

Presented to
The Library of
The Ontario College of
Education
The University of Toronto
by

Miss Shirley Muir

$$
\begin{aligned}
& 16 \\
& 188 \% \\
& m 153 E 2 \\
& 131 c=1-\therefore \\
& \text { otc }
\end{aligned}
$$

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

THE

Elements of Euclid

Books I. to VI.

WITH
DEDUCTIONS, APPENDICES AND HISTORICAL NOTES

BY

JOHN STURGEON MACKAY, M.A., F.R.S.E. Mathematical master in the edinbuqgh academy

TORONTO:
THE MUSSON BOOK CO., LIMITED

Entered according to Act of the Parliament of Canada, in the year one thousand eight hundred and eighty-seven, by W, \& R. CHambers, at the Department of Agriculture.

PREFACE

In this text-book, compiled at the request of the publishers, a rigid adherence to Robert simson's well-known editions of Euclid's Elements has not been observed; but no change has been made on Euclid's sequence of propositions, and comparatively little on his modes of proof. Here and there useful corollaites and converses have been inserted, and a few of Simson's additions have been omitted. Intimation of such insertions and intissions has been given, when it was deemed necessary, in the proper place. Several changes, mostly, nowever, of arrangement, have been made on the definitions.

By a slight alteration of the lettering or the construction of the figure, an attempt has been made throughout, and particularly in the Second Book, to draw the attention of the reader to the analogy which exists between certain pairs $0^{\text {: }}$ propositions. By Euclid this analogy is well-nigh ignored.

In the saming of both congruent and similar figures, care has been taken to write the letters which denote corresponding points in a corresponding order. This is a matter of minor importance, but it does not deserve to be neglected, as is too often the case.

The deductions or exercises appended to the various propositions ('riders,' as they are sometimes termed) have been intentionally made easy and, in the First Book, numerous. It is hoped that beginners, who have little confidence in their own reasoning power, will thereby be encouraged to do more than merely learn the text of Euclid. It is hoped also that sufficient provision has been made for all classes of berimners, seeiag that the questions, deductions, and corollaries to be
proved number considerably over fifteen hundred. It should be stated that when a deduction is repeated once or oftener, in the same words, a different mode of proof is expected in each case.

In the appendices, much curtailed from considerations of space, a few of the more useful and interesting theorems of elementary geometry have been given. It has not been thought expedient to introduce the signs + and - , to indicate opposite directions of measurement. The important advantages which result from this use of these signs are readily apprehended by readers who advance beyond the 'elements,' and it is only of the 'elements' that the present manual treats.

The historical notes, which are not specially intended for beginners, may save time and trouble to any one who wishes to investigate more fully certain of the questions which occur throughout the work. It would perhaps be well if such notes were more frequently to be found in mathematical text-books: the names of those who have extended the boundaries, or successfully cultivated any part of the domain, of science should not be unknown to those who inherit the results of their labour.

Thotyh the utmost pains have been taken by all concerned in the production of this volume to make it accurate and workmanlike, a few errors may have eacaped notice. Corrections of these will be gratefully received.

The editor desires to express his thanks to Mr J. R. Pairman for the excellence of the diagrams, and to Mr David Traill, M.A., B.Sc., and Mr A. Y. Fraser, M.A., for valuable hiuts while the work was going through the pres

Edinburgh Academy,

CONTENTS.

BOOK I.
ANGLES, TrIANGLES, PARALLELS, PARALLELO,GRAMS-
Page
DEFINITIONS, 1
POSTULATES. 11
AXIOMS. 11
QUESTIONS ON THE DEFINITIONS, POSTULATES, AXIOMS 13
EXPLANATION OF TERMS 18
SYMBOLS AND ABBREVIATIONS. 19
PROPOSITIONS 1-48 WITH RIDERS 21
proposition A 61
APPENDIX 1.
PROPOSITIONS $1-5$. 98
LOCI. 102
DEDUCTIONS 105
BOOK II.
RECTANGLES AND SQUARES- DEFINITIONS. 112
PROPOSITIONS 1-14 WITH RIDERS. 116
APPENDIX II.
PROPOSITIONS 1-3. 147

- LOCI. 149
DEDUCTIONS 151
BOOK III
CIRCLES-
DEFINITIONS. 154
PROPOSITIONS 1-37 WITH RIDERS 162
APPENDIX III.
RADICAL AXIS. 214
DEDUCTIONS. 218

BOOK IV.

CIRCLES AND THEIR SCRIBED REGULAR POIYGONS, REGULAR POLYGONS AND THEIR SCRIBEI CIRCLES-

-	Page
definitions..	.22\%
PROPOSITIONS $1-16$ WITH RIDELS.	22.2
APPENDIX IV.	
propositions 1-2.	250

BOOK V.
PROPORTION IN GENERAL-
definilions. 261
axioms. 265
proieqitions 1-24 260^{5}
r ropositions A, B, C. 269
fropusition D. 285
BOOK VI.
PROPORTIONAL SECTION AND SIMILAR FIGURES- definitions.. 280
PROPOSITIOSA 1 -.33 WITH RIDERS. 287
promentios A. 294
propositions B, C, D. 338
APPENDIX VL
transversals. 343
harmonical progrysgicn 347
denuctions. 352

EUCLID'S ELEMENTS.

BOOK I.

DEFINITIONS.

1. A point has position, but it has no magnitude.

A point is indicated by a dot with a letter attached, as the point P.

The dots employed to represent points are not strictly geometrical points, for they have some size, else they could not be seen. Bnt in geometry the only thing connected with a point, or its representative a dot, which we consider, is its position.
2. A line has position, and it has length, but neither breadth nor thickness.

Hence the euds of a line are points, and the intersection of two lines is a point.

A line is indicated by a stroke with a letter attached, as the line C.

C-
Oftener, however, a letter is placed at each end of the line, as the line $A B$.
$\mathrm{A}-\mathrm{B}$
The strokes, whether of pen or pencil, employed to represent lines, are not strictly geometrical lines, for they have some breadth and some thickness. But in geometry the only things connected with a line which we consider, are its position and its length.
3. If two lines are such that they cannot coincide in any two points without coinciding altogether, each of them is called a straight line.

Hence two straight lines cannot inclose a space, nor can they have any part in common.

Thus the two lines $A B C$ and $A B D$, which have the part $A B$ in common, cannot both be straight lines.

Euclid's definition of a straight line
 is 'that which lies evenly to the points within itself.'
4. A curved line, or a curve, is a line of which no nare is straight.

Thus $A B C$ is a curve.

5. A surface (or superficies) has position, and it has length and beradth, but not thickness.

Hence the boundaries of a surface, and the intersection of two surfaces, are lines. Thus $A B$, $A C B$, and $D E$ are lines.

6. A plane surface (or a plane) is such that if any two points whatever be taken on it, the straight line joining them lies wholly in that surface.

This definition (which is not Enclid's, but is due to Heron of Alexandria) affords the practical test by which we ascertain whether a given surface is a plane or not. We take a piece of wool or iron - with one of its celges straight, anl apply this edge in varions positions to the surface. If the straight edge fits closely to the surface in every position, we conclude that the surface is plane.
7. When two straight lines are drawn from the same point, they are said to contain a plane angle. The straight lines are called the arms of the angle, and the point is called the vertex.

Thus the straight lines $A B, A C$ drawn from A are said to contain the angle $B A C, A B$ and $A C$ are the arms of the angle, and A is the vertex.

An angle is sometimes denoted by three letters, hut these letters must be
 placell so that the one at the vertex shall always be between the other two. Thus the given angle is called BAC or CAB Bever $A B C, A C B, C B A, B C A$. When only one angle is formed at a vertex it is often denoted by a single letter, that letter, namely, at
the vertex. Thus the given angle may be called the angle A. But when there are several angles at the same vertex, it is necessary, in order to avoid ambiguity, to use three letters to express the angle intencled. Thus, in the annexed figure, there are three angles at the vertex A, namely, $B A C, C A D, B A D$.

Sometimes the arms of an angle have
 severai letters attached to them; in which case the angle may be denoted in various ways.

Fig. 1.

Fig. 2.
Fig. 3.

Thus the angle F (fig. 1) may be called $A F C$ or $B F C$ indifferently ; the angle G (fig. 2) may be called $A G B$ or $C G B$; the angle A (fig. 3) may be called $B A C, F A G, D A E, F A C, G A B$, and so on.

It is important to observe that all these ways of denoting any particular angle do not alter the angle; for example, the angle $B A C$ (fig. 3) is not made any larger by calling it the angle $F A G$, or the angle $D A E$. In other words, the size of an angle does not depend on the length of its arms ; and hence, if the two arms of one angle are respectively equal to the two arms of another angle, the angles themselves are not necessarily equal.

As a further illustration, the angles A, B, C with unequal arms
are all equal ; of the angles D, E, F, that with the shortest arms is the largest, and that with the longest arms is the smallest.
8. If three straight lines are drawn from the same point, three different angles are formed. Thus $A B, A C, A D$, drawn from A, form the three angles $B A C, C A D$, $B A D$.

The angles $B A C, C A D$, which have a common arm $A C$, and lie on
 opposite sides of it, are called adjacent angles; and the angle $B A D$, which is equal to angle $B A C$ and angle ($A P$) added together, is called the sum of the angles $B A C$ and $C A D$. Since the angle $B A D$ is obtained by adding together the two angles $B A C$ and $C A D$, the angle $C A D$ will be obtained by subtracting the angle $B A C$ from the angle $B A D$; and similarly the angle $B A C$ will be obtained by subtracting the angle ($A D$) from the angle $\operatorname{li} A D$. Hence the angle $(A I)$ is called the difference of the angles $B A D$ and $B A C$: and the angle $B A C$ is called the difference of the angles $B A D$ and CAD.
9. The bisector of an angle is the straight line that divides it into two equal angles.
Thus (see preceding fig.), if angle $B . A^{\prime}$ is equal to angle $C A D$, $A C$ is called the biseetor of angle BAD .
The word hisect, in Mathematics, means always, to cut into two equel parts.
10. When a straight line stands on another straight line, and makes tho arljacent angles equal to each other, each of the angles is called a right angle ; and the straight line which stands on the other is called a perpendicular to it.

Thus, if $A l$ stands on $C D$ in such a manner
 that the adjacent angles $A B C, A B D$ are equal to one another, then
these angles are called right angles, and $A B$ is said to be perpendicular to $C D$.
11. An obtuse angle is one which is greater than a right angle.

Thus A is an obtuse angle.

12. An acute angle is one which is less than a right angle.

Thus B is an acute angle.

13. When two straight lines intersect each other, the opposite angles are called vertically opposite angles.

Thus $A E C$ and $B E D$ are vertically opposite angles ; and so are $A E D$ and BEC.

14. Parallel straight lines are such as are in the same plane, and being produced ever so far both ways do not meet.

Thus $A B$ and $C D$ are parallel straight lines.

If a straight line $E F$ intersect two parallel straight lines $A B, C D$, the angles $A G H, G H D$ are called alternate angles, and so are angles $B G H, G H C$; angles $A G E, B G E, C H F, D H F$ are called exterior angles, and the interior opposite angles corresponding to these are $C H G, D H G, A G H, B G H$.
15. A figure is that which is inclosed by one or more boundaries; and a plane figure is one bounded by a line or lines drawn upon a plane.

The space contained within the boundary of a plane figure is called its surface; and its surface in reference to that of another figure, with which it is compared, is called its arez.

The word fignre, as here defined, is restricted to closed figures Thus $A B C, D E F G$, according to the definition, would not loe figures. The word is, however, very frequently
 used in a widcr sense to mean any combiuation of points, lines, or surfaces.
16. A circle is a plane figure contained by one (curvert) line which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another. This point is called the centre of the circle.

Thns $A B C D E F G$ is a circle, if all the straight lines which can be drawn from O to the circumference, such as $O A, O B, O C, \& c$., are equal to one another; and O is the centre of the circle.

Strictly speaking, a circle is an inclosed space or surface, and the circmuference is the line which incloses it. Frequently, however, the word circle is employed instead of circumference.

It is nsmal to denote a circle by three
 letters placed at points on its circumference. The reason for this will appear later on.
17. A radius (plural, radii) of a circle is a straight line drawn from the centre to the circumference.

Thus $O A, O B, \cap C$, \&c. are radii of the circle $A C F$.
18. A diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.

Thus in the preceding figure $B F$ is a diameter of the circlo $\triangle C F$.

RECTILINEAL FIGURES.

19. Rectilineal figures are those which are contained by straight lines.
The straight lines are called sides, and the sum of all the sides is called the perimeter of the figure.
20. Rectilineal figures contained by three sides are called triangles.
21. Rectilineal figures contained by four sides are called quadrilaterals.
22. Rectilineal figures contained by more than four sides are called polygons.

Sometimes the word polygon is used to denote a rectilineal figure of any number of sides, the triangle and the quadrilateral being included.

CLASSIFICATION OF tRIANGLES.

First, according to their sides-
23. An equilateral triangle is one that has three equal sides.

Thus, if $A B, B C, C A$ are all equal, the triangle $A B C$ is equilateral.

24. An isosceles triangle is one that has two equal sides.

Thus, if $A B$ is equal to $A C$, the triangle $A B C$ is isosceles.
25. A scalene triangle is one that has three unequal sides.

Thus, if $A B, B C, C A$ are all unequal, the triangle $A B C$ is scalene.

Second, according to their angles-
26. A right-angled triangle is one that has a right angle.

Thus, if $A B C$ is a right angle, the triangle $A B C$ is right-angled.

27. An obtuse-angled triangle is one that has an obtuse angle.

Thus, if $A B C$ is an obtuse angle, the triangle $A B C$ is obtuse-angled.

28. An acute-angled triangle is one that has three acute angles.

Thus, if angles A, B, C are each of them acute, the triangle $A B C$ is acute-angled.

29. Any side of a triangle may be called the base. In an isosceles triangle, the side which is neither of the equal sides is usually called the base. In a right-angled triangle, one of the sides which contain the right angle is often called the base, and the other the perpendicular; the side opposite the right angle is called the hypotenuse.

Any of the angular points of a triangle may be called a vertex. If one of the sides of a triangle has been called the hase, the angular point opposite that side is usually called the vertex.

Thus, if $B C$ is called the base of a triangle $A B C, A$ is the vertex.
30. If the sides of a triangle be prolonged both ways, nine angles are formed in addition to the angles of the triangle.

Thus at the point A there are the augles $C A H, H A F, F A B$; at B, the augles $A B G, G B D$, $D B C$; at C, the angles $B C K, K C E, E C A$.

Of these nine, six only are called exterior augles, the three which are not so called being $H A F$, $G B D, \quad K C E$. Angles $A B C, B C A, C A B$ are sometimes called the
 interior angles of the triangle.

CLASSIFICATION OF QUADRILATERALS.

31. A rhombus is a quadrilateral that has all its sides equal.

Thus, if $A B, B C, C D, D A$ are all equal, the quadrilateral $A B C D$ is a rhombus. The rhombus $A B C D$ is sometimes named by two letters placed at opposite corners, as $A C$ or $B D$.

Euclid defines a rhombus to be ' $a \mathrm{~B}$
 quadrilateral that has all its sides equal, but its angles not right angles.'
32. A square is a quadrilateral that has all its sides equal, and all its angles right angles.

Thus, if $A B, B C, C D, D A$ are all equal, and the angles A, B, C, D right angles, the quadrilateral $A B C D$ is a square. The square $A B C D$ is sometimes named by two letters placed at opposite corners, as $A C$ or $B D$; and it is said to be described on any one of its four sides.

33. A parallelogram is a quadrilateral whose opposito sides are parallel.

Thus, if $A B$ is parallel to $C D$, and $A D$ parallel to $B C$, the quadrilateral $A B C D$ is a parallelogram. The parallelogram $A B C D$ is some times named by two letters placed at opposite corners, as $A C$ or $B D$; and any one of its four sides may be called the base on which it stands.

34. A rectangle is a quadrilateral whose opposite sides are parallel, and whose angles are right angles.

Thus, if $A B$ is parallel to $C D, A D$ parallel to $B C$, and the angles A, B, C, D right angles, the quadrilateral $A B C D$ is a rectangle. The rectangle $A B C D$ is sometimes named by two letters placed at opposite coruers, as $A C$ or $B D$. In
 books on mensuration, $B C$ and $A B$ would be called the length and the breadth of the rectangle. The definitions of a square and a rectangle are somewhat redundant-that is, more is said alout a square and a rectangle than is absolutely necessar to distinguish them from other quadrilaterals. This will be sf later on.
35. A trapezium is a quadrilateral that has two sides parallel.

Thus, if $A D$ is parallel to $B C$, the quadrilateral $A B C D$ is a trapezium. The word traperoid is sometimes used instead of twa-
 pezium.
36. A diagonal of a quadrilateral is a straight line joining any two opposite corners.
Thus $A C$ and $B I$, are diagonals of the quadrilateral $A B C D$.

POSTULATES.

Let it be granted :

1. That a straight line may be drawn from any one point to any other point.
2. That a terminated straight line may be produced to any length either way.
3. That a circle may be described with any centre, and at any distance from that centre.
The three postulates may be considered as stating the only instruments we are allowed to use in elementary geometry. These are the ruler or straight-edge, for drawing straight lines, and the compasses, for describing circles. The ruler is not to be divided at its edge (or graduated), so as to enable us to measure off particular lengths; and the compasses are to be employed in describing circles ouly when the centre of the circle is at one given point, and the circumference must pass through another given point. Neither ruler nor compasses can be used to carry distances.

If two points A and B are given, and we wish to draw a straight line from A to B, it is usual to say simply 'join $A B$.' To produce a straight line, means not to make a straight line when there is none, but when there is a straight line already, to make it longer. The third postulate is sometimes expressed, 'a circle may be described with any centre and any radius.' That, however, is not to be taken as meaning with a radius equal to any given straight line, but only with a radius equal to any given straight line drawn from the centre.
[The restrictions imposed on the use of the ruler and the compasses, somewhat inconsistently on Euclid's part, are never adhered to in practice.]

AXIOMS.

1. Things which are equal to the same thing are equal to one another.
2. If equals be added to equals, the sums are equal.
3. If equals be taken from equals, the remainders arf equal.
4. If equals be added to unequals, the sums are unequal, the greater sum being obtained from the greater unequal.
5. If equals be taken from unequals, the remuinders are unequal, the greater remainder being obtained from the greater unequal.
6. Things which are doubles of the same thing are cqual to one another.
7. Things which are halves of the same thing are equal to one another.
8. The whole is greater than its part, and equal to the sum of all its parts.
9. Magnitudes which coincide with one another are equal to one another.
10. All right angles are equal to one another.
11. Two straight lines which intersect one another cannot be both parallel to the same straight line.

An axiom is a self-evident truth, or it is a statement the truth of which is admitted at once and without demonstration. Some of Euclid's axioms are general-that is, they apply to magnitudes of all kinds, and not to geometrical magnitudes only. The first axiom, which says that things which are equal to the same thing are equal to one another, applies not only to lines, angles, surfaces, and solids, but also, for example, to numbers, which are arithmetical, and to furces, which are physical, magnitudes. It will be seen that the first eight axioms are general, and that the last three are genmetrical.

It ought, perhaps, to be noted that some of the axioms are often applied, not in the general form in which they are stated, but in paticular eases that come under the general form. For example, under the general form of Axinm 2 would come two particular cases: If equals be auldel to the same thing, the sums are equal; and If the same thing be added to equals, the sums are equal. Again, a particular case coming under the general form of Axiom 4 woul? be: If the same thing be added to unequals, the sums are unegu :
the greater sum being obtained from the greater unequal. Axioms 6 and 7 , on the other hand, are only particular cases of more general ones-namely, Things which are double of equals are equal, and Things which are halves of equals are equal ; and these axioms again are only particular cases of still more general ones: Similar multiples of equals (or of the same thing) are equal, and Similar fractions of equals (or of the same thing) are equal.

Axiom 9 is often called Euclid's definitiou or test of equality; and the method of ascertaining whether two magnitudes are equal by seeing whether they coincide-that is, by mentally applying the one to the other, is called the method of superposition. Two inagnitudes (for example, two triangles) which coincide are said to be congruent; and this word, if it is thought desirable, may be used instead of the phrase, 'equal in every respect.' Axiom 10 is, strictly speaking, a proposition capable of proof. The proof is not given here, as at this stage it would perhaps not be fully appreciated by the pupil. After he has read and understood the definitions of the third book, he will probably be able to prove it for himself. Axiom 11, frequently referred to as Playfair's axiom (though Playfair state that it is assumed by others, particularly by Ludlam in his Rudiments of Mathematics), has been substituted for that given by Euclid, which is proved as a corollary to Proposition 29.

QUESTIONS ON THE DEFINITIONS, POSTULATES, AXIOM8.

1. How do we indicate a point?
2. What is the only thing that a point has? What has it not?
3. Could a number of geometrical points placed close to one another form a line? Why?
4. Draw two lines intersecting each other in two points.
5. Could two straight lines be drawn intersecting each other in two points?
6. What is Euclid's definition of a 'straight' line ?
7. Could a number of geometrical lines placed close to one another form a surface? Why?
8. When two points are taken on a plane surface, and a straight line is drawn from the one to the other, where will the straight line lie?
9. If a straight line is drawn on a plane surface and then produced, where will the produced part lie?
10. Would it be possible to draw a straight line upon a surface that was not plane? If so, give an example.
11. How many arms has an angle?
12. What name is given to the point where the arms meet?
13. When an angle is denoted by three letters, may the letters be arranged in any order?
14. If not, in how many ways may they be arranged, and what precaution must be observed?
15. When is it necessary to name an angle by three letters?
16. How else may an angle be named ?
17. $O A, O B, O C$ are three straight lines which meet at O. Name the three angles which they form.
18. Name the angle contained by $O A$ and $O B$; by $O B$ and $O C$; by $O C$ and $O A$.
19. $O A, O B, O C, O D$ are four straight lines which meet at O. Name the six angles which they form.
20. Name the angle contained by $O A$ and $O B$; by $O B$ and $O C$; by $O C$ and $O D$; by $O A$ and $O C$; by $O B$ and $O D$; by $O A$ and $O D$.

21. Write down all the ways in which the angle A can be named.
22. If the arms of one angle are respectively equal to the arms of another angle, what inference can we draw regarding the sizes of the angles?
23. In the figure to Question 17, if the angles $A O B$ and $B O C$ are added together, what angle do they form?

24. In the same figure, if the angle $A O B$ is taken away from the angle $A O C$, what angle is left?
$\left.{ }_{2}\right)^{2}$ In the same figure, if the angle $B O C$ is taken away from the angle $A O C$, what angle is left?
af. The following questions refer to the figure to Question 19:
(a) Add together the angles $A \cup B$ and $B O C^{\prime} ; A O B$ and $B O D$: $A O C$ and $C O I$; $B O C$ and COI .
(b) From the angle $A O D$ subtract successively the augles $C O D$, $A(1 B, A \cup C, B \cup D$.
(c) From the angle $B O D$ subtract the angles $C O D, B O C$.
(d) To the sum of the angles $A O B$ and $B O C$ add the difference of the angles $B O D$ and $B O C$; and from the sum of $A O B$ and $B O C$ subtract the difference of $B O D$ and $C O D$.
25. Draw, as well as you can, two equal angles with unequal arms.
26. " " two unequal " equal "
27. If two adjacent angles are equal, must they necessarily be right angles? Draw a figure to illustrate your answer.
28. If two adjacent angles are equal, what name could be given to the arm that is common to the two angles?
29. When an angle is greater than a right angle, what is it called?
30.
31. less
32. In the accompanying tigure, name two right angles, two acute angles, and one obtuse angle.
33. What are angles $A E C, A E D$ called with reference to each other? angles $A E C, B E D$?
" " angles $A E C, B E C$? angles $B E C, A E D$? angles $B E C$, $B E D$?
34. Would it be a sufficient definition of parallel straight lines

 to say that they never meet though produced indefinitely far either way? Illustrate your answer by reference to the edges of a book, or otherwise.
35. Draw three straight lines, every two of which are parallel.
36. Draw three straight lines, only two of which are parallel.
37. Draw three straight lines, no two of which are parallel.
38. What is the least number of lines that will inclose a space? Illustrate your answer by an example.
39. How many radii of a circle are equal to one diameter?
40. How do we know that all radii of a circle are equal?
41. Prove that all diameters of a circle are equal.
42. Are all lines drawn from the centre of a circle to the circume ference equal to one another?
43. What is the distinction between a circle and a circumference?
44. Is the one word ever used for the other ?
45. How many letters are generally userl to denote a circle?
46. Would it be a sufficient definition of a diameter of a circle to say that it consists of two radii?
47. Prove that the distance of a point inside a circle from the centre is less than a radins of the circle.
48. Prove that the distance of a point outside a circle from the centre is greater than a radius of the circle.
sil. What is the least number of straight lines that will inclose a space?
49. What name is given to figures that are contained by straiglit lines?
50. Could three straight lines be drawn so that, even if they were produced, they would not inclose a space?
51. What is the least number of sides that a rectilineal figure can have?
52. $A B C$ is a triangle. Name it in five other ways.
53. If $A B$ is equal to $A C$, what is triangle $A B C$ calied?
54. If $A B, B C, C A$ are all equal, what is triangle $A B C$ called ?
55. If $A B, B C, C A$ are all unequal, what is triangle $A B C$ called?
56. What name is given to the sum of $A B, B C$, and $C A$?

6!). Which sile of a triangle is called the base?
61. Which sitle of an isosceles triangle is called the base?
62. When the hypotenuse of a triangle is mentioned, of what sort must the triangle be?
63. What names are sometimes given to those sides of a rightangled triangle which contain the right angle?
64. Would it be a sufficient definition of an acute-angled triangle to say that it had neither a right nor an obtuse angle?
65. ABC is a triangle. Name by one letter the angles respectively opposite to the sides $A B, B C, C A$.
66. Name by three letters the angles respeetively unposite to the sides $A B, B C$,
 $C A$.
67. Name the sides respectively opposite to the angles A, B, C.
68. Name hy nne letter and hy three letters the angle contained by $A B$ and $A C$; by $A B$ and $B C$; by $A C$ and $B C$.
69. Name all the triangles in the accompanying tigure.
i0. Name the additional triangles that would be formed if $A D$ were joined.
71. Name by three letters all the angles opposite to $B C$; to $B E$; to $C E$.
72. Name all the sides that are opposite to angle A; to angle D.
73. Name all the angles in the figure that are called exterior angles of the
 triangle $B E C$; of the triangle $A E B$; of the triangle CED.
74. $A B C D$ is a quadrilateral. Name it in seven other ways.
75. If the diagonals $A C, B D$ be drawn, and E be their point of intersection, how many triangles will there be in the diagram? Name them.

76. Name the two angles opposite to the diagonal $A C$.

77.	$"$	"	$B D$	
78.	$"$	through which the diagonal $A C$ passes.		
79.	$"$	$"$	$" \quad$ "	

80. Could a square, with propriety, be called a rhombus?
81. Could a rbombus be called a square?
82. Could a rectangle be called a parallelogram?
83. Could a parallelogram be called a rectangle?
84. Would it be a sufficient definition of a parallelogram to say that it is a figure whose opposite sides are parallel? Why?
85. Could a parallelogram or a rectangle be called a trapezium ?
86. Could a trapezium be called a parallelogram or a rectangle?
87. What is a diagonal of a quadrilateral, and how many diagonals has a quadrilateral?
88. How many sides has a polygon?
89. Which postulate allows us to join two points ?

90.	$"$	$"$	produce a straight line?
91.	$"$	$" \quad$ describe a circle?	

92. In what sense is the word 'circle' used in the third postulate?
93. What are the only instruments that may be used in elementary plane geometry? Under what restrictions are they to be used?
94. What is an axiom? Give an example of one.
95. State Euclid's axiom about magnitudes which coincide
96. Woukd it he correet to say, magnitudes which fill the sane space, instead of magnitudes which coincide? Illustrate your answer by reference to straight lines, and angles.
97. What is Euclid's axiom about right angles?
98. What is the axiom about parallels?
99. Would it be correct to say, two straight lines which pass through the same point cannot lee both paaallel to the same straight line?
100. Could two straight lines which do not pass through the same point be both $1^{\text {arallallel to a third straight line? }}$

EXPLANATION OF TERMS.

Pronositions are divided into two classes, theorems and problems.
A theoram is a truth that requires to be proved by means of other ornths alseady known. The truths already known are either axioms or theorems.

A problem is a construction which is to be made by means of certain instruments. The instruments allowed to be used are (see the remarks on the postulates) the ruler and the compasses.

A corollary is a truth which is (more or less) easily inferred from ${ }^{7}$ uroposition.
an the statement of a theorem there are two parts, the hypothesis and the conclusion. Thus, in the theorem, 'If two sides of a triangle he equal, the angles opposite to them shall be equal,' the part, 'if two sides of a triangle be "qual,' is the hypothesis, or that which is assumed; the other part, 'the angles opposite to them shall be 'qual,' is the conclusion, or that which is inferred from the hypothesis.

The converse of a theorem is derived from the theorem by interchanging the hypothesis and the conclusion. Thus, the converse of the therom mentioned above is, 'If in a triangle the angles opposite two sides be equal, the sicles shall be equal.'

When the hypothesis of a theorem consists of several hypotheses, there may be more than one converse to the theorem.

In proving propositions, recourse is sometimes lad to the following methorl. The proposition is sulposed not to be true, and the con-
sequences of this supposition are then examined, till at length a result is reached whicn is impossible or absurd. It is therefore inferred that the proposition must be true. Such a method of proof is called an indirect demonstration, or sometimes a reductio ad absurdum (a reducing to the absurd).

SYMBOLS AND ABBREVIATIONS.

+, read plus, is the sign of addition, and signifies that the magnitudes between which it is placed are to be added together.
-, read minus, is the sign of subtraction, and signifies that the magnitude written after it is to be subtracted from the magnitude written before it.
\sim, read difference, is sometimes used instead of minns, when it is not known which of the two magnitudes before and after it is the greater.
= is the sign of equality, and signifies that the magnitudes between which it is placed are equal to each other. It is used here ay an abbreviation for 'is equal to,' 'are equai to,' 'be equal to, and 'equal to.'
i. stands for 'perpendicular to,' or 'is perpendicular to.'
if " 'parallel to,' or 'is parallel to.'
4 " 'angle.'
4 " 'tna..ote.
$\mathbb{\Pi}^{m}$ " 'parallelogram.'

- " 'circle.'
$O^{\text {© }}$ " 'circumference’
\therefore " 'therefore.' This symbol turned upside down $(\because \cdot)$, which is sometimes used for 'because' or 'since,' I have not introduced, partly because some writers use it for 'therefore,' and partly because it is easily confounded with the other.
$A B^{2}$ stands for 'the square described on $A B$.'
$A B \cdot B C$. stands for 'the rectangle contained by $A B$ and $B C$.'
$A: B$ stands for 'the ratio of A to B.'
$\left\{\begin{array}{l}A: B \\ B: C\end{array}\right\}$ stands for 'the ratio compounded of the ratios of A to C.' B
$A: B=C: 1$) stands for the propertion ' A is to B as C is to D.' The small letters $a, b, c, m, n, p, \& c$. stand for numbers.
App. stands for 'appendix.'
Ax. " 'axiom.'

Const. " 'construction'
Cor. " 'corollary.'
Def. " 'definition.'
Hyp. " 'hypothesis.'
Post. " 'postulate.'
Rt. " 'right.'
In the references given at the right-hand side of the page (Euclid gives no references), the Roman numerals indicate the number of the look, the Arahic numerals the number of the proposition. Thus, I. 47 means the forty-seventh proposition of the first book.

In the figures to certain of the theorems, it will be seen that some lines are thick, and some dotted. The thick lines are those which are given, the dotted lines are those which are drawn in order to prove the theorem. [In a few figures this arrangement has been neglected to attain another object.]

In the figures to certain of the problems, some lines are thich: some thin, and some dotted. The thick lines are those which are given, the than incs are those which are drawn in order to effect the construction, and the elotted lines are thow which are necessary for the proof that the construction is correct.

In the figures which illustrate definitions, the inee are almost: invariably thin.

PROPOSITION 1. Problem.

To describe an equiluteral triangle on a given straight line.

Let $A B$ be the given straight line : it is required to describe an equilateral triangle on $A B$.
With centre A and radius $A B$, describe $\odot B C D$. Pos 3
With centre B and radius $B A$, describe $\odot A C E$; P'ust 3 and let the two circles infersect at C.
Join $A C, B C$.
Post. 1
$A B C$ shall be an equilateral triangle.
For $A B=A C$, being radii of the $\odot B(D D ;$ I. Def. 16
and $A B=B C$, being radii of the $\odot A C E ;$ I. Def. 16
$\therefore \quad A C=B C$.
I. $A x .1$
$\therefore \quad A B, A C, B C$ are all equal,
and $A B C$ is an equilateral triangle.
I. Def. 23

DEDUCTIUNS.

1. If the two circles intersect also at F, and $A F, B F^{\prime}$ be joined, prove that $A B F^{\prime}$ is an equilateral triangle.
2. Show how to find a point which is equidistant from two given points.
3. Show how to make a rhombus having one of its diagonals equal to a given straight line.
4. Show how to make a rhombus having each of its sides equal to a given straight line.
5. If $A B$ be procluced both ways to meet the two circles again at D and E, prove that the straight line $D E$ is equal to the sum of the three sides of the triangle $A B C$.
6. Show how to find a straight line equal to the sum of the throe sides of any triangle.
Show how to find a straight line which shall be:
7. Twice as great as a given straight liue.
8. Thrice
9. Four times
"
10. Five "
"
"
: :

$"$	$"$
$"$	$"$
$"$	n

PROPOSITION 2. Problem.

From a given point to druw a struight line equal to a givon straight line.

Let A be the given point, and $B C$ the given straight line: it is required to draw from A a straight line $=B C$.

Join $A B$,

Post. 1
and on it describe the equilateral $\triangle D B A$. I. 1

With centre B and radius $B C$, describe the $\odot C E F$; Past, 3 and proluce $D B$ to meet the $\bigcirc^{\text {ce }} C E F$ in E.

Pust. 2

With centre D, and radius $D E$, describe the $\odot E G H ;$ Post. 3 and produce $D A$ to meet the $O^{\infty} E G H$ in G. Post. 2 $A G$ shall $=B C$.
Because $\quad D E=D G$, being radii of $\odot E G H, I$. Def. 16
and $\quad D B=D A$, being sides of an equilateral triangle ;
I. Def. 23
\therefore remainder $B E=$ remainder $A G$.
I. Ax. 3

But $\quad B E=B C$, being radii of $\odot C E F$; I. Def. 16
$\therefore \quad A G=B C$.
I. $A x .1$

1. If the radius of the large circle be double the radius of the small circle, where will the given point be?
2. $A B$ is a given straight line; show how to . Iraw from A any number of straight lines equal to $A B$.
3. $A B$ is a given straight line; show how to draw from B any number of straight lines equal to $A B$.
4. $A B$ is a given straight line; show how to draw through A any number of straight lines double of $A B$.
5. $A B$ is a given straight line; show how to draw through B any number of straight lines double of $A B$.
6. On a given straight line as base, describe an isosceles triangle each of whose sides shall be equal to a given straight line.
May the second given straight line be of any size? If net, how large or how small may it be ?
Give the construction and proof of the proposition-
7. When the equilateral triangle $A B D$ is described on that side of $A B$ opposite to the one given in the text.
8. When the equilateral triangle $A B D$ is described on the same side of $A B$ as in the text, but when its sides are produced through the vertex and not beyond the base.
9. When the equilateral triangle $A B D$ is described on that side of $A B$ opposite to the one given in the text, and when its sides are produced through the vertex.
10. When the given point A is joined to C instead of B. ITake diagrams ior all the cases that can arise by describing the equilateral triangle on either side of $A C$, and producing its sides either beyond the base or through the vertex

PROPOSITION 3. Problem.
From the greater of taro given straight lines to cut off a pups. equal to the less.

Let $A B$ and C be the two given straight lines, of which $A B$ is the greater :
it is required to cut off from $A B$ a part $=C$.
From A draw the straight line $A D=C$;
I. 2
with centre A and radius $A D$, describe the $\odot D E F$, Post. 3 cutting $A B$ at E.
$A E$ shall $=C$.
For $A E=A D$, being radii of $\odot D E F$.
I. Def. 16

But $A D=C$;
Const.
$\therefore A E=U$.
I. $A \cdots, 1$

1. Give the construction and the proof of this proposition, using the point B instead of the point A.
2. Produce the less of two given straight lines so that it may be equal to the greater.
3. If from $A B$ (fig. 1 and fig. 2) there be cut off $A D$ and $B E$, each equal to C, prove $A E=B D$.

Fig. 1.

Fig. 2.

4. Show how to find a straight line equal to the sum of two given straight lines.
5. Show how to find a straight line equal to the difference of two giveu straight lines.
6. Show that if the difference of two straight lines be added to the sum of the two straight lines, the result will be double of the greater straight line.
7. Show that if the difference of two straight lines be taken away from the sum of the two straight lines, the result will be double of the less straight line.

PROPOSITION 4. Theorem.

If two sides and the contained angle of one triangle be equa. to tuo sides and the contained angle of another triangle, the two triangles shall be equal in every respect-tiiar is,
(1) The third sides shall be equal,
(2) The remaining angles of the one triangle slall be siual to the remaining angles of the other triangle,
(3) The areas of the two triangles shall be equal.

In $\triangle \mathrm{s} A B C, D E F$, let $A B=D E, A C=D F, \angle A=\prime j \beta$: it is required to prove $B C=E F, \angle B=\angle E,-C=\angle F$, $\triangle A B C=\triangle D E F$.

If $\triangle A B C$ be applied to $\triangle D E F F$, so that A falls on D, and so that $A B$ falls on $D E$; then B will coincide with E, because $A B=1) E$. Lyp. And because $A B$ coincides with $D E$, and $\angle A=\angle D$, Líyn. $\therefore A C$ will fall on $D F$.
And because $A C=D F$,
Hyp.
$\therefore C$ will coincide with F.

Now, since B coincides with E, and C with F,
$\therefore B C$ will coincide with $E F$;

1. Defi. 3
$\therefore B C=E F$.
Hence also $\angle B$ will coincide with $\angle E$;
$\therefore \angle B=\angle E$;
I. Ax. 9
and $\angle C$ will coineide with $\angle F ; \therefore \angle C=\angle F ; I . A x .9$ and $\triangle A B C$ will coincide with $\triangle D E F$;
$\therefore \triangle A B C=\triangle D E F$.
I. $A x .9$

In the two $\triangle \mathrm{s} A B C, D E F$,
I. If $A B=D E, A C=D F$, lut $\angle A$ greater than $\angle D$, where would $A C$ fall when $A B C$ is applied to $D E F$ as in the proposition?
2. If $A B=D E, A C=D F$, but $\angle A$ less than $\angle D$, where would $A C$ fall?
3. If $A B=D E, \angle A=\angle D$, but $A C$ greater than $D F$, where would C fall?
4. If $A B=D E, \angle A=\angle D$, but $A C$ less than $D F$, where would C' fall?
b. Prove the proposition beginning the superposition with the point B or the point C insteal of the point A.
6. If the straight line $C D$ hisect the straight line $A B$ perpendicularly, prove any point in $C D$ equidistant from A and B.
7. $C A$ and $C P$ are two equal straight lines drawn from the point C, and $C D$ is the bisector of $\angle A C B$. Prove that any point in $C D$ is equidistant from A and B.

- The straight line that hisects the vertical angle of an isoseeles triangle hisects the lase and is perpendicular to the base.
勺. $A B C D$ is a quadrilateral, one of whose diagonals is $B D$. If $A B=C B$, and $B D$ bisects $\angle A B C$, prove that $A D=C D$, and that $B I$) bisects also $\angle A D C$.

10. Prove that the diagonals of a square are equal.
11. $A B C D$ is a square. E, F, G, H are the middle points of $A B$ $B C, C D, D A$, and $E F, F G, \overparen{C} H, H E$ are joined. Prove that $E F G H$ has all its sides equal.
12. Prove by superposition that the squares described on two equal straight lines are equal.
13. If two quadrilaterals have three consecutive sides and the two contained angles in the one respectively equal to three consecutive sides and the two contained angles in the other, the quadrilaterals shall be equal in every respect.

PROPOSITION 5. Theorem.

The angles at the base of an isosceles triangle are equ, ind if the equal sides be produced, the angles on the other side of the base shall also be equal.

In $\triangle A B C$, let $A B=A C$, and let $A B, A C$ be produced to D and E :
it is required to prove $\angle A B C=\angle A C B$ and $\angle D B C=$ - ECB.

In $B D$ take any point F,
and from $A E$ cut off $A G=A F$;
I. 3
,oin $B G, C F$.
(1) in $\triangle s A F C, A G B,\left\{\begin{aligned} F A & =G A \\ A C & =A B \\ \angle F A C & =\angle G A B ;\end{aligned}\right.$ Post. 1 Const. Hyp.
I. 4

(2) Because the whole $A F=$ whole $A G$,

Jorst.
abse the part $A B=$ part $A C$;

$$
\text { the remainder } B F^{\prime}=\text { remainder } C G \text {. }
$$

Hym.

1. Ax. 3
(3) In $\triangle \mathrm{s} B F C, C G B,\{$ $B F=C G \quad$ Proved in (2) $F C=G B \quad$ Proved in (1) $\angle B F C=\angle C G B ;$ Proved in (1)
$\angle B C F=\angle C B G$, and $\angle F^{\top} B C=\angle G C B$.
I. 4
(4) Because whole $\angle A B G=$ whole $\angle A C F$, Proved in (1) and the part $\angle C B G=$ part $\angle B C F$; Proced in (3)
\therefore the remainder $\angle A B C=$ remainder $\angle A C B ;$ I. $A x .3$ and these are the angles at the base.
But it was proved in (3) that $\angle F B C=\angle G C B$; and these are the angles on the other sitle of the base.

Con.- If a triangle have all its sides equal, it will also have all its angles equal ; or, in other words, if a triangle be equilateral, it will be equiangular.

1. If two angles of a triangle be unequal, the sides opposite to them will also le unequal.
2. Two isosceles triangles $A B C, D B C$ stand on the same base $B C$, and on opposite silles of it ; prove $\angle A B I)=\angle A C D$.
3. Two isosceles triangles $A B C, D B C$ stand on the same base $B C$, and on the same sile of it ; prove $\angle A B D=\angle A C D$.
4. In the figure to the second deduction, if $A D$ be joined, prove that it will biseot the angles at A aud D.
5. $A B C$ is an isosceles triangle having $A B=A C$. In $A B, A C$, two points D, E are taken equally distant from A; prove that the triangles $A B E, A C D$ are equal in all respects, and also the triangles $D B C, E C B$.
6. Prove that the opposite angles of a rhombus are equal.
7. D and E are the midule points of the sides $B C$ and $C A$ of a triangle; $D O$ and $E O$ are perpendicular to $B C$ and $C A$; show that the angles $O A B$ and $O B A$ are equal.
S. Prove the proposition by supposing the $\triangle A B C$, after leaving a trace or impression of itself, to be lifted up, turned over, and applied to the trace.
8. Prove the first part of the proposition by supposing the angle at the vertex to be bisected.

PROPOSITION 6. Theorem.

If two angles of a triangle be equal, the sides opposite them shall also be equal.

In $\triangle A B C$ let $\angle A B C=\angle A C B$:
't is required to prove $A C=A B$.
If $A C$ is not $=A B$, one of them must be the greater.
L. $1.2 B$ be the greater ;
and from it cut off $B D=A C$,
I. 3 al1d join $D C$.
in $\triangle \mathrm{s} D B C, A C B,\left\{\begin{aligned} D B & =A C \\ B C & =C B \\ D B C & =\angle A C B\end{aligned}\right.$
Post. 1
Cons!

Hyr.
\therefore area of $\triangle D B C=$ area of $\triangle A C B$;
which is impossible, since $\triangle D B C$ is a part of $\triangle A C B$.
Hence $A C$ is not unequal to $A B$;
that is, $A C=A B$.
Cor.-If a triangle have all its angles equal, it will also have all its sides equal ; or, in other words, if a triangle bo equiangular, it will be equilateral.

1. If two sides of a triangle be unequal, the angles opposite to them will also be unequal.
2. If $A B C$ be an isosceles triangle, and if the equal angles $A D C$, $A C B$ be bisected by $B D, C D$, which meet at D; prove that $D B C$ is also an isosceles triangle.
3. In the figure to $I .5$, if $B G, C F$ intersect at H, prove that $H B C$ is an isosceles triangle.
4. Hence prove that $F H=G H$, and that $A H$ bisects $\angle A$.
5. By means of what is proved in the last deduction, give a method of bisecting an angle.
6. Prove the proposition by supposing the $\triangle A B C$, after leaving a trace or impression of itself, to be lifted up, turned over, and applied to the trace.

PROPOSITION 7. Theorem.

Two triangles on the same base and on the same side of it cannot have their conterminous sides equal.

If it be prossible, let the two $\triangle \mathrm{s} A B C, A B D$ on the same linse $A B$, and on the same side of it, have $A C=A h^{\prime \prime}$, and $B C=B D$.

Three cases may oocur :
(1) The vertex of each Δ may be outside the other Δ.
(2) The vertex of one Δ may be inside the other Δ.
(3) The vertex of one Δ may be on a side of the other Δ. In the first case join $C D$; and in the second case join $C D$ and produce $A C, A D$ to E and F.
Because $A C=A D, \therefore \angle E C D=\angle F D C . \quad$ I. 5
But $\angle E C D$ is greater than $\angle B C D$; I. $A x$. б́
$\therefore \angle F D C$ is greater than $\angle B C D$.
Much more then is $\angle B D C$ greater than $\angle B C D$.
But because $B C=B D, \therefore \angle B D C=\angle B C D ; \quad I .5$
that is, $\angle B D C$ is greater than and equal to $\angle B C D$,
which is impossible.
The third case needs no proof, because $B C$ is not $=B D$.
Hence two triangles on the same base and on the same side of it cannot have their conterminous sides equal.

1. On the same base and on the same side of it there can be only one equilateral triangle.
2. On the same base and on the same side of it there can be only one isosceles triangle having its sides equal to a given straight line.
3. Two circles cannot cut each other at more than one point either above or below the straight line joining their centres.

PROPOSITION 8. Theorem.

If three sides of one triangle be respectively equal to thres sides of another triangle, the two triangles shall be equal in every respect; that is,
(1) The three angles of the one triangle shall be respectively equal to the three angles of the other triangle,
(2) The areas of the two triangles shall be equal.

In $\triangle \subseteq A B C, D E F$, let $A B=D E, A C=D F, B C=E F$: it is required to prove $\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$, and $\triangle A B C=\triangle D E F$.
If $\triangle A B C$ be applied to $\triangle D E F$,
so that B falls on E, and so that $B C$ falls on $E F$;
then C will coincide with F, because $B C=F F$.
Hyp.
Now since $B C$ coincides with $E F$,
$\therefore B A$ and $A C$ must coincide with $E D$ and $D F$.
For, if they do not, but fall otherwise as $E(G$ and $G F$;
then on the same base $E F$, and on the same side of it; there will be two $\triangle \mathrm{s} D E F, G E F$, having equal pairs of conterminous sides, which is impossible.
$\therefore B A$ coincides with $E D$, and $A C$ with $D F$.
Hence $\angle A$ will enincide with $\angle D, \therefore \angle A=\angle D$; $I . A x .9$
and $\angle B$ will coincide with $\angle E, \therefore \angle B=\angle E ; \quad$ I. Ax. 9
and $\angle C$ will coincide with $\angle F, \therefore \angle C=\angle F ; \quad I$. $A x .9$ and $\triangle A B C$ will coincide with $\triangle D E F$,
$\therefore \triangle A B C=\triangle D E F$ I. Ax. 9

1. The straight line which joins the vertex of an isosceles triangle to the middle point of the base, is perpendicular to the base, and bisects the vertical angle.
2. The opposite angles of a rhombus are equal.
3. Either diagonal of a rhombus bisects the angles through whick it passes.
4. $A B C D$ is a quadrilateral having $A B=B C$ and $A D=D C$; prove that the diagonal $B 1$) bisects the augles through which it passes, and that $\angle A=\angle C$.
5. Two isosceles triang's stand on the same base and on opposite sides of it; pror that the straight line joining their vertices bisects both vertical angles.
6. Two isosceles trie gles stand on the same base and on the same side of it ; prove that the straight line joining their vertices, being produced, bisects both vertical angles.
7. In the figares to the fifth and sixth deductions, prove that the straight line joining the vertices, or that straight line produced, bisects the common base perpendicularly.
8. Hence give a construction for bisecting a given straight line.
9. The diagonals of a rhombus or of a square bisect each other perpendicularly.
10. If any two circles cut each other, the straight line joining their points of intersection is bisected perpendicularly by the straight line joining their centres.
11. Prove the proposition by applying the triangles so that they may fall on opposite sides of a common base. Join the two vertices, and use I. 5 (Philon's method; see Frieđiein's Proclus, p. 266).

PROPOSITION 9. Problem.

To bisect a given rectilineal angle.

Let $A C B$ be the given rectilineal angle :
it is required to bisect it.
In $A C$ take any point D, and from $C B$ cut off $C E=C D$.

1. 3

Join $D E$, and on $D E$, on the side remote from C, describe the equilateral $\triangle D E F$.
J. 1 Join $C F$.
$C F$ shall bisect $\angle A C B$.
In $\triangle \mathrm{s} D C F, E C F,\left\{\begin{array}{lr}D C=E C & \text { Const. } \\ C F=C F \\ D F=E F ; & \text { I. Def. } 23\end{array}\right.$
$\therefore \angle D C ' F=\angle E C F ;$
I. 8
that is, $C F$ bisects $\angle A C B$.

1. Prove that $C F$ bisects angle $D F E$.
2. If the equilateral triangle $D E F$ were described on the same side of $D E$ as C is, what three positions might F take?
3. Show that in one of these positions the demonstration remains the same as in the text.
4. Would an isosceles triangle $D E F$ described on the base $D E$ answer the purpose as well as an equilateral one? If so, why?
5. Prove the proposition and the first deduction, using I. 5 and I. 4 instead of I. 8.
6. Divide a given angle into 4 equal parts.
7. Could the number of equal parts into which an angle may be diviled be extended beyond 4 ? If 80 , enumerate the numbers.
8. Irnve from an equilateral triangle that if a right-angled triangle have one of the acute angles donble of the other, the hypotenuse is double of the sirle oprosite the least angle.

PROPOSITION 10. Problam.

To bisect a given straight tint.

Let $A B$ be the given straight line : it is required to bisect it.

On $A B$ describe an equilateral $\angle A B C$, I. 1 and bisect $\angle A C B$ by $C D$, which meets $A B$ at D. I. 9 $A B$ shall be bisected at D.
In $\triangle \mathrm{s} A C D, B C D,\left\{\begin{array}{rlrl}A C & =B C & \text { I. Def. } 23 \\ C D & =C D & & \\ \angle A C D & =\angle B C D ; & & \text { Const. }\end{array}\right.$
$\therefore A D=B D$;
I. 4
that is, $A B$ is bisected at D.

1. Would an isosceles triangle described on $A B$ as base, answer the purpose as well as an equilateral one? If so, why?
2. Prove that $C D$, besides bisecting $A B$, is perpendicular to $A B$.
3. In the figure to I. l, suppose the two circles to cut at C and F; prove that $C F$ bisects $A B$.
4. Hence give (without proof) a simple method of bisecting a given straight line.
5. In the figure to the third deduction, prove that $A B$ and $C F$ bisect each other perpendicularly.
6. Enunciate the preceding deduction as a property of a rhombus.
7. Divide a given straight line into 4 equal parts.
8. Could the number of equal parts into which a straight line may be divided be extended beyond 4? If so, enumerate the numbers.
9. Find a straight line half as long again as a given straight line.
10. Fiud a straight line equal to half the sum of two given straight lines.
11. Find a straight line equal to half the difference of two given straight lines.
12. If, in the figure to the proposition, $\angle A$ is bisected by $A F$, which meets $B C$ at F, preve $B F=B D$, and $A F=C D$.

PROPOSTITION 11. Problem.

To draw a straight line perpendicuiar to a given straight line from a given point in the same.

Let $A B$ be the given straight line, and C the given point in it:
it is required to draw from C a perpendicular to $A B$.
In $A C$ take any point D, and from $C B$ cut off $C B=C D$.
I. 3

On $D F$ describe the equilateral $\triangle D E F$,
I. 1 and join $C F$.
$C F$ shall be $\perp A B$.
$\begin{array}{lr} & \text { In } \triangle s D C F, E C F^{\prime},\left\{\begin{array}{lr}D C=E C & \text { Const. } \\ C F^{\prime}=C F^{\prime} \\ D F^{\prime}=E F^{\prime} ; & \text { I. Def. } 23\end{array}\right. \\ \therefore \angle D C F^{\prime}=\angle E C F^{\prime} ; & \text { I. } 8 \\ \ddots C F^{\prime} \text { is } \perp A B . & \text { I. Def. } 10\end{array}$

1. Would an isosceles triangle described on DE as base answer the purpose as well as an equilateral one? If so, why?
2. If the given point were situated at either end of the given straight line, what additional construction would be necessary in order to draw a perpendicular?
3. At a given point in a given straight line make an angle equal to half of a right angle.
4. At a given point in a given straight line make an angle equal to one-fourth of a right angle.
5. Construct an isosceles right-angled triangle.
6. Construct a right-angled triangle whose base shall be equal to half the hypotenuse.
7. Find in a given straight line a point which shall be equally distant from two given points. Is chis always possible? If not, when is it not?
8. $A B C$ is any triangle ; $A B$ is bisected at L, and $A C$ at K. From L there is drawn $L O$ perpendicular to $A B$, and from $K, K O$ perpendicular to $A C$, and these perpendiculars meet at O. Prove that $O A, O B, O C$ are all equal.
9. Compare the construction and proof of I. 9 with those of I. 11, and show that the latter proposition is a particular case of the former.

PROPOSITION 12. Problem.

To dravo a straight line perpendicular to a given straight line from a given point without it.

Let $A B$ be the given straight line, and C the given point without it : it is required to draw from C a perpendicular to $A B$.

Take any point D on the other side of $A B$; with centre C and radius $C D$, describe the $\odot E D F$, cutting $A B$, or $A B$ produced, at E and F.

Bisect $E F$ at G;
I. 10 and join $C G$.

Join CE, CF .
In $\triangle \mathrm{s} C G E, C G F,\left\{\begin{array}{l}E G=F G \\ C C=G C \\ C E=C F ;\end{array}\right.$
Oonst.
$\therefore \angle C G E=\angle C G F$;
I. Def. 16
I. 8
$\therefore C G$ is $\perp A B$.

1. Def. 10
2. Is $C E F$ an equilateral triangle?
3. Prove that $C G$ bisects $\angle E C F$.
4. Instead of hisecting $E F^{\prime}$ at G and joining $C G$, would it answer the purpose equally well to bisect $\angle E C F^{\prime}$ by $C G$?
5. Instead of taking D on the other side of $A B$, would it answer equally well to take D in $A B$ itself?
6. Two points are situated on opposite sides of a given straight line. Find a point in the straight line such that the straight lines joining it to the two given points may make equal angles with the given straight line. Is this always prossible?
7. Use the tenth deduction on I. 8 to obtain another method of drawing the perpendicular.

PROPOSITION 13. Theorem.

The angles which one straight line makes with another on one side of it are together equal to two right angles.
Let $A B$ make with $C D$ on one side of it the $\angle B A B C$, $A B D$.
it is required to prove $\angle A B C+\angle A B D=2 r t . \angle s$.

(1) If $\angle A B C=\angle A B D$,
then each of them is a right angle ;
I. Def. 10
$\therefore \angle A B C+\angle A B D=2 \mathrm{rt} . \angle \mathrm{s}$.
(2) If $\angle A B C$ be not $=\angle A B D$,
from B draw $B E \perp C D$.
I. 11

Const.

Then $\angle \mathrm{s} E B C, E B D$ are $2 \mathrm{rt} . \angle \mathrm{s}$.
But $\angle A B C+\angle A B D=\angle E B C+\angle E B D ; \quad$ I. $A x .9$
$\therefore \angle A B C+\angle A B D=2 \mathrm{rt} . \angle \mathrm{s}$.
I. $A x .1$

Cor. 1.-Hence, if two straight lines,cut one another, the four angles which they make at the point where they cut are equal to four right angles.

For $\angle A E C+\angle A E D=2 \mathrm{rt} \angle \mathrm{s}$, I. 13
and $\angle B E D+\angle B E C=2 \mathrm{rt} . \angle \mathrm{s}$.
 I. 13
$\therefore \angle A E C+\angle A E D+\angle B E D+\angle B E C=4 \mathrm{rt} . \angle \mathrm{s}$.
Cor. 2.-All the successive angles made by any number of straight lines meeting at one point are together equal to four right angles.

Let $O A, O B, O C, O D$, which meet at O, make the successive angles $A O B, B O C, C O D, D O A$: it is required to prove these $\angle \boldsymbol{S}$ $=4 \mathrm{rt}$. L s .

Produce $A O$ to E.

Then $\angle A O B+\angle B O C+\angle C O D+\angle D O A$

$$
\begin{aligned}
& =(\angle A O B+\angle B O E)+(\angle E O D+\angle D O A) \\
& =2 \mathrm{rt.} \angle \mathrm{~s} \\
& =4 \mathrm{rt} . \angle \mathrm{s} .
\end{aligned}
$$

Def.-Two angles are called supplementary when their sum is two right angles; and either angle is called the supplement cf the other.

Thus, in the figure to the proposition, $\angle A B C$ and $\angle A B D$ are supplementary ; $\angle A B C$ is the supplement of $\angle A B D$. and $\angle A B D$ is the supplement of $\angle A B C$.

