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PREFACE.

The following book, which embodies the results of my own

experience in teaching the Calculus at Cornell and Harvai-d

Universities, is intended for a text-book, and not for an

exhaustive treatise-.

Its peculiarities are the rigorous use of the Doctrine of

Limits as a foundation of the subject, and as preliminary

to the adoption of the more direct and practically convenient

infinitesimal notation and nomenclature ; the early introduc-

tion of a few simple formulas and methods for integrating

;

a rather elaborate treatment of the use of infinitesimals in

pure geometry ; and the attempt to excite and keep up the

interest of the student by bringing in throughout the whole

book, and not merel}' at the end, numerous applications to

practical problems in geometry and mechanics.

I am greatly indebted to Prof. J. M. Peirce, from whose

lectures I have derived many suggestions, and to the works

of Benjamin Peu'ce, Todhunter, Duhamel, and Bertrand, upon

which I have drawn freely.

W. E. BYERLY.

Cambridge, October, 1879.
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DIFFEEENTIAL CALCULUS.

CHAPTER I.

INTBODUCTIOir.

1. A variable quantity, or simply a variable, is a quantity

which, under the conditions of the problem into which it enters,

is susceptible of an indefinite number of values.

A constant quantity, or simpl}' a constant, is a quantity which

has a fixed value.

For example ; in the equation of a circle

aj^+ ?/2= a^,

X and y are variables, as they stand for the coordinates of any

point of the circle, and so may have any values consistent with

that fact ; that is, they maj' have an unlimited number of different

values ; a is a constant, since it represents the radius of the

circle, and has therefore a fixed value. Of course, any given

number is a constant.

2. When one quantity depends upon another for its value, so

that a change in the second produces a change in the first, the

first is called a function of the second. If, as is generally' the

case, the two quantities in question are so related that a change

in either produces a change in the other, either may be regarded

as a function of the other. The one of which the other is

considered a function is called the independent variable , or

simply the variable.
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For example ; if x and y are two variables connected by the

relation

y = x^,

we ma}' regard x as the independent variable, and then y will

be a function of x, for any change in x produces a corresponding

change in its square ; or we ma}* regard y as the independent

variable, and then x will be a function of y, and from that point

of view the relation would be more naturally written

x=y/y.

Again, suppose the relation is

y = sin a;,

we maj- either regard y as a function of a;, in which case we

should naturall}' write the relation as above, or we may regard x

as a function of y, and then we should more naturally exi)ress

the same relation by
a; = sin~^2^,

i.e., X is equal to the angle whose sine is y.

3. Functional dependence is usually indicated by the letters

/, F, and tp. Thus we may indicate that y is a function of x

hy writing

y = /«, or y = Fx, ovy=^x;

and in each of these expressions the letter /, F, or <f is not an

algebraic quantity', but a mere symbol or abbre^•iation for the

won! function, and the equation is precisely equivalent to the

sentence, y depends upon x for its value, so that a change in the

value of X will necessarily produce a change iii tJie valvs of y.

4. Tlie difference between anj' two values of a variable is

called an increment of the variable, since it may be regarded as

the amount that must be added to the first value to produce the

second. An increment is denoted b}' writing the letter J before

tlie variable in question. Thus the difference between two val-

ues of a variable x would be written Jx, J being merely a s^-m-
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bol for the word increment^ and the expression Ja; representing

a single quantity. It is to be noted that as an increment is a

diffei'ence, it may be either positive or negative.

5. If a variable which changes its value according to some

law can he made to approach some fixed, constant value as

nearly as toe please, but can never become equal to it, the con-

stant is called the limit of the variable under the circumstances

in question.

6. For example ; the limit of -, as n increases indefinitely, is
n

zero : for by making n suflSciently great we can evidently de-

crease - at pleasure, but we can never make it absolutely zero.
n

The sum of n terms of the geometrical profession 1, ^, i, i,

&c., is a variable that changes as n changes, and if n is in-

creased at pleasure, the sum will have 2 for its limit ; for, by the

formula for the stun of a geometrical progression,

ar" — a
s = .

r - 1

-1-1 1-i.
2» 2"

In this case, s =
i-1 i
2 2

1
B}' increasing n, — can be made as small as we please, but can-

not become absolutely zero ; the numerator can then be made to

approach the value 1 as nearly as we please, and the limit of the

value of the fraction is obviously 2.

We say, then, that the limit of the sum of n terms of the pro-

gression 1, ^, ;J-,
|-, &c., as n increases indefinitely, is 2.

In both of these examples the variable increases towards its

limit, but remains always less than its limit. This, however, is

not alwa3-s the case. The variable may decrease towards its

limit remaining always gi-eater than the limit, or in approach-

ing its limit, it may be sometimes greater and sometimes less
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than the limit. Take, for example, the sum of n terms of the

I)rogression 1, — ^, \-, — ^i tV^ "^c., where the ratio is — ^.

Here the limit of the sum as n increases indefinitely^ is f . Let

n start with the value 1 and increase ; when

71 = 1, s = l,

and is greater than the limit f ; when

n=2, s = J,

and is less than |, but is nearer § than 1 was ; when

w = 3, s = f,

and is greater than f ; when

w = 4, s = |,

and is less than f ; and as n increases, the values of s are alter-

nately greater and less than the limit f , but each value of s is

nearer f than the value before it.

7. It follows immediately' from the definition of a limit, that the

difference between a variable and its limit is itself a variable

which has zero for its limit, and in order to prove that a given

constant is the limit of a particular variable, it will always suf-

fice to show that the difference between the two has the limit

zero.

For example ; it is shown in elementary geometry that the

difference between the area of an}' circle and the area of the

inscribed or circumscribed regular polj'gon can be made as small

as we please by increasing the number of sides of the polygon,

and this difference CAidently can never become absolutel}- zero.

The area of a circle is then the limit of the area of the regular

inscribed or circumscribed polygon as the number of sides of the

lx)lygon is indefinitely increased.

It is also shown in geometrj-, that the difference between the

length of the circumference of a circle and the length of the

perimeter of the regular inscribed or circumscribed polygon can
be decreased indefinitely by increasing at pleasure the number
of sides of the polygon, and this difference e\'idently can never
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become zero. The length of the circumference of a circle is

then the limit of the length of the perimeter of the regular in-

scribed or cb'cumseribed pol3gon as the number of sides of the

latter is indefinitely increased.

8. The fundamental proposition in the theory of limits is the

following

Theorem.— Iftivo variables are so related that as they change

they keep always equal to each other, and each approaches a limits

their limits are absolutely equal.

For two variables so related that thej* are alwaj'S equal form

but a single varying value, as at any instant of their change

they are by hj-pothesis absolutely the same. A single varying

value cannot be made to approach at the same time two different

constant values as nearly' as we please ; for, if it could, it could

eventuall}' be made to assume a value between the two constants ;

and, after that, in approaching one it would recede from the

other.

9. As an example of the use of this principle, let us prove

that the area of a circle is one-half the product of the length of

its radius by the length of its circumference.

Circumscribe about the circle any regular pol3gon, and join its

vertices with the centre of the circle, thus divid-

ing it into a set of triangles, each ha^^ng for its

base a side of the pohgon, and for its altitude

the radius of the circle. The area of each

tiiangle is one-half the product of its base b}' the

radius. The sum of these areas, or the area of

the polj'gon, is one-half the length of the radius

by the sum of the lengths of the sides, that is, by the length

of the perimeter of the pohgon. If A' is the area, and P the

perimeter of the polygon, and B the radius of the circle, we

have

A'=iRP;

a relation that holds, no matter what the number of sides of
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the pohgon. A' and ^RP evidentlj- change as we change the

number of sides of the polygon ; thej- are then two variables so

related that, as thej' change, thej' keep always equal to each

other. As the number of sides of the polygon is indefinitely

increased. A' has the area of the circle as its limit ; P has the

circumference of the circle as its limit. Let A be the area and

C the circumference of the cii'de ; then the

limit A'=A,

and the limit ^BP=^BC.

By the Theorem of Limits these limits must be absolutely equal

;

.•. A = ^EC. Q.E.D.

10. It is of the utmost importance that the student should

have a perfectly clear idea of a limit, as it is b}- the aid of this

idea that many of the fundamental conceptions of mechanics

and geometrj' can be most clearly realized in thought.

11. Let us consider briefly the subject of the velocity of a

mo\-ing body.

The mean velocity of a mo\-ing bod3-, during anj' period of

time considered, is the quotient obtained by dividing the dis-

tance traversed b}' the body in the given period bj- the length

of the period, the distance being expressed in terms of a unit

of length, and the length of the period in terms of some unit of

time.

If, for example, a bod}- travels 60 feet in 3 seconds, its mean
velocity during that i)eriod is said to be 4f , or 20 ; and the

bo<ly is said to move at the mean rate of 20 feet per second.

The velocit}' of a moving body is unifonn when its mean ve-

locity is the same whatever the length of the ijeriod considered.

The actual velocity of a moving bodj' at an}' instant, is the

limit which the bod^-'s mean velocity during the period imme-
diately succeeding the instant in question approaches as the

length of the period is indefinitely decreased. In the case of
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imiform velocity-, the actual velocity at any instant is obviously

tlie same as the actual velocity at any other instant.

If the actual velocity of a moving body is continually changing,

the body is said to move with a variable velocity.

12. If the law governing the motion of a moving bod}- can

be formulated so as to express the distance traversed by the

body in any given time as a function of the time, we can indicate

the actual velocity' at any instant ver}' simply hy the aid of the

increment notation already explained. Represent the distance

b}' s and the time by t. Then we have

Suppose we want to find the actual velocity at the end of ^o

seconds. Let M be any arbitrary period immediately succeeding

the end of Iq seconds (it can fairly be considered an increment

as we really increase the time during which the body is sup-

posed to have moved by At seconds) , and let As be the distance

traversed in that period. Then, by definition, the mean velocit}'

As
during the period At is — , and the actual velocity desired is the

limit approached by this ratio as At approaches zero. We shall

indicate this by

limit V^
At^0\_Aty

which is to be read "the limit of Js divided by At^ as At ap-

proaches zero" ; the sign = standing for the word approaches.

13. Take a numerical example. In the case of a body falling

freely in a vacuum near the surface of the earth, the relation

connecting the distance fallen with the time is nearly

s = lGt%

s being expressed in feet and t in seconds ; required, the actual

velocity of a falling body at the end of tg seconds. Let At seconds

be an arbitrary period immediately after the end of ^ seconds,
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then in t^ + Jt seconds

the body would faU 16 (io + ^O* ^eet,

or 16<o'+ 32«o^<+16(JO* feet.

In to seconds it falls 16 1^^ feet, so that in the period M in question,

it would faU 16t^' + S2toM+16 {At)'- 16 ^o' feet,

or d2toM+lQ{My feet,

which must therefore be As. K Vq be the required actual velocity,

and obviously
Jf==0 'At

~ ^^'o*

Hence Vo= 32 to,

the result required ; and in general, the velocity v at the end of t

seconds is

v = S2t.

14. Let us now consider a geometrical problem: To find the

direction of the tangent at anj- point of a given curve.

The tangent to a cur\e, at anj* given point, is the line with

which the secant through the given point and any second point

of the cune, tends to coincide as the second point is brought

indefinitely near the first. In other words, its position is the

limitiug position of the secant line as the second jwiiU of inter-

section approaches the Jirst, i.e., a position that the secant line

can be made to approach as nearly as we please, but cannot

actually assume.

15. Suppose we have the equation of a curve in rectangular

coordinates, and wish to find the angle t that the tangent at a

given point (xo,y^,) of the cun'e makes with the axis of X ; that

is, what is called Uie inclination of the curve to the axis of X.
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The equation of the curve enables us to express y in terms of

«, that is, as a function of x. We have then

y=fx.

Let Xq-\-Ax

be the abscissa of any second point P of the curve, and

the corresponding ordinate. If <p is the angle which the secant

through Po and P makes with the axis of X, it is clear from the

figure that tan <p = -f-Ax

As P approaches Po, that is, as Ax decreases toward zero, 9*

e^'idently approaches r as its limit, and tan <p of course ap-

proaches indefinitely tanr. Hence, by the fundamental theo-

rem of limits (Art. 8),

tanr= limit r^l.
Jx=0 \_Ax]

16. Take a particular example. To find the inclination tq to

the axis of X, of the parabola

2/^= 2mx

at the point (ajo,yo) of the curve.

If the abscissa ofP is a^o + Ax^ its ordinate y^+ Ay must be

V[2m(xo-|-Ja;)],

as is clear from the equation of the curve, which may be written

y= y/{2mx).
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Jy must be ^/[2m (a\,+ Ja;)] - ^{2mxo)

.

Ay V[2??i (jEp +^a;)] - V(2wa\)) .

Ax~ ^x

or, multipl3ing numerator and denominator by

V[2m (cco + ^25)] + sli^rax^)

to rationalize the mmierator,

Jy 2m (a-o+ Ax) — 27na;o

Ji~ Ax\yl[2m (a;o+/la;)]+ V(2wia^o) r

a.dtan.. = ji-;t^[|]= 2m m m
2V(2ma-o) V(^"^^o) 2/0

At any point {x,y) of the parabola we should have

, m
tan T=

—

At the extremity of the latus rectum, i.e., at the point ^— , m
j,

, m' -

tan T =—= 1

,

m

and r= 45°,

a famiUar property of the parabola.

17. Each of the problems we iiave just considered has re-

quired for its solution the investigation of the Umit approached

by the ratio of corresponding increments of a function and of

the varial)le on which it depends, as the increment of the inde-

jyendent variable approaches zero. Such a limit is called a de-

rivative, or a differential coefficient, and the study of its form

and properties is the fundamental object of the Differential Cal-

cuius.
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CHAPTER II.

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS.

^8. If ?/ is a function of x, the limit of the ratio of an incre'

ment of y to the corresponding increment of x, as the increment

ofK approaches zero, is called the derivative of y ivith respect to

X, and is indicated by D^y, D^ being merel}- an abbreviation for

derivative with respect to x,* For an}' particular value of x, this

limit, as we shall see, will, in general, have a perfectly definite

value ; but it will change in value as x changes ; that is, the

derivative mil, in general, be a new function of x.

Since our definition of derivative requires that y should be a

function of x, that is, should change when x changes, it follows

that a constant can have no derivative ; and if we attempt to

find the derivative of a constant by the method which we should

use if it were a function of x, we shall be led to this same con-

clusion. Let a be any constant ; then the increment produced

in a, by gi^'ing x any increment, is absolutely ; the ratio of

this increment to the increment of x must then be ; and as this

ratio is alwajs 0, its limit, when we suppose the increment of x

to decrease, must be 0. Therefore

Aa = 0. [1]

19. The general method of finding the derivative of any given

function of x, is immediately suggested by the definition of a de-

rivatiAC. Take two values of a;, x^ and Xq -\- dx, and find the

corresponding values of the given function ; the difference be-

tween them is ob\-iously the increment of the function, corre-

sponding to the increment Jx of x. The limit of the ratio of the

* The names differential coefficient and derived function, and the notation^ In

place of Dxy, are also in common use
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two increments, as ^x approaches zero, will be the value of the

derivative for the particular value Xq of x, and we ma}' indicate

it by [D^y^x=XQ- As Xq Was taken at the start as any value

of X, the subscripts may be dropped in the result, and the de-

rivative will then be expressed as an ordinary function of x.

The method may be formulated as follows :
—

rn fxl - limit r/(^o + ^a;)-/a;o~] • p -,

The student will observe that, in the problems in Arts. 13 and 16,

we have really found 2>,(16^^) and D^ ( V2 mx) by the method

just described.

Examples.
Find

(l)D,(20x); (2)D,(a^); (3) A^^) ; (4) i),(V^ ;

by the general method.

Arts. (1)20; (2)Sx'; (3)-^; (4) ^

y
^ '

' ^ ' ' ^ ' ar'
' ^ ^ 2 V(a^)

20. In order to deal readil}"^ with problems into which deriva-

tives enter, it is desirable to work out a complete set of formu-

las, or rules for finding the derivatives of ordinary' functions

;

and it will be well to begin by roughly classif3ing functions.

The functions ordinarily considered are :
—

(1) Algebraic Functions : those in which the only operationa

performed upon the variable, are the ordinary algebraic opera-

tions, namely : Addition, Subtraction, MultipUcation, Division,

Involution, and Evolution.

Example. ^+ 3 -^ (a; — 1)

.

(2) Logarithmic Functions: those involving a logarithm of

the variable, or of a function of the variable.

Examples. x log x
;

log (»* — CUB+ ft).
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(3) Exponential Functions : those in which the variable, or

a function of the variable, appears as an exponent.

Example. a^^^—'K

(4) Trigonometric Functions :

Example. . cos a;— sin^a;.

21. We shall consider first, the differentiation* of Algebraic

Functions of x.

Required Dj^ (ax) where a is a constant.

By the general method (Art. 19),

rr) n _ limit ra(a-o-fJa;)-.agb"|_ Umit VaJx\
l^*^Ax=x^ Ja;=0|_ Ax J Ja;=oLja;J

limit r n

.-. D,{ax)=a. [1]

If a = 1, this becomes D^x = 1. [2]

Required D,x° w^ere n is a positive integer.

r-j. . _ limit r(xo±Axy;^-xii

By the Binomial Theorem,

{Xo+Axy= Xo» + ria-o"-Ma;+ ^i^-"^) a;^«-2 ( ja.)2+ , . . ^ ( jj.)-

(ai)+ Ja;)" — a^o" n-i w(n— 1) „g, , ,/<n„i
Ax 2

Each term after the first contains Ax as a factor, and therefore

has zero for its limit as Ax approaches zero, so that

limit r(a^ + '^a;)»-a-o''"mit r
Ja;=0 Ax

••• [^x«^]x=.
= 7ia*o"~^.

• To differentiate Is to find the derivative.
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As a\) is any value of «, we may drop the subscrijjt, and we iave

Z>,af = naf-^ [3]

22. We shall next consider complex functions composed of

two or more functions connected by algebraic operations ; the

Slim of several functions, the product of functions, the quotient

of functions.

Required tlie derivative of u + v + w,

where each of the quantities ?/, zj, and «; is a function of a;.

Let Ax be a.ny increment given to a;, and Au^ Av, and Aic the

corresponding increments of u, v, and w. Then, ob^^ousl3•, the

increment of the sum u + v-\-w

is equal to Au + Av-\- Aiv, and we have

A iu + v + 10) = limit V^u + Av + AiQ-l^ Mt \^_^Av Av^
^ ' Ax=0[_ Ax J Ax=0\_Ax Ax Ax]

^ limit r^*1 , limit f^l , limit f
^~|

.

Ax=0 |_Ja;J"^Ja-=0 \_Axy Ax=Q L^^J'

but, since Au and Ax are corresponding increments of the func-

tion u and the independent variable a;,

limit r^l^n
Ja;=oLja;J

^'^'

in like manner JSo[f:]=^-^'

„«^ limit f-lH „^°^
Ax^oXJxr^''"'^

hence D,{u-\-v +io) = D,u + D,v + D,w. [1]

It is easily seen that the same proof in effect ma}- be given,

whatever the number of terms in the sum, and whether the

connecting signs are plus or minus. So, using sum in the sense

of algebraic sum, we can say. thYderivative with respect to x
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of the sum of a set of furiptions of x is equal to the sum of the

derivatives of the separate functions.

23. Required^ the derivative of the product uv, where u and v

are functions of x.

Let Xo, Uq, and Vq be corresponding values of cc, w, and v ; let-

Jo; be an increment given to x, and Au and Av the corresponding

increments of u and v. Then,

"(«o + ^«) (Vo + ^'V) — Uo Volrr» / \n limit Fi

Ax

(ho+ Jm) (Vo+ Jv) — ^<o^'o = ^'o "^v + %Au+ Au Av

Uo Av + t'o Jw -|- Jw Av~
and [Z)^ (?(f) ]

^ limit r*
'=^0 Ja;=0 !_' JiC

_ Hmit L ^1 , limit L ^~|
, limit fJ^ifvl

-Ax=0\_''AxJ Ax=0\_'^AxyAx=0\_ Ax J

Mo does not change as Ax changes, and

limit r^"l_rz>vi

so that
limit

Ax
nit [uo^l^
= 0|_ Ja;J

«o[Av]a:=^„;

and in like manner

imit „ ^" |_ rr» tlimit

Ax

ma\' be written Au — or Jv — . Let us consider
Ax Ax Ax

mit rlimit r . Av
Ax=0\ ^j^

As Ax approaches 0, Au, being the coiTcsponding increment of

the function u, will also approach ; and the product Au —
Ax

Av
will approach as its limit, if ,— approaches an}' definite value

;
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that is, if D,v has a definite value. It is, however, perfectly

conceivable that — ma}- increase indefinitelv as Ax approaches
Ax

zero, instead of ha\'ing a definite limit ; and, in that case, if—
Ax

should increase rapidly enough to make up for the simultaneous

Av
decrease in Jm, the product Au — would not approach zero.

Ax

"We shall see, however, as we investigate all ordinary functions,

that their derivatives have in general fixed definite values for

anj* given value of the independent variable ; but, until this is

established, we can onl}' say, that

imit \^u^~\=o
x=0[_ Ax] "
limi

Ax

when — or — has a definite limit, as Ax=0 ; that is, when
Ax Ax

has a definite value. With this proviso, we can say,

or, dropping subscripts,

D, (uv) = uD, V + vD, u. [1]

Divide through by ur, and we have the equivalent form,

UV U V '

If we have a product of three factors, as uvw^ we can repre-

sent the product of two of them, saj' vw, by 2, and we have

D^{uvw) D,{uz) D^u D^z
uvw ~ uz ~ ~u' '^~z~'

z vw V to
'
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D,(uvw) D^n D^v D^w
uvw ~ u ' V w [3]

This process may be extended to any number of factors, and we
shall have the derivative of a product of functions divided by the

product equal to the sum of tJie terms obtained by dividing the

derivative of each function by the function itself.

24. Required the derivative of the quotient — , where u and v
V

are functions otx. Emplojing our usual notation, we have

D f-]\ = li™* Vq + JV Vq

Ax

but
Uq-\- Au Uo_VoAu — UoJv

Vo+ AV Vq v^ -\-VoAv

and dividing by Ax, we have

A _ limit

Au Av%- Wo—
Ax Ax

x=Xq Ax=Q |_ v^ + VqAv _

v.VD.u-]^^^- Vo [A^]x=^„

Vo'

and dropping subscripts,

n /u\ vD,u — uD,v
[1]

Examples.
Find

(1) A[a^+ aj-v(^)]; (2)i>x[a;'V(«^)]; (3)A^..

Ans.

(1) 3a^+l--4-: ; (2) -^, + 2a:V(^) ; (3) -—

^

2V(a;) ' ' 2^{x) 2xV(a;)
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(4) Find, by Art. 24, [1], dJ^.

(5) Deduce D^af* from last part of Art. 23.

25. If the quantit}- to be differentiated is a function of a

function of x, it is always theoreticaU}- possible, by performing

the indicated operations, to express it directlj* as a ftmction of

X, and then to find its derivative by the ordinars* rules ; but it

can usuall}- be more easily' treated bj' the aid of a formula which

we shall proceed to establish.

Required, D, f}', 3' being itself a function of x. Let Xq and yo

be corresponding values of x and y ; let Jx be any increment

given to x, and Jy the corresponding increment of y ; then

rn ^1 limit [fiVo+'^y) -/Vo1

and this can be written

imit
|

7(yo+<v)-/yo ^1
x=0\_ Jy 'JxJ
limit

Jx

As dx and Jy are corresponding increments, they approach zero

together; hence

limit r/(yo+ ^y).-/yo"]

Jx=o I Jy J

• X. limit rf(yo+Jy)—fyo]
IS the same as ^ .W —^ 7-^—^^

>Jy=0 1 Jy J

which is equal to [^,/i^]y=y^.

or, dropping subscripts,

D.Jy=D,fy.D,y. [1]

This gives immediately, as extensions of Art. 21, [1] and [3],

A {ay) = aAy, AzT = »y"-' Ay.
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26. Art. 21, [3] can now be readily extended to the case

wliere n is any number positive or negative, whole or fractional.

Let 71 be a negative whole number — m, m of course being a

positive whole number. Let

2/= a:" = »""•,

then we want D,y. Multiplying both members of

by K"*, we have sf*y=\.

Since aj^y is a constant, its derivative with respect to x must be

zero; but by Art. 23, [1] and Art. 21, [3],

Dx [af*y] = ^B^y + yD^yT= nf^D^y+ m3tf*~hf

m being a positive integer

;

.'. af'D^y + maf*~^y=0,

and Dxy=—mx~^y=—mx~''~^ = naf*~^. q.e.d.

P
Let n be anj' jfraction - where p and q are integers either posi-

tive or negative. As before, let

p

y = af=xt; required Z>, 2^.

Clearing y= x^ of radicals,

we have y^=x'';

and since the two members are equal functions of x, their deriva-

tives must be equal

;

D^y^ = D,x',

or 9y^~^D^y=px''~^i

p x'~^ p xP-^ p £-1

and ^y=q-y^ =r-^rg-'" ="*
• «•=•»•



20 DIFFEBENTIAIi CALCULUS. [Art. 26.

The formula, D.of= naj"-*,

Art. 21, [3], holds, then, whatever the value of n.

Example.

Prove Art. 24, [1] by the aid of Art. 21, [3] and Art. 23,

[1], regarding - as a product, namely uv~\

By the aid of these formulas,

D,a = 0; [1]

D,ax= a', [2]

D,x=l; [3]

D,iB»= riaJ»-*; [4]

D, (w+ V + to) =D,u +D,v +D,w ; [5]

D, (uv) = uD^V + vD,u; [6]

D.U'j) = D,(fy)-D.y; [8]

any algebraic ftmction, no matter how complicated, may be dif-

ferentiated.

Examples.

Find Z>,M in each of the following cases :

—

(1) M = m + ru5. Ans. Dlu = n.

(2) u={a + bx)3?. Ans. D,u={Abx + 3a)a?.
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(3) M=V(«'+a*).

Solution

:

w= >/(«*+ a*) = («* -f a^ 1.

Let y= cc*+ a',

then u = 2/4.

D,u = D,yh = D,yh.D,y by Art. 26, [8],

Ay*- = i2/-* by Art. 26, [4],

D,y=2x',

(4) M =
(

). Ans. D^u=

(o) M = —,. Ans. D-u=—^i -—/.

(6) u={l + x)yl{l-x). Ans. D,u= ^"^^
2V(l-a;)

(7) u = ^- Ans. D,u = ^^,"^\ - 2ar.
^

Ans. D^u =—(8) .- ff
i-v(^)Y

\ VI + v(^)y ' 2 (1+ v5) v(^-^)

(9) u=J(^-t^\ Ans. D,u = -\ -.

(io)u=V(l±^)±V(l=:^.
^ ^ V(i+^)-V(i-^)

^.2>.u=-|[l+^^].
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CHAPTER III.

APPLICATIONS.

Tangents and Normals.

27. "We have shown, in Art. 15, that the angle t, made with

the axis of x by the tangent at any given point of a plane curve,

when the equation y=fx

of the curve, referred to rectangular axes, is known, may be found

by the relation

tanT= l™it
Ax=0

where Ay and Ax are corresponding increments of y and x, the

coordinates of a point of the curve. K the point be (a^o^^/o) » we

have, then,

At any point (x,y) tan r = D^y.

T

[1]

A line perpendicular to any tangent, and passing through the

point of contact of the tangent with the curve, is called the nor-

mal to the curve at that point. If Vq be the angle which the
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normal at the point (a\),yo) makes with the axis of X, then it Is
'

evident from the figiu^, that

and from trigonometry-,

1

tan ^0 = — cot To=
[^x2/]x=.

Of course, for any point (x^y)

tan»'=--^. [2]

28. Since the tangent at (a*o,2/o) passes thi'ough (xo,yo), and

makes an angle tq with the axis of x, its equation will be, by

analytic geometry,

y - yo = tan To (a; - Xo) ;

or, since tanro= [D.j^],.^^^,

y-yo= [Ay]x=:ro (^ - ^^o) • [l]

In like manner, the equation of the normal at {x^^yo) is found to

be y-y^=-——- (X-Xo). [2]
lD,yJa:=;to

The distance from the point of intersection of the tangent

with the axis of X to the foot of the ordinate of the point of

contact, is called the subtangent^ and is denoted b}' t^.

The distance from the foot of the ordinate of the point to the

intersection of the normal with the axis of X, is called the sub'

normal, and is denoted b}' n^.

In the figure, TA and AN are respectivel}' the subtangent and

subnormal, corresponding to the point (xo,t/o) of the curve.

Obviously |2.= tan tq= [D, y']^^^^.



24 DIFFEEEXTIAL CALCULUS. [Akt. 28.

and -^ = tan(180°-»'o)=-tanro= ^

hence for the point (a\„yo) >

The distance from the intersection of the tangent -mth the

axis of X to the point of contact is sometimes called the length

of the tangent, and maj- be denoted bj- 1.

The distance from the point at which the normal is drawn to

the point where the normal crosses the axis of X is sometimes

called tJie length of the normal, and may be denoted by n.

It is easily seen from the figure, that

and w=V(yo*+ w/);

hence t = y, [i>,y]-i,,„ V(l + [Ay]^=xo)

»

and w = 2/0 V( 1 + i^^vYx^x) •

For any point (x,y) , our formulas become

n, = yD,y; [4]

« = y[^.y]-V(H-[^xy?); [5]

n = !/V(i + [Ay?). [6]

Examples.

(1) Show that the inclination of a straight line to the axis of

X is the same at every point of the line ; i.e., prove tan r constant.
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(2) Show that the subnormal in a parabola

y^=2mx

is constant, and that the subtangent is always twice the abscissa

of the point of contact of the tangent.

(3) Find what point of the parabola must be taken in order

that the inclination of the tangent to the axis of X ma}' be 45°.

29. K the equation of the curve cannot be readily thrown jnto

the form y=fx^

D^y may he found by differentiating both members with respect to

X and solving the resulting equation algebraically, regarding D,y
as the unknown quantity.

For example ; required the equation of the tangent to a circle

at the point (a;oi2/o) of the curve. The equation of a cux-le is

a^+ / = >'^,

r being constant. Differentiating with respect to x, we have,

by Art. 26, [8],

2x + 2yD,y = 0.

Solving, D,y =--?=--.
2y y

and by Art. 28, [1], the required equation is

y-yo=-^ (as-iCo);
yo

or, clearing of fractions,

yoy-yo^=—xox+«o*i

^x+yoy=^+y^\
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but (Xf),yo) is on the curve, hence

and we have XqX+ poy = r",

the famiUar form of the equation.

Examples.

(1) Find the equation of the normal at (a^,yo) in the circle

;

of the tangent and the normal at {xo,yo) in the ellipse and the

h3'perbola referred to their axes and centre.

(2) Find at what angle the curv^e y^=2ax

cuts the curve aj^ — 3 dxy + y'= 0. _
Alls. Cot -1^/4.

(3) Show that in the curve xt + yt = a*

the length of that part of the tangent intercepted between the

axes is constant and equal to a.

Indeterminate Forms.

30. When, under the conditions of the problem, the valtie of

a variable quantity is supposed to increase indefinitely, that is,

to increase without limit, so that the variable can be made greater

than any assigned value, the variable is called an infinitely great

quantit}' or simply an infinite quantity, and is usually- represented

b}' the S3'mlx)l oo. Since infinite quantities are variables, they

will usually present themselves to us either as values of the

independent variable or as values of a function.

31. By a value of a function corresponding to an infinite value

of th£ variable, we shall mean the limit approached by the value

of the function as tJie value of the variable increases indefinitely.

Thus, if y=/a?,
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and y approaches the value a as its limit as x increases indefi-

nitel}', the value of y coiTesponding to the value oo of a; is a, or

as we shall say, for the sake of brevity,

y = a when »= co.

Since - approaches as its limit as x increases indefinitely, •

we say - = when a; = oo,

or, more briefly, — = 0.

If, as the variable increases indefinitely the function instead of

approaching a limits itself increases indefinitely,, we shall say

y=cc when cc = oo,

meaning, of course, y increases indefinitely when x increases

indefinitely.

32. If, as the variable approaches indefinitely a particular

value, the function increases without limit, we sa}' that the

function is infinite for that particular vahce of the variable. For

example ; as the angle ^ approaches the value 90°, its tangent

increases indefinitely', and by taking ^ sufficiently near 90°,

tan^ can be made greater than any assigned value. So we

say tan ^ = oo when ^ = 90°,

or, more briefly still, tan 90° = oo.

Again, - increases indefinitely as x approaches zero ; so we
X

say -= CO when cc= 0,
X

or simply - = oo.

