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PEEFACE.

This text-book is based on the method of rates, which, in

the experience of the author, has proved most satisfactory

in a first presentation of the object and scope of the Calculus.

No comparisons have been made between this method and

those of limits or of infinitesimals. This larger view of the

Calculus, and of mathematical reasoning and processes in

general, cannot readily be given with good results in the

brief time allotted the subject in the general college course.

The immediate object of the Differential Calculus is the

measurement and comparison of rates of change when the

change is not uniform. Whether a quantity is or is not

changing uniformly, however, the rate at any instant is de-

termined in essentially the same manner ; viz. by ascertaining

what its change would have been in a unit of time had its

rate remained what it was at the instant in question. It is

this change which the Calcidus enables us to determine,

however complicated the law of variation may be. This

conception of the nature of the problem is simple, and seems

to afford the best foundation for further and more compre-

hensive study; while for those who are not to make a

183665



IV PREFACE.

special study of mathematics it secures a more intelligent

and less mechanical grasp of the problems involved than

other methods whose conceptions and logic are not easily

mastered in undergraduate courses.

My thanks are due to Professor Worthen, my colleague,

for valuable suggestions and assistance in the reading of

proofs.

ARTHUR SHERBURNE HARDY.

Hamoveb, N.H., June 2, 1890.
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Part I.

THE DIFFEEENTIAL CALCULUS.





CHAPTER I.

INTRODUCTORY THEOREMS.

1. Quantities of the Calculus. The quantities of the Cal-

culus are, like those of Analytic Geometry :

Variables : whose values change continuously within the

limits assigned by their mutual relations. Thus, in the equa-

tion of the circle a^ + y^ = R"^, x and y are variables having

any and all values between the limits ± R.

Arbitrary constants : as R in the above eqiiation, which may
have any arbitrarily assigned values, but which do not change

when the variables change.

Absolute constants: which admit of no change whatever;

such as R would become if the radius of the circle were as-

sumed to be 5.

2. Functions. As in Analytic Geometry, also, any quantity

is said to be a function of another when it depends upon the

latter for its value. Thus, a — x, tana;, (a^ — x^)^, are func-

tions of X. The variable u])on which the function depends is

called the independent variable.

An equation between two variables may be solved for either

regarded as the function, the other being the independent vari-

able. Thus, from or -\-y^ =R' we have y = VR^ — .^•^ in which y
is the function and x the independent variable, or x = Vi2^ — y^,

in which x is the function and y the independent variable. The

distinction implies no difference in the nature of the variables,

for each is dependent upon the other, and serves only to dis-

tinguish the variable whose values are assigned from that

whose values are derived.

3



4 THE DIFFERENTIAL CALCULUS.

A quantity may depend upon several variables for its value,

and is then said to be a function of two or more variables.

Thus, a? + y^ —R"^, xzv, are functions of two and three variables,

respectively. If no condition is imposed upon the function, the

variables are said to be independent. If, however, we subject

the function to some condition, as cc^ + ?/- — i?- = 0, x and y are

said to be dependent, since they can only vary in such a way
as to make the function zero. Although dependent upon, that

is, functions of, each other, a value may be assigned to one and

that of the other derived from the equation ; either one may
therefore be regarded as the independent variable in the sense

exj)lained above.

When the variables are dependent and their mutual relations

are known, the function may be expressed in terms of any one

regarded as the independent variable. Thus, the function xzv

represents the volume of a parallelopiped whose edges are a*,

z, and V, and the variables are independent. If, however, we
impose the conditions x = mz, z = nv, that is, if the ratios of

homologous sides are to remain constant, the variables become

dependent, and the function may be expressed in terms of any
a^

one, as ——

•

mrn
The conditions of the problem will determine whether the

variables are dependent or independent, and in the former case

the manner of their dependence.

3. Classification of functions.

I. Functions are classified as algebraic and transcendental.

Algebraic functions are those which involve only the six fun-

damental operations of Algebra: addition, subtraction, multi-

plication, division, involution, and evolution, the indices in the

latter cases being constant. All other functions are transcen-

dental ; the more common of which are :

The logarithmic function, x = log y, and its inverse form,

y = a', the exponential function

;

The trigonometric functions, y = sin x, y = cos x, etc., and
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their inverse forms, a; = sin"'y, x = cos~^y, etc., the circular

functions.

An algebraic function of a single variable which contains no

power of the variable above the first is called a linear function.

Such can always be reduced to the form mx+ b.

II. If an equation between several variables be solved for

any one, the latter is said to be an explicit function of the

others, the manner of its dependence being exhibited by the

solution of the equation. Otherwise it is said to be an implicit

function. Thus, in v? + if = R^, x and y are implicit functions

of each other ; while, in ?/ = Vi2^ — a^, ?/ is an explicit function

of X. The difference is one of form only, the chief object of

Algebra being the reduction of functions from implicit to

explicit forms. The notation y=f(x), y=f'(x), y=(f>(x),

etc., read 'y a function of a.',' is used to denote that y is an ex-

plicit function of x; and the notation f{x, y) = 0,
<f)

(x, y) = 0,

etc., to denote that x and y are implicit functions of each other.

III. If in any function y=f(x), y increases and decreases

with X, y is called an increasing function of x ; but if y de-

creases when X increases, or increases when x decreases, y is

said to be a decreasing function of x.

The increase and decrease referred to is algebraic.

Thus, in y — mx + 6, y is an increasing function of x ; but

in y = — mx + &, 2/ is a decreasing function of x. Again, in

y"^ = 2px, y has two values, one of which

is an increasing, the other a decreasing, \

function of x. \

If we plot the locus of y z=f(x), this "V

relation of the variables to each other — ^'
O

is represented graphically. Thus, x- = y Fig. i.

is a parabola situated as in the figure,

from which we see that when x is negative, that is in the sec-

ond angle, aj is a decreasing function of y ; and that when x is

positive, that is in the first angle, x is an increasing function

oiy.
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Determine whether y is an increasing or a decreasing function

ot.in ,,= si„.; , = ta„.; y^\; y^a'; y = V^?^.

4. Increments. 21ie amount of the increase or decrease of a
variable in any interval of time is called its increment, or decre-

ment. It is usual, however, to employ the word increment to

denote both an increase and a decrease, the increment receiving

a negative sign where the variable is decreasing.

5. Uniform change. A variable is said to change uniformly

ivhere its increment is n umerically the same in all equal intervals

of time.

Since the increment is numerically the same for all equal

intervals, the increment in any interval, assumed as a unit of

time, may be taken as the measure of the change. This meas-

ure is called the rate of change, or simply the rate, of the vari-

able, and is evidently constant. Hence the rate of a uniformly

changing vaHable is its increment in a unit of time.

Representing by x the total change of the variable in the

time t, and by r the change in the unit of time, x = rt and

.=f; (1)

or, the rate of a uniformly changing variable is found by dividing

the total change in any time t by t.

6. Uniform motion. When the variable is the distance

passed over by a moving point, estimated from any origin in

the path, if this distance changes uniformly, the point is said

to have uniform motion, and the increment of the distance in

a unit of time is called the velocity of the point. Thus, if a

point is said to have a velocity of 5 miles an hour, we mean
that its distance from any point in its path increases or de-

creases 5 miles every hour. Hence the velocity of a point

having uniform m,otion is the rate of change of the distance it

passes over. Representing the distance passed over in the time
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t by 5, and by v the distance passed over* in a unit of time,

-y = -) in which v is the rate of s.

t

7. Varied change. Wlien the law of change of a variable is

such that in no two consecutive equal intervals of time its incre-

ments are equal, its change is said to be varied; and the rate of

such a variable at any instant is what its increment would be in

a unit of time were the change at that instant to become uni-

form. Thus, if a point so moves that the increments of the

distance passed over in consecutive equal intervals of time are

unequal, its motion is said to be varied, and its velocity at any

instant, that is, the rate of change of the distance, is the dis-

tance it would pass over in a unit of time were the motion to

become uniform at that instant.

These definitions rest upon fanailiar conceptions. Suppose, for exam-

ple, a cistern is being filled with water by a supply pipe in such a manner
that the amount of water supplied is the same in all equal intervals of

time, this amount being 5 gals, for one second. The quantity of water in

the cistern (a;) is a variable, and the amount of water actually supplied

during any interval is its increment ; and because the change in x is uni-

form, we know not only the amount supplied in one second, but also in any

other interval of time. For unequal intervals the corresponding incre-

ments are unequal, but the rate at which the Cistern is being filled is the

same throughout both intervals. The characteristic of uniform change is,

therefore, a constant rate ; and we say the cistern is being filled at the rate

of 5 gals, a second, or 300 gals, a minute, according as the second or the

minute is the unit of time. If, now, the flow of water through the supply

pipe ceases to remain uniform, the rate at which the cistern is being filled

changes, the characteristic of varied change being a variable rate. In

both cases the rate of the change of the quantity of water in the cistern is

an instantaneous property of that quantity, but in neither case can we

measure it instantaneously. When the flow is uniform, we observe what
the actual change is for any definite interval ; when the flow varies, we
ascertain what the change would be for any definite interval were the flow

to become imiform at the instant considered. What these intervals are is

immaterial ; but for the comparison of rates it is evidently necessary to

adopt the same interval.

The following illustration is due to Clifford (Elements of Dynamic).

Suppose a train to be moving from ^ to JS on a straight track, its velocity
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being the same throughout the entire distance. Then its distance from A
is a variable, and the distance passed over in any interval of time is the
increment of the variable. If this increment is 20 miles for one hour, we
know the increment for one minute will be i of a mile, and that while

these increments differ, the rate of change of z, the distance from A, is the

same during the entire journey. If we now suppose a second train is

moving in the same direction on a parallel track, and that it starts from A
with a velocity less than 20 miles an hour, but gi-adually increasing to 40

miles an hour ; and if we suppose further that its length is such that some
part of it is always opposite to a traveller seated in the first train, then it

will appear to him to be losing distance so long as its velocity is less than

20 miles an hour ; but when its velocity exceeds 20 miles an hour, it will

appear to be gaining. There must then be some instant between these

two states of things at which the second train appears to the traveller to

be neither gaining nor losing. At that instant the velocity of both trains

is the same, i.e. 20 miles an hour, or the distance which the second train

would pass over in one hour were its velocity at that instant to remain the

same for one hour. In both cases, therefore, the velocity is determined

in essentially the same manner ; we suppose each train to maintain the

velocity it has at any given instant for a unit of time and observe how far

it goes. This increment is the rate at that instant.

8. Differentials. What ivould be the increment of a variable

in any interval of time loere its rate to remain throughout the

interval what it teas at its beginning is called the differential of

the variable. It follows from Art. 4 that the differential of a

decreasing variable is negative.

The symbol for the differential of any variable x is dx, read

* the differential oi x.' The letter d must not be mistaken for

a factor. Its meaning is ' the differential of,' as in sin x the

abbreviation si7i means 'the sine of.'

Since time (t) changes uniformly, any interval of time may
be represented by dt.

9. Remark. The distinctions between the increment, differ-

ential, and rate, of a variable, should be carefully observed. Its

increment is the amount of its actual increase, or decrease, in

any interval of time ; its differential is wli^t the amount of its

increase, or decrease, would be in any interval were its rate to
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remain throughout the interval what it was at its beginning.

Hence the increment and differential of a variable are the same

only when the variable is changing uniformly. Finally, its rate

is what the amount of its increase, or decrease, would be in a

unit of time were the change of the variable at any of its values

to become uniform; a rate is thus a particular differential,

namely, the differential for the unit of time.

10. Corresponding increments, or differentials, of variables

are those which occur, or would occur, in the same interval.

Simultaneous rates of variables are their rates at the same

instant.

The simultaneous rates of variables which are always equal are

evidently equal.

11. Symbol of a rate. By Art. 7 the rate of any variable x

at any instant, that is, at any of its values, is measured by the

increment it would receive in a unit of time were its change at

that instant to become uniform; hence if dx represents what

this change would be in any interval dt, we have from Eq. (1),

Art. 5, ,

._ "^
' ~di

ivhatever the interval dt; or the rate of any variable is the differ-

ential of the variable divided by the differential of t.

Cor. Since the differential is positive or negative as the

variable is increasing or decreasing, the rate of an increasing

variable is positive, and of a decreasing variable is negative.

Remark. It must be carefully noted that while dt is arbi-

trary, for the purpose of comparing the rates of different vari-

ables, or of the same variable at different instants, we must

assume the same interval ; hence dt is constant.

12. Corresponding differentials of equals are equal.

Let y—f(x, z, v, etc.). Since, when two quantities are

always equal, their simultaneous rates are equal (Art. 10), if
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dy and d{_f{x, z, v, etc.)] be corresponding differentials of y
iu\df(x, z, V, etc.), then

dy ^ (Z[/(a;, 2, ^;, etc.)]

dt dt
'

or, since dt is the same in both members, dy = d[^f{x, z, v,

etc.)]. Hence, if an equation be true for all values of the

variables involved, the corresponding differentials of the two
members are equal.

^y = ^ [/(^) 2> "^'j etc.)] is called the first derived, or first

differential, equation of y =f{x, z, v, etc.).

The above is an immediate consequence of the definitions. For if a

and 3 be any functions whatever, and a— & for all values of the variables

involved, the rates of a and fi must be the same at any instant. Now
these rates are what the changes in a and \vould be in a unit of time

were the common rate to become constant at any instant ; and if the rate

remained constant for any interval greater or less than the unit, the cor-

responding changes would still be equal ; but these changes are the differ-

entials.

13. The immediate object of the Differeyitial Calcidus is the

determination and comparison of the rates of variables.

The following problem will serve as an illustration.

Suppose a wheel to revolve about a fixed axis through its

centre, P being any point in the rim, and

that we desire to compare the rate of P's ^^-—r^'
motion in the arc AB with that of its / / \ ^

/ / V '9' 2
motion vertically upward at any instant. / / \

This is equivalent to asking what are the c d a
rates of change of the arc AP and its sine

PD. Hence if AP=x, DP=y, the ' fundamental relation is

y = sin a*. Now if, as will be shown, -^ = cos x—? the rate of^ '
' dt dt

y is seen to be cos x times the rate of x ; that is, at any instant

the sine is changing cos x times as fast as the arc. If P is

moving in the arc at the rate of 10 ft. per sec, then at A,

where cos x = l, it is also moving upward at the same rate.
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At P, where AP=SiVG of 60° and cos cc = cos 60° = ^, it is

moving upward at the rate of 5 ft. per sec, or half as fast as

it moves in the arc. At B, where cos x = cos 90° = 0, it is not

moving iipward at all.

14. Differentiation. In the above illustration the rate of y
is the rate of sin x ; and, in general, the determination of the

rates of variables involves the determination of the rates of

the functions on which they depend or in which they enter.

Since the rate of a variable is the differential of the variable

divided by the differential of t, the relation between the rates

of variables will be known when the relation between their differ-

entials is known.

The process of determining the differential of a function is

called differentiation.

We now proceed to determine rules for the differentiation of

the several algebraic and transcendental functions.



CHAPTER II.

DIFFERENTIATION OF EXPLICIT FUNCTIONS.

THE ALGEBRAIC FUNCTIONS.

15. The differential of a constant is zero.

This is evident since a constant admits of no change, and

therefore has no increment, whatever the interval. Properly-

speaking, such expressions as ' the differential of,' or ' rate of a

constant ' involve a contradiction of terms. But for uniformity

of expression it is usual to say that both are zero.

16. The differential of a polynomial is the algebraic sum of the

differentials of its several terms.

Let y = X -i- z — V. If the changes of x, z, and v, at any in-

stant, that is, at any of their simultaneous values, become uni-

form, the change of y at that instant will also become uniform

;

and therefore, if dx, dz, dv, dy, be corresponding differentials of

the variables and the function, dy=dx-\-dz—dv (Art. 12). The
above is evidently true of a polynomial of any number of terms.

Cor. ^ =^ _,_^ _ ^, or the rate of the sum of any num-
dt dt dt dt

ber of variables is the sum of the rates of the variables.

Since the relation between the rates is always the same as

that between the differentials, it will not be necessary to repeat

this inference in the cases which follow.

17. The differential of the product of a variable and a constant

factor is the differential of the variable multiplied by the constant

factor.

12
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Let y=x-^z-\-v-\-etc. From Art. 16, dy=dx-\-dz-{-dv+ etc.

Hence if x=z=v=etc., and m be the number of terms, y=mx
and dy = dx + dx -\- etc. = mdx.

18. The differential of the product of tivo variables is the sum

of the products of each into the differential of the other.

Let y = xz. Then y is the area of a rectangle whose sides

are x and z. Let a, b, be any two simultaneous values of x

and z ; then at the instant when x=a
= AB and 2 = 6 = AD, we have y = ^1 iS

area ABCD. Let BP represent what

would be the change in x in the inter-

val dt if at this instant its change were

to become uniform, and DR the corre-

sponding change in z were its change

also to become uniform at the same instant. Then BP= dx,

DR = dz. The change of y would then also become uniform, and

for the interval dt would be dy = BPQC -{- DRSC = bdx + adz.

But a and 6 are any simultaneous values of x and z. Hence,

in general, at any instant, dy = zdx + xdz.

19. The differential of the product of any number of variables

is the sum of the products of the differential of each variable into

all the others.

Let y = xzv, and o:z = u. Then y = uv. But dy = vdu -f- udv

(Art. 18), and du — zdx + xdz. Substituting in the former the

value of du from the latter, and of w = xz, we have dy = zvdx -f-

xvdz + xzdv.

In the same manner the theorem may be proved for the

product of any number of variables.

20. Tlie differential of a fraction is the denominator into

the differential of the numerator, minus the numerator into the

differential of the denominator, divided by the square of the

denominator.
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Let y=' • Then x = yz. But dx = zdy -\- ydz (Art. 18).

_^ , dx dz dx xdz zdx — xdz
Hence dit = y— = s- = ——r,

Z "^ Z Z Z' z-

CoR. 1. If x = a, a constant, then dx = (Art. 15), and

dy = 2"
I

^^' ^'^^ differential of a fraction loliose numerator is

constant is minus the numerator into the differential of the de-

nominator, divided by the square of the denominator.

dec
Cor. 2. If z = a, a constant, then dz = 0^ and dy = — , as it

1
"

should be, since y is then -x (Art. 17).

21. The differential of a variable having a constant exponent

is the product of the constant exponent, the variable ivith its ex-

ponent diminished by one, and the differential of the variable.

I. Let the exponent be positive and integral.

Then y z=x"' = xxx • • • to n factors.

Hence (Art. 19),

dy = x"~^dx + x'^'^dx + ••• to ?i terms,

or dy = nx"~^ dx.

II. Let the exponent be a positive fraction.

Then y = a;", whence i/" = a^" The differentials of the two

numbers of this equation being equal (Art. 12), we have, by I.,

n?/""^ dy = maf~^ dx,

, , m cc""^ , m ^-1
whence dv = ; do; = — x" dx.

^ n 2/"~ w

III. Let the exponent be negative.

Then y — x'" = —, n being fractional or integral. Clearing
a;"

of fractions, yx" = 1 ; whence, differentiating the product and

remembering that the differential of a constant is zero.
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Of" cly + ynx"~^ clx = 0,

or ay = —-— = — nx~"'^ax.^
x"

- dx
Cor. 1. If ?i = ^, ?/ = Vi», and dy ——-=, or tlie differential of

2wx
the square root of a variable is the differential of the variable

divided by twice the square root of the variable.

Special rules might be framed for n = i, 7i = \, etc., but in

such cases the general rule is preferable.

Remark. The above method of proof depends upon the

resolution of the power into equal factors, and is therefore

inapplicable to the case of a variable having an imaginary, or

an incommensurable, exponent. The rule, however, as will

subsequently appear, holds good for these cases also.

Examples. Differentiate

:

1. ?/ = a^ -f 8 a; — 4 ar".

dy = d(a^ + 3 a; - 4ar") = cZ(ar') + d(3'x) - (Z(4ar'') [Art. IG

= 2xdx + 3 da; - 12 x^dx = {2x-\-^ -Viy?) dx.

[Arts. 21, 15

2. y = a + mx'^ — lnx^. dy = (m-af~^ — 14:7ix)dx.

3. y- = 2px.

Although an implicit function, it may be differentiated

directly without first reducing to an explicit form. Thus,

P
d(y^) = d(2pa;), whence 2ydy = 2pdx, or dy = —dx.

4. a-y- ± b-x^ = ± a^b-. dy = ^ — dx.
d-y

5. 2/ = (l4-a^)(l-2ar5).

dy = (1 - 2ar')cZ (1 + a;^) + (1 + ^)d (1 - 2ar=)

= (1 - 2ar^) 2a;da; - (1 + ar) Ga^^da;

= 2(a; — 3a;^— ox*)da;; or we may first expand and

then differentiate.
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6. y = {a + b3iP)K

dy = d[ (a + ha?) ^] = i(a + hxY^-dia + ha?) [Art. 21

=
; or, more expeditiously by the special

rule for the square root of a variable (Art. 20).

1. y = {ax) ^ + hx^. dy = f~
yj^ + ^ -|)

^•'^'•

8. y = {l-\- x) Vl — X. dy =—

^

—
"^

—

dx.

2VI — a;

9. y = Vl + V^. dy = =

—

•

4Vx Vl + Vx

Put the expression in the form x^z'^v. Then

, nvx'^''^dx 2x"vdz ,
afdv

11. y = Va.-2;-t'J.

7 _ d^xzH"^) _ z^v-dx -\- 2xv'^zdz + ^ccz-t; 'dt;

2Va-22'y* 2aj^2v^

2^4 do;
,

1 /- , ,
z-\/xdv= ^ 4- i'^ yxdz -\

—- •

2V« 4i;*

HO 1 7 dU;
12. y = - dy = -~-

X xf-

HO a 7 "dx
13.2/ = —:. ^^y = -r^-

Voj 2a;:i

H , VaJ , do;
14. ?/ = -^ • dy =

2 ' 4Va;

H ^ 1 + a; 7
2 dx-

lo. y = z~— <^^y = -r, r»-^ 1-x 0--^)

(1 - a;)d(l + a;) - (1 + a;)d (1 - a;)

dy = ^^^y

^ a-x ^ {a-xf
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(1 + x)"

f ^ Y
Vl - x)

2abx'

(1 + ax^y^

2 + mx + x^

dy =
{l + xy+'

dx.

dy =
2xdx

a-xy

d>f =
2abx\A- a3?)dx

17. y=
'''

18. y =

19. « =
(1 + aa^)2

on 2 + WIX + X^ -, c( l\j
20. y = —! ! dy = 21 X ]dx.

x \ x^J

2
Put the expression in the form y = - + m -\-x-.

21. y=
,

' dy =

Put the expression in the form 2/ = 2(l — ar)~^ and

differentiate as a power rather than as a fraction.

oo Vl + ar , dx
22. y = ^— dy = -

« X-Vl + ^

23. y = dy= ^^^^

{1-^y (1-a^)'

24. y=J^. dy = - '^"^

\T + ^*
(l + a;)Vr^^

o- L , a , 6 ,
1 ax + 2b

2o. y = ^1 + - + -. dy = -—

-

^
\ X or 2ar -w/'i.2i „^_i

..^ da;.

X a^ 2x^ Va;2 + ax + 6

r>p _ Va +x , _ Va(Vx — Va)c?x

Va + Vx 2 V.x Va + aj (Va + Vx)^

27. y =
^^

dy/ = I
^'^ "^^•^'

+ 3a^ I dx,

Vl + 03^ — X <- Vl + ar^ ^-ar

nationalize the denominator before differentiating.

28. v^Vl-'^-^. eZ, = 2J ^"^l-^-^^lLUa^.
Vl-x2^^ C (l-2x2)Vl-x'^

29. 1/ = ^^. dy = - ^-t^ dx.

Vx 2x2
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30. v=_l_ + __i dy = l( ^ ^ \dx.
Vl+x ^/l-x 2V(i_a;)' (l+a;)V

31. y = ^=- dy=(l-\-—^:^)dx.
X — -Vaf — c \ Va^ — cj

32. y = - -^^^ dy = -a^^(^ + ^') + ^^^^-^^)da;.

OQ „, 1 ^ if — Vl — a^ 7d3. ?/ = • dy =—^

—

^z=:- dx.
x+^l-a? Vl-x2(l + 2a;Vl-a;')

35. y =(2a*+a;^)(a^+a;^)i d^ = ^a- + Ja;-_^^^
4:X^- {a^- + x^Y

36. y = {x- VT^^^)". dy= w («- Vl^^) " ^
^^-^'+^'

(^3..

Vl— a^

37. y = —^zi=r^ . dy = , 1 H == dec.

Vl+ a'-Vl-a^ ar'V Vl-W

22. Analytic siffnification of the ratio — •

rfa?

Let 2/=/ (a;). The only variable which enters the function

being x, the function y will change only as its variable x

changes, and the rate of change of y will depend upon the

rate of change of x. Let k be the ratio of these rates at any
instant. Then

dy ^ dx . dy
-Tr = K-rr, whence -V- = a;.

dt dt dx

Hence the ratio of the differential of the function to the dif-

ferential of the variable is the ratio of the rate of change of the

function to that of the variable. It is evidently independent of

the interval dt.
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As derived by differentiation from the function y =f (x),

this ratio is called its first derived function, or simply its first

derivative ; also, being the factor k by which the rate of the

variable is multiplied to obtain the rate of the function, it is

called the first differential coefficient.

CoR. If ^ is positive, y is an increasing function of x;

and if negative, y is a. decreasing function of x (Art. 11, Cor.).

23. Applications. 1. Compare the rates of change of the

ordinate and abscissa of the parabola whose parameter is 4.

Which is changing most rapidly at the point x = d? Where
are they changing at the same rate ? If at the point x = 16

the abscissa is increasing at the rate of 24 ft. a second, at

what rate is the ordinate then changing ?

2 ,
dy 2 .. . . . ^ dy 2 dx

^ =^^' •••
dx = y^

^^^^^' "^^^ ^^ '^''^^''''dt=ydt' °^' "'

general, the ordinate changes - times as fast as the abscissa.2^1
For x = 9, y = ±6, and - becomes ± o , showing that the or-

y -^
'^

dinate is increasing, or decreasing, k as fast as the abscissa at

the points (9, 6), (9,-6). When the ordinate and abscissa

are changing at the same rate, we must have -^ = -=1, .: y = 2,

which, in the equation of the curve, gives x = l. This is as it

should be, for (1, 2) is the extremity of the parameter, at which
point the generating point is moving in the direction of tlie

focal tangent, whose inclination to the axis of X is known
2 1

to be 45°. For a; = 16, ?/ = ± 8, and - becomes ± -j, or

dy Idx , ., ,
y

.

^

jt = ± J TT ; hence if at x = 16 the abscissa is increasing at

the rate of 24 ft. a second, the ordinate in the first angle is

increasing, and in the fourth angle decreasing, at the rate of

^ X 24 = 6 ft. a second.

2. Compare the rates of change of x and y in the ellipse

ahf -j- 6V = a^6l Is y an increasing or decreasing function of
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ic? Compare the rates at the extremities of the axes. If the

(5
axes are 6 and 4, at what point is y changing 2-y/- as fast as a;?

-^ = s- , and is negative when x and y have like signs

;

dx a^y ° '

hence the function is decreasing in the first and third, and

increasing in the second and fourth, angles. At the extremi-
dy

ties of the transverse axis, y = 0, and ~ = oo, or y is changing

infinitely faster than x. To determine the point where y
\5 b^x 4x fS

changes 2\ - as fast as x, we have = =2 v-, which,~3 a-y *dy ^3
with the equation of the curve 9i/^ + 4a^ = 36, gives four points

3 .— 1
whose coordinates are numerically jVlo and ?,•

3. The altitude of a right triangle increases at the rate of

10 in. a second. At what rate is the area increasing ?

Let h = base, x = altitude, y = area. Then y = — , .-. -^ = -,
2 dx 2

which is a constant ; therefore the area increases uniformly at

the rate of - X 10 = 5 6 sq. in. a second.
Li

4. A spherical balloon is being filled with gas at the rate of

m cub. ft. a second. At what rate is the diameter increasing

when its length is 6 ft.?

Let y = diameter, x = volume.

Then X= ^/, or j, = f^J; .-,

f?
= {l^.

6 VV (^'^ \97rar

When y = Q, x = 36 tt, and ^ =
•^

' dx IStt

Hence when the diameter is 6, it is increasing at the rate of

q-5— ft. a second.
loTT

5. A rectangle whose sides are parallel to the axes is in-

scribed in the ellipse a^y^ + b-ay' — o?b^. Compare the rates of

change of its area and side.
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Let X and y be the half sides and z the area. Then 2; = 4 ccy.

To eliminate y, and so obtain z a function of a single variable,

we have from the equation of the ellipse,

46 ,-^0 i dz Ab a- -2a?
?/ = -Va— ar, .•.z =— -Va-ar — x*, — =

a a dx

In a similar manner we may find the ratio

a a dx a
-^Jq^ _ jp2

dz

dy'

6. The radius and altitude of a right cone vary, the slant

height remaining constantly 25 ft. Compare the rates of

change of the volume and altitude. When the altitude is 4

ft. and changing 3 ft. a second, how fast is the volume

changing ?

Let s = slant height, x = altitude, z = radius of base, and

y = volume. Then y = To eliminate z we have the con-
o

dition z^ + 0? = ^, .: z- = s- — xr and y = ^ {^x — x^). Whence

-f-
= Z (^— 3af)= ^ (625 — 3x^) ; that is, the volume is increas-

ing ^ (625 — So?) times as fast as the altitude is in linear feet.

577When a; = 4, this becomes tt, and at that instant the volume
o

is changing at the rate of 577 tt cub. ft. a second.

The student will observe that he may eliminate before or

after differentiation. Thus, differentiating first,

dy = '^{2zxdz + z'dx), ./^ = l(2zx'^+z').
o dx 3 dx

But from z^-\-a? = s% — =
; substituting this value with

dx z

those of z and z-, ^-^ = - (^ — 3ar), as before.
dx 3

7. A point P moves from ^ at a uniform rate in the direc-

tion of AP, at right angles to AB. A light C, whose intensity

at a unit's distance is 125, is vertically over B. If AB = 10,

BC= 5, compare the rates of the motion and illumination of
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P (understanding that the intensity of a light at any point is

its intensity at a unit's distance divided by the square of the

distance), when AP= 10.

Let AP= X. Then tlie illumination at

„ 125 125

GP- 10- + 52 + a;2

d//^ 250 a;

' dx~ (125 + 0^)2'

which, when x = 10, becomes — ^j, or the rate of change of

the illumination of P is ^ times the rate of change of AP,
and is decreasing.

8. If, in Fig. 4, BC is a lamp-post 10 ft. high, and a man
whose height is 6 ft. walks from B in the direction BA at the

rate of 3 miles an hour, show that the extremity of his shadow

moves at the rate of 7^ miles an hour.

9. In Ex. 8 show that the length of the man's shadow is in-

creasing at the rate of A^ miles an hour.

10. In Fig. 4 show that if the man walks from A towards B,

y
he is approaching B - times as fast as he is approaching C,

where BA = x, CA = y.

11. A ship is sailing northeast at the rate of 10 miles an

hour. At what rate is it making north latitude ?

Ans. 5V2 miles an hour.

12. The area of a circular plate of metal is expanded by

heat. Find the rate of change of the area when the radius is

5 in. and increasing .01 in. a sec. Ans. -^^ir sq. in. a sec.

13. If the thickness of the plate of Ex. 12 increases one-

half as fast as the radius, find the rate of increase of the volume

when the radius is 5 in. and the thickness .5 in.



THE ALGEBRAIC FUNCTIONS. 23

Let V = volume, x = radius, y = thickness. Then v = njc^y
;

whence

dv o dx
, ^ dy ,o , , ,v dx 7 , .— = ZttX)! h irxr -^ = CzTTxy + iTrar)— = — n cub. in. a sec.

dt dt dt dt 40

14. Two ships, on courses whose included angle is 60°, are

sailing away from the intersection of the courses with veloci-

ties of 6 and 4 miles an hour. Find the rate at which they

are separating when 10 and 15 miles respectively from the

intersection.

Let z = distance between the ships, x and y their distances

from the intersection, 6 and 4 being the rates of x and y
respectively.

Then z- = x^ -{-y- — 2xy Go%Q(f = 3? + y- — xy,

dz

dt ^ -^^ dt ^ -^ ^ dt

55 21-
Vl75

"'

X^

15. Find the rate of separation in Ex. 14 under the suppo-

sition that the ships start together from the intersection of

the courses, with the velocities 6 and 4.

22 = (60' + (40'-24f-, .-. -=V28.

16. C is any point without a circle whose centre is 0, and

OC cuts the circle at A. Find the relative rates of departure

from C and OC of a point P moving from A in the arc of the

circle.

Let P be the position of the point at any instant, y = PM,
the perpendicular on OC, PC=x, OC=a, OA = B. Then

pc=v<;.'M' + PM%

or x=-^(a-VW^yy + f,

xVR' - y'
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24. Geometric signification of —

•

dx

Since to every equation y=f(x) there corresponds some

plane locus, the ratio -^ is evidently capable of geometric

interpretation.

Let M'N' be the locus of y =f(x), and P the position of the

generating point at any instant.- Then dx, dy, being corre-

sponding differentials of x and y, are

what would be the changes in x = OD
and y = DP during any interval if at

its beginning their rates of change

should become constant. But this

will evidently be the case if at P
the motion of the generating point

should become uniform along the Fig. 5.

tangent at P. Hence PQ, QB, being

what would be the corresi)Onding increments of x and y in any

interval dt if the change of each became uniform at the instant

considered, are corresponding differentials of x and y, and

|^ =^ = tanXrP=tana. (1)PQ dx ^ ^

The tangent of the angle made by any straight line with the

axis of X is called the slope of the line. As the tangent at

any point of a curve has the direction of the curve at that

point, the slope of a curve is that of its tangent ; hence the

dy
value of -j-, ft^ ctwy instant^ that is, for any simidtaneous values

of X and y, measures the slope of the curve at the corresponding

point.

In the figure, y is an increasing function of x, a is an acute

dy . . .

angle, and tan a, or -^^ is positive. In the vicinity of M', how-

ever, y is a. decreasing function of x, a is an obtuse angle, and

tan a, or -p? is negative, as already seen in Art. 22.
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It is evident that the slope will in general vary from point

to point, and the first derivative will therefore be in general a

function of x; but that for any particular value of x it has

a definite value independent of dt, that is, independent of dx,

since from the similar triangles PQR, PQ'E', -j- remains con-

stant, whatever the interval.

25. Relations between the velocities in the path and along

the axes.

Let s = distance passed over by the generating point, esti-

mated from any point in its path, that is, the length of the

path. Since, when the changes in x and y (Fig. 5) become

uniform, the generating point moves in the direction of the

tangent PR, PR = ds, PQ = dx, QR = dy, are corresponding

differentials of s, x, and y ; and from the right triangle PQR,

ds'- = dx^ + dy\ (1)

Hence if y=f{x) be the path of a moving point, — is the

rate of change of the distance, or the velocity of the point in its

path; and, for like reasons, — > -^, are its velocities in the
dt dt

directions of the axes.

By differentiating y=f(x) we can compare the horizontal

dor (In
and vertical velocities, and substituting either — or -^ from

' ^
dt dt

the differential equation of the path in

dt \[dtj [dtj

we can compare the velocity in the path with either the hori-

zontal or vertical velocity.

dx dv
Since -j- and -— are distances, namely, the distances which

etc uz

the point would pass over in a unit of time in the directions of

the axes if its velocity in each direction became uniform, they
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are positive or negative according as each is in the positive or

negative direction of the corresponding axis.

26. The following relations will be found of use hereafter.

Let PN (Fig. 5) be the normal at P. Then

cosa= sin<^ = — 1 (1)
ds

dy
sm a = — cos (^ = -j-- (2)

27. Applications. 1. To find the general equation of a tan-

gent to any plane curve.

Let y = /(a-') be the equation of the curve and {x', y') the

point of tangency. The equation of a straight line through
dv

(x', y') is y — y' = m (x — x'). If we form ~ from the equation

of the curve, and substitute in it the coordinates of the given

point of tangency, we have the slope of the curve at this point

(Art. 24). But the slope of a curve at any point is that of its

cly dv
tangent at that point ; hence, representing by -—, what -y- be-

dy'
comes for the point (x', y'), and substituting -^, for m,

2. Deduce the equation of the tangent to the ellipse

ay + h'x" =.a'b^

From the equation of* the ellipse, -^ = ^j the general

expression for the slope. For the particular point (x', y') this

b'x'
becomes -— > and the equation of the tangent is, therefore,

dy
b^x'

y — y' = -— (x — x'). Clearing of fractions and svibstituting
a-y'

for a^y'- + b'x'^ its value a^6^, the equation assumes the simpler

form a^yy' -|- b'xx' = aH)^.
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Show that the equation of the tangent to

:

3. The hyperbola aV — ^'^ = — «"^^ is a^yy' — b-xx' = — a-b^.

4. The parabola y- = 22JX is yy'= p(x + x').

5. The circle y^ -{-x^= R- is yy' + xx' = R-.

6. The circle y^=2 Rx — a^ is y — y' = —~— (cc — x').

7. The hyperbola xy = in, referred to its asymptotes, is

8. The cissoid f =
^

is y-y' = ±
^•''(3«-^')

(x^x').2«-^ (2a-a;')'

9. The curve a^y" -f- 6''ar' = orW is y — y' = — (x — x').
a^y'^

10. Find the slope of y^ = 2px at the vertex ; at the extremi-

ties of the parameter. Is the generating point ever moving in

a direction parallel to X ?

cly pFrom y^ = 2px, -^ = -, which is oo for y = 0. Hence the

tangent is perpendicular to X at the vertex. For y = ±p,

-;-= ±1, the slope of the focal tangents, which therefore make
ctx 1

civ
angles of 45° and 135° with X Since -^ is zero only when

y = <X), .-. x = cc, there is no point at which the tangent is

parallel to X.

11. Find the slope of y=x'^ -2x^ + 3 at x=l; x = 3;

x = -2. Ans. 0; 9G ; -24.

12. At what point of y- = ax^ is the slope ? 1 ?

Ans. (0,0);
^^
9 a 27 a
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13. Find the equation of the tangent to the parabola y^= 2px
inclined 30° to X.

Since the angle is 30°, its slope is —^, and we must have

„ 1 ,- V3
-- =—=? or y' =pv3. Hence from the equation of the curve,
y V3
x' = '-^p. Substituting these values in yy' =p(x-\-x'), we ob-

, . " 1 , V3
tain y = —- x -\ p.

V3 2

14. At what angle does 1/^=12 a; intersect y^-\-o(^-\-6x—6S=0?
p

The points of intersection are (3, ± G) ; the slopes are -,

3 +x y
J which become, for the point (3, 6), 1 and — 1. These

being negative reciprocals of each other, the curves intersect

at (3, 6) at an angle 90°.

15. Show that the cissoid cuts its circle at an angle whose
tangent is 2.

IG. Show that the length of the tangent to the hypocycloid

x^ ^y3 —a^ intercepted between the coordinate axes is con-

stant.