Def.-Two angles are called complementary when their sum is one right angle; and either angle is called the complement of the other.

Thus, in the figure to the proposition, $\therefore A B D$ and $\angle A B E$ are complementary; $\angle A B D$ is the emplement of $\angle A B E$, and $\angle A B E$ is the complement of $\angle A B D$.

1. In the figure to Cor. 1, name all the angles which are supplementary to $\angle A E C$, to $\angle A E D$, to $\angle B E D$, to $\angle B E C$.
\because In the figure to Cor. 2, name the angles which are supplementary to $\angle A O B, \angle B O E, \angle C O E, \angle E O D, \angle A O D$.
2. In the figure to I. 5 , name the angles which are supplementary to $\angle A B C, \angle A C B, \angle D B C, \angle E C B, \angle B F C, \angle C G B$, $\angle A B G, \angle A C F$.
3. In the accompanying figure, $\angle A O B$ is right. Name the angles which are complementary to $\angle A O C, \angle A O D$, $\angle B O D, \angle B O C$.
4. In the same figure, if $\angle A O C=\angle B O D$, prove $\angle A O D=\angle B O C$; and if $\angle A O D=\angle B O C$, prove $\angle A O C=$
 $\angle B O D$.
5. In the figure to the proposition, if $\angle \mathrm{A} A B C$ and $A B D$ be bisected, prove that the bisecturs are perpendicular to each other.
6. If the angles at the base of a triangle be equal, the angles on the other side of the base must also be equal.
S. If the base of an isosceles triangle be produced both ways, the exterior angles thus formed are equal.
7. $A B C$ is a triangle, and the sides $A B, A C$ are produced to D and E. If $\angle D B C=\angle E C B$, prove $\triangle A B C$ isosceles.
8. $A B C$ is a triangle, and the base $B C$ is produced both ways. If the exterior angles thus formed are equal, prove $\triangle A B C$ isosceles.

PROPOSITION 14. Theorem.

If at a point in a straight line, two other straight lines on opposite sides of it make the adjacent angles together equal to two right angles, these two straight lines shall be in one and the same straight line.

At the point B in $A B$, let $B C$ and $B D$, on opposite sides of $A B$, make $\angle A B C+\angle A B D=2 \mathrm{rt} . \angle \mathrm{s}:$ it is required to prove $B D$ in the same straight line with $B C$.

If $B D$ be not in the same straight line with $B C$, produce $C B$ to E;

Post. 2 then $B E$ does not coincide with $B D$. Now since $C B E$ is a straight line,

$$
\begin{array}{clr}
\therefore & \therefore A B C+\angle A B E=2 \mathrm{rt} . \angle \mathrm{s} . & \text { I. } 13 \\
\text { But } & \angle A B C+\angle A B D=2 \mathrm{rt.} \angle \mathrm{~s} ; & \text { Hyp. } \\
\therefore & \angle A B C+\angle A B E=\angle A B C+\angle A B D . & I . A x .1
\end{array}
$$

Take away from these equals $-A B C$, which is common ;
$\therefore \quad \angle A B E=\angle A B D$, I. Ax. 3
which is impossible ;
$\therefore B E$ must coincide with $B D$;
that is, $B D$ is in the same straight line with $B C$.

1. $\triangle B C D, E F G H$ are two squares. If they be placed so that F falls on C, and $F E$ along $C D$, show that $F G$ will either fall along $C B$, or be in the same straight line with it.
2. If in the straight line $A B$, a point E be taken and two straight lines $E C, E D$ be drawn on opposite sides of $A B$, making $\angle A E C=\angle B E D$, prove that $E C$ and $E D$ are in the same straight line.
3. If four straight lines, $A E, C E, B E, D E$, meet at a point E, so that $\angle A E C=\angle B E D$ and $\angle A E D=\angle B E C$, then $A E$ and $E B$ are in the same straight line, and also $C E$ and $E D$.
4. P is any point, and $A O B$ a right angle ; $P M$ is drawn perpendicular to $O A$ and produced to Q, so that $Q M=M P^{\prime} ; P \Lambda^{+}$ is drawn perpendicular to $O B$ and produced to R, so that $R N=N P$. Prove that Q, O, R lie in the same straight line.
5. If in the enunciation of the proposition the words 'on opposite sides of it' be omitted, is the proposition necessarily true? Draw a figure to illustrate your answer.

PROPOSITION 15. Theorem.

If two straight lines cut one another, the vertically opposite angles shall be equal.

Let $A B$ and $C D$ cut one another at E :
it is required to prove $\angle A E C=\angle B E D$, and $\angle B E C=$
$\angle A E D$.
Because $C E$ stands on $A B$,
\therefore

$$
\begin{equation*}
\angle A E C+\angle B E C=2 \mathrm{rt} . \angle \mathrm{s} . \tag{I. 13}
\end{equation*}
$$

Because $B E$ stands upon $C D$,
$\therefore \quad \angle B E C+\angle B E D=2 \mathrm{rt} . \angle \mathrm{s} ; \quad I .13$
$\therefore \quad \angle A E C+\angle B E C=-B E C+\angle B E D . I . A x .1$

Take away from these equals $\angle B E C$, which is common;

$$
\angle A E C=\angle B E D . \quad \text { I. } A x .3
$$

Hence also, $\quad \angle B E C=\angle A E D$.

1. Prove $\angle A E C=\angle B E D$, making $\angle A E D$ the common angle.
$2 . \quad \angle B E C=\angle A E D$, " $\angle A E C$ " "
2. " $\angle B E C=\angle A E D$, " $\angle B E D$ " "
3. If $\angle A E D$ is bisected by $F E$, and $F E$ is produced to G, prove that $E G$ bisects $\angle B E C$.
4. If $\angle A E D$ is bisected by $F E$, and $\angle B E C$ bisected by $G E$, prove $F E$ and $G E$ in the same straight line.
5. If in a straight line $A B$, a point E be taken, and two straight lines, $E C, E D$, be drawn on opposite sides of $A B$, making $\angle A E C=\angle B E D$, prove that $E C$ and $E D$ are in the same straight line.
6. $A B C$ is a triangle, $B D, C E$ straight lines drawn making equal angles with $B C$, and meeting the opposite sides in D and E and each other in F; prove that if $\angle A F E=\angle A F D$, the triangle is isosceles.

PROPOSITION 16 . Theorem.
If one sille of a triangle he protuced, the exterior angle shall be greater than either of the interior opposite angles.

Let $A B C$ be a triangle, and let $B C$ be produced to D : it is required to prove $\angle A C D$ greater than $\angle B A C$, aril aloo greater than $\llcorner A B C$.

Bisect $A C$ at E;

join $B E$, and produce it to F, making $E F=B E$;

1. 3 and join $C F$.

$$
\text { In } \triangle \mathrm{s} A E B, C E F,\left\{\begin{aligned}
A E & =C E & & \text { Const. } \\
E B & =E F & & \text { Comst. } \\
\angle A E B & =\angle C E H ; & & I .15
\end{aligned}\right.
$$

But $\angle A C D$ is greater than $\angle E C F$;
$\therefore \angle A C D$ is greater than $\angle E A B$.
Hence, if $A C$ be produced to G,
$\angle B C^{\prime}(r$ is greater than $\angle A B C$.
But $-A(\prime D)=\angle B C G^{\prime}$;
$\therefore \angle A(1)$ is greater than $-A B C$.

1. Prove $\angle A$ less than $A E F, B E C, A C D, S C C$.
2. " $\angle H^{\prime} \quad F^{\prime}(1), F^{\prime}(G, B E C, A E F$.
3. " $\angle A B E \quad " A E F, B E C, A(' D, B C G$.
4. " $\angle C B E \quad$ ". $A(\prime), B C(T, A E B, C E F$.
5. " $\angle A C B$ " $A E B, C E F$.
6. " $\quad \mathrm{BEC} \mathrm{C} \quad \mathrm{ACD}, \mathrm{BCC}$.
7. " $\angle B C D \quad " A E B, C E F$.
S. " $\angle E C F \quad "$ AEF, BEC.
8. Draw three figures to show that an exterior angle of a triangle may be greater than, uqual to, or less than the interior aljacent angle.
9. From a point outside a given straight line, there can be drawn to the straight line only one perpendicular.
10. $A B C^{\prime}$ is a triangle whose vertical $\angle A$ is bisected by a straight line which meets $B C$ at D; prove $\angle A D C$ greater than $\angle D A C$, and $\angle A D B$ greater than $\angle B A D$
11. In the figure to the proposition, if $A F$ be joined, prove : (1) $A F$ $=B C$. (2) Area of $\triangle A B C=$ area of $\triangle B C F$. (3) Area of $\triangle A B F=$ area of $\triangle A C F$.
12. Hence construct on the same base a series of triangles of equal area, whose vertices are equidistant.
13. To a given straight line there cannot be drawn more than two equal straight lines from a given point without it.
14. Any two exterior angles of a triangle are together greater than two right angles.

PROPOSITION 17. Theorem.

The sum of any two angles of a triangle is less tinan two right angles.

Let $A B C$ be a triangle :
it is required to prove the sum of any two of its angles less than $2 \mathrm{rt} . \angle \mathrm{s}$.

Produce $B C$ to D.
Then $\angle A B C$ is less than $\angle A C D$.
I. 16
$\therefore \quad \angle A B C+\angle A C B$ is less than $\angle A C D+\angle A C B$.
But $\angle A C D+\angle A C B=2 \mathrm{rt} . \angle \mathrm{s}$;
I. 13
$\therefore \angle A B C+\angle A C B$ is less than $2 \mathrm{rt} . \angle \mathrm{s}$.
Now : $\triangle B C$ and $\angle A C B$ are any two angles of the triangle;
\therefore the sum of any two angles of a triangle is less than $2 \mathrm{rt} . \angle \mathrm{s}$.

1. Prove that in any triangle there cannot be two right angles, or two obtuse angles, or one right and one obtuse angle.
2. Prove that in any triangle there must be at least two acute angles.
3. From a point outside a straight line only one perpendicular can be drawn to the straight line.
4. Prove the proposition ly joining the vertex to a point inside the base.
5. The angles at the base of an isosceles triangle are buth acute.
6. All the angles of an equilateral triangle are acuto.
7. If two angles of a triangle be unequal, the smaller of the two must be acute.
s. The three interior angles of a triangle are together legs than three right angles.
8. The three exterior angles of a triangle made by producing the sides in suecession, are together greater than three right angles.
Prove by indirect demonstrations the following theorems:
9. The perpendieular from the right angle of a right-angled triangle on the hypotenuse falls inside the triangle.
10. The perpendicular from the obtuse angle of al, obtuse-angled triangle on the opposite side fall's inside the triangle.
11. The perpendicular from any of the angles of an acute-angled triaugle on the opposite side falls inside the triangle.
12. The perpendicular from any of the acute angles of an obtuseangled triaisile on the opposite side falls outside the triangle.

PROPOSITION 18. Theorem.

The greater side of a triangle has the greater angle opposite to it.

Let $A B C$ be a triangle, having $A C$ greater than $A B$: it is required to prore $-A B C$ greater than $<$ ú.

From $A C$ cut off $A I-A B$,

1. 3 and join $B D$.

Because $\angle A D B$ is an exterior angle of $\triangle B C D$, $\therefore \angle A D B$ is greater than $\angle C$.
But $\angle A D B=\angle A B D$, since $A B=A D$; I. 5
$\therefore \angle A B D$ is greater than $\angle C$.
Much more, then, is $\angle A B C$ greater than $\angle C$.

1. If two angles of a triangle be equal, the sides opposite them must also be equal.
2. A scalene triangle has all its angles unequal.
3. If one side of a triangle be less than another side, the angle opposite to it must be acute.
4. $A B C D$ is a quadrilateral whose longest side is $A D$, and whose shortest is $B C$. Prove $\angle A B C$ greater than $\angle A D C$, and $\angle B C D$ greater than $\angle B A D$.
5. Prove the proposition by producing $A B$ to D, so that $A D$ shall be equal to $A C$, and joining $D C$.
6. Prove the proposition from the following construction : Bisect $\angle A$ by $A D$, which meets $B C$ at D; from $A C$ out of $A E=A B$, and join $D E$.

PROPOSITION 19. Theorem.

The greater angle of a triangle has the greater side opposite to it.

Let $A B C$ be a triangle having $\angle B$ greater than $\angle .0$: it is required to prove. $A C$ greater than $A B$.

If $A C$ be not greater than $A B$,
then $A C$ must be $=A B$, or less than $A B$.
If $A C=A B$, then $\angle B=\angle C$.

1. 5

But it is not ;
$\therefore A C$ is not $=A B$.

If $A C$ be less than $A B$, then $\angle B$ must be less than $\angle C . I .18$ But it is not;
$\therefore A C$ is not less than $A B$.
Hence $A C$ must be greater than $A B$.
Cor.-The perpendicular is the shortest straight line that can be drawn from a given point to a given straight line ; and of others, that which is nearer to the perpendicular is less than the more remote.

From the given point, A, let there be drawn to the given straight line, $B C$, (1) the perpendicular $A D,(2) A E$ and $A F$ equally distant from the perpendicular, that is, so that $D E=D F,(3) A G$ more remote than $A E$ or $A F$:
it is requiver to prove $A D$ the least of these straight lines, and $A G$ greater than $A E$ or $A F$.

$$
\text { In } \triangle \mathrm{s} A D E, A D F,\left\{\begin{array}{rlrl}
A D & =A D & \\
D E & =1 F & H y p . \\
\angle A D E & =\angle A D F ; & \text { I. } A x \cdot 10
\end{array}\right.
$$

$\therefore A E=A F$.
I. 4

Because $\angle A D E$ is right, $\therefore \angle A E D$ is acute;
I. 17
$\therefore A E$ is greater than $A l$.
I. 19

Hence also $A F$ is greater than $A D$.
Because $\angle A E G$ is greater than $\angle A D E, \quad$ I. 16
$\therefore \angle A E G$ is obtuse ;
$\therefore \angle A G E$ is acute;
I. 17
$\therefore A G$ is greater than $A E$.

1. 19

Hence also $A G$ is greater than $A F$, and than $A D$.

1. The hypotenuse of a right-angled triangle is greater than either of the other sides.
2. A diagonal of a square or of a rectangle is greater than any one of the sides.
3. In an obtuse-angled triangle the side opposite to the obtuse angle is greater than either of the other sides.
4. From A, one of the angular points of a square $A B C D$, a straight line is drawn to intersect $B C$ and meet $D C$ produced at E; prove that $A E$ is greater than a diagonal of the square.
5. From a point outside not more than two equal straight lines can be drawn to a given straight line.
6. The circumference of a circle cannot cut a straight line in more than two points.
7. $A B C$ is a triangle whose vertical angle A is bisected by a straight line which meets $B C$ at D; prove that $A B$ is greater than $B D$, and $A C$ greater than $C D$.

PROPOSITION 20. Theorem.
The sum of any tuo sides of a triangle is greater than the third side.

Let $A B C$ be a triangle :
it is required to prove that the sum of any two of its sides is greater than the third side.

Produce $B A$ to D, making $A D^{\prime}=A C$, I. 3 and join $C D$.

Then $\angle A C D=\angle D$, since $A D=A C$. I. 5

But $\angle B C D$ is greater than $\angle A C D$;
$\therefore \angle B C D$ is greater than $\angle D$;
$\therefore B D$ is greater than $B C$.
I. 19

But $B D=B A+A C$;
$\therefore B A+A C$ is greater than $B C$.
Now $B . A$ and $A C$ are any two sides;
\therefore the sum of any two sides of a triangle is greater than the third side.

Cor. - The difference of any two sides of a triangle is less than the third side.

For $B A+A C$ is greater than $B C$.
I. 20

Waking $A C$ from ach of thest unequals,
there remains $B A$ greater than $B C-A C$; I. $A x .5$
that is, the third side is greater than the difference between the other two.

1. Prove the proposition by producing $C A$ insteal of $B A$.

2 " " drawing a perjendicular from the vertex to the base.
3. " " lisecting the vertieal angle.
4. In the first figure to \mathbf{I}. 7 , the sum of $A D$ and $B C$ is greater than the sum of $A C$ and $B D$.
5. A diameter of a circle is greater than any other straight line in the circle which is not a diameter.
6. Any sile of a quadrilateral is less than the sum of the other three sides.
7. Any side rif a polygon is less than the sum of the other sides.
3. The sum of the distances of any poist from the three ancles of a triangle is greati r than the semi-perimeter of the triangle. $11 \mathrm{c} 11 . \mathrm{s}$ the three cases when the point is inside the triangle, when it is outsile, and when it is on a side.
9. The semi-perimeter of a triangle is greater than any one side, and loss than any two sides.
10. The sum of the two chagonals of any quadrilateral is greater than the sum of any rair of opposite silles.

11. The perimeter of a qualrilateral is greater than the su and

 less than twice the sum of the two diagonals.12. The sum of the diagonals of a quadrilateral is less than the sum of the four straight lines which can be drawn to the four angles from any other point except the intersection of the diagonals.
13. The sum of any two sides of a triangle is greater than twice the median * drawn to the third side, and the excess of this sum over the third side is less than twice the median.
14. The perimeter of a triangle is greater, and the semi-perimeter is less, than the sum of the three medians.

PROPOSITION 21. Theorem.

If from the ends of any side of a trianyle there be drawn two straight lines to a point within the triangle, these straight lines shall be together less than the other two stiles of the triangle, but shall contain a greater argle.

Let $A B C$ se a triangle, and from B and C, the ends of $B C$, let $B D, C D$ be drawn to any point D within the triangle:
it is required to prove (1) that $B D+C D$ is less than $A B+A C$; (2) that $\angle B D C$ is greater than $\angle A$.

[^0]

Produce $B D$ to meet $A C$ at E.
(1) Because $B A+A E$ is greater than $B E$;
I. 20
add to each of these unequals $E C$;
$\therefore B A+A C$ is greater than $B E+E C$.
I. Ax. 4

Again, $C E+E D$ is greater than $C D$;
I. 20
add to each of these unequals $D B$;
$\therefore C E+E B$ is greater than $C D+D B$. I. A.x. 4
Much more, then, is $B A+A C$ wreater than $C D+D B$.
(2) Because CE'D is a triangle,
$\therefore \angle B D C$ is greater than $\angle D E C C^{\prime}$;
I
and because $B A E$ is a triangle,
$\therefore \angle D E C$ is greater than $\angle A$;
much more, then, is $\angle B D C$ greater than $\angle A$

1. Prove the first part of the proposition br produ ing $C D$ instead of $B D$.
2. Prove the second part of the propositinn by joining $A D$ and prodncing it.
3. In the second figure to I. 7, prove that the perimeter of the triangle $A C B$ is greater than that of $A D B$.
4. Prove the same thing with respect to the third figure to I. 7.
-.) If a point be taken inside a triangle and joind to the three vertices, the sum of the three straight lines so drawn shall be less than the perimeter of the triangle.
5. If a triangle and a quadribateral stand on the sume base, and on the same side of it, and the one figure fall within the other, that whieh has the greater surface shall have the greater perimeter.

PROPOSITION 22. Problem.

To make a triangle the sides of utiich shall be equal to three given straight lines, but any two of these must be greater than the third.

Let A, B, C be the three given straight lines, any two of which are greater than the third:
it is required to make a triangle the sides of which shall be respectively equal to A, B, C.
Take a straight line $D E$ terminated at D, but unlimited towards E;
and from it cut off $D F=A, F G=B, G H=C$.
I. 3

With centre F and radius $F D$, describe the $\odot D K L$; with centre G and radius $G H$, describe the $\odot H K L$, cutting the other circle at K;
join $K F, K G . \quad K F G$ is the triangle required.

$$
\begin{array}{lll}
\text { Because } & F K=F D, \text { being radii of } \odot D K L, & \text { I. Def. } 16 \\
\therefore & F K=A . \\
\text { Because } & G K=G H \text {, being radii of } \odot H K L, & \text { I. Def. } 16 \\
\therefore & G K=C .
\end{array}
$$

And $F G$ was made $=B$;
$\therefore \triangle K F G$ has its sides respectively equal to A, B, C.

1. Could any other triangle be constructed on the base $F G$ fulfilling the given conditions?
2. If A, B, C be all equal, which preceding proposition shall we be emahled to solve?
3. Draw a figure showing what will happen when two of the given straight lines are together equal to the third.
4. Draw a tigure showing what will happen when two of the given straight lines are together less than the third.
5. Since a quadrilateral can be divided into two triangles by drawing a diagonal, show how to make a quadrilateral whose sides shall be equal to those of a given quadrilateral.
6. Since any rectilineal figure may be decomposed into triangles, show how to make a rectilineal figure whose sides shall bo equal to those of a given rectilineal figure.

PROPOSITION 23. Problem.

At a given point in a given straight line, to maks an angle equal to a given angle.

Let $A B$ be the given straight line, A the given point in it, and $\angle C$ the given angle:
it is required to make at A an angle $=\angle C$.
In $C D, C E$, take any points $I), E$, and join $D E$.
Make $\triangle A F^{\prime} G$ such that $A F^{\prime}=C D, F(G=D E, G A=E C . I .22$
A is the required angle.
In $\left.\triangle B A F^{\prime} G, C I\right) E^{\prime},\left\{\begin{array}{l}A F=C D \\ A F=C E \\ F G=D E^{\prime} ;\end{array}\right.$
Const.
Const.
Const.
$\therefore \angle A=\angle C$.
I. 8

1. At a given polut in a given straight line, to make an angle equal to the supplement of a given angle.
2. At a given point in a given straight line, to make an angle equal to the complement of a given angle.
3. If one angle of a triangle is equal to the sum of the other two, the triangle can be divided into two isosceles triaugles.
4. The straight line $O C$ bisects the angle $A O B$; prove that if $O D$ be any other straight line through O without the angle $A O B$, the sum of the angles $D O A$ and $D O B$ is double of the angle DOC.
5. The straight line $O C$ bisects the angle $A O B$; prove that if $O D$ be any other straight line through O within the angle $A O B$, the difference of the angles $D O A$ and $D O B$ is double of the angle $D O C$.
Construct an isosceles triangle, having given :
6. The vertical angle and one of the equal sides.
7. The base and one of the angles at the base.

Construct a right-angled triangle, having given :
8. The base and the perpendicular.
9. The base and the acute angle at the base.

Construct a triangle, having given :
10. The base and the angles at the base.

1. Two sides and the included angle.
(2. The nase, an angle at the base, and the sum of the other two sides.
2. The base, an angle at the base, and the difference of the other two sides.

PROPOSITION 24. Theorem.

If two triangles have two sides of the one respectively equal to two sides of the other, but the contained angles unequal, the base of the triangle which has the greater contained angle shall be greater than the base of the other.*

[^1]

Let $A B C, D E F$ be two triangles, having $A B=D E$, $A C=D F$, but $\angle B A C$ greater than $\angle E D F^{\prime}$:
it is required to prove $B C$ greater than $E F$.
At D make $\angle E D G=\angle B A C$;
cut off $D G=A C$ or $D F$, and join $E G$.
Bisect $\angle F D G$ by $D I I$, meeting $E G$ at $I I$; 1. 9 and, if F does not lie on $E G$, join $F H$.

$$
\text { In } \triangle \mathrm{s} A B C, D E G,\left\{\begin{aligned}
B A & =E D & & \text { Hyp. } \\
A C & =D(\vec{r} & & \text { Cms. } \\
\angle B A C & =\angle E D G ; & & \text { Const. }
\end{aligned}\right.
$$

$\therefore B C=E G$.
I. 4

$$
\text { In } \triangle \mathrm{s} F D H, G D I I,\left\{\begin{aligned}
F D & =G D \\
D H & =D H \\
-F D H & =-G D H
\end{aligned}\right.
$$

$\therefore F H=G H$. Const. Const.

Hence $E H+F I I=E I I+G I I=E G$.
But $E I+F H$ is greater than $E F^{\prime}$;
I. 20
$\therefore E G$ is greater than $E F$;
$\therefore B C$ is greater than $E F$.

1. $A B C$ is a circle whose centre is O. If $\angle A O B$ is greater than $\angle B O C$, prove that $A B$ is greater than $B C$.
2. In the same figure, prove that $A C$ is greater than $A B$ or $B C$.

3. $A B C D$ is a quadrilateral, having $A B=C D$,
but $\angle B C D$ greater than $\angle A B C$: prove that $B D$ is greater than $A C$.
4. $A B C$ is an isosceles triangle, having $A B=A C . A D$ drawn to the base $B C$ does not bisect $\angle A$; prove that D is at unequal distances from B and C.
5. Prove the proposition with the same construction as in the texi, but let $\triangle D E G$ fall on the other side of $D E$.

PROPOSITION 25. Theorem.

If two triangles have two sides of the one respectively equal to two sides of the other, but their bases unequal, the angle contained by the two sides of the triangle which has the greater base shall be greater than the angle cortained by the two sides of the other.

Let $A B C, D E F$ be two triangles, having $A B=D E$, $A C=D F$, but base $B C$ greater than base $E F$: it is required to prove $-A$ greater than $\angle D$.

If $\angle A$ be not greater than $: D$, it must be either equal to $\angle D$, or less than $\angle D$.
But $-A$ is not $=\angle D$, for then base $B C$ would be = base $E F$,

$$
\text { I. } 4
$$

which it is not.
Hyp.
And $\angle A$ is not less than $\angle D$, for then base $B C$ would be less than base $E F$,
I. 24
which it is not.
Hyp.
$\therefore \angle A$ must be greater than $\angle D$.
s. in the figure to the first deduction on I. 24, if $A B$ is greater than $B C$, prove that $\angle A O B$ is greater than $\angle B O C$.
2. $A B C D$ is a qualrilateral, having $A B=C D$, but the diagonal $B D$ greater than the diagoual $A C$; prove that $\angle D C^{\prime} B$ is greater than $\angle A B C$.
3. $A B C D$ is a quadrilateral, having $A B=C D$, but $\angle B C D$ greater than $\angle A B C$; prove that $\angle D A B$ is greater than $\angle A D C$.
4. $A B C D$ is a quadrilateral, having $A B=C D$, but $\angle D A B$ greater than $\angle A D C$; prove that $\angle B C D$ is greater than $\angle A B C$.
5. $A B C$ is a triangle, having $A B$ less than $A C . D$ is the middle point of $B C$, and $A D$ is joined; prove that $\angle A D B$ is acnte.
6. $A B C$ is an isosceles triangle, having $A B=A C$. D is any point such that $B D$ is greater than $D C$; prove that $A D$ does not bisect $\angle A$.
7. $A B C$ is a triangle, having $A B$ less than $A C$, and $A D$ is the median drawn from A; prove that G, any point in $A D$, is nearer to B than to C.

PROPOSITION 26. Theorem.

If two angles and a side in one trianyle lie resprectively equal to two angles and the corresponding side in another triangle, the two triangles shall be equal in cevery respect; that is,
(1) The remaining sides of the one triangle shall be equal to the remainin! sides of the wither.
(2) The thimb angles shall be equal.
(3) The areas of the two triangles shall be equal.

Case 1.

In $\triangle \mathrm{s} A B C, D F F$ let $\angle A B C=\angle D E F, \therefore A: \mathcal{B}$ $=\angle D F F$, and $B C-E F$:
it is required to prove $4 B=D E, A C=D Y \angle A=\angle D$, $\triangle A B C=\triangle D E F$.

If $A B$ be not $=D E E^{\prime}$, one of them mint ke t. e greater. Let $A B$ be the greater, and make $B G=D E$; and join $G C$.
In $\triangle \mathrm{s} G B C, D E F,\left\{\begin{array}{rr}G B=D E & \text { Const. } \\ B C=E F & \text { Hy/p. } \\ \angle B=\angle E ; & \text { Hyp. }\end{array}\right.$
$\therefore \therefore G C B=\angle D F E$.
But < $A C B=\angle D F E$;
I. 4.

Hyp.
$\therefore \angle C C B=\angle A C B$, which is impossible.
Hence $A B$ is not unequal to $D E$, that is, $A B=D E$.

$$
\begin{aligned}
& \text { Now in } \triangle \mathrm{s} A B C, D E F,\left\{\begin{array}{lr}
A B=D E & \text { Proved } \\
B C=E F & \text { Hyg. } \\
\angle B=-E ; & \text { Hyp. }
\end{array}\right. \\
& \therefore A C=D F, \therefore A=\angle D, \triangle A B C=\triangle D E F .
\end{aligned}
$$

Case 2.

In $\triangle \mathrm{s} A B C, D E F$ let $\angle B=\angle E, \angle C=\angle F$, and $A B=D E$:
it is required to prove $B C=E F, A C=D F, \angle B A C$ $=\angle E D F, \triangle A B C=\triangle D E F$.

If $B C$ be not $=E F$, one of them must be the greater.
Let $B C$ be the greater, and make $B H=E F$; and join $A H$.

Hence $B C$ is not uncqual to $E F$, that is, $B C=E F$.
$\therefore A C=D F, \angle B A C=\angle E D F, \triangle A B C=\triangle D E 1, \quad I .4$

1. Prove the first case of the proposition by sup.rpmsition.
2. The straight line that lisects the vertical aighle of an isnsceles triangle lisects the base, and is perpendicular to the base.
3. The straight line drawn from the vertical angle of an isoseeles triangle perpendicular to the base, bisects the base and the vertical angle.
4. Any print in the lisector of an angle is equidistant from the arms of the angle.
5. In a given straight line, find a joint such that the per pendiculars drawn from it to two other straight lines may be equal.
6. Throuch a given point, draw a straight line which shall be "quidistant from two nther given peinta.
7 'Tbrough a given point, daw' a straight line which shall form with two given intersecting straight lines an isosceles triangle.

PROPOSITION A. ThBorem.
If two sides of one triangle be respectirely equal to two sides of another triangle, and if the angles opposite to one pair of equal sides be equal, the angles opposite the other priir of equal sides shall either be equal or supplementary.
In $\triangle \mathrm{s} A B C, D E F$ let $A B=D E, A C=D F, \angle B=$ $\angle E$:
it is required to prove either $\angle C=\angle F$, or $\angle C+\angle F$ $=2 \mathrm{rt} .-\mathrm{s}$.
$\angle A$ is either $=\angle D$, or not. Case 1. When $\angle A=\angle D$,

In $\triangle \mathrm{s} A B C, D E F,\left\{\begin{array}{c}\angle A=\angle D \\ \angle B=\angle E \\ A B=D E ;\end{array}\right.$
Hyp.
$H_{y p}$.
$\therefore \triangle \mathrm{s} A B C, D E F$ are equal in all respects, and
$\angle C=\angle F$.
I. 26

Case 2.-When $\angle A$ is not $=\angle D$.

At D make $\angle E D G=\angle B A C$;

1. 23

and let $E F$, produced if necessary, meet $D(\dot{r}$ at G.

$$
\begin{aligned}
& \therefore A C=D G \text {, and } \angle C=-G \text {. } \\
& \text { I. } 26 \\
& \text { Now } A C=D F \text {; } \\
& \text { Hyp. } \\
& \therefore \quad D F=D G \text {; } \\
& \therefore \angle D F G=\angle D G F . \\
& \text { I. } 5 \\
& \text { But } \angle D F E \text { is supplementary to } \angle D F G \text {; } \quad 1.13 \\
& \therefore \angle D F E \text { is supplementary to } \angle D G F \text {, } \\
& \text { and consequently to } \angle C \text {. }
\end{aligned}
$$

Note.-It often happens that we wish to prove two triangles equal in all respects when we know only that two sides in the one are respectively equal to two sides in the other, and that the angles opposite one pair of equal sides are equal. In such a case, since the angles opprosite the other pair of equal sides may either be equal or supplementary, we must endeavour to prove that they cannot be supplementary. To do this, it will be suthicient to know either (1) that this pair are both acute angles,
or (2) that they are both obtuse angles,
or (3) that one of them is a right angle, since the other must then be a right angle whether it be equal or supplementary to it.

We can tell that this pair of angles must be both acute in certain cases.
(a) When the pair of angles given equal are both right angles.
(b) " " " " obtuse "
(c) " " equal sides opposite the gi"en angles are greater than the other pair of equal sides.

Hence the following important Corollary :

If the hypotenuse and a side of one right-angled triangle bo respectively equal to the hypotenuse and a side of another rightangled triangle, the triangles shall be equal in all respects.

PROPOSITION 27. Theorem.

If a straight line cutting two other straight lines make the aiternate angles equal to one another, the two straight lines shall be parallel.

Let $E F$, which cuts the two straight lines $A B, C D$, make $\angle A G H=$ the alternate $\angle G H D$:
it is required to prove $A B \| C D$.
If $A B$ is not \| $C D, A B$ and $C D$ being produced will meet either towards A and C, or towards B and D.
Let them be produced, and meet towards B and D at K.
Then $K G H$ is a triangle ;
\therefore exterior $\angle A G H$ is greater than the interior
opposite $\angle G H D$.
I. 16

But $_A G H=\angle G H D$; $H!/ j$. which is impossible.
$\therefore A B$ and $C D$, when produced, do not meet towards B and D.
Hence also, $A B$ and $C D$, when produced, do not meet towards A and C;
$\therefore A B$ is $\| C D$.
I. Def. 14

In the figure to 1.16 :

1. Prove $A B \| C F$.
2. Join $A F$, and prove $A F \| B C$.

In the figure to I . 2 S :
3. If $\angle A C E=\angle D H F$, prove $A B \| C D$.
4. If $\angle B G E=\angle C H F$, prove $A B \| C D$.
5. If $\angle A G E+\angle C H F=2 \mathrm{rt} . \angle \mathrm{s}$, prove $A B \| C D$.
6. If $\angle B G E+\angle D H F=2 \mathrm{rt} . \angle \mathrm{s}$, prove $A B \| C D$.
7. The opposite sides of a square are parallel.
8. The upposite sides of a thombns are parallel.
9. The quadrilateral whose diagonals bisect each other is a $\|^{2 a}$

PROPOSITION 28. Theorem.

If a straight line cutting tron other straighl lines make (1) an exterion angle equal to the interior oplusite amyle on the same side of the cutting line, or (2) the two interior anyles on the same side of the cutting line toyether rqual to turo right amyles, the two straight lines shall be parallel.

Case 1.
Let $E F$, which cuts the two straight lines $A B, C D$, make the exterior $\angle E G B=$ the interior opposite $\angle G H D$: it is required to proce $A B \| C D$.

Because $\angle \boldsymbol{L} G B=\angle G H D$,

and $\angle E G B=\angle A G H$, being rertically opposite;
 I. 15

$\therefore \angle A G H=\angle G H D$;
and they are alternate angles;
$\therefore A B$ is $\| C D$.
I. 27

Case 2.

Let $E F$, which cuts the two straight lines $A B, C D$, make $\angle B G H+\angle G H D=2 \mathrm{rt} . \angle \mathrm{s}:$
it is required to prove $A B \| C D$.
Because $\angle B G H+\angle G H D=2$ rt. $\angle \mathrm{s}$, Hyp.
and $\quad \angle A G H+\angle B G H=2$ rt. $\angle \mathrm{s} ; \quad$ I. 13
$\therefore \angle A G I I+\angle B G H=\angle B G H+\angle G H D$.
From these equals take $\angle B G H$, which is common;
$\therefore \therefore A G H=\angle G H D$;
I. $A x .3$
and they are alternate angles;
$\therefore A B$ is $\| C D$.
I. 27

Cor.-Straight lines which are perpendicular to the same straight line are parallel.

1. If $\angle B G E+\angle D H F=2 \mathrm{rt} . \angle \mathrm{s}$, prove $A B \| C D$.
2. If $\angle A G E+\angle C H F=2$ 1. $\angle \mathrm{s}$, prove $A B \| C D$.
3. If $\angle A G E=\angle D H F$, prove $A B \| C D$.
4. If $\angle B G E=\angle C H F$, prove $A B \| C D$.
5. The opposite sides of a square are parallel.
6. $A B C D$ is a quadrilateral having $\angle A$ and $\angle B$ supplementary, as well as $\angle B$ and $\angle C$; prove that it is a $\prod^{\text {ra }}$.

PROPOSITION 29. Theorem.

If a straight line cut two parallel straight lines, it shall makie (1) the alternate angles equal to one another; (2) any exterior angle equal to the interior opposite anyle on the same side of the cutting line; (3) the two interior anyles on the same side of the cutting line equal to two right angles.

Let $E F$ cut the two parallel straight lines $A B, C D$: it is required to prove:
(1) $\angle A G I I=$ alternate $\angle G H D$;
(2) exterior $\angle E G B=$ interior opposite $\angle G H D$;
(3) $\angle B G H+\angle G H D=2 r t . \angle s$.
(1) If $\angle A G H$ be not $=\angle G H D$, make $\angle K G H=$ $\angle G H D$, I. 23
and produce $K G$ to L.
Because $\angle K G H=$ alternate $\angle G I T D$,
Const.
$\therefore K L \| C D$.
But $A B$ is also $\| C D$;
(Hyp).
$\therefore A B$ and $K L$, which cut one another at G, are both $\| C D$, which is impossible.
I. A.x. 11
$\therefore \angle A G I I$ is not unequal to $\angle G H D$;
$\therefore \angle A G I F=\angle G I I D$.
(2) Because $-A(i H=-(; H D)$, Proved
and $\angle A G I I=\angle E G B$, being vertically opposite ; $I .15$
$\therefore \quad \angle E G B=\angle G I I D$.
(3) Because $\angle A G H=\angle G H D$;

Proved
to each of these equals add $-B G ; I$;
$\therefore \angle A G H+\angle B G H=\angle B G H+\angle G H D . \quad I . A x .2$
But $\angle A G I I+\angle B G H=2 \mathrm{rt} . \angle \mathrm{s} ;$
I. 13
$\therefore \angle B G H+\angle G H I=2 \mathrm{rt} . \angle \mathrm{s}$.

Cor.-If a straight line meet two others, and make with them the two interior angles on one side of it together less than two right angles, these two other straight lines will, if produced, meet on that side.

Let $K L$ and $C D$ meet $E F$ and make $\angle K G H+\angle C H G$ less than $2 \mathrm{rt} . \angle \mathrm{s}$:
it is required to prove that $K G$ and CH will, if produced, meet toocards K and C.

If not, $K L$ and $C D$ must either be parallel, or meet towards L and D.
(1) $K L$ and $C D$ are not parallel ;
for then $\angle K G H+\angle C H G$ would be $=2 \mathrm{rt} . \angle \mathrm{s}$. I. 29
(2) $K L$ and $C D$ do not meet towa ds L and D;
for then $\angle \mathrm{s} L G H, D H G$ would form angles of a triangle,
and would \therefore be together less than $2 \mathrm{rt} . \angle \mathrm{s}$. I. 1 i
Now since the four Ls KGH, CHG, LGH, DHG are together $=4 \mathrm{rt} . \angle \mathrm{s}$,
I. 13
and the first two are less than $2 \mathrm{rt} . \angle \mathrm{s}$;
Нур.
\therefore the last two must be greater than $2 \mathrm{rt} . \angle \mathrm{s}$.
Hence $K L$ and $C D$ must meet towarls K and C.
[This Cor. is the converse of I. 17.]

1. In the diagram to I. 28 , if $A B$ is $\| C D$, prove $\angle A G E=\angle D H F$, and $\angle B G E+\angle D H F=2 \mathrm{rt} . \angle \mathrm{s}$.
2. If a straight line be perpendicular to one of two parallels, it is also ρ erpendicular to the other.
3. A straight line drawn parallel to the base of an isosceles triangle, and meeting the sides or the sides produced, forms with them another isosceles triangle.
4. If the arms of one angle be respectively parallel to the arms of another angle, the angles are either equal or supplementary. Distinguish the cases.
5. Is it always true that if two angles be equal, and an arm of the one is parallel to an arm of the other, the other arms must be parallel?
6. If any straight line joining two parallels be bisected, any other straight line drawn throngh the point of bisection and terminated by the parallels will be bisected at that point.
7. The two straight lines in the last deluction will intercept equa: portions of the parallels.
8. If through the vertex of an isosceles triangle a parallel be drawn to the base, it will bisect the exterior vertical angle.
9 . If the bisector of the exterior vertical angle of a triangle be parallel to the base, the triangle is isosceles.
9. The rliagonals of a 1 ml hisect each other.
10. Prove that ly the following constraction $\angle A C B$ is bisectad : In $A C$ take any point 1 ; draw 1$) E \prime \perp A\left('\right.$ and meeting $C^{\prime} B$ at E. From E draw $E F \perp D E$ and $=E C$; join $C F$.

PROPOSITION 30. Tiforem.

Straight lines whirk are parulld to the same straight line are purallel to one another.

Let $A B$ and (1) be each of them $\| E F$:
it is requireal to prore $A B \| C D$.
If $A B$ and $C D$ be not parallel, they will meet if produced ; and then two straght lines which intersect each other will both be $\|$ the stme straight line, which is impussible.
I. $A x .11$
$\therefore A B$ is $\| C^{\prime} D$.

1. Two |rna are situated either on the same side or on different sides of a common base. Prove that the sides of the $\|^{\mathrm{ma}}$ which are opposite the common base are \| each other.
2. Prove the proposition in Fuclid's manuer ly drawing a straight line $G 1 / K$ to cut $A D, C D$, and $L F$. and applying I. 29, 27.

PROPOSITION 31. Problem.

Through a given point to draw a straight line parallel to a giren straight line.

Let, A be the given point, and $B C$ the given straight line: it is requireal to clraw through A astruight line $\| B C$.

In $B C$ take any point D, and join $A D$;
at A make $\angle D A E=\angle A D C$;
I. 23
and produce $E A$ to F. $E F$ shall be $\| B C$.
Because the alternate $\angle s E A D, A D C$ are equal,
$\therefore E F$ is $\| B C$.
I. 27

1. Give another construction for the proposition by means of I. 12, 11 , and a proof by means of I . 2 S .
2. Through a given point draw a straight line making with a given straight line an angle equal to a given angle.
3. Through a given point draw a straight line which shall form with two given intersecting straight lines an isosceles triangle.
4. Through a given point draw a straight line such that the part of it intercepted between two parallels may be equal to a given straight line. May there be more than one solution to this problem? Is the problem ever impossible?

PROPOSITION 32. Theorem.

If a side of a triungle be produced, the exterior angle is equal to the sum of the two interior opposite angles, and the sum of the three interior angles is equal to two right angles.

Let $A B C$ be a triangle having $B C$ produced to D :
it is required to prove $(1) \angle A C L)=-A+\angle B$;

$$
\text { (2) } \angle A+\angle B+\angle A C B=2 \mathrm{rt} . \angle \mathrm{s} \text {. }
$$

Through C draw $C E \| A B$.
I. 31
(1) Because $A C$ meets the parallels $A B, C E$,
$\therefore \angle A=$ alternate $\angle A C E$.
I. 29

Because $B D$ meets the parallels $A B, C E$,
\therefore interior $\angle B=$ exterior $\angle E C D$;
I. 29
$\therefore \angle A+\angle B=\angle A C E+\angle E C D$,

$$
=\angle A C D
$$

(2) Because $\angle A+\angle B=\angle A C D$;

Proved adding $\angle A C B$ to each of these equals,

$$
\begin{aligned}
& \therefore \angle A+\angle B+\angle A C B=\angle A(D)+\angle A C B, \\
&=2 \mathrm{rt} . \angle \mathrm{S} \\
& \text { I. } 13
\end{aligned}
$$

Cor. 1.-If two triangles have two angles of the one respectively equal to two angles of the other, they are mutnally equiangular.

For the third angles differ from $2 \mathrm{rt} . \angle \mathrm{s}$ by equal amounts;
\therefore the third angles are equal.
Cor. 2.-Theinterior angles of a quadrilateral are equal to four right angles.

For the quadrilateral $A B C D$ may be divided into two triangles by joining $A C$; and the six angles of the two $\triangle s A B C$, $A C^{\prime} D=4 \mathrm{rt} . \angle \mathrm{s}$.

But the six angles of the two triangles $=$ the interior angles of the quadrilateral ;
\therefore the interior angles of the quadrilateral $=4 \mathrm{rt} .<\mathrm{s}$.
Cor. 3.-A five-sided figure may be divided into three (that is, 5-2) triangles by drawing straight lines from one of its angular points. Similarly, a six-sided figure may be divided into four (that is, 6 - 2) triangles ; and generally a figure of n
 sides may be divided into $(n-2)$ triangles.

Hence, by a proof like that for the quadrilateral, the interior $\angle \mathrm{s}$ of a five-sided figure $=6 \mathrm{rt}-$.s ; " " six-sided " $=8 \mathrm{rt} . \angle \mathrm{s}$; and
" " figure with n sides $=(2 n-4) \mathrm{rt} . \quad-\mathrm{s}$.

1. If an isosceles triangle be right-angled, each of the base angles is half a right angle.
2. If two isosceles triangles have their vertical angles equal, they are mutually equiangular.
3. If one angle of a triangle be equal to the sum of the other two, it must be right.
4. If one angle of a triangle be greater than the sum of the other two, it must be obruse.
5. If one angle of a triangle be less than the sum of the other two, it must be acute.
6. Divide a right-angled triangle into two isosceles triangles.
7. Hence show that the middle point of the hypotenuse of a rightangled triangle is equidistant from the three vertices.
8. Hence also, devise a method of drawing a perpendicular to given straight line from the end of it without producing the straight line.
9. Each angle of an equilateral triangle is two-thirds of a right angie
10. Hence show how to trisect * a right angle.

[^2]11. Prove the second part of the proposition by drawing through A a straight line $D A E \| B C$. '(The Pythagorean proof.)
12. If any of the angles of an isosceles triangle be two-thirds of a right angle, the triangle must be equilateral.
13. Jach of the base angles of an isosceles triangle equals half the exterior vertical angle.
14. If the exterior vertical angle of an isosceles triangle be bisected, the bisector is || the base.
15. Show that the space round a point can be filled up with six equilateral triangles, or four squares, or three regular hexagons.
16. Can a right angle be divided into any other number of equal parts than two or three?
17. In a right-angled triangle, if a perpendicular be drawn from the right angle to the hypotenuse, the triangles on each side of it are equiangular to the whole triangle and to one another.
1s. Prove the seventh deduction indirectly; and also directly by prolucing the median to the hypotenuse its own length.
19. If the arms of one angle be respectively prerpendicular to the arms of another, the angles are either equal or supplementary.
20. Prove Cor. 3 by taking a point inside the figure and joining it to the angular points.

PROPOSITION 33. Theorem.

The straight lines which join the ends of two equat and parallel struisht lines towards the same parts, are themselees equal and parallel.

Let $A B$ and $C D$ be equal and parallel :
12 is required to prove $A C$ end $B D$ equal and parallel.
Join IBC.
Because $B C$ meets the parallels $A B, C D$,
$\therefore \angle A B C=$ alternate $-I .29$

$$
\text { In } \triangle \mathrm{s} A B C, D C B,\left\{\begin{aligned}
A B & =D C & & \text { Hyp. } \\
B C & =C B & & \text { Proved }
\end{aligned}\right.
$$

$\therefore A C=D B, \angle A C B=\angle D B C$.
I. 4

Because $C B$ meets $A C$ and $B D$, and makes the alternate $\angle \mathrm{s} A C B, D B C$ equal;

Proved
$\therefore A C$ is $\| B D$. I. 27

1. State a converse of this proposition.
2. If a quadrilateral have one pair of opposite sides equal and parallel, it is a $\mid{ }^{\mathrm{m}}$.
3. What statements may be made about the straight lines which join the ends of two equal and parallel straight lines towards opposite parts?

PROPOSITION 34. Theorem.

A parallelogram has its opposite sides and angles equal, and is bisected by either diagonal.

Let $4 C D B$ be a $\|^{\mathrm{m}}$ of which $B C$ is a diagonal :
it is iequired to prove that the opposite sirles and angles of $A C D B$ are equal, and that $\triangle A B C=\triangle D C B$.

Because $B C$ meets the parallels $A B, C D$,
$\therefore-A B C=$ alternate $\angle D C B$;
I. 29
and because $B C$ meets the parallels $A C, B D$,
$\therefore \angle A C B=$ alternate $\angle D B C$.
I. 29

In $\triangle \mathrm{s} A B C, D C B,\left\{\begin{aligned}-A B C & =-D C B & & \text { Proved } \\ -A C B & =\angle D B C & & \text { Proved } \\ B C & =C B ; & & \end{aligned}\right.$

$\therefore A B=D C, A C=D B,-B A C=-C D I ;$
$\triangle A B C=\triangle I C B$.
Again heeause $\angle A B C$ was prowird $=-D C B$,
and $\quad \leq D B C$ was proved $=\angle A C B$;
I. 29
\therefore the whole $\angle A B D=$ the whole $\angle D C A$.
Cor.-If the arms of one angle he respectively parallel to the arms of another, the angles are either (1) enual or (2) supplementary.
For (1) $\angle B A C$ has heen proved $=\angle C D B$; and (2) if $B A$ be produced to E,
$\angle E A C$, which is supplementary to $\angle B A C$, must be supplementary to $\angle C D B$.

1. If two sides of a $\|^{\mathrm{m}}$ which are nut opposite to each other be equal, all the sides are equal.
2. If two angles of a $\|^{m}$ which are not opposite to each other be equal, all the angles are right.
3. If one angle of a $\|^{m}$ be right, all the angles are right.
4. If two $\|^{\mathrm{ms}}$ have one angle of the ond = one angle of the other, the $\|^{m \mathrm{~mm}}$ are mutually equiangular.
5. If a quadrilateral have its opposite sides equal, it is a $\| \mathrm{m}$.
6. If a quadrilateral have its opposite angles equal, it is a $\|^{m}$.
7. If the diagonals of a $\|^{\text {mu }}$ be equal to each other, the $\|^{\mathrm{m}}$ is a rectangle.
S. If the diagonals of a $\|^{m}$ hisect the angles through which they pass, the $\|^{m}$ is a rhombus.
?. If the diagonals of a $\|^{m}$ cut cach other perpendicularly, the $\|^{m}$ is a riombua.
In If the dingonals of a 1 mm be equal and cut each other perpendicularls, the lim is a square.
8. Show how to bisect a straight liue by means of a pair of paralled rulers
9. Every straight line drawn through the intersection of the diagonals of $a \|^{m}$, and terminated by a pair of opposite sides, is bisected, and bisects the $\|^{\mathrm{m}}$.
10. Bisect a given $\|^{m}$ by a straight line drawn through a given point either within or without the $\|^{m}$.
11. The straight line joining the middle points of any two sides of a triangle is \| the third side and = half of it.
12. If the middle points of the three sides of a triangle be joined with each other, the four triangles thence resulting are equal.
13. Construct a triaugle, having given the middle points of its three sides.

PROPOSITION 35. Theorem.

Parallelograms on the same base and between the same parallels are equal in area.

Let $A B C D, E B C F$ be $\|^{\text {ns }}$ on the same base $B C$, and between the same parallels $A F, B C$:
it is required to prove $\left\|^{\mathrm{m}} A B C D=\right\|^{\mathrm{m}} E B C F$.
Because $A F$ meets the parallels $A B, D C$,
\therefore interior $\angle A=$ exterior $\angle F D C$;
I. 29
and because $A F$ meets the parallels $E B, F C$,
\therefore exterior $\angle A E B=$ interior $\angle F$.
I. 29

$$
\begin{aligned}
& \text { In } \triangle \mathrm{s} A B E, D C F,\left\{\begin{array}{rlr}
\angle E A B=\angle \dot{F} D C & \text { Proved } \\
\angle A E B & =\angle D F C & \text { Proved } \\
A B & =D C ; & \text { I. } 34
\end{array}\right. \\
& \therefore \triangle A B E=\triangle D C F .
\end{aligned}
$$

Hence quadrilateral $A B C F-\triangle A B E$
$=$ quadrilateral $A B C F-\triangle D C F$;

$$
\left\|^{\mathrm{m}} E B C F=\right\|^{\mathrm{m}} A B C D .
$$

Note.-This proposition affords a means of measuring the area of $\mathrm{a} \|^{\mathrm{m}}$; thence (by I. 34 or 41) the area of a triangle ; and thence (by 1. 37, Cor.) the area of any rectilineal figure. For the area of any $\|^{m u}=$ the area of a rectangle on the same base and hetween the same parallels ; and it is, or ouglit to be, explained in books on Mensuration, that the area of a rectangle is found by taking the product of its length and breadth. 'This phrase 'taking the product of its length and breadith,' means that the numbers, whether integral or not, which express the jongth and breadth in terms of the same linear mait, are to be amaltiplied together. Hence the method of
 altitude, the altitude being defined to be the perpendicular drawn to its base from any point in the side opposite.

1. Prove the proposition for the case when the points D and E coincide.
2. Equal $\|^{m a}$ on the same base and on the same side of it are between the same parallels.
3. If through the vertices of a triangle straight lines he drawn || the opposite sides, and produced till they meet, the resulting figure will contain three equal ||ms.
4. On the same base and between the same parallels as a given $\| m$, construct a rhombins $=$ the $\|^{\mathrm{m}}$.
5. Prove the equality of $\triangle \mathrm{s} A B E$ and $D C F$ in the proposition by I. 4 (as Euclid does), or by I. 8, instead of hy I. 26.

PROPOSLIION 36. Throrem.

Parallelogram.s on equal bases and between the same parallels ari equal in arca.

Let $A B C D, E F F\left(i l l\right.$ be $\|^{m s}$ or equal bases $B C, F G$, and batween the same parallels, $A H$, $(6$: it is required to prove $\left\|^{\mathrm{m}} A B C D-\right\| \mathrm{m}^{\mathrm{m}} E \mathrm{EGH}$.

Join BE, CH.
Because $B C=F G$, and $F G=E H$,
Hyp., I. 34
$\therefore B C=E H$.
And because $B C$ is $\| E H$,
$\therefore E B$ is $\| H C$;
I. 33
$\therefore E B C H$ is a $\|^{m}$.
I. Def. 33

Now $\left\|^{\mathrm{m}} A B C D=\right\|^{\mathrm{m}}$ EBCII, being on the same base $B C$, and between the same parallels $B C, A H$; I. 35 and $\left\|^{\mathrm{m}} E F G H=\right\|^{\mathrm{m}} E B C H$, being on the same base $E \cdot H$, and between the same parallels $E H, B G$;
I. 35
$\therefore\left\|^{\mathrm{m}} A B C D=\right\|^{\mathrm{m}} E F G H$.

1. Prove the proposition by joining $A F, D G$ instead of $B E, C H$.
2. Divide a given $\|^{\mathrm{m}}$ into two equal $\|^{\mathrm{ms}}$.
3. In how many ways may this be done?
4. Of two $\|^{\mathrm{ms}}$ which are between the same parallels, that is the greater which stands on the greater base.
5. State and prove a converse of the last deduction.
6. Equal $\|^{m i s}$ situated betweon the same parallels have equal bases.

PROPOSITION 37. Throrem.

Triangles on the same base and between the same parallels are equal in area.

Let $A B C, D B C$ be triangles on the same base $B C$, and between the same parallels $A D, B C$:
it is required to prove $\triangle A B C=\triangle D B C$,

Through B draw $B E \| A C$, and through C draw $C F$ || $B D$;
and let them meet $A D$ produced at E and F.
Then $E B C A, D B C F$ are $\|^{\mathrm{ms}}$;
and $\left\|^{m} E B C A=\right\|^{m} D B C F$, being on the same base $B C$, and between the same parallels $B C, E F$.
But $\triangle A B C=$ half of $\|^{m} E B C A$, I. 34 and $\triangle D B C=$ half of $\|^{m i} D B C F^{\prime}$;
$\therefore \triangle A B C=\triangle D B C$.
Cor.-Hence any rectilineal figure may be converted into an equivalent triangle.

Let $A B C D E$ be any rectilineal figure : it is required to convert it into an equivalent triangle.

Join $A C, A D$;
through B draw $B F^{\prime} \| A C$, through E draw $E G \| A D, \quad I .31$ and let them meet $C D$ proluced at F and G.
Join $A F^{\prime}, A G$. $A F G$ is the required triangle.

For $\triangle A F C=\triangle A B C$, and $\triangle A G D=\triangle A E D ; I .37$
$\therefore \triangle A F C+\triangle A C D+\triangle A G D=\triangle A B C+\triangle A C D$
$+\triangle A E D$.
$\therefore \triangle A F G=$ figure $A B C D E$.

1. $A B C$ is any triangle; $D E$ is drawn \| the base $B C$, and meets $A B, A C$ at D and $E ; B E$ and $C D$ are joined. Prove $\triangle D B C=\triangle E B C, \triangle B D E=\triangle C E D$, and $\triangle A B E=\triangle A C D$.
2. $A B C D$ is a quadrilateral having $A B \| C D$; its diagonals $A C$, $B D$ meet at O. Prove $\triangle A O D=\triangle B O C$.
3. In what case would no construction be necessary for the proof of this proposition?
4. Convert a quadrilateral into an equivalent triangle.
5. $A B C$ is any triangle, D a point in $A B$; find a point E in $B C$ produced such that $\triangle D B E=\triangle A B C$.

PROPOSITION 38. Theorem.

Triangles on equal bases and between the same parallels are equal in area.

Let $A B C, D E F$ be triangles on equal bases $B C, E F$, and between the same parallels $A D, B F$:
it is required to prove $\triangle A B C=\triangle D E F$.
Through B draw $B G \| A C$, and through F draw FH\|DE;
I. 31 and let them meet $A D$ produced at G and H.

