparatus has been especially used

for liquefying nitrous oxide gas.

Professor Faraday succeeded in liquefying several gases which

had not been condensed before, by combining the action of intense

cold and great pressure, the last obtained with a very powerful

condensing apparatus. This apparatus consisted of two condens-

ing syringes. The first had a piston of an inch in diameter, the

second of only half an inch
;
these syringes were connected by a

pipe, so that the first syringe forced the gas through the valves

of the second, and the second syringe was then used to compress
still more highly the gas which had already been condensed by
the action of the first, with a pressure varying from ten to twenty

atmospheres. The gases were condensed by this apparatus into

tubes of green bottle-glass bent at the middle into the form of a U,
and closed at the ends with brass caps and stopcocks, securely

fastened by means of a resinous cement. The curved portion of

the tube was immersed in a bath of solid carbonic acid and ether,

and at times a still greater degree of cold, estimated at 110,
was obtained by placing the bath under the receiver of an air-

pump and exhausting the air. When exposed to this very low

temperature, most of the liquefied gases froze, as is shown by
the following table, which contains the results of Faraday :

Gases not yet Liquefied.

Air.

Oxygen.

Nitrogen.

Hydrogen.

Oxide of Carbon.
"

Marsh Gas.

Deutqxide of Nitrogen.

Gases Liquefied,

but not Frozen.

Gases Liquefied,

and also Frozen.

Olefiant Gas.

Chlorohydric Acid.

Fluohydric Acid.

Fluosilicic Acid.

Phosphide of Hydrogen.

Arsenide of Hydrogen.

Chlorine.

Protoxide of Nitrogen, 100

More recently, Natterer of Vienna, has constructed a vastly

more powerful condensing apparatus than that of Faraday, al-

Bromohydric Acid,

Cyanogen,

lodohydric Acid,

Carbonic Acid,

Ammonia,

Sulphurous Acid,

Sulphide of Hydrogen,

Melting-

Point.

8

25

51

58

75

76

86
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though on a similar principle, by which he has been able to ex-

exert a pressure of nearly three thousand atmospheres ; but the

gases enumerated in the first column of the above table did not

yield even to this immense pressure, and indeed were not con-

densed so much as we should be led to expect from the law of

Mariotte. For a description of this apparatus, the student may
consult the memoir already referred to (page 299).
The facts of this section all tend to show how completely the

mechanical condition of matter depends on the temperature of

the globe. If the mean temperature were 100 below the present

point, by far the larger number of known gases would be either

solids or liquids. To the inhabitants of such a climate (whom
we may suppose to use a Centigrade thermometer on which

100 of our scale would be the zero-point), protoxide of nitro-

gen would be a very volatile liquid, freezing at and boiling at

13
; cyanogen would be a crystalline solid, melting at 65 and

boiling at 80
;
and sulphurous acid would be a solid, melting at

24 and boiling at 90. On the other hand, were the mean tem-

perature of the globe 100 above the present point, many of our

most familiar liquids would be known chiefly as gases. Ether,

alcohol, and water would stand very nearly in the same relation

in such a climate that sulphide of hydrogen, cyanogen, and sul-

phurous acid do in ours.

There is every reason to believe that all gases might be con-

densed to liquids, if a sufficient degree of cold and pressure could

be attained
; and we ought not to be surprised at the difficulty

experienced in liquefying the gases above enumerated, when we
remember how very rapidly the maximum tension of vapors in-

creases with the temperature, and how very limited our means of

reducing the temperature are, as compared with our means of

elevating it. We can easily attain a temperature of 5,000 C.,

while we can scarcely reduce the temperature of bodies to 150.
At 1,000 the maximum tension of the vapor of water would be,

unquestionably, equal to many thousand atmospheres, and it

would undoubtedly be found as difficult to condense to a liquid
the vapor of water in the highly rarefied condition which it would
have at that temperature under the mere pressure of the air, as

it is now found to condense the so-called permanent gases.

(297.) Greatest Density of Vapor. By referring to the table

on page 571, it will be seen that the weight of one cubic metre



HEAT. 601

of the vapor of water and hence, also, its density (68) in-

creases very rapidly with the temperature. This is also shown

by the curve a bfg- of Fig. 412. The ordinates of this curve

represent the weight of one cubic metre of vapor at the corre-

sponding temperatures indicated by the abscissas, and the dis-

tance between any two horizontal lines of the figure corresponds
to a difference of weight equal to 588.73 grammes. At 230.9
the weight of one cubic metre of vapor is already -fa of the

weight of a cubic metre of water at 4, and at the same rate of

increase the weight of the vapor at no great elevation of temper-
ature would be equal to that of its own volume of water. At
such a temperature water would change into vapor without in-

creasing its volume, provided that a vessel could be made suffi-

ciently strong to bear the immense pressure which it would then

exert. The same must also be true of the vapors of other liquids,

so that at a temperature more or less elevated the density of the

vapor will become equal to the original density of the liquid,

which will then change into vapor without increasing its volume.

An approach to these phenomena has been observed by M.

Cagniard de la Tour.* He sealed up in a strong glass tube a

volume of water equal to about one fourth of the capacity of the

tube, and exposed it to a gradually increasing temperature. At
a fixed temperature the water entirely volatilized, and the tube

appeared empty. This temperature, at which water thus evapo-
rates into a space of about four times its own bulk, is near the

melting-point of zinc (360). So great was the solvent power
of water on glass at this high temperature, that it soon destroyed
the integrity of the tubes, and a small amount of carbonate of

soda was added to the water to diminish this action. As the

vapor cooled, a point was observed at which a sort of cloud filled

the tube, and in a few moments after, the liquid reappeared
almost instantaneously. M. de la Tour made similar experi-

ments with alcohol, ether, and sulphide of carbon, with the fok

lowing results :

Temperature Volume of Vpor Tension of

of i icappear- as compared with Vapor in

ance. Volume of Liquid. Atmospheres.

Alcohol (36 Baume),
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The tension of the vapors, as given in the above table, is far

less than we should have expected ; for, if Mariotte's law held

good in these cases, ether should have exerted a pressure equal

to about 209 atmospheres, and alcohol of at least 242. Here,

then, we have a very marked example of the principle previously

enunciated (166), that as the point of liquefaction is approached,

the compressibility of a gas deviates more and more widely from

the law of Mariotte. The experiments of De la Tour also show,

that under these enormous pressures, even before the whole of

the liquid has evaporated, the tension of the vapor varies with

the proportion which the liquid bears to the space in which it is

confined.

(298.) Smallest Density of Vapor. Having seen that the

highest limit of the density of vapor is probably at least as great

as the density of the liquid from which it is formed, we naturally

next inquire, Is there any lowest limit ? Do substances continue

to evaporate at all temperatures, however low, or is there some

limit of temperature at which they cease all at once to emit

vapors ? By again referring to the table of maximum tensions

(page 571), it will be seen that even at 10 below the freezing-

point water forms a vapor weighing 2.284 grammes to the cubic

metre, and having a tension of 0.2078 c. m. ; and even at 20

below the freezing-point it forms a vapor with a tension of 0.1383

c. m. It was formerly supposed that substances which were de-

cidedly volatile at the ordinary temperature continued to emit

vapor, however far the temperature might be depressed, although
the quantity became less and less, until it was inappreciable to

our senses. It was even thought by some, that fixed solids, such

as the metals and the rocks, gave out a sensible amount of vapor,

so that traces of these substances were always to be found float-

ing in the atmosphere. Some researches of Faraday, however,

appear to establish an opposite conclusion. He found that mer-

cury gave out
a, perceptible vapor during the summer, but none

during the winter ; and also that some chemical agents which

may be volatilized at temperatures above 150 did not undergo
the slightest evaporation during four years at the ordinary tem-

perature of the air. The best opinion, therefore, appears to be,

that there is for every body a temperature at which it ceases all

at once to give out vapor. With mercury, this temperature lies

between 4 and 15.
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HEAT OF VAPORIZATION.

(299.) Latent Heat of Vapor. The change of state from

liquid to vapor is accompanied with a very great amount of ex-

pansion ; thus,

IcT^
3
of Water at 100 forms about 1700 ^.s of steam at 100?

1 " Alcohol " 78.4 " " 485 vapor 78.4.

1 " Ether 35.6 " " 357 " " " " 35.6.

And, indeed, the heaviest known vapor, that of iodide of ar-

senic (;?. 6rr.= 16.1 as compared with air, or 0.021 as com-

pared with water), is thirty times lighter than the lightest known

liquid, eupion (Sp. Gr. = 0.633). We should naturally expect
that such great expansion would be attended with a large absorp-

tion of heat. A single experiment will enable us to illustrate

this fact, and also roughly to estimate the amount absorbed in the

case of water.

Take a glass flask, and having placed in it one kilogramme of

ice-cold water, expose it to such a source of heat that equal amounts

of heat shall enter it during equal times. Observe carefully the

time which elapses before the water boils. We will assume that

it is twenty minutes. Observe also the temperature of the water

and of the steam which fills the upper part of the flask. It will

be found to be 100, and both will remain at this temperature
until the whole of the water has boiled away. Continue the

boiling for fifty-four minutes, and at the end of this time weigh
the water remaining in the flask, when it will be found that

exactly one half has been converted into steam and escaped.
We assumed that it required twenty minutes to boil the water,

that is, to raise the temperature of one kilogramme of water from

to 100. During this time, then, one hundred units of heat

must have entered the liquid. Hence it follows, that, during
the succeeding fifty-four minutes, two hundred and seventy
units of heat entered the water

;
but this amount of heat has

not raised the temperature in the slightest degree, for both

the water and the steam have retained, during the whole inter-

val, the constant temperature of 100. What, then, has become

of the heat ? The answer is, that it has been absorbed in con-

verting 500 grammes of water at 100 into 500 grammes of steam

at the same temperature. It follows, then, that one kilogramme
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of water at 100 absorbs, in changing into steam of the same

temperature, 540 units of heat. The latent heat of steam, as

well as that of other vapors, can be ascertained with great accu-

racy by means of the apparatus represented in Fig. 428, contrived

by Brix,* of Berlin. It consists of a small glass retort, R y
con-

necting with a small metallic cylindrical condenser, B. This

condenser has an opening into the atmosphere by the tube .L,

and is supported in the centre of a larger cylindrical box, A,
which is filled with water. A thermometer passing through a

tubulature in the cover enables the experimenter to observe the

temperature of the water, while by agitating the water with the

metallic disk C, its tempera-
ture can be rendered uni-

form throughout. In con-

ducting the experiment, the

water around the condenser

is first cooled a few degrees
below the temperature of

the atmosphere ;
then the

vapor is distilled over from

the retort until the tem-

perature of the water has

risen an equal number of

degrees above that of the

atmosphere. In this way
any loss of heat from the

water is avoided, since the

apparatus is for an equal

length of time warmer and

cooler than the air. The

weight of vapor condensed

is then ascertained by the

loss of weight of the retort,

and the amount of heat evolved by its condensation is readily
calculated from the weight of the water around the condenser,
and the number of degrees through which it has been heated.

This amount of heat corresponds to the latent heat of the vapor

plus the amount of heat given out by the condensed steam in

Fig. 428.

* Poggendorff 's Annalen, Band LV.
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cooling from the boiling-point to the temperature of the con-

denser. To illustrate this by an example, we will suppose that

we know

The weight of water around the condenser, . . . 500 grammes.
The temperature at the beginning of the experiment, . 12.

The temperature at the end of the experiment, . .18.
The weight of the water distilled over, . . . 4.82 grammes.

Hence it follows (231), that

The amount of heat which entered the water equals . 3 units.

By (233) the amount of heat required to raise the temper-
ature of 4.82 grammes of water from 18 to 100 is

equal to 0.395 "

And hence the quantity of heat given out by 4.82 grammes
of steam in liquefying equals ..... 2.605 u

One kilogramme of steam would then set free, in liquefying, 540 "

It is evident that, in these experiments, as in the determination

of the specific heat by the method of mixtures, it is necessary to

take into account the amount of heat absorbed by the metals and

glass of which the apparatus is made. This can easily be calcu-

lated, since the specific heat of these substances is known, and

their weight can be easily determined. The formulae for similar

calculations have already been given [158] and [159], and they
can readily be modified by the student for any special case.

By means of the apparatus described above, Brix obtained for

the latent heat of the vapors of several well-known liquids the

following values.* These values are, in each case, the number

of units of heat required to convert one kilogramme of the liquid

at its boiling-point into one kilogramme of vapor at the same

temperature.
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Since the number which expresses the specific gravity of a

substance is the same as the weight of one litre in kilogrammes,
it follows, that, if we multiply the specific gravity of a vapor at the

boiling-point (referred to water) by 1,000, we shall obtain the

weight in kilogrammes of one cubic metre of this vapor at this

temperature ; and, furthermore, it follows from what has been

said, that, if we multiply this weight by the latent heat of the

vapor, we shall have the number of units of heat required to

generate from these liquids at their boiling-points one cubic metre

of vapor. Making these calculations, we should obtain the num-
bers given in the above table as the latent heats of equal volumes;
and it will be noticed that, with the exception of that of ether,

these numbers are approximatively equal. The same is also

true of other liquids not included in the table
;
hence we may

say, roughly, that the same volume of vapor will be produced
from all liquids by the same expenditure of heat. No important

advantage, therefore, could be gained by substituting any other

liquid for water in the steam-engine.

(300.) Latent Heat of Steam at Different Temperatures.
The latent heat of steam has the value given in the above table

only when its tension is 76 c.m. and its temperature 100, which

is the case when the steam is formed by boiling water under the

normal pressure of the atmosphere. If the tension and temper-
ature of the vapor have greater values than the above, then the

latent heat is less than 540 units
; and, on the other hand, if

these values are less than 76 c. m. and 100, then the latent heat

of the vapor is more than 540 units. Watt concluded, from his

experiments, that the same weight of vapor always contained the

same quantity of heat, or, in other words, he supposed that the

same quantity of heat would convert one kilogramme of water at

into one kilogramme of vapor, whatever the tension or tem-

perature of the vapor might be. If this were the case, the sum
of the latent and sensible heat of steam would be the same at all

temperatures, and we should have for the latent heat the follow-

ing values :

Temperature. Latent Heat of Vapor. Sum.

640 units 640

50 590

100 540

200 440
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Among the other numerical data connected with the steam-

engine, Regnault has carefully determined the latent heat of

steam at different temperatures between 5 and 196. These

experiments were made with an apparatus constructed with every

possible refinement, and were conducted with the usual skill of

this eminent experimentalist ;
but for a description both of the

apparatus and of the methods, we must refer the student to the

original memoir.* It was proved by this investigation, that the

law of Watt, as the principle above stated is frequently called, is

far from being an exact expression of the facts, and, like so many
other phenomenal laws of nature, can only be regarded as ap-

proximatively true (compare page 300). The sum of the latent

and sensible heat of steam actually increases, although only very

slowly, with the temperature ;
and Regnault found that the

results of his experiments were very nearly satisfied by the em-

pirical formula

A == 606.5 + 0.305 t
, [202.]

in which >t represents the sum of the latent and sensible heat,

while 606.5 is the latent heat of the vapor at 0, and t the given

temperature. By means of this formula, we can very easily cal-

culate the latent heat of the vapor at any temperature. Thus,
at 100 we have A= 637, and consequently the latent heat is 637

units less the number of units required to raise the temperature
of one kilogramme of water from to 100. By the table on

page 472, we find that this amount is equal to 1.005 X 100 =
100.5, and, subtracting this quantity from 637, we find the latent

heat of steam at 100 to be 536.5 units. In like manner, the

other values in the following table have been calculated.

The second column of the table gives the tension of the

vapor of water in centimetres. The fourth column gives the

number of units of heat required to change one kilogramme of

water at into one kilogramme of vapor at t. The third col-

umn gives the number of units of heat required to change one

kilogramme of water at t into one kilogramme of vapor at the

same temperature.

* Memoires de 1'Acadcmie des Sciences, Tom. XXI.



608 CHEMICAL PHYSICS.

Tem-
pera-
ture.
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of experiments. One of the most striking of these is that of

Leslie, in which water is frozen by its

own evaporation. A small and shallow

pan of water is supported over a dish

of sulphuric acid, and under a bell-glass

standing on the plate of an air-pump

(Fig. 429). On exhausting the air

from the bell, the heat absorbed by the very rapid evapora-
tion of the water which ensues is so great, that the larger por-

tion of the liquid is converted into ice. The sulphuric acid

absorbs the vapor as fast as it forms, and thus accelerates the

evaporation.
A similar experiment can be made with the instrument rep-

resented in Fig. 430, called the cryophorus (frost-bearer). It

consists of two glass bulbs, connected together by a long tube,

one of which is partially filled with water. In making the in-

strument, it is hermet-

ically sealed while filled

with steam, so that on

cooling a vacuum is left

above the water, except
f ,, \ Fig. 430.

in so far as the space is

filled with vapor. If now the empty bulb is surrounded by a

freezing-mixture, this vapor is condensed as fast as it is formed,
and a very rapid evaporation ensues from the surface of the water

in the first bulb, which soon reduces the temperature of the liquid

to the freezing-point. Even more marked effects than these can

be obtained by the evaporation of very volatile liquids, like ether

or sulphide of carbon. The rapid evaporation of ether poured

upon the hand occasions a very distinct sensation of cold, and

water can be frozen by the evaporation of ether from the surface

of a glass bulb covered with muslin and kept moistened with the

liquid. If the evaporation is accelerated by placing the apparatus
under the receiver of an air-pump, even mercury can be frozen in

this way. Indeed, an apparatus has been invented for making
ice in warm countries, by the evaporation of ether in a partial

vacuum.

The principles of latent heat can in no way, however, be more

strikingly illustrated than with liquid carbonic acid. When this

highly volatile liquid is allowed to escape into the air, it erap-



610 CHEMICAL PHYSICS.

orates with such rapidity, as has been stated, that the larger por-
tion of it almost instantaneously freezes. This frozen carbonic

acid can easily be obtained in large quantities by means of the

apparatus of Thilorier. From the valve of the receiver 5, Fig.

425, a tube descends to near the bottom of the vessel, so that, on

opening the valve, the liquid is forced out by the tension of the

gas in the interior. A cylindrical brass box, O, connected with

the valve of the receiver by the coupler L (which fits in the

socket Tkf), and so constructed as to break the force of the jet,

receives the liquid as it issues from the receiver, and soon be-

comes filled with solid carbonic acid, which resembles, in its

general appearance, freshly fallen snow. This experiment, it will

be noticed, is analogous in principle to that of Leslie, in which

water was frozen by its own evaporation.

A further illustration of the principles of latent heat is afforded

by the fact, that the solid carbonic acid if in considerable quan-

tity and surrounded by poor conductors may be kept exposed to

the air for hours before it entirely disappears. Although exceed-

ingly volatile, it evaporates only slowly, for the same reason that a

bank of snow melts gradually during a warm spring day. The

non-conducting nature of the vessel, and of the atmosphere of gas

which surrounds it, prevents the absorption of the heat which is

necessary for the change of state. If, however, it is brought into

close contact with a good conductor, like metallic mercury, the ra-

pidity of its evaporation is greatly accelerated, and the temperature
of the substance reduced to that of the solid gas, which has been

estimated as low as 90 C. In this way large masses of mercury
can easily be frozen. A greater degree of cold can be obtained by

mixing the solid gas with a little ether, which forms with it a semi-

fluid mass capable of being brought in closer contact with sub-

stances, and thus removing their heat more rapidly. A still greater

degree of cold was produced by Faraday, by placing this mixture

tinder the receiver of an air-pump from which the air and gaseous
carbonic acid were rapidly removed. An alcohol-thermometer

placed in this mixture sinks to the temperature of 110
;
at

this low temperature the mixture of solid carbonic acid and ether
'

is not more volatile than alcohol at the ordinary temperature.
Similar experiments can be made with the liquid protoxide

of nitrogen, which is obtained in Bianchi's apparatus. As this

does not freeze so readily as liquid carbonic acid, it can be drawn
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out from the condenser in a liquid state, and retains its condition

when exposed to the air longer than solid carbonic acid. It can

readily be frozen by its own evaporation, and it furnishes the

means of producing the lowest temperature yet attained. When
mixed with solid carbonic acid and ether, it produces a cold so in-

tense, that absolute alcohol exposed to it assumes the consistency

of a thick oil, and a thermometer immersed in a bath formed

by mixing this liquid with sulphide of carbon was observed by
Natterer to fall to 140 when the bath was placed in vacuo.

(302.) Applications of the Latent Heat of Steam. The great

amount of heat which steam contains renders it exceedingly val-

uable in the arts as a heating agent. Water may be heated, and

even boiled, in wooden tanks, by blowing steam into it, or by

causing the steam to circulate through a coil of copper pipe at

the bottom of the tank. Buildings, also, are very frequently
warmed by the heat of steam. The steam generated in a boiler

placed in the basement is conveyed by iron pipes to the differ-

ent apartments. There it is condensed to water in a coil of

iron pipes, or in a condenser of some other form, and the heat

thus set free is radiated from the iron surface of the condenser.

Steam is likewise used as a source of heat in the process of distil-

lation, especially when the substance to be heated is liable to al-

teration from too high a temperature. For this purpose, the walls

of the still are frequently made double, and the steam admitted

between the two. It is sometimes found advantageous to blow the

steam through the mass of liquid in the still, in which case the

volatile product passes over in vapor mixed with the steam, and

the two are condensed together in the worm or receiver. This

method is constantly used in the distillation of volatile oils from

organic materials. Sometimes the steam is highly heated by

passing it through red-hot tubes before, it is introduced into the

still. In this way the fat acids and many other substances can

be distilled, which could not be distilled in the ordinary way.

This method is in fact the basis of an important process used in

the arts for decomposing tallow and other fats, and extracting

from them the fat acids and glycerine, substances which are used

in the manufacture of candles and of soap.

(303.) Spheroidal Condition of Liquids. It has already been

stated, that when a liquid is dropped upon a heated surface, the

temperature being made to vary with the nature of the liquid, it
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Fig. 431.

assumes the spheroidal condition, and rolls round

on the surface like globules of mercury on a porce-

lain plate (Fig. 431). It was

also stated, that the temperature
of the liquid in this condition is

constant, and always below its

boiling-point. This fact can be

proved by testing the tempera-
ture with a thermometer, as

shown in Fig. 432, The following table shows in

each case, first, the temperature at which the liquid

assumes the spheroidal condition in a heated silver

capsule ; and, secondly, the temperature of the

liquid while in this condition :

i. ii.

Water, ', . . . 171

Alcohol, .... 134

Ether, .

Sulphurous Acid,

61

96.5

75.8

34.2

10.5

Fig. 432.

Boiling-Point

100

78

35

10

When in the spheroidal condition, the globules of liquid have

a gyratory motion on the bottom of the capsule, and not only
does the liquid not boil, but it evaporates vastly more slowly

than when it is in actual ebullition. If the source of heat is

removed, the temperature of the capsule will fall until a point is

reached at which the liquid wets the metallic

surface, and then the liquid will boil violently,

and be thrown in all directions with almost ex-

plosive violence (Fig. 433). This singular phe-

nomenon can also be shown

by pouring a small quantity
of water into a thick copper
flask intensely heated, and

corking the flask while the

liquid is in the spheroidal condition. For
a time, all remains quiet ; but when the flask

has cooled sufficiently, the water will be sud-

denly converted into steam, and the cork

thrown out with great violence (Fig. 434).
It has also been proved that a liquid, when

Fig. 433.
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in a spheroidal condition, is not in contact with a heated sur-

face. Boutigny was able to see the flame of a candle between

a globule of water rendered

opaque by lampblack and

the heated surface on which

it rested (Fig. 435) ; and,

moreover, Wartmann and

PoggendorfF found that a

current of electricity would

not pass between the liquid

spheroid and the metallic
Fig. 435.

disk.

The explanation of these singular phenomena has already been

in part given. We have seen that, whenever by the action of

heat the adhesion of a liquid to the surface on which it rests

becomes less than twice as great as the cohesion between the

liquid particles themselves, the liquid will no longer moisten the

surface, and we can readily conceive that it may be even re-

pelled by it, and with a force sufficiently great to overcome the

weight of the liquid mass. That such a repulsion really exists

Boutigny proved by two curious experiments. He poured water

into a basket made of platinum wire-netting and heated to redness,

and found that the liquid did not drop through the interstices.

He also whirled round, in a sling, a heated capsule containing a

liquid globule in the spheroidal state, and found that the cen-

trifugal force was not able to compel contact. Assuming, then,

that the liquid globule is sustained at a small distance above the

heated surface by the repulsive force of heat, it is easy to explain

the rest. The vapor forming on the lower surface of the sphe-

roid would raise it still further from the heated metal, and, escap-

ing unequally around the contour of the spheroid, would tend to

give to it its singular motions. Then, again, since the liquid

is not in contact with the source of heat, it can only be heated

by radiation. Now a part of the rays of heat will be reflected

from the surface of the liquid ; and, moreover, the greater part of

those which penetrate it will pass through it without being ab-

sorbed. It is evident, then, that the spheroid will retain but a

small portion of the heat radiated from the walls of the metallic

capsule ; and since it is all the time losing heat by evaporation,

52
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it is not wonderful that its temperature should be reduced several

degrees below the boiling-point.