The student can easily convince himself, by a little consideration,



28 DEFFEREXTIAL CALCULUS. [Art. 33.

that our definition of infinite is entirely consistent -with the ordi-

nary use of the term in algebra, trigonometry', and analj-tic

geometr}'.

m
33. The expressions, -, -^, and x oo, are called indeter-

minate forms ; and as they stand, each of them may have any

value whatever ; for consider them in turn :— B3- the ordinary

definition of a quotient as " a quantity that, multiplied by the

divisor, will produce the dividend," - may be anything, as any

quantity multiplied by will produce 0.

So, too, -^ ma}' have any value, as obviously any given quan-

tity multiplied by a quantity that increases without limit will

give a quantity increasing without limit.

That X 00 is indeterminate is not quite so obvious ; for, since

zero multiplied by any quantity gives 0, it would seem that zero

multiplied by a quantity which increases indefinitely must still

give zero, as is indeed the case ; and it is only when x 00 pre-

sents itself as the limiting value of a product of two variable

factors, one of which decreases as the other increases, that we
can regard it as indeterminate. In this case the value of the

product wiU depend upon the relative decrease and increase of

the two factors, and not merely upon the fact that one ap-

proaches zero as the other increases indefinitely.

It is only when -, -^, and x co occur in particidar problems
**

as limiting forms., that we are able to attach definite values to

them.

34. Each of the forms -^ and Ox 00, as we shall soon see,

can be easily reduced to the form -, and this form we shall now

proceed to study.

If /x = and Fx=0 when a; = a,

fx
the fraction -i— , which is, of course, a new function of », assumes

Fx
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the indeterminate form - when x= a, and the limit approached

by the fraction as x approaches a is called the true value of the

fraction when x = a, and can generally be readily determined.

By hj-pothesis /a = and Fa = 0,

"foe fx "^ /(X
hence we can throw 4^ into the form 4 ^ , for in so doing we

Fx Fx - Fa ^

are subtracting from the numerator and from the denomina-

tor of the fraction. Again, we can divide numerator and de-

nominator by a; — a without changing the value of the fraction

;

therefore

and the true value of

Fx

fx—fa

Fx-Fa
x — a

rJ^~| ^ limit f:^! limit

' fx—fO'

Fx— Fa
L x — a J

But «— a, being the difference between two values of the

variable, is an increment of x; fx—fa, being the difference

between the values of fx which correspond to x and a, is the

corresponding increment of the function, hence

imitr/g-/«"
|

r-^ .-,

5=a \_x-a _\~ L^*/^Jx=a

»

limit

X

and in the same way it can be shown that

limit r^a;-25Ta"

x=a\_ X

-Fal_
-a J~

ID^Fxl

wherefore the true value of ^ when a; = a is L »./^J»=a^ -y^g

Fx [Ai^a:]x=a

have then only to differentiate numerator and denominator, and
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substitute in the new fraction a for x, in order to get the true

value required. It may happen that the new fraction is also

indeterminate when x=a; if so, we must appl}' to it the same

process that we appUed to the original fraction.

The student will obser\'e that this method is based upon the

supposition that /a = and Fa = 0,

80 that it is only in this case that we have established the relation

m

L^j.=a iD^Fx]^^,

EXA3IPLES.

Find the true values of the following expressions :
—

(1) I ^^^P-^^ I

. Ans. 1.

Ans. 10.

Ans. .

2

(2\ r^ + 3a^ - Tx-'- 27a; - 18"|

^^
L^ - 3 af'-Ta;^ 4- 27a; -18j,=,

(5) r ../-/(^-f^ J . Ans. 1.

.

(6)
rv(^)-v(«)+v(a^-a)-i

. ^^ _1_^
L V(^-«') Jx=. yj{2a)

^ '' La^-6a;* + 8x-3j.=,
Ans. 00.

85. If /a? and Fx both increase indefinitely as x approaches
the value a, or, as we say for the sake of bre^^ty, if
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fa= oo and Fa = oo,

we can determine the true value of^ by first throwing the

fraction •— into the equivalent form— , which assumes the form
Fx J_

- when x = a, and may be treated by the method just described.

If fx = and Fx=i oc when x=a,

the true value of Ifx.Fx']^^^ can be determined by throwing

U
fx.Fx into the equivalent form —t which assumes the form -

F^
when x = a. •

Maxima and Minima of a Continuous Function.

36. A variable is said to change continuously from one value

to another when it changes gradually, from the first value to the

second, passing through all the intermediate values.

A function is said to be continuous between two given values

of the variable, when it has a single finite value for everj' value

of the variable between the given values, and changes gradually

as the variable passes from the first value to the second.

37. If the function is increasing as the variable increases, the

increment ^y, produced hy adding to cc a positive increment Jo;,

will be positive ;
-J: will therefore be positive, and ^^}^ —

will also be positive ; that is, D^y will be positive.

If a function decreases as the variable increases, the increment

Ay, produced by giving x a positive increment Ax, will be nega-

tive ; -^ will therefore be negative, and "™^^ -^ will also be
Ax &

' Ja;=0|_Ja;J
negative ; that is, Djjy will be negative.
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Since D,y, being, as we have seen, itself a function of a;, may
happen to be positive for some values of x and negative for

others, it would seem that the same function may be sometimes

increasing and sometimes decreasing as the variable increases,

and this is often obviously the case. For example ; sin f in-

creases as ^ increases, whUe ^ is passing through the values

between 0° and 90° ; but it decreases as ^ increases, while f is

passing through the values between 90° and 180°.

38. Not only does an}- particular value of the derivative of a

function show by its sign whether the function is increasing or

decreasing with the increase of the variable, but it shows b}' its

numerical magnitude the rate at which the function is changing

in comparison with the change in the variable as the latter is

passing through the corresponding value.

For example ; when x=2,

D^x? or 2a; equals 4, and this shows that when x increasing is

passing through the value 2, its square is increasing four times

as fast.

For if Ja5 and Jy are corresponding increments of the variable

and the function, starting from a particular value Xq of x, -^ may

be regarded as the mean rate of change in y compared with the

change in a, and )™^*^ -^ will then show the actual rate of
^x==0 \_Axj

change at the instant x passes through the value Xq.

39. If, as the variable increases, the function increases up to

a certain value and then decreases, that value is called a maxi-
mum value of the function.

If, as the variable increases, the function decreases to a cer-

tain value and then increases, that value is called a minimum
value of the function.

In these definitions of maximum and minimum values, the

variable is supposed to increase continuously.

As a maximum value is merely a value greater than the values
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immediately before and immediately after it, a function may
have several different maximum values; and, for a like reason,

it may have several different minimum values. If

y=fx

be the equation of the cun'e in the figure, the ordinates yi and

2/2 are maximum values of y, y^ and y^ are minimum values of y.

40. In the following discussion we shall suppose throughout

that the variable continually increases. Then, as at a maximum
value, the function by definition changes from increasing to

decreasing, its derivative must, bj' Art. 37, be changing from a

positive to a negative value ; and if the derivative is a continu-

ous function of the variable in the neighborhood of the value in

question, it can change from a positive to a negative value only

by passing through the value zero.

Since, at a minimum value, the function by definition changes

from decreasing to increasing, its derivative must be chang-

ing from a negative to a positive value, and must therefore be

passing through the value zero, provided that it is a continuous

function of the variable in the neighborhood of the value in

question.

41. Confining ourselves for the present to the case ivhere the

derivative is a continuous function^ we can saj' then, that if y is

a function of a;, any value x^jofx corresponding to a maximum
or a minimum value of y must make D^jy zero. This can also

be seen from the figure of Art. 39. For, at the points A, B, C,

and D, the tangent to the curve is parallel to the axis of X, and

therefore at each of these points D^y, which is, by Art. 27, the
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tangent of the inclination of the curve to the axis, must equal

zero.

Of course it does not follow from the ai^ument just presented,

that ever}' value of a; that makes D^y=0 must correspond either

to a maximum or a minimum value of y ; and it is evident, from

the figure just referred to, that, at the point E,, the tangent is

parallel to the axis of X, and D^y is zero, although y^ is neither

a maximum nor a minimum.

42. In order to ascertain the precise nature of the value of y
corresponding to a given value of x which makes Dj.y zero, we
need to know the sign ofD^jfor values of x just before andjuM
after the value in question, and this can generally be determined

hy noting the value of the derivative o/D,y, which we can always

find, as D^y itself is a function of a;, and can be differentiated.

43. Z), (D^y) is called the second derivative ofj with respect

to X, and is denoted by DJ^y. D^ {D^y) is called the third de-

rivative of y with respect to x, and is denoted by D^y ; and in

general, if n is any positive whole number, D^ {Dj'-^y) is called

the ?ith derivative of y with respect to a, and is denoted by i>/y.

44. Example. Required the nature of the value of a^ — a^

corres]X)nding to the value of x.

Lei y= a? — 7?:

D,y=3a?-2x,'

D/y=ex-2;

[A2/],=o=0,

[Z).«y]„o=-2.

Since D^'y is negative when a; = 0, D^y must have been de-

creasing as x passed through the value zero, and as

[Ay].=o=0
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D^y must have been positive before a; = 0, and negative after

a;= ; therefore, y must have been increasing before a;= 0, and

decreasing after a; = 0, and must consequently have a maximum
value when a;= 0. To confirm our conclusion, let us find the

values of a?— a? when x= — .1 , when a;= 0, and when a;= .1

;

[af'-a:2],=_a=-.011,

[a^-a^],=o=0,

[ar^-a^],=.i=-.009;

and the value corresponding to a;= is the greatest of the three.

45. If ^CAyL=xo=o

and [^x'2/].=^o>^'

D^y must have been increasing as x passed through the value

a^o ; and, therefore, since D^y= when aj= a\), it must have been

negative before x=^Xq and positive after x = Xq: y then must

have been decreasing before a;= a;o and increasing after a;= a^o,

and so must be a minimum when x= x^.

46. If [i>xy]^=xo=0

and Wy]x=aro=<^»

we must find the value of D^y before we can decide on the nature

of y^. Suppose [A y']x=x^= ^^

and [A«2/]^^^^<0.

As [2)/y]a._a. is negative, D^y must hare been decreasing as

X passed through the value a^g, and being when x = a:o, must
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have been positive before and negative after. Dj,y therefore

must have been increasing before x= Xq and decreasing after

;

and as [^»y]x=ar =0,

it must have been negative both before and after x= Xq. The

function y, then, must have been decreasing both before and

after a; = «o, and i/o is neither a maximum nor a minimum.

Examples.

(1) Show that if [^2/]:.=:.^ =0,

and [^;'y]:r=a-o>0,

y, is neither a maximum nor a minimum.

(2) If

[^/3/].=.=0,

and [^.*3/]x=Xo<0. r/o is a maximum.

(3) If [AyL=xo=o>

and Wy].=.,>o, yo is a minimum,

47. The preceding investigation suggests the following method

of finding the values of the variable corresponding to maximum
or minimum values of the function. Differentiate the function

and find what values of x will make the first derivative zero.

This may, of course, be done b^' writing the derivative equal to

zero, and solving the equation thus formed. Substitute for x,

in turn, in the second derivative, the values of x thu,s obtained,

and note the signs of the residts. Those values of x which make
the second derivative positive correspond to minimum values of
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the function, and those that make the second derivative nega-

tive, to maximum values of the function. If any make the

second derivative zero, they must be substituted for x in the

third derivative, and the result interpreted by the method of

Art. 46.

Examples.

Find what values of x give maximum and minimum values of

the following functions :
—

(1) M=2a^-21a^ + 36aj-20.

Ans. 25= 1, max. ; »= 6, min.

(2) u = x^-9x?-\-15x-3.
Ans. x = l, max. ; a;= 5, min.

(3) w=3iB*- 125x3 _,_ 2160a;.

Ans. Max. when a;= — 4 or 3 ;

min. when a;= — 3 or 4.

(4) Show that u = a^-33(?+6x + 7

has neither a maximum or a minimum value ; and that

u = x^ — 53cl^-{-5a^—l

is neither a maximum nor a minimum when x = 0.

(5) A person in a boat, three miles from the nearest point of

the beach, wishes to reach, in the shortest possible time, a place

B 3

five miles from that point, along the shore. Supposing he can

walk five miles an hour, but can row only four miles an hour,

required the point of the beach he must pull for.
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"With the notation in the figure, the distance rowed is V(^" + 9)

miles, the distance walked is o — x miles, and m, the whole time

taken, is evidently

V(ar + 9) 5
u = H =

—

hours,
4 o

and X must have a value that will make u a minimum.

^ _ X 1

D 'm =
' 4(a.-2+9)l

we get «= ± 4
;

but, on substituting these values of x in turn in the expression

for D^u, we see that x = 4 is the onlj' value which will make

Z),M = 0, since we must take the positive value of ^(ic^+ 9),

from the nature of the case, as it represents a distance traversed.

Remembering this fact, we find

L » Jx-4 ^QQ.

and u then is a minimum when a;= 4, and the landing-place

must be one mile above the point of destination.

48. In problems concerning maxima and minima, the func-

tion u can often be most convenientlj- expressed in terms of two

variables, x and r/, which are themselves connected by some

equation, so that either may be regarded as a function of

the other. In this case, of course, u can, by elimination, be

expressed in terms of either variable, and treated by the usual

process. It is generally simpler, however, to differentiate m,

regarding one of the variables, », as the indci)endent variable,

and the other as a function of it, and then to substitute for D^y
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its value obtained from the given equation between x and y by
the process suggested in Art. 29.

Examples.

(1) Required the maximum rectangle of given perimeter.

If a be the given perimeter, we have

y

X

2x+2?/ = a;, (1)

and the area u = xy. (2)

Differentiate (1) with respect to x, and we have

2 + 2Z>,2/ = 0,

whence D^y= — 1; (3)

A w = xD^y + y= -x + y, by (3)

,

DJu=-l+D,y=-l-l=-2, by (3).

DxU= \fx = y,

and D^u is negative ; therefore the required maximum rectangle

is a square.

(2) Prove that of all circular sectors of given perimeter the

greatest is that in which the arc is double the radius.

(3) A Norman window consists of a rectangle surmounted

by a semicircle. Given the perimeter, required the height and

breadth of the window when the quantity of light admitted is a

maximum. Ans. Height and breadth must be equal.

49. After finding the values of a; which make

D^u = 0,

it is often possible to discriminate between those corresponding

to maximum values of u and those corresponding to minimum
values of u by outside considerations depending u]X)n the nature
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of the problem, and so to avoid the labor of investigating the

second derivative.

Examples.

(1) Prove that when the portion of a tangent to a circle in-

tercepted between a pair of rectangular axes is a minimum it is

equal to a diameter.

(2) Determine the greatest cylinder of revolution that can be

inscribed in a given cone of revolution.

Ans. K & be the altitude of the cone and a the radius of its

base, the volume of the required cylinder=— -a^b.

(3) Determine the cylinder of greatest convex suHace that

can be inscribed in the same cone. Ans. Sm-face =-—

•

2

(4) Determine the cylinder of greatest convex surface that

can be inscribed in a given sphere. A}is. Altitude = >' V(^) •

(5) Determine the greatest cone of revolution that can be

inscribed in a given sphere. Ans. Altitude = - r.

3

(6) Determine the cone of revolution of greatest convex sur-

face that can be inscribed in a given sphere.

Ans. Altitude = - r.
3

Integration.

50. "We have seen (Art. 12) that when a body moves accord-

ing to any law, if v, t, and s are the velocity, time, and distance

of the motion respectively, v=D,s.
Suppose we have an expression for the velocity of a bodv in

terms of the time during which it has been moving, and want
to find the distance it has traversed. For example ; the velo-

city of a falling bod}' that has been falhng t seconds is always

gt, where g is constant at an}- given point of the earth's surface

:

required the distance fallen in t seconds.
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This distance is evidently a function of <, for a change in the

number of seconds a bod}' falls changes the distance fallen.

Represent this function by s ; then, as

we have

that is, the distance is that function of t which has gt for its

derivative; and to solve the problem we have to find the func-

tion when its derivative is given.

51. Having given the equation y =fx of a curve (rectangular

coordinates), required the area hounded by the curoe, the axis

ofX., a fixed ordinate yo, and any second ordinate y.

/ ^A

^y

c AX d

This area. A, is obviously a function of x, the abscissa corre-

sponding to the second bounding ordinate y, for a change in x

changes A. Let us see if we cannot find the value of D^A.
Increase x by Jx, and represent the corresponding increments

of A and y by AA and Ay. From the figiu-e, the area

aMf<:^ acdb< ecdb
;

but the area of the rectangle

acdf= yJXy

the area of the rectangle r

ecdb= (y + Ay) dXf

and acdb = AA ;

hence yAx< AA<(y-{- Ay) Ax ;
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andwewantJj^'^*Qr^'|. Divide by J*,

and y<^<y-h^y.

That is,— always lies between y and y + ^y, and as they ap-
Ax

proach the same limit, y, as Ja;=0, J^q — \
must be y, and

we have D^A = y =fx ;

and to solve the problem completely, we have to find a function

from its derivative.

52. HaWng given the equation y=fx of a. curve (rectangular

coordinates), required the length of the arc between a fixed

point (xo,yo) of the curve and any second point (x,y).

This length is obviously a function ofthe position, and therefore

of the coordinates of the second point ; and as the equation of

the curve enables us to express y in terms of a:, we can consider

the length s a function of x. Let us see if we can find its deriva-

tive. Increase x by Ax and represent the corresponding incre-

ments of 8 and y by As and Ay respectively. "We see from the

figure that pq<^s<:pn-\-nq,

PN being the tangent at P.

PQ:=^{Axy+{Ayy,
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P^= Jx . sec T.

NQ=Ay-MN.

MN= Ax . tan r.

hence NQ=Ay—Ax tan r,

and we have

43

V(Ja;)*+ (Jaj)'< Js< Ja; secr+Jy— Ja; tanr.

Divide by Ja,—

< sec T + -^ — tan t.
Ja; Ja;

.nd ^™^* sec T+ -2^— tan t = sec t +2),v— tan r.

Ja;=0 L -^^ J

But we know, Art. 27, [1], that

tanT= Z),y;

and b}' trigonometry,

sec^ T = 14- tan^ r = 1 + {D,y)\

secr=Vl+(i>.i/)^
hence

limi

Ja;
^t^[^secr+ £-tanrJ=Vl + (Z>,2/)2+ D.y-Ay,

car =Vl + (A2/)'.

As — lies always between two quantities which have the same

limit, Vl + {D^yy, its limit must be Vl +(D,yy, and we have

i),y can be found from the given equation, and therefore
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Vl + {DxVY can be determined. We can then regard D^s

as given, and again we are required to obtain a function from

its derivative.

•

53. To find a function from its derivative is to integrate^ and

the function is called the integral of the given derivative.

Thus the integral of 2 a; is x^ + C^ where C is any constant, for

Dx{a^+C) is 2x. In other words, if y is a function of x, that

function of x which has y for its derivative is called the integral

of y with respect to x, and is indicated by f^y, the sjTnbol f,

standing for the words integral with reject to x.

54. Since the derivative of a constant is zero, we maj- add

any constant to a function without affecting the derivative of the

function ; so that ifwe know merelj' the value of the derivative, the

function is not wholl}' determined, but ma}' contain any arbitrary,

i.e., undetermined, constant term. In special problems, there

are usuall}' sufficient additional data to enable us to determine

this constant after efiecting the integration.

55. Since integration is defined as the inverse of differentia-

tion^ we ought to be able to obtain a partial set of formulas for

integrating by reversing the formulas we have already obtained

for difierentiating. Take the formulas—

D^ax=a;

D,ay= aD^y;

D^af = naf~^;

D^{u + v-\-w+ &c.)=D,u +D^v + D^w+ &c. ;

and we get immediately—
f,l=x-\-C; (1)

/.a = aa;+C; (2)
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f,aD,y= ay-\-C; (3)

/,na:»-^ = x-+C; (4)

/,(Z>.m+Z),v +Aw> + &c.) = m + v + m; + &c.+ C; (5)

where C in each ease is an arbitrary constant.

The forms of the last three can be modified with advantage.

In (3) , call D,y = u
;

then y =/^u,

and (3) becomes f,au = af^u + C. (6)

By the aid of (6), (4) can be written,

nf,af-'^ = 3f + C.

Change n into n + 1, and we get

(w + l)/,ic»= af+^ + 0,

or /^x»=:^+C, (7)

where C is any arbitrarj^ constant, although, strictly speaking,

different from the C7 just above.

In (5) , let D^u = y, D^v = z, &c.,

then u=f^y,v=f^z,&c.

and /,(y + z+&c.)=/,y+/x2+&c.+ C;

or, the integral of a sum of terms is the sum of the integrals of

the terms.

56. We can now solve the problem stated in Art. 50. The

velocity of a falling body at the end of t seconds is gt feet, g
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being a constant number ; required the distance fallen in t sec-

onds. We have seen that, if v, t, and s are the velocity, time,

and distance respective!}', v =A s

;

hence s=f,v.

Here s=f,gt + C;

but by Art. 55, (6) and (7),

and in this case we can readil}- determine C, for when the body

has been falling no time, it has fallen no distance, 30 s must

equal zero when t = 0, and we have

= ^^(0)2 + C'=0+C, andC=0;

and our required result is s = ^gt^.

57. Required the area intercepted by the curve y^= 4:X, the

axis of X, and the ordinate through the focus.

From the form of the equation we know that the cun'e is a

parabola with its vertex at the origin and its focus at the point

(1,0). The initial ordinate in this case is evidently the tangent

at the vertex.

IfA is the required area, D^A = y, (Art. 51)

,

then A—f^y.

y= 2y/x=2aA;

hence A=f,2a^=2/,a^ =— +C=-a^+C.

A stands for the area terminated bj' the ordinate correspond-

ing to any abscissa x.

It is obnous from the figure that if we make «= 0, the ter-

minating ordinate y will coincide with the initial ordinate through

the origin, and A will equal zero. So we can readily determine C,
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for we have

so that

and

r

A
^

V

o

K'
X

^ = if a: = ;

= |Oi+C= C,

3

K a; = 1 , as it must in order that y may pass through the focus,

-4= -, the required area.

EXAilPLES.

(1) Find the area bounded by the curve a^= iy, the axis of

X, and the ordinates corresponding to the abscissas 2 and 8.

Ans. 42.

(2) Prove that the area cut off from a parabola by a double

ordinate is two-thirds of the circumscribing rectangle.

(3) Required the area intercepted between the curves y^= 4 ax

and x^= ^ay.
Ans.

16 a*

(4) Find a formula for the area bounded by a cur%'e x=fy^
the axis of F, and two lines parallel to the axis of abscissas.

Ans. A=f,x-\-C.

(5) Find a formula for the area intercepted by a curve y =fx,

the axis of X, and two ordinates (oblique coordinates)

.

Ans. ^ = sin iof,y + C, w being the inclination of the axes.
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(6) Pi'ove that the segment of a parabola cut oflf by any chord

is two-thirds of the circumscribing parallelogram.

58. Required the length of the portion of the line

4x-Sy+2 = (1)

between the points having the abscissas 1 and 4.

We have seen that D^s= yjl+{D,yY Art. 52,

where s is the length of an are

;

hence s = /, Vl -f-(Z)^?/)^

From (1) we get 4 — 3 D^y = 0,

Vl+(Z>.2/)2=t;

and therefore s=/.f = ^x +C where s stands for

the length of the arc from the first point to any second point whose

abscissa is x. If we make a; = 1 , the two points will coincide and

s must equal ; then = ^ -f C,

and s = ^{x — \).

To get the required distance, x must equal 4 and we get s = 5.

Example.

Find the length of the portion of the line Ax+By-\-C=0
between the points whose abscissas are a^o and x^.
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CHAPTER IV.

TEANSCENDENTAIi FUNCTIONS.

59. In order to complete our list of formulas for differentiat-

ing, we must consider the transcendental forms, log a, a', sinx, &c.

Let ns differentiate logo;.

By our fundamental method, we have

n \o0x- ^°"* nog(a;+^g)-loga;"|

log(x-{-Ax)-logx^ J_ 1 p+ ^Jgl ^ J_ 1 fi , ^1
Jx Ax \ X J Ax *|_ a J'

and Aloga: =
j^^'o [^ log(l +^)].

But as Ax approaches zero, log( 1 -\
J

approaches logl, i.e.,

zero, and — increases indefinitely ; so that it is by no means easy
Ax

1 / Ax\
to discover the limit of the product — logf i -i )

.

Ax \ x J

This product can be thrown into a simpler form by introduc-

ing m =— in place of Ax.

3^1og(^l+ -jthenbecomes-log(^l+-J,or-log(^l+-J.

As Ax approaches zero, — or m increases indefinitely, and

Aiogx= limit ri/^^^iyi,
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and the value we have to investigate is the value approached by

M _|__ ) as its limit as m increases indefinitely, which we in-

\ mj
dicate by ^ L ^ H f-

60. Let risfirsi, suppose tlwt m in Us increase continues always

a positive integer. Then we can expand M -|

J
by the Bi-

nomial Theorem.
4

f^^^y , , mfl\ m(m-l)flY m{m-l){m-2)flV
\}^mj =^^T[mr 1-2 W"^ 1^2:3 [mJ

+ &c. to m + 1 terms

1 1.2 1.2.3

+- — — + .... to m+1 terms.
1.2.3.4

Now, as m increases indefinite!}', each of the first n terms of

the series, n being any fixed number, approaches as its limit the

corresponding term of the series

1 1.2 1.2.3 1.2.3.4 ••••'

so that we have reason to suppose that there is some simple rela-

tion between this latter series and our required limit.

61. To investigate this question we shall divide the first series

into two parts. The first part, consisting of the first n + 1 terms,

where n is any fixed whole number less than m, we shall repre-

sent by S ; the second part, consisting of the remaining m — n

terms, we shall call JS.
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Then fi+ LY=S-i-E.

61

1 1.2 1.2.3
+ ....

+
('x_lYi_l)....(i_"_=i)
\ w/\ in J \ m )

1.2.3....n

As n is a fixed number, we have

limit

m

B =

^it [-5j^i+l+J_^^_ + ....+
1

= 00'- J ^1^1.2^1.2.3 1.2.3 n

fi-lYi-- ... 1_.
n-1

1.2.3.

w+1

+ ....+
m \ m / V m

_7i + l (n + l)(n+2)

m—

r

1—
7/1

(n+ l)(n+2)(n+3).

Since n is less than m, each numerator in the value of B is posi-

tive and less than 1, and

jf^ 1 r 1 1 1

^1.2.3 n\_n + l'^{n+iy {n-{-iy

The sum of the decreasing geometrical series,

1

1

(n + 1)'

1 1

w+1 '^(n + 1)2""" {n+iy

is by algebra less than -
;

therefore i2<
w(1.2.3....w)'
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and i'™l[«]<m=QO«- -'^71(1.2.3 70'

and we have at last,

f:0+i)"=»=»c^^+»=»^^]
limit

m

= ,+i+j,+^„+ 1^+....+ '

1 1.2 1.2.3 1.2.3.4 1.2.3 n

+ something less than ,^ ^ ^ :

»

n(1.2.3 n)

n being any positive whole number.

Thus we obtain the relation that the difference between our

required value and the sum of the first »i + 1 terms of the series

11 1

^'*"l'^ 1.2 "^1.2.3"^'

is less than
71(1.2.3 n)

The greater the value of n the less the value of
n.l.2.3....n

and b}- taking a value of n sufficiently great, we may make this

difference as small as we please.

Consequently, by Art. 7, our required value is the limit ap-

proached by the sum of the first n terms of the series

1 1.2 ' 1.2.3

as n IS indefinitely increased, or what is ordinarily called the sum
of this series.

62. The series 1+ - H -\—; h • • • • plays a very impor-

tant part in the theorj' of logarithms. It is generallj- represented

by the letter e, and is taken as the base of the natural s^'stem

of logarithms. Its numerical value can be readily- computed to

any required number of decimal places, since each term of the
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series may be obtained by dividing the preceding one bj' the

number of the term minus one. Carrying the approxunation

to six decimal places, we have

1.

1.

0.5

0.16666667
0.041G666" The error in the approximation is

0.00833331 less than on«-twelfth of the last tenn

0.0013888 > we have used, and therefore cannot

0.0001984 affect our sixth decimal place.

0.0000248
0.0000027
0.0000002 ?

0.0000000

e=2.718281-f-, correct to six decimal places.

63. Let %LS now remove from m the restriction we placed upon

it when we supposed it to have none but positive integral values^

and suppose it to increase passing through all positive values.

Let /i represent at an}- instant the integer next below m, then

/£ + 1 will be the integer next above m, and as m increases it will

alwaj's be between // and /^ + 1 , unless it happens to coincide with

/x +1, as it sometimes will. We have, then, in general,

fi<m<fi + l.

Ti- (i+;:ti)"<0-^^)'<('+-'7') '

limit

(-,T:rO'=

1 V+' / 1 V+'l+—

T

l+-
/'•+1/ , limit V '^ + V _e

-, and _
1

'— //=X
,

1 1

At+1 M+1
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and ^^^(l-^^y(l+ ^) = exl = e;

hence ^™*
(^+^T=''

Again : let m be negative, and represent it by — r,

=(-.4Tr"(-^)'

and ^™^*
(^+-X

(r— 1) = Q0 \^ r — 1/ \ r — lj

We see, then, that always

64. In Art. 59 we found that

We have, then, D, logx= 1 loge.

If by logo; we mean, as we shall always mean hereafter, natural

logarithm of x, loge will equal 1, and
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D,\0gX= l.. [13

Jfy=fx, Alogy=^.
y

Exponential Functions.

65. Required D^a^, a being any constant.

Let u = a*

and take the log of each member,

logM = aloga.

Take D, of both members,

'

Am
,-ji-=loga;

i),w = Mloga,

Att"=a'loga. [1]

If a= e; since log e = l,

we have Ae* = e". [2]

Of course, A a' = «' iog«Ay>

and Ae'= e«'I).y.

Examples.

Find D,u in each of the following cases :
—

(1) u = e'(l-s^). Ans. Aw = e'(l -Sa*-*^.

(2) u=
^~^~'

. Ans. D,u= *

e' + e— (e»4-e-')5
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e* — e-'

(3) ti = log(e' + e-'). Ans. D^u =
e + e-

(6) M = log(loga;). Ans. p^u =
icloga;

/v. 11
(7) w = log T-' Ans. D-u = —

(8) M = af. -4ns. i>^w=af(loga;+ l)

Suggestion. Take the log of each member before differen-

tiating.

(9) u = 3d. Ans. D^u=—^—^ '

(10) u = e^. Ans. D^u = e^e''.

(11) u = e^. Ans. D^u = e'^x^ (I -\- logx).

l+icloga;

X(12) w = a^. Ans. D^u = x^e'

Trigonometric Functions.

66. In higher mathematics an angle is represented numerically^

not by the number of degrees it contains but by the ratio of the

length of its arc to the length of the radius with which the arc is

described.

Thus the angle is said to be equal to ^^— If the arc is
r

>^ described with a radius equal to the linear unit,

this ratio reduces to the length of the arc. This

'^ r \
method of measuring an angle is called the cir-

cular or analytic S3'stem, as distinguished from

the ordinary degree or gradual system.
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The value of 360° in circular measure is ob^'iously or 2^,
r

and of 1° is —— or —^. Hence, to reduce from gradual to cir-
360 180

cular measure^ it is only necessary to multiply the given number

of degrees by ^.
The circular unit is evidently the angle which has its arc equal

to the radius, and its value in degrees is easily found. Let x

represent the required value in degrees ; then

ctllti U/ — ' •

360° 2-r

Hence, to reduce from circtdar to gradual measure, loe have only

to multiply the circtdar value by

67 . Required D^ sinx.

By our usual method, we have

Asina;= limit H
Ja;=0|_

sin (x+ Jx) — sin a"

Jx

sin(a;+ Ja;) — sinx _ since cos Ja; + cosa; sin Jx— sinaj

Ax Jx

_ cosicsin Jx — sinar(l — cos Ja;)~
Jx

limit r sin Jx . 1 — cos Jx~iiiiiLt fnav. cinor

Jx=0
1_

Jx Jx

= cosa;
Jx

]

limit r!!E:^~|_sina;limit p-cosJa;-]

Jx=0[_ Jx J Ja;=0[_ Jx J'

But as Jx == 0, sin Ja:= and cos Ja; = 1 , so both of our limits,

in their present form, are indeterminate, and require special

investigation.
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68. Suppose an arc described from the vertex of the angle Ja?,

D B with a radius equal to unity, then this arc

measures the angle, and is equal to Ax, and

the lengths of the lines, marked s and c in

the figure, are the smAx and coaAx, respec-

tively.

We wish to find
^™'* [—1 and ^imi* \^—^.n e wisn to nna j^-^q L/Ja;J Ja;=0 [ Ax J

axcAx<CAB+BD

by geometry {vide " Chauvenet's Geometry," Book V. Prop, xii.)