Then $G B C A, D E F H$ are $\|^{\mathrm{ms}}$; and $\left\|^{\mathrm{mm}} G B C A=\right\|^{\mathrm{m}} D E F H$, being on equal bases $B C, E F_{\gamma}$

and between the same parallels BF, GIII.
I. 36

But $\triangle A B C=$ half of $\|^{m} G B C A$,
I. 34
and $\triangle D E F=$ half of $\|^{m} D E F H$;
I. 34
$\therefore \triangle A B C=\triangle D E F$.
Cor.-The straight line joining any vertex of a triangle to the middle point of the opposite side bisects the triangle. Hence the theorem: If two triangles have two sides of the one respectively equal to two siles of the other and the contained angles supplementary, the tri ngles are equal in area.

1. Of two triangles which are between the same paraliels, that is the greater which stands on the greater base.
2. State and prove a converse of the last deduction.
3. Two triangles are between the same parallels, and the lase of the first is double the base of the second; prove the first triangle double the second.
4. The four triangles into which the diagonals divile a $\|^{\mathrm{m}}$ are equal.
5. If one diagonal of a quadrilateral bisects the other diagonal, it also bisects the quadrilateral.
6. $A B C D$ is $\|^{n}$; E is any point in $A D$ or $A D$ produced, and F any point in $B C$ or $B C$ produced; $A F, D F, B E, C E$ are joined. Prove $\triangle A F D=\triangle B E C$.
7. $A B C$ is any triangle; L and K are the middle points of $A B$ and $A C ; B K$ and $C L$ are drawn intersecting at G, and $A G$ is joined. Prove $\triangle B G C=\triangle A G C=\triangle A G B$.
8. $A B C I)$ is a $\|^{m}$; P is any point in the diagonal $B D$ or $B D$ produced, and $P A, P^{\prime} C$ are joined. Prove $\triangle P A B=\triangle P^{\prime} C B$, and $\triangle P A D=\triangle P C D$.
9. Bisect a triangle by a straight line drawn from a given point in one of the sides.

PROPOSITION 39. Theorem.

Equal triangles on the same side of the same base are hetwoen the same parallels.

Let $\triangle \mathrm{s} A B C, D B C$ on the same side of the sa" te basc $B C$ be equal, and let $A D$ be joined : it is required to prove $A D \| B C$.

If $A D$ is not $\| B C$, through A draw $A E \| B C$ I. 31 meeting $B D$, or $B D$ produced, at E, and join $E C$.

Then $\triangle A B C=\triangle E B C$. I. 37

But $\triangle A B C=\triangle D B C ;$

Нур.
\therefore
$\triangle E B C=\triangle D B C ;$
which is impossible, since the one is a part of the other.
$\therefore A D$ is $\| B C$.

1. The straight line joining the middle points of two sides of a triangle is || the third side, and = half of it.
2. Hence prove that the straight line joining the middle point of the hypotenuse of a right-angled triangle to the opposite vertex = half the hypotenuse.
3. The middle points of the sides of any quadrilateral are the vertices of a im, whose perimeter $=$ the sum of the diagonals of the quadrilateral. Wheu will this $\|^{\mathrm{m}}$ be a rectangle, a rhombus, a square?
4. If two equal triangles be on the same base, but on opposite sides of it, the straight line which joins their vertices will be bisected by the base.
5. Use the first deduction to solve I. 31.
6. In the figure to I. 16, prove $A F \| B C$.
7. If a quadrilateral. be bisected ly each of its diagonals, it is a $\|$.".
8. Divide a given triangle into four triangles which shall be equal in every respect.

PROPOSITION 40. Theorem.

Equal triangles on the sane side of equal bases which are in the same straight line are between the same parallels.

Let $\triangle \mathrm{s} A B C, D E F$, on the same side of the equal bases $B C, E F$, which are in the same straight line $B F$, be equal, and let $A D$ be joined :
it is required to prove $A D \| B F$.
If $A D$ is not $\| B F$, through A draw $A G \| B F, \quad I .31$ meeting $D E$, or $D E$ produced, at G, and join $G F$.

Then $\quad \triangle A B C=\triangle G E F$.
I. 38

But
$\triangle A B C=\triangle D E F ;$ Hyp.
$\therefore \quad \triangle G E F=\triangle D E F ;$
which is impossible, since the one is a part of the other.
$\therefore A D$ is $\| B F$.

1. Prove the proposition by joining $A E$ and $A F$.
2. Prove the proposition by joining $D B$ and $D C$.
3. Any number of equal triangles stand on the same side of equal b 'es. If their bases be in one straight line, their vertices will also be in one straight line.
4. Equal triangles situated between the same parallels have equal bases.
5. Trapeziums on the same base and between the same parallels are equal if the sides opposite the common base are equal.
6. The inedian from the vertex to the base of a triangle biseots every parallel to the base.
7. Hence devise a method of bisecting a given straight line.

PROPOSITION 41. THEOREM.

If a parallelogram and a triangle be upon the same base ard between the same parallels, the parallelogram shall be double of the triangle.

Let the $\|^{\mathrm{m}} A B C D$ and the $\triangle E B C$ be on the same base $B C$, and between the same parallels $A E, B C$:
it is required to prove $\|^{\mathrm{m}} A B C D=$ twice $\triangle E B C$.
Join AC.
Then

$$
\begin{aligned}
\triangle A B C & =\triangle E B C . & & \text { I. } 37 \\
\|^{\mathrm{m}} A B C D & =\text { twice } \triangle A B C ; & & \text { I. } 34 \\
\|^{\mathrm{m}} A B C D & =\text { twice } \triangle E B C . & &
\end{aligned}
$$

But
\therefore

1. Prove the proposition by drawing through C a parallel to $B E$.
2. If a $\|^{m}$ and a triangle be on equal bases and between the same parallels, the $\|^{\mathrm{m}}$ shall be double of the triangle.
3. $\mathrm{A} \mathrm{Im}^{\mathrm{m}}$ and a triangle are equal if they are betreen the same parallels, and the base of the triangle is double that of the $\|^{\mathrm{m}}$.
4. State and prove a converse of the last deduction.
5. If from any point within a $\|^{m}$ straight lines be drawn to the ends of two opposite sides, the sum of the triangles on these sides shall be equal to half the $\|^{\mathrm{m}}$. Is the theorem true when the point is taken outside? Examine all the cases.
6. $A B C D$ is any quadrilateral, $A C$ and $B D$ its diagonals. A $\|^{\text {ra }}$ $E F G H$ is formed by drawing through A, B, C, D parallels to $A C$ and $B D$. Prove $A B C D=$ half of $E F G H$.
7. Hence, show that the area of a quadrilateral = the area of a triangle which has two of its sides equal to the diagonals of the quadrilateral, and the included angle equal to either of
the angles at which the diagonals intersect; and that twe quadrilaterals are equal if their diagonals are equal, and also the angles at the intersection of the diagonals.

PROPOSITION 42. Problem.

To describe a parallelorram that shall be equal to a givess triangle, und hare one of its angles equal to a given angle.

Let $A B C$ he the given triangle, and D the given angle : it is required to describe a $\|^{\text {m }}$ cquel to $\triangle A B C$, and huring one of itw cmyles equal to $\angle D$.

Bisect BC at E;
I. 10
and at E make $\angle C E F=\angle D$.
I. 23
'Through A Jraw $A C \cdot \| B C$ '; through C draw $C G \| F F$. I. 31 PECG ${ }^{\prime}$ is the $\|^{m}$ required.
Join $A E$.
The figure $F \overrightarrow{F C G}$ is a $\|^{\text {m }}$;
I. Def. 33
and $\|^{\text {m }}$ FiECG $=$ twice $\triangle A E C$.
But ince $\triangle A B E=\triangle A E C$,
I. 38
$\therefore \quad \triangle A B C=$ twice $\triangle A B C$;
$\therefore \quad\left\|\|^{\prime n} F^{\prime} C_{i}^{\prime}=\triangle A B C_{0}^{\prime}\right.$
and \angle ©'F:F' was made $=\angle 1$).

1. Describe a rectangle equal to a given ciangle.
2. Describe a triangle that sha" be eq, al to a given ${ }^{1 m}$, and have one of its angles equal to a given angle.
3. On the same base as a $\|_{\mathrm{m}}^{\mathrm{m}}$ cons, ruct a right-angled triangle $=$ the $\|^{m}$.
4. Custruct a rhon. ous $=$ a given triangle.

PROPOSITION 43. Theorfan.

The complements of the parallelograms which are about a diagonal of any parallelogram are equal.

Let $A B C D$ be a $\|^{\mathrm{m}}$, and $A C$ one of its diagonals; let $E H, G F$ be $\|^{\text {ms }}$ about $A C$, that is, through which $A C$ passes, and $B K, K D$ the other $\|^{\text {mas }}$ which fill up the figure $A B C D$, and are therefore called the complements:
it is requirel to prove complement $B K=$ complement $K D$.
Because $E H$ is a $\|^{\mathrm{m}}$ and $A K$ its diagonal,
$\therefore \quad \triangle A E K=\triangle A H K$. I. 3it

Similarly $\quad \triangle K G C=\triangle K F C$; I. 34
$\therefore \triangle A E K+\triangle K G C=\triangle A H K+\triangle K F C$.
But the whole $\triangle A B C=$ whole $\triangle A D C$; I. 34
\therefore the remainder, complement $B K=$ the remainder, complement $K \nu$.

1. Name the eight $\| \mathrm{ms}$ into which $A B C D$ is divided by $E F$ and $G H$, and prove that they are all equangular to $\|^{m} A B C D$.
2. Prove $\left\|^{\mathrm{m}} A G_{\gamma}^{r}=\right\|^{\mathrm{ra}} E D$, and $\eta^{\mathrm{m}} B F=\|^{\mathrm{m}} D \sigma^{\prime}$.
3. If a point K be taken inside a $\| \mathrm{m} A B C D$, and through it parallels be drawn to $A B$ and $B C$, and if $\left\|^{m} B K=\right\|^{m} K D$, the diagonal $A C_{\text {passes through } K \text {. (Converse of I. 43.) }}^{\text {r }}$
4. Each of the ma ahout a diagonal of a rhombus is itself a rhombus.
5. Each of the 䍜 about a diagonal of a square is itself a square.
6. Eachinf the jux about a sfuare's diagonal produced is itself a square.
7. When are the complements of the \|me about a diagonal of any $h^{\text {ta }}$ equal in every respect ?

PROPOSITION 44. Problem.

On a given straight line to describe a parallelogram whioh shall be equal to a given triangle, and huve one of its angles equal to u given anyle.

Let $A B$ be the given straight line, C the given triangle, and D the given angle:
it is required to clescribe on $A B$ a $\|^{\mathrm{m}}=\triangle C$, unch having an anyle $=\angle D$.

Describe the $\|^{\mathrm{m}} B E F G=\triangle C$, and laving $\angle E B G=$ $\angle D$; and let it be so placel that $B E$ may be in the same straight line with $A B$. I. 42

Through A draw $A H \| B G$ or $E F$, I. 31 and let it meet $F(G$ produced at $1 I$; join $I I l$.

Because $H F$ meets the parallels $A I I, E F$,
$\therefore \angle A H F+\angle M F E=2$ r.t. $\angle \mathrm{s}$;
$\therefore \angle B H F+\angle H F F$ is less than 2 rt. $\angle s$;
$\therefore H B, F E$, if prohuced, will meet towads $B, E . I .29$, Cor. Let them lee jrulueed and meet at K° : through K d daw Kl $\| E$ EA or FUt, and prodnce $M A, ~ V i l 3$ to L and M. ABMLL is the $\|^{\mathrm{m}}$ required.
For $H H L K$ is a $\|^{\mathrm{m}}$, of which $H K$ is a diagonal, and $A G, M E$ are $\|^{\mathrm{mm}}$ about $H K^{\prime}$;
\therefore complement $B L=$ complement $B F$, I. 43

$$
=\triangle C .
$$

And $\quad \angle A B M=\angle E B G, \quad$ I. 15 .

1. On a given straight line describe a rectangle equal to a given triangle.
2. On a given straight line describe a triangle equal to a given $\|^{m}$, and having one of its angles equal to a given angle.
3. On a given straight line describe an isosceles triangle equal to a given $\|^{m}$.
4. Cut off from a triangle, by a straight line drawn from one of the vertices, a given area.

PROPOSITION 45. Problem.

To describe a parallelogram equal to any given rectilineal figure, and having an angle equal to a given angle.

Let $A B C D$ be the given rectilineal figure, E the given angle :
it is required to describe a $\|^{\mathrm{m}}=A B C D$, and luving an angle

$$
=\angle E .
$$

Join $B D$, and describe the $\|^{m} F H=\triangle A B D$, and having $\angle K=\angle E$;
on $G H$ describe the $\|^{m} G M=\triangle B C D$, and having
$\angle G H M=\angle E$.
I. 44 $F K M L$ is the $\|^{\mathrm{m}}$ required.

Because $\angle K=\angle C H M$, since each $=\angle E$;
to each of these equals all \llcorner C $/ I K$;
$\therefore \quad \angle K+\angle i \| K=\angle(i l M H+\angle l \| K$.
lint $\angle K+\angle$ (il MK $=2$ rt. $\angle s ;$
$\therefore \angle G H M+\angle(i H K=2 \mathrm{rt} . \angle \mathrm{s}$;
$\therefore K H$ and $H . / /$ are in the same straight line.
I. 1 f

Again, because $F\left(\begin{array}{r}\text { and } \\ \text { (} I L \\ L\end{array}\right.$ drawn from G are both $\| K . I F$:
$\therefore F^{\prime}(\dot{r}$ and $(i l$ must $)$ e in the same straight line. I. $A x .11$
Now because $K F$ and $M L$ are both $\| H G$,
$\therefore K F$ is $\| M L$;
I. 30
and K゙M is | F F ;
$\therefore F K M L$ is a $\|^{m}$.
But $\left\|^{\mathrm{m}} F K M L=\right\|^{\mathrm{m}} F I I+\|^{\mathrm{m}}$ GM,
$=\triangle A B D+\triangle B C D$,
Const.
$=$ figure $A B C 1)$;
and $\angle K=\angle E$.
Const.

1. Could two $\|^{m s}$ lave a common side and together not form one II ? Illustrate by a figure.
2. Describe a rectangle equal to a given rectilinear figure.
\therefore On a given straight line describe a rectangle equal to a given rectilineal figure.
3. Given one side and the area of a rectangle; find the other side.
\therefore. Describe a ${ }^{\text {mogul to a given rectilinear figure, and laving an }}$ angle equal tu a given angle, using I. 37, Cor.
f. Describe it "neral to the sum of two given rectilinear figures.
4. Weseribon a $\|^{m}$ equal to the difference of two given rectilinear figures.

PROPOSITION 46. Probiem.

On a given strarght line to describe a square.

Let $A B$ be the given straight inne: it is required to describe a square on $A B$.
From A draw $A C \perp A B$ and $=A B ; \quad$ I. 11, 3 through C draw $C D \| A B$, I. 31 and through B draw $B D \| A C$. I. 31 $A B D C$ is the :quare required.
For $A B D C$ is a $\|^{\mathrm{m}}$;
I. Def. 33
I. 34
$\therefore A B=C D$ and $A C=B D$.
Const.
But $A B=A C$;
\therefore the four sides $A B, B D, D C, C A$ are all equal.
Because $A C$ meets the parallels $A B, C D$,
$\because \angle A+\angle C=2 \mathrm{rt} . \angle \mathrm{s}$.
But $\angle A$ is right ;
$\therefore \angle C$ is also right.
Now $\angle A=\angle D$ and $\angle C=\angle B ; \quad$ I. 34
\therefore the four $\angle \mathrm{s} A, B, D, C$ are right;
$\therefore A B D C$ is a square.
I. Def. 32

1. What is redundant in Euclid's definition of a square?
2. If two squares be equal, the sides on which they are described are equal.
3. $A B D C$ is constructed thus: At A and B draw $A C$ and $B D$ $\perp A B$ and $=A B$, and join $C D . A B D C$ is a square.
4. $A B D C$ is constructed thus: At A draw $A C \perp A B$ and $=A B$; with B and C as centres, and a radius $=A B$ or $A C$, describe
two circles intersecting at D; and join $B D . D C . A B D C$ is a square
5. Describe a square naving given a diagonai.

PROPOEITION 47. Tifeorem.

The square descritod on the hyprotisuse of a right angled trian!te is eynal to the squares described on the other two sichs.*

Let $A B C$ be a right-angled triangle, having the right angle $B A C^{\prime}$:
it is required to prove that the stuare described on $B C=$ square on $B A+$ square on $A C$.

On $A B, B C, C A$ describe the squares $G B, B E$, CII;
I. 46
through A draw $A L \| B D$ or $C E$;
I. 31 and join $A 1$), $C F^{\prime}$.

Because $\angle B A C+\angle B A C_{r}=2$ rt. $\angle \mathrm{s}$,
$\therefore F A$ and $A C$ form one staight line.
I. 14

Similarly, I / A and $A / i f$ form whe striththe line.
*This theorem is usually attributed to Pythagoras (580-510 B.c.).

Now $\angle D B C=\angle F B A$, each being right.
Add to each $\angle A B C$;
$\therefore \angle A B D=\angle F B C$.
In $\triangle \mathrm{s} A B D, F B C,\left\{\begin{aligned} A B & =\bar{F} B & & \text { I. Def. } 32 \\ B D & =B C & & \text { I. Def. } 32 \\ \angle A B D & =\angle F B C ; & & \text { Proved }\end{aligned}\right.$
$\therefore \triangle A B D=\triangle F B C$. I. 4
But $\|^{\mathrm{m}} B L=$ twice $\triangle A B D$, being on the same
base $B D$, and between the same $\|^{8} B D, A L$; I. 41
and square $B C=$ twice $\triangle F B C$, being on the same base $B F$, and between the same $\|^{8} B F, C G$;
I. 41
$\therefore \|^{m \mathrm{~m}} B L=$ symare $B G$.
Similarly, if $A E, B K$ be joined, it may be proved that $\|^{\mathrm{mL}} C L=$ square $C I I$;
$\therefore\left\|^{\mathrm{n}} B L+\right\|^{\mathrm{m}} C L=$ square $B G+$ square $C H$,
that is, square on $B C=$ square on $B A+$ square on $A C$.
[It is usual to write this result $B C^{2}=B A^{2}+A C^{2}$; but see p. 113.]
Cor.- The difference between the square on the hypotenuse of a right-angled triangle and the square on either of the sides is equal to the square on the other side.

For since $B C^{2}=B A^{2}+A C^{2}$,
$\therefore \quad B C^{2}-B A^{2}=A C^{2}$,
and $B C^{2}-A C^{2}=B A^{2}$.
Note.-This proposition is an exceedingly important one, and mumerns demonstrations of it have been given by mathematicians, :ome of them such as easily to afford ocular proof of the equality asserted in the emunciation. With respect to Euclid's method of 1 ?:oof (which is not* that of the discoverer), it may be remarked that he has chosen that position of the squares when they are all exterior to the triangle. The pupil is advised to make the seven other modifications of the figure which result from placing the squares in different positions with respect to the sides of the criangle. and to adapt Euclid's proof thereto. It will be found that $A G$ and $A C$, as well as $A I$ and $A B$, will always be in the same

[^3]straight line, only, instead of leeing drawn in opposite directions from A as in the text, they will sometimes be drawu in the same direction, that $\angle \mathrm{s} A B 1$ and $F B C$ will sometimes be supplementary insteark of equal; and that then the equality of $\triangle s A B D$ and $/ B C$ will follow, nut from I. 4, but from I. 3S, Cor.

All the difforent varieties of figure are obtained thus:
Call I the square on the hypotennse, Y and Z the squares on the other sides. Describe
(1) X outwardly, I ontwardly, Z outwardly.
(2) " " " " "iuwardly.
(3) " " "inwardly " outwardly.
(4) " " " " "inwardly.
(5) " inwardly, "outwardly, "outwardly.
(6) " " " " "inwardly.
(7) " " "inwardly, "outwardly.
(8) " " " "inwardly.

The following methods of exhibiting how two squares may be dissected and put together so as to form a thirsl square, are probably the simplest and neatest ocular proofs yet given of this celebrated proposition :

FIRST METHIOD.

$A B C I I$. $\operatorname{BC} E F$ are two squares placed side by side, and so that $A B$ and $B C$ form one straight line. Cut off $C D=A B$, and jon ED, DH.
(1) If, round k as a pivot, $\triangle E C D$ is rotated like the hauds of a watch through a riglit angle, it will occupy the position l:F\%. If, roumd $/ I$ as a pivot, $\Delta / / A J$) is rotated in a manner opposite to the hands of a watch throu_h a right an_le, it will occuly the position $H(\& K$. The two squar's ABCill and $B C E F$ will then be transformed intu the square J)EKKII.
(2) If $\triangle E C D$ be slid along the plane in such a way that $E C$ alwaya ramains vertical, and D moves along the line $D H$, it will come to occupy the position $K G H$. If $\triangle H A D$ be slid along the plane in such a way that $H A$ always remains vertical, and D moves along the line $D E$, it will come to occupy the position $K F E$. The two squares $A B G H$ and $B C E F$ will then be transformed into the square $D E K H$.
[This method is substantially that given by Schooten in bis Exercitationes Mathematicre (1657), p. 111. The first or rotational way of getting $\triangle s E C D, H A D$ into their places is given by J. C. Sturm in his Mathesis Enucleata (1689), p. 31 ; the second or translational way is mentioned by De Morgan in the Quarterly Journal听 Mathematics, vol. i. p. 236.]

SECOND METHOD.

$A B C$ is a right-angled triangle. $B C E D$ is the square on the bypotenuse, $A C K H$ and $A B F G$ are the squares on the other sides.

Find the centre of the square ${ }^{\circ} A B F G$, which may be done by dirawing the two diagonals (not shown in the figure), and through it draw two straight lines, one of which is $\| B C$, and the other $\perp B C$. The square $A B F G$ is theu divided into four quadrilaterals equal in every respect. Through the midlle points of the sides of the square $B C E D$ draw parallels to $A B$ and $A C$ as in the figure. Then the parts $1,2,3,4,5$ will be found to coincide exactly with $1^{\prime}, 2^{\prime}, 3^{\prime}$, $4^{\prime}, 5^{\prime}$.
[This method is due to Henry Perigal, F.P.A.S., and was dis.
covered about 1830. See The Messenger of Mathematics, new series, vol. ii. pp. 103-106.]

1. Show how to tind a square $=$ the sum of two given squares.

2.	$"$	$"$	$=$
3.	$"$	$"$	= the difference of two
3.	$"$		
4.	$"$	$"$	double of a given square.
5.	$"$	$"$	half
6.	$"$	$"$	triple

7. The square described on a diagonal of a given square is twice the given square.
8. Hence prove that the square on a straight line is four tiraes the square on half the line.
9. The squares described ou the two diagonals of a rectangle are together equal to the squares described on the four sides.
10. The squares described on the two diagonals of a rhombus are together equal to the squares describel on the four sides.
11. If the hypotenuse and a side of one right-angled triangle be equal to the hypotenuse and a side of another right-angled triangle, the two triangles are equal in every reqpect.
12. If from the vertex of any triangle a perpendicular be drawn to the base, the difference of the squares on the two sides of the triangle is equal to the difference of the squares on the segments of the base.
13. The square on the side opposite an acute angle of a triangle is less than the squares on the other two sides
14. The square on the side opposite an obtuse angle of a triangle is greater than the squares on the other two sides.
15. Five times the square on the hypotenuse of a right-anglerd triangle is equal to four times the sum of the squares onthe medians drawn to the other two sides.
16. Three times the square on a side of an equilateral triangle is equal to four times the square on the perpendicular drawn from any vertex to the opposite side.
17. Divide a given straight line into two parts such that the sum of their squares may be equal to a given square. Is this always possible?
18. Divide a griven straight line into two parts such that the square on one of them may be double the square on the other.
19. If a straight line he divided into any two parts, the square on the whole line is greater than the sum of the squares on the two parts.
20. The sum of the squares of the distances of any point from two opposite corners of a rectangle, is equal to the sum of the squares of its distances from the other two coruers.

The following deductions refer to the figure of the proposition in the text. They are all, or nearly all, given in an article in Leybourn's Mathematical Repository, new series, vol. iii. (1814), Part II. pp. 71-80, by John Branshy, Ipswich.
21. What is the use of proving that $A G$ and $A C$ are in the same straight line, and also $A B$ and $A H$?
22. $A F$ and $A K$ are in the same straight line.
23. $B G$ is $\| C H$.
24. Prove $\triangle s A B D, F B C$ equal by rotating the former round B through a right angle. Similarly, prove $\triangle \mathrm{s} A C E, K C B$ equal.
25. Hence prove $A D \perp F C$, and $A E \perp K B$.
26. $\angle \mathrm{s} A B C$ and $D B F$ are supplementary, as also are $\angle \mathrm{s} A C B$ and ECK.
27. Hence prove $\triangle \mathrm{s} F B D, K C E=\triangle A B C$.
28. $F G, K H, L A$ all meet at one print T.
29. $\triangle \mathrm{s} A G H$, THG, (iAT', IT TA are each $=\triangle A B C$.
30. If from D and E, perpendiculars $I) U, E V$ be drawn to $F B$ and $K C$ produced, $\triangle s U B D$ and $I^{\prime} E C$ are each $=\triangle A B C$. Prove by rotating.
31. $D F^{2} \div E K^{2}=5 B C^{2}$.
32. The squares on the sides of the polygon $D F G H K E=8 B C^{2}$.
33. If from F and K perpendiculars $F M, K N$ be drawn to $B C$ produced, and I be the point where $A L$ meets $B C, \triangle B F M$ $=\triangle A B I$, and $\triangle C K N=\triangle A C I$.
34. $F M+K N=B C$, and $B N=C M=A L$.
35. If $D B$ and $E C$ produced meet $F G$ and $K H$ at P and Q, prove by rotating $\triangle A B C$ that it $=$ each of the $\triangle s F B P, K C Q$.
36. If $P Q$ be joined, $B C Q P$ is a square.
37. $A B P P_{T}$ is a $\|_{\mathrm{m}}$, and $=$ rectangle $B L ; A C Q T$ is a $\|^{\mathrm{m}}$, and $=$ rectangle $C L$.
38. . $4 D B T$ is a $\|^{\mathrm{m}}$, and $=$ rectangle $B L ; A E C T$ is a $\|^{\mathrm{m}}$, and $=$ iéctangle $C L$.
39. $D F P U$ and $E K Q V^{r}$ are $\|^{\mathrm{ms}}$, and each $=4 \triangle A B C$.
40. $A D U H$ and $A E V^{\prime} G$ are $\|^{\mathrm{m}}$, and each $=2 \triangle A B C$.
41. $B K$ is $\perp C T$, and $C F \perp B T$.
42. Hence prove that $A L, B K, C F$ meet at one point O. (See App. I. 3.)
43. If $B K$ meet $A C$ in X, and $C F^{\prime}$ meet $A B$ in $W, \triangle s B H \mathcal{K}_{1} C G W$ are each $=\triangle A B C$.
44. $A 川=A X$.
45. $\triangle A C W=\triangle B C X$, and $\triangle A B X=\triangle B C$ Ir.
46. Quadrilateral $A H O X=\triangle B O C$.
47. If from a and H perpeudiculars $G R, I I S$ be drawn to $I S C$ or $B C$ produced, and if these perpendiculars meet $A B$ and $A C$ in Y° and Z, prove by rotating $\triangle A B C$ that it $=\triangle G A Y$ or $\triangle Z A H$.
48. $D U$ produced passes through $Z, E V^{\Gamma}$ produced through Y, $G I^{\prime}$ through W, and $11 U$ through X.
49. If through A a parallel to $B C$ be drawn, meeting $G R$ in G^{\prime}, and $H S$ in $H^{\prime}, \triangle s A G G^{\prime}, A Z H^{\prime}$ are $=\triangle A B I$, and $\triangle s A Y G^{\prime}$ and $A H I^{\prime}=\triangle A C I$.
50. $I R=I S ; \quad(i R+H S=M N ; \quad F M+G R+H S+K V$
$=2(B C+A I) ; G R=B S ; H S=C R$.

PROPOSITION 48. Theorem.

If the square described on one of the sides of a triangle be equal to the squares described on the other two sides of it, the angle contained by those two sides is a right anyle.

Let $A B C$ be a triangle, and let $B C^{2}=B A^{2}+A C^{2}$. it is required to prove $\angle B A C$ right.
from A draw $A D \perp A C$, and $=A B ;$
I. 11, 3 and join $C D$.

Because $A D=A B ; \therefore A D^{2}=A B^{2}$.
To each of these equals ald $A C^{2}$:
$\therefore A D^{2}+A C^{2}=A B^{2}+A C^{2}$.

```
But \(A D^{2}+A C^{2}=C D^{2}\),
1. 47
```

and $A B^{2}+A C^{2}=B C^{2}$;
Нур.
$\therefore C D^{2}=B C^{2}$;
$\therefore C D=B C$.

$$
\text { In } \triangle \mathrm{s} B A C, D A C,\left\{\begin{array}{l}
B A=D A \\
A C=A C \\
B C=D C ;
\end{array}\right.
$$

Const.

Provea
$\because \angle B A C=\angle D A C$,
$=$ a right angle.

1. In the construction it is said, draw $A D \perp A C$. Would it not be simpler, and answer the same purpose, to say, produce $A B$ to D. Why?
2. Prove the proposition indirectly by drawing $A D \perp A C$, and on the same side of $A C$ as $A B$, and using I. 7 (Proclus).
3. If the square on one side of a triangle be less than the sum of the squares on the other two sides, the angle opposite that side is acute.
4. If the square on one side of a triangle be greater than the sum of the squares on the other two sides, the angle opposite that side is obtuse.
5. Prove that the triangle whose sides are $3,4,5$ is right-angled.*
6. Hence derive a method of drawing a perpendicular to a given straight line from a point in it.
7. Show that the following two rules, t due respectively to Pythagoras and Plato, give numbers representing the sides of right-angled triangles, and show also that the two rules are fundamentally the same.
(a) Take an odd number for the less side about the right angle. Subtract unity from the square of it, and halve the remainder; this will give the greater side about the right angle. Add unity to the greater side for the hypotenuse.
(b) Take an even number for one of the sides about the right angle. From the square of half of this number subtract unity for the other side about the right angle, and to the square of half this number add unity for the hypotenuse.

* This is said by Plutarch to have been known to the early Egyptians.
+ See Friedlein's Proclus, p. 128, and Hultsch's Heronis . . . reliquice, pp. 56, 57.

APPENDIX .

Proposttion 1.

The strainkt line joining the midille points of any tun sutes of a triungle is purallel to the third side cond equal to the holt of it.

Let $A B C$ be a triangle, and let L, K be the midille points of $A B, A C$:
it is required to prove $L K \| B C$ and $=$ half of $B C$.
Join $B K, C L$.
Becanse $\quad A L=B L, \quad \therefore \triangle B L C=$ half of $\triangle A B C$; $\quad 1.38$
and because $A K=C K, \quad \therefore \triangle B K C=$ half of $\triangle A B C ; \quad I$. 39
$\therefore \triangle B L C=\triangle B K C$.
$\therefore L K$ is $\| B C$.
I. 39

Hence, if $I /$ be the middlle of $B C$, and $H K^{*}$ be joined, $I K$ is $\| A B$;
$\therefore B H K L$ is a $\|^{\mathrm{m}}$;
I. Def. 33
$\therefore L K-B I I=$ half of $B C$.
I. 34

Cor. 1. - Conversely, The straight line drawn through the middu. pwint of one side of a triangle parallel to a second side bisects the third side."

Cor. 2.- $A B$ is a given straight line, C and D are two points. either on the same side of $A B$ or on opmosite sides of $A B$, and such that $A C$ and $B D$) are parallel. If through l; the midtle point of $A B$, a straight line be drawn $\| A\left({ }^{\prime}\right.$ or $B D$) to meet (I) at F, then

* The corollaries and converses given in the Appendices should be proved to be truc. Many of thom are not obvious.
F is the middle point of $C D$, and $E^{\prime} H^{\prime}$ is equal either to half the sum of $A C$ and $B I$, or to half their difference.

Proposition 2.

The straight lines drawn perpendicular to the sides of a triangle from the mildle points of the sides are concurrent (that is, pass through the sume point).

See the figure and demonstration of IV. 5.
If S be joined to H, the middle of $B C$, then $S H$ is $\perp B C$. I. δ
Note-The point S is called the circumscribed centre of $\triangle A B C$.

Proposition 3.
The straight lines drawn from the vertices of a triangle perpendicular to the opposite silles are concurrent.*

Let $A X, B Y, C Z$ be the three perpendiculare from A, B, C on the opposite sides of the $\triangle A B C$;
at is required to prove $A X, B \mathrm{Y}^{\gamma}, C Z$ concurrent.
Throngh A, B, C draw $K L, L H, H K \| B C, C A, A B$. I. 31
Then tlie figures $A B C K, A C B L$ are $\|^{\text {ms }}$;
I. Def. 33
$\therefore A K=B C=A L$,
I. 34
that is, A is the middle point of $K L$.

[^4]Hence also, B and C are the middle points of L / I and $H K$. But since $A X, B Y, C Z$ are respectively $\perp B C, C A, A B$, they must be respectively $\perp K L, L H,, I I K$, I. 29 and \therefore concurrent.

App. I. 2
Note.-The point O is called the orthocentre of the $\triangle A B C$ (an expression due to W. H. Besant), and $\triangle X Y Z$, formed by joining the feet of the perpendiculars, is called sometimes the pedal, sometimes the orthocentric, triangle.

Proposition 4. The medians of a triangle are concurrent.

Let the medians $B K, C L$ of the $\triangle A B C$ meet at G : it is required to prove that, if II be the middle poinl of $B C$, the median All will pass throuyh G.

Join $A G$.
Because $B L=A L \quad \therefore \triangle B L C=\triangle A L C$, and $\quad \triangle B L G=\triangle A L G$; I. 38
$\therefore \triangle B C C=\triangle A C C$,

$$
=\text { twice } \triangle C K G \text {; }
$$

I. 33
$\therefore B G=$ twice $G K$, or $B K^{\circ}=$ thrice $G K$,
that is, the median $C L$ cuts $B K$ at its point of trisection remo ${ }^{2}$ e from B.
Hence also, the median $A I I$ cuts $B K$ at its point of trisection remote from B, that is, A I/ passes through G .

Cor.-If the points $I I, K, L$ be joined, the medians of the $\triangle H K L$ are concurrent at G.
Notr.-The point G is called the centroid of the $\triangle A B C$ (an
expression due to T. S. Daries), and $\triangle H K L$ may be called the median triangle. The centroid of a triangle is the same point as that which in Statics is called the centre of gravity of the triangle, and may be found by drawing one median, and trisecting it.

Proposition 5.

The orthocentre, the centroid, and the circumscribed centre of a triangle are collinear (that is, lie on the same straight line), and the distance between the first two is double of the distance between the last two.*

Let $A B C$ be a triangle, O its orthocentre determined by drawin $A X$ and $B Y \perp B C$ and $C A ; S$ its circumscribed centre determine 's by drawing through H and K the middle points of $B C$ and $C A, 1 . S$ and $K S . \perp B C$ and $C A$; and $A H$ the median from A :
it is required to prove that if $S O$ be joined, it will cut $A H$ at the centroid.

Let $S O$ and $A H$ intersect at G;
join P and Q, the middle points of $G A, G O$;

$$
" U " V, \quad " \quad " \quad O A, O B
$$

and join $H K$.
Because H and K are the middle points of $C B, C A$;
$\therefore H K$ is $\| A B$ and $=$ half $A B$.
Because U and V are the middle points of $O A, O B$;
$\therefore U V$ is $\| A B$ and $=$ half $A B$,
App.I. 1
$\therefore H K$ is $\| U V$ and $=U V$.

[^5]

Recause $S I I$ and $O U^{\top}$ are both $\perp B C \therefore S H$ is $\| O U$; $\quad I .2 S$, Cor.
 Hence the $\triangle \mathrm{s} S H K, O U \mathrm{~J}^{*}$ are mutually equangular, $\quad I .34$, Cor: and since $H K=U V^{\prime} \quad \therefore S H=O U$
1.26

$$
=\text { half } A O \text {. }
$$

Again, hecause P and Q are the middle points of $G A, C O$;
$\therefore P Q$ is $\| A O$ and $=$ half $A O$:
$\therefore P Q$ is $\| S H$ and $=S H$.
Hence the $\triangle s / / G S, P G Q$ are equal in all respects ; $\quad I .29,26$
$\therefore H G=P G=$ half $A G$;
$\therefore G$ is the centroid,
and $S G=Q G=$ half $O G$.
Cor. - The distance of the circumscribed centre from any side of a triangle is half the distance of the orthocentre from the opposite vertex.
For $S I I$ was proved $=$ half $O A$.

Loci.

Many of the prollems which occur in geametry consist in the finding of points. Now the position of a point-and position is the only property whith a point possesses-is determined by certain conditions, and if we kuow these conditions, we can, in general find the point which satisfies them. It will be seen that in pleme germetry luro ernditions suffice to determine a paint, provided the conditions be mutually consistent and independent. When ouly one of the enorlitions is given, thongh the point camont then be determinerl, yet its prosition may be so restricted as to enable us to say that wherever the pinint may be, it must always lie on some one ur two lines which we can describe; for example, straight lines
or the circumferences of circles. The given condition may, however, be such that the point which satisfies it will lie on a line or lines which we do not as yet know how to describe. Cases where this occurs are considered as not belonging to elementury plane geometry.

Def.-The line (or lines) to which a point fulfilling a given condition is restricted, that is, on which alone it can lie, is (or are) called the locus of the point. Instead of the phrase 'the locus of a point,' we frequently say 'the locus of points.'

For the complete establishment of a locus, it ought to be proved not only that all the points which are sail to constitute the locus fulfil the given condition, but that no other poiuts fulfil it. The latter part of the proof is generally omitted.

Ex. 1. Find the locus of a point having the property (or fulfiling the condition) of being situated at a given distance from a given point.

Let A be the given point, and suppose $B, C, D, \& c$. to be points on the locus. Join $A B, A C, A D$, \&c.

Then $A B=A C=A D=$ \&c. ; Нур. and hence $B, C, D, \& c$. must be situated on the $O^{\text {ce }}$ of a circle whose centre is A, and whose radies is the given distance.

Moreover, the distance from A of any point not situated on the $O^{\text {ce }}$ would not be $=A B, A C, A D$. \&c.

This $O^{\text {ce }} \therefore$ is the required locus.
Ex. 2. Find the locus of a puint laving the property (or fulfiling the condition) of being equidistant from two given points.
I et A and B be the given points.
Join $A B$, and bisect it at C; then C is a definite fixed point.

Suppose D to be any point on the locus, and join $D A, D B, D C$.

Then $D A=D B$;
Нур. and since $D C$ is common, and $A C=B C$, $\therefore D C$ is $\perp A B$.

I. 8, Def. 10

Hence, if a set of other points on the locus be taken, and joinel to the definite fixed point C, a set of perpendiculars to $A B$ will be obtained. The locus therefore consists of all the perpendiculars that can be drawn to $A B$ through the point C; that is, $C D$ produced indefinitely either way is the lozes.

Proposition 6.

Straight lines are drawn from a given fixed point to the circumference of a given fixed circle, and are bisected: find the locus of their middle points.

Let A be the given fixed point, C the centre of the given fixed circle; let $A B$, one of the straight lines drawn from A to the O°, be bisected at E :
it is required to find the locus of E.
Join $A C$, and bisect it at D;
I. 10
join $D E$ and $C B$.
Because $D E$ joins the middle points of two sides of $\triangle A C B$, $\therefore I) E=\frac{1}{2} C B$.
But $C B$, being the radius of a fixed circle, is a fixed length;
$\therefore D E$, its half, is also a fixed length.
Again, since A and C are fixed points,
$\therefore A C$ is a fixed straight line;
$\therefore D$, the mildle point of $A C$, is a fixed point;
that is, E, the middle point of $A B$, is situated at a fixed distance from the fixed point D.
But $A B$ was any straight line drawn from A to the 0^{∞};
\therefore the middle points of all other straight lines drawn from A to the $0^{\text {co }}$ must be situated at the same lixed distance from the fixed point B;
\therefore the locus of the middle points is the $\mathrm{O}^{\text {ce }}$ of a circle, whose centre is D, and whose rallius is half the radins of the fixed eircle.

From the figure it will he seen that it is imnaterial whether $A B$ or $A B^{\prime}$ is to be eonsidered as the straight line drawn from A to the $O^{\text {ce }}$. For if $E^{\prime \prime}$ be the middle point of $A B^{\prime}$, then $E^{\prime \prime} D=1 B^{\prime} C$, that is = half the radius of the fixed circle ;
\therefore the locus of E^{ν} is the same \circ^{∞} as befors.

Tline reader is requested to make figures for the cases when the given point A is inside the given circle, and when it is on the 0^{∞} of the given circle.]

INTERSECTION OF LOCI.

Since two conditions determine a point, if we can construct the lucus satisfying each condition, the point or points of intersection of the two loci will be the point or points required. A familiar example of this method of determining a point, is the finding of the position of a town on a map by means of parallels of latitude and meridians of longitude. The reader is recommended to apply this method to the solution of I. l and 2.2 , and to several of the problems on the construction of triangles.

DEDUCTIONS.

1. The straight line joining the middle points of the non-parallel sides of a tranezium is $\|$ the parallel sides and $=$ half their sum.
2. The straight line joining the middle points of the diagonals of a trapezium is || the parallel sides and $=$ half their difference.
3. The straight line joining the middle points of the non-parallel sides of a trapezinm bisects the two diagonals.
4. The middle points of any two opposite sides of a quadrilateral and the middle points of the two diagonals are the vertices of $a \|^{m}$.
5. The straight lines which join the middle points of the opposite sides of a quadrilateral, and the straight line which joins the midale points of the diagunals, are concurrent.
6. If from the three vertices and tile centroid of a triangle perpendiculars be drawn to a straight line outside the triangle, the perpendicular from the centroid $=$ one-third of the sum of the other perpendiculars. Examine the cases when the straight line cuts the triangle, and when it passes through the centroid.
7. Find a point in a given straight line such that the sum of its distances from two given points may be the least possible. Examine the two cases, when the two given points are on the same side of the given line, and when they are on different sides.
S. Find a point in a given straight line such that the difference of its distances from two given points may be the greatest possible. Examine the two cases.
8. Of all triangles having only two sides given, that is the grearest in which these sides are perpendicular.
9. The perimeter of an isosceles triangle is less than that of any other triangle of equal area stauding on the same base.
10. Of all triangles haring the same vertical angle, and the bases of which pass through the same given point, the least is that which has its base bisected by the given point.
11. Of all triangles formed with a given angle which is contained by two sides whose sum is constant, the isosceles triangle has the least perimeter.
12. The sum of the perpendiculars drawn from any point in the base of an isosceles triangle to the other two sides is constant. Examine the case when the point is in the base produced.
13. The sum of the perpendiculars drawn from any point inside an equilateral triangle to the three sides is constant. Examine the case when the point is ontside the triangle.
14. The sum of the perpendiculars from the vertices of a triangle on the opposite sides is greater than the semi-perimeter and less than the perimeter of the triancle.
15. If a perpendicular be drawn from the vertical angle of a triangle to the base, it will divide the vertical angle and the haso into parts such that the greater is next the greater side of the triangle.
16. The bisector of the vertical angle of a triangle divides the base into segments such that the greater is next the greater sile of the triangle.
17. The median from the vertical angle of a triangle divides the vertical angle into parts such that the greater is next the less side of the triangle.
18. If from the vertex of a triangle there be drawn a perpendicular to the oppmisite side, a bisector of the vertical angle aud a median, the second of these lies in josition and magnitude between the other two.
19. The sum of the three angular lisectors of a triangle is greater than the semijuriseter, and less than the perimeter of tho triangle.
20. If one sile of a triangle be greater than another, the perpendicular on it from the opposite angle is less than the contesp,onding perpendicular on the other side.
ㅇ. If one side of a triangle be greater than another, the median drawn to it is less than the median drawn to the other.
21. If one side of a triangle be greater than another, the bisector of the angle opposite to it is less than the bisector of the angle opposite to the other.
22. The hypotennse of a right-angled triangle, together with the perpendicular on it from the right angle, is greater than the sum of the other two sides.
23. The sum of the three medians is greater than three-fourths of the perimeter of the triangle.
24. Construct an equilateral triangle, having given the perpendicular from any vertex on the opposite side.
Construct an isosceles triangle, having given :
25. The vertical angle and the perpendicular from it to the base.
¿S. The perimeter and the perpendicular from the vertex to the base.
Construct a right-angled triangle, having given :
26. The hypotenuse and an acute angle.
27. The hypotenuse and a side.
28. The hypotenuse and the sum of the other sides.
29. The hypotenuse and the difference of the other sides. ' .
30. The perpendicular from the right angle on the hypotenuse and a side.
34 The median, and the perpendicular from the right angle, to the hypotenuse.
31. An acute angle and the sum of the sides about the right angle.
32. An acute angle and the difference of the sides about the right angle.
Construct a triangle, having given :
33. Two sides and an angle opposite to one of them. Examine the cases when the angle is acute, right, and obtuse.
34. One side, an angle adjacent to it, and the sum of the other two sides.
35. One side, an angle adjacent to it, and the difference of the other two sides.
36. One side, the angle opposite to it, and the sum of the other two sides.
37. Onc side, the angle onnosite to it, and the difference of the other two sides.
38. An angle, its bisector, and the perpendicular from the angie on the opposite side.
39. The angles and the sum of two sides.
40. The angles and the difference of two sides.

45 . The perimeter and the angles at the base.
46. Two sides and one median.
47. One side and two medians.
45. The three medians.

Construct a square, having given :
49. The sum of a side and an iliagonal.
50. The difference of a side and a diagonai.

Construct a rectangle, having given :
51. One side and the angle of intersection of the diagonals.
52. The jerimeter and a diagonal.
53. The perimeter and the angle of intersection of the diagonals.
54. The difference of two sides and the angle of interse ation of the diagonals.

Construct a $\|^{m}$, having given :
55. The diagonals and a side.
56. The diagonals and their angle of intersection.
57. A side, an angle, and a diagonal.
58. Construct a $\|^{0}$ the area and perimeter of which shall $=$ the area and perimeter of a given triangle.
59. The diagonals of all the !nur inscribed* in a given $\|^{m}$ intersect one another at the sane point.
6if. In a given rhombus inseribe a square.
(i). In a given right-angled isosceles triangle inscribe a square.
60.2. In a given aquare inscribe an equilatoral triangle having one of its vertices coinciding with a vertex of the square.
63. A. ${ }^{\prime}$ ', $13 B^{\prime}$, "C" are straight lines rlrawn from the angular points of a triangle thongh any point 0 , within the triangle, and cuttiug the "pposite sides at $A^{\prime}, B^{\prime}, C^{\prime} . A P, B Q, C h^{\prime}$ are cut off from $A A^{\prime}, B B^{\prime}, C^{\prime \prime} C^{\prime \prime}$, and $=\left(A A, \quad 1 S^{\prime}, U C^{\prime}\right.$. Prove $\triangle A^{\prime} F^{\prime} C^{\prime \prime}=\triangle P^{\prime}(Q R$.

[^6]64. On $A B, A C$, sides of $\triangle A B C$, the $\|^{\text {nu }} A B D E, A C F G$ are described; $D E$ and $F G$ are produced to meet at H, and $A H$ is joined; through B and $C, B L$ and $C M$ are drawn $\| A H$, and meeting $D E$ and $F G$ at L and M. If $L M$ be joined, $B C M L$ is a $\|^{\mathrm{m}}$, and $=\left\|^{\mathrm{m}} B E+\right\|^{\mathrm{m}} C G$. (Pappus, IV. 1.)
65. Deduce I. 47 from the preceding deduction.
66. If three concurrent straight lines be respectively perpendicular to the three sides of a triangle, they divide the sides into segments such that the sums of the squares of the alternate segments taken cyclically (that is, going round the triangle) are equal ; and conversely.
67. Prove App. I. 2, 3 by the preceding deduction.
68. If from the middle point of the base of a triangle, perpendiculars be drawn to the bisectors of the interior and exterior vertical angles, these perpendiculars will interce, ${ }^{\text {t }}$ on the sides segments equal to half the sum or half the difference of the sides.
69. In the figure to the preceding deduction, find all the angles which are equal to half the sum or half the difference of the base angles of the triangle.
70. If the straight lines bisecting the angles at the base of a triangle, and terminated by the opposite sides, be equal, the triangle is isosceles. Examine the case when the angles below the base are bisected. [See Nourelles Annales de Mathématiques (1842), pp. 138 and 311; Lady's and Gentleman's Diary for 1857, p. 58 ; for 1859, p. 87 ; for 1860 , p. 84 ; London, Édinburgh, and Dublin Philosophical Magazine, 1852, p. 366, and 1874, p. 354.]

Loci.

1. The locus of the points situated at a given distance from a given straight line, consists of two straight lines parallel to the given straight line, and on opposite sides of it.
2. The locus of the points situated at a given distance from the $O^{\text {ce }}$ of a given circle consists of the $O^{\text {ces }}$ of two circles concentric with the given circle Examine whether the locus will always consist of two 0 .
[The distance of a point from the circumference of a circle is measured on the straight line joining the point to the centre of the circle.]
3. The locus of the points equidistant from two given straight lines which intersect, consists of the two lisectors of the angles made by the given straight lines.
4. What is the locus when the two given straight lines are parallel?
5. The locns of the vertices of all the triangles which have the same base, and one of their siles equal to a given length, consists of the $O^{\text {ces }}$ of two circles. Determine their centres and the length of their radii.
6. The locus of the vertices of all the triangles which have the same base, and one of the angles at the base equal to a given angle, consists of the sides or the sides produced of a certain rhombus.
7. Find the locus of the centre of a cirele which shall pass through a given point, and have its radius equal to a given straight line.
S. Find the loens of the centres of the circles which pass through two given points.
8. Find the locus of the vertices of all the isosceles triangles which stand on a given base.
9. Find the locus of the vertices of all the triangles which have the same base, and the median to that base equal to a given length.
10. Find the locus of the vertices of all the triangles which have the same base and equal altitudes.
11. Find the luens of the vertices of all the triangles which have the same hase, and their areas equal.
12. Find the luens of the middle points of all the straight lines drawn from a given peint to mect a given straight line.
13. A series of triangles stani on the same hase and between the same prarallels. Find the locus of the middle points of their sides.
14. A series of $\|^{\mathrm{mm}}$ stand on the same base and between the same parallels. Find the locus of the intersection of their diagonals.
15. From any point in the hase of a triangle slatight lines are drawn parallel to the sides. Find the locus of the intersection of the diagemals of arery t^{m} thats forment
1'. Straight lues :tre drawn parallel to the hase of a triangle, to ment ther sules on the stiles produced. Find the locus of their middle jwints.
16. Find the locus of the angular point opposite to the hypotenuse of all the right-angled triangles that have the same hypotenuse.
17. A ladder stands upright against a perpendicular wall. The foot of it is gradually drawn outwards till the ladder lies on the ground. Prove that the middle point of the ladder has described part of the $O^{\text {ce }}$ of a circle.
18. Find the locus of the points at which two equal segments of a straight line subtend equal angles.
2:. A straight line of constant length remains always parallel to itself, while one of its extremities describes the $O^{\infty \theta}$ of a circle. Find the locus of the other extremity.
19. Find the locus of the vertices of all the triangles which have the same base $B C$, and the median from B equal to a given length.
20. The base and the difference of the two sides of a triangle are given ; find the locus of the feet of the perpendiculars drawn from the ends of the base to the bisector of the interior vertical angle.
21. The base and the sum of the two sides of a triangle are given ; find the locus of the feet of the perpendiculars drawn from the ends of the base to the bisector of the exterior vertical angle.
22. Three sides and a diagonal of a quadrilateral are given : find the locus (1) of the undetermined vertex, (2) of the middle point of the second diagonal, (3) of the middle point of the straight line which joins the middle points of the two diagonals. (Solutions raisonnées des Problèmes énoncés dans les Éléments đe Géométrie de M. A. Amiot, 7ème ed. p. 124,

BOOK II.

DEFINITIONS.

1. A rectangle (or rectangular parallelogram) is said t_{G} be contained by any two of its conterminous sides.
Thus the rectangle $A B C D$ is said to be contained by $A B$ and $B C$; or by $B C$ and $C D$; or by $C D$ and $D A$; or by $D A$ and $A B$.
The reason of this is, that if the lengtlis of any two conterminous sides of a rectangle are given, the rectangle can be constructed; or, what comes to the same thing, that if two conterminons edes of oue rectangle are respectively equal to two conterminous sides of another rectangle, the two rectangles are equal in all respects. The troth of the latter statement may be proved by applying the one rectangle to the other.
2. It is oftener the case than not, that the rectangle contained by two straight lines is spoken of when the two straight lines do not actually contain any rectangle. When this is so, the rectangle contained by the two straight lines will signify the rectangle contained by either of them, and a straight line equal to the other, or the rectangle contained by two other straight lines respectively equal to them.

Fig. 1.

$C-D$

Fig. 2.

$\mathrm{A}-\mathrm{B}$

Fig. 3.

C——D

Thus $A B E F$ (fig. 1) may be considered the rectangle contained by $A B$ and $C D$, if $B E=C D ; C D E F$ (fig. 2) may be considered the rectangle contained by $A B$ and $C D$, if $D E=A B$; and $E F G H$ (tig. 3) may be considered the rectangle contained by $A B$ and $C D$, if $E P=A B$ and $F G=C D$.
3. As the rectangle and the square are the figures which the Second Book of Euclid treats of, phrases such as 'the rectangle contained by $A B$ and $A C$ ', and 'the square described on $A B$, will be of constant occurrence. It is usual, therefore, to employ abbreviations for these phrases. The abbreviation which will be made use of in the present text-book* for 'the rectangle contained by $A B$ and $B C$ ' is $A B \cdot B C$, and for 'the square described on $A B, A B^{2}$.
4. When a point is taken in a straight line, it is often called a point of section, and the distances of this point from the ends of the line are called segments of the line.

Thus the point of section D divides $A B$ into two segments $A D$ and $B D$.

In this case $A B$ is said to be divided internally at D, and $A D$ and $B D$ are called internal segments.

The given straight line is equal to the sum of its internal seg. ments; for $A B=A D+B D$.
5. When a point is taken in a straight line produced, it is also called a point of section, and its distances from the ends of the line are called segments of the line.

Thus D is called a point of section of $A B$, and the segments into which it is said to divide $A B$ are $A D$ and $B D$.

[^7]In this ease, $A B$ is said to the divided sxternally at D, and $A D, B I$ are called extrmal seyments.

The given straight line is equal to the difference of its external segments; for $A B=A D-B D$, or $B D-A D$.
6. When a straight line is divided into two segments, such that the rectangle contained hy the whole line and one of the serments is equal to the square on the ofther segment, the straight line is said to be divided in medial section.*

Thus, if $A B$ be divided at $I I$ into two segments $A H$ and $B H /$, such that $A B \cdot B H=A H^{2}, A B$ is said to be divided in medial section at $I I$.

It will be seen that $A B$ is internally divided at H; and in general, when a straight line is said to be divided in medial section, it is understood to he intermally divided. But the definition need not lee restricted to internal division.

Thus, if $A B$ be divided at $I!^{\prime}$ into two segments $A I^{\prime}$ and $B H^{\prime}$, such that $A B \cdot B H^{\prime}=A H^{\prime 2}, A B$ in this case also may he said to h_{n} divided in medial section.
7. The projection tof a point on a straight line is the font of the perpendicular drawn from the point to the straight line.

Thus D is the projection of A on the straight line $B C$.
8. The projection of one straight line on another straight

[^8]line is that portion of the second intercepted between perpendiculars drawn to it from the ends of the first.

Fig. 1.

Fig. 2.

Thus the projections of $A B$ and $C D$ on $E F$ are, in fig. 1, $G H$ and $K L:$ in tig. 2, $A H$ and $K D$.

While the straight line to be projected must be limited in length, the straight line on which it is to be projected must be considered as unlimited.
9. If from a parallelogram there be taken away either of the parallelograms about one of its diagonals, the remaining figure is called a gnomon.

Thus if $A D E B$ is a $\|^{\mathrm{m}}, B D$ one of its diagonals, and $H F, C K$ $\|^{\text {ms }}$ about the diagonal $B D$, the figure which remains when $H F$ or $C K$ is taken away from $A D E B$ is called a gnomon. In the first case, when $H F$ is taken away, the gnomon $A B E F G H$ (inclosed within thick lines) is usually, for shortness' sake, called $A K F$ or $H C E$; in the second case, when $C K$ is taken away, the gnomon ADEKGC would similarly be called AFK or CHE .
The word 'gnomon' in Greek means, among other things, a carpenter's square,* which, when the $\|^{\mathrm{m}} A D E B$ is a square or a

[^9]rectangle, the figure $A K F$ resembles. The only gnomons mentionea by Euclid in the second book are parts of squares.
The more general definition given by Heron of Alcxandria, that a gnomon is any figure which, when added to another figure, produces a figure similar to the original one, will be partly understood after the fourth proposition has been read.

PROPOSITION 1. Theorem.

It there lie tur, straight lines, one of which is rliviled internully into cuny number of segments, the rectomule coutwined byy the then straight lines is "'口ual to the rectungles contuined by the undivided line and the several seyments of the divided line.

Let $A B$ and $C D$ be the two straight lines, and let $C D$ be divided internally into any number of segments C C ' $E F, F D$:
it is required to prove $A B \cdot C D=A B \cdot C E+A B \cdot E H$ $+A B \cdot F D$.

From C draw $C G \perp C D$ and $=A B ; \quad$ 1. 11, 3
through G^{\prime} draw $G I I \| C D$, and through E, F, D draw $E K, F L, D H \| C G$.
I. 31

Then $C H=C K+E L+F H$; I. $A x . B$ that is, $(C C \cdot C D)=C C \cdot C H+K F \cdot E F+L F \cdot F D$. But $G C, K E, L F$ are each $=A B$; Const., I. 34 $\therefore A B \cdot C D=A B \cdot C E+A B \cdot E F+A B \cdot F D$.

algebraical illustration.