By following out the principles of this section to their extreme

consequences, we are able to produce some very paradoxical

effects. It has before been stated, that water may be frozen by

pouring it into liquid sulphurous acid while the latter is in the

spheroidal condition, although the capsule containing it may be

red-hot. So also, by substituting for liquid sulphurous acid the

mixture of solid carbonic acid and ether, even mercury, placed

within the red-hot capsule in a small platinum crucible, may be

frozen with equal certainty. The wonder disappears from these

phenomena when we know that these highly volatile liquids are

not in contact with the heated surface of the capsule, for they

simply produce the same effects in their spheroidal condition that

they would under other circumstances. A still more paradoxical

result can be obtained with liquid protoxide of nitrogen. For

this experiment, the liquid should be drawn into a tube sus-

pended in a bottle containing a few lumps of chloride of cal-

cium, by means of a cork adjusted to the neck. Without this

precaution, the moisture of the air would condense as hoar-frost

on the tube, and render the wall opaque. If we pour some mer-

cury into this tube, it will sink to the bottom and immediately
freeze. On the other hand, if a piece of burning charcoal is

dropped in, it will float on the liquefied gas, which will assume

the spheroidal condition around it ; but, moreover, what is very

remarkable, the charcoal will burn with the usual intense bril-

liancy in the protoxide of nitrogen gas which surrounds it, and

we shall thus have in the same test-tube burning charcoal and

frozen mercury. But perhaps the most marvellous result is the

impunity with which the moistened hand may be dipped into

melted lead, or even into molten cast-iron as it flows from the

furnace. In these cases the adhering moisture is converted into

vapor, which forms an envelope to the skin sufficiently non-

conducting to prevent the transmission of any injurious quantity
of heat during the short period of the immersion.
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STEAM-ENGINE.

(304.) It would lead us beyond the design of the present
work to enter upon any detailed description of this wonderful

application of the laws of vapors. We shall only be able to

point out the general principles of the machine, and to illus-

trate by figures some of its most important forms. It has al-

ready been shown, that when water is confined in a vacuous

space, this space becomes filled with vapor, whose tension de-

pends on the temperature, and rapidly increases as the tempera-
ture rises. It is the object of the steam-engine to convert this

tension into mechanical effect. Every steam-engine must, then,

consist of two parts : first, the boiler
,
in which the steam is gen-

erated ; secondly, the machine proper, by which the tension of

the steam is made to do mechanical work. We shall do well to

examine the various forms which are given to these parts sepa-

rately.

(305.) The Boiler. The form of the steam-boiler varies very

greatly with the purposes to which it is to be applied, and on its

proper construction the safe and economical working of the ma-

chine in great measure depends. The boiler is the origin of the

power ;
it is where the heat evolved by the burning combustible

is combined with water, to reappear in the expansive force of

steam. The machine proper merely transmits this force, and,

like any other machine, it can neither increase nor diminish it,

except so far as the force is expended in overcoming friction or

other resistances in the machine itself.

The two chief requisites for a steam-boiler are evidently, first,

the strength required to resist the expansive force of the steam

without an unnecessary expense of materials
; and, secondly, the

capability of furnishing the amount of steam required by the en-

gine in any given time, with the smallest possible expenditure of

fuel. The boilers are usually made of plates, either of wrought-
iron or of copper, riveted together, and, wheu necessary, are

strengthened by cross iron stays in the interior. Copper is the

best material, but iron is almost invariably preferred on account

of its cheapness. The thickness of the plates is made such that

the boiler will resist a very much greater tension than any to

which it can ever be expected to be exposed.
It is generally assumed, that, in order to supply a steam-engine,
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85 litres of water must be evaporated in the boiler each hour for

every horse-power. Now, we know that at least 650 X 35 =
22,750 units of heat are required in order to convert 35 kilo-

grammes of water into steam ; and this amount must therefore

be transmitted during an hour through the boiler-plates for every

horse-power of the engine. But since, even through the best

conductors, heat is transmitted with extreme slowness, so large
a quantity can only be made to pass by exposing a large surface

to the action of the flame. Hence the extent of the heating sur-

face^ and not the amount of water contained in a boiler, is the

measure of its capacity to generate steam. It is the general rule

to allow about 1.7 square metres of heating surface, and about 70

square centimetres of grate-bars to every horse-power. Moreover,
in order to obtain the full effect of the combustible, it is essential

that the heated products of combustion should be kept in con-

tact with the surface of the boiler until the temperature of the

smoke is reduced as nearly as possible to that of the water in

the boiler. This is accomplished by making the smoke circulate

through tortuous flues in contact with the surface of the boiler.

The quantity of heat produced by the burning combustible is far,

however, from being entirely economized. It has been found, by

experiment, that the whole amount of heat evolved by burning
one kilogramme of bituminous coal is equal to about 7,500 units,

which would change into steam J
B\n

Q = 11.5 kilogrammes of

water, if it all passed through the boiler-plates into the water ;

but so much heat is lost by incomplete combustion, by radiation,

by conduction through the mass of the furnace, and, finally, by
the smoke, which must be discharged into the chimney, still

heated to between 200 and 400 in order to sustain the draught,
that practically one kilogramme of coal will not evaporate more
than from five to seven kilogrammes of water with the best con-

structed furnaces.

The conditions of efficient ac-

tion just considered are best com-

bined in what is termed the Corn-

ish boiler, which is represented in

Fig. 436. It is cylindrical in

form, frequently over forty feet

in length, and from five to seven

Fte- 436. feet in diameter, with two flues,
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which extend the whole length of the boiler
; they are perfectly

cylindrical, and of sufficient magnitude to admit a furnace in

each. After the heated gases have traversed these iron flues,

they are returned around the surface of the boiler by external

flues made in the brick-work which supports it. The circuit

which the hot gases perform in contact with the boiler surface is,

not unfrequently, 150 feet long, and the heating surface exposed
to their action over 3,000 square feet. Another form of boiler

much used for stationary engines in France is represented in

Figs. 437 and 438. This boiler is also cylindrical, but in the

Fig. 437.

place of the internal flues used in the Cornish boiler, the heating

surface is increased by means of two tubes bouilleurs, B, Fig.

437, which are connected with the main cylinder by the vertical

tubes P, P, P. The flame of the furnace plays directly against

the tubes bouilleurs ; the heated gases are then returned under

the main cylinder in the flue O, Fig. 438, and are finally dis-

charged into the chimney through the side flues #, a;, while a

damper at R serves to regulate the draught.
With a stationary boiler, economy of fuel is, as a general rule,

the great desideratum
;
and in most cases that form can be given

to it by which this end is best attained. It is different with the

boiler of a steamship or of a locomotive engine. With the first,

economy of fuel is also the primary consideration, because, other-

wise, long voyages would be impossible ; but economy of space

must also be considered, and it is therefore essential that the size

of the boiler should be restricted to quite narrow limits. With

the locomotive, on the other hand, speed is, as a general rule, the

great object, and this must be attained at any cost of fuel. But

52*
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speed implies a very rapid consumption of steam, since for every
revolution of the driving-wheel of a locomotive its two cylinders

must be filled and vented twice
;
hence the chief requisite of

a locomotive boiler is, that it should generate the greatest pos-

sible amount of steam in a given time. In all cases, the ma-

chinist endeavors to combine the requisite conditions as well as

the circumstances admit, and the efficiency of his engine depends
in great measure on his success. Unfortunately, he is guided
almost entirely by empirical rules

;
and there are few branches

of practical art in which so much remains to be determined and

improved, and scarcely any which theoretical science has done so

littb to advance.

The usual form given to the boiler of a locomotive is repre-

sented in Fig. 4o9. The furnace J., called the fire-box, is within

the boiler, and surrounded

by water except at the door

D and at the ash-pit. The
flame is conducted from this

fire-box to the smoke-box B
through a large number of

brass tubes, which are all

surrounded by the water of

the boiler. There it meets

Fig. 439. with a jet of steam coming
from the cylinders, which

creates a strong draught and drives the waste gases up the chim-

ney. The boiler of a locomotive is surmounted by the steam-

dome, E ;
and a tube with a funnel-shaped orifice, opening near

the top of this dome, receives the steam and conveys it to the

cylinders through F. This arrangement prevents, to a great

degree, the spray, which rises from the water of the boiler

and is mixed with the steam in the upper part of it, from

reaching the cylinders ; as the steam ascends the steam-dome,
this spray falls back, and nothing but pure steam enters the

tube.

The steam-boiler is always provided with several appendages
for the purpose of regulating the quantity of water, for meas-

uring the tension of the steam, and for preventing the accu-

mulation of a pressure which would endanger the safety of the

boiler.
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It is essential for the good working of the boiler, that the

water should always cover the whole heating surface ;

'

hence

it must be maintained above the level of the flues. The water

is supplied to the boiler through the pipe a (Fig. 437), which

reaches nearly to the bottom. This pipe communicates either with

an elevated reservoir, or with a force-pump moved by the engine,
the size of the" pump being so adjusted that the amount of water

forced into the boiler during a given time shall be, as nearly as

possible, equal to that which escapes in the condition of steam

through the steam-pipe v during the same interval. This adjust-

ment, however, is necessarily imperfect ;
and hence a great variety

of inventions, by which the supply of water is regulated automati-

cally, and made to depend on the position of the water-level in

the boiler. Various contrivances are in use for indicating to the

engineer the height of the water. One of the simplest of these is

the glass gauge represented at n (Fig. 437). It consists of a thick

glass tube firmly cemented into iron caps, by means of which it

communicates with the interior of the boiler. It is so placed,

that, when the water is at the proper level, the lower end shall

open below the surface of the water, and the upper end above it
;

consequently, the water will always stand at the same level in the

tube as in the boiler. Another kind of indicator is .represented at

/'. It consists of a float, which is connected with a counterpoise

by a metallic wire passing over a pulley, and through a packing-
box in the top of the boiler. The position of the level of the

water is indicated either by the position of the counterpoise, or by
a needle attached to the axis of the pulley, and moving over a

graduated disk. Some boilers are also provided with an alarm-

whistle, $, so arranged that it is opened by the float / when the

level of the water falls too low.

The tension of the steam in the interior of the boiler is indi-

cated by a manometer, which may be either of those already

described (Figs. 104, 273, or 279).
In order to limit the tension of the steam, every boiler is fur-

nished with one or more safety-valves, represented at P (Fig. 437),

and also in detail in Fig. 440. The valve is kept closed by the

weight P, acting on the lever O, and this weight is so adjusted

to the area of the valve, that the valve will open as soon as

the tension of the steam exceeds a limited amount. The area of

the valve is adjusted to the extent of the heating surface of the
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boiler, and to the maximum tension at which the boiler can be

worked with safety. It is determined by means of the empirical

formula,

d = 23
// 0.412

in which d is the diameter of the valve, S the area of the heating
nirface of the boiler, and H the maximum tension of the steam.

It has been found that a valve with the dimensions given by this

Fig. 440.

formula will allow all the steam to escape which can be generated

by the most active fire
; but, for greater security, a boiler is gen-

erally provided with two valves of these dimensions.

We can also limit the tension of the steam by fixing a limit to

its temperature. This can be done by closing a tubulature

adapted to the upper part of the boiler with a plate made of

fusible alloy, whose proportions have been so adjusted (272) that

it shall melt when the steam attains the temperature which cor-

responds to the maximum tension which the boiler is calculated

to sustain. This plate, which is quite brittle, is held in its place

by an iron collar, and protected by an iron grating, which ena-

bles it to resist the pressure of the steam. The use of these

plates, however, is liable to serious objections. They not only
render the boiler unserviceable for the time, if they yield, but,

moreover, the melting-point of the plate is liable to a change
from the eliquation of the more fusible metal.

(303.) Dimensions of Steam-Boilers. As in the last sec-

tion the dimensions of the steam-boiler were given in French

measure, it may be well to add the following English data, taken

from the Encyclopaedia Britannica, Article Steam-Engine, pre-

mising that by a horse-power is meant a force of that intensity
which will raise 33,000 pounds one foot per minute, or nearly

2,000,000 pounds one foot per hour.
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Conditions for each Horse-Power. Ordinary Cornish
Standard. Boiler.

Quantity of water to be evaporated per hour in cubic feet, 1 1

Volume of water in boiler in cubic feet, . . 10 or more.

Volume of steam in steam-chamber in cubic feet, . 10 or more.

Area of fire-grate in square feet, .... 1 2

Area of heating surface in square feet, . . . 15 60 to 70

Circuit of flues in linear feet, ..... 60 150

Results.

Bituminous coal per hour for each horse-power, . . lOlbs. 5*lbs.

Water evaporated by each pound of coal, . . 6 "
llf

"

Bituminous coal consumed per hour for each square foot

of grate, 10 "
2|

"

(307.) Watt's Condensing-Engine. The steam-engine, in

its present form, was invented, between the years 1763 and 1769,

by James Watt, originally a maker of philosophical instruments

in Glasgow. This invention stands without a parallel in the

history of the mechanic arts. Perfect almost from its first con-

ception even in its minutest details, it has since received no

improvement involving a single principle unknown to Watt. It

is true that we have machines at the present day which, not

only in magnitude, but also in the perfection of the mechanical

details, and in the beauty and simplicity of the combination of

the several parts, far exceed any Watt ever saw
;
but all these

improvements have been only the necessary development of his

first conception.

Most of the parts of the condensing-engine are shown in Fig.

441, which, although necessarily imperfect in its details, will

serve to illustrate the relation of the parts. The most essential

part of the machine is the large cast-iron cylinder (shown on the

left-hand side of the cut), within which moves the piston P.

The interior of this cylinder is turned on a lathe, so as to be

perfectly true, and the sides of the piston are made elastic by
what is termed the packing, which prevents any leakage of the

steam around the edge. The surfaces of this piston receive

directly the pressure of the steam ; and it is therefore to be re-

garded as the point of application of the expansive force, and

the origin of the motion of the engine. The steam generated

in the boiler just described, and conveyed to the machine through

the steam-pipe, is first received into the valve-chest b through the



622 CHEMICAL PHYSICS.

aperture o, and from this it is admitted alternately into the top

and bottom of the cylinder by a sliding-valve, which is moved by

the rod b m, passing through a packing-box on top ofthe valve-chest.

Fig. 441.

The same valve also opens and closes the vent-hole a, by which

the steam, after having done its work in moving the piston, is

discharged alternately from either end of the cylinder through
the eduction-pipe U. When the valve is in the position repre-

sented in Fig. 441, the steam has free access to the upper part of

the cylinder, and presses on the top of the piston, while from the

space below the piston a vent is opened through the tube a U.

Consequently the piston falls
;
but when it reaches the bottom of

the cylinder, the position of the valve is suddenly changed to that

represented in Fig. 442, and a connection is opened between the

upper part of the cylinder and the eduction-pipe, while at the

same time the steam is admitted below the piston, whose motion

is thus reversed. When the piston reaches the top of the cylin-
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der, the position of the valve is again changed ;
and thus continu-

rvndv sn t.hnt. n. rpp.inror.atirifr motion i<j t.lip rtxmlf TMiic mrvtinn

ju&iiiuii UA LUC vtiivc 10 a^ixm uiictngtju ;
ana uiuo coiiiinu-

ously, so that a reciprocating motion is, the result. This motion

communicated by the piston-rod A, which passes steam-tightis

Fig. 442.

through the packing-box d, on the head of the cylinder, to one

arm of the large lever L, called the beam, and by the beam it is

further transmitted through the connecting-rod I to the crank K,
which turns the shaft of the engine, and gives motion to the ma-

chinery connected with it.

Fly- Wheel. When the piston is at the top of the cylinder, the

crank is in its lowest position ; and, on the other hand, when the

piston is at the bottom of the cylinder, the crank is in its highest

position. In either of these positions, called the dead points, it

is obvious that the pressure of the steam can communicate no

motion to the crank, and the machine would come to rest were it

not for the large iron wheel V, called the fly-wheel,
which is

attached to the shaft and revolves with it. This wheel, which

has a large mass of matter in its rim, having once received a

certain velocity of rotation on its axis, carries by its inertia the

crank and piston through the dead points, and brings them into

a position in which the power becomes effective.



624 CHEMICAL PHYSICS.

The fly-wheel, moreover, equalizes the motion of the machine,
and gives a uniformity to its action it could not otherwise have,

owing to the imequal leverage at which the connecting-rod acts

on the crank in its different positions. Then, again, the uni-

form rotation of the wheel acts back upon the piston through
the crank with the happiest effect, bringing the piston slowly to

rest at the end of each stroke, and thus preventing the jar which

would result from a sudden change in the direction of the mo-

tion. Indeed, this whole combination is one of the happiest

results of mechanics, and will repay the most careful study. A
fly-wheel is only essential in a stationary engine. In the engine
of a steamboat or a locomotive, the same effect is produced by
the momentum of the moving mass.

Parallel Motion. The system of jointed rods CDE (Fig. 441),

by which the piston-rod is connected with the beam, called the

parallel motion, is an ingenious invention of Watt to prevent any
lateral strain on the former. Since the end of the piston-rod must

move in a vertical line, while the end of the beam describes the arc

of a circle coinciding with this line only at one point, it is easy

to see that they could not be directly jointed together ;
and it

can also be readily shown, by the principle of the composition of

forces, that, if they were connected by the rod D alone, a lateral

strain would be exerted on the piston-rod which would soon de-

range the machinery. By means of the system of rods repre-

sented in the figure, the end of the piston-rod is suffered to

move in a vertical direction, and the lateral force resulting from

the decomposition of the motion, in its transmission to the beam,
is balanced by the resistance of the rods C and E, called radius

bars, which are connected by joints to the frame of the engine.

The parallel motion of Watt does not completely answer its

object, that is, it does not cause the end of the piston-rod to move
in an absolutely straight line

;
and when the stroke of the piston

bears a large proportion to the length of the beam, the deviation

from a straight line becomes of practical importance. Hence,
a large number of other parallel motions which have been in-

vented to remedy this defect. One of the simplest contrivances

for the purpose, and the one generally used in this country,

consists in directing the motion of the piston-rod by a cross-piece

sliding in vertical grooves, which are kept in their place by a

stiff frame-work.
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The Eccentric. It has already been shown that the connec-

tions between the ends of the cylinder and the boiler or vent-

tube may be alternately opened and closed by a sliding motion

given to the valve ;
it now remains to show how this motion

is obtained automatically. A wheel (J, Fig. 442), called the

eccentric, is so attached to the main shaft of the engine that its

centre does not coincide with the axis of rotation. This eccen-

tric revolves within a metallic ring, (7, and imparts to it a back-

ward and forward motion, which is transmitted by the arm Z Z
to a bent lever, S o y ,

and by that to the rods d and 6, which act

directly on the valve. The extent of the motion of the valve

is easily regulated by the length of the arms of the lever, and

the moment at which it begins to move in either direction is

determined by the position of the eccentric on the shaft. In

starting the engine, or in reversing its motion, the valves aro

moved by hand, and there is always a handle connected with the

lever S o y for the purpose. It is not until after the fly-wheel

has acquired a certain momentum, that the arm Z Z of the

eccentric is geared on to the lever at S. In order to stop the

engine, the arm is ungeared and the motion of the valves regu-

lated, as before, by hand. There is no part of the steam-engine
on which more ingenuity has been shown than on the valves, and

the automatic machinery for opening and closing them. The form

of the valve represented in the above figures is the simplest, and

is very generally used in small engines ;
but in large engines

there are frequently four separate valves, which are opened and

closed independently.
The Condenser. If the eduction-pipe U (Fig. 441) opened di-

rectly into the atmosphere, the engine would work perfectly well

with only the parts which have been now described ; only there

would be a loss of power : for a portion of the expansive force of

steam would be expended in overcoming the pressure of the air.

Watt avoided a part of this loss by an application of the well-

known law (287), that the tension of any vapor in vessels com-

municating with each other is always that which corresponds to

the temperature of the coldest vessel. He connected the educ-

tion-tube of his engine with a larged closed iron box ( O, Fig,

441), called the condenser, so that whenever by the motion of

the valve the orifice of the eduction-tube is opened, the waste

steam rushes at once into the cold vessel, leaving a partial

53
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vacuum in the cylinder, against which the fresh steam acts with

nearly its full force.

The gain, however, thus obtained is not so great as it would

at first sight seem, since a portion of the power thus realized is

expended in working the pumps connected with the condenser.

In order to produce a sudden condensation of the steam, it is

necessary to discharge into the condenser a constant stream of

water. This water, forced in by the atmospheric pressure through
the pipe T (Fig. 441), which ends in what is termed a rose, is

showered in fine jets through the chamber. The amount of water

which it is thus necessary to introduce is at least twenty times as

great as the weight of steam condensed, and would soon fill the

condenser. Hence the necessity of the pump M, worked from

the beam of the engine, by which both the hot water and any
air that may be mixed with it are rapidly removed, and the

water discharged into the hot well N. The piston of this pump,
called the air-pump, has generally about one half of the area and
one half of the stroke of the large piston, and the general ar-

rangement of its valves may be seen in Fig. 443. The condenser
is usually entirely immersed in a tank of water, called the cold

well, which is fed, when possible, by an aqueduct, or otherwise

by a suction-pump, as R, Fig. 441, worked by a rod attached

to the beam of the engine, and drawing its water from some

neighboring well. Still a third pump is frequently attached to

the beam, which draws water from the hot well and forces it into

the boiler. The supply of water to the condenser is regulated
by a valve so placed as to be at the command of the engineer,
and before stopping the machine it is necessary to close "this

valve.

The machine which has just been described may be regarded
as a representative steam-engine. The student must not expect
to find the parts of an actual working engine as simple, or com-
bined in the same way, as those represented in Fig. 441

; but

having once become familiar with the parts, as they are shown in
this figure, he will be able readily to recognize them in a work-

ing engine, and to trace out the connection of their motions.

(308.) Single-acting' Steam-Engine. When the steam-engine
is used for pumping water, which was at first its only practical
application, its force is required only in raising the pump-rods
with their load of water, their own weight being more than
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sufficient for their descent. If the piston and pump rods are

attached to opposite ends of a working-beam, the force of the

steam is only required in pressing the piston down ;
and there is,

Fig. 443.

therefore, no necessity of admitting the steam to the bottom of

the cylinder. Engines constructed for this purpose, in which the

steam acts only on one side of the piston, are called single-acting

engines, to distinguish them from the double-acting engines de-

scribed in the last section. They are generally used for pumping
water from mines, and are frequently called Cornish engines,

because they were brought to perfection in the mining district of

Cornwall, in England. A representation of one of these engines
is given in Fig. 443.

The steam from the boiler enters the valve-chest by the tube

T. A rod, d, passing through a packing-box in the top of the

valve-chest, moves three valves, w, w, o. The valves m and o

open upward, while the valve n opens downward. When the

valves are in the position represented in the figure, m and o open
and n closed, the steam from the boiler exerts its full effect on

the upper surface of the piston, and presses it down ;
but just



628 CHEMICAL PHYSICS.

before the piston reaches the lowest point of its course, a projec-

tion, 6, on the rod -F, moved by the beam, strikes the arm of a

bent lever, d c k, which, acting on the valve rod at d, causes it to

descend, thus closing the valves w, o, and opening the valve w,

called the equilibrium valve. All connection between the cylin-

der and either the boiler or condenser is now closed ;
but the two

ends of the cylinder freely communicating together, the piston is

raised by the weight of the pump-rod Q, while the steam passes

from the top to the bottom of the cylinder through the tube C.

As the piston now reaches the top of the cylinder, a second pro-

jection, a, on the rod F, strikes the end of the bent lever and

restores the valves to their first position ;
then the piston descends

as before, and so continuously. Parallel motion is obtained in

these engines by the very simple arrangement represented in the

figure, and the condenser is the same as that described in the last

section. The efficiency of these engines is estimated by the

number of pounds of water which they are capable of elevating

one foot by the combustion of one bushel of coal. This number
is termed the duty of the engine. By a careful construction

and management of the engine and boiler, this duty has been

raised as high as 125,000,000 pounds.

(309.) The Non-condensing Engine. This form of the steam-

engine differs from those just described only in this, that it has

no condenser, and the steam is vented from the cylinder directly

into the atmosphere. Although, for the reasons already stated, it

cannot be worked so economically as the condensing engine, it

has the advantage of greater simplicity and compactness, and its

first cost is much less than that of its more cumbrous rival. It

is therefore frequently preferred when these considerations are of

more importance than the saving of a few tons of coal. There is

nothing peculiar in the construction of this form of engine, and

.either of the machines just described might be converted into a

non-condensing engine by simply cutting off the eduction-tube

and disconnecting the pump-rods from the beam. Of this class

the most important is the locomotive engine (Fig. 444), and

we have selected it as an example. The construction of the

boiler of a locomotive has already been described ; and since

we are now acquainted with the construction of the single parts
of a steam-engine, it will only be necessary to point them out

in the figure.
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X X is the main body of the boiler
; JD, the lower part of the

fire-box ; Y, the smoke-box ; o, the brass tubes connecting the

two ; O, the fire-door, by which the fuel is introduced ; n, the

water-gauge, indicating the level of the water in the boiler ;

H, the vent-cock, by which the water can be discharged from the

boiler ; E, H, the feeders which conduct water from the tender

to two force-pumps (not shown in the drawing), by which it is
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forced into the boiler
;
Z Z, the dome of the boiler

; t, the safety-

valves, which are held in place by spiral springs enclosed in the

cases e; g, the steam-whistle
; /, the valve opening into the

steam-pipe ; 6r, a rod which controls the motion of the valve.