.

"We have then AD<^Ax<AB -\-BD ;

pr, since s<JLZ>, and AB+BZ) = s +l— c,

s<Ja;<s+l— c.

But s'+ c'=l,

1-C =

and

hence

1+c

1+C

^ 1+ C '

*>jL>_^(i + <')

8^ Ax^s{l+c) + s'''

or 1>_L>^ l+ c

Ax 1+ c + s'

and limit [aI
Ax=0\_Ax]

since, as Ja? = 0, s = 0, and c si=l,

must be between 1 and 1^°^^*

Ax
nit r 1+c 1.

=0Ll+ c+ sJ'
but
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limit

therefore

nit rj±±_1=2^j.
= 0|_H-c + sJ 2 '

imit r sinJxl ^

a;=0|_ Jx J

limit

Jx

T ri 1— C 1— C^ (1 — C)(l+ C)
In like mamier, >___>.}^ ^^ ^

Ax s(l+ c) +

>i^> 8«

5(l+ c) Jaj s(l+c)+82'

l+ c Jo; l-fc + «'

imit rinfl Ues between ^^^ f-^l^ or 0, and

=0Ll+c + 5j

limit

Ax

limit

Ax

therefore
limit p-cosJgl Q
Ax=(i\_ Ax J

69. Substituting these values in Art. 67, we have

D^&mx= Qosx.

Examples.

( 1 ) Prove D, cos a;= — sin x.

(2) Prove 2),tana;= sec^a;,

Z>,ctna;= — cse^a;,

X>, secX= tanx sec«,

D,C8ca;= — ctnxcsca?,

sin a;
from the relations tana!=-

cosa
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ctna;= 1

tanx'

seca;= 1

cos a;

csca;= 1

sin a;

versa; = 1 — COS«,

D,versa; = sin a;.

[Art. 70.

(3) Given

prove

4 ) Prove D,log sin a;= etnx ;

D, log cos a;=— tana;;

Djlogtana; = sec a; esc a? ;'

D^logctnx = — sec a: CSCX

;

Z)jlogsecx= tanx

;

Z),logcscx= — ctnx.

Anti-Trigonometric Functions.

70. In trigonometrj', the angle ichich has a sine equal to x is

called the inverse sine or the anti-sine of x, and is denoted by the

sjTnbol sin~'. Hence sin~^x' means the angle Avhich has x for

its sine, ancWs to be read anti-sine of x.

In the same waj- we speak of anti-cosine, anti-tangent, &c.

71. To differentiate s\rr^x.

Let y= sin~'x ; then x= siny.

Differentiate both members with respect to x.

l=cosyZ),y;
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cosy

It remains to express cosy in terms of x.

siny= a;,

cos'y = l— JC^,

cosy = y/ {I— a?) ;

1
hence D-sin~*a;=

V(i-a^)

Examples.

(1) Prove 2),cos~*x= -.

(2) Atan-»a;=^.
(3) D.ctn-^a;=

^

(4) D_sec~'x= .

(5) D,csc-^a: = \

(6) i),vers-^a;=-— --.
V(2a;— af)

72. The anti'^ or inverse^ notation is not confined to trigono-

metric functions. The number which has x for its logarithm is

called the anti-logarithm of x^ and is denoted by log~^a; ; and,

in general, if x is any function of y, y may he called the corre-

sponding anti-function of x, and the relation of y to a; will be

indicated by the same functional sjmbol as that which expresses
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the dependence of x upon y, except that it will be aflfected with

a negative exponent, which, however, must not be confounded

with a negative exponent in the algebraic sense. Thus, if a;=y^,

we may write y=if-^x.

Any anti-function can be readily differentiated, if the direct

function can be differentiated, and bj' the method we have em-

ployed in the case of the anti-trigonometric functions above.

Let y =f-^x,

then x=fy\

differentiate, and 1= D^fy . D^y.

D,y=-^
DJy

or DJ-'x=-l-,
i^Jy

and it is only necessary to replace y in this result by its value

in terms of x.

73. Since, in the formula above,

fy = ^->

we have D^y= ——
;

D^x

a result so important that it is worth while to estabUsh it by

more elementary considerations.

Suppose x and y connected by any relation, so that either may
be regarded as a function of the other. Let Ax and Ay be cor-

responding increments of x and y. Then Ax may be regarded

as having produced Jy, or as having been produced by Jy, ac-

cording as we regard cc or y as the independent variable ; and

on either hj'pothesis they will approach zero together.

By definition, D,2/= limit r^l
•' '^ Ax=^\_Axy
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and -C>,x= limit r^l.

Ja5 Ax'

Ay

, limit py"|^ 1 _ ^

Ax=0\_Ax]
lijjiit \t^~\ Umit r^t
Jx=0 \_Ay] Ay=0 \_Ayj

since ^a; and ^y approach together.

Therefore 3^y = ——

.

DgX

Examples.

Find Z),M in the following cases :
—

(1) M = sin^a;. Ans. i),M = 2sina;co8a;.

(2) w = cos7na;. Ans. D^u=—msmmx.

(3) M = a;e~". -4ns. D^m = e=°"(l—xsinx).

(4) M = cos(sina;). Ans. Z),m= — cosa:sin(sinx).

(5) u = sin (logo;)

.

Ans. D,u = - cos(logx)

.

X

(6) u=- tanaj+ a;. Ans. D^u = tan*x.
o

(7) u = {a^+ a^)tsin-^-. Ans. D,u = 2xtan-^--\-a.
a a

(8) w= a;sin~*a;. Ans. D^u= siD~^x -{ —— r-.

(9) M=8in-^^^. Ans. Dm =—-—^ -.

\'
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(12) u^sm-^-^Jisinx). Ans. D^u = ^y/{l+ cscx).

(13) t, = tan-^^. ^. ^x^* =
Y:p^•
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CHAPTER V.

INTEGRATION.

74. "We are now able to extend materially our list offormulas

for 'direct integration (Art. 55) , one of which maj' be obtained

from each of the derivative formulas in our last chapter. The

following set contains the most important of these :
—

2>,loga;= - gives f- = \ogx.
X X

Z),a' = a'loga " /,a'loga= a'.

D^e'=e' " fe'= e'.

DgBmx= co9X " Xcosaj=8ina;.

X),cosa;= — sina; " X(— sina;)= co8a;.

2),logsina;= etna; " /^ctna;= logsin!r.
'

D.logcosa;= — tana; " /,(— tanx) = logcosa;.

Z>-8in~*a;= *'
f, — =sin~'a;.

V(i-^) V(i-^)

X>.tan-'a;=—

^

" /_L^=tan-'a;. .

D,ver8~'a; = — " /, — =vers~^aj.
sj{2x-x') '''-sj{2x-x')

The second, fifth, and seventh in the second group can be

written in the more convenient forms,
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/.a = -,—

;

loga

/58mx= — cosa;;

f^tanx = — logcoso;.

75. When the expression to be integrated does not come under

any of the forms in the preceding list, it can often he prepared

for integration by a suitable change of variable, the new variable,

of course, being a function of the old. This method is called

integration by substitution, and is based upon a formula easily

deduced from D,{Fy) =D^Fy . D^y ;

which gives immediately

Fy=f,{D,Fy,Dji).

Let u=D,Fy,

then Fy=f,u,

and we have f»u=f,{uD,y)i

but x=- — -
b 6'

o

hence /,(a+ bxY = \f,7^=\ ^.
b b n+ 1

or, interchanging x and y,

f,u=f,{uD,x). [1]

For example, required f^{a + 6a;)*.

Let z = a-\- bx,

and then /,(a + bx)' =/,2" =/,(«- . D,x)
,

by [1] ;
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Substituting for z its value, we have

Example.

Find/,—^« -^W5. -log(a + &x).
a-\-ox

76 . Jffx represents a function that can be integrated,/(a+ 6a;)

can always be integrated ; for, if

then A»= T

and fj{a+ bx) =/Jz =fJzD,,^=^/./2.

Examples.
Find

(1) f^smax. ^ns. cosaa;.
a

(2) /.cosaaj. Ans. - sin oa;.

a

(3) /,tana«.

(4) /,ctn aaj.

77. BequiredA^^J_^y

f ^ -V 1

Let .2= ?,
a

then X= a«,

I>,x=a,
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1 r 1 -^ r I D.X

= 8in-^z=sin-*-.
a

Find 1 X

(1) /,^,. ^^^- a^^^'a'
a + a'

1 ^?is. vers"^-'

78. JJegmredX^^^^^,^-

Let z = x + V(^+ «'')5

then «_x = V(^+ «')'

22_22a; + ar' = ar' + aS

2z

. ,^
2"-^' '^+ "'

z' + a' V i-*^^'^ \.
2z' . vr

Example.
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79. When the expression to he integrated can be factored^ the

required integral can often be obtained by the use of a formula

deduced from D,{uv)= uD,v+ vD,w,

which gives uv =:/^uD„v +f^vD,u

or f,uD,v = uv—f,vD^u. [1]

This method is called integrating by parts*

(a) For example, required /,logx.

logcc can be regarded as the product of logo; by 1.

Call logo;= u and 1 = D,v^

then D,u= -,
X

v= x;
and we have

/,loga; =/, 1 log a; =f,uD^v = uv —/,vD,u

= a;log a; —fx-= aloga?— x,

EXAJMPLE.

Find /^x logo?.

Suggestion : Let logo:= u and x= D^v.

Ans. -x^llosx ].

2 V ^ 2j

80. Bequired /, sin* a;.

Let u= sino; and D^v = sinx,

then I>,M= cosa;,

v=s — cosa;,

y;sin*»= — sinajcosa; +/;cos*aj

;
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but cos^a;= 1 — sin^o;,

and /, sin* a;= a;— sin a; cosx—f^ six^x.

2/jSin^a;= x — sin a; cos a;,

^sin^a;= ^ (a;— sinajcosa;).

Examples.

(1) Find/^cos^a;. Ans. - (a; + sin a; cos a;).

A sin^a;

(2) /.sinajcosa;. Ans, -—

.

81. Very often both methods described above are required in

the same integration.

(a) Required f, sin~^ a;.

Let sin~^a;= y,

then x=siny;

DgX= cosy,

/,Bm-^x=f^y=fj,ycost/,

Let u = y and D^v= cosy

;

then Z>,w= l,

V= siny,

and

y^yco8y=y8iny—y^siny=y8iny+co8y=a;sin~*a;+VC^—^v

Any inverse or anti-function can be integrated by this method

if the direct function is integrable.

(6) Thu8, /J-^x=f,y=f,yDJy= yfy^fJy

where y—/"**•
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Examples.

(1) Find/, COS" ^ a. Ans. iccos"^* — >/(l — a;*).

(2) /.tan-^a;. Ans. x\sm-^x — -\og{l+ x^).

(3) /,vers~^a;. Ans. (a; — 1) vers~^a;+ ^(2a;— ar).

82. Sometimes an algebraic transformation^ either alone or in

combination with the jyreceding methods, is useful.

(a) Required/^— -.

nr— or

x^— a? 2a\x — a a; -j- aj

and, by Art. 75 (Ex.),

(&) Reqxdredf,\(^:±^.

\(\ +A = l+ Jg ^ 1
,

q?

f, — can be readily obtained by substituting y= (1— a^,

and is —y/{l— a^)
;

hence /lf\±A = sin-^a; -V (1- »*) •

(c) Required f^-yj (a^ — x^)

.

a^ — T? a' 0?
V(a2-x2)^

yjia^-x") ^{a?-^?) ^{a?-3?y
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whence /,V («^— ^) = a^ sin"^- —/, ——^——- , by Art. 77

;

a -^(af — of)

but /,V(a^- a^) = ^-^(a'- ^) +/,^^f_^y
by integration by parts, if we let

u= yj{a^— ii?) and D^v= 1.

Adding our two equations, we have

and •••/zV(«^-^) =
2
(»Va^- a^ + a^sin-^^V

Examples.
Find

(1) /.V(«^+ aO.

^ns. - [£cV(a^ + aO + a'log(a;+ Va^ + a^)].

(2) /,V(«^ -«=*).

^ws. r [aV (a?"- «') ^ a*^ log(« + Var^-a^) J

.

Applications.

83. To find the area of a segment of a circle.

Let the equation of the circle be

a^+ / = aS

and let the required segment be cut off by the double ordinatea

through (xo,yo) and {x,y) . Then the required area

A^2f,y+ C.
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From the equation of the circle,

hence A=^'2f,-sJ{a?-^)+ C;

and therefore, by Art. 82 (c)

,

yl = x-V (a"- ar=) + o? sin"^ - + C.

As the area is measured from the ordinate y^ to the ordinate y,

A=^0 when x = Xq;

therefore = XoV(«^- a?o') + o? sin" ^- + C,

C= —Xq '^{p? — Xq-) — a^sin"^—

»

and we have

A= X y/ (a^ — a^) -^ a^sin"^ XQ'^{a-—x^) — a-sin~^— ••

If a^= 0, and (he segment begins with the axis o/Y,

XA= x VC*^'^
— ^) + a'sin"^—

If, at the same time, x= a, the segment becomes a semicircle, and

A = a \l(a?— a*) + a^sin~^-= —-•
a 2

The area of the whole circle is no?.
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Examples.

(1) Show that, in the case of an ellipse,

the area of a segment beginning with any ordinate r/o is

^ = - a;^(a* — a^) + a^sin~^ a;ov'(a^— a'o')— a'sin"^- .

a[_ a aJ

That if the segment begins with the minor axis,

a\_ aJ

That the area of the whole ellipse is -ab.

(2) The area of a segment of the hj-perbola

— —^= 1

a- b'

is ^ = -[a;V(a^-a')-a-log(a;+V^^^=^2)

— a:oV(^o^— «^) + aHog^Xo+'s/xo-— a-)].

If a\,= a, and the segment begins at the vertex,

A=-lx'^{x' — a-) — a'log(a; +Va^ — a-) + a^loga]

.

Cv

84. To Jiiid the length of any arc of a circle^ the coordinates

of its extremities being {xQ^y^) and (x,y)

.

By Art. 52, «=/.V[l+(A2/)^.

From the equation of the circle,
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we have 2x -\- 2yD,y= 0,

y

^v 'yf - ^ -
2^'

s=/,^=a/,—-^—- = asin-^^+ C7. (Art. 77.)
y V(« — a;) a

When a;= iCo, s= ;

hence = a sin~^ - + C,

C7= — asin^-,
a'

^ f -1^ -i^\and 5= a(sin * sm *— •

\ a a/

If a;o= 0, and the arc is measured from the highest point of the

X
circle

J
s=a sin~ ^ - •

If the arc is a quadrant, x = a,

s= a8m Xl) = ^>

and the whole circumference = 27ra.

85. To^nd the length of an arc of the parabola y*= 2 mx.

"We have ^yDxV = 2m ;

y

V[i + (Ay)']
=->J(^^^

= 1 v(m»+ 30

;
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D,x= J-=iL, by Art. 73;

m itn,

by Art. 82, Ex. 1.

If the arc is measured from the vertex,

s= when y= ;

0= J-(mMogm)+ C,

C= mlogm,

2 [_ m To ^ J

Example.

Find the length of the arc of the curve a:? = 27^/^ included be-

tween the origin and the point whose abscissa is 15.

Ans. 19.
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CHAPTER VI.

CURVATTJEE.

86. Tlie total curvature of an arc of a continuous curve is its

total change of direction, and is measured by the angle formed

by the tangents at its extremities. The mean curvature of an

arc is its total curvature divided b}' its length. The actual curv-

ature of a curve at a given point is the limit approached by the

mean curvature of the arc beginning at the point, as the length

of the arc is indefinitely decreased.

Thus, in the figure, the total curvature of the arc Pq P, or Js, is

the angle <f, which is equal to t — tq or At. The mean curvature

is — , and the actual curvature at Pq is
As

imit r^"l=i),r.
5=0 [_J«J

limit

As

87. To find D,t in any particular example, we must, in theorj',

begin by expressing r in terms of s by the aid of our old relations

tan T=Z),y,

2>,s = V[l+ (Z)xy)'],
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together with the equation of the given curve ; but, in practice,

this part of the work may be avoided. By the aid of the rela-

tions just referred to, r and s may be expressed in terms of x
;

and, consequently, we may regard them as functions of x, and

can obtain their derivatives with respect to x ; and then the de-

rivative of either with respect to the other may be found by the

following principle.

88. If y is a function of x, and 2 is a function of «,

D..z=
D.y

[1]

For

limitnit fifl
= 0[_Ja;J limit

Ay limit [^~\ ^""-^

Az

Ax

Ay

AxAx=0 [_Ax

^ limit ri!l= limit f^l^^))?-
Ax^OlAyj Ay=OlAy_\

for Ax, Ay, and Az approach zero simultaneously.

89. We have thus, if x represents the curvature at any point

of the curve,

Since

but

and

tanr=Z>,y,

sec^T

sec«T= 1+ tan*T = 1 -f- (D^y)',

Ar =
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and, as A5= V[i+(Ay)'],

D.'y

'-±[i+ (Z>.2/r]i

79

Either the positive or the negative value might be chosen as the

normal one. For reasons that will be e\ident hereafter, it is

customary to use the negative one ; and we have

(a) For example, let it be required to find tlie curvature of a

straigJU line Ax -\-By-\-C=0 at any point.

Differentiating with respect to x, we have

A+BD,y = 0;

- DJ'y

[l+ (I>x2/)^]5 A4^ +
B"

a result which might have been anticipated

(6) Tlie curvature of a circle,

2x+ 2yD,y= 0i

Ay=—

;

y

mi
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y+ -

_ y-xD,y y_ ^^-f _ a^
'^~" f ~ f ~ f ~ t'"

— ^ -1. /^^'— ^ -i.
^' _ -^

Hence tli^ curvature of a circle is the same at every point, and is

equal to the reciprocal of the radius.

If a=l,

x = l;

and the unit of curvature is tlie curvature of the circle whose radius

is unity.

(c) The curvature of a parabola,

2/^= 2mx.

2yD^y=2m;

D^y =— ;

y

T\z fn T\ m

——^ (^' + y^) ^ _ m^
.

and is a function of y, one of the coordinates of the point con-
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sidered. From the form of z, it is obvious that the curvature

is greatest when y=0;

that is, at the vertex of the curve ; that it decreases as y in-

creases or decreases, and that it has equal values for values of

y which are equal with opposite signs.

Examples.

(1) Required the curvature of the ellipse

— + f-
= 1 at any point.

Ans, x = a*b*

(6*x*4-aV)*

(2) Ofthehj-perbola ^-^= 1.

(3) Of the equilateral hyperbola

Ans. x =

a'

(6V+ aV)*

^715. x= —
{x^+ f)i

Osculating Circle,

90. As the curvature of a circle has been found to be the

reciprocal of its radius, a circle may be drawn which shall have

anj- cur\ature required. A circle tangent to a curve at any pointy

and having the same curvature as the curve at that point, is called

the osculating circle of the cur\e at the point in question. Its

radius is called the radius of curvature of the cun'e at the point,

and its centre is called the centre of curvature.

From the definition of the radius of curvature, it is obviously
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normal to the curve, and its length is the reciprocal of the cui-va-

ture at the point. If p represents the radius of curvature, we

have

Of course, p is generally a function of the coordinates of the point

of the curve, and changes its length as the position of the point

in question is changed.

Evolutes.

91. The locus of the centre of curvature of a given curve is the

evolute of the curve.

Problem.

To find the equation of the evolute of a given curve

y=fx.

Let P, coordinates (x,y) , be anj'^ point of the curve, and i", {x',y')

the corresponding point of the evolute ; v the angle made by

the normal with the axis of x, and p the radius of curvature at

P. p and T can be found from the equation of the curve, and

v = --90°.

"We see from the figure, that

3^:= X — p cos Vj

y^y — /osinv:
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p and V can be expressed in terms of x and y ; and then, with

the given equation, y—fx^

we shall have three equations connecting the four variables, a:, y,

«', and y\ We can eliminate x and y, and so obtain a single

equation connecting cc' and y\ the variable coordinates of any

point on the evolute ; and this will be the equation required.

92. For example : Let us find the evolute of (he parabola

2/^=2 mx.

%BXi-c=D,y=z—\
y

tanv = tan (t— 90")= — cotT= — -^

;

sec^v = 1+ tan^ v =—-v^

»

m

cosv= ±

sinv = ± ^ .

Since v is given by its tangent, it may always be taken less than

180° ; therefore we may take the positive value of sins/, and in

that case, as tanv is negative, we must take cosv with the nega-

tive sign : we have then

Vsmv = :

-^{m'+ f)
'

We have seen. Art. 89 (c) , that

— m^
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hence P=-— » >

mr

y =y- ^— /^-^
;

and these equations, together with

y^= 2mXf

are the equations of the evolute.

Reducing, we have x' = m-\-3x;

x'— m
whence x= •

and y' -_^.

whence y=— (w'y') *•

Substituting in the equation of the parabola, we have

(mV)'=-^(a5'-wi).
o

Q
Reducing, m*y'^=— m^(x'— m)',

^ 4

27m

or, dropping accents.

f-—r-(x-m)\
2im

the required evolute ; a semi-cubical parabola.



CUEVATURE. 85Chap. VI.]

93. By expressing p and v in terms of x and y in the general

equations of tlie cvolute of y =fx,

we can throw these equations into a rather more convenient form.

We have the values p= — *-
, /^^ -*

,

tanT = i>,y,

tan»'=-—-,Ay
coti'— — D,y.

1

and

Reducing

8UH'=
[i+ CAy)^]*'

cosys Ay
[i+(Ay)'']4'

.,..., D-KAy)'G' A.y

• A^y *[i+ (Ayr]*'

. fi±<Ay)!P. L_.

= X - Ay ^./^^
A'y

^ ^^ A'y

[1]

Example.

Required the evolute of a circle. Ans. x'— 0, y'= 0.

94. To find the evolute of an ellipse

y
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D,y =
a-y

n2 &*

i+ {D,yy= J^
^

;

,,'- » ,

^'^ + «'r f «V"\ _ ,, 2/
(?>^^- + «V)

Since -'+ f:!=l,
a- b'

Wx^ -\-a-y' = a-h^',

a*y^= a-h-{c(?— or)
;

and b*x-=a-b-(b--f).

h*x^+ a* if= b'{a* - a-x- + b-x?) ,

or a2(6*-6V+ «V)-

,_ x{a*-a^x?-\-W3^ _ « - ^ ^

x=

Substituting in -^+ ^ =: 1

,
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we have f-i^Y+/^_^^Y=:l •

or, dropping accents,

(aa;)l + (&y)l = (a2-6^l.

Example.

Find the evolute of the h\-perbola ^ _ ?l = i

or Jr

Ans. {ax) » - (by) »= (a»+ 6«) I.

Properties of the Evolute.

95. "We have defined the evolute as the locus of the centre of
curvature of the curve. It is also the envelop of the normals

of the given curve, as may be readily shown ; that is, evejy

normal to the curve is tangent to the evolute. Let v be the in-

clination of the normal at the point (x,y) of the given curve to

the axis of X, and t' the inclination of the tangent at the corre-

sponding point {x\y') of the evolute. "We have seen already

that the normal at {x,y) passes through {x',y'), so it is only

necessary to prove that t'= v.

But tanT'= D^y'

and tanv=— ——

.

Hence we must show that Z)_, y'= — ——

.

Ay

By Art. 88, D^y'=^,,

since a' and y' may both be regarded as functions of a?.

^r-^ D.y[\ + {D.yY'\ .

D,'y
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^'^=^ WW
WvY

_ ZD^y{D^hjy—[\Jt{D.yY']D'y
.

Wyy

96. A second important propertj' of the evolute is that the

length of any arc of the evolute is the difference between the lengtlis

of the radii of curvature of the given curve which pass through the

extremities of the arc in question.

Let (osi,yi) and {x^iy^) be the extremities of any arc of the

evolute
; pi and P2 the radii of cur\'ature di-awn from these points

to the curve ; s/ the length of the arc of the evolute measured

from some fixed point on the evolute to {x^^y^) ; and s^ the

length of an arc measured from the same fixed point to {Xi,y2).

Then we wish to prove that

Sg — Si = p2— Pi,

or Js'=Jp,

or — = 1

,

Jp

Kmit r-^^'l-l

or Z>ps'=l,

where ^ must be regarded as a function of />.
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But D,8'=^

and As'=^^ = D,. s'. D,x\

A'y=-7j-, by Art. 95;

hence D^s<=^ [l+ C^.y)"]*.

by Art. 95.

'"=—wr~'

DpS'=^= l. Q.E.D.

97. These two properties enable us to regard any curve as

traced by the extremity of a stretched string umvound from the

evolute, the string being alwaj's tangent to the evohite, and its

free portion at any instant being the radius of curvature of the

curve at the point traced at that instant. From this point of
view, the curve itself is called the involute.
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CHAPTER VII.

SPECLAIi EXAMPLES AND APPLICATIONS.

The Cycloid.

98. The cycloid, a plane curv'e possessing very remarkable

geometrical and mechanical properties, was first studied just

before the invention of the Calculus, and has always been a

favorite with mathematicians.

It is the curve described in space by a fixed point in the rim

of a wheel as the wheel rolls along in a straight line ; or, more

strictl}', it is the curve described b}^ any fixed point in the cir-

cumference of a circle, as the circle, keeping alwaj^s in the same

plane, rolls without sliding along a fixed straight line. The
rolling circle is called the generating circle, and the fixed point

the generating point, of the cj'cloid.

The curve will evidently consist of an indefinite number of

equal arches, and can be cut by a straight line in an unhmited

number of points. Its equation, then, cannot be of a finite

degree, and so cannot be an algebraic equation. The cur\e is

a transcendental, as distinguished from an algebraic, curve.

99. As the arches are all alike, it will do to consider a single

one. Its base is obviously equal to the circumference, and its

height to the diameter, of the generating circle, and its right and

left hand halves are symmetrical.

We can get its equation most easily with the aid of an auxil-

iarj' angle. Take as axes the base of the C3cloid, and a per-

pendicular to the base through the lowest position of the generat-

ing point, and represent by the angle made by the radius

drawn to the generating point at any instant, with the radius

drawn to the lowest point of the generating circle. The arc
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joining the two points just mentioned is aO, by Art. 66, if a is

the radius of the circle ; and this is therefore the length OT. K
X and y are the coordinates of P, any point on the cycloid,

x = aO — asinO

y = a — acosO
(-4)

and these ma}' be taken as the equations of the cjcloid. Of
course, may be. eliminated between these equations, and a

single equation obtained, containing x and y as the only varia-

bles. We get cos^=
a — y

1— cos^= - = vers^,

hence
y

^= vers~^-?
Cb

sin^ = V(l-cos2^)= ±-V(2«y-2^),

and
y

X= a vers-^ - if V(2 ay - 2/^)

»

(B)

where the upper sign before the radical is to be used for points

corresponding to values of^<w, that is, for points on the first

half of the arch, and the lower sign for points on the second

half of the curve.
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Examples.

( 1 ) Discuss completely the form of the cycloid from equations

(^), supposing to increase from to 2?:,

(2) Discuss the form of the cycloid from equation (5), sup-

posing y to increase from to 2 a.

100. If our axes are lines parallel and perpendicular to the

base through the highest point of the curve, the equations have

a slightly different form. Let be measured from the highest

point of the generating circle.

and

OT=AB= a0

x = a0-i-asm0

y= —a-\-aeos0
(C)

Examples.

(1) Obtain equations (C) from equations (A) by transform-

ation of coordinates, noting that the formulas required are

x=aTz-\-x\

y=2a-\-y\

0=77 + 0'.

(2) Eliminate and obtain a single equation for the cycloid

referred to its vertex as origin.
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101. The properties of the curve can be investigated from the

equations involving or from the single equation. In the text

we shall employ the former. AVe ought to be able to determine

(1) the direction of the tangent and normal at any point of the

curve ; (2) the equations of tangent and normal
; (3) the lengths

of tangent, normal, subtangent, and subnormal
; (4) the curva-

ture of the cycloid at any point
; (5) the evolute

; (6) the length

of an arc of the curve ; (7) the area of a segment of the curve.

(1) 102. a;= a^ — a sin ^,

2/ = a — acos^,

^e.V asinw . sinfl

a — acostf 1— costf

2 sing cos
1

D,x 2sin2|
cot 9.

tanv = — cotr = — tan|.

Since, as we have seen in Art. 99,

8in&= iV(2«y-2/')
a

and 1 — co80= ^,
a

tanr can be written = If _^ ~ M'

nn/1 ton i. "

Since tany=— tan|,

v=.-» by trigonometry.

In the figure (see next page) , PTO being formed by a tangent

and a chord, is measured by half the arc PT, and therefore is

equal to |. PTA^ then, is equal to v^ and the line PT is a normal.

Hence the normal at any point on the cycloid passes tJirotigh the

lowest point of the generating circle. The tangent must, therefore,

pass through the highest point of the generating circle.
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(1) At what point of the cun-e is the tangent parallel to the

base of the cj'cloid ? Perpendicular to the base ? Where does

it make an angle of 45° with the base ?

(2) Obtain the values of tan r and tanv from equation (J5).

(2) 103. The equation of the tangent at the point (a;o,yo) is

by Art. 28, y — yo=coi^(x — Xq)
,

or y-yo=jC—-i ](x-xo) ;

of the normal, is y — yQ=— tan £ (x — Xq),

or y-yo=- Vo

V(2ayo-yo)
(a-Xo).

ExASrPLE.

Show, from the equation of the normal, that it passes through

the point (a^,0) , the lowest point of the generating circle.

(3) 104. "We have the formulas,

t,= y
D^y
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Ay

n = 2/V[l+ (Ay)']; (Art. 28);

a(l-cos<7) 2asin2^
hence t^ = -^ —^ = — = 2 a sin-|tanf •

cot
I

cot
I

n,= a (1— cos^)cot| = 2 a sin^j cot.) = 2 asin|cos|= a sin <^,

<= 2asin^ftan|cscf = 2asinftanf.

w= 2 a sin'l cscf= 2 a sin |.

Since D^y=J(—-i\

the value of n may be expressed,

2) 2^ _ l>.(Ay) _ zj^- _ i_csc*4

[l+ (At/)^]i = csc«|,

hence x=— cscf,

and /o = _ = 4asinf=2 71=2^/(202/) ;

and the radms of curvature^ at any point is equal to twice the

normal drawn at the point.
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Examples.

(1) Find at what points of the curve the curvature is great-

est ; at what least.

(2) Obtain the expression for the curvature from the equa-

tion (B)

.

(5) 106. The equations of the evolute of a curve are

J. l+ (D,yy'=x— D,y —' '^ J^'

y = y-\-
D:-y

(Art. 93 [1]).

Here

cotfcsc*? - „
a;'=a^ — a sin ^ '-- = aO— asin^ + 4asin|cos|

=.aO — asin(?+ 2asin^,

= ad -\-a^\xid.

y'=a — a cos0-\-
csc'l

T~ CSC*#
4a •*

= a — a cos — Aa sin^|

a(l — cos(9)— 2a(l— cosO)= —a + rtcos^;

and we have, as the equations of the evolute,

a;'=a^ + asin^
]

y'= — a + acos^J

but these (Art. 100) are the equations of an equal c3'cloid re-

ferred to the tangent and normal at the vertex as axes. The
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c^'cloid and its evolute would be situated as indicated by the

figure.

The property of the evolute established in Art. 96 enables us

to obtain easily the length of the aic of an arch of the cycloid

The length of the half-arch of the evolute is the difference be-

tween the radii of curvature at the highest and the lowest points

of the given cun'e ; that is,

[/o]fl=ir— [/>]e=o=4asin-^ — 4asin0 = 4a,

and S, the whole arc,= 8a.

(6) 107. The length of an arc of the cj'cloid can be found

from the formula s =/x[l+ (D^yY^i

without using the evolute.

We have D^y= cot^,

[l + (Z).2/)^4 = csc|;

hence «=y],csc|=y^csc|Z>ga;:

but DgX=2asm%

and s=2a/gsin|.
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Let z= l;

then D.6=2,

s=2a/gSinz= 2ay^sinzZ),^= — 4acos2+ C,

s= — 4acos2 + C.

If we measure the arc from the origin, s must equal vhen

0=Q.

0= — 4acosO + C,

C=4a,

and we have s= 4a(l — cos|).

To get the whole arch, let = 2-,

s = 4o(l— cos-) = 8a.

(7) 108. For the area of a segment of the arch, we have the

formula A=f^y + C.

f.y = af,{l-cosO) = afg{l-cos0)DgX= a%(l-cosdy

= a%{l -20036+ cos*^)= a^(fg 1- 2/^ cos +/g cos'' 6),

/gCos^=sin^,

/gCOS*^=^(5+ sin^costf)

[see Art. 80, Ex. (1)] ;

hence A = a-l0 — 2sm0 -\- ^{0 + sin^cos^)]+ C.