Let $A B=a, C D=b, C E=c, E F=d, F D=e$; then $b=c+d+e$.
Now $A B \cdot C D=a b$,
and $A B \cdot C E+A B \cdot E F+A B \cdot F D=a c+a d+a \varepsilon$.
But since $b=c+d+e$,
$\therefore a b=a c+a d+a e$;
$\therefore A B \cdot C D=A B \cdot C E+A B \cdot E F+A B \cdot F D$.

1. The rectangle contained by two straight lines is equal to twice the rectangie contained by one of them and half of the other.
2. The rectangle contained by two straight lines is equal to thrice the rectangle contained by one of them and one-third of the other.
3. The rectangle contained by two equal straight lines is equal to the square on either of them.
4. If two straight lines be each of them divided internally into any number of segments, the rectangle contained by the two straight lines is equal to the several rectangles contained by all the segments of the one taken separately with all the segments of the other.

PROPOSITION 2. Theorem.

If a straight line be divided internally into any two segments, the square on the straight line is equal to the sum of the rectangles contained by the straight line and the two segments.

Let $A B$ be divided internally into any two segments $A C, C B$:
it is required to prove $A B^{2}=A B \cdot A C+A B \cdot C B$.

On $A B$ describe the square $A D E B$,
I. 46
and through C draw $C F \| A D$, mecting $D E$ at F.
I. 31

Then $A E=A F+C E$;

1. $A x .8$
that is, $A B^{2}=D A \cdot A C+E B \cdot C B$.
But $D A$ and $E B$ are each $=A B$;
$\therefore A B^{2}=A B \cdot A C+A B \cdot C B$.

ALGEBRAICAL ILLUSTRATION.

Let $A C=a, C B=b$;
then $A B=a+b$.
Now, $A B^{2}=(a+b)^{2}=a^{2}+2 a b+b^{2}$,
and $A B \cdot A C+A B \cdot C B=(a+b) a+(a+b) b=a^{2}+2 a b+b^{2}$;
$\therefore A B^{2}=A B \cdot A C+A B \cdot C B$.

1. Prove this proposition hy taking another straight line $=A B$, and using the preceding proposition.
2. If a straight line be divided internally into any three segments, the square on the straight line is equal to the sum of the rectangles contained by the straight line and the three seginents.
3. If a straight line he divided internally into any number of segments, the square on the straight line is equal to the sum of the rectangles contained by the straight line and the several segments.
Show that the proposition is equivalent to either of the following:
4. The sturare on the sum of two straight lines is equal to the two rectangles contained by the sum and each of the straight lines.
5. The square on the greater of two straight lines is equal to the rectangle contained by the two straight lines together with the rectangle contaiued by the greater and the difference between the two.

PROPOSITION 3. Theorem.

If a straight line be divided externally into any two segments, the stuare on the straight line is equal to the difference of the rectangles contained by the straight line and the two segments.

Let $A B$ be divided externally into any two segments $A C, C B$:
it is required to prove $A B^{2}=A B \cdot A C-A B \cdot \mathcal{C}$.
On $A B$ describe the square $A D E B$, I. 46 and through C draw $C F \| A D$, meeting $D E$ produced at F^{\prime}.
I. 31

Then $A E=A F-C E$;
I. $A x .8$
that is, $A B^{2}=D A \cdot A C-E B \cdot C B$.
But $D A$ and $E B$ are each $=A B$;
$\therefore A B^{2}=A B \cdot A C-A B \cdot C B$.
Note.-The enunciation of this proposition usually given is :
If a straight line be divided into any two parts, the rectangle contained by the whole and one of the parts is equal to the rectangle contained by the two parts together with the square on the aforesaid part.

That is, in reference to the figure,

$$
A C \cdot A B=A B^{2}+A B \cdot B C
$$

an expression which can be easily derived from that in the text.

ALGEBRAICAL ILLUSTRATION.

Let $A C=a, C B=b$;
then $A B=a-b$.
Now, $A B^{2}=(a-b)^{2}=a^{2}-2 a b+b^{2}$,
and $A B \cdot A C-A B \cdot C B=(a-b) a-(a-b) b=a^{2}-2 a b+b^{2}$;
$\therefore A B^{2}=A B \cdot A C-A B \cdot C B$.

1. Prove this proposition by taking another straight line $=A B$, and using the first proposition.
Show that the proposition is equivalent to either of the following:
2. The rectangle contained by the sum of two straight lines and one of them is equal to the square on that one together with the rectangle contained by the two straight lines.
3. The rectangle contained by two straight lines is equal to the square on the less together with the rectangle contained by the less and the difference of the two straight lines.

PROPOSITION 4. Theorem.

If a straight line be divided internally into any too segments, the smarere on the straight line is equal to the squares on the twe serments increased by twice the rectangle contained by the segments.

Let $A B$ be divided internally into any two segments $A C, C B$:
it is required to prove $A B^{2}=A C^{2}+C B^{2}+2 A C \cdot C B$.
On $A B$ descrile the square $A D E B$, and join $B D$. I. 46 Through C draw $C F \| A I$, meeting $I I B$ at G; and through G draw $H K \| A B$, meeting $D A$ and $E B$ at H and k.
I. 31

Because $C G \| A D, \quad \therefore \angle C G B=\angle A D B ; \quad$ 1. 29
and because $A D-A B, \therefore-A D B--A B D ; \quad I .5$

$$
\begin{aligned}
\therefore \angle C G B & =\angle A B D \\
& =\angle C B G ; \\
\therefore \quad C B & =C G
\end{aligned}
$$

$$
\text { I. } 6
$$

Hence the $\|^{\text {m }} C K$, having two adjacent sides equal, has all its sides equal.
But the $\|^{\mathrm{m}} C K$ has one of its angles, $K B C$, rignt, since $\angle K B C$ is the same as $\angle A B E$;
\therefore it has all its angles right;
I. 34
\therefore the $\|^{m} C K$ is a square, and $=C B^{2}$. I. Def. 32
Similarly, the $\|^{m} H F$ is a square, and $=H G^{2}=A C^{2}$.

$$
\begin{array}{rlrl}
& \text { Again, the } \|^{\mathrm{m}} A G & =A C \cdot C G=A C \cdot C B ; & \\
\therefore \quad & & \text { I. } 43 \tag{I. 43}\\
\therefore \quad A G & =A C \cdot C B ; \\
& & & \\
\text { Now } \quad A E & =2 A C \cdot C B . & \\
A B^{2} & =A D E B, & \\
& & =H F+C K+A G+G E, & \text { I. Ax. } 8 \\
& & =A C^{2}+C B^{2}+2 A C \cdot C B . &
\end{array}
$$

Cor. 1.-The square on the sum of two straight lines is equal to the sum of the squares on the two straight lines, increased hy twice the rectangle contained by the two straight lines.

For if $A C$ and $C B$ be the two straight lines,
then their sum $=A C+C B=A B$.
Now since $A B^{2}=A C^{2}+C B^{2}+2 A C \cdot C B$,
II. 4
$\therefore(A C+C B)^{2}=A C^{2}+C B^{2}+2 A C \cdot C B$.
Cor. 2.-The $\|^{\mathrm{ms}}$ about a diagonal of a square are themselves squares.
[It is recommended that II. 7 be read immediately after II. 4.]

otherwise:

$$
\begin{array}{rlr}
A B^{2} & =A B \cdot A C+\quad A B \cdot B C, & I I .2 \\
& =(A C \cdot A C+B C \cdot A C)+(A C \cdot B C+B C \cdot B C), & I I .3 \\
& =A C^{2}+B C^{2}+2 A C \cdot B C . &
\end{array}
$$

ALGEBRAIU:

Lêt $A C=a, C B=b$;
then $A B=a+b$.
Now $A B^{2}=(a+b)^{2}=a^{2}+2 a b+b^{2}$.
ant $A C^{2}+C B^{2}+2 A C \cdot C B=a^{2}+b^{2}+2 a b$;
$\therefore A B^{2}=A C^{2}+C B^{2}+2 A C \cdot C B$.

1. Name the two figures which form the sum of the squares on 10 and $C B$.
2. Name the figure which is the square on the sum of $A C^{\gamma}$ and $C D$.
3. Name the tigure which is the clifference of the squares on $A B$ and $A C$.
4. Name the figure which is the difference of the squares on $A B$ and $B C$.
5. Name the figure which is the square on the difference of $A B$ and $A C$.
6. Name the figure which is the square on the difference of $A B$ and BC.
7. By how much does the square on the sum of $A C$ an $C B$ execed the sum of the squares on $A C$ and $C H$?
8. Show that the propusition may be emmeiated: The square on the sum of two straight lines is greater than the sum of the squares on the two straight lines by twice the rectangle contained by the two straight lines.
9. The square on any straight line is equal to four times the square on half of the line.
(0). If a straight line be divided internally into any three segments, the spuare on the whole line is rifual th the squares on the three segments, togrether with twice the rectangles contained by every two of the semments.
10. Illustrate the preceding deduction algelraically.

PROPOSITION 5. THEOREM.

 the semmere om hatf the live anal the sthuere on the itino betuern the prints of section.

Let $A B$ be divided into two equal segments $A C, C B$, and also internally into two unequal segments $A D, D B$: it is required to prove $A D \cdot D B=C B^{2}-C D^{2}$.

Gn $C B$ describe the square $C E F B$, and join $B E$. I. 46 Through D draw $D H G \| C E$, meeting $E B$ and $E F$ at H and G;
through H draw $M H L K \| A B$, meeting $F B$ and $E C$ at M and L; and through A draw $A K \| C L$. I. 31

Then	$A D \cdot D B=A D \cdot D H$,	II. 4. Cor. 2
	$=A I M$,	
	$=A L+C H$,	I. Ax. 8
	$=C M+H F$,	I. 36,43
	= gnomon CMG.	1. $A x .8$
Bu\%	$C B^{2}-C D^{2}=C B^{2}-L H^{2}$,	I. 34
	$=C E F B-L E G H,$	
	$=\text { gnomon } C M G \text {. }$	I. Ax. 8

Cor.-The difference of the squares on two straight lines is equal to the rectangle contained by the sum and the differ. ence of the two straight lines.

Let $A C$ and $C D$ be the two straight lines :
it is required to prove
$A C^{2}-C D^{2}=(A C+C D) \cdot(A C-C D)$.

$$
\begin{aligned}
A C+C D & =A D \\
\text { and } A C-C D & =C B-C D
\end{aligned}=D B ; ~ \begin{aligned}
\therefore(A C+C D) \cdot(A C-C D) & =A D \cdot D B \\
& =C B^{2}-C D^{2}, \\
& =A C^{2}-C D^{2}
\end{aligned}
$$

algebraical illustration.

Let $A C=C B=a, C D=b$;
then $A D=a+b$, and $D B=a-b$.
Now $A D \cdot D B=(a+b)(a-b)=a^{2}-b^{2}$,
and $C B^{2}-C D^{2}=a^{2}-b^{2}$;
$\therefore A D \cdot D B=C B^{2}-C D^{2}$.

1. By how much does the rectangle $A C \cdot C B$ exceed the rectangle $A D \cdot D B$? The rectangle contained by the two interna ${ }^{3}$ segments of a straight line is the greatest possible when the segments are equal. (l'appus, VII. 13.)
2. The rectangle contained liy the two internal segments of 3 straight line grows less aceording as the point of section 18 removed farther from the middle point of the straight line. (Pappuus, VII. 14.)
3. Prove that $A C=$ half the sum and $C D=$ half the difference of $A I$ and $D B$.
4. Name two figures in the diagram, each of which = the rectangle eontained by half the sum, and half the difference of $A D$ and I)B.
5. Name that figure in the diagram which is the square on half the sum of $A(I)$ and $D B$.
6. Name that figure in the diagram which is the square on half the difference of $A D$ and $D B$.
7. Hence show that the proposition may be enunciated : The rectangle contained by any two straight lines is equal to the square on half their sum diminished by the square on half their difference.
8. The perimeter of the rectangle $A D \cdot D B=$ the perimeter of the square on $C B$.
9. Hence show that if a square and a rectangle have equal perimeters, the square has the greater area.
10. Coustruct a rectangle equal to the difference of two given squares.
11. By means of the first deduction above, and II. 4 , show that the sum of the squares on the two segments of a straight line is least when the segments are equal.
12. The square on either of the sides about the right angle of a right-angled triangle, is equal to the rectangle contained by the sum and the difference of the hypotenuse and the other side.

PROPOSITION 6. Theorem.

If a straight line be divided into two equal, and also externally into two unequal segments, the rectangle contained by the unequal segments is equal to the difference between the square on the line between the points of section and the square on half the line.

Let $A B$ be divided into two equal segments $A C, C B$, and also externally into two unequal segments $A D, B D$: ii is requived to prore $A D \cdot D B=C D^{2}-C B^{2}$.

On $C B$ describe the square $C E F B$, and join $B E$. I. 46

Through D draw $H D G \| C E$, meeting $E B$ and $E F$ produced at H and G;
through H draw $H M L K \| A B$, meeting $F B$ and $E C$ produce at M and L;
and through A draw $A K \| C L$.
Then

$$
\begin{array}{rlr}
A D \cdot D B & =A D \cdot D H, & \text { II. 7, Cor. } 2 \\
& =A H, & \\
& =A L+C H, & \text { I. Ax. } 8 \\
& =C M+H F, & \text { I. } 36,43 \\
& =\text { gnomon CMG. } & \text { I. } A x .8
\end{array}
$$

But

$$
\begin{aligned}
C D^{2}-C B^{2} & =L H^{2}-C B^{2}, \\
& =L E G I I-C E F B, \\
& =\text { gnomon } C M G .
\end{aligned}
$$

$$
\text { I. } 34
$$

I. $A x .8$
$\therefore A D \cdot D B=C D^{2}-C B^{2}$.
Cor. -The difference of the squares on two straight lines is equal to the rectangle contained by the sum and the difference of the two straight lines.

Let $A C$ and $C D$ be the two straight lines:
it is required to prove
$C D^{2}-A C^{2}=(C D+A C) \cdot(C D-A C)$.

$$
C D+A C=A D,
$$

and $C D-A C=C D-C B=D B$;
$\therefore(C D+A C) \cdot(C D-A C)=A D \cdot D B$,

$$
=C D^{2}-C B^{2},
$$

$$
=C D^{2}-A C^{2} .
$$

OTHERWISE: *

Let $A B$ be divided into two equal segments $A C, C B$, and also externally into two unequal segments $A D, \nu B$: it is required to prove $A D \cdot D B=C D^{2}-C B^{2}$.

```
    Produce \(B A\) to \(E\), making \(A E=B D\).
        I. 3
    Then \(E C=C D\), and \(E B=A D\).
```

Now, because $E D$ is divided into two equal segments $E C, C D$, and
also internally into two unequal segments $E B, B D$,
$\therefore E B \cdot B D=C D^{2}-C B^{2}$;
II. 5
$\therefore A D \cdot B D=C D^{2}-C B^{2}$.

ALGEBRAICAL ILLUSTRATION.

Let $A C=C B=a, C D=b$;
then $A D=b+a$, and $D B=b-a$.
Now $A D \cdot D B=(b+a)(b-a)=b^{2}-a^{2}$,
and $C D^{2}-C B^{2}=b^{2}-a^{2}$;
$\therefore A D \cdot D B=C D^{2}-C B^{2}$.

1. Does the rectangle $A D \cdot D B$ exceed the rectangle $A O \cdot C B$? Examine the various cases.
2. The rectangle contained by the two external segments of a straight line grows greater according as the point of section is removel farther from the middle point of the straight line.
3. Prove that $A C=$ half the difference, and $C D=$ half the sum of $A D$ and $D B$.
4. Name two figures in the diagram each of which $=$ the rectangle contained by half the sum and half the difference of $A D$ and $D B$.
5. Name that figure in the diagram which is the square on half the sum of $A D$ and $D B$.
6. Name that figure in the diagram which is the square on half the difference of $A D$ and $D B$.

[^10]7. Hence, show that the proposition may be enumciated: The rectangle contained by any two straight liues is equal to the square on balf their sum diminished by the square on half their difference.
8. The perimeter of the rectangle $A D \cdot D B=$ the perimeter of the square on $C D$.

PROPOSITTION i. 'Jheorem.

If a straight line be divided externally into any two segments, the square on the straight line is equal to the squares on the two segments diminished by twice the rectungle contuined by the seyments.

Let $A B$ be divided externally into any two regments $A C, C B$:
it is required to prove $A B^{2}=A C^{2}+C B^{2}-2 A C \cdot C B$.
On $A B$ describe the square $A D E 1 B$, and join $B D$. $I .46$ Through C draw $C F^{\prime} \| A D$, meeting $D B$ produced at G; and through G draw $I I K ゙ \| A B$, meeting $D A$ and $E B$ produced at H and K.
I. 31

Because $C G \| A D, \quad \therefore \angle C G B=\angle A D B ; \quad$ I. 29
and because $A D=A B, \therefore \angle A D B=\ldots A B D ; \quad I .5$
$\therefore \angle C G B=\angle A B D$,

$$
=\angle C B G^{\prime} ;
$$

I. 15
$\therefore C B=C G$. I. 6
Hence the $\|^{m} C K$, having two adjacent sides equal, has all its sides equal.

But the $\|^{\text {wo }} C K$ has one of its angles, $K B C$, right, since $\angle K B C=\angle A B E$;
I. 15
\therefore it has all its angles right;
I. 34
\therefore the $\|^{m} C K$ is a square, and $=C B^{2}$.
I. Def. 32

Similarly, the $\|^{\text {In }} H F$ is a square, and $=H G^{2}=A C^{2}$.
Again, the $\|^{\mathrm{m}} A C=A C \cdot C G=A C \cdot C B ;$ $G E=A C \cdot C B ;$
I. 43

$$
\therefore \quad \begin{aligned}
A G+G E & =2 A C \cdot C B . \\
A B^{2} & =A D E B, \\
& =H F+C K-A G-G E, \quad \text { I. } A x .8 \\
& =A C^{2}+C B^{2}-2 A C \cdot C B .
\end{aligned}
$$

Cor. 1.-The square on the difference of two straight lines is equal to the sum of the squares on the two straight lines diminished by twice the rectangle contained by the two straight lines.

For if $A C$ and $C B$ be the two straight lines, then their difference $=A C-C B=A B$. Now since $\quad A B^{2}=A C^{2}+C B^{2}-2 A C \cdot C B, \quad I I .7$ $\therefore \quad(A C-C B)^{2}=A C^{2}+C B^{2}-2 A C \cdot C B$.
Cor. 2.-The $\|^{m s}$ about a square's diagonal produced are themselves squares.

OTHERWISE :

ALGEBRAICAL ILLUSTRATION.

Let $A C=a, C B=b$;
then $A B=a-b$.
Now $A B^{2}=(a-b)^{2}=a^{2}-2 a b+b^{2}$,
and $A C^{2}+C B^{2}-2 A C \cdot C B=a^{2}+b^{2}-2 a b$;
$\therefore A B^{2}=A C^{2}+C B^{2}-2 A C \cdot C B$.

1. Name the two figures which form the sum of the squares on $A C$ and $C B$.
2. Name the figure which is the square on the difference of $A C^{\prime}$ and $C B$.
3. Name the figure which is the difference of the squares on $A B$ and $A C$.
4. Name the figure which is the square on the difference of $\{1, B$ and $A C$.
5. By how much is the square on the difference of $A C$ and $C B$ exceeded by the sum of the squares on $A C$ and $C B$?
6. Show that the proposition may be enunciated: The square on the difference of two straight lines is less than the sum of the squares on the two straight lines by twice the rectangle contained by the two straight lines.
7. The sum of the squares on two straight lines is never less than twice the rectangle contained by the two straight lines.
8. If a straight line be divided internally into two segments, and if twice the rectangle contained by the segments ee equal to the sum of the squares on the segments, the straight line is bisected.

PROPOSITION 8. Theorem.

The square on the sum of two straight lines diminished by the spuare on their difference, is equal to four times the rectangle contained by the two straight lines.

Let $A B$ and $B C$ he two straight lines:
it is required to prove $(A B+B C)^{2}-(A B-B C)^{2}$
$4 A B \cdot B C$.

Place $A B$ and $B C$ in the same straight line, and on $A C$ describe the square $A C D E$.
I. 46

From $C D, D E, E A$ cut off $C F, D G, E H$ each $=A B ; \quad I .3$ through B and G draw $B L, G N \| A E$, and through F and H draw $F M, H K \| A C$.
I. 31

Then all the $\|^{\mid m s}$ in the figure are rectangles. I. 34, Cor. Now because $C D, D E, E A$ are each $=A C, \quad$ I. Def. 32 and $C F, D G, E H$ are each $=A B ; \quad$ Const.
$\therefore \quad D F, E G, A H$ are each $=B C$;
\therefore the four rectangles $A K, C L, D M, E N$ are each $=A B \cdot B C$.

Because $A C=A B+B C$,
$\therefore A C D E=A C^{2}=(A B+B C)^{2}$.
Because $B L, F M, G N, H K$ are each $=A B, \quad$ I. 34
and $\quad B K, F L, G M, H N$ are each $=B C ; \quad$ I. 34
$\therefore \quad K L, L M, M N, N K$ are each $=A B-B C$;
\therefore the rectangle $K L M N$ is a square, and $=(A B-B C)^{2}$.
Hence $(A B+B C)^{2}-(A B-B C)^{2}=A C D E-K L M N$; $=A K+C L+D M+E N$,
$=4 A B \cdot B C$.

OTHERWISE :

$(A B+B C)^{2}=A B^{2}+B C^{2}+2 A B \cdot B C, \quad$ II. 4, Cor. 1
$(A B-B C)^{2}=A B^{2}+B C^{2}-2 A B \cdot B C$.
II. 7, Cor. 1

Subtract the second equality from the first;
then $(A B+B C)^{2}-(A B-B C)^{2}=4 A B \cdot B C$.

ALGEBRAICAL ILLUSTRATION.

Let $A B=a, B C=b$;
then $A B+B C=a+b$, and $A B-B C=a-b$.
Now $(A B+B C)^{2}-(A B-B C)^{2}=(a+b)^{2}-(a-b)^{2}=4 a b$,
and $4 A B \cdot B C=4 a b$;
$\therefore(A B+B C)^{2}-(A B-B C)^{2}=4 A B \cdot B C$.

1. Name the figure which is the square on the sum of $A B$ and $B C$.
2. Name the figure which is the square on the difference of $A B$ and $B C$.
3. Name the figures by which the square on the sum of $A B$ and $B C$ exceeds the square on the difference of $A B$ and $B C$.
4. By how much does the square on the sum of $A B$ and $B C$ exceed the sum of the squares on $A B$ and $B C$?
5. By how much does the sum of the squares on $A B$ and $B C$ exceed the square on the difference of $A B$ and $B C$?

PROPOSITION 9. Theorem.

If a straight line be divided into two equal, and also internally into two unequal segments, the sum of the squares on the two unequal segments is double the sum of the squares on half the line and on the line between the points of section.

Let $A B$ be divided into two equal segments $A C, C B$, and also internally into two unequal segments $A D, D B$: it is required to prove $A D^{2}+D B^{2}=2 A C^{2}+2 C D^{2}$.

From C draw $C E \perp A B$, and $=A C$ or $C H B, \quad$ I. 11, 3 and join AE', E'13.
Through I) draw $D F \| C E$, meeting $E \prime B$ at F; I. 31
through F draw $F G \| A B$, meeting $E C$ at G; I. 31 and join $A F$.
(1) To prove $\angle A E B$ right.

Because - $A C E$ is right,
$\therefore \angle C A E+\angle C E A=a$ right angle.
But $\angle C A E=\angle C E A$; I. 5$\therefore$ each of them is half a right angle.

Similarly, $\angle C B E$ and $\angle C E B$ are each half a right angle ; $\therefore \angle A E B$ is right.
(2) To prove $E G=G F$.
$\angle E G F$ is right, because it $a \angle E C B$;
I. 29
and $\angle G E C^{F}$ was proved to be half a right angle ;
$\therefore \angle G F E$ is half a right angle ;
I. 32
$\therefore \angle G E F=\angle G F E$;
$\therefore \quad E G=G F$.
I. 6
(3) To prove $D F=D B$.
$\angle F D B$ is right, because it $=\angle E C B ; \quad$ I. 29
and $\angle D B F$ is half a right angle, being the same as $\angle C B E$;
$\therefore \angle D F B$ is half a right angle;
I. 32
$\therefore \angle D B F=\angle D F B$;
$\therefore \quad D F=D B$.
I. 6

Now $A D^{2}+D B^{2}=\quad A D^{2}+D F^{2}$,

$$
\begin{array}{lrr}
= & A F^{2}, & \text { I. } 47 \\
= & A E^{2} & +E F^{2}, \\
=A C^{2}+C E^{2}+E G^{2}+G F^{2}, & \text { I. } 47 \\
= & 2 A C^{2}+2 G F^{2}, & \text { Const., (2) } \\
= & 2 A C^{2}+2 C D^{2} . & I .34
\end{array}
$$

OTHERWISE :

Consider $A C$ and $C D$ as two straight lines;
then $A D=A C+C D$,
and $\quad D B=C B-C D=A C-C D$.
Hence $A D^{2}=(A C+C D)^{2}=A C^{2}+C D^{2}+2 A C \cdot C D, \quad I I .4, C o r .1$
and $\quad D B^{2}=(A C-C D)^{2}=A C^{2}+C D^{2}-2 A C \cdot C D . \quad I I .7, C o r .1$
Add the second equality to the first;
then $A D^{2}+D B^{2}=2 A C^{2}+2 C D^{2}$.

ALGEBRAICAL ILLUSTRATION.

Let $A C=C B=a, C D=b$;
then $A D=a+b$, and $D B=a-b$.
Now $A D^{2}+D B^{2}=(a+b)^{2}+(a-b)^{2}=2 a^{2}+2 b^{2}$,
and $2 A C^{2}+2 C D^{2}=2 a^{2}+2 b^{2}$;
$\therefore A D^{2}+D B^{2}=2 A C^{2}+2 C D^{2}$.

1. Show that the proposition may be enunciated: The square on the smin together with the square ou the difference of two straight lines $=$ twice the sum of the squares on the two straight lines. Or, The sum of the squares on two straight lines $=$ twice the square on half their sum together with twice the square on half their difference.
2. By how much does $A D^{2}+D B^{2}$ exceed $A C^{2}+C B^{2}$?
3. The sum of the squares on two internal segments of a straight line is the least possible when the straight line is bisected.
4. The sum of the squares on two internal segments of a straight line becomes greater and greater the nearer the point of seetion approaches either end of the line. (Euclid, x. Lemma before Prop. 43.)
5. Prove that $A D^{2}+D B^{2}=4(I)^{2}+2 A D \cdot D B$.
6. In the hypotenuse of an isosceles right-angled triangle any point is taken and joined to the opposite vertex ; prove that twice the square on this straight line is equal to the sum of the squares on the segments of the hypotenuse.

PROPOSITION 10. Theorem.

If a straight line be divided into two cqual, and also externully into two unequal. segments, the sum of the squares on the two unequal segments is clouble the sum of the squares on half the line and on the line between the points of section.

Let $A B$ be divided into two equal segments $A C, C B$, and also externally into two unequal segments $A D, D B$:
it is required to prove $A D^{2}+D B^{2}=2 A C^{2}+2 C D^{2}$.
From' C draw $C E \perp A B$, and $=A C$ or $C B, \quad I .11,3$ and join $A E, E B$.
Through D draw $D F \| C E$, meeting $E B$ produced at F;
I. 31
through F draw $F G \| A B$, meeting $E C$ produced at G;
I. 31
and join $A F$.
(1) To prove $\angle A E B$ right.

Because $\angle A C E$ is right,
$\therefore \angle C A E+\angle C E A=$ a right angle. I. 32
But $\angle C A E=\angle C E A$;
\therefore each of them is half a right angle.
Similarly, $\angle C B E$ and $\angle C E B$ are each half a right angle ;
$\therefore \angle A E B$ is right.
(2) To prove $E G=G F$.
$\angle E G F$ is right, because it $=\angle E C B$;
I. 29
and $\angle G E F$ was proved to be half a right angle;
$\therefore \angle G F E$ is half a right angle;
I. 32
$\therefore \angle G E F=\angle G F E$;
$\therefore \quad E G=G F$.
I. 6
(3) To prove $D F=D B$.
$\angle F D B$ is right, because it $=\therefore E C B$;
I. 29
and $\angle D B F$ is half a right angle, being $=\angle C B E$;
I. 15
$\therefore \angle D F B$ is half a right angle;
I. 32
$\therefore \angle D B F=\angle D F B$; $D F=D B$.
I. 6

Y゙пw $A D^{2}+D B^{2}=\quad A D^{2} \cdot D F^{2}$, $=\quad A F^{2}, \quad$ I. 47
$=A E^{2}+E F^{2}, \quad$ I. 47, (1)
$=A C^{2}+C E^{2}+E G^{2}+G F^{2}, \quad I .47$
$=\quad 2 A C^{2}+2 G F^{2}, \quad$ Const., (2)
$=\quad 2 A C^{2}+2 C D^{2} . \quad$ I. 34

OTHERWISE :
Consider $A C$ and $C D$ as two straight lines ;
then $A D=C D+A C$,
and $\quad D B=C D-C B=C D-A C$.
Hence $A D^{2}=(C D+A C)^{2}=C D^{2}+A C^{2}+2 C D \cdot A C ; \quad I I .4, C o r .1$
and $\quad D B^{2}=(C D-A C)^{2}=C D^{2}+A C^{2}-2 C D \cdot A C$. II. 7, Cor. 1
Add the second equality to the first;
then $A D^{3}+D B^{2}=2 C D^{2}+2 A C^{2}$.
OR: *

Let $A B$ be divided into two equal segments $A C, C B$, and also externally into two unequal segments $A D, D B$:
it is required to prove $A D^{2}+D B^{2}=2 A C^{2}+2 C D^{2}$.
Produce $B A$ to E, making $A E=B D$. I. 3

Then $E C=C D$, and $E B=A D$.
Now becanse $E D$ is divided into two equal segments $E C, C D$, and also internally into two unequal segments $E B, B D$;
$\therefore E B^{2}+B D^{2}=2 E C^{2}+2 C B^{2}$;
II. 9
$\therefore A D^{2}+B D^{2}=2 C D^{2}+2 A C^{2}$.

algebraical illugtration.

Let $A C=C B=a, C I)=b$;
then $A I=b+a$, and $D B=b-a$.
Now $A D^{2}+1 / \beta^{2}=(b+a)^{2}+(b-a)^{2}=2 b^{2}+2 s^{2}$,
and $2 A C^{2}+2 C J^{2}=2 a^{2}+2 b^{2}$;
$\therefore A \emptyset^{2}+D I^{2}=2 A C^{2}+2 C J^{2}$.

[^11]1. Show that the proposition may be enunciated: The square on the sum together with the square on the difference of two straight lines $=$ twice the sum of the squares on the two straight lines. Or, The sum of the squares on two straight lines $=$ twice the square on half their sum together with twice the square on half their difference.
2. By how much does $A D^{2}+D B^{2}$ exceed $A C^{2}+C B^{2}$?
3. The sum of the squares on two external segments of a straight line becomes less and less the nearer the point of section approaches either end of the line.
4. Prove that $A D^{2}+D B^{2}=4 C D^{2}-2 A D \cdot D B$.
5. In the hypotenuse produced of an isosceles right-angled triangle, any point is taken and joined to the opposite vertex; prove that twice the square on this straight line is equal to the sum of the squares on the segments of the hypotenuse.

PROPOSITION 11. Problem.

To divide a given straight line internally and externally* in medial section.

Let $A B$ be the given straight line:
at is required to divide it in mediul section.

[^12]
(1) Internally :

On $A B$ describe the square $A B D C$.
I. 46

Bisect $A C$ at E;
I. 10
join $E B$, and produce $C A$ to F, making $E F=F B$. I. 3
On $A F$ (the difference of $E F$ and $E A$) describe the square $A F^{\prime} G H$.
I. 46
H is the point required.
Complete the rectangle $F L$.
Because $C A$ is divided into two equal segments $C E, E A$, and also externally into two unequal segments $C F, F A$;
\therefore

$$
\begin{array}{rlr}
C F \cdot F A & =E F^{2}-E A^{2}, & I I .6 \\
& =E B^{2}-E A^{2}, & \\
& =A B^{2} ; & \text { I. 47, Cor. }
\end{array}
$$

that is,

$$
C F \cdot F G=A B^{2}
$$

that is,

$$
C(\dot{r}=A D .
$$

From each of these equils take $A L$;
\therefore

$$
F H=H D
$$

that is,

$$
\begin{aligned}
A H^{2} & =D B \cdot B H \\
& =A B \cdot B H .
\end{aligned}
$$

(2) Externally :

On $A B$ describe the square $A B D C$.
Bisect $A C$ at E;

Boak II.]

On $A F^{\prime}$ (the sum of $E F^{\prime}$ and $E A$) describe the square $A F^{\prime} G^{\prime} H^{\prime}$,
I. 46
H^{\prime} is the point required.
Complete the rectangle $F^{\prime} L^{\prime}$.
Because $C A$ is divided into two equal segments $C E, E A$, and also externally into two unequal segments $C F^{\prime}, F^{\prime} A$;

$$
\begin{array}{rlrl}
\therefore & C F^{\prime} \cdot F^{\prime} A & =E F^{\prime 2}-E A^{2}, & I I .6 \\
& =E B^{2}-E A^{2}, & \\
& =A B^{2} ; & & \text { I. 47, Cor } .
\end{array}
$$

that is, $\quad C F^{\prime} \cdot F^{\prime} G^{\prime}=A B^{2}$;
that is, $\quad C G^{\prime}=A D$.
To each of these equals add $A L^{\prime}$;
$\therefore \quad$ that is, $\quad \begin{aligned} F^{\prime} H^{\prime} & =H^{\prime} D ; \\ A H^{\prime 2} & =D B \cdot B H^{\prime}, \\ & \end{aligned}$
Cor. 1.-If a straicht line be divided internally in medial section, and from the greater segment a part be cut off equal to the less segment, the greater segment will be divided in medial section.

For in the proof of the proposition it has been shown that $C F$. FA $=A B^{2}$, that is $=A C^{2}$;
$\therefore C \boldsymbol{F}$ is divided internally in medial section at A.
Now, from $A B$, which $=A C$, the greater segnent of $C F$, a part $A H$ has been cut off $=A F$, the less segment of $C F^{\prime}$; and $A B$ has been shown to be divided in medial section at H.

Let $A B$ be divided internally in medial section at C, so that $A C$ is the greater segment.

From $A C$ cut off $A D=B C$; then $A C$ is divided in medial section at D, and $A D$ is the greater segment.

From $A D$ cut off $A E=C D$; then $A D$ is divited in medial sectio. at E, and $A E$ is the greater segment.

From $A E$ out off $A F=D E$; then $A E$ is diviced in medial sectior at F, and $A F$ is the greater segment.

From $A F$ cut off $A(\gamma=E F$; then $A F$ is divided in medial section at G, and $A G$ is the greater segment.

This process may evidently be continued as long as we please, and it will be seen on comparison that it is equivalent to the arithmetical method of finding the greatest common measure. That method, if applied to two integers, always, however, comes to an end; unity, in default of any other number, being always a common measure of any two integers. In like manner any two fractions, whether vulgar or decimal, have always some common measure, for instance, unity divided by their least common denominator. From these considerations, thereiore, it will appear that the segments of a straight line divided in medial section cannot both be expressed exactly either in integers or fractions; in other words, these segments are incommensurable.

Cor. 2.-If a straight line be divided internally in medial section, and to the given straight line a part be added equal io the greate: segment, the whole straight line will be divided in medial section.

For this process is just the reversal of that described in Cor. 1, as will be evident from the following. (See fig. to Cor. 1.)

Let $A F$ be divided in medial section at G, so that $A G$ is the greater segment.

To $A F^{\prime}$ add $F E$, which $=A G$; then $A E$ is divided in medinl section at F, and $A F$ is the greater segment.

To $A E$ add $E D$, which $=A F$; then $A O$ is divided in medial section at E, and $A E$ is the greater segment.

To $A D$ add $D C$, which $=A E$; then $A C$ is divided in medial section at D, and $A D$ is the greater seqment.

To $A C$ add $C B$, which $=A I$; then $A B$ is divided in medial section at C^{\prime}, and $A C$ is the greater segment.

algebraical application.

Let $A B=a$; to find the length of $A H$ or $A I I^{\prime}$.
Denote $A H$ by x; then $B I I=a-x$.
Now, since $A B \cdot B H=A H^{2}$
$\therefore a(a-x)=x^{2}$, a quadratic equation, which being solvel gives $r=\frac{a(\sqrt{5}-1)}{2}$ or $\frac{-a(\sqrt{5}+1)}{2}$.

The first value of x, which is less than a, since $\frac{\sqrt{5}-1}{2}$ is less than unity, corresponds to $A H$; and the second value of x, which is numerically greater than a, since $\frac{\sqrt{5}+1}{2}$ is greater than unity, corresponds to $A H^{\prime}$. The significance of the - in the second value cannot be explained here; it will be enough to say that it indicates that $A H$ and $A H^{\prime}$ are measured in opposite directions from A.

The following approximation to the values of the segments of a straight line divided internally in medial section, is given in Leslie's Elements of Geometry (4th edition, p. 312), and attributed to Girard, a Flemish mathematician (17th cent.).

Take the series $1,1,2,3,5,8,13,21,34,55,59,144$, \&c., where each term is got by taking the sum of the preceding two. If any term be considered as denoting the length of the straight line, the two preceding terms will approximately denote the lengths of its segments when it is divided internally in medial section. Thus, if 89 be the length of the line, its segments will be nearly 34 and 55 ; because $89 \times 34=3026$, and $55^{2}=3025$. If 144 be the length of the line, its segments will be nearly 55 and 89 ; because 144×55 $=7920$, and $89^{2}=7921$.

1. It is assumed in the construction that a side of the square described on $A F$ will coincide with $A B$. Prove this.
2. If $A B \cdot B H=A H^{2}$, prove that $A H$ is greater than $B H$.
3. If $C H$ be produced, it will cut $B F$ at right angles.
4. The point of intersection of $B E$ and $C H$ is the projection of A on CH .
5. It is assumed in the proof of the second part that a side of the square described on $A F^{\prime}$ will be in the same straight line with $A B$. Prove this.
6. If $A B \cdot B H^{\prime}=A H^{\prime 2}$, prove that $A H^{\prime}$ is greater than $A B$.
7. If $C H^{\prime}$ be produced, it will cut $B F^{\prime \prime}$ at right angles.
8. The point of intersection of $B E$ and $C H^{\prime}$ is the projection of A on $C H^{\text {. }}$.
9. Prove that $H B$ is divided externally in medial section at A, and $I^{\prime} B$ internally at A.
10. Hence name all the straight lines in the figure that are divided internally or externally in medial section.

PROPOSITION 12. Theorem.

In obtuse-angled triungles, the square on the side opposite the obtuse angle is equal to the sum of the squares on the other two sides increased by twice the rectangle contained by either of those sides and the projection on it of the other side.

Let $A B C$ be an obtuse-angled triangle, having the obtuse angle $A C B$; and let $C D$ be the projection of $C A$ on $B C$: it is required to prove $A B^{2}=B C^{2}+C A^{2}+2 B C \cdot C D$.

Because $B D$ is divided internally into any two segments $B C, C D$,

Adding $D A^{2}$ to both sides,

$$
\begin{aligned}
B D^{2}+D A^{2} & =B C^{12}+C D^{2}+D A^{2}+2 B C \cdot C D \\
\therefore \quad A B^{2} & =B C^{2}+\quad C A^{2}+2 B C \cdot C D . \quad I .47
\end{aligned}
$$

aldebraical application.

Let the sides opposite the $\angle \mathrm{s} A, B, C$ be denoted by a, b, c, so that $A B=c, B C=a, C A=b$;
then, since $A B^{2}=B C^{2}+C A^{3}+2 B C \cdot C D$,
II. 12

$$
\begin{array}{rlrl}
c^{2} & =a^{2}+b^{2}+2 a \cdot C D ; \\
& & C D & =\begin{array}{c}
c^{2}-a^{2}-b^{2} \\
2 a
\end{array} \\
\therefore & B D & =B C+C D=a+\begin{array}{c}
c^{2}-a^{2}-b^{2} \\
2 a
\end{array}=\frac{a^{2}-1_{2}^{2}+c^{2}}{2 a} .
\end{array}
$$

Hence, if the three sides of an obtuse-angled triangle are known, we can calculate the lengths of the segments into which either side bout the ohtuse angle is divided hy a perpendicular from one of the acute angles.

1. If from B there be drawn $B E \perp A C$ produced, then $B C \cdot C D$ $=A C \cdot C E$.
2. $A B C D$ is $\mathfrak{a} \|^{\mathrm{m}}$ having $\angle A B C$ equal to an angle of an equilateral triangle ; prove $B D^{2}=B C^{2}+C D^{2}+B C \cdot C D$.
3. If $A B^{2}=A C^{2}+3 C D^{2}$ (figure to proposition), how will the perpendicular $A D$ divide $B C$?
4. If $\angle A C B$ become more and more obtuse, till at length A fall 3 on $B C$ produced, what does the proposition become?

PROPOSITION 13. Theorem.

In every triangle the square on the side opposite an acute angle is equal to the sum of the squares on the other two sides diminished by twice the rectangle contained by either of those sides and the projection on it of the other side.

Let $A B C$ be any triangle, having the acute angle $A C B$; and let $C D$ be the projection of $C A$ on $B C$: it is required to prove $A B^{2}=B C^{2}+C A^{2}-2 B C \cdot C D$.

Because $B D$ is divided externally into any two segments $B C, C D$,

$$
\therefore \quad B D^{2}=B C^{2}+C D^{2}-2 B C \cdot C D . \quad \text { II. } 7
$$

Adding $D A^{2}$ to both sides,

$$
\begin{aligned}
B D^{2}+D A^{2} & =B C^{2}+C D^{2}+D A^{2}-2 B C \cdot C D ; \\
\therefore \quad A B^{2} & =B C^{2}+\quad C A^{2} \quad-2 B C \cdot C D . \quad \text { I. } 47
\end{aligned}
$$

ALGEBRAICAL APPLICATION.

$$
\begin{align*}
& \text { As before, let } A B=c, B C=a, C A=b \text {; } \\
& \text { then, since } \quad A B^{2}=B C^{2}+C A^{2}-2 B C \cdot C D, \tag{II. 13}
\end{align*}
$$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a \cdot C D ; \\
\therefore \quad C D & =\frac{a^{2}+b^{2}-c^{2}}{2 a} ;
\end{aligned}
$$

and (fig. 2)

$$
\begin{equation*}
B D=B C-C D=a-\frac{a^{2}+b^{2}-c^{2}}{2 a}=\frac{a^{2}-b^{2}+c^{2}}{2 a} \tag{fig.1}
\end{equation*}
$$

$$
B D=C D-B C=\frac{a^{2}+b^{2}-c^{2}}{2 a}-a=\frac{b^{2}-c^{2}-a^{2}}{2 a}
$$

Hence, from the results of this proposition and the preceding, if the three sides of any triangle are known, we can calculate the lengths of the segments into which any side is divided by a perpendicula: from the opposite angle.

Hence, again, if the three sides of any triangle are known, we cap calculate the length of the perpendicular drawn from any angle of \boldsymbol{z} triangle to the opposite side.

For example (fig. 1), to find the length of $A D$.

$$
\begin{align*}
A D^{2} & =A C^{2}-C D^{2}, \\
& =b^{2}-\left(\frac{a^{2}+b^{2}-c^{2}}{2 a}\right)^{2} \\
& =\frac{4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}}{4 a^{2}}, \\
& =\frac{\left(2 a b+a^{2}+b^{2}-c^{2}\right)\left(2 a b-a^{2}-b^{2}+c^{2}\right)}{4 a^{2}}, \\
& =\frac{\left\{\left(a^{2}+2 a b+b^{2}\right)-c^{2}\right\}\left\{c^{2}-\left(a^{2}-2 a b+b^{2}\right)\right\}}{4 a^{2}} \\
& =\frac{\left\{(a+b)^{2}-c^{2}\right\}\left\{c^{2}-(a-b)^{2}\right\}}{4 a^{2}}, \\
& =\frac{(a+b+c)(a+b-c)(c+a-b)(c-a+b)}{4 a^{2}} ; \\
\therefore A D & =\frac{1}{2 a} \sqrt{(a+b+c)(a+b-c)(a-b+c)(b+c-a)} .
\end{align*}
$$

This expression for the length of $A D$ may be put into a ahorter and more convenient form, thus :

Denote the semi-perimeter of the $\triangle A B C$ by 8 ;
then $a+b+c=$ the perimeter $=2 s$;
$\therefore a+b-c=a+b+c-2 c=2 s-2 c=2(s-c)$,
$a-b+c=a+b+c-2 b=2 s-2 b=2(s-b)$,
and $b+c-a=a+b+c-2 a=2 s-2 a=2(8-a)$.

Hence $A D=\frac{1}{2 a} \vee \overline{2 b \cdot 2(z-c) \cdot 2(s-b) \cdot 2(s-a)}$,

$$
=\frac{2}{a} \sqrt{8(8-a)(8-b)(8-c)} .
$$

Similarly, the perpendicular from B on $C A=\frac{2}{b} \sqrt{8(8-a)(8-b)(8-c)}$ and

$$
\text { " " } \quad C \text { on } A B=\frac{2}{c} \sqrt{8(s-a)(z-b)(s-c)} \text {. }
$$

Hence, lastly, if the three sides of a triangle are known, we can calculate the area of the triangle.

For the area of $\triangle A B C=\frac{1}{2} B C \cdot A D$, I. 41, 35

$$
\begin{aligned}
& =\frac{a}{2} \cdot \frac{2}{a} \sqrt{s(s-a)(\delta}-\frac{b)(s-c)}{b} \\
& =\sqrt{8(s-a)(s-b)(s-c)} ;
\end{aligned}
$$

which expression may be put into the form of a rule, thus :
From half the sum of the three sides, subtract each side separately ; multiply the half sum and the three remainders together, and the square root of the product will be the area.*

1. If from B there be drawn $B E \perp A C$ or $A C$ produced, then $B C \cdot C D=A C \cdot C E$.
2. $A B C D$ is a $\|^{\mathrm{m}}$ having $\angle A B C$ double of an angle of an equilateral triangle ; prove $B D^{2}=B C^{2}+C D^{2}-B C \cdot C D$.
3. If $A B^{2}=A C^{2}+3 C D^{2}$ (fig. 1 to proposition), how will the perpendicular $A D$ divide $B C$?
4. If $\angle A C B$ become more and more acute till at length A falls on $C B$ or $C B$ produced, what does the proposition become?
5. If the square on one side of a triangle be greater than the sum of the squares on the other two sides, the angle contained by these two sides is obtuse. (Converse of II. 12.)
6. If the square on one side of a triangle be less than the sum of the squares on the other two sides, the angle contained by these two sides is acute. (Converse of II. 13.)
7. The square on the base of an isosceles triangle is equal to twice the rectangle contained by either of the equal sides and the projection on it of the base.

* The discovery of this expression for the area of a triangle is due to Heron of Alexandria. See Hultsoh's Heronis Alexandrini . . . reliquice (Berlin, 1864), pp. 235-237.

PROPOSITION 14. Problem.

To describe a square that shall be equal to a given rectilineul figure.

Let A be the given rectilineal figure:
it is required to describe a square $=A$.
Describe the rectangle $B C D E=A$.
I. 45

Then, if $B E=E D$, the rectimgle is a square, and what was required is done.
But if not, produce $B E$ to F, making $E F=E D$. I. 3 lisect $B F$ in G; I. 10 with centre G and radius $G F$ describe the semicircle $B H \dot{F}$; and produce I)E to I.
$E I^{2}=A$.
Join GII.
Becanse $B F$ is divided into two equal segments $B C r$, ir F, and also internally into two unequal semments $B E$, ER';

$$
\begin{array}{rlr}
\therefore \quad B E \cdot E F & =C_{r} F^{2}-G E^{2}, & \text { II. } 5 \\
& =C_{r}^{\prime} H^{2}-G E^{2}, & \text { I. } 47, C_{o} \\
& =E H^{2} . &
\end{array}
$$

1. From any point in the are of a semicircle, a perpendicular is drawn to the liameter. Prove that the square on this perpendenlar = the rectangle contained by the segments into which it divides the diameter.
2. Divide a given straight line internally into two segments, such that the rectangle contained by them may be equal to the square on another given straight line. What limits are there to the length of the second straight line?
3. Divide a given straight line externally into two segments, such that the rectangle contained by them may be equal to the square on another given straight line. Are there any limits to the length of the second straight line?
4. Describe a rectangle equal to a given square, and havint one of its sides equal to a given straight line.

APPENDIX II.

Proposition 1.

The sum of the squares on two sides of a triangle is double the sume. of the squares on half the base and on the median to the base.*

Let $A B C$ be a triangle, $A D$ the median to the base $B C$: it is required to prove $A B^{2}+A C^{2}=2 B D^{2}+2 A I I^{2}$.

Draw $A E \perp B C$.
Then
and

$$
A B^{2}=B D^{2}+A D^{2}+2 B D \cdot D E
$$

I. 12

$$
\text { II. } 12
$$

and
But $B D^{2}=C D^{2}$, and $B D \cdot D E=C D \cdot D E$, since $B D=C D$;
$\therefore A B^{2}+A C^{2}=2 B D^{2}+2 A D^{2}$.
Cor.-The theorem is true, however near the vertex A may be to the base $B C$. When A falls on $B C$, the theorem becomes IL. 9 ; when A falls on $B C$ produced, the theorem becomes II. 10.

[^13]Notr.-It may be well to remark that the converse of the theorem, 'If $A B C$ be a triangle, and from the vertex A a straight line $A D$ be drawn to the base $B C$, so that $A B^{2}+A C^{2}=2 B D^{2}$ $+2 A D^{2}$, then D is the middle point of $B C$, is not always true.

For, let $A B C, A B C^{\prime}$ be two triangles having $A C=A C^{\prime}$.
Find D, the middle point of $B C$. D must fall either between B and C^{\prime}, between C and C^{\prime}, or on C^{\prime}.

In the first case, join $A D$.
Then

$$
A B^{2}+A C^{2}=2 B D^{2}+2 A D^{2}
$$

\therefore

$$
A B^{2}+A C^{\prime 2}=2 B D^{2}+2 A D^{2}
$$

and we know that I is not the middle point of $E C^{\prime}$.
In the second case, find D^{\prime} the middle point of $B C^{\prime}$, and join $A D^{\prime}$.

$$
1 \text { hen }
$$

$$
A B^{2}+A C^{\prime 2}=2 B I J^{\prime 2}+2 A D^{2}
$$

\therefore

$$
A B^{2}+A C^{2}=2 B D^{\prime 2}+2 A D^{\prime 2}
$$

and we know that J^{\prime} is not the middle point of $B C$.
The third case needs no discussion.

Proposition 2.

The difference of the squares on two sides of a triangle is clouble the rectangle containel by the base and the clistance of its middle point from the perpendicular on it from the vertex.*

Let $A B C$ be a triangle, D the middle point of the base $B C$, and $A E$ the perpendicular from A on $B C$:
is is required to prove $\Delta B^{2}-A C^{2}=2 B C \cdot D E$.

[^14]Book II.]
For

$$
\begin{aligned}
A B^{2}-A C^{2} & =\left(B E^{2}+A E^{2}\right)-\left(E C^{2}+A E^{2}\right), \quad \text { I. } 47 \\
& =B E^{2}-E C^{2} \\
& =(B E+E C)(B E-E C), \quad \text { II. } 5,6, \text { Corr. } \\
& =B C \cdot 2 D E^{\prime} \text { in f.g. } 1 ; \\
\text { or } & =2 D E \cdot B C \text { in fig. 2, } \\
& =2 B C \cdot D E .
\end{aligned}
$$

Proposition 3.
If the straight line $A D$ be divided internally at any two points C and B, then $A C \cdot B D+A D \cdot B C=A B \cdot C D$.*

For $A C \cdot B D+A D \cdot B C=A C \cdot B D+(B D+A B) \cdot B C$,
$=A C \cdot B D+B D \cdot B C+A B \cdot B C, I I .1$
$=B D \cdot(A C+B C)+A B \cdot B C, I I .1$
$=B D \cdot A B+A B \cdot B C$,
$=A B \cdot(B D+B C)$,
II. 1
$=A B \cdot C D$.

LOCI.

Praposition 4.
find the locus of the vertices of all the triangles which have the same base and the sum of the squares of their sides equal to a given square.

Let $B C$ be the given base, M^{2} the given square.
Suppose A to be a point situated on the required locus,
Join $A B, A C$;
birect $B C$ in D, and join $A D$.
I. 10

* Euler, Novi Comm. Petrop., vol. i. p. 49.

Then, since A is a point on the locus, $A B^{2}+A C^{2}=M^{2}$. Hyp. But $A B^{2}+A C^{2}=2 B D^{2}+2 A D^{2} ; \quad$ App. 11.1
$\therefore 2 B D^{2}+2 A D^{2}=M^{2}$;
$\therefore A D^{2}=\frac{1}{2} M^{2}-B D^{2}$.
Now $\frac{1}{2} M^{2}$ is a coustant magnitude, aud so is $B D^{2}$, being the square on half the given base ;
$\therefore \frac{1}{2} M^{2}-B D^{2}$ must be constant ;
$\therefore A D^{2}$ must be constant.
Ind since $A D^{2}$ is constant, $A D$ must be equal to a fixed length; that is, the vertex of any triangle fulfilling the given conditions is always at a constant distance from a fixed point D, the middle of the given base. Hence, the locus required is the $0^{c o}$ of a circle whose centre is the middle point of the base.

To determine the locus completely, it would be necessary to find the length of the radius of the circle. This may be left to the reader.

Propostition 5.

Find the locus of the vertices of all the triangles which have the same base, and the difference of the squares of theor sides equal to a given square.

M

Let $B C$ be the given base, M^{2} the given square.
Suppose A to be a point situated on the required locus.
Join $A B, A C$;
bisect $B C$ in D, and draw $A E \perp B C$ or $B C$ produced. I. 10, 12
Then, since A is a point on the locus $A B^{2}-A C^{2}=M^{2} . \quad$. $y y$ p.
But $A B^{2}-A C^{2}=2 B C \cdot D E^{\prime} ; \quad$ App. II. 2
$\therefore 2 B C \cdot D E=M^{2}$.
Now M^{2} is a constant magnitude, and so is $2 B C$;
$\therefore D E$ must be constant ;
\therefore a perpendicular drawn to $B C$ from the vertex of any triangle fulfilling the given conditions will cut $B C$ at a fixed point.

If $A C^{2}-A B^{2}=M^{2}$, the perpendicular from A on $B C$ will cui $B C$ at a point $E^{\prime \prime}$ on the other side of D, such that $D E^{\prime}=D E$.

Hence, the locus consists of two straight lines drawn perpendicular to the base and equally distant from the middle point of the base.

DEDUCTIONS.