In the drawing, the engineer holds in his hand the lever by which

this rod is turned and the valve opened more or less, as cir-

cumstances may require ; a graduated arc, over which the lever

moves, enables him to adjust the valve to any position, and thus

to regulate the speed of the engine. A is the steam-tube, which

conducts the steam from the top of the dome to the two cylin-

ders
;
this tube passes through the boiler into the smoke-box,

where it branches, as shown by dotted lines in the figure ; by
this arrangement any condensation of the steam, while passing

through the pipe, is prevented. F is one of the cylinders ;
there

is another on the other side of the smoke-box ; the steam is

admitted into the ends of these cylinders and discharged from

them, by means of sliding valves worked by eccentrics on the axle

of the driving-wheels ; there are generally two sets of these ec-

centrics placed in opposite positions on the axle, one set for the

forward and the other for the backward motion of the locomotive,
and so arranged that they can be thrown out of gear or brought
into action at the pleasure of the engineer. All this part of the

machinery, however, being beneath the boiler, is not visible in

the drawing. E is the eduction-tube, by which the steam is

discharged from the cylinder into the smoke-pipe Q ; ,
t are stop-

cocks, by which any water condensed in the cylinders may be

vented
;
P is the piston ; F, the packing-box, through which

passes the piston-rod ; r r are guides, corresponding to the par-
allel motion of the stationary engine, by which the piston-rod is

forced to move in a straight line, and any lateral strain pre-
vented ; and, finally, K is the connecting-rod, by which the

motion of the piston is communicated to the crank M on the

axle of the large driving-wheels. In starting the locomotive, as

in the other forms of the steam-engine, the valves must be moved

by hand
;
a lever, communicating with the valves by means of

connecting-rods, marked B and C in the figure, is always pro-
vided for this purpose near the front of the engine. It is only
when the train is in motion, and its momentum sufficient to

.regulate the movements of the machine, that the eccentrics are

thrown into gear.
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(310.) Mechanical Power of Steam. We can easily calcu-

late the mechanical power generated by the conversion of water

into steain from the known increase of volume * which accompa-
nies this change. For this purpose, let us assume that we have

a tall cylindrical vessel, open at the top, the area of whose base

is one square decimetre. Let us further assume that the cylinder

is filled with water at 4 to the depth of one decimetre, and con-

tains, therefore, one litre or one kilogramme of the liquid ; and,

lastly, let us assume that a piston without weight, and moving

steam-tight without friction in the cylinder, rests on the surface

of the water. If now we raise the temperature of this cylinder

to 100, and furnish it with a constant supply of heat, the water

will change into steam, occupying 1,698.5 times its former vol-

ume, and having a tension of 76 c. m., or one atmosphere ;

which will therefore raise the piston 1,697.5 decimetres under the

atmospheric pressure, that is, will raise 103.33 kilogrammes to

the height of 169.75 metres. The mechanical power thus exerted

is, then, equal to 17,540 kilogramme-metres (compare 238). If

we raise the temperature to 120. 6, and furnish a constant supply

of heat, as before, the water will change into steam occupying
896.22 times its former volume, and having a tension of two

atmospheres. It will, therefore, raise the piston 895.22 decime-

tres under the pressure of the air, when loaded with an additional

weight of 103.33 kilogrammes, thus exerting a mechanical power
of 206.66 X 89.522= 18,501 kilogramme-metres. In like man-

ner, the other values given in the fourth column of the following

table may be easily calculated :

Tempera-
ture of

Steam.
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above table is the greatest possible power which can be obtained

by the conversion into steam of one kilogramme of water at the

different temperatures ; provided, as we assumed in the descrip-

tion of the steam-engine (307), that the tension of the steam

does not change from the time it leaves the boiler until it is dis-

charged into the condenser, and provided, also, that the steam

acts against a perfect vacuum. These conditions are never fully

realized in practice, so that even with the best regulated ma-

chines we only obtain from one half to two thirds of the theo-

retical effect.

The total number of units of heat required to change one

kilogramme of water into steam of one, two, four, and eight

atmospheres' pressure, as calculated by [202], is given in the

fifth column of the above table, and the sixth column shows the

power obtained in each case by the expenditure of one unit of

heat. It will be noticed that the power is nearly the same in

all cases, and hence it follows, apparently, that no important gain

is obtained by the use of steam of high tension. There is, how-

ever, a mode of working the steam-engine in which the gain thus

effected is very great.

Let us suppose that the boiler is supplying steam of four atmos-

pheres, which, as the table shows, it can supply at only a little

greater expenditure of heat (in other words, of fuel) than steam

of one atmosphere pressure. If the engine were worked with

steam of one atmosphere pressure under the conditions described

above, each volume of steam equivalent to the capacity of the

cylinder, and weighing, as we will suppose, one kilogramme, will

do the work of raising 103.33 kilogrammes through a height

equal to the length of the stroke of the piston. Speaking ap-

proximatively, the same weight of steam of four atmospheres'
tension will do an equivalent work during the first quarter of the

stroke
;
for it will raise four times 103.33 kilogrammes through

one fourth of the previous height. Suppose, now, that the con-

nection between the cylinder and the boiler is closed at this point,
it is evident that the steam will continue to exert an expansive

force, although a force lessening gradually as the capacity of the

cylinder increases. When the piston has been raised through
one half of the stroke, the volume of the kilogramme of steam

will have doubled, and its tension have been reduced to two at-

mospheres ;
when it has achieved three fourths of the stroke, the
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volume will have trebled, and the tension have been reduced to

1 atmospheres ;
and even at the end of the stroke, when the vol-

ume has quadrupled, the pressure will still be one atmosphere.

Here, then, is a very large gain of power without any additional

expenditure of fuel. In practice, these conditions are realized

by closing the valve admitting steam into the cylinder after a

certain fraction of the stroke, by means of various forms of au-

tomatic machinery, called cut-offs. The actual theoretical advan-

tage gained in any case can readily be calculated. It is evidently

the greater, the higher the tension of the steam in the boiler and

the sooner it is cut off after the beginning of the stroke In no

case, however, is the total practical effect as great as the theoret-

ical power given in the table on page 631. When thus worked,
the engine is said to be worked expansively.

We are far from obtaining with the steam-engine the full me-

chanical equivalent of heat, even when working under the most

favorable circumstances It will be remembered, that, according
to Joule's experiments (238), one unit of heat is capable of gen-

erating a power equal to 423 kilogramme-metres, which is 13.4

times greater than 31.59 kilogramme-metres, the greatest pos-

sible effect which could be obtained with the steam-engine when
not worked expansively, even under a pressure of eight atmos-

pheres. Considering, then, that we do not realize, even under

the best circumstances, much more than one half of this theoreti-

cal effect, it will be seen that we actually obtain with the steam-

engine only about one twentieth of the power which the fuel is

capable of yielding. To find a more economical means than this

of converting heat into mechanical effect, is one of the great prob-

lems of the present age.

(311.) Low and High Pressure Engines. As the tension of

the steam used in non-condensing engines (309) is necessarily

greater than the pressure of the air, they are frequently called

high-pressure engines, while the condensing engines are known
as low-pressure engines. These terms, however, do not correctly

express their nature, since, although the non-condensing engine

must necessarily be worked at a high pressure, yet, as we have

just seen, a great advantage is gained by working the condensing

engine under a similar pressure ; and, in fact, the so-called low-

pressure engines are frequently worked under as great a head of

steam as the high-pressure engines.
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PKOBLEMS.

Heat of Fusion.

352. Three kilogrammes of ice at are mixed with 10 kilogrammes
of water at 100. Required the temperature of the mixture after the ice

is melted.

353. How much ice at must be added to 200 kilogrammes of water

at 16 in order to reduce its temperature to 10 ?

354. Solve the same problem, substituting letters for the numbers.

355. How much ice at O3
is required to cool 10 kilogrammes of mer-

cury from 100 to 0?
356. A mass of tin weighing 55 grammes and heated to 100 was en-

closed in a cavity made in a block of ice. Required the amount of ice

melted.

357. Eight kilogrammes of ice at were mixed with 35 kilogrammes
of water at 59 ; after the ice had melted, the temperature of the water

was 33.3. Required the heat of fusion of ice.

358. In order to determine the heat of fusion of lead, 200 grammes of

melted lead at the melting-point were poured into 1,850 grammes of water

at 10. After the lead had cooled, the water was found to have acquired
a temperature of 11.64. Required the heat of fusion of the metal.

Tension of Vapors.

359. Before filling a barometer with mercury, a small quantity of water

was poured into the tube. How high will the mercury stand in the ba-

rometer when the temperature is 20 and the pressure of the air 77 c. m. ?

Solve the same problem, assuming that alcohol was used instead of water.

360. Determine the height of the mercury-column in a barometer-tube

whose walls are moistened with water at the temperatures and pressures
indicated below :

1. H= 76.22 c. m. t = 20.
2. #=75.11 "

t = 40.
3. H = 74.56 "

t = 10.

4. H = 77.20 c. m. t = 30.
5. H = 76.54 "

t = 60.
6. //= 78.10 "

t = 100.

361. Solve the last problem, assuming, first, that chloroform, and, sec-

ondly, that oil of turpentine, were used instead of water.

362. Calculate by [199] the tension of the vapor of water at the

following temperatures : 10.24, 15.45, 40.25, 60.58, 150.5, and
220.85.

363. Determine the tension of the vapors of alcohol, of ether, and of

chloroform at the following temperatures, assuming that the principle of

page 582 is correct: 20.12, 15.64, 10.22, and 5.12.

364. Datermine the boiling-point of water under the following pres-

sures : 74.24 c. m., 55.54 c. m., 34.20 c. m., 10.50 c. m., and 5 c. m.
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365. Determine the boiling-points of alcohol under the following

pressures : 4.40 c. m. ; 163.5 c. m. ; 725.78 c. m.

366. A cylindrical vessel at the temperature of 120. 6 is filled with

vapor of water having a tension of 100 c. m. What will be the tension

of the vapor if its volume is reduced to one half by pushing down the

piston ? What will be the tension of the vapor if its volume is doubled ?

367. A glass vessel is filled with dry steam which at the temperature
of 100 has a tension of 54.22 c. m. To what temperature must the ves-

sel be cooled before the steam begins to condense ? What will be the ten-

sion of the steam, if the vessel is heated to 200 ?

368. In a strong iron vessel, whose capacity equals 5,000 c^iT.
8
,
15.24

grammes of water are hermetically sealed. Required the tension of the

vapor in the interior of the vessel at the following temperatures : 50,

100, 160, 180, and 250.

Latent Heat of Vapors.

369. How much free steam must be condensed in order to raise the

temperature of 20 kilogrammes of water from to 90 ? How much to

raise the temperature of 246 kilogrammes of water from 13 to 28J
?

370. How much vapor of alcohol must be condensed in order to raise

the temperature of 5 kilogrammes of alcohol from 15 to 30 ?

371. Twenty-five kilogrammes of free steam condensed in a mass of

water raised its temperature from 4 to 61.4. Required the volume of

the water before and after the condensation.

372. How many kilogrammes of ice at would be required to con-

dense 25 kilogrammes of free steam, and reduce the temperature of the

water formed to 0.
373. Calculate the latent heat of steam at the following temperatures :

25, 32, 112, 175, 198, and 222.

374. Calculate how much heat is required to convert one litre of water

at 15 into steam at its maximum tension at 130.

375. How much heat would be evolved by the condensation of one

cubic metre of steam of 140 at its maximum tension into water at 20 ?

Steam-Engine.

376. How much mechanical force is generated by the conversion of 25

kilogrammes of water at
D

into steam at 140, and how much heat is

required for the conversion ?

377. The piston of a steam-engine has a diameter of 44 c. m., and it

moves 1.15 m. each second. Required the weight which the machine can

raise to the height of 8 metres in one second, assuming that there is no

resistance, and that the tension of the steam is 2.75 atmospheres. Deter-

mine, also, the quantity of heat required to furnish the steam employed in

producing this effect.
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HYGROMETRY.

(312.) Formation of Vapor in an Atmosphere of Gas. If

we repeat the experiment with the vessel of one cubic metre ca-

pacity described in (284), with only this change, that it is left

filled with air, we shall find that the same amount of aqueous

vapor will be formed as in a perfect vacuum. For each tem-

perature there will be found to exist simultaneously in the cubic

metre, first, an atmosphere of air
; secondly, an atmosphere of

aqueous vapor, having the weight and tension which are given

in the table on page 571. The only difference between the cir-

cumstances attending the formation of vapor in air or any other

gas, and in a vacuum, is in the time required. The cubic vessel,

when freed from air, would be almost instantaneously filled with

vapor of the given tension and weight ;
but in the same vessel

filled with air, the vapor would attain its maximum tension and

density only after several minutes.

The tension of the mixture of aqueous vapor and air is always

equal to the sum of the tensions which each would have if it

filled the vessel separately. This tension can then be found for

any temperature by adding to the tension of the air, as indicated

by a barometer, the tension of aqueous vapor taken from the

table of maximum tensions opposite to the given temperature.

Thus, if the temperature were 20, and the barometer indicated

a tension of 76 c. m., the tension of the mixture of air and

vapor would be equal to 76 + 1.739 = 77.739, and a barometer

immersed in the vessel would stand at that height.

If now we suppose the vessel to be extensible, and exposed on

the outside to an invariable pressure of 76 c. m., it is evident

that it will be expanded until the tension of the confined mixture

is reduced to the same value
;
and it is frequently a problem

of great practical importance to determine what the increased

volume will be. In the first place, it is evident that, as the vol-

ume of the vessel increases, more water will evaporate, so as

to keep the vapor at the maximum tension for the temperature.

Hence, in the expanded state, the tension of the vapor will still

be 1.739 c. m. It is, therefore, only the air which expands, and

as the tension of the mixture in its expanded state is equal by

assumption to 76 c. m., it is evident that the tension of the air

will be equal to 76 1.739= 74.261 c. m. Moreover, since the
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volume of the air (which is, of course, also the volume of the

mixture) must be inversely as its tension in the two conditions,

we have, by [200],

1 : V = 74.261 : 76, whence V = 1.023 m.
3

This solution may easily be made general. Let HQ represent

the invariable pressure to which the gas is exposed, and $ the

tension of water vapor at the given temperature. Then, in the

expanded state, the tension of the air is HO . We have,

by substituting these values in [200], F: V = H : H;
whence

(1.) V = F TT^V, and (2.) F= V ^~^. [203.]
-"o

By means of (1) we can always calculate the increased volume,

F', of a gas when saturated with moisture, if the volume of the

dry gas is known ;
and by means of (2) we can calculate from the

measured volume of the moist gas the volume, F, which it would

have measured had the gas been perfectly dry. The last problem
is one of great importance, and generally presents itself in a form

like that of the following example.
A volume of gas confined in a bell-glass over water measures

250 c^m.
3 when the temperature is 20 and the barometer 76 c. m.

What would be the volume if the gas were perfectly dry ? By
substituting the data given in (203. 2) we obtain,

F= 250 = 244.25 ens.'. [204.]

The formula just employed gives in any case the volume of dry

gas for the temperature and pressure at which the volume of the

moist gas was observed ; only it is necessary to remember, in

using the formula, that H represents the pressure to which the

mixture of gas and vapor was exposed at the time the volume

was measured. This can always be ascertained by the method

described in (169). When the volume of dry gas has been in

this way determined for any given temperature and pressure,

dt can easily be reduced to and 76 c. m. by means of [98]

and [184].
What has been illustrated above in the case of the vapor of

54
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water, is also true of the vapors of other liquids. The same quan-

tity of liquid will evaporate into a cubic metre, and a vapor will

be formed of the same tension and density, whether the space be

empty or filled with gas ;
the only difference being that the liquid

will evaporate very much more slowly in the last case than in the

first. What is true of one liquid must also be true of any num-

ber of liquids ; provided only that these do not act chemically on

each other, each of them will evaporate and form a vapor of the

same tension and density as if the space were a perfect vacuum.

At least this is true theoretically, and it would probably be true

practically could we enclose the vapor within walls formed by the

volatile liquids themselves. But in the glass vessels with which

we are obliged to experiment, the result, as above stated, is not

perfectly realized. This is apparently owing to an adhesive action

of the glass, by which the tension of the vapor is reduced below

the maximum tension for the temperature. This subject has

been carefully examined by Regnault, and we would refer to

his memoir* for further details.

The principles of this section may be summed up in the two

following propositions, first enunciated by Dalton, and therefore

known as the Law of Dalton. The last proposition, however, is

only a necessary consequence of the first.

1. The tension and the amount of the vapor which will satu-

rate a given space at a given temperature are the same, whether

the space be completely empty or filled with gas.
2. The elastic force of a mixture of gas and vapor is equal to

the sum of the tensions which each would have separately.

This law may be illustrated by means of the apparatus repre-
sented in Fig. 445. It consists of a glass tube, A, closed at both

ends by the iron stopcocks b and d. The lower stopcock is pro-
vided with a side tubulature, into which the tube B is cemented,
and a graduated scale placed between the tubes serves to meas-

ure the relative heights of the columns of mercury they con-

tain. In using this apparatus, the tube A is, in the first place,
about half filled with dry air, or any other gas from the globe M,
which can be screwed on to the stopcock b in place of the tunnel

C. The tunnel C is provided with a stopcock of a peculiar
construction. The plug of the cock, represented at n, is not

* Comptes Bendus, Tom. XXXIX. p. 345.
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pierced, as usual, completely through, but has simply a small

cavity on one side. Having now adjusted the quantity of mer-

cury in the apparatus so that it shall

stand at the same height in both tubes,

and having poured a quantity of liquid

into the tunnel, we open the cock b

and turn the plug of the cock a so

that the liquid may be introduced

drop by drop into the tube A. The
confined gas becomes thus saturated

with vapor, and, expanding, depress-

es the mercury-column. "We then

restore the original volume by pour-

ing mercury into the tube B. The
tension of the mixture of gas and

vapor is now evidently equal to the

pressure of the air plus the pressure
of the mercury-column B o, thus prov-

ing that the tension of the confined

gas has been increased by the tension

of the vapor. By referring to the

tables, it will be found that the in-

crease of tension is exactly equal to

the maximum tension of the same

vapor in a vacuum, when exposed to

the same temperature.

(313.) Hygrometers. Every cubic metre of the atmosphere
in immediate contact with the earth is, in all respects, similarly
situated towards the ponds and rivers of the globe as is the air

of the cubic vessel towards the water it contains. Every cubic
metre of the atmosphere is capable of holding, for any tempera-
ture, the same amount of aqueous vapor, and vapor of the same
tension, as the vessel

; moreover, water will continue to evaporate
into the atmosphere until the vapor has acquired the tension
and specific gravity which correspond to the temperature. There

are, therefore, around the globe, as in the cubic vessel, two at-

mospheres, one of air and the other of vapor. When the air

has taken up all the vapor which it is capable of holding at

the temperature, it is said to be saturated or moist
; when less,

it is said to be dry. In the last case, it is capable of absorbing

Fig. 445.
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more water, and of course dries up the moisture from sub-

stances with which it may be in contact. Thus, if the temper-
ature is 20, the air is saturated with vapor when it con-

tains in every cubic metre 17.157 grammes (see table on page

571) ;
if it contained only 12.746 grammes it would be dry,

since then every cubic metre of air could absorb 4.411 grammes
more. But if the temperature falls to 15. then by the table

12.746 grammes will completely saturate each cubic metre
; so

that a cubic metre of air containing 12.746 grammes of vapor
is saturated when the temperature is 15, although dry when
it is 20.

The moisture of the atmosphere at any temperature depends,

then, not simply on the amount of vapor which it contains, but

on the proportion which this amount bears to the whole quantity
which it could possibly contain at the given temperature. The
fraction which is obtained by dividing the actual weight of vapor
in a cubic metre of the atmosphere by the weight which it would

contain were it completely saturated with aqueous vapor, is called

the relative humidity. It follows from Mariotte's law, that the

weights of two masses of vapor occupying equal volumes are to

each other as their tensions, W: W'= $ : '; hence the rela-

tive humidity may also be obtained by dividing the tension of the

vapor actually contained in the air by the tension the vapor would

have if the atmosphere were saturated, that is, by the maximum
tension for the temperature, as given in Table X. In order to

find, then, the relative humidity of the atmosphere at any given

time, we in the first place observe its temperature ; and in the

second place, we ascertain by experiment the tension of the vapor
which it actually contains. The tension is found in the following
manner.

If we cool down a cubic metre of the atmosphere, we shall

come, sooner or later, to a temperature at which the tension of

the vapor is at its maximum. Thus, for example, if the temper-
ature of the atmosphere is 20, and the tension of the vapor it

contains, and which we wish to find, is 1.2699 c. m., we shall, by
cooling one cubic metre to 15, reach a temperature at which
1.2699 c,m. is the maximum tension, and consequently a tem-

perature at which the air will be saturated by the vapor contained
in it. If now we cool it below this point, a portion of the vapor
will be deposited in the form of mist or dew. The temperature,
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then, at which dew would be deposited, were the atmosphere
cooled down, is the temperature at which the tension of the vapor
contained in it would be at its maximum. This temperature
is technically termed the dew-point. It can easily be observed in

the following way. Take a brightly polished silver cup and fill

it with water. Place in it a sensitive thermometer, which will

indicate promptly any changes of temperature, and then add

ice in small pieces, waiting until one piece is melted before add-

ing another, and constantly stirring the water with the thermom-

eter in order to render the temperature uniform throughout
the mass. The silver cup, as it is thus slowly cooled, will cool

in its turn the thin layer of air which immediately surrounds it,

and sooner or later this air will be reduced to the temperature at

which the vapor it contains completely saturates it. At that mo-
ment the polished surface of the cup will be dimmed by a depo-
sition of dew. Note carefully the temperature at which this first

takes place ;
and then allow the cup to warm, and note carefully

the temperature at which the dimness disappears. The two tem-

peratures should very nearly correspond, and the mean may be

taken as the dew-point. Having found the dew-point, we can easily

ascertain the relative humidity of the air by means of the table

of tensions. Opposite to the dew-point we find the actual tension

of the vapor in the atmosphere. Opposite to the temperature of

the air at the time of the experiment, we find the maximum
tension which the vapor could attain

;
and since, as we have

seen, the weight of vapor is proportional to the tension, we can

obtain at once the relative humidity by dividing the first by the

last. To illustrate this by an example :

The temperature of the air is 20. The dew-point, found as

just described, is 15. What is the relative humidity? The

maximum tension of vapor at the dew-point is 12.699 m. m., and

this is the actual tension of the vapor in the atmosphere. The

maximum tension of vapor at 20 is 17.391 m. m., and this is the

tension which the vapor would have were the atmosphere satu-

rated. g|g = .73 is, then, the relative humidity. The at-

mosphere, therefore, contains 73 per cent of the whole amount

it could possibly contain at 20. From the relative humidity, it

is easy to calculate the amount of vapor contained in a cubic

metre. By referring to the table, we ascertain the total amount

which the cubic metre could contain at the given temperature ;

54*
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and by multiplying this by the fraction expressing the relative

humidity, we ascertain the amount which it actually contains.

Thus, in the example just given, the total amount of vapor which

one cubic metre of air at 20 can contain is 17.157 grammes.
It actually contains only 73 per cent of this amount, that is,

17.157 X .73 = 12.525 grammes.
It appears, then, that the determination of the amount of vapor

in the atmosphere resolves itself practically into the observation

Fig. 446.

of tne dew-point. This can be observed with sufficient accuracy,
for most purposes, with a thin silver cup and thermometer, as

described above
; but where greater accuracy is required, the ob-

servations can be made more rapidly, as well as with greater cer-

tainty, with the hygrometer of Regnault, which is represented in

Fig. 446. It consists of two silver thimbles 4.5 c. m. high and
20 m. m. in diameter, made very thin, and brightly polished on

the outside. These thimbles are cemented to the bottom of two

glass tubes Z>, E. Each of these contain thermometers gradu-
ated to tenths of a degree, kept in place by corks. Through the

cork of the tube D passes a small tube, A, open at both ends

and extending to the bottom of the silver thimble. The upper
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part of the tube D communicates, through the lateral tubulature

and through the stem of the support, with an aspirator, G, by
means of which air can be drawn through the apparatus. The
tube E, which does not communicate with the aspirator, contains

a thermometer for observing the temperature of the air.

In order to use the apparatus, the tube D is half filled with

ether
; then, on opening the stopcock of the aspirator, the water

which it contains flows out, and the air required to supply its

place flows in at the tube A, bubbling up through the ether.

The rapid evaporation caused by this current of air soon cools

the temperature of the silver thimble to the dew-point. At the

moment a film of moisture appears on the polished surface, the

temperature indicated by the thermometer T is carefully noted,

as well also as the temperature of the air given by the thermom-

eter
,
and we have then the elements for calculating the rela-

tive humidity of the atmosphere. By careful manipulation, the

dew-point can be observed with this instrument to one tenth of

a Centigrade degree. The second silver thimble, on the tube

E, serves not only to protect the bulb of the thermometer, but

also, by comparison, enables the observer to detect a slight trace

of moisture 011 the surface of the first, which might otherwise be

overlooked.