If the segment is measured from the origin,

^= when ^ = ;

= a'' [0 - + KO + 0)]+ C

and C=0.
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The area of the whole arch is obtained by making

0=2-.

-4= a2[27r — 28in2ff + ^(2ff + sin2ffC0s2n-)]=3;ra«,

so that the area of the arch is three times the area of the gen-

erating circle.

EXASIFLE.

Find the length of an arc and the area of a segment from the

equation {B).

109. If the generating circle rolls on the circumference of a

fixed circle, instead of on a fixed line, the curve generated is

called an epicycloid, if the rolling circle and the fixed circle are

tangent externally, a hypocycloid, if the}' are tangent internally.

The equations of these cmres may be readily obtained. Let the

figure represent the generation of an epicj-cloid, P being the

generating point and E the starting point. Call AOB, ; and

PCA, <p ; OD is x and DP is y. Let a and 6 be the radii of

fixed and rolling circles. Then
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a = (a + 6) cos (9 + 6 sin ^—(- — d\

y = (a + b)sm0 — bcos\^—('-^ — 0j ;

but the arcs AP and AU are equal, and

AP=b<p,

AE= adj

hence aO= 6y>

and

f + 0' =—r- ^»

and the equations become

a + b
x = (a + b)cosd — bcos—^—

y = {a + b)&me- b sin^^^ 6
b

m

The equations of the hj-pocjxloid are, in like manner, found to

be x = {a — h) cos -\-b cos -—
b

y=(a-6)sin<?-6sin^5—-^ 6
b

[2]

Examples.

(1) If6 = ain the epicj'cloid, the curve is caUed a cardioide.

Show that its polar equation is

r= 2a(l — cossp)

when the starting point is taken as pole.
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(2) If a= 46 in the hjTiocj'cloid, obtain the cartesian equa-

tion of the curve by eliminating 0. Ans. a* + yJ = ai.

(3) If a = 2& in the h3'pocyloid, show that the curve reduces

to a diameter of the fixed circle.

(4) Prove by differentiation that the normal at any point of

either epicycloid or hypocycloid passes through the point of con-

tact of fixed and generating circles.
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CHAPTER VIII.

PROBLEMS IN MECHANICS.

110. We have seen (Art. 12) that, if s represents the dis-

tance traversed by a nl0^^ng body in t seconds, and can be

expressed as a function of t, the velocit}" of the body at any

instant v = DtS.

111. The acceleration of a moving body at any instant is the

rate at which its velocity is changing at that instant. If the

velocity is increasing, the acceleration is positive ; if diminish-

ing, the acceleration is negative. We shall represent it by a,

and it is evidently a function of t. Since the derivative of a

function measures the rate at which its value is changing (Art.

38) , we shall have a =DtV—D^ s,

since v=DtS.

For example : in the case of a bod}' falling freely near the sur-

face of the earth, we have approximatel}' the law

Here v = Z),s= 32 «,

and az=D,v = DfS = d2,

and the acceleration is constant and is equal to 32 feet a second

;

that is, the velocity of the fall at any instant is 32 feet a second

greater than it was a second before. The relations

v=DtS

and a=D,v=D,^s,
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and the corresponding formulas,

obtained by integrating them, are of great importance in prob-

lems coneerniug motion.

112. We shall assume the following principles of mechanics

:

(1) A force acting on a body in the line of its motion produces

an acceleration j)roportioncd to the intensity of the force ; and this

acceleration is taken as the measure of the force. We speak of

a force as a force producing an acceleration of so many feet a

second; or, more briefly', as a force of so many feet a second.

(2) The effect of a force in producing acceleration in any direc-

tion not its own, is the product of the magnitude of the force by

the cosine of the angle between the two directions; or, in other

words, it is the projection of the line representing the force in

direction and intensity upon the line of the direction in question.

Problem.

113. The force exerted bj* the earth's attraction upon any

particle of matter is constant at an}' given part of the earth's

surface, and is nearly equal to 32 feet a second. Let g repre-

sent the exact value of this force at any given point of the

earth's surface, required the velocity of a falling bod}' at the

end of t seconds, and the distance fallen in t seconds. Here a

is constant and equal to g.

V=f^a=f,g= gt + C.

If the body falls from rest, its velocity is when f is ;

C=0;

and v= gt.
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When t is 0, the distance fallen must be ;

c=o,

and s= ^gt^.

If the body, instead of being dropped, had started with an initial

velocity r'o,— for example, if it had been fired from a gun directly

down or directly up,—we should have found a different value

for C in the expression for the velocity,

v= gt+G',

for now , when <=0,

V = Vo\

hence

and v= gf«+ Vo.

8=f,V ==y;(9^ + Vo) = lg^+ Vo<+C;

but as s=0 when f = 0,

C=0,

and s= ^gf+ Vot.

114. The equation a = g

or D^s= g

can be integrated by a second method of considerable interest

and generality. Multipl}' both members by 2Z>,s.

2DtsD*s=2gD,s\
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bnt 2D,sD,'s = D,(D,sy;

hence f,2D,sD,''s = (D,sy,

and we have (A«)' =^gftDtS=2g8 +

or vr=2gs + C.

In the case of a falling body, when

f= 0, -u = 0, and s= ;

hence (7=0

and v^=2gsy

v = V(2^s), [1]

or D,s = ^{2gs).

"We cannot integrate directly here, for the first member is a

function of t and the second member a function of s ; but since

As= -^, by Art. 73,

DA= ^— =

—

— *-4.

•'•V(2g') V(2^) \U/
Since a= when <= 0,

C=0

and t

=>i(7)-

It is easily seen that these new values for v and t are entirely

consistent with those obtained in the last article.
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115. If the force is any constant force /, instead of g, we

^ have merel}- to substitute / for g in the preceding

results. For example, take the case of a body

sliding without friction down an inclined plane.

Here, b}- Art. 112, (2), the accelerating force

in the direction of the motion is gcos (90° — f) , therefore

a = (/sin^,

-y = A/(2{/sin^.s), •

Nlv/sin^,
and t =

when there is no initial velocit}'. In this case, the velocity and

time are easily expressed in terms of the vertical distance

through which the body has descended. Let OP be s, and OA,
the vertical distance, be y. Then

2/ = ssin^,

v = y/i2gy),

~yi\gssin<fj~ \W
Substitute y for s in Art. 114, [1] and [2], and we get, as the

velocity the body would acquire falling freel}' through the verti-

cal distance y, and the time required for the fall,

v = V(29'?/),

We see the two velocities are identical ; that is, the velocity

acquired by a body descending an inclined plane is predisely

what it woidd have acquired falling through the vertical distance

it has actually descended.
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- is the mean velocity of the body during its descent, and

for the inclined plane,

= If^\ for the falling body.I
t

Hence the mean velocity of a body descending an inclined plane

is equal to the mean velocity of a body whicJi has fallen freely the

same vertical distance.

116. Let the figure represent a vertical circle. The time of

descent of a body sliding down any chord is

-^IC-^)=^I(^)=1
2 s sec (90° -9))"

9

by Art. 115. K a is the radius,

s.sec(90°-5P) = 2a

and .

<=2''^«^

which is also the time a body would require to fall vertically the

distance 2 a. Therefore, the time of descent down a chord of a

vertical circle from the highest point of the circle to any point

of the circumference is constant, and is equal to the time it would

take the body to fall from the highest to the lowest point of the

same circle.
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Example.

Show that the time of descent down a chord from any point

of a vertical circle to the lowest point of the circle is constant.

Problem.

117. To find the velocity acquired by a body falling from a

distance toward the earth under the influence of

the earth's attraction.

Here we cannot regard the attracting force as

constant, as we do in dealing with small distances

near the smface of the earth, but must take it as

inversely proportional to the square of the distance

of the bod}* from the centre of the earth. Let B
be the radius of the earth ; Tq the distance from

the centre of the earth to the point at which the

body started ; r the distance from the centre to

the position of the falling body when the time t

has elapsed. Let g be the force of the attraction

of the earth at the earth's smface, and / the force

exerted at P.

f B^
Then we have -'-=—=

9 'T

or /=V="'

s, the distance fallen in the time t, equals r^— r.

DtS= — D,r= v^

hence —Dt^r= ^^,r

D.'r=-S^.
r
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Multiply by 2A »•
; 2A »" A' r = ~ ^^^'^'^.

Integrate

:

2an?
and r^^-^+C.

When the body was on the point of starting, its velocity was

zero ; hence, when r = ?'o,
-y = ;

and

c- '''',
ro

and - v'=2gE'f---\

When the body reaches the surface of the earth,

and ^=2,ie=(l-i).

The greater the value of ro in this result— that is, the greater

the distance of the starting point from the centre of the earth—
the nearer — comes to the value 0, and the nearer v^ approaches

to -^— or to 2gE. In other words, the limiting value of the
2i

velocity acquired by a bod}' falling from a distance to the surface

of the earth under the influence of the earth's attraction, as the

distance of the starting point is indefinite!}' increased, is ^/(2g'i2).

Let us compute roughly the numerical value of this expression.

g is about 32 feet per second ; and as we use the foot as a unit

in one of our values, we must in all : therefore li must be ex-
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pressed in feet. R is about 4,000 miles, or 21,120,000 feet.

V(-B) = 4,600, nearly.

V(2gr) = V(64)= 8.

y/(2gR) — 36,800 feet, or nearly seven miles ; and our required

velocit}' is nearly seven miles a second ; and neglecting the re-

sistance of the air, this is the velocit}- with which a projectile

would have to be thrown from the sm'face of the earth to prevent

its returning.

We can easily go on and get an expression for the time of the

fall by a second integration.

We have (D,ry= 2gR-(- -^= 2gR- ^" ~ ^
;

\r rj Tor

>IG

an expression to which we can apply the method of integration

by parts.

Let w = r,

then DrU = 1

;

and let D,v =
^/Ov—i-y

then v= vers-^— by Art. 77, Ex. (2)

.

/• ^ -i2r y. _i2r
fr—n ::Tr=»*ver8 ' /,vers *—

yj{rtr— r') Tq n
by Art. 79, [1].
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Let «=—

,

then D,r = -".

2

?'o 2 2

by Art. 75, [1], and Art. 81, Ex. (3). Replacing z by its

value, /.vers-'^=(r- -"^ vers"^^ + VC^or - r")

.

When r = 7*0, ^ = ;

"^"^
«=>|(2^)(t)+^'

^=
-V(2^)(?)'

Examples.

(1) The mean distance of the moon from the earth being

237,000 miles, find the velocity a body would acquire, and the

time it would occupy, in falling from the moon to the earth's

surface, neglecting the retarding effect of the moon's attraction.

(2) The force of the sun's attraction at its own surface is

905.5 feet ; find the velocity a body would acquire, and the

time it would occupy, in falling from the earth to the sun.

Earth's mean distance = 92,000,000 miles ; sun's diameter =
860,000 mUes.
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(3) Find the limit of the velocity a body could acquire fall-

ing from a distance to the sun.

(4) How long would it take Saturn to fall to the sun,

Saturn's mean distance being about 880,000,000 miles?

Problem.

118. To find the velocitj- acquired under the influence of

gravity bj' a body sliding without friction down a given curve,

or in an}' wa}' constrained to move in a fixed cun'e.

Here the effective accelerating force is always tangent to the

cur^-e at the point the moving particle has reached. Suppose

the origin of coordinates at the starting point, and let the direc-

tion downward be the positive direction of the ordinates. Of

course, this will amount to changing the sign of Dj,y ; that is,

will make t the supplement of its usual value. The acceleration

a = gcos^ = gcos (90° — ") = grsinr

A2/=tanr,

l + (Z),y)2=sec='r,

1 J

l+(i>x!/r

:— ^m T
[l+(^.y)^']i '
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hence a=D,^s= -—-^ '-^
„^, ;

but [i+ (A2/)-]i=As;

Multiply by 22), s:

2D,sD,'s=2yD,rjD,s=2gD,y.

Integi-ate with resi)cct to t, and

v'= (D,sy=2gy-hC.

If the particle started from rest at 0,

v = when y= 0,

and C=0,

v= V(2sry);

but this is precisely the velocity it would have acquired in falling

freel}" through the vertical distance y (Art. 1 14, [1 ] ) . So we are

led to the remai-kable result, that the velocity of a material par-

ticle, sliding without friction down a curv'e, under the influence

of gi-avit\', is the same at any instant as if it had fallen freely to

the same vertical distance below the starting point. A special

case of this has already been noticed in Art. 115.

Example.

Prove, from the equation of a circle, and the equation of a

chord through its highest point, that the time of descent is inde-

pendent of the length of the chord.

Problem.

119. To find the time of descent of a particle from any point

of the arc of an inverted cycloid to the vertex of the curs'e.

Taking the origin at the vertex of the cun'e, its equations are
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x=aO -{- a sin

y = a — a cos

(Art. 100).

Let yn be the ordinate of the starting point, and y the ordinate

of the point reached after t seconds. Then the vertical distance

fallen is ?/o
- y, and v = ^-2(j{y(,-7j), by Art. 118.

D,s = 'sj2(j{y^-y)
;

^2g(yo-y)

t=/s
1

=/«
1

V2f/(?/o-2/) " ^2g{yo-y)
DyS'y

D^s = ^/l + {D^yy;

DgX = a + acostf

;

Dey= asm0;

D J.
— -^g^— ^+ ^sg

.

' Dey Bva.0

a — y
cos^ = ;
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2<i — y.
l+CQ80 =

a

a? — a? + '2,ay — y^ 2ay — y^
^

a* a'

&inO = -J(2ay-y^);

' ^i2ay-f) \{2a-y)y \\ y J

'

by Art. 77 (c) . When y = yo,t=0;

hence = J/"-") vers"^ (2) + C.

vers~^(2) is the angle which has the cosine —1, that is, the

angle jt. Hence, C= — ^(( - ) ^i

When the particle reaches the vertex,

y = o,

vers"^ -^ = 0,
Vo

and t=it
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As this expression is independent of jo, the ordinate of the starting

pointy the time of descent to the vertex ivill be the same for all

points of the curve. K a pendulum were made to swing in a

cycloid, this time '^^If-) would be one-half the time of a com-

plete ^'ibration, which would therefore be independent of the

length of the arc. On account of this property-, the cycloid is

called the taulochrone curve.

Example.

120. It is shown in mechanics, that, if the earth were a per-

fect and homogeneous sphere, and a C3lindrical hole having its

axis coincident with a diameter were bored through it, the at-

traction exerted on anj' bod}' within this opening would be pro-

portional to its distance from the centre. Find the exi3ression

for the velocit}' of a bod}' at any instant, supposing it to Jiave

been dropped into this hole, and the time it would take to reach

any given point of its course. Compute (1) its velocitj- when

half-wa}' to the centre
; (2) when at the centre ; (3) the time it

would take it to reach the centre, if dropped from the surface
;

(4) if di'opped from any point below the surface. Given gr = 32 ;

Bf the radius of the earth, = 4,000 miles.
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CHAPTER IX.

DEVELOPMENT IN SERIES.

121. A sei'ies is a sum composed of aa unlimited number of

terms which follow one another according to some law. If the

terms of a series are real and finite, the sum of the first n tenns

is a definite value, no matter how great the value of n. If this

sum approaches a definite limit as n is indefinitely increased, the

series is convergent ; if not, it is divergent. The limit approached

1)}' the sum of the first n terms of a convergent series as n in-

creases indefinitely, is called the sum of the series, or simplj'

the series. Thus, we may express the result anived at in Art. 6

b}' saving the sion of the series \ + ^ + i+ 1+ is 2; or,

more briefly, the series 1+;^ + ^ + ^+ = 2.

EXAJIPLE.

122. Take the series \ + x-\-i>?+ a?+ , ad infinitum. The

series is a geometrical progression, and the sum of n terms can

be found by the formula s—

Here

r-1

g;" — 1 _ 1 — a^

x—\ \ —x'

and the sum of the series = , a definite value, and the scries
1—

X

is, therefore, convergent.
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Ifar>l, x"= 00 when n = 00
,

and the sum increases without limit as the number of terms in-

creases indefinitely, and the series is divergent. The series

l + a: + a^+ a:^+ can be obtained from by actual di\i-
1— x

sion, but the fraction and the series are equal only ichen x<l

;

for has a definite value when a;>l ; but, as we have seen,
\ — x

the series in that case has not a definite sum. It is very unsafe

to make use of divergent series, or to base any reasoning tipon

them, for, from their nature, they are wholly indefinite. Con-

vergent series, on the other hand, are perfectl}* definite values.

It is easily seen that the sum of the first n terms of a series

cannot approach indefinitely a fixed value as n is increased, un-

less, as ice advance in the series, the terms eventually decrease;

or, in other words, unless the ratio of the nth term to the one

before it eventually becomes and remains less than unity as n is

increased. This, however, aflTords only a negative test for the

convergency of series, as a series may not be convergent even

when each term is less than the term before it.

123. The series we have just considered is an example of a

series arranged according to the ascending powers of a variable,

and such series plaj' an important part in the theory of functions.

We are naturallj' led to the consideration of terms of such a

series whenever we attempt to obtain a function from one of its

derivatives. Suppose i)j"/(xo + /?) = 2

where ^ is a variable, x^ a given value, and 2, of course, a func-

tion of h . Let /* stand for Jf, &c. , so that f''=Jp'-^.

Then Dl'Vi^+ h)=A, -hf^z,

where J.i is a constant

;
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m-Vi^o + h) =A, +A,h + ^A,h'+ ^^i'^' +/**«»

/(a^+ /i) =A +A-i/i + M«-2'i' + 2V ^'-''*'+

2.3 (n-1)
A/i"-'+/»"z,

and we have a set of terms arranged according to the ascending

powers of h. Although, by increasing n indefinitely, we can

make the second member above a true series, it does not by

anj' means follow that ever}' function can be developed into such

a series. In the first place, it ma^' not be possible to increase

n indefinitely in the expression above, as the wth derivative of

the function may become at last infinite or discontinuous, so

that//z cannot be dealt with. Next, the series may be a diver-

gent series, and then it could not be equal to the definite value

f{Xf) + h). But the result is a remarkable one, and suggests

the careful investigation of the development of functions in

series.

124. Assuming, for the moment, that/(xo + h) can be devel-

oped into a convergent series arranged according to the ascend-

ing powers of h, let us see what the coefficients of the series

must be. Let

/(x, + h) = Ao+A,h+A2h'+A,h^ + +A/i" +

The function and the series are both functions of /i, and may be

differentiated relativel}' to h.

DJ{x^ + ^0 =Ai-\-2A^h + 3J3/i2+4A/iH +n^„/i»-'-|-

We shall find it convenient to adopt the following notation

:

Let /'a; stand for DJx, f'x for D^^x, /^"^x for Z>,"/x. Let
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/'ai)i/^"^a;o stand for the results obtained by substituting Xq for x

in fx, /^"^ X, where x^ may be a single term or anj- comphcated

function. Let n ! (which is to be read n admiration) stand for

Ix2x3x4x X n.

Call (a-o + 7i) = X,

then DJ{x, + h)=DJx=DJxD^x

=/'(xo+ h)D,{xo + h)=f{xo+ h).

In like manner, we could show that

A" (^0 + /O =/'"' (•'^0+ h)
, &c.

/(")(a^+^)= w!A+(n+l)ji....2A+i?i+....

Let h =i in these equations, and we have

jxq = Af), f Xq-=o. A^^

hence -4o=A„ ^3=— /'"a-o,

2 n!
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and /(xo + h) =fxo +hf'x, + ^If'x, + ^/'"x^ + ^^/^x^

if/(3?o+ '0 can be developed.

Examples.

(1) To develop (a + h)".

Call (a + h) = Xf

then /x= af*f

/'x= nx'*~^y

/"a; = w(n-l)af-2,

/"'a;= ?i(w-l)(w-2)x»-», &c.

/a = a",

/"a = n(w-l)a''-2,

/'"a = n(n -1) (n - 2)a"-^ &c.

(a+ 7i)" = a" + na»-Vi + n(n-l) ^^„_2^2

. w(w — l)(n— 2) „_3T3 ,+ -^^
^y ^ a''-^h^-\- ,

if (a + h)" can be developed.

(2) To develop sin^.

sin^ = sin(0 + A).

Let xz=0 + h.
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/i;=sina;, yD = sinO = 0,

/'ir=cosa:, /'0 = cosO=l,

/"x = - sinx, /"O = - sin = 0,

/"'x=-cosa;, /"'0=-cosO= -1,

/^a;=sina;, &c. /^0 = smO = 0, &c.

sin(0 + /0 = + /i + 0.— -— + 0.— +— +
,

sin/i = /i \- ,

3! 5! 7! 9!

i/sinh can be developed.

(3) Assuming that cosJi can be developed, determine the

series.

125. Let us find what error we are liable to commit if we take

/(Xo + h) equal to 71+1 terms of the series (Art. 124, [1]).

Let R be the difference between /{xq+ h) and the sum of the

first n + 1 terms ; then

/(x, + h) =fx,+ h/'x,+ ^fx^ + + ^/(-)a^ _f.iJ,
2

!

n !

and we want to find the value of R.

Lemma.

126. If a continuous function becomes equal to zero for two

diflferent values of the variable, there must be some value of the

variable between the two for which the derivative of the function

will equal zero.

For, in passing from the first zero value to the second, the

function must first increase and then decrease as the variable



Chap. IX.] DEVELOPMENT IN SERIES. 123

increases, or first decrease and then increase. If it does the

first, the derivative must at some point change from a positive

to a negative value ; if the second, the derivative must change

from a negative to a positive value, and in so doing it must, in

either case, pass through the value zero.

127. To determine R.

Let P=R-^
(n + 1)!'

7,n + l

then R =— , P,
(n-fl)!

and

or

/(a^+/0-Ao-7/'ar„-|!/"a;o -l^^fi^^x,-J^^^P= 0.

Call (x^ + h)=X;

then h = X— ajfl, and we have

1 ! 71 I

(n+l)! ^ -^

Fonn arbitrarily' the same function of a variable z that the fii-st

member of [1] is of a'o, and call it Fz.

Fz
^,^ ^ (X— z) ~, (X—zY^,,=/X-fz- ^

^^ ^ fz-
2!

^

_ {X-zY .(„)^ _ {X-zY^^ p
n\ '' (n + 1)!
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Ifz = XQ, Fz becomes identical with the first member of [1], and

therefore = 0.

If z=X,Fz=0,

since each term disappears from containing a zero factor ; and

we have succeeded in forming a function of z, which becomes

equal to zero for two values, Xq and X of z. If Fz is continuous,

there must be some value ofz between Xq andX for which F'z = 0.

Differentiating Fz, and remembering that P is constant, we have

F'z^O-f'z+f0- i^^^^f'z + (-^-^)/f'z _ (^-^Yfff'g

^ 2! -^ ^ {n-1) I

''

{X-zY ^^, {X-zY p
n\ ''

"^ »!

All the terms but the last two destroy one another, and

But this must be equal to zero for some value of z between Xq

and X. [Such a value can be represented by Xq+0{X—Xq)
where 6 is some positive fraction less than 1, i.e., 0<d<l.
Substituting this value, we have

[_X-x^-e{X-x,)-Y p

Whence P=/(»+" [a-o + 0{X-x^)'].

X— Xo= h,
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whence /(a-o + /0=A +^/%+ |^/"«o+

where all that we know about is that it lies between and 1.

128. The expression for the last term may be obtained in^a

different form b}' assuming at the start

R = hP

instead of R = —^ P.
(n + l)!

Making this assumption, show that

/(^o + h) =fxo+ hf'xo + ^f"x,+

nl nl

Since in each of these formulas Xa was any given value, we can

represent it in the result just as well by x, and the formulas may
be written

/(x + h) =fx +hf'x + ^f"x+
2!"

[1]

f(z + h) =fx+ hf'x + ^f"x+

n 1 nl

and these formulas are known as Taylofs Theorem.
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Example.

129. To develop (2+1)*.

Let us see what error we are liable to if we stop at tlie second

term.

fx=x\ /"'a;=24a;,

f'x= 4.s?, f^x=24,

/"x=12x', px = 0.

(2 +1)^= 2*+ 1.4.23+ il 12(2 + ^)2.

If ^=0, the last term is 24. If ^ = 1, the last term is 54.

Hence, if we stop at the second term, our error lies between 24

and 54. In point of fact, it is 33. Suppose we stop with the

third term.

(2 + l)*=2*+1.4.23+ i! 12.22+ 1! 24(2+5).

If = 0, the last term is 8. If 5 = 1, the last term is 12, and

the error must be between 8 and 12. It is actuallj' 9. Suppose

we stop with the fourth term.

(2+1)* = 2* + 1.4.2^+— 12.2^+— 24.2 +— 24.
2! 3! 4!

Here the error is precisely — 24 = 1.

Example.

Tofindsin(0+1).

Let n = 7.

fx= sina, f^x = sina;,

/'a; = cosx, f^x = cosXf

f"x= — sinx, /"x = — sinx, &c.

/"'a;= — cosa;,
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8in(0 + l)=l-— +— -—+— sin <?.^^ 3!5! 7! 8!

U0 = 0,
sinO

8!
= 0.

sinO

8!

sinl

40320
If^=l,

iSIJ is within iiy^xy of the true value of sinl.

If in any development the general expression for the eiror

decreases indefinitely as we increase n, it follows that, as the

number of terms of the series is indefinitely increased, the sum
will approach as its limit the value of the function, which is

therefore equal to a series of the form obtained^ and is said to be

developable.

130. Let us consider some examples.

To develop log(l+ a;).

Let «=(l+x).
/2 = log^r,

f'z = z-\

f"z=-2-\

f"'z=2^\

f^2=-S \^\

/w^=(-l)"-i(n-l) !0-»,

/"'(1)=2,
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/-(l)=-3!,

/('•)(1) = (-1)"-Hn-1)!,

/(» + i)(l_l_^x) = (-!)"« !(l+^a')-"-^

By Taylor's Theorem,
/)(•-• />i3 /%»4 nM

log(l+ x) = x-^ + -l-^+ 4.(_i)-i^
2 3 4 n

( -INB^n + l

(_l)(„_l)a;
The ratio of the nth term to the term before it is ,

— (1

—

\x. Ifxis greater than 1 in absolute value, (1— \x
\ nj \ nj

will eventually become and remain greater than unity as n in-

creases, and the series

a^ , afi X*
,X \-

2 3 4

is divergent and cannot be equal to log(l+ a;). So we need

onl}- investigate the expression for the error for the values of x

between +1 and —1. Suppose x is positive, and less than 1.

/j.n + 1

Then (1+^^)""" approaches zero as its limit as n in-
w + 1

creases indefinitel}', for it ma}' be thrown into the form

-^ f—^L-X^'. Since a;<l, -^— <i. (,^—\+i has
n + l\l-\-0xJ l+ Ox^"-' \l+0xj
zero for its limit as n increases indefinitel}' ; as has also the

factor . Hence, for values of x between and 1, log(l+ x)
n+l

is developable, and is equal to the series

a? , 7? X*
,X \-

2 3 4

This is true even where a;= 1 , for it is easily seen that, in that

\ / X \"+*
case also, ( ) approaches the limit zero as n in-

n + \\l+0xj ^*
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creases. If x is between and —1, the second form of the

error, Art. 128, [2], is most convenient for our purpose. Let

X = —x\ so that x' is positive and less than 1 . Then our func-

tion is log(l — x'), and the series becomes

^23 ~n {1-Oxy-^^

{l-Ox'y + ^ ~ l-Ox'\l-0x')
'

x'— fix'
where '— is less than 1

;

1-Ox'

hence
limit

/.^^-^Y^

x'
and as

;
is a finite value, the expression for the error de-

creases indefinitely as n increases, and the function is equal to

the series. Our expansion

/>.S /V.3 /w4

log(l+ a;) = a;-| +|-| +

holds, then, for values of a; between 1 and —1.

The Binomial Theorem.

131. To develop (l + a:)".

Let z= l-^x,

fz= ^,

f'z= m2"~\

/"z = 7n(m— 1)^-2,

f'"z = m(m-l)(m- 2)r— ',

/<»>^f= m(m — 1) (m — 71 + 1)^""-",

/'"+'>^ = jn(m-l) {m - v)2'*-'-\
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/'(l)=m.

/"(l) = m(m-l),

/"'(l)=m(m-l)(m-2),

/(»>(l) = wi(7n-l) (m-n + 1),

f(''+^){l^0x)=m{m-l) {m-n){l+0x)''-''-K

"By Tajlor's Theorem,

(1 + x)"= 1 + wx + ^
^^,

^ + —^^ '^. ^— +
2 1 6 1

If ??i is a positive whole number,

and all succeeding derivatives are 0, so in that case (l+ aj)" is

equal to the sum of a finite number of terms, namely (m+1)
terms. If m is negative or fractional, however, this is not the

case. Let us see whether (1+x)"* is then developable. The

ratio of the general term of the series to the one before it is

^~^
a; or (

—

— 1 ) .r. If .r is numericallj' greater than 1

,

this ratio will eventually become and remain greater than 1 in

absolute value as n increases, and the series is divergent and

cannot be equal to the function. Hence we need examine the

value of the error onh' for values of x between 1 and — 1. The

expression for the remainder after n-\-l terms is

«—1»—

1

»
(n + 1)!

^ ^

which may be thrown into the form

rm(m-l) (m-n) ^„+,l 1
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As 11 increases, the limit approached b3' ;— is not

greater than 1. Increasing n by unity multiplies the quantity

771 71 — 1
in parenthesis by ;— x, which may be written

f
m-1 ±_\x.
\n + 2 n + 2)

'

and by taking n sufficiently large, this multiplier may be brought

as near as we please to the value —x. If x lies between and 1

,

— X is numerically less than 1 ; and as n increases indefinitely, we
multiply our parenthesis by an indefinite number of factors, each

less than 1, and so decrease the product indefinitel}'. Therefore,

for values of x between and 1 , the expression for the error

approaches zero as its limit as n increases indefinitely, and

(1+ a;)" is equal to the series

l+ mx + ^^^-^) a^^m(m-lKm-2) ^_^_ ^^^

Example.

Show, by considering the second form for the error, Art. 128,

[2], that for values of x between and —1, (l+ a:)*" is devel-

opable.

The Binomial Theorem follows easily from the development

of(l + a;)'".

and if A is less than x in absolute value, we have

{x+h)^=^+mx^-'h + '"^^'^~^^
x"'-'-h^

+ m(m-l)(m-2) ^,3^3 + ^
|-2-|

o !

no matter what the value of m.
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Of course, if h is greater than a, we can write {x + /i)"* in the

1+ -
J

, and shall then get as a true development,

{h + a;)™= /i™ + mh"'-'^x +

Maclaurhi's Theorem.

132. If, in Art. 128, [1] and [2], we let x = 0, we get

fh=f{0) + hf{0) + 1^/"(0) + 1^/"'(0) +

A =/(0) + //'(O) + 1^/"(0) + 1^/"'(0) +

4-^ /•(») (0) + ^^"^ (^~ ^^"/<" + 1^
tf/j.

It does not matter what letter we use for the variable in these

formulas. Change h to x, and

fx =/(0)+ xf'(0) + f/"(0) + +^ /(-) (0)

cc'
,n+ l

0^ + 1)!
/(»+'' ^a;. [1]

> =/(0) + x/'{0)+ 1:/"(0) + + ^/(») (0)

n!

These results are called Maclaurin's Theorem, and thej- enable

us to develop a function in a series arranged according to the

ascending powers of the variable.
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133. To develop a*.

/x= a% /(0) = a'' = l.

/'x = a'loga, /'(O) = loga,

/"x = a'{loga)\ /"(O) = (loga)S

/(->a; = a'(loga)», /(">(0) = (loga)»,

/<»+>'x = a'(loga)"+S /(»+"tfx = a^(loga)» + ^

By Art. 132, [1],

a' = l+ xloga-h^{logay-+ ^^{\osay + +|j(loga)-

n + l/jfte

^oStT!^'"^"^"'"'

a"+\loga)"+^^ft,_ o, a^Ioga xloga xloga aloga xloga

(w+iyi
~

i 2
3~

n 'n+l'

No matter what value x may have, after n has attained a cer-

tain value in its increase, some of the factors of this product

will approach the limit zero, and the whole product will there-

fore have zero for its limit as n increases indefinitely, and

a' = l+ arloga + ^(logaf+|^j(loga)3 + [1]

for all values of x. If a = e, loga = 1,

and e' = l+ - +— +— -f-— + [2112 ! 3! 4!

Let x= l, and [2] becomes

e = l+l+ i. + J- + JL_f. ; [3]
1 2! 3! 4!

a result already established in Arts. 61 and 62.
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134. We can now test the accuracy of the provisional devel-

opments of sine and cosine given in Art. 124, (2) and (3). By
Ai't. 132, [1],

/V«3 /v^ iy%i

sinx- = x —— +— ——+ 4-i2,
3 ! o ! / !

where R = . ^^A .
/^" + ^^ Ox= ± .