1. If from the vertex of an isosceles triangle a straight line be drawn to cut the base either internally or externally, the difference between the squares on this line and either side is equal to the rectangle contained by the segments of the base. (Pappus, III. 5.)
2. The sum of the squares on the diagomals of a $\|^{m}$ is equal to the sum of the squares on the four sides.
3. The sum of the squares on the diagonals of any quadrilateral is equal to twice the sum of the squares on the straight lines joining the middle points of opposite sides.
4. The sum of the squares on the four sides of any quadrilateral exceeds the sum of the squares on the two diagonals by four times the square on the straight line which joins the middle points of the diagonals. (Euler, Novi Comm. Petrop., i. p. 66.)
5. The centre of a fixed circle is the middle point of the base of a triangle. If the vertex of the triangle be ou the 0°, the sum of the squares on the two sides of the triangle is constant.
6. The centre of a fixed circle is the point of intersection of the diagonals of a $\|^{m}$. Prove that the sum of the squares on the straight lines drawn from any point on the 0∞ to the four vertices of the $\|^{m}$ is constant.
7. Two circles are concentric. Prove that the sum of the squares of the distances from any point on the $O^{c e}$ of one of the circles to the ends of a diameter of the other is constant.
8. The middle point of the hypotenuse of a right-angled triangle is equidistant from the three vertices.
9. Three times the sum of the squares on the sides of a triangle is equal to four times the sum of the squares on the three medians, or equal to nine times the sum of the squares on the straight lines which join the centroid to the three vertices.
10. If $A B C D$ be a quadrilateral, and P, Q, R, S be the middle points of $A B, B C, C D, D A$ respectively, then $2 P R^{2}+A B^{2}$ $+C D^{2}=2 Q S^{2}+B C^{2}+D A^{2}$.
11. Thrice the sum of the squares on the sides of any pentagon $=$ the sum of the squares on the diagonals together with four times the sum of the squares on the five straight lines joining, in order, the middle points of those diagonals.
12. If A, B be fixed points, and O any other point, the sum of the squares on $O A$ and $O B$ is least when O is the middle point of $A B$.
13. Prove II. 9,10 by the following construction: On $A D$ describe a rectangle $A E F D$ whose sides $A E, D F$ are each $=A C$ or $C B$. According as D is in $A B$, or in $A B$ produced, from $D F$, or $D F$ produced, cut off $F G<D B$; and join $E C C^{\prime}, C^{\prime}($, $G E$. Show how these figures may be derived from those in the text.
14. If from the vertex of the right angle of a right-angled triangle a perpendicular be drawn to the hypotenuse, then (1) the square on this perpendicular is equal to the rectangle contained by the segments of the hypotenuse ; (2) the square on either side is equal to the rectangle contained by the hypotenuse and the segment of it adjacent to that side.
15. The sum of the squares on two unequal straight lines is greater than twice the rectangle contained by tho straight lines.
16. The sum of the squares on three unequal straight lines is greater than the sum of the rectangles contained by every two of the straight lines.
17. The square on the sum of three unequal straight lines is greater than three times the sum of the rectangles contained by every two of the straight lines.
18. The sum of the squares on the sides of a triangle is less than twice the sum of the rectangles contained by every two of the sides.
19. If one side of a triangle be greater than another, the median drawn to it is less than the median drawn to the other.
20. If a straight line $A B$ be bisected in C, and divided internally at D and E, D being nearer the middle than E, then $A D \cdot D B=A E \cdot E B+C D \cdot D E+C E \cdot E D$.
21. $A B C$ is an isosceles triangle having each of the angles B and $C=2 A . \quad B D$ is drawn $\perp A C$; prove $A D^{2}+D C^{2}=2 B D^{2}$
22. Divide a given straight line internally so that the squares on the whole and on one of the segments may be double of the square on the other segment.
23. Given that $A B$ is divided internally at H, and externally at H^{\prime}, in medial ection, prove the following:
(1) $A H \cdot B H=(A H+B H) \cdot(A H-B H)$; $A H^{\prime} \cdot B H^{\prime}=\left(B H^{\prime}+A H^{\prime}\right) \cdot\left(B H^{\prime}-A H^{\prime}\right)$.
(2) $A H \cdot(A H-B H)=B H^{2} ; A H^{\prime} \cdot\left(A H^{\prime}+B H^{\prime}\right)=B H^{m}$.
(3) $A B^{2}+B H^{2} \quad==3 A H^{2} ; \quad A B^{2}+B H^{\prime 2}=3 A H^{\prime 2}$.
(4) $(A B+B H)^{2}=5 A H^{2} ; \quad\left(A B+B H^{\prime}\right)^{2}=5 A H^{\prime 2}$.
(5) $(A H-B H)^{2}=3 B H^{2}-A H^{2} ;\left(B H^{\prime}-A H\right)^{2}=3 A H^{2}-B H^{\prime 2}$.
(6) $(A H+B H)^{2}=3 A H^{2}-B H^{2} ;\left(A H^{\prime}+B H^{\prime}\right)^{2}=3 B H^{\prime 2}-A H^{2}$.
(7) $(A B+A H)^{2}=8 A H^{2}-3 B H^{2}$; $\left(A H^{\prime}-A B\right)^{2}=8 A H^{\prime 2}-3 B H^{\prime 3}$.
(8) $A B^{2}+A H^{3}=4 A H^{2}-B H^{2} ; A B^{2}+A H^{2}=4 A H^{\prime 2}-B H^{\prime 2}$.
24. In any triangle $A B C$, if $B P, C Q$ be drawn $\perp C A, B A$, produced if necessary, then shall $B C^{2}=A B \cdot B Q+A C \cdot C P$.
25. If from the hypotenuse of a right-angled triangle segments be cut of equal to the adjacent sides, the square of the middle segment thus formed $=$ twice the rectangle contained by the extreme segments. Show how this theorem may be used to find numbers expressing the sides of a right-angled triangle. (Leslie's Elements of Geometry, 18:0, p. 315.)

Loci.

1. Given a $\triangle A B C$; find the locus of the points the sum of the squares of whose distances from B and C, the ends of the base, is equal to the sum of the squares of the sides $A B, A C$.
2. Given a $\triangle A B C$; tind the locus of the pints the difference of the squares of whose distances from B and C, the ends of the base, is equal to the difference of the squares of the sides $A B B, A C$.
3. C‘f the $\triangle A B C$, the base $B C$ is given, and the sum of the sides $A B, A C$; find the locus of the point where the perpendicular from C to $A C$ meets the bisector of the exterior vertical angle at A.
4. Of the $\triangle A B C$, the base $B C$ is given, and the difference of the sides $A B, A C$; find the locus of the point where the perpendicular from C to $A C$ meets the bisector of the interior vertical angle at A.
5. A variable chord of a given circle subtends a right angle at a fixed point; find the locus of the middle point of the chord. Examine the cases when the fixed point is inside the circles, outside the circle, and on the $O^{\text {cr }}$

104

BOOK IYI.

DEFINITIONS.

i. A circle is a plane figure contained by one line which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal. This point is called the centre of the circle, and the straight lines drawn from the centre to the circumferen are called radii.

Cor. 1.-If a point be situated inside a cirele its distance from the centre is less than a radius ; and if it he situated outside, its distance from the centre is greater than a radins

Thus, in fig. 1 , $O P$, the distance of the point P from the centre O, is less than the radius OA; in tig. 2, $O P$ is greater than the radius $O A$.

Fig. 1.

Abstract

Fig. 2.

Cor. 2.-Conversely, if the distance of a pnint from the enutre of a circlo he less than a radius, the point must be situated inside the circle ; if its distance from the centre be greater than a radius, it must be situated outside the circle.

Cor. 3.-If the radii of two circles be equal, the circumfereners are equal, and so are the circles themselves.

This may be rendered evident hy applying the one circle to the nther, so that their centres shall coincile. Since the rawlii of the one circle are equal to those of the other, every point in the circum.
ference of the one circle will coincide with a point in the circumference of the other; therefore, the two circumferences coincide and are equal. C'onsequently also the two circles coincide and are equal.

Cor. 4.-Conversely, if two circles be equal, their radii are cqual, and also their circumferences.
'Ihis may be proved indirectly, by supposing the radii unequal.
Cor. $5 .-1$ circle is given in magnitude when the length of its radlius is given, and a circle is given in position and magnitude when the position of its centre and the length of its radius are given. (Euclid's Data, Definitions 5 and 6.)

Cor. 6.-The two parts into which a diameter divides a circle are equal.

This may be proved, like Cor. 3, by superposition.
The two parts are therefore called semicircles.
Cor. 7.-The two parts into which a straight line not a liameter divides a circle are unequal.
Thus if $A B$ is not a diameter of the circle $1 B C$, the two parts $A C B$ an! $A D B$ into which $A B$ divides the circle are unequal.
For if a diameter $A E$ be drawn, the part $-1 C B$ is less than the semicircle $A B E$, and the 1 nrt $A D B$ is greater than the semicircle $A D E$.

2. Concentric circle are those which have a common centre.
3. A straight line is said to touch a circle, or to be a tangent to it, when it meets the circle, but being produced does not ru' if.
Thus $B C$ is a tangent to the circle $A D E$.

4. A straight line drawn from a point outside a circle, and cutting the circumference, is called a secant.

Thus $E C A$ and $E B D$ are secants of the circle $A B C$.
If the secant $E C _\downarrow$ were, like one of the bands of a wa uh, to revolve round E as a pirot, de points A and C would appproac' one another, and at 1 lensth coincir. When the points A
 and C coincided, the secant would have become a tangent. Hence a tangent to a circle may be defiued to be a secant in its limiting position, or a secaut which meets the circle in two coincident points.

This way of regarding a tangent straight line may be applied also to a tangent circle.
5. Circles which meet but do not cut one another, are said to touch one another.

Fig. 1.

Fig. 2

Thus the circles $A B C, A D E$, which mect but do not intersect, are said to touch each other. In fir. 1, the circles are said to touch one another intermilly, although in strictness only one of them touches the other internally; in fig. 2, they are said to touch one annther externally.
6. The pmints at which circles touch each other, or at which straight lines tonch circles, are called points of contact.

Thus in the fig'res to definitions 3 and 5 , the points A are points - of oonkact.
7. A chord of a circle is the straight line joining any two points on the circumference.

Thus $A B$ is a chord of the circle $A B C$.
8. An arc of a circle is any part of the circumference.

Thus $A C B$ is an arc of the circle $A B C$; so is $A D B$.

9. A chord of a circle which does not pass through the centre divides the circumference into two unequal ares. These ares are called the major and the minor ares, and they are said to be conjugate to each other.

Thus the chord $A B$ divides the circumference of the circle $A B C$ into the conjugate arcs $A D B, A C B$, of which $A D B$ is a major arc, and $A C B$ a minor arc.
10. Chords of a circle are said to be equidistant from the centre when the perpendiculars drawn to them from the centre are equal ; and one chord is farther from the centre than another, when the perpendicular on it from the centre is greater than the perpendicular on the other.
Thus in the circle $A B C$, whose centre is O, if the perpendiculars $O G, O H$ on the chords $A B, C D$ are equal, $A B$ and $C D$ are said to be equilistant from O; if the prpendicular $O L$ on the chord $E F$ is greater than $O G$ or $O H$, the chord $E F$ is said to be farther from the ceutre than $A B$ or $C D$.

11. A segment of a circle is the figure contained by a chord, and either of the ares into which the chord divides the circumference. The segments are called major or minor segments, according as their ares are major or minor ares.

Thus (see figure to definition 7) the figure contained by the minor arc $A C B$ and the chord $A B$ is a minor segment; the figure
contained by the major arc $A D B$ and the chord $A B$ is a major segment.

It is worthy of observation that a segment, like a circle, is generally named by three letters; but the letters may not be arranged auyhow. The letters at the ends of the chord must be placed either first or last.
12. An angle in a segment of a circle is the angle contained by two straight lines drawn from any point in the are of the segment to the ends of the chord.

Thus $A C B$ and $A D B$ are angles in the segment $A C B$.

13. Similar segments of circles are those which contain equal añgles.

Thus if the angles C and F are equal, the segment $A C B$ is said to be similar to
 the segment IDFE.
14. A sector of a circle is the figure contained by an are and the two radii drawn to the ends of the are.

Thus if O be the centre of the circle $A B D$, the figure $O A C B$ is a scetor; so is $O A D B$.

It is obvious that, when the radii are in the same straight line, the sector becomes a semicircle.
15. The angle of a sector is the angle contained by the two radii.

Thus the angle of the sector $O A C B$ is the angle $A O B$.
16. Two radii of a circle not in the same straight line divide the circle into two sectors, one of which is greater and the other less than a semicircle; the former may be called a major, and the latter a minor sector.

Thus $O A D B$ is a major sector, and $O A C B$ is a minor sector.
17. Sectors have received particular names according to the size of the angle contained by the radii. When the contained angle is a right angle, the sector is called a quadrant ; when the contained angle is expual to one of the angles of an equilateral triangle, the sector is called a sextant.

Thus if $A O B$ is a right angle, or one-fourth of four right angles, the sector $O A B$ is a quadrant; if $A O C$ is two-thirds of one right angle (see p. 71, deduction 9), or one-sixth of four right angles, the sector $0 . A C$ is a sextant.

18. An angle is said to be at the centre, or at the circumference of a circle, when its vertex is at the centre, or on the circumference of the circle.

Thus $B E C$ is an annle at the centre. and $B A C$ an angle at the circumference of the circle $A B C$.
19. An angle either at the centre or at the circumference of a circle is said to stand on the are intercepted between the
 arms of the angle.
Thus the angle $B E C$ at the centre and the angle $B A C$ at the circumference both stand on the same are $B D C$.

In respect to the angle $B E C$ at the centre of the circle $A B C$, it may readily occur to the reader to inquire whether the minor are $B D C$ is the only arc intercepted by $E B$ and $E C$, the arms of the angle. Obviously enough $E \cdot B$ and $E C$ intercept also the major arc $B A C$. What, then, is the angle which stands on the major are BAC? This inquiry leads us naturally to reconsider our definition of au angle.
20. An angle may be regarded as generated (or described) by a straight line which revolves round one of its end points, the size of the angle depending on the amount of revolution.

Thus if the straight line $O B$ ocenpy at first the position $O A$, and then revolve round O in a manner opposite to that of the hands of a wateh, till it comes into the position $O B$, it will have generated or cleseribed the angle $A O B$. If $O B$ continue its revolution round O till it oceupies the position $O I$), it will have generated the angle $A O 1$); if $O B$ still continue its revolution round O till it occupies successively the positions $O \mathrm{~F}, \mathrm{OH}$, it will have generated the angles $A O F$, $A O H$. The angles $A O B, A O I, A O F$, $A O H$, being successively gencrated ly the
 revolution of $O F$, are therefore arranged in oriler of magnitude, $A O D$ leing greater than $A O B, A O F$ greater than $A O J$, and $A O H$ greater than $A O F$.

It is plain enough that $O B$, after reaching the position $O H$, may continue its revolution till it occupies the position it started from. when it will coincile again with $O A$. $O B$ will then have described a complete revolution. If the revolution be supposeu to continue, the angle generated by $O B$ will grow greater and greater (since its size depends on the amount of revolution), but $O B$ itself will return to the positions it occupied before; and therefore in its seeond revolution $O B$ will not indieate any new direction relatively to $O A$, which it did not indicate in its first. Hence there is no need at present to consider angles greater than those generated by a straight line in one complete revolution.
21. In the course of the revolution of $O B$ from the position of $O A$ round to $O A$ again, $O B$ will at some time or other occupy the position OF, which is in a straight line with $O A$; the angle $A O E$ thus generated is called a straight (or sometimes a flat) angle.

- When $O B$ occupies the position $O C$ midway between that of $O A$ and $O E$ (that is, when the angles $A O C$ and $C O E$ are equal), the angle $A O C$ thus generated is ealled a right angle. Hence a straight angle is equal to two right angles.

When $O B$ occupies the position $O G$ which is in a straight line with $O C$, the angle $A O C$ thus generated is an angle of three right angles; when $O B$ again coincides with $O A$, it has
generated an angle of four right angles. Hence angle $A O B$ is less than a right angle ; angle $A O D$ is greater than one right angle. and less than two ; angle $A O F$ is greater than two and less than three right angles; angle $A O H$ is greater than three and less than four right angles.
22. It has been explained how $O B$, starting from the position $O A$, and revolving in a manner opposite to that of the hands of a watch, generates the angle $A O B$, less than a right angle when it reaches the position $O B$. But we may suppose
 that $O B$, starting from $O A$, reaches the position $O B$ by revolving round O in the same manner as the hands of a watch; it will then have generated another angle $A O B$, greater than three right angles. Thus it appears that two straight lines drawn from a point contain two angles having common arms and a common vertex. Such angles are said to be conjugate, the greater being called the major conjugate, and the less the minor conjugate angle. When, however, the angle contained by two straight lines is spoken of, the minor conjugate angle is understood to be meant.
23. It will be apparent from the preceding that the sum of two conjugate angles is equal to four right angles; and that when two conjugate angles are unequal, the minor conjugate must be less than two right angles, and the major conjugate greater than two right angles. When two conjugate angles are equal, each of them must be a straight angle.

Major conjugate angles are often called reflex angles, and to prevent obtuse angles from being confounded with reflex angles, obtuse angles may now be defined to be angles greater than one right angle, and less than two right angles.

PROPOSITION 1. Probley.

To fina the centre of a given circle.

Let $A B C$ be the given circle :
it is ripuired to fimel its contre.
Draw any chord $A B$, and lisect it at D;
from D draw $D C \perp A B$, I. 11 and let I C, produced if necessary, meet the $O^{\text {ce }}$ at C and E. Bisect $C E$ at F.

For if F be not the centre, let $(F$ be the centre ;
and join $G A, G D, G B$.

$$
\begin{aligned}
& \text { (AD }=B D \quad \text { Const. } \\
& \text { In } \triangle \mathrm{s} A D\left(\dot{r}, B D G ;\left\{\begin{array}{l}
1)(;=I) G \\
1 ; A=1 B ;
\end{array}\right.\right. \\
& \text { III. Def. } 1 \\
& \text { I. } 8 \\
& \therefore \angle A D H_{i}=-B D C_{r} \text {; } \\
& \therefore \angle A l)_{r} \text { is right. } \\
& \text { But - } A D C \text { is right; } \\
& \therefore \angle A D G=\angle A D C \text {, which is impossible; } \\
& \therefore \text { (is is not the eentre. }
\end{aligned}
$$

Now C_{i} is any point out of CE ;
\therefore the centre is in CLE
But, since the centre is in $C F$, it must he at F, the middle point of CE.

Cor. 1.-The straight line which bisects any chord of a circle perpendicularly, passes through the centre of the circle.

Cor. 2.-Hence a circle may be described which shall pass through the three vertices of a triangle.

For if a circle could be described to pass through A, B, C, the vertices of the triangle $A B C, A B$ and $A C$ would be chords of this circle;
$\therefore \nu F$, which bisects $A B$ perpendicularly, would pass through the centre. III. 1, Cor. 1

Similarly $E F$, which bisects $A C$ perpendicularly, would pass through the centre. III. 1, Cor: 1 Hence F will be the centre, and $F A, F B$, or $F C$ the radius.

1. Show how, by twice applying Cor. 1 , to find the centre of a given circle.
2. Similarly, show how to find the centre of a circle, an arc only of which is given.
3. Describe a circle to pass through three given points. When is this impossible?
4. Nescribe a circle to pass through two given points, and have its centre in a given straight line. When is this impossible?
5. Describe a circle to pass through two given points, and have its radius equal to a given straight line. When is this impossible?
6. A quadrilateral has its vertices situated on the oce of a circle. Prove that the straight lines which bisect the sides perpendicularly are concurrent.
7. From a point outside a circle two equal straight lines are drawn to the $o^{\text {ce }}$. Prove that the bisector of the angle they contain passes through the centre of the circle.
S. Show also that the same thing is true when the point is taken either within the circle or on the $O^{c e}$.
8. Hence give another method of finding the centre of a given circle.

PROPOSITION 2. Theorem.

If any tro points be taken in the circumference of a circle, the straight line which joins them shull full within the circle.*

Let $A B C$ be a circle, A and B any two points in the $\bigcirc^{\text {ce }}$: it is required to prove that $A B$ shall fall within the circle.

Find D the centre of the $\odot A B C$; III. 1 take any point F in $A B$, and join $D A, D E, D B$.

Because $D A=D B, \therefore \angle A=\angle B$. I. 5
But $\angle D F B$ is greater than $\angle A$; I. 16
$\therefore \angle D E B$ is greater than $\angle B$;
$\therefore \quad D B$ is greater than $D E$.
I. 19

Now since $D E$ drawn from the centre of the $\odot A B C$ is less than a ralins, E must be within the circle. $I I I$. Def. 1, Corr. 1

But E is any pint in $A B$, except the end points A and B; $\therefore A B$ itself is within the circle.

1. Prove that a straight line cannot cut the $\mathrm{O}^{c e}$ of a circle in more than two points.

[^15]2. Describe a circle whose $O^{\text {ce }}$ shall pass through a given point, whose centre shall be in one given straight line, and whose radins shall be equal to another given straight line. May more than one circle be so drawn? If so, how many? When will there be only one, and when none at all?

PROPOSITION 3. Theorems.

If a straight line drawn through the centre of a circie bisect a chord which does not pass through the centre, it shall cut it at right angles.
Conversely: Ij it cut it at right angles, it shall bisect it.

(1) Let $A B C$ be a circle, F its centre ; and let $C E$, which passes through F, bisect the chord $A B$ which does not pass through F :
it is required to prove $C E \perp A B$.
Join $F A, F B$.
In $\triangle \mathrm{s} A D F, B D F,\left\{\begin{array}{lr}A D=B D & \text { H?p. } \\ D F=D F \\ F A=F B ; & \text { III. Def. } 1\end{array}\right.$
$\therefore \angle A D F=\angle B D F$;
I. 8
$\therefore C E$ is $\perp A B$.
I. Def. 10
(2) In $\odot A B C$ let $C E$ be $\perp A B$:
it is required to prove $A D=B D$.

J Join $F A, F^{\prime} B$.
In $\triangle \mathrm{s} A D F, B D F,\left\{\begin{array}{rlr}\angle A D F & =\angle B D F & \text { Hyp. } \\ \angle F A D & =\angle F B D & I .5 \\ D F & =D F ;\end{array}\right.$
$\therefore A D=B D$.
I. 26

1. In the figure to the proposition, C and E are on the $O^{\text {ce }}$. Need they be so ?
2. The $O^{\text {ee }}$ of a circle passes through the vertices of a triangle. Prove that the straight lines drawn from the centre of the circle perpenilicular to the sides will hiseet those sides.
3. Two enncentric circles intercept between their o ces two equal portions of a straight line cutting them both.
4. Through a given point within a circle draw a chord which shall be bisected at that print.
5. If two chords in a circle be parallel, their middle points witi lie on the same diameter.
6. Hence give a method of finding the centre of a given circle.
7. If the vertex of an isosceles triangle be taken as centre, and a circle lie described cutting the base or the base produced, the. serments of the base intercepted between the $0^{\text {ro }}$ and the euls of the base will be equal.
8. If two circles cut each uther, any two parallel straight lines drawn through the points of intersection to the ocen will be equal.
9. If two circles cut each other, any two straight lines irawn thro ngh one of the points of intersection th the $0^{\text {oses }}$ and making equal angles with the line of centres will tee equal.

PROPOSITION 4. Theorem.

If tuo chords of a circle cut one another and do not both pass through the centre, they do not bisect one another.

Let $A B C$ be a circle, $A C, B D$ two chords which cut one another at E, but do not both pass through the centre : it is required to prove that $A C, B D$ do not bisect one another.
(1) If one of them pass through the centre, it may bisect the other which does not pass through the centre ; but it cannot be itself bisected by that other.
(2) If neither of them pass through the centre, let $A E$ $=E C$, and $B E=E D$.
Find F the centre of $\odot A B C$,
III. 1 and join $F E$.

Because $F E$ passes throngh the centre, and bisects $A C$, $\therefore \angle F E A$ is right.
III. 3

Because $F E$ passes through the centre, and bisects $B D$,
\therefore - FEB is right ;
III. 3
$\therefore \angle F E A=\angle F E B$, which is impossible.
$\therefore A C, B D$ do not bisect one another.

1. If two chords of a circle bisect each other, what must both of them be?
2. No $\|^{\mathrm{m}}$ whose diagonals are unequal can have its vertices on the $O^{\text {ce }}$ of a circle.
3. No $\|^{m}$ except a rectangle can have its vertices on the $0^{c e}$ of a circle.

PROPOSITION 5. Theorem.

If two circles cut one another, they cannot have the same centre.

Let the $\odot \mathrm{s} A B C, A D E$ cut one another at A :
it is required to prove that they cannot have the same centre.
If they can, let F ' be the common centre.
Join $F A$, and draw any other straight line $F C E$ to meet the two $O^{\text {cee. }}$
Then $F A=F C$, heing radii of $\odot A B C, \quad$ IIT. Def. 1
and $\quad F A=F E$, being radii of $\odot A D E ; \quad$ III. Def. 1
$\therefore \quad F^{\prime} C^{\prime}=F E$, which is impossible.
$\therefore \odot \mathrm{s} A B C, A D E$ cannot have the same centre.

1. If two circles do not cut one another, can they have the same centre?
2. If two circles cut one another, can their common chord be a diameter of either of them? Can it be a diameter of hoth?
3. If the common chord of two intersecting cireles is the diameter of one of them, prove that it is \perp the straight line joining the centres.
4. If two circles cut one another, the distance between their centres is less than the sum, and greater than the difference of their radii.
5. Prove the converse of the preceding deduction.

PROPOSITION 6. Theorem.

If two circles touch one another internally, they cannot have the same centre.

Let the $\odot \mathrm{s} A B C, A D E$ touch one another internally at A : it is required to proce that they cannot have the same centre.

If they can, let F be the conmon centre.
Join F_{1}; and draw any other straight line $F E C$ to meet the two $\bigcirc^{\text {ces }}$.

Then $F A=F C$, being radii of $\odot A B C, \quad$ III. Def. 1 and $\quad F A=F L ;$ being radii of $\odot A D E ; \quad$ III. Lef. 1
$\therefore \quad F C=F l$, which is impossible.
$\therefore \odot s A B C, A D E$ cannot have the same centre.

1. If two circles touch one another externally, can they have the same centre?
2. Enunciate III. 5, 6, and the preceding deduction in one statement.
3. If one circle be inside another, and do not touch it, the distance between their centres is less than the difference of their ralii.
4. If one circle he outside another and do not touch it, the distance between their centres is greater than the sum of their radiu.
5. Prove the converses of the two preceding leductions.

PROPOSITION 7. Theorem.

If from any point within u circle which is not the contre. struight lines be clrawn to the circumference, the greatest is that which passes through the centre, and the remaininy part of that diameter is the lewst; of the others, that which is nearer to the greatest is greater then the more remote; and from the given point straight lines which are equal to one another can be drum to the circumference only in pairs, one on cach side of tho diameter.

Let $A B C$ be a circle, and P any point within it which is not the centre ; from P let there he drawn to the $\bigcirc^{\text {ce }} D P A$, $I D, D^{\prime} C$, of which $D I^{\prime} A$ passes through the centre O : it is required to prove (1) thut $P A$ is greutir than $I ' B$;
(2) that $P B$ is aprater than $P C$;
(3) that $P U$ is 10 ses thern. $P C$;
(4) thut onlys ome straight line cun be drainn from I^{\prime} to the $\bigcirc^{c e}=P C$

Join $O B, O C$.
(1) Hecause $O B=O A$, being radii of the same circle;

$$
\therefore P(I+O R=P O+O A \text {, or } P A
$$

But $P^{\prime} U+O B$ is greater than $I^{\prime} B$;
I. 20
$\therefore \quad \quad \quad A$ is greater than $P B$.
(2) In $\triangle \mathrm{s} P O B, P O C,\left\{\begin{array}{l}P O=P O \\ O B=O C \quad \text { III. Def. I } \\ \text { I }\end{array}\right.$ I. 24
$\therefore P B$ is greater than $P C$.
(3) Because $O C-O P$ is less than $P C, \quad$ I.20, Cor. and $O C=O D$, being radii of the same circle;
$\therefore O D-O P$ is less than $P C$;
$\therefore P D$ is less than $P C$.
(4) At O make $_P O L=\angle P O C$,
I. 23 and join $P L$.
In $\triangle \mathrm{s} P O L, P O C,\left\{\begin{aligned} P O & =P O & & \\ O L & =O C & & \text { III. Def. } 1 \\ \angle P O L & =\angle P O C ; & & \text { Const. }\end{aligned}\right.$
$\therefore P L=P C$.
I. 4

And besides $P L$ no other straight line can be drawn from P to the $O^{\text {ce }}=P C$.
For if $P M$ were also $=P C$, then $P M=P L$, which is impossible.

Cor.-If from a point inside a circle more than two ectual straight lines can be drawn to the $\bigcirc^{\text {ce }}$, that point must be the centre.

For another proof of this Cor., see III. 9.

1. Prove $P C$ greater than $P D$, using I. 20 instead of I. 20 , Cor.
2. Wherever the point P be taken, provided it be inside the circle $A B C$, the sum of the greatest and the least straight lines that can be drawn from it to the $O^{\text {ce }}$ is constant.
3. Find another point whose greatest and least distances from the $O^{\text {ce }}$ are respectively $=$ those of P from the $O^{\text {ce }}$. How many such points are there? Where do they lie?
4. Prove, by considering $P O A$ and $P O D$ as infinitely thin triargles, that $P A$ is greater than $P D$, and $P C$ greater than $F D$ by I. 24.

PROPOSITION 8. Theorem.

If from any point without a circle straight lines be drawn to the circumference, of those which fall upon the concare part. of the circumference the greutest is that which puases through the centre, and of the others that which is nenrer to the greatest is greater than the more remote: but of those which full on the convex part of the circumference the least is that which, when produced, passes through the centre, and of the others that which is nearer to the least is less than the more remote; and from the given point straight lines which are equal to one another can be draun to the circumference only in pairs, one on each side of the diameter.

Let $A B C$ be a circle, and P any point without it ; from P let there be krawn to the $\bigcirc^{\infty} P D A, P E B, P F C$, of which PDA passes through the centre O :
it is required to prove (1) that $P A$ is greater than $P B$;
(2) that $P B$ is grater thun $I^{\prime} C$;
(3) that $P D$ is loss than $P E$;
(4) that PE is less than PF';
(5) that orly one straight line can be drauen from P to the $\bigcirc^{c e}=P F$.
Join $O B, O C, O E, O F$.
(1) Pecause $O B=O A$, heing radii of the same circle;

$$
\therefore \quad P(O)+O B=P O+O A, \text { or } P A
$$

But $P O+O B$ is greater than $P B$;
$\therefore \quad P A$ is greater than $P B$.
(2) In $\triangle \mathrm{s} P O B, P O C,\left\{\begin{array}{l}P O=P O \\ O B=O C \quad \text { III. Def. } 1 \\ \angle P O B \text { is greater than } \angle P O C,\end{array}\right.$
$\therefore P B$ is greater than $P C$.
I. 24
(3) Because $O P-O E$ is less than $P E, \quad$ I.20, Corand $O E=O D$, being radii of the same circle;
$\therefore O P-O D$ is less than $P E$;
> $\therefore P D$ is less than $P E$.
> (4) In $\triangle \mathrm{s} P O E, P O F,\left\{\begin{array}{l}P O=P O \quad \text { III. Def. } 1 \\ O E=O F \\ \angle P O E \text { is less than } \angle P O F ;\end{array}\right.$

$\therefore P E$ is less than $P F$.
I. 24
(5) At O make $\angle P O G=\angle P O F$, I. 23 and join $P G$.

In $\triangle \mathrm{s} P O G, P O F,\left\{\begin{array}{rlrl}P O & =P O & \\ O G & =O F & & \text { III. Def. } 1 \\ \angle P O G & =\angle P O F ; & & \text { Const. }\end{array}\right.$
$\therefore P G=P F$.
I. 4

And besides $P G$ no other straight line can be drawn from P to the $\mathrm{O}^{\infty}=P F$.
For if $P H$ were also $=P F$, then $P H=P G$, which is impossible.

1. Prove $P E$ greater than $P D$, using L. 20 instead of $I .20$, Cor
2. Prove that $P E$ is less than $P F$. using I. 21 instead of I . 24.
3. Wherever the point P be taken, provided it be outside the circle $A B C$, the difference of the greatest and the least straight lines that can be drawn from it to the $O^{\text {ce }}$ is constant.
4. Compare the enunciations of the last deduction and of the analogous one from III. 7, and state and prove the corresponding theorem when the point P is on the O^{∞} of the $\odot A B C$.
5. Prove that $A D$ is greater than $B E$, and $B E$ greater than $C F$.
6. If the straight line $P F C$ be supposed to revolve round P as a pivot, till the points F and C coincide, what would the straight line PFC become?
7. The tangent to a circle from any external point is less than any secant to the circle from that point, and greater than the external segment of the secant.
8. Could a line be drawn to separate the concave from the convex part of the $O^{\text {ce }}$ of the $\odot A B C$ viewed from the point P ? How?

PROPOSITION 9. Theorem.

If from a point within a circle more than two agual straight lines cun be drawn to the circumforence, that point is the centre.*

Let $A B C$ be a circle, and let three equal straight lines $D A, D B, D C$ be drawn from the point D to the \bigcirc^{∞} : it is required to prove that D is the centre af the circle.

Join $A B, B C$, and bisect them at E, F;
I. 10 and join $D E, D F$.

In $\triangle \mathrm{s} A E D, B E D,\left\{\begin{array}{l}A E=B F \\ E D=B D \\ D A=D B ;\end{array}\right.$
Const.
$\therefore \angle A F D=\angle B E D ;$
IIyp.
$\therefore D E$ is $\perp A B$;
\therefore DE, since it bisects $A B$ perpendicularly, must pass through the centre of the circle.
Henere also 1)F must pass through the contre ;
$\therefore D$, the only point common $(1 D E$ and $D F$, is the centre.
Prove the proposition by using the eighth deduction from III. I.

* In the MSis. of Euclid, two proofs of this proposition occur, only the secoul of which Sinsson inserted in his edition. The one given in the text is the firbt.

PROPOSITION 10. Theorem.

One circle cannot cut another at more than two pointe*

If it be possible, let the $\odot A B C$ cut the $\odot E B C$ at more than two points-namely, at B, C, D.

Join $B C, C D$, and bisect them at F and G; I. 10 through F and G draw $F O, G O \perp B C, C D, \quad I .11$ and let $F O, G O$ intersect at O.

Because $B C$ is a chord in both circles, and $F O$ bisects it perpendicularly,
\therefore the centres of both circles lie in FO. III. 1, Cor. 1 Hence also the centres of both circles lie in $G O$;
$\therefore O$ is the centre of both circles, which is impossible, since they cut one another. III. 5
\therefore one circle cannot cut another at more than two points.

1. Two circles cannot meet each other in more than two points.
2. If two circles have three points in common, how must they be situated?
3. Show, by supposing the radius of one of the circles to increase indefinitely in length, that the first deduction from III. 2 is a particular case of this proposition.
[^16]
PROPOSITION 11. Theorem.

If hoo circles touch one another internull!/ ut any point, the straight line which joins their centres, beiny produced, shall pas's through that point.

Let the two $\odot s A B C, A D E$, whose centres are F and G, touch one another internally at the point A :
it is required to prove that $F G$ produced passus through A.
If not, let it pass otherwise, as $F G H L$.

- Join $F A, G A$.

Because $F A=F L$, being radii of $\odot A B C, \quad$ III. Def. 1 and $\quad G A=C H$, being radii of \odot AllE; 111. Def. 1
$\therefore F A-G A=F L-G H$,

$$
=F G+I I L ;
$$

$\therefore F A-G A$ is greater than $F G$ by $H L$.
But $F A-G A$ is less than $F G$;
I. 20, Cor.
$\therefore F^{\prime} A-G^{\prime} A$ is both greater and less than $F^{\prime} G^{\prime}$ which is impossible ;
$\therefore F^{\prime}\left(r^{\prime}\right.$ produced must pass through A.

1. If two circles touch internally, the distance between their centres is equal to the difference of their radii.
2. Two circles tonch internally at a point, and through that point a straight line is drawn to cut the $0^{\text {ces }}$ of the two circles. If the prints of intersection be joined with the respective centres, the two straight lines will be parallel.
3. This proposition is a particular case of the tenth deduction from I. 8 .

PROPOSITION 12. Theorem.

If two circles touch one another extermally at any point, the straight line which joins their centres shall pass through that point.

Let the two \odot s $A B C, A D E$, whose centres are F and G, touch one another externally at the point A : , it is required to prove that $F G$ passes through A.

If not, let it pass otherwise, as $F L H G$. Join $F A, G A$.

Because $F A=F L$, being radii of $\odot A B C, \quad$ III. Def. 1
and $G A=G H$, being radii of $\odot A D E ;$ III. Def. 1
$\therefore F A+G A=F L+G H$,

$$
=F G-H L
$$

$\therefore F A+G A$ is less than $F G$ by $H L$.
But $F A+G A$ is greater than $F G$;
I. 20
$\therefore F A+G A$ is both less and greater than $F G$, which is impossible;
$\therefore F G$ must pass through A.

1. If two circles touch externally, the distance between their centres is equal to the sum of their radii.
2. Two circles touch externally at a point, and through that point a straight line is drawn to cut the $O^{\text {ces }}$ of the two circles. If the points of intersection be joined with the respective centres, the two straight lines will be parallel.
3. This proposition is a particular case of the tenth deduction from I.8.

PROPOSITION 13. Theorem.

Tuo circles camut tonch earh other at more points than ono, whether internally or extermally.

For, if it he possible, let the two $\odot s A B C, B D C$ touch each other at the points B and C.

Join $B C$, and draw $A D$ bisecting $B C^{r}$ perpendicularly:
I. 10,11

Because B and C are points in the $\bigcirc^{\text {ces }}$ of both circles, $\therefore B C$ is a chorl of both circles.
And beeause $A D$ bisects $B C$ perpendicularly, Const.
$\therefore A D$ passes through the centres of both cireles;

$$
\text { III. 1, Cor. } 1
$$

$\therefore A D$ passes also through the points of contact B and C,

Hence the two $\odot s A B C, B D C$ cannot touch each other at more pints than one, whether internally or externally.

1. If the distance between the centres of two circles the equal to the sum of their radii, the two circles touch each other extermally.
2 If the distance between the centres of two cireles be equal to the difference of their radii, the two eircles touch each other intervally.

PROPOSITION 14. Theorems.

Eiqual chords in a circle are equidistant from the centre. Cinversely: Chords in a circle which are equidistant from the centre are equal.

(1) Let $A B, C D$ be equal chords in the $\odot A B C$, and $E F, E G$ their distances from the centre E : it is required to prove $E F=E G$.

Join EA, EC.
Because $E F$ drawn through the centre E is $\perp A B$,
$\therefore E F$ bisects $A B$, that is, $A B$ is double of $A F$. III. з Hence also $C D$ is double of $C G$.
Now since $A B=C D, \therefore A F=C G$, and $A F^{2}=C G^{2}$.
But because $E A=E C, \therefore E A^{2}=E C^{2}$;
$\therefore A I^{2}+F E^{2}=C G^{2}+G E^{2}$.
I. 4 ?

Take away $A F^{2}$ and $C G^{2}$ which are equal ;
$\therefore F E^{2}=G E^{2}$, and $F E=G E$.
(2) Let $A B, C D$ be chords in the $\odot A B C$, and let $E F, E G$, their distances from the centre E, be equal : it is required to prove $A B=C D$.

Join EA, EC.
It may be proved as before that $A B=2 A F, C D=2 C G$, and that $A F^{2}+F E^{2}=C G^{2}+G E^{2}$.

Now $F E^{2}=G E^{2}, \quad$ since $F H=G E ;$
$\therefore \quad A F^{2}=C G^{2}, \quad$ and $A F=C G^{\prime}$;
$\therefore 2 A F=2 C G$, that is, $A B=C D$.

1. If a series of equal chorls be placed in a circle, their middle points will lie on the $0^{\text {ce }}$ of another circle.
2. Two parallel chords in a circle whose diameter is 10 inches, are 8 inches and 6 inches; find the distance between them.
3. If two chords of a circle intersect each other and make equal angles with the diameter drawn through their point of intersection, they are equal.
4. If two secants of a circle intersect, and make equal ancles with the diameter drawn through their point of intersection, those parts of the secants intercepted by the $0^{\text {ce }}$ are equal.
5. If in a given circle a chord of given leugth be placed, the distance of the chord from the centre will be fixed.
6. Prove the converse of the preceding deduction.
7. If two equal chords interseet either within or without a circle, the segments of the one are equal to the segments of the other.

PROPOSITION 15. Tieorems.

The dirmeter is the greatest chord in a circle; and of all others that which is nearer to the centre is greuter than one more remote.
Converscly: The greater chord is nearer to the centre trian the less.

Let $A B C$ be a circle of which $A D$ is a diameter, and $B C, F G$ two other chords whose distances from the centre E are $E H, E K$:
it is required to prove:
(1) that $A D$ is greater than $B C$ or $F G$;
(2) that, if $E H$ is less than $E K, B C$ must be greater than $F G$;
(3) that, if $B C$ is greater than $F G, E H$ must be less thon $E K$.
(1) Join EB, EC.

Because $A E=B E$, and $E D=E C ; \quad$ III. Def. 1
$\therefore A D=B E+E C$.
But $B E+E C$ is greater than $B C$;
I. 20
$\therefore A D$ is greater than $B C$.
(2) Join $E B, E C, E F$.

It may be proved, as in the preceding proposition, that $B C$ is double of $B H$, that $F G$ is double of $F K$, and that $E H^{2}+H B^{2}=E K^{2}+K F^{2}$.
Now $E H^{2}$ is less than $E K^{2}$, since $E H$ is less than $E K$: Hyp.
$\therefore H B^{2}$ is greater than $K F^{2}$, and $H B$ greater than $K \mathcal{H}^{\top}$.
\therefore twice $H B$ is greater than twice $K F$, that is, $B C$ is greater than $F G$.
(3) Join $E B, E C, E F$.

It may be proved, as before, that $B C=2 B H, F G=2 F K$, and that $E H^{2}+H B^{2}=E K^{2}+K F^{2}$.
Now, since $B C$ is greater than $F G$, Hyp.
$\therefore B H$ is greater than $F K$, and $B H^{2}$ greater than $F K^{2}$. Hence $E H^{2}$ must be less than $E K^{2}$, and $E I I$ less than $E K$

1. The shortest chord that can be drawn through a given point within a circle is that which is perpendicular to the diameter through the point.
2. Of two chords of a circle which intersect each other, and make unequal angles with the diameter drawn through their point of intersection, that which makes the less angle is the greater.
3. If two secants of a circle intersect each other, and make unequal angles with the diameter drawn through their point of intersection, that part which is intercepted by the $0^{c e}$ on the secant making the less angle is greater than the corresponding part on the other.
4. Through either of the points of intersection of two circles draw the greatest possible straight line terminated both ways by the $\mathrm{O}^{\text {ces. }}$. Draw also the least possible, and show that the two are at right angles to each other.

PROPOSITION 16. Theorem.

The straight line draun perpendicular to a diameter of a circle from either end of it, is a tangent to the circle; and every other straight line drawn through the same point cuts the circle.*

* Euclid's proof of this proposition is indirect. The one in the
text is given by Orontius F'ineus (1544), the second part, however,
being somewhat simplified.

Let $A B C$ be a circle, of which F is the centre and $A C$ a diameter; through C let there be drawn $D E \perp A C$, and any other straight line $H K$:
it is required to prove that $D E$ is a tangent to the $\odot A B C$, and that $H K$ cuts the circle.

Take any point G in $D E$, and join $F G$; from F draw $F L \perp H K$.

1. 12

Because $\angle F C G$ is right, Hyp.
$\therefore F G$ is greater than $F C$, a radius of the circle ; I. 19 Cor.
\therefore the point G must be outside the circle. III. Def. 1, Cor. 2
Now G is any point in $D E$, except the point C;
$\therefore D E$ is a tangent to the circle. III. Def. 3 Again, because $\angle F L C$ is right, Const.
$\therefore F L$ is less than $F C$, a radius of the circle ; I. 19 Cor.
\therefore the point L must be inside the circle. III. Dej. 1, Cor. 2
Now L is a point in $H K$;
$\therefore H K$ cuts the circle.

1. Draw a tangent to a circle at a given point on the $O^{c e}$.
2. Only one tangent can be drawn to a circle at a given point on its 0^{∞}.
3. Two (or a series of) circles tonch each other, externally or internally, at the same point. Prove that they have the same tangent at that point.
4. If a series of equal chords be placed in a circle, they will be tangents to another circle concentric with the former.
5. A straight line will cut, touch, or lie entirely outside a circle, according as its distance from the centre is less than, equal to, or greater than a ladius.
6. Draw a tangent to a circle which shall be \|l a given straight line.
7. Draw a tangent to a circle which shall be \perp a given straight line.
8. Draw a tangent to a circle which shall make a given angle with a given straight line. How many tangents can be drawn in arok of the three cases?

PROPOSITION 17. Problem.

To draw a tangent to a circle from a given point.

Let $B D C$ be the given circle, and A the given point: it is required to draw a tangent to the $\odot B D C$ from A.

Case 1.-When the given point A is inside the $\odot B D C$, the problem is impossible.

Case 2.-When the given point A is on the \bigcirc^{∞} of the - BDC.

Find E the centre of the $\odot B D C$;
III. 1
join $E A$, and through A draw $F(\perp E A$. I. 11
Then $F G$ is a tangent to the $\odot B D C$. III. 16
Case 3.-When the given point A is outside the \odot BノC.

Find E the centre of the $\odot B D C$;
III. 1
and join $A E$, cutting the \bigcirc^{c} of $\odot B D C$ at D.
With centre E and radius $E A$, describe $\odot A G F$;
(lirough D draw $F^{\prime} D G \perp A E$, and mecting the $\bigcirc^{\text {co }}$ of
$\odot A G F$ at F and F.
I. 11

Join $E F^{\prime}, E^{\prime}\left(r^{\prime}\right.$, cutting the $\bigcirc^{\text {ce }}$ of $\odot B D C$ at B and C, and join $A B, A C$. $A B$ or $A C$ is the required tangent.

$$
\begin{aligned}
& \text { In } \Delta \mathrm{s} A B E, F D E,\left\{\begin{array}{rr}
A E=F E & \text { III. Def. I } \\
E B=E D & \text { III. Def. I } \\
\angle E=\angle E ;
\end{array}\right. \\
& \begin{aligned}
\therefore \angle A B E & =\angle F D E,
\end{aligned} \\
& =\text { a right angle. } 4
\end{aligned}
$$

$\therefore A B$ is a tangent to the $\odot B D C$. III. 16 Hence also, $A C$ is a tangent to the $\odot B D C$.

Cor.-The two tangents that can be drawn to a circle from an external point are equal.

By comparing $\triangle \mathrm{s} A B E, F D E$ it may be proved that $A B=F D$; I. 4 and by comparing $\triangle \mathrm{s} A C E, G D E$, it may be proved that $A C=G D$. I. 4 Now, since $F G$ is a chord of the $\odot A F G$, and $F D$ drawn through the centre is $\perp F \mathcal{G}$; Const.
$\therefore F D=G D$.
III. 3

Hence $A B=A C$.

1. Prove $A B=A C$ by (a) I. 47 , (b) I. $5,6$.

2 The tangents $A B, A C$ make equal angles with the diameter through A.
3. Prove $\angle B A C$ sunplementary to $\angle B E C$. State this result in words.
4. Nn more than two tangents can be dirawn to a circle from an external point.
5. If a quadrilateral be circumscribed * about a circle, the sum of two opposite sides is equal to the sum of the other two.
6. Generalise the preceding deduction.

1. if a $\|^{\mathrm{m}}$ be circumscribed about a circle, it must be a rhombus.
2. From a point outside a circle two tangents are drawn. The straight line joining the point with the centre bisects perpendicularly the chord of contact. (In fig. 2, $B C$ is the chord of contact.)
[^17]
PROPOSITION 18. Theorem.

The radins of a circle drum to the point of contact of a tangent is perpendicular to the tangeni.

Let $A B C$ be a circle whose centre is F : and $D E$ a tangent to it at the point C :
$i i$ is required to prove that the radius $F C$ is $\perp D E$.
If not, from F^{\prime} draw $F G \perp D E$, and meeting the \bigcirc^{∞} at B.
I. 12

Because $\angle F G C$ is a right angle,
$\therefore F^{\prime}$ is less than $F^{\prime} C$.
But $P C=F B$;
Const.
$\therefore F G$ is less than $F B$,
which is impossihle;
$\therefore F C$ must be $\perp D F$.

1. Tangents at the ends of a diameter of a circle are parallel.
2. If a series of chords in a circle he tangents to another concentric circle, the chorls are all equal.
3. If two circles le concentric, and a chord of the greater be a tangent to the less, it is lisected at the point of contact.
4. Ihrough a given point within a circle draw a chord which shall be equal to a given length. May the given point he outside the circle? What are the limits to the given length?
5 Deduce this proposition from I. 5 , hy supposing the tangent $D E$ v, be at first a secant.
5. Two circles, whose centris are 2 and B, have a comnore magent $C D$; prove $A C \| B D$.

PROPOSITION 19. Theorem.

The straight line dranen from the point of contact of a tarqent to a eircle perpendicular to the tangent passes tirrough the centre of the circle.

Let $D E$ be a tangent to the $\odot A B C$ at the point C, and iet $C A$ be $\perp D E$:
it is required to prove that CA passes through the centre.
if not, let F be the centre, and join $F C$.
inen $\angle F C E$ is right.
III. 18

13ut - $A C E$ is right ;
Hyp.
$\therefore \angle F C E=\angle A C E$, which is impossible;
$\therefore C A$ must pass through the centre of the circle.

1. In the figure, A is on the $0^{c \theta}$. Need it be so ?
2. This proposition is a particular case of III. 1, Cor. 1.
3. A series of circles touch a given straight line at a given po. Where will their centres all lie?
4. Describe a circle to touch two given straight lines at two given points. When is this problem possible?
5. If two tangents be drawn to a circle from any point, the angle contained by the tangents is double the angle contained by the chcrd of contact and the diameter drawn through eithax point of contact.

PROPOSITION 20. Theorem.

An angle at the centre of a circle is double of an angle at the circumference which stands on the same arc.

Fim. 1.

Fig. 2.

Fig. 3.

In the $\odot A B C$ let $\angle B E C$ at the contre and $\angle B A C$ at the $\bigcirc^{\text {ce }}$ stand on the same are $B C$:
if is required to prove $\angle B E C=$ twice $\angle B A \cup^{\gamma}$.
J oin $A E$ and produce it to F.
Because $E A=E C, \therefore \angle E A C=\angle E C A$;
$\therefore \angle E A C+\angle E C A=$ twice $\angle E A C$.
But $\quad \angle F E C=\angle E A C+\angle E C A$;
I. 32
$\therefore \quad \angle F E C=$ twice $\angle E A C$.
Similarly $\angle F E B=\mathrm{t}$ wice $\angle E A B$.
Hence, in figs. 1 and 2,
$\angle F^{\prime} E C+\angle F E B=$ twice $\angle E A C+$ twico $\angle E A B$,
that is, $\quad \angle B E C=$ twice $\angle B A C$;
and in fig. 3 ,
$\angle F E C-\angle F E B=$ twice $\angle F A C-$ twice $\angle E A B$,
that is, $\quad \angle B E C=$ twice $\angle B A C$.

1. In the figures to the proposition, F ' is on the $O^{\text {co }}$. Need it be so ?
2. The angle in a semicircle is a right angle.
3. B and C are two fixed points in the $O^{\text {ce }}$ of the circle $A B C$. Prove that wherever A be taken on the arc $B A C$, the magnitude of the angle $B A C$ ' is constant.

PROPOSITION 21. Theorems.

Angles in the same segment of a circle are equal. Conversely: If two equal angles stand on the same arc, and the vertex of one of them be on the conjugate arc, the vertex of the other will also be on it.*

(1) Let $A B D$ be a circle, and $\angle \mathrm{s} A$ and C in the same segment $B C D$:
it is required to prove $\angle A=\angle C$.
Find F the centre of the $\odot A B D$,
III. I and join $B F, D F$.

$$
\begin{array}{rlrl}
\text { Then } \angle B F D & =\text { twice } \angle A, & & \text { III. } 20 \\
\text { and } & \angle B F D & =\text { twice } \angle C ; & \\
\therefore & & \text { III. } 20 \\
\therefore A & =\angle C . & &
\end{array}
$$

(2) Let $\angle s A$ and C, which are equal, stand on the same arc $B D$, and let the vertex A be on the conjugate arc $B A D$: it is required to prove that the vertex C will also be on it.

If not, let the arc $B A D$ cut $B C$ or $B C$ produced at G; join $D G$.

$$
\text { Then } \angle A=\angle B G D \text {. }
$$

III. 21

But. $\quad-A=\angle C$;
$\therefore \angle B G D=-C$, which is impossible.
Hence C must be on the circle which passes through B, A, D.

[^18]1. In the figure to III. 4, if $A B, C D$ be joined, $\triangle A E B$ is equiangular to $\triangle D E C$.
2. If from a point E outside a circle, two secants $E C A, E B D$ be drawn, and $A B, C D$ be joined, $\triangle A E B$ is equiangular to $\triangle D E C$.
3. Given three points on the 0^{∞} of a circle; find any number of other points on the $O^{\text {ce }}$ without knowing the centre.
4. Two tangents $A B, A C$ are drawn to a circle from an external point $A ; D$ is any point on the O^{∞} outside the $\triangle \triangle B C$. Show that the sum of $\angle \mathrm{s} A B D, A C D$ is constant.
5. Is the last theorem true when D lies elsewhere on the $O^{c o}$?
6. Segments of two circles stand upon a common chord $A B$. Through C, any point in one segment, are drawn the straight lines $A C E, B C D$ meeting the other segment in E, D. Prove that the length of the arc $D E$ is invariable wherever the point C be taken.

PROPOSITION 22. Theorems.

The opposite angles of a quadrilateral inscribed in a circlo arc supplementary.
Conversely: If the oppositc angles of a quadrilateral be supplementary, a circle may be circumscribed about the quadrilaterul.*

(1) Let the quadrilateral $A B C D$ be inscribed in the $\odot A B C$: it is required to prove that $\angle A+\angle C=2 \mathrm{rt} . \angle s$.

Find F the centre of the $\odot A B D$,
III. 1 and join $B F, D F$.

[^19]Then $\angle B F D=$ twice $\angle A$, $\angle I I .20$ and the reflex $\angle B F D=$ twice $\angle C$; $\quad \angle 1$. 20
\therefore the sum of the two conjugate $\angle \mathrm{s} B F D$

$$
=\text { twice } \angle A+\text { twice } \angle C \text {. }
$$

But the sum of the two conjugate $\angle \mathrm{s} B F D$

$$
=4 \mathrm{rt} . \angle \mathrm{s} ;
$$

III. Def. 23
\therefore
$\angle A+\angle C=2$ rt. $\angle \mathrm{s}$.
(2) Let $\angle s A$ and C, which are supplementary, be opposite angles of the quadrilateral $A B C D$, and the vertex A be on an arc $B A D$ which passes also through B and D :
it is required to prove that the vertex C will be on the conjugate arc.

If not, let the are conjugate to $B A D$ cut $B C$ or $B C$ produced at G;
III. 1, Cor. 2 join $D G$.

Then $\angle A$ is supplementary to $\angle B G D$.
III. 22

But $\angle A$ is supplementary to $\angle C$; Hyp.
$\angle B G D=\angle C$, which is impossible. I. 16
Hence C must be on the circle which passes through B, A, D.
Cor.-If one side of a quadrilateral inscribed in a circle be produced, the exterior angle is equal to the remote interior angle of the quadrilateral.

For each is supplementary to the interior adjacent angle.
I. 13, III. 22

1. If $\|^{\mathrm{m}}$ be inscribed in a circle, it must be a rectangle.
2. If, from a point E outside a circle, two secants $E C A, E B D$ be drawn, and $A D, B C$ be joined, $\triangle A E D$ is equiangular to $\triangle B E C$.
3. If a polygon of an even number of sides (a hexagon, for example) be inscribed in a circle, the sum of its alteruate angles is half the sum of all its angles.
4. If an arc be divided into any two parts, the sum of the angles in the two segments is constant.
5. Divide a circle into two seyments, such that the angle in the one segment shall be (a) twice, (b) thrice, (c) five times, (d) seven times the angle in the other segment.
6. $A C B$ is a right-angled triangle, right-angled at C, and O is the point of intersection of the diagonals of the square described on $A B$ outwardly to the triangle; prove that $C O$ bisects $\angle A C B$.
7. What modification must be made on the last theorem when the square is described on $A B$ inwardly to the triangle?
8. If two chords cut off one pair of similar segments from two circles, the other pair of segments they cut off are also similar.
9. Given three points on the $O^{c e}$ of a circle: find any number of other points on the $O^{\text {ce }}$ without knowing the centre.
10. $A B C$ is a triangle ; $A X, B Y, C Z$ are the three perpendiculars from the vertices on the opposite sides, intersecting at O. Prove the following sets of four points concyclic (that is, situated on the $O^{\text {ce }}$ of a circle): $A, Z, O, Y ; B, X, O, Z$; $C, Y, O, X ; A, B, X, Y ; B, C, Y, Z ; C, A, Z, X$.

PROPOSITION 23. Theorem.

On the same chord and on the same side of there cannot be two similar segments of circles not coinciding with ons another.

If it be possible, on the same chord $A B$, and on the same side of it, let there be two similar segments of $\odot \mathrm{s} A C D$, $A D B$ not coinciding with one another.

Draw any straight line $A D C$ cutting the arcs of the segments at D and C;
and join $B C, B D$.
Because segment $A D B$ is similar to segment $A C B$, Hyp. $\therefore \angle A D B=\angle A C B$, III. Def. 13 which is impossible.
I. 16

Hence two similar segments on the same chord and on the sarne side of it must coincide.

1. Of all the segments of circles on the same side of the same chord, that which is the greatest contains the least angle.
2 Prove by this proposition the second part of III. 21.

PROPOSITION 24. Theorem.

Similar segments of circles on equal chords are equal.

Let $A E B, C F D$ be similar segments on equal chords $A B$, $C D$:
it is required to prove segment $A E B=$ segment $C F D$.
If segment $A E B$ be applied to segment $C F D$, so that A falls on C, and so that $A B$ falls on $C D$; then B will coincide with D, because $A B=C D$. Hyp. Hence the segment $A E B$ being similar to the segment $C F D$, must coincide with it ;
III. 23
\therefore segment $A E B=$ segment $C F D$.

1. Similar segments of circles on equal chords are parts of equal circles.
2. $A B C, A B C^{\prime}$ are two $\triangle s$ such that $A C=A C^{\prime}$. Prove that the circle which passes through A, B, C is equal to the circle which passes through A, B, C^{\prime}.

3. If $A B C D$ is a $\|^{\mathrm{m}}$, and $B E$ makes with $A B, \angle A B E=\angle B A D$, and meets $D C$ produced in E, the circles described about $\triangle s B C D, B E D$ will be equal.

PROPOSITION 25. Problem.

An are of a circle being yiven, to complete the circle.

Let $A B C$ be the given arc of a circle : it is required to complete the circle.

Take any point B in the arc, and join $A B, B C$. Bisect $A B$ and $B C$ at D and E; draw $D F$ and $E F$ respectively $\perp A B$ and $B C$,
I. 10
I. 11 and let them meet at F.

Because $D F$ bisects the chord $A B$ perpendicularly, $\therefore D F^{\prime}$ passes through the centre. Hence also, $E F$ passes through the centre; $\therefore F$ is the centre.
Hence, with F as centre, and $F A, F B$, or $F C$ as radius, the circle may be completed.