The equation of the tangent is — + -^ = a*.

x'^ y'^

17. To find the general equation of the normal to any plane

curve.

The normal passes through the point of contact and is per-

pendicular to the tangent. The condition of perpendicu-

larity is m' = Hence the equation of the normal is

cly'

18. Find the equations of the normals to the conic sections :

*? f f

Ellipse, y-y'=^{x-x'); Parabola, y -y' = ~~(x-x')
;

t 2 t

Circle, 2/ = | a? 5 Hyperbola, y -y' = -^, {x-x').



s

THE ALGEBRAIC FUNCTIONS. 29

19. Find the equations of the taugent and normal to ^/^ = 9a^

at the point (1, 3). Ans. y = |a; — | ; y = — \x -\- ^-.

20. To find the lengths of the subtangent and tangent to

any plane curve.

. In Fig. 5,

t&n DTP cly' ^ dy'

dx'

TP=VTD' + DP'- =^,"+(y|^'=,'^[r^,

21. To find the lengths of the subnormal and normal to any

plane curve.

In Fig. 5, DN= PD tan nPN= PD tan DTP= y'^.

^^->Ri5"-
22. Find the subtangents and subnormals of the conic sec-

tions.
SCBTANQBNT. Subnormal.

Ellipse,
x^ - a?

x' a?

Hyperbola,
a;'2 - a?

x>

b^x'

a'

Circle,
y"

x''
-x'.

Parabola, 2x'. P'

The signs may be neglected if lengths only are required.

The sign will, however, indicate the direction if the subtangent

and subnormal be reckoned respectively from T and D, Fig. 5.

23. Prove that the subtangent of the hyperbola xy = m is

the abscissa of the point of contact, and that the subnormal

varies as the cube of the ordinate.

,dx'
,

,dy' y'^

^ dy' dx' m



30 THE DIFFERENTIAL CALCULUS.

24. Prove that the subtangent of the serai-cubical parabola

if = a'3? is two thirds the abscissa of the point of contact,

and that the subnormal varies directly as the square of the

abscissa.

25. A point moves with a constant velocity m in the arc

of the parabola 2/^= 8 a;. Pind the velocities in the directions

of the axes when cc = 8.

From ?/- = 8 a;, we have — =—- , and by condition — = m.
dt y dt

^
dt

Substituting these values in

ds

di =m'^($}
we obtain

dx _ my ^ dy _4: dx _ Am
^^ V/-I-16'

" dt~ y dt
~

-yjy-i
_|_ le

For X =%,.-. y = 8, these become —- and —- ; hence at the

V5 V5
point (8, 8) the horizontal and vertical velocities are as 2 to 1,

2 1
and are —^ and —r. times that in the path.

V5 V5

26. The orbit of a comet is a parabola, the sun occupying

the focus. Compare the velocity of the comet with its rate of

approach to the sun.

The distance of any point of the parabola from the focus is

rz=x+^, .'. — =— , or its rate of approach to the sun is the
2 dt dt

same as its horizontal velocity. But, as shown in Ex. 25,

— = — ^ — • Hence, in general, its rate of approach to
dt V2/'+p' f^^

5 &
» i^i-

the sun is — ^ times its velocity. At the vertex, y = ^

and — = — = 0, or, at the vertex, it is not approaching the

dr 1 ds
sun at all. When y =p, — =—- — • When at a distance

dt -^2 <^i
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from the sun equal to the parameter of the orbit,

r= 2» = x + ", .-. a; = -» and w=Vo», and — =-V3 —^2 T ^ ^
dt 2 dt

27. A point moves in the arc of the circle a? -\-y- = 25, and

has a velocity 10 in passing through the point (3, 4). Show
that its velocities in the directions of the axes are 8 and G,

numerically.

THE TRANSCENDENTAL FUNCTIONS.

The Logarithmic and Exponential Functions.

28. The logarithmic function.

Let x = ny, (1)

n being any arbitrary constant. Then

log„x = log„w + log<,?/, (2)

in which a is the base of the logarithmic system.

Differentiating (1) and (2),

dx = ndy,

d (log^x) = d (log^y)
;

and, by division, iO^^^LO^.
(3)

' •'
' dx ndy ^ '

Eliminating n from (3) by substituting its value from (1),

dx dy ^

X y

clcc

or the ratio of d (log^x) to — is the same as that of d (log^y)

dy „. .

^

to— Since n is arbitrary, the ratios in (4) are constant.

Let m be this constant. Then

d(log„x) = m^^
X
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Now the only quantities involved in any logarithmic system

are the number, its logarithm, and the base. Since of these

the two former are variable, while m is constant, m must de-

pend upon the base. The value of m corresponding to any

base is called the modulus of that system. Hence

The differential of a logarithm of a variable is the modulus of

the system into the differential of the variable divided by the vari-

able.

The relation between the modulus and the base of any sys-

tem will be established later ; but as the only system employed

in analytic investigations is that whose modulus is unity, called

the Naperian system, the above rule becomes :

The differential of the Napenan logarithm of a variable is the

differential of the variable divided by the variable.

Unless otherwise mentioned, by log x will hereafter be

meant Naperian logarithm of x. The base of this system is

represented by the letter e, and its value will be shown to be

2.718281.

29. The exponential function.

I. When the base is constant.

Let y = a". Then, in the system whose base is b,

log^y = xlog,,a.

Differentiating both members,

•m— =log^adx,
y

. , a'' logft adx
whence a?/ = >

--
^ m

or the differential of an exponential function whose base is

constant is the function into the logarithm of the base into the

differential of the exponent, divided by the modulus of the system.

For the Naperian system, m = 17 and we have

dy = a" log adx.
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If the exponential base is also the base of the logarithmic

system, log a = 1, and
dy = a* dx,

or, e being the Naperian base, the differential of y = e"^ is

dy = ef'dx.

II. When the base is variable.

Let y = af. Then log?/ = z log a;. Differentiating both mem-

bers,

dy dx
,-^ = z h logical,

y X

whence dy = x'z-^+ -^"^Jog xdz = zx''^ dx -{ x' log xdz,

or the differential of an exponential function whose base is

variable is the sum of the residts obtained by differentiating first

as if the exponent were constant and then as if the base were

constant.

If z = x, y=xi', and rf^ = af (1 +loga;) da*.

Examples. Differentiate

:

/7 ,1,, /j*2

1. y = log (3 ax -f x'^). dy = 3———-dx.

2. y = loga^. dy =

3. y = (loga;)^ dy = 2 log x

4. ?/ = log(loga;). dy =
a-log x

5. y = x log X. dy = (log a; + 1 ) dx.

• y = \
—r dy =

Zax + x^

2dx

X

dx

x_

dx

loga^
""'

a; (log 03^)^

7. y = los(l-\-x^y, or 21og(l + a^).

ixdx
dy =

l+ar«
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xdx
S. y = log Vl + a^- d}j =

d. y = log {Vl + x' + Vl - X-)

1+a^

dx.

10. y : log^-+^-^', or log (1 + -Vx) - log (1 - V.0-
1- Va

d!/ = —= dx

\/x (1 — ic)

11. 2/
= log[Vl-a;(l + a;)], or ^ log (1 - a;) +log (1 + a;),

(1-Sx)dx

12. y

13. //

14. y

15. v/

16. y

17. y

18. 2/

19. 2/

20. y

21. y

22. y

= log„4.TT.

= e^(l-cc-).

dy =

dy =

2(1 -a^)

mdx
4:X

dy = e^(l — 2x — x^)dx.

dy — af (log X + l)dx.

dy = x^ e^—L ^ dx.
X

dy = e^a;«^(log x + l)dx.

= x^.

.log J

dy = x^x log a; (logo; + 1) 4-

dy z= 2 x^"^'' log X
dx

-.{logxy.

= log {e" — e").

dy = (log xy log (log x) -f
logcc

dx.

dx.

dy dx.
e' — e'

e^ — e'

dy= - 4dx

{e-e-'f

dy = ('j flog--l]dx.
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23. y = (^. dy = (fT(log^^ + l\dx.

Algebraic functions may sometimes be differentiated

with greater facility by first passing to logarithms, but

it is usually more expeditious to differentiate directly.

Differentiate the following by passing to logarithms.

24. y = x^l-x{l+x).

log y = log x + \ log(l - x) + log(l + x),

y \x 2{l-x) 1-^xJ
'

2 + X-5.V'
.-. dy = icVl —x(l-\-x\—"^^^ ^-^ dx

-^ ^ ^2x{l-x){\+x)

= 1±^IzMdx.

1 — X 1 —x^

26. y = ^•(^ + ^). dy = l+Mzil^i^d..
y/l-x" (l-.x-)l

27. y — a^. dy = (0"%" log a log hdx.

28. 2/ = J. dy = ^!(ilzM^da..

29. y = log
'^ ^ ~ dy= -

Vl + ic — Vl — X a;Vl — ix^

30. y = a"''^\ dy=a}°^'' log a—'

dx
31. y = log( Va; — a + ^x — ?;). f??/

2^{x-a){x-h)

32. ?/ = log {x — Va;" — «-)

.

dy— — dx

Vic'^ — ci^

Qo a; , e'(l — x) — 1 ,33. y = -—-. dy=^——-^ dx.
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30, Applications. 1. Compare the rates of change of a num-

ber and its logarithm.

a; = log„y, whence — = — , or the logarithm (x) changes
dy y

faster or more slowly than the number {y), according as the

number is less or greater than the mq^ulus of the system.

Since m = 1 in the Naperian system, the Naperian logarithms

of proper fractions change faster than the fractions.

2. Compare the rates of change of a number and its loga-

rithm in the common system, where the number is 534. The

modulus of the system where base is 10 will be shown to be

.434294, .-. - = 1^5^?^ = .00081, which will be found by ex-

y 534
amination of the tables to be the tabular difference correspond-

ing to the number 534. Since — changes with y, the relative

rate of change of a number and its logarithm varies with the

number. If we assume that for an increase of say .1 in the

number there will be a proportional increase in the logarithm,

the quantity to be added to the logarithm of 534 to obtain the

logarithm of 534.1 will be .1 X .00081 = .000081. This, in fact,

is the manner of using the tabular difference of the tables,

and is equivalent to the supposition that — remains constant

while the number 534 changes to 534.1, a supposition which,

although not strictly true, gives results sufficiently accurate

within the limits of practice.

3. Find the tabular difference corresponding to the number

3217. Ans. .000135.

4. Prove that the rule for the differentiation of a power

applies when the exponent is incommensurable.

Let y = a;", n being incommensurable. Passing to logarithms

(first squaring, as y may be negative, and negative numbers have

. , ^ , ,
dy dx

no logarithms), log y = n log x, .-. — = ?i— ? or dy = ± nx" 'ax.
y ^
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5. Prove in the same manner that the rule applies when the

exponent is imaginary.

6. Find the slope of the logarithmic curve at the point where

it crosses the axis of Y.

X = loga y, .: -^ = ~i which for x = (whence y = l) becomes

— Since y = 1 when a; = 0, whatever the base, the slopes of

all logarithmic curves at their common point on the axis of Y
vary inversely as the moduli of the systems. In the Naperian

system m = 1, hence the slope of x = log y is the ordinate of

the point of contact.

7. Find the equation of the tangent to x -— log y.

Ans. y — y' = y'{x — x').

8. Show that the subtangent of a; = log^ y is constant and

equal to the modulus of the system. Also find the subnormal.
. ,dy' , dx' y"'

Ans. y' ^—, = m: v 3-, = "

—

•^ dx' ' ^ dy' m
9. Compare the rates of change of x and its ccth power when

a; = 1. Ans. The rates are equal.

10. Compare the rates of change of x and its iKth root when

Ans. ~- = 0.
dx

The Trkjonometric Functions.

31. Circular measure of an angle.

Any angle AOB, measured in degrees, may also be measured

by the ratio of its arc to the radius of its arc, since for any

given angle this ratio is constant whatever

the radius of the arc. If the arc 6 be de-

scribed with a radius equal to the linear

unit, then, since x = r6 (Fig. 6), - = B, or,

by this method, the angle is measured by

the arc intercepted at a unit's distance. To express the angle
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n° in circular measure, we have - = = 2 tt for the circular
r r

2-77 IT
measure of 360° ; hence the circular measure of 1° is —— = -—

-,
360 180

and of 71° is ^^ ; or the circular measure of an angle is expressed
180'

by multiplying the number of degrees by t^-
180

Since - = 1 when x = r, the unit of circular measure is the

angle whose arc equals its radius; or, making —^ =1, n =
i-FTrt r» 1 loO IT= 57°.3 nearly.

32. Differential of since.

Let the point P move in the circular path AB, x being the

length of the path, estimated from A, at any instant when the

generating point is at P. Then

PD = y = sin x.

If at this instant the motion of P should
TV^g'?^'

become uniform along the tangent at P, the

changes in AP and PD would also become

uniform. Hence if PQ, RQ, are what the

increments of x and y would be in any interval dt, PQ = dx

and liQ = dy = d (sin x) . But BQ= PQ cos AOP. Hence

dy = cos xdx, or the differential of the sine of an angle is the

cosine of the angle into the differential of the angle.

33. Differential of cos x.

In Fig. 7, SD = BP, being the decrement of OD simultane-

ous with BQ and PQ, is the differential of cos x. Hence, if

OD = y = cos X, dy = BP = — PQ sin AOP= — sin xdx.

Otherwise : ?/ = cos ic = Vl — sin^ x, whence

— 2sina:d(sin x) sin aj cos a^dx . ,

dv = ^ - = — = — sm xdx,
2Vl-sin2aj cosa;

.

or the differential of the cosine of an angle is minus the sine of the

angle into the differential of the angle.
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34. Differential of tan x.

sin X -_,,

Let V = tan x = inen^ cos a;

, cos a;d(sinx) — sin.Trf(cos.r) cos'a; -l-sin'^a; ,dy = 5^ '— ^ '- = \ dx
Q,Q'S>^x COS'' a;

dx _ . 2

cos^a;
sec^a^dx,

or the differential of the tangent of an angle is the square of the

secant of the angle into the differential of the angle.

35. Differential of cot x.

Let y = cot x = tan
[
^ — re j . Then

dy = sec^ I- — x\{ — dx) = — cosec^ xdx, a result whicli may
• COS x

also be obtained by differentiating y = cot x = Hence
sin X

The differential of the cotangent of an angle is minus the square

of the cosecant of the angle into the differential of the angle.

36. Differential of sec x.

Let y = sec x = Then
COSiC

, d(cosa;) sina/'d.« , ,dy= ^^

—

-—- = ——,— = sec x tan xdx,
cos- X cos- X

or the differential of the secant of an angle is the secant of the

angle into the tangent of the angle into the differential of the angle.

37. Differential of cosec x.

Let y = cosec x = sec (- — x). Then
V2 J

dy = sec
[
^ — x\ tan[ - — a;

j
( — dx) = — cosec x cot xdx,

or the differential of the cosecant of an angle is minus the cosecant

of the angle into the cotangent of the angle into the differential of
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38. Differential of vers x.

Let y = vers x=l — cos x. Then dij = sin xdx,

or the differential of the versine of an angle is the sine of the angle

into the differential of the angle.

39. Differential of covers x.

Let y = covers x =1 — sin x. Then dy = — cos xdx,

or the differential of the coversine of an angle is minus the cosine

of the angle into the differential of the angle.

Examples. Differentiate

:

1. y = sin 6 x. dy = 6 cos 6 xdx.

2. y = cos XT. dy = — 2x sin x-dx.

y 3. y = cos^ x^ dy = — sin 2 xdx.

4. ?/ = tan (3 - 5 x^) \ dy = - 20 a; (3 - 5 x") ^ec\3 - o x^f dx.

5. y = sin2 ^^ _ 2x^y-. dy = - 8a;(l- 2ic2)sin 2(1- 2x'y-dx.

^ 6. 2/ = (sin a; cos x) ^ dy = sin 2 a; cos 2 xdx.

'^
_ 7. 2/ = sin 2 a: cos 2 a;. dy = 2 cos 4:xdx.

'^
S. y = sin2 (1 - a.-^)^. dy = -Sx{l-x-) sin (1 - x^dx. V

1 ^ ^ . J 1 + sin a; J
' 9. V = tan X + sec x. dy = —'—^ dx.

COS'' X

10. y = X -j- sin x cos x. dy = 2 cos^ xdx.

O^ll. y = tanVl — a;-.
. dy = — sec^ Vl - x^ •

\. Vl — x^
-'-^'-

, , cos (log x)
,

^.12. y = sin (log a;)

.

dy = ^^-^^ dx.

'''da;

13. 2/ = log (cot a;). dy = --^-^.

14. y = m sin" ax. d?/ = a??m sin" "^ ax cos axda;.

15. t/ = sin'a;. dy = sin''a;(log sin a; 4-x cot a;) dx.
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16. ?/ = vers -• dy = - sin - dx.

17. y = sin e"^. d?/ = e^ cos e' dx.

18. ?/ = .^•^ cos 0/*^. dy = 2 a; (cos cc- — a^ sin a;-) d;f.

io • " 7
tt d

,19. w = sin - • dw = -„ cos - da\^ X -^
x^ X

20. y = log (sin a-)

,

d// = cot xda;.

21. _?/ = sin «a; sin''a;. dy = a sin"~ '.'c sin (ax + x) dx.

J.
1,

oo 4- X 7 sec- a* log a • a* da;
22. y = tn,nce. dy = ^ •

ar

23. y=zx'"'\ dy = a;
»'" *

/sin^
_,_ j^g ^j cos a;"] da;.

24. y = (sina;)'"°".

dy = (sin a;)™** |cot x cos a; — sin x log sin a; j d-r.

(sin na;)"* , ?nn(sin na;)'""^ cos (mx— ?ia;) ,
2i>. y = -7 T7- d?/ = ^^ ^ r-xi -dx.

^ (cos ma;)" "^ (cosmx)"+^

The Circidar Functions.

40. Differential of sin~'ic.

Let y = sin~^T. Then x = sin y. But dx = cos ydy, hence

d _ ^^ _ da; _ dx

~cosy~ Vl-sin^y
~ VH^^'

or i/te differential of an arc in terms of its sine is the differential

of the sine, divided by the square root of 1 minus the square of

the sine.

41. Differential of COS" ^aj.

Let y = cos^a;. Then x = cos y. But da; = — sin ydy, hence

, _ _ f?.i7 _ da; _ _ dx

si" y Vl - cos^y Vl-a;'
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or the differential of an arc in terms of its cosine is minus the

differential of the cosine, divided by the square root of 1 minus

the square of the cosine.

42. Differential of tan^^a?.

Let y = t'An~^cc. Then x = timy. But dx = sec- ydy, hence

, dx dx dx
(^y =—V- = rTT

—

~ = 1—,

—

>'

sec^y 1 + tan- y 1 + ar

or the differential of an arc in terms of its tangent is the differen-

tial of the tangent, divided by 1 plus the square of the tangent.

43. Differential of cot"' x.

Let y = cot~^ x. Then x — cot y. But dx = — cosec'' ydy,

hence

7 _ ~ '^^•^" _ _ '^^^ _ _ ^^

cosec- y 1 + cot- y l-\-x^

or the differential of an arc in terms of its cotangent is minus the

differenticd of the cotangent, divided by 1 pilus the square of the

cotangent.

44. Differential of sec ~^ 35.

Let y = sec~^ x. Then x = sec y. But dx = sec y tan ydy,

hence
dx dx dx

dy =
sec y tan y gee 2/Vsec- ?/ - 1 reVa^ - 1

or the differential of an arc in terms of its secant is the differential

of the secant, divided by the secant into the sqxiare root of the

square of the secant minus 1.

45. Differential of cosec "^£c.

Let ?/=cosec~^a;. Then a;= cosec y. But c?a7=— coseca;cota;(7x,

lience
^^^

dri = >
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or the differential of an arc in terms of its cosecant is minus the

differential of the cosecant, divided by the cosecant into the square

root of the square of the cosecant minus 1.

46. Differential of vers"^ic.

Let y = vers'^cc. Then x = vers y. But dx = sin ydy, hence

, dx dx dx
dy = -,— =

sin y -y/i _ cos^ y Vl — (1 — vers y)'^

dx dx

or the differential of an arc in terms of its versine is the differential

of the versine^ divided by the square root of twice the versine minus

the sqxiare of the versine.

47. Differential of covers"^ a?.

Let y = covers"' x. Then x = covers y. But dx = — cos ydy,

hence ,
, dxdy=-

V2x'-x2

or the differential of an arc in terms of its coversine is minus the

differential of the coversine, divided by the square root of tivice

the coversine minus the sqxiare of the coversine.

Examples. Differentiate

:

^xdx

VI -4 a;*

dx

VI

1. y = sin~' 2.x*^. dy =

2. y = cos 'Vl — a^. dy =

S. V = sin~' -^— dy =^ 1 + a^
^ 1+x

1

4. y = tan 'a*. dy = —

X-

2dx

1

a^ lo» adx

x" (l -j- a')
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5. 2/ = tan-V. dy = dx

e^ + e'

6. 2/ = sin-i(tancc). dy = -^^^-^^~

~

.

Vl — tan'' X

7. y = cos-\2 cos x). dy = ?smxdx
^

Vl — 4oos^x

S. y = cos'^(]ogx). dy= —

9. ^ = log(cos-ia;). dy =

—

dx

Vl — log^ a;

cos Iojy'I — a^

10. 2/ = tan--^. dy = ^(^-^)^^.
1+a^ ^ l + (jx' + x*

11. 2/ = a? sin-i X - Vl - x^. dy=(sm-^x-\ ~—\dx.
\ Vl - x'j

12. x = r versin"^^ — V2 rv — v^

dx= y^y .

V2 r?/ - 2/2

13. y = (sin~^a;)^

f?.y = (sin 'a;)-' j
sin-^a^logCsm-^a;) Vl - a;'' + a; )

^^^
<. Vl - a.-^ >

14. 2/ = a?"""'^ ^2/ = ^^"""'K I
''^^"'^ + ^Qg^- 1 dx

i X Vl - af'
^

15. 2/ = siu-i-. dy = —^^~-.

IG. 2/ = cos-i?. d2/=
'^'''

'
Vr^ - ar*

a'
.7 ?TZa;17. 2/ = tan-i--
c?2/ =

5.2 _|_ ^2

18. 2/ = cot-i^. dv=- ^'^^
.

r
^

y~- ^_ ar*
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19. y = sec -• cly =
'>' x^ar r

20. y = cosec"''— dy= —
r a;Va^ -

21. y = vers~^— dy =
'• -^2rx — cc

22. 1'/ = covers"^ -• dy=

—

>' -yj^rx-^

23. 2/ = tan-\ -—-^^^. dy = \dx.
\ 1 + cos X'

24. 2/ = sin~^Vsm^. dy = ^Vl + cosec x dx.

25. 2/ = log('^y4-itan-^x-. ^^2/ = ^,-

26. ?/ = sec~'-
dx

27. 2/ = sin-»?-±^
+1
V2

cZ?/ =
vr— af'

d?/ = dx

vr-2x--x"

dt/ = (^20; tan-i^
r
+ r^da;.

rfy = ndx

cos^ x-i-n^isin- a;

dy = -2dx.

28. 2/ = 0-2-|-a^)tan-^-.
?'

29. y = tan~^(9itana;).

30. ?/ = cos~'(cos2a;).

48. Applications. 1. A wheel revolves about a fixed axis

through its centre. Compare the velocity of a point on the

rim with its velocity in a horizontal direction.

The horizontal velocity is evidently the rate of change of the

cosine of the arc described by the point ; hence, if the arc be

denoted by «, y = cos x, whence dy= — sin xdx, which is also

the relation between the rates of y and x. The point is there-

fore moving in a horizontal direction sin x times as fast as it
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is moving in the arc. At the highest point, where x = 90°,

sina;=l, and dy = — dx, the rates being equal. At a; = 30°,

sin x = ^, and at this point the horizontal velocity is one-half

that in the arc.

2. Compare the horizontal and vertical velocities of a point

on the rim of a wheel which rolls without sliding with a constant

velocity m on a horizontal line.

In this case the path of a point

on the rim is a cycloid whose equa-

-1 V2?-?/-2/^,tion IS X = r vers'

whence — = — dy

,fidt
(!)•

ON
dt -^2 ry — y

Since the wheel has a constant

velocity m in a horizontal direction, and its centre C is always

vertically over Z>, this velocity is the rate of change of

OD = r vers~^ - •

d

Hence

r vers ' -
r

dt V2ry

dy

Substituting this value in (1),

dx y—
- = - m.

dt r

Hence

At O,

At B,

At E,

'^yds l/dxY fdyV /2i

dt-\{dt)+[i) = '^\i-

dy
y = 0, and

dx

dt
= ^ = 0.

dt dt

^ dx ds ^ dy ^
2/ = 2r, and -- = - = 2m,^ = 0.

dt dt dt

ds^ dx dy
y^r, and - = ^- = m,^^ tV2.
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3. Find the subnormal of the cycloid.

y''^= y'
V27y- y;^^ V2i'y'-y'-\ But (Fig. 8) V2ry'-y'-'

= PM = ND, or the normal passes through the foot of the

vertical diameter of the circle when in position for the point

P. Hence, also, the tangent passes through the upper extrem-

ity T. Therefore to draw a tangent and a normal at any point

P, put the generating circle in position and join P with the

extremities of its vertical diameter. Also, to draw a tangent

parallel to a given line, draw BQ parallel to the given line, and

PQ parallel to the base. Then P is the required point of tan-

gency.

4. A man walks in a direction AB. Compare the rate of

change of his distance from a point with the rate of his

angular motion about 0.

Let fall the perpendicular 0Z> = 2:> upon AB, and take for

the pole, OD for the polar axis. Then the equation of AB is

p , dr p sin $ d6 ^ /, a f^** a rr=-^, whence ^t=-—^r?r -rr- For ^ = 0, -,^ = 0; for
cos 6 dt cos- 6 dt ' dt '

6 = 90°, - = 00.
dt

5. An elliptical cam making two revolutions a second about

a horizontal axis through one focus, gives motion to a bar in a

vertical direction through the centre of revolution. The trans-

verse axis being G and the eccentricity
f,

find the velocity of

the bar when the angle between the vertical and the trans-

verse axis is 60° ; 90°.

a{l — e-)
,

dr a(l — e-)esmO dd ... „
r = z ~, whence -j- = yz —

jr-r- -77' which for1— ecos^ dt {1—ecos 6y dt

a = 3, e=|, and — = 47r, becomes -tt. When^
dt

' {S-2cosOy

= 60°, ^=-5V37r; when = 90°, ^'= -12^.
dt dt 9

6. The crank of a steam engine is one foot in length and

makes two revolutions a second. If the connecting rod is 5
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feet in length, find the velocity of the piston when the crank

makes angles of 45°, 135°, 90°, with the line of motion of the

piston rod. Let a, b, x, represent the crank, connecting rod,

and variable side of the triangle, respectively, and 6 the angle

between a and x. Then x = a cos $ + V&" — a^sin^ 6, whence

dx ( a , a^ sin cos ] dO— =— a sm 6 H — [ — ?

dB
which for a = 1, ?> = 5, — = 47r, becomes

dt

f . /) ,
sin 6 cos 6 )

\ sin ^ H - y

( \/25 - sin2 )V25 - sin^ 6

Ans. -if-^Tr; --y_V27r; -47r.

7. Find the slope of ?/ = sin x at the points where the curve

crosses X. Ans. ± 1.

8. Find the angle at which y = sin x crosses y = cos x.

Ans. tan-i2V2.

9. Find the length of the normal to the cycloid.

Ans. -y/'^ry'.



CHAPTER III.

SUCCESSIVE DIFFERENTIATION.

49. Equicrescent variable. A variable lohich changes uni-

formlJ^, fTiat is, whose rate is constant, is said to be equicrescent.

50. The differential of an equicrescent variable is constant.

For, if X be equicrescent, its rate -^ is constant. But dt is

constant ; hence dx is also constant.

It is evident that, if — is not constant, dx is a variable.
dt

The above is a direct consequence of the definitions ; for the differen-

tial of a variable is what would be its change during any interval were its

rate of change to remain throughout the interval what it was at its begin-

ning. If the rate varies from instant to instant, differentials correspond-

ing to equal intervals also vary; while if the rate remains the same, these

differentials are equal.

51. Successive derived equations.

Let y=f(x). Then d>j=f'(x)dx, in which f'{x)=-^,

the first derivative.

Now, in general, dy, or /' {x) dx, is a variable. For dx is a

variable unless x is equicrescent ; and /' (x) is a variable unless

f{x) is linear, in which case it can be reduced to the form
dv

y = mx -f b, whence -r-=f' (x) = m, a constant. Hence, unless

the function is linear and x is equicrescent, dy =f'(x)dx is

variable, and, being true for all values of x, can be differenti-

ated, thus forming a second derived equation which may in its

turn be differentiated, a repetition of this process leading to

49
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successive derived equations called the fii^t, second, third, etc.,

in order.

Since differentiation introduces no function which has not

been already treated, the successive derived equations are ob-

tained by the rules already established.

52. Notation. The second differential of a variable x is

represented by the symbol cBx, read ' second differential of a;,'

the exponent being a symbol of operation indicating how many
times the variable has been differentiated. The student will

observe the different meanings of the forms cZ-a;, doi?, and d (x')l

Illustration. Given if = 2px. The first derived equation

is 2ydy = 2pdx, or ydy = pdx. Differentiating again, we have

yd{dy) + dyd{y) =pd {dx),

or, in the above notation,

yd-y + dy^ = pd-x,

which is the second derived equation. Differentiating again,

yd{d'y)+ dhjd{y) -f 2 dyd{dy) =pd{d'x),

or yd^y + d-ydy + 2 dydnj = pcZ%,

whence yd^y -\- 3 dyd^y =^?d''a;,

which is the third derived equation.

If X were equicrescent, the successive derived equations

would be much simplified. For when x is equicrescent, dx is

constant, and, since the differential of a constant is zero, all

the successive differentials of x after the first would vanish.

Thus, in the above illustration, d'x = d^x = etc. = 0, and the

successive derived equations become

ydy = 2^dx,

yd^y + dy^ = 0,

yd'y + 3dyd'y = 0.

53. Remark. It is important to observe that in most cases

it is permissible to consider the variable equicrescent and thus



SUCCESSIVE DIFFERENTIATIOX. 51

secure the simplicity above noted. For example, let y =f{x)

be the equation of any plane curve. The assumption that x is

equicrescent, or that — is constant, implies that the velocity

of the generating point in the direction of the axis of X is con-

stant. Now, so far as the geometrical properties of the curve

are concerned, these being independent of the velocity of the

generating point, we are at liberty to make any assumption re-

garding the velocity which will facilitate their investigation.

We therefore assume the velocity-law in the curve such that

the motion in the direction of the axis of X is uniform.

Again : suppose a right cylinder is inscribed in a right cone,

the problem being to find, of all right cylinders so inscribed,

that one whose volume is the greatest. If the radius of the

base and altitude of the cone are h and a, and those of the

cylinder x and y, we have

h : a : : X : a — y,

whence x = - {a — y)\

and if V is the volume of the cylinder,

F= iryxr = TT - y{a - yy.
cr

Now in determining the gred,test value of V, it is evidently

immaterial whether we regard y equicrescent or not, since the

cylinder of greatest volume is independent of the law of change

oiy.

In functions of a single variable, unless mention is made to the

contrary, the variable will hereafter be regarded equicrescent.

Examples. Regarding x equicrescent, form

:

1. The second derived equations of

aV + Wa? = a^S a-yd^y + a-df- + b'dx^ = 0.

f + x^ = R^, yd?y + df' + daf = 0.

xy = m, 2 dydx -f xd^y = 0.

y =x^ log X, d^y = 2 log xdx -f- 3 dx^.

A
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2. The fifth derived equation of y — x^ log x.

24
d^y = — dx^.

X

3. The fourth derived equation oi y = X
\-x
24

d'y = —^^^±—dx\

4. The third derived equations of :

y = tan x, d^y = 2(3 sec^ x — 2) sec^ xdx\

y = e*, d'^y = e'^da;^.

y= -, d^y = dx\
X X*

y = COS X, dhj = sin xdx\

5. Prove that the lith derived equation of y = a' is

d"y = (log a)"a'(te".

6. If 2/ = log sin X, prove that d^y = 2 darl
sin^a;

7. If y = sin~^Va;, prove that d-y = ^ dx^.

4{x-x'y^

8. If y = m cos^mcc, prove that

d^y = —m*\ (cos mx')"* — (m — 1) (cos wa;)"*"^ sin^ mxldaf.

9. If 2/ = a«^, show that d^y = 0.

54. Successive derivatives, or differential coefficients.

Let y=f{x), in which x is equicrescent. The first deriva-

dv d,\ f(x)~\
tive oif{x) has been defined as -j-= "-^ ^ , and is the ratio

of the rates of change of the function and its variable. Since

the first derivative is variable except when f(x) is linear, it is

in general a function of x and may be denoted by f'(x), or

dv— =f'(x) ; it may therefore be differentiated in its turn, and

a second derivative formed by dividing d\_f'{x)'] by dx, and
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this process may evidently be continued until a derivative is

reached which is constant. The successive derivatives thus

obtained are called in order the first, second, third, etc., deriva-

tives, and are denoted hj f'(x),f"(x),f"'(x), etc.

Since each derivative is obtained from the preceding one in

the same manner that f'(x) is obtained from f(x), it follows

that:

1. The nth derivative of f{x) is the ratio of the rate of change

of the (n — l)th derivative to that of the variable.

2. The nth derivative off{x) may be obtained either by differ-

entiating the (n — l)th derivative and dividing by dx, or by divid-

ing the nth derived equation by dx".

Illustratiost. Given y = a -j- bx^. The first derivative is

^y = Sba^=f'(x).^-^^ "''
•

^*" '''

dx J \ /

Differentiating, remembering that dx is constant,

—^= 6 bxdx,
dx '

whence the second derivative

g = 6to=/"(x). • v:

Differentiating again,

d?v
^=Gbdx,

whence the third derivative

cPy

dx"
z=6b=f"'{x).-Uc^. U-i{ M ^i ' ^^

Here the process ends, since the third derivative is constant.

Otherwise, differentiating y = a+ ba? successively three times,

the successive derived equations are

dy = 3 bx^dx, d^y = 6 bxdx^, d^y — 6 bda?,
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and, dividing the last by dx"^,

as before. •

"^

55. Sign of the nth derivative. Since f'(x) is positive or

negative as f{x) is an increasing or decreasing function (Art.

22), and since /"(x) is the first derivative of f'(x), f"'(x) the

first derivative of/"(aj), etc., therefore /"(a;) will be positive or

negative asf"~^{x) is an increasing or a decreasing function.

Examples. 1. If y = mx"', prove that ~, ovf"'(x), is

m^(m — 1) (m — 2) 03""^

f'(x) =m^a;'"~\

f"{x) = m^{m — 1)0^-^

f"'lx) = m\m-l){m-2)x"'-^

2. If 2/ = e* sm x, prove that —^ = 2 e* cos x.

f'(x) = e* cos x-^-e" sin x = e'' (cos x + sin a;)

.

f"(x) = e''(— sin x + cos cc) + e"'(cos x -f sin ic) =2e' cos ic.

3. If 2/ = log cos X, prove that /'"(x) =—2 sec^ic (3 sec^a; — 2).

4. If 2/ = Vl — ar^, prove that— = •

dx- if

5. li y = e""'', prove that

f"'{x) = e^^'^'Q.o&x (cos^ a; — 3 sin a; — 1).

6. If y"^ = sec 2 x, prove that /"(a;) = 3y^ — y.

7. If y = a''^, prove that f\x) = h^ log^a • a*^

8. If ?/^ = 2px, and y is equicrescent, prove that — = - •

dy^ p
The following first and second derivatives, being of frequent

use hereafter, may be here established for future reference.

In all implicit functions of two variables, x will be regarded as

the equicrescent variable unless otherwise mentioned.
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9. The ellipse, a-y'^+ &V= a-b-.

10. The circle, ^f+x'= R-.

f{x) = -^=T ,
^ • f\x) = -^.

11. The hyperbola, a^ — Ira? = — a~b^.

/'(a.)=^=±^-^==:. /"(x)=—^.

12. The hyperbola, ir?/ = m.

a; a- ir a^

13. The parabola, y'^ = 2px.

/'(..) =?;=±-^. /"(a.)=-4

14. The cubical parabola, 'f = o?x.

f(x\--^--^. f"(x\-
2^'

15. The semi-cubical parabola, ay'' = ar\

2a?/ 2 \a 4tty

16. The witch, x^y = i a\2 a - ij)

.

fi(^\^_ 2a7/ 16 a" a.

x2 + 4a- (iK2-j-4a2)2

f"(x) = 2y ''^^'~'^f„

w
17. The cycloid, x = r versin"^- — V2?'?/ —y-.
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18. The cissoid, ->/ =—
2a —

X

f'(x) = ± Xi
3^^-^ /" (,;) = ± 1^

{2a -x)^- x'-{2a-xy^

19. The hypocycloid, x^ -f y^ = a*.

1 . 2

/'(^•) = -V /"(^)=o-r~4-

a: X

20. The catenary, v/ = - (e" + e ").

^ ft

21. The logarithmic curve, x = logy.

f'(x)=f"(x) = y.

22. The sinusoid, y = sin a;.

/'(a;) = coscc. f"(x) = — su\x = — y.

56. Remark. If a function becomes infinite for ajinite value

of the variable, its derived functions also become infinite.

For if the function be an algebraic one, it can become infinite

for a finite value of the variable only by having the form of a

fraction whose denominator vanishes for that value, and, in

differentiating to form the derived functions, this denominator

never disappears. So that if f{x) = co when x = x',f'{x),

f"{x), etc., also become infinity when x = x'. Examination of

the transcendental functions leads to the same conclusion.

Thus log X becomes infinity when x = 0, as do also all its deriv-11 -
atives -, -, etc. : and a'', tan x, sec x, illustrate the same fact.

X XT

This is not necessarily true when f{x) becomes infinity for

an mfinite value of the variable. Thus, log a? = oo when a; = oo
;

but f\x) = - becomes zero for x= cc.
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57. Notation. To denote what a function becomes for a

particular value of the variable, the variable is replaced by its

particular value. Thus, /(a), /(O), f{x'), represent what f(x)

becomes when x = a, a* = 0, x = x', respectively. The particu-

lar value may also be written as a subscript in either of the

following ways

:

1] =0, 1] =0,
XJ a; = CO XJ ^

( 1
read - equals zero when x is infinity.'

58. Change of the equicrescent variable.

In forming the successive derivatives of y =f{x) wo have

considered x equicrescent, that is, dx constant, and hence

drx = cfx = etc. = 0.

If x is not equicrescent, dx is a variable, and

am
\dxj dxd-y — dy(Px

dx dx^
(1)

which is the general form of the second derivative when neither

x nor y is equicrescent.