The hygrometer of Daniells, repre-

sented in Fig. 447, is based on the

same principle as that of Regnault,
but is much less delicate in its indica-

tion. It consists of two bulbs con-

nected by a siphon-tube, from which

the air has been expelled by hermeti-

cally sealing the instrument when
filled with ether vapor. The bulb

A is about half filled with ether,

and contains the bulb of a small

thermometer. Moreover, a zone of

the bulb is gilt, and burnished so that

the deposition of the dew upon it may
be easily perceived. The other bulb

Fig. 447.

is covered with muslin. When an ob-

servation is to be made, the muslin is moistened with ether, which

is dropped very slowly from a bottle. The evaporation of the
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ether from the muslin, by cooling the bulb B and condensing the

vapor of ether which it contains, causes a very rapid evaporation

from the surface of the liquid in the bulb A. By this means the

gilt zone is soon cooled to the dew-point, a deposition of dew indi-

cating when the point is reached. The temperature at which the

dew is first deposited is carefully observed by means of the en-

closed thermometer, and also the temperature at which it disap-

pears when the temperature of the bulb A is afterwards allowed

to rise. The two observations should not differ much from each

other, and their mean is the dew-point.

The relative humidity of the air may also be estimated, though
with less accuracy, from the rapidity with which water evaporates

when exposed to it
; since, as is evident, the drier the air, the

more rapid will be the evaporation. The instrument used for

this purpose is called a psychrometer, or a wet-bulb hygrometer.
It consists of two thermometers, the bulb of one of which is cov-

ered with muslin and kept constantly moist, while the bulb of the

other is dry. The last indicates the temperature of the air ;
but

the first always indicates a lower temperature, owing to the latent

heat absorbed by the evaporation of the water from the surface of

the bulb, except when the air is fully saturated with moisture.

The difference between the two thermometers will be the greater

the more rapid the evaporation, that is, the greater the dryness
of the air. From the temperatures of the two thermometers we

can calculate the tension of the vapor in the atmosphere by means

of the empirical formula,

More than ^, Less than j^,

- 0.429 (T r') rr 0.480 (T T') TT ,

610 T
1 620 T'

= maximum tension of vapor at lowest temperature.
i =i temperature of dry-bulb thermometer.

T' = temperature of wet-bulb thermometer.

HO= height of barometer.

610 T'= latent heat of the vapor of water (compare 300).
x = tension of aqueous vapor at the time of observation.

From the value of x the relative humidity can be easily^calculated

by dividing by the maximum tension, as before described.

The above are the formulae of Regnault as modified from the

original formula of August. They are in a measure empirical,
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and founded on theoretical considerations, for which we must

refer to the original memoir. The last formula, as Regnault

found, gives accurate results when the air is not more than four

tenths saturated. Otherwise, the first should be used. For tem-

peratures below freezing, which suppose the wet bulb to be cov-

ered with a film of ice, the value 610 *' must be changed to

610 + 79 T = G89 T', since the amount of heat required to

change ice into vapor is greater by 79 units (the heat of fusion)

than that which would be required to change water into vapor

of the same temperature and tension. For the value of H^ it is

generally sufficient to take the mean barometric pressure of the

place of observation. In the Meteorological Tables prepared by

Professor Arnold Guyot, and published by the Smithsonian Insti-

tution, will be found tables by which, from the indications of the

psychrometer, the tension of vapor and relative humidity may be

ascertained by inspection. As the indications of the psychrometer

are discovered by simple inspection, it would entirely supersede

all other hygrometers were the formula by which the tension of

vapor is deduced from the observed data perfectly trustworthy.

They are sufficiently so for the purposes of meteorology, but

results obtained with Regnault's hygrometer are in all cases to

be preferred.

Still a third class of hygrometers is based

upon the fact that many solids swell on imbibing

moisture, and contract again on drying. This is

the case with most dry organic substances, such

as whalebone, wood, parchment, and hair. The

hygrometer of Deluc consists of a very thin piece

of whalebone, which, in expanding and contract-

ing, moves an index ;
and a variety of toys, in

which a change in the degree of humidity of the

air is shown by the motion of a pasteboard figure,

are made on the same principle. But the only

trustworthy or even approximative^ accurate

hygrometer of this class is the hair hygrometer of

Saussure, as modified by Regnault. It is rep-

resented in Fig. 448, and consists essentially of a

human hair, c, previously freed from fat by being

soaked in ether, and so fixed in a copper frame that its expansion

and contraction will move a needle over a graduated arc. Each

Fig. 448.
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instrument is graduated experimentally by placing it in a con-

fined space kept in a known state of humidity by the presence

of sulphuric acid of different degrees of strength. Unlike the

other hygrometers, this instrument gives at once the relative

humidity of the air, and its indications are independent of the

temperature. Unfortunately, however, it is liable to variations,

and must be adjusted from time to time by means of the solu-

tions employed in graduating it.

The last, but the most accurate, method of determining the

amount of vapor in the air, consists in drawing through a tube

containing chloride of calcium, or some other powerful absorb-

ent, a measured volume of air, by means of an aspirator. The

increased weight of the tube will give at once the weight of vapor
contained in the known volume of air. This process is much
too complicated, however, to admit of general application ; but

it may be used to advantage where great accuracy is required, or

in verifying the results of the other more expeditious methods.*

(314.) Drying Apparatus. It is frequently necessary in the

practice of chemistry to remove from a solid body the moisture

adhering to its surface, or otherwise mechanically united with it.

This is, generally, readily accomplished by exposing the solid to

dry air, into which the moisture evaporates. If the solid will

bear the temperature of 100 without undergoing change, we can

use the drying oven already described (294) ;

but if not, we effect the same object at the

ordinary temperature by placing the solid un-

der a bell-glass, over a dish containing concen-

trated sulphuric acid. In this case the rapid-

ity of the evaporation is greatly accelerated

by exhausting the air. The arrangement rep-

resented in Fig. 449 may be used for this

purpose, and also for concentrating solutions

of chemical compounds which would be altered

Rg. 449. by a high temperature. In drying goods on
a large scale in the arts, it is important

to keep in mind two facts : first, that the capacity of air for

holding moisture increases very rapidly with the temperature;

and, secondly, that a very considerable time must elapse before

* For a full account of the methods of hygrometry as revised by Regnault, see his
" Etudes sur rHygrometrie," Annales de Chimie et de Physique, 3e

Serie, Tom. XV.
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the air is saturated, the longer, the lower the temperature.

An advantage is therefore gained by keeping the air in the drying
chamber at as high a temperature as is compatible with the cir-

cumstances, and preventing it from escaping until it is absolutely

saturated with humidity. In no case, however, can water be

evaporated by heated air in a drying stove as economically as

in a close boiler.

ORIGIN OF HEAT.

(315.) Sources of Heat. The sun's rays are the great source

of heat on the surface of the globe. The amount of heat which

thus enters the earth's atmosphere from the sun during a year
has been estimated by Pouillet to be equal on an average to

231,675 units for every square centimetre of the earth's surface.

In order to give an idea of this quantity, Pouillet states that it

would be sufficient to melt a layer of ice enveloping the earth

30.89 metres thick. Of this amount, however, the surface of the

earth only receives about two thirds, the rest being absorbed by
the atmosphere. Besides the heat which it is constantly receiv-

ing from the sun, the earth has also a great store of heat within

its own mass, called the central heat. It has already been stated,

that the spheroidal figure of the earth is probably owing to the

fact, that the globe was once a fluid mass
;
and we have reason

to believe that it is so now, with the exception of a comparatively
thin crust on the surface. From observations made in mines

and Artesian wells, we find that the temperature of the crust

rapidly increases as we descend from the surface of the earth.

The rate of increase varies in different places, but may be stated,

on an average, to be about one degree for every 30 or 40 metres.

At this rate of increase, assumed to be the same at all depths,

the temperature of the crust at the depth of about 2,700 metres

must be that of boiling water, and at a depth of 35 kilometres

that of melting iron, while at 70 kilometres all known mineral

substances would be in complete fusion. It is probable, there-

fore, that the thickness of the crust of the earth is not greater

than
. Titf of its radius, and might be represented by a sheet of

pasteboard on a large artificial globe. Nevertheless, the conduct-

ing power of the crust is so slight, that the effect of the central

heat is hardly felt on the surface ;
and Fourier has calculated
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that it does not elevate the mean temperature of the surface

more than -^ of a degree.

Besides these constant sources of heat, there are many others

which are more or less accidental and intermittent. In general,

any motion of the molecules of a hody, whether it accompanies
a chemical or a physical change, is attended either by an evolu-

tion or by an absorption of heat
;
but in almost every case the

heat thus evolved may be traced back, either directly or indi-

rectly, to the sun. The accidental sources of heat may be di-

vided into two classes, the physical and the chemical.

(316.) Physical Sources. Of the physical sources of heat,
the most important is friction. Count Rumford succeeded in

boiling water by the friction from boring a cannon, and an appa-
ratus has been invented in France for generating steam by means
of heat produced in a similar way. It has already been shown

(238) that there is an exact equivalence between the heat gener-
ated by friction and the mechanical power used in producing
it

;
and it is possible that, where motive power is abundant and

fuel expensive, such a machine might be used to advantage.
Another physical source of heat is percussion, as is illustrated

by the common flint-lock, and by a number of familiar facts.

For example, a small bar of iron may be heated to redness on an

anvil by blows of the hammer actively applied, and a bar of lead

may even be melted in this way. In like manner all metals,
when rolled out into plates, drawn into wire, or submitted to any
other mechanical process by which the relative position of their

molecules is changed, become more or less heated. The heat

evolved in all these cases appears to be due to an internal friction

between the particles of the solid, so that this source of heat does

not differ essentially from the last.

A third source of heat is mechanical condensation. If we
diminish the volume of a body by mechanical means, its tempera-
ture is at once raised, and an amount of heat is evolved which is

probably in all cases equal to that which would be required to ex-

pand the body by an equivalent amount (compare 237). Since

both solids and liquids are but slightly compressible, we cannot

produce with them any very marked calorific effects by condensa-

tion. It is different with gases. They are very compressible, and
their temperature can be greatly raised by sudden condensation.

This is illustrated by the fire-syringe (Fig. 450). It consists of a
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cylinder of glass, and of a piston, which closes it hermetically
and by which the air it contains may be condensed. On pushing
in the piston with a quick and forcible

motion, the heat evolved by the condensa-

tion of the air raises the temperature suffi-

ciently to inflame a piece of tinder, which

is placed in a cavity provided for the pur-

pose on the under side of the piston. This

requires a temperature of at least 800.

A bright light is noticed in the cylinder
at the moment of the maximum condensa-

tion, caused by the burning of a portion
of the oil with which the piston is lubri-

cated.

The only other mechanical sources of

heat usually enumerated in this connec-

tion are the absorption of gases or liquids

by porous solids, the change of the state

of aggregation of a substance, and elec-

tricity. The first of these is probably
identical with the one last considered,

the heat in every case originating from

condensation caused by the adhesion of

the liquid or gas to the surface of the solid ; the second has

already (277 and 299) been studied at length, and the last will

be considered in another portion of the work.

(317.) Chemical Sources. All chemical combination is at-

tended with the evolution of heat ; indeed, this is the chief source

of artificial heat on the surface of the globe. When the combina-

tion takes place slowly, as when iron rusts in the air, the heat is

dissipated as fast as it is evolved, and does not elevate sensibly

the temperature of the combining substances ; but when the

combination is rapid, the heat accumulates in the bodies and pro-

duces the phenomena of combustion. Combustion is, therefore,

simply a process of chemical combination, in which heat is evolved

so much more rapidly than it is conveyed away through the usual

channels, that the temperature of the substances is retained above

the point of ignition. All combustion with which we are generally

familiar consists in the chemical combination of the burning sub-

stance with the oxygen of the air ;
but we may have phenomena

55

Fig. 450.
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of intense ignition without oxygen, as when antimony is dropped

in powder into a jar of chlorine, or when phosphorus is mixed

with iodine. The quantity of heat evolved during chemical com-

bination varies very greatly with the nature of the substances

employed ; but it is always constant for the same substances, and

is exactly proportional to the weight of each which is used in

forming the compound. Thus, for example, from one kilogramme

of the following substances there is always evolved the amount of

heat indicated in the following table when they combine with

oxygen, or, in other words, when they burn.

Units of Heat.

Hydrogen, f ,' <$ . 34,462

Marsh Gas, . . 13,063

Olefiant Gas, . . . 11,858

Beeswax, . . . 10,496

Spermaceti, . . . 10,342

StearicAcid, . . 9,716

Units of Heat.

Oil of Turpentine, . 10,662

Ether, . . . 9,027

Alcohol, . . . 7,184

Wood Charcoal, . . 8,080

Gas Coke, , , . . 8,047

Native Sulphur, . . 2,261

It has, moreover, been proved that the amount of heat evolved

during chemical combination is precisely the same whether the

union be rapid or slow, and also whether the compound be formed

at once by direct combination or by several successive processes.

But all these subjects can be discussed to much greater advan-

tage after the student is familiar with the laws of chemical com-

bination ; we shall, therefore, defer the further consideration of

them until then. The same is true, also, of the heat evolved

by the processes of animal life
;
for this is probably due to a slow

combustion which takes place in the animal body under the influ-

ence of vitality.

PROPAGATION OF HEAT.

(318.) Heat may be transmitted from one body to another

through space, as it is transmitted from the sun to the earth, or

it may be communicated from particle to particle by direct con-

tact, as when a bar of iron is heated by placing one end in contact

with ignited coals. The first of these methods is called radiation,

the second conduction. It is probable, however, that conduction

is only a form of radiation, the heat being, in all cases, radiated

from particle to particle through the intervening spaces, which

may be exceedingly large as compared with the size of the par-

ticles themselves (75).
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(319.) Radiation. "When we stand in the bright sunshine

or before a blazing fire, and feel the effect of the rays of heat

impinging on our bodies, we are led to perceive that heat is emit-

ted from the surfaces of hot bodies, and that it has the power of

traversing space and transparent media like the atmosphere.
But it is also probable that rays of heat are emitted from the

surfaces of all bodies and at all temperatures, however low,
the only difference between hot and cold bodies being that the

first radiate more heat than the last. In a room where there is a

condition of thermal equilibrium, each object receives as much
heat as it radiates, and therefore retains its own temperature. If

one object, however, becomes warmer than the rest, the stove,

for example, then it radiates more heat than it receives, until the

equilibrium is again established. This theory explains the appar-
ent radiation of cold, which we feel when standing before a large

mass of ice. It is not that the ice radiates cold, since it actually
radiates heat ; but as the body receives from the ice less heat

than it radiates towards it, we feel a sensation of cold.

The phenomena of radiailt heat are in all respects similar to

those of light, and, as is well known, the rays of both agents are

found mixed together in the sunbeam and in the emanations from

most luminous objects. Like light, radiant heat is transmitted

with an incredible velocity in straight lines, and its intensity

diminishes as the square of the distance from the source. If the

rays of heat fall on a polished surface they are reflected, and the

angle of reflection is always equal to the angle of incidence. If

they enter a transparent medium they are refracted, and for the

same substance the sine of the angle of refraction always bears a

constant ratio to the sine of the angle of incidence. If they are

passed through a prism of rock salt, they are divided into rays of

different refrangibility, which stand to each other in the same rela-

tion as the different colors of the solar spectrum ; and, lastly, when

reflected or refracted at a certain angle by different substances,

the heat rays become polarized and present properties similar to

those of polarized light. But yet, although the thermal rays thus

closely resemble the rays of light, there are essential differences

between the two. It does not follow, because a medium transmits

light unchanged, that it will transmit heat with equal readiness ;

thus, for example, a crystal of alum, even if perfectly transpar-

ent to light, is almost opaque to heat ; and, on the other hand,
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a crystal of smoky quartz, which will hardly transmit a ray of

light, is quite transparent to heat. Most solid ahd liquid media

which are transparent and colorless as regards light, act on the

rays of heat in the same way that colored glasses act on light ;

transmitting rays of certain degrees of refrangibility, but not

others. Thus, for example, a pane of colorless glass will trans-

mit nearly all the rays of heat from the sun, while it will inter-

cept the greater part of those from a coal fire, and absolutely all

the rays which radiate from a steam-pipe heated to 100
;
and the

same is true to a still greater degree of water. The only sub-

stance which is perfectly transparent to rays of heat from every
source is rock-salt, and this can be used in experiments on heat

in the same way that glass is used in optical experiments. The

phenomena of radiant heat are best explained by the undulatory

theory, which assumes that they are caused by undulations in an

imponderable medium filling all space ;
and they cannot be prof-

itably studied until the student is acquainted with the mechanical

theory of light. We shall, therefore, notice in this connection

only a few familiar facts connected with the subject.

The unequal power which different bodies possess of radiating
heat appears to depend on the condition of the surface, and not

on the nature of the substance of which the body consists. As a

general rule, the greater the density of the substance at the sur-

face, the less is the radiating power of the body. Thus, the bur-

nished surfaces of the metals are the poorest radiators, while the

surfaces of paper and similar loose materials are the best. The

very best radiator of all is a surface covered with lampblack. If

we represent the radiating power of such a surface by 100, that

of a silver surface, hammered and well burnished, will be only 3.

Those surfaces which radiate heat the best also absorb it the most

readily, and it has been proved that the absorbing power of a sur-

face is equal to the radiating power, if the difference betiveen the

temperature of the radiating' and absorbing surfaces is not great.
On the other hand, the power which a surface possesses of reflect-

ing heat is always in the inverse ratio of its power of absorption ;

that is, the best absorbents are the poorest reflectors, and the

reverse. Hence heat is best reflected by surfaces of metals which
have been hammered and polished ; but so entirely does the

power of reflecting or absorbing heat reside in the surface, that

a sheet of gilt paper answers the purpose of a reflector nearly as
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well as a mass of solid gold. The power which a surface has of

absorbing heat varies with the nature of the source from which it

emanates, while its radiating power remains constant
;
the two are

equal only under the condition above stated. Hence it is not sin-

gular that, while the radiating power of any surface is unaffected

by its color, the readiness with which bodies absorb the heat of
the sun depends, in great measure at least, if not entirely, upon it.

This last fact was noticed by Dr. Franklin. He placed pieces of

the same kind of cloth, but of different colors, on the snow, where

they were equally exposed to the direct rays of the sun. The
black cloth absorbed the most heat and sunk deepest into the

snow, while the white cloth produced but little effect. The other

colored cloths produced intermediate effects ;
and they may be

arranged according to their absorbing powers as follows : black,

violet, indigo, blue, green, red, yellow, white.

Numerous illustrations of the above principles may be found in

the familiar facts of every-day life. Water can be heated most

rapidly in a dull iron kettle, whose bottom is covered with soot,

while it can be kept hot longest in a bright silver teapot. The
hot air from a furnace is best conveyed to the different apartments
of a building in tinned iron pipes, which are poor radiators,

while the smoke-pipe of a stove is best made of rough sheet-iron,

for the opposite reason. The melting of a bank of snow is accel-

erated by sprinkling over its surface coal-dust, because its very
feeble power of absorption is in that way greatly increased.

Light-colored garments are preferable in summer, because they
do not readily absorb the solar rays ;

in winter, when the object

is to retain the heat in the body and prevent radiation, the color

is unimportant.
The phenomenon of dew, first correctly explained by Dr. Wells,

is another beautiful illustration of the principles of radiation.

The earth is constantly radiating heat into space. During the

daytime this loss is compensated by the constant supply of heat

from the sun
;
but as soon as the sun sets, the supply ceases,

while the radiation still continues. Consequently, the tempera-

ture of all objects on the surface exposed to the clear sky is rap-

idly reduced ; if their temperature falls below the dew-point (313)

of the atmosphere, dew is deposited upon them as on a glass of

iced water, or, if the temperature falls below the freezing-point, the

dew takes the form of hoar-frost. On cloudy nights, little or no

55*
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dew is deposited, because the clouds reflect back the rays of heat

to the earth. The same effect is produced by the glass sashes or

straw mattings which are used by gardeners to protect young

plants from the late frosts of spring. The direct rays of the sun

readily pass through the glass during the daytime, but the glass

reflects back the heat of less intensity which is radiated from the

earth during the night. On windy nights, also, little or no dew

is deposited, because the layer of air in contact with the radiating

crust of the earth is so frequently renewed that its temperature

does not fall to the dew-point ;
and for the same reason dew is

more copiously deposited in a valley or a sequestered dell than on

the top of a hill
;
and it is in such places, also, that the early

frosts of autumn are first felt. As we should naturally expect,

we find that in any given place the dew is deposited most

copiously on the best radiators, which are, at the same time,

the poorest conductors ; thus, while dew is deposited in abun-

dance on the shrubs and the grass, which derive most benefit

from the moisture, it is not wasted on the dry path and road,

whose hard, beaten surfaces render them poorer radiators, while

at the same time their higher conducting power enables them to

withdraw heat from the strata below, and thus in part make good
the loss which the radiation may have caused.

" In India, near the town of Hooghly, about forty miles from

Calcutta, the principle of radiation is applied to the artificial

production of ice. Flat, shallow excavations, from one to two

feet deep, are loosely lined with rice straw or some similar bad

conductor of heat, and upon the surface of this layer are placed
shallow pans of porous earthen-ware, filled with water to the

depth of one or two inches. Radiation rapidly reduces the tem-

perature below the freezing-point, and thin crusts of ice form,
which are removed as they are produced, and stowed away in.

suitable ice-houses until night, when the ice is conveyed in boats

to Calcutta. Winter is the ice-making season, viz. from the end

of November to the middle of February."
*

(320.) Conduction. That dense and compact solids like the

metals are good conductors of heat, while light and porous solids

like wood and the various textile fabrics are poor conductors,
is a matter of common experience. The general fact may be

* Miller's Elements of Chemistry, Part I. p. 201.
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illustrated by means of the apparatus
of Ingenhousz, represented in Fig. 451.

The different rods attached to the front

of the brass box, made of various ma-

terials, are covered with a thin layer of

wax
;
and on turning boiling water into

the box, the wax melts on the rods, after

a certain time, to unequal distances,

depending on their relative conducting power.
If we heat one end of a metallic rod with a lamp, as repre-

sented in Fig. 452, the temperature of the different parts of the

rod will gradually increase, until a point is reached at which the

heat lost by radiation is equal to the heat received from the flame

by conduction through the bar. If now we test the temperature

Fig. 451.

Fig. 452.

of the different parts of the bar by means of thermometers placed
at equal intervals, say of one decimetre each, it will be found that

it very rapidly decreases as we go from the source of heat ; and

if the distances from the source of heat increase in an arith-

metical progression, the excess of the temperatures of the suc-

cessive sections of the bar above the temperature of the air will

be found to diminish in a geometrical progression. Moreover, it

is evident that the rate of decrease will be more rapid in propor-

tion as the conducting power of the bar is more feeble ;
and we

can Determine the relative conducting powers of two bars by

measuring the distances from the source of heat of the sections

which have the same temperature, for it can easily be proved
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in this direction than in the one at right angles to it. Similar

facts are also true of organized structures
; thus, wood conducts

heat much better in the direction of its fibres than across them.

Count Rumford concluded, from his experiments, that liquids
were absolutely non-conductors

;
but later experiments have

shown that they do conduct heat, but only very imperfectly. De-

spretz
*
experimented on a vertical column of water contained in

a wooden cylinder one metre high and 21.8 c. m. in diameter,
whose upper surface he exposed to a constant source of heat.

By means of thermometers passing through tubulatures on the

sides of the cylinder, he observed the temperatures of horizontal

sections of the liquid at equal distances from each other. At the

end of 32 hours the thermometers were stationary, and the dif-

ferences between the temperatures indicated by the successive

thermometers and the temperature of the air were found to form

a decreasing geometrical series, as in a solid bar. This experi-

ment proves conclusively that water conducts heat
; but, never-

theless, the conducting power is so feeble, that water may be

boiled for many minutes at the top of a test-tube without oc-

casioning the slightest inconvenience to the person who holds

the lower end. Gases are still poorer conductors of heat than

liquids ;
but yet they are not absolutely non-conductors, and they

differ very greatly from each other in this respect. This is

proved by* the fact that a hot body cools more rapidly in an at-

mosphere of hydrogen than in air, and also by a similar fact,

first noticed by Grove, that a platinum wire can be made to glow
in air with a feebler galvanic current than it can in hydrogen.
In order to heat a mass of liquid or gas, we always apply the

heat to the lowest portion of the containing vessel
; then, as

already explained (268), currents are established by which the

particles are brought into actual contact with the source of heat.

This process is sometimes distinguished as a third method of

communicating heat, and called convection.

(321.) Illustrations. The laws of conduction furnish the ex-

planation of many familiar facts, and receive many important

applications both in the arts and in every-day life. Our sensa-

tions of heat and cold are very much influenced by the conduct-

ing power of the substances with which the body comes in contact.

* Annales de Chimie et de Physique, 3e
S&ie, Tom. LXXI.
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A hearth, for example, feels colder to the bare feet than a wooden

floor, and this, again, colder than a woollen carpet, even when all

are at the same temperature. The obvious explanation is, that

stone is a better conductor than either wood or wool, and there-

fore removes the heat from the body more rapidly. The body, if

properly protected by poor conductors, may be exposed with im-

punity to air heated to 150, while it would be burnt by contact

with a rod of metal heated to only 50. The 'oven-girls of Ger-

many, protected by thick woollen garments, enter without incon-

venience ovens where all kinds of culinary operations are going

on, although the touch of any metallic articles while there would

surely burn them.