1. Prove that $D F$ and $E F$ must meet.
2. Prove the proposition with Euclid's construction, which is: Bisect the chord $A C$ at D, draw $D B \perp A C$, meeting the are at B, and join $A B$. At A make $\angle B A E=\angle A B D$, and let $A E$ meet $B D$ or $B D$ produced at E. E shall be the centre.
3. Find a point equidistant from three given points. When is the problem impossible?
4. The straight lines bisecting perpendicularly the three sides of a triangle are concurrent.
5. Find a point equidistant from four given points. When is the problem possible?

PROPOSITION 26. Theorem.

In equal circles, or in the sume circle, if two angles, whether at the centre or at the circumference, be equal, the arcs on which they stand are equal.

Let $A B C, D E F$ be equal circles, and let $\angle \mathrm{s} G$ and H at the centres be equal, as also $\angle \mathrm{s} A$ and D at the $\bigcirc^{\text {ces }}$: it is required to prove that arc $B K C=\operatorname{arc} E L F$.

Join $B C, E F$.
Because ©s $A B C, D E F$ are equal, \therefore their radii are equal.
In $\triangle s B G C, E H F,\left\{\begin{array}{c}B G=E H \\ G C=H F \\ \angle G=\angle H ;\end{array}\right.$
$\therefore B C=E F$.
But because $\angle A=\angle D$,
\therefore segment $B A C$ is similar to segment $E D F$; III. Def. 13 and they are on equal chords $B C, E F$,
\therefore segment $B A C=$ segment $E D F$.
Now $\odot A B C=\odot D E F$;
\therefore remaining segment $B K C=$ remaining segment $E L F$;
\therefore arc $B K^{\prime} C^{\prime}=\operatorname{arc} E L F$.
Cor.-In equal circles, or in the same circle, those sectors are equal which have equal angles.

1. If $A B$ and $C D$ he two parallel chords in a circle $A C D B$, prove $\operatorname{arc} A C=\operatorname{arc} B I$, and $\operatorname{arc} A D=\operatorname{arc} B C$.
2. In equal circles, or in the same circle, if two angles, whether at the centre or at the oce be unequal, that which is the greater stands on the greater arc.
3. If two opposite angles of a guadrilateral inscribed in a circle be equal, the diagonal which does not join their vertioe is a diameter of the circle.
4. Any segment of a circle containing a right angle is a semicircle.
5. Any segment of a circle containing an acute angle is greater than a semicircle, and oue containing an obtuse angle is less than a semicircle.
6. If two angles at the $0^{c e}$ of a circle are supplementary, the sura of the ares on which they stand $=$ the whole 0^{c}.
7. Prove the proposition by superposition.
8. If two chords intersect within a circle, the angle they contain is equal to an angle at the centre standing on half the sum of the interceptel arcs.
9. If two chorls producel intersect without a circle, the angle they contain is equal to an ang!e at the centre standing on half the difference of the intercepted arcs.
10. Show how to divide the $0^{\circ 0}$ of a circle into $3,4,6,8$ equal parts.

PROPOSITION 27. Theorem.

In equal circles, or in the same circle, if two arcs be equat, the angles, whether at the centre or at the circumference, which stand on them are equal.

Let $A B C, D E F$ be equal circles, and let arc $B C=\operatorname{arc} E F$: it is required to prove that $\angle B G C=\angle E H F$, and $\angle A$ $=\angle D$.
If $\angle B G C$ be not $=\angle E H F$, one of them must be the greater.
Let $\angle B G C$ be the greater, and make $\angle B G K=\angle E H F$. I. 23

Because the circles are equal, and $\angle B G K=\angle E H F$, $\therefore \operatorname{arc} B K=\operatorname{arc} E F$. III. 26

But arc $B C=\operatorname{arc} E F$;
Нур.
\therefore arc $B K=$ arc $B C$, which is impossible.
Hence $\angle B G C$ must be $=\angle E H F$.
Now, since $\angle A=$ half of $\angle B G C, \quad$ III. 20
and $\quad \angle D=$ half of $\angle E H F, \quad$ III. 20
$\therefore \angle A=\angle D$.
Cor.-In equal circles, or in the same circle, those sectors are equal which have equal arcs.

1. If $A C$ and $B D$ be two equal arcs in a circle $A C D B$, prove chord $A B \|$ chord $C D$.
2. In equal circles, or in the same circle, if two ares be unequal, that angle, whether at the centre or at the $O^{c e}$, is the greater which stands on the greater arc.
3. The angle in a semicircle is a right angle.
4. The angle in a segment greater than a semicircle is less than a right angle, and the angle in a segment less than a semicircle is greater than a right angle.
5. If the sum of two ares of a circle be equal to the whole $O^{c 0}$, the angles at the $0^{\text {ce }}$ which stand on them are supplementary.
6. Prove the proposition by superposition.
7. Two circles touch each other internally, and a chord of the greater circle is a tangent to the less. Prove that the chord is divided at its point of contact into segments which subtend equal angles at the point of contact of the circlen.

PROPOSITION 28. Theorem.

In equal circles, or in the same circle, if two chords be equal, the arcs they cut off wre equal, the major arc eqzal to the mujor arc, and the minor equal to the minor.

Let $A B C, D E F$ be equal circles, and let chord $B C=$ chord $E F$:
it is required to prove that major arc $B A C=$ major arc $E D F$, and minor arc $B G C=$ minor arc $E H F$.

Find K and L the centres of the circles,
III. 1 and join $B K, K C, E L, L F$.

Because ©s $A B C, D E F$ are equal, $H_{y p}$.
\therefore their radii are equal.

Hyp.
I. 8
III. 26
$\therefore \operatorname{arc} B C C=\operatorname{arc} E H F$. But $\bigcirc^{\text {ce }} A B C=\bigcirc^{\text {ce }}$ DEF; ITI. Def. 1, Cor. 4 \therefore remaining are $B A C=$ remaining arc $E D F$.

1. If $A C$ and $B D$ be two equal chords in a circle $A C D B$, prove chord $A B \|$ chord $C D$.
2. Hence devise a method of drawing through a given point a straight line parallel to a given straight line.
3. If two equal circles cut one another, any straight line drawn through one of the points of intersection will meet the circles again in two points which are equidistant from the other point of intersection.

PROPOSITION 29. Theorem.

In equal circles, or in the same circle, if two arcs be equal, the chords which cut them off are equal.

Let $A B C, D E F$ be equal circles, and let arc $B G C=\operatorname{arc}$ EHF:
it is required to prove that chord $B C=$ chord $E F$.
Find K and L the centres of the circles,
III. 1 and join $B K, K C, E L, L F$.

Because the circles are equal, Hyp. \therefore their radii are equal.
III. Def. 1, Cor. 4 And because the circles are equal, and arc $B G C=\operatorname{arc} E I F$, $\therefore \angle K=\angle L$.
III. 27

In $\triangle s B K C, E L F,\left\{\begin{array}{l}B K=E L \\ K C=L F \\ \angle K=\angle L ;\end{array}\right.$
$\therefore B C=E F$.

1. If $A C$ and $B D$ be two equal arcs in a cirde $\triangle C D B$, prove chord $A D=$ chord $B C$.
2. Prove the proposition by superposition.

PROPOSITION 30. Problem.

io bisect a given arc.

Let $A D B$ be the given arc :
it is required to bisect it.
Draw the chord $A B$, and bisect it at C; I. 10
from C draw $C D \perp A B$, and meeting the arc at D. I. 11
D is the point of bisection.
Join $A D, B D$.
In $\triangle \mathrm{s} A C D, B C D,\left\{\begin{array}{rlr}A C & =H C & \text { Const. } \\ C D & =C D \\ \angle A C D & =\angle B C D ;\end{array}\right.$
$\therefore A D=B D$.
I. 4

But in the same circle equal chords cut off equal arcs, the major are being $=$ the major arc, and the minor $=$ the minor ;
and $A D$ and $B D$ are both minor arcs, since $D C$ if produced would be a diameter; III. 1, Cor. 1
$\therefore \operatorname{arc} A D=\operatorname{arc} B D$.

1. If two circles cut one another, the straight line joining their centres, being produced, bisects all the four ares.
2. A diameter of a circle bisects the arcs cut off by all the chords to which it is perpendicular.
3. Bisect the arc $A D B$ without joining $A B$.
4. Prove $\triangle D A B$ greater than any other triangle on the same base $A B$, and having its vertex on the arc $A D B$.

PROPOSITION 31. Theorem.

An angle in a semicircle is a right angle; an angle in a segment greater than a semicircle is less than a right angle; and an angle in a segment less than a semicircle is greater than a right angle.

Let $A B C$ be a circle, of which E is the centre and $B C$ a diameter; and let any chord $A C$ le drawn dividing the circle into the segment $A B C$ which is greater than a semicircle, and the segment $A D C$ which is less than a semicircle :
it is required to prove
(1) \angle in semicircle $B A C=a r t . \angle$;
(2) \angle in segment $A B C$ less than a rt. \angle;
(3) \angle in segment $A D C$ greater than a r t. L.

Join $A B$;
take any point D in arc $A D C$, and join $A D, C D$.
(1) Because an angle at the $O^{\text {co }}$ of a circle is half of the angle at the centre which stands on the sime arc ; III. 20 $\therefore \angle B A C=$ half of the straight $-B E C$,

$$
=\text { half of two rt. } \angle \mathrm{s},
$$

III. Def. 21 $=\mathrm{art} \quad \therefore$.
(2) Because $\angle B A C+\angle B$ is less than two rt. $\angle \mathrm{s}, I .17$ and $\angle B A C=$ a rt. \angle;
$\therefore \angle B$ is less than a rt. \angle.

(3) Because $A B C D$ is a quadrilateral inscribed in the circle,

$$
\therefore \angle B+\angle D=\text { two rt. } \angle \mathrm{s} \text {. }
$$

But $\angle B$ is less than a rt. \angle;
$\therefore \angle D$ is greater than a rt. \angle.

1. Circles described on the equal sides of an isosceles triangle as diameters intersect at the middle point of the base.
2. Circles described on any two sides of a triangle as diameters intersect on the third side or the third side produced.
3. Use the first part of the proposition to solve I. 11, and I. 12.
4. Solve III. 1 by means of a set square.
5. Solve III. 17, Case 3, by the following construction: Join $A E$, and on it as diameter describe a circle cutting the given circle at B and $C . B$ and C are the points of contact of the tangents from A.
6. If one circle pass through the centre of another, the angle in the exterior segment of the latter circle is acute.
7. If one circle be described on the radius of another circle, any chord in the latter drawn from the point in which the circles meet is bisected by the former.
8. If two circles cut one another, and from one of the points of intersection two diameters be drawn, their extremities and the other point of intersection will be in one straight line.
9. Use the first part of the proposition to find a square equal to the difference of two given squares.
10. The middle point of the hypotenuse of a right-angled triangle is equidistant from the three vertices.
11. State and prove a converse of the preceding deduction.
12. Two circles touch externally at $A ; B$ and C are points of contact of a common tangent to the two circles. Prove $\angle B A C$ right.

PROPOSITION 32. Theorem.

If a straight line be a tangent to a circle, und from the point - of contact a chord be drawn, the unyles which the chord maties with the tangent shall be equal to the angles in the alternate segments of the circle.

Let $A B C$ be a circle, $E F$ a tangent to it at the point B, and from B let the chord $B D$ be drawn :
it is required to prove $\angle D B F=$ the \angle in the segment $B A D$,

$$
\text { and } \angle D B E=\text { the } \angle \text { in the segment } B C D \text {. }
$$

From B draw $B A \perp E F$;
I. 11
take any point C in the arc $B D$, and join $B C, C D, D A$.
Because $B A$ is drawn \perp the tangent $E F$ from the point of contact,
$\therefore B A$ passes through the centre of the circle ; III. 19
$\therefore \angle A D B$, being in a semicircle, $=\mathrm{art} . \angle$; \quad III. 31
$\therefore \angle B A D+\angle A B D=$ a rt. \angle, \quad I. 32

$$
=\angle A B F .
$$

From these equals take away the common $\angle A B D$;
$\therefore \angle B A D=\angle D B F$.
A min, because $A B C D$ is a quadrilateral in a circle,

$$
\therefore \quad \angle A+\angle C=2 \mathrm{rt.} \angle \mathrm{~s} . \quad \text { III. } 22
$$

But $\angle D B F+\angle D B E=2 \mathrm{rt} . \angle \mathrm{s} ;$
$\therefore \quad \angle A+\angle C=\angle D B F+\angle D B E$.

Now $\angle A=\angle D B F$;
$\therefore \quad \angle C=\angle D B E$.

1. The chord which joins the points of contact of parallel tangents to a circle is a diameter.
2 If two circles touch each other externally or internally, any straight line passing through the point of coutact cuts off pairs of similar segments.
2. If two circles touch each other externally or internally, and two straight lines be drawn through the point of contact, the chords joining their extremities are parallel.
3. If two tangents be drawn to a circle from any point, the angle contained by the tangents is double the angle contained by the chord of contact, and the diameter drawn through either point of contact.
4. Enunciate and prove the converse of the proposition.
5. A and B are two points on the $O^{c o}$ of a given circle. With B as centre and $B A$ as radius describe a circle cutting the given circle at C and $A B$ produced at D. Mse arc $D E=$ $\operatorname{arc} D C$, and join $A E . A E$ is a tangent to the given circle.
6. Show that this proposition is a particular case either of III. 2I, or of III. 22, Cor.

PROPOSITION 33. Problem.

On a given straight line to describe a segment of a circle which shall contain an angle cqual to a given angle.

Let $A B$ be the given straight line, $\angle C$ the given angle : it is required to describe on $A B$ a segment of a circle which shall contain an angle $=\angle C$.

At A make $\angle B A D=\angle C$.
I. 23

From A draw $A E \perp A D$;
I. 11
bisect $A B$ at F,
I. 10
and draw $F G \perp A B$.
I. 11

Join $B G$.
In $\triangle s A F G, B F G,\left\{\begin{aligned} A F & =B F \\ F G & =F G \\ \angle A F G & =\angle B F G ;\end{aligned}\right.$
$\therefore A G=B G$; $\quad \therefore .4$
\therefore a circle described with centre G and radius $A G$ will pass through B.
Let this circle be described, and let it be $A H B$.
The segment $A H B$ is the required segment.
Because $A D$ is $\perp A E$, a diameter of the $\odot A H B$,
$\therefore A D$ is a tangent to the circle.
III. 16

Because $A B$ is a chord of the circle drawn from the point of contact A,
\therefore the angle in the segment $A H B=\angle B A D$,
III. 32

$$
=\angle C .
$$

1. Show that the point G could be found equally well by making at B an angle $=\angle B A E$, instead of bisecting $A B$ perpendicularly.
Construct a triangle, having given :
2. The base, the vertical angle, and one side.
3. The base, the vertical angle, and the altitude.
4. The base, the vertical angle, and the perpendicular from one end of the base on the opposite side.
5. The base, the vertical angle, and the sum of the sides.
6. Tha hrer the vertical angle, and the difference of the sides.
[Several other methods of solving this proposition will be found in T. S. Davies's edition (12th) of Hutton's Course of Mathomatics, vol. i. pp. 389, 390.]

PROPOSITION 34. Problem.

From a given circle to cut off a segment which shall contains an angle equal to a given angle.

Let $A B C$ be the given circle, and $\angle D$ the given angle : it is requirerl to cut off from $\odot A B C$ a segment which shall contain an anyle $=\therefore D$.

Take any point B on the $\bigcirc^{\text {ce }}$, and at B draw the tangent $E F$.
III. 17

At B make $\angle F B C=\angle D$.
I. 23

The segment $B A C$ is the required segment.
Because $E F$ is a tangent to the circle, and the chord $B C$ is drawn from the point of contact B,
\therefore the angle in the segment $B A C=-F B C$, III. 32

$$
=-D .
$$

Through a given point either within or without a given circle, draw a straight line cutting off a segment containing a given angle. Is the problem always possible?

PROPOSITION 35. 'Theorems.
If two chords of a sircle cut one amother, the rectargie contained by llie sergments of the ome shull hee equal to the rectungle contuined by the seyments of the other.

Conversely: If two straight lines cut one another so that the rectungle contained by the segments of the one is equal to the rectungle contained by the segments of the other, the four extremities of the two straight lines are concyclic.*

(1) Let $A C, B D$ two chords of the circle $A B C$ cut one another at E :
it is required to prove $A E \cdot E C=B E \cdot E D$.
Find F the centre of the $\odot A B C, \quad I I I .1$ and from it draw $F G \perp A C$, and $F H \perp B D$. I. 12 Join $F B, F C, F E$.

Because $F G$ drawn from the centre is $\perp A C$,
$\therefore A C$ is bisected at G.
III. 3

Because $A C$ is divided into two equal segments $A G, G C$, and also internally into two unequal segments $A E, E C$,

$$
\begin{aligned}
\therefore A E \cdot E C & =G C^{2}-F E^{2}, I I .5 \\
& =\left(F C^{2}-F G^{2}\right)-\left(F E^{2}-F G^{2}\right), I .47, C o r . \\
& =F C^{2}-F E^{2} .
\end{aligned}
$$

Similarly, $B E \cdot E D=F B^{2} \quad-\quad F E^{2}$.
But $F C^{2}=F B^{2}$;
$\therefore F C^{2}-F E^{2}=F B^{2}-F E^{2}$;
$\therefore \quad A E \cdot E C=B E \cdot E D$.
(2) Let the two straight lines $A C, B D$ cut one another at E, so that $A E \cdot E C=B E \cdot E D$:
it is required to prove the four points A, B, C, D concyclic.

[^20]

Since a circle can always be described through thre points which are not in the same straight line,
let a circle be deseribed through A, B, C. III. 1, Cor. 2
If this circle do not pass also through D, let it eut $B D$ or $B D$ produced at the point D^{\prime};
then $A E \cdot E C=B E \cdot E D)^{\prime}$.
III. 35

But $A E \cdot E C=13 E \cdot E D$;
$\therefore B E \cdot E D^{\prime}=B E \cdot E D$;
$\therefore \quad E D^{\prime}=E D$, which is impossible;
\therefore the cirele which passes through A, B, C must pass also through D.

Cor.-If two chords of a cirele when produced cut one another, the rectangle contained hy the segments of the one' shall be equal to the rectangle contained by the segments of the other ; and conversely.

Let $A C, B D$, two chords of the $\odot A B C$, eut one another when proluced at E :
it is required to prove $A E \cdot E C=B E \cdot E D$.

Find \boldsymbol{F} the centre of the $\odot A B C, \quad$ III. 1 and from it draw $F G \perp A C$, and $F H \perp B D$. I. 12 Join $F B, F C, F E$.

Because $F G$ drawn from the centre is $\perp A C$, $\therefore A C$ is bisected at G.
III. 3

Because $A C$ is divided into two equal segments $A G, G C$, and also externally into two unequal segments $A E, E C$,

$$
\begin{aligned}
\therefore A E \cdot E C & =G E^{2}-F G^{2}-\left(F C^{2}-F C^{2}\right), I .47, C o r . \\
& =\left(F E^{2}-F G^{2}\right) \\
& =F E^{2}-F C^{2} .
\end{aligned}
$$

Similarly, $B E \cdot E D=F E^{2} \quad-\quad F B^{2}$.
But $F C^{2}=F B^{2}$;
$\therefore F E^{2}-F C^{2}=F E^{2}-F B^{2}$;
$\therefore \quad A E \cdot E C=B E \cdot E D$.
The converse is proved in exactly the same way as the converse of the proposition.

Note-It was proved in the proposition that $A E \cdot E C=F C^{2}-F E^{2}$.
Now, if the $\odot A B C$ and the point E be fixed, $F C$ and $F E$ are constant lengths, and $\therefore F C^{2}-F E^{3}$ is a constant magnitude. Hence $A E \cdot E C$ is constant.
But $A C$ is any chord through E;
\therefore the rectangles contained by the segments of all the chords that can be drawn through E are constant;
or, in other words, if a variable chord pass through a fixed point inside a circle, the rectangle contained by the segments which the point makes on it is constant.
This constant value may be called the internal potency of the point with respect to the circle.
It was proved in the cor. that $A E \cdot E C=F E^{2}-F C^{2}$.
Hence, as before, if the © $A B C$ and the point E be fixed, $A E \cdot E C$ is constant;
that is, if a variable chord pass through a fixed point outside a circle, the rectangle contained by the segments which the point makes on it is constant.

This constant value may be called the external potency of the puint with respect to the circle.

When the point is situated on the $0^{\text {o }}$ of the circle, its potency with respect to the circle is zero.
[The phrase 'potency of a peint with respect to a circle' is due to Steiner. See Jacob steiner's Gesammelte Werke, vol. i. p. 22.]

1. If two circles intersect, and through any print in their common chord two other chords be drawn, one in each circle, their four extremities are concyclic.
2. $A B C$ is a triangle, $A X, B Y, C Z$ the perpendiculars from its vertices on the opposite sides, intersecting at O. Prove $A O \cdot O X=B O \cdot O Y=C O \cdot O Z$.
3. $A B C$ is a triangle, right-angled at C; from any point D in $A B$, or $A B$ produced, a perpendicular to $A B$ is drawn, meeting $A C$. or $A C$ produced, in E. Prove $A B \cdot A D=A C \cdot A E$.
4. $A B C$ is any triangle ; D and E are two points on $A B$ and $A C$, or on $A B$ and $A C$ produced either through the vertex or below the base, such that $-A D E=\angle A C B$. Prove $A B \cdot A D$ $=A C \cdot A E$.
5. Through a point P within a circle a chord $A P B$ is drawn such that $A P \cdot P B \doteq$ a given square. Determine the square
6. Prove VI. B, and VI. C.

PROPOSITION 36. Theorem.

If from a pmint without a circle a secunt and a tangent bo ariucn to the circle, the rectunyl, contuined by the strunt und its esternal segment shull be equal to the square on the tengent.

Let $A B C$ be a circle, and from the point E without it let there be drawn a secant $E C A$ and a tangent $E B$: it is required to prove $A E \cdot E C=E B^{2}$.

Find F the centre of the $\odot A B C$,
III. $]$ and from it draw $F G \perp A C$. Join $F B, F C, F E$.

Because $F B$ is drawn from the centre of the circle to B, the point of contact of the tangent $E B$, $\therefore \angle F B E$ is right.

1II. 18
Because $F G$, drawn from the centre, is $\perp A C$, $\therefore A C$ is bisected at G.
III. 3

Because $A C$ is divided into two equal segments $A G, G C$, and also externally into two unequal segments $A E, E C$,

$$
\begin{aligned}
\therefore A E \cdot E C & =G E^{2}-F G C^{2}, I I .6 \\
& =\left(F E^{2}-F G^{2}\right)-\left(F C^{2}-F G^{2}\right), I .47, C o r . \\
& =F E^{2}-F C^{2}, \\
& =F E^{2}-F B^{2}, \\
& =E B^{2} .
\end{aligned}
$$

1. Prove the proposition when the secant passes through the centre of the circle. (Euclid gives this particular case.)
2. If two circles intersect, their common chord produced bisects their common tangents.
3. If two circles intersect, the tangents drawn to them from any point in their common chord produced are equal.
4. $\triangle B C$ is a triangle, $A X, B Y, C Z$ the perpendiculars from its vertices on the opposite sides. Prove $A C \cdot A Y=A B \cdot A Z$, $B C \cdot B X=B A \cdot B Z, C A \cdot C Y=C B \cdot C X$.
L. From a given point as centre describe a circle to cut a given straight line in two points, so that the rectangle contained by their distances from a fixed point in the straight line may be equal to a given square.
5. Show, by revolving the secant $E B D$ (fig. to III. 35, Cor.) round E, that this proposition is a particular case of III. 35, Cor.

PROPOSITION 37. Theorem.

If from a point without a circle two straight lines be drarn, one of which cuts the circle, and the other meets it, and if the rectungle contained by the secant and its external segment be equal to the square on the line which meets the circle, that line shall be a tangent.

Let $A B C$ be a circle, and from the point E without it let there be drawn a seeant $E C A$ and a straight line $E B$ to meet the circle ; also, let $A E \cdot E C=E B^{2}$:
it is required to prove that $E B$ is a tangent to the \odot $\mathcal{A B C}$.
Draw $E G$ touching the circle at r, III. 17 and join the centre F to B, G, and F.

Then $\angle F^{\prime} G E=$ a rt. \angle.
III. 18

Now, since $E G$ is a tangent, and $E C A$ a secant,
\therefore

$$
\begin{aligned}
E G^{2} & =A E \cdot E C, \\
& =E I B^{2} ;
\end{aligned}
$$

III. 36

Hup.
$\therefore \quad E G=E B$.
In $\triangle \mathrm{s} E B F, E G F,\left\{\begin{array}{l}E B=E G \\ B F=G F \\ E F=E F ;\end{array}\right.$
$\ldots \angle E B F=\angle E G F^{\prime}$,

1. 8
$=\mathrm{art} . \dot{L}$;
. $E B$ is a tangent to the $\odot A B C$.
2. Prove the proposition indirectly by supposing $E B$ to meet the circle again at D.
3. Prove the proposition indirectly by drawing the tangent $E G$ on the other side of $E F$, and using I. 7.
4. Describe a circle to pass through two given points, and touch a given straight line.
5. Describe a circle to pass through one given point, and touch two given straight lines. Show that to this and the previous problem there are in general two solutions.
6. Describe a circle to touch two given straight lines and a given circle. Show that to this problem there are in general four solutions.
7. Describe a circle to pass through two given points, and touch a given circle. Show that to this problem there are in general two solutions.
8. $A B$ is a straight line, C and D two points on the same side of it; find the point in $A B$ at which the distance $C D$ subtends the greatest angle.
[The third, fourth, fifth, and sixth deductions, along with IV. 4, 5, are cases of the general problem of the Tangencies, a subject on which Apollonius of Perga (abont 222 b.c.) composed a treatise, now lost. This problen consists in describing a circle to pass through or touch any three of the following nine data: three points, three straigh lines, three circles. It comprises ten cases, which, denoting a point by P, a straight line by L, and a circle by C, may be symbolised thus: $P P P, P P L, P P C, P L L, P L C, P C C, L L L, L L C, L C C$, CCC. An excellent historical account of the solutions given to this problem in its various cases will be found in an article by T. T. Wilkinson, 'De Tactionibus,' in the Transactions of the Historic Society of Lancashire and Cheshire (1872). To the authorities there mentioned should be added Das Problem des Apollonius, by C. Hellwig (1856) ; Das Problem des Pappus von den Berührungen, by W. Berkhan (1857) ; 'The Tangencies of Ciroles and of Spheres,' by Benjamin Alvord, published in 1855 in the 8th vol. of the Smithsonian Contributions, and 'The Interseosion of Circles and the Intersection of Spheres,' by the same author iv the American Journal of Mathematics, vol. v., pp. 25-44.]

APPENDIX IIL

Radical Axis.

Der. 1.-The locus of a point whose potencies (both exteral or both internal) with respect to two circles are equal, is called the radical axis* of the two circles.

Proposittion 1.

The radical axis of two circles is a straight line perpendicular to the line of centres of the two circles.

Let A and B be the centres of the given circles, whose radii are a and b, and suppose C to be any point on the required locus.

Join $C A, C B$, and from C draw $C D \perp A B$ the line of centres.
Since the potency of C with respect to circle $A=A C^{2}-a^{2}$, Def. and since the potency of C with respect to circle $B=B C^{2}-\zeta^{2}$; Def.
$\therefore A C^{2}-a^{2}=B C^{2}-b^{2}$;
$\therefore A C^{2}-B C^{2}=a^{2}-b^{2}$.
But since the circles A and B are given, their radii (a and b) are constant;
\therefore the squares on the radii (a^{2} and l^{2}) are constant ;
\therefore the difference of the squares on the radii $\left(a^{2}-b^{2}\right)$ is constant;
$\therefore A C^{2}-B C^{2}$ is constant.
Hence the locus of C^{\prime} is a straight line $\perp A B$.
App. II. 5

- This name, as well as that of 'radical centre,' was introduced by L. Gaultier de Tours. See Journal de l'École polytechnique, 16o cahier, tome ix. (1813), pp. 139, 143.

Cor. 1.-Tangents drawn to the two circles from any point in their radical axis are equal.

Cor. 2.-The radical axis of two circles bisects treir common tangents. Heuce may be derived a method of drawing the radical axis of two circles.

Cor. 3.-If the two circles are exterior to each other and have ne common point, the radical axis is situated outside both circles.

Cor. 4.-If the two circles touch each other either externally or internally, their radical axis consists of the common tangent at the point of contact.

Cor. 5.-If the two circles intersect each other, their radical axis consists of their common chord produced.
Cor. 6.-If one circle is inside the other and does not touch it, their radical axis is situated outside both circles.

Cor. 7.-The radical axis of two unequal circles is nearer to the centre of the small circle than to the centre of the large one, but nearer to the $O^{c \infty}$ of the large circle than to the $O^{\infty 0}$ of the small are.

Proposition 2.

The radical axes of three circles taken in pairs are concurrent.*

Let A, B, C be three circles, whose radii are a, b, c : it is required to prove that the radical axis of A and B, that of B and C, and that of C and A all meet at one point.

[^21]

Suppose the centres of the three circles not to be in the same straight line.
Then $D E$, the radical axis of B and C, and $D F$, the radical axis of C and A, will meet at some point D;
for they are respectively $\perp B C$ and $C A$, and $B C$ and $C A$ are not in the same straight line.

Since D is a point on the radical axis of B and C;
$\therefore B D^{2}-b^{2}=C D^{2}-c^{2}$.
Since D is a point on the radical axis of C and A;
$\therefore C D^{2}-c^{2}=A D^{2}-a^{2}$;
$\therefore A D^{2}-a^{2}=B D^{2}-b^{2}$;
$\therefore D$ is a point on the radical axis of A and B, that is, the radical axis of A and B passes through D.

Def. 2.-The point of concourse of the radical axes of three circles taken in pairs, is called the radical centre of the three circles.

Cor. 1.-When the three circles all cut one another, the radical centre lies either within or without all the three circles.

Cor. 2. - When the centres of the three circles are in one straight line, the radical axes are all parallel, and the radical centre therefore is infinitely distant.

Cor. 3.-When the three circles all touch one another at the ame point, the common tangent at that point is the radical axis of all three, and the radical centre therefore is indeterminate-that is, any point on the common radical axis will be a radical centre.
Cor. 4.-In all other cases the radical centre is outside the three fin? 2 s .

COR 5.- If from the ralical centre tangents be drawn to the circles, their points of contact will be concyclic.

Cor. 6.-If there be several points from which equal tangents can be drawn to three circles, these three circles must have the same radical axis, and the several points must be situated on it.
Cor. 7.-The orthocentre of a triangle is the radical centre of the circles whose diameters are the sides of the triangle, and also the radical centre of the circles whose diameters are the segments of the perpendiculars between the orthocentre and the vertices.

Proposition 3.

To find the radical axis of two circles which have no common point.

Let A and B be the two circles.
Describe any third circle C so as to cut the circles A and B.
Draw $F H$ the common chord of A and C, and $E K$ the common cnorl of B and C, and Iet them meet at D.
From D draw $D G \perp A B$.
Then $F D$ is the radical axis of A and C, and $E D$ the radical axis of B and C; App. III. 1, Cor. 5
$\therefore D$ is the radical centre of A, B, and C; App. 11I. 2
$\therefore D$ is a point on the radical axis of A and B;
$\therefore D G$ is the radical axis of A and B.
Cor. 1.-The radical axis of A and B may also be obtained thus: After finding D, draw a fourth circle to intersect A and B. A second pair of common chords will thus be obtained whose intersec. Gun will determine another point on the radical axis of A and B. Join D with this other point.

Wor. 2. . The radical certre of three circles which have no common point may be found by describing two circles each of which shall cut all the three given circles.

DEDUCTIONS.

1. Find a point inside a triangle at which the three sides shall subtend equal angles. Is this always possible?
2. Given two intersecting circles, to draw, through one of the points of intersection, a straight line terminated by the circles, and such that (a) the sum, (b) the difference, of the two chords may $=$ a given length.
3. Of all the straight lines which can be drawn from two given points to meet on the convex $O^{c h}$ of a circle, the sum of those two will be the least, which make equal angles with the tangent at the point of concourse.
4. With the extremities of the diameter of a semicircle as centres, any iwo other semicircles are drawn towhirg each other exterially, and a straight line is drawis to totich them both. Prove that this straight will also touch the original semicircle.
5. Find a point in the diameter produced of a given circle, such that a tangent drawn from it to the circle shall be of given length.
6. $A B C$ is a triangle having $\angle B A C$ acute ; prove $B C^{2}$ less than $A B^{2}+A C^{2}$ by twice the square on the tangent drawn from A to the circle of which $B C$ is a diameter.
7. $A B C$ is a triangle, $A X, B Y, C Z$, the perpendiculars from its vertices on the opposite sides. Prove that these perpendiculars bisect the angles of $\triangle X Y^{\prime} Z$, and that $\triangle s A Y Z, X B Z, X Y C$, $A B C$ are mutually equiangular.
8. If the perpendiculars of a triangle be produced to meet the circle circumscribed about the triangle, the segments of these perpendiculars between the orthocentre and the $O^{c o}$ are bisected by the sides of the triangle.
9. If O be the orthocentre of $\triangle A B C$, the circles circumscribed about $\triangle A A B C, A O B, B O C, C O A$ are equal.
11). If D, E, F he situatel respectively on $B C, C A, A B$, the sides of $\triangle A B C$, the $O^{\text {cen }}$ of the cireles circumseribed abmit the shree $\triangle A^{\prime} A E F, B V D, C D E$ will pass through the samo point.
10. If on the three sides of any triangle equilateral triangles be described outwardly, the straight lines joining the circumscribed centres of these triangles will form au equilateral triangle.
Construct a triangle, having given the base, the vertical angle, and 12. The perpendicular from the vertex to the base.
11. The median to the base.
12. The projection of the vertex on the base.
13. The point where the bisector of the vertical angle meets the base.
14. The sum or difference of the other sides.
15. Construct a triangle, having given its orthocentric triangle.
16. Draw all the common tangents to two circles. Examine the various cases. (One pair are called direct, the other pair transcerse, common tangents.)
17. Of the chords drawn from any point on the $O^{\text {ce }}$ of a circle to the vertices of an equilateral triangle inscribed in the circle, the greatest $=$ the sum of the other two.
18. If two chords in a circle intersect each other perpendicularlv, the sum of the squares on their four segments $=$ the square on the diameter. (This is the 11th of the Lemmas ascribed to Archimedes, 287-212 в.c.)
19. A quadrilateral is inscribed in a circle, and its sides form chords of four other circles. Prove that the second points of intersection of these four circles are concyclic.
20. If four circles be described, either all inside or all outside of any quadrilateral, each of them touching three of the sides or the sides produced, their centres will be concyclic.
§3. The opposite sides of a quadrilateral inscribed in a circle are produced to meet. Prove that the bisectors of the two angles thus formed are \perp each other.
S4. If the opposite sides of a quadrilateral inscribed in a circle be produced to meet, the square on the straight line joining the points of concourse $=$ the sum of the squares on the two tangents from these points. (A converse of this is given in Matthew Stewart's Propositiones Geometricue, 1763, Book i., Prop. 39.)
\therefore. If a circle be circumscribed about a triangle, and from the ends of the diameter 1 the base, perpendiculars be drawn to the other two sides, these perpendiculars will intercept on the sides segments = half the sum or half the differencc of the sides,
21. In the figure to the preceding deduction, find all the angles which are $=$ half the sum or half the difference of the base angles of the triangle.
22. If from any point in the $0^{c e}$ of the circle circumscribed about a triangle, perpendicnlars be drawn to the sides of the triangle, the feet of these perpendiculars are cullincar. (This theorem is frequently attributed to Hobert Simson, 16S7-1768. I have not been able to find it in his works.)
23. If from any point in the $0^{\text {ce }}$ of the circle circumscribed about a triangle, straight lines be drawn, making with the sides, in cyclical order, equal angles, the feet of these straight lines are collinear.
24. If P be any point in the 0^{∞} of the circle circumscribed about $\triangle A B C, X, Y, Z$, its projections on the sides $B C, C A, A B$, the circle which passes throngh the centres of the circles circumscribed about $\triangle s A Z Y, B X Z, C Y X$ is constant in magnitude.
25. If a straight line cut the three sides of a triangle, and circles be circumscribed about the new triangles thus formed, these circles will all pass through one point; and this point will be concyclic with the vertices of the original triangie. (Steincr's Gesammelt Werke, vol. i. p. 223.)
26. If any number of circles intersect a given circle, and pass through two given points, the straight lines joining the intersections of each circle with the given one will all meet in the same point.
27. A series of circles touch a fixed straight line at a fixed point; show that the tangents at the points where they cut a parallel fixed straight line all touch a iixed circle.
28. $A B C D$ is a ' q ualrilateral having $A B=A D$, and $\angle C=\angle B$ $+\angle D ;$ prove $A C=A B$ or $A D$.
29. From C two tangents $C D, C E$ are drawn to a semicircle whose diameter is $A B$; the chords $A E, B D$ intersect at F. Prove that $C F$ produced is $\perp A B$. (This is the 12 th of the Lemmas ascribed to Archimedes, and the preceding deduction is assumed in the proof of it.)
30. On the same supposition, prove that if the chords $A D, B E$ intersect at $r^{\prime \prime}, f^{\prime} C^{\prime}$ proluced is $\perp A B$.
31. A series of circles intersect each other, and are such that the tangents to them from a fixel point are equal ; prove that the pommon chords of each pair pass through this point.
32. Find a point in the $O^{c e}$ of a given circle, the sum of whose distances from two given straight lines at right angles to each other, which do not cut the circle, is the greatest, or the least possible.
33. From a given point in the $0^{\text {co }}$ of a circle draw a chord which shall be bisected by a given chord in the circle.
34. From a point P outside a circle two secants $P A B, P D C$ are drawn to the circle $A B C D ; A C, B D$ are joined and intersect at O. Prove that O lies on the chord of contact of the tangents drawn from P to the circle. (See Poudra's Euvres de Desargues, tome i., pp. 159-192, 273, 274.)
35. Hence devise a method of drawing tangents to a circle from an external point by means of a ruler only.

Loci.

Find the locus of the centres of the circles which touch

1. A given straight line at a given point.
2. A given circle at a given point.
3. A given straight line, and have a given radius.
4. A given circle, and have a given radius.
5. Two given straight lines.
6. Two given equal circles.
7. A series of parallel chords are placed in a circle; find the locus of their middle points.
8. A series of equal chords are placed in a circle; find the locus of their middle points.
9. A series of right-angled triangles are described on the same hypotenuse ; find the locus of the vertices of the right angles.
10. A variable chord of a given circle passes through a fixed point; find the locus of the middle point of the chord. Examine the cases when the fixed point is inside the circle, outside the circle, and on the $o^{r e}$.
11. Find the locus of the vertices of all the triangles which have the same base, and their vertical angles equal to a given angie.
12. Of the $\triangle A B C$, the base $B C$ is given, and the vertical angle A; find the locus of the point D, such that $B D=$ the sum of the sides $B A, A C$.
13. Of the $\triangle A B C$, the base $B C$ is given, and the vertical angle A; find the locus of the point D, such that $B D=$ the difference of the sides $B A, A C$.
14. $A R$ is a fixed chord in a given circle, and from any point C in the arc $A C B$, a perpendicular $C D$ is drawn to $A B$. With C as centre and $C D$ as radius a circle is described, and from A aud B tangents are drawn to this circle which meet at P; find the locus of P.
15. A quadrilateral inscribed in a circle has one side fixed, and the opposite side constant; find the locus of the intersection of the other two sides, and of the intersection of the diagonals.
16. Two circles touch a given straight line at two given points, and also touch one another; find the locus of their point of contact.
17. Find the locus of the points from which tangents drawn to a given circle may be perpendicular to each other.
18. Find the locus of the points from which tangents drawn to a given circle may contain a given angle.
19. Find the locus of the points from which tangents drawn to a given circle may be of a given length.
20. From any point on the 0^{∞} of a given circle, secants are drawn such that the rectangle contained by each secant and its exterior segment is constant ; find the locus of tle ends of the secants.
21. A is a given point and $B C$ a given straight line; any point P is taken on $B C$, and $A P$ is joined. Find the locus of a point Q taken on $A P$ such that $A P \cdot A Q$ is constant.
22. The hypntenuse of a right-angled triangle is given ; find the loci of the corners of the squares described outwardly on the sides of the triangle.
23. A variable chord of a given circle passes through a fixed point, and tangents to the circle are drawn at its extremities; prove that the locus of the intersection of the tangents is a straight line. (This straight line is called the polar of the given fixed point, and the given fixed point is called the fole, with reference to the given circle. Sce the reference to Desargues on p. 221.)
24. Examine the case when the fixed point is outside the ciscli.

BOOK IV.

DEFINITIONS.

1. Any closed rectilineal figure may be called a polygon. Thus triangles and quadrilaterals are polygons of three and four sides.

Polygons of five sides are called pentagons; of six sides, hexagons; of seven, heptagons; of eight, octagons; of nine, nonagons or enueagons ; of ten, decagons; of eleven, undecagons or hendecagons ; of twelve, dodecagons ; of tifteen, quindecagons or pentedecagons ; of twenty, icosagons.

Sometimes a polygon having n sides is called an n-gon.
2. A polygon is said to be regular when all its sides are equal, and all its angles equal.

It is important to observe that the triangle is unique among polygons. For if a triangle have all its sides equal, it must have all its angles equal (I. 5, Cor.) ; if it have all its angles equal, it must have all its sides equil (I. G, Cor.)

Polygons with more than three sides may have all their sides equal without having their angles equial; or they may have all their angles equal without having their sides equal. A rhombus and a rectangle are illustrations of the preceding remark.

Hence in order to prove a polygon (other than a triangle) regular, it must be proved to be both equilateral and equiangular.
3. When each of the angular points of a polygon lies on the circumference of a circle, the polygon is inscribed in the circle, or the circle is circumscribed about the polygon.
4. When each of the sides of a polygon touches the circumference of a circle, the polygon is circumscribed about the circle, or the circle is inscribed in the polygon.
5. The diagonals of a polygon are the straight lines which join those vertices of the polygon which are not consecutive.

PROPOSITION 1. Problem.

In a given circle to place a chorl equal to a given straight line which is not greater than the diameter of the circle.

$\xrightarrow{\mathrm{D}}$
Let D be the given straight line which is not greater than the diameter of the given $\odot A B C$:
it is required to place in the $\odot A B C$ a chord $=D$.
Draw $B C$ any diameter of the $\odot A B C$.
III. 1

Then if $B C=D$, what was required is done.
But if not, $B C$ is greater than D. Myp.
Make $C E=D$; I. 3
with centre C and radius $C E$, describe the $\odot A E F$;
join $C A$.
Then $C A=C E$, heing radii of the $\odot A E F$,

$$
=1 .
$$

Const.

1. How many chords can be placed in the circle equal to the given straight line D ?
2. Place a chord in the © $A B C$ equal to the given straight line D, and so that one of its extremities shall be at a given point in the $O^{\text {co }}$. How many chords can be so placed?
3. About a given chord to circumscribe a circle. How many circles can be so circumscribed? Where will their centres all lie? What limits are there t, the lengths of the diameters of all such circles ?
4. About a given chord to circumscribe a circle having a given radius. How many circles can be so circumscribed?
Place a chord in the $\odot A B C$ equal to the given straight line D, and so that it shall
5. Pass through a given point within the circle.
6.

"
" "
withont "
7. Be parallel to ancther given straight line.
8. Be perpendicular
" "
" "

PROPOSITION 2. Problem.

In a given circle to inscribe a triangle equiangular to a given triangle.

Let, $A B C$ be the given circle, and $D E F$ the given triangle : it is required to inscribe in $A B C$ a triangle equiangular to $\triangle D E F$.

Take any point A on the \bigcirc^{∞} of $A B C$, and at A draw the tangent $G A H$.
III. 17

Make $\angle H A C=\angle E$, and $\angle C A B=\angle F$;
I. 23 join $B C$. $A B C$ is the required triangle.
Because the chord $A C$ is drawn from A, the point of contact of the tangent $G A H$,

$$
\begin{equation*}
\therefore \quad \angle B=\angle H A C, \tag{III. 32}
\end{equation*}
$$

$$
=\angle E .
$$

Const.
Similarly, $\angle C=\angle G A B$, $=\angle F ;$
III. 32

Const.
\therefore remaining $\angle B A C=$ remaining $\angle D ; \quad$ I. 32 , Cur. 1
$\therefore \triangle A B C$ is equiangular to $\triangle D E F$.

1. Show that there may be innumerable triangles inscribed in the - ABC equiangular to the given $\triangle D E F$.
2. If the problem were, In a given eircle to inserib, a triangle equiangular to a given $\triangle D E F$, and having one of its vertices at a given point A on the $O^{c e}$, show that six different positions of the inscribed triangle would be possille.
3. Given a $\odot A B C$; inseribe in it an equilateral triangle.
4. Two $\triangle \mathrm{s} A B C, L M N$ are inseribed in the © $A B C$, each of them equiangular to the $\triangle D E F$; prove $\triangle S A B C, L M N$ equal in all respects.

PROPOSITION III. Problem.

About a given circle to circumscrile a triangle equiangular to a given triangle.

Let $A B C$ be the given circle, and $D F F$ the given triangle : it is rempired to circumscribe ubnut $A B C$ a triangle equiantullar to $\triangle D E F$.

Produce $W^{\prime} F^{\prime}$ both ways to G and $I I$.
Find O the centre of thr $\odot A B C$,
III. 1 and draw any radius ORS.
Make $\angle B O A=\angle I) E(r$, and $-B O C=\angle D F H ; \quad I .23$ and at A, B, C, draw tangents to the circle intersecting each other at $L, M, N . \quad L M N$ is the required triangle.

Because $O A M B$ is a quadrilateral, \therefore the sum of its four $\angle \mathrm{s}=4 \mathrm{rt} . \angle \mathrm{s}$.
I. 32, Cor. 2

But $\angle O A M+\angle O B M=2 \mathrm{rt} . \angle \mathrm{s}$;
III. 18
$\therefore \angle M$ is supplementary to $\angle B O A$.
$\begin{array}{lr}\text { But } \angle D E F \text { is supplementary to } \angle D E G, & I .13 \\ \text { and } \angle B O A=\angle D E G ; & \text { Const. }\end{array}$
$\therefore \angle M=\angle D E F$.
Similarly, $\angle N=\angle D F E$;
\therefore remaining $\angle L=$ remaining $\angle D$;
I. 32, Cor. 1
$\therefore \triangle L M N$ is equiangular to $\triangle L E F$.

1. It is assumed in the proposition that the tangents at A, B, C will meet and form a triangle. Prove this.
2. Show that there may be innumerable triangles circumscribed about the $\odot A B C$ equiangular to the given $\triangle D E F$.
3. Given a $\odot A B C$; circumscribe about it an equilateral triangle.
4. If the points of contact of the sides of the circumscribed equilateral triangle be joined, an inscribed equilateral triangle will be obtained.
5. A side of the circumscribed equilateral triangle is double of a side of the inscribed equilateral triangle, and the area of the circumscribed equilateral triangle is four times the area of the inscribed equilateral triangle.
Supply the demonstration of the proposition from the following constructions, which do not require $E F$ to be produced:
f6. In the given circle, whose centre is O, draw any diameter $B O G$. Make $\angle G O A=\angle E, \angle G O C=\angle F$, and at A, B, C draw tan gents intersecting at $L, M, N . L M N$ is the required triangle.
6. At any point B on the $O^{\text {ce }}$ of the given circle draw a tangent $P B Q$, and on the tangent take any points P, Q, on opposite sides of B. At P make $\angle Q P R=\angle E$, and at Q make $\angle P Q R=\angle F$. Assuming that $P R, Q R$ do not touch the given circle, from O the centre draw perpendiculars to $P R$, $Q R$, and let these perpendiculars, produced if necessary, meet the circle at A and C. At A and C draw tangents $L M$, $L N$ to the circle. $L M N$ is the required triangle.
7. In the given circle inscribe a $\triangle A B C$ equiangular to $\triangle D E F$. Bisect the arcs $A B, B C, C A$, and at the points of bisection draw tangents.
8. Any reetiliueal figure $A B C D E$ is inscribed in a circle. Bisect the ares $A B, B C, C D, D E, E A$, and at the points of bisection draw tangents. The resulting figure is equiangular to $A B C D E$.
9. Two triangles are cireumseribed about the $\odot A B C$ ', each of them equiangular to $\triangle D E F$; prove that they are equal in all respeets.
10. Describe a triangle equiangular to a given triangle, and such that a given circle shall be tonched by one of its sides, and by the other two produced. Show that there are three solutions of this deduction.

PROPOSITION 4. Problem.

To inscribe a circle in a given triangle.

Let $A B C$ be the given triangle :
it is required to inscribe a circle in $\triangle A B C$.
Bisect $\angle \mathrm{s} A B C, A C B$ by $B I, C I$, which intersect at $I ; I .9$ from I draw $I D, I E, I F \perp B C, C A, A B$. I. 12

$$
\text { In } \triangle \mathrm{s} I D B, I F B,\left\{\begin{align*}
\angle I D B & =\angle I F B \tag{1. 26}\\
\perp I B D & =\angle I B F \\
I B & =I B ;
\end{align*} \quad\right. \text { Const. }
$$

$\therefore I I=I F^{\prime}$.
Similarly, $I J=I E$;
$\therefore I D, I E, I F$ are all equal.

With centre I and radius $I D$ ilescribe a circle, which will pass through the points D, E, F. Of this circle, $I D, I E, I F$ will be radii ; and since $B C, C A, A B$ are $\perp I D, I E, I F$,

Const.
$\therefore B C, C A, A B$ will be tangents to the $\odot D E F ;$ III. 16
\therefore the $\odot D E F$ is inscribed in the $\triangle A B C$.
Note.-This proposition is included in the more general one, to describe a circle which shall touch three given straight lines. See Appendix IV. 1, p. 250.

1. It is assumed in the proposition that the bisectors $B I, C I$ will meet at some point I. Prove this.
2. If $I A$ be joined, it will bisect $\angle B A C$.
3. The centre of the circle inscribed in an equilateral triangle is equidistant from the three vertices.
4. The centre of the circle inscribed in an isosceles triangle is equidistant from the ends of the base.
5. Prove $A F+B D+C E=F B+D C+E A=$ semi-perimeter of $\triangle A B C$.
6: Prove $A F+B C=B D+C A=C E+A B=$ semi-perimeter of $\triangle A B C$.
6. With A, B, G, the vertices of $\triangle A B C$ as centres, describe three circles, each of which shall touch the other two.
7. Find the centre of a circle which shall cut off equal chords from the three sides of a triangle.
8. If through I a straight line be drawn $\| B C$, and terminated by $A B, A C$, this parallel will be equal to the sum of the segments of $A B, A C$ between it and $B C$. Examine the cases for $\mathrm{I}_{1}, \mathrm{I}_{2}$, I_{3}, in Appendix IV. I.
9. If D, E, F, the points of contact of the inscribed circle, be joined, $\triangle D E F$ is acute-angled.
10. The angles of $\triangle D E F$ are respectively complementary to half the opposite angles of $\triangle A B C$.
11. $A B C$ is a triangle. D and E are points in $A B$ and $A C$, or in $A B$ and $A C$ produced. Prove that the vertex A, and the centres of the circles inscribed in $\triangle s A B C, A D E$, are collinear.
12. Draw a straight line which would bisect the angle between two straight lines which are not parallel, but which cannot be produced to meet.

proposition 5. Problem.

To circunscribe a circle about a !icen triangle.

Let $A B C$ be the given triangle :
it is required to circumscrilue a circle about $\triangle A B C$.
Bisect. $A B$ at L and $A C$ at K; 10
from L and K draw $L S \perp A B$ and $K S \perp A C$, I. 11 and let $L S$ S, K'S intersect at S.
Join $S A$; and if S be not in $B C$, join $S B, S C$.

$$
\text { In } \triangle \mathrm{s} A L S, B L S ;\left\{\begin{array}{rlr}
A L & =B L & \text { Const. } \\
L L S & =L S &
\end{array}\right.
$$

$$
\therefore S A=S B
$$

I. 4
similarly, $S A=S C$;
$\therefore S A, S B, S C$ are all equal.
With centre S and radins $S A$, deseribe a circle ;
this circle will pass through the prints A, B, C, and will be circumscribed about the $\triangle A B C$.

Cor.-From the three figures it appears that S, the centre of the circumseribed circle, may occupy three positions:
(1) It may be inside the triangle.
(2) It may be on one of the sides.
(3) It may be outside the triangle.

In the first case, when S is inside the triangle, the $\angle \mathrm{s}$ $A B C, B C A, C A B$, being in segments greater than a semicircle, are each less than a right angle ;
III. 31
\therefore the triangle is acute-angled.
In the second case, when S is on one of the sides as $B C$, $\angle B A C$, being in a semicircle, is right;
III. 31
\therefore the triangle is right-angled.
In the third cise, when S is outside the triangle, $\angle B A C$, being in a segment less than a semicircle, is greater than a right angle ;
III. 31
\therefore the triangle is obtuse-angled.
And conversely, if the given triangle be acute-angled, the centre of the circumscribed circle will fall within the triangle ; if the triangle be right-augled, the centre will fall on the hypotenuse ; if the triangle be obtuse-angled, the centre will fall without the triangle beyond the side opposite the obtuse angle.

1. It is assumed in the proposition that the perpendiculars at L and K will intersect. Prove this.
2. With which proposition in the Third Book may this proposition be regarded as identical?
3. Give an easy construction for circumscribing a circle about a right-angled triangle.
4. An isosceles triangle has its vertical angle donble of each of the base angles. Prove that the diameter of its circumscribed circle is equal to the base of the triangle.
5. A quadrilateral has one pair of opposite angles supplementary. Show how to circumscribe a circle about it.
6. If a perpendicular $S H$ le drawn from S to $B C$, it will bisect $B C$.
7. If the perpendicular in the preceding deduction meet the circle below the base at D, and above the base at E, prove
(a) $\angle B S D=\angle C S D=\angle B A C$;
(b) $\angle B S E=\angle C S E=\angle A B C+\angle A C B$;
(c) $\angle A S E=\therefore A B C-\angle A C B$;
(d) that $A D$ and $A E$ bisect the interior and exterior vertical angles at A.
8. The angle between the circumscribed radius drawn to the vertex of a triangle, and the perpendicular from the vertex on the opposite side, is equal to the difference of the angles at the base of the triangle.
9. The centre of the circle circumscribed about an equilateral triangle is equidistant from the three sides.
10. The centre of the circle circunscribed about an isosceles triangle is equidistant from the equal sides.
11. When the inscribed and circumscribed centres of a triangle coincide, the triangle is equilateral.
12. When the straight line joining the inscribed and circumscribed centres of a triangle passes through one of the vertices, the triangle is isosceles.
13. If H be the middle point of $B C$, what will the point S be in reference to $\triangle H K L$?
14. $S A, S B, S C$ are respectively \perp the sides of the orthocentric triangle of $\triangle A B C$.
15. The straight line joining the inscribed centre of a triangle to any vertex bisects the angle between the circumscribed radius to that vertex, and the perpendicular from that vertex on the opposite side.

PROPOSITION 6. Problem.

To inseribe a square in a given cirelo.

Let $A B C$ be the given circle :
it is required to inscribe a square in $A B C$.
Find O the centre of the $\odot A B C$,
and through O draw two diameters $A C, B D \perp$ each other ;
I. 11
join $A B, B C, C D, D A . \quad A B C D$ is the required square.
(1) To prove $A B C D$ equilateral.

$$
\text { In } \triangle \mathrm{s} A O B, A O D,\left\{\begin{aligned}
A O & =A O \\
O B & =O D \\
\angle A O B & =\angle A O D ;
\end{aligned}\right.
$$

$\therefore A B=A D$.
I. 4

Hence also $A B=B C, B C=C D$;
$\therefore A B C D$ is equilateral.
(2) To prove $A B C D$ rectangular.

Because $\angle s A B C, B C D, C D A, D A B$ are right, being angles in semicircles;

III 31
$\therefore A B C D$ is rectangular ;
$\therefore A B C D$ is a square.
I. Def. 32

Cor.-If the ares $A B, B C, C D, D A$ be bisected, the points of bisection along with A, B, C, D will form the vertices of a regular octagon inscribed in the circle. If the arcs cut off by the sides of the octagon be bisected, the vertices of a regular figure of 16 sides inscribed in the circle will be obtained. Repeated bisections will give regular figures of $32,64,128,256$, \&c. sides inscribed in the circle. All these numbers $4,8,16,32,64, \& c$ are comprised in the formula 2^{n}, where n is any positive integer greater than 1.

1. Prove that $A B C D$ is equilateral by using III. $\simeq 6,29$.
2. The square inscribed in a circle is double of the square on the radius, and half of the square on the diameter.
3. All the squares inscribed in a circle are equal.
4. If the ends of any two diameters of a circle he joined consecutively, the figure thus inscribed is a rectangle.
5. What is the magnitude of the augle at the centre of a circle subtended by a side of the inseribed square?
6. If r denote the radius of the given circle, then the side of the inscribed square will be denoted byハ:...

PROPOSITION 7. Problem.

To circumscribe a square about a given circls.

Let $A B C$ be the given circle :
it is required to circumseribe a square about $A B C$.
Find O the centre of the $\odot A B C$,
III. 1
and through O draw two diameters $A C, B D \perp$ rach other.
At A, B, C, D, draw $E F, F(r, C I I, I I E$, tangents to the circle.
III. 17
$E F G H$ is the required square.
(1) To prove $E F C H$ equilateral.

Becanse $E F^{\prime}$ and $G H$ are both $\perp A C$,
III. 18
and $B D$ is also $\perp A C$;
Const.
$\therefore F H, B D$, and $G H$ are all parallel. I. 28, Cor.

