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PREFACE.

On first commencing to read the Differential Calculus, a subject which opens
• wide field of analytical research, the student enters upon an entirely new

tem of thought. In his previous investigations he has always been
; iistomed to consider quantities, whether known or unknown, as having
^ome fixed or determinate value; he has now to conceive the values of
certain quantities to undergo continuous changes, and to operate upon
these changes with new symbols and new processes, which in themselves
have hut a remote analogy to ordinary Algebra.

When two quantities, thus continuously variable, are connected by an
analytical equation, and their values are therefore mutually dependent on
each other, and they are supposed to be affected by simultaneous changes,
it is evident that the increments will also be connected by some corresponding
analytical relation. The primary object of the Calculus is to establish general
methods of investigating the nature and properties of such relations when
the changes or increments are supposed to be small. To effect this, it is

first requisite to trace the successive values of the ratio subsisting between
two increments, when the increments themselves are supposed to continuously
decrease in magnitude, and to determine the limiting value of this ratio when
they ultimately become infinitesimals. This ultimate or limiting value is,

in fact, that which represents the ratio ^ when the increments are supposed
absolutely to vanish, and it is completely defined and accurately determined
by referring the successive values to the recognized law of continuity. The
operation here described is the true foundation of the Calculus, and the
condition of continuity, especially insisted upon in the present treatise,

entirely removes from the limiting value that obscure and indeterminate
character which otherwise forms an insuperable obstacle to a proper
comprehension of the first principles.

We recommend the student to make himself famihar with the methods
of ' limiting ratios " and '' infinitesimals." The theory of Infinitesimals
is literally that of the Differential Calculus, and the principal law which
regulates this theory is directly inferred from the method of limiting ratios.
The two methods are indeed virtually but modifications of the same idea.
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Thus, in comparing together the relative values of any two infinitesimals, the

rejection of terms involving infinitesimals of higher orders is, in effect,

precisely the same as that of proceeding to the ultimate ratio of the

infinitesimal quantities by the method of limits, and such rejection may

in reaUty be said to be the operation of cropping down the quantities to

their ultimate or limiting relative proportions. The method of infinitesimals,

sometimes called the method of elements, is therefore as correct in its

reasonings and deductions, and as accurate in its results, as the method

of limits, and, being less abstract in its nature, its apphcation, when properly

understood, is usually attended by greater facility and clearness, especially

in abstruse investigations.

In preparing the present publication, we have endeavoured to do justice to

each Chapter by restricting the applications to matters of general interest,

which was considered to be essentially more solid and satisfactory than any

attempt to give, within the prescribed limits, a meagre outline of a more

extended variety of subjects. The first five Chapters comprise the entire

theory of the Calculus as a pure branch of analysis, and the remaining

Chapters exhibit the apphcations to the theory of maxima and minima, and

the geometry of curve lines. The general theorems of Euler, Lagrange, and

Laplace not being essentially required in the body of the work, though very

important to be known by those who may desire to extend their course of

reading, are inserted at the end of the last Chapter.

The subjects contained in the several Chapters are treated according to the

most elegant and approved methods of investigation, some of which are

presumed to be new; numerous interesting examples, exhibiting their re-

spective results, are inserted for the exercise of the student, and copious

explanations are given of the precise nature of the principles involved in

the various operations. It is hoped that these explanations may tend to

obviate the pecuUar diflSculties so commonly experienced in the acquirement

of correct notions, and, by making good the foundation, conduce to the

rational and satisfactory advancement of the intelligent student in obtaining

a knowledge of one of the greatest superstructures of the human intellect.

Should this expectation be in any degree reahzed, we shall experience a cor-

responding gratification.

London^ March, 1852.
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THE DIFFERENTIAL CALCULUS.

CHAPTER I.

DEFINITIONS AND FIRST PRINCIPLES.

(1 .) By means of Algebra we investigate the yarious numerical

and symbolical relations subsisting amongst fixed quantities,

some of which are known and others unknown, the ultimate

object in general being to evolve the unknown values, or to

express them in terms of those which are known.

In the Differential Calculus certain values or quantities

related to each other are supposed to continuously increase or

decrease in value, and our object is to investigate the relations

subsisting amongst the corresponding changes that take place

in their values when those changes are indefinitely diminished.

Although the changes themselves are supposed to be infinitely

small, it will be found that the ratios which these changes

bear to one another are usually finite and appreciable, and

therefore suitable subjects of investigation.

(2.) The symbols which enter into the operations of the

Differential Calculus are of two kinds, representing constant

quantities and variable quantities.

A constant quantity is one which retains the same deter-

minate value, this value being unaffected by the supposed

changes in other quantities.

A variable quantity is one which admits of a succession of

different values.

(3.) A variable quantity varies continuously when in changing
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from one value to another it passes through every intermediate

value. For example, if a point be supposed to move along a

curve line it will do so continuously, since in moving from one

position to another it must have passed through every inter-

mediate point. It follows therefore that quantities which vary

continuously may he supposed to increase or decrease by very

small variations, capable of being diminished to any extent.

(4.) Kfunction is any analytical expression involving one

or more variable quantities, and is usually called a function of

the variable quantity or quantities which it contains. Thus x'^y

x^ -\- ox, V a'^ — x^ are functions of x^ and ax -{ by,

a? 2 -f- 2/2 -f- a? 2/ are functions of x and y.

Functions are frequently denoted by prefixing one of the

characters F, /, (56, ^, &c. to the variable or variables, and for

brevity they are sometimes indicated by a single letter.

Functions are the same in form when the quantities are

involved in the same manner. Thus x^ + ax is the same

function of x that y^ + ay is of y ; and supposing F to be the

characteristic of x^ + ax, that is, supposing x- + ax to be

indicated by Yx, the expression y^ -}- ay will be similarly

indicated by Yy. In like manner if x^ + y'^ + xy be re-

presented by / (x, y), the expression u^ + v^ -^ uv would be

denoted hjf(u, v).

Functions which, in a finite number of terms, involve the

ordinary algebraical operations of addition, subtraction, multi-

plication, division, involution and evolution, are called Alge-

braical Functions, According to this definition, ax -\- b,

«2 „ ^2 4i±i|, {a^x) JWT^\ \^ {a?^bx-^ ^2)f
b^ — x^ b -\- X

and all expressions belonging to pure Algebra, are algebraical

functions.

Functions which do not exhibit the ordinary algebraical

operations and which do not admit of being so expressed in

finite terms, are called Transcendental Functions, Thus a',

log X, sin X, are transcendental functions ; the first being

exponential, the second logarithmic, and the third trigono-
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metrical. There are other transcendental functions besides

these, arising out of certain special researches, but it will not

be necessary to particularize any of them here.

(5.) When a variable quantity a: is assumed to pass to another

value, the amount of change or the difference between the two

values is called an Increment or Difference, Similarly the

difference between the two corresponding values or the cor-

responding change that takes place in the value of any

function of x is the increment or difference of the function.

These increments are usually denoted by prefixing the symbol

A. Thus Aj7, A {fx) are simultaneous increments of x and

fx, the corresponding new values being a? + A^ and/(^ + Ad?)

or /x -\- A (fx) . When a value becomes decreased by the

supposed change, the increment is to be understood as having

a negative value.

(6.) Let u =/x denote a function of a variable quantity x.

Suppose X to receive a small increment Ad? so as to become

of the value x + Ax, and let the corresponding value of u be

supposed to be u -\- Au=f(x -\' Ax). Let the binomial

function f (x + Ax), when expanded in terms involving the

integral powers of A x, be also supposed to give

u + Au =f{x -f A^) =fx + P A^ -f Q Ad?2

+ RAjc3 + &c (1)

in which P, Q, R, &c. are new functions of x, independent of

A X, and owing their forms entirely to that of/x ; also A d? is

to be regarded as a single symbol, so that Ad;^, Ad?^ &c.

indicate (Ax)-, (Ax)'^, &c. From this and the initial equation

u =fx, we deduce

Aw = PAd?-f QAd?2 4-RAd:3 + &c (2)

and this value would represent the difference or increment of

the function u according to the theory of Finite Differenqes.

We have also, dividing by Ax,

^ = P + QAdr + RA^2^&c (3)



takes the singular and indeterminate form -. As, however.

4 THE DIFFERENTIAL CALCULUS.

Each step in this deduction, including the division hy A 07,

is free from ambiguity when Ax is of any value, great

or small, positive or negative ; but the result has no

intelligible signification when A a? is zero, for as soon as A a?

absolutely vanishes, we immediately lose all idea of quantity

on the left-hand side of the equation, and the fraction

0'

the equation must obviously hold for every other value ex-

cepting A 07 = 0, we may take Aoc extremely small, and it still

will be strictly true for every value between that and zero ; and

as there is no symbol of discontinuity on the right-hand side

of the equation, we may, by applying the principle of continuity

to the fraction, include the existence of the equation, when A a?

actually vanishes. Thus we should have

^(whenA^ = 0)=^ = P .... (4)

and the coefficient P will therefore represent the limiting

value of the fraction — , when Aw and Ax simultaneously

vanish ; and here we must not overlook the implied condition

that the particular value thus assigned to the vanishing fraction

when it reaches its indeterminate state -, is determined by a

consideration of its successive values and is that which obeys

the continuity existing amongst all the other values as A a:

continuously diminishes from a small position to a small

negative value. This condition of continuity forms the basis

of what is usually called the "theory of limits" or of "limiting

ratios," and should be well understood by the student, who

will afterwards not experience any difficulty in acquiring a

true conception ofthe first principles and objects ofthe Calculus.

The equation (3) has been made to merge into the equation

(4) by supposing the increments Aw and Ao? to absolutely

vanish. It is evident that the. former equation will assimilate

to the latter to any degree of nearness by conceiving the values
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of AW, Ax to diminish, and that they will he indefinitely near

when A J? is indefinitely small. In order therefore to impart

some tangihle signification to the symbols on the left-hand

side of the equation (4), the values of Aw, Ax, instead of being

absolute zeros, are supposed to be extremely small quantities

ha\dng the same ratio to each other as the limiting ratio ex-

pressed by the equation, and they are then designated by du,

dx» The equation is therefore stated as follows :

-=p 1
dx V .... (5)

or c?w = P cf0? J

The indefinitely small quantities du, dx, thus related, are

called the differentials of u and x, so that P dx represents the

value of the diff'erential of the function u ; and from what has

preceded it is evident that the smaller dx is conceived to be as

a change in the value of x, the more nearly will du assimilate

to the actual corresponding change in the value of w.

The quantity x which is first supposed to vary and on the

differential of which other differentials are thus made to depend

is called the independent variable.

The coefficient P is called the differential coefficient of the

function u, with respect to x, because it is the coefficient or

multiplier of the differential dx which determines the dif-

ferential of the function.

The student will observe that in the Calculus the letter d is

not in any case employed as it may be in Algebra, to represent

quantity or value. In this sense it has no isolated signification,

and it is never used excepting as the symbol of operation which

characterizes the differential of the variable to which it is

immediately prefixed.

(7.) The peculiar difficulty in the preceding deductions is pre-

cisely analogous to that which occurs in conveying an adequate

idea of the measurement of the velocity of a body when that

velocity is continuously variable. When the velocity is uni-

form, the space and time will vary proportionally, and the
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velocity will be correctly represented by the ratio, or fraction,

space described

time of describing it

which ratio, or fraction, will preserve the same value whether

the space and corresponding time be taken great or small.

But when the velocity is variable it is obvious that the above

fraction cannot accurately define its value at the point from

which the space is supposed to be measured, because the

space, however small, will then be described by a continuous

succession of different velocities. It is however evident that

the smaller and smaller the space and time are taken, the

closer will their ratio approximate to the true velocity, and

that the diminishing error of such approximation will become

completely exhausted when we take the Hmiting ratio as the

quantities are supposed to vanish. The velocity of the body

at any point is therefore represented with rigorous exactness

by the limiting value of the above fraction when it takes the

form -. And thus by analogy the diiferential coefficient of

any function might be defined to be the velocity with which it

increases when the independent variable varies uniformly at a

rate, to be taken as the unit of measurement. In the geo-

metrical application of this idea, which was the origin of Sir

Isaac Newton's method of fluxions, a line is supposed to be

generated by the motion, or flowing, of a point, a surface is

supposed to be generated by the motion of a line, and a solid

by the motion of a surface. It should be observed however

that our preconceived notions as to the estimation of velocities

of movement, though serving the purpose of illustration, are

not sufficiently elementary to be made the basis of a branch of

pure science.

The particular considerations under which the equation (2)

has been converted into the differential equation (5) conduct

us to the ingenious theory propounded by Leibnitz, called the

theory of infinitesimals, the principles of which may now be

briefly explained.
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(8.) Before entering upon this part of the subject it should

first be premised that the phrases "infinite number" and "infi-

nitely small quantity," which embody the principal objects of

our reasonings, are to be understood as having only a relative

signification, since all operations connected with them in the

literal or absolute sense of the terms are inconceivable. Thus

an "infinite number" is to be considered in a qualified sense

as infinitely great m comparison with any finite number ; and

an "infinitely small quantity" is also to be relatively con-

sidered as mfinitely small in comparison with any finite

quantity.

If any finite quantity be supposed to be divided into an

infinite number of parts, each part will be infinitely small and

is called an injinitesiynal, because an infinite number of these

is required to make up the finite quantity; it is also when

compared with other infinitesimals said to be of the first order.

By supposing one of these infinitesimals to be similarly divided

into an infinite number of smaller parts, each of these is called

an infinitesimal of the second order, and an infinite number of

them will be required to make up an infinitesimal of the first

order. In like manner by supposing each successive hafini-

tesimal to be divided into an infinite number of parts, infini-

tesimals of still higher orders are obtained.

The same process also leads us to the conception of different

orders of infinities, the word infinity, as before, having only a

relative and qualified signification. Thus the number of

infinitesimals of the first order contained in the finite quantity,

viz. the infinite number of parts into which it is divided, is an

infinity of the first order ; the number of infinitesimals of the

second order contained in the finite quantity is an infinity of

the second order, &c., &c. It is evident therefore that infini-

tesimals and infinities, of the same order, are reciprocally

related, since the one multiplied by the other produces the

finite quantity. Sometimes an infinitesimal is called an

"element" of the integral or finite quantity of which it forms

a part.
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Referring to the equation (2) in wliich x, as usual, is sup-

posed to represent an arithmetical value, we may assume

Aa? = — , N denoting any number or numerical value. When

N is a large number, Ajt becomes a small quantity, and a term

Pao? which involves its first power is in such case usually

called a small quantity of the first order with respect to Ajt;

QAa?2 which involves the second power is of a still smaller

scale of value, and is said to be of the second order with respect

to A^ ; R Ao?^ is called a small quantity of the third order with

respect to A^r, &c. If N be supposed to be an infinite

number, A a? will become an infinitesimal, and denoting it by

dx, we have

&c. &c.

Hence as P, Q, R, &c. are supposed to be finite coefficients,

it follows, according to the preceding definitions, that the

terms V dx, (^dx'^, Rc/a?^ &c. are infinitesimals severally of

the first, second, third, &c. orders.

By supposing the number of parts into which the finite

quantity is divided to be progressively augmented, the cor-

responding infinitesimal will become diminished, and in the

extreme case the quantity may be assumed to be divided into

an infinite number of parts, in the absolute sense of the term,

in which case it is easy to conclude that each of the parts

must become ultimately zero. In thus proceeding to the

extreme case, the nature of the reasoning is in effect the same

as that employed in deducing the limiting ratio or ultimate

value of a vanishing fraction. The laws of infinitesimals are

also founded upon this extreme case, and their operation is
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always exact, for this simple reason, that the extreme limit

c/a? = is, in all mathematical investigations, understood to

be applied to the final result of infinitesimal deductions. These

laws are as follows :

I. In any equation containing terms of finite value, other

terms which represent infinitesimal quantities may be omitted

;

because in the extreme case these infinitesimals become absolute

zeros.

Thus in equation (3) when Aa?, Aw become infinitesimals

denoted by dxy du, the fraction -7— being not necessarily an

infinitesimal, the equation, according to this rule, becomes

dx

being in fact the same as the extreme limit of the equation

before expressed in (4) or (5).

II. In an equation containing infinitesimal quantities of any

order, all infinitesimals of higher orders may be omitted.

For example, in the equation (2) if A.r become an infinitesi-

mal dx, the terms du, V dx will be infinitesimals of the first

order, and the other terms will be infinitesimals of higher

orders. Therefore, omitting these, the equation will become

cfM = P dx.

This evidently follows by first deducing the equation (3) and

then taking the extreme limit as before.

III. In comparing two infinitesimal quantities, if they are of

the same order they will have a finite ratio to each other, but

if of different orders the ratio will be either zero or infinity.

For example, let A.dx'^^Bdx'^ be two infinitesimals, both

of the mth order with respect to dx, then

Kdx"^ A ^ .

Again, let Acfj:'"+», hdx"^ be two infinitesimals of the

A 5



10 THE DIFFERENTIAL CALCULUS

(7w-f-w)th and mth. orders respectively, then

B^^^ B

> an infinitesmal of the nth. order,

, an infinity of the wth order;
Adx'^-^'^ Adx""

and, at the extreme limit, these become

Adx'^+'* _ Bdx^ _

(9.) The method of determining the position of a tangent

to a plane curve supplies an elegant geometrical elucidation of

the signification of the differential co-

efficient of a function. Let APB be

a curve line ; P a point in the curve

the coordinates of which are A D = j?,

D P = 3/ ; Q another point in the curve

the coordinates of which are A D' = ^

+ A,r, D'Q = y +Ay; and suppose the curve to be deter-

mined by an equation of the form y =fxj any function of x.

Then from what precedes.

Ay = Pa.2? + QAar2 + RA^3 ^ g^^.

^ = P + Q Ao? + R Aa?2 + &c.
Ax

In the diagram, Aa? = PG, Ay = GQ, and therefore

A?/—^ = tan Z- 5 P G. Consequently

tan A5PG = P + QAjp4-RAa?2 + &c (a)

From this equation we infer that if A a? be taken less and

less towards zero, the value of tan 5 P G will approximate to

the differential coefficient (P) as its utmost limit. For the

geometrical limit of the angle 5 P G, as Ax decreases, we may

suppose the point Q to approach nearer and nearer to the

point P, and watch the progress of the line rs which passes

through them, or we may suppose the hne rs to turn
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gradually about the fixed point P, so that the intersection Q
shall proceed towards P. The former of these suppositions

will lead ultimately to an indeterminate result, whilst the

latter will proceed at once to the extreme Hmit. Thus on

the former supposition, when the point Q finally arrives at the

point P, and the two points become one, it is evident that an

indefinite number of lines can be drawn through them, and

therefore that the position of the line rs is so far indetermi-

nate. But on the other supposition, if the motion of rs be

conceived to cease the instant the point Q arrives at the point

P, it will then assume the position of the tangent II S^ which

touches the curve at the point P ; and this is obviously the

only position which can obey the law of continuity amongst

the positions that precede it. If we now suppose the motion

of r 5 to continue onward, it is evident that it will begin to

intersect the curve on the other side of the point P, or between

P and A, and that the positions will then have reference to

negative values of A a?. The line rs will thus pass through a

continuous series of positions as A a? gradually diminishes from

positive to negative values ; and when Ao? = 0, though the

position, as depending on the two points through which it has

to pass, is then indeterminate, yet the position R S is the only

one that can partake of the continuity existing amongst all the

others, and the angle SPG is the only one that can partake of

the continuity existing amongst the preceding and following

values of that angle. Now, according to the equation (a), the

series

P + Qao? + Raj?2 + &C.

strictly corresponds with the value of tan * P G for every value

of A;r except zero ; and hence as the values of this series as A a:

passes from positive to negative values are wholly continuous,

and consequently, when A a? = 0, the first term P partakes of

that continuity, it is conclusive that

tanSPG = P=g (iS)
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which may be either considered as a fraction whose numerator

and denominator are the differentials of the ordinates, or the

differential coefficient of y considered as a function of a?.

By this result it is evident that the differentials of the ordi-

nates X, y may be relatively conceived as represented by two

small coordinate lines Ym, mp terminating in the tangent at

a contiguous pointy.

. (10.) After what has now been explained the student will

not fail to observe that the leading principle of the Calculus

arises out of the following considerations :

When a fraction, which in a particular case takes the inde-

terminate form -, expresses the value of a quantity which we

have reason to know from the nature of the subject does not

become discontinuous in that case, or generally when such a

fraction enters in any equation, the other terms of which are

not discontinuous, the fraction is, under such circumstances,

necessarily limited to continuous values, and consequently,

when the numerator and denominator vanish, it must take the

particular limiting value assigned by the law of continuity. It

is on the ground of continuity alone that the mathematical

accuracy and logical rigour of the principles and applications of

the Calculus may be considered to rest. The fundamental

principle of our operations, according to the theory of limits,

consists in this, that if the increment of a function be divided

by the corresponding increment of the independent variable,

then as the increments are taken less and less towards zero, so

will the quotient approximate in value to the differential co-

efficient as its utmost limit. Thus the differential coefficient

is that particular value of the vanishing fraction which con-

forms to the law of continuity amongst the other values : and

since this is the identical value of the fraction, which always

enters as the subject of investigation, the truth of the principle

on which the Calculus is applied, in the case of limits, may be

regarded in the strictest sense, and at the same time rendered

clear and satisfactory to the understanding.
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(11.) There is yet another mode of laying down the first prin-

ciples of the Calculus, which, at the onset, has the advantage of

obviating all considerations of infinitesimals and limiting ratios,

so as to bring the subject within the scope of ordinary Algebra.

This method, commonly called " the method of derived func-

tions," is presented by Lagrange in his * Theorie des Fonctions

Analytiques,' and the investigations, which in their nature are

purely algebraical, are at the same time elegant, systematic and

logical. In substance this method is equivalent to the following

:

Let h denote a small accession to the value of a variable

quantity x which thereby becomes of the value x -{- h-, and

suppose the binomial function f (x + A), when developed

according to the powers of A, to be as in equation (1), viz.

:

f{x + h) ^fx -h PA -f Q/i2 + R/i^ -f &c.

in which P, Q, R, &c., as before, denote new functions of x

whose forms depend wholly upon that oifx.

Then the coefficient P, which is identical with the differen-

tial coefficient, Lagrange defines to be the first derived func-

tion ; he designates it by fx^ and observes that it is quite

independent of the value of A. By treating the derived

function fx in the same manner, that is, by expanding

f\x + K) and again taking the coefficient of A, a second derived

function, designated by/"jr, is obtained; and this process is

further supposed to be successively repeated to third, fourth,

&c. derived functions.

(12.) These definitions being premised, the more immediate

objects of the calculus of derived functions are :

1

.

The form of any function fx being given, to determine

the forms of the derived functions, and to effect generally the

form of the development of the binomial function f{x-\- h),

with other problems relating to the expansion of functions.

2. The form of a derived function being given, to find

that of the original or primitive function, &c., &c.

The problems comprised in the first of these are equivalent

to those of the Differential Calculus ; and those of the second,

which refer to the inverse operations of the Calculus, are in



14 THE DIFFERENTIAL CALCULUS.

effect the same as the inverse processes of integrating differen-

tials and differential equations in the Integral Calculus. And

these abstract analytical problems, which embodj the essential

principles of the Calculus as an instrument of investigation, are

thus established without introducing any ideas relating to

infinitely small quantities or limiting ratios, all considerations

of small quantities being in fact deferred to their legitimate and

inevitable occurrence when we come to the actual applications

of the Calculus to the various geometrical and physical subjects

which arise in the different branches of mathematical science.

We have here given a brief exposition of the fundamental

principles according to different methods of treatment, because

a knowledge of each of these will be necessary to enable the

student eventually to acquire a thorough command of the

powerful resources of the Calculus. After a little experience

he will not fail to discover that the collective reasonings em-

ployed in these methods are substantially alike, and that they

in reality constitute the same grand unique system of deduction,

only exhibited under different points of view or modified for

the purpose of more immediate adaptation to particular objects

of investigation.

(13.) Before entering upon the manual operations of the

Calculus or discussing the practical methods of differentiating

functions, we shall here concisely repeat those preliminary

ideas respecting the operation of differentiation, which should

in the first place be distinctly impressed upon the mind

:

If, when the variable quantity x increases by an increment

A 07, a function u or fx increases by A i« or A (fx) ; then the

*•' differential coefficient" of the function is determined by

ascertaining the ultimate ratio of the increments, or the limiting

,. 1 jy j,\, r L' increment function ^u
contmuous value oi the traction -.

. , ^
= — or

mcrement variable h,x

A(fx)--^— when the increments are supposed to vanish, and this

(^u d i I X)
differential coefficient is symbolized by —- or -~^—, and

sometimes more briefly by w' oxfx.
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If we further suppose the expansion of the binomial function

f(x + Ax), according to the ascending powers of Aj*, to be

/(x -f AJ-) =/x + Fax + QAx^ + &c.;

then the coefficient P of A a:, exhibited by the second term,

will also be the differential coefficient of the function /(x)

;

that is,

du
^^ d{fx) ^ ^

dx dx

In these relations du and dx may be regarded as simulta-

neous infinitesimal increments of i« and x ; but this idea is not

always necessary, because — may be either considered as a

fraction determining the ultimate ratio of two infinitesimals or

as an abstract symbolical representation of the coefficient P,

according to the nature of the investigation.

The following examples, in which the differentials are deter-

mined from first principles, will practically explain their

operation.

Example 1.—Let w = j?^ . then, as the equation is general

for all values of x, when x becomes a? + A j? it will give

{u + Aw) = (a* + Axy = ar2 + 2xAx-\- Ax^,

From this take away the first value u = x^, and we get

Au
Au= 2xAx + Ax-' ,\ — =2a7-hAJ7.

Ax

This last equation is accurately true for all values of Ax,

however small, and the value of 2 a? + Ao: on the right-

hand side, vdll evidently change continuously as we suppose

A a? to continuously diminish and ultimately to vanish. Hence

making A x = and taking the Hmiting value of the fraction

—, denoted by -7-, we obtain
Ax dx

du ^ - _ ,

-— =.2x or du = 2 X dx,
dx

which is the differential of the proposed function ?« = x^.
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Example 2.— Let w = a?^ + Sa'^x ; then, when x hecomes

u + Au= (x + Ax)^ + 3«2 (^ 4- Ax)

= ^2 + 3fl2^ + 3(a?^ + a^)Aa: + SxAx^ + Aa?^.

Reject u =0?^ + 3«2.r, and

Aw = 3 (0^2 + «2) A^ + 3 d? Aa?2 + Ax'^

.-.— = 3(^2 ^^2) ^ 3^^^ + Ax^.
Ax

Hence, as before, making A^ = and taking the limit, we

get

^ = 3 (.r2 + a2) or du = 3 (x^ + a^) dx.

Example 3.—Let u = —r
>

then w + Aw = —, ^ — , and— X — Ax

a'^+bx + bAx a^ + bx (a^ + b^) Ax
Aw = —

b — X — Ax b — X {b — x) (b—- X — Ax)

Au __ a^ -\-b^

" * Ax
~~'

(b — x) {b — X — Ax)'

Therefore, at the limit,

du a^- + b^ ^ «2 + ^2

T- = 77 r^ or du = 77 dx,
dx (b — x)^ (b — xy

The process of finding the differential coefficient or the

differential of any proposed function is called *' differentiation,"

and we proceed in the following Chapters to estabhsh the

principal rules by which we are guided for the purpose of

facilitating the actual performance of this operation on the

different forms and varieties of functions.
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CHAPTER II.

DIFFERENTIATION OF FUNCTIONS.

I. Algebraical Functions,

(14.) A constant quantity connected with a function by the

sign of addition or subtraction will disappear after diiferen-

tiation.

Let M = P + c, P denoting any function of a variable x.

When X becomes x -\- ^x, suppose P and u to respectively

become P -\- aP, w + Aw ; then

w + AM = (P + aP) + c.

From this subtract w = P + c and there remains the in-

crement Aw = aP. Therefore -— = —— and hence :t- = -7
Ax A J? ax ax

or du = dV, in which result the constant quantity c does not

appear.

(15.) A constant quantity connected with a function as a

multiplier or divisor will remain as a multiplier or divisor after

differentiation.

Let t< = c P, P as before denoting any function of a variable

x; then when u, P take the new values u + Au, P + aP,

we have

u + Au = c (? + aP).

From this subtract u = cVy and we get Aw = caP

. Aw _ aP
Ax Ax

du dV
Hence 'l~= ^ ~T~ or du = c c/P.

c- ., , .. P - , du \ dV ^ dV
bimilarly, if w = -, we nnd —- = - . -— or du =

c dx c dx c
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(16.) The differential of a function consisting of two or more

terms, connected by the signs of addition or subtraction, is

found by differentiating each term separately and collecting

the results with their proper signs.

Let tt = P + Q + R + &c., where P, Q, R, &c. are func-

tions of X ; then when x takes the value x -{- ^Xy the function

%i will become

w + Aw = (P + aP) + (Q -f aQ) ± (R + aR) + &c.

From this subtracting the former value w=PHhQHhR± &c.,

we get

AM = aP ± aQ ± aR + &c.

Aw aP aQ aR
. „

-•. — =—\^—^^—
^ + &c,

Lx l^x — Ax —• Ax —

du dV dQ dU
Hence -j- = —. 1

—

-, h -3 h &c.
ax ax — ax ~ ax ~-

or du=i dV ±d(i± dV.± &c.

(17.) The differential coefficient of any constant power of

the independent variable x is found by multiplying by the

exponent and diminishing the exponent by unity.

Let u^= x^ ; then when x takes the value x + Ax, w -f- Aw
= {x -{• AxY,

.', Aw = (a? + AxY — x"^.

To find the value of Au in powers of Ax it will be necessary

to expand this binomial ; but the second term of this expansion

will suffice for our present object, and this may be readily

found by means of induction, independently of the binomial

theorem.

First, suppose the exponent w to be a positive integer. By
multiplying successively by x -\- Ax, disregarding the terms

which involve the second and higher powers of Ax, and in-

dicating those terms by + &c., we obtain

{x + Ax) z=z X + A<2?

{x + Axy =a?2 + 2^Aa?4- &c.
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(x + A.r)3 =x^ -i-Sx^ AX + &c.

(x 4- Ax) "^ ^x"^ i- 4x^ Ax + &c.

&c. &c.

And generally, (x + Ax)^ =z x*^ + nx^~^ Ax + &c.

The value of Am is therefore of the form

Au^nx"^"^ Ax 4- QiAx^ + Raj?3 + &c.

where Q, R, &c. denote certain functions of ar and n. Hence

— z^nx^'-^+QAx-h UAx^ + &c.