Differentiating (1), regarding dx and dy as variables, we have

fdxd^y — dyd-x\

\ daf J ((f'ydx — d^xdy)dx — 3(d'ydx — d?xdy)d?x

dx dx x^v

which is the general form of the third derivative when neither

X nor y is equicrescent. The general forms of the third, fourth,

etc., derivatives may be found in like manner.

If in (1) and (2) x is equicrescent, d?x — d?x = 0, and we have

^, and ?y, (3)

while if y is equicrescent, d-y = d^y =0, and we have

dyd^x 3((^xydy — d^xdydx ,..

dx' dxP
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Thus the forms of the successive derivatives, after the first,

differ, according as the variable, the fvmction, or neither, is

considered equicrescent.

To transform a differential expression which has been formed

on the hypothesis that x is equicrescent into its equivalent in

which neither x nor y is equicrescent, we have only to re-

place the successive derivatives by the general forms (1),

(2), etc.

To change the equicrescent variable from x to y, we replace

the successive derivatives by (4) directly, or by the general

forms, and then make dry = cfy = etc. = 0.

To transform a differential expression formed on the hypoth-

esis that either a; or y is equicrescent into its equivalent in terms

of a new equicrescent variable 9, we first replace the successive

derivatives by their general forms when neither x nor y is equi-

crescent, and then substitute for x, y, dy, dx, d^y, d\ etc., their

values in terms of 6.

Examples. 1. Change the equicrescent variable from xio y

in the expression y— +—+1 = 0.
dx^ dxr

-r, T • d"y 1 dyd^x , dyd^x , dy^ , -, ^Replacing -^ by - -^~-, we have - y^^ +-^- + 1 = 0,
dxr dor aor dx-

or, dividing by dif and multiplying by da^,

d^x _ dx^ _ ^^ _
dy^ dy^ dy

in which the position of dy indicates that y is the equicrescent

variable.

2. Change the equicrescent variable from x to z in the equa-

d^v 1
tion x*-^ + a^y = 0, having given x = --

dx^ z

Replacing ^„ by ^^^^ - ^J/^'^ ^e have, after substituting
^ ^ dx? ^ daf '

'

J dz ^ ,o 2 dz^ dhi
, 2dy , « ^dx= and d^x = -, —^ -\ ^- + a-y = 0.

z^ ^ dz- zdz
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3. Change the equicrescent variable from a; to ^ in the equa-

tion —

^

-\ ^ + ?/ = 0, having given x^ = 4t.
dor X dx

From x^ = 4it, dx =—-_, d^^ = :• Hence, replacing

d^v' ^^
•

^ ^^^ d'v dv—^ by the general form as in Ex. 2, we find t^ -i- -^ + w = 0.
dx" ^ ^

'

de dt ^

4. Change the equicrescent variable from a; to ^ in

d?y X dy
^

^ =0
dx^ 1 — x^dx 1 — X-

having given x = sin 6.

dx = cos 6d9, d^x = — sin 6d6^, 1 — a;- = 1 — sin^ $ = cos^^.

Hence

dxd^y — dyd^x _ x dy y _ cos 6d$d^y 4- sin 6d£^dy

dx? 1 — XT dx 1 — a^ cos'^ dd6^

sin 9 dy
, y ^ d^y

, ^^— = 0, or —^ + « = 0.
cos^'e cos Odd cos''

6

dO' ^

5. Change the equicrescent variable from x to 6 in the ex-

pression —<—^^ , having given x = a cos 6, y — h sin 6.

d^
^^^ (a^sin^O + b^cos^O)'^

ah

C. If (a^ — xr)— 2=0, show that x'—- — 2 = 0,
dxr X dx dy-

having given x- + 2/^ = a".

We have from x- + y^ = a-, cZa; = — •"
cZy, (Z^a; = — -——•

X ar

Replacing— by
^^^^ ~ ^^^^^'^

, substituting the above values
dxr dx'

of dx and cZ^a;, and for a-—x^ its equal ?/-, the given expression

becomes a; z = 0.
cZ/
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7. Change the equicrescent variable from « to ^ in the ex-

pression

dry

dx-

having given y = r sin 0, x = r cos 6.

dy = sin 6dr + r cos 6d6, dx = cos Odr — r sin 9d6.

(Jpy = sin 6drr + 2 cos OdBdr — r sin OdO-.

d-x = cos ^d-)- — 2 sin ^cZ^cZr — r cos 6d^l

Substituting these values, we find

d-t/da; — d-a;cZ?/ d'yda; — d^xdy « fZ^'^ _ .
d^r

APPLICATIONS OP SUCCESSIVE DIFFERENTIATION.

Accelerations.

dh
59. Acceleration. Signification of — • Velocity has been

defined (Art. 6) as the rate of change of the distance passed

over by a moving point ; hence if s be the distance and v the

velocity,
ds

'' = dt'

The rate of change of v is called the acceleration.

Now the rate of change of v is

fds\

dv \ dt J d^s

dt dt df '

fjpg
hence — measures the acceleration of the point in its path.

df
Being the rate of v, the acceleration is the amount by tchich the
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velocity woxdd change in a unit of time were the velocity-rate to

become constant at the instant considered. Thus, if at any in-

stant the acceleration is said to be 5, it is meant that at that

instant the velocity is changing at the rate of (5 feet per sec-

end) per second, or (5 miles per hour) per hour, according as

the second or hour is the unit of time, and the foot or mile the

unit of distance.

Cor. 1. If -y = -TT is constant, -tto = 0, or in uniform mo-
dt dt-

tion there is no acceleration.

doe dn
CoR. 2. Since — , -j-, are the velocities in the directions of ^

d?x d^y
the axes, -^, -~, are the corresponding accelerations.

60. Signs of the axial accelerations.

— may be plus or minus, and the sign is interpreted as fol-

lows : When plus, the velocity — is accelerated in the positive

dx
direction of X. Thus, suppose — is negative, or the point

^^
d-x

moving in the negative direction of X; then if —^ is positive,

the velocity is being accelerated in the direction -|- X, that is,

it is algebraically increasing, although numerically diminish-

ing, till the motion is reversed, after which it increases numeri-

cally. In other words, the ± signs of the accelerations —-,

j^, must be interpreted as an algebraic increase or decrease of

the corresponding velocity whether the latter be positive or

negative.

Examples. 1. A point moves in the arc of the parabola

y^= 2px with a constant velocity m. Find the accelerations

in the directions of the axis.

From the equation of the path we have

dy^2ldx^
^-j^^

dt y dt'
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and, by condition,

dy
Substituting in this the value of -~ from (1), we have

which in (1) gives

V^
j)^^ .

dx _ my
"

,f,,

fdt'
•''

di ~ V^^+7'

dy _ mp
dt Vj^Tp

(3)

Differentiating (2) and (3), and dividing by dt to obtain

their rates, we have

cPx _ mp'' dy _ m^p^

dry _ _ mpy dy _ m^p^y

df-~ {y^^p2)^dt~ {y'-\-py

d-x .

Since — is always positive, the velocity along X is always

• d^v
increasing algebraically. —^ is negative in the first angle and

positive in the fourth, hence the velocity along Y is decreasing

algebraically in the first angle and increasing algebraically in

the fourth. These remarks are true when the point describes

the arc of the parabola in either direction.

d^X Wi^ d'V TTV^At y = p, —;,=-;—, —^= —— , or at the extremity of the
dr Ap dr 4p

focal ordinate the velocities are changing at the same rate.

2. A point moves in the arc of a circle, its horizontal veloc-

ity being 9. Find the accelerations in the path and along Y
at the point x = 3, the radius of the circle being 5. From

ar2_L 7/2— 7?2 dy__xdx__9x__ dx
dt y dt y ^E^-x"
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since by condition — = 9. Differentiating and dividing by dt,

^ = t^'y ^ 81 J?^ ^ 81 R' ,

df ' df 'f (72^-0^)1'
^^

or the acceleration along X is zero, as it should be since the

motion in this direction is uniform, and that along Y is de-

creasing or increasing algebraically as y is positive or negative.

To find the acceleration in the path, we have

dt \[(ltj [dtj \ y'^dt y'

whence
d^s ^ _9Rdy ^SlRx^ _S1R^^
dt- y- dt f (i2-'_a^)i

Making a; = 3, i2 = 5, in (1) and (2),

^ = -31.+ ^=19.+
dt^ df

3. A point moves in the arc of a parabola, the velocity in

(ilT ft S
the direction of Y being constant. Find — , and —

dt dt^

dy dx my ds m /-o—,—a d-s m^y
-s. = rn, — = —^, — = — Vi? -hy , —5 = '

dt dt p dt p dv p^p^^y^

The Development of Continuous Functions.

61. Limit of a variable. The limit of a variable is that value

which it constantly ap])roaches hut never reaches.

Thus, the limit of a; = 1 + | + ^-f i-H is 2.

The statement that 2 is the limit of x implies a particular law of in-

crease. If X increases by the successive additions of |^ to 1, 2 is not the

limit of x= 1 + J + J + •••, for by the law of its increase x can be made to

exceed 2 in value. But x=\-\-^-\-\-\-\-\---- can never become equal to

2, since by the law of its change each increment is but half the difference

between 2 and the value of x at any instant. So if a circle be circum-

scribed about a regular polygon, its area is not the limit of the area of the
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polygon if the polygon changes by the motion of its vertices along the pro-

duced radii ; for in that case the area of the polygon may become greater

than that of the circle. But if the number of sides of an inscribed polygon

be indefinitely increased, its vertices remaining in the circle, the area of

the circle is the limit of that of the polygon, since no inscribed polygon,'

however many its sides, can coincide with the circle.
I

It is evident that if we conceive the law of change of a vari-

able to continue indefinitely in operation, the variable may be

made to approach as nearly as we please to its limit. Hence

the difference between a variable and its limit is itself a variable

whose limit is zero.

62. The term limit is also applied to a magnitude of varying

position as well as to one of varying value. Thus, OT, the

tangent to MN at 0, is said to be the limit

of the secant OP, since the secant, having at

least two points in common with the curve

by definition, can never coincide with the

tangent ; or, more properly, 6 is the limit of

^ as P approaches 0. Observe that, as in

the previous illustrations, if P approaches

without condition, $ is not the limit of ^;
but if we affix the condition ' OP remaining

a secant,' then 6 is the limit of <^, P being made to approach

as near as we please to but not coinciding with it.

63. The term limit is frequently used with another meaning

which must be carefully distinguished from that above ex-

plained. Thus ± R are said to be the limiting values of x

and y in the equation a;- + y^ = Pr. To distinguish such limit-

ing values of a variable from one which the variable approaches

but never reaches, the latter is often written x = 2, ^ = 6,

which in the illustrations of Arts. 61 and 62 are read ' x ap-

proaches 2 as a limit,' as the number of terms of the series

increases indefinitely, '^ approaches ^ as a limit,' as P ap-

proaches (Fig. 10).
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64. It is evident from the definition that a quantity cannot

approach two limits simultaneously. Thus, if 2 is the limit of

a; = l+:^ + ^-j , X can be made to approach 2 in value as

near as we please, and therefore no value less than 2 can be its

limit; nor can any value greater than 2 be its limit, since it

can never equal 2 and therefore cannot be made to approach

any value greater than 2 as near as we please.

65. Continuous functions. A function of a variable is con-

tinuous between certain values of the variable when it has a

finite value for every intermediate value of the variable and

changes gradually as the variable so changes from one value to

the other.

Thus, in y = mx + 6, y is a continuous function of x for all

values of x ; in iC-y^ + h-'j? = arb^, y is continuous between

x = ±a; in aV — ^^^ = — <*"^^ V is discontinuous between

X = ± a, and continuous for values of aj > a numerically ; in

xy = m, y is discontinuous for x = 0. And, in general, if ?/ is a

continuous function for all values of x, y—f{x) represents a

curve of unbroken extent. _^

m 66. Series. A succession qj terms ivhicfi follow each other

iticcording to some law is called a series. When known, the law

enables us to determine any term of the series.

A series is finite or infinite as the number of its terms is

limited or unlimited.

67. The sum of a finite series is the sum of its terms.

The sum of an infinite series is that finite limit whose value the

sum of its terms continually approaches as the number of terms

increases. If there be no such finite value, the series is diver-

gent ; if such a value exists, the series is convergent.

68. To develop a function is to find a series whose sum is

equal to the function. The development of a function is there-

fore a finite or an infinite converging series ; in the former case
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the function being the sum of the terms, and in the latter the

limit of the sura of the terms.

When the series is converging, the difference between the

function and the sum of the first n + 1 terms of the series is

called the remainder after n + 1 terms, and the limit of this

remainder as n increases must evidently be zero.

Illustrations. A function may be developed by involution when its

exponent is a positive integer. Thus (1 + x)^= 1 + 3 a; + 3 x^ + «^, a finite

series, whose sum is equal to the fimction, and which is therefore its

development.

A function may be developed by division if the indicated division can
X*—

1

be completed. Thus, = x' + x+ 1, a finite series. When the divisor
X—

1

is not exactly contained in the dividend, division leads to an infinite series,

as =l + x4-x2-fx^H— , and the process also furnishes the remain-
1—

X

der after n + 1 terms. Since this remainder, when added to the tenns

already found, must equal the function, it must decrease as n increases,

and its examination will discover whether the series is or is not converg-

ing, that is, whether it is or is not the developaient of the function. Thus,

in the above case, the remainder after n + 1 terms is -— , which decreases
1-x

as n increases, only when x < 1. Hence if x< 1, the series is converging,

and we may virrite = 1+ x + x^+x^-l- •••, understanding that the
1—

X

second number approximates more closely in value to the first as the series

is extended; while if x > 1, the series is diverging, and cannot be equal to

the function, or is not its development.

Other processes of deriving a series from a function do not afford the

remainder, and tlnis do not indicate whether the series diverges or con-

verges. Thus evolution, or the extraction of the root of a polynomial,

fiu-nishes in general an infinite series, but no remainder.

No imiversal criterion for determining whether a given series is converg-

ing or diverging has been found.

69. Maclaurin's theorem. The object of Maclaunn's theorem

is the development of a function of a single variable into a series

arranged according to the ascending powers of the variable with

finite and constant coefficients.

The proposed development will be of the form

f(x) =A + Bx + Cx' + X>.^-' + Ex*+--; ( 1

)
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in which A, B, C, etc., are finite and independent of x. It is

required to find such values for A, B, C, etc., as will satisfy (1)

for all values of x, that is, render the series either finite, or, if

infinite, then converging.

Since (1) is to be true for all values of x, it must be true for

ic = ; whence A =f(x) when a; = 0, or the first term of the

series is what the function becomes when x = 0. Differentiat-

ing (1), the successive derivatives are

/' (a;)=B + 2Cx-\-3 Dx" + 4 Ex- -f • • -,

/" (X-) = 2 C + 2 . 3 Z).« + 3 • 4 ^^2 + ...,

/'"(a;) = 2 . 3 i) + 2 . 3 • 4 ^o; + • • •,

etc.,

which, being true for all values of x, are true for a; = 0. Hence

representing by /(()),/' (0),/"(0), etc., what/(a;),/'(a)),/"(a;),

etc., become when x—0, we have

i^=/'(0),

2C=/"(0), .-. = -^"^^^

2-3Z)=/"'(0), .-. D =

etc.,

and substituting these values in (1),

f{x) =/(0) +/'(0)a: +/"(0) | +/"'(0) t + ..., (2)

and the theorem may be thus stated

:

The first term of the series is lohat the function becomes when

a; = ; the second term is what the first derivative of the function

becomes when a; = 0, into x; the third term is what the second

derivative of the function becomes ivhen x = 0, into x' divided by

factorial 2; and, in general, the {n + \)th term is what the nth

derivative of the function becomes when aj = 0, into aj" divided by

factorial n.
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If the resulting series is finite, it is equal to the function,

the two members of (2) are identical, and the development is

effected. If the resulting series is infinite, it is necessary to

determine whether it is convergent.

70. Taylor's theorem. The object of Taylor's theorem is the

development of afauction of the algebraic sum of two variables

into a series arranged according to the ascending powers of one of

the variables, with finite coefficients depending upon the other and

the constants which enter the function.

The proposed development will be of the form

f{x + y) = P+ Qy + Rf + Sf + :., (1)

in which P, Q, R, etc., are functions of x, and independent of y.

It is required to find such values of P, Q, R, etc., as will satisfy

(1) for all values of x and y, that is, render the series finite,

or, if infinite, then converging.

Since (1) is to be true for all values of x and y, it must be

true when y=0; in which case P=f{x), or the first term of

the series is what the function becomes when 2/ = 0.

Let a be any value of x, and P', Q', R', etc., the correspond-

ing values of the coefficients, which are functions of x. Then

(1) is true for x = a, and we have

/(a + y) = P' + Q'y + R'-f + S'f + • • •, (2)

whose successive derivatives are

/' (a + 2/) = Q' + 2P'.v + 3.Sy...,

f'{a + y)=2R' + 2-'SS'y:.,

/'"(a + 2/). = 2. 3^'...,

etc.

Since these equations must be true for all values of y, they

are true for y = 0. Hence

f"(a) f"'(a)
p'=f{a), Q'=f\a), i^' = •^^ ^' = -^' ^*^-
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Substituting these values of P', Q', R', etc., in (2),

/(a + y) =f{a) +f>(a)y+f"{a) t +/"'(a) | ••.,

in which the coefficients are what f{x), f'{x), f"{x), etc., be-

come when x = a. But a is any arbitrary value ; hence, what-

ever the value of x,

f{x + y)=f(x)+f'{x)y+f"{x)y^ + f"'{x)t...^

and the theorem may be thus stated

:

The first term of the series is what the function becomes when

y=Q', the second term is the first derivative of the function when

2/ = 0, into y ; the third term is the second derivative of the func-

tion ichen 2/ = 0, into y^ divided by factorial 2 ; and, in general,

the (n-}-l)th term is the nth derivative of the function when

y = 0, into t/" divided by factorial n.

As before, if the series thus obtained is infinite, it is neces-

sary to determine whether it is convergent.

71i Completion of Taylor's and Maclanrin's Formolae.

Since the use of infinite eeriea as the equivalents of the functions is inadmissible

unless the series are converging, it is necessary to determine the remainder after m +

1

terms in the preceding formula;, and to examine this remainder in any particular case to

see if its limit is zero as n increases.

I. Iff{.x) becomes zero when x=a and x = h, and is continuous between these val-

ues, and iff'{x) is also continuous between these values, then f'{x) will be zero for

some value ofx between a and b.

For, since /{x) = for x= a and x =b, as x changes from a to b, /(a;) must either

first increase and then decrease, or first decrease and then increase. But the iirst deriva-

tive is positive when the function is increasing and negative wlien it is decreasing (Art.

22), and therefore in either case it changes sign between the values x=a and x=b; and

being continuous, it cannot become infinite, and therefore must pass through zero.

II. First form of the remainder.

Resuming Taylor's formula,

a)Ax + y)=Ax)+f(.x)y+f(x)y^+J-(x)'^...+f'>(x)'^+":

Writing x + y= X, whence y= X -x, and representing by B the remainder after

n + 1 terms, we have

(2) /(X) =/(«) +f(x)(X-x) +f(x)
^^~^^'

+/"W
^^~^^'-
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(A' — a;)"+^
Writing the remainder in the form P-^^. ^— » P being a function of X and x ti

be determined, substituting this value of R, and transposing,.we obtain

(3) AX) -f{x) -f(x)iX-x) -fix)H^' _/'(«) ^^§^'-

•' ^ ^ \_n \n + l

Representing by F{z) the function of z which (3) becomes by substituting z for x,

(X—z)^ (X—z)3
(4) Fiz)=/{X) -/(«) -f{z){X-z) -/"(g) ^ |/ -/"'(g) ^ ^ •••

I
»

I
w + 1

If 2= a: in (4), it becomes identical with (3) and therefore = 0. It also becomes zero

if z= X, for every term then contains a zero factor. Therefore, by I., its derivative

F'(,z) must be zero for some value of z between x and A'. If S be a proper fraction,

z= x-i- 9(X — x) will represent such iutermcdiate value.

Differentiating (4) to obtain F'{z), we have

F\z) = 0-f{z)+f(,z)-f(z)(X~z)+f{z)iX-z)

-f(Z)'-^+f(z)'—^-.:+riZ)'-^^-^

!_n (_M

whose terms vanish in pairs, except the last two, giving

^,.,._,«,„«^.,<^.

Substituting the value z = x + d(_X—x) for which F' (z) is zero, we have, after can-

(X—z)^
celline the common factor ,

[n-

or -f'^+^lx + e{X-x)] + P=0,

y p=/n+i[x + e(A'-a;)],

in which all we know of is that its value lies between and 1.

Hence the remainder after n + 1 terms is

I
« +1*/ Ji-P

^'^;f

r'
=/"+^[^ + KX-X)^ (^^Z|)^1'^/n+l(^ + gy)^j^

(5) fix + y)=fix)+fix)y +fix) y^... +/»(a;) ?J+/»+i(a;+9y)^.
and, substituting in (1), the completed form of Taylor's theorem ia

Making a; = 0, and changing y to x,

(6) /(a;) =/(0)+/(0)a; +/"(0) ^' ... +/»(0)g +/»+l(to)j^.
the completed form of Maclaurin's theorem.

"We thus have in both cases the remainder after n + \ terms, which is found by dif.
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ferentiating the function »t + 1 times and changing a; to a; + 9y, or to 0x, in the (n + l)th

derivative, and multiplying this result by "^
j, or by ,

—--^- If this remainder is

zero, the series is finite ,• if its limit is zero as n increases, the series is convergent:

if it is neither zero nor lias zerofor a limit, theformulas fail.

III. Secondform of the remainder.

Writing the remainder in the form It = I\(X- x), (3) would become

(7) /(A-) ~Ax) -f{x) (-Y- x)-f '{x) ^-^^^' - -f'\x) ^^^^f^- A(-V- X) = 0.

Kex>reBenting by F{z) what (7) becomes by substituting z for x,

F(z)=f(X)-f(z)-f(z)(X- z)-f"{z)—^ --/"(s) ^^^^ - AC-V-s),

in which, if a= a; or «=T, jPCs) = as before ; and therefore F {z) = (iiov z= x + 6(^X—x).

Differentiating to find F'{z), the terms vanish in pairs except the last two, giving

F'(.z) = -r'+\z) ^' ^' +p„

and, substituting the value of z for which F\z) = 0,

V ..n+lr-i _ g\n
and R= Pi(X- X) =f"+^(x + Oy) ^

^ —•

Substituting in (1), a second completed form of Taylor's formula is

(8) A^ + y) =/(«) +fWy +/• C^)
|f
- +/"(^)^ +/"+'(a; + <?y)

^""*"
^(^~*^" -

Making x = and changing ^ to a;, the corresponding form of Maclaurin's formula is

(9) Ax) =/X0) +/-(0)a;+/'(0)g...+/»(0)g+/»+l(9x)
^""^

[L'"^"
'

to which forms apply the remarks made upon (5) and (6)

.

IV. If the (n + l)th derivative is finite for all values of n, Taylor's and Maclati-

rin'sformulte developf{x + y) andf{x), respectively.

The first forms of the remainder are

R=f^+\x + 9y)''~ and R = f^^^ ^ex) '^.

But when n + 1, as n increases, becomes equal to x, begins and continues to
|Tt + l

diminish, each successive value being less than the preceding one. Hence, whatever

_ n+l
the value of x, provided only it be finite, as it is by hypothesis, tends to the limit

\n + \

zero as n increases indefinitely. It follows, therefore, that if the (»t + 1) th derivative
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does not become influite with n, R approaches zero as n increases, and the serieB is

convergent.

The same is also true of the second forms of R.

V. It is evident that the sum of the first n terms of a series cannot approach a fixed

value as n increases indefinitely, unless the terras finally decrease; that is, unless the

ratio of the nth term to the one before it becomes and continues less than unity as n
increases, the series cannot be convergent.

72. Applications. Assuming that the following functions

can be developed, show that

:

1. (a + xy = aJ + 7 a^x + 21 aV -f 35aV + 35aV -\- 21aV
+ 7 aa^ -\- x' '

Making a; = 0, /(O) = a'.

Tlie successive derivatives are

:

/' (x) = 7 (a + a;)", whence /' (0) = 7 a*'

f" {x) = G-7{a + xy, " /"(0) = 6

f"'{x) = 5'6'7{a + xy, « /"'(0) = 5

/' (a;) = 4 . 5 . 6 • 7(a + xf,
" f (0) = 4

r (x) = 3.4.5.C.7(a + a;)S " ^ (0) = 3

/'^ (a;) = 2 . 3 • 4 . 5 . 6 • 7(a + a;),
" /" (0) = 2

p'"(x) = 2.3.4.5.6.7, " /'"(O) = 2

r'"Xx) = 0.

Substituting in Maclaurin's formula,

/(a.)=/(0)+/'(0)x+/"(0)^' + /"'(0)^...,

we have

(a + x)^ = a^ + 7a''a: + 6 . 7a^ ^ + 5 . 6 . 7a^^ + 4 • 5 . 6 . 7a''

(S'7a\

• ^•Q>-7a\

• 4.5.6.7a2.

.3.4.5.6.7a.

.3.4.5.6.7.

[2 [3 li

+ 3. 4.5.6. 7a2 - + 2.3. 4. 5. 6.7a-
[5 [6

+ 2.3.4.5-6.7
iZ

= a' + 7 a^x + 21 a^a;^ -j, 35 a'x^ + 35aV + 21aV
+ 7aa;'' + a;^
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Being finite, the series is the development of the function,

as will evidently be the case so long as the exponent of the

binomial is a positive integer.

rvtS /y^ rv*t

2. sm. = .-- + ---. ..

Making a; = 0, /(O) = 0.

The successive derivatives are

.

/' (cc) = cos X, whence /' (0) = 1,

/" (rr) = - sin x, " /" (0) = 0.

/'"(a;) = - cos X, « /'"(O) = - 1.

f" {x) = sin X, " f\^) = 0.

Since f"{x) is the original function, these values will recur

in sets of four, and we have

a^ , 0^ x^
since = x ..

[3 |5
\l

3 0*^ '>•'* "7*"

. cosa;=l ,
—

.

[2 li L5

Since the (n + l)th derivatives of sinx and cos a; are finite whatever the value of n,

the formula develops these functions (Art. 71, FV.), and the error may be made as small

as we please by taking a sufScient number of terms.

By means of these series we may compute the natural sine

or cosine of any arc, but few terms being necessary as the

series convel-ge rapidly. Thus, if x = — = .174533 be sub-
18

stituted for x in the series of Ex. 2, sin x = sin 10° = .173G5+.

4. a' = 1 + log a x + log^ a—\- log*a—h ••••

[2 [3

Making x = 0, /(O) = a" = 1.

The successive derivatives are

f(x) = a'loga, f"{x) = a'\og^a, f"(x)= a'log'a, etc.

;

whence

/'(O) = loga, /"(0) = log2a, /"'(O) = log«a, etc..
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which, substituted in Maclaurin's formula, give the above

series. Making a = e, whence log e = 1, it becomes

/>•- /yJ o**

|2 [3 [4 '

and if x = 1,

e = 1 + 1 +,^ + ,4 + ,4- =2.718281+
[2 [3 U

the Napierian base. These are the exponential series.

The (»i + l)th derivative of o^ is (loga)"+^a*, and hence

•^ ^
|W + 1

j

W + 1

But a"-^ is finite, and

(r log a)""^ _ a; log a a: log a a; log a

r» + l ~ i 2 '" n + 1
'

which approaches zero as Ji increases ; therefore the formula develops a'.

K /i I \m 1 , 1
wi(m — 1) o, m(m— l)(m — 2) ,

-I-

^(^-l)---(^-^ + l)
a;n

I

..

To determine for what values of x the formula develops (1 + ar)*".

The (n + l)th derivative, when 9x is written for x, is

m(,m - 1) — (TO - n) (1 + ea:)"'"''"\

which bec6mes zero if m is a positive integer when n= in. Hence the series is finite, and

is the development of (1 + x)'" when m is a positive integer. If m is negative or frac-

tional, the series >s infinite. The ratio of its nth term to the one immediately before it is

m — n + 1 /TO + 1 ,\
x = \ T-JX,

n ^ n '

whose absolute value, as n increases, will eventually become and remain greater than

unity if x is numerically greater than 1. Hence (Art. 71, V.) the series is divergent, and

cannot equal (1 + a;)"* when x is numerically greater than 1. The remainder after n + 1

terms is

b"+^ rTO(?»-l) ••• (to — 7!) „,i-| 1
R ^fn+H6x) fZL rm(TO- )-(TO-7») ^„^n

' n+1 L n + 1 J (1 + 6x)"

When X lies between and 1, the last factor becomes less than 1 as n increases. In-

creasing n by 1 multiplies the first factor by — x, or ( ~ ^x, which

approaches —a: as n increases; that is, a quantity numerically less than 1. Hence to

increase n indefinitely is to multiply by an infinite number of factors each less than 1

;

the product therefore decreases indefinitely, and the formula develops (1 + a.')" for values

of X between and 1. By means of the second form of the remainder we have
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rOT(OT-l)-(m-n) ,1-1 / l-9 \"+i (1 + to)"»

= L [n JU + ea;; 1-9 '

When X lies between and -1, the last factor is finite; (
^—^—)" approaches zero
VH- ex'

as n increases ; increasing n by 1 multiplies the first factor by ^ ~ " ~ x, which ap-
n + \

proaches — x as w increases. Hence, as before, the formula develops (1 + ar)™ for values

of X between and — 1.

Since (a + x)"* may be written in either of the forms

«'»(i.3-, x".(i.^)»

and as one of those can be developed, whatever the relative values of a and x, the

Binomial formula holds good for fractional and negative exponents. When m is a

positive integer, the series is finite, and the formula holds good for both the above forms.

°^ ^
2 3 4

Making x = 0, /(O) = log 1 = 0.

The successive derivatives are

1+x •' ^ ^ {l + xf

f"(x) = ?
, fUx) = ll^ etc.

;

whence/'(0) = l,/'(0)=-l,/"(0) = 2,/-(0) = -2.3, etc.,

and these in Maclaurin's formula give the above series.

The ratio of the nth term to the preceding one is (~^M" " ''x or — (1 — l)x, which,
n \ «/

if xis numerically greater than 1, becomes and remains greater than unity as n increases;

hence (Art. 71, V.) the series is divergent if x is numerically greater than 1. The (n + l)th

In
derivative is (—1)" '—

, and, using the first form of R,

(1 + x)''+i

•'
^ |n + l n + 1 ^\ + ex'

If X lies between and + 1, —^— is a proper fraction, and R approaches zero as n
1 + ex

increases.

If x lies between and —1, the series becomes ~x — -— ..., and the second form
2 3

of R gives, numerically,

' ^ ' [n \\-ex' i-ex
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For valneB of x between and 1, /^~ ^y is a proper fraction, and approaches zero

as n increases, while the last factor is finite. Ilence the formula develops log (1 + x)

when X lies between + 1 and —1.

7. log.(l + x) = ™(x-|+f-| +
f...);

(1)

if a = e, we have, as in Ex. 6,

/y*~ /y^ /y*'* O*^

log (l+x) = x--+--- + --, (2)^^^ 2345 ^ ^

which are the logarithmic series. As they diverge, if a; > 1,

they are not suitable for the computation of logaritlims. To

adapt them to this purpose, substitute — x for a; in (1), and

we have
/ rt*2 /yH> /}*4 ™,5 \

log,(l-.) = ™(_.-|-|-|-|...). (3)

Subtracting (3) from (1),

log„ (1+a^)- log,. (l-rr) = 2m |a; + | + | + y + •••}•

Let X = : then x is less than 1 for all positive values
22 + 1' '

of z, and

log„ (1 + a) - log„ (1 - x) = log„-±^ = log„^-±-
1 — X z

= log„(2; + l)-log„2;

= 2m\-^A ^ + ^ I, (4)

or, if a = e, whence m = 1,

logCz+l) -log2 = 2 j -^— -\ ^ H ^ \ .

''^
^ '' (22+1 3(22+1)3^5(22+1)^ j

From this series, which converges rapidly, we may compute

the Naperian logarithms of numbers. Thus, if 2 = 1, log 1=0,

and we have

log2 = 2|- +-^ +-^+^-,+ "- !- =.693147+,^
(3 3-3=' 5-3^ 7-3^ i

'

when six terms are taken.
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Making z = 2,

log3=log2+2|l+^+Jj, + ^+...}=1.0986m.

log 4=2 log 2 = 1.386294+.

Making x = 4,

log5=log4+2{--f^+-^+-^,+ ---| = 1.6094379+.

In like manner, the Naperian logarithms of all numbers may
be computed.

Cor. 1. The Naperian logarithtn of the base of the common
system is

^^^ ^^ = log 5 + log 2 = 2.302585+.

Cob. 2. From (4), b being the base of the system, and m'

the corresponding modulus,

^*
z 12^ + 1 3(2;z + l)^ i ^

^

Since (4) and (5) are true for all positive values of z, writ-

ing X for , we have
z

log^x m
(6)

logj X m'

or the logarithms of the same number in different systems are

proportional to the moduli of the systems.

CoR. 3. If in (6) b = e, then m' = 1, and

log„ ic = m log X. (7)

Having then computed, as above, a table of Naperian loga-

rithms, the logarithms in any system may be found by multiply-

ing their Naperian logarithms by the modidus of the system.

Con. 4. Since log„ a = 1, if a; = a in (7),

1m=
,

loga
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or the mochihis of any system is the reciprocal of the Naperian

logarithm of its base ; which is the relation between the mod-

ulus of a system and its base referred to in Art. 28.

CoR. 5. In the common system a = 10, hence

1 1m — = .434294+,
log 10 2.302585

the modulus of the common system.

rjM'i nfl^ rv**

8. tan~^a; = rc 1 .

3 5 7

Making a? = 0, /(O) = 0.

The first derivative is = 1— ic^ -f a;'' — «'"' + a/* — oj"" • • •

by division ; hence the successive derivatives are

/' {x) = l-x' + x^- x" + x^- a;'" ••.,

/" (a;) = - 2x' + 4 ar^ - Ga:* + 8a;' - 10a;»...,

/'"(a;) = - 2 + 3 • 4a^ - 5 • 6a;^ + 7 . 8a* - 9 • lOa^ ...,

/' (a;) = 2 .
3 .4a; - 4 .

5
. Gar* -f G .

7
. 8ar' - 8 .

9
• 10a;' ...,

/' (a;) = 2.3-4-3.4.5-Ga;^ + -.-,

from which

/'(0)=1, /"'(0) = -2, /^(0) = 2.3.4,

/"(0) = 0, /'^(0) = 0, etc.,

and these in Maclauriu's formula give the series above.

Since a series whose terms are alternately plus and minus

converges if each term is numerically less than the preceding,

the series converges for x =1, whence tan~'l= 45° = -, and we

have

whence the value of tt.

9. sin (x -\-y) = sin x cos y -f- cos x sin y.

This being a function of the sum of two variables, we use

Taylor's formula.
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Making y = 0, f(x) = sin x, whose successive derivatives are

f{x) = cosx, f"(x) = — sinx, f"'{x) = — cosx, /'''(a.')= sina;,

and so on in sets of four. Hence, substituting in Taylor's

formula,

.... . V^ tf . V* ff
^vi\{x-\-y)= sin 0;+ cos x-y—sm a;-^ — cos x'^ + sm a;"^ +cos x.-p • • •

=sin^|l-|' + g-...|+eos.{,,y-| + |-...|

= sin cc cos ?/ 4- cos a; sin ?/ (Exs. 2 and 3).

10. cos (x +y) = cos a; cos ?/ — sin a; sin y.

11. sin [x — y) = sin x cos y — cos x sin y.

12. cos (x — y) = cos x cos y + sin x sin y.

13. Deduce the Binomial formula by Taylor's theorem from

(a; + ?/)•».

Making y = 0, fix) = a;"*, whose successive derivatives are

/' (a;) = mx'"""', f"(x) = m {m — V) x'^~-, etc.,

hence (a; + ?/)•" = a-"* + mx'^-^y + m{m — l)x'"'^'^ + etc.

Main T ^ I I »^ O 3/ , O t*/ O it/

^[2 |4 ^ |5 |6

1 2 ^
1
4

I
G J

IG. tana; = xH 1 .

3 15

17. secaj=l + - +— ••••

2 24

18. -^ = l + a^ + a;2 + ?|!-f^....
cos a; 3 2

19. a;V=x-2-|-ar^-|-- + -....

[2 [3
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20. e"'"'=l + x2 + -.
3

.v3 T ^t

21. etan-'x = i + a; +-- --—....
2 6 24

feav -r^; t,a -r 1^ 2a^ Sar* 4x*

23. a'-^^ = a=^|l + loga.2/4-log==«|' + log«a^...|.

y , ^24. sin~'(a;4- ?/) = sin~'.r H
"

f-

[3 (1-a^)'

25. (a^ - eV) J = a -— - ^'^*
^
^"^^

2a 2.4a''' 2.4.6a°

73. Failing cases of Madaurin's and Taylor's formulce.

It has been seen that the above formulae often lead to diverg-

ing series and therefore fail. The following exceptions are also

to be noted.

Since the proof that the formulae develop any function de-

pends upon the condition that the derivatives of the functions

are continuous, no one of them becoming infinite for a finite

value of the variable, if log x be the function, whose first deriv-

ative f'{x) = - becomes oo, as do all the succeeding derivatives,

when x = 0, the coefficients /'(O), /"(O), etc., of Maclaurin's

formula become infinite, the series has no determinate value,

and log X cannot be developed in powers of x. The same is

^ I

true of x", a', cosec x, cot x, etc.

Again, from (x-\-y-\-ay, we have, for y = 0, f(x) = {x + a)-,

whence f'(x) = -> which is finite for all values of x
2{x + a)

except x = — a. For this value of x, f'(x) = co, as are all tlie
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successive derivatives. Hence the coefficients f'{x), f"(x),

etc., of Taylor's formula become infinite for x = — a, and the

function (x + y-\-ay can be developed in powers of y for all

values of x except x = — a.

Evaluation of Illusoi'y Forms.

74. The form ^• It frequently happens that for a particu-

Thuslar value of the variable a function assumes the form —
Sill 3y •= - when X = 0. How is this result to be interpreted ?
X
Let X, y, be the coordinates of P, x and y being functions of

z, and let MN be the curve the coordinates of whose points are

the simultaneous values of x and y as 2

changes. Then - =
^

' Since by hypoth-

esis X and y become zero for some value of

«, the curve MN passes through the origin.

Let a be the value of z which renders' x and

y zero. Then as z approaches a, x and y
approach zero, and P approaches 0, so that

y
the value of - when z = a is the limit of

X

tan
<f>, (f>

being the angle which the secant makes with X. But

the limit of tan </> as P approaches is tau^, OT being the

tangent at ; hence

tan^ = ^^"

Fig. II.

~1 =Xjs=a

Therefore, to find the value of }: , we find that of '

,^ ,

since these are equal.

/'(«)
If TTT"^ is also

j^j
then since /'(z) and <f>'{z) may be regarded

as new lunctions of z whose ratio is - when z = a,
'
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• <^'(a)-</."(a)'

and so on indefinitely. Hence

To evaluate a function which assumes the form - for a par-

ticular value of the variable^ form the successive derivatives of its

numerator and denominator and substitute in them the particular

value of the variable, continuing the process till a jiair is found

whose ratio does not become -•

Examples. Find the value of

:

-, sin a; , ,^
1. when cc = 0.