'^'"^,'

^
sin <?x

(H + !)!•' (u+1)

2^+1
or ± cos /9a;.

(/i + l) !

In either case, one factor sin^a; or cos Ox is between 1 and —1,

and the other approaches zero as ?i increases indefinitely' ; there-

Hr ^r 0* O*^

fore, sinx = a; 1 1

3! 5! 7! 9!

Example.

rt*2 ^,4 ryS /y*8

Prove that cosa; = l— -^—f--^-— -m—;
—

2! 4! 6! 8!

135. By the aid of the Binomial Theorem, tan~^a; and sin~^x

can be verj' easily developed.

Atan-^a; = —1— = (1 + cr)-\ (Art. 71, Ex.)
1 +ar

For values of x less than 1, (1+ ar)~^ can be developed by Art.

131, [2], {l-\-x-)-''=l-x'-\-x*-x^-i-x^-

Integrate both members.

/y^ /yS />•' ly^

tsin-'x = C-\-x---\----+^-
3 5 7 9

To determine our arbitrary constant C, let

x=0;
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then tan-'0 = C+0--
,

3

and C=0.

tan-'a; = x-- +---+^- m
3 5 7 9 •- •

when X is less than 1 ; that is, when tan~*x is less than -.
4

Asin-'a;= / =(l-a^)-l, by Art. 71.

For values of x less than 1, (1 — x^)-i can be developed by Art.

131, [2].

(l-ar')-4 = l+ ia^ + i^cc*+l^x-« + i^M:Ia:« +^ '
2 2.4 2.4.6 2.4.6.8

Integrating

. _i ^- , 1 ar»
,
1.3 a;* ,

1.3.5 a'
,sin ^x = C-\-x-\ y

2 3 2.4 5 2.4.6 7

When a = 0,

sin~^a;= and C= 0.

sin-^a; = a; + l- +— - + ^-:^- + [2]
2 3 2.4 5 2.4.6 7 " -"

Examples.

(1) Show that sin (a; -|- li) is equal to the series

li 1^ 7i^ h* .

sinxH cosa; sinx cos^H—- sina;+

(2) Show that

1! 2! 31
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136. Although the strict proof that any given function is equal

to the series obtained by Ta^'lor's Theorem requires the investi-

gation of the remainder after n+ 1 terms, it is often convenient

to obtain terms of the series in cases where the expression for

the remainder is too complicated to admit of the usual examina-

tion. AYhen such a series is employed, it is to be remembered

that it is equal to the function in question only provided that

the function is developable. Sometimes the possibilit}' of de-

velopment can be established by other considerations, and some-

times in rough work no attempt is made to fill out the proof of

the assumed equality.

Examples.

(1) Develop -^— + log(l+ a;)

.

1+ a;

A71S. 2x x^ + -(!(? x*-\--a^ +
2 3 4 5

(2) Obtain 4 terms of the development of log(l+ e')

.

x"
Ans. log2H h-T —

2 2^ 2^4

!

137. In the work of successive differentiation required in

appl3ing Taylor's Theorem, a good deal of labor can often be

saved by making use of Leibnitz's Theorem for the Derivatives

of a Product. Let y and z be functions of x. Represent

D,y, B^y, D^y by y\ y\ 2/(") and D,z, D,'z, D^^z by

e\ z", z^^K

D,(yz) = y'z +yz',

D,\yz) = y"z+2y'z'+yz",

Z>«'(2/2) = y"'z + 37/" 2'+ 3y>z" -f- yz"\

D*{yz) = y'^z + iy"'z'+ 6y"z"-h^y'z"'+yz^.

Examining these results, we see that the coeflScients of the terms

in the successive derivatives are the same as in the correspond-

ing powers of a binomial, and that the accents follow the same
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law as the exponents in the powers of a binomial. Following

the same analog}', we should have

^ n(n-l)(n-2) yn-^gZ/'.^.

3! ^

Assuming for the moment the truth of this equation, let us dif-

ferentiate both members. We obtain

(n+ l)7i(n-l) ,„_i^ ,„

3 !

but this is precisely what we should expect for the (n +l)st de-

rivative from the observed analog}'. Hence, if our rule holds for

the nth derivative, it holds for the (w +l)st ; but we have seen

that it holds for the 4th, therefore it holds for the 5th, and

therefore for the 6th, and so on ; and it is in consequence

universally true. This rule is called Leihnit^s Theorem^ and is

formulated as follows

:

^

n(?i-l)(n-2) ^(n-3)y//
|-l-j

138. Assuming that tana; can be developed, let us obtain a

few terms of the series. Here

fx= tanx = y,

/'x = y' = sec^a,

f"x=y" = 2 se(^xtanx= 2 y'y^ •

f"'x= y"'=2(y"y+y'y'),

P^x = y^= 2(y"'y + 2y"y'+ y'y")
,
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r'x = y^' = 2{y^y + 4t/^y'+e7j"'y"-{.4:y"y"'+y'y"),

r"x^y^"=2{y^'y+by''y'+ lQ,y"y"+ \0y"<y"'+by"y^'^+y'y-),

&c., b^- Leibnitz's Theorem.

When x = 0,

2/=0, r=o,

2/'=l, 2/^=16,

2/"=0, r = o,

2/'"= 2, 2/^" =272.

By Maclaurin's Theorem

tana;= a;H x'H a? A—— a^ +
3! 5! 7!

Example.

Assuming that seea; can be developed, show that

secx = 1

H

1 j-

2! 4! 6!

Indeterminate Forms.

139. The subject of indeterminate forms is readil}- dealt with

by the aid of Tajlor's Theorem. Take the form -. Suppose

fx and Fx are functions of a;, continuous for values of x near the

particular value a, and fa and Fa are both equal to zero, to find

fx
the true value (vide Art. 34) of^ when x = a.

Call x — a = A, then a; = a + ^,

and we can develop fx and Fx by Taylor's Theorem.
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fx =/(a + li) =/a + hf (a + OK)

where is some number between zero and 1

.

Fx = F(a + h) = Fa + hF'(a + 6'h)

where 0<0'<1.

fx__ hf'{a + Oh) _ f'(a+Oh)
Fx ~ hF'{a + O'h)

~ FXa + u'h)
'

since /a = and Fa = 0.

As X approaches a, h approaches zero ; hence Oh and O'h approach

fx
zero as their limit ; consequently the limit approached by — as

Fx
fa

X approaches a, is '^—-^ which, by Art. 34, is the tnie value of
Fa

^. If /a = 0, Fa==0, f'a = 0, and F'a = 0,
Fa

it will be necessary to carry the development one step farther.

fx =f{a + 70 =fa + hf'a + ^/"(a + Oh) = ^^/"{a + Oh)
,

Fx = F{a + h) = Fa + hF'a + 1^ F"{a + O'h)=— F"{a + 0'h)y

and ^_ f"{a + Oh)

Fx~F"(a + 0'hy

f"a
which approaches

^^^ff-
as its limit as x approaches a.

Example.

Show that, if /a. Fa, fa, F'a, f"a, F"a, &c., Z^—«a, and

fx ^^"' a
F^'^~'^^a all equal zero, the true value of •— when a;= a is •- .

Fx F<»>a

140. The reasoning of the last section does not apply when
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a = 00 , as then f{a + h) cannot be developed b}- Taylor's

Theorem.
fxTo find the true value of ''— when x= oo, supposing that
Fx

fx=0 and Fx=0 when a;= oo.

Let 2/ = -,
X

then fx =/_ and Fx = F-, and
. y y

f-
y— assumes the fonn - when v= 0,

pi
^

•

and its true value for v = will be — -^—
L y]y=o

y y y y^ y

D,F-= --F'h
y y^ y

But the value of when y =
D,F^

y
is the value IFapproaches as y approaches 0.

y_^ r y _ y fx_

DfI -lF'i~F'i~^''
y y^ y y

but when 2/ = 0, a;= oo
;

fx
hence the true value of •— when a;= oo

Fx
fx

IS the value of 4^— when a; = oo
;

F'x
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and the method of the last section holds, no matter what the

value of a.

141. It was shown in Art. 35, that the form ^ could always

be reduced to - and treated as above. Let us consider a general

example. Suppose /a = oo and Fa= <x>

,

fx
required the true value of "^ when x= a.

Fx

fx Fx ,^ =— = - when x=a.
Fx I

Differentiate numerator and denominator.

fx uxy

Z) 1 = _ _J_ F'x.
'Fx {Fxy

, when x^a^

1 F'x
fx (Fxy //ojN

^^ 1 f,^
\Fx>

{fxy^

^F'x

f'x

. fx F'x

'fx f'x

Fx F'x
and

the value required. Therefore the form - can be treated directly

by the same method as the form -. In dividing both members
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of the equation
Fx \FxJ fx

[Art. 141.

by
Fx

fx
we have assumed that the true value of "x:-^ when* Fx

x— a

fx
is neither nor oo . Suppose the limit approached bj' ^ as

Fx
X approaches a is 0, and that fx and Fx increase indefinite!}-.

Form the function •' —-.
Fx

x=a. is, of coui*se, 1
;

it assumes the form —
;

Its true value when

but when

hence its true value when

fx + F'x
must be the limit approached by*^

—

^ as x approaches a,

x = a.

Fx

which is

Therefore,

, .limit [fll
^'^x^alFxJ

limit

x=a

fx

'fx
Fx

^(J^limitr.^
x=a \_Fx_

by hj-pothesis.

L^ '<'Jx=a

If the true value of ''—- when x = a
Fx

Fx
is infinite, of course the true value of its reciprocal — will be

.- - J'^
VFx

zero, and will equal -jr

and the method of determining the form — , established at the

beginning of this section, is of universal application.
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142. The forms oc°, 1", 0**, can all be reduced to one of the

forms alread}" discussed, if we make use of logarithms. // is to

be observed, that these forms to be indeterminate must all occur

as limitiixg forms of a fmiction of tufo functions; and, in order

that the forms may admit of being determined, the two functions

must depend tipon the same variable.

Let u = (Fx)^.

Suppose, when x=a,

Fx = X and fx=0;

to find the true value of u when x = a.

logM =fx . logF.c = X 00 when x= a,

and may be determined by the method of Art. 35.

Examples.

(1) Show that 1*, 0°, can be made to depend upon the forms

00 X and 0(— oc).

(2) Obtain a method for dealing with the form oo — qo.

Find the true value of the following functions :
—

/ox logo;
^^^^ ^^j ^^^ J

" a;=0. Ans. 2.

" x = 0. ^Ans. — ^.

^-, *' x=l. Ans. — 1.
logo; log a;

(7)
e'-2cosx + e-' ,, ^^^^ ^,^^ 2.

a; sin a;

\"/
x -1

(4)
e'

sina;

(5)
X — sin" 'x

siu^a;

((y)
1 X
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(8) a; tan a; — -sec a; when x = -.

(9) 2'sin- " a; =00.

(10) {ah-l)x " x = cc.

a» g+i U T,_

(12) (1+ ^) " a;= oo.

(13)
tana;^ u ^.^o.

(14) (^y^

[Art. 143.

Ans. --1.

Ans. a.

Ans. loga.

Ans. e».

Ans. 1.

Ans. 1.

x = 0. Ans. ei.

(15)
Aana;y *. ^.^0, ^^^^ ^^

(16) sina;**"' " ^= i- ^^s- 1-

Maxima and Minima.

143. Taj-lor's Theorem enables us to give a verj' simple and

complete treatment of the subject of maxima and minima of a

a single variable.

Let ya; be a function of a;, finite and continuous for values of

X near the particular value a.

Call x = a + 7i.

JXa + h) =fa + Jifa + ^/"(a + eh)

.

/(a + h) -fa = h/'a + |^/"(a + §h).
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In order that fa should be either a maximum or a minimum,

/(a + 70 -/a

must have the same sign for small values of h whether h is posi-

tive or negative. K this sign is minus, fa is a maximum value

of/a; ; if plus, a minimum value {vide Art. 39).

Iffa does not equal zero, we can take a value of h so small,

that, for it and all smaller values,

shall be less than /'a. The sign of

hfa+^^^r{a + eh)

will then, as h approaches zero, ultimately become and remain

the same as the sign ofhf'a ; but the sign of hf'a changes with the

sign of /i, so that fa can be neither a maximum nor a minimum.

144. Suppose fa = 0,

then /(a + h) -fa = ^/"a + ^/'"(a + eh)

=
^''[f^

+ |j/"'(a + ^^)];

as li approaches zero — /'" (a + Oli)

o !

fa
will, in the end, become and remain less than-^—- and the quan-

tity in parenthesis will have the same sign &afa. As h^ is

necessarily positive for all values of h

f{a + 1i)-fa

will then be negative for small positive and negative values of A,
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if/"a is negative, and will be a maximum; iffa is positive,

fa will be a minimum.

145. It can be easily established by an extension of the rea-

soning of the last section, that, if the first derivative that does

not vanish when x = a, is of odd order, fa is neither a maximum
nor a minimum; that, if it is of even order and negative, fa is a

maximum; if of even order and positive, fa is a minimum.

EXAJIPLES.

(1) A bod}' moves with different uniform velocities in two

different media separated by a plane, required the path of quick-

est passage from a given point in the first medium to a given

point of the second. It is easily seen that the required path

will lie in a plane passing through the two given points and

perpendicular to the plane separating the two media.

2> C

J

P

Q/
E

B

Let ACB represent any such path from A to B. Draw a

normal to the plane at C and the perpendiculars p and q. Call

and let Vi and v^ be the velocities in the first and second media

respectively.

J.C'=i>8ec^,

CE=2y tan Of
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BC=q sec Oiy

DC=qtan Oi,

ptskuO + qt&nOi= c.

AC_psecO

is the time required to pass from A to C;

BC_q sec 01

is the time required to pass from C to B\

. psecO qaecOi
I — 1

is the function we wish to make a minimum. and 0i are the

only variables in t, and they are connected by the relation

jptan^+ ^tan^i= c.

P Q

Differentiate ptan + q tan 0i = c.

pse(?0 + qsec?0iDg 0^ = 0,

psec*^
2>«^i=-

qsec^Oi

p q psc<?0
Dat= — SGcOtSiuO sec<?itan^i sv

" Vj i''2 5 sec- 0^

DqI must equal zero in order that t may be a minimum. Ex-

press everything in terms of sine and cosine.

p sin q sin 0x p cos^ ^^ — o
Vi cos^O Vi cos^^i q cos^O



148 DIFFEEEXTIAL CALCULUS. [Anx. 145.

Vi ~ Vj '

sin ff _ Vi

sin^/i~r2

B}' taking D,-t and substituting

sin 5 _Vi

we should obtain a positive result ; so that this relation between

the angles gives the path of quickest passage required. This

result is the well-known law of the refraction of light, and our

solution establishes the fact that a ray of light, in passing from

a point in one medium to a point in another, takes the course

that enables it to accomplish its journe}' in the least possible

time.

(2) What value of a; will make sin^ajcosa; a maximum?

Ans. x= -.
3

(3) What value of a; will make sin a;(1+ cosx) a maximum?

Ans. x= -'

3

(4) Show that x^ is a maximum when x=e.

(5) A statue a feet high stands on a column b feet high ; how
far from the foot of the column must an observer stand that the

statue may subtend the greatest possible visual angle ?

Ans. V6(a + &)feet.

(6) Required the shortest distance from the point (xo,yo) to

the line ' Ax-\- By-{- C=0.

Ans. ^^o + Bl/o+C
^

V(A2+ ^)
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CHAPTER X.

INFINITESIMALS.

146. An infinitesimal or infinitely small quantity is a variable

which is supposed to decrease indefinitely ; in other words, it is a

variable which approaches the limit zero.

What we have called the increment of a variable has, in every

case considered, been such a quantity' ; and what we have called

a derivative has been the limit of the ratio of infinitesimal incre-

ments of function and variable.

147. "When we have occasion to consider several infinitesimals

connected by some law, we choose arbitrarily some one as the

principal infinitesimal.

An}^ infinitesimal such that the limit of its ratio to the princi-

pal infinitesimal is finite, is called an infinitesimal of the first

order.

An infinitesimal such that the limit of its ratio to the square

of the principal infinitesimal is finite, is called an infinitesimal

of the second order.

An infinitesimal such that the limit of its ratio to the nth power

of the principal infinitesimal is finite, is called an infinitesimal

of the nth order.

Let a represent the principal infinitesimal, and oi any infini-

tesimal of the first order, a^ of the second order, a„ of the nth

order. Then, by our definition,

limit —= Kfa '

K being a finite quantity.
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where e is an infinitesimal (Art. 7)

,

ai = a(A'+£).

limit -2= 1^

:

Examples.

Show, by the aid of these expressions, that the limit of the

ratio of anj' infinitesimal to one of the same order is finite ; to

one of a lower order is zero ; to one of a higher order is infinite.

That the order of the product of infinitesimals is the sum of the

orders of the factors, and that the order of the quotient of infini-

tesimals may be obtained b}- subtracting the order of the denomi-

nator from the order of the numerator.

Show that, if the limit of the ratio of two infinitesimals is

imity, they differ by an infinitesimal of an order higher than

their own.

148. The sine'of an infinitesimal angle is infinitesimal; for,

as the angle approaches zero, the sine approaches zero as its

limit.

If we take the angle as our principal infinitesimal, the sine is

an infinitesimal of the first order ; for we have seen that

limit

a=0
sina~] .^ = 1, (Art. 68).

The vers a is infinitesimal if a is infinitesimal, for

vers a = 1— cos a

;
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and as = 0, coso = l

;

hence vers a = 0.

151

It is an infinitesimal of a higher order than the first, for we have

*x. 4.
limit fl- cos a"|

rKyu. asi\seen that ^_^q
=0, (Art. 68).

Let us see if it is of the second order ; that is, let us see if

limit p- cos «"| . gjj.^. ln^^ assumes the form ^ when
a=0[_ a* J o?

a = 0, and we can find our required limit bj' the method of Art.

139, which gives us - as the value sought. Therefore, \

infinitesimal, versa is infinitesimal of the second order.

Examples.

Taking a as the principal infinitesimal, show that

(1) tan o is an infinitesimal of the first order.

(2) o — sina is an infinitesimal of the third order.

(3) tan a — a is of the third order.

149. Let y be any function whatever of k, if we give x an

infinitesimal increment Jx, the corresponding increment Jy of y
will be an infinitesimal of the same order as Jx, unless for par-

ticidar single values of x.

To establish this proposition, we must show that , -^ n ji

is finite. Ax—0 a~ cannot be zero, except for single values

of a; ; for, suppose it could become and continue zero ; , -i. o j^

is Z),y, and we have seen (Art. 38) that D^y shows the rate at

which y is changing as x changes. If D^y becomes and remains

zero, y does not change at all as x changes ; and, therefore, is

not a function of x, but a constant.
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Jic=0 Ji cannot become and continue infinite ; for, in that

limit r^^~l
case, jy_:_n j^ would be zero, D^x would be zero, and cc,

regarded as a function of y, would be constant.

Since
j^._:_q 'tz. can be neither zero nor infinite, it must be

finite, and Jy and Ax are of the same order.

150. If the coordinates of the points of a curve are expressed

as functions of a third variable a, the distance between tioo infi-

nitely near points of the curve is an infinitesimal of the same order

as the difference between the values of a to which the points corre-

spond.

The ordinary equations of the cycloid,

x= aO — asijn

y = a — acos6

are a familiar example of the waj' in which the coordinates of

points of a curve maj' be expressed as functions of a third varia-

ble. In the case of any curve, it is obvious that this maj' be

done in a great variety of wa3'S. Any two equations containing

X, y, and a that will reduce on the elimination of a to the ordi-

ixary equation of a given curve, can be used as equations of that

curve.

For example

:

X= 2a

y = a+2

x= a cos a

y = asma

x = a cos a

y

are equivalent tooj—2y+ 4 = 0;

are equivalent to cc^+^ = a*

;

= acosa] ^ ,

\ are equivalent to — + -^= 1

;

= 6sinaJ a ^ •
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ar=aseca

y = 6tan

"1
JC* t/»

> are equivalent to — — 2- = i,

a J
a' &'

The proof of our proposition is as follows : Let a and a -{-Ja

be the two values of a in question, and {x,y) and (x+ Ax, y+ Jr/)

be the two corresponding points. The distance D between these

points will be, if we use rectangular coordinates, V(Ja;)^+(Jy)^

We wish to prove that j^^n T h^ finite.

D _ \l{JxY+ {JyY
Aa Aa =V(5Mf'

and, bj Art. 149, ^^^^ j^^^J
and ^^^^ [^-£

J
are both finite

;

hence /™ a "T is finite, and D is an infinitesimal of the same

order as Aa.

151. If two curves are so connected that the points of one cor-

respond to the poiiUs of the other', so that when a point of the first

curve is given, the corresponding point on the second is determined,

the distance between two infinitely near points on the first curve is

an infinitesimal of the same order a^ the distance between the

corresponding points of the second curve. For, if we suppose

the coordinates of the points of the first curve expressed as

functions of some variable a, the coordinates of the points of

the second curve can also be regarded as functions of a ; and,

b}' Art. 150, each of the distances in question will be an infini-

tesimal of the same order as Ja, and each will therefore be of

the same order as the other.

152. If a straight line moves in a plane according to some law,

so that each of its positions corresponds to some value of a varia-

ble a, the angle between two infinitely near positions of the line is

an infinitesimal of the same order as the difference between the

corresponding values of a.
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Suppose lines drawn through a fixed point parallel to the

moving line in its different positions. From 0, with the radius

unity, describe an arc. Consider any two positions of the

moAing line, and the corresponding lines at 0, we wish to

prove that the angle <p between the latter is of the same order

as the difference between the values of a to which the positions

of the moving line correspond. As all the lines at correspond

to values of a, the points where the}' cut the circle correspond

to values of a, and, by Art. 150, the distance AH between two

of the points supposed to be infinitely near is of the same order

as Aa. ^AB IS equal to sin^ ; therefore sin^, and consequently

- itself is an infinitesimal of the same order as da, and if
2

limit

Ja=0 JaJ
is finite, ;i°^;t r|.1j g .

Aa=0 \_AaJ

153. A simple geometrical example of an infinitesimal of the

second order is the perpendicular let fall upon the tangent at any

jjoint of a curve from a second point of the cwve infinitely near

the first.

If, in our figure, the distance PP' is taken as the principal

infinitesimal, P'T is readily seen to be of a higher order than

the first, for

P'T .

;pp,= smsp;

and, since ^ = as P'= P, its sine = ; hence

limit r^i=o
PP'=0 [PP'J '
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and P'T is an infinitesimal of an order higher than that of PP*,

by Art. 147, Ex.

To show that PT is of the second order, let us consider dif-

ferent secant lines drawn through P, PT being itself one of

these lines. Obviously, each one of these lines is determined

in position when the abscissa of its second point of intersection

with the curve is given ; and therefore the angle between any

two infinitely near secant lines, as PP' and PT is an infinitesi-

mal of the same order as the difference between the correspond-

ing abscissas, by Art. 152 ; but the distance PP' is of the same

order, by Art. 150 ; therefore, (p and PP are of the same order,

that is, of the first order ; sin^ is also of the fii'st order, b}' Art.

148 ; hence P'T, which is equal to PP' sin ^, is of the second

order (Art. 147, Ex.).

154. To determine the tangent at any given point of a curve

j

we draw a secant line through the point in question and any

second pomt on the curve, and seek the limiting position ap-

proached by this line as the second point approaches the first

;

or, in other words, we seek the limiting position of the line join-

ing the given point with an infinitely near point of the curve. It

can be shown that this is also the limiting position of any line

passing through the given point and a point whose distance from
the second point of the curve is an infinitesimal of a higher order

than the distance between the two points on the curve.

Let P and P be two infinitel}' near points on p 3f

the curve, and let PM be an infinitesimal of a ^^^^^ t/
higher order than PP*, then the limiting position f'

of PP as P==P will be the same as the limiting position of

PM; for, in the triangle PJIfP',
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hence

P'M_ sin <p ,

PP^~sin^ '

P'M . ,

= 0,and as by h^-pothesis, p^^^ -^^

ppi^r\ [sin^!'] must be zero. Therefore

Hmit r -, n
PP'=0 W= "'

and the two lines, PP* and PM, approach the same limiting

position.

155. This principle is frequently of service in problems con-

cerning the position of tangent lines. For example : Suppose

perpendiculars let fall from a fixed point to the tangents of a given

4:urve, to draw the tangent at any given point of the locus on which

the feet of these 2Jerpendiculars lie.

LetM and 31' be two infinitely near points of the given curve,

and be the given point from which the perpendiculars are let

fall ; then P and P are two infinitely near points of the locus in

question, and the required tangent at P is the limiting position

of the line joining P and P'. Draw through 31 the line 3IP"

parallel to the tangent 31'P'. If we take JOT as our principal

infinitesimal, P'P is an infinitesimal of the second order, by

Art. 153, and PP' is of the first order, by Art. 151 ; conse-
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quently (Art. 154) it will answer our purpose to find the limit-

ing position of the line joining PP" ; but, since MP"0 and MPO
are both right angles, P" Ues on the circumference of a circle

described on OM as diameter, and the required limiting position

of PP" is that of a tangent to this circle at P, which is therefore

the required tangent. Hence to obtain a tangent to the locus in

question at any given point, we have only to join the correspond-

ing point with 0, to erect a circle on this joining line as diameter,

and to draw a tangent to the circle at the given point. Of course,

the normal to this locus at the given point bisects the joining

Une OM.

156. Let us consider the locus of the feet of perpendiculars let

fall from the focus of an ellipse upon the tangents to the curve.

Since the tangent to the required locus at P is tangent to the

circle on FM as diameter, the normal at P passes through the

centre C of the circle. Draw the focal radius FiM. Since the

tangent to an ellipse makes equal angles with the focal radii

drawn to the point of contact,

TMFi=PMC\

PMC=MPO,

because MC and CP are equal

;

.'.MPC=TMFi,

and PO is parallel to JM7\ ; it must then divide MF and FiF
proportionally; and as it bisects MF^ it also bisects FiF, and
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consequently passes through the centre of the ellipse. Since every

normal to the required locus passes through the centre of the

ellipse, the locus is a circle concentric with the ellipse. It is

easil}' seen that it must pass through the vertices of the ellipse.

It is then a circle on the major axis of the ellipse as diameter.

Example.

Show that the locus of the foot of a perpendicular let fall from

the focus upon any tangent is a circle on the transverse axis as

diameter in the hj'perbola ; is the tangent at the vertex in the

parabola.

Problem.

157. Upon each normal to a plane curve a point is taken at a

constant distance from the intersection of the normal ivith the

curve; to find the tangent at any point of the locxis thus formed.

LetM and M' be two infinitely near points on the given curve,

P and P' the corresponding points of the locus ; let

MP=M'P=a\

call the angle between the normals, f . Draw JO/" and PP"
perpendicular to the second normal. The required tangent is the

limiting position of PP\ and the tangent atM is the limiting

position of MW. IfMW is taken as tlie principal infinitesimal,

PP and <p are of the first order and M'M" of the second (Arts.

151-153) . P'P" is of an order higher than the first, for
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P'P"= M'M"+ M"P"- a,

M"P"= a cos <f>;

hence P'P"=WM"_ a ( 1- cos ^)

.

<p being of the first order, 1 — cos ?> is of the second order by
Art. 148 ; and as M'M" is of the second order, P'P" is of at

least as high an order as the second. By Art. 154, our required

tangent will be the limiting position of PP"^ and the tangent at

M will be the limiting position ofMM" ; but PP" and 2IM" are

parallel always ; therefore their limiting positions are parallel,

and our required tangent is parallel to the tangent to the given

curve at the corresponding point, and the curves are what are

called parallel curves.

Problem.

158. An angle of constant magnitude is circumscribed about a
given curve; to draio a tangent to the locus of its vertex.

The required tangent is the limiting position of the secant

line PP. Draw through M and N lines MP", NP", parallel

to the tangents atM and N'. It can be shown that the sides,

and therefore the diagonal, of the parallelogram PP" are in-

finitesimals of a higher order than PP', and therefore that the re-

p'

quired tangent can be found as the limiting position of PP". Since

the angles at P and P" are equal, the point P" lies on a circle cir-

cumscribed about MPN\ the limiting position of PP" is there-
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fore the tangent to tiiis circle at P. Our solution is, then, draw

a circle thi'ough the vertex of the circumscribing angle and the

points of contact of its sides, and the tangent to this circle at

the vertex of the angle is the tangent required.

Example.

Show that the locus of the vertex of a right angle circum-

scribed about an eUipse or an hj-perbola is a concentric circle

;

about a parabola is the directrix.

159. In the preceding examples, the advantage we have

gained in the use of infinitesimals has arisen from the fact that

we have been able to replace one infinitesimal by another related

to it and more simpl}' connected with the other values consid-

ered in the problem. The possibility of such substitutions, and

the hmitations under which they can be made, form the subject

of the following two theorems, which are of prime importance,

and lie at the foundation of the Infinitesimal Calculus.

Theorem.

160. In any problem concerning the limit of the ratio of two

infinitesimals, either may be replaced by any infinitesimal so related

to it thai the limit of the ratio of the second to the first is unity.

Proof.

Let a, ^, a', and /S' be infinitesimals so related that

limit - = 1 and limit - = 1

.

Then will limit- = limit—.

identically'

;
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hence limit-= limit— X limit— X limit—,
/? /5' a' ,J

limit - = limit— X 1 X 1 = limit—. q.e.d.

Theorem.

161. In any problem concerning the limit of a sum of infini-

tesimals, provided that this limit is finite., any infinitesimal may
be replaced by another so related to it that the limit of the ratio of

the second to the first is unity.

Proof.

Let ai4-«2 + «3+ + a„

be a sum of infinitesimals of such a nature that the number of

the terms increases as each term decreases in absolute value, so

that the limit of the sum is some finite quantity.

Let fti, /?2, ftsi /^n ^6 a set of infinitesimals so related to the first

set that limit—= 1, limit— = 1, &c., limit— =1,

then — = l+ £i, —= l+ £2, &c., - = !+£„,

ei,e2, £„ being necessarily infinitesimal (Art. 7).

/^i = «i + «i^i,

/^2= «'2+«2^2?

/'»=«»+«»£»»

^X+ /^2+ /^3+ +/^„=«l + «2+ «3+ + «H

+ fliei + a2j2 4 «3«^3 + + «»^»-
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Let t; be such a variable that at any instant it shall be equal to

the greatest in absolute value of the quantities ei,£2, £»• Of
course, since each of these approaches zero as its Umit, ij must

also approach zero as its limit ; i.e., ^ is infinitesimal.

GiEi + ao^a + 03^"3 + + a«£^»<'/ (oi +02 + ^3 + + 0»

hence /^i + z^, + /?, + + 3„ _ (a^ + a,+ ag+ + G.)

<'7(«l + «2+«3 + + ««)•

By h3i)0thesis, limit (oi + 03 + + a,) is finite ;

therefore, limit of ^(ai + ^2+ °3+ + "n) is zero.

Consequently'

limit (/3i
-j- ;?2 -f- /33 + -j- P„) = limit (a, + «, -|- a,+ -f a,)

.

Q.E.D.

162. If tico infinitesimdls differ from each other by an infini

tesimal of a higher order, the limit of their ratio is unity.

For, let a'— a = e,

where e is of a higher order than a
;

a'=a + e,

a' e- = !+ -,
a a

Umit- =1+ limit-;
a a

but, by hj-pothesis, limit i = 0,
u

therefore limit—— 1.

(Art. 147, Ex.);
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It follows that the theorems of Art. 160 and Art. IGl can be

stated as follows :
—

In finding the limit of a ratio, or the limit of a sum of infini-

tesimals, any infinitesimal may he replaced by one that differs

from it by an infinitesimal of a higher order. Or, in finding

the limit of a ratio or of a sum of infinitesimals, any infinitesimal

term may be neglected without in the least affecting the result, pro-

vided that it is of a higher order tJian the terms retained.

163. Let us take the problem of finding the direction of the

tangent to a parabola.

The tangent T'T at P is the limiting position of the secant

through P and P'. Draw the focal radii FP and FP', and the

perpendiculars PR and P'S to the direeteix. Draw PM and

PN perpendicular to FP' and P'S respectivelj', and with F as a

centre, and with the radius FP, describe the arc PQ.
Take PP' as the principal infinitesimal, then P'3f and P'K are

of the first order, since the limit of the ratio of each of them to

PP' is finite.

PQ is of the first order, by Art. 151, and MQ is of the second

order, by Art. 153.