;

Ax

and this equation is true for all values of A x. By proceeding

continuously to Aa: = and taking the limiting value of the

fraction, it ultimately gives

du
-—-=: nx"^~ ^ or du = nx^~^ dx.
ax

The same reasoning and the same result also obtain when x

instead of being considered the independent variable is sup-

posed to represent any function of another variable.

Secondly, suppose the exponent to be a negative integer,

or M = ^- ^^ then m = —, m + Aw = —
, ^ .^^ and

x^ {x -f Axy^

1 1 {x -^ Ax)"^ — x'^
^u = =.

(x -\- Axy x'' x"" (x + Ax)""

nx'^-^Ax^- QAx- +RAx^ 4- &c.

x"" (x + Ax)"^

A?/ _ nx^"^ + QAx + 'RAx^ -\- 8ic.

' ' Ax" x"^ {x + Ax)"^

By proceeding as before to the limiting value, this gives

du nx^-^ .
, -

,-— = = —nx"^"^ or du -= ^ nx ^^"^ dx,
dx x"'^

Thirdly, suppose the exponent to be fractional, or m =
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X n
; then u^ = x'^ and nu^-^ du = mx"^~^ dx

, m
, au_mx^-^_ mx^-^ ___ m w~ .

m

If the fractional exponent he negative, or u — x ^ ; then w^

= 0? ~ *" and nu^- ^ du = — mx-^-^ dx, which in the same

du m " n~^ >waygives^^=--^

The rule is therefore true for all powers, whether the expo-

nent he positive or negative, integral or fractional.

(18.) The differential of any constant power of a function

is found by multiplying by the exponent, diminishing the

exponent by unity, and finally multiplying by the differential

of the function.

Let u = 'P^,'P being a function of x ; then proceeding as in

article (17), only substituting P in place of a?, we obtain

du
-— =7?P«-i sinddu = nV''-^ dF.
dP

As in the former case, this rule is also true for all powers,

whether the exponent be positive or negative, integral or frac-

tional.

Cor. Hence also — = nF^~^ -r-
dx dx

and c?M = « P '^"^ -r- dx.
dx

(19.) The differential of a function consisting of two variable

factors is found by multiplying each factor by the differential

of the other, and adding together the two products.

Let w = P Q, the factors P and Q being functions of x.

When X becomes x -{ Ax the corresponding values of u, P, Q
will bew-f-Ai«, P + aP, Q + aQ respectively, and then

w + Aw = (P + aP)(Q + aQ)=PQ + QaP
+ (P + aP)aQ
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.-. A« = Q AP-f (P + aP)aQ

Aa? Aj-
^ ^ i^x

Ilencc, making the increments vanish and taking the limit-

ing values, we get

^=Q^+P^orrf« = QrfP + PdQ.
CLX (iX CLX

(20.) The differential of a function consisting of any number

of variable factors is found by adding together the products

formed by multiplying the differential of each of the factors by

all the others.

Let w = P Q R, a function consisting of three variable factors

P, Q, R. By considering the function u to consist of two

factors PQandR, we have by (19)

du = R«f(PQ) +PQc?R
= R(Q(^P4-Pc/Q) + PQc?R

= QRrfP + RPd^Q + PQrfR.

Similarly if « = P Q R S, the product of four factors, we

obtain

c?t/ = SJ(PQR) + PQRc^S

= S(QRc^P + RP^Q + PQc^R) +PQR<?S
= QRSrfP + RSPrfQ + SPQefRH-PQRt/S;

and the same process of derivation may evidently be extended

to any number of factors.

(21 .) The differential of a function in the form of a fraction

is foimd by multiplying the differential of the numerator by

the denominator, from this product subtracting the differential

of the denominator multiplied by the numerator, and dividing

the remainder by the square of the denominator.

P
Let w = TT, P and Q being functions of x\

P 4- aP
then « + A2« = ^^—-—pc , and

i^ + Ai4
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^^ _ P+ aP
___

P _. QaP-PaQ
Q + aQ Q Q(Q + aQ)

Q^-P^— — ^^ Aa?

A^ ""qToTaq)"

Hence taking the limiting values when A a? = 0, we obtain

Qe/P_p^
du dx dx , Q e?P - P 6?Q_. or du = -^^ --. ^

.

dx Q^ Q2

The different forms of functions, considered in the foregoing

articles (14) to (21), comprise all the combinations of quantity

that can he effected by the ordinary operations of Algebra,

and they will therefore enable us to differentiate all algebraical

functions, however complicated. We shall now apply them

to a few examples.

1. Let it be required to differentiate u = 3x + 2a,

Here, by (14) we must disregard the constant term 2 a, and

du
by (15) we have — = 3 or du =. 3 dx,

2. Differentiate u = —
X

This being written u =^ x-^, we have by (17),

T-= — 1 Xa7-l-l = — a7-2=:
:^y or du=: :,.

dx x^ x^

3. Differentiate u=2x'^ + ax^--3 a'^x'^.

By (15) and (17),

dn^,d(x^)
^

^d(x^) ^^,d{x^)

dx dx dx dx

= 2(40^3) +«(3a^2)_ 3^2(2^)

= 8^3_^ Zax'^-^Qa'^x,

4. Differentiate w = 4 J?
2".
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dx dx

5. Differentiate w = (a + j-) (i + or).

By (14) and (19),

du =^
(J)

-\- x) dx -\- {a -\- x) dx = (a { b { 2x) dx

or —-=: a -\-b -\-2x,
dx

6. Differentiate m = (a? - 2)2 {x^ + 3).

By (18) and (19),

(^^=(^2^3) X 2{x-2)dx+ (j:-2)2 x 2xdx

= 2 (^ - 2) (20^2 _ 2 ^ + 3) dx.

.-. ^ = 2(j;- 2) (2^2^2^4-3).
dx

7. Differentiate w = a^ ^^ + h^'x'^.

By (15) and (17),

dx

8. Differentiate z« = (a + ^) ip + 2ar) (c + 3^).

By (20) we have

du = {b + 2x) (c + 3^) .dx-Yic-^- 3^) {a-\-x),2dx

^ {a-\-x){h + 2x),Zdx

.-. ^=(6 + 2^)(c + 3^) +2(c+3^)(a-f x)

4-3(a + J7)(6 + 2x)

= (3 a 5 + Z> c + 2 c a) + (1 2 a + 6 5 + 4 c) j: + 1 8 jr2.

^,^ . a -f- -^^

9. Differentiate u = •

a — X

By (21),

{a — x) X dx — (a + x) X — d*
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_^ (a — 0^) dx + (a + a:) dx __ 2 a dec

{a — xy^ (a — x)'^

du ^ 2 a

dx
""

(a — x)
2*

10. Differentiate w=V ^^-±^, or w= OM:^

.

« -— 0? (a — ^)4

Here du =

(a ^ x)i X ^ (a -{- x) ^ ^ dx — (a -\- x)^ X — ^ (^ •" ^) - * ^-^r

(« -- x)

du __ (a '— x)i (a -\- x) '~ ^ -{- (a + x)i (a — x) " i

' dx 2 (a — x)

(a — x) -i- (a -\- x) a
^ 2(a — x) {a — x)^ (a + x)^

"~~

(a — x)l{a-j- x)i

a

(a — x) V a^ — x^

Otherwise, by squaring, we have u^ = and, by the
(I —— X

last example, 2udu = ^ ;

{a — x)'^

du

dx u (a — x)^ (« — .r)^ V a + X

(a — x) ^ a^ — x^

1 1

.

Differentiate z«='v^«^ — ^2.

Write u = {a^- a?3)i and by (17), (18),

du = ^ (a^ — x^-)-h X — 2xdx = 7^^ ~o '

12. Differentiate u = ^ a^ + 2bx + x^.

Here u= (a^ + 2b x + x^)^ ;

.-. du = i(a^ + 2bx + x^)-^ X (26e?^ + 2.r(f^)

(b + .r) £?.r

~" V a^ -{- 2bx }- x^*
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3.

13. Difterentiate u = —^^-

—

r, —=: ,v
—^.

By (18) and (21)

^3x3 («2-f J:2)ij,^^__(^2^^2)T X 3^2^Xdu= ~, —
' ' dx

""
x^

3a2

x^
,2 ^ .2

Otherwise, writing the function in the form

u = («2 ^ x'^y x-^, we obtain by (19)

du = x-^ X 3.rrfa: (a2 + ^3)2 + (^2 ^ ^2)T x —3^-4^

= Sdx (a2 + ^2)i {a:- 2 _ ^ - 4 (^2 4. ^2)}

3a2= - 3a2^-4tf^ (a2 + ^2)2 _ >/a2 + j,2,

X*

14. Differentiate w =

_ (a2_^2)¥ X dx-x X -(a^--x^)- ^xdx
UU — o

'

o
0'* — a?-*

_ (a^ — 0?^) c?j7 + j?^da? _ fl^^/vP

(a2 _ ^2)T («2 __ ^2)1

Tx./Y» . 'vfl + «2^ — "^ a — X
lo. Diiferentiate u = ..

"v a -\- X + V a — X

Differential of the numerator

= i(a + x)-Ux-i-i{a-x)-idx

"^ a + X -h "^ a — X
,

r —
CUT.

2 >/ a2 _ ^2

B
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Differential of the denominator

— i {ci + ^) ~ ^ da: — ^ (a — oc)-i dx

=
. ^ ^ ax,

2Va'--x^

Therefore by (21) we have

(A/fi5 + a?+Va — ^)3-f (V a + X — '"/ a — xY ,

du = -——-=: - — dx
2 (V a + X + V « — ^)2 V a^^^2

adx a (a — V a^ — x^)— dx.
(a + V a^ — x^) "^ a^ — x^ x^ V a^ — a?2

16. Differentiate u =

JL

Writing (a^ — x^)^ for \/ «^ — x^, we similarly have, bv

(21),

du =:

(a^-x^)^x(-Sa"-x-4:X^)dx-(Sa^-4a^£c^-x'^)x -(a^-.r^)-^^ d^^

(a2-.^2)t («2_^2)f

dii

17. If w = (« — ^) (6 + .2?) ; then — = a — h.

1 3 3 ^, c?w /.r + 3V
18. Ifz^=- + -^4--^; then - = -(

—

~) .

X x^ x'^ dx \ x"" /

,- , du a^ + 3bx -{- x^
19. liu=z(a^- + bx + x'-)^yx;then^- ^^

du 3x^
20. Ifz. = (2 + ^2)Vi_^3. then^=~ ^^^—-,

2.r2-«2 ^ ^^ 30^4
21. If w = ^ Va2 + ^2. thenT-= 4 / . o

'



DIFFERENTIATION OF FUNCTIONS. 27

22. If„ = (^l+^;thenjf=_i^^,-r:r^.
x^ ax x"^

2:]. If ;/ = (3 .1- - 2 «2) (a2 ^ ^2)1 .

du
then — =:15^'Wfl2^a:3,

dx

(22.) Expressions under the form of square roots are of

' cry frequent occurrence in analytical investigations, and their

lifferentiation, according to art. (18), using |- for the exponent,

suggests the following simple and expeditious rule :

The differential of the square root of a function is fomid by

aking half the differential of the function and dividing the

same by the square root of the function.

This useful rule may be practically applied by the student

to Nos. 11, 12, 14, 16, 20, 21, of the preceding examples, and

it will enable him at once to put down the final result in all

ordinary cases of this kind.

II. Logarithmic and Exponential Functions,

(23.) The logarithmic function u = logo? depends upon the

exponential relation a^ = « ^os ^ = j7. Thus if a ^^s -^^ = j?, and

a log y = y^ ^e have, by multiplication, a log -^ + log 2^ =^ xy\ but

a log ^^y) = xy,

.-. log jc + log y = log {xy),

which is the fundamental property of logarithms.

The constant quantity a is indeterminate and may have any

proposed value. It is called the base of the logarithmic

system belonging to it, and, since a^ = «, it is evidently the

number whose logarithm in the same system is equal to unity.

Since a? = a", we have j? + Aa: = a'* + '^", and therefore

Aj _ a" + -^« — G« _ ^^
a^"-l

Am Am * Am

In taking the limits of this equation we observe that the
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, ^ Aw 1 , ,

limiting continuous value of the fraction , which in
Am

£^x

common with -— takes the form t: when Aw =;= 0, must he a
Am '

function of a and independent of Am. Denoting this function

by X fl, we have
(1$ \

X « = Hmiting value of when ^ =

dx
-— = a^\a = x\a,
du

Again, the equation a? = «^' gives ^^ = a^^, B denoting any

value whatever. Therefore

x^ — \ _a'^^ — \ _ a^^ — \

This equation is necessarily true for all values of 6, By
proceeding to the limit ^ = 0, m ^ = 0, the continuous values,

from what precedes, obviously give

X,r = MXa;

,
\x

.*, u = log X = -

—

X a

The value of the function X x may readily be obtained in a

•
X. ..•

•^'-^
• .1, ^ {1 +(cr-l)}^-l

series by puttmg —-— m the form -^: 1 J.

Thus, by expanding according to the binomial theorem and

putting ^ = in the final result, we obtain

X ^ = (^ - 1) - i (^ - 1)2 + i (.r - 1)3 - i (^ - 1)4 + &c.,

so that the last expression for log x may be written

_ {x-^\)-\{x-\f + \{x~\f-i{x-\Y^kc.
^^§^ ~

(« ~ 1) -i (a - 1)2 + I (a~ l)3^x (a- 1)4 + &c/

These equations apply generally to a system of logarithms

having any value a for the base. According to Briggs's

system, on which the logarithmic tables in common use have

been calculated, the base a = 10, which greatly facilitates the
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use of the tables in arithmetical calculations which involv(»

decimal numbers.

(24.) If the value of a be so assigned that Xa = 1> we shall

have logo: = \t, and log a = Xa = 1. This value of a will

simplify the analytical relations and give the Napierian system

of logarithms, of which the value of a so determined is the

base. Hence it follows that the function we have indicated

by X characterizes the Napierian logarithm. To determine tlie

particular value of a which will fulfil the proposed condition

X a = 1, instead of using the series for X a take the initial form

of this function, and we have

flO _ 1
hmit of—-— = 1, when ^ = ;

1

.-. a = hmit of (1 + S)^y when ^ = 0.

By expanding according to the binomial theorem, we find

e'

^iG-0G-2)g3^g,^
2.3

- 1 + 1 + -^ +
2:3

+ &c.

Now, when B passes from a small positive to a small negative

value, the value of every term of this series will evidently vary

continuously, and when ^ = it gives the limiting value of

1

(1 + 6Y

= 1 + 1 + I +^ + 2^ 4- &c. = 2-7182818, &c.

This arithmetical value, which forms the base of the Napierian

logarithms, is usually denoted by the letter e, and sometimes

by the Greek letter 6, and these symbols always represent this
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arithmetical value whenever they appear as roots of exponential

functions.

The Napierian system, from its greater algebraical simplicity

and convenience, is also that which is generally employed in

analytical investigations and formulae ; and therefore whenever

a logarithmic expression occurs, the Napierian logarithm should

always be understood unless the contrary is distinctly stated.

We have thus, according to this system, the following rela-

tions :

x^ — I
loff X = limit of -, when ^ = 0.

1

e = limit of (1 + ey = 2-7182818, &c.

When u = log a?, the expression for — (art. 23) also
du

becomes -— = Wi eivins; du ^ —• ; but we shall otherwise
du o o ^

determine this diiferentiation in the next article.

(25.) Diiferentiation of w = log x.

When 0} becomes x + Ao?, u becomes u + Aw, and we have

w + Aw = log (a? + Ax) ;

Aw = log (cP 4- A^) — log .r = log = log
I

1 H
I

and, putting — = ^, we find

In proceeding to the limit Aw = 0, A<r = 0, S = 0, we

Aw

observe that the continuous limiting value of (1 + ^)^ = e and

that log e = 1 . Hence

du I
, , doc

-— =r -, and du = —
dx X X
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Therefore the differential of the logarithm of a variable

(juantity is found by taking the differential of the quantity and

lividing by the quantity itself.

The differential of a power, or of the product of several

functions, may be readily deduced from this. Thus if w = a:",

du dx
then I02: tt = /I lop; x. the differential ofwhich edves — = ;i— ;® ^ ° w .r

.-. -r-=w- = wa?'*-^ the same as in art. (17). Again, if
dx X \ / o

M = P X Q X R,, &c., then log w = log P + log Q + log R +
_ , rf« rfP ^ rfQ ^ (/R _ ....
tvc, and .'. — =

t>~ + 77 + "TT "^ ^^-^ which gives

= PQR,&c.(-^ + -^ + - + &c.)

which is equivalent to the formula of art. (20).

(26.) Differentiation of w = a^.

When X becomes a: + Ao? we have u -\- Aw = a ^ + -^-^

;

Am g-^ + a^ _ a^ a^"^ — \

^X AcT AJ7

But (art. 24) the limiting value of the vanishing fraction

, which IS of the form , is lo"; a ; therefore
^x e

""

du .
, ,-— = log a . rt'*", or du = log a .a'^ dx.

Thus the differential of an exponential quantity having an

invariable root is found by multiplying together the logarithm

of the root, the exponential itself, and the differential of its

exponent.

Hence, when a = e, or m = e', we have, since log e = 1,

du
-P = e^, or du = e' dx ;

dx
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that is, the differential of an exponential quantity having for its

root the Napierian base e is found by multiplying it by the

differential of the exponent.

(27.) Differentiation of w = P<i, P and Q being functions

of X.

Since w = PQ we have log w = Q log P, the differential of

which gives d (log u) = (log P) d(^ + Qc? (log P) ; that is, by

(25),

^ = (logP)e?Q + Q^;

.-. 6?tt=(logP)wc?Q + Qw^

= (log P) PQ^Q + QPQ-^ ^P.

Hence the differential of an exponential quantity when the

root and exponent are both variable is found by adding together

the differentials obtained by considering each separately as

constant and the other variable.

For example, let u — a;^". By considering the root x to be

constant and the exponent ^^ to be variable, we obtain by

(26) the differential (log x) x''^^ X 2xdx = 2 x"^^ + i dx (log x).

Again, by considering the exponent x'^ to be constant and the

root X to be variable, we obtain by (17) the differential

0?^ . x^^-"^ dx = 0?"^^ + ^ dx. Hence, adding these, we find

du
du = ^^'2 + 1 dx (2 log X.+ 1) or — = .r^' + i (2 log x + 1).

The following examples are added as exercises :

du
1. lfu = x^e^; then — = ^^-1 (m + ^)^'^.

dx

2. l{u = (x'--2x + 2)€^; then ^ = ^2^*.
dx

3. lfu = (x'^-3x'- + 6x^ 6)e^; then ^ = ^3^^.
dx

e^ . du xe^
4. If w = r—— ; then — = -——-g-

\ ^ X dx (1 + ^)'^
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J. If M = e-^ logo?; then — = e^ I - -\- lo^oc)*
dx \x J

(3. If M = e^*^ logcT; then y^=: e^*"(- 4- mlogi')*
flu/ V*^ /

/ T , du \ •{• X -Y X^
7. Ifw = e' V 1 + X-', then t- = . e'.

III. Triffonometrical Functions.

(28.) The trigonometrical functions sin j?, cos x, tan j^, &c.

are usually considered as abstract arithmetical quantities

having reference to a circle whose radius is unit]/ ; or, which

is in effect the same, they are supposed to be expressed in

parts of the radius, the arithmetical value of the variable x

being supposed to represent the length of the arc measured on

a circle whose radius is unity or otherwise expressed in parts

of the radius of the circle. Other forms result from the

various combinations of these elementary functions, and as

they all involve relations between arcs of circles and their

coordinates they are sometimes called " circular functions."

1 . Diiferentiation of m = sin x.

When X becomes x -f A^^, then « -f Aw = sin {x + A.r), and

Am = sin {x + Ao?) — sin x

= sin {{x -^ |Aa?) + \ ^x]

— sin {{x -\- \^x) — \^x}

= 2 cos (j? + i ^x) sin \ A.r

= cos {x -\- \ AvT) ch Ao:

;

Am . - - ch Ac?
.'. — = cos ix + -Q- Aa?) •

AuT ^ ^ ^ Ax

Now, when am and Ar become infinitesimals, or when we

suppose Aj: = with the view of seeking the limit of this

equation, the fraction becomes a vanishing fraction, and
Ax

b5
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therefore it will first be requisite to ascertain its limiting

value. Let eh A^ be considered to be the side of a regular

polygon of n sides inscribed within the circle, and we shall

obviously have

eh Ao? w ch Ao? perimeter of polygon

A,r w AcT periphery of circle

If the number of sides of the polygon be supposed to be

indefinitely increased, so will Ad? become indefinitely diminished,

and the perimeter of the polygon will evidently approximate

more and more nearly to the circumference of the circle as

its extreme limit, so that the numerator of the fraction

perimeter of jpolygon
^^j uitit„ately become equal to the de-

periphery ot circle

nominator ; and thus the limiting value of is

Aa? ax

= unity. Therefore by supposing Ad? = and taking the

limit of the preceding value of — we obtain the ultimate

diiferential relation

—- = cos X, or du = ax cos x.
ax

Co7\ The limiting value of = 1, when vanishes.

-n sin e 4ch 2 6 ch 2 (9 i • i • r .i n
For = ~ = , which is of the same form as

6 20

^
?-, and therefore expresses the same ratio in the limit.

Ax

2. Differentiation of u = cos x.

Here Aw = cos (x + Ad?) — cos x

— cos {(d? + "I- Ad?) + iAd?}

— cos {(d? + -^Ad?) — iA.r}

= — 2 sin (d? + i Ad?) sin i Ad:

= — sin (d? + |- Ad?) ch Ad?

;

Aw . , , . ch Ad?
i*. — = ~ sm (d? + i Ad?) •

Ad-
^ ^ ^ Ad?
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Hence, taking the limit as before,

— = — sin cT, or du =^ — dx sin x.
dx

Otherwise, since 21 = cosa: = sin (^tt — j?), we have

c?M = c?
(i

TT — a:) cos (i tt — a:)

= — dx cos (I TT — x) = — dx sin x,

3. Differentiation of ic = tan x.

Since u = tan x = , we have, by (21),
cos cT

"^

cos X ds'm X — sin x dcos x
du= cy

cos-^o?

cos X (dx cos x) — sin 07 ( — dx sin x )

cos- 07

dx (cos^ 0? + sin" x) dx
, .,= 5 = 3— = dx sec- X.

cos-o? COS-cT

4. Differentiation of u = cot x.

COS X J
Here u = cot x = -—, and

sni X

sin X dcos x — cos x d sin x
du = r-15

sin" 07

sin X (— dx sin x) — cos x (dx cos x)
~~

sin- 07

dx (sin^07 + cos- 07)

sin -^
07

dx o= r-o— = — dx cosec-07.
sin- 07

Otherwise, since m = cot 07 = , we have, aceordinf' to
tan 07

°

example 2, page 22, and the preceding,

c?tan 07 dx sec^ x dx
au=^ ;r- = :—— = r-ir- = — dx cosec- X.

tan- 07 tan- 07 sin- 07
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Or this differentiation may be obtained from that of tan x

by putting u = cot x = tan {^tt — x) -, thus we have

du = d {^ TT — x) sec^ (i tt — a?) = — dx ^tc^ {^ir — x)

= — Ja?cosec^^.

5. Differentiation of w = sec x.

Since w =2= sec a? = , we have
coso?

_ d cos X dx sin x _

au^= o— = o— = dx tan x sec or*

cos^j? cos^o?

6. Differentiation of m = coseco?.

Here u = cosec a? = -—, and
smcC

,
c? sin .r dx cos a?

du=^ --- -r-5— = r-5— =^ — dx cot 0? cosec 07.

sm-'o? sm^o? •

Otherwise, since u = cosec a? = sec (^tt — x), we have, by

the preceding,

du= d (^TT—x) tan (^tt—x) sec (|- tt — a?) = — <?.r cot .r cosec .r,

(29.) The differentiation of other more compHcated trigono-

metrical functions may be easily deduced from the elementary

differentials here obtained, because all such functions must

evidently result from certain combinations of these with

algebraic functions. As it may therefore be useful to re-

member the results of the preceding trigonometrical differenti-

ations, it will be convenient to collect them together as follows :

d sin X = dx cos x

dt3,nx = dx sec^x

d sec X = dx tan x sec x

d cos X = ^^ dx sinx

d cot X = — dx cosec^ x

d cosec 07 = — dxcotx cosec x.

They are thus arranged in two columns because the differentials

in the second column are respectively analogous to those in

the first column, only using the complementary angle or

substituting ^n — x in place of x ; and, this analogy being

once recognized, a remembrance of the three differentials in

the first column will be sufficient to suggest the others.
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Examples for exercise

:

1

.

If M = cos X -\- X sinj:; then— = a? cos x»
dx

2. If M = cos*^ J? sin^o*;

then— = cos^"~^.r sin'»-^j; {n cos- a? — m sin^ j?).

dx

3. If w= (2 + cos2a7)sina7; then -5^ = 3 cos ^ a:.

dx

4. If w = 2 J? sin a- + (2 — X-) cos x ; then ^ = ^2 sin .r.

5. If w = (2 + 3 cos- x) sm'^ x ; then — = 15 cos'^ j: sin- x,
dx

6. If m = 3j? — 3tana' + tan'^o?; then -?^ = 3 tan^ ^.
dx

7. If w = 2 cos 0? + 2 a' sin a? — j?- cos j; ; then — = ^2 gjj^ -^

dx

8. If M = 3 jc — cos .r (3 sin a? + 2 sin^ x) ; then — = 8 sin "*:!•.

dx

9. If M = e* (cos 07 + sin x) ; then _ = 2 e*" cos x,
dx

IV. Inverse Functions,

(30.) If tP =/w, a function of m, the reverse relation which

indicates the corresponding value of u as depending upon that

of X is called an inverse function^ and is usually written

n =.f-^x. Thus if 07 = sin u, then w = sin-^cT, and this

inverse trigonometrical function therefore symbolically ex-

presses the circular arc whose sine is x. Similarly u = log-^ j:

expresses the number whose Napierian logarithm is equal to x.

The differentiation of an inverse function follows immediately

from tliat of the direct function. For, taking u :=zf-^Xy we

have X =fuy the differential of wliich gives dx = dufu,

du 1 1

dx-fu'-fif-^x)
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We shall here hi this way determine the differentials of the

ordinary inverse functions in their simplest form.

1

.

Differentiation of m = log ~^a:.

Since a^ = log u, we have by (25) dju = —

;

.*. —- = w = log~ia?, or du = da: \og~^x,

2. Differentiation of u =^ sin~*^.

Since cc = sin u, we have by (29) dj: = du cos u ;

du I 1 , da:

dx cosw a/1 — jc^' Vl — a:^

3. Differentiation of w = cos-^o:*.

Since a: = cos u, we have da: = — du sin u ;

du I 1 ^ da:
=, or du :

da: sinw Vl — jp^' Vl — ^^

4. Differentiation of z< = tsua-^a:.

Since a? = tanw, we have da: = du sec^ m ;

c?^^ 1 1 , da:
or aw =

c?a? sec^M 1 + ^-'
1 + <r^

5. Differentiation of w = cot- 1^.

Since a: =: cot w, we have da: = — du cosec^ u

;

du I i ^ da:
or du

da: cosec^'w 1 + a:^' I + a:^

6. Differentiation of w = sec- ^0?.

Since a: = sec u, we have da: = du tan w sec u
;

c?w 1 1
,

<?^
or aw =

<^cP tan w sec w ^ V^^ __ i ^ //-p2 __ ^

7. Differentiation of M = cosec"^ a:.

Since a: = cosec w, we have da: = — du cot u cosec « ;

^_ 1 _ 1

da: cotu cosec w ^ a/^^ — 1

da:
or du = —

a: Vx^ — 1
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Here the differentials of cos-^r, cot-^j:, cosec-'j? arc

respectively the same as the differentials of sin- ^^r, tan-^j?,

sec"^^ only with the negative sign ; and this should evidently

be the case, because ^tt = cos-^o? -f sin-^a? = cot-^j? -}-

tan-^x = cosec-^j^ + sec-^x.

Examples for exercise

:

1. lfu = (x'--2x + 2)lo^-'x:, then$l = ^2iog-ij..
ctx

2. If w = -^^ ; then — = ^ v>
-

1+0? dx (I H- xy

3. If w = logo: log -^o:'; thcn -^ = Hog a? -f
-

)
log " * t.

,
I , du 1

4. It u = tan-^^ + -
; then -r-= — .-,/,

,

—
ot-

a: dx X" {\ -\- X'^)

'^ du \ -\- X tan - ^ x
5. If M = tan~*a? vl + x'" '•> then -r = ..

^

—
du X sin ~ ^ X

G. 1{ u = X — \/l — .r^ sin -^07; then
d^ ^y\-x-

7. Ifw=(2cr~ — \)sin-'^x -\- X ^yi — X'^

;

then -- = 4 .37 sin " 1 jr.

ax

1^ u = x^ + (sin-^jc)- — 2 sin~^j? . .r \/l — o?-^;

1 du _ 4 x^ sm~^x

djo ^\ — x'^

V. Compound Functions,

(31.) If in a function u =^fx the variable x is replaced by

another function (^o:, the expression u=f((l)x), which then

becomes a function of a function, is called a compoundfunction

oi X.

Let i/ = (l)x, so that u=:fi/, and let An, Ax, Aij denote
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corresponding increments of u, x, y\ then, as the equation

Am Aw Ay

Aj? Ay Aj7

essentially represents an identity, and is therefore true for all

values of the increments, however small, it must evidently he

true when we proceed to the limit or suppose the increments

to vanish and take the continuous values of the respective

fractions. Hence

du dii dy du dy .

dx dy dx dy dx

du dy ...
where -j"' ~r are the differential coefficients of the functions

dy dx

u =^fy, and y = (j)x. That is, according to the usual notation

of derived functions,

or du =zf'((j)x) <f>'x.dx.

Similarly, if y = ^ .r, z =^y\ry, u =/^, so that the function u is

of the more complicated form u =:f{yjr((l)x)}y or the function

of a function of a function, it may he shown that

du du dz dy , du d^ dy ,
__ -:= . -^^ or c?M = —.— •-/. «^

;

dx dz dy dx dz dy dx

and these, according to the notation of derived functions, would

be written

J =/r . fy . (^'^ =/ (>/.y) ^\^x) cj^'x

or du —f {-^{i>x)^^r\^^) ^xAx.

In the same way the formulae may be extended to any

number of superposed functions, and it is obvious that they

all depend upon the following simple principle \



DIFFERENTIATION OF FUNCTIONS. 41

The differential of a function of any variable quantity what-

ever is equal to the differential coeflicient of the function, with

respect to that variable quantity, multiplied by the differential

of the variable quantity.