Water in pipes laid at a slight depth under ground is not

frozen during the severest winter, because the soil is a poor con-

ductor
;
and iron safes are rendered fire-proof by making them

with double walls, and filling the intervening space with non-

conducting materials. Doors of furnaces, ladles, and teapots
are provided with wooden handles, to protect the hand from the

heated metal
;
and hot dishes are placed on woollen or straw

mats, which prevent the polished surface of the table from being
scorched. So also vessels of glass 'or porcelain are heated on

a sand-bath, and when removed from the fire are always rested

on some non-conductor, as they are liable to crack when suddenly
heated or cooled.

The efficacy of clothing in preventing the escape of the heat

of the body depends, not only on the non-conducting power of

the material itself, but also on that of the air which is imprisoned

by it. Hence it is that wool, fur, and eider-down, which retain

large bodies of air within their texture, are so well adapted to

protect the body against the extreme cold of winter. The order

of the conductibility of the different materials used for clothing
is as follows : linen, silk, cotton, wool, furs. Accordingly, cotton

sheets feel warmer than linen ones, and blankets warmer than
either. In summer, coarse linen goods are used, "because they
allow the heat to escape from the body more readily than other

materials, while a dress of fine and close woollen is the best pro-
tection from the cold of winter except furs.

It is in consequence of the non-conducting property of gases,
that double doors and windows, which include a layer of air be-

tween them, are so useful in preventing the heat of our houses
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from escaping outwards ;
and the double walls of ice-houses,

refrigerators, or water-coolers, for preventing the heat from en-

tering. For the same reason, snow, which encloses large quanti-

ties of air, prevents the escape of the heat from the earth, and

limits the penetration of frost. It is a well-known fact, that

the ground always freezes deeper in winters without snow than

when it abounds. But it is unnecessary to multiply these illus-

trations further.

(322.) Coefficient of Conduction. The number of units of

heat which pass in one second through a solid wall 1 m. m. thick

and having an area of 1 5T
2

,
when the difference between the

temperatures of the two faces of the wall is equal to 1, is called

the coefficient of conduction of the substance of which the wall

consists. The coefficient of conduction of lead was determined

by Peclet by means of a very ingenious apparatus,* and found

to be 3.82. From this, the coefficients of conduction of other

solids can be calculated when their conductibility as compared
with lead is known. We give, in the first column of the follow-

ing table, the relative conductibility of several solids, as deter-

mined by Despretz ;
and in the second column, the coefficients of

conduction, which have been calculated as just described. The

results of Despretz, however, are not probably as accurate as those

of Wiedmann and Franz, given above.

Gold, .

Platinum, .

Silver, .

Copper, .

Iron, .

Zinc, . .

I.

100.0
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area of the plate, E its thickness, and t, t' the temperatures of

its two faces. It is evident that the quantity of heat passing

through such a metallic plate in a second of time increases in

direct proportion with the conductibility of the metal, with the

area of the plate, and with the difference of temperature between

its faces
;
and it is also evident that the amount of heat dimin-

ishes in direct proportion to the thickness.

It has already been stated (305), that, in making boilers for

evaporating water or other liquids, it is necessary to pay regard
to the laws of conduction ;

and it is evident from the above for-

mula that the greater the conducting power of the metals, the

larger the area of the heating surface, and the thinner the boiler-

plates, the more rapid will be the evaporation. Hence the advan-

tage of copper over iron boilers, and also the reason that water

will evaporate so much more rapidly in a silver dish than in

one either of glass or porcelain.



CHAPTER V.

WEIGHING AND MEASURING.

(323.) Recapitulation. Most methods of chemical investiga-

tion and all processes of quantitative chemical analysis involve the

accurate determination of the amounts of small masses of mat-

ter, either by measure or by weight. The mass of a body, that

is, the quantity of matter which it contains, is necessarily inva-

riable
;
but its weight and its volume are liable to constant va-

riations, arising from changes either of temperature or of the

pressure of the atmosphere, and from other causes. It has been

one great object of the present volume to develop the principles on

which these variations depend, and to study the laws which they

obey. We have thus been led to different methods by which the

observed volumes and weights of bodies may be reduced to cer-

tain assumed standards, such as a temperature of C. and a

pressure of 76 c. m. ;
and it will be the object of the remaining

chapter of this volume to illustrate these methods by a few

examples.

SOLIDS.

324.) Weight. The weight of a solid is easily determined

by means of the balance. The theory of this instrument has

been already given at length (73), and the methods of using it

are so simple and obvious that they need not be described in

detail.* Were it not for the presence of the atmosphere, the

balance would give at once the exact relative weight (71) of a

body ;
but weighing the body, as we must, immersed in the air,

the difference of the buoyancy which the air exerts on the

weights and on the body may make the apparent weight slightly

different from the actual weight. We can always, however, re

duce the observed weight to the weight in vacua by means of

* For the best methods of manipulating a delicate balance, and for the precautions

required in accurate weighing, the student may consult the standard work of Fresenius

on Quantitative Analysis.

56
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[91], when either the volumes or the specific gravities of both

the weights and the body are known. For this purpose, the

heights of the barometer and thermometer are observed at the

time of weighing, and from these observed data the weight of one

cubic centimetre of air (10), required in making the reduction, is

easily calculated by [215], or obtained by inspection from Table

XIV. In weighing either solids or liquids, however, the correc-

tion for the buoyancy of the atmosphere is at best very small,

and may be entirely neglected except in the very few cases where

the greatest refinement is required ; as, for example, in adjusting

standard weights. For the method to be followed in such cases,

the student will do well to consult the admirable memoir of

Professor Miller* on the restoration of the English standards.

(325.) Specific Gravity. The specific gravity of a substance

has been defined as the ratio of its weight to that of an equal

volume of pure water at 4, the temperature at which the volume

of the solid is measured being 0. The general methods by
which the specific gravity of solids is determined have been

already described (144-146), and we have only to consider

the methods by which results obtained at other temperatures

may be reduced to the standard temperatures.

In order to obtain the specific gravity of a solid,, we determine,

in the first place, the relative weight ( W) of the body ;
and

when very great accuracy is required, the weight observed in the

air may be reduced as just described. We next seek, by one of

the methods of (145) and (146), the weight of pure water ( W)
displaced by the body when the temperature of the water is 4,
and that of the solid

; and, lastly, we calculate the specific

gravity by dividing the first weight by the last. Practically,

the value of W is always determined at some temperature, 2,

higher than the standard temperatures, and the same for both

solid and water
; and, before using it in calculating the specific

gravity, it is necessary to determine what would be its value

assuming that the water was at 4 and the solid at 0. In Table

XVI. we have given the specific gravity of water at different

temperatures referred to water at 4 as unity. Representing,

then, the specific gravity at t by 8> and also the weight of water

displaced respectively at t and 4 by W? and W^, we shall

* Philosophical Transactions, Part III. London, 1856.
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have, evidently, (assuming that the volume of the solid is in-

variable,)

JT4o : W? = 1 : a, or W^ = Wf ^ . [206.]

But the volume of the solid is not invariable, and it displaces at

(the standard temperature for the solid) less water than at t.

Representing the volumes of the solid at and t by VQ> and

Ft
o respectively, we have, by [166], FQO = T> --. Since

the two weights of water displaced by the solid when at and t

must be proportional to the volumes of the solid at these tempera-

tures, (assuming now that the temperature of the water is invaria-

bly at 4,) we shall also have TF4o : W* = V? : -^xt ' Hence
>

and by [206],

[207.]

Having thus obtained the weight of water at 4 displaced by the

solid at 0, this value, W'^ is to be used in place of W1 in [87].
The last factor of [207] is always very nearly unity, and can in

most cases be neglected without appreciable error. When the

coefficient of expansion is not accurately known, and great accu-

racy is required, the value of K may be eliminated from [207]

by making two determinations of the weight of water displaced
at temperatures differing as widely from each other as the cir-

cumstances will permit. In very accurate determinations the

temperature of the water should be observed to the tenth of a

Centigrade degree ;
and if the value of 8 is not given in the

table for the observed temperature, it can easily be determined by

interpolation. Compare (289).*

* The most accurate method of determining the specific gravity of a solid is the

one with the hydrostatic balance (146), which should always be used when the nature

of the substance will admit of it. The body is best suspended from the pan of the

balance by a single fibre of silk, or by a very fine human hair, and the temperature of

the water observed by means of a very delicate thermometer, adjusted so that the

bulb may be nearly in contact with the body, and so that the division may be read by
a telesrope placed outside of the balance-case. When the solid is in powder, it can be

supported under water in a small glass cup suspended to the pan of the balance by a

platinum wire. In this case, it is necessary to weigh, first, the cup under water, im-

mersed to a point marked on the platinum wire. We then weigh the cup containing
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(326.) Volume. The volume of a solid can rarely be deter-

mined with accuracy by direct measurement. It is therefore

generally calculated from the weight and the specific gravity by
means of the formula [56]. Several examples of such calcula-

tions have already been given among the problems.

the powder immersed to the same point, taking care that the temperature is the same

as before. The difference between these weights is, evidently, the weight of water dis-

placed by the solid at the observed temperature, which must be reduced to the standard

temperatures by [207]. Lastly, we wash the powder into a tared beaker-glass, evapo-

rate the water, and determine the weight of the solid. The only objection to this

method of experimenting arises from the fact that the resistance of the water to the

motion of the cup renders the balance less sensitive and prompt in its indications.

When the solid is in powder, very accurate results can be obtained with a specific-

gravity bottle (145). The neck of the bottle should be made with a thick rim, ground

square at the top, and the glass stopper should be so fitted as not to have a channel

between the two in which water can collect. In order to determine its specific gravity,

a known weight, W, of the powder is introduced into the bottle with water, and after

the entangled air has been removed by an air-pump, the bottle is suspended in a large

beaker of water whose temperature is very slightly higher than that of the room. This

temperature, t, is carefully observed by means of a delicate thermometer, whose bulb is

placed near the bottle. After an equilibrium is established, the stopper is inserted into

the neck of the bottle while it is still under water. The bottle can then be removed,

and, after having been wiped dry, weighed at leisure. This is the weight W> of [86].

For every specific-gravity bottle, we determine once for all the weight, Wo, of water

which it contains at 0. This is a constant for that bottle, and from it we can easily

calculate the weight of the bottle filled with water at <, or JFi, by the formula,

Wi = W + Wo (1 + Kt) 3, [208.]

in which W' is the weight of the glass, K the coefficient of expansion of glass, and 8

the specific gravity of water at f, referred to water at as unity, as given by Table

XVI. The weight of the water displaced at t is now determined by the formula

We = JFi + W- TF2,

which is then reduced to the standard temperature by [207].
The chemist frequently has occasion to determine the specific gravities of solids

which are soluble in water. For this purpose he selects some inactive liquid, such as

alcohol, glycerine, or oil of turpentine, and first finds, by one of the methods just de-

scribed, the weight of this liquid displaced by the body, exactly as when using water,
the temperature being carefully observed. He then determines the specific gravity of

the liquid used at the same temperature as before, and from these data easily calculates

the specific gravity of the solid. The student will be able to devise a formula for the

purpose.
In all delicate determinations of specific gravity it is essential to use several grammes

of the substance, since otherwise a very small error in the weighing will cause an im-

portant error in the result. It is also essential to remove any air which may be

entangled in the interstices or cavities of the solid. This can be done either by boiling
the liquid in which the solid is immersed, or by placing the vessel containing the

liquid and solid under the receiver of an air-pump and exhausting the air.
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LIQUIDS.

(327.) Weight and Specific Gravity . The weight of a liquid
can be most accurately determined by direct weighing, and the

weight of the liquid in the atmosphere may be reduced to the

weight in vacuo exactly as in the case of solids
; only the tare of

the flask in which the liquid is enclosed must be taken under the

same circumstances of temperature and pressure as those under

which the liquid is weighed. Such niceties, however, are very

rarely necessary.

The specific gravity of a liquid determined at an observed

temperature, t* by either of the methods described in (145)
and (146), can easily be reduced to the standard temperature
when the law of expansion of the liquid is known. For this pur-

pose, we first calculate the volume of the liquid at t (F*)> the

volume at being unity, by means of the empirical formula

expressing the law of expansion (255) ; and since the specific

gravity at different temperatures must be inversely as the volume,
we have

and [209.]
-

In most cases with which the chemist meets in practice, however,
the law of expansion is not known. It is then best to determine

by direct experiment the specific gravity of the liquid at the stand-

ard temperature. An apparatus invented by Regnault (Fig. 454)

may be used with advantage for this purpose. It is merely a

specific-gravity bottle, so shaped that it can readily be surrounded

by melting ice and the volume of the liquid measured with

great accuracy. It is, in the first place, filled, like a thermometer-

tube, witli the liquid to be examined, which is then cooled to

by surrounding the apparatus supported on its stand with pulver-

* By
"
specific gravity of a liquid at the temperature t

"
is meant the weight of the

liquid divided by the weight of an equal volume of water, the liquid being measured at *

and the water at 4. In using a specific-gravity bottle
(
145 ), we have only to determine

for each substance the weight, VF, of liquid which exactly fills the bottle at . Having

previously determined, once for all, the weight of water at 4 which the bottle will con-

tain at the same temperature, we can easily calculate by [166] the weight of water at

4 which the bottle would hold at t. In using the hydrostatic balance, the results may
be reduced in a similar way.

56*
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ized ice. After an equilibrium of temperature is established, the

excess of the liquid is removed with

bibulous paper, until the liquid

stands at a point marked on the

fine tube which forms the neck of

the bottle. The apparatus is now

closed with its glass stopper, and it

may then be removed from the ice,

wiped dry, and weighed at leisure.

By subtracting from this weight the

tare of the glass and the brass stand,

we obtain the weight of liquid which

the apparatus holds at 0, which, di-

vided by the weight of water it con-

tains at 4 (previously determined) ,

gives the exact specific gravity.

(328.) Volume. The volumes

of liquids are generally determined

by direct measurement. For this

purpose a great variety of grad-

uated glasses are used, which are described in detail in most

works on Chemical Manipulation or Chemical Analysis.*

These instruments for chemical purposes are usually gradu-

ated in cubic centimetres, and are only standard at 0. The

process of measurement is, however, seldom so accurate as to

make it important to regard the change of volume which the

glass undergoes from changes of temperature. The same, how-

ever, is not true in regard to the liquid itself; where great

accuracy is required, it is important to observe the temperature
at which the measurement is made, and to reduce the observed

volume to the standard temperature by means of the empirical
formula (255), which expresses the law of expansion of the given

liquid.

The volume of a liquid can be determined with greater accu-

racy by [56] ;
that is, by dividing the weight of the liquid by its

specific gravity for the temperature at which the volume is re-

quired. This method is frequently used, in chemical investiga-

tions, for measiiring the volume of a glass vessel. For this pur-

Fig. 454.
'

* A very complete description of this class of instruments will be found in Dr.

Mohr's Titrirmethode.
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pose, we determine with a delicate balance the weight of mercury
or distilled water which the vessel contains at an observed tem-

perature. This weight, divided by the specific gravity of mercury
or water for the given temperature, gives the volume of the

vessel at that temperature. If the weight is accurate to one

centigramme, the volume may thus be measured within the thou-

sandth or the hundredth of a cubic centimetre, according as

mercury or water was used in the determination. Knowing now

the volume of the vessel at a given temperature, /, and also the

coefficient of expansion of glass (245), we can easily calculate

by [167] the volume at any other temperature (241).

GASES AND VAPORS.

(329.) Weight. The weights of equal volumes of the best

known gases and vapors have been determined with great care by

several experimenters, and it is now seldom necessary to repeat

the determination. Those of air, oxygen, nitrogen, hydrogen, and

carbonic acid were determined by Regnault, and are among the

most accurate constants of science. The method which he used

will serve to illustrate the general method followed in such cases.

Regnault weighed the gases in a large glass globe, whose volume, V,

had been measured in the way just de-

scribed. In order to avoid the always

uncertain correction made necessary by

changes in the buoyancy of the atmosphere

during the course of the experiments, he

equipoised this globe by another globe of

the same size and made of the same kind

of glass (see Fig. 258) ; so completely

did this simple provision effect its object,

that in one experiment he saw the equi-

librium maintained during fourteen days, in

spite of great change in the temperature,

pressure, and moisture of the air. The ex-

periments were conducted in the following

way. The globe, having been surrounded

with melting ice (Fig. 455), and connected

by a lead tube with the manometer t t' and

also with an air-pump through the branch

tube a m, was first filled with perfectly pure and dry gas. This was
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effected by exhausting it several times, and, after each exhaustion, con-

necting it with the vessel in which the gas was generating through a series

of U tubes, by which the crude gas was dried and purified. The globe

was then exhausted again as perfectly as possible, and the tension of the

small amount of gas remaining in it ascertained by measuring the height

/5
with a cathetometer. Represent this by hQ. This measurement hav-

ing been made and the stopcock closed, the globe was disconnected from

the manometer, removed from the ice, and, having been carefully cleaned,

suspended to one pan of a very strong and delicate balance, and coun-

terpoised by a second globe as above described. The globe was then

returned to its first position, and the connection having been made as

before, it was again filled with the same gas under the pressure of the air.

Represent the pressure, as given by the barometer, by H . Lastly, the

globe was a second time suspended from the balance, and the increase of

weight determined, which we will call W. This evidently was the weight
of a volume of gas equal to the volume of the globe measured at 0,
and under a pressure of HQ k . The weight of one cubic centimetre

of the gas at 0, and under a pressure of 76 c.m., was then calculated by
the formula,

''

The results obtained by Regnault were as follows :

5nPifi Weight of 1 Litre
Name of Gas. <g* measured at

Gravity. and 76 c.m.

Air, . . .

'

...
1.00000 1.293187

Nitrogen,. . . . 0.97137 1.256167

Oxygen, |J
,4 . _., ;. 1.10563 1.429802

Hydrogen, . .
^

.
^

0.06926 0.089578

Carbonic Acid, . .'. "... 1.52901 1.977414

It was discovered by Gay-Lussac, that all gases combine with
each other in very simple proportions by volume. This remark-
able law will be considered at length in another portion of this

work. It is sufficient for the present to say, that it gives us the

means of calculating from the weight of one litre of oxygen the

weight of one litre of any other gas when the chemical: equiva-
lent and the combining volume are known. In this way the
values given in the fifth column of Table II. have been calcu-

lated. They are not exactly equal to those obtained by direct

experiment, probably because the different gases are unequally
compressed by the weight of the atmosphere. The actual weights
as observed can always be obtained by multiplying the "

specific
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gravity by observation," given in Tables III. and IV., by 1.29206.

the weight of one litre of air.

The weight of one litre of a vapor at and 76 c. m. is of

course a fiction, since all those gases generally known as vapors

(292) would be condensed to liquids under these conditions of

temperature and pressure. It is convenient, however, in many
calculations, to know the weight which one litre of a vapor would

have at the standard temperature and pressure, assuming that it

could retain its aeriform condition under these circumstances
;

the weights of the vapors are therefore given in Table II. in

connection with those of the gases.

Knowing, then, the weight of one litre, and hence also of one

cubic centimetre, of all the more important gases and vapors at

and at 76 c. m., when perfectly dry, we can easily calculate

from these constants the weight of one cubic centimetre of any
of these gases when saturated with aqueous vapor, and at any

given temperature and pressure. The following formula for the

purpose is easily deduced from [100], [184], and [203], re-

membering that the weight of one cubic centimetre of any given

mass of gas must be inversely as its volume.

"'^
1 + 0.00366, -^- t211 ']

This formula gives the weight of the gas only, not including

the weight of aqueous vapor mixed with it
;

if the gas is dry,

becomes 0, and of course disappears. Using the weight of one

litre of aqueous vapor at and 76 c. m. given in Table II.,

we can easily calculate by [211] the weight of one cubic metre of

aqueous vapor at different pressures and temperatures. It was in

this way that the values given on page 571 were obtained. They
are not absolutely accurate, because, as we have before seen, the

vapor deviates from the law of Mariotte before reaching its maxi-

mum tension, while the formula assumes that it strictly obeys

the law.

The weight of one cubic centimetre of a gas depends, to a slight

extent, on still another cause not yet considered, namely, the va-

riations in the intensity of the force of gravity over the surface

of the earth. What the effect of such variation must be can

easily- be seen by taking an assumed case. Suppose, then, that

the intensity of the earth's attraction were exactly doubled, it

is evident that the total weight of the atmosphere, and hence
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its pressure, would be doubled. Moreover, the density of all

gases exposed to this pressure would be doubled also
;
and all

this change would take place without any variation in the height

of the barometer ;
for although the pressure of the air would be

thus increased, the weight of the mercury-column which meas-

ures this pressure would be increased in the same proportion.

A similar effect to this, although only to a very slight extent, is

produced by the small variations in the force of gravity on the

earth's surface. Other things being equal, the relative weight of

one cubic centimetre of a gas at different places is proportional

to the force of gravity at these places.

w : w 1 = g : g' and w 1 = w ^-
[212.]

The weights determined by Regnault, and given on page 668,

are only exact for Paris,* where g= 9.8096
;
but from these the

weight for any other latitude or elevation can easily be calcu-

lated by [40] and [47]. The weights given in the fifth column

of Table II. were calculated for the latitude of the Capitol at

Washington (38 53' 34") and the sea level. They can be re-

duced for any other place by the following formula, easily derived

from [212], [40], and [47] :

1 0.00259 cos 2 A rrH -.w1 = w 9h .
; [213.]

0-99945

but such reduction is seldom necessary.

(330.) Specific Gravity of Gases. It is usual to refer the

specific gravity of gases to air, as a standard of comparison, in-

stead of water, and the specific gravity of a gas may be defined

as the ratio of its weight to that of an equal volume of dry air,

both being measured at and under a pressure of 76 c. m.

RegnaulCs Method. The most accurate method of determining the

specific gravity of a gas is due to Regnault. It consists in determining
with the apparatus described above (329) the weight of the given gas

which a large glass globe will contain at and 76 c. m., and then divid-

ing this weight by that of an equal volume of air previously determined

in the same way. This method requires no further description, as the

process of determining the weight of the gas has already been given in

detail. It admits of great accuracy, and should always be used in normal

determinations.

* The latitude of Regnault's laboratory, at Paris, is 48 50' 14", and the elevation

above the sea level about 60 metres.
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Bunserfs Method. When, however, the very greatest accuracy is not

required, as in the investigations usually made in the laboratory on gas-

eous bodies, their specific gravity can be obtained by dividing the weight
of the gas by the weight of the same volume of dry air taken at the

same temperature and under the same pressure. This ratio is, strictly

speaking, the specific gravity only when the gas obeys exactly the law of

Mariotte, and has the same coefficient of expansion as air ; but it is, nev-

ertheless, in most cases near enough for all practical purposes. Bunsen's

method* is an application of this principle. He employs, for determining
the specific gravity of a gas, a common light flask, g, Fig. 456. The vol-

Fig. 456.

ume of this flask should be about 200 or 300 cubic centimetres, and the

neck, a, thickened before the blowpipe, should be drawn out so as to have

an aperture of the thickness of a straw, into which a glass stopper is

ground air-tight by means of emery and turpentine. Through this neck,
which is furnished with an etched scale in millimetres, mercury is poured

by means of a funnel reaching to the bottom of the flask, until the whole

is filled. As soon as this is accomplished, the flask is transferred, with its

mouth downwards, into the mercury-trough A A, and gas is allowed to

enter, until the level of mercury in the neck of the flask stands a few

millimetres higher than in the trough. In order to prevent the gas from

becoming mixed with air, it is evolved from as small a vessel as possible,

and allowed to enter the flask through a narrow delivery tube, and in the

moist state.f The gas is dried in the flask itself by a small piece of fused

* This description is taken from Bunsen's Gasometry (Roscoe's translation), varying

only the method of computing the results,

t If the gas under examination corrodes mercury, the flask cannot be filled in this
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chloride of calcium, b, which has previously been made to crystallize on

the side of the flask by bringing it into contact with a single drop of water

and alternately heating and cooling the glass. This small piece of chlo-

ride of calcium serves also to free the mercury and the sides of the flask

from all adhering moisture. In order to be able to close the flask at any
time without warming it with the hand, the little lever cf is employed.
On the end of this lever the stopper is so fastened in a cork, that it passes

into the neck of the flask without closing it ; and the lever is held in its

right place by a wedge, d, pushed under the finger-plate c. As soon as

the flask has attained the constant temperature, ,
of the laboratory,* the

volume! of the gas, F, the height of the barometer, H^ and the height, h01

of the column of mercury in the neck above the level of the metal in the

trough, are carefully observed. It is now necessary to determine the

weight of this volume V. For this purpose, the wedge d is taken away ;

the flask g is thereby closed, and by withdrawing the pin e, it can then be

removed, together with the lever cf, from the trough. Having discon-

nected the lever from the stopper, and carefully cleaned the exterior surface

of the flask, it is then weighed.
Let W represent this weight, Jf'Q

the height of the barometer, and

t
1 the temperature of the balance

at the time. The glass stopper

is now removed, and replaced by
an india-rubber tube, a, Fig. 457,

connected with a drying tube, b.