P'S=P'F,

from the definition of a parabola

;

PB= PF=QF;

P'M
cosPP'F=

PP''
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COsPP'S=^,PP" •

COS

COS

T'PF^ limit [co^PP'r\^ limit f^P;^
T'PR F=P[_cosPP':s] P'=p\^P'N\

.-. T'PE^T'PF,

and the tangent at any point of a parabola bisects the angle

between the focal radius and the diameter through the given

point.

164. To find the area of the sector of a parabola included be-

tween two focal radii. Take points of the parabola between the

extremities of the bounding radii, and join them with the focus,

'

thus dividing the area in question into smaller sectors, of which

the sector FPP' in the figure of the last article ma}' be taken as

a type. Draw perpendiculars from the extremities of the bound-

ing radii to the directrix, and consider the external area bounded

by them, the directrix and the curv-e ; draw perpendiculars from

the intermediate points already described to the directrix, and the

external area will be divided into smaller cur\'ilinear quadrilate-

rals, of which PP'BS is one. No matter how close together the

intermediate points are taken, the external area is the actual sum

of these small curvilinear quadrilaterals ; it is then the limit of

their sum as the number is indefiniteh' increased. If the distance

between any two of the points, as PP\ is taken as the principal

infinitesimal, PN, P'2^, PM, P'M, are all infinitesimals of the

first order, since the limit of the ratio of each of them to PP'
is the sine or the cosine of a finite angle. The area of PP'BS
lies between P'S X P^ and NS X P^, and is therefore an infini-

tesimal of the first order. Hence we have to consider the limit

of a sum of infinitesimals where the limit is finite, and we can

replace any one by one differing from it by an infinitesimal of a

higher order than the first. The rectangle PBSN diifers from



Chap. X.] INFINITESIMALS. 165

PP'RS by less than a rectangle on PN and P'JV; that is, by less

than PNx P'N, an infinitesimal of the second order. Therefore

the required external area, which is the limit of the sum of infini-

tesimal areas of which P1*'RS is a type, and which we shall indi-

cate b}' limit 2.PP'RS (^ serving as a symbol for the word sum),

is equal to limit 2.PRNS.

The given sector is equal to the sum of the smaller sectors of

which FPP' is a type = limit 2FPP' , each term here being an

infinitesimal of the first order. Draw the straight line PQ. The
triangle FPQ differs from the sector FPP' b^' less than a rect-

angle on PM and MP', which would be of the second order, and

may therefore replace FPP' in the expression for our required

area.

PV
Umit^ = 1

,

by Art. 163
;PM

consequentl}' PM and PN differ by an infinitesimal of higher

order than the first, and the triangle FPQ differs from one-half

the rectangle PRNS b}' an infinitesimal of higher order than the

first, and may be replaced by ^PRNS.

We have then, external area = limit^PRNS,

given sector = \im\t2^PRNS ;

and the given focal sector is equal to one-half the area bounded

by the curA'e, the directrix and perpendiculars let fall from the

extremities of the arc of the given sector to the directrix.

Infinitesimal Arc and Cliord.

1C5. Let us consider the relation between the lengths of an

infinitesimal chord and its arc.

Take the chord PP' as the principal infinitesimal, and draw

the tangents PT and P'T. The arc PP' is

less than PT-\-P'T and greater than the

chord PP'. The angles e and e' are infini-

tesimal.
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PM
COS£= ——

,

PT

, P'M
C08e'= -——

,

P'T'

limit cos£ = l,

and limit cose'=l

;

therefore Umit^=lPT

and limit =1.
P'T

Thus PM=PT+7]

and P'M=P'T+ri\

[Art. 166.

where rj and rj' are infinitesimals of a higher order than the first,

by Ai-t. 147, Ex.

PM+ P'M= PT+ P'T+ Tj + 5j',

or the difference between the sum of the tangents and the chord

is of a higher order than the first. The difference between the

arc and the chord is less than this, therefore the limit of the ratio

of an injinitesimal arc to its chord is unity.

166. It is customary to say roughly that lines which make with

each other an infinitesimal angle, that is, lines which approach

the same limiting position, coincide, and that finite values which

differ by an infinitesimal or injinitesimal values which differ by

an infinitesimal of a higher order, that is, values such that the

limit of their rcUio is unity, are equal; and this way of speaking

is very convenient, especially for preliminary' investigations. It

is important, however, to be able to put a proof given in this

form into the more exact language of Umits.

It is easily seen from what has just been said, that the line
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joining two infinitely near points of any curve, can, speaking

roughly, be regarded at pleasure as chord, arc, or tangent, so that

an infinitesimal arc can be treated as a straight line.

167. As an example of this loose form of proof, let us show

that a tangent to an ellipse makes equal angles with the focal

radii di-awn to the point of contact.

Let P and P' be two infinitel}- near points of the ellipse, then

PP' is the tangent in question. From F and F' as centres, draw

the arcs PA and P'B ; PA and P'B being infinitesimal arcs, are

straight lines, and PAP' and P'BP are right angles, since the

tangent to a circle is perpendicular to the radius drawn to the

point of contact.

F'P+ PF= F'P'+ P'F,

by the definition of an ellipse. Take away from the first sum
F'P+ BF, and we have left PB ; take away from the second

sum the equal amount F'A + P'F, and we have left PA
;

.•.PB=P'A;

and the right triangles PAP' and PBP' have the hj-pothenuse

and a side of the one equal to the hj'pothenuse and a side of the

other, and are equal ; and the angle

FPP'=F'P'P',

but the lines F'P' and F'P coincide, so that the angle F'P'P is

the same as the angle F'PT ; and

.'.F'PT=FPP',

and the tangent makes equal angles with the focal radii, q.e.d.
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Example.

Prove that a tangent to an hyperbola bisects the angle between

the focal radii drawn to the point of contact.

168. To find the area of a segment of a parabola cut off b}- a

line perpendicular to the axis. Compare the required area with

the area of the circumscribing rectangle. We can regard the

first as made up of the infinitesimal rectangles of which PMUS
is a tji^e, and the second of the corresponding rectangles of

which QNPli is one. Draw the directrix.

FF=SDsim\DO=-OF,

by the definition of the parabola ; but

PF=FT by Art. 1G3
;

.-. TO=OS.

The triangles P'MP and PST are similar, and

P'M^ PM^ PM

.

PS ST 20S'

hence PMxPS=20Sx P'M= 2PRqN,

or rectangle PU= 2PQ
;

,'.^PU=22:PQ,
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and the segment in question is twice the external portion of the

circumscribing rectangle, and, therefore, is two-thirds of the

whole rectangle.

Example.

Prove the theorems of Arts. 167, 168, strictlj*, by the method

of limits.

169. The properties of the cycloid can be very simply and

neatly obtained b}^ the aid of infinitesimals ; though, for this pur-

pose, it is better to look at the curve from a new point of view.

Let a fixed circle equal to the generating circle be drawn tan-

gent to the base of the cj'cloid at its middle point ; through the

generating point P, draw PQD parallel to the base. From the

nature of the cycloid, the arc

PN= ON and OB = ACB,

PQ = NB=OB- 0N= ACB-QB= ACQ.

Hence points of the cycloid can be obtained by erecting perpendicu-

lars to a diameter of a fixed circle ^ and extending each until its

external portion is equal to the distance along the arc of the circle

from the perpendicular in question to a given end of the diameter.

170. The tangent to the cydoid passes through the highest point

of the generating cirde.
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T A

[Art. 170.

Itougli Proof. — Let P and P' be infinitelj- near, then PP' is

the required tangent ; through P' di*aw an arc parallel and simi-

lar to QQ' . This are maj- be regarded as a straight line. The

triangle PPM is isosceles, since

QP= ACQ and MQ = P'Q'= ACQ',

hence PM= QQ'= MP' ;

.-.the angle PP'M= P'PM.

P'M is parallel to the tangent at P to the generating circle, hence

PP'M= TPr,

and PT bisects the angle MPT', bisects the arc PTS, and con-

sequently passes through the highest point of the generating

circle. q.e.d.

Strict Proof.— Draw the chord P'M, and regard PP' as a

secant line ; in the triangle PP'M we have

sinPP'^^ PM
sin TPM P'J/

,. ., sin PP'3/ ,. ., PM
.*. limit —.— = limit

The

sin TP3I P'M

arc P'Jf=PJf,

and the chord P'3I differs from the arc by an infinitesimal of a

higher order than that of the chord.
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,. .. p^f ,. .. PM ,.*. limit — = limit ;— = 1

,

chordP'Jf sueP'M

hence limitPP'Jf= limit TPM.

The limiting position of P'3f is the tangent PI" ;

.-. limit TPQ = limit TPT,

and the tangent passes through the highest point of the generat-

ing circle.

T7ie Area of the Cycloid.

171. Rough Investigation.— Circumscribe a rectangle about

the cj'cloid, and its area is evidently equal to the circumference

of the generating circle multiplied by its diameter ; that is, to

four times the area of the circle. The area of the cycloid is

Ka b

this area minus the area of the external portion of the rectangle.

The external area ANO may be divided into trapezoids, of which

abPP' is any one. The tangent PP' passes through the highest

point of the generating circle, and is a diagonal of the rectangle

TaPc, Tc being a diameter. From geometrj',

ahP'P=cdP'P,

which is equal to Qg ; therefore the sum of the trapezoids abP'P
is equal to the sum of the corresponding rectangles Qg, or the

external area ANO is equal to the semi-circle ACB : but ANO
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is half of the external portion of the circumscribing rectangle

;

consequently, the area of the cycloid is three times the area of

the generating circle.

Strict Proof.— The external area is the sum of the curvilinear

quadilaterals of which ahP'P is an}- one ; that is,

area = l'abP'P= limit labP'P= limit labhP,

for abhP- abP'P< eP'hP,

which is of the second order. P'P" is of the second order, since

Na b'b T A

it is proportional to the distance from P' to the tangent at P
(Art. 153); therefore bliliV is of the second order, and

limitraMP= limit rafeVt'P.

ab'h'P=edcP=Qg,

hence the external area= limitIQg= area of ACB.

Length ofan Arc of the Cycloid.

172. Hough Proof.— The arc AP is equal to the sum of the

infinitesimal chords of which PP' is one. The chord AQ is the

sum of the difierences between each chord and the one drawn to

a point of the fixed circle above the point in question and in-

finitely near it
;
QS is such a difference, hence

arc^lP= IPP' and chord^Q= IQS.
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1 A

173

PP' and QR are equal, Q!QR= Q'RQ, by Art. 170,

and Q^R is isosceles. ^S, an infinitesimal arc described from

^ as a centre, may be regarded as a straight line perpendicular

to QR, and therefore bisects QR, and

PP'= 2QS,

IPP'= 2IQS.

AtcAP= 2 chordAQ.

The arc^0=2^5,

and the whole arc of the cydoid is eight times the radius of the

generating circle.

Strict Proof —P'P'\ Q'T", and US are infinitesimals of the

second order, each being proportional to the distance from a point

of a curve to the tangent at a point infinitely near. VS is also

of second order, as it is the projection of Q'T" on AQ.
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The arc^P=limiti'PP'=limitrPP",

since, in triangle PP'P'\

PP'-PP"<P'P".

The choxAAQ=IQS;

= limit IQS= limitIQU=\{mitIQ V.

But the ti-iangle QT"R is isosceles, hence

QV=^qR = iPP"',

and, as arcAP= limit IPP",

arc-4P=2cliord^Q.

[Art. Its.

Q.E.D.

Radius of Curvature of the Cycloid.

173. Rough Investigation.— The centre of curvature for P is

the intersection of the normal at P with the normal at P'.

PX, P'X, and PP' are parallel to QB, Q'B, and QS respec-

tively, hence the triangles PP'X and QSB are similar. The angle

Q is a right angle, the angle B is infinitesimal ; the angle QSB
differs from a right angle by an infinitesimal, and may be re-

garded as a right angle. Therefore, b}' Art. 172,

QS=^PP',
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and the radius of curvature is twice PN, the portion of the normal

within the generating circle.

Strict Proof.— The centre of cunature is the limiting posi-

tion of X.
T A

PP"X' is similar to QRB, hence

PX' PP" , ,. ., PX' y .. PP"—— = —-— and limit -—— = limit -;—-.
QB QR QB QR (1)

Let PP' be the principal infinitesimal, then P'P" is of the second

order ; therefore, in (1 ) , PX can be substituted for PX *. RQ'S

IS similar to BQR, hence -r-=r = ^—

.

QR QB

QR and QS are infinitesimal, QB is finite, RS is of the second

order, and QS can be substituted for QR in (1), and

limit —4r = limit
QB QS

but, by Art. 172,
PP"

limit = 2 :

QS

.-. Umit PX= 2QB = 2PN. Q.E.D.
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Evolute of the Cycloid.

174. Extend the diameter TN to N\ making

NN'= TN

and draw a circle on NN' as diameter. The centre of curva-

ture X, corresponding to P, will lie on this circle, since

Draw a tangent to the second circle at N' , drop a peipendicular

from to this tangent, and lay off B'O' equal to one-half the

circumference of the generating circle.

The QxcPN=ON=B'N';

.•.i\iQQxcN'X=N'0\

and X lies on a cycloid equal to the given cj'cloid, having its

origin at 0'^ and its highest point at 0, and this must be the

evolute required.
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Examples.

175. (1) From a point situated in the plane of a plane

cun-e, radii vectores are drawn to different points of tlie cun'e,

and on each one a distance is laid off from inversel}- propor-

tional to the length of the radius vector ; to determine the tan-

gent at an}' point of the locus of the points thus obtained.

(2) Take an}' two curves in the same plane, and consider as

corresponding points those at which the tangents are parallel

;

draw through a fixed point lines equal and parallel to those

uniting corresponding points of the two curves. Prove that a

tangent to the locus of the points thus obtained is parallel to the

tangents at the corresponding points of the given cui'ves, and

that any arc of this cur\e is the sum or difference of those which

coiTcspond to it upon the given curACs.

(3) From a point radii vectores are drawn to a given cur\'e,

and each is extended beyond the curse by a constant length.

Pi'ove that the normal to the curve on which the extremities of

the radii vectores lie, the normal at the corresponding point of

the given cur\e, and the perpendicular through O to the radius

vector of the point, have common intersection.

176. To show the power of this method of infinitesimals, we

shall give an investigation into the natm-e of what is called the

Bracliistochrone, or Curve of Quickest Descent, The problem is

a famous one, and the solution below is in effect the one given

by James Bernouilli, and is ver}' much simpler and more ele-

mentary than the usual anaMical solution which requires the

use of the Calculus of Variations.

The problem is, given tico points not in the same horizontal

plane, nor in the same vertical line; to find the curve doicti

ivhich a particle moving ivithout friction can slide in the least time

from the upper point to the lower, the accelerating force being

terrestrial gravitation.

Let us first consider a simpler question : To find the path of

quickest descent on the h}'pothesis that it is to consist of two



178 DIFFERENTIAL CALCULUS. [Art. 176.

straight lines intersecting on a givenhorizontalplane,

assuming that the particle moves down each line

with a uniform velocity equal to the mean velocity

with which it tvould actually descend the line in

question. It is easily seen that both lines must

lie in the vertical plane containing the two given

points.

Let P^P' and PMP' be two paths of equal time

from P to P'. Then the required path must lie

between them. If we suppose them to approach,

continuing still paths of equal time, the required

path of quickest descent will be the limiting posi-

tion of either of them. Let v be the mean velocity

of a particle sliding from PtoM; then, bj- Art.

115, V will also be the mean velocity of a particle

sliding from P to N.

Let Vi be the mean velocit}' of a pai-ticle sliding fromM to P',

supposing that the particle started from M with the velocity

actuall}' acquired by sliding down PJf ; then Vi is also the mean
velocity' of descent from ^to P', b}' Art. 115. As we are going

to make the paths PMP' and PNP' approach indefinitely, JfiV

is an infinitesimal. Draw the arcs NS' and 3IR' from P and P'

as centres, and the peipendiculars NS and MR. On our hy-

pothesis, the time of descent from P to S' equals time of descent

from P to N, and time of descent from M to P' equals time of

descent from B' to P'; hence, as time PMP' equals time PNP',
the time of descent fit'om S' to 31 equals time from N to M',

or

whence

and

S'3f^ NR'
V Vi

S'M^v
NR' Vi

V .. S'M ,. ., V
limit ——- = limit — :

NR' Vi

,. ..S'M ,. ..SM
limit ——-= limit—-

,

NR' NR'
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SM_ cosPMN _ cosy
.

NR cosPMN' cos^i'

cos y , V
hence limit = limit—

cos ^1 Vi

Let the angles made with the horizontal by the two portions of

the required path be and flj, and the mean velocities down the

two portions of the required path be v and Vj. Then

COS^ V COSO COS/?!—= — or = •

COS^l Vi V Vi

Let us now consider a path of quickest descent, consisting of

three rectilinearportions intersecting on given

horizontal planes^ all the other conditions

remaining as before. Let PRSP' be the

required path. It is easih' seen that PRS
must be the path of quickest descent under

the given conditions from PtoS; so that

cos _ cos (9i

V ~~ Vi

RSP' must be the path of quickest descent from R to P' under

the given conditions, so that

cos 01 _ cos 02

Vi ~ Vs '

V, Vj, V2 being mean velocities down PR, RS, and SP\ respec-

tively.

Suppose now that the number of rectilinear portions of the

broken line of descent is indefinitely increased, each portion will

decrease indefinitelj- in length, and the path will approach a

cur\'e as its limiting form. The mean velocity down each por-

tion of the polygonal path will approach as its limit the actual

velocity at the corresponding ix)int of the limiting curve ; the

angle made by each portion with the horizontal will approach the

angle made by the curve with the horizontal : hence our limit-
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ing curve, which is obviously the required brachistochrone, must

be of such a nature that tJie cosine of the angle it makes at each

point zvith the horizontal shall be proportional to the velocity the

paiiide will possess on reaching that point. Let us take the

horizontal and veitical lines through the highest given point as

our axes, and take the positive directions of X and Y as the usual

negative directions. The velocitj' acquired b}' a particle sliding

from to Q is, by Ait. 118, the velocity it would acquire falling

from ^to Q, that is, yj{2gy). We shall have then, as the de-

fining property of the required curve,

cosr = ^,

where iT is a constant ; or cos t = Cyi,

C being some constant. Tlie cycloid is a curve possessing this

p>roperty, as is easily seen.

T T

P^ j>r \

/\ y 1
/ ^ \ Ny y

/y\ \ \Os __^y^
T O .>T
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PN
We have cos r = sin PT'N=^ ;

2r

but, bj- geometrj', PN= ^J(2ry) ;

hence cost = ^\ ^^^ =
( ^ )

= yi. q.e.d.
2r \\2ry VC^'O

T7ie converse, that every curve possessing the property

cos r = C?/i

is a cycloid, can be proved anal3tically by finding its equation,

as follows :
—

Let the required equation be

y=fx.

We know that tanr = D^y,

COST = — - = Cyi

;

^l+ {D^yy

l=C'y[l-{-(D^yn

(D,yy=.l=^.
C^y

CaU C= ^

V(2«)

and assume y= a — a cos 0.

and we have

JJoXi

- 1 — cos

a^sm^O ^ 1 + cos ff

{Dgxy~ 1- cos^ ~1— cosi*'
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(D xY-—
«^si"'^^(^— gps^) _ «^(l-cos^^)(l— cosg)

^ " 1+ COS y ~" 1+ cos ^

= a2(l-cos^)2,

Z>ea; = a(l— cos^),

a;= o/g(l— cos^) = aO — asinO -\-C,

when cc = 0, y = 0, and (9=0;

hence C=0,

and our equations are x=aO— a sinO "j

y = a — a cos ^ J

the familiar equations of a cycloid ; and the brachistoclirone is

an inverted cycloid with its cusp at the higlier of the given points.
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CHAPTER XL

DIFFERENTIALS.

177. A DERIVATIVE has, in effect, been defined as the limit of
the ratio of infinitesimal increments of function and variable.

Consequently, in getting a derivative, we can replace the incre-

ment of the function by any quantity differing from it by an

infinitesimal of a higher order.

For example : in getting D^a^, we find

A{xy=a?-{-2xAx+ {^xY-3?=2xAx+ {Jxy.

2xdx differs from ^{s?) by ( Ja:)*, which is of the second order

if we take Jx as the principal infinitesimal, and 2a; Ja; may be

substituted for ^(ar^) in getting D^x^, which then equals

limit [2^1 limit ^2x^=2x.
dx=0 \_ ^x ] Jx=Q •- -

In our old problem of getting the derivative of an area we can

use this same principle.

Take Jx as the principal infinitesimal, then JA and Jy are of

the first order, by Art. 149. /iA differs from the rectangle yJx

y ^

y

^™-^
Ay

/
AA

y
X Ax

by less than the rectangle AxAy^ which is of the second order, by

Art. 147, Ex. ; and we have
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D A= li^it rry.~l= limit fy-'^gl „
Ja:=0|_Ja:J Jx=^LJx'J

^'

Take the problem of the derivative of an arc.

rl

Let Jx be the principal infinitesimal ; then Js is of the first

order. Js diflTers from its chord yJ{Jx)--{-{Jyy bj- an infinitesi-

mal of a higher order, by Art. 165. Hence we have

D^s= limit

Jx=0
"rlf~|^ limit V(Ja;)-+(Jj/)-n limit

Jx Ja;=0

As = VH-(Z),2/)2.

[^K5^]

178. In general,

therefore

r, . limit r/(^+ -la;)-/a;"
|.

^'^^

=

jx= L—j^—J

'

Jx

where e is an infinitesimal, b}' Art. 7.

/(a; -{-Jx)—fx = D^fx.Jx-\-£dx.

But /(rc + Jo;)—/b is the actual increment of /t, caused by the

increment Jx of .t. eJx is of as high an order as the second, if

we take Jx as our principal infinitesimal ; and we get the impor-

tant result that D^fx . Jx differs from the actual increment of fx

by an infinitesimal of a higher order, and may consequently be

used in place of J/x in anj' case where we have to deal with the

limit of the ratio or of the sum of such increments. This quan-
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tity, B^fx . Ax is called the differential of /c, and is denoted by
d/x, d being a symbol for the word diflferential.

By the definition of diflferential,

dx=D^xJx = Jx.

This definition ma}' now be restated as follows : The differen-

tial of the independent variable is the actual increment of that

variable. The differential of a function is the derivative of the

function multiplied by the differential ofihe independent variable;

or formulating, dx = Jx,

dy= D^y.dx^

y being a function of x.

It is to be noted that a differential is an infinitesimal^ and that

it differsfrom an infinitesimal increment by an infinitesimal of a
higher order.

179. Since dy=D^y.dx^

As, by Art. 73, D„x= ,

D^x = —.
dy

Consequently, if two quantities are so connected that either is a

function of the other, the derivative of either with respect to the

other is the actual ratio of the differential of the first to the differ-

ential of the second.

180. The diflferential notation has the advantage over the

derivative notation, that it is apparently simpler, and that the

formulas in which it is used are more synnnetrical than those in

which the other notation is emplo^'ed ; and although the differ-

ential is defined by the aid of the derivative, and the formulas
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for the differentials of functions are obtained from the foimulas

for the derivatives of the same functions, there is a practical

advantage, after the formulas have once been obtained, »i regard-

ing the differential as the main thing, and looking at the derivative

as the quotient of tico differentials.

181. By multiphing each of our derivative formulas hj dx,

we get the following set of formulas for the differentials of

functions. •

da = ;

d(ax) =adx;

d^x") =nx^~^dx;

d{logx)
_dx,
~ X

da' = a''\oga.dx;

de' = e'dx;

f7sina; = cosx.dx;

decs a; = — sinx.dx;

dtancc = sec^a: . dx ;

dctnx = — eschar . dx

;

dsecx = secxUinx . dx

;

descx = — esc a; etna; . dx
;

d vers a; = sina;.da;;

dsin~^x
dx

VCi-^-')'

decs"* a;
dx

V(i-^')'

dtan~*a;
dx

l+ x"'
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J -^i-i dx

l-for^'

<?sec"'x
dx

xV(ar^-l)'

dC8C~'x
dx

x^{x'-l)'

tZvers"'x dx

y/{2x-^)'

d(u + v + to + •• •••) = du + dv + dw-\-

d{uv) = udv + vdu
;

d't
vdu — udv

V v^

dA = ydx
;

ds = \l{dxY-\-{dyy.

The foi-mula DJy = D^fy . D^y

is no longer necessar}', as it gives us

dfy= D,fy .dy = -Mdy= dfy, an identity.
dy

Examples.

Work the examples in Chap. IV. by the differential formulas

just given, remembering that

dx

182. The differential notation is especially convenient in deal-

ing with problems in integration, and leads to an entirely new
wa}' of looking at an integral.
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Let yz=y?^

and suppose that x changes from the value 1 to the value 5 ; to

find the whole change produced in y. Let x change \>\ succes-

sive increments, each of which may be called Ax ; then the whole

change in y is the sum of the corresponding increments of y,

which we will indicate by ^ Jy. The whole change in y is the
1=1

actual sum of these infinitesimal increments ; it is then the limit

of theu" sum as Jx is indefinitely decreased, and each Ay decreases
x=5

correspondingly ; that is, it is limit ^ Ay. But as we are deal-
1=1

ing with the limit of a sum of infinitesimals where the limit is,

from the nature of the case, finite, each term ma}' be replaced

bj- any infinitesimal differing from it by an infinitesimal of a

higher order (Art. 162). Each Ay ma}' then be replaced b}' the

coiTcsponding dy, and we get as the whole change produced in

x=5 1=5

the value of y, limit ^ d^a^) = limit ^ 2xdx.
x=l x=l

As y=^-,

this change must be

[x2],=5-M,=i = 25-l = 24,

and we get the limit of the sum of a set of difierentials appear-

ing as the difierence between t^o values of the corresponding

function.

183. Suppose that in any fx we change x from a^ to a^i by

giving to X successive increments. The whole change, fxi —/Xq,

must be the sum of the partial changes produced by the incre-

ments given to X ; or

fx^-fx,=:E Afx.
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If the increments given to x be indefinite!}' decreased in magni-

tude while sufficiently increased in number to still fill the gap

between Xq and Xi,

-. . x=Xx ar=x,

fxi —fxo = j^^Q^ ^fx = limit ^ dfx,
X^Xq X^Xq

bj' Arts. 162 and 178,

= limit^ DJx . dx.

X= Xo

Call D^fx = Fx,

then fx=/^Fx

X=Xf

and limit^ Fx.dx = [/, Fx]x=a:, - [f^Fx'jx^xo,
x=x^

and the limit of the sum of a set of differentials is the difference

between two values of an integral. Such a limit is called a defi'

nite integral, and is indicated by /, Xq and a^ being the values
Xo

between which the sum is taken. As a definite integral is the

difference between two values of an ordinary integral, it contains

no arbitrary constant.

184. Regarding an integral as the limit of a sura gives a new

meaning to some of our old formulas. Take, for example, the

case of finding an area. Required the area bounded by the

parabola ?/^ = 4x, the axis of X and any ordinate yo-

The area in question is the limit of the sum of rectangles of

which yJx ma}' be taken as an}' one, and the sum is to be taken

between the values and Xq of x. We have then

X— Xq X— Xq

A = limit^ yJx = limit^ ydx
;

x=Q x=(i

hence • A=fydx,
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y= 2x-i.

-^^'-=[fL.-[Tl.--'-

185. "We can now take up some new problems that could not

be convenientl}' approached while the integral was treated merely

as an inverse function, and we shall consider ver}- briefly one

connected with the subject of centre of gravity.

The centre of gravity of a bod^- is a point so situated that the

body will remain motionless in any position in which it ma}' be

placed, provided this point is supported.

Suppose a heavj- plane curve, of which equal areas have equal

weights, placed in a horizontal position. The tendency of any

particle to produce rotation about a given axis is the weight of

the particle multiplied by its distance from the axis. If the axis

passes through the centre of gra^nt3•, the sum of all these ten-

dencies must be zero, or the body would rotate.

Let us consider the centre of gravity' of a segment of the pa-

rabola t/*= 2mx,

cut off by anj' double ordinate.

Suppose the parabola horizontal, and letX and Fbe the coor-

dinates of the required centre ofgraWty. Inscribe in the parabola
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small rectangles having their sides parallel to the axis of Y.

The tendency of an}- one of these rectangles, as AB^ to produce

rotation about the oi-dinate through the centre of gravity, is its

welgM, which ma}- be represented by its area, 2yJx, multiplied

by its distance from the ordinate in question. If the rectangle

were so narrow that we could regard its weight as concentrated

along its nearest side, this distance would be (x—X); and if we
decrease Jx indefinitel}', the required distance will approach this

as its limit.

The tendency of this rectangle to produce rotation is then,

roughly, 2y{x—X)dx; and the smaller the value of Ax, the

nearer this comes to being an exact exi3ression. The tendency

of all the rectangles is ^'2y(x—X)Jx. The smaller the rect-

x=0

angles, the nearer their sum comes to the whole area of the curve,

and we shall have as the tendency of the whole curve to rotate

X=X^ Xj

about CD limit^2?/(a; —X) Jx or /2y(x—^)dx; but as CD
x=0 »

passes thi'ough the centre of gravity, this must equal zero.

/2y{x-X)dx = 0.

^ y = ^(2mx)]
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*t

hence 2/V (2mx) (x —X) clx= 0,

'l ',

fxidx= Xfxhdx,

V— 3 r

B>' similar reasoning, we find, as the tendency to rotate abont

a hne through the centre of gravit}' and parallel to the axis of X,

/{Xi — x) (y — Y) (ly. This must equal zero.

-,\ 2mJ

jUy-x,T-f- + fI)dy = 0;
-y\ 2m 2m

)

\
x^L. ^ x{Yy — -d— -\- J—Y

\
=0;

L ^ ^"* 6MI J|,= _yj

,— Xiiyi — \. — _- Xi 1
?/i + f-

-— 1 —K)

,

2 8wi 6wi 2 8«i 6??i

r=0:

and (f a;i,0) is the required centre of gravity.

Differentials of Different Orders.

186. As the diflferential of a function is by definition a new

function of the independent variable, we maj' deal with its dif-

ferential.

d{dy) is called the second differential of y, and is denoted by

(Py ; d{d^y) is called the tJiird differential of y, and is denoted

by dJ^y ; and so on. c?(fZ" ~'
^) = d'y.
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In dealing with differentials of a higher order than the first, it

is customary to make the assumption that the differential, that

is, tlie increment (Art. 1 78) , of the independent variable is con-

stant, since this assumption greatly simplifies the results, and is

always allowable when the variable in question is really inde-

pendent, as we can then suppose it to change b}- ecjual incre-

ments.

187. Making the assumption that the differential of the inde-

pendent variable is constant, we have \&c\ simple relations be-

tween differentials and derivatives of different orders.

B3^ Art. 1 78

,

dy= D^y. dx,

then d^y= d{dy) =Dxdy. dx = D^{D^y. dx)dx = D^y. di?,

as dx is a constant. It can be shown in the same way that

d^y=D^y .dot?,

and that d^y = Z)/y. t?x".

It will be noticed that when dx is the principal infinitesimal,

cZ"y is an infinitesimal of the nth order.

From the results just obtained, we get,

A^y =

D,'y=%
-^

dx''

and the differential notation is generally used in place of the

derivative, even in the case of derivatives of higher order than

the first ; but in using —1 for D^'*y, it must be kept in mind
daf*

that the two expressions are equivalent only when x is the inde-
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pendent variable. If, for example, x were a function of a third

variable, and were compelled to change in some particular wa}',

we could no longer assume that dx was constant, and the differen-

tial expressions for the derivatives would be much more compli-

cated.

188. Let us work out the second derivative of y icithoiit any

assumption as to the value of dx.

r. 9 dD,7/ ^ dx dxd-ii—dyd'xD/y = —r^ = = "h-j^ »

dx (jx dx^

since — is an ordinary fraction, and its differential can be found
dx

, . , „ 1 -.u vdn — ndv
by the formula a- = .

Examples.

( 1 ) Show that

T) 3 _ d^yds?— dxdyrPx — Sdxd^yd-x + Sdyd^a^
'^~

d^*

(2) If y = \ogz,

find f?^2/' ^^^y-i ^^<5. ^*yi assuming that z is the independent varia-

ble, and again making no assumption concerning z. Compare

your last results with those obtained by letting 2=sina;, and

taking x as the independent variable.

189. In using differentials of higher order than th^ first, if

the assumption is made that the differential of the independent

variable is constant, it is better to indicate this by preserving

the derivative form, even when using the differential notation.

Take, for example, the formula for the radius of cm*vature of a

plane curve, P= — -— ^ '^' -*
.
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\+fm'
We should wi-ite it p= —

d3?

and not P— — -—
. ,, >

ax . d-y

if we wished to indicate that x was the independent variable. If

we make no such assumption, we must substitute for DJ^y the

value given in Art. 188, and we can then reduce the formula to

dxd^y — dycPx

'

190. The subject of differentials of different orders is closely

connected with that of Jinite differences or increments of different

orders.