Thus if, as before, u=/{\Ia ((t)x)}yhy successively apply-

ing this principle, we have

du=f'{yl.(ct,a^)} Xd{yl.(cpx)}

=f'{^(^^)} XV^'(0x) Xd(ct>x)

The following examples will practically show the mode of

proceeding here indicated :

1

.

Differentiate u = log sin a;.

By (25) and (29) we have

ds'ma: dxcosx
du = —; =

:
= dx cot X.

sm X sm X

2. Differentiate u = log;^
^ + X

(b + x) dx — (a + x) dx
By (21), d i^^ ^j—^

_ (a — b) dx
^ ~~

{b + x)'^

'

Therefore by (25) we have

\b + xj b-\-

(a — b) dx b -\- X __ (a — b) dx

{b + x)- a-\- X (a-\- x){b + x)

Otherwise, since u = log (« + x) — log (b + x), we have

by (25),

, __ dx dx __ (a — b) dx

""fl-fj? b -i- X
~~

(a-\-x)(b -\- x)

3. Differentiate u = e"^" •*' sec x.
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Here du = secxd (e^^^^) + e^^'^^dseca:, by (19),

= seca^e^^'^^dsinw + e^^^^dsecj:, by (26),

= sec a: e^^^^ . dx cos .r + e^'^^^dxtonx sec ^, by (29),

r= esino^ (1 + tan x sec a?) c?a7.

4. Differentiate ^« = log ( a^ a^ + a;*^ + .z-).

By (22), d(VW+^ + x) = - .l^l^^ + dx

( V a-^ -\- x^ -]- x) dx

Therefore by (25) we have

diV^^TV^ + a:) dx
du r-

Va^ + x'^ + x Va-^ + x^

5. Differentiate u = log tan e-^.

Here du = d (log tan e-^)

= 'J^^^^, by (25),

= i(fZ!)!!^, ,y (29),

=-^i^£rii±^!B!£::!),by(26),
tan e""^'

= — dx e-^ (tan e--*' + cot e-^).

du
6. If w = 0?^ e^ino?

. then - = x^-'^ (m + xcoBx) e^^^^\
dx

7. If w = 2 log sin X + cosec^ a? ; then — = — 2 cot^j?.
dx

du e'^^^
" ^

8. Km = e^^^ ^*^
; then — =

dx Vl—x^

9. If» = logfi+ iV then^=-^^
^\x X"}' dx x{x + 1)
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10. If u = (.1- - a') log^—^ + 2a£;

then -7- = 2 a: loe: .

dx ° a — X

11. ii // = lu- u 4- 2 J" H- 2 VT + 07 -f a:-)

;

c/w 1
then

dx V[ + X -^x'^

12. If u = tan-i-^ ; then — = -

I — x^ dx \ -\- x'^

X
fj^y^ 2

13. If ?/ = sm-^ . ; then — =--
,

.

,, Ti» ,6 4-«eosa? , c?w ^/a^ — h^
14. It w = cos "^

7 ; then — =
a -\- b cos cT

'

dx a •\- h cos a:

15. If M = sm ^^ (3 J? — 4 0?^) ; then -;- = / , ^
'

c?^ V 1 — jp-

, « -r/> X -1 1 ^W 1 + cT + J?" ^ -1
16. If M=r a?etan -r. then-—=— ^

—

^^""^ **'•

ftj? 1 -h J?-

17. If ?/ = tan ~ ^ sin ~ ^ J7

;

then — =
dx {1 + (sin-i^)2}^/i_^3

VI. Implicit Functions.

(32.) The functions hitherto considered are supposed to be

explicitly expressed in terms of the variable quantity involved,

and upon which its value is made to depend. But a function

u may have its value depending upon that of the variable x,

though not expressed in any definite form, algebraical or other-

wise, and perhaps not capable of being so expressed in finite

terms. In fact, the relation which connects together the cor-

responding values of u and x may be presented in the form of

an equation, f(ii,x) = 0, / characterizing any function what-
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ever of m and x. The function u is in such cases called an

implicit function of the variable quantity x. If the eq[uation

f (uy x) = could be solved for u in finite terms involving x,

the function u would then be exhibited as an explicit function

of X ; but, as before observed, this may or may not be possible.

A little consideration, however, will show that the differential of

u with respect to a^ may be more directly obtained by taking

the differential of the proposed equation in its original form.

When X becomes x + Ax, u becomes u + Aw, and as the

equation/ (w, j?) = must be true for all coexistent values of

u and X, we have f{u-\- Aw, x + A,r) = 0, and

f{u -f Aw, X + Ax) —/ (w, x) = 0, or A/(w, 0?) = ;

.
A/(w,a^)

^^^
' ' Ax

This relation vdll be accurately true for all values oi Ax,

and at the limit A.r = it gives

•^ V^^ = 0, or df(u, x) = 0,

which is the differential of the proposed functional equation,

observing that u and x vary simultaneously, u being a function

of X. This differential equation will be of the form "Pdu

-f Q c?j7 = 0, and it will therefore give the value of the limiting

ratio ~, or of the differential coefficient of u with respect to x,

the same being expressed in terms of u and x:

Example 1 .—Differentiate the function u when

u^-2u '/«M^ + .r2 = 0.

By differentiating the equation, we have

. 2 ux dx
2udu — 2 ^ a^ + x^du — ~

. _ + 2 x dx =^ 0,^ a^ -\- x'^

or2(w— \/a^ -\- x^)du— — ,
Lxdx = Q',

Va^ + x^

du _ X

dx a/«2 \- x'^
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In this example the equation w- — 2m VoM-^^ + j?^ = q

involves w in a quadratic, and may therefore be algebraically

solved for u, giving u = "^a^ -{- x'^ A: a, which is the explicit

form of the function u, and its differentiation will also lead to

the result we have just obtained.

Example 2.—Differentiate u when w' — 3 wj?^ -h 2 a?^ = 0.

The differential of the equation gives

Zu'^ du — Sa:^ du — Quxdx + Q x'^ dx := 0,

or 3 (w- — x'^) du — 6 (ux — j?") rfx = ;

du 6 (mj: —• a:-) 2 a:

Example 3.—Differentiate m when x sin w — u sin j? = 1.

By differentiating the equation, we have

dx sin M + J7 du cos u — dusmx — udx cos ^ = 0,

or {x cos u — sin a?) du — (u cos J7 — sinu) dx = ;

, du ^u cos J? — sin w

dx'^ X cos w — sin a:

4. If w'"^ — 3 a M j: -f a?3 = ; then — = ^ .

dx u^ — a X

- Tr » •
r 1 A ^1, ^^ sin M — M cos J7

5. If w sin a: — J? sin M + 1 = ; then — = — .

dx sm J? -^ X cos u

6. If x3 + w3__2a V^^-M- = 0;

then ^ __ ^ ^ ~ ^-2:2- 1^2

dx u a + \^x^ — u^

du
7. If w'* log M — a J? = ; then —

-

(/a? ^^-^(l + wlogw)*

8. If ^e" - w -h 1 = ; then ^ ^ _l!
dx 2 —

9. IfM.r- (a + w)a/6"--m- = 0;

then — = . r^ —^.
dx X ab" -\' u^
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then— = — ,

dx Va'^ — u^

VII. Functions of Two or more Variables.

(33.) het u =f(x, y) denote a function of two variables

X and y.

If instead of x and y varying simultaneously, x be supposed

to vary alone without any change in the value of y, then )/ will

be treated as the symbol of a constant quantity, and u being

then considered as a function of x only, its differential or

difPerential coefficient will be determined by the foregoing

methods for functions of one variable. The value so deter-

mined, however, as it is made to depend upon a change in the

value of X without any supposed change in the value of y, will

be only partial, and will not refer to a consideration of the

total change of w. In order to distinguish this, the differential

coefficient is usually placed within a parenthesis ; thus
( ^r )

denotes the ^partial differential coefficient, and \-i-)dx the

partial differential of u with respect to x, that is, supposing x

alone to change. Similarly, if y alone be supposed to vary

and X to be invariable, \-r) will denote the partial differen-

tial coefficient, and
( T~ ) % the partial differential of u with

respect to y. These partial differentiations, as before observed,

may be effected by the preceding methods for functions of a

single variable ; first regarding w as a function of only one

variable x, and again as a function of only one variable y.

The supposition of .r or y varying separately, so as to

partially differentiate the function u, is here to be received as
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a mere conventional hypothesis assumed for the purpose of

more distinctly defining certain abstract analytical operations,

to be applied hereafter.

Returning now to the proposed function u z^f{x,y), when

nd y respectively become x -f Aa:, y + Ay, it becomes

M -h Am -=f(jo + AcT, y + Ay) ;

that Am ^=-fix -f A<r, y + Ay) — /(.r, y), which denotes the

al increment of u, or the combined effect produced on the

lie of the function by the two increments Aj?, Ay. Instead

01 conceiving the values of x and y to change simultaneously,

we may suppose them to change successively, as the result will

be the same in both cases.

Thus, supposing x to become a? + Ao? and the value of y to

remain unchanged, the function /(.r,y) will become

f{x -f- ^x, y) ;

and again, supposing, in this last function, y to become y + Ay

and X to remain unchanged, it will become /(a? + ^x, y -\- Ay),

which is the complete value of u consequent on the changes in

the values of x and y. The function u instead of passing at

once to this last value is made to assume the three values

/('^j y)i f{^ + ^^y y)y f{^ + Aa?, y + Ay), and the partial in-

crements of M in successively passing to these values are,

f{x + AJ7, y) —f{x, y)

= A/Cr, y) with respect to x ;

f{x + Aj7, y + Ay) —f{x + Aj*, y)

= A/(cr + AcT, y) with respect to y :

the sum of which gives f{jc-\- Aa?, y + Ay) —f{xy y) = Am,

the total increment of u.

Am Af{x,y) with respect to x
' ' Ajc^ Ax

^/(^ + ^^^y y) with respect to y Ay
+

Ay Ax
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Hence, taking the limiting values when /^x = 0, Ay = 0, we

obtain

du _ idu\^
I

[du\ dy; (au\

dx \dx/ \dy) dx

The differential of a function of two variables is therefore

found by taking the sum of the partial differentials.

(34.) Again, let u =if(x,y, z) be a function involving three

variables Xy y, and z ; then

Aw =/(^ + Ao?, y + Ay, z -f- Ar) — /(^, y, 2:).

But, instead of considering the values of x, y, z to change

simultaneously, we may, as before, suppose them to change

successively. In this way the function w, instead of passing at

once to the new value /(.r + Ajp, y + Ay, z + A-sr), will be made

to assume the four values /(a?, y, z),f(x + Ax, y, <?),

/(a? + Ao?, y + Ay, 2:),/(a? + A^, y + Ay, z -f A^),

and the partial increments of u in successively passing to these

values will be

f{x + AXy y, z) —f{xy y, 2)

= A/ (a?, y, 5r) with respect to x ;

f(x + A^, y + Ay, 2:) —/(a? + Ao?, y, r)

= A/(a: + A,r, y, ^r) with respect to y

;

/(^ + A^, y + Ay, ^ + A2r) —/(.r + Ao?, y + Ay, j)

= A/(a? + A^, y + Ay, 2:) with respect to z

:

the sum of which gives

f(x }-Ax,y + Ay, z + A2r) —f(x, y, ^) = Aw,

the total increment of u.

Aw __ Afjxy y, ^) with respect to x
* * Ao:

""
Ax
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Af{x-\- Aj?, y, z) with respect to y Ay

Ay ' Ax

a/(j? -h Ajr, y H- Ay, z) with respect to z Ar

Az * Ar*

Hence, proceeding to the limiting values when Aa: = 0, Ay = 0,

Az = 0, we have

du __ /du\ /du\dy /^w\ dz

dx
"""

\dx/ \dy/ dx \dz/ dx
'

The differential of a function of three variables is therefore

obtained by taking the sum of the partial differentials ; and

this principle evidently extends to functions of any number of

variables.

Example 1 .—If m = a? log y ; then supposing x only to vary

we have

( — ) = log y ; and supposing y only to vary,
( t" )

= -

»

/. rfw = (logy) c?a: + (- )
f?y.

\y/

Example 2.—If u = x^ -\- 3axy -\- y^
;

,\ du ^= 3 (x'^ -i- ay) dx + 3 (y^ + ax) dy.

Example 3.—If u = ^
^ '

X -h y

2x/du\ '2y /du\

x-hyy

2(ydx — X dy)

(x -f y)-
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4. If w = J? -f y 4- V ^^ 4- y^

;

then du = (\ + /-,^ .J d:v + (l + .-1 \dy,

5. If M = a?^' ; then du = (y
^^-i) dx + (o?^ log a?) dy,

6. If M = o^y 'v^o?^ + y^;

. , (2^^ + y^)y^^H-(^'- + 2y^-)^%
then du = -—==

7. If w = — ; then du = —j-r (my dx — nx dy),

8. If w = COS 07 sin y + sin x cos y ;

then du = (c?jr + c?y) (cos .r cos y — sin x sin y)

,

9. If M = ^Va2 ^y2 j^y^/b^ ^x'^', then

C?M C?^

10. If « = d;y 2r ; then du = y z dx + z x dy + xy dz.

11. Ifw = .ry+y2: + 2:,r;

then du= (y -\- z) dx + (z + x) dy -^^ {x -{- y) dz.

12. IfM = ^x^ + y^ + -

then du=^ —

13. Ifi«=-

^y^r

,dx

X

d^

z

xy z ^x^ + y 2 4-2:2

then du = (y-^)^^+(^-^)^y4-(^-y)^.^
(^ — xy
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CHAPTER III.

SUCCESSIVE DIFFERENTIATION.

I. Functions of One Variable,

(35.) By differentiating a function u =fxy of a variable

quantity x, it has been shown that the differential coefficient

— will be another function f'x, and the methods of deter-
dx

mining it have been established in the last Chapter. By
similarly differentiating this new function f'x so as to obtain

its differential coefficient denoted hy f'x, this is called the

second differential coefficient of the original function /a;. In

like manner if we differentiate f'x, its differential coefficient

f"x is called the third differential coefficient of the function

fx ; and, provided the variable quantity x does not disappear

from these functions, this operation may evidently be repeated

to any order of differentiation. This continued process is

called successive differentiation, and it is indicated by the

following relations

:

which may also be thus expressed,

du ^„ d du ^,„ d d da ^

f'x=^—y f"x=i , fx = ,
&c.

dx '' dxdx dxdxdx

According to Lagrange, fx is the primitive function, and

f'x, f'xy f'x, &c., thus determined, are respectively called

the first, second, third, &c. derived functions.—See art. (11).
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Although in the origmal idea of differentiation as founded

on the theory of Hmits, a differential can have only a relative

signification, yet, when separately considered as an infini-

tesimal change of the variable, it may in analytical calculations

be regarded and operated upon as an indeterminate quantity,

the value of which is only appreciable when it is compared

with other quantities of the same order or kind.

Thus the differentiation /'a? = •-- merely defines the value

of the ultimate ratio of two infinitesimal elements du and da:,

and, in other respects, we are at liberty to assign any law-

whatever to the separate values of these elements as depending

upon J7. We might suppose the values of du and dx to be

each ofthem different for different values ofx, so as to change

Avhen a: changes. It will, however, conveniently simplify our

notation if ^ be taken as an independent variable ; that is, if

we suppose the infinitesimal increment da: to have the same

fixed value for all values of a:, so as to admit of being treated

as a constant. In this case a: is tacitly supposed to increase

by equal infinitesimal increments dx, and dx is thus independent

of the value of a? ; but the value of du = dxf^x will evidently

depend upon that of x and be different for different values of

X, Hence the reason why x is in such case specially called

the independent variable ; also as the invariable element dx is

to be regarded as a constant in each differentiation, the fore-

going relations obviously become

•^
dx -^ dx^

*"

dx^

Or, in accordance with the general index law, these are more

conveniently written

/'. = J. f',=:p„ /'". =% he.
-^ dx '^ dx^ '' dx^

And thus the symbols — , —-, —-, &c. represent the first,

dx dx" dx'^
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second, third, &c. diiferential coefficients of u with respect to

X ; or separately considering the numerators and denominators,

du, d'^Uy d^Uf &c. denote the first, second, third, &c. dif-

ferentials of u supposing dx to he constant, and dx^ dx'^, dx'\

Sec, as before, indicate dx, (dx)^, (dxy, &c. or powers of dx.

Example 1. Let u=z x^ \ then — = nx^-^,
dx

—^ = n(n—\) x""-^, -r^, =n(n— \)(n~ 2) x'*-^ &c.,
dx"^ dx'

^ = n (ri - 1) (71 - 2) (?i - 3) 1 = 1 .2.3 . . . . /i.

Ex, 2. Let M = e' ; then by (20),

du . d^^u . d"u ^

dx dx^ dx^^

Ex, 3. Let u = cos x ; then — = —
- sin j» = cos (x-\- -

J,

</-w / 2 7r\—— = — COS J7 = COS
I a? H—— ),

dx^
. V 2 /

_ = sm^ = cos^^ + — j, &c ,

d'^u ( .
wttX

-J— = cos ( x H ).

Ex, 4, Let u = e^ cos j? ; then

— = e' cos 0? — e' sm x = e' (cos j? — sm x)
dx

= \/2e'cos ('^ + 4)

^^=v/2e.^{cos(. + ^)-sin(. + ^)}

= (\/2)2e'cos(j + -^j

Szc. &c.



54 THE DIFFERENTIAL CALCULUS.

Ex. b. lfu = x^ + aj:^ + bx + c; then ^=1.2.3.

Fa:, 6. If w = sin^; then r= sin (a: H -Y
dx"^ \ 2 /

Ex, 7. If u = e"^* ; then = m^e^^,
dx""

Ex, 8. If w = ^ e^ ; then^ = (^ + ^) e^,
dx'' ^

^

Ex. 9. If u = e^ sin x ;

*^^'' ^ "" (\/2)-^-sin (^ + ^).

z.- in T^ l + "27 - ^«w 1.2.3.. -.»
Lx, 10. If i« = , ; then -— = — r—r--

l — x dx'^ (1 — ^)'»+i

II. Changing of the Independent Variable,

(36.) When an expression involving two variables x, y and

the successive differential coefficients has been arrived at on

the supposition that one of the variables is independent, it is

sometimes required to transform it into its equivalent when

the other variable is independent. This process is called

changing the independent variable, and it is accomplished by

replacing the second and higher differential coefficients by

their complete values supposing no independent variable to be

assumed, and afterwards introducing whatever new condition

may be necessary.

Thus if—^, —%i &c. have been calculated with respect to
dx^ dx^

X as an independent variable, to replace these coefficients by

the general values when x is not independent, and therefore dx

not constant, we shall have, art. (21),

Py_ \dx) _d'^y \dx/ d'^y dx — d'^x dy

dx'^ ~ax dx^
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jm
djc'^ dx

__ {d^y dx — d^x dy) dx — S {d'y dx — d'^x dy) d^x_ _
,

&c. &c. &c.

By substituting these values in place of —|, —?, &c. we shall
dx^ dx'^

obtain the corresponding expression when neither x nor y is

supposed to be an independent variable. If y is required to

be an independent variable in the new expression, we must

make d'^y = 0, d'^y = 0, &c., in which case the equivalents

will be

d'^y d'^x dy

dx^ dx^

d^y __ 3 {d'^xY dy — d^x dy dx

dx^
"^

dx'^

&c. &c.

by the substitution of which the independent variable will be

at once changed from x to y.

III. Fiinctmis of Tico or more Variables,

(37.) In art. (33) it has been shown that the total dif-

ferential of a function of two variables is obtained by taking

the sum of the partial differentials, supposing each of them to

vary alone. That is, if u=.f{xyy), we have

As the partial differential coefficients ( — V ( — | are also func-
\dxj \dyj

tions of the two variables x, y, it is evident that the value of du

will admit of being differentiated again in a similar manner so

as to obtain d" u, and that this operation may be repeated up to
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any required order of differentiation. To exhibit the results

of these processes it will be requisite to extend our notation.

When a function u is successively differentiated with respect

to X, considered as an independent variable, the results,

according to the notation of art. (35), are thus indicated,

(S> (S> (S> - -•

The same with respect to y are

(?) m- (?) -• -
the brackets indicating, as in art. (33), that the derived func-

tions are only partial.

But we may differentiate, in succession, sometimes with

respect to one variable and sometimes another, in which cases

the notation usually adopted is as follows :

_
J
—

) is indicated by ( )

dx \dy J \dx dy/

d d /du\ . . J. .11 / d^u \
( — I is mdicated by (

—-— ),
dx dx \dy/ xdx" dy)

&c. &c.

where the numerator shows how many differentiations have

been taken, and the denominator shows the variables employed

in the reverse order of the operations. We proceed to show

that the resulting values of these successive partial derived

functions are independent of the order in which the variables

are supposed to change.

The operation of differentiating a function ^ {x) is defined

by the relation

d^i^x) d . _ (l)(x + dx) — (j) (x)

dx dx dx

By applying this to the function w =/(^,?/), first with

respect to x and then with respect to y, we have
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(9=_
/(j -f dx, y) —f{x, y)

dx

/du\ _ /(x,y + dy) —f(x,y)
\dy) dy

aud by again applying the same principle to these functions,

we get

d /du\ _
dy \dx)

~

f{i-\-dx,y -hrfy) -f(^>y + dy)-/(^• + dx,y)+f{x.y)

d /du\

dx \Ty)
"~

dxdy

f{x -\-dXyy ^dy) -f(x + dx,y)-•/•(^,y + dy)+f(x, y)

dxdy

Hence, as these expressions are alike,
, we have

that is,

d rdu\ _ d /a

dy \dx/ dx \a!)

/dhi\ _ (dhi\
\dy dx/ \dx dy)

This property is true when w is a function ofany number of

Variables, because when x and y alone vary, the other variables

only enter in the same manner as constants, and as regards the

operations performed, u may therefore be considered as a

function of only two variables. Hence it follows that in

calculating partial differential coefficients we may always

interchange at pleasure the order in which the several dif-

ferentiations are performed, without altering the results.

Thus when u=f{x, y), we have also

\dy dxy " \dx^dy)' \dy^ dx)
""
V^ dyO '

and generally, when w is a function of two variables,

c5
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/ d^+'^u \__/ d'-^'u \

\dy^l^r) ~ Kdx^^^J

d_ / d^'+'u \ _ / d^^'+^u \ d / d^'+'u \ __ / d^'+'+^u \

dx \dx'' dy')
~~

\dx'-+^dy')' dy \dx^' ) ^ \dx'' dy'^0'

Example 1 . Let ic =^ x sin y -{- y sin x; then

/dii\ .
_

/du\
I — j

= sin y -T y cos x, I —
j
= a? cos y -{- smx ;

/ d^u\ / d^'-u \

which two results are identical.

Ex. 2. Let w = 2 ^"y^ _j_ ^Ay . then

/__^__\ _ /__^i_\ _ / ^^ \ — 12 (^3 4- 2)

\dy dx dx) \dx dy dx) \dx dx dy)

(38.) The general property estahlished in the last article

will assist us in the successive differentiation of a function of

two or more variables. Let u^=f{x,y), a function of two

variables ; then, art. (33), its first complete differential is

in proceeding to the next differentiation it must be observed

that the coefficients (— h f — j
are generally to be considered

as functions of both variables, and to separately admit of being

differentiated in the same manner as the original function u,

by adding together the partial differentials. Thus we have

/du\ _ jrf /du\
J j_

d /du\

\dx/ dx\dx) dy\dxj

-\d^)''-^\d^y)^'^

/rfttX
___

d /du\ .
, £ /^\ 7

\cly J
~ dx \dy) dy \dy)
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= i^)''' + (jp)'^y-

Again, if we adopt the principle of general differentiation,

and suppose dx and di/ to be variable, we shall have, art. (19),

^{(e)-}='-<£)+(k)'"

The sum of the left-hand members of these is the differen-

tial of the value of c?w, and is therefore equal to d-u. Hence,

adding together these two equations and substituting the

preceding vahies of c?( — ), c?( —
J,
we obtain

The process of differentiation may be successively carried on

to higher orders in precisely the same manner, so as to deter-

mine general expressions for d'''u, d'^u, &c. ; but as the

fi^rmulse for the higher orders become rather cumbrous and

are seldom required, it will not be necessary to give any of

them here.

If the variables x and y are independent of each other, and

their values admit of being connected by a relation of the

lorm y = a a? + jS, so that we may consider both of them to

increase by constant increments ; then dx and dy=zadx may be

both supposed to be invariable. On this hypothesis, d'^x = (),

&c. and c?-y = 0, &c. and the expressions become

u=f{xyy)y

&c. &c. &c.
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Here the numerical coefficients will be found to observe the

same law as those of the binomial theorem ; and the nth

differential may be put down as follows :

d-u = (p^\ dx^ + n (-J!^\da:-'di/
\dx'y Xdx^'-^dy)

^

The successive differentiations of a function of any number

of variables may be determined in the same way as the pre-

ceding. Let uz=f{x, y, z) be a function of three independent

variables, and suppose y = a a? + ft 2* = a' ^ + /3', so that x, y

and z may severally increase by constant increments ; then we

find

u-=f{x,y,z),

''"=(5)''' + (|)''''+(s)''''

&c. &c. &c.

CHAPTER IV.

EXPANSION OF FUNCTIONS.

I. Functions of One Variable.

(39.) Let u =f{x) denote a function oi x, and, h denoting

a finite quantity, let the binomial function f(x-\-h) when
expanded in terms involving the integral powers of h be

supposed to be

f(x + h) =zf(x) + PA -f Q^2 + R7,3 ^ g^c..
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ill which P, Q, R, &c. are new functions of x to be determined

from fix). It has been shown, art. (6), that the coefficient

P of the second term of this development is the differential

coefficient of the function /(^r), and is therefore to be obtained

at once by differentiation. The other coefficients Q, R, &c.

may be similarly determined by means of successive differen-

tiation. Thus, by differentiating successively the above form

of expansion, we get the following equations :

/(^-f A) = P-f 2Q^ + 3R^2^_&c.

f{x^h)= 1.2 Q +2.3R/i+&c.

f"{x + h)= 1.2.3 R + &c.

&c. &c.

As these must be true for all values of h, by supposing the

coefficients P, Q, R, &c. to be finite in value, and making

^ = 0, we obtain,

f{x) = P, f{x) = 1 .2 Q, /"(^) = 1.2.3 R, &c. &c.

;

Hence the expansion of/(x -f h) is,

fix + h) =f(x) +f{x) \ +f"{x)^ + f"(x)~ + &c.

= w H
dx

du h d'^u h- d^u h^

1
'^

dx'^' 1.2
"^

dx^ '

1.2.3
"^^''•'

which is Taylor's theorem, and is one of considerable import-

ance.

In deducing it we have in the first place assumed without

proof that the function is capable of being developed in the

proposed form. The mere fact of obtaining an intelligible

result will, however, be sufficient to establish the truth of this

supposition.

We have also necessarily assumed that all the coefficients
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P, Q, U, &c. should be finite, as the reasoning evidently ceases

to be conclusive when any of these coefficients become infinite

in value. When one of these coefficients becomes infinite in

value, we shall find that all the coefficients which succeed it

will also be infinite in value. Whenever this happens, which

can only be in particular cases and for particular values of x,

Taylor's theorem is commonly said to fail; but it may in

such cases be more properly said to be inapplicable, in conse-

quence of the impossibility of exhibiting the complete expan-

sion of the given function in the required form for that par-

ticular value of X. We shall hereafter give a more satisfactory

investigation of the development in a modified form, so as to

obviate any want of generality or of logical accuracy that

would otherwise be experienced in the many important appli-

cations of this celebrated theorem

(40.) By making ^ = 0, Taylor's theorem becomes

f(h) =/(0) +/'(0) - + /'(O)^ + /'"(O)^ + &c.

Or, substituting x for h,

fix) =/(0) +/(0) ? + /'(O) :^2 + /'"(O) 1^ + ^^-^

which is generally known as '' Maclaurin's theorem,'^ and is

useful for the expansion of functions in powers of the variable.

Professor De Morgan has observed, that Maclaurin was

anticipated in the use of this theorem, and it has in consequence

been latterly called '' Stirling's theorem ;
" but of this it may

be remarked, that it is an obvious and very easily deduced

particular case of Taylor's theorem, of still earlier date ; being,

in fact, merely the development of f{x) considered as a

binomial function /(O -f- x),

II. Theorems which Limit the Values of Functions,

(41.) Let/(.r'), f{x + h) be two values of a function which

varies continuously between x and x -\- h\ then if aiiy value of
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X between x and x + hhe substituted in the proposed function,

the result will be an intermediate function. For example, the

functions f{x -[:\h),f{x^ i^),/(j? + —^ ^ ) are all

intermediate functions with respect to f{x) and/(j? + h) ; but

it does not necessarily follow that their values are arithmeti-

cally intermediate between f{x) and f{x + h) unless the

function between these limits either continually increases or

continually decreases. If, however, x be supposed to vary

continuously and to take every possible value from xio x -\-hy

and V, V denote respectively the greatest and least values of

the function between those limits, then the value of every

intermediate function will obviously be comprised between

V and V,

(42.) When a variable x takes m progressive values o^j, x^^

x^ Xyn, let the corresponding values of a function u

=f(x) be denoted by u^,u^,u^ m^^; then if the

function be continuous in value from u^ to Um we shall have

where 6 is some arithmetical value between zero and unity, so

that the value of 6m is between 1 and W2, and ?/^;„ is a function

oi X intermediate with respect to u^ and M;„.

Let V, V denote the greatest and least values of the function

u when x is supposed to pass continuously through every value

from x^ to x,ni so that u-^y il^,u^ u^ are severally

comprised between them, that is, less than V and greater than

V ; also let the sum of these m functions be denoted by m (u),

then

V -f V + V &c. to m terms = mV (1)

u^ -{- u^ + u^ +Um = m(u) (2)

V -f v -f t? &c. to 7/1 terms = mv (3).

On inspecting these we observe that the terms of (2) are

severally less than the corresponding terms of ( 1 ) and greater

than the corresponding terms of (3), and therefore the total
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' value of (2) is less than that of (1) and greater than that of

(3). That is, the value of (u) is comprised between V
and V, and is therefore a value of the function between these

values. Hence, as V and v are each intermediate with respect

to Wi and t«^, (u) must necessarily be the value of an inter-

mediate function with respect to u^ and Um, and may therefore

be represented by u em, B expressing a numerical value between

zero and unity.

It will be observed that the basis of this proof is the evident

proposition that when, with respect to certain functional

limits, a value is arithmetically intermediate it must also be

functionally intermediate, provided that the function is con-

tinuous between the stated limits.

(43.) Let fix) be a function of x, continuous and finite

from to Xy and which vanishes when j? = ; then will

/W = ^f\Bx),

where 6 is some arithmetical value between zero and unity.