X

1.
f{x) _cosa;

1 — cos X , rtwhen x — Q.

f'(x) _ sin x'

<l>'{x)
~ 2x

_ ^
. /"(*) _ cos x'

o~0' <i>"{x)
~ 2

6* —^ 6~*
3. when a; = 0. Ans. 2.

log(H-x)

/7* fi"^ ft

4. when a; = 0. Ans. log--
X b

5. when x = l. Ans. -•

X" — 1 ri

6. -^— —^^^^ when x = 3. Ans. ^.
x^ — X- — ox — 3

The successive differentiations will be facilitated by evalu-

ating a factor in any result when possible. Thus

:
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7.
X — sill ' X

sin^a;
when cc = 0.

fix') V1-X--1 _ Vl-x=^-l

'^\^) 3 sin^ it- cos a; Vl - »- cosa;Vl-a^ Ssiir'a;

the first factor of which becomes 1 when cc = 0. Proceedmg

fUx\ 1 X
with the second factor, •

„ ) [
= -, the

6 cos x* Vl — V? sin a;

first factor becoming — \ when a; = 0. From Ex. 1 the value

of the second factor when a; = is 1. Hence

X — sin~' X

sin^ X

"""^
--^ when x=\.

9.
ar^-3a; + 2

x^-Ca^' + Saj-S
when x=-\.

Ans. 0.

^ns, 00.

10. I :— when x —

11.

log sin X

Vajtana)

(e^-1)^

when a; = 0.

Ans. a log a.

Ans. 1.

Write in the form ^ ^ — and evaluate the
\e^ — 1 X e' — l

factors separately.

^ o tan X — sin x , a
12. when x = 0.

13.

af*

tan a; — a;

X — sin x
when a; = 0.

Ans.

Ans. 2.

14.
e' — e~

{e'-iy
when a; = 0. Ans.
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75. The form — When f{x) and <j){x) both increase indefi-

nitely as X approaches a, then • ^^- = —

.

<l>{x) x=a CO

1

/(^•)J

<i>{x)

= ^- Hence the form — can be reduced to
00

the form - and treated as already explained. Thus

sec 3 a;

_ 00 -r> i. sec X _ cos X

\ 00 sec 3 a; 1

cos 3 a;

Hence, by the process already established,

cos 3 a:"!

J;cos a;

f{x) ^ -3 sin 3a;'

</)'(a;) —sin a;

= -3.

This transformation, however, will not always be successful

unless the terms become infinite because of a denominator in

each which becomes zero. Thus, in the above example, sec a;

becomes infinity, because it may be written whose denom-
cosa:

ioator becomes zero.

II. Since Z(4 =^
/(^)J

process of Art. 74, we have, when x = a,

<l>'{x)

= -, if we treat the latter by the^

or

<t>ix) L<^(a;)J

'^'{^)

/'(^)

f(x) c^'(a;)

<^(^) /'(^)

(1)

(2)
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whence -^^ ^ = -^} ( ;

cfy{x) <\>\X)

and the form — can be treated directly in the same way as

the form —

Since all the derivatives of a function which becomes oo for

0. finite value of the variable also become infinite (Art. 56), this

process would appear to lead to no result except when the

f(x) f'(x)
given value of the variable is infinite, ,,, .

, ,,,, { , etc., be-° '
cf> (x)

<i>
{xy

coming in turn — This is true, but
,

may, by changing

f(x)
its form, be more easily evaluated than

. , , . Thus

logx

x

CO

co'

1

^

.

= m which also becomes — for ic = 0, but it may
</)'(») _1' CO

' -^

readily be put under the form = — x]o = 0.

In any case, therefore, when a function assumes the form —
for a finite value of the variable, it is necessary to transform

either the function (I.), or some one of the derived functions

(II.) so that it will not assume this form for the given value

of the variable.

f(x')
III. If the true value of \ i when x = a i& zero or infinity, equation

<p{x)

(1) is satisfied independently of equation (2), and it would therefore ap-

pear that in such cases the latter is not necessarily true. That equation

(2) holds, however, when the true value of -'S^ is zero or infinity may

be shown as follows

:
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First. Let -')' = when x — a. Then, if c be any finite quantity,
<p{x)

^-^ + c is finite, and to tiiis function tlie process of II. applies since it

holds whenever the function does not become zero or infinity. Hence

or •

,, { = when ^^^ = 0, and the process therefore gives the true

value.

Second. Let '-—-^ = qo when x = a. Tlien ~~- = 0. Hence, by the
<t>(.^) /(«)

preceding, ^^ -' = —^, or •')
( =;^^^, and the process holds m this

/(o) /(«) ^(«) <?>'(«)

case also.

Examples. Evaluate

:

^ tan cc 1 TT
1. w^nena; = --

tan 5x 2

sin a;

tana; cos a; sin a; cos 5 a;

tan 5 X sin 5 a; sin 5 x cos a;

cos 5 a;

When a; = 7TJ the first factor is 1, and the second factor be-

comes - • Evaluating the latter by Art. 74; we find

tan X
"

tan 5 a;

irX

. = 5.

2

sec"^
when x = l.

log (1 - x)

TT TTX . TTX TTX
- sec — tan— tan -r:

f'{x) 2 2 2 ^^^ 2

<b'(x) 1 irX^ ^ ' — cos—
1-x 2

1-X
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When a; = 1, the denominator becomes -> and differentiating

once we find its value to be — 1. Hence

sec ~2

log(l-a;).
= GO.

loga; when X = oc. Ans. 0, or go, as »i > or n < 0.

4. ^Qg^^"^^^whenx = 0.

log tan X
Ans. 1.

76. The form ox qo. When, for x=a,f(x)=0 and (l>(x)= <x>,

f{x) c}>{x)=Ax)^=
I,

or f{x) ^(x) = -j- <l>{x) = ^.

Hence, by introducing the reciprocal of one of the fac-

tors, the function may be reduced to one of the two forms

-, ~, as is most convenient, and treated as before.
GO

Examples. Evaluate

:

1. (1 — x) tan^ when x = l.

z

TtX \—x
(1 — ic) tan -^ =

cot—
2.

Hence, by Art. 74,

\-x -

.irX
cot —

2_

TT o TTX
-cosec-—
2 2.

2. e "(1 — logic) when a; = 0.

-Li 1 X 1— logic"! GO
e '(1 - logx) = j-^- = -.

- Jo °^
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Hence, by Art. 75,

l-loga;1 Q^

3. e* sin — when x = cc.
e'

. «

_ . a e*
e'' sm — =

e' e'
Alls. ft.

4. (a''— l)a; when a; = oo. ^>i,s. log a.

77. The form <x> — cio. When, for x = a,

/(x) = oo and <}}(x) = cc,

f(x)-^(x) = -^ ^
^{x) f(x)

1
~0'

and may be treated when thus transformed by Art. 74.

Examples. Evaluate

:

log X log x
when a; = 1.

Here /(a^) = rrrr.' '^(^) =
log a; log X

1 1 log a; 1—^ log X

Hence </'(^) /(^)^^ ^1^^
1 1 loga;_

f{x)c{y(x) X

_0

los^a;

and, by Art. 74,

1-x
logaj

-1
= -1.
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2. — ^ when x = \.

x — \ log X

Transforming, as above, we obtain

Hence

a; log eg — x-\-\

X log X — log X

X log x — x-\-\ loero;

X log X — log a;

3. sec X — tan x when x =

loga; + 1
a;ji

x + 1

This may be transformed as above ; or, more directly,

sec X — tan x = sin X 1 — sin x

cos X cos a; cos a;

Ans. 0.

when a; = 1.
a^-1 x-\

This may be transformed as above ; or, reducing to a common
denominator,

2 1 2a;-a^-l
or^-l 1 a:;^ — a.-^ — a; + l

^ 2-2a; 1

1 3ar-2a;-lJ,

-2
6a; -2

5. a; tan a; — - sec a; when a; = -
2 2

^7lS. — 1.

78. The forms qc°, l", 0°. The logarithm of a power may
assume an illusory form under the following circumstances.

Let 2* be the function. Passing to logarithms,

log 2^=2/ log 2,

which becomes x oo when i^""^'^., ~' ** ~ „

(y = 0and2 = co, .-. 2"= co
,

and which becomes oo x when y = oo and z = \, .". z" = 1°°.

The logarithms of such functions may therefore be evaluated
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as in Art. 76, and thus the values of the functions themselves

are readily obtained.

The functions 0* and oo°° do not give rise to illusory forms,

as may be seen by passing to logarithms, the logarithms in

both cases being infinity.

Examples. Evaluate

:

1. (-4-11 when x=cc .M
Putting v=(--\-l], logv = a;logf-+l

a X

ccra-\-x ax
~ a + x1 1'

•. v = e"

log^l
1

x

2. M -f -2 j
= V, when x=yo . Ans. log i; = 0, .'. v = e^= 1.

3. (sin a;)**"' when a; = -

4. af when a; = 0.

-u = af • log v=-x log X

Hence v = 1.

loga^

X

Ans. 1.

—
1 = -a^]o=0.

5. x^'" when x=i

, log a;"
log v = 1-x = -1,

G. (sin x)"^'' when x = 0.

7. (cot a:)*''"' when x = 0.

(cotx)«'"^=-(-^5^-^
^ ^ (sina;)'""'=_

= -^„,or(Ex.6),l.

A71S. 1.
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8. (sin a;)'""* when a; = 0. Ans. 1.

1

9. (i + ax)' when a; = 0. Ans. e".

10. a.'^-i when a; = 0. Ans.ins. 1. I

Maxima and Minima Values of a Function of a Single Variable.

79. The value of a function is said to be a maximum when it

is greater than its immediately preceding and succeeding values,

and a minimum tvhen it is less than its immediately preceding

and succeeding values.

By greater and less values are meant

algebraic values. Thus, if MN be the

locus of y=f(x), and mn is greater

than the immediately preceding and

succeeding ordinates, mn is a maxi-

mum value of y. Similarly pq is a

minimum value of y. It is evident

that for increasing values of x, y diminishes after passing

through a maximum value, and cannot therefore have a second

maximum value without first passing through a minimum

;

or maxima and minima values occur alternately. From the

definition it is also evident that a maximum value is not

the greatest possible value, nor a minimum the least possible

value, of a function.

80. Condition of a maximum or minimum value.

For increasing values of x,f(x) is increasing before, and de-

creasing after, a maximum value. Hence (Art. 22), f'(x) is

positive before, and negative after, a maximum value of f{x) ;

or the first derivative of the function changes sign from plus

to minus as the function passes through a maximum value.

Similarly, a function decreases as it approaches a minimum
value and increases after such value ; or the first derivative

changes sign from minus to plus as the function passes through

a minimum value.
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Since in either case the first derivative changes sign, it must

pass through zero or infinity. Hence, every value of x ivhich

renders f{x) a maximum or a minimum is a root of f'{x) =0,
or off (x) =Go.

It is to be observed that the essential characteristic of a

maximum or minimum value of the function is c. change of sign

of its first denvative. Now Ci quantity may become zero or

infinity without changinrj sign 5 hence the roots of /'(a;)=0

and f'{x) = 00 are called critical values, and must be separately

examined ; only those for which f'{x) changes sign can corre-

spond to maxima or minima values of the function.

Fig. 13,

81. Geometric illustrations. Since y=f{x) is the equation

of some locus, and f'{x) is the slope of the locus at any point,

the foregoing remarks admit of the following illustration

:

In Fig. 13, Pm being a maximum
value of y, for increasing values of x

the angle made by the tangent with

X is acute before, and becomes obtuse

after, the maximum value ; hence the

tangent of this angle, which is /' (x)
,

is positive before and negative after

this value. At P the tangent is par-

allel to X, and its slope is therefore

zero.

In Fig. 14, Pm being a minimum
value of y, the angle made by the tan-

gent withX is obtuse before and acute

after the minimum value of y, the slope

changing from minus to plus, and pass-

ing through zero as before.

In Fig. 15, although the tangent at

P is parallel to X and therefore /' (x)

is then zero, the angle is obtuse both

before and after the value x = Om and

does not change sign ; hence Pm is

Fig. 14.

r
<^ Fig. 15.

X.P\
\

V-s >^<-^

t> n \ -
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neither a maximum nor a minimum value

of y.

The change of sign of f'{x) from + to

— , and from — to +, in passing through

infinity is shown in Fig. 16, the tangent at

P being perpendicular to X and its slope

infinity.

82. Examination of the critical values when /'(a?) = 0.

Since /'(x) changes sign from + to — as /(a;) passes through

a maximum value, it is a decreasing function, and its first deriv-

ative /"(a;) must be negative (Art. 22).

Also, since f'{x) changes sign from — to + as f(x) passes

through a minimum value, it is an increasing function, and its

first derivative /"(a;) must be positive.

Hence, to examine f(x) for maxima or minima values, observe

whether f" {x) is negative or positive for critical values of x, that

is, for values derived from the equation /'(a;) = 0.

As the second derivative may become zero for a critical

value of X, the above test may fail. To provide for such case

we have the following more general rule.

83. Let y =f(x), and y^ =f(xi) in which x^ is the value of

X which renders y = y^=.a. maximum or a minimum.
Let y'=f(Xi — h) and y" =f(xi + h) be the values immedi-

ately preceding and succeeding the maximum or minimum
value 2/1, Xi — h and x^ + h being the corresponding values of x.

Developing y' and y" by Taylor's formula, we have

y' =f{x, - h)=f{x,) - f\x,)h + fix,) 'I
If

y" =f{x^ + h) =f{x,) + f\x,)h + f"(x,)

+f"'ix^)^+f"(^i)~
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But f(x) I
= 2/1, and since Xi corresponds to a maximum or a

minimum, /'(a;i) =0. Hence, transposing,

2/' -2/i=/"(^i)|-/"'(^i)|'+/^(a:i)^'-, (1)

y - y, =/"(a^i)| +r{x,) 1 4-/n^i)
I
-. (2)

Now the signs of the second members of (1) and (2) will be

those of their first terms, that is of /"(a^i), if h be taken suffi-

ciently small ; and since h approaches zero as the function

approaches its maximum or minimum, we are at liberty to

make h as small as we please. Hence if /"(cKj) is positive, the

first members are positive, and both ?/' and y" greater than y-^,

which is therefore a minimum; while if/"(.Ti) is negative, the

first members are negative, both y' and ?/" are less than y^, and

2/1 is a maximum. This accords with what has already been

said.

If /"(a^i) is zero, then

y"-y,= /'"(a;0^+/^(a;Og-,

in which, whatever the sign of /'"(Xj), the first members will

have opposite signs, and y' and y" cannot both be greater than

2/1, nor both less. Hence neither a maximum nor a minimum
can exist unless f"'{Xi) = 0, If this condition be fulfilled, there

will be a maximum or a minimum according as /'"'(it'i) is nega-

tive or positive. We have therefore the following rule

:

To determine whether a function has maxima or minima val-

iies, form its first derivative and place it eqiial to zero. Tlie roots

of this equation contain the values of the variable which correspond

to either maocima or minima values of the function. Find the first

derivative which does not become zero for one of these critical val-

ues of the variable. If this derivative is of an odd order, there is



APPLICATIONS OF SUCCESSIVE DIFFERENTIATION. 95

neither a maximum nor a minimum; if of an even order, the

function is a maximum or a minimum according as the derivative

is negative or positive.

Each critical value must of course be examined in turn.

Illustration. Examine o(^ — 5x* + 5x' + l for maxima and

minima values.

f\x) =5x*-20a^ + 15x' = 5a^(a^-4:X + 3) = 0.

The roots of this equation are a; = 0, a^ = 1, x = 3.

f"{x) = 20 ar^ - GO a^ + 30 a; = 10 a; (2 .r-' - G a; + 3).

Substituting x =3, f" (x) = -\- 90 ; hence x — 3 renders the

function a minimum, and substituting this value of x in the

function we find f{x) = — 2G, the minimum.

Substituting a; = 1, f"{x) = — 10 ; hence a; = 1 renders the

function a maximum, which we find to be 2.

As f"(x) = for a;= 0, we form f"'(x) =GOx^- 120 a.' + 30,

which does not vanish for a; = and is of an odd order. Hence

a; = corresj)onds to neither a maximimi nor a minimum.

84. Abbreviated processes.

I. Since the essential characteristic of a maximum or mini-

mum value of a function is a change in the sign of its first de-

rivative, it will be sufficient, when possible, to observe whether

for a critical value of the variable such change actually takes

place. Thus, from {x — a)* + b, f'{x) = 4 (a; — a)'' = 0, the

critical value being x = a. Now in passing through x= a,

f'{x) changes sign from — to + ; hence x=a renders the

function a minimum, namely b. Again, from (x — ay -\- b,

f(x) = 3 (x — a)^ = 0, which cannot change sign for any value

of x; hence the function has no maxima nor minima values.

II. Since if yl is a constant factor, Af{x) increases and

decreases with /(a;), a constant factor may be omitted in the

search for maxima or minima values.
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III. Since ±A -\-f{x) increases and decreases with/(a;), we
may substitute /(x) for ±A-\-f(x) in searching for maxima or

minima values. If A—f{x) is the given function, we may
substitute f{x), provided we reverse the conclusions, as

A —f(x) increased when f(x) decreases, and decreases when

f(x) increases.

IV. Since —- decreases as f(x) increases, and conversely,

the reciprocal of the function may be substituted for the func-

tion, provided the conclusions are reversed.

V. Since log [/(a^')] increases and decreases with f{x), the

number may be substituted for the logarithm of the number

in the search for maxima and minima values.

VI. If f{x) is positive, [/(a;)]" is also positive, and there-

fore increases and decreases with f(x) ; or any power of a posi-

tive function may be substituted for the function. If f(x) is

negative, [/(>>/•)]" will have the same sign as f{x) if n is odd,

but the opposite sign if n is even ; or any power of a negative

function may be substituted for the function, provided the

conclusions are reversed if n is even.

We are thus enabled to omit the radical sign in the search

for maxima and minima values of any positive radical ; also

when the radical is negative, if we reverse the conclusions.

Examples. Examine the following functions for maxima

and minima values.

1. ^-3-90^ + 15a' -3.

Omitting the constant term (III., Art. 84),

f{x)=x^-9x^ + 15x.

f'{x) = Sx^ — 18 a; -j- 15 = 0, whence the critical values

x= 5, X = 1.

f'{x) = 6a; - 18, which is 12 for a; = 5 and - 12 for x = l.

Hence x = 5 renders the function a minimum, and x = l ren-
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ders it a maximum. Substituting x = 5 and x = 1 in the func-

tion, its minimum and maximum are found to be — 28 and 4,

respectively.

2. b + c(x — d)\

f(x) = (x-a) 3 (Art. 84, II. and III.).

f'{x) = ^(x — ay = 0, whence x = a; and as f'(x) changes

sign from — to + for increasing values of x as x passes

through a, & is a minimum value of the function.

3. x^-5x*-i- 5x^-6.

4. Examine the circle y^-\-x^=R^ for maxima and minima

ordinates.

The function to be examined is y = ± Vii' — o?. Omitting

the radical (Art. 84,VI.),/(x) =R-- x', whence /'(a;)= -2x=0,
OT x = 0', and as /'(a*) changes sign from -f to — as a; passes

through 0, a; = corresponds to a maximum. If we take the

negative value of the function, then, in omitting the radical, we
raise the function to an even power and must reverse the con-

clusion ; hence when y is negative, x = corresponds to a mini-

mum.

5. (x-iy{x-\-2y.

f\x)=A{x-iy(x-h2y + s(x-iy(x + 2y
= (x — ly {x -\- 2y (7 X -{- 5) ; whence the critical val-

ues X = 1, X = — 2, X = — ^.

Since /'(a;) is — if x is a little less than 1, and -f- if a; is a

little greater than 1, it changes sign from — to -}- as x passes

through 1 ; hence a; = 1 corresponds to a minimum.

f"(x)=3ix-iy(x-{-2y{7x-{-5)+2{x-iy{x-\-2){7x + 5)

-^7(x-iy(x + 2y

= (x-iy(x + 2)\3(x + 2){7x+5)+2(x-l)(7x+5)

-^7(x-l)(x+2)\

= 6{x - ly (x -f 2) (7x'-\- 10a; + 1).
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When ic = — f, the first two factors are positive, and the sign

will depend upon that of the third factor, which is — for a;= — |;

hence x= — ^ corresponds to a maximum.

Since/"(x) =Oforx= -2,f"'{x) =6{x-iy (7 ar'+lOrc+l) +
other terms which contain (a; + 2), and which therefore vanish

when cc = — 2, while the term 6(a; — 1)^(7 a^ + 10a; + 1) does

not. Hence f"'(x) does not become zero for a; = — 2, and this

value of X corresponds to neither a minimum nor a maximum.

6. xi^ — 3x^ + 6x + 7. The critical values are imaginary.

7. Sin^ X cos x.

f'(x) =3 sin^ X cos^ x — sin* x = 3 sin^ x(l — sin^ a;) — sin* x

= 3 sin^ X — 4: sin* x = 0; whence

sin^a;(3 — 4sin^.^•)=0, and the critical values are sina; = 0,

sina;=-— , or a; = 0°, a; = 60°. Since f'{x) evidently changes

sign from + to — as sin x passes through the value— , x = 60°

corresponds to a maximum. If x is a little greater or less than

0°, 4sin^a/'<3 and /'(x) is +; hence a; = 0° corresponds to

neither a maximum nor a minimum.

8. a+ V4ar'-2a.-3.

Omitting the constant term, radical sign, and factor 2 (Art.

84, III.,VI., II.),we have 2a;'- x^; whence /'(a;) = 4a;- Sa;^ = 0,

or a; = 0, a; = |.

f"(x) =4 — 6a;, which is -f for a; = and — for a; = |. Hence

the function is a minimum when a; = and a maximum when
X = ^.

9. Divide a into two factors, the sum of which shall be a

minimum.

Let X = one factor ; then - = the other, and the function is
X '

a; + -
; or f'{x) = 1 — -^ = 0, whence a;= Va, and the factors

a; ' -^ ^^ ~ x"

are equal.
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10. The difference between two members is a. Prove that

the greater = twice the less when the square of the greater

divided by the less is a minimum.

11. Find a number a; such that its x'th root shall be a maxi-

mum. Ans. X = e.

12. To determine the number of equal parts into which a

must be divided in order that their continued product may be

a maximum.
T in 1 « . a a a
Let X = number oi parts : then - = one part, and - • - •—

•

/ \:r. X ^ XXX
/ct\

to X factors = (
-

) is to be a maximum.
\xj

log I ]= x([og a - log x) =f(x).

/'(a;) = logct — logx — 1 = 0, or log - = 1, whence - = e, or

a
X = -'

e

Arithmetically the problem would not be possible unless a

was a multiple of e, otherwise x would not be an integer. The
general solution belongs to the statement : to find a number x

such that the ccth power of - shall be a maximum.

1--^
13. —^

—

r(x)=—^^i^
1 + a; tan a; (1+cctana;)^

A maximum when x = cos x.

. , sin X ,,, ^ 1 — tan^ x
14. zr—: /'(^•) =

1 + tan a; (1 + tan x)''

cos X

A maximum when x — 45°.

85. Examination of the critical values when /' {x) = oc

.

Since, when f'{x) =go for a particular value of x, f"(x),

f"'{x), etc., also become infinity (Art. 56), the function cannot
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be developed by Taylor's formula, and the results of Art. 83 are

inapplicable. In such cases we may examine the first deriva-

tive directly to see if it changes sign as the variable passes

through its critical value.

Examples. 1. b+{x — ay.

f'(^x) = ^(x — a)~^ = =00, whence x — a = 0, or

3(x-a)^
x = a. It is readily seen that f'{x) changes sign from — to

+, and that x = a therefore corresponds to a minimum.

2,
(^ + 2)«

{x-sy
(0^+ 2)^(0.-13)/w- (^x-'sy

y (a;) = Ogives x = — 2 and o; = 13. f'(x)=oo gives a; = 3.

o; — 13 is negative if o; is a little less or greater than 3,

while (o; — 3)^ is negative if o; < 3 and positive if o; > 3.

Hence /'(a;) changes sign from + to — at o; = 3, which gives

a maximum.

a; = — 2 and a; = 13 may be examined in like manner ; the

latter gives a minimum, and the former neither a maximum
nor a minimum.

3.
(^-^>^
(a; + 1)3

f'(x) = gives a; = 1 and x = 5, the former corresponding to

a minimum, and the latter to a maximum. /' (a;) = oo gives

a; = — 1, which corresponds to neither.

86. Geometrical Problems.

In the following problems F= volume, A = area, S = sur-

face, and the substituted function obtained after omitting

constant factors, radical sign, etc. (Art. 84), is designated by

an accent.

\ 1. Determine the rectangle of greatest area which can be

inscribed in a given circle.
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Let R = radius. If we take x, y, to represent the half-sides

of the rectangle, then the equation of the cir-

cle gives the relation af -\-y^ = It% by means

of which we can eliminate y from the expres-

sion for the area A = 4:xy, obtaining
_ ^ _

4:X^B^ — x^, or ^^m^af — x*,

thus reducing the function to be examined to one of a single

variable. Omitting the factor 4 and the radical, we have the

substituted function A' = i2V — x*, whence

f'{x) = 2E^x-4:x' = 0, or ic=0 and x =^-
V2

f"{x) = 2R'-12x% which becomes -AR' for x =—
;

V2

hence corresponds to a maximum. Substituting x = —::-

V2 V2
in w- -(- ar^ = Rr, we find y =—-

; hence x = y, the rectangle is

V2
a square, and its area A = 4:xy = 2 R-.

Before proceeding to the remaining examples the student

will observe : 1°. As the point P moves from A to B, the area

of the rectangle increases from 0, passes through its maximum,
and decreases again to 0. Whenever, then, the conditions of

the problem are such that the existence of a maximum value

is clearly seen, it will be unnecessary to test the critical value.

2°. The solution consists in first finding an expression for the

quantity to be examined, as 4a;y in the above case. If this is

a function of two variables, the next step is to eliminate one

by means of some relation between them furnished by the

conditions of the problem, as in the above case y^ -\-a? = R^.

3°. This elimination may be effected before or after differen-

tiation. In the above case y was eliminated before finding the

derivative ; but we might have proceeded as follows :

A = 4:xy; A' = xy; f\x) = x^ + y = 0.
ax
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From X- + y^ = R^, -^ =
, hence f'{x) =. — x'- -\- y = (), or

dx y y
3i? = y^, as before. Eliminating now y by substituting y^ = a^

in x^ + 2/" = R') we have x =—-. It is frequently preferable

thus to eliminate after differentiating.

2. Determine the rectangle of greatest area which can be

inscribed in a given ellipse.

With the notation of Ex. 1, A = 'ixy, the auxiliary relation

being a^ + ^'•'^ — ^'^'} ^^^ equation of the ellipse. Hence

A = 4:-x^a^ — af, A' = a-x^ — x*, f'{x) = 2a'X — 4:x'^ = 0, and

x =—-, or 2x = a-\/2, which, substituted in the equation of

V2
the ellipse, gives 2y = by/2, the sides of the rectangle.

3. Determine the rectangle of greatest area which can be

inscribed in a given segment of a parabola.

Let OA = a, and y = the half-side AB. Then

A = 2y{a — x), or, since y- = 2px,

A = 2^2px{a — x) = 2^2py/x{a — xy, o

whence

A' = a^x -2ax^ + x\ f'{x) = a? -4tax + ^x- = 0,

from which we find a; = -• Therefore a — a; = f a = oue side,

and 2y = 2^2px = 2-yP^= the other side, and

Y / 4. Find the cylinder of greatest volume which can be in-

scribed in a given sphere.

With the notation of Ex. 1,

V = 2iry-x = 2ivx{R''-;i?),
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whence

V= R'x - x\ f\x)= R- - 3 ar = ,

R 2 R
X =—-, or 2 ic =—::: = altitude.

V3 V'S

5. Find the cylinder of greatest convex surface which can

be inscribed in a given sphere.

With the notation of Ex. 1,

whence

/S = 4 -n-yx = 4 ttx^R- — or,

S'= R-x- - x\ f {x) = 2 R^x - 4 x" = 0,

7? -
X =

, and 2 a; = i2V2 = altitude.

V2

6. Find the cylinder of greatest volume which can be in-

scribed in a given ellipsoid.

With the notation of Ex. 1, using the equation of the ellipse,

F = 2 irf-x = 2 TT-' x(a' - x^)
,

a-

V= a-x - x\ f {x) = a- - 3 x-2 = 0,

whence x =—- , and 2 a; = ^^^ = altitude.

^J'

V3 V3

7. Find the cone of greatest volume which can be inscribe

in a given sphere.

With the notation of the figure, V= y?/'^'i
^

o

but f=2 Rx - x", hence V= ^ (2 Rx" - x"),

V' = 2Rx^- x\ /' (x) = 4 Rx - 3 .'B- = 0, or

x = ^R = altitude.

\ 8. Find the cone of maximum convex surface which can be

inscribed in a given sphere.

Fig. 19.

>S' = 7r7/V;c-+y-=7rV2 /2a;-.'C-V27e^=7rV4i2V-2i2a;«,

S'=2Rx'- x\ f{x) = 4Rx-3x^ = 0,

and x = ^R= altitude.
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9. Find the cone of greatest volume which can be inscribed

in a given paraboloid, the vertex of the cone being on the axis

in the base of the paraboloid.

V=-y-{a-x). Altitude =" (Fig. 18.)
o ^

10. Find the cylinder of greatest volume which can be in-

scribed in a given right cone.

Let b = radius of base, and a = altitude of the

cone, and x, y, those of the cylinder. Then

V=TTX^y. From similar triangles, h: a::x: (a—y),

or y = -{b-x).
b

h

Hence V=~x-{h- .x) , V = bx" - x\ F'g- 20.

b

f'{x) = 2 bx — o X- — 0, whence .x = 1 6,

and y z= -{b — x\ =. =z altitude.

11. Find the cylinder of greatest convex surface Avhich can

be inscribed in a given right cone,

Ans. Altitude = ^ altitude of cone.

12. Of all right cones of given convex surface determine

that one whose volume is greatest.

If a; = altitude, y = radius of base, V=^y-x. By condi-
o

tion, TT?/V^ + y' = in, a constant. Diiferentiating first, from

V'=y'X we have f'{x) = 2yx^ -\- ?/- — 0. From iry^x-y^ = m,
dx

^ = ^ Hence f (x) = —=^ 1- ?/- = 0, whence
dx x' + 2y' -^ ^

^
x' + 2f- '' '

X = 2/V2, or the altitude = V2 x radius of base.

^

13. Of all cones whose slant heights are equal find that

which has the greatest volume.

A71S. The tangent of the semi-vertical angle = V2.



API'LICATIONS OF SUCCESSIVE DIFFERENTIATION. 105

14. From a given quantity of material a cylindrical vessel

with circular base and open top is to be made so as to have a

maximum content. Find the relation between the radius and

altitude.

Let .X' = altitude, ?/ = radius. Then V=Try-x, V' = y-x,

f'{x) = 2yx-^ -{-y- = 0. By condition 2iryx + -n-y- = m, a con-
dx

stant; whence -^= '-— , and therefore
' ax x + y

f\^)^-^j + f=^^,ovx = y.

15. A square is cut from each corner of a rectangular piece

of pasteboard whose sides are a and 6. Find the side of the

square that the remainder may form a box of maximum content.

a-\-h — Va^ — cib + b''

Ans. The side =
6

16. Prove that in an ellipse referred to its -centre and axes,

the product of the co-ordinates of a point on the curve is a

maximum when the co-ordinates are in the ratio of the axes.

17. A vertical flagstaff consists of two pieces, the upper

being a and the lower b feet long. Find the distance from the

foot of the staff at which the visual angle subtended by the

upper segment is a maximum.

With the notation of the figure,

tan 6 =—'— , tan a = -,
X x

,.,./] X tan — tan a
tan <^ = tan (0 — a) =

1 + tan tan a

a+b b

-; whence x = ^b{a -\-b)

^ ab + Jr
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18. Find the least triangle which can be circumscribed

about a given ellipse having one side parallel to the trans-

verse axis. Ans. Altitude = 36, base = 2 a V3.

19. Find the parabola of maximum area which can be cut

from a given right cone, knowing the area of a parabola to be

|3/Q.QP(Fig. 22).

Let AB = 2b, AC=a, QB = x.

Then MQ =^AQ • QB = ^/{2b-x)x,

and AB:AC.:QB:QP,QP=^^^^=—.
"^ ^ "^ AB 2b

2aa;
Hence A= IMQ'QP:

3 2b
^{2b-x)x,

A' = 2 bx^ - X*, f'{x) = 6 bx- - 4 x''

whence x = QB = | b

0;

Hence QP =—
2b

= fa, or the area of the parabola whose axis is f the slant

lieight of the cone is a maximum.

20. Assuming that the work of driving a steamer through

the water varies as the cube of her speed, find her most

economical rate per hour against a current running c miles

per hour.

V = speed of steamer in miles per hour.

av^ = work per hour, a being constant,

V — c = actual distance advanced per hour.

Let

Then

and

Hence
v — c

= work per mile of actual advance.

Ans. v = ^c.

\ 21. The sides of a triangle are a, x, y, subject to the con-

dition X + y = m, a constant. Prove that the triangle of

maximum area is isosceles, and that x = y The area of

a triangle in terms of its sides = A = Vs(s —a) (.s — x){s — y)

in which s = ^ sum of the sides. By condition, 2s=x-^y + a

= m + a, whence s

;

Hence
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A = ^Vm-— a^ Vet" — m-+ 4mx — 4 x^,

A'= mx — or, f{x) = m — 2x = 0, and x = — '

7th
From x + y = m, y=-'

1/22. Find the point P of least illumination on the line

joining two lights A and B, the intensity at a unit's distance

of A being b, and that of B being c, knowing that the intensity

varies inversely as the square of the distance.

If the distance between A and B is a, and AP=x, the

I) c ab
illumination at P= --\ — ; whence x = — •

x- {a —xy ji
_l_

gi

23. Kequired the height of a light directly above the centre

of a circle whose radius is i? when the perimeter is most illu-

minated, knowing that the illumination varies directly as the

sine of the angle of incidence, and inversely as the square of

the distance.

Let X = height.

X R
Then the illumination = ,

.-. x =—--

{x'-R')'^ V2

24. The base of a prism is a given regular polygon whose

tea is A and perimeter P. The prism is surmounted by a

regular pyramid whose base coincides with the head of the

prism. Find the inclination of the faces of the pyramid to

the axis, in order that the whole solid may have a given volume

C with the least possible surface.

Let a; = height of prism. Then its volume is Ax and sur-

face Px.

Let a — perpendicular from centre of polygon on one side.

mi Aa cot 6 • ,-,
T J, ,1 1 1 Pa cosec 6

Then is the volume oi the pyramid, and

its surface. By condition

., .a cot 6\ ri ^ -~\ "^ ^^t
ji[x -\

—
1
= O, . •. a; — <»—

~

•
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The surface which is to be a minimum is P(x-\ Y

or, substituting the value of x, ^ a cot 6 + ^a cosec 0.

Hence /'(d) = -cosec2^-" cot ^cosec^=0, .-. 2 cosec d= Scot d,

or cos d = f, and = cos~' |.

25. Prove that the minimum tangent which can be drawn
to an ellipse is divided at the point of tangency into segments

, which are equal to the semi-axes.

a- b^
If (x, y) is the point of tangency, — , — are the intercepts of

X y
the tangent, and the length of the tangent

\ X- y^ \x- a- — XT

a- h^
Hence the function to be examined is -7, + -^

a;- a- — XT

From /'(.'r) = we find x^oyl—— , and from the equa-
\a-\-h

tion of the ellipse, yz=h-J\ If P is the point of tan-

gency, and T the point where the tangent meets X,

\"^\x ) ^a + 6^l,(„ + j)j; \ a + 6

and in like manner the other segment may be shown to be a.

26. In the straight line bisecting the angle ^ of a triangle

ABC, a point P is taken. Prove that the difference of the

angles APB, APC is a maximum when AP
is a mean proportional between AB and

AC.
Let AC= a, AB = b, PAB = m, AP= x.

Draw PE and PF perpendicular to the

sides. Then the function is
^

''•g- 23.
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APC - APB = EPC - FPB = tan-i^ - tan-^^
EP FP
^ih — xcosm

,
, .a — X cosm— fan— i

X sin m
= tan" tan

a.* sm m
whence

/' (..) = ^ ^- —
a^ + a^ — 2 ax cos m ar' + 6- — 2 bx cos ^m

from which we find x = -y/ab-

= 0,

27. A paraboloid of revolution whose axis is vertical con-

tains a quantity of water into which is sunk a given sphere,

the quantity of water being just sufficient to cover the sphere.

Find the form of the paraboloid such that the quantity of

water may be a minimum, knowing the

volume of the paraboloid to be one-half

that of the circumscribing cylinder.

Let R = radius of sphere, z = OH,
the height of the water when the sphere

is sunk, and

Fig. 24.

2/2 = Ix (1)

be the equation of the parabola, in which

I is the unknown parameter. The equa- Y

tion of the circle is

f-^(x-ocy=R',

or, since OC — z — R,

y- + {x-z-l-Ry=E\

Combining (1) and (2), we have

lx + (x-z+ Ry = R-,

(2)

whence
,^2(z - R)-l ±VAR^ + 1^ -^zl + ^Rl^

2

But the circle is tangent to the parabola, and there can be

but one value for x, and hence
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"'-~Ti (3)

The vol. of water = vol. of paraboloid - vol. of sphere

since (1) gives HS' = Iz. Substituting the value of z from (3)
the function becomes

or Y>-(i + 2R)\
I

whence /'(/) = gives I = ?^ R, which determines the form of
the paraboloid.



CHAPTER IV.

FUNCTIONS OF TTVO OR MORE VARIABLES.

87. A partial differential of a function of two or more vari-

ables is its differential on the hypothesis that only one of the

variables changes. Thus, if w = sin x log y + zar, and x only is

supposed to change, y and z being regarded constant, the par-

tial differential of u with respect to x is cos.r log ydx + 2 zxdx

;

and the partial differentials of u with respect to y and z are

dy and x'dz, respectively.

88. Notation. To distinguish the partial differentials, the

variable with respect to which the function is diiferentiated is

written as a subscript, thus :

d^u — (cos X log y + 2 zx) dx, d^u — dy, d^u = x^dz,

which are read ' the a;-differential of w,' etc.

d tt

-J-
is evidently the rate of the function so far as its rate

depends upon the rate of x.

89. A partial derivative, or partial differential coefficient, is

the ratio of a partial differential to the differential of the variable

lohicli is supposed to vary. Thus, in the above case, the partial

derivatives of u with respect to x, y, and z, respectively, are

du , _ du sin a; du ,
-y- = cos x log y + 2zx, -j- = ? -^ =xr,
dx °^ dy y dz

the subscripts being omitted as the denominators indicate the

variable with respect to which the differentiation is performed.