The apparatus thus arranged is

placed under the receiver of an

air-pump, and, by alternately ex-

hausting and admitting the air,

the gas in the flask is replaced

by dry air. The drying appa-

ratus is then disconnected, and

the flask weighed again. Call

this weight W. Since the air

Fis 457. has free access both to the inte-

way ;
but since such gases are almost invariably heavier than air, it can be filled by

displacement. The flask being placed in an upright position, and the delivery tube

extending quite to the bottom, the gas is allowed to flow in and overflow the mouth
until all the air has been expelled. The tube is then slowly withdrawn, the flow of gas
still continuing, and the mouth of the flask closed by its stopper.
* These experiments should be conducted in a cellar-room, in which a constant

temperature can be maintained for several hours.

t Before using the flask, it is once for all carefully calibrated, and the volume corre-

sponding to each division on the neck inscribed in a table, which is kept with the in-

strument.
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rior and the exterior surface of the flask, it is evident that W is sim-

ply the weight of the glass of the vessel and of the small amount of

mercury and chloride of calcium which it contains, less the weight of

air which these materials displace. It is also evident that W must be

equal to W increased by the weight of the volume of gas, FJ contained

in the flask, and diminished by the weight of air displaced by this volume

of gas when the flask was weighed. The weight of the gas is, then, equal
to W W + W" ; in which W" is the weight of V cubic centimetres

of dry air at t' and ff'Q c. m., calculated by [211]. To obtain the specific

gravity, we have now only to divide the weight of the gas by the weight
of an equal volume of air measured under the same conditions of temper-
ature and pressure at which the gas was measured, that is, at t and

(flu hu) c. m. This can also be calculated by [211]. Representing
then this last weight by W" 1

,
we have for calculating the specific gravity

the three following equations :

[214.]

W = 0.0012921 V
np.1,,3^ t ; [215.]

W = 0-0012921 V
1 +^Mt

~---
[216.]

As an example of the method of calculation, we cite the following from

Bunsen's work. A determination of the specific gravity of bromide of

methyl, with a small flask of about 44 cTm.8
capacity, furnished the fol-

lowing data :

TF =7.9465 gram. #',= 74.21 c.m. F=42.19c7m.* # =74.64c,m.

JF'= 7.8397 " 1 r=6.2 t =16.8 h, = 2.43

Calculation of W"* Calculation of W'"*

(1+ 6.2*) ar. co. 9.99025 (1+ 16.8) ar. co. 9.97409

ff'= 74.21 log. 1.87046 ff h = 72.21 log. 1.85860

76. ar. co. 8.11919 8.11919

V 42.19 log. 1.62521 1.62521

0.0012932 log. 7.11166
_Z:
nl6

_?

JF" = 0.052092 log. 8.71677 W"= 0.048837 log. 8.68875

W W+ W" = 0.158892 log. 9.20110

Specific gravity of Bromide of Methyl, 3.253 log 0.51235

* The values of Wn and W" can be calculated much more rapidly, although with

less accuracy, by means of Table XIV.

57
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(331.) Specific Gravity of Vapors* As will appear in an-

other portion of this work, the determination of the specific

gravity of vapors is one of the most important processes of prac-

tical chemistry. We always make the determinations at a tem-

perature considerably above the boiling-point of the substance
; f

and since under these circumstances a vapor has all the prop-

erties of a gas (292), it follows that its specific gravity may be

found by dividing its weight by the weight of an equal volume

of air measured under the same conditions of temperature and

pressure. The method of determining these two weights usually

followed in the case of vapors is precisely similar to that used

in the case of gases and described in the last section, and the

same formulae may be used in calculating the results. It dif-

fers from it only in the details of the manipulation, and in the

fact that, on account of the high temperature to which the vapor
is heated, it is necessary to take into account the change in the

* We use the term vapor here in its ordinary sense.

t The number of degrees above the boiling-point at which a vapor first acquires

fully the properties of a permanent gas varies very greatly with different substances.

Thus, under the normal pressure of the air, the vapors of water and alcohol obey the

law of Mariotte at a temperature only a few degrees above their boiling-points, while

the vapor of sulphur does not obey the law until heated to at least 500 above its boil-

ing-point. Unless the experimenter is confident in regard to the properties of the sub-

stance under examination in this respect, it is best to make two determinations of the

specific gravity at temperatures differing by twenty or thirty degrees. If the two do

not agree within the limit of error of the method employed, it is an indication that the

temperature is not sufficiently high. This is illustrated by the experiments of Cahours

on the specific gravity of the vapor of monohydrated acetic acid. He found that the

specific gravity did not become constant until the temperature rose above 240 C., that

is 120 above its boiling-point. The following table contains his results :

Temp. gp. Gr. Temp. Sp. Gr.

125 3.180 200 2248
130 3.105 220 2.132

140 2.907 240 2.090

150 2.727 270 2.088

160 2.604 310 2.085

170 2.480 320 2.083

180 2.438 336 2.083

190 2.378

It is evident that a determination of the specific gravity of the vapor of acetic acid

made at a temperature below 240 would have given too large a result, and one which

would have been the more erroneous as the temperature was lower. An error of the

same kind, made in the determination of the specific gravity of the vapor of sulphur,

introduced an anomaly into the simple law of equivalent volumes which has only

recently been explained.
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Fig. 458.

capacity of the vessel used. The method may be best explained

by an example. Suppose, then, that we wish to ascertain the

specific gravity of alcohol vapor.

We take a light glass globe having a capacity of from 300 to 500 cTrrT
8
,

and draw the neck out in the flame of a blast lamp, so as to leave only a

fine opening, as shown in Fig. 458 at a. We then weigh the globe, which

gives us the weight W of [214]. The
second step is to ascertain the weight of

the globe filled with alcohol vapor at a

known temperature and under a known

pressure. For this purpose, we introduce

into the globe a few grammes of pure

alcohol, and mount it on the support rep-

resented in the figure. By loosening the

screw, r, we next sink the balloon beneath

the oil contained in the iron vessel, V,

and secure it in this position. We now

slowly raise the temperature of the oil to

between 300 and 400, which we observe

by means of the thermometer, T. The alcohol changes to vapor and drives

out the air, which, with the excess of vapor, escapes at a. When the bath

has attained the requisite temperature, we close the opening a by sud-

denly melting the end of the tube at a by means of a mouth blowpipe, and

as nearly as possible at the same moment observe the temperature of the

bath and the height of the barometer. We have now the globe filled with al-

cohol vapor at a known temperature and under a known pressure. Since

it is hermetically sealed, its weight cannot change, and we can therefore

allow it to cool, clean it, and weigh it at our leisure. This will give us the

weight of the globe filled with alcohol vapor at a temperature t and under

a pressure H. This is the weight W of [214]. We also notice the height

of the barometer H' and the temperature of the balance-case t' during this

second weighing, and when we have measured the capacity of the globe

Vj we can easily calculate by [215] the value of W". Knowing now

W W -\- W", the weight of alcohol vapor which filled the globe at t

and under a pressure He,, m., the next step is to find W", the weight of an

equal volume of air under the same conditions of temperature and pressure.

By (241) the volume of
th^e globe at the temperature t was V(l -{- Ki),

and by substituting this in [216], we get at once, since h = 0,

= 0.0012932 [217.]

by which we can easily determine the weight required. The last step is
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to find the capacity of the globe, which, although we have supposed it

known, is not actually ascertained experimentally until the end of the

process. For this purpose we break off the tip of the tube a under mer-

cury, which, if the experiment has been carefully conducted, rushes in

and fills the globe completely. We then empty this mercury into a care-

fully graduated glass cylinder, and read off the volume. We have now

all the data for calculating the specific gravity, and the calculation may be

conducted precisely as on page 673, only substituting [217] for [216].
We have assumed that the vapor expelled all the air from the globe,

and hence that the globe filled completely with mercury on breaking the

tip end of the neck. This, however, is rarely the case ; there is almost

always left in the globe a bubble of air, and sometimes the volume

of air remaining is quite considerable. In such cases, however, we may
still obtain approximative^ accurate results ; it is only necessary to decant

the air into a graduated bell over a pneumatic trough, and measure ex-

actly its volume, v, at an observed temperature, t", and under a pressure

of H". Its weight, Wt , can now be calculated by [215], and from this

weight we readily deduce the weight of vapor which the globe contained

at the moment of closing its orifice ; this weight of vapor was evidently

W W+ W" JF,. The volume which the small amount of air left in

the globe occupied at the moment of closing the orifice (that is, at t

and H c. m.) can also be calculated from the formula,

1+ 0.00366* H\
' ' ~

which can readily be deduced from [98] and [184]. The volume of the

balloon at this time was, as we have seen, V (I -\-Kt). Hence the vol-

ume of the vapor must have been V(l-\-Kt) v 1
. Substituting this

value for V(l-\-Kt) in [217], we get for the weight of the vapor in the

globe at the time of closing,

; [219.]

and for the specific gravity,

sP.Gr.
r J

'

W,

The results which are thus obtained are not, however, perfectly trustwor-

thy, and it is always best to avoid these corrections by so conducting the

experiments that only a very small amount of air at most shall be left in

the globe. This end is secured by adapting the size of the globe to the

quantity of liquid which is available for the determination.

In calculating the specific gravity of a vapor from the observed data, we
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must be careful, in the first place, to reduce all the barometric heights to

by Table XVIII. In the second place, the temperature of the bath, as

indicated by the mercury-thermometer, must be corrected for the part not

immersed [156], and the corrected temperature reduced by the table on

page 439 to the true temperature. When great accuracy is required, it is

best to measure the temperature of the bath directly with an air-thermome-

ter. This is immersed in the oil at the side of the globe, and the orifices of

both thermometer and globe are closed at the same time (264). In com-

puting the results, we use the formula [189], and without actually calcu-
1 I K~ f

lating the temperature, substitute the value of
rXo5o36^i

*n E21^'

We have assumed that the bath in whi rth the globe is heated is filled

with a fixed oil, which is the most convenient liquid if the temperature

required does not exceed 250. When heated above this temperature,

the fat oils emit very disagreeable vapors ; and for temperatures between

250 and 500 it is necessary to fill the bath with some easily fusible

alloy, such as Rose's metal or soft solder. The pressure exerted by the

melted metal is necessarily very great, and tends to deform the globe,

so that we are obliged to abandon this method of experimenting as

soon as the glass begins to soften, which takes place a little above 500.

By slightly modifying the apparatus, however, Regnault has been able to

obtain accurate results at temperatures as high as 600 or 650. His

method, which is only used for substances which boil at a very high tem-

perature, is as follows.

The volatile substance is introduced into the cylindrical reservoir a' &

(Fig. 459) of the tube a' d, which is made of the most infusible glass, and

supported in an iron frame, m m' m", at the side of a similar tube, a b.

This last tube, which may be closed by the stopcock r, serves as an air-

i
Fig. 469.

thermometer. The two tubes are heated together in an air-bath, made, as

represented in Fig. 460, of two or three concentric cylinders of sheet-iron

enclosed in an outer cylindrical case of cast-iron. The frame m m" fits

the inner cylinder/^ h i, and when in place the metallic disk m" n" just

closes its mouth,/ 1, leaving the ends of the two tubes projecting in front

of the bath. This apparatus is heated in a horizontal position on a semi-

cylindrical grate, and so arranged that it can be surrounded with burning

coals. The temperature is first rapidly raised ; but after the volatile sub-

stance has distilled over and the excess has been collected in the cold por-

tion of the tube c1

d, the temperature is increased very slowly, and before

57*
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the glass softens, the process is arrested by closing the stopcock of the air-

thermometer and withdrawing the frame with its two tubes from the bath.

"We now determine the temperature to which the tubes were heated, by

K

Fig 460.

the method already described in detail (2 Go). We next ascertain the

weight of vapor which was contained in the reservoir a' b' at the moment

of withdrawing the tube from the air-bath. For this purpose we remove

the excess of the substance which condensed in the part of the tube c'd,

and then weigh the whole tube, first with the substance it contains, and

secondly after the substance has been removed. The difference of these

weights is the weight of the vapor which filled the reservoir a 1 b1
c' at a

known temperature and pressure. Lastly, to find the volume of the res-

ervoir, we determine the weight of water which fills it at a known temper-
ature ;

and we then have all the data for calculating the specific gravity

of the vapor. The formulae already given may be easily modified for

the purpose. If the substance under examination absorbs oxygen at a

high temperature, it is best to fill the whole tube a' d with nitrogen, and

to adapt with a cork to the open end a small tube drawn to a point.

The use of the air-thermometer (which involves a great expenditure of

time) in the determination of the specific gravity of vapors of substances

which boil at a high temperature, is avoided in another modification of the

general method proposed by Deville and Troost. They use a glass bal-

loon, and heat it in an atmosphere of vapor rising from boiling mercury or

sulphur. The temperature of these vapors is so constant, that it is not

necessary to use a thermometer, that of the first at 350, and that of the

second at 440. For still higher temperatures they use a balloon of porce-

lain, which is heated in the vapor of boiling cadmium (860) or boiling

zinc (1040) ; but for the details of the apparatus and of the method, we
must refer to the original papers.*

Method of Gay-Lussac. The method of determining the specific

gravity of vapors just described is liable to one very serious source

of error. In order to insure that all the air will be expelled from

the globe, it is necessary to use a considerable amount of liquid ; and

it is evident that any impurity which this liquid may contain will be

left behind in the globe, and tend to falsify the weight. This source of

* Coraptes Rendus, Tom. XLV. p. 821 ; also Tom. XLIX. p. 239.
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error is entirely avoided by a method invented by Gay-Lussac ; but

unfortunately the method is applicable only to liquids which boil at a

comparatively low temperature. It consists in measuring with accu-

racy the volume of vapor formed by a known

weight of liquid. The liquid is first enclosed in

a very thin glass bulb, A, Fig. 461, which is her-

metically sealed, and the weight of the liquid is

determined by weighing the bulb both before and

after it has been filled. This bulb is then passed

up into a graduated bell-glass, (7, filled with mer-

cury, and standing in an iron basin also partly

filled with the same liquid. Around the bell is

placed a glass cylinder, whose lower end, resting

in the mercury contained in the basin, is com-

pletely closed. This cylinder is filled with water,

and the apparatus thus arranged is mounted on

a charcoal furnace. The glass bulb is soon

broken by the expansion of the liquid, and

when the temperature is sufficiently elevated the

liquid changes into vapor, which depresses the

mercury-column. The heat is still increased

until the water in the cylinder boils, when the

bubbles of vapor rising through the liquid estab-

lish a uniform temperature of 100 throughout

the whole mass. We then observe accurately the

volume of the vapor and the pressure to which it is

exposed. To obtain the last, we subtract from the height of the barometer,

HZ, the difference of level between the surface of the mercury in the basin

and that in the bell. This difference of level is measured by a cathetom-

eter with the aid of the levelling-screw r. Compare (159). With these

data we can easily calculate the specific gravity. We reduce, first, the

volume of the vapor to and 76 c. m. by [166] and [107], and we then

calculate the specific gravity by [55] and [58]. For the different pre-

cautions required in this process, and for the slight variations required
under different circumstances, the student is referred to Regnault's Ele-

ments of Chemistry, American edition, Vol. II. p. 408.

(332.) Volumes of Gases. In consequence of the very small

density of gases, their volumes can be determined much more

accurately by measure than by weight. The measurement of the

volume of a gas is effected in eudiometers, or graduated tubes,

Fig. 462, which are generally about 2 c. m. in diameter and from

25 c. m. to 80 c. m. long. These tubes are frequently graduated

Fig. 461.
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into cubic centimetres, but it is more accurate to divide them

into millimetres and to determine afterwards the corresponding
volumes by calibration. The graduation is easily made, with the

dividing machine before described, on a thin coating of wax

Fig. 462.

spread over the surface of the tube, and the divisions are after-

wards etched with hydrofluoric acid. The tube is then calibrated

by pouring into it repeatedly the same measured quantity of

mercury through a long funnel, and after each addition accu-

rately noting the division to which it rises in the tube. From
these data it is easy to calculate the volume corresponding to

each graduation ;
and a table is then prepared, from which these

volumes can be subsequently ascertained by inspection. The

measurements of gases are best performed over a small mercurial

trough, like that represented in Fig. 462, which was contrived by

Bunsen, and is admirably adapted to the purpose. The trough has

two transparent sides of plate-glass, through which the level of the

mercury is easily observed. The eudiometer is first filled with

mercury by means of a long funnel reaching to the bottom of the

tube
;
and after closing its mouth, it is inverted and placed in the

position represented in the figure, when the gas can readily be

introduced from the collecting tubes. When practicable, a drop
of water is brought into the head of the eudiometer before filling

it with mercury, so that the collected gas may be perfectly satu-

rated with aqueous vapor.

Every determination of the volume of gases requires the fol-

lowing four primary observations :
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1. The level of the mercury in the eudiometer.

2. The level of the mercury in the trough measured on the etched

divisions of the eudiometer.

3. The height of the barometer.

4. The temperature.

The eudiometer is first brought to a perpendicular position by
means of a plumb-line, and the observations are then made by the

help of a small telescope placed at a distance of from six to eleven

feet. The axis of the telescope is brought to a horizontal posi-

tion, and all error from parallax thus avoided. It is unneces-

sary to add, that the heights of the mercury columns must always
be read off at the highest point of the meniscus.

The observed volumes of gas are reduced by calculation to the

volumes in a dry state at and under a pressure of 76 c. m. by
means of the equation

V - V ** ^ ^
(1 +0.003660 76>

which is easily obtained from [107], [184], and [203]. The

following measurements, by Bunsen, of a volume of air sat-

urated with aqueous vapor, may serve as an example of the

calculation :

Temperature of the air, 20.2

Lower level of mercury, 56.59

Upper
" " 31.73

Difference of level, 24.86

Reduced height A
,

24.78

c. m.

Height of barometer, 74.69

Correction for temperature, 0.25

Reduced height If
,

74.44

Tension of vapor, , 1.76

;__Ao fl,
47.90

The division 317.3 corresponds to a volume by table of 292.7

Correction for meniscus, ...... 0.4

The corrected volume F', *'

:

. . . 293.1

F', ... / , log. 2.46701

ff # $, . * . 'v log. 1.68033

(1 -f- 0.003660 b7 Table X1
-*

ar- co- 9.96902

76, . .

'

. . V^ ar. co. 8.11919

Reduced volume V= 172.01, . log. 2.23555

For the practical details of the methods connected with the

manipulation and measurement of gases, we would refer the

student to Professor Bunsen' s work on Gasometry. This dis-

tinguished experimentalist has very greatly improved all these

processes, and has given them an accuracy unsurpassed by any of

the most refined methods of chemical investigation.
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PROBLEMS.

Hygrometry.

378. A glass globe, having been filled at and 76 c. m. partly with

air and partly with water, and afterwards sealed, is heated to 100. Re-

quired the pressure exerted on the interior surface of the vessel, provided

that there is an excess of water left in the globe.

379. What would be the pressure, if ether were used in the last ex-

ample instead of water ?

380. Into a vacuous vessel, whose capacity equals 2.02 litres, there

were introduced one litre of dry air and sufficient water to leave after

evaporation 20 cTm.
8 in the liquid state. Required the tension of the

mixture of air and vapor in the interior of the vessel at 50.

381. A given quantity of dry air weighs 5.2 grammes at and 76

c. m. pressure. What would be its volume at 30 and 77 c. m. pressure

when saturated with vapor ?

382. What is the weight of a cubic metre of air at 30 and 77 c. m.

pressure ? The relative humidity of the air is assumed to be 0.75.

383. The volumes of air given in the table below were measured when

saturated with vapor at the temperatures and pressures annexed. It is

required to reduce these volumes to what they would have been at and

76 c. m. pressure, had the gas been perfectly dry.

1. 250 t~^.3 H= 75.6 c.m. t = 15.
2. 120 " #=25.4 "

t = 20.
3. 75 " // = 5.6

"
t = 10.

4. 500 Z~^? H= 76.3 c.m. t= 30.

5. 725 " H = 5.6
"

t = 20.

6. 340 " H=78 "
t = -20.

384. The volumes of air given in the following table were measured

at and 76 c. m. pressure when perfectly dry. It is required to deter-

mine' what would have been the- volume at the temperature and pressure
annexed were the gas saturated with moisture.

1. 200 c^3 H= 75.4 c.m. t= 15.
2. 500 " H = 45.5 "

t = 10.
3. 25 " H= 15.8

"
t = 13.

4. 75 T^T.
3 H = 77.2 c. m. t = -10.

5. 60 " H = 80.2
"

t = -4.
6. 140 " H = 79.4 "

t = -100.

385. In the following problems are given, first, the temperature of the

atmosphere, t ; secondly, the dew-point, t' . It is required to determine

in each case the relative humidity of the atmosphere and the weight of

vapor in one cubic metre.

1. t = 30 t' = 18.

2. t = 20 t' = 11.

3. t = 5 t
1 = 0.

4. t = 30 t' = 28.
5. t = 25 t' = 20.
6. t = 10 t

1 = 6.

7. t = t' = -4.
8. t = 6 t

1 =-10.
9. t = 41 t' = 39.

386. In the following problems are given, first, the temperature of the

dry-bulb thermometer ; secondly, that of the wet-bulb. Required in each

case the relative humidity of the air.
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1. t = 30 t' = 28.

2. t = 20 t' = 12.

3. t = 10 t' = 2.

4. t = 28 *' = 26.7.

5. f = 15 <'=12.3.
6. t = 12 t' = 8.

7. t *' = -3.
8. * = -5 t' = -8.
9. * = -20 t' = -20.8.

387. Assuming that the air is four fifths saturated with aqueous vapor
at the temperature of 20, how much water would fall from each cubic

metre if the temperature suddenly fell to 11 ?

388. When the temperature of the air was 30, the dew-point was

observed to be at 28 ; the temperature of the air suddenly fell to 20.

How much rain would fall on a square kilometre from a height of 200

metres, assuming that the atmosphere were of uniform density and hy-

grornetric condition throughout the whole height ?

Sources of Heat.

389. How much wood charcoal must be burnt in order to evaporate 50

kilogrammes of water, assuming that the water is already at the boiling-

point, and that all the heat evolved is economized in the process ?

390. How much alcohol must be burnt in order to melt 5 kilogrammes

of sulphur, assuming that the sulphur is already at the melting-point, and

that the heat is all economized ?

391. How much coke would be required to raise the temperature of

the air of a room measuring 6 m. X 7 m. X 3.5 from 5 to 25, assuming

that none of the heat evolved was lost ?

392. How many cubic metres of illuminating gas (marsh gas) must be

burnt to raise the temperature of 40 kilogrammes of water from to

100 ? How much, in order to convert the water into steam ?

Conduction of Heat.

393. It is required to make a copper boiler by which 100 kilogrammes
of water may be evaporated each hour. "What must be the extent of

boiler surface, assuming that the thickness of the copper is 2 m. m., and

that the difference of temperature between the two surfaces of the copper

plate is 10 ?

394. If the boiler were made of iron 5 m. m. thick, what must be the

extent of the boiler surface ?

WEIGHING AND MEASURING.

Specific Gravity of Solids.

395. The specific gravity of zinc was found to be 7.1582 when the

temperature of the water was 15. What would have been the specific

gravity at 4 ?

396. The specific gravity of antimony was found to be 6.681 when the

temperature of the water was 15. What would have been the specific

gravity at 4 ?
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397. The specific gravity of an alloy of zinc and antimony was found

from the following data :

Weight of the alloy, 4.4106 grammes.
" "

specific-gravity bottle, . . . 9.0560 "

" " " "
full of water at 4, 19.0910 "

"
bottle, alloy, and water at 14.6, . 22.8035

398. Find the specific gravity of metallic zinc from the following

data :

"Weight of the zinc, . . . , . . . 12.4145 grammes.
"

bottle, 9.0560
"

full of water at 18, . . . 19.0790
" " " zinc and water at 12.4, . 29.7663 "

Volume of Solids.

399. Gold-leaf is made as thin as one ten-thousandth of a millimetre.

How great a surface could be covered with 10 grammes of such leaf ?

400. A cylinder of iron weighing 21 kilogrammes is 2.5 m. high. What
is its diameter ?

401. The base of the grand pyramid of Egypt measured 23.48 m. on

each side ; its original height was 146.18 m. Required its weight, as-

suming that it was solid, and that the stone of which it is constructed has

a Sp. Gr. = 2.75.

402. Required the price of an iron pipe, knowing that its interior di-

ameter is equal to 0.254m., that its thickness equals 0.014 m. and its

length 213.4m. The specific gravity of cast-iron is 7.207, and its price

4 cents a pound.
403. A silver wire 1.5 m. m. in diameter weighs 3.2875 grammes. It

is required to cover it with a coating of gold 0.4 m. m. in thickness.

What will be the weight of the gold ?

Volume of Liquids.

404. What is the volume of 40 kilogrammes of mercury at 100 ? If

the liquid is contained in a cylindrical vessel 6 c. m. in diameter, how high

would it stand above the horizontal base ?

405. A glass flask with a narrow neck was weighed full of mercury at

the temperature of 10, and found to weigh 560.234 grammes. The flask

itself weighed 84.374 grammes. Required the volume of the flask.