Suppose X to be divided into a number (m) of parts, each

equal to dxy so that mdx-= x, the number m being indefinitely

great and dx indefinitely small. Then, according to the first

principle of differentiation,

/(O + dx) -/(O) ^ .,^Q

dx

f{dx + dx) -f(dx)
=zf(dx)

dx

f{2dx + dx)^f(2dx)
^f'^^dx)

fjSdx + dx) --/(Sdx __ -,
.^ ^ V

dx

&c. &c.

f{mdx)-f{(m-])dx}
dx =-^ {("^ - ^^ ^^^*

Hence, observing that m dx = x, the sum of these equations.
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according to (42), gives

or, since /(O) = 0,

/(^O = m dxf'{6x) = xf{ex).

Cor, If a function /(jt) be continuous in value from to ^r,

and also vanishes at each of these limits, so that /(O) = 0,

/(x) = ; then, by the preceding theorem,

^f\ex)=f{x)=0;

,'. f{dx) = 0.

That is, if/(x) vanishes at both of the values and x, the

derived function or differential coefficient /'{x) will vanish at

6x, some value between and x.

(44.) If/ (A) a function ofA together vrith its first w derived

functions be finite and continuous from to A ; and if more-

over the function and the first w — 1 of these derived functions

severally vanish when A = ; then

where 6 is some positive arithmetical value less than unity.

Let h be supposed to be constant and x variable, and

assume

F(x)=zh''f(x)-x''f(h),

Then, since 'F{x) vanishes when x = and x = hyit follows

from the corollary to (43), that the derived function

F(x) = h^'f^x) -nx»-^f{h)

will vanish when x=:6^h=.h^, where h^ is some value

between and h. But since, by hypothesis, /'(O) = 0, this

derived function Y{x) also vanishes when j? = 0. Hence

again, as the function Y{x) vanishes when x ^=Q and a: = A
^

,

it follows from the same corollary, that its derived function

F"(^) = h^'fix) - ;i (« - 1) x«-2/(/i)
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will vanish when cc = hr^, some value between and h^. But ^

since, by hypothesis, f"(0) = 0, this function F"{x) also

vanishes when cc = 0, Hence, as before,

will vanish when a^ = h^, some value between and h^.

By pursuing this process we shall evidently find that

vanishes when jt = ^„, some value between and kn-i- That

is, substituting for x this last value,

A"/^")(A„)-1.2.3....»/(A) = 0;

where hn is some value between and h, which may therefore

be designated by 6h, 6 being an arithmetical value bet\^'een

zero and unity. Hence we have

which is a further extension of the theorem of art. (43).

Since h^h^ >^2 ^^s ^^-i ^^n it follows that as the

order n advances, the value of hny or of ^„, diminishes*

III. Limitations to Taylor's Theorem.

(45.) Let R(^) be a function of h which represents the

sum of all the terms after the first in the expansion of the

binomial function /(a? + h) ; that is, let

fix + h) =/(x) + R (h),

and suppose h alone to be variable ; then the values of R(/0

and its differential coefficient or derived function R'(/i) will be

R(A) =f(x + h) -fix)

W{h) =f{x + A).

Therefore as the value of R(/i) vanishes when A = 0, if the
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function f{x) be continuous and finite from x io x -\- h, we

have by the theorem of art. (43), or the more general theorem

of art. (44),

R(^) = k R'{6h) = h/'(x -h Oh),

the vahie of R'(^^) being expressed by substituting 6h for h

in the value of R'(A)
;

.-. f(x + h) =f(x) + hf'(x + 6h) (1),

wliich is the development made complete in two terms.

Let now R(/i) be a function of h which represents the sum

of all the terms after the two first in the development of the

binomial function /(j? -f K) ; that is, as suggested by equation

(1), let

f{x + h) => 4- hf\x) + R(A),

and, as before, suppose h alone to be variable ; then the values

of R(^) and its derived functions will be

R(y^) =/(^ + A)-/(^)-V'W
R'(A) =f\x + h) -f\x)

R"(/0=/"(^ + ^).

Therefore as the values of R(^), R'(A) both vanish when

^ =1 0, \if{x),f(x) be continuous and finite from j? to j? -f A,

we have by the theorem of art. (44)

RW = ^ R"(^/0 = :^/'V + ^A) ;

.-. f{x + h) =f{^) + hf'ix) + ^f{x + eh) (2),

which is the development when made complete in three terms.

Again, let R(/i) represent the sum of all the terms succeed-

ing the three first in the development of/ (a? -f h) ; that is, as

suggested by equation (2), let

fix + h) =f{x) 4- hf\x) -f ^/%^) + ^W ;

then the values of R(^) and its derived functions will be
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R(h) =/(^ + h) -f(.v) - hf'ix) - ^/"W
R'(^) ^f{x + h) -f\x) - hf\x)

R"(/i) =f\x + h) -f"{x)

Hence, as the values of R(7i), E/'(A), R/"(A) severally vanish

when A = 0, iif{x), f'(x), f"{x) be continuous and finite in

value from .r to a? + ^, we have by the same theorem, art.

(44),

^^^^ = 1:2:3
^'"^ ^^^ " 1X3^"^^'

-^ ^^^ ''

r. fix + h) =f(x) + hf(x) + ~^-^f"(x)

which is the development completed in four terms.

In like manner, so long as the functions are continuous and

finite in value, may the binomial function f(x + h) be com-

pletely exhibited in any number of terms. Thus, let 'R(h) be

a function of h which expresses the exact residue of the

development after the Jirst n terms, so that

fix + h) =f{x) + \ f\x) +~ f"{x) + —rxx)

Then the values of Pt(A) and its derived functions will be
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lV{h) =/[(x + h) -f\x) - j/"(a') - ^/'"W
hn-2

1.2.3.... n-2^ ^^^

R"(/0 =f'\x + h) -/"W -
J/'"(x)

- r:2:3T::T^=3/"'-^w
&c. &c. &c.

R(«-i)(A) =:/('»-i)(a: + /i) -/(«-i)(.r)

R(n)(^) =/(«)(^ + h).

Therefore, when h vanishes,

R(0) = 0, R'(0) = 0, R"(0) =0, R('»-^)(0) = ;

and hence if /(x), f'{x), f"{x) f^''^\x) are severally

continuous and finite in value from a? to a? + hy the function

R(A) fulfils the conditions of the theorem of art. (44), which

gives

The development in Taylor's series, when made complete in

n -f 1 terms, is therefore

fix + h) =/W + \ fix) + ^/"(^) + ~f"i^)

where 6 is some positive numerical quantity, the value of which

is undetermined further than that it is contained between the

limits of zero and unity. We are hereby enabled to affix

corresponding hmits to the completion of Taylor's series after

any number of terms ; but it must be remembered, art. (41),

that the value of /^"^j: + BK), though functionally inter-

mediate, is not necessarily contained arithmetically between

f^^\x) and/('»^(a: + A). Let V and v denote the greatest and
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least values oi f^^\x) whicji occur from x to x H- 7i, then we

conclude that, by stopping at the Jiih term, the final correction,

to make the value of the development exact, will always be

comprised between y~2 ^ ^^^
f2 n

^'

This formula is Lagrange's limitation to Taylor's theorem,

and it should be remembered that the conditions on which it

depends are, that the n -\- I functions f{x), f(x)y f'(x),

f"{x) f^^K^) inust be severally continuous and finite

in value between the limits x and x -\- h. It is not aifected

by any of the subsequent functions f^^'^^\x), f^'^'^^\x),

&c. becoming discontinuous or infinite, and it is true when

stopped at any number of terms, provided only that the

functions are so far continuous and finite. Thus we may

have

&c. &c. &c.

which equations admit of being made exact by values oi 6^,

^2> ^35 ^^'j ^^ch less than unity, so that x + 6h is in every

case comprised between the limits x and x -\- h. By equating

each of these values off(x + h) with the next, we deduce the

following relations,

/'(^ + e,h) =f(x) + lf"{x + e,h),

&c. &c. &c.

/(--^) (x + Bn-x h) =f(n-i) (^) +^/(.) (a; 4- 6nh) ;

and from these we infer that, when h is small.
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^1 = "2» ^2 — 3» ^3 = 4> • • • • ^« = ;^l'

and they will seldom in any case differ much from these values.

(46.) By making j- = in the formula (w), Taylor's theorem

with limits becomes

/(/,) =/(0) + \f{0) + ^^/"(O) + 7^3/"'(0)

or, substituting x for hy

/(x) =/(o) + -/'(o) + -/'(o) + Y:^^rm

and this equation, which is necessarily exact for some value of

B less than unity, is the corresponding limitation of the theorem

of Maclaurin or Stirling. The conditions essential to this

theorem are, that the functions /(.r), f'{x), f"{x)

y('»)(a:) should be continuous and finite in value from to a?.

This theorem may also be put under the form

W,= M0 -f
x/dM\ aT- /d^u\ x^ /d^u\

l\dx)o \.2\dx'-)o
"^

1.2.3 V'TVo

x"" /d''u\

\.2,,.rAdx^)ex

IV. Functions of Tico or more Variables.

(47.) Let M = F {xyy) be a function of two variables, and

let it be required to expand Y{x {• hy y -\- k) in powers of

h and k. Take k =z ah and put

U = Y(x-hh,y ^k)=iF{x-\'hyy-h ah).

rhen, by supposing k alone to vary, U may be considered as

a function of one variable h, and expanded in powers of h by

Stirling's theorem, art. (46). When h becomes h + dh, the

function U becomes F (x + h -{- dhy y -\- ah + a dh), and this
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form is identically the same as if we had supposed x to become

X + dh and y to become y + a dh. Therefore, substituting

dh for dx and a dh for dy^ in the formula

-=0-^(f)*
we find the differential of U = F(^ + ^, y + «A), with respect

to A, to be

•^^=(S)-(f) <'

As this value of —- must be a function of a? + A, y -f a/i, it

may evidently be again differentiated by applying to it the

same formula (1). Thus

d^d\] _ / d d\j\ / d_ d\]\

dh Idi
""
V^ Ih) ^ \dy 'dh )

'

that is, operating on the preceding value of — as indicated on

the right hand of this equation.

In the same way, treating this as another function of a? -j- A,

?/ -\- ahy and again employing the formula (1), the process may
be carried to any order of differentiation ; and we shall obtain

generally

dh

(n).
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in which the numerical coefficients are those of the expansion

of (1 -f xy.

Now, by StirUng's theorem with Hmits, art. (46), we have

A'»

1.2..

in which expansion the function U and its differential co-

efficients are the values when A = 0, excepting the last, in

which h takes the value 6h, But when A = 0, functions of

jc -^ h, y -{- ah become corresponding functions of x, y, and

U, and its differential coefficients with respect to x and y
become the same as if the function u had been employed ; also

when h becomes 6h, functions oi x -{ h, y -\- ah become

corresponding functions oi x •\- Oh^ y -\- 6 ah. Hence substi-

tuting the values according to the preceding expressions (1),

(2), {n)y and observing these transformations, we have

for U the following development

:

« + i{(S)-(i)}

-S{(S)-(a) -'($)}

"*
1.2....W \\dx^')

"^
^''\dx''-^dy)

,

n(n-\) , / d^u \
"^

2 ""Xdx^-^dy^)

/d''u\ 1

the value of the term exhibited in the last three lines being

taken when x and y become x {- Oh, y -\- Oak, where ^ < 1.

D



74 THE DIFFERENTIAL CALCULUS.

By substituting k in place of its value ah, the formula

becomes

U = F (^ + y^, y + ^) =

1.2 «\ Xdlx^'J \dx^-^dy)

.

^iji^l) / d-u \
+ 2 ^ \dx-Hyy

+^""(3-^)1^+^^

(48.) In the formula just determined make ^ = 0, 2/ = 0,

and afterwards change h into a: and A; into y ; then

« = F(^,3^) = .o + ^(g)^ + y(|)^

+
1.2.... w 1

'^'^

V5^7
"*" '^ ^'^

^ V5i^^=^/

-'•(?-:)}«

where we have to make x, y each = in the several functions,

except in the term which occupies the last two lines, where they

are to be replaced by 6x, Oy, 6 being < 1.

Note.—It may here be remarked with respect to expansions
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generally, that if the wth or limiting term decreases without

limit as n increases without limit, the development may be

then continued without introducing any limiting term.

(49.) If in Taylor's theorem we make h = dx, it becomes

, X ./ X df{x) dH(x) d^f(x) ,

fix + dx) =f(x) +-Zi^ +-^ 4- ^J^ 4- &c.;

that is, if w =/(j?),

du d'^u d^u
U =f{x + dx)=u^-^—^ ^-^ + &c.

This formula represents in a simple form the most general

theory of expansion, and may be extended to the expansion of

a function of any number of variables, under the following

general enunciation

:

* Let u ^f{x, y, s, &c.) be a function of any number of

variables, and let hx, by, bz, kc. denote arbitrary increments of

the respective variables.

Suppose the function

U =f{x \-bx,y-\- by, z + bz, &c.)

to be partly expanded, and denote by bu the terms which

involve the first order of the increments bx, by, bz, &c.

Then x -\- bx, y -\- by, z -\- bz, &:c. being substituted for

X, y, z, &c. in the value of bu and the result again partly

expanded, denote by 5-w the terms which involve the second

order of the increments.

And again, the same substitutions being made in b'^u, and

the result expanded, denote by b^u the terms which involve

the third order of the increments, &c., &c.

Then will

and the values of bu, b'^u, b^u, &c. may be determined by

successively diiferentiating the function u-=f{x, y, z, &c.) on

* This theorem was first announced by the author in the Appendix to

the * Gentleman's Diary ' for the year 1835.
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the supposition that dx, di/, dz, &c. do not change, only

writing 5^, Si/, bz, &c. in place of dx, dy, dz, &c. ; also the

series may be stopped at pleasure by substituting x + 6bx,

y + Bby, z + 6dz, &c. for x, y, z, &c. in the last term,

6 being < 1

.

By making x, y, z, &c. severally = 0, and writing x, y, z, &c.

in place of bx, by, bz, &c., the result will be the expansion of

the function u =. f{xy y, ^, &;c.) in powers of the variables.

The preceding developments may all be deduced from this

general theorem.

Exam^^lea,

1. Expand/(a: + A) = (a? -f A)** by Taylor's theorem.

Since /(.r) = x'^^ we have by successive differentiation

f\x) = n x''-\ f"{x) =n(n — l) x""-^,

f"(x) = w (» - 1) (w - 2) a?»-3, &c.

Hence, by the theorem, art. (39),

(x + hy ;^ ;c^ + 7 x^-^h + ^^^1^^ x^-^ h^
i 1.2

.
w(w — l)(w— 2)

+ -^
j-2 3 -^""-^h^ + &c.,

which is the formula of the binomial theorem.

2. Expand log {x + h).

Here /(a?) = log x, and by differentiation

f{x) = x-\ f"{x) = - \,x-\ f"'{x) = 1.2.a:-3, &c.

Therefore, by the theorem,

h h^ h^
A^+h)=logix + h) = \os(x) + -__ + A._&c.

which is divergent and inapplicable when ,r < A.

If we employ the theorem with the limitations, art. (45),

we shall obtain

log (x 4- h) = log (x) +
JZfsl
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which expressions will be strictly accurate with values of 6

between the Hmits of zero and unity. Let a? = I, then

By the first of these expressions it follows that the value of

log(l 4- h) is comprised between - and ; and by the

second the same value is comprised between the narrower

limits A— TT and k
2 2(l-hA)2

3. Expand the function w = sin a? in powers of x by

Maclaurin's theorem.

By differentiation,

du d^u . d^u
-- = cos X, -riy = — sm x, -r-r, = — cos Xy
dx dx^ dx'^

= sin X, -Yi = cos Xy &c.
d^u . d^'u
--—. = sm X, -r-r
dx"^

'
dx^

which, when .r = 0, respectively become 1,0, — 1, 0, 1, &c.

Therefore by the theorem, art. (40),

x'^ x^ „

Or, by the theorem with limitations, art. (46),

sin j: = J? cos 6x = x ^ •— sin d^x ; where ^^ < ^ < 1,

and which may be similarly expressed in any required number

of terms.

4. Expand u = cos Xy in powers of x,

_ du . d^u
Here -r- = — sm x, -—^ = — cos Xy

dx dx^

d^u . rf-^M

-T-^ = sm Xy —
-J = cos J*, &c.,

dx"^ dx^
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which, when x = 0, become 0, — 1, 0, 1, &c.

;

... cosa: = l---fj;^;3-^~&c.

Or, with the hmitations,

cos 07 = 1 — a:sin6x = 1 —— cos S^x = &c.

5. Expand w = e* = log~^a? in powers of x,

du d u
By art. (26) we have -— = e', -—t, = e*, &c., which, when

•^ dx dx"

^ = 0, severally become equal to unity.

.-. ^^ = l + Y^

Also, with the limitations,

e* = 1 + ^ e^^ = 1 + 7 + —^ e^/* = &c.

6. Let u=z xy 2, and expand

U = (^ + S.r) (2^ + hj) (z + 52r)

by the general theorem of art. (49).

By operating upon u=^ xy z with the symbol S in a manner

analogous to successive differentiation, and supposing hx, by, ^z

to be invariable, we have

u = xy z

bu = y z8x -{ zxby + xydz

b^u = 2 X dy bz -j- 2 y dz dx -{- 2 z dx Sy

d^u =. Gdxbydz,

which substituted in the formula

^ 1 ^ 1.2 ^ 1.2.3 •

we obtain

{x + Bx) (y -{ dy)(z -\-dz)=xy z -\- (yzdx + zxdy -\- xy dz)

-j-(xdydz + ydzdx + z dx d7j)

+ dx by bz,

which may be verified by multiplication.
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(oO.) In the series for e', example 5, replace a? by a? V— 1

;

then

X- p4

= *-t:2 + l2X4-^^-

+ (^-1^3 + ^'=-)^^''

that is, examples 3 and 4,

^« vIT __ ^Qg^ _|_ ;^_ J gjj^^ . . . (1).

In -this equation replace xhj — x, and we have also

e-'^^ = cos 07 — V -- 1 sin a: (2) ;

rV_i I -_^\/_i
C03JC =

sm J? =

2
(3),

2V-I
which are Euler's formulae.

Again, replacing a: by mo? in (1) and (2),

g±m*vZl _ cos mo? + V — 1 sin mo*.

Hence, as ^±^^^^-1 = (e±*^- i)^, we have

cos mx + V — 1 sin mo? = (coso? + V — 1 sino?)*" (4),

which is De Moivre's formula and is true for all integral

values of m. When expanded by the binomial theorem, by

equating separately the real and the unreal portions, we may

obtain from it the trigonometrical values of cos wo: and sin/^/.i

in powers of cos x» sin x.

In (4) replace 0: by 0: + 2 ttt, r denoting any integral

number; then

(cos 0? Hr V— 1 sin x)^ =

cos (mx + 2 rmir) Hh V — 1- sin {mx + 2 rmii) .... (5),
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which is the complete form of equation (4) and is now true for

all values of m^ whether integral, fractional, real or unreal;

and hoth sides will now always contain the same number of

identical values.*

From the preceding values of cos a?, sin x^ equations (3), it

is evident that all the trigonometrical functions of x may be

expressed in algebraical functions of the exponentials e*^-^

aDde-'^^"^

, CHAPTER V.

INDETERMINATE FORMS.

(51.) When a function for a particular value of the variable

assumes any one of the forms

^, ^, X 00, 00 - 00 ; 00, ooO or 1±»,
00

the function, absolutely considered under this singular form,

becomes then essentially indeterminate and admits of having

any value whatever assigned to it. But if the proposed

function represent a quantity which varies continuously so

that the function up to the particular value of the variable

is subject to a condition of continuity, its value will evidently

be determinable in a manner analogous to that by which we

obtained the differential coefficient of a function in art. (6).

I. Functions in the Form of Fractions,

fix) . .

(52.) Let u = —T—^ be a function of x which becomes -
^ ^ Y (x)

when .r = «. It is evident that this will arise from the in-

corporation of certain vanishing factors in both numerator and

* An investigation of the general theory of exponential and imaginary

quantities arising out of this last equation is given by the author in the

Appendix to the ' Gentleman's Diary' for 1837.
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denominator. Suppose the resolution of these factors to give

Y{x)
"" (^-a)'*Q'

where P and Q are of finite value when x = a. Then by

division we should have

and when j: = a, this would obviously give for the required

value,

P
if iw > w ; — if m = w, or CO if m < w.

The ehmination of the vanishing factors will in most cases

be facilitated by substituting a + ^ for x, so that x -— a-= h.

The form of w will then be a function of h which becomes

- when A = 0. By expanding, if necessary, the numerator

and denominator of this function in ascending powers of A,

and dividing by the power of A which is common to them both,

and afterwards making A = 0, the result will be the required

continuous value of the proposed vanishing fraction when

J = a.

(53.) The continuous value of the vanishing fraction may

be otherwise determined by ascertaining in a different manner

an expression of its value in a continuous form for values of x

contiguous to J? = a. Thus when x takes the value a -f A, we

have by Taylor's theorem, art. (45), observing that /(a) = 0,

F(fl) = 0,

f{a + A) /(a) -h \ f\a -h Qh) f {a + Sli)

F(a-fA) F(a)-f-yF'(a + ^A) Y\a-^6h)

This equation is necessarily strictly true when A is of any

value, however small, positive or negative, and if /'(«)>

D 5
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F'(«) do not both vanish or become infinite, the fraction on

the right hand will be continuous in form when h vanishes

;

therefore, making ^ = 0, we obtain, for the continuous value,

r(«) Y\a) ^
^*

But if /'(a), F'(a) both vanish, by extending Taylor's

series to another term, we shall have

/(g + h) _ f{a) + \f'{a) + f^ f"{a + 6h)

F (a + ^) F(«) + ^ F(«) + ^ F'(a + 6h)

_ fja + eh)

F"(a + 6h)'

Hence, if /"(a), F"(a) do not both vanish or become infinite,

we obtain, by making A = 0,

r(a) F"(a) ^
^'

By proceeding in this way, we similarly find that if the

numerator and denominator with their first n — l differential

coefficients, Viz,f{x),f{x),f\x) /(^-i)
(^), andF(j:),

F'(a?), F"(a?) p^^-^) {x) severally vanish when.r = a,

and the ^th differential coefficients/^'^) (a?), F^**) {x) do not both

vanish or become infinite, then the continuous value of the

fraction will be

F(a) F(^)(a) ^
^'

(54.) Suppose the numerator and denominator of the func-

that it becomes of the form — . Then by expressing the

function by the reciprocals, thus.

fix)
tion '—-{ to be both of them infinite in value when ^ = a, so

F(«)
.

1
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it will become of the form - . Therefore by equation (
I

)

we get, by differentiating the numerator and denominator,

- J>L
/(a) _ {£WJ_'^ f/(a)-l^F'(a)

F(a)~_ /'(g) IF («)//'(«)'

{ /(«) }'

which gives

/(a)^/'(«)

F(a) F'(a)
'

This being the same as the equation ( 1
) before obtained,

we conclude that the mode of operating in this case is identical

with that already indicated when the function is of the

form-.

Thus, if after n— 1 differentiations the fractions ^tt- >

f^y f^y .^S;Sg severally become of the form

— or -, and if \^, s , [ does not become ofeither ofthose forms

;

then, according to equation (n),

f{a) _ r-\a)
F(«) F ('»)(«)*

(55.) We have therefore the following rule for determining

the continuous value of a fraction which for a particular value

of the variable becomes of the form- or — :— Divide the dif-
00

ferential coefficient of the numerator by the differential coeffi-

cient of the denominator for a new fraction, in which substitute

the given value of the variable. Should this latter fraction

00
still assume the form - or — , the same process may be sue-
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cessively repeated until one or both of the numerator and

denominator ceases to vanish or become infinite in value.

Example 1 .—^When a? = 0, find the continuous value of

1 — cos 07 __

sin 2 ,r

Here /a? = 1 — cos j?, F(.r) = sin^^r ; and by differentiation,

f'{x) sin ,r 1

F '{x) 2 sin X cos x 2 coso?

which, when a? = 0, gives \ for the required value.

Example 2.—When ir = 0, required the value of , . ^^ logsm2x

— 00

Since/(J?) = log sin a?, Y{x) = log sin 2xy we have

_, co^x _, . ^ 2 cos 2x
fx = -:— , F(^) = . ^ ;sm ^ sm 2 J?

. y'(^) cos^ sin2.r

F'(.r) 2 cos 2 .r
*

sin a?

*

When J? = 0, the first factor of this expression is determi-

cos J7 , , ,, T p sin 2a? ^.„
ate and is ;:; -^ = i ; but the other factor —: still

2 cos 2x sm*

maintains the indeterminate form - , and its numerator and

denominator must therefore be again differentiated, giving

2 cos 2i27 = 2. The value of the proposed expression is
COSO? r r r

therefore ^ x 2 = 1

.

Example 3.—When a? = ao , determine the continuous value

g* 00
of -^ = — , the exponent m being a finite integer.

f(x) e^ 00
Here we have i^rri = —:7 = —> when j? = oo

,

F(J7) 0?^ oo'

f'{x) e' 00 ^
•1,, ^

= r = — , when ^ = X

,

F'(a?) m^'^-i cx)'

&c. &c. &c.
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i. \-l = ,
= GO , when j? = co .

Y^'^^x) 1.2.3 m

The sought value is therefore infinite.

. «ri , - 1 — J?*" m
4. When x = 1, then :; = ,t- = —

gj? e<*

5. When a? = a, then = - = e'*.

J7— a

6. When j? = 0, then = - = log 7.

^•r — e~
7. When j? = 0, then-

8. When j? = 0, then

sin J7

J7 — sin cT

__0 _
"" "

= 2.

_
""0"

1

2.3

„^ ^ , tan J? — sin a:-

9. When a: = 0, then : = - = 3.
X — %\VlX

jpj: X
10. When j? = 1, then -—^ = - = - 2.

1 -h log a: — 0?

, , -nri /^ .1 lo?; cot J7 00
11. Whend?= 0, then -^ = =-1

12. When a?=0, then

log X — 00

cos aJ7— COS /3j7 __ ___ a^— |9^

cos aj^ — cos ^wC a^— 6^

II. Functions in the Form of Products,

(56.) Again, \iY{x)f{x) be a function of j7 which, when

j: = a, becomes X x , it may be diiferently expressed, as

follows

:

Since, when j; = a, F(x) = 0, /(x) = x , the former of

these will assume the form -^ and the latter will assume
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the form — , and either of them may be evaluated by art.

(55).

Also, if F(a?)— /(a?) be a function of w which, when
x= a, becomes of the form oo — oo , it may be expressed

thus :

_1 1__

FW/W
which, when a? = «, will now become -, and may therefore be I
evaluated as before.

"

Example 1 .—When x =z -, required the value of

/'l>_^'\tan^ = X 00.

In this example we have

/ 1
j
tan 07 =

__ ?^

cot 07

77 . .

When 0? = — , this expression assumes the form - , and

its value is hence found to be

2^ __2
TT 77 2

cot 07 — COSeC'^07 77

X 1
Example 2.—When o? = 1, find the value of , ,

log 07 log X

= 00 — 00 .

_ X 1 07—1
Here , , = -. ,

log 07 log 07 log 07

which, when o? =1, takes the form -, and its value is there-

fore found to be
^-

1

_1 _ ^_i
log 07 1
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3. When.r = 1, then
1 = 00 —00 = ^.

4. When j? = oo , then e-'log x = x cao = 0.

5. When j: = 0, then xlo^a: = x — oo = 0.

X 1

6. When x = \, then
7—1 log J?

00 — 00 =

7. When J? = 0, then
1

8. When J7 = 0, then —
x" ortanj?

1— =00 -oo = .i.

= X —00 =

III. Functions in the Form of Exponentials,

{o7.) The general exponential function u = ¥(x)-^^^ may

for a particular value of x become one or other of the forms

QO, 00 «, 1±», 0±«, 00 ±».

Only the first three of these are indeterminate in their

character : the other two are determinate, and their values

are evidently

0±"= / ^ 00^
\qo

Since u = Y{xy^^\ we have

logw=/(a?)logF(a?) = logFW
1

Therefore, referring to this expression for log w,

00

when u is of the form log u is of the form

Hence the value of log u may be determined by art. (55),

and thence the corresponding value of w.
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Example 1.
—

"When a? =. 0, find the value oi x' = 0^.

Here u = .r*, and logw = x\o^x = 2§Ji,

When a? = 0, this expression for log u takes the form ,

00

and hence, by differentiation, its value is found to be

1

loff X Xl0gW=-^=: —-=—^7 = 0; .-. W=l.

2. When ^ = 0, then a?«i°'^= 0^ = 1.

3. When ^ = 0, then (cot^)«i°'^= ooO = 1.

1

4. When a? = oo , then j^iog^-^ = oo^ = e.

5. When a? = 0, then (1 + mj?)-^ = 1 «= = e'".

_L 1

6. Whena?= 1, then,r^-'*'= I"= ~*

IV. Exceptions to Taylor's Theorem*

(58.) In art. (39) allusion has been made to the existence

of certain functions, to the development of which Taylor's

theorem ceases to be applicable for particular values of the

variable, in consequence of the differential coefficients or

derived functions becoming infinite in value.

Let ^^t{x)hQ a function of a?, and suppose a given finite value

o to be a root of either of the equations

^(^) = «' W) = '-'

then it may be shown that ^ (x) will be of the form

ylr(x) = (x-arct>ix) (1),

the function </)(a7) not vanishing or becoming infinite when

X = a, and therefore not involving as a factor any other power
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of o: — a. Also, the exponent /x will be positive or negative

according as j: = a causes yfr (x) to become zero or infinity, or

according as a is a root of i/^ (j:*) = or of——- = ; and it

will evidently be the limitine value of the fraction , - ° ^^^'
,^ ^

log (^-a)

which assumes the form — , when x = a,

(59.) Suppose a given function /(j?) to contain a term of

the form ^ (x) ; then, if we proceed to the derived functions,

/'(x) will contain the term (x — aY~^<t*{x) . fx

/» „ „ (a.-a)'^-2<^W./x(,x~l)

&c. &c. &c.

Consider now the following cases :

1

.

If /x be a positive whole number, these terms will wholly

disappear after /^^ (a:), and since the exponents /x — 1, /x — 2,

/x — 3, &c. are all positive, it is evident that when j? = a and

X — a = 0, the original introduction of the factor {x — a)**

cannot thus aifect the finite character of the values of the

derived functions. This case therefore does not form an

exception to Taylor's theorem.

2. If /x be of the form m -\--, sl positive whole number with

the addition of a finite fraction, then the exponents /x — 1,

/i — 2, /x — 3, &c. of the factor (x — a) in the above terms

will be positive for the first m derived functions, but will

afterwards become negative. Therefore, when x = a, the

terms will vanish from the first m derived functions and will

become infinite in value in all the subsequent functions.