Ill
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A partial derivative is the ratio of the rate of the function to

that of the variable supposed to vary so far as the rate of the

former depends upon that of the latter, and the function is an

increasing or a decreasing function of any one of its variables

according as the corresponding partial derivative is positive or

negative (Art. 22).

Since the first derivative is the factor by which the differen-

tial of the variable is multiplied to obtain the differential of

the function, the partial differentials are also represented by

the notation

clu , dw - du
^

-7- clx, -T- ay, -I- az, etc.,
dx ' dy •^'

cZz ' '

which are equivalent to d^xi, d^u, d.,u, etc.

Examples. Find the partial differentials of

;

1. u = (or' + f)^. ^dx = ^'^^^
, ^-^dy = y^y

.

^^^
{x^ + f)^ "^y

{:>? + f)^

o • -\X dii J dx du , xdy
2. u = sin -• — dx =— , — dy= ^

y dx ^y^ — x- dy y^y^-Qi?

3. u = y". —dx = zy" log ydx, —dy=^ xzy"~^dy,
dx dy

— dz = xy" log ydz.
dz

Find the partial derivatives of :

4. u = s\\\{xy). ~— — ycos,{xy), — = a;cos(a;y).

5. u = 2/°'°*. — = ?/^'"'= log y cos X,
dx

du .:„__, sin a;— = sm X • v^'""
' =

dy ^eoversx

n T / , \ da du 1
6. « = log(aj4-?/)- -r=-r =dx dy x-\-y
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90. The total differential of a function is its differential ob-

tained on the hypothesis that all its variables change.

Since the total differential of u =f{x, y, z, etc.) can contain

only the first powers of dx, dy, dz, etc., it will be of the form

du=f{x, y, z, QtQ.) dx+f_{x, y, z, etc.)dy-^f{x, y, z, etc.)d2 + etc.,

in which /i(x, y, z, Qtc.),f{x, y, z, etc.), etc., represent the col-

lected coefficients of dx, dy, etc. But if all the variables except

X be regarded constant, dy = dz = etc. = 0, and all the terms

vanish except the first, which is the partial differential with

respect to x ; and if all the variables except y be regarded con-

stant, all the terms vanish except the second, which is the par-

tial differential with respect to y ; and so on. Thus all the

terms of the second member will be obtained by differentiating

u in succession as if all the variables but one were constant.

Hence the total differential of a function is the sum of its partial

differentials.

Illustration. Let u = 3 ax^y + zrV.

du = d^u + dyU + d^u

= (6 axy -\- 2rV) dx + 3 aardy -f 3 z^e'dz. (1)

Equation (1) is evidently true whether the variables be

dependent or independent. If, however, the variables are

dependent, the total differential may be expressed in terms of

any one of them. Thus if

y = bx, 2 = sin x, whence dy = bdx, dz = cos xdx,

(1) becomes

du = (9 abay^ -f- e'' sin" x — 3e' sin^ x cos x) dx

;

or the same result might be obtained by substituting the values

of y and z in the original function, giving

u = 3abx" -f- e" sin^ x,

whence, differentiating, we have (2), as before.

If Equation (1) be divided by dt, we have the rate of the
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function in terms of the rates of its variables ; and if the vari-

ables are dependent, the rate of the function may be expressed

in terms of that of any one of its variables assumed as the

independent variable. Thus, dividing (2) by dt, we have the

rate of u in terms of the rate of x.

Examples. Find the total diiferentials of

:

1. u = axry + by^'x. du (3 aa^y + by^) dx + {ax^+ 3 by^x) dy.

o i. -i^ J ydx — xdy
2. u = tan -• du = ^ •- •

y ar-f-?/2

ydx
3. u = log x". dit = H log xdy.

4. u = r cos 6. du = cos 6dr — r sin Odr.

xii , a?dy 4- y-dx
o. u =—'^

—

da =— ^—
x + y {x-i-yy

6. ?t = e'a". ' du = cO'e'dx + e^a" log ady.

7. u = tan~^ (xy) . du = ^

—

——-^•

8. w = x^. du = y3^~^dx + a;" log xdy.

9. ?6 = a''+ e~*'2; + sin v.

du = a"' log adx — ze^Hly+ e~''d2: -f-cos udy.

,x — y ,
ydic — a;d?y

10. « = tan-i

—

~- da = '^—;r-.
—^^

x-{-y X' + y^

91. The total derivative, or total differential coefficient, of a

function is the ratio of the total differential to the differential of

the independent variable.

Thus, if M =f{x, y, z), we have for the total differential, by
Art. 90,

du , du , du ,

^^ =
d^^'^'

+ d2,^^ + d^^"5 (1)
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and if x be the independent variable,

rdtt"|_

Idxj-
du du dy du dz

1 ^H (2)
dx dy dx dz dx ^ '

The student will observe that the du's are not the same in the

above formulae. In the first member of (1) d?t is the total

dili'erential of u, while in the second member du is a partial

differential, the notation serving to distinguish the partial

differentials from each other and from the total differential.

To cancel the equal factors from the terms of the second

member would be to destroy the means of distinguishing the

dw's, no two of which are the same. In fact, (1) is

du = d^u -f- d^n + d^xi.

In forming (2) from (1) the first member becomes a total

derivative, the bracket being used to distinguish it from the

partial derivative — in the second member. It is further to
dx

be observed that while (1) is true whether the variables be

dependent or independent, (2) has no significance unless the

(Jv dz
variables are dependent ; for -~, — , cannot be evaluated unless

CttV CtJb

y = cf>{x),z = ip{x).

The total derivative is evidently the ratio of the rate of the

function, on the hypothesis that all its variables change to the

rate of the independent variable.

92. The total derivative with respect to any independent

variable may be formed in like manner by dividing the total

differential, which is always the sum of the partial differen-

tials, by the differential of the independent variable, under-

standing that the independent variable is connected with the

others by auxiliary relations.

Thus, given w =f(x, y, z) and x = <f>i(tv),y =<f>o(w), z = </>3(w),

to form the total derivative with respect to w, we have

du , du , du ,
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whence
Fdul
\_dwj

du dx du dy du dz

dx dw dy dw dz dtv

111 this case the bracket is not necessary, but it is usual to

enclose the total derivative in brackets whatever the indepen-

dent variable.

Examples. 1. Given u = 2axy -^logx, and a; = siny, to

form the total derivative of u with respect to y.

du ^ du ^du = ^r-dx -\--r- dy,

du

_dy_

dx

du dx du

dx dy dy

From the given function Ave find the partial derivatives

du

dx

dx

1 ^"

and from x = sin y, — = cos y. Substituting these values,

du

dy
= (2 ay -{- -j cos y -\-2ax

= 2a(ycosy -{• smy)-\- cot?/.

The same result would be obtained by first substituting the

value of X in the function and then differentiating.

2. u — y--}-z*-i-zy, y = smx, z = cosx.

du

dx
= cos2a/'(l — sin2a;).

3. M
1 ^ — V

tan '—r-^, x = e'', y = e^
x + y'

du

dz

2e-'

By substituting the values of x and y in u and then dif-

ferentiating, the student may compare the two processes. In

this case the use of the formula is more expeditious.
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4. It = tan ^-, xr-\-y-= R-.
y

fdul _ 1

(hf ~ X

.- • 2; „

o. M = Sin -, 2 = 6*, y = XT.

[du~\ e' e

6. u = yz, y= e', z 4ar^+12ar'-24a; + 24.

rdH~\

\dx\
ex"

93. Implieit function of two variables.

Let f{x, y) = 0. Representing the function by u we have

u=f{x, y) = 0.

Since the only possible values of the variables are those

which render the function zero, u is constant, and hence its

differential is zero. Therefore

, du J ,
da, rtdu =— dx-\ dy = 0,

dx dy

whence

du

dy_ dx

dx ~d^'
dy

(1)

or the first derivative of an implicit function is the negative ratio

of its partial derivatives.

The above depends solely upon the fact that du is constant

;

hence (1) is true when f{x, y) = a, where a is any constant.

dy

dx
Thus, f - 2px = 0, -2^=^- Again, i^+a;^=.

= —— =—-. These results might of course be ob-
dx 2y y

tained directly by the ordinary process of differentiation, but

it is often useful to employ the value of the derivative in

terms of the partial derivatives as given in (1).
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Examples, Form by the above method the derivatives of

:

1. u = 3 ascry — 2 ay-x = c.

6 axy —2aff_y{2y — 6 x)

'3ax' — 4:ayx ~ x('dx — Ay)

o 1 1 n ^y yx\ogy-y^
2. u = x losf y — y losr a; = 0. :j~ =—t :3*o J ^ ty dx yx log x — ar

du

dy

dx~
dx

du

dy

3. M = y -f ar — 3 mxy = 0.

4. II = ?/e"* — a-r™ = 0,

5. u = sin (x?/) + tan (.ry) = a.

6. M = o?/'' — x^y — ax^ = 0.

dy _ my — d?

dx y^ — mx

dy my
dx x{l + ny)

^= -I.
dx X

dy _ 3 a^?/ + 3 ax^

dx 3 ay^ — x"

94. Evaluation of the first derivative of an implicit function.

Let f{x, y) = 0, in which x is the equicrescent variable.

du

Then
dy^_dx
dx du

dy

may be a function of both x and y and assume the illusory

form - for particular values of x and y. In such a case we

may eliminate y from -^ by means of f{x, y) = 0, and then

proceed as in Art. 74 ; or, since y is a function of x, we may
apply the process of Art. 74 directly, without eliminating y,

forming the successive derivatives of the numerator and

denominator with respect to x until a pair is found whose

ratio does not become - for the particular values of the variar

bles. Thus, if u = y^ — xry — x* = 0,
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dy

dx

du

dx _ '2xy -{•ia?

du~ 3y^ — x^

dy

which for x = y = i) becomes -. By Art. 74,

dy _2xy 4-4ar^'

dx~ 3y^ — X-

2y + 2.^ + 12^

«^|-2^
0,0

^dy ^ d'y ^dy
dx dx- dx

.dy'
G-^ + ef^-2

d^
'd^

4
d̂x

0,0

,dl
dx-

,df ^dy .dy dy
Hence 6-^ — 2^^ = 4^, or V^ = 0, and ± 1.

dx^ dx dx dx

Having seen that the true value of an expression which assumes the

form - for a particular value of the variable is its limit (Art. 74), it vi^ould

seem, since a quantity can have but one limit (Art. 64), that -^ in the
dx

above example could have but one value. That it may have several values

will appear in Art. 114.

dy
Examples. 1. If u = x*-{-2axhj— ay'^= 0, shoAv that ~ = 0,

or ± V2 when x — y = 0.

dy _ 4 .r^ -f 4 axy

dx~ 2 aaf — 3 ay'

12 a:? + 4 ay + 4 ax
dy

dx

0,0
bay-j Aax

CM . 4 dti , dij , d'y
24a; + 4a / + 4a ,- + 4aa;-T4,

dx dx dx-

dy'
6a^-f 6a2/^-4a

'da^

0,0

^dy

dx

Jo,o
<:-^«

w»-l(S-)=»-
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2. If u = X* - af + 2 axf + 3 ax'y = 0, show that ^= 0, 3,

or — 1, when x = y = 0.

3. u = x^ - a?xy + f = 0. Prove that g= 0, or a% when
x = y = 0.

4. u = X' + ax^y - af = 0. Prove that ^= 0, or ± 1, when
X=y=:0.

5. u = ahf - 2 abxhj - .r' = 0. Prove that 5^ = ± 0, when
,, ax '

x = y = ().



CHAPTER V

PLANE CURVES.

CURVATURE.

95. A curve is concave npivard at any of its points when its

tangent at that point lies below the curve, arid is convex ujncard

when its tangent lies above the curve.

When a curve is concave upward, its

slope increases with cc; hence if y=zf{x)

be its equation, f\x)-\--^ is an increas-

ing function. But the first derivative of

an increasing function is positive, and the

first derivative of /'(a;) is f"{'x) = -~-

Hence /"(a;) is positive tvhen the curve is

concave upivard.

If the curve is convex upward, its slope

decreases as x increases
; f'(x) is a decreas-

ing function, and its derivative is therefore

negative. Hence f"{x) is negative when the curve is convex

upivard.

96. A point at which, as x increases, the curvature changes

from concave to convex upward, or vice versa, is called a point

of inflexion. At a point of inflexion the tangent evidently cuts

the curve.

Since on one side the curve is convex and on the other con-

cave upward, the analytic condition for a point of inflexion is

121
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(Art. 95) a change of sign mf"{x). Hence all values of x cor-

responding to such points are roots of the equations /"(cc)= 0,

f"{x) = cc. These roots are critical val-

ues, and do not correspond to points of

inflexion iiidess accompanied by a change

of sign in f"(x).

In approaching a point of inflexion

f'{x) is increasing (or decreasing), and after passing this

point is decreasing (or increasing) ; hence /' (x) is either a

maximum or a minimum at a point of inflexion.

Examples. Examine the following curves for curvature

and points of inflexion

:

1. a; = log y, the logarithmic curve.

f"(^x) = y, which is always positive, since negative numbers

have no logarithms. The curve is therefore always concave

upward and has no point of inflexion.

2. y'-+ x^= R% the circle.

7?-

f"(x)= -, which is negative when y is positive, and
y3

positive when y is negative ; hence the curve is convex upward

above, and concave upward below, X. f"(x) has two signs,

but does not change sign for increasing values of x, and there

is no point of inflexion.

o. xy = m, the hyperbola.

2m
/"(a;) = —^, which has the sign of x. The curve is there-

fore concave upward in the first, and convex upward in the

third, angle. f"(x) changes sign at a; = 0; but when a; = 0,

y = 00, the curve being discontinuous, and there is no point of

inflexion.

4. cry = 4a^(2a — y), the witch.

f"(x) = 2yA?!nA^ . Points of inflexion at a; = ±— •

(.r-+4a-)- V3
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5. ay-z=oc?, the semi-cubical parabola.

G. y = sin x, tlie sinusoid.

7. X = lo^y. A point of inflexion at x = S, where the curva-

ture changes from convex to concave upward.

8. y^ = arx, the cubical parabola.

2 a*y" (.1-) = — ^:^, which is positive when ?/ is negative, and
y

negative when y is positive ; hence the curve is concave up-

Avard in the third, and convex upward in the first, angle.

f"(x) changes sign at ?/=0, whence x = 0, passing through

infinity, and the origin is a point of inflexion.

9. y(a*-b') = x{x-ay-xh\
A point of inflexion when x = la.

10. y =
d'-\-x^

11. y = tan X.

97. Kate of curvature. A plane curve may be defined as

the locus of a point which always moves along a straight line

while the line always turns around the point.

Since the direction of motion is always that of the line, the

line is the tangent to the curve. Were the line to remain fixed,

the locus would be a straight line, that is, if the tangent does

not turn about the moving point there is no curvature ; hence,

if <^ be the angle which the tangent makes with any fixed line

as X, the curvature will depend upon the change of ^.

Since in the circle equal arcs subtend equal angles at the

centre, the normal, and therefore the tangent, turns through the

same angle for every unit of path describetl by the generating

point, and the curvature of the circle is therefore constant

whatever the unit by which it is measured.
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It is evident that if, in passing a second time through any

point of a given curve, the velocity of the generating point be

m times what it was before, the rate of turning of the tangent

at that point will also be m times its former rate ; or that the

ratio of the rate of turning of the tangent to the velocity in

the curve is constant. Hence

dcfi

di _(l<i>

ds ~ ds

dt

is a constant for the same point, whatever the velocity. This

expression is evidently the rate of turning of the tangent per

unit of length of the curve, and may be taken as a measure of

the curvature. This measure is independent of t, as it should

be, for the curvature is a geometric proj)erty of the curve

independent of the time of its description.

dd>
Since the rate -j- is the amount by which <^ would change

for a unit's length of path, were its rate to remain through this

distance what it was at its beginning, the curvature at any

point of a plane curve is that of a circle which has a common
tangent with the curve at the point considered. This circle is

called the circle of curvature, and its radius the radius of cur-

vature.

98. To express —^ in terms of the coordinates of the generating
ds

'

point.

From Art. 25 we have

ds=-y/da?-\-dy'^,

and, reckoning <^ from the axis of X,

tan <^ = —
", whence sec^ <f>d(f>

=

—

—,
dx dx

dry d^y d'-y

dx dx dx
or o^ =

sec^<^ 1 + tan''<^ -, ..dy''

dx'^
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d-y ^y

Hence -^ = 7 T^^
=7 TTTT* i^)

To find therefore the curvature of a plane curve y=f{x),
differentiate its equation twice and substitute in (1) the values

of the first and second derivatives.

99. Curvature of the circle.

in o
,

., ry, dy X X d-y R , . ,
1^ rom X--\- y-= li-,_± = =

-:::::: ;
—^ = -, which

f^x y Vi2--a^ ^^ 2/

will be ± as ?/ is :f . Hence

m
dct> _ f _ 1

ds A a^\| R'

or the curvature of a circle is the reciprocal of its radius.

CoR. 1. Since — =1 when i?= 1, the unit of curvature is
ds

seen to be the curvature of the circle whose radius is unity.-

Cor. 2. The curvatures of any two circles are inversely as

their radii.

100. Radius of curvature. Since the curvature of any plane

curve at a given point is that of its circle of curvature at that

point, and the curvature of this circle is measured by the re-

ciprocal of its radius, we have, if p be this radius,

p ds^

or p='^' ^ ^"^

dx"
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If we take the positive value of the radical, the radius of

curvature will be ± as —

^

d^
is ± ; that is, according as the

curve is concave upward or downward at the point considered.

The sign of p may thus serve to determine the direction of

curvature.

CoR. 1. Since —^ = at a point of inflexion, the radius of
dar

curvature at a point of inflexion is infinite, and the curvature

zero.

CoR. 2. Since the circle of curvature at any point has a

tangent in common in the curve, the radius of curvature is a

normal to the curve.

101. Coordinates of the centre of curvature.

Let C be the centre of curvature of the

curve MN at any point P, and a, /? the co- i'

ordinates of C Then

a = OD=OB-DB=x
dy

/t) sin <j!>

(3 = DC = BP -\- SC= y + peostji

dx

ds

Substituting the values of

ds = -Vdx- + dy- and p = —

\

\dxj

dry

a — X — - dx

dx^

dx \dx

daP

(1)
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102. Maximum or minimum curvature. Since the curvature

is measured by -> it will be a maximum or minimum when p

is a minimum or maximum. It is further evident that if a

curve is symmetrical with reference to the normal in the vicin-

ity of the point of contact, the curvature, if not constant, will

be a maximum or a minimum at that point.

103. In the vicinity of a point of maximum or minimum cur-

vature, the circle of curvature lies wholly on one side of the curve ;

at all other points it intersects the curve. For at a point of maxi-

mum curvature the rate of turning of the tangent is greater

than immediately before or after, while the rate of turning of

the tangent to the circle of curvature remains constantly what

it was at the point of contact ; hence the circle lies within the

curve at this point. For a like reason, at a point of minimum
curvature, the circle lies without the curve. At all other

points of the locus (except when it is a straight line) its cur-

vature is continually increasing (or decreasing) while that of

the circle remains the same ; on one side, therefore, the curva-

ture is less and on the other greater than that of the circle,

and hence the curve crosses the circle.

Thus, the circle of curvature lies without the ellipse at the

extremities of the conjugate axis, within at the extremities of

the transverse axis, and at all other points cuts the ellipse.

Examples. 1. The parabola.

_ „ ^ dy p cPy
From y^ = 2px, -/=-» -A =

^ ^ dx y dx^

Hence

pi

P =
1
+(&"'

dx if+p')^
cPy

daf

1 + dy

dx

d^
djr

= Zx+p>,
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At the vertex y = x = 0, p=p, a = p, ^ = 0, or the radius of

curvature is one-half tlie parameter and the centre of curvature

on the axis twice as far from the vertex as the focus is. We
observe also that p is least when y=0, or the curvature at

the vertex is a maximum.

2. The ellipse.

From ay + 6^x^=a^&S ^ = _ ?>^, ^ = _ _&!..

dx a'y da? ci^if

Hence p = (^V + ^-^.

At the extremities of the conjugate axis, a; = 0, y = ±b,
a?

At the extremities of the transverse axis, y = 0, x= ±a,
&2

If a=h = R, p = Ri the radius of the circle.

3. The cycloid.

From :r=rvers-'^-V2^^^"=:?,
dy ^sj^ry-f^ ^=_I.

r dx y da? y^

Hence p = 2-\/2ry, or the radius of curvature is twice the

corresponding normal (Art. 48, Ex. 9).

At the highest point, y = 2r, p = 4?'; at the vertex, y = 0,

p = 0.

4. The logarithmic curve.

From x = log^, -^ = ^, —^ = -^ ; hence p = v^^ 'rV )
.

dx m dar mr my

If a = e, p = ^^— ^ -^

, and if a; = 0, whence y = 1, p = 2V2,
y

the radius of curvature of the Naperian curve at the point

where it crosses Y.
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5. The hypocycloid.

From. x^+y^= a^, -^ = — -J~, —^ = --i-^; hence p= 3^/axy.

When either x or y is zero, p = 0.

6. The cubical parabola.

From If = a-x, p = -^^-^^

—

-—^•

7. The semi-cubical parabola.

17 2 3 (4a + 9a;)^ lFrom aif = ar, p = -^ ^x^.
6a

8. The catenary.

From 2/ = ^(e« + e"«), p=-|'-

9. The cissoid.

i rom ?/ = , p = —5^ ^
, which is zero when

2a —

X

'S(2a — xy
x = 0, and infinity when x = 2 a.

EVOLUTES AND ENVELOPES.

104. The locus of the centre of curvature of a given curve is

called the evolute of the curve.

TJie given curve is called the involute.

105. Equation of the evolute.

Let yz=f{x) be the equation of the involute. The coordi-

nates of its centre of curvature are (Art. 101),

a = X

1 +
\dxj dx ^ \dx

P = y +d?y ' ^ ^ ^
da? da?

By substituting in these the values of the derivatives ob-

tained from y = f{x) , we obtain the values of a and /8 in terms
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of X and y. Eliminating x and y between these results and

y =f{x), the resulting equation between a and /8 will be the

equation of the evolute.

Examples. 1. Eind the equation of the evolute of the

parabola.

From Art. 103, Ex. 1, Ave have

a='6x+p, I3 =-K

Avhence
a—p
~3~"' y = — ^-ip^.

Substituting these values of x and y in

7/2= 2px, we have

The form of the evolute is shown in the figure.

2. Find the equation of the evolute to the ellipse

whence x= y = -

b*

b'l3

Substituting these in ah/-\- b^x^= a-b',

we find

and the form of the curve is shown in the figure.

3. The evolute of the cycloid is an equal cycloid.

Froma; = rvers-i-^-V2ry-2/^, ^^^^ry-f^ ^ = _21.
r dx y dx^ y^

Hence x = a- 2V- 2ry8 - p\ 2/ = — /8.

Substituting these in the equation of the cycloid,

a = r vers-'/'-^VV- 2r;8 - ^. (1)
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If the given cycloid be referred to the axes XiOiY^,

131

0,N=x = CD + QP= MP -{-QP= MP+VMQ • QD

which is of the same form as (1). Hence the evokite is an

equal cycloid, being its highest point.

4. Show that the evolute of a circle is a point, the centre of

the circle.

The usefulness of the above method of finding the equation

of the evolute is limited by the difficulties of elimination,

although the method is general.

5. To find the evolute of the hypocycloid.

dy _ y^ d^y _ 1 a'From x^ -\-y^ = a^, we have
dx ,.J dx^ 3 »i_™t

Hence a = x + 3 x^y^, I3
= y -\- oy^x^.

To eliminate x and y we proceed as follows :

a+&=x + 3 x^y^ + 3y*r^ + y = (a:^ + fy

;

hence (a+ B)^ — x^ + i/^.

Similarly, (a — $)* = x^ — y^.

Hence, (a+ /S)* + (a-)3)*=: 2.r*,

yx'
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and [(a + ;8)^ + (a - 3)^]2 + [(a + &)^ - (a - 0)^^

6. If C is the centre of an ellipse, CG the X-intercept of the

normal at P, and the centre of curvature corresponding to

P, prove that the area of the triangle COG is a maximum when
the distance of P from the conjugate axis is one-fourth the

transverse axis.

106. Envelopes. The equation of a locus is a relation be-

tween X, y, and one or more constants, upon which latter the

position or form of the locus depends. Thus, the constants m
and b fix the position of the straight line y = mx -f- b ; the con-

stants a and b determine the form of the ellipse a^y--\-b-af=a^b^
;

while the constants of the general equation of a conic deter-

mine both its position and form.

The constants in y =f{x) are called parameters.

It follows that if different values be assigned to one of the

parameters of the equation y =f(x), the resulting eqiiations

will represent a series or system of curves differing from each

other in form, or position, or both. Thus, {x — my + y"^ = R"^

is the equation of a circle whose centre is on X, and if different

values be assigned to m, we shall obtain a series of equal circles

whose centres are on X.

The curve which is tangent to all curves of the system obtained

by the coyitinuous variation of any one of the parameters in

y = f{x) is called the envelope of the system.

The constant thus supposed to vary is called the variable

parameter.

Thus, in the case of the above circle {x — my + y^ = R^, m
being the variable parameter, the envelope of the system is

evidently the two tangents to the circle, in any of its positions,

which lie parallel to X.
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Denoting the variable parameter by a, the general equation

of the system may be represented by

f{x, y, a) = 0.

Fig. 32.

107. Equation of the envelope.

Let SB be the envelope of any system of curves, and Q the

point at which the envelope is tangent to any one curve of

the system MN. Let

u=f{x,y,a) = (1)

be the general equation of the system, a being

the variable parameter, and P, {x, y), any

point on MN.
Were jTfiV fixed, that is, a constant, the direc-

tion of P's motion would be determined by

du

dy dx

dx~ du'

dy

But, if MN is not fixed, a is variable, and

, du , , du 7 ,
dii ^ r>du = -^ dx -\- -;- dy -\ da =0,

dx dy da

whence

du du da

dy dx da dx

dx du

dy

Now when P coincides with Q, these values of -^ are equal,
dx

since MN and SR have at Q a common tangent. Hence at

Q — — = 0, which will be satisfied if da = 0, that is, if the
da dx

partial derivative

du _ ,.

da
(2)
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The coordinates of any point Q of the envelope must there-

fore satisfy (1) and (2). Hence, to determine the equation of

the envelope of any system, combine the general equation of the

system with the eqtiation formed by jilacing the partial derivative

ivith respect to the variable parameter equal to zero^ eliminating

the parameter.

Examples. 1. Find the envelope of {x — m)--\-y-=R-, m
being the variable parameter.

XI = (x — my+ y-— E^= 0, — = — 2 (ic — m) =0, or x = m.
dm

Substituting this value of m in {x — my+y-— B^= we have

y=±B, two straight lines parallel to X
2. Find the envelope of the hypothenuse of a right-angled

triangle of constant area.

Let OAB = c be the constant area, and

OA — a. Then, since

OB- OA
c, 0B= 2c

or + y
2( = 0, (1)

Hence the equation of ^5 is

a^'2c ^'

a

_ 2 ex

a- a

in which a is the variable parameter. Hence

die 4 ex , 2 c

da a° a'

whence a = 2x. Substituting this value in (1), we have

xy = -, the equation of an hyperbola referred to its asymptotes.

3. Find the envelope of an ellipse whose eccentricity so

varies that its area remains constant ; knowing the area of an

ellipse to be irab.

+ ^=0,
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We have -n-ab = m, a constant, whence a6 = — = c, a constant.
TT

As a and 6 are both variable, we eliminate either parameter,

as b, from a-i/^+6V=a^6- by means of the condition ab=c, and

thus obtain u= a*if -\- crxr— o?(?= ; whence — =4ay— 2 ac^= 0,

or a^=;^—,, which in a^+ c^a^— aV= 0, gives xy=y- Since
2y- 2

the axes are rectangular, the hyperbola is equilateral, as also

in Ex. 2.

4. A line of fixed length moves with its extremities in two

rectangular axes. Find its envelope.

Let AB (Fig. 33) be the line. Its equation is

- + ^ = 1, or u=bx -{- ay — ab = 0, (1)

and by condition,

a^ + b^=AB'=P, (2)

I being constant. Proceeding as before, we should eliminate

one of the parameters from (1) by means of (2) and then form

the partial derivative. But it will be found more expeditious

to differentiate first and eliminate afterwards!

We have from (1), since 6 is a function of a,

m dU ' db , , ,
rt . . T /x /ov

since ;y- = — r from (2) . Substituting in succession the values

of X and y from (1) in (3), we find

a'y-\-bhj-b' = 0, (4)

- a'x - b^x + a? = 0. (5)

Substituting from (2) the value of a^ in (4) and of b^ in (5),

6« a"

or b^ = yh\ a^ = x¥,

which in (2) give cc' + t/"^ = l^, the equation of the hypocycloid.
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5. Find the envelope of y = mx + b, m being the variable

parameter.

6. From a point A on the axis of X distant a from the

origin lines are drawn. Find the envelope of the perpendic-

ulars drawn to these lines at their intersections with Y.

A line through Ais y = m{x — a), and its intersection with

Y is (0, —ma). The perpendicular to y = m(x — a) at

1 X
(0, — ma) is y •\- ma = x. Hence u = y -{- ma -f — = 0, in

m m
which m is the variable parameter.

dm m-
'

^5

Substituting this value of m in y + ma + — = 0, we have

y- = 4 ax, a parabola.

7. Find the envelope of a series of equal circles whose

centres lie in the circumference of a given circle.

Let Xi^ -f 2/i^ = ^1^ be the fixed circle. Then

(x - Xi)- -\- {y - yi)- = R^

is the movable circle.

Ans. 3? -\-y'^ = (i?i ± liy, two concentric circles Avhose radii

are ^i +^ and R^ — R.

8. Find the envelope of x cos 39 + y&\\\'Sd = a (cos 2 ^) ^, 6

being the variable parameter.

3

xcos3^ + t/sm3e = a(cos2e)^, (1)

whence — = — a;siii3e+ r/cos3tf + «(cos2e)^sin2e= 0,
Old

1

or a;sin3fl— ?/cos3e= asin2e(cos2^)^. (2)

Squaring (1) and (2) and adding,

x2 + J/2
::::, a2[(cos 2 d)^ + COS 2 ^(siu 2 «)2] = oP' cos2 fl. (3)
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Dividing (2) by (1),

• o /. o /I
tan 3 fl — -

% sm 3d— y cos 6 6 x

xcos3e + y sin -id y
1 + tan Se- -

X

= tan 2 9,

whence ?' = tan ^. Hence from (3),
X

„
, 2 o 1 — tan2 e „2^^ — y^

x^ + y^= a^ — =a ^ ——^,
1 + tan'^ fl x2 + j/2

or {x? + j^2)2 _ a2(j;2 _ j^2)^ the lemniscate.

108. The evolute is the envelope of the normals to the involute.

I

Let (if', y') be any point P' of the involute, (a, ft) the cor-

responding point Q of the evolute, and (j> the angle made

by the normal or radius of curvature

p = FQ with X. Then for >SQ and
^

SF we have

a— a;'=pcos<^, p—y'=psm<f),

or a=x'+pCOS<f), (3= y'-]-p sin
(f>. (!) o

As (x', y') moves along the involute,

(a, fi) moves along the evolute, or a, ^3, y' are functions of x'

Hence, differentiating (1),

da = dx'-\- cos <t>dp — p sin <f>d(f>,

dft = d7j'-\- sin <l>dp + p cos <f>d(f>.

But, Art. 26,

dx'= sin (f>ds, dy'= — cos <^fZi-,

1 d<f>
or, since - = -^-j

da;'= p sin <fid(}>, dy'= — p cos (f)dcf).

Substituting these in (2), we have

da = cos ct>dp, dp = sin <f>dp, (3)

whence -^ = tan ^.
da

(2)
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But — is the slope of the tangent to the evolute at Q, and
da

tan <^ is the slope of the normal to the involute at P'. Hence

the normal to the involute is tangent to the evohite, and the evolute

is tlie envelope of the normals to the invobite.

109. The difference between any two radii of curvature to the

involute is equal to the arc of the evolute ivhich they intercept.

For, from Art. 108, Eq. 3,

da = cos (jidp, dft= sin cf>dp.

Hence, squaring and adding,

da-+d/3'=dp';

or, if s' be the arc of the evolute (Art. 25),

ds'z=±dp;

or the rates of change of s' and p are equal.

110. The two preceding properties afford the following
mechanical construction of the involute when the evolute is

given. Let ES be any curve. Then,
if a pattern of RS be made, and a

string, one end of which is fixed at S, p,/_
^'3- 35.

be wrapped around the pattern SQB,
as the string is unwound from the

pattern the free end will describe the \i/

curve MN which will be the involute of MS. Any point of
the string will trace the arc of an involute as the string un-
winds from the evolute ; hence, while a curve has but one
evolute, namely, the locus of its centre of curvature, the evo-
lute has an infinite number of involutes.

111. Orders of contact.

Let y=f{x), y=(fi(x), be the equations of two curves re-

ferred to the same axes and having a common point at xz= a.
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Then /(a) = <f>{a). Let ^ be a very small increment of a, the

ordinates corresponding to a; = a + ^ being /(a + 7i), <j>{a -\- h).

By Taylor's formula,

/(a + /0= /(a)+/'(a)/i +/"(«) 1+ /'"(a) | .••,

<^(a + /0=<^(a) + <^'(a)/i + <^"(«),T;+<^"'(a),|'-,

or, by subti-action,

f{a+h) - «/,(a+ /0 = [/'(a) - <^'(«)]'^+ [/"(«) - <^"(«)] ,|

+ [/"'(a)-<^"'(a)]f^ + -,(l)

which is the difference between corresponding ordinates of the

curves on one or the other side of their common ordinate

according as h is positive or negative. It thus appears from

(1) that two curves are nearer on each side of their common
point as the second member is smaller, that is, as the succes-

sive derivatives in order are equal each to each when x = a.

If /'(a) = </>'(a), the curves are tangent at a; = a and are

said to have contact of the first order. If, also, /"(«) = <^"(«))

the curves are said to have contact of the second order ; and so on.
•

Cob. 1. Since, if the curves have a common point, we must

have /(a) = ^(a), contact of the nth order imposes n + 1 condi-

tions.

Cor. 2. If contact is of an odd order, the first term of (1)

which does not vanish contains an even power of h, and the

difference between the ordinates has the same sign whether h

be positive or negative. Hence one curve lies above or below

the other on both sides of the common ordinate, or curves whose

order of contact is odd do not intersect. If contact is of an even

order, the first term of (1) which does not vanish contains an

odd power of h, and the difference between the ordinates

changes sign with h. Hence if one curve lies above the other

on one side of the common ordinate, it lies below it on the

other side, or curves whose order of contact is even intersect.
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Cor. 3. Since the number of independent conditions which

can be imposed upon a curve is the same as the number of

arbitrary constants in its equation, the highest possible order

of contact between two curves whose general equations contain

n and m arbitrary constants is w — 1, n being less than m.

Examples. 1. What is the highest possible order of con-

tact of an ellipse and parabola ?

The general equation of the conies contains five arbitrary con-

stants, and therefore the ellipse has a possible fourth order of

contact with other curves. But for the parabola e = 1, the

number of arbitrary constants is four, and its highest possible

order of contact is the third. Hence the ellipse and parabola

cannot have contact with each other above the third order.

2. Prove that in general the highest possible order of con-

tact of a straight line is the first, that is, tangency ; and of the

circle, the second.

3. Prove that at a point of inflexion the straight line has

contact of the second order, and intersects the curve.

At a point of inflexion the second derivative of y =f(x), the

equation of the curve, is zero (Art. 96). Also, from y = mx -{- b,

the second derivative is zero. Hence the line and the curve

have contact of the second order. Hence, also, the tangent

intersects the curve (Art. Ill, Cor. 2).

4. Prove that at a point of maximum or minimum curvature

the circle of curvature has contact of the third order.

At such a point the circle does not intersect the curve (Art.

103), hence its contact must be of an odd, and therefore of the

third, order (Art. Ill, Cor. 2).

SINGULAR POINTS.

112. Points of a curve presenting some peculiarity, inde-

pendent of the position of the axes, are called singular points.

Such are points of inflexion, already considered (Art. 103).
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Fig. 36

Fig. 37. <

Multiple points. A multiple point is one common to two or

more branches of a curve, and is double, triple, etc., as it lies

on two, three, etc., branches.

If the branches pass through the point,

as in Figs. 36 and 37, P is called a mul-

tiple point of intersection or osculation,

according as the branches have different

tangents or a common tangent. Thus, in

Fig. 36, P is a triple multiple point of

intersection ; and in Fig. 37, P is a double

multiple point of osculation.

If the branches meet at the common
point but do not pass through it, as in

Figs. 38 and 39, P is called a salient point

or a cusp point, according as the branches

have difterent tangents or a common tan-

gent. Cusp points are of the first or

second species according as the branches

lie on opposite sides or on the same side

of the common tangent.

113. A conjugate, or isolated point, is

one whose coordinates satisfy the equa-

tion of the curve, although no branch of

the curve in the plane of the axes passes

through it ; as P, Fig. 40.

A stop point is one at which a single

branch of a curve terminates.

Fig. 40.

114. Determination of singular points by inspection.

Ascertain if possible, by inspection of the equation, whether

for any value of one of the variables, as x, y has a single value.

Let a; = a be the value of x which gives a single value h for y.

Then the point (a, h) is to be examined.

If, for values of x both a little less and a little greater than

a, y has more than one real value, the branches pass through
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(a, b), which is therefore a multiple point of intersection or

osculation. If, for values of x a little greater (or less) than

a, y has more than one real value, but is imaginary when x is

a little less (or greater) than a, the branches meet but do not

pass through (a, 6), which is therefore a salient or cusp point.

If y is imaginary for values of x both a little less and a little

greater than a, {a, b) is a conjugate point.

To determine whether the branches have the same tangent

or different tangents at (a, b), we observe that, since (a, b) is

common to several branches, '^ must at that point have sev-
dx

eral values, and the branches will have different tangents or

a common tangent according as these values are different or

equal.

It is evident that -^, as derived from/(a^, y) = 0, may have

more thail one limit when f(^x,y) = 0, has multiple points.

Thus if POP' is the locus of f{x, y) = 0,

-^, being entirely general, applies to both

the branch OP and the branch OP', and

its value at is the limit of ^ or of ^
X x'

according as P or P' approaches

a-'o
Fig. 41.

It is thus a general ex-

pression for the limits of different ratios, and these limits may
or may not be the same.

Examples. 1. Prove that y-= af{l — ar') has a double mul-

tiple point of intersection at the origin.

Values of x, whether positive or negative, give in general

two values of y ; but when x = 0, y has the

single value 0. Hence the branches pass

through the orgin.

dy_ l-2a;
dx

= ±1;

Fig. 42.

Vl - x'_

there are therefore two tangents at the origin, making angles

of 45° and 135° with X, and the branches intersect.
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2. Prove that ah/—2ah^y — a'^= has a point of osculation

at the origin.