If ?/ is a function of a;, and anj- fixed increment Jx is given

to X, there will be produced a corresponding increment Jy in

the value of y ; J?/, however, is not a fixed value, but varies with

the value of a; considered. For example, if

y = ^,

Jy = 3arJa; + 3x( Ja;)^+ (^a;)^

and is obviousl}' a function of x, and therefore will be changed by

changing x. The change produced in Jy b}' giving x another

increment, Ja;, is called the second increment of y, and is indi-

cated bj' J^y, and is a new function of x. The increment of the

second increment is the third increment J'y, and so on ; and in

general J(J"~^y)= J"y.

If y = ^.

A*y = 6x(jxy+e(Jxy.

The whole change produced in a function by giving several equal
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increments to the variable can be neatly expressed in terms of

successive increments.

Add Ax again, y becomes y + dy, Ay becomes Ay + J^y, and we

have f{x \-2Ax) = y -\-2Ay + A^y.

Repeat the operation, y becomes y-\- Ay, 2Ay becomes 2{Ay+A^y)
,

A^y becomes A^y-\-A^y, and we have

f(x + SAx) = y-{-3Ay + SA^y+ A^y.

In like manner,

f{x+ 4:Ax)'^y + AAy + 6A'y + AA'^y + A*y.

Example.
Show that, if

flx + {n-l)Ax-]= y + {n-l)Ay + il!^l^^!—^ A'y

,

(n-l)(n-2)(n-3)
^3^.^

^

3

!

f(x+nAx)=y+nAy+V:(^ J-y+ "^^-\>(^-^> J«j/+
;

and that, consequently, the second formula always holds.

191. If Ja; is infinitesimal, we have seen that dy differs from

Ay by an infinitesimal of a higher order, and therefore may be

used instead of Ay in all cases where we are dealing with the

limit of a ratio or of a sum of such increments. The same rela-

tion holds between (Py and A^y, and in general between d^y and
A^y, as we can prove by the aid of the following lemma.



Chap. XL] DIFFERENTIALS. 197

Le&iha.

192. If a function of x contains besides x a letter a, which is

independent of x, and becomes zero when a is zero, no matter

what the value of x, its derivative with respect to x will be zero

when a is zero.

For, since a, being independent of «, is treated as a constant

during the operation of differentiation, it can make no difference

in the result whether we give it an}' particular value before or

after that operation. But if we give a the value zero before we
differentiate, our function by h^-pothesis is equal to zero, and is

therefore constant, and its derivative is zero. Hence the lemma.

It follows that, if the function is infinitesimal when a is infini-

tesimal, whatever the value of x, its derivative with respect to x
will also be infinitesimal when a is infinitesimal.

As an example, consider the function log(l -f cwj) » which equals

zero when a = 0.

^Mi±^ =_^ = Owhena=0.
ax l+ax

193. Let Jx be infinitesimal. Then, by Art. 178,

Ax

where e approaches zero as Ja; = 0. Increase x by Jcc, and the

increments of the two members of the equation will be equal.

:^= J(Z>,y) + Je.
Ax

Divide by Ja;: _^^ ^(Ay)^^
{Axf Ax ^ Ax

limit

Ax
nit rji!^1^2;2». limit fifl.
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but, by Art. 192,

Hence,

DIFFERENTIAL CALCULUS.

imit fiil^
a;=0 |_Ja-J

limit rJ^1-7)2w_^

- =—~ 4- «i

[Art, 193.

by Art. 187.

(Jx)

where a is infinitesimal, b}' Art. 7.

But Ax= dx (Art. 178) ;

bence
J*V d^y

.—- = —- +- «»
dx" dx^ ^ '

A'^y = (Fy + adi?.

d^y is an infinitesimal of the second order, by Art. 187. ada?

is of the third order ; consequently, d!^y maj' be used in place of

A'^y in problems concerning the limit of a ratio or of a sum.

By similar reasoning, it can be shown that

A^y = d?y + ad2i? ;

and, in general, that J"y = d"y + adati*^

when Ax is infinitesimal.
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CHAPTER XII.

FUNCTIONS OF MORE THAN ONE VARIABLE.

Partial Derivatives.

194. Up to this time we have considered onlj' functions of a

single variable, but a complete treatment of our subject requires

us to stud^- functions of two or more independent variables.

Plane Analytic Geometry has furnished us with numerous ex-

amples of functions of the former kind ; Analytic Geometry of

Three Dimensions introduces us to functions of the latter sort.

The equation of a surface contains three variables, a;, y, and 2,

and any one maj' be expressed as a function of the other two

;

and when this is done, the one so expressed may be changed by

changing either of the others, or by changing them both, as they

are entirel}' independent.

195. The derivative of a function of several variables obtained

on the hypothesis that only one of them changes, is called a, par-

tial derivative; and, as all the variables except one are, for the

time being, treated as constants, & partial derivative can be ob-

tained bj' the rules for differentiating a function of one variable.

For example : D^x^y = 2ocy, if x alone changes

;

D^a^y = X*, if y alone changes.

2xy is the partial derivative of sc^y with respect to x, and a^ is

the partial derivative of oi^y with respect to y.

We shall represent partial derivatives by our old derivative

notation, indicating ordinary or complete derivatives, when it is

necessary to make any distinction between the two, by the ratio

of two diflerentials.
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196. If a function contains two variables, its partial deriva-

tive with respect to either will generally contain both variables,

and ma}- be differentiated again with respect to either of them.

D.arif = Ixf ;

D^x-y-= 2y-
;

D,D^T^f= 4xy;

D,x^f-=2x^y;

D,D,x^f-=4xy;

Take u = xlogy.

D,u = \ogy;

B^n = ;

y

D,^D,u =

D.u =

D^D,u = X
' — »

y

D,^u=- X

D,D,'u == —

197. In both these examples we see that D^D^u is the same

as DgD^u, and in the second
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Let us see whether it is true in general that the order in which

the differentiations are performed is immaterial.

Let u=f{x,7j).

f(x,y + Jy)-f(x,y)

To see if D^D^u = D, D^ u

.

X) „ = limit r/'(a;,y + Jy)-/(a;,y)
'

' Ay=0[_ Ay + ^»

by Art. 7, where e is an infinitesimal and a function of x, y, and

Jy. Similarly, D„u=''-^—! -^—-^ '^^ + e
,

Jx

where e' is an infinitesimal and a function of x, y, and Jx.

DgDyii is equal to

limit r/(^+ ^3;,y+Ay)-f(x-^ Jx,y) -f{x,y+ Ay) -hf(x,y)lmit r./

;=0|_Ax=0
1_

Ax Ay J

D^D^u is equal to

limit

Ay=0
'f{x + Ax,y + Ay) -f{x,y + Ay) -f(x+ Ja;,y) +/(»2^)1

Jx* Jy

+Ae'. [2]

The second expression for D^u is absolutel}' true, whatever the

value of Ay, and so is the expression for D^D^u. We may then

suppose Ay to approach indefinitely near zero, and D^D^u will

be equal to the limiting value approached by the second member

of [1]. The limit of e as Ay approaches is ; therefore, by

and D^DyU is equal to

lirnit
r/(a; + ^x,y+ Ay) -f(x + Ax,y) -f(x,y + Jy) +Ax,y)l^

as both Ay and Ax approach 0.
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By similar reasoning, it may be shown that D^D^u is this same

limit, and hence that DxDyU=DyD^u.

B}- apptying this theorem at each step, we may prove that, in

ohtaining any successive partial derivatives, the order in ichich the

differentiations occur is of no consequence.

For example, let us show that

D,^DyU=DyD,^u;

D^D^u =D^{D^D,ic) =D,{D„D,u) =D,D,D^u

=D„D,D,u=D,DJ'ti.

198. In a previous chapter, we saw that, while the increment

of a function due to any increment of the variable is generall}' a

ver}' complex expression, the differential of the function,which

differs from the true increment onty bj^ an infinitesimal of a

higher order than the increment of function or variable when

the latter is infinitesimal, is usually verj^ much simpler, and j'et

can be used instead of the true increment in many important

problems.

It is worth while to see if we cannot get a simple expression

capable of replacing the infinitesimal increment of a function of

two or more variables in similar problems.

A function of two independent variables may be changed by

changing either of the variables alone, or bj' changing both.

Suppose we give to each variable an infinitesimal increment

of the same order. Let it=f(x,y).

Increase x by Ax and y b}- Jy,

Au =f{x + Ax,y + Ay) -f(x,y)

.

Add and 8ubtract/(a;,?/ + Jy), and we get

Au =f{x + Ax,y + Ay) -f(x,y + Ay) +f{x,y + Ay) -f(x,y)

.
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f(x,y+Jy)—f{x,y) is the increment of /(a;,y) produced by

changing y alone, and differs from D^f{x,y)Jy by an infini-

tesimal of a higher order than Ay, by Art. 178. In like man-

ner, we see that f{x+ Ax,y -\-Jy)—f{x,y -\-Ay) differs from

D^f(x,y-i-Ay)Jx bj' an infinitesimal of a higher order than Ax.

D^/{x,y 4- Ay) is a new function of x and y, and an}' infinitesi-

mal change in y will produce in it a change of the same order,

by Art. 149. Dxf{x,y + Ay), then, differs from D^{x,y) by an

infinitesimal of the same order as Ay, and D^{x,y + Ay)Ax

differs from D^f{x,y) Ax by an infinitesimal of the second order.

Dxf{x,y)Ax-\-Dyf{x,y)Ay, or, using the differential notation

and remembering that x and y are both independent, D^f{x,y)dx

-j-Dgf{x,y)dy differs from the time increment of m b}' an infini-

tesimal of a higner order than dx and dy, and therefore may be

used in place of Au whenever the limit of a ratio or the limit of a

sum is sought. This is called the complete differential of w, and is

indicated by du ; hence, when

u=/{x,y),

du = D^udx +Dy vdy.

Example.

Prove that, if u =f(x,y,z) ,

du = D^udx + Dyudy + 7), udz.

199. Partial derivatives ma}' very often be used with profit in

obtaining ordinary or complete derivatives. Suppose that

y =Fx and z=FiX and u —f(y,z) ;

u is indirectly a function of x, and we can therefore speak of the

complete derivative of u with respect to x, which we shall indi-

cate by —

.

'' dx
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"We wish to find the limit of the ratio— . In so doing, we
Ax

can replace Au by du^ which equals DyiiAy -{-D^uAz, since, as

y and z are not independent variables, Ay and Az differ from dy

and dz
;

hence ^= limit

Axdx Ax=0 i>,„4?+^.»i].

du r\ dv r, dz

dx dx dx

Example.

To find ^ i
, knowing that \

^•^* [z = x^.

Solution : D^ sin (j^ — z) = 2y cos {rf — z),

D,sm(y^ — z)= — cos (y^ — z).

dy

dx

1

dz _
dx~

:2a;,

d^'^^f-^) ^ 2ycos(/-2=) _ 2^^^ , , _
cte a;

2 (y — ar') cos {y^ — z)

Confirm this result hy expressing y and z in terms of x before

differentiating.

200. If M=/(a;,y) and t/=2?b,

the formula of the last article becomes

dx dx
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Examples.

(1) u = z^+ f+ sy'

z = sinx

y = e'

^ Find T-ax

Ans. —=(Sf-{-z)e'-{-(2z + y)coBX.
dx

(2) z. = log^l .,,
, du 1 ,

y f Find T"- -4"s- -T- = ctnx.
\

dx dx X
y = sin X )

(3) u = tan-\xy)] .^ ^
^Find:r- ^^^' -3-=-.—^a*y^gr
\

dx dx 1+ xFf

(4) u = sin~^
[
-

j
when z and y are functions of x. Find —

•

(5) u=^
I

„~'^
. I
when z and y are functions of x. Find -—

.

201 . Higher derivatives of a function of functions of x can

be obtained by an easy application of the method suggested by

the formulas above.

For example : u = /{y^z)
,

y=Fx,

z=FiX,
. •, d!^u

reqmred .

dar

fdxi
d

dar dx \_ dx dxj dx

=Z,.„(|)V2Z>.^..|.|+I»(|)>.,..g+Z,.ug.
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In obtaining this formula, since y and z are given functions of

a, -d. and — are also explicit functions of x, and are therefore
dx dx

treated as constants in obtaining the partial derivatives with

respect to y and z ; but now — is a function of (x,y and z) , hence
dx

we must take also its partial derivative with respect to x.

Example.

Given « =f(x,y) ,

, , . dru , d?u
obtain —- and—-.

dxr dar

y=Fx,

Implicit Functions.

202. If, instead of having y given in terms of x, we have an

equation connecting x and y, y is called an implicit function of

X, and — can be readily found by the aid of Partial Derivatives.
dx

Suppose fi^yl/) = 0,

to find ^. CaU/(a;,2/)w.
dx

Then w = ;

hence — must also equal zero,
dx

dx dx

dy _ D^u
dx D^u

Examples.

(1) aaf-ye"» = 0. Find ^.
dx
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Solution

:

or, as

FUNCTIONS, ETC.

D^u= — e"" — ???/e»%

dy —D^u max'^~^

dx JJ^u (l+ ri?/)e"

ax" = ye"",

mye*"
max^~^ = —-

—

207

and
mydy^

dx {l-\-ny)x

(•2) $+ $-1=0. Fiod|.

(3) a* — y^ = 0. Find
dy

dx

1 dy b^x

dx ary

Ans. ^= y-Z^M}2M.
dx x^ — xy\ogx

(4) sin(xy) — mx = 0. Find
dy

dx

(5) w- + x^ + 2/^ + 2^ = (T

Find^.
dx

Ans.
du_l fy\x-y) ^

^^(^-1) ^V
dx u\x{x + y) x(xz-{-]

d^y
203. We can get ri| by the aid of the formula of Art. 201,

remembering that
d?u

da?
= 0.

S=^-"+^^-^.''l+^>(D+^.«B=o.
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dy _ Dx II

d-y _ D,-u{D^n)--2D,D^uD,uD^u+D^-u{D,uy

EXA3IPLES.

(1) f + :^-Saxy = 0. Find ^. Ans.
^^''^- ^a^^r.v

dor dar {y- — ax)''

(2) a,'* + 2ax^y — ay^ = 0. Find -^ and —f

.

dx dxr
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CHAPTER XIII.

CHANGE OF VARIABLE.

204. If we use the differential notation, we have seen that

there is no need of distinguishing carefullj- between function and

independent variable, a single formula alwa3's giving a relation

between the two differentials b}- which either can be expressed

in terms of the other. This, however, is the case onlj- when we
are dealing with differentials of the first order. A differential

of the second order or of a higher order has been defined b}- the

aid of a derivative, which alwaj's implies the distinction between

function and variable, and on the hj-pothesis of an important

difference in the natures of the increments of function and varia-

ble ; namely, that the increment of the independent variable is a

constant magnitude, aiUd that, consequentl}', its derivative and

differential are zero.

If, in any function invohang differentials of a higher order

than the first, we have occasion to change the independent va-

riable, we can no longer assume that the differential of the old

independent variable is constant, but must go back and replace

all the differentials of higher order than the first by values ob-

tained on the supposition that all the differentials are variable,

before we attempt the introduction of the new variable, vide

Arts. 187 and 188.

205. In an)' particular example in which it is necessar}' to

change the variable, the method just described can be easily

applied.

Take the differential equation,

o fPu
,

dii
, naf-—-\-x — + u = 0,

oar ax
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•where x is the independent variable, and introduce y in place of

oc. Given y= log a;.

Our cPu here is the second differential of u taken on the assump-

tion that X is the independent variable, and this can be indicated

by writing it dju, and we have

dju = B,^wJb?=
dx^u-du£x^ , ^^^ ^gg^

dx

, dx
dy= —,

X

dx=xdy,

d?x= d{xdy) = xd^y+ dxdy ;

but cPy = 0,

as y is to be the independent variable,

hence drx— dxdy,

J ,, xdyd^ u — xdudy- « , ,
and dju =—^ ^ =d.-u — dudy ;

xdy

o drn _d!^ii du

dor dy^ dy^

du _du

,

'

dy dy

hence we have —
-r+ m = 0.

df
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Examples.

(1) Change the variable from a to / in

^y «_ ^y
I

y =0.
dx^ l — x'dxl— a^

Given a;=cos<.

Ans. —f 4- w = 0.

(2) Change the variable from a; to tf in the equation,

Given d? = tan~'!».

(3) Change from a; to Hn

Given a;=cos^

Ans. ^= 0.

206. It is often desirable to change both variables simulta-

neously, and the principles already explained and ilhistrated

apply perfectly' to this case. As an example, let us see what

our old expression for the radius of curvature of a plane curve

becomes when we change from rectangular to polar coordinates.

Here we have x = rcos^

y= j'sin^

and we shall regard <p as the new independent variable. "We

know that, if p is the radius of curvature.
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We have seen, in Art. 189, that this may be written

P =

or, better still,

dxd/y

(d3r + (lf)i

dxd^y — dydrx

dx = — r sin <sd<s + cosyrfr,

dy = r cos fd^ + sin ydr,

since f?cr is constant,

d^x= — r cos crdc;- — 2 sin <fdrd<f + cos 9'(?^ r,

rFy = — r sin (fd(p^+ 2 cos (pdrd<f -\- sin c-fTr,

(C/X-' + df)i = (>-2f?s-''+ rf''')^

dajfPy — cZyd^ic= r^cf^^ — rdyd^r-\- 2di^d^.

_ (r^cZy^ + (?;•=') ^

^ ~ ^d^^ - rdscP r+ 2d)^d<p
'

divide numerator and denominator b}- d^,

-(l)j
P =

Example.

Find the radius of cur\'ature of the circle r = cosf

.

Ans. p = ^-
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207. A veiy simple example of clTange of variable is the fol-

lowing. Obtain the value of tanr when polar coordinates are

used. tanr=-^.
dx

x=rcos<p,

y = rsin^,

dy r cos <pd(p -f sin <fdr

dx — r sin <fd(p + cos <pdr'

A much simpler expression can be obtained for the angle made
by the tangent with the radius vector, which we shall call e.

. 4. / \ tan r — tan a>
tan £ = tan (r — (f)

= -
,

1 + tan T tan <p

. . r sec crdw
tanr — tan^ = —

,— r sni <fd<f -\- cos (fdr

, , , , seccfcZr
l-f-tanrtanf = ^

— r sin <pd(p + cos <fdr

dr

Examples.

(1) Obtain this value for tans from a figure by the aid of

infinitesimals.
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(2) If x=rcos^'

y = rsin^]

show that

«+3
dx dr

dy rd<p^
X -^ — y ^
dx

and that ds'=dx^+dy^

becomes ds'^di^ + i^'d^''.

[Akt. 208.

Prove this last result from a figure.

(3) If x' = a(l— cosO

y=^a{nt + sint) j

express —^ in terms of ^ Ans. —^ — ^
—

dx^ c?ar asin-^i

(4) Given x= acos^

y=b sin <p

express in terms of (p.^ . (a^sinV + 6^cosV)i
dx^ ^^'- ^

208. The subject of change of variable can be easily treated,

by the aid of the principles established in Art. 88, without in-

troducing the idea of differentials.

D,x

DJ^y=D^D,y=^±^ = -(tf)
Aa; D,x
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'\D,x)- {D,xY

jr,, D,xD,h,-D,yD^'x
'^-

{D,xr

If X and y are given in tenns of z, we can calculate the values

of D,x^ D^y, D/x, and B^^y, and substitute tliem in these form-

ulas. Take Example (3), Art. 196.

x= cosf,

{l-aP)D,'y-xD,y= 0,

n D,y

VfX

7)2,, DtXD^y-D,yD^x^'^=
{D;xf
—

'

DtX= —sin?,

DtX— — cos?,

Sin?

p.^ — sin t D^y + cos? Z),y
J^t y = . 3,

5— sur?

\— a?= sin^?,

- sm tD,^y-\- cos tD,y costly
«^"^ i^^h?? -^-SE?- = ^'

D,'y=0.

209. Suppose we have a function of two independent vaiia-

bles, and its partial derivatives with respect to them, and wish
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to introduce, in place of our old variables, two others connnected

with them b}' given relations.

For example : let z be a function of x and ?/, and let it be

required to introduce, instead of x and y, u and y, which are

connected with x and y b}- given equations. If the equations

can be readily solved so as to express u in terms of x and y, and

V in terms of x and y, we may proceed as follows :
—

After the substitution, z is to be an explicit function of t

and V. Suppose the substitution performed. As u and v are

functions of x, z is indirectl}' a function of x. To get D^u^ we

suppose y constant, so that x is for the time being the only inde-

pendent variable, and we can get Z>,z, by Art. 199, which gives us

where all the derivatives are partial derivatives. In the sane

way, D^z=I)^zD^u-\-T)„zDyV.

D^u, Z)^y, i)j,n, and D^o are found from the values of u and u

mentioned above, and are generallj- functions of x and ?/, and

D^z and D^z are at first obtained in terms of w, v, a;, and y.

X and y must be replaced by u and v by the aid of the given

equations, and D^z and DyZ are then in terms of u and v alone.

B}- extending the process, we can get D/z, D^DyZ^ -O/^;, &c.,

in terms of u and v.

For example : introduce u and v in place of a; and y in the

equation D^z = D^z.

Given u — x-\-y

v = x — y

i),M=l,
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D,-z = D^^z + 2Z)„ D,z + D:-z,

D^z = D^-z - 2Z>„ D,z + I)^z,

D:-z 4- 2i>„ D„0 + Z)/2 = B^z- 2Z)„ Z)„2 + A'2,

4Z)„Z}„2=0.

DuD„z = 0, the required equation.

210. If it is more convenient to express z and y in terms of

u and u at the start, we can proceed thus : z is explicitly- a func-

tion of X and y, and if we regard v as constant for the time

being, z is indirectly a function of the smgle variable u. Hence,

X>„2 = D.^zD^x + DyZD^y
;

In like manner, D^z = D^z D^x + D^z D„y.

D^x, D^y, D„x, and D„y are found in terms of u and v, and

then by elimination between the equations, we get i>,z and D^z

m terms of u and v.

Examples.

(1) Given a;= rcos^

y = ?*sin^

z=f(x,y),

find D^z and D^z in terms of r and <p.

Solution

:

D,x= cos y ,

D,pX= — rsin^,

Dry=smyj
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Dii,y = rcos<f,

D^z— D%. cos (f ->rD^z sin ts,

I)^z = — D^zrsinc) + D^zj'cosy.

Eliminate

;

rcos<pDrZ= rcos^^D^z -j- j'sincrcos^D^z,

BmyD^z= — rsin^^Z),2+ rsin^cos^ DjfZ;

D^Zz=- {rcos^DrZ — siny D^z)

D^z= - {I'sm^D^z -{ cos^ D^z).
r

(2) Solve this same example b}' the method of Art. 209, usmg

the relations r^= ar + ?/-

'

tan^= _
. X

211. If it is not convenient to solve the given equations be-

tween x, y, u, and v, we can use the general method of either

of the precedmg articles, obtaining our D^u, Dz'^i D^ri, and X>,v,

or our D^x, D„y, D„x, D^y, as follows : We have given

i^i(a;,y,M,<;) = and F2{x,y,u,v)= 0.

Suppose y constant, then u and v will be functions of x ; and,

by All. 200, Z), Fj + Z)„ F^ D,u + D,FiD,v = Q

D,F2-^D^F,D,ti + D,F2D,v =

From these equations we can obtain D^u and DjV, and from two

equations formed in the same waj* we can get D, u and D^ v

;

and a like process would give us D„x, D^y^ D^x, D,y.
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Examples.

(1) If F is a function of v, and

v^ = xr + y^,

show that DJ"V+ />/r=^+ -—

.

dv V do

(2) If F is a function of y, and

show that DJ'V+ DJV+ D,^V=^+^.
dv^ vdv

(3) If a= ae^cos^ and y = ae^s'my,

show that fD^^ u - 2xyD,D^u + ^Z)/u = D<^ u + DgU.

(4) Given e* + e»' = s,

express D^u + 2DxDyU + D^u in terms of s and t.

Ans. s^D,^ u — 2i>tD, D^u + eDf u -\-sD,u-\- tD, u.
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CHAPTER XIV.

TANGENT LINES AND PLANES.

212. It is shown in Analytic Geometry of Three Dimensions,

that any equation F{x,y,z) = represents a surface,

and that two such equations,

Fi{x,y,z) = 0,

Fs{x,y,z) = 0,

regarded as simultaneous equations, represent a curve in space,

the intersection of the surfaces which the equations separately

represent.

B}' ehminating z between these two equations, we can express

y as an explicit function of x ; and by eliminating ?/, we can

express z in terms of x : consequently, the equations of any

curve in space may be written in the form,

=P 1

=:Fx}

y=fx

z

213. Let it be required to find the direction of the tangent

line drawn at any given point {xQ^yo^z^) of the curve

= Fx]z

Let (xq 4- ^x, yo+ Jy , 2o+ ^z) be any second point on the given

curve. The equations of the line joining the two points are
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Ax J.y Jz

by Analjiic Geometry ; or

y-Vo ^^y]
X — Xq Jx

Z — Zo_Jz

Let Ax approach zero, and the secant line approaches the re-

quired tangent as its limit, and this will have for its equations.

-yo ^ (^\
— Xq \(lxjx=x„

dz

X— Xq \Cf^/x=a:(, •

or, writing them in a more s^-mmetrical form,

X — Xn y ~ .'/o
Z — Zq

fjyo

dxo dxo

where, by -^, we mean the value — has when x = Xq.

dXo dx

A plane through the given point perpendicular to the tangent

line is called the normal plane at the point in question. Prove

that its equation is

x-Xo+ {y-yo)p + {z-Zo)p = 0.
dxQ dxp

Example.

214. The helix is a curve traced on the surface of a cylinder

of revolution by a point revolving about the axis of the cylinder
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at a uniform rate, and at the same time advancing with a uni-

form velocity in the direction of the axis.

"We can easily express its equations by the aid of an auxiliary

angle, the angle through which the point has rotated. Calling

this angle d and the radius of the circle a, we readily see that

x = a cos d,

y = asind.

From the nature of the helix, z must be proportional to the

angle 6 ; hence •~ = ^i a constant,2 = fc,

e

and z=k0.

The required equations are then

a; = acos^

y = asin^

4S= k0
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To find the tangent line and normal plane at (xoiVo^^t

dy = a cos OdO,

dx = — a sin OdO^

dx

X
~7

dz = M0,

dz k

dx a sin tf y

The equations of the tangent are

a;— go_ y — yo _ g— gp

or
x-xp ^ y-yo ^ z-Zq

P^,—yo^o * '

The normal plane is

yo(3;-Xo)-Xo{y-yo)-Jc(z-Zo) = 0. [2]

The direction cosines of line [1] are, by Analjiic Geometry,

-.VoCOSa =

or COSa =
V(«' + ^)

C0Si9= ^

COST'S
k
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Cos;' is, then, not dependent on the position of the point P;
therefore the helix has everj-where the same inclination to the

axis of the cylinder ; or, in other words, it crosses all the ele-

ments of the cylindrical surface at the same angle. If, then,

this surface is unrolled into a plane surface, the helix will de-

velop into a straight line.

215. The equations of the tangent line to the curve

f(x,y,z)= 0,

F{x,y,z) = 0,

can be obtained in a very convenient form if we use partial

derivatives. We have, bj- Art. 199,

ax ax ax

dx dx dx

dy dz
From these equations we can obtain the values of -^ and —

dx dx
Substituting these in the equations of Art, 213, and reducing,

we get

(X - Xo)D:rJ+ (y - y,)DyJ+ {z - z,)D,J=

(x-Xo)D^F-\-(y-yo)DyF+(z-z,)D,^F=Oi

as the equations of the required tangent. The same result may
be obtained much more easil}- b}- substituting in (1) the values

of -^ and —- given by the equations in Art. 213.
dx ax
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Examples.

(1) Given a?-\-y^—ax=0

ax+ z^— a^=0

as the equations of a curve, find the tangent at {xq.iJq^z^.

Ans. XqX + yoy + z^z = a?

x — Xq-\-2{z — Zo)zq =
(2) Given the circle

a^ -\-
y'

-\- z^ = a^

x-\-z = a

find the tangent at (a'o,2/o,Zo) • -^^s- ^o^'' + yoV + ^^o^: = o?

x + z = a

216. The osculating plane at a given point of a curve in space

is the limiting position approached by a plane through the point

and two other points of the cuitc as the latter approach indefi-

nitely near the given point.

If (xo,?/o,2;o) is the given point, and we regard x as our inde-

pendent variable, we can represent two other points of the curve

(Art. 190) by
{Xf^+ Ax.y^+ dy.z^ + Az)

and {x^-ir2Ax,y^+ 2dy + A^y,Zo + 2^z+A^z).

Forming the equation of the plane through these three points,

dividing bj^ Aa?, and taking the limiting values as Ax approaches

zero, we shall get as the osculating plane,

ix-x,)('^^-^^\-{y-y,)('^\ + {z-z,)'iy=0.
^ "^ \dx dx" dx dx'J

^"^ ^"^ {dx^j ^ ^' dx"

Example.

Obtain the osculating plane of the helix at (xo,yo,Zo) .
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217. The tangent plane at a given point of any surface

f{x,y,z) =

can be found by the aid of the equations of Art. 215.

Let F{x,y,z) =

be an}' second surface whatever passing through {xq^Vo^Zq} .

The tangent hne to the curve of intersection of the two

surfaces at the point (xo.?/o,Zo)? that is, to an}- curv-e through

^^oiVoi^o) traced on the given surface, has for its equations

(X - x,)D^J+ (y - y,)DyJ+ {z - z,)D,J= 1

{X - x,)Da^F+ (y - y,)DyF+{z - z,)D,F= J

It therefore lies in the plane represented by the first of these

equations, which must then be the required tangent plane,

{X - x,)D^J+ {y - y,)DyJ+ {z - z,)D^J= 0.

Examples.

(1) Find the tangent plane to a sphere.

01? + y- -\- z- = a?.

Ans. XQX+yoy + ZQZ= a.

(2) Find the tangent plane to an ellipsoid.

^4-^ 4-?.^=l
(?

„2
-1-

^2
1- ^ I.

The normal line at {x,i,yQ,Zo) is easily* seen to be

x-Xf>^ y — yo_ z—Zq

D^J ^yJ I^^J'
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CHAPTER XV.

DEVELOPMENT OF A FUNCTION OF SEVERAL VARIABLES.

218. To develop f{x -\-h^y -\- k) into a series arranged accord-

ing to the powers of h and A;, where h and A; are any arbitrary

increments that xsxay be given. Let a be any variable, and call

h I k ,
— = "ll — = "^H

so that 7i = «7«i and k = ak^.

If now X and y are regarded as given values, f(x + h,y-\- A:) is a

function of ^ and k, which depend on a ; and hence f(x -f- h,y + k)

can be considered a function of a. Call it Fa, and it may be

developed by Maclaurin's Theorem, which gives

Fa=FO-{- aF'O + i^ iP"0 -f— F"'0 +
2! 3!

a ^n+ l

H- Jf_ 2?'(») + -^ •i?'(»+« da,
nl (n+l)\

"\Mien a = 0,

J^a or 2?^(a; + h,y+ A:) =/(a;,y)

.

Call x-{-ahi = x' sindy + aki=y'y

then Fa=f(x',y'),

ua ua eta

by Art. 199
;
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dx' ,

aa

da

F'a = \D,.fix\y') + 7c,D^f(x',y'),

F'0 = hDJ{x,y) + Tc,DJ{x,y),

which we shall write hiD^f-\- kiDyf.

F"a =^^ = hiD^F'a + JCiD^F'a •

da

= n,^D/f{x\y')+ 2h^k^D^ D,.f{x',y') + \'D/f{x\y'),

F'^a = li,^D/f{x\ y') + 3hn',D,'D,.f(x',y')

+ 3^1, Ati^D^ A-y(x', y') + h'D/fix\ y')

.

In i^''a and i^"a the terms have a striking resemblance to

the terms of the second and third powers of a binomial. Let

us see whether this will hold for higher derivatives. Assume

that it holds for the jP^">a, and see if it holds for the F^^+^^a.

If i^'t") a = /ii"A"/(^'. y') + nh{'~ 'h D^--^D,,f{x', y>)

+ ^(^-l^)("-2)
h,«-^Jc^D^-»D/f(x>, y')+ ......

!?'(»+ ^) a = \D^ F(») a + Tc^D,. F^"^ a

= h,-^'D^^^'f{x?,y') + {n + l)h,-k,D,.-D,.f{x',f)

+ ^^^±p h-'k,*D,.*-'D/f{x\y') +
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If, then, the obsen'ed analog}' holds for any derivative, it holds

for the next higher. It does hold for the third ; it holds then

for the fourth, and for all succeeding ones.