Hence, as regards the factor (x — a)'"+^, the derived fimctions

will, when a: = a, be finite up to/^"»)(a?), but/^'«+^^W and all

the subsequent functions will be infinite. The expansion of

the proposed function by Taylor's theorem, for the particular

value X = Gy will therefore not in this case admit of being
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carried to any terms beyond t-^ f^'^\x + 6h), and it

may be stopped at any previous term ^r-^ f^'^\x + 6 A),

where n <^ m» Within these limits the accuracy of the

development will not be affected by the infinite values of the

higher derived functions.

3. If /A have a negative value, or a positive value less than

unity, then the exponents /x — 1, /x — 2, /a — 3, &c. will be all

negative, and when a? = a all the derived functions will become

infinite in value, so that the conditions of Taylor*s theorem

not being fulfilled, it will be wholly inapplicable to the develop-

ment of the proposed function for the particular value j? = a

;

but the application will nevertheless be true in all cases for

values of x which differ from « by a finite quantity.

The cause of these singular results may be ascertained by

examining the effect produced upon the form of the function

proposed for development. Thus when/(a7) contains the term

{x — (i)^<^{x), f{x + h) will contain the corresponding term

{x -\' h — a)^<p(x }- h), and, when a? = fl, this will become

hf^(p(a -\- h). As (p(a) cannot = or oo , the expansion of

this term will give a series involving powers of h beginning

with hf^ : when /x is a positive integral number, no peculiarity

is induced; but when fi is positive and fractional, all the

powers of h will likewise be fractional, and when /x is negative,

the development will contain negative powers of h to the same

extent.

In these remarks, which apply equally to Stirling's theorem,

the symbol /x, to observe the utmost generality, might have been

considered as a function of x, and it is evident that all the

peculiarities of form and result would then be determined in

exactly the same way and would similarly depend upon the

particular value of fi when x = a,

(60.) From what precedes we are led to the following

general conclusions

:

If when the variable x takes the finite value «, the function
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f{x) and its first m derived functions be finite and the

m -f 1th derived function be infinite; then all the succeeding

derived functions will likewise be infinite, and Taylor's

theorem with the limitations, art. (45), will be correct if not

carried further than the term involving h^. Beyond this term

the theorem will be inapplicable, as indicated by the infinite

values of the differential coeflftcients, because the further ex-

pansion of the proposed function /(x + h) will consist of

fractional powers of A, the first fractional exponent being

contained between m and m -\- I.

If when X = a the value of the function itself be infinite,

then the values of all the derived functions will likewise be

infinite, and the true expansion will contain negative powers

of A.

In either of these exceptional cases the definite expansion of

the proposed function f{x-\-h) for x = a may be generally

obtained by first substituting a in place of x and afterwards

expanding the reduced result, supposing a to be variable, for

which Taylor's theorem may be employed if necessary.

Example.—Let f(x) = x^ + (x^ - a'^y ; then f\x) will

involve (a?^ — a^)^, and f'\x) will involve (a?^ — a^)-* and

become infinite when x •=. a.

Therefore the true expansion off(x + h) when a? = « will

contain fractional powers of h commencing from an exponent

between 1 and 2. To determine this expansion, we have

f(x -f h) = (x + h)^ + {(^ + ^)2 _ a^}i

,'. f(a + h) = (a + hf + {(a + A)2 - a2}*

= {a + ^)3-f (2aA-f- ^2)^

= (a +h)'^ + h^(2a -h/i)^,

which may be readily expanded by the binomial theorem.

Again, suppose y\r{x) to be of the form e- ;^ ^{j^), where m
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is positive and finite and cj) Qc) not = or oo when x = 0.

Since e^og*= a?, or e=a:^os», this function may be transformed

into the equivalent expression ^(a?) = a:"^iog*<^(^)

;

.'. a = 0, and ft =

When a: = a = 0, the particular value of the function

, which takes the form -^ , must be determined by
log <r

differentiating the numjerator and denominator according to

m

art. {^b) 'y thus we find /x = —i— = — . Hence, making

X

J? = 0, the particular value of /x is infinite, so that if x were

considered as an infinitesimal, the value of the function -^ (x)

would become an infinitesimal of an infinite order. Therefore

the values of ^//^ (x) and all its differential coefficients or derived

functions will vanish when x = 0, and the expansion by

Taylor's theorem will in this case not fail.

V. Differential Coefficients of the form -.

(6 1 .) When two variables x and y are implicitly related by

an equation

u =/(^y y) = 0,

let the partial differential coefficients with respect to x and

then, the value of the differential coefficient or differential

ratio ^, art. (32), will be
dx

dx Q*
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If values of x and y can be found which will fulfil the three

equations u — O, P = 0, Q = 0, we shall have, for these

particular values,

dx O'

and the determination of the continuous value in this case mav

be found by successively differentiating the numerator and

denominator of the fraction, as in art. (55), with this difference

that the result will lead to an equation involving -^, the roots
dx

of which will give multiple values to this symbol. But these

values may be more readily found by means of the expansion

o(f(x -h A, y + a/i) ; since by making /(j: -\- h, tj + ah) = 0,

it is evident that h and ah will be corresponding increments of

X and y in the equation /(a:, y) = 0, and when these increments

become infinitesimals, the symbol a will therefore represent

the required values of -^.
dx

The expansion oif{x -f h,y + ah), given in art. (47), being

equated with zero, omitting the first term/(j:, y), which =
by hypothesis, we obtain

»=?{(s)-(r:)-}

'4{(£-')-K^)-(|-0"'}

&c. &c. &c.

which may be made complete in any number of terms by

replacing x and y hy x -\- 6h and y -\- 6ah in the last term,

where ^ < 1.

Now ifparticular values of a: and y give |
—

J
= 0, ( — j= 0,

+ 1.
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the first term of this equation will disappear ; and hence by

stopping the series at the second term and dividing by the

h^ Ay
T-^i we get an equation determining the value of a = - - for

all values of h, and finally, making ^ = 0, the x -\- Bh,

y -\- a6h become simply Xy y, and we obtain, for determining

the continuous value of a, the equation

»=(S)-(ii)-($)-.
dy

a quadratic, which will therefore give two values for a = -j—

If however, for the same values of x and y, also

(£)=». (a)=«. (S)=».
then the first and second terms of the preceding equation will

disappear, and hence stopping the series with the third term

and, as before, dividing by the and afterwards making

A = 0, we get

a cubic equation, which will therefore determine three values

for« = ^.
dx

Should the partial differential coefficients simultaneously

vanish for still higher orders, the same process may be

extended by including additional terms of the preceding form

of development ; but it will be unnecessary to do so here, a?

the general law of the successive terms is obvious, and these

higher orders of multiple values do not often occur. It will

be observed that the numerical coefficients of any order are

those of the binomial theorem.

Example.— Given y^ — 7x^y — ^x^ {- x^ =:Q, to find the

values of -2, corresponding to a: = and y = 0.
dx
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When 2- = 0, y = 0, we have, by partial difFerentiation,

{—\ = - 14.ry - 18^2 ^ 4^3 = q,

/ dH \ _ /dhA _
\dxdyy^ ' VyV" '

.-. = - 36 - 42 a + 6 a^ or a^ - 7 a - 6 = 0,

the three roots of which are a = 3, — 1 and — 2 ; and these

are therefore the required multiple values of -^ when j? = 0,
dx

2/ = 0.

(62.) The multiple values of a differential coefficient, which

takes the form -, may be more simply and expeditiously deter-

mined algebraically in the following manner:

If the particular values of the variables be a? = a, y = h,

first transform the given function f{x, y) by substituting

t' -^ a, y' + b respectively for x and y, so as to get the equi-
j r

ilent fimction in which the value of -i^, is to be obtained
cur

tor x' = 0, y = 0.

This last fmiction being arranged in the ascending order of

degree, with respect to the variables x', y', let it be denoted

l)y

[x', y']i -h [x', y'l^^ -f [^', y]/+m+n + &c. = 0,

where [x'i y']/ is supposed to comprise all the homogeneous
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teniis of the least degree I with respect to x' and ij, (.r', y')i+r)i

the homogeneous terms of the next higher degree I -\- m^ &c.

As these functions are homogeneous, it is evident that

which will now represent algebraical functions of
'^

. Hence,
X

dividing the preceding equation by x\ the result may be thus

expressed

:

b'il^'^Hl.j'-i'''^ + &c. = 0.

l-\-m+n

This equation, which must necessarily be true generally,

determines ^ as a function of x\ Now, when x^ = 0, v' = 0,
x'

^ y ^

the continuous value of ^— is obviously _^ or -^ ; and there-
at dx^ dx

fore, making ^' = and replacing ^ by -^, the equation for
X dx

determining this is

['•l]r°-

Hence the equation for determining the required values of

-^ is to be found by simply retaining only the homogeneous
dx

terms of least dimensions with respect to the variables, then

dividing the same by a power of x^ of equal dimensions, and

finally replacing ^^ by -^. The accuracy of the result will

evidently not be affected, should the function, which comprises

the terms of least dimensions, at the same time involve terms

of higher dimensions that do not admit of convenient separa-

tion, as these will finally vanish on making ^' = 0, y' = 0.
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Tliis general rule will be found to apply with remarkable

brevity and facility.

Example, — Take that given in the last article, viz.

y^— 7x^y — ^x^ -f a:^ = to find the values of -^ when
dx

x= 0, y = 0. Since the particular values of the variables

are already r = 0, y = 0, the equation does not require any

preliminary change. The first three terms are homogeneous

and of the third degree, with respect to the variables ; but the

last term being of the fourth and therefore of a higher degree

must be rejected. Hence, di\dding y^— 7x^y — ^x^^J x^

and replacing J- by -^i, we obtain

(£)'-'(©-«=»

the three roots of which are the values of ( -/ | as before

foimd.

m

CHAPTER VI.

MAXIMA AND MINIMA.

(63.) The value of a function is a maximum if less values

obtain when the variable is supposed to increase or decrease

by small quantities.

The value is a minimum if greater values obtain when the

variable is supposed to increase or decrease by small quantities.

A maximum value of a function is therefore greater and

a minimum value is less than the values which immediately

precede and follow it ; and thus the relative analytical applica-

tion of the terms maxima and miiiima has reference only to

the values of the function which are immediately adjacent to

the values so designated.
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The same circumstances or conditions may recur for dif-

ferent values of the variable, and thus a function may admit of

several maxima and minima, and the extreme values of these

will obviously be the maximum and minimum values of the

function in the absolute sense of the terms.

In some cases, however, the value of a function either

always increases or always decreases when the variable is

supposed to increase, and it therefore does not admit of an

ordinary maximum or minimum according to the preceding

definition.

I. Functions of One Variable,

(64.) Let u "^-fix) be a function of a variable a?, and let it

be required to find the particular values of the variable when

the function is a maximum or a minimum.

Supposing the value of x to change by a small quantity h,

iff(x) be a maximum we must have /(a?) > /(a? + h), and if

/(x) be a minimum we must hsLYe/(x)'<s.f(x + h), and these

relations must be maintained whether h be positive or negative.

Therefore, as h passes from — to +, the value of the function

f(x) will be

a maximum 1 f continues to be negative,

a minimum > ^/vhenf(x -f- h)—f(x)< continues to be positive,

neither J (^ changes its sign.

But, art. (45),

f(x + h)-^f(x) = hf(x + eh).

If the first derived function/' (<r) have a finite value, it is

evident that h may be taken so small that/'(j:* + Oh) shall not

change its algebraic sign when that of h changes. As this

value of/(x + A) -- f{x) will then have different signs, accord-

ing to the sign of A, the function /(.r) will in such case be

neither a maximum nor a minimum.

The preceding conditions of maxima and minima will require

that h and/'(j7 + Oh) shall change sign simultaneously when h
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passes through zero. But, art. (58), when a variable quantity-

changes its algebraic sign it must either pass through or

-. Therefore we must have — =f{x) = or + oo ; and then
dx

supposing Xj by increasing, to pass through its value, the

functiony(J") will be

a maximum \ ^ du n,. . n f -f to —
. . > when — =f(x) passes from < . ,

a mmimum j dx 1
-- to -f-

.

In the case f{x) — 0, by extending Taylor's series to

another term, we have

fix + K)-f{x) = ^f"(x + eh).

Here again, if /"(a?) be supposed not to vanish, the value of A

may be taken so small that f"(x + 6h) shall not change sign

when the sign of h is- changed. As h^ is necessarily positive

the value of /{x -f h) —f{x) will have the same fixed alge-

braic sign as f'{x -f 6h) orf"{x); and therefore the function

will be

a maximum
a minimum

)when^=/'Wis l^^g-tive,

J dx"^ I positive.

Again, suppose that a value of x which mokes f(x) =
also causes several of the subsequent derived functions /"(jt),

/"'ix)y &c. to vanish, and let/'*)(cr) be the first that does not

vanish. Then, art. (45),

f(x + h)-^f(x) = ^-^^/(n)(^ + ^A).

Asf("^\x) does not vanish, it is evident, as before, that a value

may be assigned to h so small that/('»)(j: + dh) shall not

change its sign when that of k changes. The effect upon the

sign of A** will however depend upon whether the number n be

odd or even. Thus we find,

If n be an odd number, f(x) is neither a maximum nor a

minimum, unless y*^"^a: passes through - .
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If n be an even number,

/(x) is a (
">a^i'""'°

I if
^" =/(n).,

is / negative,
-^ ^ ''

I minimum J ^^»
-^

\ positive.

(65.) The nature of the preceding relations, which constitute

the theory of maxima and minima of functions of one variable,

may perhaps be made more familiar by the following simple

considerations

:

As the derived function — =zf{x) represents the limiting
dx

ratio of the increment of the function to that of the variable,

and as a decrement is indicated by a negative increment, let

the variable x be supposed to increase continuously ; then the

value of the function /(a?) will increase vf\iQuf{x) is positive

and decrease when/'(a7) is negative.

But iif{x) increases up to a certain value of j? and afterwards

decreases, it will oddently pass through a maximum value,

and if it decreases and afterwards increases, it will pass through

a minimum value. The function will therefore pass through

a maximum or a minimum value whenever the value of the

first derived function — =.f{x) passes from -f to — or from
dx

— to + respectively.

After determining the values of j- which make/'(j?)= and

-— = 0, this last simple criterion, which is that first ob-

tained in art. (64), will generally be sufficient to distinguish

the maxima and minima values, if any exist ; and then it will

be unnecessary to proceed to any derived functions beyond

The process is also sometimes facilitated when the function

admits of being reduced or simplified by first multiplying or

dividing it by some constant, raising it to some power, taking

the logarithm, or performing some other operation according

to the particular form of the function under consideration, the

only restriction being that this preparation of the function
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should not disturb the general relations as to corresponding

maxima and minima.

(66.) The different cases specified in art. (64) may also be

characterized geoihetrically by making the variable a: the

abscissa, and the function /(r) the ordinate of a curve line, of

which the equation is y =f(x). Fig. 1.

1. If for a value of x which makes

f(^)=zO, the value oif'{x) is negative,

or if the first of the successive derived

functions that does not vanish be of an

even order and its value negative, the
" d -^

corresponding value of the functional ordinate will be a maxi-

mum as represented in fig. 1

.

2. If for a value of .r which makes /'(a?) = 0, the value of

f'{x) is positive, or if the first of the Fig. 2.

successive derived functions that does

not vanish be of an even order and its

value positive, the corresponding value of

the functional ordinate will be a minimum... ^ D j:

as represented m fig. 2.

3. If for a value of x which makes/'(a:)= 0, also/"(j:)

= 0, and the value of/"'(x) is positive, or if the first of the

successive derived functions that does not Fig. 3.

vanish be of an odd order and its value

positive, or if the first of the derived

functions that does not vanish be of an

even order and its value passes through —

from — Qo to -f 00, the corresponding value of the functional

ordinate will be neither a maximum nor a minimum, and will

y

be of the kind represented in fig. 3.

4. If for a value of x which makes /'(a:)

= 0, B\so/"ix)= 0, and the value off"(x)

is negative, or if the first of the successive

derived functions that does not vanish be of

an odd order and its value negative, or if

Fig. 4.

^ ^
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the first of the derived functions that does not vanish be of an

even order and its value passes through - from -f oo to — go ,

the corresponding value of the functional ordinate will be

neither a maximum nor a minimum, and will be of the kind

represented in fig. 4.

5 . If for a value of x which makes —— = 0, the value of

f{x), as X increases, passes from + oo to

— 00 , or if for a value of x the first of the

successive derived functions f{oc)y f\x),
&c. that does not vanish is of an odd order

and its value passes from + go to — oo , the

corresponding value of the functional ordi-

nate will be a maximum as represented in fig. 5 or fig. 1

.

1

Fig. 5.

A

6. If for a value of x which makes
/'(*)

=•- 0, the value of

f(x), as X increases, passes from — oo to

-h 00 , or if for a value of x the first of the
,

derived functions /'(.r),/" (a?), &c. that does

not vanish is of an odd order and its value

passes from — oo to + oo , the correspond-

ing value of the functional ordinate will

be a minimum as represented in fig. 6 or fig. 2.

Fig. 6.

Example 1.—Divide a number a into two parts, such that

their product shall be the greatest possible.

Let X be one of the parts, and a ^ x the other ; then

f{x) = X (a—x) = ax — x^is required to be made a maximum

;

.*. /(x) = a — 2x put = 0, gives x = \a. When x is less

than \a the value off'(x) is +> and when x exceeds ^a the

value off'{x) is — ; hence, when x passes through its value,

f'(x) passes through + —, which indicates that the value of

the function first increases and then decreases, and therefore

passes through a maximum, the number being then equally

divided.
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Example 2,—U u =f(x) = 2x^-'9ax"--\- \2 a'-x -- 4 a'^
;

then

^=f(x) = 6x'—\Sax-\'l2a^- = 6{x-a)(x-2a)=0

gives r = a and x = 2a. When x passes through the first of

these values, f'{x) passes through + — , which indicates

a maximum, and when x passes through the second value,

f^(x) passes through — -f, which indicates a minimum.

Therefore, when x = a, f(x) = a^ a maximum, and when

X = 2a,/{x) = a minimum.

Ex, 3.—If « = i + (x — a) 3
;

du i-

then r =/'W = i (<^""^)' = gives a? = a, and as x passes

through this value, /'(a:) passes through — +, which indi-

cates a minimum of the kind represented in fig. 2.

Ex. 4.—If M = b + (^— a)^;

then—- = f\x) =z\{x—aY =0 gives x = a, Ks x passes

through this value, f{x) passes through + + and does not

change sign. The value of the function therefore first increases,

then just ceases to increase, and again increases. It is hence

neither a maximum nor a minimum, but of the character

shown in fig. 3.

Ex.b.—liu = b -f(a?-a)^;

then — = f{x) = \ (x— a)"^, which = ao when j? = a, and
ax

as X passes through this value, /'(jf) passes through — oo -f

,

which indicates a minimum of the kind represented in fig. 6.

Ex. 6.—Required the height (x) at which a light should be

placed above a table so that a small portion of the surface of

the table at a given horizontal distance (a) shall receive the

greatest illumination from it.

If (j) denote the angle under which the rays of Hght meet the

given surface, the degree of illumination will vary as the sine

of this angle directly and the square ofthe distance (r) inversely.
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Butr^ = a^ + x^Sindsmd>=z-=z _^
; .-. ?__ 3

must be a maximum ; or, taking the logarithm, the value of

logo*— flog (a^-\-a;^) must be a maximum. Denoting this

last function by u, we have

which = 0, when ar = a Vi» and as ^ passes through + 0—,

the value of the function is then a maximum as required.

7. If w = -o^^-TT * ^^^^ when j: = a, « = | a maximum,

and when j?= — a, w=~|^a minimum.

8. Of all rectangles of a given area, a square exhibits the

least perimeter.

9. If w = 0?^ — 3 ax^ -\- 4a^ ; then .r = gives u = 4a^ a

maximum, and x = 2a gives m = a minimum.

10. IfM = —^ ; then when x = e, u=z- a, maximum.
X e

JL ^ i.

1 1

.

If tt = x^"^; then x — e"^ makes u = e^^ a maximum.

12. If w =
(a + ^)(6 + ^)'

then X = \/ab makes u = / /
,

/^xg a maximum.

13. If w = cos^o^sin x; then cos^o? = f, sin^a* =^ give

« = i tt; V 3 a maximum and a minimum.

II. Functions of Two Variables.

(67.) Let u z=:f{xy y) be a function oftwo variables x andy.

"When the value of w is a maximum we must have f{xy y)
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>/(*^ 4- ^» y + ^*)j ^^^ when it is a minimum we must have

JX^i y) Kf{x -\- h^y -\- k), and in either case this relation must

remain unchanged whatever may be the algebraic signs of

A and X: = a A. Therefore, for all combinations of values and

algebraic signs that can be given to the small quantities h and

k •= ahy if for brevity we put

f{x -^h,y + a h) -fix, y) = Sw,

the value of the function u will be

a maximum 1 f continues to be negative,

a minimum > when bu < continues to be positive,

neither J [ changes its sign.

But, art. (47), we have

'"=H(£)-(S)};: Bh
eah.

When the value of this expression continues to be of the

same algebraic sign, the value of the factor contained between

the brackets, which corresponds to x -{- 6h, y -\- 6ah, must

change sign with h, and this change of sign must occur when

A = 0, or when x + 6h, y -\- adh become x, y. Therefore, as

the value of a is arbitrary, we must then have

0=»' (£)=«•dyj

unless one or both of these partial differential coefficients should

pass through the value - with corresponding algebraic signs.

These two equations or conditions will determine the particular

values of the variables.

To ascertain further regarding the algebraic sign of the value

of 6m when
|
—

j = and
\ r) = 0, let the expansion of

f{x -j- hf y + a A), art. (47), be extended to another term;

then, as the term of the first order in h now vanishes, we

obtain

£ 5
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If the second differential coefficients do not severally vanish

and their relative magnitudes be such that the value of

shall not vanish but continue of the same sign for all values of

a, it is evident that k may be taken so small that the value of

bu will always have a corresponding sign, which will not change

wdth that of h. For brevity let this expression be denoted by

(A)-f-2(c)a4-(B)a2;

then when a = its value will be A, and, when the arbitrary

quantity a, which is unrestricted in value, is made indefinitely

great, its algebraic sign will be determined by that of B. The

differential coefficients represented by A and B must therefore

have like signs, and for all other values of a the expression

must retain the same sign. By putting the expression under

the equivalent form,

{(-r)'^'-^"-}
it becomes evident that it will necessarily have the same sign

with the coefficient A when the value of AB—c^ is positive, or

AB > c2; that is.

This is Lagrange's Condition of maxima and minima, and

when it is satisfied the value of the function u will be

a maximum f -p/ \\ (df^vX . J negative,

a minimum \ ^ ^ "~ \J^^) \ positive.

If (A) and (B) or
| —^ j and

( y-^
) l^ave different signs, or if

Lagrange's Condition be otherwise unsatisfied, the function

is neither a maximum nor a minimum. Also if the values of

X and y which make (~j = 0, /— j — O should happen to
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cause the second dilFerential coefficients I -t-^ ), I . , j, I y-o )

to vanish, it may be shown, as in art. (64), that a maximum or

minimum value of the function will require that the first set of

differential coefficients that do not vanish be of an even order.

III. Functions of Three Variables,

(6f^.) Let u =f{<r, y, z) be a function of three variables

X, y, and z.

When tt is a maximum f(r, y, z) >/(j? + A, y -h A-, 2 + /),

and when it is a minimum /(a?, y, z) <,f{x + h, y -f /:, j + /),

where the symbols A, k-= ah and l^= fih denote small changes

in the values of the variables. As in the last article, the

values of x, y, z which maintain either of these relations

must be found amongst the systems determined by the

equations

(£)=->• e7)=«' ($)-"

excepting, as before, the occurrence of infinite values.

If the second differential coefficients do not vanish, h may
be taken so small that the value of

bu =f{x + hyy \- ahy z -\' /3A)— /(j7, y, z)

shall have the same sign as the expression

(d'^u\ /d'^u\ , /d'^u\ , ^ / d'-u\ ^ ^f d'u\^

\dxdy)

and not change its sign when that of h changes. For a

maximum or a minimum therefore it will be essential that the

value of this expression be either always negative or always

positive, whatever values be given to the arbitrary quantities

a and /3, which are wholly unrestricted. To facilitate the

determination of the requisite conditions amongst the coeffi-

cients, let the expression be more briefly denoted by

e = (A) + (B) «2-f (C) ^24. 2(a)«3 -f 2(6)/3 + 2(c)a
;
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and by putting it under the equivalent form

it is obvious that it will always have the same sign with the

coefficient A, provided that the value of (AB — c^) a^ +
2{Aa—bc) a/3 + (AC— 6^)/32 be always positive, and this will

be thecase when AB-c^ and (AB-c2)(AC-52)-(A«-5c)2
are both positive, or AB >c2 and (AB — c^) (AC — P) >
(Aa — bc)^. There are therefore two conditions of maxima

and minima, viz.

\dx'0\dyy^\dxdy)

dx^)\dyy \dxdy) J \\dx^)\dzy \dx dz) i

/ /d'-u\/ d^u \ / d'-uY d^u xy
I \dx^)\dy dz) \dx dz/\dx dy J j

* When both of these conditions are fulfilled, the function u

will, as before, be

a maximum
a minimum {"w=(S)"{;s;;"r

(69.) The conditions may be otherwise obtained in a

symmetrical form, and the extreme value of e determined as a

maximum or minimum value of a function of two variables

a, 0. Thus we have

/J^
= 2(Ba + «/3 + c)=0....(l)

f^ = 2(C^ + aa + b) = 0..,. (2)

(£)=-. (©=- 0-S)--
* The first of these conditions is as essential as the second, although it

is commonly neglected by writers on this subject.
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Hence (G7) if BC > a^ the value of f will be

a maximum j .^ ^ g ^^^ (. ^^^
f negative,

a mmimum J L
positive

;

so that if this value have the same sign as A, B, and C, all the

values off will have the same sign. From equations (1) and

(2) the values of a and /3 which determine this value of c are

__ ab — Cc Q _ ac — Bb
"'"

BC-a2'
^"^

BC-«2
•

For simplification, previous to the substitution of thesevalues,

multiply equation (1) by a, equation (2) by ft and add the

results, and Ba^ + C^- -+- 2aa^ + 6^ 4- ca = 0. These

terms being therefore omitted in the expression for e, it

becomes f = A + 5/3 + ca, in which, now substituting the

particular values of a, (3, we get

' BC-a^\ BC " CA "" AB "^ ABC/ ^^*

When this extreme value of e is of the same sign as A, B, and

C, we have therefore the symmetrical condition

_a2 _ J^ ^c^ 2abc
^ ~ BC CA AB ABC > ^ • • • (4)-

Also, putting

cos=^ = ^. cosV=^. cosV'= |1 . . (5),

the value of e becomes

f = 4^(l-cos2</)—cosV—cosV+ 2cos0cos0'cos<^")-
sin^</)

But if (j), </)', </)" denote the sides of a spherical triangle, and

0), 0)', <o" the perpendiculars upon them from the opposite

angles, this last expression, by spherics, is equivalent to

€ = (A) sin-ci) = / —-
j
sin^o)

;

.'. 8u = — € = — I —
. I

sm-'o),

1.2 \,2\dx'^/
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which, for a given small increment h and arbitrary small in-

crements k and I, represents the least possible value of bu when

considered apart from its algebraic sign.

Similarly, for a given small increment k and arbitrary small

increments I and h the least possible value of bu, or the value

k'^ /d'-u\ . , ,

that approaches nearest to zero, is bu = T~^ \d~^^r '

and for a given increment I and arbitrary increments h and k,

We also here conclude that the conditions of maxima or

minima, with respect to the value of the function u, will be

definitely indicated by the values of the angles </>, <jf)', 0" given

by equations (5). These conditions will be :

1

.

That the values of the angles be real.

2. That their relative magnitudes be such as to admit of

being made the sides of a spherical triangle, which will simply

require the value of each of them to be less than half their

sum.

For functions of two variables there will be only one angle (^,

and the analogous condition will only require that the value of

this angle be real. Also the values of bu nearest to zero for a

given value of h with k arbitrary and for a given value of

k with h arbitrary will then be bu = — ( -^"2 ) sin^tj^ and

k^ /d^u\ . 9

,

^u=:— I —: I
sm-d).

i.2V^y7
The form of the condition (4), for three variables, is equiva-

lent to that first obtained, since (AB- c^) (AC— b^)— (A«— bc)^

= A(ABC-Aa2-B63-:Cc2 + 2«^c)>0, which divided by

the positive factor A^BC gives (4). Also when the values fulfil

the condition (4) and any one of the three conditions AB > c^,

BC > «^ AC > ^2, the other two will necessarily follow.

In conclusion, it may be as well to observe that the conditions

and criteria of maxima and minima here investigated, though

occasionally indispensable, are not often required, as the general
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circumstances are in most cases sufficiently indicated in the

nature of the problem, and it is then only requisite to solve

the equations
( y ) = ^^m 7" ) " ^M 7; ) = ^> ^or the determi-

nation of the variables.

^- B

CHAPTER VII.

PROPERTIES OF PLANE CURVES.

I. Quadrature and Rectification,

(70.) The theory of plane curve lines forms a leading subject

in Analytical Geometry of Two Dimensions, and the investi-

gation of the various properties is generally found to be con-

venient and symmetrical when the positions are referred to

rectangular coordinate axes.

In the annexed diagram let Ox, Oy represent the positive

directions of the axes; then, OD = ^,

DP = y being the two coordinates of the

point P, the curve which is the locus of P
is determined by an equation

y = <i>{x), orMy)=0. ^^ ^ ^' '

Suppose X and y to receive the increments ^x and Ay, and

let the new coordinates OD' =. x -{- £^x, D'Q = y -\- Ay de-

termine a second point Q, so that DD' = PG = Aa? and

GQ = Ay. Then if A denote the function which expresses

the value of the area contained between the ordinate, the

curve, and the axis of x, the curvilinear area between the two

ordinates DP, D'Q will geometrically represent the value of

aA, and it is evident from the diagram that this value of aA
will be comprised between the two rectangles yA*r and

(y + Ay) Ax, being greater than one and less than the other

;

aA .

.*. — is comprised between y and y -f Ay. Hence, proceed-
Aj:
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ing to the continuous values at the limit when Aj? = 0, we

obtain

— = y, or (/A = ydx.

As this relation must correspond with the differentiation of

A as a function of x, it is evident that the determination of A
from it will be the inverse process to that of differentiation.

This inverse process is called Integration, and is usually

indicated by prefixing the symbol yj thus

A ^fydx.