Solving/ for y we have

^

2/ = ^(6±Vaa; + 6-).

If X is positive and very small, the radical >6; hence one

value of y is positive and the other nega-

tive. If X is negative and very small, both

values of y are positive, since the radical is

then less than h. li x = 0, y — 0. Hence

the branches pass through the origin and

lie in the second angle on the left of Y",

and in the first and fourth on the right of Y.

20 x"+ 4 aby + A ahx^^
dy 5x*-\-4abxy

0,0

Fig. 43.

dx

dx 2 a^y — 2 abx^_

dy

2a''^y
dx
— 4 abx 5^

dx

whence ^ = ± 0, or the axis of X is a common tangent at the
dx

origin. Hence there is a double point of osculation at the

origin, and for one branch the origin is

a point of inflexion.

3. Prove that y^=2x'^-\-x^ has a mul-

tiple point of intersection at the origin,

the tangent having the slopes ± V2.

4. Prove that y^= „^ has a double
ar—x^

multiple point of osculation at the

origin.

y has in general two real values with

opposite signs, whether x be positive

or negative, and is zero when a; = ;

hence the branches pass through the

origin.

Fig. 45.
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dy _ 2 g- — cr

'

= ±0.

Hence the axis of X is a common tangent at the origin,

5. Prove that y- = x'^ — af has a double multiple point of

osculation at the origin. The locus of Ex. 4 is represented by

the dotted line of Fig. 45, and that of Ex. 5 by the full line.

6. Prove that the cissoid has a cusp of the first species at

the origin.

y-

=

If X is positive, y has two values with oppo-

site signs ; if cc = 0, y = 0; if cc is negative, y is imaginary.

Hence branches in the first and fourth angles meet at the

origin, but do not pass through it, and the origin is either a

salient point or a cusp of the first species.

dy _ J 3 a —

X

^^ (2a-x)'0>
= ±0,

or the branches have the axis of X for a common tangent.

7. Prove that ay^ = x^ has a cusp point of the first species

at the origin.

8. Prove that (y — x^y = .r' has a cusp

point of the second species at the origin.

y = a^ ± x'^. If X is negative, y is imagi-

nary ; ii X = 0, y = ; if a; is positive and

small, y has two positive values. He^ce

two branches, both in the first angle in

the vicinity of the origin, meet at the

origin but do not pass through it.

Hence X is a common tangent, and the origin is a cusp of the

second species.
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9. Show that y^=x(a-\-xy has a conjugate point at (—a, 0).

y = y/x(a + x) has two values when x is positive, but is

imaginary for all negative values of x except x= —a, when

y = 0.

10. Prove that the conchoid has a multiple point of inter-

section, a cusp of the first species, or a conjugate point, at

(0, — b), according as a > &, a = &, a < 5.

y-{-b
x^y^ = {y •{by{a? — y^), whence x — ± va^ — y^-

If a > 6, values of 2/ a little less or greater than — h give

two values of x, and cc = when y= — h. Hence the branches

pass through (0, — 6).

If a = b, X is imaginary if y is negative and numerically

greater than 6 ; is when y= — b; and has two values when

y is negative and numerically less than b. Hence the branches

meet at (0, — b), but do not pass through it.

If a < &, all negative values of y numerically greater than a,

except y = — b, render x imaginary.

dy fx
dx —a^y + a^y — 27f + ba^ — 3by'' -&'2/J.,o

2y.% + f

- 2xy + {cr-x'-6y--6by- b') ^ 0,0

b-

(a'-.)|

^=±
dx Va' - &-

If a> b, there are two tangents who slopes are ±
/«.2 .Va

If a = b, the slope becomes 00, and F is a common tangent.

it a < 0, -p IS imaginary.
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11. Show that y = ictan~^- has a salient point at the origin.

If a; = 0, y = 0; whether x be positive

or negative, y is positive. The curve

therefore lies above X, and branches in

the first and second angles meet at the

origin. When x is positive,

dy = tau~'-
dx X

= "" = 1.5708,
l+a^_

the slope of the branch in the first angle. When x is negative,

^^= tan-'
dx

+ = tan (- X ) = - ^ = - 1.5708,
1 + X-

the slope of the branch in the second angle.

12. Prove that y = x log x has a stop point at the origin.

The curve lies to the right of Y, for y
negative numbers have no logarithms,

and X cannot be negative. When x is

positive, y has one real value. When o-

x = 0,

y = x log X =

11
logic

1

X

X

•*'"_

Fig. 48.

-;r. =0.

Hence the curve consists of a single branch terminating at

the origin.

ASYMPTOTES.

115. A rectilinear asymptote to a curve is a straight line

which the curve continually approaches but never reaches ; or

it may be defined as the limiting position of the tangent as the

point of contact recedes indefinitely from the origin.

If the curve has no infinite branch, it can have no asymptote.
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116. Asymptotes parallel to the axes.

If PQ is an asymptote parallel to X, and at a distance b from

it, then as x increases without limit, y approaches the finite

limit b, and y = b is the equation of PQ.

So, also, if SR is an asymptote parallel to

Y, and at a distance a from it, then as y
increases without limit, x approaches the p_ < i .-

finite limit a, and x = a is the equation

otSR.
To determine, therefore, whether f{x, y) = has asymptotes

parallel to the axes, observe whether either variable approaches

a finite value as a limit, that is, as the other increases indefi-

nitely. If such be the case, there is an asymptote parallel to

the axis corresponding to the variable which increases indefi-

nitely, at a distance from it equal to the corresponding finite

limit of the other variable.

Examples. 1. Show that x=2R is an asymptote to the

cissoid.

y- — —— , in which y approaches ± oo as a; approaches
2R — X

2R. Hence x = 2R is an asymptote to both branches.

2. Show that y = is an asymptote to the conchoid.

x = ± --i-Z— Va- — y\ in which, whether y be positive or neg-

ative, X approaches ± co as y approaches 0. Hence y = 0, or

the axis of X, is an asymptote to both the branch above and

that below X.

3. Examine y = tan x for asymptotes.

4. Show that r/ = is an asymptote to the witch

x^y = 4:R'-{2R-y).
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5. a-y — x-y = a^.

y = — -• As X approaches ±cc, y

approaches 0. Hence y = 0, or the axis

of X, is an asymptote to two branches.

Also, y approaches oo as x approaches

± a. Hence x = a and x = — a are

asymptotes.

6. a-x = y{x — aY

y
a'x

As x approaches ± oo,
{x-ay

y approaches ± 0. Also y approaches

CO as cc approaches a. Hence the axis of X and x = a are

asymptotes.

7. xy — ay — bx = 0.

y = , X =—-— The asymptotes are x = a, y = b.

X — a y — b

8. Show that y = is an asymptote to x = log y.

9. Examine aPy^ = a-{x^ — y^) for asymptotes. Ans. y— ±a.

10. Examine y{a- -\- x-) = a^{a — a;) for asymptotes.

Ans. w = 0.

b^
11. Examine y = a-\ for asymptotes.

{x — cy
Ans. y = a, x = c.

12. Examine the locus of Ex. 4, Art. 114, for asymptotes.

117. Asymptotes oblique to the axes.

The equation of a tangent to a plane curve being

dy'

y-y'=dx'^^~^'^'

if we make in this equation y = 0, the corresponding value of
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X will be the intercept of the tangent on X Kepresenting

this intercept by X, we have

X=x'-y'^- (1)
dy'

In like manner, making x = 0, the intercept on Y is found

to be

Y=y'--'%' (2)

from which the accents may be omitted if we understand

(x, y) is the point of tangency. Now the asymptote is the

limiting position of the tangent, that is, the position which

the tangent approaches as the point of contact recedes indefi-

dy
nitely ; hence its slope is the limit of -^, and its intercepts are

the limits of (1) and (2), as the point of contact recedes in-

definitely from the origin. The position of the asymptote

when oblique to the axes will therefore be known when the

limits of X and Y are known, and if these limits be designated

by Xi and Yj, the equation of the asymptote is

Xj Yr

If either Xi or Yi is zero, the asymptote passes through the

origin, and its direction is determined by finding the limit of

dv— as the point of contact recedes indefinitely from the origin.

If both Xi and Ti are infinity, there is no asymptote. If one

is infinity and the other finite or zero, the asymptote is parallel

to or coincides with the axis on which the intercept is infinite.

dy
It is usually most expeditious to find first the limit of ^•

If this is neither nor co, the asymptote is oblique, and its

position is made known by either Xi or Yi; if the limit of

dv~ is zero, there will be an asymptote parallel to the axis of

X if Fi is finite ; if the limit of ^ is oo, there will be an

asymptote parallel to the axis of Y if Xi is finite.
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Examples. Examiue the following curves for asymptotes.

1, The parabola, y^ = 22)x.

The curve has infinite branches in the first and fourth angles.

-^ = - = ± ; hence if there are asymptotes, they are paral-

lei to the axis of X. Yi = y — x

there are no asymptotes.
'_)», ±0

= ± X ; hence

2. The hyperbola, ary^ — 6V = — a-6l

The curve has an infinite branch in each angle.

dx

X.=

b'x , b L , b-

ay a ^ y^

dx~\ (

= ±

= ±0.

Hence the diagonals of the rectangle on the axes are asymp-

totes to the curve in each angle.

3. x = log y.

Since y approaches as a; approaches — x, the axis of X is

an asymptote (Art. 142). Otherwise,
dy

dx
y = ; hence if

there is an asymptote to the branch in the second angle, it is

parallel to X.
1

1 - log y
yi = 2/-2/logy]o = 0,

or the axis of X is the asymptote.

For the branch in the first angle, a; = oo when y = x. Hence
dy
-f-
= y = 00 ; that is, the asymptote is perpendicular to the

dx J^
axis of X, if one exists. Xi = a; — 1]^ = oo, or there is no

asymptote to the branch in the first angle.
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4. y^ = x^(a — x).

When X > a, y is negative, and there is an infinite branch in

the fourth angle. When x is negative, y is positive, and there

is also an infinite branch in the second angle.

X,= 2a-3a;
Y,=

Hence the asymptote is common to both branches, and its

equation is y = — x-{--' (See Fig. 53.)
o

5. Prove that y = x + 2 is an asymptote to y' = 6 a;^ -j- x^.

6. Prove that r/= — ic is an asymptote to y = a^ — ar"'.

CURVE TRACING.

118. The foregoing principles are sufficient for the deter-

mination of the forms and singularities of many curves, but a

knowledge of the general theory of curves is necessary in order

to trace curves with facility from their equations.

l-x"
1. y =

1 + ar^

2a;(a^-3)
(3).

(2),

{l+x'Y

Since y has but one value for any value of x, its sign being

that of x, and is when y = 0, the curve passes from the third

to the first angle through the origin,

and has infinite branches in these

angles. As x approaches ± cc, y
approaches 0, and the axis of X i's

therefore an asymptote to both

branches. f'{x) changes sign at

x = ±l, and these values render f"{x) negative and positive

respectively, giving a maximum ordinate in the first, and a

minimum ordinate in the third, angle. f"{x) changes sign at

Fig. 52.
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x=±y/S and a; = 0, giving three points of inflexion. The
slope of the curve at the origin is 45°, for /'(x) = l when
x = 0.

2. y' = aa^ — of' (1),

/"(v) =

/'(•«) = 2a -3a;

2 a"

9.x^(a-a;)^

3x^{a

(3).

xy
(2),

If X is negative, y is positive, and there is an infinite branch

in the second angle. f"{x) is negative when x is negative,

hence this branch is convex upward.

If X is positive, y is positive till

x = a, when y = 0, the curve having a

branch which crosses X at x = a from

the first into the fourth angle. Since

y = when a;= 0, the branches meet

at the origin, Avhich is a cusp point of

the first species, /'(a;) becoming co for

x = 0, and Y being the common tan-

gent. f"{x) changes sign from — to + at a; = a, which is

therefore a point of inflexion, the curve being convex upward
in the first angle and concave in the fourth. The slope at

x = a is 00, since f (x) = cc when x=a. f'(x) changes sign

at x = ^a from + to — , hence x = ^a renders y a maximum.

It has been shown in Art. 145, Ex. 4, that y = — a? -f - is an
o

asymptote to both branches.

3. 2/ = e"«(l), f'{x) = ±-^ (2), f"(x) =-^^ (3).

x'e' x'^e"

From (1) we observe that y is positive whatever the value

of X, or the curve lies above X.

Let X be negative. Then y = e^, which increases as x de-

creases, becoming ac when a; = ; and decreases as x increases,
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Fig. 54.

y

r

^,/"'^
X

becoming 1 when x = v:. Hence y = 1, and

the axis of Y, are asymptotes in the second

angle. Also, when x is negative, f"{x) is

positive, and this branch is concave upward.

Let X be positive. Then y= —, which

increases with x, becoming 1 when a; = x ; or, y = 1 is also an

asymptote to the branch in the first angle. Since y = when

a; = 0, and y = '-c when x is negative and very small, the origin

is a stop point.

f'{x) cannot change sign, lience there are neither maxima nor

minima ordinates.

f"{x) changes at a;= ^ from -f- to — , a point of inflexion at

which the cnrvature changes from concave to convex upward.

f'i^) = —. = X cc. Placing z = -, whence z = x when

are'-' ,_

^ = 0, /'(a-) = -;

orisrin.
e'

= 0, and X is a tangent at the

4. y = x\ogx (1), /'(a-) = l + logx (2), /"(^) = ^ (3).

The curve lies to the right of Y, since x cannot be negative.

As the logarithm of a proper fraction is negative, y is negative

till a; = 1 , when y = 0. When x>l, y is

positive. As f"{x) cannot change sign,
^''

the curve is concave upward. f'{x) =

gives log x = — l, or x = ('~^ = ', which ^\

renders y a minimum. When x = 0,

f'(^x) = — cc, or the axis of 1' is a tan-

gent. When x = l, f'{x)=:l, or the curve crosses X at an

angle of 4.5°.

Fig. 55.

^^ dx X

fly 1 4- log X
= T =0C,

Y, = y-x^ = -x
ax
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hence there are no asymptotes. The origin is a stop point

(Art. 114, Ex. 11).

o. {y - xf = aA or 2/ = r^ ± x^ (1), f\x) = x{2 ± |V^) (2),

f"{x) = 2±-'^-Vx (3).

See Ex. 7, Art. 114, and Fig. 40.

G. r = «^;c(l), /'(,•) =i^, (2),
oy-

7. (»r = r'(l), /'(x-) = |^(2),
2 ay

./"(x-) = f^, (3).
4 a^ir

8. ?/-" = 2ar^ + ^-' (1)-
4 + 3a;

.r(x)=± ^+3a-
^3^^

4(2 + x)^

2V2 + X
(2),

Erom (1), ?/= ± a;V2 + a;, from which we see that the

curve is symmetrical to X, passes through

the origin, and has x = ~2, x = oo for its

limits along X. f'(x) = ± V2 when x=0,
hence the origin is a multiple point of inter-

section. The tangent at x=—2 is perpen-

dicular to X, since f'{x) = oo for x = — 2.

f"{x) has two signs, but does not change

sign except for x = — |, which is not a point of the curve, since

the limit of re is — 2 ; hence there are no points of inflexion.

f'(x) changes sign at a; = — |, where there is a maximum
and a minimum ordinate.

Fig. 56.

fi( X _ f^.y_4a5 + 3ar" 4 -f 6 a; , dy
z—

,

whence -^
()dy ax

dx

or the asymptote, if there be one, is perpendicular to X.

Xi =
4-f3a;

cc, and there is no asymptote.
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9. y' = x* + x^ (1), /'(x) = ^(4-h5a.)= ± i^jtl^ (2),

^,^^^^^8 + 24^+15^ (3).

From (1) , y= ± a^Vl + x, whence we see the curve is

symmetrical to X, passes through the origin,

and that its limits along X are x = — l and

X= X. When x= 0, /' (a?) = ± ; hence the

origin is a point of osculation, X being a

tangent to both branches.

From f"{x) = 0, we find x= ""^^"^^^^
15

; the lower sign

is impossible since a; = — 1 is a limit, and the upper sign gives

points of inflexion. f'{x) = 0, gives x = and a;= — 4, which

correspond to maxima and minima ordinates. There are no

asymptotes.

10. y- = x^ — X*, ov y=± xl^l — x (1)

3-4a;
\x) = = ±

2y

/"(^)=±
;a^_12a;4-3

-X)

(3).

(2),

Fig. 58.

4(l-a;)Va;(l-a;)

From (1) the curve is seen to be symmetrical with respect

to X; and as x cannot be negative and

/'(») = when x = 0, the origin is a cusp

of the first species. Since x cannot be

greater than 1, the curve lies between the

limits and 1 along X. There is a maxi-

mum and a minimum ordinate at a^ = f

,

and a; = '
~"^'

corresponds to points of inflexion. When
4

a; = l, /'(x) = x.

11. a-y-x'y^aJK 13. a/ - a^ + &ar' = 0.

12. 4a; = y{x - 2)^ " 14. x"' - ay + 1 = 0.
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15. f = a^(l _ :^Y (Fig. 59). 18. y- = x* - .^« (Fig. 45).

16. f = x\l - :^Y (Fig. 60) . 19. f + x' _ «« = 0.

17. dY + b'^x^ = d^b^.

Fig. 59.
Fig. 60.

POLAR CURVES.

119. Subtangent and subnormal.

Let P be any point of MM ', PT the tangent, PN the normal,
the pole, and OX the polar axis. Through the pole drawNT perpendicular to the radius vector

to the point of contact, OP, meeting
the tangent and the normal at T and
N. Then OT is the subtangent and
OiVthe subnormal.

120. Lengths of the subtangent and
tangent.

From the right triangle OPT,

0T= OP tan OPT= rtan OPT.

tan a — tanBut tan OPT= tan (a - ^) =

-r — tan
ax

1 + tan a tan 6

dy cos 6 — dx sin 6

1-f-^tan^ (^os 6 + dy sin 6

dx

But x = rcos6, y = rsin$, whence

dx = cos ^dr - r sin ^d^, (7y = sin Odr + r cos Odd.

Making these substitutions, we find tan OPT=r—- hence

Subtangent = OT=i"ode
dr
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and Tangent = VOP' -\-OT-=r^ \l + r"~
Cor. ds = Vdx^ -\- dy^ (Art. 25) = Vrfr' + iHG^.

121. Lengths of the subnormal and normal.

0N= OP tan OPN= root OPT=
tan OPT

Hence (Art. 120),

Subnormal = 0A^=^^-',
dO

and Normal = PN= ^ /
?•' + -^'•

Examples. 1. The lemnisoate r^ = a^ cos 2 B.

dr _ _ci- sin

2

6

dd~ r

Hence Subt = r- -- = ~ = - r cot 2 ^,
dr a' sin 2 ^

Tangent = VylX + r^'^ = --^^,
\ di^ Va* - r*

Subn = ^"=-^^!-?i2l^,

Normal = ^ r' + ^^ = — •

\ (7^ T

2. The logarithmic spiral /•=€<*.

— = a* losj:a.

Hence Subt = , Subn = r log a.
log a

dO 1
In this spiral tn.\\OPT=r— =

, a constant. Hence
dr log a

the tangent makes a constant angle with the radius vector to

the point of contact. For this reason this spiral is often called
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the equiangular spiral. In the Naperian logarithmic spii-al,

log e = l, and the subnormal is equal to the radius vector.

3. The spiral of Archimedes r = a$.

— = a — subn, a constant. 1^— = a€F
dO dr

4. The cardioide r = (i{'l -f cos^).

dr

subt.

dd
z= — a sin 6 = subn. Subt. = —

a sin ^

5. Prove that in the curve r=a sin 6 the radius vector makes

equal angles with the tangent and polar axis.

tan OPT= r— = a sin ——
dr a cos 6

= tan 6.

6. The circle r = 2R cos 0.

Subt = 2 Root e cos 6, subn = -2EsmO,
Tangent = 2R cos 6 cosec 6, normal =2R.

7. Prove that the subtangent of the reciprocal spiral is con-

stant.

122. Curvature of polar curves,

A curve at any of its points is said to

be convex or concave towards the pole

according as its tangent does or does not

lie on the same side of the curve as the

pole.

Let fall from the pole the perpendicular

OD=p upon the tangent. If the curve

is concave to the pole, 2^ is an increasing

function of r, r =f{0) being the equation

of the curve. Therefore -^ is positive.
dr ^

If the curve is convex to the pole, p is

a decreasing function of r, and ~^ is nega-
,

.

dr
tive.

Fig. 62. /p
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Hence the curve is concave or convex towards the pole ac-

cording as — is positive or negative, and at a point of inflex-
dr

ion -t- must change sign
dr

dp

dr
To find p, we have (Fig. 63), NP being the normal,

OD:NP::OT: NT.

But, Arts. 120 and 121,

NP=Jl^+—; 0T=')^'-^,
\ de^ dr-

NT=NO+OT=^ -
'- + r'

^^^.

dO dr

Hence p =

V^+*^de"
To examine a polar curve for points of inflexion, substitute

— from the equation of the curve, r =f(0), in the above value

of p, and see if, for any value of r, -^ changes sign.
dr

Examples. 1. Prove that the logarithmic spiral is always

concave to the pole.

„ dr ,
'/•- r

r=a'', .-. -3^=rloga, p =
dO

lr^4.^ Vl+log^a
\ d&'

Hence ^ —
<ir Vl + log^a

which is always positive.

2. Examine the lituus for curvature.

_ _a_ . dr _ _ a _ 2 aV

Hence ^ = 2a^(i^.^) = 0,
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gives r = aV2. If ?'<rtV2, ^ is positive; if r>aV2,

— is negative. Hence ?-=aV2 indicates a point of inflexion
dr

at which the curvature changes from concave to convex

towards the pole.

3. Prove that the parabola r =—^ is always concave

to the pole.

123. Radius of curvature.

From Art. 119, we have

P = )^^hd^
dx"

(1)

in which a; is equicrescent, and the problem is to transform

(1) into its equivalent in terms of r and 6 when 6 is equi-

crescent.

Therefore (Art. 58, Ex. 7),

P =
+ -r

\d6J dS"

(2)

Examples. Find the radius of curvature of

:

1. The lemniscate, ?" = a^cos26.

dr a^ sin 2 ^

d6 r

Va* - r'

r

dV r* -f a*

d^ f^

Hence P = ,

'dr
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2. The cardioide, r = a{l—GosO).

(Id

— = acoiiO = a — r.

Hence p= 2V2 ar.

3. The spiral of Archimedes, r = aO.

^ 2a- + ^^ 2 + 0'

161

4. The reciprocal spiral, r = -•

or u*

5. The lituus, r =—=•

Ve

^~2a- Aa*-r*

6. The logarithmic spiral, r = a*.

p = a«(l+log2a)^.

If a = e, p = V2e*=rV2, or the radius of curvature is

V2 X the radius vector.

124. Asymptotes.

Since the asymptote is the limiting position of the tangent

as the point of contact recedes indefinitely

from the pole, if a polar curve has an asymp-

tote, r must be infinite for some finite value

of 6, and for such value of 6 the subtangent

d6
r^— must be finite.

dr
Let a be the value of B which renders r in-

finity. To construct the asymptote make ^jr
AOP=a, draw through a perpendicular to
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OP, and make OT=t^~
ilr

. Then TQ, parallel to OP, is the

asymptote. For the point of contact being infinitely dis-

tant from 0, the radius vector and asymptote are parallel. If

= cc, there is no asymptote.
dr

Examples. 1. Examine the hyperbola for asymptotes.

p , dr ewsin^ , ul6 p
r = —

, whence — = ^- — and r— = —±

ecos^ —

1

dQ {eQ,o^B — \y dr esin^

Now r = cc when cos = -==— '

Hence, if there be

an asymptote, it is parallel to the diagonal

of the rectangle on the axes. Again,

e=Vl- cos^ e = Ve^' - 1

.dO
hence r^— = —4-— = ctVe^ —1 = 6.

dr e sin 6

There is therefore an asymptote. To construct it, draw OP

parallel to the diagonal on the axes (or make AOP= cos"^-
),

and make OT=h. Then TQ, parallel to OP, is the asymp-

tote. Since OC = ^ =— = ae, C is the centre, and
sma Ve- —

1

the asymptote coincides with the diagonal. Also, as

cos 9 = cos {— 0),

there is another asymptote below the axis, and similarly situ-

ated.

2. Prove that the parabola r = =- has no asymptote.

3. Prove that the lituus r = —- has the polar axis for an

asymptote. ^^
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4. Prove that the spiral r = - has an asymptote parallel to
6

the polar axis at a distance a from it.

^ 1,. .. (r'sinS^ ,. , ,

o. r^xamme r = tor asymptotes.
cos 6

(). Examine (r — a) siu d =h for asymptotes.

7. Examine the conchoid r = h cosec 6 + a for asymptotes.

r = c» when ^ = 0. ?-— = -^—! '-- =b.
dr b cos d Jo

Hence the asymptote is parallel to the polar axis, and at a

distance from it equal to b.

125. Tracing of polar curves.

Write the ecpiation of the curve f(r, $) = in the form

r=f(6), when possible, and assign such values to 9 as will

render it easy to determine those of r. This will usually be

sufficient to determine the general form of the locus. For

maxima or minima values t)f r, — must change sign. The
do

locus may then be examined for curvature, points of inflexion,

and asymptotes.

ExAMPLKs. 1. '/•=asin2^. — = 2«cos2^.
dd

r = when ^ = and increases with 6 till 6 = -, when —
4 dd

changes sign from + to — . Hence 6 = - renders r = a a

maximum.

From 6 =" - to 6 = - r decreases from a to 0, and the curve

is a loop in the first angle.

When $ passes -, r becomes negative, in-
2

(If,
creasing numerically till = ^Tr, when —

dd

changes sign from — to +, Hence ^ = ^tt
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renders r = — a a minimum. From ^ = f tt to 6 = ir, r is still

negative, but decreases numerically from a to 0, giving another

loop in the fourth angle.

When passes ir, r becomes positive, and as sin 2 6 passes

through all its values while 6 varies from to tt, equal loops

will be traced for values of 6 between ir and 2 tt.

The maximum and minimum values of r are derived from

-^=0; namely, Itt, Itt, frr, and In.
cW
Xo value of 6 renders r = x ; hence the curve has no asymp-

tote.

2. r = a sin 3 6.

The curve is shown in the figure.

From this example and Ex. 1 it may
be inferred that in all equations of

the form
r = a sin ?i^,

the curve consists of n, or of 2w, loops,

according as n is an odd or an even

integer.

3. r = asin|(Fig. 68).

4. r=a(l-tan^) (Fig. 69).

5. r = a cos 2 6.

6. r = a + sin \ 6.

7. r=a + .sinf ^ (Fig. 70).

8. r = a + tan 2 6.

9. y2 = a-(tan2^-l).

Prove that there are two asymptotes

perpendicular to the polar axis at dis-

tances ± a from the pole.
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CHAPTER VI.

TYPE INTEGRABLE FORMS.

126. Integral and Integration.

If f{x) be any function, and f'(x)dx its differential, then

f{x) is called the integral of f\x)dx. Hence, any function is

the integral of its differential.

The process of finding the function from its differential is

called integration. As an operation it is the inverse of differ-

entiation, and having seen

I. Differentiation to be the process of finding the ratio of the

raies of change of the function and its variable, we may define

II. Integration to be the process offinding the function when

the ratio of its rate of change to that of its variable is given.

127. Symbol of integration. The symbol of integration is

I
, read ' the integral of.' Thus, if

y = ar\

then dy = 3 a^dx,

and i dy = y = | 3 ay'dx = 3?,

d and | , as symbols of inverse operations, neutralizing each

other.

The test of the result of any integration is differentiation

;

that is,
I
?>:i?dx — ar* because d(ar') = ?>v?dx.

167
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128. Constant of integ^ration.

It is evident that functions which have the same rate, and

therefore the same differential, may differ from each other by

any constant, but only by a constant. Thus in the function

y =mx + &, which for different values of b represents a series

of parallel straight lines, the rate of y will be the same whatever

the value of b, or cly = mdx for all values of b. Hence any

given differential is the differential of an infinite number of

functions which differ from each other by a constant, and if

the differential only is known, the function cannot be deter-

mined. Therefore

mdx = mx -f- C,/«

in which C is an undetermined constant.

Otherwise : since the differential of a constant is zero, if a

function contains any constant term, this term will not appear

in its differential ; hence a constant C must be added to every

integral to represent this term.

This constant is called the constant of integration. It will

be shown, in the application of integration to definite prob-

lems, that it may either be eliminated or that its value may
be determined from the conditions.

129. The integral of the sum of any number of terms is the

sum of the integrals of the terms.

This is an obvious consequence of the proposition (Art. 16)

that the differential of the sum of any number of terms is the

sum of their differentials.

Or, formally, as | and d neutralize each other,

d{x — y + z) = x — y-\-z + C,

and i dx— j dy + i dz — x — y + z + C;

/"
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hence |
d(x — y-\-z)= i dx + i dy -\- i dz.

Both d and | are, therefore, distributive symbols.

130. If the differential has a constant factor, its integral icill

have the same constant factoi:

For dlAf{x)^= Adlf{x)l (1)

and fcJ[AtX^) ] = Af{^) ; (2)

but (2) is the integral of (1).

Since a constant factor in the differential also appears in

the integral, siich a factor may he loritten before or after the

integral sign, at pleasure.

Thus, d{ax) = adx, and

i adx = a
I
dx = ax.

131. Type integrable forms.

Since a function is the integral of its differential, from

d{ax"*) = max'^'^dx, we have

I
max"'~\]x = ax"*,

/__, , ax'"
ax"" ^dx =

m
Putting m — 1 = n, we have in general,

/ax^'dx= —^ a;»+' + C.
71 + 171 + 1

Reversing the fundamental processes of differentiation, we

obtain thus the twenty following forms :

1. faa;"dr =—^a;"+i + C'.

J 7? + 1

2. r^=loga:+C.
J X
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3.
I
a' log adx = a' + C.

4.
I
e'dx = e' -\-C.

5.
I
cos xrix = sin x + C.

6.
I
— sin xdx = oos a; + C.

7.
I
sec^ a;c7a; = tan x+ C.

8.
I
— eoseo^ ifdi' = cot x-\-C.

9.
I
sec X tan a-r/iv = see a; + C.

10.
I
— cosec X cot a;c/.t* = cosec x -\- C.

11.
I
sin a^a; = vers x-\-C.

12.
j
— cos xdx = covers .r + C.

1.3. r ^^'
=sin-^T + <7.

14. f -J£— = cos-'.a-4-<7.
J Vl - ar'

15. r^^ = tan-ia; + C.

16. r_^^ = eot-^T-HC.

17. r ^^g = sec-^ X + g
*^ xVa*^ — 1

18.
I

^1::::^:-^ = cosee^ a; +C
^ a;Var^ — 1
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19.

^ V'^x-x'

^^^^ = covers"^ x -\- C.

V2 X — ar

20

132. Remarks on the type forms.

The processes of the Integral Calculus consist chiefly in the

reduction of differentials to the above forms. When this

reduction has been effected, the integral is seen at once by

inspection. This being the case, it is evidently indispensable

that the student should be thoroughly familiar with the type

forms, so as to be able to recognize them at sight. The fol-

lowing suggestions will facilitate their recognition and appli-

cation.

Form 1. Wlienever a differential can be resolved into three

factors, viz. : a constant factor, a variable factor vnth any constant

exponent except — 1, and a differential factor which is the differ-

ential of the variable factor ivithojtt its exponent, then its integral

is the product of the constant factor into the variable factor with

its exponent increased by 1, divided by the new exponent.

For • Ca-x-. dx = -^^ x"+' + C.
J n + l

Form 2. When the exponent of the variable factor is — 1,

the differential falls under the second form

f^ = loga- + C,

in which the numerator is the differential of the denominator.

Hence, tvhenever the numerator of a fraction is the differential

of its denominator, the integral of the fraction is the Naperian

logarithm of its denominator.

Forms 3 axd 4. These forms are

a' ' log adx = a" + C,
f"
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and Ce' • dx = e'-\-C,

in which the differential facto)' must be the logarithm of the base

into the differential of the exponent.

Forms 5-12. In eacli of these forms the differential factor

dx must be the differential of the arc.

Forms 13-20. The conditions to which the differential must

conform should in each case be carefully noted. Thus, from

r-^?^ = tan^..+
J 1 + .t"^

a

we see that the first term of the denominator must be 1, and

the numerator the differential of the square root of the second

term of the denominator.

Examples. 1 . | ocp'dx = I 5 • ar' • dr = |ar + C. (Form 1.)

2. Cmx"'dx=-^^^ x'"--^C.
J 1 — m

,y Cadx C -2,1 ^^
I ri

3. I —— =
I
ax hJx = — •-—+ C.

J X a' 'Ix-

. r2dx
'i , ri

'•j35 = -^+^-

- rdx^^2Vx-\-a

6. Cfax"
-^^ + Vx\ f7.T =V -— + 2 J ^ c. (Art. 12^.)

7. Cb{a+bxydx= C{a+ bxy bdx=l(a+hxy+ C. (Form 1.)

,^ 8. f
^^^^^' = ^(4 + ar^)-^3ar'f?.^^ = 2(4 + :^-)^ +a

^ ^ (4 + .r')*
^

9. fm (3 ao^ + 5 a^) ^ (6 ax 4- 25 x*)dx = fw (3 ax'

+

5 x") ^ -j- C.
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r?J^ = log(x^+l)^C. (Form 2.)
J X- + 1

10
+

In logarithmic integrals it is customary to write the

constant of integration C= log c. Hence

log(a~' + 1) +C= log(cB2 ^ 1) + logc = log[c(ar' + 1)].

. 11. r_^ = log[c(a;±a)].
J X ±a

J 2 2 + 3a; + ar' 2^2 + 3a; -far'

. =log[c(2 + 3ar + cr')^].

14. ri-±^2i^da; = logrc(a; + sin.'«)].
.' X 4- sin X

dx

^^- f^x =fhk^ = ^"^^^"^ ^> + ^^^
^
= ^""^^^ ^"^^-l-

16. flOlog'a;— = flog^a;-fa (Form 1.)
J X "

I

17. fm log»a;— =^^ log»+'a- + 0.
c/ a; n -|-

1

18.
J
ae'^clx =

| e" • adx = p"' +C (Form 4. )

\j 19. r3 log aa'Vda; = fa'' • log a 3 a^dx = a^ -f C. (Form 3.

)

20. re"'" Vos a-da; = e"'"
"^ + C.

21.
I
sin X cos xfix* = \ sin- a* + €'. (Form 1.)

22. f- 2 sin 2 .rda- = f- sin 2 x • 2 dx = cos 2 a; + C.
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23.
J
4 sin'^ x cos xdx = sin* x + C.

24.
I
4 sec* a; tan xdx = I 4 • sec'* x • sec x tan ccdx = sec* x +C

25.
I
^ tan* a; sec' xdx = J^ tan' x-\-C.

26.
I
6 tan ar* sec^ a:'' • .T^dr = I 2 • tan x^ sec" a;* • 3 a:?dx

='tan2ar^ + C.

27. C-^^^ = sin-'x' + C.
J Vl - a;*

oo /^2sin"^^a^a; /^o • -i <^^ / • -i xo /-»
28. I — = I 2 • sm ^a; =(sin 'a;)-+(7.

(Form 1.)

29.
I

—

- = I

—

= vers^oa; +C.
-' VlOa; - 25a^' •' V2(5a;) - (5.^;)-V2(5a;)-(5.'c)-'

dx

+ 4a; + 5 J l+(a;-2)'
30. C-—-^ = f-

~ = tan-^a; - 2) + C.
Jx' + ^x + o Jl+(x-2V ^ '

31. Ce'^e'dx = ("^+C.

TiTiTnVTF.NTARY TRANSFORMATIONS.

No general method exists for the reduction of differentials

to type forms. Much therefore depends upon the ingenuity

and insight of the student. In addition to the specific trans-

formations applicable to certain differentials of definite forms,

given in the next chapter, the following elementary transforma-

tions should constantly be borne in mind.

133. By the introduction of a constant factor. When the

differential is under a type form so far «.s- the variable is con-

cerned, it may frequently be reduced exactly to such form by

multiplying and dividing by a constant factor. This reduction
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depends upon the fact that a constant factor may be written

before or after the integral sign.

Illustrations. Fo'rm 1. | {3aa:r-\- 2xy - {3ax -\-l)dx.

Were the differential factor (6ax-\-2)dx, it would be the

exact differential of the variable factor without its exponent.

Hence, multiplying and dividing by 2,

CiSax" + 2xy(Sax + l)rlx = J- C(3ax- + 2xy{6ax -f 2)dx

= j^{3ax' + 2xy-]-C.

When the proper factor is not readily seen by inspection,

we may determine it as follows. Suppose the differential to

be (2a;2-|-a-5)'f(6a;? _|_2ic^)dir, and ^ = required constant fac-

tor. Then A must satisfy the condition

d(2x^ + «*) = (^Ax^ + 2Ax*)dx,

or {3x^--\-5x*)dx = {^Ax^ + 2 Ax*) dx

;

and as this condition must be fulfilled for all values of x, the

coefficients of like powers in the two members must be equal,

or ^A = 3, 2A = 5, from either of which we find -<4 =
f.

In-

troducing this factor,

iC(2x^ + x^)'(3x^'-\-5a^)dx = -^{2x^ + x^)'i+a

Again, suppose the given differential to be

(2a^ + 7x)^(5a^-\-3)dx.

Then we must have

d(2ar' + 7x) = (6a^ -f 7)dx = {oAx? + 3A)dx;

whence 6 = 5^, and 1 = 3 A, or J. = |, ^=^. As these

values are not the same, there is no constant factor, and the

integration cannot be effected by Form 1.
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Form 2. C^+M
J Qx + x''

dx.
ox-\-x'*

Were the numerator 6 + 4 ar\ it would be the exact differen-

tial of the denominator. Hence, introducing the factor 2,

I a , ^^^ = ^\ i, , ,
= i^og(6x + x*) + logc

= \og[c{(^x+x'y-].

If the constant factor is not readily seen, it may be deter-

mined from the condition that the numerator must be the

exact differential of the denominator.

FoBMS 3 AND 4. The constant is determined from the con-

dition that the differential factor must be the product of the

logarithm of the base into the differential of the exponent.

Thus, to integrate a^dx, the factor to be introduced is 2 log a,

and

Ca^dx =—— fa^ loga2dx = —^— a^ + C.
J 2 log aJ 2 log a

Forms 5 to 12. The required constant is readily seen from

the fact that the differential factor is the differential of the

arc. Thus

I
cos 2xdx = Y I

cos 2x-2dx = ^sm2x-{- C.