F"0 = h'D^'f+ 2\k,D,DJ+ h'D,%

^n^n^zllh,--n','D;^-'D,y+

2?»(«+i) 0a = 7ii»+ii),"+y(a;+ Oh,y + ok)

. + {n+l)h{'kiD;'DJ(x + 0h,y + Ok) +

B}- this notation we mean that x+ Oh, y -\- Ok, are to be sub-

stituted for X and y after the diflerentiations are performed.

"We have then, remembering that

ahi = h and aki= Ar,

f{x+ h,y+ k)=f(x,y) + {hDJ-{- kD,f)

+^ {hWJf+ 2hkD^DJ+ k^Dj^f)

+ i- (hW,Y-\- Bh'kD,^D,f+ 3hk^D,D,'f+ kW^^f) +
o !

+\ (h''D,y-{-nh—^kD*-^D,f-h'^^\~ ^^ h'^-'k^D;^-'D;f+ ]n\\ '2 1 J

+ -r-TT^^ r^'-^'A-^y (aJ+ Glt.y+ Ok)
(n+1)! V

+ (w + 1 ) 7i" kB:-DJ {x + 0h,y+ Ok)

+ i!L±l)2? h'-'k'Dj^-W.Vix+ 0h,y+ 0k) + ...A

If we use (JiD^+ kD^)"/ as an abbreviation for (h^D*/

4-nh''-^kD,''-^D,f+ ); that is, understanding that {hD,+kD,)*
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is to be expanded just as though it were a binomial, and then to

have each term \mtten before /, we can simplify the above ex-

pression.

f{x+ h,y+ Tc) =f(x,y) + {JiD^+ 1cD,)f{x,y)

+ i^ {hD,-hJcD,yfix,y) + j^
(hD,+ kD,yf{x,y) +

n I

+—^ ihD^ + ]^D,r^'f{x+ 6h,y-^elc),

which is Taj'lor's Theorem for two independent variables.

K we let x=Oandy=0,

we get /{h,k) =/(0,0) + (hD^+ A;Z),)/(0,0)

+ l.(hD^ + kD,)f{0,0) + ;

or, changing h and Jc to x and y,

/(^%2/) =/(0,0) + (xD, + yD,)f(0,0)

+ 1^ (x2>,+ yD.y-f(0,0) + i^ (xD^+ yD.yf(0,0) +

+ i- (a-A + yD,)V{0,0) + -4ttt (^A + yD,)-^'f{ex,0y) ,

which is Maclaurin's Theorem for two variables.

Example.

Transform Ax?+ Bxy+ Cy^-\-Dx + Ey-{-F=0

to (a\),yo) as a new origin, the formulas for transformation being

x= xq+ x\ y= yo+ y'.
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Call our given equation /(a;,?/) ; we wish to develop

f{.Vo + x',yo+ y').

f(xo + x', yo+ y') =/(a'o,yo) + (^'^x^+ y'Dy)f{xo,y^)

D,f{x,y):=2Ax + By + D,

D,f{x,y)^.Bx + 2Cy + E,

D/f(x,y)=2A,

D,DJ{x,y) = B,

D,'f{x,y) = 2C',

all higher derivatives are 0.

f(xo + x', 2/0 + y') = Ax^' + Bxoyo +W + Dxo+ Eyo + F

+ {2Axo+ Byo + D)x'+ (Bx^ + 2Cyo+ E)y'

+ Ax'^+ Bx'y'-\- Cy'^, a familiar result.

219. B}' like reasoning, Taylor's Theorem can be extended to

functions of more than two variables. For three variables it

becomes

f{x+ h,y+ k,z + 1) =f{x,y,z) + {JiD, + 7cD, + lD,)f{x,y,z)

+ 1^ {hD, + kD, + W,yf(x,y,z)

+ i^ {hD,+ kD, + W,r/{x,y,z) +

+ r^TVT (''^' + ^^' + ID^r^Vi^ + Oh,y + 0k,z + ei).
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Example.

Transform x^+y- + z^-4:X + 6y -2z -11=0

to the new origin (2,— 3,1). Ans. a^-\-y' + z^=s 25.

Eulefs Theorem for Homogeneous Functions.

220. A homogeneous function of several variables is one of

such a nature that, if each variable be multiplied b}' some con-

stant, the function is multiplied b^* a power of that constant.

The order of the function is the power of the constant b}- which

it is multiplied.

For example : x^ -\-xy — y^ is homogeneous of the second or-

der ; for, if we change x into Ttx and y into ley, our function

becomes l? {oi? + xy — y^) , and is multiplied b}' the second power

of k. Sin is homogeneous of the zero order ; for, if we
2x

multiply x and y by A;, the function is unchanged ; that is, it is

multiplied hy IP.

Let f(x,y) be a homogeneous function of x and y ; then, no

matter what the value of g,

/(x +qx,y + qy) =f(x,y) + q(xD, + yD^)f{x,y)

+ f.(xD, + yD,yf(x,y) +

+ r^-TTVt (^^' + yDyT^'fix + qOx,y + q0y) ;

{m+l)\

\mif{x+ qx,y + qy)=fl{l+ q)x,{l+ q)y-]=:^{l+qyf{x,y)

by the definition of a homogeneous function.

Call fi^iV) = w» sQcl we have

{l+qyu= u+q{xD,-hyD,)u+t.(xD,+ yD,yu

+ £^{xD,+ yD,ru +
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As this equation must hold, no matter what the value of q^

the coefficients of like powers of q in the two members of the

equation must be the same. Equating them, we have

{xD,-\-yDy)u — nu,

(xD, -f yDyYu = n{n — 1)m,

{xD^ + yD^yu = n(n -1) (n -2)m,

{xD^-\-yDy)'^u = n{n - 1) (w — 2) (?i — m -f-l)M

;

and these equations are Euler's Theorem.

Examples.

Verifj' Euler's Theorem for second and third derivatives when

u = 2i?-\-'if and when u = sin"^ -.
X
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CHAPTER XVI.

MAXIMA AND MLNTMA OF FUNCTIONS OF TTVO OR MORE
VARIABLES.

221. If we have a function of two variables v. =f(x,y), and

/(a^)-f-/i,yo + ^')— /(^i2/o)<0 for small values of Ji and A:, no

matter what the signs and relative magnitudes of these values,

M is a maximum for the values x^.y^ ofx and y. If/(a,'o + h.yo+ k)

—f(^x>yo)>^ under these same circumstances, w is a minimum.

Bj' Taylor's Theorem,

/(xo+ /i,r/o + Jc) -/(a-o,?/o) = {hD^+ IcD,) f(xo,yo)

+ iy (hD, + hD;)^f{x,+ 0h,y,+ dk) .

If we take the values of h and A; sufficientlj' small, we can always

make ^ {hB, + kD,yf{x,+ 0h,yo + Ok)< (hi), + kB^) /{x^
, 2/0)

,

and then the sign of the second member will be the sign of

(hB^-\-kBii)f{Xo.yo); that is, of hB^ xi^ + kBy t/o, which evi-

dently' depends upon the signs of h and k. In order, then, that

the sign of/(.To+ h^y^+ k) —f{X(,,yo) should be constant,— that

is, in order that for 2^0,^0 ^ should be either a maximum or a

minimum,— the terms JiB^u + kB^u must disappear, no matter

what the values of h and k ; or, in other words, Bx w© a^f^ Dy Wq

must both equal 0. We get, then, as essential to the existence

of either a maximnm or a minimum, the conditions

for the values of x and y in question.
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222. Carrying the development a step farther, and assuming

that Dx Uq and Dy Vq are zero,

/(xo+ h^yo+ Jc) -/(a-o,2/o)=^ (hD, + JcD.yf(x,,yo)

+ ij (7iA+ JcD,yf(Xo+ Oh,yo + Ok) .

As before, it is e\Tident that for small values of h and fc, the

sign of the whole second member will be that of the terms

^(Ji^D/nQ + 21ikDx Dy Vq -\- Jc^D/ Uq) . Let us investigate this

carefully.

Let A = Dx^niii

C=Dyln,,

our parenthesis becomes AJi^+ 2Bhk + CA^ ; and for a maximum
or minimum the sign of this must be independent of the signs

and values of h and k.

Ah^+ 2Bhk +Cl<r=\ {A^ h^ + 2ABhk \-ACTc'),

= i {AVi^+ 2ABhk+ BT-k'' - BT-l''+ ACk'') ,

= ^[{Ah-\- Bky + {AC - Br-)k^2 .

(Ah + Bky and Ji^ are necessaril}' positive. If AC—B^ is also

positive, the sign of the whole expression will be independent

of h and k, and will be positive ifA is positive, and negative if

A is negative. If AC—B^=0, the result is the same ;

but if ^C— ^ is negative, the sign of the parenthesis will de-

pend upon the sign and relative values of h and k, and we shall

have neither a maximum nor a minimum.
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223. To sum up:—
If Da:^ilo=0

DxluoDylu^— {Dx^DyU^y = or >0

If Dx^n, = Q

Dy^n, =

D^ln,D,f^n,-{DxD,j^u,y-= or>0

r- 1^ is a maximuTn.

> Uq is a mimmum.

Examples.

224. (1) To find a point so situated tliat the sum of the

squares of its distances from the thi'ee vertices of a given tri-

angle shall be a minimum. Let {xi-y^) ,
{xo^y^)

, (2.3,2/3) be the

given vertices, and (x,y) the required point.

M= (»- x^Y+ (y- yiY + (x -x^y+ iy- y^y

+ {x-x,y + {y-y,y

is the function which we must make a mimmum.

D,u= 2{x- X,) + 2{x- x.) + 2(x - X3),

D,u = 2{y-y,)-{-2{y-y.^-h2{y-y^),

D,^u = 2-\-2 + 2 = G = A,

2>/m = 2 + 2 + 2=6 = C.

We must make D,u and D^u both equal to zero.
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2(x— x{) -i- 2(x — Xi) -\- 2{x — iCg) = 0,

^_Xi+_X2+_Xs
3 '

2(y-yi) + 2{y-y,) + 2{y-y,) = 0,

,, Vi + yi+ ys
y = 3—

»

^ = 6>0.

Hence w is a minimum when

a: = ^L±^±3 and y=yi±yi±l\
3 ^3

The required point is the centre of gravity of the triangle.

(2) To inscribe in a circle a ti-iangle of maximum perimeter.

Join the centre with each vertex and with the middle point of

each side. The angles between the three radii are bisected by

the lines drawn to the middle points of the sides. Call these

half-angles ^i, ^2, ^3.

a . -

a= 2rsin^i,

6= 2rsin^2»

c=2;'sin^3,
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Oi + O,-\-0^=7:, (1)

p = a-\-b-\-c= 2r (sin ^i + sin ^o + sin Og)

is the function we are to make a maximum, and is a function of

two independent variables, say 6j and ^j ; for we can regard O^ as

depending on 0i and 0^ through equation (1). As r is a con-

stant, it will be enough to make

u = sin 01 + sin 0^+ sin 0^

De^u = cos 01 + cos 0^Dg^ 0^ ;

for, since ^i + (^s + ^3 = ~»

changing ^1 without changing 62 will change 0^.

l>9/3=-i;

hence De^u = cos 0i— cos ^3.

for

Make

De^u = cos 02 — cos ^3,

D^u= — sin 01 — sin <?3,

De^De^u= —sin ^3,

Dq^u = — sin 02 — sin 0^.

Dq^u = and Db^u= 0.

cos 01 — cos ^8=0

cos 02 — cos ^3 =

0^=02=0^.

a maximum.
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Substitute these values in Do'u, &c., and

i>0j De^ w = — sin 0^ = B,

De^u = —28in<?i= C,

AC—J^ = 48in*<?i - sin2<?i = 3 sin^O^Xi,

A= — 2sin<7i<0, and w is a maximum.

Since 0^=02= ^s,

a = b = c;

and the required triangle is equilateral.

(3) To inscribe in a circle a triangle of maximum area.

Ans. The triangle is equilateral.

225. Ver}' often it is unnecessarj- to examine the second de-

rivatives, as the nature of the problem enables one to determine

whether the value of the variables obtained b}' writing the first

derivatives equal to zero corresponds to maximum or minimum
values of the function.

Examples.

( 1 ) Required the form of a parallelopiped of given volume

and minimum surface. A71S. A cube.

(2) Required the form of a parallelopiped of given surface

and maximum volume. Ans. A cube.

(3) An open cistern in the form of a parallelopiped is to be

built, capable of containing a given volume of water, what must

be its form that the expense of lining its interior surface may be

a minimum?

Ans. Length and breadth ^ach double the depth.
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CHAPTER XVII.

THEORY OF PLANE CURVES.

Concavity and Convexity.

226. The words concavity and convexity are used in mathe-

matics in their ordinary sense. A curve is concave toward the

axis of X when it bends toward the axis ; convex, when it

bends from the axis : that is, when in passing along the

curve its incUnation to the axis of X decreases, the curve

is concave ; when it increases, the curve is convex, sup-

posing that the portion of the curve considered lies above the

axis ; if it lies below the axis, the rule just given must be re-

versed. We have seen that the tangent of this inclination,

which we have called r, is equal to — . If the cur\'e is concave
dx

and above the axis, r decreases as we increase a*, tanr or _
dx

d?y
decreases, and -v^<0, by Art. 37. If the curve is convex,

d?y

227. A point at which the curve is changing from convexity

to concavity', or from conca-sdty to convexity, is called a x)oint

dry
of inflection. At such a point, —^ is changing from a negative

dar

to a positive value, or from a positive to a negative value, and

consequently must be passing through the value zero. To sum

up: if y=fx

is the equation of a plane curve, at any point corresponding to
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(C-y
a value of x that makes 'ffZs'^^i tlie curve is concave towards

the axis of k, if above the axis ; convex, if below. At any
dry

point corresponding to a value of x that makes "7-5 >"0, the

cui've is convex towards the axis of x, if above the axis ; con-

cave, if below. Any point corresponding to a value of x that

makes —^ =
dx^

is in general a point of inflection.

We have seen that the radius of curvature,

d.xr

P =H
It is easily seen that at a point of inflection this value changes

sign.

228. These same tests for conca^'it3', convexity, and inflec-

tion can be verj- simply obtained by the aid of Taylor's Theorem.

Let y =fx

be the equation of a curv^e, and let it be required to discover

whether the cur\^e is concave or convex toward the axis of X at

the point corresponding to the value

x= a.

Draw a tangent at the point in question, and erect ordinates to

the curve and to the tangent near the point of contact.

It is evident that the ordinate of a point in the curve minus

the ordinate of the corresponding point of the tangent must be

negative on both sides of the point of contact, if the curve is

concave, and positive on both sides of the point of contact, if the
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curve is convex. If the point is a point of inflection^ this differ'

ence will have opposite signs on different sides of the point.

INFLECTION.

The equation of the tangent at the point corresponding to

x= a

is y-fa=f'a{x-a), by Art. 28, [1].

Let x = a-i-h

in the equations of curve and tangent, and call the corresponding

values of y, yi and y^ ; then

y2=fa + hf'a.

y, =fa + hf'a + Y/'a + 1^/"'(« + ^^0

,

by Taj-lor's Theorem.

yx-y2=Y/'a+f-^r{a + oh).

If /"a does not equal zero, h may be taken so small that the
7,2

sign of yi — 2/2 will be the sign of— /"a.

If/"a is positive this sign is positive whether h is positive or

negative, and the curve is convex. If/"a is negative, yi — y^ is

negative both before and after x = a, and the curve is concave.

If f"a = and f"'a does not vanish, the sign of yi — y^ will

change as the sign of h changes, and we shall have a point of

inflection.
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229. For example, let us see whether the curve

0^2 + ^2=25

is convex or concave towards the axis ofX at the point (3,4).

2xdx-{-2ydy= 0. (1)

2(h^+ 2dy^ + 2yd-y = 0. (2)

From(l) dy=-—.

Substitute in (2) , 2dx'+^^^+ 2yd^y = 0,
y

25dx^ + fd^y=0.

dar f 64

at the point (3,4); and the curve is concave.

Again, let us see whether the curve

y-=x{x — ay has points of inflection.

dy^= (a;_a)^ + 4a;(a;-a)^

^ = 36 (» - a)2 + 24a;(a; - a)

,

d^y^ = 96(a;-a) + 24x..

Write g=0.
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and we get 8(a;— a)^+12.x(a; — a)^=

or 2(x — ay + 3x(x — o.y = 0.

One root is x= a;

divide by {x — ay, and

2x - 2a + 3x = 0.

2a . ., . . ,

x =— IS the remaining root.
5

T- 2a
If a;=—

,

o

—^ does not equal zero, and we get a point of inflection.

If x = a.

—^ does not equal zero, and the point is not a point of inflection.
dor

Examples.

(1) If y
tt' + a^'

there is a point of inflection at the origin, and also when

x=±aV(3).

3a
there is a point of inflection when x= —

.

4

(3) If a;i = logy,

there is a point of inflection when x= S.
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(4) If xy = anog-.

there is a point of inflection when x = ael.

Singular Points.

230. Singular points of a curve are points possessing some

peculiarity independent of the position of the axes. Such points

are.

1. Points of inflection (Art. 228);

2. Multiple points

;

3. Cusps

;

4. Conjugate points

;

5. Points d'arret

;

6. Points saillant.

231. (2) A multiple point is one through which two or more

branches of the curve pass. If only two branches pass through

DOUBLE POINT. OSCULATING POINT.

CONJUGATE POINT. POINT U'AEr£t. POINT SAILLANT.

the point, it is a double point. A double point at which the

branches of the curve are tangent is an osculating point.

(3) An osculating point where both branches of the curve

stop is a cusp.

(4) An isolated point of a curve is a conjugate point.
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(5) A point at which a single branch of a curve suddenly stops

is a point d'arret.

(6) A double point at which the two branches of the curve

stop without being tangent to each other is a point saillant.

Multiple Points.

232. At a multiple point, the curve will in general have more

than one tangent, and therefore — will have more than one value.
dx

Let if =

be the equation of the curve in rational algebraic form.

dy ^ -Dr<P
dx Dy(p

by Art. 202. For anj* given values of x and ?/, Z), (p and Z), <p will

have each a definite value, as the}^ are rational polynomials ; and

— will have but one value, unless D^tp and Dy<p are both zero,
dx

in which case -^ = -, and is indeterminate

;

dx

hence, our fundamental condition for the existence of a multiple

point is i>j f = and Z), ^ = 0.

To determine — in that case, we differentiate numerator and
dx

denominator, ^= —. (1)

Clearing of fractions gives us

i>,v(|J+2Z),i;.^|+z;.V = o, (2)
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a quadratic to determine — . Unless (1) is still indeterminate,
dx

that is, unless D/y^ D^D^c, and Dy'^<p are all zero, we get two

values of— , and the point is a double point,
dx

If -ii is still indetenninate, we differentiate (1) again, and get
dx

dv
to determine — . "We have then three tangents at the pomt,

dx
which is a triple point.

233. If the values of^ obtained from Art. 232 (2) are equal,
dx

the two tangents at the double point coincide, and the point is

an osculating jwint or a cus^iJ ; and we cannot tell which except

by actually tracing the curve in the neighborhood of the point.

If the two values of — are imaginar}-, no tangent can be

drawn at the point, which is then a conjugate point."

A point d'arrH or a poi?i< saillant can be discovered onlj' by
inspection when attempting to trace the curve ; they occur only

in transcendental curves.

Example.

234. To investigate the existence of multiple points in the

curve x* — c?oi? + c^y- = 0.

D^ip = ^x'-1a^x^

D,<p = 2a?y,
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D^tp and Dy(p must equal zero.

if a; = or if a*= ±
V(2)

2a2t/=0 if ?/=0;

hence x must equal zero, and y equal 0,

or a; = ±—— and v = ;

V(2)

but [
± ,0 ] is not a point of the curve ; therefore we need

V V(2) /

consider only (0,0) . In this case,

AV=-2aS

2a2/'^Y-2a2=0,

1,

^ = ±1,
ax

nnd the origin is a double point of the curve, the two branches

making with the axis of X angles of 45° and 135° respectivel}'.
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Example.

235. Consider a^ — ^=0. ^

I>,V=-2.

Make Sa^= and — 2i/ = 0.

^ ° ~
I as the only point we need

^ _ J
consider here.

In this case, D^f = 0,

i>,V=-2.

ax

The values of -i^ are equiil, and the origin is an osculating pointy

both branches being there tangent to the axis of X.

Since y^ = x-',

it is easily seen that the curve lies to the right, and not to the

left, of the origin, which is therefore a cusp.
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EXAJIPLE.

236. 6ar — af' + o.r = 0.

Dj,(p = 2bx — S^r,

D,<f = 2ay,

D,-<p = 2b-6x,

Z),V = 2a,

26a; - Sx" = ]

2ay = 0\

x=
is to be considered.

2/ = 0"

At this point, D/co = 26,

D/ip=2a,

dxj a

If 6 and a have the same sign, -^ is imaginary, and the origin

is a conjugate j)omt ; a result that can be easily verified b}^ ex-

amining the equation.

Examples.

(1) Show that the cmTC y = a; log a; has a point d'aiTet at the

origin.
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(2) Show that the curve y = ; has a point saillant at the

origin, and find the directions of tiie tangents at that point.

(3) Show that (y — xy = x^ and {y — or)- = a^ have cusps at

the origin.

(4) Show that {xy-i-iy+{x-iy{x-2)=0 has a cusp at

the point x = l.

(5) Show that x^ — as?y — ax]f + a?y-=0 has a conjugate

point at the origin.

(6) Find the singular points in the following curves :
—

{y + x+\y={l-xY',

y* — axy^ -f x* = ;

y'^ = o? — X*
',

y^ + xy^ + x?{ax — hy) = 0.

Contact of Curves.

237. Let y=fx and y — Fx

be the equations of two curves. If

fa = Fa,

the curves intersect at the point whose abscissa is a. If, in

addition, F'a=/'a,

the tangents at this point of intersection coincide, and the curves

are said to have contact at the point in question. If

fa = Fa, F'a=f'a, and F"a=f"a,
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the curves have contact of the second order at the point. If

Fa=fa, F'a=f'a, J"'a=/"a, etc., i^("'a=/(")a,

the curves are said to have contact of the wth order at the point

whose abscissa is a.

Contact of a higher order than the first is called osculation.

238. The difference between the ordinates of points of the

two curves having the same abscissa and infinitely near the

point of contact, is an infinitesimal of an order one higher than

the order of contact of the curves.

Let x = a+ Axy

and 2/2= F'(a + Ax)
,

Vi =fa+Axfai.i^f"a + 4.1M!/(»)(
2! *^

'
' nl

+ i^^f^--''Kci + OJx),
(w + 1)!

Vo = Fa-^JxF'a + iM" F"a + +i^ F^'^^a
2

!

nl

^(n + l)! ^ ^ ^

If the curves have contact of the wth order,

Fa =fa,

F'a=f'a, etc., F^"^ a =p"^ a.

2/1-2/2= ^^^' ir--^'\a-\-0Jx)-F^-+'>ia+0'Ax)2,
{n +1).
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which is infinitesimal of the (7i + l)st order, if Jx is an infini-

tesimal. It follows, then, that the order of contact indicates

the closeness of the contact ; that is, the higher the order of

contact of two curves, the less rapidly they recede from each

other as thej- depait from the point of contact.

239. Let it be required to find the equation of the circle having

contact of the second order with the curve

y =/x at the point (a;j,yi)

.

Let a and b be the coordinates of the centre, and r the radius

of the required circle. Call (X,F) any point of the required

circle, then its equation is

(X-ay + (Y-by= 7^.

By our conditions, ( ) =(— ) ,

\dX-Jx=x^ \darjx= x/

bat
clY^ X-a
clX Y-b'

fdY\ _ Xi — a

\clXjr=Xi Vi-b

^-Y -9-2

(:

dX'' ( Y- bY

hence (^ = -^.1^^
'

\dxjx=xi Vi — b

(;
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From these equations, and

we can get the required vahies of «, b, and r.

Dropping accents, for the sake of simplicity,

[Ajjt. 239.

substituting in

x — a=-—\ -f;

\dx'/

Kda^J W/

cl-y h^]

r=± '}-(m
cV-y

which is the familiar value of the radius of curvature of

y=fx

at the point (x,y). Hence, our osculating circle is that circle

having contact of the second order with the given curve at the

point in question.
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Examples.

(1) In the curve y = x* — A:3? — \S3?^

show that the radius of curwiture at the origin is ^.

(2) Find the parabola whose axis is parallel to the axis of

Y< which has the closest possible contact with the cur^'e v = —„
or

at the point where x=a. ^ / aV a f a
Result, [x ) =-|V

(3) Prove that, if the order of contact of two curves is even,

they cross each other at the point of contact ; if odd, they do

not cross.

Envelops.

240. If the equation of a curve contain an undetermined

constant, to different values of this constant will correspond

different curves of a series. Such an equation is said to contain

a variable parameter, the name being applied to a quantity which

is constant for any one curve of a series, but varies in changing

from one curve to another. For example : in the equation

(x — ay+ y^ = i^,

let a be a variable parameter ; then the equation represents a

series of circles, all having the radius r, and all having their

centres on the axis of X.

A curse tangent to each of such a series of curves is called an

envelop.

241. Two curs-es of such a series corresponding to two differ-

ent values of the parameter will in general intersect. If they are

made to approach each other indefinitely, by bringing the two

values of the parameter nearer together, their point of intersec-

tion will evidentl}' approach the enveloping curve, which then

may be regarded as the locus of the limiting position of a point
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of intersectio7i of any two curves of the series as the curves are

•made to indefinitely approach. From this point of view the

equation of an envelop is easily obtained.

Let f{x,y,a) = (1)

be the given equation of the series of curves, a being a variahlfi

parameter. f{x,y,a + Ja) = (2)

will be any second curve of the series. The equation

f(x,y,a + Ja) -f{x,y,a)= (3)

represents some curve passing through all the points of intersec-

tion of (1) and (2) by the principle in -Analj-tic Geometry :
" If

M = and v = are the equations of two cui-ves, u + Jcv=0 rep-

resents a curA-e containing all their points of intersection, and

ha^•ing no other point in common with them."

f(x,y,a + Ja) -f{x.y,a) ^ ^
Ja

is equivalent to (3) . If, now, Ja be decreased indefinitely,

limit

Ja=0
'f(x.y.a -f- Ja) — f(x.y^a)' = 0,Ja

or D„f{x,y,a)=0, (4)

contains the limiting position of the point of intersection of (1)

and (2). Let {x',y') be this point, and therefore any point of

the required locus. Since {x',y') is on (4), and also on (1),

Daf{x\y\a) = and f{x',y',a) = 0;

we can eliminate a between these equations, and we shall have

a single equation between x' and y\ which will be the equation

of the required envelop.
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242. For example : let us find the envelop of

(T-«)^ + r'-'- = o, (1)

c being a variable parameter.

J)J=-2{x-a) = Q.

X — a = Q. (2)

Eliminating a between (1) and (2), we get

the equation of a pair of straight lines parallel to the axis ofX,
as the required envelop.

243. When dealing with the properties of evolutes, we proved

that ever}- normal to the original curve must be tangent to the

evolute. AVe ought, then, to be able to find the evolute of any

curve b}' treating it as the envelop of the normals of the curve.

Let y =fx

be the equation of the original curve

is the equation of the normal, or

(^)(2/-i'o) + ^-^o=0. (1)

T^, is the variable parameter,

\dXoJ
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X = a*o J

d-yo

but ?/o =fxQ,

and we must eliminate a-o and yo? l>y the aid of these three equa-

tions, to obtain the equation of the evohite. These equations

are the ones obtained by a different method in Art. 93.

Examples.

(1) Find the envelop of all ellipses having constant area, the

axes being coincident.

Residt. A pair of equilateral hyperbolas.

(2) A straight line of given length moves with its extremities

on the two axes, required its envelop. Result, x^ -\-yl = ai.

(3) Find the envelop of straight lines drawn perjDendicular to

the normals to a parabola y^= Aax at the points where the}' cut

the axis. Result. y- = Aa{2a — x).

(4) Circles are described on the double ordinates of a parab-

ola as diameters. Show that their envelop is an equal parabola.

(5) Find the envelop of all ellipses having the same centre,

and in which the straight line joining the ends of the axes is of

constant length. Residt. x ± y = ± c.

(6) Show that the envelop of a circle on the focal radius of an

ellipse as diameter is the circle on the major axis.
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Academic Trigonometry

:

piane and spherhai.

By T. M. Blakslee, Ph.D. (Yale), Professor of Mathematics in the

University of Ues Moines. 12mo. Paper. 33 pages. Mailing Price,

20 cents; for introduction, 15 cents.

rPHE Plane and Spherical portions are arranged on opposite pages.

The memory is aided by analogies, and it is believed that the

entire subject can be mastered in less time than is usually given to

Plane Trigonometry alone, as the work contains but 29 pages of text-

The Plane portion is compact, and complete in itself.

Examples of Differential Equations.

By George A. Osborne, Professor of Mathematics in the Massachu-
setts Institute of Technology, Boston. 12mo. Cloth, vii + 50 pages.

Mailing Price, 60 cents; for introduction, 50 cents.

A SERIES of nearly three hundred examples with answers, sys-

-^ tematically arranged and grouped under the different cases,

and accompanied by concise rules for the solution of each case.

Selden J. Coffin, lately Prof, of I Its appearance is most timely, and it

Mathematics, Lafayette College : I supplies a manifest want.

Determinants.

The Theory of Determinants: an Elementary Treatise. By Paui. H.
Hanus. B.S., recently Professor of Mathematics in the University of
Colorado, now Principal ">i West High School, Denver, Col. 8vo. Cloth,
viii + 217 pages. Mailing Price, §1.90; for introductionj»$1.80.

rpHIS book is written especially for those who have had no pre-

vious knowledge of the subject, and is tlierefore adapted to

self-instruction as well as to the needs of the class-room. The
subject is at first presented in a very simple manner. As the

reader advances, less and less attention is given to details.

Throughout the entire work it is the constant aim to arouse

and enliven the reader's interest, by first showing how the various

concepts have arisen naturally, and by giving such applications as

can be presented without exceeding the limits of the treatise. The
work is sufficiently comprehensive to enable the student who has

mastered the volume to use the determinant notation with ease,

and to pursue his further reading in the modem higher algebra

with pleasure and profit.
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Webster "Wells / 0/ Mathe-
matics, Institute of Technology, Bos-
ton, Mass.: I have been unable to

give the book as thorough a review
as I could wish, but as far as I have
examined it, it strengthens the favor-

able opinion which I expressed after

reading the manuscript. I am verj-

glad to see a work of such high grade
in this important branch of mathe-
matics from American sources, and

I hope to make use of the book in my
classes. {Jan. 3, 1887.)

Wm. G. Peck, Prof, of Mathemat-
ics, Columbia College, N.Y. : A hasty-

glance convinces me that itf is an im-

provement on Muir. {A^ig. 30, '86.)

T. W. Wright, Prof, of Math.,

Union Univ., Schenectady , N.Y. : It

fills admirably a vacancy in our

mathematical literature, and is a
very welcome addition indeed.

Elements of the Theory of the Newtonian Poten-

tial Function.

By B. O. Peirce, Assistant Professor of Mathematics and Physics,
Harvard University. 12mo. Cloth. 154 pages. Mailing Price, ^l.tK)

;

for introduction, §1.50.

T^HIS book was written for the use of Electrical Engineers and

students of Mathematical Physics because there was in I^nglish

no mathematical treatment of the Theory of the Xewtonian Poten-

tial Function in sufBcieuitly simpls form. It gives as briefly as is

consistent with clearness so much of that theory as is needed be-

fore the study of standard works on Physics can be taken up with

advantage. In the second edition a brief treatpient of Electro-

kinematics and a large number of problems have been added.

A. S. Hardy, Prof, of Mathematics, gan : I am very much pleased with
Dartmouth College : Every student it, and am sure it will fill an impor-

of a subject whoge methods and illus- tant gap in our school literature,

trations are scattered so widely, and h. W. Harding. Prof, of Mathe-
which are generally so inaccessible matics, Lehigh University : It is a
or in a form difficult to master, will very desirable work, and one of those
thank Professor Peirce for this book, which come to fill up a gap at the
M. W. Harrington, Director of right time.

Observatory, University of Michi-

Elements of Quaternions.
By A. S. Hardy, Ph.D., Professor of Mathematics, Dartmouth College.
Second edition, revised. Crown 8vo. Cloth. 240 pages. Mailing Price,
$2.15 ; Introduction, $2.00.

nPHE chief aim has been to meet the wants of beginners in the

class-room, and it is believed that this work will be found

superior in fitness for beginners in practicable compass, in- explana-

tions and applications, and in adaptation to the methods of instruc-

tion common in this country. ^'- ,
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