The method of obtaining the value of this integral is the

province of the Integral Calculus ; and, when taken between

given limits, it will express the area contained between the

corresponding ordinates.

(71.) Again, let it be required to express, by means of

infinitesimals, the area contained between the curve, two given

ordinates yoj yrm and the axis of x.

Suppose a number m — \ oi equidistant ordinates i/,, y^,

2/3 • • • • 2/m-i to be inserted between them, and let dx be the

common difference of the abscisses x^, x^, x^ Xm. For

brevity let {y^ yi) denote the portion of area contained

between y^, y^, the axis of x and the curve, and the same

for the other ordinates. Then it is evident that

(y 0I/1) ^^^^ ^^ comprised between y^dx and yidx

iyiVi) ,> » y* Vidx „ y^dx

{y^Vz) y> yy » ^a^*^ yy y^^^

&c. &c. &c.

(ym-\ym) » j> M ym-ldx „ ymdx.

Hence, if

2y dx = y^dx + y^dx -f y^dx + ym-i dx,

the sum of these relations proves that the total area (y^ ym) will

be comprised between ^ydx and 7,ydx -f (ym — yo)^*^*
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If we now suppose the number m — 1 of intermediate

ordinates to be increased without limit, dx and (y^* — yo) ^*

will decrease without limit, and therefore "lydx will approxi-

mate to the proposed curvilinear area as its utmost limit;

that is,

A = 2ydx.

But we have seen that this curvilinear area is expressed by

the integral yyc?a7. Therefore

fydx = 2ydx,

Hence it appears that every integral /y c?x expresses that

value to which ^ydx approximates as its ultimate limit, on

increasing indefinitely the number of subdivisions dx, both

being estimated between the same limiting values of x. This

character of an integral presents to the mind a clear view as

to the result of a process of integration, and the area of a curve

offers the most simple geometrical representation of the pro-

cess. When dx is taken indefinitely small so as to be con-

sidered as an infinitesimal, called an element of x, each of the

terms ydx of 2ydx is a. similar element of the area; and we

have shown that the nearer the values of these elements are

taken to zero, the more accurately will they represent the

relative changes of their respective primitive quantities, and

the more accurately will a succession of them compose those

quantities so as to form a continuous result. The idea of

elements greatly facilitates our reasonings in the higher

applications of the Differential and Integral Calculus, and

gives to the mind the most ample scope in geometrical and

physical researches, whilst a strict adherence either to the

principle of derived functions or to what is usually called the

theory of limits, which some authors rigidly contend for,

would render many investigations exceedingly cramped, and

others almost impossible.

(72.) If a right line rs which passes through the two points

P and Q be supposed to revolve about the point P so that the

intersection Q with the curve may proceed towards P, it has
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been shown, art. (9), that when the point Q arrives at the

point P or when the distance PQ becomes an infinitesimal,

the corresponding continuous position of the line rs will

ultimately coincide with the tangent TP which touches the

curve at the point P, and that the infinitesimal line PQ
becomes then an element of the arc of the curve. These

considerations are equivalent to that of conceiving the tangent

to be a line which passes through tw^o points of the curve

that are infinitely near to each other. Let s denote the length

of the arc from a given point in the curve to the point P

;

then will da:, dy, and ds symbolize the relative infinitesimal

values of PG, GQ, and PQ. But PQS = PG^ + GQ^

;

and 5 —f\/dx^ + dy'^ =J*dx A/ ^ + T^

*

When y is known as a function of x, explicit or implicit,

this expression serves to determine the length or rectification

of the curve ; but the inverse operation of integration, indi-

cated by/, will require the aid of the integral calculus.

II. Tangent and Normal.

(73.) Let 0) denote the angle PTD or the inclination of the

tangent with the axis of x; then, from what precedes, we

have, as before deduced in art. (9),

tan o) = -p

.

ax

If a, /3 be the coordinates of any point in the tangent PT,

this gives

/3 —

y

_. dy
.

a — X dx

therefore the equation to the tangent is

T
dy ^

* A O D N

The normal PN being perpendicular to the tangent, if a', /3'
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be the coordinates of any of its points, its equation is hence

Hence i£ p denote the perpendicular OH from the origin

upon the tangent and p' = VII that upon the normal, we

shall have

xdy —ydx
, xdx + ydy

Also, if a", p" be the coordinates of any point in the line

OH drawn through the origin perpendicular to the tangent,

the equation to this line is

dy

Again, since tan o) = ^, and ds'^ = dx^ -f dy-, we have

cos 0) = — , and sin oo = -^

;

ds ds

PT == tangent = 2/

sino)

yds

dy

PN == normal =
COSo)

yds

DT = subtangent = --^ =^ ,

tan o) dy

DN = subnormal = y tan © = '^—r^ .^ dx

(74.) When the equation of the curve is of the form

u = f{x, y) = 0, the differential elements dx, dy will be

connected by the corresponding differential equation

Therefore the elements dx, dy^ and ds will have the same
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mutual proportions as the respective quantities

\dy/ \dx/ V \dxj \dy/

and by replacing them by these quantities the preceding

relations, and any formulae involving the ratios of the elements,

will then become adapted to the case in which y is an implicit

function of x.

The equation to the tangent^ under this form, is thus

(£)(-') + (r:)<«-^' = °-

and it is therefore to be practically obtained by this simple rule :

Differentiate the given equation of the curve, u =/(a:, y) = 0,

and write a — ^, /3 — y in place of dx and dy.

Also the equation of the normal is

(^(•-')-(S)<^-^)=»-

Example,—The equation to an ellipse when referred to its

centre and principal semidiameters a, 5, is —- + ^ = 1

.

By differentiating, this gives -^dx + ^dy == ;

dy ____b^ ds _ s/^^^^TT^
dx a^y dx a^y

ds _ sja'^y^ + h^x'"

dy
"~

h'^x

tangent = ^
^^2 ' normal = ^—r, ,

h'^x d^

-To—, and subnormal =
b^x a^

subtangent = — -7—- , and subnormal = -^x-
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Also, the equation to the tangent is

and the equation to the normal is

/3' = a2-62.

III. Asymptotes.

(75.) Two curves or a curve and straight line are mutually

asymptotic when they continually approach indefinitely nearer

and nearer to each other, hut do not meet at any finite distance.

By an asymptote to a curve we generally understand a straight

line, such that if it and the curve be indefinitely continued

they will thus continually approach each other but never

meet. It may therefore be considered as a determinate

tangent to the curve when the point of contact is removed

to an infinite distance.

The position of the tangent to the curve is geometrically

determined when the intercepts OT, O^ of the coordinate

axes are known.

In the equation of the tangent,

art. (73), make /3 = 0, and we shall

find the intercept of the axis of x,

between the origin and the tangent,

to be*

ydx xdy—ydx

Also, by making a = we similarly find the corresponding

intercept of the axis of y to be

xdy xdy—ydx
0o = O' = y-

dx dx

* In the diagram, OT being in the contrary direction to Ox must be

accounted a negative quantity, and equal to OD—DT.
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If, when 0? = CO or y = oo , either of these values of qq and

/3() should be finite, the curve will have one or more asymptotes

which will thence be determined.

When a^ is infinite and ^^ finite the asymptote is parallel to

the axis of x,

"When qq is finite and /3q infinite the asymptote is parallel to

the axis of y.

When qq and /3q are both finite the asymptote passes through

the two determined points T, t.

When the values of a^ and 0q are both = the asymptote

passes through the origin, and its direction vdll be determined

by the value of— when a: = oo or y = oo ,

But when the values of a^ and jSq are both of them infinite

y

the tangent is at an infinite distance from the origin, cannot

be constructed, and is not an asymptote.

The asymptotic branches of the curve will, with few ex-

ceptions, be analogous to one or other of the forms exhibited I

in the annexed diagrams, and will only differ with respect to

relative situation.

These diagrams, for example, may be considered to represent

the general features of the respective curves determined by
the equations

When the axes of coordinates or lines parallel to them are

asymptotes to a curve, the circumstance will at once be

indicated as follows :

If, when y = 0, d? = 00 , the axis of x is an asymptote ; and
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if, when j: = 0, y = oo , the axis of y is an asymptote. Such

is the case with the curve whose equation is xy = a^.

If, when y = i, a? = 00 , a Hne parallel to the axis of a?, at

the distance y =. b^ is an asymptote ; and if when x =^ a,

y = 00 , a line parallel to the axis of y, at the distance a: = a,

is an asymptote. Such is the case when the equation is

xy — ay — hx ^=^ 0.

In other cases the position of the asymptotic tangent, if any

such exist, will be ascertained by determining as before the

values of the intercepts a^ and jS^.

(76.) The practical calculation of the values of a^, /3q and

of the equation to the asymptote may be considerably facilitated

by putting the expressions under the following form

:

© .
'($}

«0- /jx' ^0- .jx-

^.^ . y—3 dy -

JN ow smce —--- = —, where a, jS are the coordmates of any

point whatever in the tangent, if when a? = oo
, y = oo this

tangent be an asymptote and pass at a finite distance from the

origin, this point can be taken so that a and ^ shall be both

finite, and the relation then gives - = --. Let therefore ~
X ax X

= t and - = r ; then /3f^
= —- , and the equation to the tan-

X ^ dv ^

dy
gent when it becomes an asymptote is y •=• ^^ + ~ x =

^Q + tx. Hence the following easy rule :

In the given equation of the curv e substitute a? = - and
V

y = -, and, after reducing the equation so obtained in t and v,

determine from this equation the values of /„ and /3q = —
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when V is made to vanish ; then, if the value of ^q he finite,

the equation to the required asymptote is

If hy making ^ = go we ohtain a finite corresponding value

of V, this will determine an asymptote parallel to the axis of y

at the distance jr = —
V

Example 1.—Let the equation to the curve he xy^ay—bx

= ; then substituting - and - for x and y, and reducing, we
V V

obtain

dt at + b
t—avt-'bv=:0, /3 =

1-

Therefore, making v = 0, we get ^o = ^ ^"^ Po = ^» ^^^

the equation of the asymptote is y = b, indicating that it is

parallel to the axis of x at this distance.

By making t = co we get t? = -; .'. a? = a is another

asymptote and is parallel to the axis of y,

Example 2.—Let y^ + x^—axy = ; then substituting as

before we get

^ ^ dt at
^^ + l—atv— Oy 3= -—

=

dv 3t'^—av

Hence making v = we obtain ^q= — 1 and ^q = ~"o'o

and the equation to the required asymptote is therefore

a

3. The curve {x + \) y = {x—\) x has an asymptote de-

termined by the equation y = j?— 2.

4. The curve y^ — ajr^^^s — Q j^^s an asymptote deter-

mmed by y = - —• ^•

5. The curve y^— 2xy^ + x'^y = a^ has two asymptotes,
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viz. the axis of x and the Ime y = x, which makes equal angles

with the coordinate axes.

6. The curve xy'^ — y =^ x^ •{• 2ax'^ '\- bx -\- c has three

asymptotes, viz. the axis of y and the two lines y =. x -\- a and

y=i —x-a.

IV. Circle of Curvature,

{77') A tangent to a curve may be conceived to be a line

drawn through two of its points which are indefinitely near to

each other ; and these points being considered as the extremi-

ties of a differential element of the curve, it is evident that

the first differentials of the coordinates which appertain to

the tangent will correspond with those of the curve at the

point of contact.

Similarly, the circle of curvature or the osculating circle

may be conceived to be that circle which passes through

three consecutive points of the curve which* are indefinitely

near to each other, the position and magnitude of a circle

being determined when three of its points are known.

These three points being considered as the extremities of

two successive differential elements of the curve, it is evident

that both the first and second differentials of the coordinates

which belong to the circle and curve must correspond at the

point of contact.

Let J?", y" be the coordinates of the centre of the circle,

and x—x", y—y" will be the two lines drawn from it respect-

ively parallel to x and y and terminating in the circumference

at the point of contact ; hence, denoting its radius by /5, its

equation is

Now since this circle corresponds with the curve at two

other points contiguous to the point of contact, we may dif-

ferentiate twice and consider the first and second differentials

of the ordinates x, y as agreeing with those of the curve.

F
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Hence differentiating, observing that in proceeding to these

points x", y" remain invariable, we get

r/.r(a—y')-f-rfy(y-y") = 0,

r-x (^-x") + rf-y (y-y") + rf.^^ = ;

where ds^-^ = dx--^ dir, art. (72), 5 denoting the length of the

curve. The first of these two equations rei]uires the centre of

the circle to be situated in the normal, and the second com-

pletes the determination of its position. Thus, from the two

equations we deduce

,_ , _ —dyds^ __/.__ dxds^
""

dyd^jt-dxdY ^ ^ ^ dyd^x-^d^td^'

Therefore, substituting these values in the equation p^

= {x—x")- -h (y— y")-, we find

d^
^ dyd'^x-dxdhf'

Having proceeded on the principle of general differentiation

in obtaining this expression for the radius of curvature, wo

may hereat\er assimie an independent variable at pleasure. If

we consider the axis of x to be horizontal, the value of tl c

radius will be posttire when the convex side of the curve i^

presented tiptcardsy and it will be nepatire when the convex

side of the curve is presented dotcntcards,

(78.) The value ofthe radius of curvature may be otherwise

determined by conceiving the centre of the circle to be the

intersection oftwo normals dra\>-n from

two points which are indefinitely near

to each other. Let PR, PR be two

consecutive normals meeting in R, the

centre of curvature, the element PF
of the curve being ds. Let also two

tangents be supposed to be drawn at P and F, the former

making an angle u) with the axis of x. Then, as <» is decreas-

ing, the angle included by the tangents will he— dm, and this

must e\*identlv be the same as that included bv the normals.
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and, making $ the independent variable, this becomes

which is a symmetrical form of expression for the radius of

curvature.

Example 1.—Find the radius of curvature at any point

in an ellipse whose equation is -^ + ^ = 1

.

Making x the independent variable, we have

dx a^-y dx^ ~ a^y'^
'

Example 2.—In the cycloid, taking the vertex as the origin

of coordinates,

y = \/2ax — x^ + a vers~^ -
;

a

dy _ A /2 a — X d^y _ ^
dx ^ X dx^ x\/2ax — x^*

,', p = 2\j2a{2a — x).

Example 3.—In the parabola y^ = 4m.r,

Example 4.—In the rectangular hyperbola, referred to its

g

asymptotes, 2xy=: a^, pz= --^ r being the line drawn from
/If*

r

a

the origin to the point in the curve.

Example 5.—In the conjugate hyperbolas -g — Tg = d: ^*
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Example 6. —In the catenary y = -(e^-fe
^J, p = — ^.

^ ^ 1.

Example 7.—In the hjpocycloid x^ + y^ = «^>

J.

P = — 3(aary)3.

V, Evolute and Involute,

(79.) If we suppose the point P to pass continuously

through every point of the curve, the corresponding positions

of the centre R of curvature will trace out another curve.

This curve, which is the locus of the point R, is denominated

the evolute of the proposed curve, and conversely the proposed

curve is its involute. If the normal PR be supposed to move

along with the point P, it is evident that the locus of the

consecutive intersections R will be that curve to which the

normal is always a tangent. This is rendered still further

evident by considering it inversely : thus, by supposing a

tangent to roll over a curve line, its successive indefinite inter-

sections will obviously be the points of contact and therefore

trace out the same curve. Hence a tangent drawn to the

evolute at any point coincides with the radius of the osculating

circle drawn to the point of contact. The equation of this

tangent, art. (73), gives

dy^x - of') - dx"(y - y") = 0.

Differentiate the equation

(^-/')' + (y -/)' = />'>

supposing x", y", and p to vary, and we have

(dx - dx") (x - y') -f (dy - dy") (y - y") =pdp;

but, x", y" appertaining to the normal of the curve at the point

.ry, we have by its equation

dx(x-x")-\-dy(y-y") = 0,
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which rejected and the signs changed, we get

dx^'ix — y') + dy'' (y — y") = ^ pdp.

From this and the preceding equation to the tangent to the

evolute we find

dx" y-y'=-pdp—^.

where ds"^ = dx"'^ + dy"^, s" being the arc of the evolute

from any given point.

These values of ^ — x" and y — y" being substituted in the

equation p'^= (x — x")^ + (y — y")^, we get

p2=p2g or ds"^ = dp^;

.-. ds^' = dp

where pq is the radius of curvature corresponding to the given

point from which s" is estimated.

Hence the length of the arc of the evolute between any two

points is equal to the difference between the radii of the

corresponding osculating circles.

From this elegant property it follows that the original curve

may be described by the unwinding of an inextensible thread

from off the evolute. Thus if the normal or radius of

curvature AQ be conceived to be a thread extending round

the evolute QR, it is obvious that

by unwinding this thread, keeping

AQ always stretched, the point A
will trace out the curve AB, and

the unwound portion of the thread

having passed from AQ to PR,

the intercepted arc QR of the

evolute will be equal to PR— AQ.
Considering the evolute as a primitive curve, its involute is

thus described.

(80.) For the determination of the equation of the evolute
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to any proposed curve we have, art. {17)9 the following ex-

pressions for the coordinates of the point R or of the centre

of curvature, viz.

„ __ dy ds^ __ I !^

dyd^x— dxd^y ds

„ _ dxds^ __
dx

^

^ -^^'~ dyd'-x-dxd^y'~^'^^Ts'

or, making x the independent variable,

rfyS

dx d^y dx d'^y

dx^

dx^

By means of these and the equation of the curve AB, if the

ordinates xy and their differentials admit of being eUminated

an equation will thence be found expressing the relation

between x" and y", and will be that of the evolute.

Let the equation of the evolute be given to find that of its

involutes ; then since p = p^ -\- s" and dp = ds", the values of

X — x", y — y", art. (79), give

x^x"- (po + ^") g', y = 2/'^ -
(po + y') gj',

which being calculated in terms of ar" and y", if these variables

can be eUminated, the resulting equation in x and y will be

the required equation to the involutes, p^ being an arbitrary

constant.

Example 1 .—Determine the evolute of the Elhpse whose

equation is

X- y^
1- — = 1

^•2 ^ U1
—

Taking x as the independent variable,

dy h^x d'^y b^

dx a'"y dx^ a-^y^
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-x^, and y"=

X JL

tion the required equation of the evolute is

Example 2.—The evolute to the parabola y^ =z Amx is the

semicubical parabola 27 my"^ = 4 (^ — 2m)^.

Example 3.—The evolute to the rectangular hyperbola

xy = «2 is (y/ + y/)! _ (y/ __ ^^/>)f _ (4^)1^

2 2

Example 4.—The evolute to the hyperbola ^ __ ?^ =z= l

is (ay')"^- (hy")i = (a^ + 52)*.

Example 5.—The evolute to the cycloid y = \j2ax — x^

- a vers~^ - is

a

inverse position.

-h a vers~^ - is a cycloid equal to the original one, but in an
a

VI. Position of Convexity.

(81.) As before, let © denote the angle which the tangent to

the curve at the point xy makes with the axis of x ; then,

art. (73),

tan 0) = -p-

.

ax

For the purpose of conveniently expressing the relative

positions, let the axis of x be considered to be horizontal, and

that of y vertical, the positive direction of x being to the

right hand and the positive direction of y being upwards.

Then the tangent being supposed to be drawn in the positive

direction with respect to the axis of x, its inclination (w)

with the horizontal will be

upwards 1 ,
dy . ( positive,

,
^ . } when tan a> = -- is <

downwards J ax I negative.
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Now, when the curve at the point P, as in the diagram, has

its convex side upwards, the angle o)

thus estimated will evidently decrease

as X increases; .*. will be ne-
dx

galive.

Also, when the convex side of the

curve is downwards, the angle <o will increase as x increasesy

fl?tan G) .11 r ','
or will be positive.

dx

'The position of convexity is therefore thus determined

:

TiTu ^"V . f negative "|
. . .if upwards,

When -r4 IS < ''.
. > it is presented < /

dx^ L positive J t downwards.

In a similar manner the position of convexity with respect

to the vertical will be determined by the algebraic sign of

d tan G) i» 1 7

.

J—-— , or 01 dy d tan o) ; and
dy

dy d-y . J
positive 1 . . f to the right hand

dx dx'^ \ negative J \ to the left hand.

VII. Points of Inflexion,

(82.) When a curve is convex downwards, or in any other

direction, and becomes afterwards convex in the opposite

direction, it must have passed a point of contrary flexure in

the vicinity of which the curve vrill resemble the middle turn

of the letter S. In passing through one of these points, the

second differential coefficient —^, which determines the posi-
dx^

tion of convexity upwards or downwards, must change its

algebraic sign, and its value must therefore pass through

Oorl.

The condition for determining a point of contrary flexure or

point of inflexion is therefore

-4^ = or 00 .

dx^

F 5
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Diagram 1.

If the value of —^ at this point pass through — + , the

inflexion will be of the character represented

in diagram 1 ; and if it pass through +0—

,

it will be as exhibited in diagram 2. These

two forms will represent all cases of inflexion

if they are only placed in difl*erent positions

with respect to the coordinate axes. It is

also obvious that the value of the angle <»,

which the tangent RS makes with the axis of x, will be a

minimum in diagram 1, and a maximum
in diagram 2.

The expression, art. (78), for determining

the radius of curvature p, contains —^ in

Diagram 2.

the denominator. Therefore when —

^

dx^-

passes through and changes its sign, the value of the radius

p will also change sign by passing through -. Hence the

reason why the formula referred to expresses the value of p

when the convex side of the curve is upwards, and gives to p

a negative value when the convexity is downwards. Also as

these radii are drawn in opposite directions, the centres of

curvature being on opposite sides of fhe curve, this is in

strict conformity with the usual geometrical interpretation of

the symbols + and — .

1

Example.—The Witch xy =^2a{2ax — x'^y has two points

3« 2 —
of inflexion determined hjx= Tr^ V^^r^a V3.

z o

(83.) Note.—When the equation to the curve is given in

the implicit form u =-f{x, y) = the values of the difl*erential

coefficients.
dy d^y

, —V, of y with respect to x, used in the
dx dx^

preceding formulae, arts. {7^) to (82), will require some
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preliminary calculation. The consideration required for this

may be obviated by expressing the formulae in terms of the

partial differential coefficients of the function u=f(x,y).

To effect this, the successive differentiation of the equation

u = 0, art. (38), making x the independent variable and

d-x = 0, gives

(dhi\ J^\dy (d^\ df (du\ d^_
\dx^J ^ \dx dy) dx ^ \dr,y dx^

"^ \dy) dx^ '

which are the relations connecting the values of -J- and -_

V

ax dx"

with those of the partial differential coefficients of u. Hence

we obtain

(du\

^ — V-r/
dx ~ ~7d^

Vv)

r-y _ \dxO\dy) - \dx dy)\dx)\dy) + UyVWrf2

dx^
~

/duY

The substitution of these values will accomplish the requisite

transformation. For example, the expression for the radius

of curvature, art. (78), becomes

P — m^m
/a-u\ /rf«\3 / U-u \ /du\ /du\ {d-u\

/(/«Y

'

\dxO \d^) ~ \d^/) \di) \dy) + \dP) {dr)
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which is necessarily symmetrical with respect to the co-

ordinates.

The corresponding transformation of other formulae is

obvious and may be here left to the student.

VIII. Multiple Points,

(84.) A multiple point is a point in which two or more

branches of a curve meet or intersect. If it is common to

two branches of the curve it is called a double point; if it is

the concourse of three branches it is called a triple point, &c.

At a multiple point there will be a tangent to each branch

of the curve that passes through it, and therefore the dif-

ferential coefficient -^, which determines the position of the
dx

tangent, must admit of corresponding multiple values. In

this case the expression for -^, deduced from the equation
dx

of the curve, vdll take the indeterminate form -, and its

multiple values may be obtained by either of the methods

given in arts. (61) and (62).

Let u =f{xy y) = be the equation to the curve ; then,

art. (61), the conditions for a multiple point will be

and if, for the values of x and y which simultaneously fulfil

these equations, the second partial diiferential coefficients do

not all vanish, the point will be double and the values of

Q =; J: will be determined by the quadratic equation
dx

For the conrenience of abbreviation, let this be denoted by

(A) + 2(c)a+(B)a2 = 0;
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then the two values of a will be

+ Vc*-^ - AB

Diagram 1. Diagram 2.

Diagram 3.

We may hence, according to the nature of these roots of the

quadratic, distinguish three classes of double points :

I. If the two roots or values of a be real and unequal, the

two branches of the curve will take

different directions, and the point

will be a point of intersection or

real double point as represented in

diagrams 1 and 2. These and the

following diagrams may be placed

in any position with respect to the axes of coordinates.

II. If the values of a be equal, the two branches of the

curve will have a common tangent, and therefore also have

mutual contact at the point under consideration. In this

case if the convexities of the two branches

be situated on opposite sides, the contact

will be external, as shown in diagram 3,

and the point is called a point of contact

of the Jirst kind or point of emhrassement

;

and if the convexities lie in the same

direction the contact will be internal, as in

diagram 4, and the point is then called a point of contact of

the second kind or point of osculation. Diagram 4.

If, however, the value of c^ — AB under

the radical, which vanishes at the point P,

should change its sign and become nega-

tive on one side of the point, the cor-

responding value of a will be unreal, and

therefore the two branches of the curve will be restricted to

one side of the point, which is then denominated a cusp.

As before, if the convexities of the two branches lie in con-

trary directions, the cusp is of the Jirst kind, as shown in

J
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diagram 5 ; and if the convexities are in the same direction

it is of the second kind, as shown in dia- Diagram 5.

gram 6. y

III. If the values of a be unreal, then no

real branch of the curve can pass through

or meet the proposed point, which, being

thus detached from its associated curve line,

is in such case called an isolated or conjugate point,

(8.5.) The analytical criteria for discrimi-

nating the character of a double point are

therefore as follows

:

Diagram 6.

«»(^J-@)(|-:)>".
the point is an intersection of two branches of the curve and

is a real double point.

"• ^^^^ WJ "-fe)(^)=^^
If > Oforpomts

immediately preceding and following, it is a contact of two

branches ; if of diiferent signs at these points, it is a cusp.

The contact or cusp will be of the first or second kind

according as —| for the two branches has different signs or

the same sign. If —^ = 0, this will indicate an inflexion,
dx"

( d^uY /d'-u\/d^u\ ^^ . .

'' ^^^^ \d^j) -v^Avy ^ ' "'
'" ^"^ '"'^"''^

or conjugate point.

It is easy to extend the process to higher orders of multi-

plicity. If, for the values of a: and g which fulfil the

equations « = 0,(g) = 0,

(I)
=0;

III.
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tial differential coefficients do not vanish, then the values of a

will be the roots of the cubic equation

(S)-"(^,)-'(^)-*($)-''-
If the three roots of this equation be real and unequal, the

point will be an intersection of three branches or a real triple

pointy of which the point P in the annexed diagram. No. 7, is

an example.
Diagram 7.

If two of the roots be equal, it will be a -^ ^^
point of cow^ac^ d^ndi intersection ; if the three \^V/^^^
roots be equal, it will be a point of double /\
contact; but if the equation contain a pair of

unreal roots, then only one real branch of the curve passes

through the point, and it is therefore in that case not a real

triple point.

Should the point P be a quadruple point, as in diagram 8,

the third partial differential coefficients will

also vanish, and the values of a will be deter- J^° ^
mined in like manner by an equation of the

fourth degree.

Since an algebraic equation of odd dimen-

sions must necessarily have at least one real

root, it is evident that a conjugate point can only occur when

the degree of multiphcity is even.

(86.) An examination of the character of multiplicity of

any proposed point of a curve may in general be more readily

effected by a method analogous to that given in art. (62), for

determining multiple values of -^ when of the form -, and
dx

which we shall here repeat with a slight modification.

Let the coordinates of the point V he x = a^ i/ = b ; then

if in the equation of the curve x and y be replaced by a -f j/,

b -f y'y we shall have an equation in which a/, ?/' are now the

coordinates of any other point P' in the curve estimated from

the proposed point P as a new origin. In this equation make
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if = j3a?' ; then dividing throughout by the power of d/ that

may he common to the several terms, we shall obtain an

equation

in which ^ will denote ^ or the tangent of the angle which
X

the chord PP' makes with x\ and when x^ is made = the

corresponding values of /S^ given by this equation will evidently

be those of -^, and the number of such values will, as before,
dx

determine the multiplicity of the point.

Also, by giving to a?' a small positive or a small negative

value, we may ascertain the number and situation of the

corresponding points P' in the immediate vicinity of P on

either side.

Since y^—^x' we have, by differentiating with x' as the

independent variable,

dx'

therefore at the point P, where x' = 0,

-"^^' dx'^~\dx')o

The first of these shows that the values of ^ when a?' =

are those of — , as before stated ; the second will determine
dx

the positions of convexity by art. (81) or the radii ofcurvature

by art. (78) if required, the formula for the latter being

The nature of each separate branch of the curve may,

however, be easily made known by comparing with /Sq the two

values of ^ which correspond to small positive and negative
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• rallies of j/. Thus, if (/3 — ^^^) x' continues to be positive, the

convexity is evidently downwards ; if it continue to be negative,

the convexity is upwards ; and if it change sign with a;, the

point is one of inflexion.

Example 1.—Let x^ — ax^y + hy^ = 0, and determine the

nature of the point at the origin where j? = 0, y= 0.

Here

(d'^i\ ,^ o « ^ / d-u\ ^ „ (cl'^u\

(;^)=12.= _2<.y = 0,(_) = -2«x = 0, (-J=6*y
= 0;

Therefore the equation for determining the values of a

dy

dx

— Qaa + 6Z»a-^ = 0, or ha^-aa = 0;

dy .= -± IS

the roots of which are a = 0, and a = + V - , and therefore
h

the point is a real triple point similar to that shown in

diagram 7.

Otherwise, the origin being already situated at the pro-

posed point P, substitute y = ^x, and x'^— ax''^(^+ bx^fi^

= 0, which divided by x^ gives a:— a^ -\- b^^ = 0. Hence,

at the origin, - a/3 + i/33 = ; .'. ^ = and /3 = + ^ ?,

and the point is a real triple point.

Example 2.— The equation being cy- + bx'^ — x'^ = 0,

required the nature of the point at the origin.

Substitute ^x for y and divide by x'^ ; then, a/S" -h 6

— J? = ; .'. /3- = — , and at the origin, x = and
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/3^ = \/ , which being unreal, the point is detached from
a

its curve, and is a conjugate point.

Example 3.—The curve {ay— x'^Y' {a'^ -\- x^) — m^a^x"^ =
passes through the origin ; it is required to find the nature of

this point.