406. Calculate the volume at of the globe employed by Regnault in

determining the absolute weight of one litre of air and of other gases from

the following data (see Fig. 454) :

Weight of the glass globe at 4.2 and 75.789 c. m., . . . . 1,258.55 gram.
" "

after having been filled with water at 0, . 11,126.05
'

Temperature of the chamber at the time of weighing, ... 6

Height of the barometer at the same time, 76.177 c. m.

Ans. 9,881.06 cT^.
8
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Weight of Gases.

407. Calculate the weight of one litre of dry air at and 76 c. m.

from the following determination by Regnault (329). The globe used

was the same as in the last example.

Globefull ofAir and surrounded by Ice.

Height of barometer at the time of closing the stopcock, . . . 76.119 c.m.

Weight added to globe to equipoise it in balance (Fig. 258), . . 1.487 gram.

Globe exhausted of Air and surrounded by Ice.

Tension of air remaining in globe as indicated by the manometer at

the moment of closing the stopcock, 0.843 c. m.

Weight required for equipoise, 14.141 gram.

Ans. 12.7744 gram.
408. Calculate the weight of one litre each of hydrogen and carbonic

acid at and 76 c. m. from the following determinations of Regnault.

The data are given in the same order as in the last problem.

Hydrogen. Carbonic Acid.

Globe full of gas, //o =75.616 c.m. Globe full of gas, H =76.304 c.m.

W = 13301 gram. W = 0.6335 gram.

Globe exhausted, ha = 0.340 c. m. Globe exhausted, ho = 0.157 c.m.

W" = 14.1 785 gram. W" =20.211 gram.

Ans. 0.88591 gram. Ans. 19.5397 gram.

409. Reduce the weights obtained from the last two problems to the

latitude of 45 and the sea-level. See page 670.

410. Reduce the weights to what they would be at Quito. Latitude,

13'.5. Elevation above sea-level, 2,908 metres.

411. In the following table are given, first, the volume of the gas;

secondly, the pressure to which it is exposed ; thirdly, its temperature.

Assuming that the gas is saturated with vapor of water, it is required to

calculate the weight in each case.
v. H. t.

Air, 245 g~S? 76.12 c.m. 15.

Hydrogen, 564 " 64.32 " 12.

Carbonic Acid, 202 " 45.20 " 4.

Chlorine,
'

. 50 " 75.89
" 30.

Protoxide of Nitrogen, . . . 465 " 66.23 " 8.

Steam, . . . . . . 500 " 76.54 " 213.

Alcohol Vapor, .... 1,500
" 54.22 " 152.

Ether Vapor, . . . . . 250 " 75.20 " 100.

412. A glass globe weighed, when open to the air, 225.169 grammes ;

filled with water at the temperature of 0, it weighed 785.169 grammes.

Required the weight of air which the globe would contain at 300 and

under a pressure of 77 c. m.

413. What is the weight of one cubic metre of aqueous vapor at its

maximum tension at the following temperatures : 10, 15, 120, 200,

and 250?
58
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414. What is the weight of the vapor contained in one cubic metre of

the atmosphere under the conditions given in problem 385 ?

Specific Gravity of Gases and Vapors.

415. Calculate the specific gravity of hydrogen and carbonic acid at

from the data given in problems 407, 408, and 409.

416. Ascertain the specific gravity of alcohol vapor from the following

data :

Weight of glass globe, TF', 50.8039 grammes.

Height of barometer, //', 74.754 c. m.

Temperature, t', 18.

Weight of globe and vapor,' TF, .... 50.8245 grammes.

Height of barometer, H> 74.764 c. m.

Temperature, t, 167.

Volume, F, 351.5 cTnT3

417. Ascertain the specific gravity of camphor vapor from the follow-

ing data :

Weight of glass globe, TF', 50.1342 grammes.

Height of barometer, H 1

, . . . . . 74.2 c. m.

Temperature, t', 13.5.

Weight of globe and vapor, TF, 50.8422 grammes.

Height of barometer, H, 74.2 c. m.

Temperature, *, 244.

Volume, F, 295 ^T.3

Volume of Gases.

418. A volume of air saturated with moisture gave the following meas-

urements. Reduce to the standard temperature and pressure.

Level of mercury in pneumatic trough, .... 52.34 c. m.

eudiometer, 24.25 "

Volume corresponding to 24.25 division, . . . 350 cTnf.
3

Temperature of the air, 15.4.

Height of barometer, 76.54 c. m.

419. A volume of air saturated with moisture at 3.l and 57.59 c. m.

pressure, was found to measure 368.9 cTm.
8
- After absorbing the oxygen

with a paper ball moistened with pyrogallate of potash, and drying the

residual gas with a ball of caustic potash, it was found to measure 313.8

c. m.
8
,
the temperature being 3.l and the pressure 53.58 c. m. Required

the percentage composition of the gas.

420. A volume of gas (choke-damp), measured moist at 13.5 and

62.40 pressure, was found to be 171.2 cTln.
8
. After absorbing the car-

bonic acid with a ball of caustic potash and drying the gas, it was found

to measure 167.3 c . m.
3
, the temperature being 13.5 and the pressure

61.96 c. m. Finally, after absorbing the oxygen with pyrogallate of pot-

ash, and drying, the gas was found to measure, at 13.9 and 60.58 c. m.

pressure, 147 cTlu.
8
. Required the percentage composition of the gas.
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Measures of Length.

THE inch is the smallest lineal integer now used. For mechanical

purposes it is divided either duodecimally or by continual bisection
; but

for scientific purposes it is most convenient to divide it decimally. The

larger units are thus related to it :

Mile. Furlongs.



690 TABLES.

Imperial Measure.

The Imperial Standard Gallon contains ten pounds avoirdupois weight
of distilled water, weighed in air at 62 Fahr. and 30 in. Barom., or 12

pounds, 1 ounce, 16 pennyweights, and 16 grains Troy, = 70,000 grains'

weight of distilled water. A cubic inch of distilled water weighs
252.458 grains, and the imperial gallon contains 277,274 cubic inches.

Distilled Water.

Grains.

8,750

17,500

70,000

140,000

560,000

4,480,000
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TABLE XIX.
TABLE FOR THE REDUCTION OF THE PRESSURE OF A COLUMN

OF WATER TO A COLUMN OF MERCURY.

Pressure of

U'ater,
in Millimetres.



LOGARITHMS AND ANTI-LOGARITHMS,



LOGARITHMS OF NUMBERS.



LOGARITHMS OF NUMBERS.



ANTILOGARITHMS.



ANTILOGARITHMS.



CONSTANT LOGARITHMS.

Ar. Co.

Logarithms. Logarithms.

Circumf. of circle when R = 1,
(|
= 1.5708) 0.1961199 9.8038801

D = i
f (ff 3.1416) 0.4971499 9.5028501

Area of circle when R*= 1, (TT
= 3.1416) 0.4971499 9.5028501

" " " " Z>2 =1,
(^
= 0.7854) 9.8950899 0.1049101

" <7
2 =1, (i- = 0.0796) 8.9007901 1.0992099

Surface of sphere when R2 = 1, (4 TT = 12.5664) 1.0992099 8.9007901

" " " Z>2 =1, (TT
= 3.1416) 0.4971499 9.5028501

" " 0=1, (i = 0.3183) 9.5028501 0.4971499
7T

Solidity of sphere when J?3 = 1, (^TT= 4.1888) 0.6220886 9.3779114
o

" 1^=1, (5 = 0.5236) 9.7189986 0.2810014
o

" "
".

" (7
3 =1, (^= 0.0169) 8.2275490 1.7724510

OTT

Log. ofTr2
, (7T

2

=9.86960) 0.9942997 9.0057003

Intensity of gravity at Paris, (g = 9.80960) 0.991 6513 9.008 3487

" " in Lat. 45, (g = 9.80604) 0.991 4937 9.008 5063

" " on Equator, (g =9.78062) 0.9903664 9.0096336

Length of seconds pendulum at Paris, (I
= 0.99392) 9.997 3515 0.002 6485

No. of seconds in a day, (86400) 4936 5137 5.063 4863

Specific Gravity of Mercury, (13.596) 1.1334112 8.8665888

Mean height of Barometer, (76c.m.) 1.8808136 8.1191864

Corresponding air pressure on ~5r.
2
, (1,033.296) 3.014 2248 6.985 7752
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ABSOLUTE WEIGHT. (See Weight.)
Absorption of gases by solids, 379.

" ?' " laws of, 381.
" "

by liquids. (See Solu-
" of liquids by solids, 363. [bility.)

Absorption-Meter, 402. Analysis of mixed

gases by, 409.

Acceleration, definition of, 23.

of gravity, 65.

Action and reaction, law of, 49.

Adhesion, 342. (And see Osmose.)
" between gases, 412.
" "

liquids, 383.
" *' and gases, 391.
"

solids, 342.
" " and gases, 379, 383.

" " "
liquids, 344.

"
phenomena of, classified, 342.

Air. (See Atmosphere.)
Air-Pump, with valves, 329.

without valves, 325.

degree of exhaustion, 327.

Air-Thermometer, 533. (See Thermoscope.)"
Regnault's, 534.

Alcoometer, Gay-Lussac's, 264.

Alloys, expansion in solidifying, 553.
"

melting-point of, 550.

Alumina, crystallization of, 120.

Analogies of Nature, 9.

Annealing, 207, 211.
" of glass, 212.

Antimony, ratio of crystalline axes of, 122.

Arago and Dulong, experiments on Mari-
otte's law, 293.

"' "
experiments on tension
of aqueous vapor, 575.

Archimedes's Law, 235.
" demonstration of, 237.
" illustration of, 236.

Arsenic, crystallization of, 120.

Arsenious Acid, crystallization of, 120.

Artesian Wells, 233, 647.

Aspirator, 325, 392.

Atmosphere, buoyancy of, 268.

dew-point of, 641.

effects of expansion of, 540.

pressure of, 266, 279.

probable limit of, 307.
relative humidity of, 640.

waves of, 286.

Atomic Theory, 110.

Atoms, size of, Boscovisch's opinion of, 110.
" " Newton's opinion of, 110.

Attraction of Earth. (See Gravity.)

62

Axes of crystals, 121, 123.
" lateral and vertical, 122.
" ratio in crystals of antimony, 122.
" " " bichromate of pot-

ash, 124. [122.
" " " carbonate of lime,

gypsum, 123. [124.
" " "

sulphate of copper,
" " " "

iron, 123.
" " "

sulphur, 123.
" " "

tin, 122.
"

similar, 125.

BABINET, formula of, 305.

Balance, accuracy and sensibility of, 102.
" centre of gravity of, how adjusted,
"

degree of sensibility of, 105. [101.
"

description of, 100.
"

hydrostatic, 248.
"

regarded as a lever, 101.
"

pendulum, 102. [94.
"

spring, indicates absolute weight,

Balloons, 270.
" ascensional force of, 271.

Barometer, Aneroid, 285.
" Bourdon's metallic, 190.
"

common, 284.
"

Fortin's, 232.
"

history of, 275.
" oscillations of, 286.
"

Regnault's, 280.
"

theory of, 278.
" used in measuring heights, 304.

"
meteorology, 287.

" various uses of, 285.

Barometrical Observations, corrected for ca-

pillarity, 284, 355.
" " corrected for tem-

perature, 284, 511.

Bevelling, 181.

Bichromate of potash, ratio of crystalline
axes of, 124.

Billiards, illustrative of elasticity, 201.

Bodies, collision of unelastic, 49.
" "

elastic, 196.

Body, definition of, 3.

Boiler. (See Steam-Boiler. )

Boiling-Point, determination of, 569.
" influenced by pressure, 566,

table of, 566. [577.
" of water, 565.

" effect of salts on, 568.
" influenced by con-

taining vessel, 568.
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Boiling-Point, use in measuring heights, 567.
Boracic Acid, how used in crystallizing, 120.

Boscovisch's opinion of atom'ic theory, 110.

Bourdon. (See Barometer and Manometer.)
Buoyancy of gases, 268.

" "
liquids, 235, 247.

Bramah's Press, 220.

Breguet's Metallic Thermometer, 504.
Britannia Bridge, expansion of, 503.

Brittleness, definition of, 205.

Brix, latent heat of vapors, 604.

Bronze, tempering of, 212.

Bunsen, absorption-meter, 402.

solution of gases in liquids, 393.
"

specific gravity of gases, 671. By
effusion, 414.

tension of condensed gases, 593.
" volume of gases, 679.

CAGNIARD DE LA. TOUR, experiments on
dense vapors, 601.

Calcite, hardness of faces of, 210.
" ratio of crystalline axes of, 122.
" rhombohedrons of, 152.

Capillarity, 346.
"

absorption of liquids by porous
solids, 363.

amount of pressure, 351.

effects of pressure, 352.

form of meniscus, 347, 349.
"

general phenomena of, 346, 354.

illustrations of, 353, 362.
" influence of temperature on, 360.
u numerical laws of, 355.
"

pressure resulting from molecu-
lar forces, 349.

"
verification of laws of, 357.

Capillary Tubes, height of liquid in, 354,
"

Plates, 357, 359. [358, 360.

Carbonate of soda, laws of its solubility, 376.
" " lime. (See Calcite.)

Carbonic Acid, condensation of, 596, 609.

Cathetometer, 185, 281.

Cements, 343.

Centre of Gravity, properties of, 60.
" '

position of, 61.
"

oscillation, definition and proper-
ties of, 70.

"
pressure, 220, 240.

Centigrade Thermometric Scale, 436.

Centrifugal force, 79.
" at equator, 82.

" " measure of, 80.
"

modifying gravity, 81.

Centripetal force, 78.

Charcoal, absorption of gases by, 380.

Chemical Change, distinguished from solu-

tion, 371.
"

Physics, definition of, 6.

Chemistry, how distinguished from Physics,
" the three questions of, 5. [5.

Chimney, theory of. 541.

Cleavage, laws of, 205.
"

planes of, 119, 204.

Clock, description of, 72.

Coefficient of absorption of gases. 392.
"

compressibility of liquids, 217.
" conduction of heat, 659.

" " cubic expansion, 492.
"

elasticity, 186.
" "

expansion of gases, 528.

Coefficient of expansion of water, 527.
" of mercury, 510,514.

" " linear expansion, 491.

Cohesion, 119, 342.

Coinage, 208.

Collision of elastic bodies, 196.
" " unelastic bodies, 49.

Column. (See Mercury Column.)
Combustion, heat from, 649.

Components and Resultants, 38.

Compressibility of gases, 115, 273, 648.
" " laws of, 2^7.
* " limit to, 301.
" "

(SeeMariotte'sLaw.)
'' of liquids, 215.
" of matter, illustrations of,

Condensation of gases, 592. [113.
" "

apparatus of Katte-

rer, 598.
" "

apparatus of Thilo-

rier, 596.
"

by cold, 593.
"

by pressure, 594.
'* "

Faraday's experi-
ments on, 599.

" "
Faraday's method,

595. [648.
" " heat resulting from,

Condensed Gases, boiling-points of, 592,
"

freezing-points of, 599.
u latent heat of, 609. [610.

low temperature from,
maximum tension of, 593,
table of, 595. [595.

Condensing-Pump, 333.

Conduction of Heat, coefficients of, 659.
" " illustrations of, 655.
" " in crystals, 656.
" " in gases, 657.
" " " Grove's experi-

ments on, 657.
" " in liquids, 657.
" " *

Despretz's ex-

periments on, 657.
" " in liquids, Eumford's

experiments on, 657.
" " in solids, conductors

good and bad, 654.
" " in solids, experiments

of Wiedmann and

Franz, 656.
" " in solids, Ingenhousz's

apparatus, 655.
" " in solids, laws of, 655.
" " in various metals, 656.

Co-ordinates, definition of, 20

Copper, tempering of, 212.

Cornish Boiler, 616.

Coulomb, laws of elasticity, 192.

Couples, definition of mechanical, 47.

Cryophorus, 609.

Crystal, axes of, 121.

centre of, 124.

definition of, 121.

parameters of planes of, 124.

planes of, 121.

similar axes of, 125.
"

planes of, 126.

size of, 121.

(See Form.)

Crystalline form, 119.
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Crystalline form, identify of, defined, 183.
"

structure, 119.

Crystallization, process of, 119.

water of, 372.

Crystallography, 119.

terms of, 121.

Crystals, cleavage of, lly, 204.
" conduction of heat in, 656.
" determination of, 175.
"

expansion of, 498.
"

groups of, 173.
"

irregularities of, 170.
" models of, 132.
" modifications of, 131, 175.

" laws governing,"
simple and compound, 129. [132."
symbols of, 128.

"
systems of, 121, 175.

"
twin, 173.

"
(See Form.)

DALTON'S Apparatus for tension of vapors,
572.

"
Laws, 638.

Daniell's Hygrometer, 643.

Densimeter,' 252.

Density, definition of, 18. (See Mass.;" "

how related to weight, 91.

Despretz, conduction of heat in liquids, 657.

expansion of water. 523, 626, 549.
"

experiments on Mariotte's Law,
291.

Dew, theory of, 653.

Diffusion bottles, 419.
" tube of Graham, 420.
" of gases, 419.

" Dalton's theory of, 422.
"

illustrations of, 423.
" of liquids, 383. [384." Graham's experiments on,"

illustrations of, 384.
" " laws of, 385.
" "

(See Osmose).
Dimorphism, 184.

Distillation, process of, 588.

Dividing engine, 443.

Divisibility of matter. (See Matter.)
Ductility, 205.

" order of, 207.

Dulong and Petit, experiments on expansion
of mercury, 508, 514.

"
specific heat of gases, 483, 489.

"
(See Arago.)

Dynamics, definition of, 34.

EARTH, centre of gravity of, 84.
"

eccentricity of, 83.
"

origin of form of, 85.
"

spheroidal figure of, 83.

Effusion of gases, 412. [413." " "
experiments of Graham,

" law of, 414.
" " " use in determining Sp.

Gr.. 414.
Elastic bodies, collision of, 196.

Elasticity, coefficient of, 186.

definition of, 115.

limits of, 115, 193.

limited and unlimited, 115.
" of compression, 187.
" "

crystals, 195.

Elasticity of flexxire, 187.
" " "

applications of, 189.
" "

liquids, 115, 215.
" "

solids, 185.
" "

tension, laws of, 185.
"

torsion, 191.
" " "

applications of, 193.
" laws of, 192.
"

perfect and imperfect, 115.
"

varieties of, 115.

Elements, chemical definition of, 3.

Engine, dividing, 443.
"

steam, 615 et seq.

Equilibrium, mechanical, definition of, 34.
of floating bodies, 242.

of liquids, 228. [62.

stable, unstable, and neutral,

Expansion, coefficient of, 491.
" force of, 499.
"

by heat, 430.
" " "

cubic, 431, 492.
" " "

linear, 431, 491.
" heat absorbed in, 475, 480.
" of gases, 528.
" " "

expansion of air, 540.
" " "

air-thermometer, 533.
" " "

air-pyrometer, 539.
" " " coefficients of, 628.
" " "

general laws of, 532.
" " " methods of determin-

ing, 530.
" "

liquids, 607.
" " " above the boiling-

point, 519.
" " " absolute and appar-

ent, 507.
" " "

change of rate with

temperature, 517.
" " "

experiments of Drion,
619.

" " "
experiments of Kopp,

516.
" " "

experiments of Pierre,
516.

" " " formula for alcohol,

ether, and oil of

turpentine, 518.
" " "

represented by curves,
518.

" "
solids, 494.

" " "
applications of, 504.

' " " determination of cubic,

495, 515. [494.
" " " determination of linear,

' " case of crystals, 498.
" " '' "

glass, 497, 498.
" " "

experiments of Kopp,
496.

" " "
experiments ofLa Place

and Lavoisier, 494.
" " " illustrations of, 500.
" " order of compressibili-

ty and expansibility,
497.

" related to fusibility,497.
" " " variation with temper-

ature, 497.
"

mercury, 508.
" coefficients of, 510.

" " " correction of barom-

eter, 511.
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Expansion of mercury, determination of ab-

solute, 508.
" " " determination of ap-

parent, 513. [510." " "
empirical formula of,

4< " " method of determin-

ing absolute, Dulong
and Petit, 508. Reg-
nault, 509.

" " " Relation between ap-
parent and absolute,
515.

" "
water, 520.

" u curve of, 521, 524.
" " " coefficient of, 527.
" " " determination of maxi-

mum density, 522.
" " "

empirical formulas for,
526.

" " "
experiments of Des-

pretz, 523.
" " "

experiments of Pliicker
and Geissler, 523.

" " "
point of maximum den-

sity, 520.
" " "

(See Maximum Density.)
Extension, definition of, 10.

44 how measured, 11.

FAHRENHEIT, thermometric scale of, 435.

Faraday, experiments on condensed gases,
595, 599.

Floating bodies, laws of, 241.

Fluidity, definition of, 215.

Force, change of point of application, 38.
" definition of mechanical, 32.
"

intensity and quantity of, 37, 53.
" laws governing direction of, 32.
"

living, 52.
" measure of, 34.
"

moving, 37. (See Momentum.)"
origin of idea of, 6.

"
synonymous with volition, 7.

" unit of, 36, 93.

Forces, centre of parallel, 48
"

centrifugal and centripetal, 77.
"

composition of, 38, 42.
" "

parallel, 43, 47.
"

decomposition of, 40.

illustration of parallel, 46.

parallelogram of, 39.
"

represented by lines, 38.
"

acting in the same direction, result-

ant of, 39.

Forces, Molecular, 117, 342. [351, 352.
" "

pressure exerted by, 349,

Form, crystalline, 119, 127.

dominant and secondary, 130.

essential and accidental, 119.

hemihedral, 128.

holohedral, 127.

principal, 143, 151, 153, 159.
"

tetartohedral, 129, 156. -

"
(See Hemihedral and Holohedral.)

Forms of crystals. Dimetric, 142. Hexago-
nal, 147. Monoclinic, 163. Monometric,
132. Triclinic, 168. Trimetric, 158.

Formulae :

Absolute expansion of mercury, 509.
"

weight, 87.

Air-thermometer, 536 - 539.

Formulae :

Air-pump, 327, 328.

Analysis of gases by absorption, 411.

Apparent expansion of mercury,
513, 514.

Apparent and absolute coefficient of

expansion, 515.

Ascensional force of balloon, 272.

Barometrical observations corrected
for temperature, 511, 512.

Capillarity, 357, 358.

Centrifugal force. 80-83.
Coefficient of expansion and specific

gravity, 496. [516.
Coefficient of expansion of solids,
Collision of elastic bodies, 196-198.

" unelastic bodies, 49-51.

Compensating pendulum, 506.

Conduction of heat, 659.

Correction of thermometric observa-

tions, 449.

Couples, 47.

Decomposition of forces, 41.

Density and weight, 91.

Dimensions of safety-valve, 620.

Effusion of gases, 415.

Elasticity of flexure, 188.

tension, 186.
"

torsion. 192.

Expansion by heat, 492, 493.
" of gases, 529.

" determination of,

Heat of fusion, 560. [531, 532.

Hydrometer, 251, 252.

Intensity of gravity, 65.
" " *

at different lati-

tudes, 77.

La Place's and Babinet's, 305.

Latent heat of steam. 607.

Mariotte's flask, 323, 324.
"

, law, 287, 288.

Mass and density, 18.

Measure of forces, 36.

Measurement of height by barome-

eter, 304, 305.

Momentum, 37.

Parallel forces, 45.

Parallelogram of forces, 40.

Pendulum, 68, 69, 73, 75, 76.

Person's law, 561, 563.

Power or quantity of a force, 53.

Pressure of atmosphere, 279.
"

liquids, 219, 227, 232.

Psychrometer, 644.

Reduction of thermometric scales,

436, 446.
" of volumes of gases to

standard pressure, 314.
" ofvolume of moist gases,

637.

Relative and absolute weight, 95. [96.

Relative specific weight and density,
Relative specific weight and relative

weight, 96.

Relative weight and mass, 95, 96.

Safety-tubes, 316, 317.

Size of thermometer-bulb, 446.

Solution of gases, 394.
" of mixed gases, 406, 407, 409.

Solubility of salts, 367.

Specific gravity, 247 -
249, 257.
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Formulae :

Specific gravity and mass, 92.

Sp. Gr. and specific weight, 92.
" and weight, 91.
" of gases, 673.
" of liquids corrected for tem-

perature, 665.
" of solids corrected for tem-

perature, 663.
" of vapors, 675, 676.
" referred to air and water, 93.
"

weight and volume, 92.

Specific heat of gases under constant

volume, 481.
" " method of mixture, 468.

Specific weight, 90.

Syphon, 321. [586.
Tension and temperature of vapors,

" " volume of vapors, 588.
" of aqueous vapor, 581.

Uniform motions, 23.

Uniformly accelerated motion, 24, 25.
" retarded motions, 26, 2-7.

Variation of gravity with height, 86.

Velocity of sound, 482.

Volume of alcohol, etc., 518.
" of gases, 681.
" of mercury, 511.
" of water, 527. [670.

Weight of gas, reduced for latitude,
" of one c

~* ofgas, 668, 669.
" of bodies in air, 269.

Woolf 's apparatus, 319, 320.

Franklin, on absorption of heat, 653.

French System of Weights, 89.

Freezing mixtures, 556.
"

point, 548.
" " of water, 549.
" " " effect of salts on, 549.

Friction, heat of, 648.

Fulcrum, 97.

Furnace, hot-air, 542.