Forms 13 to 20. In the case of the circular differentials

the constant must be determined separately for each form./dx—
, we observe that so far

as the variable is concerned it has the type form I — •

To transform it, we must make the first term under the radi-

cal 1, and the numerator the exact differential of the square

root of the second term under the radical. We proceed, there-

fore, as follows

:
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1 h
- dx -, _ -dx

\ a- \ a-
-x"

= - sin ^-x 4- C/-

6 a

(14-) r ^^ =-cos~'-a;+a

11 6

= 1 tan 1 - a; + C.
cib a

(16') f- -:r^— = \ cot-^i ^ x- + a
J a- -\- b-xr ab a

h

(17') f ^^"' =^ f_Jf==l f
^'^''

1 ,
^= - sec~* - x-\- C.

a a

. , r dx 1 , b „
(18') I ,

= - cosec-i ~x + a

1 6
dx' ^ _ - da;

-V — a; .; XT \\— X 7,x
\ a a- \ a a^

1 -lb , rt= - vers ^ - X + C •

6 a

do; 1 ,b

J ax L 1 " ^- = V covers-^ x + C.

V2«6x-6V & a
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These eight forms are known as the subordinate, or auxiliary,

circular forms. It is better to transform each special case

directly; thus

4 V3 C Vffter Adx ^4 r (ix ^4V3 r
J 'S-\- i)x- 3J 1 + ix"^ 3 -y/BJ 1

^ tan-V|a; + a
V15

If the subordinate forms are memorized, or at hand for refer-

ence, we have

4:dx _ dx

3 4- oar' f-ffar'

whence, by comparison with (15'),

a^ =
I,

//' = ^,

and hence

1 . , ^ .. 4
-T tan ' ~ x-\- C = —r—
ah a -\/lh

tan ^ ~x-\- C= -7== tan ' Vfic + C

Examples.

y 1. J|(.r'+ l)'^a^da;=|4.J(af+l)WdT=^\(af+ l)^+ C.

4. rV2a;^-3a:^ + l(.t'' - f a;)da; = tV(2cc* - 3.t2+ 1)2 + C.

5. Which of the following can be integrated by introducing

a constant factor ?

{o^ 4- Sar' + a;- + 5)^(2 x' + ^ar' + ^a;)da;.

(3a^-2x)'(3a;-l)da;.

3.'r— 1 , 4-f6a;- ,

dx. ~ Ax.
(l-aj + .r^)- (4a;-3ar')^
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^ a,v^ — bx^-
"^^ ax" — hx-

= log [c (aar* — 6.x'- ) *].

7. f-
^^^•^'

=log[c(12ar^ + 7)^'n.
J 412aT^ + 7 ^'- ^ -1- /

J

J a — o.r*
1

(a — 6ar')".»

9. f
^^"'^•^'

=logrc(10ar'4-16)^].
+

10 /' sin xdx _ ,

a + 6 cos a;+ 6 cos X "
/ , t V r

11. Which of the following can be integrated by the intro-

duction of a constant factor?

odx 1— V^'7 x'"~^dx Ax—'S^x-,
-dx. ax.

8-6ar^ ^_j^ x^ + l .^_J

2

.

I
(("dx = a"' + 0.

J a log a

3. (a^'xHx = —1— a-' + G.
J 3 log a

4.
I

nifi^^dx — #?«e'-' 4-C.

5. Te'" ' sin .xdit = - e™' ' + C

<J-

J e 2cos^^f7a; = 2e -'+C.

1 + or

18. Which of the following can be integrated by introducing

a constant factor ?

"
/

.

t

(f a loa a— e-*^ ndx. e'dx.
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19.
I

CDS'* X sill xdx = — I cos^ x -\-C.

20

21

22

23

.

I
sin- 4 X cos 4 xdx = jij sin' 4 a; +C

I
sin a^ • 2(?dx = —\ cos af' +C

I f sec^ 0/-^ tan x^ • x-rfo; = \ sec^ ar' +C

3. f
^^

=-Vsin^#x-+C.
J V4-9ar

24. f _^£__ = J_cos-i- + C.
^ Va(62_ar') Va &

25. f-A^ = 2tan i2a; + C.
J 1 +4af

26. f-^^^ltaii laj^+C.
J 1 +ar

27. f,;l^ = _^tan-'Via^+C.
J o+ ix" V35

--gji = -Jl-sec-' Vfa; + (7.

xVSa:^ — i") Vo

/da; _,a^
, ^———-—^^ = vers - -\-C.

V2 a.r — .r- <<

29

134. By the transference of a variable factor. Although a

variable factor cannot be taken out from under the integral

sign, it may be transferred from one factor of the differential

expression to another, or introduced into both terms of a frac-

tion.

Illustbatiox.

ff (ax" + a;«)^(5a + 7ar')da; = f C(aaf + x-)^(5ax*+7afi)dx

= (aar* + .f')'+C.
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Examples.

1. I — - dx= I

—

=^=dx = 2Xct^ + xy + C.

"
-^ (1 - o^) I

"-^
(a;-2 _ 1) I

~ VTZ^
dx

g r_jodx__ _ C__^__ _ _ C(^
1V¥_ ^^

5 r ^jg _ c ^ 1 c

\ a;*

1 . .a ^= sin-i-+C.
a a;

•^ ^aj^l+a;^) *^ l4-.r^

135. By expansion. When the exponents of the factors of

the differential are positive integers, the indicated operations

may be performed, and the resulting monomial terms inte-

grated separately. Care should be taken not to expand un-

necessarily ; thus,

J(l - xydx = - i(l - xy^ 4- C.

Examples.
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2. Jix + lya^dx =
I'
+ |a^ + 1 a.4 ^ ^_^ _^ C'^

3. C(a + hxfxdx = '^x- + '^x' + -V + C.
*J ^ O 4:

4. C(l -x + x^ydx = x-x^ + x' — :^x^+\x''+C.

5.
I
^(1 + sin4a;)c/a; = ^(aj — ^cos4a;)+C.

J 3 7 11
lo

"

136. By division. Expansion by division will often lead to

integration, as may be seen by the following

Examples.

2- r?^c?x = ix*-^ar' + log(l+.'r')+C.

3. C^^±ldx = ^x'' + x + ]og{x-iy+C.

4. r(^ + ^^ydx = 9 log x- + VWx + X + C.

137. By separation into partial fractions having a common
denominator,

Since m+*S-la,=§^a.+^^d.,

a fraction may be separated into partial fractions having a

common denominator, and thus integrated, if the partial frac-

tions are integrable.
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Examples.

1. f?Lt^d^=fj^+fi^
b

= a tan~' x + log(l + x^)- -f- C.

2- fx/^-^ dx = r-A±^da; = sin^» a: - (1 - ar') -* + C.
J M-x -'Vl-ar^

Wa^-1)^
3. I dx = {x- — 1)- —sec^x-^C.

4.
r_^^xdx^ ^ ra — 2 a; — a ,

ax
y/ax — a? ••' 2Vwa; — xr

/' g — 2a; j._ft/^ c?a;

2Vaa; — ar* ^»-' Vaa; — ^

=.{ax — x?Y —^\QX^^-x+C.
a

J ar'+4a; 4J ar^ + 4a; 4J ar'+4a; 4J ar'+4a;

Ux + A Ux L\^ +vJ



CHAPTER VII.

GENERAL METHODS OF REDUCTION.

BY PARTIAL FRACTIONS.

138. Rational Fractions. Every fraction of the form

a'x" -I-
6 '.T"-' H Vx-\-'k''

in which m and n are positive integers, is called a rational

fraction.

It is evident that every such fraction can be reduced by

division to a series of monomial terms plus a rational fraction

Avhose numerator is of a lower degree than its denominator.

Thus,
^"

a.- + .«" - 1 H- -./ ~ ^

x^ — x + 1 ar — x-\-l

As the monomial terms can be integrated, we are concerned

only with rational fractions whose numerators are of a loAver

degree than their denominators, and we are to show,—
1°. That every such fraction can be resolved into partial

fractions whose denominators are factors of the denominator

of the given fraction, and

2°. That these partial fractions can always be integrated.

There will be four cases, according as the factors of the de-

nominator of the given fraction are

1. real and unequal, 3. imaginary and unequal,

2. real and equal, 4. imaginary and equal.

184
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139. Case 1. The factors real and unequal.

1°. Let •'^ ' be the fraction, ^(x") being resolvable into n

real and unequal factors ic — a, x — 6, ••• x — n. Then, to every

factor x — a,x — b,---x — n, tliere corresponds a partial fraction

A B 2^

x — a X — b X — 11

in whicli A, B. ••• N are constants, or

f(x) _ A
^

B
^

2^

<f)(x) X — a X — b

It is required that this equation shall be an identical one,

true for all values of x. Reducing the second member to a

common denominator, this denominator will be, by hypothesis,

<i>{x), and the sum of the numerators will be equal to f{x).

This sum will be a polynomial of the (h — l)th degree, and

since the equation formed by placing it equal to f{x) must be

true for all values of x, the coefficients of like powers of x must

be separately equal. We shall therefore have n equations of

condition from which to find the values of the n constants

A, B, '•• N. Hence the resolution can always be effected.

fix)
2°. The integration of ^^ ' dx is thus made to depend upon

jA dcx*

that of a series of fractions of the same form, namely

/Adx x—a
= A log (x — a). Hence the integration is always

x — a
possible.

Examples.

1.
^^ + ^

dec = 5.T -f 15 -I- -l^^^:!?-^-- by division.

The factors of x? — '6x-\-2 are x — 1 and .t — 2 ; hence

35a; -29 ^ A B ^ ^(o;- 2) + -B(a;- 1)

a^_3a:-|-2 x-1 a;-2 x'-'6x-^2
'
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whence
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Sox - 29 = A{x - 2) + B(x - 1)

= {A-\-B)x-2A-B.

Equating the coefficients of like powers,

3o = A + B, 29 = 2A + B;

therefore A = — 6, B = 41, and

Jx^-:^x-\-2 J .; J x-l J x-'J

=f a^+laiK-f) log(a;— 1) +411og(a;-2) + C

= l^ + i5a; + iog (;"-^)V a
(x — ly

2- ^^Z^f'^S ^^x. The roots of ar- -7.^2 + 36 = are G,
or — ( ar + 36

3, and - 2.

Hence
2a^-3x +5^^^ B
ar»-7a^ + 36 x-6 x-'S x-\-2'

and 2x2 - 3 cc + - ^ ^^^ _ 3^ ^^ ^ o) ^ ^^3, _ 6) (a; + 2)

• +C(a;-6)(a;-3).

Instead of proceeding as in Ex. 1, the vahies of the con-

stants are readily found by assuming some value for x, since

the equation is to be true for all values of x. Thus, making x

equal to — 2, 3, and 6, in succession, we find C= \^, B = —
1|-,

A = ^, and

r 2x^-

J a^-
—3x+5
7a;2 + 36

dx = lo
-6)^^ (a; + 2)

a;-3)T^

3. r4^da. = log j(-^::^c.
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6. r^^=iog,p(^-^).
Ja^-9 ^\ x + 3

x + h

'•/.

'•/.

J^^^dx=.\og[c(x-^)Hx + 2fy

10

a^ -{-x^ — 4:X — 4

3a^-l

dx = log
^ (x-^i)ix-2y

ix+2y

.

I
-^ dic = log [o(.r + 1) (.r - l)x] = log [c(.'r' - a;)].

"^ ^~^ (Form 2.)

140. Case 2. TAe factors real and eqiml

f(x)
1°. Let -^^ ^ be the fraction, <^(a;) being resolvable into n

fi>(x)

real and equal factors x — a, a; — a, •••. Then, to such set of

n equal factors there corresponds a set of n partial fractions,

A B N
(a; — a)"' (a: — a)" ^ x — a

stants, or '^-^ =

, in M-^hich A, B, "• N are con-

+ B
irn+-

N
<f>{x) (x — a)" (cc — a)"~" x — a

Reducing the second number to a common denominator,

this denominator will be equal to <l>{x), and the sum of the

numerators will be a polynomial of the (n — l)th degree equal

to f(x) . The latter equation is to be an identical one true for

all values of x ; hence, equating separately the coefficients of

the like powers of x, we have n equations of condition from

which to find the values of the n constants A, B, ••• N. The
resolution is, therefore, always possible.

When the factors of </>(a;) are not all equal, the two cases

can be combined. Thus

JM. A
{x-2y{x-3y{x-4:) ix-2)

D

7-,+
B + C

+ -.+

{x-2y ' x-2
E F

{x-Sy a; -3 x-4:
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2°. The integration of -^ ^ dx is thus made to depend upon
<f>(x)

that of a series of fractions of the form If n = 1,
(a: -a)"

rAdx^ = A log {x - a). If n is other than 1,
J X — a

r^Mx_ ^ ^ r^^ _ . . „^^

^

_A^ .^ _ .!.„

J {x-ay J ' \-n '

Hence the integration is always possible.

x — \
Examples. 1. -da;.

Placing

a;-l ^ A B ^ ^ + -5(^ + 1)

{x + \y {x-ir\f x^-\ (a; + l)- '

and equating the numerators, we have a: — 1 = ^ -|- Bx + B.

Placing the coefficients of like powers equal, we obtain B=\,
A = — 2; whence

, , 1.2
^^=

, .
-,,0 + I

——r=""-r+log(a;+l)+a
{x + \y J {x + iy J x-{-i x-\-i

2 (a;^ + o)dx
• {x-iy{x + 2){x + l)

This is a combination of Cases 1 and 2, three only of the

factors being equal. Hence we assume

^ + 5 _ A B C
(ar-l)''(a; + 2)(x + l) (a;-!)'' (a;-!)- a; -

1

a; + 2 X + 1'

whence, reducing to a common denominator, and equating the

numerators,

»* + 5 = ^(a; + 2) (a; + 1) + B{x - 1) (a; + 2) (a; + 1)

^C{x-iy{x + 2){x + l)

+ D{x-iy(x + l) + E{x-iy{x + 2), (1)
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= (C + D + E)x*-{-{B-{-C-2D-E)x^

+ {A-\-2B-3C-SE)jf

-^{3A-B- C+ 2D + 5E)x

+ 2A-2B + 2C-D-2E. (2)

In (1), make x = — l, x = — 2, x = 1, in succession, and we

have directly E = — ^, D=^, A=l. Equating the coeffi-

cients of a;* in (2), C-\- D + E = 1, whence, having D and E,

C= If. Equating also the absolute terms,

o = 2A-2B + 2C-D-2E,
whence B = — ^. Therefore

r (x* + o)dx _ r dx _ 1 r dx 35 r dx

J {x-lY{x-\-2){x-\-l)~J (x-iy GJ {x-iy 36J x-1

7 r dx _ 3 r dx ^ _ 1 1 1

QJ x-\-2 4J X- + 1 2(a; - 1)2 "•"
6 a; - 1

+ Mlog(^'-l)+ilog(^-f2)-flog(a^ + l) + C.

3. C ^^-'^
dx = — + log{x-3y-\-C.

J {x-3y x-3 ^^ ^

J {x-iy{x-2) x-1 ^x-1

r {2x-5)dx ^ L_ + iilog^+l4-C.
J af'_|_5r' + 7a; + 3 2(a--M) ^ ^x-\-3

' / (.-2r;+3)-=-2T,G4-2+^3)+^^-^^^^-

r ix + 2)dx ^U_l 3_\ ^^-1
J {x-iy(x+i) ^\x-i (x-iyy^ ^x+i^

J {x-3y {x-3y

141. When the factors of <}>(x) are imaginary, the above

processes will lead to the logarithms of imaginary quantities.
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To avoid such we resolve <f>{x) into quadratic, instead of sim-

ple, factors, as follows :

The general form of an imaginary quantity being a-|-6V— 1,

that of an imaginary factor will be aj — (a + ftV— 1). But for

every such factor there must be another, a; — (a — 6V— 1),

since <l>(x) is real. Therefore, for every pair of imaginary

factors, ft>{x) will have a quadratic factor of the form

[a; _ (a + &V^][.x - (a - 6V^)]= {x - a)- + &'•

Cash 3. The factors imagiyiary and unequal.

f(x\
1°. Let -'^ ' be the fraction, ^(x) being resolvable into p

<l>{x)

unequal quadratic factors (x — a)^ +• ^^ (^* — ^Y + d^, etc.

Then, to every such quadratic factor there corresponds a par-

tial fraction ^t_^ -,
"^

-, etc., in which A, B,
(^x-af + h'' {x-cy + d^

C, D, etc., are constants, or

f{x) ^ A + Bx C+Dx M+ Nx
<l>{x)

~ (^x-ay + b' {x-cy + d' {x-my + n^'

For, in reducing the second member to the common denomi-

nator <f>(x), any numerator, as A-\-Bx, will be multiplied by

p — 1 factors of the form (a; — a)- + 6', and the sum of the

numerators [=/(ic)] will therefore be a polynomial of the

[2(p — 1) + l]th degree. We shall therefore have

2(p_l) + 2 = 2p

equations of condition from which to find the values of the

2p constants A, B, '•• N. and the resolution is always possible.

2°. The integration of -'^ ^ dx is thus made to depend upon
<f>(x)

that of a series of fractions of the form

(A-^-Bx)dx _ {A + Ba)dx B(x — a)dx

{x - ay + b^~ {X- ay + b- {x - ay + b^'
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r{A + Ba)dx ^ A±Ba^^^_, x-a
.^^.^ ^33 ^^^,..

^ r B{x-a)dx B^^^^^_ , ,^^

Hence the integration is always possible.

Examples. 1. -^- ~ /

a;^ — 4 a; + 5

The factors of ic^ — 4a; + o are x — {2± V— 1), and their

product is (a; — 2)-+l, or a = 2, 6=1 in the form (x — a)^-f- 6*.

Assuming ——^^^^ = ——-— , we have A= —4, B=l.
^a^^ix + r> (a; -2)2 + 1' '

Hence

/(x — 4:)dx A-i-Ba. .x — a.B-, r-, \'>
, ^,i-^

x^— Ax-\- i^ b b 2

= - 2 tan-H.r - 2) + ^log [(x - 2)^ + 1] + C.

f, (a;^ + a:^ + a; + 1 ) da;

(.T-l)*(.T-' + 2)

Assume -^^±^i±i^±l- = -^A- + -A_ + £±^,
(a;-l)2(a^ + 2) {;x-\y x-\ x'-\-2

whence A = ^, 5 = Y-,
^' = |» D= — h ^"'^

J
(ar' + ar^ + a; + l)da; ^4 r da; 10 r dx

{x-iy{x' + 2) "sJ (a;-l)- 9 J a;-l

5 r dx _ 1 r xdx

9Ja:2_^2 9Ja;2 + 2

4 1 , IOt , 1,s= log (a; —1)
3a;-l 9 ^ ^

4. _A^ tan-i _^ - -^ log (ar^ + 2) -f C.

9V2 V2 - 18

„ ar^da; _ ^da; 5da; (C+ Dx)dx

(a; + l)(a;-l)(a-2 + 2) x + 1 a; -

1

a;- + 2
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Then

a.^ = A(x-l) (a^ + 2) + B(x + 1) (ar' + 2)

+ (C+Dx)(x-\-l){x-l) (!)

= (A + B-\-D)a-f' + (B-A + C)ar

+ {2A + 2B-D)x + 2B-2A-C. (2)

From (1), when x = \, x = — l, in succession, we have

B = \, A = -\.
From (2), B-A + C=l, or C = f ; and ^ + 5 + 7) = 0,

or Z) = 0.

Therefore

r ^da; ^ _ 1 r dx 1 r dx 2 r x

J {x-{-l){x- 1) (x^ + 2) qJ x + 1 6J x-1 sJ ar'+2

11 a; — 1
, V2 , -1 X , ^= ilog—— +—-tan '-— + C.

a; -(- 1 3 V2
da;

J (x-l

L-tan-'-^+a
3V2 V2

+ ^tan-*a;+C.

142. Case 4. The factors imaginary and equal.

1°. Let <l>{x) be the fraction, ^'^ ^ being resolvable into p
<f>{x)

equal quadratic factors (x — a)^+ 6^, (a; — a)^+ b^, etc. Then,

to such set of factors there corresponds a set of p partial

fractions,

A + Bx C + Dx M+Nx
\_{x - ay + 6-]''' [(a- - ay + Wy-''

'"
{X- ay + W'

in which A, B, ••• N are constants, or

f{x) ^ A + Bx C+Dx M+Nx
4,{x) {{x-ay + Wy {{x-ay + U'Y

''^"'
Xx-ay + i/
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Reducing the second member to the common denominator

<l>{x), the sum of the numerators [= /(ic)] will be a poly-

nomial of the [2(i> - 1) + l]th, or (2iJ — l)th, degree. This

equation will therefore furnish 2p equations of condition, from

which the values of the 2p constants can always be determined.

^The resolution is, therefore, always possible.

2°. The integration of -^^^ dx is thus made to depend upon
<t>{x)

that of the general form —^^

—

— ^—— , in tvhich jy is integral.
\_{x — a)^-f 6^]''

If 2^ = Ij tlie integration has been shown to be possible in

Art. 141. If p is other than 1, place x — a = z, whence

x = z + a, dx= dz.

Then

/
{A-\-Bx)dx

/ {A -\- Bz + Ba)dz ^ r Bzdz r{A + Ba)dz

{z^ + l^y "J (z^ +&')".' (z' + ft^)"

2(p-l)(22-f-62)»

be shown in Art

is always possible when p is integral.

and it will be shown in Art. 147, that the integration of

dz

(z* + by

Examples.

^ r{7?-ifx'-\-2)dx ^ r{A + Bx)dx r{C-\-Dx)dx

whence af -\- .i- -\- 2 = A + Bx + (C + Dx) (ar + 2), from which

we find ^ = 0, B= -2, C=D = 1. Hence

r(x^-{-jr + 2)dx ^ r -2xdx r dx f
J {ii^ + 2Y J {x" + 2y J x' + 2 J a

xdx

x2 + 2

1 +_i_tan~^-i^+ilog(x^'+2)+C.
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,, r(x*+2x^—2jf—2x+5) dx ^ A+Bx C+Dx E
'J (ar' + l)=^(a;-2) ' {x^+\y x^'+l x-2'

whence ^1 = — 4, .5 = 0, C = 2. D = 0, E =1, and we have

r —-idx r 2dx r dx

J (or^ + 1)- J x^ + 1 J X - 2

= 2 tan-^ X 4- log (a; - 2) - 4 f

—

—

3 ri^-x + l)dx ^^ (x + iy
_^tan-'.>; +

4. p^ + -»^ + x-' + .^- ^,^ o

J r.r + 2)Hx' 4- .S)^ 2(a^ + 2)

a

10

{x' + 2y{x' + l^y 2(a^ + 2) x' + 'S

+ ^log(r'+2)-91og(ar+3) + a

BY RATIONALIZATION.

Since rational algebraic polynomials and rational fractions

can always be integrated, an irrational differential may be inte-

grated if it can be rationalized. The rationalization is effected

by substituting for the variable of the given differential a new

variable of which it is a function. Of these substitutions the

following are the most important

:

143. When the only function of x affected with fractional

exponents is a linear one, in which case it will be either of the
p p

form X* or {ax + 6)', assume x = z" or ax + b = z", n being the

least common multiple of tlie denominators of the fractional

exponents. For, if x=z" or ax-}-b = z", the values of x, ax-\-b,

dx, and the surds of the given differential will be rational

functions of z.

Examples. 1. | dx.

x^-
r

Here n = 12, and x = z'^.

Hence x^ = z^, .f' = z; .c- = z'', dx = 12z^hlz
;
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. .. r^^--^' dx= f^^ 12 z'klz = 12 Hz'^' -z')dz

3. r ^^' = 2 .r -f- 3 x^ + <> x'^ + 6 log (x^ - 1 ) + C.
'^ .T- — X^

^ r cj-xydx _ r(2-x)^-dx

J 3-x ~Jl+{2-x)'

Assume 2 — x = z-.

Then, (2 — x)^ = z, dx = — 2zdz,

and r(2.n^^= rZL2^ = _2 ffl L_U
J 3~x J 1+z- J \ l-\-z-J

= -2(2 + fot 'z)+C

= - 2(cot- ^/iT^ 4- ViT^-) + C.

J {2r-yY-

/
dx

= 3[(a;-f- l)i + 2(;c+l)*+21og((a;4-l)*-l)] + C.

7. ^:>?{l + x)^dx = 2(\Vx)\{\^-xy-\{\^-x)^\-\^C.

144. When the only surd of the given differential is of the

form Va + &x ± ic^, rationalization is effected as follows

:

I. When the sign of y? is jjositive, place Va + hx + x^ = z — x.

Then a-\-hx = z- — 2zx;

, z^—a , 2(z- + bz -i-a)dz
whence j: = , dx = —^ ' —-^—

,

b + 2z {b-{-2zy
'
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and Va + hx + x" = z-x = ^'' + ^^ + ^
.

b+2z
The given differential will then be a rational function of z,

since x, dx, and Va + bx-\-oif are rational functions of z.

II. Wkeyi the sign ofxr is negative, place

Va i-bx — 2if= y/{x — a) {ft
— x) = (x — a)z,

in which a and /8 are the roots of a^ — bx — a = 0.

Then ^ — x = (x — a)z-;

Avhence x= ^2^1 ^ ^^^ = —T^TXTvr-'

and Va + to - ar' = (a; - a)z = ^^ ~ ")^
.

Z- + 1

The given differential will then be a rational function of z,

since x, dx, and \fa + bx^^^ are rational functions of z.

dx
Examples. /Vl + a; + ^2

Assume Vl +a; + a^ = 2! — a;.

z'-\
Then

1+22

whence d.r = ^(^l+^+H^.
0^ + 2zy

Hence

Vl + a; + a^ = 2 - a; = ?-±^-:t_l.

l + 2z

C
'^^

f-^^ = log(l4-22) + C

= log (1 + 2 a; -I- 2Vl + a; + a«) -H C.

2.
J*^-^—^

= log {2Vx'-x-l + 2x - 1) +C.

»/ ar ',._i-A/9^a.ri'^:+V2x-{-x'



REDUCTION BY RATIONALIZATION. 197

4. f ^ = f-^ = iog(r+x)+a

Or, by the above method,

f
^^ - = log(l + a; + Vl+2a; + x-2) _^

^«

= log2(l+a:)+C'.

Prove that C'=C-log2.

5. r-,^ = iog(i + x +V^T^) +a

V2 4- a; - a^

The roots of x*^ — a; — 2 = are 2 and — 1.

Hence x" -x-2 = {x -2){x + l),

and V2 + X - a.-2 = V(x- + 1) (2 - a;) = {x + l)z.

Squaring, we find x — "^^—- ;
whence

dx=
, , ..., ,

^2-irX-xr = {x + l)z=^—-'
{z-->riy z^-\-l

Hence f—=^^== f--^ = 2 cot ^z + C
J V2 + a;-a;2 -^ ^ +^

= 2cot-\/2zi^ +a
^ix + l

r. f
^^ =2cot-'J^

»/ -x/2 - rr - ar^ \a;

— a

V2 - a; - ar'
\a; + 2

f
^^ =2cot-\/I

+a

8. i

""^ ^2cot-^^:^ +a
V4a;-3-ar' \a;-3

9. f
^^-

=2cot-\/
^^-^-^+a

-^ V2-2a;-ar^ VS + l+a;
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145. Binomial Differentials. Every binomial differential

may be reduced to the form

of{a + bx"ydx,

in which p may be any fraction, but m and n are integral and

n positive.

For, let x^{ax^-\-bxfydx be the binomial, and let k < t.

Then

a;*(a.r* + bx^ydx = x^x^'fa + 6-Yda; = x-''+^*(a + bx^'^ydx;

in which t — k may be fractional, but is positive, and h -\-pk is

fractional or integral, positive or negative. That is, the bino-

mial is of the form

X ''(a + bx fydx.

Put x = z^, and this becomes

z^'\a + bz+<"ydfz^^-'dz = dfz^'^+'V~\a + bz^^'ydz,

in v'hich ± cf-\- df— 1 and de are integral, and the latter posi-

tive.

Hence writing m for the former and n for the latter, we
have dfz'^{a + bz"ydz, which is of the required form. As p

may be fractional, represent it by -,

s

We are now to show that a binomial differential of the form
r

af (a4-6a;'')'dic, in which m and n are integral and n positive,

may be rationalized, and therefore integrated

:

I. When is a whole number or zero, by assuming

a + bx" = z".

II. Wheyi 1- - is a whole number or zero, by assuming

a -f bx" = z'x".

To prove that the rationalization is effected when the above

conditions are satisfied

:
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I. Let a + bx" = z\

Then . = (£^)i ..= (--^)", <^=i(-_^y-.-...

and (tt + te")'' = 2;''.

Hence

\ J nb\ h J

=ni>' \-ir) ^"^

which is rational when —'^^^- is a whole number or zero.
n

II. Let a + bx" = z'x".

Then x =
f

)", .f"' =

dx = -^(^LS;''-^^dz,
n\z'-b) {z'-by

'

and (a 4- bx")' = z'x' = z''(—-—

V

Hence a;'" (a -f- bx" ) 'd.t^

« \i: J_a_. >^
.
^/^_^\^-'_^±_ az

f— bj \z'— bj n\z'—bj {z' — b)-

= --a" 'z'^M—±—]« ' dz,
n yz' — bj

which is rational when ———h - is a whole number or zero.

r .

n s r

When - is a positive integer, the factor {a + bx")' may be ex-

panded and integrated directly.

Examples. 1. C—^^^ = Cx'(a-\-baf)-idx.
^' {a-\-b^)^ ^

Here *A±i = 2.
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Assume therefore

a -|- 6ar = 2- ; whence (a + bx-) - = z^,

Hence
r x'dx _ r/z^ - a

^ {a + bx'y^ ^\ ^ .

b^{z^-ay-

zdz

b^z'-ay-

^1 2a + bx^ ^
^Wa + b^

3. Cx(l + xf^dx= ^(1 + x)^{rix- 2) + C.

4. r—^L^!:L_ = ^^(a 4. bx:'y^dx.
^ {a + bx-y~ ^

Here !'i±i +!=_!.
n s

Assume therefore

a -\- 6ar' = z'-'or ; whence a^

Hence

(a + bx')-' = ^(-^^—\\ dx=-

/x-^rfx- _ r a (i-zdz (z^ — 6X1

1

(tt + 6.r2)'~ Jz^-?, (22_5)| V a y ar'

rdz a , ^i a .t''
, ^

{a-i-bxy-

5. r—^^^— liog^— +e.
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dx 1 a + 2 bar

7f(a + bx") ^ «" x{a + bar)
^'

7. f ^^=^ = -l±Mvr^=i>^'+a

8. Cx\l + 2 a^) ^dr = ( 1 + 2 af') ^ '^^^- + C.

BY PARTS.

146. Let 7c and ^• be any functions of x. Then

d(^tiv) = udv -\- vdu.

Transposing and integrating,

I
iidc = nv —

I
vdu.

This formula is known as the formula for integration by

parts. It evidently makes the integration of udv to depend

upon that of vdu. To apply it, the given differential must be

resolved into factors m and dv such that dv and vdu shall be

integrable. The following are the most important applications

of this formula.

147. Binomial differentials. Formulae of reduction.

It has been shown that every binomial differential may be

reduced to the form x"'(a + bx^ydx, in which p is any fraction,

but m and n are integral and n positive.

I. Let u = x"'~"+\ dv = {a -\- bx")"x''-^dx.

Then du = (m — n -\- l)x"*~"dx, v = ^^
trr

*

nb{p + l)

Substituting these in | udv = uv — i vdu,

I af(a + bx")Pdx = -^^—'

—

—^—
- 'm'-n-\-\ r „_„ . hx'^y^'dx.
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But

I
^-»(^ci + bx")P^kl.r = i .T'" "(a + bx"y{a -\- hx'')dx

Hence

or, solving for j af (a + bx"ydx,

Cx'^ia-^bx^ydx

x'"~"+\a 4- bx"y^^ — a{m — n-^1) Cx"'"{a + bx^ydx
~

TT—

;

r~r\ ' ('^^
b{np-\- m 4-1)

a formula which makes the integration of the given binomial

to depend upon that of another in which the exponent of the

variable without the parenthesis is diminished by that of the

variable within.

Illustratiox.
I

— = i3if(l—x^)~^dx. We apply

(A) to this differential because its integration would thereby

be made to depend upon that of x{l — x^y-dx, which comes

under Form 1. Substituting therefore in (-4) m = 3, n — 2,

p = — ^,a = l, 6 = — 1, Ave have

^ x'(l-a^)^-2Cx(l-a^)~^dx

J x'{l - x'yhlx = 4, :
—

•

= _ ^ic2(l _ a;2) 2 _|_ I r^il - x'ykx
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If ?»p -j- m 4-1 = 0, the formula fails ; hut in this case

m + 1

n

and the differential may be rationalized and integrate4 by

Art. 145.

II. ( af (a + hx^ydx

= Cx"'{a + hx")"~\a + I)af)dx

= a Cx"'{a + bx")" \1x+ b Cx"^"{a + bx''y-'^dx. (1)

Applying (A) to the last integral of (1), we obtain

Cxr^"(a + bx"y~^dx

3r-^\a + ba^'Y — a{m -f 1) j
a-"'(a + bx^y^Hx

b{np -i-m +1)

Avhich, substituted in (1), gives

I
(ir{a + bx!^ydx

yf'+^a -f 6a?")'' -f- anp Cx'^ia + bx^y-Hx
(B)

vp + m -\- 1

a formula which makes the integration of the given binomial

to depend upon that of another in which the exponent of the

parenthesis is diminished by 1.

Illustration. | (a^-far)^dx. The application of (B) to

this differential makes the integration depend upon that of

^ ^
-, which can be rationalized and integrated by Art. 144.

Va" -I- x-2

Substituting, therefore, in (B) m = 0, n = 2. p = ^, a = a*,

6 = 1, we have
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dx

fia' + x'ydx
•^ Va^ + x"

Writing Va^ -(- ar = 2 — a-, we find

r^x__ ^ rdz^iQgz+C = log (.T + V^N=^) -f C.

Hence

C(a^ + ar') ^. dic = ^ x(a- + ar') ^ +^ log (ic + V^^H^) + C.

If rjj9 + m 4- 1 = 0, the formula fails, but Art. 145 applies as

before.

III. In {A) let m = m-\-n. Then

Cxr+"{a+ bx''ydx

x^+^a + bx''y+^— a{m + 1) j
a;'"(a + 6a;")''da;

6(np + m + n + 1)
whence

I
a;"'(a + bx^ydx

a formula which makes the integration of the given binomial

to depend upon that of another in which the exponent of the

variable without the parenthesis is increased by that of the

variable within.

lLT.USTRATIOJf r ^ = Cx %x' - l)-^rfa;. By ap-

;egration is made to depend upon that of

, which is a known form. Hence, making m = — 3,

plying (C) the integration is made to depend upon that of

dx

xy/oi? — 1

n = 2, /) = — ^, a = — 1, 6 = 1, in (C), we have



/:
dx
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If m = — 1, the formula fails ; but in this case = 0,

and Art. 145 applies.

lY. In {B) let 2^=p-\-l. Then

\^{a-\-hx''y^Hx

— . d ,

np -\- n + m -\-

1

whence

fee" (a + bx"ydx

—x"'+\a-\-bx"y+'^+ (wp+w-l-m+l) Cor(a-{-bx^y+^dx

an{p-{-l)
AD)

a formula which makes the integration of the given binomial

to depend upon that of another in which the exponent of the

parenthesis is increased by 1.

r dx C
Illustration. I— ;r5= I {\-\-^y^dx. By applying

./ (1 + xry J
(D) twice, we see the integration will be made to depend upon

that of ? which is a known form. Hence, making wi = 0,
1 +aH

H = 1, 2> = — 3, a = 6 = 1, in (D), we have

""4(1+0^)^ ' 4

^^^
- x{i-\-x^y'- 3 f(i-\-x'y'-dx

(1+^'" =^4
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Applying {D) to the last integral, we have m = « = <>

i; = - 2, a = 6 = 1, and
' '

f(^+^rM.^Z^^^^lfnzSj^±^ Hx

^' ^+htiin \v.+a
2(1 + ^)

Hence

Examples.

'^ {of — Qi?y- ^ 2, a

yd -\- OCT
J

- -*

^- J (a-'- ar') kx = ^(a^ - o-^^ + ^^'
(a^ ^- o;^)*

** 8

,3 a''. , a; ^+ —-sin->-+C.

Appl'y (5) twice.
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8. Cx'{l-af)klx= - ^(^ ~ ^) '

+^(^ - ^^y
+^sin-'x + C.

J 4 8

Apply (yA) and (B) in succession.

o C 3?dx C 3 N-'^
9. I

— = I .T- (2 a — .t) - ax
*^ V2 ox — ar' '^

= ^^ (2 aa; — ar) - H rers^ - + C.
2 ^ ^2 a

Apply iyA) twice.

10. f
'^ = -^^'-^ + c.

Apply (C).

11. f ^ = -^^^^^^-4-^ log -fC.
-'ar'(l-.r2)^ S-r^ Vl - a:'^ +

1

12. f ^ = ? +J^tan-'^ + C.
J(o; + ar^)2 2aXa^ + iK') 2 a'' a

13. Show that (^) will reduce the following to known forms :

, if m is even and positive ; also if m is odd and
Va^ — a^

positive.

x'^dx
, if m is even and positive.

/~~i~t
—

«

Va'^ + ar

±?
^(o? ± a^) », if m is odd and positive.

What if m is odd and negative ?

14. r(r2 -^)^dx = \x{i~ - x-') ^ -h ^ r^ sin^^ ~+C.

15. r y'^ =- ^y^+^Ky+^^) v2^^j7^^
v' -s/lry — f ^>

-l-fr'vers-i^ + C.
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148. Logarithmic differentials of the form (jc*** (log x)ndx
may be integrated by parts when n is a positive integer, by

placing af*dx = dv, (log xY=u, in the formula

I
udv = vv —

I
vdu

;

every application of the formula reducing the exponent of the

logarithm by unity and thus finally making the integration

depend upon | x'^dx.

Examples. 1. \ x- {\o^ xydx.

Let a?dx = dv, (loga;)-= n. Then v = -, du = 2 log x— , and
3 X

Jtidv = (log xY
I
ar^log xdx.

Placing ^dx = dv, u = log x, whence v = —, du = —

,

3 X

Judv = - log a.- — -
I
x'dx = ~ \ogx — ^ + C.

Hence ("^^(log x)Hx = -
[ (log x)-- f log a; -(- f] + C.

2.
I
log xdx = X (log x — \)-\-C.

3. Jar'(loga;)^rf.r = ^'[(loga;)^'-iloga; + i] + C.

149. Exponential differentials of the form x^^tF^dx may
be integrated by parts when n is a positive integer, by placing

a;"= XL, e'"dx = dv, in I udv = tiv — | vdu, every application of

the formula reducing the exponent of x" by unity, and thus

finally making the integration depend upon | e'"dx.
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Examples. 1. | are^'xdx.

Let e'"dx = dv, x'=u\ then v =— , dn = 2 xdx, and
a

/udv =
I
e'^xdx.

Placing e'"dx = dv, x = m, whence v = —, die = dx,
a

erxdx =^^ - -
I
e-fte =^ - £- + C.

a aJ a or

Hence (W^d.c = — ^3?^-^ + ^V C.
J a \ a o?j

»/ \<i a^ cr ay

150. Trigonometric Differentials. By simple transforma-

tions, some of which are indicated in the following examples,

these may often be reduced to known forms. Otherwise resort

must be had to integration by parts.