Substitute, as before, y = px; then, dividing by x'^, we

get,

(ap - xy (g3 -f ^3) _ m3«2^2 = ; .'. /3 = - ±
a - Va^ -h ^3

At the origin 0^ = 0, and, as the double values of here

merge into one, the two branches have mutual contact with

the axis of x at this point. Differentiating the value of ^ we

have also

(//3 _ 1 ma^
.
/d^\ _ I ±m

dx a ~ (a^ + a?3)t

/^\ _ 1 ±
ydx/Q a

Therefore, ifm > 1, the convexities lie in opposite directions

and the contact is external; if m < 1, the contact is internal,

or a point of osculation, and the two branches have their con-

vexities presented downwards ; and in either case the two radii

of curvature are p« = —
- r-^r— ;— x •

2(1 + m)

Example A.—The curve whose equation is cr^-f-a^^^^yS— o

has a double point at the origin, and the directions of the

branches are determined by jSq = + . /— .

Example 5.—The curve (a^— a?^) y 2_ (^3 _j_ ^2)-p3 _- q has

a double point at the origin, and /Sq = ± Ij or the branches

make equal angles with the axes of coordinates.

Example 6.—The Lemniscate {x^ + y'^f — a'^{x^-—y^-) =
has a double point at the origin, and the branches make equal

angles with the axes.

Example 7.—If b (y — xy — x^ = 0, the origin will be
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a cusp of the first kind, the common tangent making equal

angles with the axes.

Example 8.—If a:^ -h a'^x'^— b^y- = 0, the origin will be a

cusp of the first kind touching the axis of x.

Example 9.—In the Cissoid y'^{2a^x)—x^ = 0, the origin

is a cusp of the first kind also touching the axis of x.

Example 10.—If {ay — ax— x'^)'^— x^ = 0, the origin will be

a cusp of the second kind, with the two convexities down-

wards, and the common tangent making equal angles with the

coordinate axes ; also the branches at this point will have

the same centre of curvature, the common radius being p^

= — aV 2, so that the contact is of the second order.

Example 11.—The evolute to the ellipse, example 1, art.

(80),

{axY -^ {hyY = {a^--r-)^

has four cusps of the first kind at the points

a-'— b'' - ^ a-^ — b-'

x=.Oy y = -f —-—, and y =0, .r = +

IX. Tracing of Curves,

(87.) The equation of a curve being given, it is sometimes

required to develop its particular structure, peculiarities of

form, and general character. Such an investigation is usually

called discussing or tracing a curve from its equation, and

only requires the practical application of the preceding for-

mulae. It will be sufficient here to indicate the chief points

that should engage attention.

I. If the equation be in the implicit form, it will be advisable,

if practicable, to solve it with respect to one of the variables,

pro\ided the result be in a convenient form for calculation.

By first making y = and then a: = 0, we shall ascertain if

the curve crosses the axes and the positions {xq, 0), (0, y^
of the points of intersection. Also, by assigning to one ofthe



140 THE DIFFERENTIAL CALCULUS.

variables a series of positive values from to oo, and of

negative values from to— oo , and calculating the correspond-

ing values of the other variable, we shall be enabled to follow

the course of the curve, and to discover if it has any infinite

branches. In all these calculations both positive and negative

results should be carefully included, so as to obtain the com-

plete branches of the curve.

II. Should the curve possess any infinite branches, ascertain

if they have asymptotes and determine their equations, and

thence their geometrical positions.

III. Determine the value of -—, and from it deducethe maxi-
dx

mum and minimum values of x and y, and the angles at which

the curve cuts the axes, &c.

IV. Determine the value of -7-| and thence the relative posi-

tions of convexity of the different branches, and the points of

inflexion if there be any.

dtj

V. Should the expression for -^, for particular values of the

variables, become of the form —, determine the nature of the

corresponding multiple points.

Note.— In some cases the character of a curve can be

discussed with greater facility when its equation is transformed

into polar coordinates. See the following Chapter.

X. Envelopes,

(88.) Let the equation to a system or family of curves be

denoted by

U=/(.2:',y, a) =0,

where a is a variable parameter which is only constant for

each curve. For each specific value of a the equation will be

that of a determinate curve ; and when a varies continuously
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it will determine a continuous succession of curves, the position

and character of each of which will differ but little from

that which precedes it.

Let

Uo=yiJ^» y» «) =0,

Uj =/(j:, y, a -h da) = 0,

\5^= f(x,y,a + 2da) =0,

be three consecutive curves in this series, and suppose P to be

a point in which the curves Vq and U^ mutually intersect,

and P' the corresponding point in which Uj and Uj intersect.

Then, since the two points P, F are both situated in the curve

Ui, it is evident that the curve which is the locus of the

points P will have the element of its arc, PP' = dsy co-

inciding with an equal element of the curve U^. Therefore

the curve traced by the intersection P will have contact with

the entire family of curves U, and it is hence called the

envelope of the system.

The envelope to the family of curves U is therefore to be

found by determining the locus of the point of intersection of

two consecutive curves taken indefinitely near to each other.

Let X, y be the coordinates of the point of intersection P

;

then these coordinates will falfil both of the equations U = 0,

Uj = 0. Hence, in passing from U to Uj, the point P will

remain fixed and only a will vary, so that we must have

(S)=«-
We have thus the two equations

"=»• (S)=».
from which the variable parameter a being eliminated we shall

obtain an equation involving x and y, the coordinates of the

point P, which will be the equation to the envelope of the

proposed curves U.

(89.) If the equation \] ^=f{x, y, a) be of the first degree
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in X and y, it will represent a system of straight lines ; and if,

as the parameter a varies continuously, the variahle line be

supposed to be in motion, the point P will obviously be the

centre of instantaneous rotation ; and its locus will be that

curve to which the line is always a tangent. This may be

made apparent by conceiving the envelope or the curve which

is the locus of P to be represented by a rectilinear polygon of

an indefinite number of sides, each of these sides at the same

time representing an infinitesimal element ds of the curve.

The sides produced will represent tangents to the curve,

and the angular points will evidently be the intersections of

'

consecutive tangents.

This property of a curve being generated by the ultimate

intersections of a series of lines determined by a given law

may be further instanced in the evolute to a curve. Since,

art. (79), the normal drawn to a curve at any point is always

a tangent to the evolute, it is evident that the evolute will be

the envelope to all the normals, in the same way that a curve

is the envelope. to all its tangents.

Example 1.— Find the envelope to the system of lines

determined by the equation - -j- ^ = 1, where a and /3 are
a ^

variable parameters subject to the, condition a/3 = 4m^.

By differentiating the equations with respect to the para-

meters, we have

from which eliminating da, d^, we get _ = ^=:_, ora = 2a:',

a iS 2

^ = 2y. These substituted in aP = 4m^y we have for the

envelope the equation xy = m^, which is that of a hyperbola

referred to its asymptotes.

x'^ v'^
Example 2.—The equation to an ellipse being— + jo = ^>

that of the normal drawn through the point x'y' is, example
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2 7 2

art. (74), ^"^ __ —^=: «-— ^- ; determine the envelope to
J?' y'

all these normals.

The two variable parameters x\ y' may be reduced to one

by making J?' = « cos a, y' = h^\\\a\ then, putting c^:=^a'^— lr,

we shall have

COS a Sin a

and, differentiating with respect to the variable parameter a,

(c^U\ sina
.

, cosa ^-—
) = «a? T- + fiy -r-o- = 0-

da / cos-a sm-a

From the latter equation, tan a = —
f
-^

) ; and by sub-

stituting the corresponding values of cos a, sin a in U = and

reducing we finally obtain

(ax)^ + (by)i = (c2)*

which is the evolute to the ellipse, and agrees with the result

before obtained in art. (80).

Example 3.—The envelope to the system of straight lines

determined by the equation y — ax -{- - is the parabola
a

y2 == 4mx,

Example 4.—The envelope to the system of circles

(x — 7n — a)- -j- y2 — 4^^^ is also the parabola y- = 4mx,

Example 5.—If a straight line whose length is c slide with

its extremities upon the axes of coordinates, its variable equa-

tion will be represented by 1 ^— = 1 ; and the
c cos a c sni a

envelope, or curve to which the line is always a tangent, will

2_ i. J.

be the hypotrochoid a^^ + y^ = c^.

Example 6.—The parabolas described by projectiles dis-

charged, in vacuo, from a given point with a given velocity are

included in the equation 4my=^4max — (1 -f a^)j:-; and

the envelope to these is the parabola x^ = 4m (m — y).
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CHAPTER VIII.

FORMULiE FOR POLAR EQUATIONS, &;C.

(90.) The system of representing positions by means of

coordinates relative to fixed axes gives the greatest facihty

and the widest range to the appUcations of the analysis. It is

on that account much employed in geometry, and almost

exclusively in physics, to which in nearly every branch of

inquiry it seems to be particularly adapted. In the geometry

of curve lines, however, it is sometimes convenient to in-

vestigate the properties of certain curves from what is called

the polar equation^ and which is especially applicable to

curves of the spiral kind.

A fixed indefinite right line 0.r, origi-

nating at O, is called the polar axis or

prime radius; the fixed point O is the

pole or origin ; any right line O P drawn

from the pole O to a variable point P is

called the radius vector to that point,

and its angle VOx with the axis i\iQ polar angle.

The radius vector OP is denoted by r, and the polar angle

PO.r by ^ ; these evidently define the position of the point P,

which may be symbolically designated the point rO.

The polar equation to a curve expresses a relation between

r and ^, and is of the form

r(r, ^) = c ;

and, in most cases, r may be separated so as to give the

explicit form
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F and/ in most cases involving the polar angle 6 under the

form of trigonometrical functions.

The quantities r, 6 being thus made subject to an equation,

we shall have particular values of r for each successive value

of 6 ; and hence the point P becomes restricted to a particular

curve determined by the equation.

I'he perpendicular OH from the pole upon the tangent

being, as before, denoted by j9, the equation to a curve is

in some cases advantageously expressed in r and p,

(91.) Polar Equivalents.—By taking the axis of a? for the

polar axis, and the origin of the rectangular coordinates for

the pole, we shall obviously have

j7 = r cos 6, y = r sin ^

;

and hence also, by differentiation,

dx •= dr cos 6 — rdO sin B,

dy =. dr^md -{- rd6 cosd ;

d-x = d-rcos6 — 2drdB smS — rd6^ cos6 — rd-S sind,

d-y = d^rshid + 2drdecose — rdB^smd + rd-O cos 6.

These values substituted in any given formula involving

rectangular coordinates, will give the equivalent polar formula

in terms of r, 6 and their diiferentials.

The following relations are sometimes useful in dynamical

investigations

:

dx cos 6 -f dy sin 6 = dr^

dy cos 9 — (Zr sin^ = rdO,

d-jc cosd + d^y smd = d'-r-rd6^

(PycosO - d^xsmd = rd^-e -f 2drde = ^^!::^\
r

When B is taken as the independent variable, dB will be

constant, and the terms containing d-B will disappear.

(92.) Rectification.— Substituting the foregoing values of

dx, dy in the equation ds^ == dx^ -f dy^, we get

G
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.-. ds = ^{dr^ + r'-de'-).

and s=fdS^(^r^^ + ^^.

(93.) The value of ds may be immediately deduced from the

diagram. Thus if OP and OF be the radii vectores, sub-

tending the arc W=:ds and containing the angle VO'P'= dd,

let P^/^ be a small arc described with the radius O P and

meeting OF in w^ ; then, when the elements are infinitesimal,

this small arc may be regarded as a right line perpendicular

to OP'; also, we shall obviously have mV = dr, and Vm
= rde;

.-. ds'- = PF2 = ^F3 + p^3 = ^,.3 ^ ^2^^2.

Several of the subsequent formulae may also be obtained

geometrically from the diagram, and the determination of

them in this way would form useful exercises for the student.

(94.) Perpendicular on the Tangent.—The perpendicular

OH from the origin upon the tangent being denoted by^,

we have, art. (73),

xdy— ydx
^

Js

By substituting the preceding polar equivalents, this gives

rHe rU6
p =

ds " ^/(dr'- -f- r'-dO^Y

1 dr
Cor.— If M = -

; then du •= ^ -^y and we obtain the neat
r H

formula

1 -^ 2X ^
(95.) Sectorial Area,—Conceive two consecutive radii vec-

tores OP = r, OP' = r -h c?r to be drawn, subtending the

element W =^ ds of the curve and containing the angle

POP' = de. The sectorial element thus formed by these

radii vectores and ds may be considered as a plane triangle,

I
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A the perpendicular from the origin on the opposite side

V produced will obviously be that on the tangent to the

» urvc. Therefore, p denoting this perpendicular, the area

of the sectorial element ='^-—
• That is, denoting by S the

iiectorial area of the curve estimated from a given radius

pds ^ , ,^,^ xdy—ydx r^dd
vector, dS=^' But, art. (94),;? = ^ /- = -j-y

JL CIS CLS

xdy— ydx r^dO

(96.) Inclination of the tangent with the radius vector.—
Let the angle OPT included by the tangent and radius vector

be denoted by P ; then by the diagram,

• p OH ;,.

Substituting the value of;?, art. (94), these become

rde rde
sm P='J^ =

ds s/{dr- + r'-de^)'

_ rfr _ dr

r. rde
tanP = -7-.

dr

Cor.—Hence we obtain,

_ f?r _ rdr

^ " ^^ " V(r—yO'

Ty»
dr

^ „ pdr
de^ — tanP = —jfr, -^y

-J
r"dd _ prdr
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which are here expressed in terms of the radius vector

and the perpendicular on the tangent.

(97.) Tangent and Normal.— Let a

straight line NOT be drawn through

the origin at right angles to the radius

vector OP, and intersecting the tangent

and normal in the points T and N.

This line we shall here designate the

relative axis to the point P. It is

evident that the positions of the tangent and normal with

respect to this axis will enable us to construct them geometri-

cally. The line PT is the polar tangent, PN is the polar

normal, OT is t\iQ polar subtangent, and ON is i\iQ polar sub-

normal. From the angle P, determined in the last article,

the values of these lines are immediately deduced as follows

;

r T rds
PT = polar tangent = — -j-^ ^ = —

,

° cosP V V ""i^ ) ^^

r r dsPN = polar normal = -;—:i^ = — =-—,^ smP p de

V r T doOT = polar subtangent = r tan P = ——— 5- = —7—

>

v(r —JO") dr

V r drON = polar subnormal = —- = - \^(r'^ — p^) = —

;

tanP JO
^

c?^

UH = » = rsmP= —7—

>

ds

OK=;?,=:rcosP= V(r2-;?2) ^ !^

.

(98.) Asymptotes.—If for any finite value of 6 the value of r

becomes infinite, the radius vector does not meet the curve

at any finite distance, and therefore it must be parallel to the

tangent which belongs to the corresponding point at the infinite

r'^dQ
distance. The polar subtangent OT = —7- will then become

identical with the perpendicular from the pole on the tangent,

and if its value be finite, the tangent admits of being con-
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structed and is then an asymptote to the curve. If the polar

subtangent = 0, the asymptote passes through the pole and

coincides with the radius vector : but if the value of the polar

subtangent be infinite, the tangent, being at an infinite distance

from the pole, is not an asymptote.

If the diagram be conceived to be turned round into such a

position that the radius vector shall proceed from the pole

towards the right hand, the rule of signs to be observed in the

construction will be simply as follows : If the value of the

polar subtangent OT = —-r- be positive, it must be measured

downwards, and if it be negative, it must be measured upwards

;

then the right line drawn through the point T parallel to the

radius vector, will be the required asymptote.

(99.) A polar curve may have a circular asymptote. If,

when the value of the polar angle d is supposed to proceed

positively or negatively to infinity, the point P recedes from

the pole until the radius vector ultimately attains, as a

superior limit, the finite value a ; then a circle whose centre is

the pole O and radius a will evidently be an exterior asym-

ptotic circle. But if the point P approaches the pole, until the

radius vector reaches as an inferior limit the finite value a, the

circle will be an interior asymptotic circle,

(100.) Circle of Curvature.—The value of the radius of

curvature obtained by general differentiation, art. {77), is

— dyd^x— dxdry

But, using the polar equivalents, art. (91), we have

dydrx^dxdry =
dr{d'^x sine—dy cos^) -f rdd (d-x cos6 -f d-y sm6)

= -dr{2drdd + rd-B) + rde{d^r-rde-)

= '-ddir'-dS'- -}- 2dr^--rdh)''rdrd^;

ds^
P =

dd (r-dO- -f- 2dr- - rd'-r) -\- rdrd-O
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By taking 6 as the independent variable,

__ ds^ (dr^ + r^dd^)i
^ dd{r'-de^ + 2c?r3-r6^r)

""
dBir^de^ + 2dr'--rd'-ry

which will be positive when the convexity is downwards, and
negative when it is upwards.

and the expression for p reduces to the convenient form

P- ,/ d^u\ „.d'^u

(101.) The value of the radius of curvature in terms of r

and p may be found as follows :

Referring to the diagram, we have the angle OPI = P,

POI = 6, and PID = a>; .\ (o = V + 6, and dco = dV + dS.

But from the values of sin P, cos P, art. (96), we deduce

_ iZsinP^ rdp--pdr

cosP ""
r\/{r'^'—p^)

Also, art. (96),

rdr - ,^ pdr
ds = —J-— ^; and dB — —jj~^ ^r

;

.*. ao) =
V('-"-i'-)

Hence, art. (78),

ds rdr

da) dp

This neat relation may be verified by substituting for dp

the differential of the expression p = —,, y o .

—
oiw^x • ^^^

\/\dr^ + r-'dO'^)

result will be found to correspond with the value before

obtained.
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Examples.
2

1

.

In the lemniscate r- = a- cos 2^, p = —- .

3r
3

2. In the spiral of Archimedes r = ady p = ^^
—^ .

Za" + r"

Q T .V,
• 1-1 ^ r(fl2 + r2)^

3. In the reciprocal spiral m = ~, p =—^——^—^ .

4. In the cardioid r = a (1 — cos ^), p = - \/2ar.
3

5. In the logarithmic spiral ^j = mr, p = —
2/2 2^

6. In the epicycloid p'^ =—^—g—

>

3 2 1

(102.) Chord of Curvature,— The portion of the radius

vector, produced if necessary, intercepted hy the circle of

curvature, is called the chord of curvature. As this chord

evidently subtends an angle, at the centre of the circle, equal

to 2 P, its value is

Chord of Curvature = 2p sin P = -^= -^.
r dp

Example 1.—In the lemniscate r^ = a^ cos 20, the chord of

curvature = q ^'

Example 2.—In the cardioid r = a(l — cos 6)y the chord of

4
curvature = « ^*

o

(103.) Evolute and Involute.—The radius of curvature

coincides with the normal and touches the evolute, art. (79).

Let r^ = O R, /?^ = OK be the radius vector and perpendicular

on the tangent which belong to the evolute at the point of

contact. By referring to the figure, page 148, it will be seen

that p and p^ constitute a rectangle IIOKP with the tangent
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and normal to the curve; also that OK3=HP3=OP2-OH2
and 0R2 = RK2 -f OK^, that is

Of

= {p — p)^ 4- /"^ — j»^

= p^ — 2^/) + r^'

The value of p = being previously determined, we can
dp

usually by means of these two equations and the equation of

the curve f{r, p) = 0, eliminate r and p, and so obtain the

equation of the evolute in r, andjo^.

Example 1.—The evolute to the logarithmic spiral^ ^= mr
is a similar logarithmic spiral ^^ = mr^.

Example 2.—The evolute to the epicvcloid j)^ = .? .

^^ ~^J
c^ — a^

is another epicycloid w.^= -— —

.

(104.) The value of the radius of curvature maybe simply

deduced from the equation

rf' = p2 — 2pp -f r^.

Since, when we proceed to a consecutive point in the curve,

OR = Ty and PR = p, which have reference to the pole O and

the intersection R of consecutive normals, do not change, we

may differentiate with respect to r and p only, which gives

vdr— 2pdp 4- 2rd^r = 0, .-. p = —-.
dp

(105.) Let /, y be the radius vector and perpendicular on

the tangent which belong to an involute of the curve. As the

curve is its evolute, we have from the foregoing equations,

substituting —- for p

,

dp
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The values of p and r given by these equations being

substituted in the equation of the curve, we shall find an

equation involving r'y p' and their diiferentials. If it can be

integrated, the equation of the involutes of the curve will

thence be found.

(106.) With respect to the evolute, let p, be the radius

of curvature at the point R, ds^ the element of the arc, and u>^

the inclination of the tangent RP with the polar axis. Then

o)^ = 0) -f - and ds^ = dp ;

ds

__ ds^ ^ dp d^s

d(o, d(o d(i)
'"

the differentiations being with respect to co as the independent

variable.

* Tliese formulae are useful if 5 or p can be expressed as a

function of <», or when a curve can be reduced to an equation

of the form F(5, o)) = 0, or/(p, o)) = 0. Thus in the example

of the cycloid, page 1 24, we have

dx A / '^

cos CO = ~r-= \/ -—y
ds ^ 2a

p = 2\/2a(2a — j7)= 4asino);

.'. p. = -7^ = 4flCosa) = — 4a sin 0).

;

dco

and the two equations p = 4asin<t>, and p^=^ — 4 « sin o)^

which determine the respective curves, show that the evolute

to the cycloid is an equal cycloid placed in an inverted

position.

(IO7.) Positions of Convexity and Points of Inflexion.—
When p is constant or dp = 0, the curve becomes a straight

* It may here be suggested that a curve may be determined by an

equation between any two, or more, of the quantities r, 6,p, w, p, s, and

that in particular cases the investigation of the properties of a curve may

be greatly simplified by an approi)riate selection of variables.
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line and therefore has no convexity. On examining the

diagram it is evident that if a curve is concave towards the

pole, r and j) will either both increase or both decrease, and

therefore -^ will be" positive ; and if the curve is convex
dr

towards the pole, r and 'p will one of them decrease when the

other increases, so that -^ will be negative.
dr

Hence, we have this rule : If

dp . r positive 1 ^, . f concave 1 ^ j ^i ^
-i- is < ^ ^. > the curve is < > towards the pole.
dr I negative J [ convex J

^

When -^ changes sign by passing through or - the

direction of curvature will become reversed, and this will

indicate a point of inflexion,

(108.) Locus of the point where the perpendicular meets the

tangent.—Let it be required to find the equation to the curve

which is the locus of the point H, where the perpendicular

from the pole intersects the tangent. Denote the radius

vector OH of this curve by r^^, and the corresponding polar

angle and perpendicular upon the tangent by 6^, and^^^. Then

we shall havej9 = r^^, and, since O H is perpendicular to PH,
the angle between two consecutive positions of OH will be

equal to that between corresponding positions of the tangent

PH ; that is, d6,,=^ d(o. But, art. (101),

.-. J = Sli and r=!jL..
\/(^^^y/) ^//V(r,/-jp,/) p^^

Hence, if the polar equation to the given curve be/(^, r)

= 0, that of the locus of H will be/( r^^, -^ )
= 0, being ob-
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r 2

tained by simply substituting the values p = r^^, r= -^ in the
Pii

given equation.

Example 1 .—In the case of the logarithmic spiral, the locus

of the point H is an equal and similar logarithmic spiral.

Example 2.—In the case of the rectangular hyperbola, the

locus is a lemniscate.

The preceding articles present a complete digest of the

[' most useful formulae which relate to curves referred to polar

coordinates, and by them we are enabled to trace and discuss

all the peculiarities and properties of curves from their polar

equations.

(109.) For convenience of reference, we shall here collect

together the equations of the principal known curves ; and we

shall then conclude with some general theorems, which have

been deferred for insertion at the end of the volume.

1. The Parabola; referred to its vertex and axis, y2= 4mj7; the focus

2m
1 + COS0'

2. The Ellipse ; referred to its centre and principal axes, the equation

is
"i"

"^ 73 ~ ^ ' ^^^^ the centre is the pole, the polar equation is

y.2 = a2
I

j . and, when the focus is the pole, it is

r = . -, ovp = h \/ , where e = —^ --

1 + ecos0 V 2a —

r

a

3. The Hyperbola. — Referred to its centre and principal axes, the

a^ y^ e^— 1
equation is —— - - = 1 ; when the centre is the pole, r^ = a^ — .

and when the focus is the pole, r = —5^ or p = b \/ ,^
1 + ecos0'

^ V 2a + r*

where e = • The hyperbola has two asymptotes.

4. The Equilateral Hyperbola^ when referred to its asymptotes, has for its

equation 2xy = a^; and the polar equation is r^ = -, ,or» = —
sin20 -^ r
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5. The Cycloid.—Referred to its vertex and axis, the equation is

y = ^{2ax—oc^) + avers -,
a

which may be otherwise stated x = a(l— cosc^), y — a{<p + sin(^).

6. The Catenary.— Referred to a point at the distance c below the

lowest point of the curve, with the axis of x horizontal ; its equation is

X X
C I 1 '~~c\ V^

y — -r K + ^ ) ; and the radius of curvature p = — — is equal to the

normal, but drawn in the opposite direction.

X

7. The Logarithmic Curve.—Its equation is y = ce"; the subtangent

= a is constant, and the negative axis of x is an asymptote.

8. The Cissoid of Diodes.— Its equation is y"^ = ; the origin is a

cusp of the first kind, and the curve has evidently an asymptote perpen-

dicular to the axis of x at the distance x = 2a.

9. The Conchoid of Nicomedes.—Its equation is x^y^ = (a^—y^){d + yY ;

the axis of y contains a double point, and the axis of x is an asymptote.

10. The Lemniscate of Bernoulli.— Its form resembles the symbol oo
,

and, referred to its centre or double point, the equation is

r^
(x^ + y^y — a^{x^—y^yy or r^ = a2cos20, or p = -j»

11. The Witch of Agnesi.— Referred to its vertex, the equation is

y^ = ; it has inflexions at the points x = ~, y = + —rz, and ana—x 4/^3
asymptote perpendicular to the axis at the distance x — a.

12. The Spiral of Archimedes.— The polar equation is

^^
r = ad, or p = ——- ^>

13. The Reciprocal Spiral.—Its polar equation is

a ar

14. The Logarithmic Spiral.—Its polar equation is r = a^; oxp = mr\

the curve intersects its radius vector at a constant angle P ; and its evolute

and involute are spirals equal to the original one.

15. The Cardioid.—Its polar equation is r = a (1 — cos 0) or y^ = 2«j»2.

the origin is a cusp of the first kind, and its evolute is another cardioid

;

also the lines drawn through the pole, and intercepted by the curve, are

all of the same length 2a.

irla^x)
16. Quadratrix of Dinostratus.— Its equation is y = x tan— '
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and it has an infinite number of asymptotes perpendicular to the axis

2a
of x. When :c = 0, y = xoo = —

.

TT

17. Quadratrix of Tsehirnhausen.—Its equation is y = a sin —-, and it

lias inflexions at the points where y = 0.

18. Companion to the Cycloid: x — a(l — cosc^), y = acp.

19. Trochoid; x = a(l— n cos</)), y = a{<p— nm\<p).

20. Epitrochoid ; x = {a + A) cos (^ — A cos (

—

j- \<pi

y = {a + l)%\n<p^h sin
(
?_t

J
(p.

21. When h = b, this becomes the Epicycloid ; and when also a = ^, it

becomes the Cardioid.

22. Ilypotrochoid ; or = (a — i) cos </> + hcosl^-^^ \ (pt

y = (a— b)sin <p— A sin (
—t~)^'

a
23. When h = *,this becomes the Ilypocycloid ; when 6 = - it gives

x"^ + yt — Q?. and when b = _, it becomes an Ellipse.

24. The Lituus.—Its polar equation isy"= —

•

Eulers Theorems on Homogeneous Functions,

(110.) If w =f(^, y, 2, &c.) be a homogeneous function of

n dimensions and of any number of variables ; then

"(S)-KP)- --'KJiP'
= w(w — 1)(« — 2)w,

&c. &c. &c.

= nu,
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Since the function u is homogeneous and n is the sum of

the exponents of the variables in each term, if for x, y, z, &c.

there be substituted (1 + a)x, (1 + a)y, (1 + a)Zy &c. it is

evident that the value of u will become (1 + a)^u \ that is

(1 + aYu =fQp + ax, y + ay, Z + aZ, &C.)

The first of these being expanded by the binomial theorem,

and the second by the formula of art. (47), by equating the

coefficients of the like powers of the arbitrary quantity a, we

obtain the elegant relations stated in the theorems.

Laplace's Theorem,

(111.) If y '=f{z + xcjjy), in which y is an implicit func-

tion of two variables x and z depending on the forms of the

functions characterized by / and cf) ; then the development of

any other function Yy may be obtained from the following

general theorem

:

d Jd.F/z ^^^^^^-X x^

+ 5^4-^^*-^^^ 1 1:273

By considering w = Fy as a function of x its expansion in

powers of X, art. (46), is

X /du\ a?2 /d'^u\ x^ /d^u\
, p

..
" =

"0 + 1UA "^ ~^ UVo ^ 1:^3 i^Jo+ ^'-
• •

^"^

where the values of u^ and the differential coefficients, as

indicated, are to be taken when a? = 0. For the investigation

of the proposed theorem it will therefore only be requisite to

determine the values of these coefficients. Let

/3= 2r + xcl)y;
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then y =f^ =/i2 -\- J^<t>y)' ^y differentiating first with

respect to x and then with respect to j, we have

or ^ = »y/^
.

dx 1 - x<i>'yf^
'

or ^/= f'^ ,.
dz 1 — x(t>'yf'^

'

dx dz

This equation heing independent of the form of the function

y z=zf^ must evidently he true if y be replaced by any function

of iS or by any function of y. Substituting therefore u = Fy,

we get

du du , / 1 >,

^ = ^*^ (^)-

Again, since w is a function of y, which is a function of two

variables x and r, we have, art. (37) and this equation (1),

d^u __ d du(j)y __ d ducfyy __ d ^ du ., .oX (o\

dx^ dx dz dz dx dz Idz i

d^u _ d d du((t)y)^ __ d^ du((l)yy __ d^ f du / , .3!

dx^ dx dz dz dz^ dx dz'^ Idz J

.... (3),

&c. &c. &c.

d^'u _ d d''-^ du{<f)yY-^ __ d""-^ du{(f>yY-^

dx^
~~

dxdz^-^ dz
"~

dz^-^ dx

^"-1 f du ,. .^1 , .

In deducing the values of the differential coefficients when

j: = we may obviously make x = before differentiating

;

that is, we may at once use Uq = Fy^ = Y/z, and (/)yo= (p/z.

Thus we find,
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\dx/Q dz

yacT-'/o dz V dz J

&c. &c.

/J%\ d^-^ j d. Ffz . , ^ x^ 1

and by substituting these values in

we obtain the theorem stated.

Lagrang^s Theorem,

(112.) If y •=. z •\- x^y, where ^y denotes a given func-

tion ; then the development of another function Fy in ascend-

ing powers of x will be

This is a case of Laplace's more general theorem, from

which it immediately follows on making fz = z\ and when

f^z =1, it becomes Taylor's theorem.