Fusion of solids, 548, 553. (See Melting and

Freezing Points, and Heat of Fusion.)
Fusion of solids, vitreous, 548. [557.

" "
change of volume attending,

GAMLEO, proposition of composition of ve-

locities, 28.

Gallon, imperial, 14.

Gases, absorption of, by solids, 379.
"

compressibility of, 115, 273, 287.
" condensation of. (See Condensation.)
" conduction of heat by, 657.
" definition of quantity of, 394.
" direction of pressure of, 265.
" effusion of. (See Effusion.) [115.
"

elasticity of, perfect and unlimited,
"

expansion of. (See Expansion.)
"

fluidity of, 263.
" formation of vapor in, 636.
" how distinguished from liquids, 273.
"

vapors, 585.
" mechanical condition of, 263.

method of weighing, 270.
"

passage of, through membranes, 425.
"

permanent elasticity of, 274.
"

pressure due to gravity, 265.
"

solubility of. (See Solubility.)
"

specific gravity of, 93, 273, 670.
" tension of, definition, 263.

62*

Gases, transmission of pressure, 264.
"

transpiration of, 417.
" volume of, 679. (See Weighing and

Measuring.)" how reduced to standard

pressure, 313.
"

moist, how reduced, 637.
"

weight of, 270, 667.

Gasometers, 314.

Gav-Lussac, solubility of sulphate of soda,
374, 375.

Geometry, subject-matter of, 11.

Glass, annealing of, 212.
"

expansion of, at different tempera-
tures, 498, 499.

Glauber Salts. (See Sulphate of Soda.)
Gold-Leaf, illustrates divisibility of matter,

manufacture of, 206. [109.
Goniometer, Application, 177.

"
Reflective, 178.

"
Babinet's, 183.

Haidinger's, 183.

Mitscherlich's, 182.

Rudberg's, 182.

Suckow's, 183.

Wollaston's, 179.

Goniometry, Mill r's method of, 181. [384.
Graham's experiments on diffusion of liquids," of gases, 420.

effusion, 413.

osmose, 389.

transpiration, 417.

Grailich and Pekarek's Sckrometer, 209.

Gramme, definition of, 89.

Grassi, on compressibility of liquids, 217.

Gravitation, law of, 86.

Gravity, acceleration of, 65.
" Borda's and Cassini's experiments

on, 74.
" causes of variation of earth's, 77.
" centre of, 60.
" definition of, 56.
" direction of earth's, 67.
"

intensity of, 64.
" " how measured, 66.
" "

represented by g, 65.

irregularities of, 77.

measured by pendulum, 73.

point of application of earth's, 58.

proportional to quantity of matter,
resultant of forces of, 59. [65.

" value of, at different latitudes, 76.
" varies with distance, 85.
"

(See Specific Gravity.)

Gypsum, form of crystals of, 174.
" ratio of crystalline axes of, 123.

HALLSTROM, expansion of water, 523.

Hardness, definition of, 208.
" how measured, 208.
" of crystals, 209.
" scale of, 209.
"

sclerometer, 209.

Heat, a repulsive force, 118.
" absorbed by expansion, 475, 480.
" an expansive force, 430.

central, 647.
" definition of, 426.
" mechanical equivalent of, 484, 633.
" theories of, 426.
"

(See Conduction, Radiant, & Sources.)
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Heat of Fusion, 555.
44 "

freezing mixture, 556.
" " how determined, 559.
" " Person's law, 560.

Hemihedral Forms, 128, 135, 138, 145, 149,

Hemi-octahedrons, 163. [161, 167.

Hemi-prisms, 165.

Hemitropes, 174.

Holohedral Form, 127, 133, 142, 147, 158, 163.

Hopkins, effect of pressure on melting-point,

Hydrometer, 249. [550."
Baume"'s, 253.

"
Fahrenheit's, 251.

Nicholson's, 250.

Eousseau's, 255.

Hydrostatic Balance, 248.
"

Paradox, 228.
"

Press, 220.

Hygrometer, 639.
"

Daniell's, 643.
44

Deluc's, 645.
44

Hair, 645.
"

Regnault's, 642.
"

Saussure's, 645.
"

Wet-bulb, 644.

Hygrometry, 636.
" Dalton's laws, 638.
"

dew-point, 641.

drying apparatus, 646.
14 formation ofmixed vapors, 638.

" of vapor in air, 636.

relative humidity of air, 640.

tension of vapor in air, 636.
" volume of moist gases, how re-

duced, 637.

Hypothesis, how related to law, 7.

IMPENETRABILITY, definition of, 19.

India-rubber, adhesion of, 343.

used for joints, 343.

Inertia, definition of, 32.

Iodine, crystallization of, 120.

JOULE, mechanical equivalent of heat, 484,
633.

KATER, experiments on the pendulum, 12,71.

Kilogramme, origin and history of, 15.

Klino-diagonal axis, 123, 164.

Kopp, change of volume in fusion, 551.
" cubic expansion, 496.
44

expansion of liquids, 516.
" volume of water at different tempera-

tures, 526.

LA PLACE, formula of, 305.
"

velocity of sound, 482.

Latent Heat. ( See Heat of Fusion.)
Latent Heat of Vapor, 603.

" "
application in case of

steam, 611.
" " Brix's experiments on,
" "

cryophorus, 609. [604.
" " determination of, 603.
" " illustrations of, 608.
" " in equal volumes, 606.
" " in steam at different

temperatures, 606.
" " Leslie's experiment on,

609.
" "

porous water-jars, 608.

Latent Heat of Vapor, Regnault's experi-
ments on, 607.

" solid carbonic acid, 610.
"

spheroidal condition of

liquids, 611.
" Watt's theory, 606.

Latitude, variation of gravity with, 76.
" u of Aveight of gases with,

670.

Lavoisier and Laplace, measurement of lin-

ear expansion, 494.

Law, criterion of its validity, 8.

Dalton's, 638.

definition of, 7.

Mariotte's, 287.

nature of a physical, 7, 300.

of gravitation, 86.

Person's, 560.

relation of, to Divine Mind, 7.

Watt's, 606.

Laws of capillarity, 355.
"

cleavage, 205.
"

crystalline symmetry, 132.
" diffusion of gases, 420.
" "

liquids, 383.
"

Dulong, 484, 489.
"

elasticity, 186.
"

liquid equilibrium, 229.
"

pressure, 227.
" solution of gases, 392.
"

torsion, 192.
"

transpiration, 417.

Length, units of, English, 11. French, 14.

Leslie's experiment, 609.

Lever, arms of, 98.
" conditions of equilibrium of, 98.
44

general theory of, 97.
" three kinds of, 97.

Leverage, definition of, 100.

Light, plane of polarization rotated by crys-
tals, 162, 167.

Liquid state, 117.

Liquids, adhesion to solids. (See Solids.)
" centre of pressure of, 220.
44 characteristic properties of, 215.
"

compressibility of, 114, 216.
" diffusion of, 383. (See Diffusion.)
" direction of pressure of, 219.
"

elasticity of, 115, 215.
"

expansion of. (See Expansion.)" how distinguished from gases. 273.
" laws of buoyancy of, 235 - 247.
" "

equilibrium of, 228-232.
" "

pressure of, 224-227.
14 mechanical condition of, 215.
"

pressure due to gravity, 223.
"

principle of Archimedes, 235.
"

specific gravity of, 247 et seq., 665.
"

spheroidal condition of, 361.
" transmission of pressure, 218.
" volume of, 666. (See Weighing and
"

Measuring.)
Litre, 17.

Locomotive Boiler, 618.
"

Engine, 628.

Loewel's experiments on solubility ofcarbo-

nate of soda, 376.
" " on solubility of sul-

phate of soda, 374.
44 "on supersaturated so-

lutions, 378.
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MAKRO-UIAGONAL AXES, 123.

Malleability, 205.

order of, 207. [208.
" variations with temperature,

Manometer, Regnault's, 308.
"

metallic, of Bourdon, 189.
" with confined air, 310.

Marcet's Globe, 574.

Mariotte's Flask, 323.
"

Law, application of, 301.
" " deviations from, 290, 299, 532,

586.602.
" "

experiments on, Arago and

Dulong, 293.
" "

Despretz, 291.
" " "

Natterer, 299.
" " "

Oersted, 290.
" " "

Regnault, 295.
" "

history of, 290.
" illustrations of, 288.

" " relation to expansion of gas-
es, 532, 586.

" " statement of, 287.

Mass, definition of, 18
" relation to density, 18.
" unit of, 91.

Matter, compressibility of, 113.
" definition of, 3.
"

divisibility of, an accidental prop-

erty, 109.
" essential nature of, not understood, 3.
" " and accidental properties

of, 10.
"

expansibility of, 113.
"

general and specific properties of, 3.
" illustrations of its porosity, 110.
"

physical and chemical properties, 5.

Maximum density of water, 520.
" " ' " effects of salts

on, 526.
" " "

history of dis-

covery of, 622.
" " "

important bear-

ings of, 525.

Measure, English system of, 11. (See Yard.)
" French system of, its history, 14.

Measuring. (See Weighing and Measuring.)
Mechanics, subject-matter of, 32.

Melting-Point, '548.

effect of pressure on, 550.
" of alloys, determination of,

Meniscus, form of, 347, 349. [554.
Mercurial Thermometers, 432.

"
arbitrary scale, 446.

calibration of, 443.
"

change of zero-point,

" "^ comparison of dif-

ferent, 439.
" " construction of stan-

dard, 442.
" " defects of, 436.
" "

filling of, 433.

graduation of, 433.

observations, how
corrected, 448.

" " size of bulb of, 445.

Mercury column, how measured, 280.
14 "

expansion of. (See Ex-
pansion.)

Metacentre, definition of, 244.

Metals, crystallization of, 120.

Metre, an arbitrary measure, 16.
"

origin and history of, 14.
" subdivisions of, 17.

Mitscherlich, expansion of crystals, 498.

goniometer, 182.

Modifications of crystals, 131.
" laws of, 132.

Mohs's scale of hardness, 209.

Molecular forces, two classes of, 117. (See
Forces.)

Moment, definition of, 100.

Momentum, definition of, 37.

Motion, a relative term, 21.
" an essential property of matter, 21.
"

compound, 27.
"

curvilinear, how resulting, 29.
"

origin of idea of, 21.
"

parallelogram of, 27.
"

possible in several directions at once,
"

uniform, and varying, 23. [22.
" uniformly accelerated, 23.
" " "

retarded, 26.

[598.

NATTERER, apparatus for condensing gases,
"

experiments on compressibility
of gases, 299.

Newton, discovery of law of gravitation, 87.
" formula for velocity of sound, 482.
"

opinion on atomic theory, 110.

ORTHO-DIAGONAL Axis, 123.

Osmometer, 387.

Osmose, 387.
"

explanation of, 388.
" Graham's experiments on, 389.
" how allied to chemical affinity, 391.

PARAMETERS of crystalline planes, 124.

Pendulum, amplitude of oscillation, 68.

BessePs experiments on, 76.
" Borda's and Cassini's experi-

ments on, 74, 76.
" centre of oscillation of, 70.
" definition of, 66.
" formula of, 68, 69.
" Harrison's gridiron, 505.

how affected by the air, 75.

isochronism of, 68.
" Rater's experiments on, 12, 71.

laws of oscillation of, 69.
" Martin's compensation, 506.
" measure of force of gravity, 73.

" of time, 71.
"

simple and compound, 66, 69.
"

theory of, 67.
" virtual length of, 70.

Physical changes, how distinguished from

chemical, 4.
"

properties, how distinguished from

chemical, 5.

Physics, how distinguished from Chemistry,
Planes of cleavage, 119. [5.

"
similar, 126, 175.

"
symbols of crystalline, 128.

" terminal and basal, 169.

Plumb-Line, use of, 57.

Pneumatic Trough, 311, 680.

Polyhedron, 121.

Polymorphism, 184.

Pores, size of, Herschel's opinion, 113.
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Porosity, 110.
" Florentine experiments on, 112.

illustrations of, 111.
"

implies compressibility, 113.

Position of a body, how defined, 20.
"

origin of idea of, 20.

Pound, Troy and Avoirdupois, 90.
" United States standard, 90.

Power of a force, 37, 52.

Pressure of the atmosphere, 266.
" measured by ba-

rometer, 279.

RADIANT HEAT, 651.
"

absorption of, 652.
"

analogous to light, 651.

emission of, 653. [653.
Franklin's experiments,"
freezing water by radia-

tion, 654.
"

hot-beds, 654.
" laws of, 651.

phenomena of dew, 653.
" radiation of cold, 651.
" reflection of, 652.
" transmission through me-

dia, 652.

Refrigerator, 543.

Regnault, comparison of thermometers, 439.
" determination of tension of va-

pors, 575. [295."
experiments on Mariotte's law," " on specific heat, 466,

[467,469,471,474,476.
hygrometer, 642.

hygrometry, 644, 645.

latent heat of aqueous vapor, 607.

method of weighing gases, 270.

specific gravity of gases, 667.
" " of vapors, 676.

"
weight of gases, 667.

Relative Weight. (See Weight.)"
specific weight, 96.

Rest, a relative term, 21.

Rhombohedron, 149.

Rolling-Mill, 206.

Rumford, conduction of heat in liquids, 657.
" heat of friction, 648.

Rupert's Drops, 212.

Rupture, resistance to, 201.
" law of, 202.

SAFETY-TUBES, theory of, 315.
"

valve, 619.

Savart, elasticity of crystals, 196.

Scalenohedron, 153.

Sclerometer, 209.

Section, principal, 151, 159.

Set, definition of, 116, 194.

Silliman, diffusion apparatus, 423.
Similar axes, 125.

"
edges, 181.

"
planes, 126, 175.

"
solid angles, 181.

Siphon, theory of, 320.

Solid state, 117.

Solids, absorption of liquids by porous, 363.

of gases by, 379.

adhesion between, 342.
"

to liquids, Gay-Lussac's ex-

periments, 345.

Solids, characteristic properties of, 119.
"

compressibility of, 113.
" conduction of'heat in, 655.
"

elasticity of, imperfect and limited," fusion of. (See Fusion.) [116."
porosity of, 110.

"
specific gravity of, 91, 247, 662.

" volume of, 664.
"

weight of, 87, 100, 661. (See Weigh-
ing and Measuring.)

Solubility of carbonate of soda, 376, 377.
" of sulphate of soda, 372 - 375.
" of gases, causes of variation, 398.
" " coefficient of absorption,

392.
" " determination of coeffi-

cient, 398.
" "

expression by empirical
formulae, 393.

" mixed gases, 405. [394." variation with pressure," " variation with tempera-
ture, 393.

" "
(See Absorption-Meter.)

" of solids, curves of, 367.
" determination of, 369.

" "
empirical formulas of,
366.

" " uninfluenced by fusion,
369.

" " variation with tempera-
ture, 365.

Solution, how distinguished from chemical

change, 371.
" of gases, 392.
" of solids in liquids, 365.
"

supersaturated, 376.

Sources of Heat, 647.
" central heat, 647.

" " calculations of Fourier, 647.
" "

chemical, 649.
" "

condensation, 648.
" "

friction, 648.
" "

percussion, 648.
" "

sun, 647.

Sp. Gravity, 91, 247.
"

bottle, 247.
" methods of determining, 247-

257.
" of gases, 93, 273. [414.
" " determined by effusion,
" " referred to air, 93.
" relation to specific weight in

French system, 92.

Sp. Heat, 464.
" of gases, 476, 478.
" under constant pressure,

477.
" " under constant pressure,

does not vary with tem-

perature or pressure, 477.
" " under constant volume,

480.
" " under constant volume,

determination from ve-

locity of sound, 482.
" " under constant volume,

Dulong's experiments,
483.

" " under constant volume,
Duloug's laws, 484, 489.
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Sp. Heat of platinum, and determination of

nigh temperatures, 473.
" of solids and liquids, 466.
" connected with their chem-

ical equivalents, 471.

determination of, 466, 467.
"

greater in liquids than in

solids, 475.

greatest in water, 476.
" of the elements, 466.
" unit of heat, 464, 472.

Sp. Weight, 90.
"

relative, 96.

Spheroidal condition of liquids, 361, 611.
" "

Boutigny's experi-
ments, 613.

" illustrations of, 614.
" "

temperature in, 612.
" "

freezing of water in, 614.

Spirit-Level, 232.

Spring-Balance, 94, 189.

Standards ofmeasure. ( See Yard and Metre.)
" of weight. (See Gramme and

Pound.)
Statics, definition of, 34.

Steam, 572. (See Vapors.)
**

application of latent heat of, 611.
"

bath, 591.
"

expansion at formation of, 603.
" latent heat of, at different tempera-

tures, 606, 632.
" " "

Regnault's results, 607.
" "

theory of Watt as to," mechanical power of, 631. [606." volume of, 631.

Steam-Boiler, 615.
"

appendages of, 618.
"

Cornish, 616.

dimensions of, 620.
"

heating surface," French form of, 617. [616.
fusible plug, 620.

locomotive, 617.

requisites of, 615.

safety-valve, 619.

Steam-Engine, 615.

condenser, 625.
"

cut-offs, 633.

fly-wheel, 623.

high-pressure, 628, 633.

locomotive, 628.

low-pressure, 621, 633.

mechanical power of, 631.

non-condensing, 628.

parallel motion, 624.
t" the eccentric, 625.

Watt's condensing, 621.

Substances, definition of, 3.

Sugar, hemihedral forms of, 168. [169.

Sulphate of copper, crystalline form of, 124,
of iron, crystalline form of, 123.

" of lime, crystalline form of, 123.

of soda, laws of solubility, 372, 375.
" osmotic equivalent of, 388.

soluble modifications of, 374." "
supersaturated solution of.

376.
" " use of, in freezing mixtures,

557.

Sulphide of hydrogen, coefficient of absorp-
tion of, 399.

Sulphur, how crystallized, 120.
"

ratio ofcrystalline axes of, 123.

Sulphurous Acid, coefficient of absorption of.

401.
" condensation of, 593.

Supersaturated Solution, 376.

Surface, units of. English, 13. French, 17.

Syphon, theory of, 320.

System, dimetric, 122, 142.

hexagonal, 122, 147.

monoclinic, 123, 163.
"

monometric, 121, 132.
"

triclinic, 123, 168.
"

trimetric, 123, 158.

Systems of crystals, 121.

TABLES:
Absorption of gases by charcoal, 380 $

by Meerschaum, plaster of Paris, and
silk, 381.

Boiling-points of condensed gases, 592.

liquids, 566.

salirline solutions, 568.

Coefficients of compressibility ofliquids,
of elasticity, 187. [217." of expansion of glass at dif-

ferent temperatures, 497.

of expansion of mercury,
510.

Comparison of different mercurial ther-

mometers. 439.

of mercurial with air-ther-

mometers, 439.

of thermometers filled with
different

liquids,
451.

Compressibility of gases by Arago and

Dulong, 294.
"

by Natterer, 299.
" "

byRegnault,296.
Conducting power of metals, by Des-

pretz, 659; by Wiedman and Franz,
656.

Determination of crystals, 176.

Diffusion of solids in solution, 385.

Dimension of steam-boilers, 621.
" of the earth, 83.

Effect of pressure on melting-point, 550.

Effusion and Diffusion of gases, 414.

Expansion of matter by heat, 431.
" in vaporization, 603.
" of gases, 528.
" of liquids, 517. [519." " above boiling-point,

Freezing-points of condensed gases, 599.

French linear measure, 17.
"

system of weights, 89.

Greatest density of vapors, 601.

Groups of equi-diffusive substances, 386.

Heat of combustion, 650.
"

fusion, 556.

Height of liquids in capillary tubes, 358,
361.

Intensity of gravity at different lati-

tudes. 76.

Latent heat of aqueous vapors, by Watt,
606 ; by Regnault, 608.

" " of vapors, 605.

Limit of elasticity, 195.

Mechanical power of steam, 631.

Melting-points, 548.
44 of alloys, 550.
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Tables:
Person's law, 562.

Pressure and specific gravity of the air

at increasing altitudes, 306.

-Scale of hardness, 209.

Solubility of carbonate of soda, 377.
" of chloride of potassium, 366.
" of gases, 393.
" of nitre, 366.
" of sulphate of soda, 375.

Sp. Heat of elements, 466.
" of equal volumes of gases, 483.
" of gases and vapors, 478.
" in solid and liquid state, 475.
" of liquids at different temper-

atures, 474.

of modifications ofcarbon, 476.
" of platinum at different tem-

peratures, 473.
" of solids at different tempera-

tures, 473.
" of water at different tempera-

tures, 472.

Temperature of liquids in spheroidal
condition, 612.

Tenacity, ductility, malleability, 207.

Tension of aqueous vapors, 671.
" of condensed gases, 593.
" " at GO, 595.
" of vapors of liquids, 583.

Tints of heated steel, 211.

Transpirability of gases, 418.

Weight of gases, 668.

Tartaric Acid, nemihedral forms of, 167.

Tartrate of soda and ammonia, hemihedral
forms of, 162.

Temperature, absolute zero, 564.

definition of, 463.
" determined by specific heat of

platinum, 473.
" influence of, on solubility, 366.
" lowest observed, 452, 565.
" measured by a thermometer,

of celestial space, 564. [432.
" obtained with condensed gas-

es, 610.
" thermal equilibrium, 463.
"

true, 539.

Tempering, 211.

of bronze, 212.
" of copper, 212.
" of glass, 212.

Tenacity, 203.
" means of measuring, 202.
" order of, 207.

Tension of gases. (See Gases.)" of vapors. (See Vapors.)
Tetartohedral Forms, 129, 156.

Theory, atomic, 110.

Theories, how related to laws, 7.

Thermometer, air, 455, 534.
"

alcohol, 451.
" filled with various liquids, 451.
" fixed points of, 433.

house, 450.

maximum and minimum, 452.
"

mercurial, 432.
"

metallic, of Bre"guet, 504.
"

Negretti and Zambra's, 453.
"

Rutherford's, 452.
" scales of, 435.

Thermometer, scales of, reduction of. 436.
"

Walferdin's, 454.
"

water, 438.

weight, 513.
"

(See also Air, and Mercurial.)
Thermo-multipHer, Melloni's, 457.

Thermoscopes, Leslie's, 456.

Rumford's, 457.

Sanctorius's, 456.

Time, how measured, 22.
"

origin of the idea of, 22.
" units of, 22.

Tin, ratio of crystalline axes of, 122.

Torricelli's experiments, 275.

Torsion Balance, 193.
"

elasticity of, 191.

Transpiration of gases, laws of, 417.

Troughton, standard yard, 13.

Truncation, 131.

Twin crystals, 173.

UNIT of force, 36, 93.
"

heat, 464, 472.
"

length, 11, 14, 17.
"

mass, 91.
"

surface, 13, 17.
"

volume, 13, 17.
"

weight, 89.

VAPOR, aqueous tension of, 571.
" " " Dalton's appara-

tus, 572.
"

apparatus of Gay-Li;ssac, 574.
"

Regnault, 575.
"

empirical formula? for, 581.
" formation in atmosphere of gas, 636.

(And see Hygrometry.)
"

geometrical curve of, 580.
" laws governing, 580.
" Marcet's globe, 574.
"

Papin's digester, 591.
"

(See Latent Heat of Vapor.)
Vapors, expansion attending formation of,

" formation of, 570, 582. [603.
"

greatest density of, 600.
" how distinguished from gases, 585.
" maximum tension of, 584.
u smallest density of, 602.
"

specific gravity of, 674 et seq.
" tensions of, compared, 584.
"

weight of, 669.

Velocities, composition of, 28.

Velocity, definition of, 23.

Vis viva, 53.

Volume, definition of, 10.
" how estimated, 14.
" units of. English, 13. French, 17.

Volumeter, Gay-Lussac's, 252.

WASH-BOTTLE, 325.

Water, change of volume in freezing, 552.
" effect of pressure on melting-point,

550.
"

expansion of. (See Expansion.)
"

freezing-point of, 549.
" maximum density of. (See Maxi-

mum Density.)"
pump, 334. [526.

" volume of, at different temperatures,
Watt, law of, 606.

"
steam-engine of, 621.
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Weighing and Measuring, 661.

Sp. Gr. of gases, Bunsen's method,
671.

" "
Regnault's method,

670.
" of liquids, 91, 249, seq.
" " corrected for tem-

perature, 665.
" of solids, 91, 247.
" " corrected for tem-

perature, 662.
" of vapors, 674. seq. [678.

" Deville's method,
" " Dumas's method,

675.
" "

Gay-Lussac's meth-

od, 678.
" *

Regnault's method,
676.

Volume of gases, 679.
" of liquids, 666.
" of solids, 664.

Weight of gases, 270,667.
" of solids, 87, 100, 661.
" of vapors, 669.

Weight, absolute, 87.
" " distinct from mass, 88.
" " liable to variation, 89.
" " measure of quantity of

matter, 88.
" of a body in air, 268.

relative, 94.

a constant quantity, 95.
" measured by the balance,

94.
"

specific, 90.
" of a unit of mass, 91.

Weights described, 94.

Wells's theory of dew, 653.

Welter's tube, 317.

Wertheim, experiments on elasticity. 187.

Wire-Mill, 205.

Woolf 's Bottles, 318.

YARD, act of Parliament concerning, 11.
" American standard, 13.
"

origin and history of, 11.
"

standard, destroyed by fire, 12.

THE END.
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