Hence also $F G, A C$, and $H E$ are all parallel;
\therefore all the qualrilaterals in the figure are $\|^{\text {man }}$.
I. Def. 33

Hence $E F^{\prime}$ and ($M H$ are each $=B D$,
I. 3.4
and $F^{\prime} G^{\prime}$ and $H E$ are each $=\Lambda C$.
i. 34
lint $A C=B D$;
$\therefore E^{\prime} F^{\prime}, F^{\prime} G, G H, H E$ are all equal.
(2) To prove $E F(\dot{F} / 1$ rectangular.

Because $O E$ is a $\|^{m}, \quad \therefore \angle E=\angle A O D$;

1. 34
$\therefore \angle E$ is right.

Hence also $\angle s F, G, H$ are right.

1. It is assumed in the proposition that the four tangents at A, B, C, D will form a closed figure. Prove this.
2. The square circumscribed about a circle is double of the square inscribed in the circle.
3. All the squares circumscribed about a circle are equal.
4. If a rectangle be circumscribed about a circle, it must be a square.
5. If tangents be drawn at the ends of any two diameters of a circle and produced to meet, the figure thus circumscribed is a rhombus.
6. What is the magnitude of the angle at the centre of a circle, subtended by a side of the circumscribed square?
7. If r denote the radius of the given circle, then the side of the circumscribed square will be denoted by $2 r$.

PROPOSITION 8. Problem.

To inseribe a circle in a given square.

Let $A B C D$ be the given square : it is required to inscribe a \odot in $A B C D$.

Join $A C, B D$ intersecting at O; and from O draw $O E, O F, O G, O H \perp$ the sides of the square.

In $\triangle \mathrm{s} B A C, D A C, \begin{cases}B A=D A & \text { 1. Def. } 32 \\ A C=A C & \text { I. Def. } 32 \\ B C=D C ; & \end{cases}$
$\therefore \angle B A C=\angle D A C$, and $\angle B C A=\angle D C A$; I. 8
\therefore the diagonal $A C$ bisects $\angle \mathrm{s} B A D, B C D$.
Hence also, the diagonal $B D$ bisects $\angle \mathrm{s} A B C, A D C$.
In $\triangle \mathrm{s} O E B$, OFB $\left\{\begin{array}{c}\angle O E B=\angle O F B \\ \angle O B E=\angle O B F \\ O B=O B ;\end{array}\right.$
$\therefore O E=O F$.
I. 26

Hence also $O F=O G, O G=O H$;
$\therefore O E, O F, O G, O H$ are all equal.
With centre O and radius $O F$, describe a circle which will pass through the points $E, F, G, I F$.
Of this circle, $O F, O F, O G, O H$ will be radii ; and since $A B, B C, C D, D A$ are $\perp O H, O I, O(r, O H$, Const. $\therefore A B, B C, C D, D A$ will bo tangents to - EFGlI ;
III. 16
$\therefore \odot E F G I I$ is inseribed in the square $A B C D$.

1. Could O, the centre of the inscribed circle, be found in any other way than by joining $A C, B D$?
2. Show that a circle cannot be inscribed in a rectangle unless it be a square.
3. Inscribe a circle in a given rhombus.
4. Enumerate the $\|^{m n}$ in which circles can be inscribed.
5. If a denote a side of the given square, then the radius of the inscribed circle will be denoted by $\frac{1}{3}$ a.

PROPOSITION 9. Problem.

To circumscribe a circle about a given square.

Let $A B C D$ be the given square : it is required to circumscribe a circle about $A B C D$.

Join $A C, B D$ intersecting at O.
In $\triangle \mathrm{s} B A C, D A C,\left\{\begin{array}{lr}B A=D A & \text { I. Def. } 32 \\ A C=A C & \text { I. Def. } 32 \\ B C=D C ; & \end{array}\right.$
$\therefore-B A C=\angle D A C$, and $\angle B C A=\angle D C A$, I. 8
\therefore the diagonal $A C$ bisects $-\mathrm{s} B A D, B C D$.
Hence also, the diagonal $B D$ bisects $\angle \mathrm{s} A B C, A D C$.
Because $\angle O A B=\angle O B A$, each being half a rt. \angle,
$\therefore O A=O B$.
Hence also $O B=O C$, and $O C=O D$;
$\therefore O A, O B, O C, O D$ are all equal.
With centre O and radius $O A$, describe a circle which will pass through the points A, B, C, D, and \therefore will be circumscribed about the square $A B C D$.

1. Show that a circle cannot be circumscribed about 2 rhombus unless it be a square.
2. Circumscribe a circle about a given rectangle.
3. Enumerate the $\|^{m s}$ about which circles can be circumscribed.
4. If a denote a side of the given square, then the radius of the circumscribed circle will be denoted by $\frac{1}{2} a \sqrt{2}$.

PROPOSITION 10. Problem.

To describe an isnsceles triangle having eacih of the angles at the base double of the third ungle.

Take any straight line $A B$, and divide it internally at C so that $A B \cdot B C=A C^{2} . \quad I I .11$ With centre A and radius $A B$, deseribe the $\odot B D E$, in which place the chord $B D=A C$.

Join $A D$. $\quad A B D$ is the required isusceles triangle.
Join $C D$, and about $\triangle A C D$ circumscribe the $\odot A C D$.
IV. 5

Because $A B \cdot B C=A C^{2}$,
Coust.

$$
=B D^{2} ;
$$

$\therefore B D$ is a tangent, to the $\odot A C D$.
III. 37

Because the chord $D C$ is drawn from D, the point of contact of the tangent $B D$;

$$
\therefore \quad-B i C=\angle A
$$

III. 32

Ald to each the - CDA;

$$
\begin{array}{lll}
\therefore & -B D A & -A+-C D A ; \\
\therefore & -D B A=-A+-(D D A & I .5 \\
\text { Bnt } & -D C B=-A+-C l) A ; & I .32 \\
\therefore & \angle D B A \text { or }-D B C=-I C l B ; &
\end{array}
$$

$$
\begin{array}{rlr}
\therefore & \text { I. } 6 \\
& =D B, & \\
\therefore \angle A=\angle C D A, \text { or } \angle A+\angle C D A=\text { twice } \angle A . & \text { I. } 5
\end{array}
$$

But
$\angle B D A=\angle A+\angle C D A$;
$\therefore \angle B D A$, and consequently $\angle D B A=$ twice $\angle A$.

1. The $\triangle D B C$ is equiangular to $\triangle A B D$.
2. Angle $A=$ one-fifth of two right angles.
3. Divide a right angle into five equal parts.
4. The $\triangle C A D$ has one of its angles thrice each of the other two.
5. On a given base, construct an isosceles triangle having each of its base angles double of the vertical angle.
6. On a given base, construct an isosceles triangle baving each of its base angles one-third of the vertical angle.
7. The small circle in the figure to the proposition must cut the large one. (Campanus.)
8. If the small circle cut the large one at F, and $D F$ be joined, $D F=B D$. (Campanus.)
9. $B D$ is a side of a regular decagon inscribed in the large circle.
10. $A C$ and $C D$ are sides of a regular pentagon inscribed in the small circle.
11. The small circle $=$ the circle circumscribed about $\triangle A B D$.
12. If $B F$ be joined, $B F$ is a side of a regular pentagon inscribed in the large circle.
13. If $A F$ and $F C$ be joined, $\triangle s A D F, F A C$ possess the property required in the proposition.
14. If $D C$ be produced to meet the large circle at G, and $B G$ be joined, $B G$ is a side of a regular pentagon inscribed in the large circle.
15. If $F G$ be joined, $F G$ bisects $A C$ perpendicularly.
16. Divide a right angle into fifteen equal parts.
17. The square on a side of a regular pentagon inscribed in a circle is greater than the square on a side of the regular decagon inscribed in the same circle by the square on the radius. (Euclid, XIII. 10.)
18. Show, by referring to I. 22 , that the large circle could be omitted from the figure of the proposition.
19. Show that the proposition could be proved without describing the small circle, by drawing a perpendicular from D to $B C$.
20. Show that the centre of the circle circumscribed about $\triangle B C D$ is the middle point of the arc $C D$.
21. What is the magnitude of the angle at the centre of a circle subtended liy a side of the inscribed regular decagon?
22. If r denote the radius of the circle, then the side of the inscribed regular decagon will be denoted by $\frac{1}{2} r(\sqrt{5}-1)$.

PROPOSITION 11. PRoblem.

To inscribe a regular pentagon in a given circle.

Let $A B C$ be the given circle :
it is required to inscribe a regular pentagon in $A B C$.
Describe an isosceles $\triangle F G H$, having each of its $\angle \mathrm{s} G, H$ ' double of $\angle F$;

1V. 10 in the $\odot A B C$ inscribe a $\triangle A C D$ equiangular to $\triangle F^{\prime} C I I$, so that $\angle \mathrm{s} A C D, A D C$ may each be ilouble of $\angle C A D . I V .2$ Bisect $\angle s A C D, A D C$ by $C E, D B$;
I. 9 and join $A B, B C, D E, E A$.
$A B C D E$ is the required regular pentagon.
(1) To prove the pentagon equilateral.

Because $\angle \mathrm{s} A(C D, A D C$ are each double of $\angle C A D$, Const. and they are bisected by $C E \cdot D B$;
\therefore the five $\angle \mathrm{s} A D B, B D C, C A D, D C E, E C A$ are all equal ;
\therefore the five ares $A B, B C, C D, D E, E A$ are all equal ; $I I I .26$
\therefore the five chords $A B, B C, C D, U E, E^{\prime} A$ are all equal. III. 29
(2) To prove the pentagon equiangular.

Since the five arcs $A B, B C, C D, D E, E A$ are all equal, \therefore each is one-fifth of the whole $O^{\text {ce }}$;
\therefore any three of them $=$ three-fifths of the $\bigcirc^{\text {co }}$.
Now the five $\angle \mathrm{s} A B C, B C D, C D E, D E A, E A B$ stand each on an arc $=$ three-fifths of the $\mathrm{O}^{\text {ce }}$;
\therefore these five angles are all equal.
III. 27

1. How many diagonals can be drawn in a regular pentagon?
2. Prove that each diagonal is $\|$ a side of the regular pentagon.
3. All the diagonals of a regular pentagon are equal.
4. The diagonals of a regular pentagon cut each other in medial section.
5. The intersections of the diagonals of a regular pentagon are the vertices of another regular pentagon.
6. The intersections of the alternate sides of a regular pentagon are the vertices of another regular pentagon.
7. If $B E$ be joined, show that there will be in the figure five pentagons, each of which is equilateral but not equiangular.
8. Prove $\triangle A B C$ less than one-third, but greater than one-fourth of $A B C D E$.
9. Prove $\triangle A C D$ less than one-half, but greater than one-third of $A B C D E$.
10. Use the twelfth deduction from IV. 10, to obtain another method of inscribing a regular pentagon in a given circle.
11. What is the magnitude of an angle of a regular pentagon?
12. Knowing the magnitude of an angle of a regular pentagon, how can we construct a regular pentagon on a given straight line?
13. Construct a regular pentagon on a given straight line, by any other method.
14. If the alternate sides of a regular pentagon be produced to meet the sum of the five angles at the points of intersection is equal to two right angles. (Campanus.)
15. What is the magnitude of the angle at the centre of a circle subtended by a side of the inscribed regular pentagon?
16. If r denote the radius of the circle, then the side of the inscribed regular pentagon will be denoted by $\frac{1}{2} r \sqrt{10-2 \sqrt{5}}$.

PROPOSITION 12．Problem．

To circumscribe a regular pentayon abut a given circle．

Let $A B C$ be the given circle：
it is required to circumseribe a regnlar pentagon about $A B C$ ．
Find A, B, C, D, E the vertices of a regular pentagon inscribed in the cirele； IV． 11 at these points draw $F G, G H, M K, K L, L F$ tangents to the circle．
$F G H K L L$ is the required regular pentagon．
Find O the contre of the circle，
III． 1 and join OR，OH，OC，OK，OD．
（1）To prow the pentagon equiangular．
Because OFIII＇is a quadrilateral；
\therefore the sum of its four $\angle s=1 \mathrm{rt} . \angle \mathrm{s}$ ．
But $\angle 0 B I I+\angle 0 C H \quad 2$ rt．$\angle \mathrm{s}$ ；
III． 18
$\therefore \angle I / I C$ is supplementary to $\angle B O C$ ．
Honce also，\llcorner（゙ル゙り is supulementary to－$C O D$ ．
fint sinm $B, r, 1)$ are consecutive vertices of an inseribed r＂oular pentagon；
$\therefore \quad$ are $B C^{+}=$arc $\left.C D\right)$ ：
III． 28
$\therefore \quad \angle B O C-C O D$ ．
11I． 27
Hence \angle I＇IIC－（KI）．

Now $\angle B H C$ and $\angle C K D$ are any two consecutive angles of the pentagon ;
\therefore all the angles of the pentagon are equal.
(2) To prove the pentagon equilateral.

$$
\begin{aligned}
& \text { In } \triangle \mathrm{s} \text { BOH, COH, }\left\{\begin{array}{lr}
B O=C O \\
O H=O H \\
B H=C H ;
\end{array}\right. \\
& \text { III. } 17 \text { Cor. } \\
& \angle B O H=\angle C O H ;
\end{aligned}
$$

$$
\therefore \angle B O H=\angle C O H ;
$$

$\therefore \angle B O C$ is double of $\angle H O C$.
Hence also, $\angle D O C$ is double of $\angle K O C$.
But because $\angle B O C=\angle D O C, \therefore \angle I O C=\angle K O C$.
In $\triangle \mathrm{s} H O C, \mathrm{KOC},\left\{\begin{aligned} \angle H O C & =\angle K O C \\ \angle O C H & =\angle O C K \\ O C & =O C ;\end{aligned}\right.$
III. 18
$\therefore H C=K C$;
I. 26
$\therefore H K$ is double of $H C$.
Similarly, $G H$ is double of $H B$.
But since $H B=H C, \quad \therefore G H=H K$.
Now $G H$ and $H K$ are any two consecutive sides of the rentagon;
\cdot all the sides of the pentagon are equal.

1. It is assumed in the proposition that the five tangents at A, B, C, D, E will form a closed figure. Prove this.
2. Prove that the regular pentagon circumscribed about a circle might be obtained thus: Inscribe a regular pentagon $A B C D E$ in the circle ; bisect the $\operatorname{arcs} A B, B C, C D, D E, E A$, and at the points of bisection draw parallels to the sides of the inscribed pentagon.
3. What is the magnitude of the angle at the centre of a circle subtended by a side of the circumscribed regular pentagon?
4. If any regular polygon be inscribed in a circle, tangents at its vertices will form another regular polygon of the same number of sides circumscribed about the circle.

PROPOSITION 13. Problem.

To inscribe a circle in a given regular pentagon.

Let $A B C D E$ be the given regular pentagon: it is required to inseribe a circle in ABCDE:

Bisect $\angle \mathrm{s} B C D, C D E$ by $C O, D O$ intersecting at O; I. 9 join $O B$, and draw $O F, O G \perp B C, C D$.
In $\triangle \mathrm{s} B C O, D C O,\left\{\begin{aligned} B C & =D C & & \text { Hyp. } \\ C O & =C O & & \text { Const. }\end{aligned}\right.$
$\therefore \angle C B O=\angle C D O$.
I. 4

But $\llcorner C D O$ is half of the angle of a regular pentagon; Const.
$\therefore \angle C B O$ is half of the angle of a regular pentagon ;
$\therefore O B$ bisects $\angle C B A$.
Hence also, OA would hisect $\angle B A E \dot{\prime}$, aml $O E, \angle A E D$.
In $\triangle \mathrm{s} O F C, O G C,\left\{\begin{array}{rlr}\angle O F C & =\angle O G C \\ \angle O C F & =\angle O C G & \text { Const. } \\ O C & =O C: & \text { I. } 26\end{array}\right.$
Now since O is the point where the bisectors of all the angles of the pentagon meet, and $O F, O G$ are perpendiculars on any two conserutive sides;
\therefore the perpenticulars from O on all the sides are equal. Hence the circle described with O as centre and $O F$ as
radius, will pass through the feet of all the perpendiculars from O;
and will touch $A B, B C, C D, D E, E A$. 111. 16

1. Find the centre and radius of the circle inscribed in a regular pentagon by means of a square. (A set square or T square is meant.)
2 The area of a regular pentagon is equal to the rectangle contained by its semi-perimeter and the radius of the inscribed circle.

PROPOSITION 14. Problem.

To circumscribe a circle about a given regular pentagon.

Let $A B C D E$ be the given regular pentagon : it is required to circumscribe a circle about $A B C D E$.

Bisect $\angle \mathrm{s} B C D, C D E$ by $C O, D O$ intersecting at O; I. 9 and join $O B, O A, O E$.
$O B, O A, O E$ bisect the $\angle \mathrm{s} C B A, B A E, A E D$. IV. 13 Because $\angle O C D=\angle O D C$, each being half of the angle of a regular pentagon;
$\therefore O C=O D$.
Hence also, $O D=O E, O E=O A, O A=O B$;
\therefore the circle described with O as centre and $O A$ as radius, will pass through A, B, C, D, E, and will be circumscribed about the pentagon $A B C D E$.

1. Find the centre and radius of the circle circumscribed about a regular pentagon by means of a square.
2. The square on the diameter of the circle circumscribed sbout a regular pentagon $=$ the square on one of the sides of the pentagon together with the square on the diameter of the inscribed circle.
3. If a denote a side of the given regular pentagon, then the radius of the circumscribed circle will be denoted by ${ }_{10}^{2} a \sqrt{50+10 \backslash 5}$.

PROPOSITION 15. Problem.

To inscribe a regular hexagon in a given circle.

Let $A B C$ be the given circle:
it is required to inscribe a regular hexagon in $A B C$.
Find O the centre of the circle,
III. 1
and draw a diameter $A O D$.
With centre D and radius $D O$, describe the \odot EOC: join $E O, C O$, and produce them to B and F. Join $A B, B C, C D, D E, E F, F A$.
$A B C D E F$ is the required regular hexagon.
(1) To prove the hexagon equilateral.
$\triangle \mathrm{s} D O E, D O C$ are equilateral :
I. 1
$\therefore \angle \mathrm{s} D O E, D O C$ are each one-third of two rt. $\angle \mathrm{s} . \quad I .32$ But $\angle D O E+\angle D O C+\angle C O B=$ twort. $\angle \mathrm{s} ; \quad$ I. 13 $\therefore \angle C O B=$ one-third of two rt. $\angle \mathrm{s}$.
Hence $\angle \mathrm{s} B O A, A O F, F O E$ are each $=$ one-third of two
rt. $\angle 8$;
I. 15
\therefore the six $\angle \mathrm{s} A O B, B O C, C O D, D O E, E O F, F O A$ are all equal;
\therefore the six arcs $A B, B C, C D, D E, E F, F A$ are all equal ;
III. 26
\therefore the six chords $A B, B C, C D, D E, E F, F A$ are all equa!.
III. 29
(2) To prove the hexagon equiangular.

Since the six arcs $A B, B C, C D, D E, E F, F A$ are all equal, \therefore each is one-sixth of the whole $\bigcirc^{\text {re }}$;
\therefore any four of them $=$ four-sixths of the whole $\bigcirc^{\text {ce }}$.
Now the six $\angle \mathrm{s} F A B, A B C, B C D, C D E, D E F, E F A$ stand each on an are $=$ four-sixths of the $\bigcirc^{c e}$;
\therefore these six angles are all equal.
III. 27

Cor.-The side of a regular hexagon inscribed in a circle is equal to the radius.

1. If the points A, C, E be joined, $\triangle A C E$ is equilateral.
2. The area of an inscribed equilateral triangle is half that of a regular hexagon inscribed in the same circle.
3. Construct a regular hexagon on a given straight line.
4. The area of an equilateral triangle described on a given straight line is one-sixth of the area of a regular hexagon described on the same straight line.
5. The opposite sides of a regular hexagon are parallel.
6. The straight lines which join the opposite vertices of a regular hexagon are concurrent, and are each \|| one of the sides.
7. How many diagonals can be drawn in a regular hexagon?
8. Prove that six of them are parallel in pairs.
9. The area of a regular hexagon inscribed in a circle is half of the area of an equilateral triangle circumscribed about the circle.
10. The square on a side of an inscribed regular hexagon is one-third of the square on a side of the equilateral triangle inscribed in the same circle.
11. What is the magnitude of the angle at the centre of a circle subtended by a side of an inscribed regular hexagon?
12. Give the constructions for inscribing a circle in a regular hexagon; and for circumscribing a regular hexagon about a arcle, and a circle about a regular hexagon.

PROPOSITION 16. Problem.

To inscribe a regular quindecagon in a given carcle.

Let $A B C$ be the given circle:
it is required to inseribe a regular quindecagon in $A B C$.
Find $A C$ a side of an equilateral triangle inscribed in the circle ; IV. 2
and find $A B, B E$ two consecutivo sides of a regular pentagon inscribed in the circle.
IV. 11

Then arc $A B E=\frac{2}{5}$ of the \bigcirc^{∞},
and are $A C=\frac{1}{3}$ of the $\bigcirc^{\text {ce }}$;
$\therefore \quad$ arc $\quad C E=\left(\frac{2}{5}-\frac{1}{3}\right)$, or $\frac{1}{15}$, of the $\bigcirc^{c o}$.
Hence, if $C E$ be joined, $C E$ will be a side of a regular quindecagon inscribed in the $\odot A B C$.
Place consecutively in the O^{∞} chords equal to $C F_{;} ; I V .1$ then a regular quindecagon will be inscribed in the circle.

1. How could the regular quindecagon be obtained, if, besides $A C$, a side of an equilateral triangle, only one side $A B$ of the regular pentagon be drawn?
2. How could the regular quindecagon be nbtained by making use of the sides of the regular inscribed bexagon and decagon?
3. In a given circle inscribe a triangle whose angles are as the numbers $2,5,8$; and another whose angles are as the numbers 4, 5, 6.
4. Give the constructions for inscribing a circle in a regular quindecagon ; and for circumscribing a regular quindecagon about a circle, and a circle about a regular quindecagon.
5. How many diagonals can be drawn in a regular quindecagon?
6. Show that if a polygon have n sides, it will have $\frac{1}{2} n(n-3)$ diagonals.
7. Show that the centres of the circles inscribed in, and circumscribed about, any regular figure coincide, and are obtained by bisecting any two consecutive angles of the figure.

Note 1.-The regular polygons of $3,4,5$, and 15 sides, and such as may be derived from them by continued arcual bisection, were, till the time of Gauss, the only ones discovered by the ancient Greek, and known to the modern European, geometers to be inscriptible in a circle by the methods of elementary geometry. Gauss, in 1796, found that a regular polygon of 17 sides was inscriptible, and in his Disquisitiones Arithmeticre, published in 1801, he showed that any regular polygon was inscriptible, provided the number of its sides was a prime number, and expressible by $2^{n}+1$. (A good account of Gauss and his works is given in Nature, vol. xv. pp. 533-537.)

Note 2.-The polygons of which Euclid treats are all of one kind, namely, concex polygons, that is to say, polygons each of whose angles is less than two right angles. There are others, however, called re-entrant, and intersectant (or concave, and crossed), such as $A B C D$ in the accompanying figures. The reader will find

it instructive to inquire how far the properties of convex polygons (for example, quadrilaterals) are true for the others. Among the intersectant polygons there is a class called stellate or star, which
are obtained thus: Suppose A, B, C, D, E (see fig. to IV. 11) to be five points in order on the $O^{\text {ce }}$ of a circle. Join $A C, C E, E B$, $B D, D . A$; then $A C E B D$ is a star pentagon. If the arcs $A B, B C$, \&c. are all equal, the star pentagon $A C E B D$ is regular. Similarly, if $1,2,3,4,5,6,7, S, 9,10$ denote the vertices of a regular decagon inscribed in a circle, the regular star decagon (there can be only one) is got by joining consecutively $1,4,7,10,3,6,9,2,5,8,1$. It will be found that if a regular polygon have n sides, the number of regular star polygons that may be derived from it is equal to the number of integers prime to n contained in the series $2,3,4, \ldots \frac{1}{2}(n-1)$. (For more information on the subject of star polygons, see Chasles, Aperçu Historique sur l'Origine et le Dêveloppement des Méthodes en Géométric, sec. éd. pp. 476-487, and Georges Dostor, Théorie Générale des Polygones Étoilés, 1880.)

APPENDIXIV.

Proposition 1.

To describe a circle which shall touch three giren straight lines.
(1) If the three straight lines be so situated that every two are parallel, the solution is impossible.
(2) If they be so sitnated that only two are parallel, there can be two solutions, as will appear from the following figure :

Let $A B, C D, E F$ be the three straight lines of which $A B$ is $\|_{\| D} C$.

Bisect $\angle \mathrm{s} A E F, C F E$ by $E I$ and $F I$, which meet at I; I. \mathcal{G} from I draw $I H, I K, I L$ respectively $\perp A B, E F, C D$. I. 12
Then $\triangle \mathrm{s} I E H, I E K$ are equal in all respects;
I. 26
$\therefore I H=I K$.
Similarly, $I K=I L$;
I. 26
$\therefore I H=I K=I L$.
Now since $\angle \mathrm{s}$ at H, K, L are right,
\therefore the circle described with I as centre and $I H$ as radius will touch $A B, E F, C D$.
III. 16

A similar construction on the other side of $E F$ will give another circic touching the three given straight lines.
(3) If they ne so situated that no two are parallel, then they will titne: all pass through the same point, in which case the solution is impossivie; or they will form a triangle with its sides produced, it whinch case four solutions are possible.

Let $A B, B C, C A$ produced be the three given straight lines inrming by their intersection the $\triangle A B C$.

If the interior $\angle \mathrm{s} B$ and C be bisected, the bisectors will meet at some point I, which is the centre of the circle inscribed in the triangle, as may be proved by drawing perpendiculars $I D, I E, I F$ to the sides $B C, C A, A B$ of the triangle.
IV. 4
if the exterior angles at B and C be lisecied by $B I_{1}, C I_{1}$ whiak

meet at I_{1}, and perpendiculars $I_{1} D_{1}, I_{1} E_{1}, I_{1} F_{1}$ be drawn to the sides $B C$, and $A C, A B$ produced,
it may be proved that $I_{1} D_{1}, I_{1} E_{1}, I_{1} F_{1}$ are all equal, and
\therefore that I_{1} is the centre of a circle touching $B C$, and $A C, A B$ produced.

Hence also, I_{2}, the proint of intersection of the bisecturs of the exterior angles at C and A, will be the centre of a circle touching $C A$, and $B A, B C$ produced; I_{3}, the point of intersention of the bisectors of the exterior angles at A and B, will be the centre of a circle touching $A B$, and $C B, C A$ produced.

Cor.-The following sets of points are collinear : $A, I, I_{1} ; B, I, I_{2} ; C, I, I_{3} ; I_{2}, A, I_{3} ; I_{3}, B, I_{1} ; I_{1}, C, I_{2}$.

In other words, the six bisectors of the interior and exterior angles at A, B, C meet three and three in four points, I, I_{1}, I_{2}, I_{3}, which are the centres of the four circles touching the three given straight lines. Or, the six straight lines joining two and two the centres of the four cireles which touch $A B, B C, C A$, pass each through a vertex of the $\triangle A B C$.

The eircles whose centres are I_{1}, I_{2}, I_{3} are called escribed or esscrited circles of the $\triangle A B C$, an expression which, in its French form (ex-inscrit), is said to be due to Simoll Lhuilier. See his Clémens d' Andyse Céonétrique et it Amlyse Alyélrique (1503), !? 198.

It is usual to denote the radius of the circle inscribed in a triangle by r, the radii of the three escribed circles by r_{2}, r_{2}, r_{3}, and the radius of the circumscribed circle by R.

THE MEDIOSCRIBED CIRCLE.

Proposition 2.

The circle which passes through the middle points of the sides of a triangle passes also through the feet of the perpendiculars fiom the vertices to the opposite sides, and bisects the segmenis of ${ }_{\mathrm{k}}^{\mathrm{k}}$, serpendiculars between the orthocentre and the vertices.

Let $A B C$ be a triangle; H, \widetilde{K}, L the middle points of its sides ; $\ddot{\lambda}, Y, Z$ the feet of its perpendiculars; U, V, W^{Y} the middle ${ }^{\text {mints }}$ of $A O, B O, C O$:
it is required to prove that one circle will pass through these nine points.
Join $H K, H L, H U, H V^{*}, H I T, K U, K V^{\top}, U^{\top}, U W, W L, U L$.
In $\triangle A B O, L U$ is $\| B O$, and in $\triangle C B O, H W$ is $\| B O$; App.I. 1 $\therefore L U$ is $\| H W$.
I. 30

Similariy, in $\triangle s A B C, A O C, \quad L I I$ and $U W^{*}$ are $\| A C$; App.I.1
$\therefore L H W^{2} U$ is a $\|^{\mathrm{m}}$.
But since $B O$ is $\perp A C, \therefore L U C, H W$ are $\perp L H, U W$;
$\therefore L H I W U$ is a reotangle.
\therefore the four points H, W, U, L lie ou the circle described with $H U$ or $L V^{\prime}$ as diameter.
III. 31

Similarly, $H K, U V$ are \| $A B$, and $H V, K U, C O ; \quad A p p . I$. ? and since $A B$ is $\perp C O, \therefore H K C V$ is a rectangle.
\therefore the four points H, K, U, V lie on the circle described with $H U$ or $K V$ as diameter.

Hence the six points H, K, L, U, V, W lie on the same circle, and $H U, K V, L W$ are diameters of it.
But since the angles at X, I, Z are right ;
$\therefore X$ lies on the circle whose diameter is $H U$,

Y	$"$	$"$	$K V$,	$L W ;$
Z	$"$	$"$	III.31	

\therefore the nine specified points are concyclic.
Cor. l.-Since $H U, K V, I . W$ are diameters of the same circle, their common point of intersection M is the centre.

Cor. 2. $-M$ is midway between the orthocentre and the circumscribed centre.

Let S be the circumscribed centre, and $S H$ be joined.
Then $S H$ is $\perp B C(H I .3)$; and $\therefore \| O U$.
But $S H=O U$ (App. I. 5, Cor.) ; $\therefore S H O U$ is a $\|^{m}$;
\therefore the diagonal SO bisects $H U$, that is, passes through M, and is itself bisected at M.

Cor. 3.-The medioscribed diameter $=$ the circumscribed radius.
For $S H U A$ is a $\|^{\mathrm{m}}$; and $\therefore H U=S A$.
Cor. 4.- $\triangle \mathrm{s} A B C, A O B, B O C, C O A$ have the same medioscribed circle.

Since the medioscriberl circle of $\triangle A B C$ passes through U, L, V, the middle points of the sides of $\triangle A O B$, and since a circle is determined by three points; \therefore the medinscribed circle of $\triangle A B C$ must also be the medioscribed circle of $\triangle A O B$. Similarly for the other triangles.

Cor. 5.- Ry reference to Cor. 3, it will he seen that the circles circumscribed about $\triangle \mathrm{s} A B C, A O B, B O C, C O A$ must be equal. (Carnot, Geométrie de Posilion, 1803, § 130.)

Cor. 6.-The medioscribed circle of $\triangle A B C$ is also the medio. scribed circle of an infinite series of triangles.

For H, K, L, the middle points of the sides of $\triangle A B C$, may be taken as the feet of the perpendiculars of another $\triangle A^{\prime} B^{\prime} C^{\prime}$; the middle points of the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ may be taken as the feet of the perpendiculars of a $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$; and so on.

Or, instead of the median $\triangle H K L, \triangle \mathrm{~s} X K L, Y L H, Z H K$ may be taken as median triangles, and the triangles formed of which they are the median triangles ; and so on.
[The circle $H K L$ is generally called the nine-point circle of $\triangle A B C$, a name given by Terquem, 'le cercle des neuf points.' Following, however, the suggestion of an Italian geometer, Marsano, who calls it 'il circolo medioscritto,' I have adopted the name medioscribed. The property that one circle does pass through these nine points was first published in Gergonne's Annales de Mathématiques, vol. xi. p. 215 (1821), in an article by Brianchon and Poncelet. See this reference, or Poncelet's Applications il'Analyse et de Géométrie, vol. ii. p. 512. It is probable that K. W. Feuerbach of Erlangen, and T. S. Davies of Woolwich, also discovered the property independently, though they were later in publication. See Fenerbach's Eigenschaften einiger merkwürdiyen Punkte des geradlinigen Dreiecks (1822), and a paper by Davies on 'Symmetrical Properties of Plane Triangles,' in the Philosophical Magazine for July 1827. For other proofs, see Rev. Joseph Wolstenholme in Quarterly Journal of Pure and A pllied Mathematics, vol. ii. pp. 138, 139 (1858) ; W. H. Besant in the Messenger of Mathematics (old series), vol. iii. pp. 22.2, 223 (1566); William Godward in the Mathematical Reprint from the Educational Times, vol. vii. p. 86 (1867); Desboves' Questions de Géométrie Élémentaire, ఇème éd. p. 146 (1875) ; and Casey's Elements of Euclid, p. $1 \overline{5} 3$ (1SS2).

The proof in the text was given by T. T. Wilkinson of Burnley in the Lady's and Gentleman's Diary for 1855, p. 67.

It may be mentioned that it was discovered by Feuerbach (see his Eigenschaften, \&c. §57) that the medioscribed circle touches the inscribed and escribed circles of $\triangle A B C$. The proofs that have been given of this theorem by elementary geometry are rather complicated: see Lady's and Gentleman's Diary for 1854, p. 56 ; Quarterly Journal of Pure and Applied Mathematics, vol. iv. (1861), p. 245, and vol. v. (1862), p. 270; Baltzer, Die Elemente der Mathematik, vol. ii. pp. 92, 93. It is also proved by J. J. Robinson
in the Lady's and Gentleman's Diary for 1857 (and it seems to have beeu first noted by T. T. Wilkinsou), that the mediuscribed circle touches an infinite series of circles.]

DEDUCTIONS.

1. Every equilateral figure inscribed in a circle is equiangular.
2. In a given circle inscribe (a) three, (b) four, (c) five, (d) six equal circles tonching each other and the given circle.
3. The perpendicular from the vertex to the base of an eqnilateral triangle $=$ the side of an equilateral triaugle inscribed in a circle whose diameter is the base.
4. The area of an inscribed regular hexagon $=$ three-fourths of the area of the regular hexagon circumscribed about the same circle.
5. Inscribe a regular hexagon in a given equilateral triangle, and compare its area with that of the triangle.
6. Inscribe a regular dodecagon in a given circle, and prove that its area $=$ that of a square described on the side of an equilateral triangle inscribed in the same circle.
7. Construct a regular octagou on a given straight line.
8. A regular octagon inscribed in a circle $=$ the rectangle contained by the sides of the inscribel and circumscribed squares.
9. The following construction is given by Ptolemy (about 130 A.d.) in the first book of his Alnaggest, for inscribing a regular pentagon and decagon in a circle: Draw any diameter $A B$, and from C the centre draw $C D \perp A B$, meeting the O^{cm} at D; bisect $A C$ at E, and join $E D$. From $E B$ cut off $E F=$ $E D$, and join $I F$. $C F$ will be a side of the inscribed regular decagnn, and $D F$ a side of the inscribed regular pentagon. Prove this.
10. A ribbon or strip of paper whose edges are parallel, is folded up into a flat knot of five edges. Prove that the sides of the knot form a regular pentagon.
11. Construct a regular decagon on a given straight line.
12. In a given square inscribe an equilateral triangle one of whose vertices may be (a) on the middle of a side, (b) ou one of the angular points, of the square.
Construct a triangle having given
13. The inscribed circle, and an escribed circle.
14. Two escribed circles.
15. Any three of the centres of the four contact circles.
16. The base, the vertical angle, and the inscribed radius.
17. The perimeter, the vertical angle, and the inscribed radius.
18. The base, the sum or difference of the other two sides, and the inscribed radius.
19. Prove the following properties with respect to $\triangle A B C$ (see fig. on p. 251):

$$
\begin{align*}
& \text { (2) }\left\{\begin{aligned}
s-a & =A E=A F=B D_{3}=B F_{3}=C D_{2}=C E_{1} . \\
s-b & =A E_{3}=A F_{3}=B D=B F=C D_{1}=C E_{1} . \\
s-c & =A E_{2}=A F_{2}=B D_{1}=B F_{1}=C D=C E .
\end{aligned}\right. \tag{1}\\
& \text { (3) }\left\{\begin{aligned}
a & =E E_{1}=E_{2} E_{3}=F F_{1}=F_{2} F_{3} . \\
b & =D D_{2}=D_{1} D_{3}=F F_{2}^{\prime}=F_{1} F_{3} . \\
c & =D D_{3}=D_{1} D_{2}=E E_{3}=E_{1} E_{2} .
\end{aligned}\right.
\end{align*}
$$

$$
\text { (4) }\left\{\begin{array} { l }
{ a + b = F _ { 1 } F _ { 2 } . } \\
{ b + c = D _ { 2 } D _ { 3 } . } \\
{ c + a = E _ { 1 } E _ { 3 } . }
\end{array} \quad \text { (5) } \left\{\begin{array}{l}
a \sim b=F F_{3} . \\
b \sim c=D D_{1} . \\
c \sim a=E E_{2} .
\end{array}\right.\right.
$$

(6) $a+b+c=A E+A E_{1}+A E_{2}+A E_{3}$

$$
=B D+B D_{1}+B D_{2}+B D_{3}
$$

$$
=A F+A F_{1}+A F_{2}+A F_{3}
$$

$$
=C D+C D_{1}+C D_{2}+C D_{3}
$$

$$
=B F+B F_{1}+B F_{2}+B F_{3}
$$

$$
=C E+C E_{1}+C E_{2}+C E_{3}
$$

$$
\text { (7) } a^{2}+b^{2}+c^{2}=A E^{2}+A E_{1}^{2}+A E_{2}^{2}+A E_{3}^{2}
$$

$$
=A F^{2}+A F_{1}^{2}+A F_{2}^{2}+A F_{3}^{2}
$$

$$
=B D^{2}+B D_{1}{ }^{2}+B D_{2}^{2}+B D_{3}{ }^{2}
$$

$$
=B F^{2}+B F_{1}{ }^{2}+B F_{2}^{2}+B F_{3}{ }^{2}
$$

$$
=C D^{2}+C D_{1}^{2}+C D_{2}^{2}+C D_{3}^{2}
$$

$$
=C E^{2}+C E_{1}^{2}+C E_{2}^{2}+C E_{3}^{2}
$$

$$
\text { (8) }\left\{\begin{array}{c}
A I^{2}+A I_{1}^{2}+A I_{2}^{2}+A I_{3}^{2}{ }^{2} \\
+B I^{2}+B I_{1}^{2}+B I_{2}^{2}+B I_{3}^{2} \\
+C I^{3}+C I_{1}^{2}+C I_{2}^{2}+C I_{3}^{2}
\end{array}\right\}=\begin{gathered}
3\left(a^{3}+b^{2}+c^{2}\right)+ \\
3\left(r^{2}+r_{1}{ }^{2}+r_{2}^{2}+r_{3}^{2}\right) .
\end{gathered}
$$

$$
\text { (9) } \left.\left\{\begin{array}{r}
A D^{2}+A D_{1}^{2}+A D_{2}^{2}+A D_{3}^{2} \\
+B E^{2}+B E_{1}^{2}+B E_{2}^{2}+B E_{3}^{2} \\
+C F^{2}+C F_{1}^{2}+C F_{2}^{2}+C F_{3}^{2}
\end{array}\right\}=5\left(a^{2}+b^{2}+c^{2}\right)\right)^{*}
$$

* The last four sets of expressions may be written more shortly by using the Greek letter Σ (sigma) as equivalent to 'the sum of all such terme as.' Thus (6) would be $a+b+c=\Sigma(A E)=\Sigma(A F)=\& c$. (9) would be $\Sigma\left(A D^{2}\right)+\Sigma\left(B E^{2}\right)+\Sigma\left(C F^{2}\right)=5\left(a^{2}+b^{2}+c^{2}\right)$. This property is due to W. H. Levy; see Lady's and Gentleman's Diavy for 1852, p. 71.
(10) Triangles mutually equiaugular in sets of four are: $A I E, A I_{1} E_{1}, A I_{2} E_{2}, A I_{3} E_{3} ; B I F, B I_{1} F_{1}, B I_{2} F_{2}, B I_{3} F_{3}$; $C I D, C I_{1} D_{1}, C I_{2} D_{2}, C I_{3} D_{3}$.
(11) Mention other twelve triangles which are mutually equiangular in sets of four.
(12) Triangles mutually equiangular in sets of threc are: $A I B, A C I_{1}, I_{2} C B ; B I C, B A I_{2}, I_{3} A C ; C L A, C B I_{3}, I_{1} L_{A} A$.
(13) Triangles mutually equiaugular in sets of four are:

$$
\begin{array}{lll}
I_{1} B I_{2}, & I_{1} C I_{3}, & I B I_{3}, \\
I_{3} A I_{1}, & I_{3} B I_{2}, & I A I_{2}, \\
, & I B I_{1} .
\end{array}
$$

44) Express in terms of $\angle s A, B, C$,
(a) The angles of $\triangle \mathrm{s} I_{1} I_{2} I_{3}, D E F ; I_{1} B C, I_{2} C A, I_{3} A B$; $A E F, B F D, C D E$.
(b) " subtended by $A B, B C, C A$ at I, I_{1}, I_{2}, I_{3}. (c) " " \quad ($E, E F, F D: I_{1} I_{2}, I_{2} I_{3}, I_{3} I_{1}$; $I_{1} D, I_{2} E, I_{3} F$ at I.
I D and \sum_{1} are equidistant from the middle point of $B C$; so are D_{2} and D_{3}. Similar relations hold for he E points and the F points.
20. Of tre four points i, Y_{1}, I_{2}, I_{3}, any one is the orthocentre of the triangle formed by joining the other three, and in each case $A B C$ is the orthocentric triangle.
21. The orthocentre and vertices of a triangle are the inscribed and escribed centres of its orthocentric triangle. Verify in the four cases.
22. Six straight rines join the ipscribed and escribed centres; the circles descrited on these as diameters pass each through two vertices of the triangle, and the centres of these six circles lie on the $O^{\text {ce }}$ ot the circle circunscribed abont the triangle.
23. Prove the second part of the last deluction without assuming the property of the luedioseribed circle.
24. Prove the following properties (sce fig. on p. 251):
(1) The radii $I_{1} D_{1}, I_{2} E_{2}, I_{1} F_{3}$ ane concurrent at $S_{1} ; I D, I_{3} E_{3}$, $I_{2} F_{2}$ at $A_{1}: I_{3} D_{3}, I E, I_{1} F_{1}$ at $B_{1} ; I_{2} D_{2}, I_{1} E_{1}, I F$ at C_{1}.
(2) The figures $A_{1} I_{3} S_{1} I_{2}, B_{1} I_{1} b_{1}^{\prime} A_{3}^{\prime}, C_{1} I_{2} S_{1} I_{1}$ are rhombi, and $A_{1} I_{3} B_{1} I_{1} C_{1} I_{2}$ is an equilatival hexagon whose opposite sides are parallel.
(3) $\triangle B A_{1} B_{1} C_{1}, I_{1} I_{2} I_{3}$ are congrue t , and their corresponding sides are parallel.
(4) The points $S_{1}, A_{1}, B_{1}, C_{1}$, are the circumscribed centres of $\Delta \mathrm{s} I_{1} I_{2} I_{3}, I I_{2} I_{\mathrm{s}}, I I_{3} I_{1}, I I_{1} I_{2}$.
(5) The figures $A_{1} I B_{1} I_{3}, B_{1} I C_{1} I_{1}, C_{1} I A_{1} I_{2}$ are rhombi, and I is the circumscribed centre of $\triangle A_{1} B_{1} C_{1}$.
(6) The circumscribed circle of $\triangle A B C$ is the medioscribed circle of $\triangle \mathrm{s} I_{1} I_{2} I_{3}, I I_{2} I_{3}, I I_{3} I_{1}, I I_{1} I_{2}: A_{1} B_{1} C_{1}, S_{1} B_{1} C_{1}$, $S_{1} C_{1} A_{1}, S_{1} A_{1} B_{1}$; and its centre is the middle point of $I S_{1}$.
[See Davies' Symmetrical Properties, \&c. quoted on p. 255.]
25. The area of $\triangle A B C=r s=r_{1}(s-a)=r_{2}(s-b)=r_{3}(s-c)$.
26. The bisector of the vertical angle of a triangle cuts the $O^{c o}$ of the circumscribed circle at a point which is equidistant from the ends of the base and from the centre of the inscribed circle.
27. The diameter of the circle inscribed in a right-angled triangle together with the hypotenuse $=$ the sum of the other two sides.
28. The rectangle under the two segments of the hypotenuse of a right-angled triangle made by the point of contact of the inscribed circle $=$ the area of the triangle .
29. Twice the circumscribed diameter $=$ the sum of the three escribed radii diminished by the inscribed radius.
30. The sum of the distances of the circumscribed centre from the sides of a triangle $=$ the sum of the inscribed and circumscribed radii ; and the sum of the distances of the orthocentre from the vertices $=$ the sum of the inscribel and circumscribed diameters. (Carnot's Géométrie de Position, § 137.)
31. Examine the case when the circumscribed centre and orthocentre are outside the triangle.
32. If $A_{1} B_{1} C_{1}$ be the triangle formed by joining the escribed centres of $\triangle A B C ; A_{2} B_{2} C_{2}$ the triangle formed by joining the escribed centres of $\triangle A_{1} B_{1} C_{1} ; A_{3} B_{3} C_{3}$ the triangle formed by joining the escribed centres of $\triangle A_{2} B_{2} C_{2}$; and this process of construction be continued, the successive triangles wili approximate to an equilateral triangle. (Booth's New Geometrical Methods, vol. ii. p. 315.)
33. if an equilateral polygon be circumscribed about a circje it will be equiangular if the number of sides be odd. Examme the case when the number of sides is even.
34. $A B, C D$, two alternate sides of a regular polygon, are produced to meet at E, and O is the centre of the polygon. Prove A, E, C, O concyclic, and also D, E, B, O.
35. The sum of the perpendiculars on the sides of a regular n-gon from any point inside $=n$ times the radius of the inscribed circle. Examine the case when the point is outside.

Loci.

The base and the vertical angle of a triangle are given ; find the locus of

1. The orthocentre of the triangle.

2 . The centre of the inscribed circle.
3. The centres of the three escribed circles.
4. The centroid of the triangle.
5. $A B C$ is a triangle, and E is any point in $A C$. Through E a - straight line $D E F$ is drawn cutting $A B$ at F and $B C$ produced at D; circles are circumscribed about $\triangle s A E F, C D E$. Find the locus of the other point of intersection of the circles.
6. $A B$ and $A C$ are two straisht lines containing a fixed angle; and between $A B$ and $A C$ there is moved a straight line $D E$ of given length. The perpendiculars from " and E to $A B$ and $A C$ meet at P, and the perpendiculars from D and E to $A C$ and $A B$ meet at O; find the loci of O and P.
7. Given the vertical angle of a triangle, and the sum of the sides containing it; find the locus of the ceutre of the circle circumscribed about the triangle.
8. A circle is given, and in it are inscribed triangles, two of whose sides are respectively parallel to two fixed straight lines. Find the locus of the centres of the circles inscribed in these triangles.
9. A circle is given, and from any point P on ancther given concentric circle of greater radius, tangents are drawn touching the first circle at Q and R; find the loci of the centres of the inscribed and circumseribed circles of the triangle $P Q R$.
10. A point is taken outside a square such that of the straight lines drawn from it to the vertices of the aquare, the two inner ones trisect the angle between the two onter ones; show that the locus of the point is the 0^{∞} of the circle circumscribel sbout the square.

261

BOOK V.

DEFINITIONS.

1. A less magnitude is said to be a submultiple of a greater magnitude, when the less measures the greater; that is, when the less is contained a certain number of times exactly in the greater.
2. A greater magnitude is said to be a multiple of a less, when the greater is measured by the less; that is, when the greater contains the less a certain number of times exactly.
3. Equimultiples of magnitudes are multiples that contain these magnitudes, respectively, the same number of times.
4. Ratio is a relation of two magnitudes of the same kind to one another, in respect of quantuplicity (a word which refers to the number of times or parts of a time that the one is contained in the other). The two magnitudes of a ratio are called its terms. The first term is called the antecedent ; the latter, the consequent.

The ratio of A to B is usually expressed $A: B$. Of the two terms A and B, A is the antecedent, B the consequent.
5. If there be four magnitudes, such that if any equimultiples whatsoever be taken of the first and third, and any equimultiples whatsoever of the second and fourth, and if, according as the multiple of the first is greater than the multiple of the second, equal to it, or less, so is the multiple of the third greater than the multiple of the fourth, equal
io it, or less; then the lirst of the magnitudes has to the second the same ratio that the third has to the fourth.

Cor.-Conversely, if the first of four magnitudes have to the second the same ratio that the third has to the fourth, and if any equimultiples whatsuever he taken of the frst and third, and any whatsoever of the second and fourth ; then according as the multiple of the first is greater than the multiple of the second, equal to it, or less, the multiple of the third shall be greater than the multiple of the fourth, equal to it, or less.
6. Magnitudes are said to be proportionals when the first has the same ratio to the second that the third has to the fourth; and the third to the fourth the same ratio which the fifth has to the sixth; and so on, whatever be their number.

When four magnitudes, A, B, C, D, are proportionals, it is nsual to say that A is to B as C to D, and to write them thus$A: B:: C: D$, or thus, $A: B=C: D$.
7. In propmrtionals, the antecelent terms of the ratios are called homologous to one another; so also are the consequents.
8. When four magnitudes are proportional, they constitute a proportion. The first and last terms of the proportion are called the extremes ; the second and third, the means.
9. When of the equimultiples of four magnitndes, taken as in the fifth definition, the multiple of the first is greater than that of the second, but the multiple of the third is not greater than the multiple of the fourth; then the first has to the seennd a greater ratio than the third magnitude has to the fourth; and the third has to the fourth a less ratio than the first has to the second.

Cor.-Conversely, if the first of four magnitudes have to the second a greater ratio than the third has to the fourth, two numbers m and n may be found, such that, while m times the first magnitude
is greater than n times the second, m times the third shall not be greater than n times the fourth.
10. When there is any number of magnitudes greater than two, of which the first has to the second the same ratio that the second has to the third, and the second to the third the same ratio which the third has to the fourth, and so on, the magnitudes are said to be continual proportionals, or in continued proportion.
11. When three magnitudes are in continued proportion, the second is said to be a mean proportional between the other two.

Three magnitudes in continued proportion are sometimes said to be in geometrical progression, and the mean proportional is then called a geometric mean between the other two.
12. When there is any number of magnitudes of the same kind, the first is said to have to the last of them the ratio compounded of the ratio which the first has to the second, and of the ratio which the second has to the third, and of the ratio which the third has to the fourth, and so on to the last magnitude. Thus:

If A, B, C, D be four magnitudes of the same kind, the ratio of A to D is said to be compounded of the ratios of A to B, B to C, and C to D. This is expressed $A: D=\left\{\begin{array}{l}A: B \\ B: C \\ C: D\end{array}\right\}$.
13. A ratio which is compounded of two equal ratios is said to be duplicate of either of these ratios.

Cor.-If the three magnitudes A, B, and C are continual proportionals, the ratio of A to C is duplicate of that of A to B, or of B to C. For, by the last definition, the ratio of A to C is compounded of the ratios of A to B, and of B to C; but the ratio of A to $B=$ the ratio of B to C, because A, B, C are continual proportionals; therefore the ratio of A to C, by this definition, is duplicate of the ratio of A to B, or of B to C.
14. A ratio which is compounded of three equal ratios is said to be triplicate of any one of these ratios.

Cor.-If four magnitudes A, B, C, D be continual proportionals, the ratio of A to D is triplicate of the ratio of A to B, or of B to C, or of C to D. For the ratio of A to D is compounded of the three ratios of A to B, B to C, C to D; and these three ratios are equal to one another, because A, B, C, D are continual proportionals; therefore the ratio of A to D is triplicate of the ratio of A to B, or of B to C, or of C to D.

The following technical words may be used to signify certain ways of changing either the order or the magnitude of the terms of a proportion, so that they continue still to be proportionals :
15. By alternation, when the first is to the third, as the second is to the fourth. (V. 16.)
16. By inversion, when the second is to the first, as the fourth is to the third. (V. A.)
17. By addition, when the sum of the first and the seconrl is to the second, as the sum of the third and the fourth is to the fourth. (V. 18.)
18. liy subtraction, when the difference of the first and the second is to the second, as the difference of the third and the fourth is to the fourth. (V. 17.)
19. By equality, when there is any number of magnitudes more than two, and as many others, so that they are proportionals when taken two and two of each rank, and it is inferred-that the first is to the last of the first rank of magnitudes, as the first is to the last of the others. Of this there are the two following kinds, which arise from the different order in which the marnitudes are taken two and two:
20. By direct equality, when the first magnitude is to the second of the first rank, as the first to the second of
the other rank; and as the second is to the third of the first rank, so is the second to the third of the other; and so on in a direct order. (V. 2.2.)
21. By transverse equality, when the first magnitude is to the second of the first rank, as the last but one is to the last of the second rank; and as the second is to the third of the first rank, so is the last but two to the last but one of the second rank; and as the third is to the fourth of the first rank, so is the last but three to the last but two of the second rank ; and so on in a transverse order. (V.23.)

AXIOMS.

1. Equimultiples of the same, or of equal magnitades, are equal to one another.
2. Those magnitudes of which the same, or equal magni. tudes, are equimultiples, are equal to one another.
3. A multiple of a greater magnitude is greater than the same multiple of a le:s.
4. That magnitude of which a multiple is greater than the same multiple of another, is greater than that other magnitude.

PROPOSITION 1. Theorem.

If any number of magnitules lee equimultiples of as many others, each of each, what mulliple soerer any one of the first is of its submultiple, the same multiple is the sum of all the first of the sum of all the rest.
Let any number of magnitudes A, B, and C be equimultiples of as many others D, E anl F, each of each : it is required to prore that $A+B+C$ is the same multiple of $D+E+F$ that A is of D.

Let A contain D, B contain E, and C contain F^{\prime}, each any number of times, as, for instance, three times;
then

$$
A=D+D+D
$$

Similarly, $\quad B=E+E+E$,
and $\quad C=F+F+F$;
$\therefore A+B+C=D+E+F$ taken three times. I. Ax. 2
Hence also, if A, B, and C were each any other equimultiple of D, E, and $F, A+B+C$ would be the same multiple of $D+E+F$.

Cor.-Hence, if m be any number, $m D+m E+m F$ $=m(D+E+F)$.

PROPOSITION 2. Theorem.

If to a multiple of a magnitude by any number, a multiple of the same magnitude by any number be added, the sum will be the same multiple of that magnitude that the sum of the two numbers is of unity.

Let $A=m C$, and $B=n C$:
it is required to prove $A+B=(m+n) C$.
Since $A=m C, A=C+C+C+\ldots \ldots$ repeated m times.
Similarly, $\quad B=C+C+C+\ldots .$. repeated n times ;
$\therefore \quad A+B=C+C+C+\ldots \ldots$ repeated $m+n$ times,
that is, $A+B=(m+n) C ;$
$\therefore A+B$ contains C as often as there are units in $m+n$.
Cor. 1.-If there be any number of multiples whatsoever, as $A=m E, B=n E, C=p E$, then $A+B+C=(m+n+p) E$.

Cor. 2.-Since $A+B+C=(m+n+p) E$,
and sinee $A=m E, B=n E$, and $C=p E$,
$\therefore m E+n E+p E=(m+n+p) E$.

PROPOSITION 3. Theorem.

If the first of three magnitudes contain the second as often as there are units in a certain number, and if the second contain the third as often as there are units in a certain number, the jrist will contain the third as niten as there are units in the product of these two numbers.
Let $A=m B$, and $B=n C$:
it is required to prove $A=m n C$.
Since $B=n C$,
$\therefore \quad m B=n C+n C+n C+\ldots$. repeated m times.
But $n C+n C+n C+\ldots$. repeated m times $=C$ multiplied by $\quad n+n+n+\ldots$. repeated m times. V. 2, Cor. 2
Now $n+n+n+\ldots$. repeated m times $=m n$:
$\therefore m B=m n C$.
But $A=m B$;
Hyp.
$\therefore \quad A=m n C$.

PROPOSITION 4. Theorem.

Ir any equimultiples be taken of the antecedents of a proportion and any equimultiples of the consequents, these multiples taken in the order of the terms are proportional.

Let $A: B=C: D$, and let m and n be any two numbers: it is reguired to more $m A: n B=m C: n D$.

Of m_{A} atii $m C$ take equimultiples by any number p; and of $u B$ and $n D$ take equimultiples by any number q. Then the equimultiples of $m A$ and $m C$ by p are equimultiples also of A and C, for they contain A and C as R
often as there are units in pm ;
and they are equal to $p m A$ and $p m C$.
Similarly the multiples of $n B$ and $n D$ by q are $q n B, q n D$.
Now since $A: B=C: D$, and of A and C there are taken any equimultiples $p m A$ and $p m C$, and of B and D there are taken any equimultiples $q n B$, $q u D$;
if $p m A$ be equal to, greater, or less than $q u B$, then $m m C$ is equal to, greater, or less than qnD. V. Def. 5, Cor. But $p m A, p m C$ are also equimultiples of $m A$ and $m C$ by p; and $q n B, q n I$ are also equimultiples of $n B$ and $n D$ ly q; $\therefore m A: n B=m C: n D$.
V. Def. 5

PROPOSITION 5. Theorem.

If one magnitude be the same multiple of another; which a magnitude taken from the first is of a mugnitude taken from the other, the remainder is the same multiple of the remainder that the whole is of the whole.