Hughes, Printer, King's Head Court, Gough Square.
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NEW LIST FOR 1852.

The whole Senes, comprising 105 volumes, will be succeeded by other interesting

and useful works more especially intended for Public Instruction, written by

learned and efficient masters in the several branches of Education.

1. Rudimentary Chemistry, by Professor Fownes, F.ll.S.. &c. 3rd edition,

and on Agricultural Chemistry, for the use of Farmers . Is.

Natural Philosophy, by Charles Tomlinson, 2nd edition . 1*.

Geology, by Lieut.- Col. Portlock, F.R.S., F.G.S., &c. 2nd edit, '\s.6d.

. Mineralogy, by D. Varley, vol. i. 2nd edition . . , Is.

. vol. ii. ,, ... 1*.

Mechanics, by Charles Tomlinson, 2nd edition . . .1*.
Electricity, by Sir WiUiam Snow Harris, F.R.S., &c. 2nd edit.,

with the important addition of the Cavendish Papers . Is.Sd.

Magnetism : an Exposition of the General Principles of

Magnetical Science, by Sir W. Snow Harris, vol. i. . .Is.
vol. ii. . Is.

vol. iii. . ls.6d.

History, Progress, and Present State of the Electric Telegraph

in its several applications, by Edward Highton, C. E. . 1*.

Pneumatics, by Charles Tomlir^^on, 2nd edition . . .Is.

Civil Engineering, by Henry Law, C.E., vol. i. 2nd edition Is.

—_ vol. ii. Is.

vol. iii. Is.

Architecture (Orders), by W. H. Leeds, 2nd edition . Is.

Ditto, (Styles—their several examples,) by T. Bury, Architect Is.

Principles of Design in Architecture, by E.L.Garbett, Arc*, v. i. Is.

vol. ii. Is.

Perspective, by G. Pyne, Artist, vol. i. 3rd edition . . Is.

vol. ii. ., . . . Is.

Art of Building, by E. Dobson, C.E., Assoc. Inst. C.E. . Is.

Brick-making, Tile-making, by the same, vol. i. .Is.
vol. ii. . Is.

Masonry and Stone-cutting, by the same . . Is.

— Illustrations of the preceding, in 16 4to atlas plates . . Is.

— Art of Painting, or a Grammar of Colouring, by George

Field, Esq., vol. i. . ... Is.

vol. ii. . . .Is.
Draining Districts and Lands, by G. D. Dempsey, C.E. Is.

Draining and Sewage of Towns and Buildings, by

the same ......... Is.

Well-sinking and Boring, by J. G. Swindell, Archi-

tect, 2nd edition, revised by G. R. Burnell, C.E. . . Is.
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32. Rudimentary Art of Use of Instruments (generally), by J. F. Heather,

M.A., of the Royal Mil. Acad., Woolwich, 2nd edit. . I*.

33. Constructing Cranes for the Erection of Buildings

and for Hoisting Goods, by J. Glynn, F.R.S., C.E. . . 1*.

34. Treatise on the Steam Engine, by Dr. Lardner. {Written

specially/for this Rudimentary Series.) . . . . 1*.

35. Art of Blasting Rocks and Quarrying, and on Stone, by

Lieut.-Gen. Sir John Burgoyne, K.C.B., R.E., &c. &c. . Ls-.

36. Dictionary of Terms used by Architects, Builders, Civil and

Mechanical Engineers, Surveyors, Artists, Ship-builders,

&c. vol. i * ... Is.

37. —

—

vol. ii Is.

38. vol. iii 1*.

39. vol. iv . . Is.

40. :
— Art of Painting on Glass, or Glass-Staining, by Dr. M. A.

Gessert, v^ith an Appendix on the Art of Enamelling, &c. l.<f.

41. Essay on the Art of Painting on Glass, by E. O. Fromberg Is.

42. Treatise on Cottage Building ; and some new Hints for Im-

proving DvrelUngs, by C. B. Allen, Architect . . .Is.
43. Tubular, Girder Bridges, and others, more par-

ticularly describing the Britannia and Conway Bridges,

with the Experiments made to determine their form,

strength, and efficiency, by G. D. Dempsey, C.E. . . Is.

44. Foundations and Concrete Works, by E. Dobson,

C.E Is.

45. Limes, Cements, Mortars, Concrete, Mastics,

Plastering, &c., by Geo. R. Burnell, C.E. . . , Is.

46. the Art of Constructing and Repairing Common
Roads, by H. Law, C.E 1^.

47. the History, Construction, and Illumination

of Lighthouses, by Alan Stevenson, LL. B., F. R. S. E.,

M. Inst. C,E vol. i. Is.

48. _ Ditto, Continuation of the same subject, vol. ii. Is.

49. — vol. iii. Is.

50. the Law of Contracts for Works and Services, by
David Gibbons, Esq Is.

51. ^-- Naval Architecture, the Elementary Principles of

the Science, by J. Peake, H. M. Naval Architect . . Is.

52. the Practical Principles of Ditto, forming a 2nd
and a 3rd volume, to complete the work, vol. i. . . Is.

53 vol. ii. . . Is.

54. " — Masting, Mast-making, and Rigging of Ships . Is.

55. Navigation : the Sailor's Sea-Book ; in two
Parts : i. How to keep the log and work it off. ii. On
finding the latitude and longitude. By James Green-

wood, Esq., B.A.— With Directions for Great Circle

Sailing; an Essay on the Law of Storms and Variable

Winds ; and an Explanation of Terms used in Ship-

Buildins:, with coloured illustrations of Flacs. vol. i. . 1*.
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56. Rudimentary Treatise on Navigation, &c., vol. ii Is.

57. the Principles of the Art of Warming and Ven-

tilating Domestic and Public Buildings, Mines, Liglit-

liouses, Ships, &c., by Chas. Tomlinson, vol. i. . . Is.

58. vol. ii. . .1*.
Steam Boilers, their Construction and Practical

Management, by Robert Armstrong, C.E. . . .1*.
Land and Engineering Surveying, for the use

of Schools and Private Students; for Practical Land

Surveyors, and Engineers, by T. Baker, C.E., vol. i. .1*.
vol. ii. . 1*.

• Introductory Sketches of Railway Details, by R. M.

Stephenson, C.E. . . . . . . . .1*.
• Treatise on the Construction ofAgricultural Buildings ofevery

description, by G. H. Andrews, Agricultural Engineer . Is.

on Motive Powers, and the Machinery of the

Steading, by G. H. Andrews, A.E Is.

' on Agricultural Field Engines, Machines, and Im-

plements, by the same Is.

on Clay Lands and Loamy Soils, and the Value of

different Lands, by Prof. Donaldson, Government Land
Drainage Surveyor ....... 1».

• on Clock and Watch-making, and on Church Clocks,

with illustrations, by E. B. Denison, M. A., vol. i.

vol. ii.

and Practical Treatise on Music, with plates of examples,

by C. C. Spencer, Professor of Music, vol. i.

vol. ii. .

Instruction for Playing the Piano-Forte, by the same .

Treatise (A Manual of the "MoUusca) on Recent Fossil

Shells, by S. P. Woodward, Assoc, of the Linnaean Soc.

Illustrations to Do.

vol. ii. of the same
Illustrations .

*j^* Coloured after nature, price lOs. 6d. each series.

— Treatise on Descriptive Geometry, with the Theory of Sha-

dows and of Perspective, from the French of G. Monge, by

J. F. Heather, M.A
Descriptive Geometry: Illustrations to the saracj

in 14 plates, atlas 4to

Steam as apphed to General Purposes and Loco

motive Engines, by J. Sewell, C.E. . . vol

Locomotive Engines only, by the same, vol. ii.

Supplementary volume to the above, illustrative

Is.

Is.

Is.

1.9.

Is.

Is.

Is.

u.

Is.

Is.

u.

Is.

Is.

of the Origin, Growth, and rapid Developments of the

Locomotive Engine . Is.

Marine Engines, particularly in reference to H.M.
Steam Navy, by R. Murray, C.E. . . . vol. i. Is.

Ditto, and on the Screw. &c.. bv the same. vol. ii. 1*.
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82. Rudimentary Treatise on the Power of Water, as applied to drive Flour-

Mills, and to give Motion to Turbines and other Hydro-

static Engines, by Jos. Glynn, F.R.S., C.E. . . , Is.

83. Book-Keeping and Commercial Phraseology, by James
Haddon, M. A., King's College, London . . , Is.

MATHEMATICAll SERIES.
84. and Elementary Treatise on Arithmetic, with a full Explana-

tion of the Theory, and numerous Examples for Practice

and for Self-Examination, by J. R. Young, late Prof, of

Mathematics, Belfast Coll. : with the Answers at the end ls.6d

85. Equational Arithmetic, applied to Questions of Interest, An-

nuities, and General Commerce : also Formulae for the So-

lution of all ordinary Calculations by a simple Equation,

by W. Hipsley, of Hull 1*.

8G. Elements of Algebra, for the use of Schools and Self-Instruc-

tion, vol. i. by James Haddon, M.A., King's Coll., London Is.

87. vol. ii. by the same 1*.

88. Principles of Geometry; the application of Logic to Geome-
trical Reasoning, based on the text of Euclid, Books

1,2,3. By Henry Law, C. E., vol. i Is.

89. vol. ii., by the same; 4th, 5th, 6th,

11th and 12th Books of EucUd, with illustrative Notes,

and a practical application of the various Theorems . 1*.

90. Analytical Geometry, by James Hann, Professor, King's Coll. Is.

91. Treatise on Plane Trigonometry, by the same . . . 1*.

92. Spherical Trigonometry, by the same . . 1*.

93. Elements and Practice of Mensuration and Geodesy, by T.

Baker, C. E 1*.

94. Treatise on Logarithms, vol. i. by Henry Law, C. E. . . 1*.

95. Tables for facilitating Astronomical, Nautical, Trigonometri-

cal, and Logarithmic Calculations, vol. ii. by the same . 1*.

96. and Elementary Treatise on Popular Astronomy, by the Rev.
j

Robert Main, of Her Majesty's Observatory, Greenwich . Is.

97. Principles and Practice of Statics and Dynamics, by T.

Baker, C.E Is,

98. Elements of Mechanism, elucidating the Principles developed

by the Science of Mechanics for the elementary and prac-

tical Construction of Machines, for the use of Schools and

the Student in Mechanical Engineering, by T. Baker, C.E. I*.

98*. , with Practical Machines, by the same 1*.

99. The Theory and Practice of Nautical Astronomy and Navigation, by

H. J. Jeans, Royal Naval College, Portsmouth, vol. i. . Is.

100. vol. ii. . Is.

These volumes describe the use of the ' Nautical Almanac,' by means of an investi-

gation of the construction of some of the Tables contained therein: they also

contain numerous easy Examples,— Rules at length for finding the latitude and
longitude and variation of the compass, and also their investigation,— thus

rendering it complete, without reference to any other work on the subject.

101. Rudimentary Differential Calculus, in which the Principles are clearly

elucidated, by W. S. B. Woolhouse, F. R. A. S. . .Is.



NEW SERIES OF

102. Rudimentary Integral Calculus, in which the Principles are also clearly

elucidated, by Homersham Cox, M.A. of Cambridge . 1*.

103. Collection of Examples of the Integral Calculus, vol. i. by

James Ilann, Professor, King's College . . .1.9.

104. the Differential Calculus, vol. ii.

by J. Haddon, M. A., King's College . . . . l.v.

105. and First Mnemonical Lessons in Algebra, Geometry, and

Trigonometry, by the Rev. Thos. Penyngton Kirkman,

M. A., Rector of Croft-with-Southworth, Lancashire . Is.Gd.

This volume, which contains more than the usual number of pages, is an excellent

accompaniment to the 21 preceding works.

NEW SERIES or * LONDON.'
A new Series at I*, each, developing in Ten Sectional Divisions,

for the convenience of the Industrial Classes,

THE METROPOLIS OF THE BRITISH EMPIRE
AND ITS NEIGHBOURHOOD,

Described and elucidated by an Exposition of its History and Antiquities

INCLUDING

The History of the Corporation of the ancient City of London— its Arts, Trade,

and Commerce— its Architecture, Club-Houses, Docks, Picture Galleries, Scientific

Institutions and Public Libraries, Astronomical Observatories in and near London,

and other interesting and useful information, amply described and illustrated.

The following opinion of the whole combined as a volume has been expressed

by a periodical of the highest standard, devoted to literature and the arts

:

"A volume of nearly a thousand closely printed pages descriptive of everything that can

interest the stranger or the resident, profusely embellished with more than two hundred care-

fully executed wood-cuts of the principal points of interest in its thoroughfares, and a newly

constructed Map by Mr. Lowry, cannot be otherwise than acceptable to the mass of visitors

to the Metropolis at the present time. When we add that all this is produced at an exceedingly

moderate cost, we cannot but feel that IMr. Weale's work was suggested by higher than mere
i notions,—by a wish, in fact, to be serviceable to all who wanted such services. Throughout

i: a careful desire to be accurate and a freedom from a mere common-jjlace laudation of

. 11 pet places which are stereotyped for praise, such as the view from Richmond Hill and

other localities. With siich a book as this none but the hji>ercritical could be dissatisfied.

In going over so large a field, and the vast amount of pains taken, the insignificance of a few

•lips of the pen render them venial. We cannot but feel the superiority of a work of this kind

to some more ambitious hand-books, which are made up by a paste-and-scissors process, with an

aT)nn dance of quotations from old books, containing mere nominal allusions to places and things,

'
I all interest but that which the philosophical inquirer may need in noting the misdirected

iity of the compiler. IVIr. Wcale's book takes a higher position than these, and he is justly

c..-.;. d to higher reward. Hiu volume is a sensible and useful guide."

—

Art- Union Journal,

Sept. 1851.

I. London.—Section i. The Physical Geography of the Basin of the Thames
—II. Chmate— in. Geology— iv. Natural History— v. Statistics

—

Spirit of the Public Journals—'Times' Printing-press—vi. Legislation

and Government, Municipal Arrangements, Police, Postal Arrange-

ments— Banking— Assurance Offices— Export and Import Duties.

Il Wood-cuts of * Times* Machine 1*.
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Church—Westminster Abbey— St. Stephen's Chapel— St. Paul's—
Churches, including those by Sir C. Wren, Inigo Jones, Sir W. Cham-

bers, &c. 30 wood-cuts, interior and exterior of Churches

3. London.—Somerset House—St. Paul's before the fire—Almshouses—Arts,

Manufactures, and Trades—Tables of Life Assurance Companies, with

the Rates of Premiums—Asylums—the Bank of England—Baths and

Washhouses— Buildings for the Labouring Classes— Breweries—
Bridges—Canals—Cemetery Companies—Club-Houses. 27 wood-cuts

4. Club-Houses—Churches—Colleges—an elaborate account of

the Privileges and Constitution of the City of London, a special article

—Customs, Custom House, Docks, and Port of London—Royal Dock-

yards, with plans—Ducal Residences—the Electric Telegraph—Educa-

tion—Engineering Workshops—the Royal Exchanges, Coal and Corn

Exchanges—Coffee Houses, &c. 30 wood-cuts of Club Houses, the

Docks, and the three Royal Exchanges, plans and elevations

5. Galleries of Pictures.—Succinct account of all the Pictures, with

the names of4he Masters, in the Galleries and Collections of Lord Ash-

burton— Barbers' Hall, City— Bridewell Hospital— Thomas Baring,

Esq., M.P.—the Society of British Artists—British Institution—British

Museum—the Duke of Buccleuch— Chelsea Hospital—the Duke of

Devonshire—G. TomUne, Esq., M.P.—Dulwich College—the Earl of

Ellesmere— the Foundling Hospital— School of Design— Greenwich

Hospital—Vernon Gallery— Grosvenor Gallery— Guildhall—Hampton

Court—T. Holford, Esq.—H. T. Hope, Esq., M.P.—St. James's Palace

—H. A. J. Munro, Esq.— Kensington Palace— the Marquis of Lans-

downe— the National Gallery— National Institution— the Duke of

Northumberland—Lord Overstone—Mr. Sheepshanks—Lord Garvagh

—Earl de Grey—Lord Normanton— Sir Robert Peel—the Queen's

Gallery, Buckingham Palace— Samuel Rogers, Esq.—Royal Academy

—Society of Arts—the Duke of Sutherland—Lord Ward—the Marquis

of Hertford—the Duke of Wellington—Whitehall Chapel—Windsor

Castle, &c. 13 wood-cuts

Gas Works and Gas-lighting in London— Gardens, Conser-

vatories, Parks, &c. around London, with an account of their for-

mation and contents. 21 wood-cuts of the principal Conservatories,

Gardens, &c Iv.

Halls, Hospitals, Inns of Court—Jewish Synagogues—Schools,

Learned Societies, Museums, and Public Libraries—Lunatic Asylums

—Markets—Mercantile Marine—the Mint—Music, Opera, Oratorio

—Musical Societies, &c. 17 wood-cuts

Observatories in London and its Vicinity—Observatories and

Astronomical Instruments in use at Cambridge and Oxford, with 20

wood-cuts of interior and exterior of Observatories, and of Astronomical

Instruments ........... I*.

Patent Inventions in England—PubHc and Private Buildings

of London, criticisms on the taste and construction of them—Houses

of Parliament—Prisons, &c. 16 wood-cuts Is,

10. Railway Stations in London—Sewers—Statuary—Steam Navi-
_Tlio V¥rivVc nf flip TVmmPS Tnnnpl WMf^r.



NEW SERIES OF EDUCATIONAL WORKS. /

Supply to the Metropolis—Excursion to Windsor, with views and

plans
;
plans of the Stables, &c.—The Two Universities of Cambridge

and Oxford, with views and plans of the Colleges ; and an Index and

Directory. 25 wood-cuts Is.

*^* The following gentlemen were contributors to the preceding

:

P. P. Baly, Esq. C.E. George Hatcher, Esq. C.E. William Pole, Esq.

G. R. Bunnell, Esq. C.E. Edward Kemp, Esq. (Jeorge Pyne, Esq.

M. H. Breslau. Esq. Henry Law, Esq. C.E. Charles Tomlinson, Esn.

Hyde Clarke, Esq. C.E. W. H. Leeds, Esq. W. S. B. Woolhouse, Esq.
E. h. Gurbett, Esq. Architect. Rev. Robert Main, LL.D. Actuary.

J. Harris, Esq. C.E. H. Mogford, Esq.

NBW SERIES or EDUCATIONAL WORKS;
OH

Volumes intended for Public Instruction and for Reference :

To be published in the course of 1852.

The public favour with which the Rudimentary Works on scientific subjects have

been received induces the Publisher to commence a New Series, somewhat different

in character, but which, it is hoped, may be found equally serviceable. The

Dictionaries of the Modern Languages are arranged for facility of reference,

so that the English traveller on the Continent and the Foreigner in England may
find in them an easy means of communication, although possessing but a slight

acquaintance with the respective languages. They will also be found of essential

service for the desk in the merchant's oflace and the counting-house, and more

particularly to a numerous class who are anxious to acquire a knowledge of

languages so generally used in mercantile and commercial transactions.

The want of small and concise Greek and Latin Dictionaries has long been

felt by the younger students in schools, and by the classical scholar who requires a

book that may be carried in the pocket ; and it is believed that the present is the

first attempt which has been made to offer a complete Lexicon of the Greek

Language in so small a compass.

In the volumes on England, Greece and Rome, it is intended to treat of

History as a Science, and to present in a connected view an analysis of the large

and expensive works of the most highly valued historical writers. The extensive

circulation of the preceding Series on the pure and applied Sciences amongst

students, practical mechanics, and others, affords conclusive evidence of the

desire of our industrious classes to acquire substantial knowledge when placed

within their reach ; and this has induced the hope that the volumes on History

will be found profitable not only in an intellectual point of view, but, which is of

still higher importance, in the social improvement of the people; for without

a knowledge of the principles of the English constitution, and of those events

which have more especially tended to promote our commercial prosperity and

political freedom, it is impossible that a correct judgment can be formed by the

mass of the people of the measures best calculated to increase the national welfare,

or of the character of men best qualified to represent them in Parliament; and

this knowledge becomes indispensable in exact proportion as the elective franchise

I may be extended and the system of government become more under the influence

of public opinion.
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comparison of the text with the examinations for degrees, given at the end of the

second volume of the History, will show their applicability to the course of

historic study pursued in the Universities of Cambridge and London.

1. Outlines of the History of England, with special reference to the

origin and progress of the English Constitution, by Wm. Douglas

Hamilton, of University College, with illustrations . . . , Is.

2. , Continuation, bringing the His-

tory down to a recent period 1^.

*;,c* This history is designed to communicate, in an accessible form, a knowledge of the
most essential portions of the great works on the English Constitution, and to form a

text-book for the use of Colleges and the higher classes in Schools.

3. View of the History of Greece, in connection with the rise of the arts

and civilization in Europe, by W. D. Hamilton, of University College . l^.

" To Greece we owe the Arts and Sciences, but to Rome our knowledge of them."

4. History of Rome, considered in relation to its social and political

changes, and their influence on the civilization of Modern Europe,

designed for the use of Colleges and Schools, by the same . . Is.

5. A Chronology of Civil and Ecclesiastical History, Literature, Science, and
Art, from the earliest time to 1850, by Edward Law, vol. i.

G. _____ yol. ji.

7. Grammar of the English Language, for use in Schools and for Private

Instruction

8. Dictionary of the English Language, comprehensive and concise .

9. Grammar of the Greek Language, by H. C. Hamilton

10. Dictionary of the Greek and English Languages, vol. i. by H. R. Hamilton

II. , vol. ii. by the same

12. English and Greek Languages, vol. iii. by the same

13. Grammar of the Latin Language, by H. C. Hamilton

14. Dictionary of the Latin and English Languages, vol. i. by H. R. Hamilton

15. , vol. ii. by the same
16. English and Latin Languages, vol. iii. by the same

1 7. Grammar of the French Language

18. Dictionary of the French and English Languages, vol. i. by D. Varley

19. English and French Languages, vol. ii. by the same

20. Grammar of the Italian Language, by Alfred Elwes, Professor of Languages

21. Dictionary of the Italian, English, and French Languages, v. i. by the same
22. English, Italian, and French Languages, v. ii. by the same
23. French, Italian, and English Languages, v. iii.by the same
24. Grammar of the Spanish Language, by the same

25. Dictionary of the Spanish and English Languages, vol. i. by the same

28. Enghsh and Spanish Languages, vol. ii. by the same .

27. Grp.mraar of the German Language, by G. L. Strausz, (Ph. Dr.)

28. Dictionary of the English, German, and French Languages, vol. i. by
Nicolas Esterhazy S. A. Hamilton Is.

29. German, English, and French Languages, vol. ii. by

the same Is.

30. French, English, and German Languages, vol. iii. by
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CONTENTS.

PART I.—PURE MATHEMATICS.

CHAPTEE I.—Arithmetic.
Skct.

1. Definitions and Notation.

2. /addition of Whole Numbers.

3. Subtraction of Whole Numbers.
4. Multiplication of Whole Numbers.

5. Division of Whole Numbers.—Proof of

the first Four Rules of Arithmetic.

6. Vulgar Fractions.— Reduction of Vul-

gar Fractions.—Addition and Sub-

traction of Vulgar Fractions.—Mul-

tiplication and Division of Vulgar

Fractions.

7. Decimal Fractions. — Reduction of

Decimals.— Addition and Subtrac-

tion of Decimals. — Multiplication

and Division of Decimals.

8. Complex Fractions used in the Arts

and Commerce.—Reduction.— Addi-

tion.— Subtraction and Multiplica-

tion.—Division.—Duodecimals.

9. Powers and Roots.—Evolution.

10. Proportion.—Rule of Three.—Deter-

mination of Ratios.

11. Logarithmic Arithmetic.—Use of the

Tables.—Multiplication and Division

by Logarithms.— Proportion, or the

Rule of Three, by Logarithms.

—

Evolution and Involution by Log-

arithms.

12. Properties of Numbers.

CHAPTER II.—Algebra.

1. Definitions and Notation.

2. Addition and Subtraction.

3. Multiplication.

4. Division.

6. Involution.

6. Evolution.

7. Surds.— Reduction.— Addition, Sub-

traction, and Multiplication.— Di-

vision, Involution, and Evolution.

8. Simple Equations.—Extermination.

—

Solution of General Problems.

9. Quadratic Equations.

10. Equations in General.

11. Progression. — Arithmetical Progres-

sion.—Geometrical Progression.

12. Fractional and Negative Exponents.

13. Logarithms.

14. Computation of Formulae.

CHAPTER III.—Geometry.

1. Definitions.

2. Of Angles, and Right Lines, and their

Rectangles.

3. Of Triangles.

4. Of Quadrilaterals and Polygons.

5. Of the Circle, and Inscribed and Cir-

cumscribed Figures.

6. Of Planes and Solids.

7. Practical Geometry.

CHAPTER IV.—Mensuration.

1. Weights and Measures.—1. Measures

of Length.—2. Measures of Surface.

—3. Measures of Solidity and Ca-

pacity.—4. Measures of Weight.

—

5. Angular Measuie.—6. Measure of

Time.—Comparison of English and
French Weights and Measures.

2. Mensuration of Superficies.

3. Mensuration of Solids.

CHAPTER v.—Trigonometry.
1. Definitions and Trigonometrical For-

mulae.

2. Trigonometrical Tables.

3. General Propositions.

4. Solution of the Cases of Plane Trian-

gles.—Right-angled Plane Triangles.

5. On the application of Trigonometrj^

to Measuring Heights and Distances,

•— Determination of Heights and

Distances by Approximate Mechani-

cal Methods.
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CHAPTER VI.—CoNio Sections.

Sect.
1. Definitions.

2. Properties of the Ellipse.—Problems

relating to the Ellipse.

3. Properties of the Hyperbola. — Pro-

blems rclatins^ to the Hyperbola.

4. Properties of the Parabola.—Problems

relating to the Parabola.

CHAPTER VII.— Properties OP
Curves.

Sect.

1. Definitions.

2. The Conchoid.

3. The Cissoid.

4. The Cycloid and Epicycloid.

5. The Quadratrix.

6. The Catenary.—Tables of Relations

of Catenarian Curves.

PART II.—MIXED MATHEMATICS.

CHAPTER I.—Mechanics in General.

CHAPTER II.—Statics.

1. Statical Equilibrium.

2. Center of Gravity.

3. General application of the Principles

of Statics to the Equilibrium of

Structures.— Equilibrium of Piers

or Abutments.— Pressure of Earth

against Walls.—Thickness of Walls.

— Equilibrium of Polygons. — Sta-

bility of Arches. — Equilibrium of

Suspension Bridges.

CHAPTER III.—Dynamics.

1. General Definitions,

'? On the General Laws of Uniform and

Variable Motion.—Motion uniformly

Accelerated.—Motion of Bodies un-

der the Action of Gravity.—Motion

over a fixed Pulley. — Motion on

Inclined Planes.

3. Motions about a fixed Center, or Axis.

— Centers of Oscillation and Per-

cussion. — Simple and Compound
Pendulums. — Center of Gyration,

and the Principles of Rotation.

—

Central Forces.— Inquiries connected

with Rotation and Central Forces.

4. Percussion or Collision of Bodies in

Motion.

5. On the Mechanical Powers.— Levers.

—Wheel and Axle.—Pulley.— In-

clined Plane.—Wedge and Scriw.

CHAPTER IV.—Hydrostatics.

1. General Definitions.

2. Pressure and Equilibrium of Non-
elastic Fluids.

3. Floating Bodies.

4. Specific Gravities.

5. On Capillary Attraction.

CHAPTER v.—Hydrodynamics.
1. Motion and Effluence of Liquids.

2. Motion of Water in Conduit Pipes
and Open Canals, over Weirs, &,c.

—

Velocities of Rivers.

3. Contrivances to Measure the Velocity

of Running Waters.

CHAPTER VI.—Pneumatics.
1. Weight and Equilibrium of Air and

Elastic Fluids.

2. Machines for Raising Water by tlie

Pressure of the Atmosphere.

3. Force of the Wind.

CHAPTER VII.—Mechanical Agents.

1. Water as a Mechanical Agent.

2. Air as a Mechanical Agent.— Cou-
lomb's Experiments.

3. Mechanical Agents depending upon
Heat. The Steam Engine.—Table
of Pressure and Temperature of

Steam.— General Description of the

Mode of Action of the Steam Engine.
—Theory of the Steam Engine.

—

Description of the various kinds of
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Engines, and the Formulae for calcu-

lating their Power.—Practical appli-

cation of the foregoing Formulae.

4. Animal Strength as a MechanicalAgent.

CHAPTER YIIT.— Strength op

Materials.

1. Results of Experiments, and Principles

upon which they should be practically

applied.

2. Strength of Materials to Resist Tensile

and Crushing Strains.—Strength of

Columns.

I
Sect.

3. Elasticity and Elongation of Bodie

subjected to a Crushing or Tensil

Strain.

4. On the Strength of Materials subjecte(

to a Transverse Strain. — Longi

tudinal form of Beam of uniforr

Strength.—Transverse Strength c

other Materials than Cast Iron.—

The Strength of Beams according t

the manner in which the Load i

distributed.

5. Elasticity of Bodies subjected to

Transverse Strain.

6. Strength of Materials to resist Torsioi

APPENDIX

I.

II.

III.

IV.
V.

VI.

VII.

VIII.

IX.
X.
XL
XIL
XIIL
XIV.
XV.

Table of Logarithmic Differences.

Table of Logarithms of Numbers, from 1 to 100.

Table of Logarithms of Numbers, from 100 to 10,000.

Table of Logarithmic Sines, Tangents, Secants, &c.

Table of Useful Factors, extending to several places of Decimals.

Table of various Useful Numbers, with their Logarithms.

A Table of the Diameters, Areas, and Circumferences of Circles and also tl

sides of Equal Squares.

Table of the Relations of the Arc, Abscissa, Ordinate and Subnormal, in tl

Catenary.

Tables of the Lengths and Vibrations of Pendulums.

Table of Specific Gravities. S
Table of Weight of Materials frequently employed in Construction.

Principles of Chronometers.

Select Mechanical Expedients.

Observations on the Effect of Old London Bridge on the Tides, &c.

Professor Parish on Isometrical Perspective.

Supplementary to the Rudimentary Series of 105 Volumes.

Mr. "Weale has to announce a very important addition to his useful and practic

series of volumes ; viz., '' The Practice of Embanking Lands from the Se

treated as a means of profitable Employment of Capital; with Examples and Particula

of actual Embankments, and also practical Remarks on the Repair of Old Sea Wall.'

by John Wiggins, F.G.S.—Double Volume, Price 25.

JOHN WEALE, 59, HIGH HOLBORN.
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