I. sin»» xdx and cos" xdx.

(a) When n is an odd integer, we may write
n-l

sin^o^a; = (1 — cos^x) "^ sin xdx,

and cos" xdx = (1 — sin^ x) ^ cos xdx.

1. I sin® xdx =
I
(1 — cos'' x) sin xdx = — cos x-\-^ cos' x-\-C.

2. jcos*a;dx=
|

(1 — sin^ic)''cosa;diB

= sin a; — I sin®x+\ sin* x-\-C.

3.
I
cos® xdx= sin x — ^ sin® x + C.

{b) When n = 2, since

2 sin' a; = 1 — cos 2 a;, and 2 cos^ a; = 1 -j- cos 2 «,



xdx
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4. i sill' xdx = y{-^ — ^cos2x)dx = - — ^sm2x -\-C.

5.
I
cos^ xdx = f + } sin 2x-\-C.

(c) hi general, when n is any integer, let

}i = sin" 'a;, dv = sin xdx.

Substituting in | udv = uv — | vdu, we have

I
sin''ccda; = — sin""^;«cos.c + (n — 1) |

eos^icsin" -a;da;

= — sin""^a;cos CC + (n — 1) |
(1 — sin^a;)sin"

= — sin" ^ccces x + {n — 1) j
sin""'^.'Kda; — (n — 1)

I
sin" xdx.

Transposing the last term to the first member,

/. ,, , siu"~^a;cosic
,

?i — 1 /^
.

,, , ,
sin" xdx = 1 I sin" ^xdx.

n n J

The integration is thus finally made to depend upon I dx=x

if n is even, or upon j sin xdx = — cos x if n is odd.

In like manner,

/,, , COS""' X sin x , n — 1 r ,, ., ,cos" xdx = 1 I cos" - xdx,
n n J

the integration depending on | dx = x if n is even, or upon

I
cos xdx = sin x if n is odd.

r A J sin^ X cos X 'S r o ,

). I siir xdx = + - I siir xdx

— f sin X cos X -\-^x-\-C.

sin'^xcoscc Sr sin ic cos a?

+ 7 t: r;
4 41 2

sin'' X cos X
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7. Ccos*xdx = "°^' a; «in X
_^ ^ ^-^^ xgosx+^x + C.

8. fcos" xdx = ^"^^ ^'.^^" '̂ +^ cos'^ X sin a;

»^ "4- i|sin a? cos x + |f ic + C.

II. -.—n— and
sin** a-' COS" a?

(«) ir^en ?i ts an even integer, we may write

dx

sin" x

n-2

= cosec"^ ^ aj cosec- xdx = ( 1+ cot^ a;) 2 cosec' xdx,

and =(l + tan-a;) 2 sec^icdr.
cos" .T

9. (*
^•^' = f cosec* ;k cosec^xdx = i ( 1+ cot^x) ^ cosec'' xdx

J sin" a; J J
= — cot a; — I cot'' x — l cot*x + C.

10. r_^ = tan a; + ^ tan^ a; + C.
J cos* a;

11. r_^ = tan a; + 1 tan'' x + i tan^ x-\-C.
J cos^x

I*

(6) When n is 1, we have
dx

2cos2!^ Asec=^-da;

12. r_^= f__j^i!-_= f ^= r. '

2 sin -cos- *' sin- *^ tan^
2 2. 2 2

X
cos-

2

= log tan 1 + 0.

13. C^^ C
f-'

= - log tan (l-?^+ (7, by Ex. 12.
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(c) In general, when n is any integer,

/ dx _ /^cos^ X 4- sin^ x , ,_ f cos xdx C
sin" re J sin"x J sin"ic J i

Let u = cos X, dv

dx

siii''~''a;

cos xdx

sm" X

Substituting in i udv = uv — | vdu, we have

fcos xdx cos x 1 C da.
cos .T—

;

=
: I

sin"a; (n— l)sin" 'a; n — 1»/ sin""

dx

(n— l)sin" 'a; n — 1J sin"~''a;

n — '2r dxHence CJ^ = 521£ + !iZl^
(J sin";r; (« — 1) sin"~^a; n — 1»/ sin"~^a;

The integration is thus finally made to depend upon

/ . , =
I
cosec^a^ic = — cot x,

sin^'ic J

if n is even, or upon

if n is odd.

In like manner,

/ dx _ sing; ^ » — 2 T
cos" a; (n — l)cos'* ^'c n — iJ c

dx

(n — l)cos'* ^'c n — 1.7 cos"~*ic

the integration depending upon

—— = I
sed^xdx = tan x,

, cos-'x J

if n is even, or iipon

C-^ =-logtanf^-?VEx. 13),J cos if \^4 2/

if n is odd.
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dx

snrx

cos

4 sin

)s a; '^/'_ cosx i^r^^\
in^iK 4',^ 2sin^a; 2»/ sin .»/

3 cos a; , 3 1 , a;
, ^4- -log tan- + C.

4 sin"* X 8 sin^ x S 2

J cos-^a; 2cos2.x 2 ^
V"^ 27

TTT BinV^xdx 1 cos"icrfa!;
ill. and

cos"»ic sin'"^ic

(a) When n = 1, we have directly, by Form 1,

16. -—^- dx = —
I
(cos x)~'(— sin .rr/a*) = ^- C.

cos' X J 6 cos^ a;

J sm* a; 3 sin^ x

(b) When n — m ?"s negatice and even, Form 1 applies if

we write

sin" xdx

cos x
= tan" X sec"' " xdx,

or,.i cos"a;da; ,„ __„ ,ana —, = cot" a; cosec" '^xdx.
sin*" a;

IS.
I

-—^dx =
I
tan^a; sec^a;dx = A tan*x-f-C.

J cos' X J

19,
I

dx=. j cof .r cosec' aida;

J sm'a; J

=
I
cot''a;(l + cot*a;)^cosec^a;daj

= — ^cot^a; — ^cot^a; — ^cot'a; -|-C.

20. f?lB!^"=itan'^x +a
J cos* a;
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21. C^-^^ = -^cot^x +a

22. C^^ dx = I tair^ x -\- 1 tan' a; + i tau» x + C.

(c) TFZieii w — m is negative and odd, ifn is odd, we have

dx = tan" X sec"' "ccdx
cos^a;

= (sec^x — 1) ^ sec" ""'.r tan x sec xcte,

to which Form 1 applies, and ^^^ ^^^ may be treated in a

similar manner.

23.
I
—~--dx=

I
tan^iKsec^ardic

J cos'" a; J

=
I

(sec- x — iy sec^ x tan x sec xda;

=
I

(sec^ic — 2sec''.x' + sec^ic)tanxseca;dx

= ^ sec^ x — l sec^ .r + i sec^ x-{-C.

24. f?H^== isec*cc-4sec-'.<;+C.
J cos^a; ^

^

25. I -r—r-t?iK = — 4cosec^a; + coseca; + C.
J sin^a;

^

(d) IF^en n — m is jiositive, resort must be had to integra-

tion by parts. When, however, m — n = 1, and n is odd,

nn /'sin^ xdx /*
. -, 2 \ si" ^ ^ . , n^D. I — = I (1— cos'^a;)—— da; = sec a; + cos a; + C.

J cos'^x J cos^'a;

o7 rcos^a;da; .
, ^Li. I —r—^— = — cosec X — sm a; + (7.

J sin- X

OQ Tsin^a^da; 1 1 , .3 ,
, ^28. I — = — -\ -I- cos a; + C.

J cos" a; 5cos*x cos-* a; cos a;
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IV. tB.n."*^xdx and cot"^ ocdjc. These forms can be inte-

grated directly, when m is integral and positive, by placing

tan"* icda; = (sec^x* — l)tan'"~^icdx,

and cot"* axlx = (cosec^x — 1) cot""^^ xdx.

20.
I
tan^ xdx =

|
(sec- x — l)dx = tan x — x-{-C.

30. Ctai,n^xdx=
j

(sec^a; — l)tani»daj = ^tan''a;— it&nxdx

= A tan-X— ( ^^2_? dx = \ tan^ a; 4-log cos x+C.
J cosx

31

.

I
tan^ xdx =

|
( sec- .x — 1 ) tan^xdx = \ tan'' ic— I tan^ icrfjj

= ^ tannic - tan a; + x + C (Ex. 29).

32.
I
tan* ardx = \ tan* a; — ^ tan- x — log cos a; + C.

33.
I
cot^a^a; = — cot a; — a; -f- C'.

34.
I
cot^ xdx = — ^ cot^ X — log sinx+C.

35.
I
cot"xdx = — i cot* x + ^ cot^ a; + log sin x + C.

36.
I
(tan^ » + tan* a;)da;= | tan^ a; sec^xdx = \ tan^ a; + C.

37.
j
(tan^ x + tan*x)dx= |

tan^ x sec- xc?x = \ tan^ x + C.

And, in like manner, (tan"x + tan"'x)dx when ?i — m = 2.

V. x"siii(aa7)<fic, and a;" cos (aa?) da?.

Let w = x", dy = sin (ax)dx.

Substituting in I iidv = uv — \ vdu,

fx^sin (ax)dx = _?!£2l(^ + !-^ fcos (ax)x"-idx,
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the integration finally dei^ending upon

J
cos {ax)dx or jsin {ax)dx.

38.
J

x-^cos xtJx = ;r'sin x — 3 Cx-ain xdx

= x-^ sin a; - 3 ( - a-2 cos a; - 2J- x cos xdx)

= ay sin a; + 3 x- cos a; — G(x sin .c - Tsin xdx)

= ^'shix-\-3x^cosx-6xsmx~6co8x+a

39.
J

a^ sin a;da; = - ar' cos a; + 2 x sin a; + 2 cos a^ + (7.

4( ). fx sin (ma;) da- = - "'^li'
"^ C^"-^) _,_

^i" (m-^0
, ^

VI. €«* sin" xdx, and e"-* cos" xdx.

Let M = sin".r, dv = e<"da-.

Substituting in Cudv = uv - fvdu,

In the last integral let u = sin'-^.a; cos x, dv = e^^d.x. Then

du = (n - 1) sin'-2.c cos'xdx - sm^xdx
= (n - 1) sin'-2_^.(i _ sin2^)rfa; - sin"a;c?a;.

= (h — 1) sin"-2a;da; — n sin''xdx,

and the formula Cndv = uv - fvdu gives

J
e^sin"-^ a; cos a;da;

-
'-^

J'e'-sin" ^a-f^,^^
n

p<«sin«,p^^_
_ sm"'^a;cos xe"^ n — 1

a
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Substituting in (1) and solving for
j
e"su\"xdx,

= ^r^iS!:!^ (a sin X - n cos x) + ''^['-^ fe-sin" ^xd.. (2)

By a repetition of this process the integration is made

to depend upon the known form i e'^'dx, or \ipon ie"''smxdx,

which bv (2) is —— (a sin a; — cos a;), n being 1. From the

form e"-'cos".Tda; Ave liave in like manner.

I
e"*cos"icda;

e^'sin a;d;c = ——- (a sin x — cos a;) + O.
a^+l

42. fe" cos- xdx = ^!!^2i^ (a cos or+ 2 sin x) -\ ^-^^ + C.
J a'^+4 o(a-+4)

43. j e' sin^ xdx = — (sin'' a; -f P> cos'' a; + 3 sin a; — G cos a; ) -}- C.

151. Circular differentials of the forms / (a?) sin^ icrio?,

/(£r) cos ^ xrfic, etc., (7i iohichf{x) is an algebraic function.

Assuming dv=f{x)dx, the formula for integration by parts

will make the integration depend upon an algebraic form.

Examples. 1. I sin ^Trfa*.

If = sin~' X, dv = dx, da =— '

v = x. Then

/sin^^ xdx = a; siu"^ -^ ~
I
—^ = ^' ^^^'^ ^' + (1 — •'»^)

" +

2. ftan-i a;da; = x tau"^ a? — | log ( 1 + a;-) + C.
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0. j ar'cos-^ xdx= ~ cos ^ x - ^^ ^
^^ (a'-+ 2) + 0.

4.
I
xQOii-^xdx=^x^cos~^x — ^x(l — af')- +|^sin^*a; + C.

BY SUBSTITUTION.

This method has been already employed in the rationaliza-

tion of irrational differentials (Arts. 143-4), and consists in

substituting for the variable of the given differential a new-

variable of which it is a function.

152. Trigonometric functions of the form sin" x cos***xdx.

1. Let sin a; = 2. Then

sin" X = z", cos" x = (l— z') '', dx = {l— z') ~^dz.

Hence I sin"a;cos'"a;da' =
|
z"(l — z'-) - dz,

or in like manner, writing cos x = z,

I
sin" x cos"'xdx = I —z"'(l — z-) - dz.

The given differential may then be integrated whenever the

above binomials can be integrated.

Examples. 1. \sm*xdx. s,mx = z, dx=:-^~ =——— .

»/ cos X -y/i_^

fsin* xdx = C—^^ = _ ^ (^2 + 3 )Vr^^ + 3 sin-i^^cJ J Vl - ^2 4
- *

^
(Ex. 2, Art. 147)

= _c^ (si,^3^ _,_ 3 sin x) + f
.^• + C.

2. rsin^.d.= r-^=-fi^+ii>8yr^+c
(Ex. 3, Art. 147.)

= -^' (sin* a; + A sin^a- + f) + C.
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3. i sin* X cos^ xdx = i z^(l —z-)-dz Avhen sin a; = 2.

fz\l - z')^dz = - ^(^ -''')' + g( ^ - ^') + 1 sin-»z + a
(Ex. 8, Art. 147.)

-rx r • 9 i J sinit'cos^a? , sin a; cos a; , , , ^Hence I sin-'a; cos^a;aic = 1 f- ^ .r + C.

II. When either m or n is odd, we may integrate directly by

treating the factor whose exponent is odd as in Art. 150, 1,, (a).

4.
I
sin''.rcos^a;da;= 1 (1 — cos^x)cos^a;sina;fte

= — ^ COS'^ X-\-\ COS'' X + C.

5.
I

COS"'X sin''xdx = ^ sin'' ^ — ^ sin^ x + i sin^ a' + C.

6.
I
cos^ X sin^xdx = — i cos' x -\- ^ cos" a; +C

7.
I
sin a; cos^ xdia; = — ^ cos^a; + C.

8.
I
cos X sin'ajfia; = ^ sin® a; + C,

form 1 applying when n or m is 1.

9. r_,_J?!? = ClA^^ = log tan x+a (Ex. 12, Art. 150.)
J sin a; cos a; . ' sin 2 .r

10. f-_^^_=r?iB!^±^dx = tana.-cota.+a
J sin^ajcos^a; ./ sin^ajcos^a;

11.
I
sin^a; cos'^xda; = \ sm*x — ^ sin® a; + C.

153. Many differentials may be integrated by substitution,

but no general rule can be given, and the method is best

exhibited by examples, of which a few are added.
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1- I —r-, ^ =1 I -^-r, : when x' = z.

J x{ci^ + ar*) ,)J z{a^ + z)

By Art. 139, Case 1,

J z{a'

dz 1

T

z

+ 2!) a? (f-\-z

Hence i
''^—- =—-log—-^^—^,

+ C.
J a;(a' + .r') '.\a^ (r + .r*

2. r___^^_— = _ log
2 + a; + 2Var' + a; + 1

_

»^ a;Vl +x-\- X- ^

Put a; = - ; the differential may then be integrated by Art.

144, I.
y

Put 1 + .-C = 2.

Then f_i±^e=^rfa. = Y^^+2 r^'-2 f^^'Y (1)J (1-f-a;)- e\ J z- J z J ^
^

Placing M = e* ?a\(i dv = z -dz, and applying the formula

for integration by parts to I — , Ave have
J r

2- z J z

Substituting this value in (1), we have the above result.

4. r^Vl+loga; =
i (1 + logx) ' + C. Let 1 + loga; = z.

f- C x^dx 1 , a;Vl —x^,^ ^ .

o,
I —3—-—- = — A- cos"^^ X h C\ Let x = cos 2.

6. r d^ _2&^Q^ ft + to a + 25a; ^

Put X' = -, whence
x^{a-\-bxy- (az + by
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In the latter let az + b = y, and it becomes ~
^^~ ^ dy.

a^ y-

7. x^(a-2c^)^dx. Put x^=a-z\

BY SERIES.

154. When the given differential can be expanded into a

converging series, its integral may be found by integrating

each term of the series. The integral thus obtained will be in

the form of a series, and therefore integration by series affords

a method of developing a function where the development of

the derivative is known.

EXAMPLKS.

1. Cy/x'^^\ix= CV'x(l-x^)^dx

= C^~x(l -- -~ - ^'-Adx
J ^ 2 8 If)

^

= ^x^ -Ix'^- ^^ ccy -^x^ ••' -{- C.

2. C-^dx= Cn+x + x''-{-^a^ + ^x*'..)dx
J cos a; ./

= x- -f- - + - + - + '"-
••• + C*.

2 3 10

See Ex. 18, Art. 72.

^. Develop log (1 + a;)

.

log (1 + X) = f-^ = C(l + x)-'dx
J 1 + x J

= C(l-x-\-x^-x'---)dx

2 3 4

4. Develop sin~^a?.

sin-'a; = f /^^ = C(l -j- ^x^ + |^' + H^' + •)dx
•^ Vl — X- "^

= x + \x' + ^x^ + jf^^x' ... + C.
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Eemark. The process of integration is the inverse of that

of differentiation ; but it does not follow that, because we can

differentiate every integral, we can integrate every differential.

Suppose, for example, the given function be a;" ; its differential

is nx"-^dx. Now, in order that the differential of x" should

assume the form -, we must have n — 1 = — 1, or « = ; in
X

which case x" = 1, which has no differential. That is, the

algebraic function x" cannot give rise to a differential of the

form -^ ; nor can any other known function except log x. It
X

is evident, therefore, that, before the invention of logarithms

and the investigation of their properties, the operation indi-

cated by
I
— would have been impossible. The transcenden-

tal functions sin"'.'*-, tan^^a.', etc., whose differentials

dx . .

^1-^
^, etc., are algebraic functions, are further illustrations of

l + or

the fact that the integration of algebraic differentials may in-

volve transcendental, or higher, fvmctions. The integration,

therefore, of such forms as do not arise by the differentiation

of the known functions cannot be effected until new functions

corresponding to these forms have been invented.

MlSCELLAXKOUS EXAMPLES.

Integrate

-, 1 — x"
, J- 1 + 2.1; cos^a; ,

1. dx. 5. —\ dx.
1 — x cosa; sina; + arcos^x

,^
xdx

^
_^dx_

Va^-x* •

(l — xy

• '7T~,—Ta" T. xt&w^xdx.
{1-^xy

4. ^(^±1 dx. 8-
bdx

y^y. _ 1 ' Vc"^ — a^ — 2 abx — b^oi^
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Q • "'J- ; oTT.
"*^'

V3-(ix-<^ar (« + ^^ + «^)

1 + ^
f^f,

sin Ticcdaj

11.
'^^

a* — x*

X* — a'

7ji — COS r?a;

fiinxcos'x sec^xdx
26. 7

> 1 7rt — n tan .^•

12. ^ ~^
dx.

x^^.r' + l nx"hlx
27.

da; Va'"-a;"-"'

on cos xda;

a-daj «^ + sin- a;

14. — X'
X* — X- — J,

15. _^^. ^^ (a;-a)c?x

29. e'"dx.

30.
(.T-a)- + (.T + a)"'*

16
^'^~

-— die. o. {x-a)dx
;»3 + 6a;2 + 8a;

'J-
(x- «)- ± (a; + a)-

17. — on tZ.X-

a^cos^aj + fe^sin^tc ^^-
x(x + \)-

18. _^:i!^. 33 ^^•

19. -
'^'-^

^ dx. 34. L±idda;.
^2mx — ^ 1__x~-

20.
^ + ^^

c?y. 35. xWT^^dx.
'

(^ -\- x'

36. a^^i + x'dx.

fy^ tndx

aT^* ^^- e^'sinSajdoj.

„„ wia;da; 38.
,

22. ^^:^- a^^Vl + o;^
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aUOCESSIVE INTEGRATION.

155. Successive differentials obtained on the hypothesis

that the variable is equicrescent are readily integrated by the

preceding methods, the differential of the variable being con-

stant.

Examples. 1. Given cPi/ = 10 x"rlx-, to find ?/,

—^ = lOar^rfiK: integrating, -^
dx ' * ""

(Ix
= 10a^dx; integrating, !lf = J^r' + C".

dy = -y-
r

'd.c + CVZ.r ; integrating, ?/ = |a;^ -|-C".c -fC".

d^y
2. Given —4, = f'os x, to find y.

dx^

d^y ^ dry .
, ^,—4 = oos xdx : . •. —^„= sin a* + C .

doc- dx-

^ = sin xdx + C 'dx . : v- = - oosx+C 'x +C".
dx dx

dy = — cos xdx+ C 'xdx + C"dx •

.-. y =-sina;+^'^^--fO"x-+C"".

d^y
3. Given —4, = 0, to find y.

dar

2 = 0;.-. g = C". dy = C'dx; ,.y = C'x+C".

4. Given d*y = sin xdx*, to find y.

5. Given d-s = — gdf, to find s.

6. Given —^ = , to find y.
dx" x"

^
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THE CONSTANT OF INTEGRATION.

156. All the integrals thus far obtained contain the inde-

terminate constant C, and are called indefinite integrals.

Integrals from which the constant has been eliminated, or

for which its value has been determined, are called definite

integrals.

157. Definite integrals. The two methods of disposing of

the constant of integration G are best explained by an illus-

tration of the processes. Let it be required

to find the plane area OM'N^ between the

parabola 0M\ the ordinate M'N\ and the

axis of X. This area may be regarded as

generated by the motion of the ordinate PD
from left to right. If this area be repre-

sented by z, dz will represent what its change

would be in any interval of time, dt, if its rate of increase

remained uniformly the same during that interval. But if the

rate of z becomes constant at any instant, that is, at any value

PD of y, its increase for any interval dt will be represented by

PQRD = PD X DR = ydx ; DR = dx being the corresponding

differential of x. Hence dz = ydx, and

=jyda (1)

y
5 value dx = "- dy from the equation of

parabola y- = 2pic,

y
Substituting the value dx = "- dy from the equation of the

dz = jdy (2)

and z=:^i\/dy=^f-^a (3)

First Method. Evidently the area generated cannot be defi-

nitely expressed until we assume some initial position of PD
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as an origin from which to estimate it. If we reckon the

area from the ordinate through the focus F, then « = when
7)'

y=FP'=p, and (3) gives C=—\^, and the definite integral is
o

which gives the area, estimated from FP', to any position of

y as M'N' when y' = M'N' is substituted for y.

If we reckon the area from 0, then 2; = when y = 0, and

(3) gives C = 0, the definite integral being

op

which gives the area, estimated from 0, to any position M'N'
of y, when y' = M'N' is substituted for y.

Hence the value of C may be found whenever we know the

value of the function for a particular value of the variable
;

and it is evident that this will be the case in all problems like

the above, in which the origin from which the magnitude is to

be estimated may be arbitrarily chosen.

Second Method. If we substitute any value of y, as

y"= M"N", in (3),

z" = I- 4- C
Sp

is the area generated while the ordinate is moving to the posi-

tion M"N". Substituting ?/' = M'N',

z' = l- \-C
3p

is the area generated while the ordinate is moving to the

position M'N'. Hence

is the area generated in moving from M'N' to M"N", and is

independent of any initial position of the ordinate. In other
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words, the area is increasing at the rate — = ^ -^, and the
dt p dt

area generated at that rate while y passes from the value y'

to the value y" is found by substituting these values in (3)

and taking the difference of the results. In this way C is

eliminated, the process being called integration between limits.

The symbol for the integral between the limits y' and y" is

Xy"(f)(y)dy, y" being the superior and y' the inferior limit;

and it indicates that in the integi-al of (ji(y)dy, y" and y' are

to be substituted for the variable in succession, and the latter

result subtracted from the former. It is to be observed that

the two methods are essentially the same, for in the first the

inferior limit is assumed in determining the value of C, and

the superior limit is the value subsequently assigned to the

variable in the definite integral.

The constants introduced in successive integration are

readily determined from the conditions of the problem if the

latter is a determinate one.

Thus, suppose a body starts from rest with a constant acceler-

ation m in a right line. Taking the axis of X coincident with

the rectilinear path, we have (Art. 59),

d'x—n-= m.
dt'

Multiplying by dt and integrating,

'I^ =: V = mt + a (1)
dt

Reckoning t from the instant the body starts, we have, by

condition, v = when t = 0', hence C=0, and

^ = v=:mt. (2)
dt ^ '

Integrating again,

x = '^ + C\ (3)
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Reckoning x from the initial position of the body, x =
when t = 0; hence C" = 0, and

mt- ,

.

.x=^. (4)

Eliminating t between (li) and (4), we have for the equa-

tions of motion,

, mt- /nV = mt, X = -— , V = V^ mx,

from which we may find the position of the body at any time,

and its velocity at any time or at any point of the path.

Had the body an initial velocity Vq when x=t=0, we should

have had from (1), C=Vo, and therefore

~ = v = mt-\- Vo

;

at

whence, integrating again,

in which C' = 0, since x = when ^ = 0. The equations of

motion in this case would be

v = mt + Vo, X = -— + tV, V- = Vq- + 2 mx.

And, in general, the equations of motion can be found when-
ever the position and velocity of the body at any instant is

known.



CHAPTER VIII.

GEOMETRICAL APPLICATIONS.

158. Determination of the equations of curves.

1. To find the equation of the curve ichose normal is constant.

Let R = length of normal. Then (Art. 27, Ex. 21),

or .c = ±fy{Ii' - r)-^ dy = ip {H' - f) - + C. (1)

la this, as in all like cases, the fact that the position of the

origin of coordinates is arbitrary enables us to determine C.

Thus if we assume that the origin is so chosen that y = R
when x = 0, then, from (1), C = 0. Hence ic = q: V^^ — y^

or, squaring, a^ -\-y^ = R^; the curve being a circle, and the

constant of integration being determined upon the condition

that the origin is at the centre.

2. To find the curve ichose snbtangent is constant.

doc
7/ — = m ; hence x = log„ y + C, or a; = log„ y if x = when
dy

y = 1-

See Ex. 8, Art. 30.

3. To find the curve whose subnormal is constant.

dv
y-^=P' Hence y- — 2j)x if .t = when y = 0.

229
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4. To find the curve tohose subnormal is always equal to the

abscissa ofthej^oint of contact.

An equilateral hyperbola.

5. To find the curve ichose tangent is constant.

V\ 1+ —
I
—a: whence dx = x ^^

—

~y ) c^,/

Taking the negative sign, that is, the case in which y is a

decreasing function of x,

^^_CW-y-y Cf g- y\
^ y ^\y(a'-y')^ {a?-,/)^)

= a log —^—'-^ - (a- - r )
-" + C. (Ex. 5, Art. 145.

)

Assuming the origin so that x = when j-

y = a, we have C= 0. The curve is called

the tractrix, and is shown in the figure.

Fig. 72.

6. Find the curve whose polar subtangent is x
constant.

dB
i^— = a (Art. 120). The reciprocal spiral.
dr

7. Find the curve whose x>olar subnormal is constant.

159. Rectification of plane curves. The ])rocess of finding

the length of a curve is called rectification.

I. To rectify f{x, y) = 0. ¥'rom Art. 25, ds = Vdaf -\- dy^
;

hence

^s= CVda^ + dy\ (1)

II. To rectify f{r, 0) = 0. From \rt. 120, ds=VdJ^+i^d¥;
hence

s = C^di^ + r^d^. (2)
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By substituting the value of dx, oi of dij, from the equation

of the curve in (1), s may be expressed in terms of a single

variable and its value found when the integration is possible.

If the curve is given by its polar equation, the second form

of s is in like manner expressed in terms of a single variable.

Examples. Rectify the following curves :

1. The semi-cubical parabola y^= ax\

dy = ^^axdx;

hence .s = \ ("(4 + i) ax) ^-dx = -~ (4 + ax) ' + C.

Estimating the length from the vertex, « = when a; = ;

.-. C = -— , and .s = -^
[ (4 + \) ax) ' - 8],

'11 a '27 a

which is the length of the curve from the vertex to any point

whose abscissa is x.

2. The cycloid x = r vers"'
"

, — V2 i^y — y'^.

y
2ry

hence s = Vl' r ( (2 r - y)~'-dy = - 2V^ v-(2 r -y)^ + C.

Estimating from the origin, s — O when y = (); whence

C=4r,

and s = — 2V2 r (2 r — y) - + 4 r]^=2. = 4 r.

Hence the entire length of one branch is 8 r.

3. The parabola y-= 'Jpx.

« = 1 C(j/ + f)^.dy = ^V^n^+^log{y + ^fTp') + apJ Jj) 2

(See Art. 147, II., the illustrative example.)
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Estimating from the vertex,

4. The catenary 7/ = - (e'' -j- e '^).

Estimating the arc from the point for which x = 0,

z z
C

=:,(«'-« 0-

5. The hypocycloid a;' -f-//^ = a''. Ans. 6a.

6. Determine tlie length of the tractrix.

From Ex. 5, Art. 158,
^

dx- =—^^^ dy'^.
y-

Hence s= I Vd-ir' + dy- = — | ?(/^ = — a kig y -}- C,

taking the negative sign as s is a decreasing function of y.

(Fig. 72.) Estimating the arc from T, s = () when y = a;

hence C=aloga-, and s = alog-.
y

7. Determine the length of the ellipse.

Using the central form of the equation in terms of the

eccentricity,

2/^ = (l-.^)(a^_a-), c^^^^iLziir)^;
(r — X-

hence

s = CVdx" + dy' = fxrr ^'f da; = f
—^^- (a- - e'.v') ^-

;

J J \ a'-x- J Va- - x"

and for the length of the entire curve.
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3eV
1 = 41 —=^zz=r I

« „

Jo v;?3^V -'« 2.4a-^ 2. 4 • 6 a'

(Ex. 25, Art. 72.)

~ Jo Vrt* - y?
"'«^'' Va'-.T^ 2 a''Jo Vo^^

„ .. e^ 3e* 32
27ra(l---—

-

22 2^2 2^ . 42 . 6-

The second and third of the above integrals are given in

Art. 147, Exs. 1 and 2.

8. The logarithmic spiral r = a*, a being the basis and m
the modulus of the logarithmic system.

dr = -de ; s = C(^^ + aA^^dO = (1 + m')^ r + cT= Vl +m J \m- ) Jo

the length from the point for which r = 1 to the pole.

The corresponding arc of the Naperian spiral = V2.

9. The spiral of Archimedes, r = aQ.

s = a C^T+J'dO = i C{a'^ ?-') ^dr

nr

^ r(a^-^,^r _^a r + ^a^ + r-
^

(Art. 147, 11.)
2a 2 a

when the arc is estimated from the pole. This is also the

length of the arc of the parabola y^ = 2ax from the vertex to

y = r (Ex. 3) ; hence this spiral is often called the parabolic

spiral.

10. r = a(l + cos^).

S= C(di^ -f- ^-^dO'-) ^ = C^2d'{l-\-cosd)de

= r^4a2cos''^c7^ = 2a('cosfdd = 4a sin^ + C.
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Estimating the area from the point for which = 0, we
a

have C=0, and s = 4asin—
2

The curve is a cardioide, the polar axis being the axis of

symmetry, and its entire length is 8 a.

160. Quadrature of plane areas. I. The plane area included

between y =f{x) and the axis of X is given (Art. 157) by

2 =jydx. (1)

In like naanner z' = j
xdy gives the area between the curve

and Y.

dz
If the curve crosses X, y, and therefore — , becomes nega-

dx
tive, z being a decreasing function of x ; hence areas below X
must be considered as negative.

II. By the area of a polar curve is meant the area swept

over by its radius vector. Thus OPQ is the

area of MN between the limits P and Q.

Eepresenting the area by z, its change would
evidently become uniform at any value of

r= OP if at this value the generating point

moved uniformly in the circular arc PP'.

Hence if d$ = j)p',

dz = area OPP' = ^OPx PP' = ir- rdO,

or 2 = 1 Cj-^rie. (2)

The process of finding the area is called ftuadrature.

Examples. 1. Determine the area of the parabola y'^=2px.

dx = tdy; hence

z= \ ydx = i yhly = -^ + (7.
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Estimating the area from the vertex, z = when y = ; hence

C=0, and 2; = ~- = |a^, or two-thirds the circumscribing

rectangle.

2. Determine the area between y = s^in x and X.

z = i sin xrlx = — cos x

3. Show that the area between the witch x-y = 4'/--(2/- — y)

and its asymptote is 47r)-.

ST^dx
fydx=f = 4?-^tan~'—

a^+4?" 'Jr
= 27rr2-(-27r»-2)= 47rr^.

4. Show that the area between X and the hyperbola xy = 1

from X = 1 to X = .t' is log a;'.

5. Find the area of one branch of the cycloid.

'

Cyrix = C- y'^y =Cr{2r-y)-^dy
«/ ./ -v/'> n-tl 7/2 »/V2 ry — ?/

= — -^—^ (2 ?•?/ — ?/) -
-I vers ' •- = f7rr^;

2 :^ ?•

hence the whole area is .StD"'. See Ex. 9, Art. 147.

6. Find the area of the circle x- + y^ = ?-.

fydx=f(^^-x^)kx = ^(^-^ + ^^si.'^^^^^

hence the whole area is tt?*^. See Ex. 14, Art. 147.

7. Prove that the area of the ellipse a^y- -f b^a^ = a'b^ is irab.

8. Show that the area between the cycloid

y
x = 2 vers~^ | — V4 y — y'^

c
and the parabola y-= -a; is |7r.

The curves intersect at the origin and x = 2ir.
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9. Find the area of y'^ = a;* + ar' on the left of Y (see Fig. 57).

fydx = Cf{l + X) 2dr = 2 Cz\z' - Ifdz

See Ex. 7, Art. 143.

10. Show that the area of the loop a^y* = a-x* — af is ^o.-.

11. Show that the area of y(af -f a^) = c^(a — x) from a; =
to a; = a is c^(^\og2 — -y

x^
12. Prove that the area between the cissoid y^ = and

"^a — x
its asymptote is Stto^. See Ex. 9, Art. 147.

13. Prove that the area of both loops of y'^ = xr{l — x^y is |-.

See Fig. 59.

14. Prove that the area between X and y = 4x — a:^ from

a; = — 2 to a; = + 2 is 8.

15. The spiral of Archimedes, r = aO.

z = i Circle= ~ Cme = -&' = ^ r'e,

C being zero if the area is estimated from ^ = 0. For

^ = 2 TT, z= ^ irr^, or the area of the first spire is ^ that of the

measuring circle. When 6 = 4:7r, z = ^Tr'i'^, or the area of the

second spire is firr^ — |7rr^ = 27r7-^, the first spire having been

traced twice.

16. Prove that the area of r — e^ is one-fourth the square

described on the radius vector.

17. Find the area of the lemniscate 7-^ = a^ cos 2 d. Ans. a*.

18. Prove that the area of the cardioide 7- = a(l+cosd)
is f iral



GEOMETRICAL APPLICATIONS. 237

19. Prove that the area of the three loops of r = a sin 3

(Fig. 67) is ^Tra'.

20. Find the area of the four loops of r= asin2^ (Fig. 66).

161. Volumes and surfaces of revolution.

Let the curve ON, whose equation is y =f{x), revolve about

X as an axis of revolution. The plane area OQR will generate

a solid revolution whose surface will be gener-

ated by OQ. A plane section PP perpendicu-

lar to X will cut from this solid a circle whose

centre is D and radius is PD = y. The volume

of the solid may be regarded as generated by

this variable circle moving with its centre on

X. The rate of every point of this generating

area is — ; hence the rate of increase of the
dt

, . dV odx
volume V is — = Trir —, or

dt ^ dt

V= i iryHx = TT I y^c^a (1)

The surface S of the solid may be regarded as generated by

the circumference of the circle. The rate of every point of

this generating circumference is — ; hence the rate of increase

of the. surface is — = 2Try—, or
dt dt

S= C2 tryds = 2 TT Cy^dx" + dy\ (2)

Examples. 1. Find the volume of the paraboloid of revo-

lution.

V=ir \ ifdx = Tr I 2pxdx = irpsc^ -\-C. Estimating the vol-

ume from the vertex, F= when x = 0; hence C = 0, and

V= irpx^ = irpx 2^ = \ -rrfx,

or one half the volume of the circumscribing cylinder.
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2. Find the volume of the prolate speroid.

Jr'a J2— (a? — oi?\dx = ^TTh-a. Hence the whole volume
" a-

= |7r6-(2a), or two-thirds the circumscribing cylinder. If

.3. Find the volume of the oblate spheroid.

Here F=7r Cx'dy = ^7ra^{2b).

4. Find the volume generated by the revolution oiy—— x-\-h

about X: "

/r
I

y'hlx = ^ Trb'-a.

5. Find the volume generated by the revolution of the cycloid

about X
/TTi/dx =

I
-n-y^ — y y ~ '^

I
.^'(-^ ''y ~ V'Y^y

^ V2 ry — y' ^

2 y- + r>r(y + 3 r) /.^ t,= — TT —^— f^—^
i V2 ry — y'

y+ #7r?'" vers'
'

" -f- C

or the whole volume = 5 ttV. See Ex. 15, Art. 147.

6. Find the volume generated by the revolution of the witch

about its asymptote, x^y = 4?-^(2r — ?/) ;

TT CyHx = TT f—Mr!_^ dx = 64 /tt f ^^—

= 64 rV(^——4 7- +-^ tan-i—

^

\^8?'2(47-2 + ar') IBr* 2ry

See Ex. 12, Art. 147,

= 47rV.

7. Show that the volume generated by the revolution of

a.5
_|_yt _ ^t about the axis of X is y^^Tra^
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8. Find the surface of the paraboloid of revohition.

S =
27r
JyVdx' + clf'=2^JyyJy^^ + lrh, = ^^^y'+p'y^+C.

Estimating the surface from the vertex, S = when y = 0;

whence C= — --x>•^ and S = -^[(y- +p'^)^
—p'^'l.

3p 3p^^ ' -•

9. Find the surface of the sphere.

.S = 2 TT (^'^/-J^ + 1 rfx- = 2 TT rV sf-^—- dx=27r Crdx= 4 TTV.

10. Find the surface generated by the revokition of x^ -\-y^=a^

about X. Ans. ^-tra?.

11. Find the surface generated by the revolution of the

cycloid about its base.

S = 2ir ryy\~^^-^ + \dy = 2n-y/2^' ry{2r -yyhy
Jo ^2ry — y^ Jo

= -2W27-(|(4r+^)(2r-i/)2)]2'=^2^r^.

Hence the whole surface = -%^ irr-. See Ex. 5, 143.

12. Prove that the surface generated by the revolution of

one branch of the tractrix about X is 27ra^. See Ex. 5, Art. 158.

13. Prove the area of the surface of the prolate spheroid is

tto.-] — sin 'e.
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