Let A and B be two magnitudes of which A is greater than B, and let $m A$ and $m B$ be any equimultiples of them: it is required to prove that $m A-m B$ is the same multiple of $A-B$ that $m A$ is of A; that is, that $m A-m B=m(A-B)$.

Let D be the excess of A above B;
then $A-B=D$.
Adding B to both, $A=D+B$;
$\therefore m A=m D+m B$.
Taking $m B$ from both, $m A-m B=m D$.
Now $D=A-B ; \quad \therefore m A-m B=m(A-B)$,

PROPOSITION 6. Theorem.

If from a multiple of a magnitude by any number a multiple of the same magnitude by a less number be taken away, the remainder will be the same multiple of that magnitude that the difference of the numbers is of unity.
Let $m A$ and $n A$ be multiples of the magnitude A by the numbers m and n, and let m be greater than n :
it is required to prove $m A-n A=(m-n) A$.
Let $m-n=q$; then $m=n+q$;
$\therefore m A=n A+q A$.
Taking $n A$ from both, $m A-n A=q A$;
$\therefore m A-n A$ contains A as often as there are units in q, that is, as often as there are units in $m-n$;
$\therefore m A-n A=(m-n) A$.

PROPOSITION A. Theorem.

The terms of a proportion are proportional by inversion.
Let $A: B=C: D$:
it is required to prove $B: A=D: C$.
Let $m A$ and $m C$ be any equimultiples of A and C, $n B$ and $n D$ any equimultiples of B and D.
Then, because $A: B=C: D$,
if $m A$ be less than $n B, m C$ will be less than $n D ; V$. Def. $5, C o r$.
\therefore if $n B$ be greater than $m A, n D$ will be greater than $m C$.
For the same reason, if $n B=m A, n D=m C$, and if $n B$ be less than $m A, n D$ will be less than $m C$.
But $n B, n D$ are any equimultiples of B and D, and $m A, m C$ are any equimultiples of A and C;
$\therefore B: A=D: C$.
V. Def. 5

PROPOSITION B. Theorem.

If the first be the same multiple or submultiple of the second that the third is of the fourth, the first is to the second as the third to the fourth.

Let $m A, m B$ be equimultiples of the magnitudes A and B : it is required to prove $m A: A=m B: B$, and $A: m A=B: m B$:

Of $m A$ and $m B$ take equimultiples by any number n, and of A and B take equimultiples by any number p; these will be $n m A, p A, n m B, p B$.
Now if $n m A$ be greater than $p A, n m$ is greater than p; and if $n m$ is greater than $n, n m B$ is greater than $p B$;
\therefore when $n m A$ is greater than $p A, m m B$ is greater than $p B$. Similarly, if $n m A=p A, n m B=p B$, and if $n m A$ is less than $p A, m m B$ is less than $p B$. But $n m A, n m B$ are any equimultiples of $m A$ and $m B$, and $\rho A, p B$ are any equimultiples of A and B;
$\therefore m A: A=m B: B$.
V. Def. 5

Again, since $m A: A=m B: B$,
$\therefore \boldsymbol{A}: m A=B: m B$, by inversion.

PROPOSITION C. Tileorem.

If the first term of a propartion lue " multiple or a subnultiple of the ssonnt, the third is the some multiple or sulmultiple of the fourth.

Let $A: B=C: I$, and first let $A=m B$:
it is required to prove $C=m D$.
Of A and C take equimultiples by any number as 3 ,
and of B and D take equimultiples by the number $2 m$; these will be $2 A, 2 C, 2 m B, 2 m D$.
Now since $A=m B, \quad 2 A=2 m B$;
and since $A: B=C: D, \quad \therefore 2 C=2 m D$;
V. Def. 5
$\therefore C=m D$.
Next let A be a submultiple of B :
it is required to prove that C is the same submultiple of D.

$$
\text { Since } A: B=C: D \text {, }
$$

$\therefore \quad B: A=D: C$, by inversion.
But A being a submultiple of B, B is a multiple of A;
$\therefore D$ is the same multiple of C;
$\therefore C$ is the same submultiple of D that A is of B.

PROPOSITION 7. Theorem.

Equal magnitudes have the same ratio to the same magnitude; and the same has the same ratio to equal magnitudes.

Let A and B be equal magnitudes, and C any other : it is required to prove $A: C=B: C$, and $C: A=C: B$.

Let $m A, m B$ be any equimultiples of A and B, and $n C$ any multiple of C.

Because $A=B, m A=m B$;
\therefore if $m A$ be greater than $n C, m B$ is greater than $n C$; and if $m A=n C, m B=n C$; and if $m A$ be less than $n C, m B$ is less than $n C$.
But $m A$ and $m B$ are any equimultiples of A and B, and $n C$ is any multiple of C;

$$
\begin{array}{lc}
\therefore A: C=B: C & V . \text { Def. } 5 \\
\text { Hence also } C: A=C: B \text {, by inversion. } & V . A
\end{array}
$$

PROPOSITION 8. Theorem.

Uf urequal magnitules, the greater has a greater rutio to any other magnitude than the less has; aml the same magnitude has a greuter rutio to the less of tro magnitudes than it has to the greater.
Let $A+B$ be a magnitude greater than A, and C a thirl magnitude :
it is required to prove $A+B: C$ greater than $A: C$,
and $\quad C: A$ greuter then $C: A+B$.
Let m be such a number that $m A$ and $m B$ are each of them greater than C, and let $n C$ be the least multiple of C that exceeds $m A+m B$;
then $n C-C$ will be less than $m A+m B$,
that is, $(n-1) C$ will be less than $m(A+B)$;
$\therefore m(A+B)$ is greater than $(n-1) C$.
But because $n C$ is greater than $m A+m B$, and $\quad C$ is less than $m B$;
$\therefore \quad n C-C$ is greater than $m A$,
that is, $\quad m A$ is less than $n C-C$, or $(n-1) C$.
Hence the multiple of $A+B$ by m exceeds the multiple of C by $n-1$, but the multiple of A by m does not exceed the multiple of C by $n-1$,
$\therefore A+B: C$ is greater than $A: C$. V. Def. 9
Again, because the multiple of C by $n-1$ exceeds the multiple of A by m, but does not exceed the multiple of $A+B$ by m;
$\therefore C: A$ is greater than $C: A+B . \quad V$. Def 0

PROPOSITION 9. Theorems.

Magnitudes which have the same ratio to the same magnitude are equal to one another; and those to which the same magnitude has the same ratio are equal to one another.
First let $A: C=B: C$:
it is required to prove $A=B$.
For if A be greater than B,
then $A: C$ is greater than $B: C$. V. 8
And if B be greater than A, then $B: C$ is greater than $A: C$.
Hence $A=B$.
Next let $C: A=C: B$:
it is required to prove $A=B$.
For $A: C=B: C$, by inversion;
V. A
$\therefore A=B$.

PROPOSITION 10. Theorems.

That magnitude which has a greater ratio than another has to the same magnitude is the greater of the two; and that magnitude to which the same has a greater ratio than it has to another magnitude is the less of the two.
Let $A: C$ be greater than $B: C$:
it is required to prove A greater than B.
Because $A: C$ is greater than $B: C$,
two numbers m and n may be found such that $m A$ is greater than $n C$, and $m B$ not greater than $n C$; V. Def. 9, Cor.
$\therefore m A$ is greater than $m B$,
$\therefore A$ is greater than B.
V. $A x .4$

Next let $C: B$ be greater than $C: A$:
it is required to prove B less than A.

For two numbers m and n may be found such that $n C$ is greater than $m B$, and $n C$ not greater than $m A$;
$\therefore m B$ is less than m m;
$\therefore B$ is less than A.
V. $A x .4$

PROPOSITION 11. Theorem.

Rativs that are equal to the same ratio are equal to one another.

Let $A: B=C: D$ and $C: D=E: F$:
if i: required to prore $A: B=E: F$.
Take $m A, m C, m b$ any equimultiples of A, C, and E, aml $n B, n D, n F$ any erquimultiples of B, D, and F.

Because $A: B=C: D$, if $m A$ be greater than $n B$, $m C$ must be greater than $n l$).
V. L.f. 5, Cor. Int because $C: D=E: F$, if $m C$ be greater than $u I$), $m E$ must he greater than $n F^{\prime}$; I. Def. 5, Cor.
\therefore if $m A$ he greater than $n B, m E$ is greater than $n F$.
Similarly, if $m A=n B, m E=n F$,
and if $m A$ be less than $n B, m E$ is less than $n F$;
$\therefore A: B=E \cdot F$.

$$
V . D e f .5
$$

PROPOSITION 12. Theorem.

If an!y mumber of maynitudes be proportionals, as one of the antecerlents is to its consequent, sol is the sum of all the antecedents to the sum of ull the conserquents.

Let $A: B=C: D$ and $C: D=E: F$:
it is required to prone $A: B=A+C+E: B+D+F$.
Take $m A, m C, m E$ any equimultiples of A, C, and E, and $\quad n B, n D, n F$ any equimultiples of B, D, and F.

Because $A: B=C: D$, if $m A$ be greater than $n B$,
$m C$ must be greater thin $n D$; V. Def. 5 , Cor: and because $C: D=E: F$, when $m C$ is greater than $u D$, $m E$ is greater than $n F$.
I. Def. 5, Cor.
\therefore if $m A$ be greater than $n B, m A+m C+m E$ is greater than $n B+n D+n F$.
Similarly, if $m A=n B, m A+m C+m E=n B+u D+n F$; and if $m A$ be less than $n B, m A+m C+m E$ is less than $n B+n D+n F$.
Now $m A+m C+m E=m(A+C+E) ; \quad$ V. 1 Cor. so that $m A$ and $m A+m C+m E$ are any equimultiples of A and $A+C+E$.
Similarly, $n B$ and $n B+n D+n F$ are any equimultiples of B and $B+D+F$;

$$
\therefore A: B=A+C+E: B+D+F . \quad \text { V. Def. } 5
$$

PROPOSITION 13. Theorem.

If the first have to the second the same ratio which the third has to the fourth, but the third to the fourth a greater ratio than the fifth has to the sixth, the first shall also have to the second a greater ratio than the fifth has to the sixth.
Let $A: B=C: D$, but $C: D$ greater than $E: F$:
it is required to proce $A: B$ greater than $E: F$.
Because $C: D$ is greater than $E: F$,
there are two numbers m and n such that $m C$ is greater than $n D$, but $m E$ is not greater than $n F$.
V. Def. 9

But because $A: B=C: D$, if $m C$ is greater than $n D$, $m A$ is greater than $n B$; V. Def. 5, Cor.
$\therefore m A$ is greater than $n B$, and $m E$ is not greater than $n F$;
$\therefore A: B$ is greater than $E: F$.
V. Def. 9

PROPOSITION 14. Theorem.

If the first term of a proportion be grater than the third, the second shall be greater than the fourth; and if equal, equal; and if less, less.
Let $A: B=C: D$:
it is required to prove that if A be greater than C, B is greater than D; if $A=C, B=D$; if A be less than C, B is less than D.

First, let A be greater than C;
then $A: B$ is greater than $C: B$.
But $A: B=C: D$;
$\therefore C: D$ is greater than $C: B$;
V. 13
$\therefore B$ is greater than D.
V. 10

Similarly, it may be proved that if $A=C, B=D$; and if A be less than C, B is less than D.

PROPOSITION 15. Theorem.

Magnitudes hate the same ratio to sine another which their equimultiples have.

Let A and B be two magnitutes, and m any number :
it is required to prove $A: B=m A: m B$.

$$
\begin{array}{cr}
\text { Because } A: B=A: B ; & V: 7 \\
\therefore A: B=A+A: B+B, & V .12 \\
& =\quad 2 A: 2 B . \tag{V. 12}
\end{array}
$$

Again, since $A: B=2 A: 2 B$;

$$
\begin{align*}
\therefore A: B & =A+2 A: B+2 B, \tag{V. 12}\\
& =3 A: 3 B ;
\end{align*}
$$

and so on for all the equimultiples of A and B.

PROPOSITION 16. Theorem.

The terms of a proportion, if they be all of the same kind, are proportional by alternation.

Let $A: B=C: D$:
it is required to prove $A: C=B: D$.
Take $m A, m B$ any equimultiples of A and B, and $\quad n C, n D$ any equimultiples of C and D.
Then $A: B=m A: m B$.
V. 15

But $A: B=C: D$; Hyp.
$\therefore \quad C: D=m A: m B$.
Again, $C: D=n C: n D$;
$\therefore m A: m B=n C: n D$.
Now, if $m A$ be greater than $n C, m B$ is greater than $n D$;
if $m A=n C, m B=n D$; and if $m A$ be less than $n C$, $m B$ is less than $n D$;
V. 14
$\therefore A: C=B: D$.
V. Def. 5

PROPOSITION 17. Theorem.

The terms of a proportion ure proportional by subtraction.
Let $A+B: B=C+D: D$:
it is required to prove $A: B=C: D$.
Take $m A$ and $n B$ any multiples of A and B by the numbers m and n; and first let $m A$ be greater than $n B$.
To each of these unequals add $m B$; then $m A+m B$ is greater than $m B+n B$.
I. $A x .4$

But $m A+m B=m(A+B)$,
V. 1, Cor.
and $m B+n B=(m+n) B$;
V. 2
$\therefore m(A+B)$ is greater than $(m+n) B$.

Now because $A+B: B=C+D: D$, if $m(A+B)$ be greater than $(m+n) B, m(C+D)$ is greater than $(m+n) D$:
V. Def. 5, Cor.
or $m C+m D$ is greater than $m D+n D$;
that is, taking $m D$ from both, $m C$ is greater than $n D$.
Hence when $m A$ is greater than $n B, m C$ is greater than $n D$.
Similarly it may be proved that if $m A=n B, m C=n D$;
and if $m A$ be less than $n B, m C$ is less than $n D$;
$\therefore A: B=C: D$.
V. Def. 5

Cor.-The proposition is equivalent to the following:
If $A: B=C: D$, then $A-B: B=C-D: D$.
Hence also, on the same hypothesis, it may be proved
that $A-B: A=C-D: C$; that $A: A-B=C: C-D$;
and that $B: A-B=D: C-D$.
[If it be thought desirable, any one of these hanges on the proportion $A: B=C: D$ may be denoted by the word subtraction.]

PROPOSITION 18. Theorem.

The terms of a proportion are proportional by addition.
Let $A: B=C: D$:
it is required to prove $A+B: B=C+D: D$.
Take $m(A+B)$ and $n B$ any multiples of $A+B$ and B.
First, let m be greater than n.
Ficcause $A+B$ is greater than B;
.. $m(A+B)$ is greater than $m B$.
Similarly $m(C+D)$ is greater than $n D$;
\therefore when m is greater than $n, m(A+B)$ is greater than $n B$, and $m(C+D)$ is greater than $n D$.

Second, let $m=n$.
In the same manner it may be proved that in this case $m(A+B)$ is greater than $n B$, and $m(C+D)$ greater than $n D$.

Third, let m be less than n.
Then $m(A+B)$ may be greater than $n B$, or may be equal to it, or may be less than it.

First, let $m(A+B)$ be greater than $n B$; then $\quad m A+m B$ is greater than $n B$.
Take $m B$, which is less than $n B$, from both;
$\therefore m A$ is greater than $n B-m B$,
or $m A$ is greater than $(n-m) B$.
V. 6

But because $A: B=C: D$;
Hyp.
\therefore if $m A$ is greater than $(n-m) B, m C$ is greater than $(n-m) D$,
that is, $m C$ is greater than $n D-m D$.
V. 6

Add $m D$ to each of these unequals;
then $m C+m D$ is greater than $n D$, that is, $m(C+D)$ is greater than $n D$.
V. 1

If therefore $m(A+B)$ is greater than $n B, m(C+D)$ is greater than $n D$.

In the same manner it may be proved that,
if $m(A+B)=n B, m(C+D)=n D$;
if $m(A+B)$ be less than $n B, m(C+D)$ is less than $n D$.
Hence $A+B: B=C+D: D$.
V. Def. 5

Cor.-Hence also, on the same hypothesis, it may be proved
that $A+B: A=C+D: C$; that $A: A+B=C: C+D$; and that $B: A+B=D: C+D$.
[If it be thought desirable, any one of these changes on the proportion $A: B=C: D$ may be denoted by the word addition. The words addition and subtraction, as being more significant of the operations performed on the terms of the proportion, have been substituted for composition (componendu) and division (dividendo), which are the translations of the words (oivetars, סraiperis) used by the Greek geometers.]

PROPOSITION 19. Theorem.

If a rhole magnitude be to a whole as a magnitude taken from the first is to a magnitude taken from the other, the remainder shall be to the remainder as the whole to the whole.

Let $A: B=C: D$, and let C be less than A :
it is required to prove $A-C: B-D=A: B$.
Because $A: B=C: D$;
Hyp.
$\therefore \quad A: C=B: D, \quad$ by alternation; \quad V. 16
$\therefore \quad A-C: C=B-D: D$, by subtraction; $\quad V .17$
$\therefore \quad A-C: B-D=C: D$, by alternation; $\quad V .16$
$\therefore A-C: B-D=A: B . \quad$ V. 11

PROPOSITION 20. Theorem.

If there be three magnitudes, and other three, which, taken two and two in direct order, have the same ratio; if the first be greater than the third, the fourth shall be greater than the sixth; and if equal, equal ; and if less, less.
Let A, B, C be three magnitudes, and D, E, F other three, such that $A: B=D: E$, and $B: C=E: F$: it is required to prove that if A be graater than C, D will be greater than F^{\prime}; if $A=C, D$ will $=F$; if A be less than C, D will be less than F.

First, let A be greater than C;
then $A: B$ is greater than $C: B$.
V. 8

But $A: B=D: E$;
Hyp.
$\therefore D: E$ is greater than $C: B$.
V. 13

Now $B: C=E: F$;
Hyp.
$\therefore \quad C: B=F: E$, by inversion;
V. A
$\therefore \quad D: E$ is greater than $F: E$;
V. 13
$\therefore \quad D$ is greater than F.
V. 10

Second, let $A=C$;
then
$A: B=C: B$.
V. 7

But

$$
A: B=L: E
$$

Hyp.
V. 11
$C: B=D: E$.

$$
\begin{aligned}
& \text { Now } & C: B & =F: E ; \\
& \therefore & D: E & =F: E ; \\
& \therefore & D & =F .
\end{aligned}
$$

Third, let A be less than C;
then C is greater than A; and, as was shown in case first, $C: B=F: E$, and $B: A=E: D$.
\therefore by case first, if C be greater than A, F is greater than D. that is, if A be less than C, D is less than F.

PROPOSITION 21. Theorem.

If there be three mamnitudes, and other three, which, wiren two aml tuo in trusicrise orler, luace the same ratio; if the first be greater than the third, the fourth shall be greater than the sixth; and if equal, equal; and if lesse, less.
Let A, B, C be three magnitudes, and D, E, F other three, such that $A: B=E: F$, and $B: C=D: E$: it is required to prove that if A be greater than C, D will be greater than F; if $A=C, D$ will $=F$; if A be less than C, D will be less thean F.

First, let A be greater than C;
then $A: B$ is greater than $C: B$.
จ. 6

But $A: B=E: F$;
$\therefore E: F$ is greater than $C: B$. D. 13
Now $B: C=D: E$:
$\therefore \quad C: B=E: D$, by inversion ;
$\therefore E: F$ is greater than $E: D$:
V. 13
$\therefore \quad D$ is greater than F.
Second, let $A=C$;
then $A: B=C: B$.
V. 7

But $A: B=E: F$;
$H!/ p$.
$\therefore \quad C: B=E: F$.
Now $C: B=E: D$;
$\therefore E: F=E: D$;
$\therefore \quad D=F$.
V. 9

Third, let A be less than C;
then $A: B$ is less than $C: B$.
V. 8

But $A: B=E: F$; IIIy.
$\therefore \quad E: F$ is less than $C: B$
Now $C: B=E: D$;
$\therefore \quad E: F$ is less than $E: D$,
V. 13
$\therefore \quad D$ is less than F. $\quad \vee .10$

PROPOSITION 22. Theorem.

If there be amy number of magniturles, and as many others, which taken two amd two in direct orrer, hare the same rutio; the tirst shall hure to the lust of the first magnitutes the same ratio which the first of the others has to the lust.

First, let there be thren magnitudes A, B, C, and other three 1 , F, F, such that $A: B=D: E$, and $B: C=E: F$: it is required to prove $A: C=11: F$.

Of A and D take any equimultiples whatever $m A, m D$
of B and E any whatever $n B, n E$; and of C and F any whatever $q C, q F$.

Because $A: B=D: E$; Нур.

$$
m A: n B=m D: n E . \quad \text { V. } 4
$$

Similarly $n B: q C=n E: q F$;
V. 4
\therefore according as $m A$ is greater than $q C$, equal to $i t$, or less,
$m D$ is greater than $q F$, equal to it, or less,
V. 20
$\because A: C=D: F$.
V. Def. 5

Second, let there be four magnitudes $A, B . C, D$,
and other four E, F, G, H, such that $A: D=E: F$,
$B: C=F: G, \quad C: D=G: H:$
it is required to prove $A: D=E: H$.
Since A, B, C are three magnitudes, and E, F, G, other , hree, which, taken two and two in direct order, have the same ratio,
$\therefore \quad A: C=E: G$, by the first case.
But because $C: D=G: H$;
Hyp.
$\therefore \quad A: D=E: H$, by the first case.
Similarly the demonstration may be extended to any number of magnitudes.

PROPOSITION 23. Theorem.

If there be any number of magnitudes, and as many oiners, which taken two and two in transterse order, have the. same rutio; the first shall have to the last of the first magnitudes the same ratio which the first of the others has to the lasi.

First, let there be three magnitudes A, B, C, and other three D, E, F, such that $A: B=E: F$, and $B: C=D . \mathcal{H}^{\prime}$ it is iequired to prove $A: C=D: \boldsymbol{F}$.

Of A, B, and D take any equimultiples $m A, m B, m D$; and of C, E, and F take any equimultiples $n C, n E, n F$.
Because $A: B=m: m b$, $\quad V, 1^{\text {. }}$
and $E: F=n E: n F$,
V. 15
and because $A: B=E: F$;
$\therefore \quad m A: m B=n E: n F$.
V. 11

Again, because $B: C=D: E$; Hyp.
$\therefore \quad m B: n C=m D: n E$; V. 4
\therefore according as mA is greater than ${ }_{2 n} C$, equal to it, or less,
$m D$ is greater than $n F$, equal to it, or less;
I. 21
$\therefore A: C=D: F$. V. Def. з
Second, let there be four magniturdes A, B, C, D,
and other four E, F, G, H, such that $A: B=G: H$,
$B: C=F: G, \quad C: D=E: F$:
it is required to prove $A: D=E: H$.
Since A, B, C are three magnitudes, and F, G, H other three, which, taken two and two in transverse order, hive the same ratio,
$\therefore \quad A: C=F: H$, by the first casc.
But becatace $(C: D=E: F$;
iiyp.
$\therefore \quad A: D=E: H$ by the first case.
Similarly the demonstration may be extended to any number of magnitudes.

Cor.-From this proposition and the preceding it may be inferred that ratios which are compounded of urua! watios are equal to one another.

$$
\text { For } A: C=\left\{\begin{array}{l}
\{A: B \\
B: C
\end{array}\right\}, \text { and } D: F=\left\{\begin{array}{l}
D: E \\
E: F
\end{array}\right\}
$$

and íi has bee: shown that $A: C==D: \boldsymbol{F}^{\prime}$,

PROPOSITION 24. Theorem.

If the first has to the second the same ratio winch the third has to the fourth, and the fifth to the second the same ratio which the sixth has to the fourth; the first and fifth together shall have to the second the same ratio wnich the third and sixth together have to the fourtin.

Let $A: B=C: D$, and $E: B=F: D$: it is required to proce $A+E: B=C+F: D$.

Because $E: B=F: D$;
$B: E=D: F, \quad$ by inversion. $\quad V . A$

But $A: B=C: D$; Hyp.
$\therefore \quad A: E=C: F, \quad$ by direct equality ; $\quad V .2$?
$\therefore A+E: E=C+F: F$, by addition. \quad. 1 s
But again, $E: B=F: D$; \quad Hyp.
$\therefore \quad A+E: B=C+F: D$, by direct equality. V. 22

PROPOSITION D. Theorem.

The terms of a proportion are proportional by addition and subtuction.

Let $A: B=C: D$:
it is required to more $A+B: A-B=C+D: C-D$.
Because $A-B: B=C-D: D$, by subtraction ; $V .17$
$\therefore \quad B: A-B=D: C-D$, by inversion; $\quad V . A$
But $\quad A+B: B=C+D: D$, by addition; $\quad V .18$
$\therefore A+B: A-B=C+D: C-D$, by direct
equality.
[Pronosition 25 has been omitted, as being of little use.]

BOOK ∇T.

DEFINITIONS.

i. Similar rectilineal figures are those which hame their several angles equal, each to each, and the sides about the equal angles proportional.

Of the two requisites for similarity among figures, nameiy, equiangularity and proportionality of sides, it will be seen from VL 4, 5, that if two triangles possess the one, they also possess the other. In this respect triangles are unique. Hence, in order to prove two rectilineal figures (other than triangles) similar, it must be shown that they possess both requisites.
2. When any proportion is stated among the sides of two similar figures, those pairs of sides which form antecedents or consequents of the ratios are called homologous sides.
3. Similar figures are said to be similarly described upon given straight lines when the given straight lines are homologous sides of the figures.
4. When two similar figures have their homologous sides parallel and drawn in the same direction, they are said to be similarly situated; when they have them parallel and drawn in opposite directions, they are said to be oppositely situated.
5. Iriangles and parallelograms which have their sideu about two of their angles proportional in such a manner that a side of the first figure is to a side of the second, as the other side of the second is to the other side of the first, are said to have these sides reciprocally proportional.
6. The altitude oif a triangle is the perpendicular drawn from the vertex to the base, or the base produced; the altitude of a parallelogram is the perpendicular drawn from any point in one of its sides to the opposite side, or that side produced.
7. A straight line is said to be cut in extreme and mean ratio when the whole line is to one segment as that segment is to the other.

Ao in the case of medial section, a straight line might be cut in extreme and mean ratio both internally and externally; but internal division only is generally implied by the phrase.

PROPOSITION 1. Theorem.

Triangles aml parallelograms of the same altitude are to one another us their bases.

Let $\triangle \mathrm{s} A B C, A C D$, and $\|^{\mathrm{ms}} E C, C F$ have the same altitude, namely, the perpendicular drawn from A to $B D$, or $B D$ produced:
it is required to prove $B C: C D=\triangle A B C: \triangle A C D$, and $B C: C D=\left\|^{m} \quad E C:\right\|^{m} C F$.
Produce $B D$ both ways, and take any number of straight lines $B G, G H, H K$ each $=B C$,
I. 3 and $D L, L M$, any number of them, each $=C D$;
I. 3 and join A with the points K, H, G, L, M.

Beeause $K H, H G, G B, B C$ are all equal,
Const.
$\cdot \triangle \mathrm{s} A K H, A H G, A G B, A B C$ are all equal. I. 38
\therefore whatever multiple the base $K C$ is of the baso $B C$, the same multiple is $\triangle A K C$ of $\triangle A B C$.
Similarly, whatever multiple the base $C M$ is of the base $C D$, the same multiple is $\triangle A C M$ of $\triangle A C D$.
And if the base $K C$ be equal to, greater, or less than the base $C M, \triangle A K C$ will be equal to, greater, or less than $\triangle A C M$.
f. 38

Now since there are four magnitudes $B C, C D, \triangle A B C$, $\triangle A C D$;
and of $B C$ and $\triangle A B C$ (the first and third) any equimultiples whatever have been taken, uamely, $K C$ and $\triangle A K C$,
and of $C D$ and $\triangle A C D$ (the second and fourth) any equinnultiples whatever have been taken, namely, $C M$ and $\triangle A C M$;
and since it has been shown that if $K C$ bo equal to, greater, or less than CM,
$\triangle A K C$ is equal to, greater, or less than $\triangle A C M$;
$\therefore B C: C D=\triangle A B C: \triangle A C D$.
V. Def. 5

$$
\begin{aligned}
& \text { Again, because } B C: C D
\end{aligned}=\triangle A B C: \triangle A C D ; ~ 子 \begin{aligned}
\therefore \quad B C: C D & =2 \triangle A B C: 2 \triangle A C D V .15,11 \\
& =\left\|^{\mathrm{m}} E C \quad:\right\|^{\mathrm{m}} C F .
\end{aligned}
$$

Cor. 1.-Triangles and parallelograms that have equal altitudes are to one another as their bases.

Cor. 2.-Triangles and parallelograms that have equal bases are to one another as their altitudes.

For each triangle or $\|^{m}$ may be converted into an equivalent right-angled triangle or rectangle with hase and altitude $=$ its base and altitude ; and in these latter figures the bases and altitudes may be interchanged.

1. If two triangles or $\|^{\mathrm{ms}}$ have the same ratio as their bases, they must have equal altitudes; if they have the same ratio as their altitudes, they must have equal bases.
2. The rectangle contained by two straight lines is a mean proportional between their squares.
3. A, B, and C are three straight lines; prove that A has to B the same ratio as the rectangle coutained by A and C has to the rectangle contained by B and C.
4. A quadrilateral is such that the perpendiculars on a diagonal from the opposite vertices are equal. Show that the quadrilateral can be divided into four equal trianyles by straight lines drawn from the middle point of the diagonal.
5. $A B$ is \| $C D$, and $A D, B C$ are joined, intersecting at E; prove $A E: E D=B E: E C$.
6. Triangles $A B C, D E F$ have $\angle A=\angle D$, and $A B=D E$; prove $\triangle A B C: \triangle D E F=A C: D F$.
7. $A D, B E, C F$ drawn from the vertices of $\triangle A B C$ to the opposite sides are concurrent at O; prove $B D: D C=\triangle A O B: \triangle A O C$, $C E: E A=\triangle B O C: \triangle B O A, A F: F B=\triangle C O A: \triangle C O B$.
8. E is the middle point of $A D$, a median of $\triangle A B C ; B E$ is joined and produced to meet $A C$ at F. Prove $C F=2 A F$.
9. $A B C$ is any triangle; from $B C$ and $C A$ are cut off $B D=$ onefourth of $B C$, and $C E=$ one-fourth of $C A$. If $A D, B E$ intersect at O, prove that $C O$ produced will divide $A B$ into two segments in the ratio of 9 to 1 .
10. Perpendiculars are drawn from any point within an equilateral triangle to the three sides. Prove that their sum is constant.
11. Triangles and $\|^{\mathrm{ms}}$ are to one another in the ratio compounded of the ratios of their bases and altitudes.

PROPOSITION 2. Theorems.

If a straight line be drawn purallel to one side of a triangle. it shall cut the other sides, or those sides fromlurert*: proportionall!.
Conrersely: If the sides or the sides produced be cut proportionall!, the straight line joinin! the point: uf section shall be parallel to the remaining side of the triangle.

(1) Let $D E$ be drawn $\| B C$, one of the siles of $\triangle A B C$: it is required to prove that $B D: D A=C E: E A$.

Join BE, CD.
Then $\triangle B D E=\triangle C D E$, being on the same base $D E$, and between the same parallels $D E, B C$:
I. 37
$\therefore \triangle B D E: \triangle A D E=\triangle(D E: \triangle A D E$ V. 7 But $\triangle B D E: \triangle A D E=B D: D A$, VI. 1 and $\triangle C D E: \triangle A D E=C E: E ゙ A$, VI. 1
$\therefore \quad B D: \quad 1)=\quad C E: E A . \quad V .11$
(2) Let $B D: D A=C E \prime: E A$, and $D E$ be joinel?: it is required to prove DE' || $B C$.

Join BE: C'J).

Because 13D: 11
and
BI : DA $=\triangle B D E: \triangle A D E$, $H!p$. and
$C E: E A=\triangle C D E: \triangle A D E:$
VI. 1
VI. 1

[^22]$\therefore \triangle B D E: \triangle A D E=\triangle C D E: \triangle A D E ; \quad$ V. 11
$\therefore \quad \triangle B D E=\triangle C D E . \quad$ V. 9
Now these triangles are on the same base $D E$ and on the same side of it ;
$\therefore D E$ is $\| B C$.
I. 39

1. The straight line which joins the middle points of two sides of a triangle is \| the third side.
2. The straight line drawn through the middle point of one of the sides of a triangle and $\|$ another side will bisect the third side.
3. Any two straight lines cut by three parallel straight lines are cut proportionally. (Euclid, Data, Prop. 38.)
4. Any straight line drawn || the parallel sides of a trapezium divides the non-parallel sides, or those sides produced proportionally.
5. In the figures to the proposition, if $D E$ be $\| B C$, prove $B A: A D$ $=C A: A E$, and conversely.
6. $A B C$ is any angle, and P a given point within it; draw through P a straight line terminated by $B A, B C$, and bisected at P.
7. In the base $B C$ of $\triangle A B C$ any point D is taken, and $D E, D F$, drawn \| $A B, A C$ respectively, meet the other sides at E, F : prove $\triangle A F E$ a mean proportional between $\triangle \mathrm{s} F B D, E D C$. Examine the case when D is taken in $B C$ produced.
8. $A B C, D B C$ are two triangles either on the same side, or on opposite sides of a common base $B C$; from any point E in $B C$ there are drawn $E F, E G$ respectively $\| B A, B D$, and meeting the other sides in F, G. Prove $F G \| A D$. Examine the case when E is taken in $B C$ produced.
9. $A B C$ is any triangle ; D and E are points on $A B$ and $A C$ such that $D E$ is $\| B C ; B E$ and $C D$ intersect at F. Prove that $\triangle A D F=\triangle A E F$, and that $A F$ produced bisects $B C$. Examine also the cases when D and E are on $A B$ and $A C$ produced.
10. Prove the following construction for trisecting a straight line $A B$ in G and $H:$ On $A B$ as diagonal construct a $\|^{\mathrm{m}} A C B D$; bisect $A C, B D$ in E and F. Join $D E, F^{\prime} C$ cutting $A B$ in G and H.
11. $A B$ is a straight line, and C is any point in it; find in $A B$ produced a point D such that $A D: D B=A C: C B$.

PROPOSITION 3. Theorems.

If the rertical amyle of a triumgle be bisected by a straight line which also cuts the buse, the intermerl segmients of the base shall hare to one another the same ratio as the other sides of the triamgle lure.
Comversely: If the internal segments of the base hare to one another the same ratio as the other silles of the triangle hare, the straight line drawn from the vertce to the puint of section shall bisect the vertical angle.

(1) Let the vertical $\angle B A C$ of the $\triangle A B C$ bo bisected by $A D$, which meets the base at D :
it is requirel to prove that $B D: D C=B A: A C$.
Through C draw $C E \| D A$, and let $C E$ meet $B A$ produced at E.
lecause $D A$ and $C E$ are parallel,
$\therefore \angle B A 1)=\angle A E C$, and $\angle D A C=\angle A C E$. I. 29
But $\angle B A I I=\angle D A C$; \quad Hy .
$\therefore \angle A E C=\angle A C E ;$
$\therefore \quad A C=A E$.
Because 1) A is $\| C E$, a side of the $\triangle B C E$,
$\therefore B D: D C=B A: A E ;$
$\therefore B D: D C=B A: A C$.
(2) Let $B D: D C=B A: A C$, and $A D$ be joined: it is required to prove $\angle B A D=\angle D A C$.
Through C^{\prime} draw $C E^{\prime} \| D A$, I. 31
and let $C E$ meet $B A$ produced at E.
Because DA is \|CE, a side of the $\triangle B C E$,

$$
\therefore B D: D C=B A: A E .
$$

VI. 2
But $B D: D C=B A: A C ; \quad$ Hyp.
$\therefore B A: A E=B A: A C ; \quad$ V. 11
$\therefore \quad A E=A C$, V. 9
and $\angle A E C=\angle A C E$. I. 5
But because $D A$ and $C E$ are parallel,

$$
\begin{aligned}
& \therefore \angle A E C=\angle B A D, \text { and } \angle A C E=\angle D A C ; \quad \text { İ. } 29 \\
& \therefore \angle B A D=\angle D A C .
\end{aligned}
$$

1. With the same figure and coustruction as in I. 10, prove that $A B$ is bisected.
2. If a straight line bisect both the base and the vertical angle of a triangle, the triangle must be isosceles.
3. The bisector of an angle of a triangle divides the triangle into two others, which are proportional to the sides of the bisected angle.
4. $A B C$ is a triangle whose base $B C$ is bisected at $D ; \angle \mathrm{s} A D B$, $A D C$ are bisected by $D E, D F$ meeting $A B, A C$ at E, F. Prove $E F \| B C$.
5. Trisect a given straight line.
6. Divide a given straight line into parts which shall be to one another as 3 to 2.
7. Divide a given straight line into n equal parts.
8. The bisectors of the angles of a triangle are concurrent.
9. Express $B D$ and $D C$ (fig. to the proposition) in terms of a, b, c, the three sides of the triangle.
10. $A B$ is a diameter of a circle, $C D$ a chord at right angles to it, and E any point in $C D ; A E, B E$ produced cut the circle at F and G. Prove that the quadrilateral $C F D G$ has any two of its adjacent sides in the same ratio as the other two.
11. H is the middle point of $B C$ (fig. to the proposition) : prove $H C: H D=B A+A C: B A-A C$.
12. The straight lines which trisect an angle of a triangle do not trisect the opposite side.

PROPOSITION A.* Teeorems

If the exterior vertical ungle of a triangle be bisected by a struight line which ulso cuts the base pronluced, the external segments of the base shall have to one another the same rutio as the other sides of the triangle have.
Corsersely: If the external segments of the base hace to one another the same ratio as the other sides of the triangle Kuve, the straight line dram from the rerter to the point of section shall bisect the exterior vertical angle.

(1) Let the exterior vertical $\angle C A F$ of the $\triangle A B C$ be bisected by $A D$, which meets the hase produced at D : it is required to prove that $B D: D C=B A: A C$.

Through C draw $C E \| D A$,
I. 31 anul let $C E$ meet $B A$ at E.

Decanse DA and CE are parallel,
$\therefore \angle F A D=\angle A E C$, and $\angle D A C=\angle A C E$. I. 29
But $\angle F^{\prime} A J=\angle D A C ; \quad$ IIyp.
$\therefore \angle A E O=\angle A C E ;$
$\therefore \quad A C=A E$.
I. 6

Because $D A$ is $\| C E$, a side of the $\triangle B C E$,

* Assumed in Pappus, VII. 39, second proof.
$\therefore B D: D C=B A: A E ; \quad$ VI. 2
$\therefore \quad B D: D C=B A: A C$.
(2) Let $B D: D C=B A: A C$, and $A D$ be joined:
it is required to prove $\angle F A D=\angle D A C$.
'l'hrough C draw $C E \| D A$,
I. 31 and let $C ' E$ meet $B A$ at E.

Because $D A$ is $\| C E$, a side of the $\triangle \triangle B C E$,
$\therefore B D: D C=B A: A E$.
VI. 2

But $\dot{B D}: D C=B A: A C$; Hyp.
$\therefore B A: A E \doteq B A: A C$; V. 11
$\therefore \quad A E=A C, \quad$ V. 9
and $\angle A E C=\angle A C E$. I. 5
But because $D A$ and $C E$ are parallel,

$$
\begin{aligned}
& \therefore \quad \angle A E C=\angle F A D, \text { and } \angle A C E=\angle D A C ; \quad \text { I. } 29 \\
& \therefore \quad \angle F A D=\angle D A C .
\end{aligned}
$$

1. What does the proposition become when the triangle is isosceles?
2. The bisector of the vertical angle of a triangle, and the bisectors of the exterior angles below the base, are concurrent.
3. Express $B D$ and $D C$ (fig. to the proposition) in terms of a, b, c, the three sides of the triangle.
4. Prove the tenth deduction from VI. 3 when E is taken in $C D$ produced.
5. P is any point in the $O^{\text {ce }}$ of the circle of which $A B$ is a diameter; $P C, P D$ drawn on opposite sides of $A P$, and making equal angles with it, meet $A B$ at C and D. Prove $A C: C B=A D: D B$.
1.) $A B$ is a straight line, and C is any point in it; find in $A B$ produced a point D such that $A D: D B=A C: C B$.
6. Prove the proposition by cutting off from $B A$ produced, $A E$ $=A C$, and joining $D E$.
7. If in any $\triangle A B C$ there be inscribed a $\triangle X Y Z$ (X being on $B C$, Y on $C A, Z$ on $A B$), such that every two of its sides make equal angles with that side of $\triangle A B C$ on which they meet, then $A X, B Y, C Z$ are respectively $\perp B C, C A, A B$.
Examine the case when X and Y are on $B C$ and $A C$ produced.

PROPOSITION 4. Theoren.

If two triangles: he mutually equiangular, they shall be simitar, thise sides being homologous which are opposive to equal angles.*

In $\triangle \mathrm{s} A B C, D C E$, let $\angle A B C=\angle D C E, \angle B C A=$ $\angle C E D, \angle B A C=\angle C D E$:
it is required to prove $\triangle s A B C, D C E$ similar.
Place $\triangle D C E$ so that $C E$ may be contiguous to $B C$, and in the samo straight line with it. J. 22

Because $\angle A B C+\angle A C B$ is less than $2 \mathrm{rt} . \angle \mathrm{s} ; \quad I .17$
and $\angle A C B=\angle D E C$;

Hyp.
$\therefore \quad \angle A B C+\angle D E C$ is less than $2 \mathrm{rt} . \angle \mathrm{s}$;
$\therefore B A$ and $E D$ if produced will mect.
r. 29, Cor.

Let them be produced aml meet at $H^{\text {}}$.
Because $-D C E=-A B C$,
Hyp.
$\therefore B F^{\prime}$ is $\| C D$;
I. 28
and becanse $\angle B C A=\angle C E D$,
$11!/ 2$).
$\therefore A C$ is \| $F \mathscr{\prime}$;

1. 28
$\therefore J A C l)$ is a $\|^{a n}$;
$\therefore A F=C D$, and $A C=F l$.
I. 34
[^23]Now because $A C$ is $\| F E$, a side of the $\triangle F B E$, $\therefore B A: A F=B C: C E$;
VI. 2
$\therefore B A: C D=B C: C E$;
V. 7
$\therefore B A: B C=C D: C E$, by alternation.
V. 16

Again, because $C D$ is $\| B F$, a side of the $\triangle F B E$,
$\therefore B C^{\prime}: C E=F D: D E$;
VI. 2
$\therefore B C: C E=A C: D E ; \quad$. V. 7
$\therefore B C: C A=C E: D E$, by alternation.
V. 16

Lastly, because $A B, B C, C A$ are three magnitudes, and $D C, C E, E D$ other three;
and since it has been proved that $A B: B C=D C: C E$,

$$
\text { and } B C: C A=C E: E D
$$

$\therefore A B: A C=D C: D E$, by direct equality.
V. 22

Hence $\triangle \mathrm{s} A B C, D C E$ are similar.
VI. Def. 1

1. From a given triangle another is cut off by a parallel to the base ; prove the two triangles similar.
2. Two right-angled triangles are similar if an acute angle of the one be equal to an ac te augle of the other.
3. Two isosceles triangits are similar if their vertical angles are equal.
4. $A B C D$ is a rhombus; through D a straight line is drawn so as to cut $B A$ and $B C$ produc. d at E and F. Prove $\triangle \mathrm{s} E A D$, $D C F$ similar.
5. Two chords $A C, B D$ of a circle $A B C$ intersect at E, either within or without the circle; prove $\triangle \mathrm{s} A E B, C E D$ similar, and also $\triangle \mathrm{s} A E D, B E C$.
6. The straight line which joins the middle points of two sides of a triangle is half of the third side.
7. A straight line which is $\|$ one of the sides of a triangle and $=$ half of it must bisect each of the other sides.
8. If one of the two parallel siles of a trapezium be donble of the other, the diagonals intersect at a point of trisection.
9. In mutually equiangular triangles the perpendiculars drawn from corresponding vertices to the oppusite siles are proportional to those sides.
10. The median to the base of a triangle bisects all the parallels to the base intercepted by the sides.
11. Three straight lines $A B, A C, A D$ are drawn through one point A, and are cut by two parallels at the points E, F, G and B, C, D respectively : prove $B C: C D=E F: F G$.
12. Hence devise a method of dividing a given straight line into any number of equal parts.
13. Prove the proposition from VI. 2, by superposing the one triangle on the other.

PROPOSITION 5. Theorem.

If two triangles have the sides taken in order about each of their angles proportional, they shall be similar, those angles being equal which are opposite to the homologors sides.

In $\triangle \mathrm{s} A B C, D E F$, let $A B: B C=D E: E F, B C: C A$ $=E F^{\prime}: F D$, and $B A: A C=E D: D F^{\prime}:$
it is required to prove $\triangle s A B C, D E F$ similar.
At E make $\angle F E G=\angle A B C$, and at F make $\angle E F G$
$=\angle A C B$.
I. 23

Then $\angle G=\angle A$, I. 32, Cor. 1
and $\triangle A B C$ is equiangular to $\triangle G E F$;
$\therefore A B: B C=C C^{\prime}: E F$.
VI. 4

But $A B: D C=D E: E F ; \quad$ IIyp.
$\therefore D E: E F^{\prime}=G F: E F^{\prime}$; N 11
$\therefore \quad D E=G E$.
V. 9

Similarly, $D F=G F$.
Now $\triangle \mathrm{s} D E F, G E F$ have the three sides of the one respectively equal to the three sides of the other ;
\therefore they are mutually equiangular.
I. 8

But $\triangle A B C$ is equiangular to $\triangle G E F$;
$\therefore \triangle A B C$ is equiangular to $\triangle D E F$.
Hence $\triangle \mathrm{s} A B C, D E F$ are similar.
VI. Def. 1

1. What is the analogous proposition in the First Book proving the equality of two triangles?
2. The triangle formed by joining the middle points of the sides of another triangle is similar to that other.
3. Prove the proposition from the following construction: From $A B$ cut off $A G=D E$, and through G draw $G H \| B C$, meeting $A C$ at H.

PROPOSITION 6. Theorem.

If tuo triangles have one angle of the one equal to one angle of the other, and the sides about these angles proportional, they shall be similar, those angles being equal which are opposite to the homologous sides.

In $\triangle \mathrm{s} A B C, D E F$, let $\angle B A C=\angle E D F$, and $B A: A C$ $=E D: D F$:
it is required to prove $\triangle s A B C, D E F$ similar.

$$
\begin{array}{ll}
\text { At } H \text { make } \angle F D G=-B_{A} C, \text { or } \angle E D F, & \text { I. } 23 \\
\text { and at } H^{\prime} \text { make } \angle D F G=-A C B . & \text { I. } 23
\end{array}
$$

Then $\angle G=\angle B$,
I. 32 , Cor 1 and $\triangle A B C$ is equiangular to $\triangle D G F$;
$\therefore B A: A C=G D: D F$. VI. 4
But $B A: A C=E D: D F$;
$\therefore E D: D F=G D: D F$;
V. 11
$\therefore \quad E D=G D$. V. 9
Now in $\triangle \mathrm{s} E D F, G D F,\left\{\begin{aligned} E D & =G D \\ D F & =D F \\ \angle E D F & =\angle G D F ; \text { Const. }\end{aligned}\right.$
$\therefore \angle E=\angle G$, and $\angle D F F=\angle D F G$. I. 4
But $\angle B=\angle G$, and $\angle A C B=\angle D F G$;
$\therefore \angle B=\angle E$, and $\angle A C B=\angle D F E$.
Hence $\triangle \mathrm{s} A B C, D E F$ are similar.
VI. Def. 1

1. What is the analogous proposition in the First Book proving the equality of two triangles?
2. Prove the proposition with the same construction as in the third deduction from VI. 5.
3. $A B C$ is a triangle, and the perpendicular $A D$ drawn from A to $B C$ falls within the triangle. Prove that if $A D$ is a mean proportional between $B D$ and $D C^{\prime}, \angle B A C$ is right, and that if $A B$ is a mean proportional between $B C$ and $B D, \angle B A C$ is right.
4. $A B$ is a straight line, D and E two points on it; $D F$ and $E A$ are paralkel, and poportional to $A D$ and $A E$. Prove A, l^{\prime}, and G^{\prime} to be in one straight line.
5. $A B$ is divided internally at C and D so that $A B: A C$ $=A C: A D$. From A any other straight line $A E$ is drawn $=A C$. Prove $\triangle B A B E, \triangle E D$ similar, and that $E C$ bisects C BED.

PROPOSITION 7. Theorem.

If two triangles have two sides of the one proportional to two sides of the other, and the angles opposite to one fair of homologous sides equal, the angles opposite to the other pritr of homologous sides shall be either equal or supplementary.

In $\triangle \mathrm{s} A B C, D E F$, let $B A: A C=E D: D F$, and $\angle B$ $=\angle E$:
it is required to prove either $\angle C=\angle F$, or $\angle C+\angle F$ $=2 \mathrm{rt} . \angle s$.
(1) $\angle A$ is either $=\angle D$, or not.

If $\angle A=\angle D$, then since $\angle B=\angle E$, Нур.
$\therefore \angle C=\angle F$.
I. 32, Cor. 1
(2) If $\angle A$ is not $=\angle D$,
at D make $\angle E D G=\angle A$;
I. 23
and, if necessary, produce $E F$ to meet $D G$.
Because $\angle B=\angle D E G$,
Нур.
and
$\angle A=\angle E D G ;$
$\therefore \triangle A B C$ is equiangular to $\triangle D E G$;
Const.
$\therefore B A: A C=E D: D G$.
But $B A: A C=E D: D F$;
$\therefore E D: D F=E D: D G$; Hyp.
V. 11
$\therefore \quad D F=D G ; \quad$ V. 9
$\therefore \quad \angle D F G=\angle G$.
I. 5

Now $\angle D F E$ is supplementary to $\angle D F G$;
I. 13
$\therefore \quad \angle D F E$ is supplementary to $\angle G$;
$\therefore \quad \angle D F E$ is supplementary to $\angle C$.
Note--See the note appiended to I. A., p. 62.

1. What is the analogous proposition in the First Book proving, under certain conditions, the equality of two triangles?
2. $A B C$ is a triangle, and $A D$ is drawn $\perp B C$. If $B C: C A$ $=A B: A D$, then $\triangle A B C$ is right-angled.

PROPOSITION 8. Theorem.

In a right-angled triangle, if a perpendicular be drawn from the right angle to the hypotenuse, the triangles on each side of it are similar to the whole triangle and to one another.

Let $\triangle A B C$ be right-angled at A, and let $A D$ be drawn perpendicular to the hypotenuse $B C$:
it is required to prove $\triangle s D B A$ and $D A C$ similar to $\triangle A B C$, and to one another.

$$
\text { In } \triangle \mathrm{s} D B A, A B C,\left\{\begin{aligned}
\angle A D B & =\angle C A B \\
\angle B & =\angle B ;
\end{aligned}\right.
$$

\therefore these triangles are mutually equiangular ; I. 32 , Cor. 1
\therefore they are similar.
VI. 4

In the same way, $\triangle s D A C$ and $A B C$ may lo proved similar. Now sinee $\triangle \mathrm{s} D / B A$ and $D A C$ are similar to $\triangle A B C$, they are similar to one another.

Cor.-From the similarity of $\triangle \mathrm{s} D B A, D A C$ it follows that

$$
\begin{equation*}
B D: D A=A D: D C . \tag{1}
\end{equation*}
$$

From the similarity of $\triangle \mathrm{s} A B C, D B A$ it follows that

$$
\begin{equation*}
C B: B A=A B: B D . \tag{2}
\end{equation*}
$$

Trom the similarity of $\triangle \mathrm{s} A B C, D A C$ it follows that $B C: C A=A C: C D$,
and $\quad B C: B A=A C: A D$.
These results expressed in words are :
(1) The perpendicular from the right angle on the hypotenuse is a mean proportional between the two segments into which it divides the hypotenuse.
(2) and (3) Either of the sides is a mean proportional between the hypotenuse and its projection on the hypotenuse.
(4) The hypotenuse is to either side as the other side is to the perpendicular.

1. If from any point in the $0^{\infty 0}$ of a circle a perpendicular be drawn to any radius, and a tangent from the same point to meet the radius produced, the radius will be a mean proportional between the segments intercepted between the centre and the points of concourse.
2. That part of a tangent to a circle intercepted by tangents at the extremities of any diameter is divided at the point of contact so that the radius is a mean proportional between the segments.
3. Prove $B D: D C=$ duplicate of $B A: A C$.
4. $A B C$ is a triangle ; $A D$ and $A E$ are drawn to the base $B C$ so as to make $\angle \mathrm{s} A D B, A E C$ each $=$ the vertical $\angle B A C$; prove
(1) $B D: A D=A E: C E$,
(2) $C B: B A=A B: B D$,
(3) $B C: C A=A C: C E$,
(4) $B C: B A=A C: A E$.

Draw figures for the cases when $\angle B A C$ is acute and obtuse, and deduce from this theorem the results given in the Cor. to the proposition.
5. Examine the converses of the results (1), (2), (3), (4) of the Cor. to the proposition, and of the preceding deduction.

PROPOSITION 9. Problem.

From a given straight line to cut off any aliquot part.

Let $A B$ be the given straight line:
it is required to cut off from $A B$ any aliquot part.
From A draw $A C$, making any angle with $A B$;
in $A C$ take any point D;
and from $A C$ cut off $A E$, containing $A D$ as many times as $A B$ contains the part required.

Join $E B$, and through D draw $D F^{\prime} \| E B$. I. 31 $A F$ is the part required.
Because $D F$ is $\| E B$, a side of $\triangle A B E$,
$\therefore \quad E D: D A=B F: F A$; VI. 2
$\therefore \quad E A: D A=B A: F A$, by addition. V. 18
But $E A$ contaius $D A$ a certain number of times ;
$\therefore B A$ contains $F A$ the same number of times.
V. C

1. Which proposition in the First Book is a particular case of this?
2. Trisect a given straight line.
3. Show how to find three-fifths of a given straight line.
4. From a given triangle or $\|^{\mathrm{mm}}$ cut off any aliquot part.
5. Show how to find four-sevenths of a given $\|^{n 3}$.

PROPOSITION 10. Problem.

It divide a given straight line internally and externally in a given ratio.*

Let $A B$ be the given straight line, $K: L$ the given ratio : it is required to divide $A B$ internally and externally in the ratio K : L.

Draw a straight line $A E$ making an angle with $A B$; 1: ut off $A F=K$, and $F G, F H$ on opposite sides of F, each $=L$.
Join $B G, B H$;
and through F draw $F C \| B G$, and $F D \| B H$, meeting $A B$ produced at D. C and D are the required points.
Because $F C$ is $\| B G$, a side of the $\triangle A B G$,

$$
\begin{align*}
\therefore \quad A C: C B & =A F: F G, & & \text { VI. } 2 \\
& =K: L . & & V .11
\end{align*}
$$

Again, because $F D$ is $\| B H$, a side of the $\triangle A B H$,

$\therefore \quad A D: D B$	$=A F: F H$,		VI. 2
		$=K: L$.	$V .11$

1. $A B$ and $A C$ are two straight lines, and $A C$ is divided internally at the points D and E. Divide $A B$ similarly to $A C$.

[^24]2. Make the figure and prove the proposition when K is less than L. What beomes of the external section when $K=L$.
3. Divide a given triangle or $\|^{m}$ into two parts which shall have to each other a given ratio.
4. Given two points on the $0^{c 0}$ of a circle, to find a third point ass the 0^{∞} sueh that the ratio of its distances from the two given points may be equal to a given ratio.

PROPOSITION 11. Problem.

To find a third proportional to two given straight lines.

Let $A B, A C$ be the two given straight lines:
i_{i} is required to find a thired moportional to $A B, A C$.
Place $A B, A C$ so as to contain any angle;
produce $A B, A C$, making $B D=A C$:
I. 3
join $B C$, and through D draw $D E \| B C$.
I. 31
$C E$ is the third proportional.
Because $I B C$ is $\| D E$, a side of $\triangle A D E$,
$\therefore \quad A B: B I=A C: C E ; \quad$ VI. ${ }^{\prime} 2$
$\therefore \quad A B: A C=A C: C E$, since $B D=A C . \quad V .7$

1. Does the magnitude of the third proportional to two straight lines depend on the order in which the straight lines are taken? How many third proportionals can be found to two straight lines?
2. To $A B$ and $A C$ obtain the thirl proportional measured from A.
3. By VI. 8, Cor., find a third proportional to two straight lines in two other ways.
4. $A B$ and $A C$ are two straight lines drawn from A. Produce $C A$ to D, making $A D=A C$; describe a circle through the three points B, C, D, and produce $B A$ to meet it at E. $A E$ is a third proportional to $A B, A C$.
5. Use the fourth deduction from VI. 4 to find a third proportional to two given straight lines.
6. Use the fourth deduction from VI. 8 for the same purpose.

PROPOSITION 12. Problem.

To find a fourth proportional to three given straight lines.

Let A, B, C be the three given straight lines: it is required to find a fourth proportional to A, B, C.

Take two straight lines $D E, D F$ containing any angle; from these cut off $D G=A, G E=B$, and $D H=C ; \quad I .3$ join $G H$, and through E draw $E F \| G H$. I. 31
$H F$ is the fourth proportional.
Because $G I I$ is $\| E F$, a side of $\triangle D E F$,

$$
\begin{equation*}
\therefore \tag{VI. 2}
\end{equation*}
$$

$$
\therefore \quad A: B=C: H F \text {. }
$$

V. 7

1. Which previous proposition is a particular case of this?
2. Does the magnitude of the fourth proportional to three straight lines depend on the order in which they are taken? How many fourth proportionals can be found to three straight lines?
in To A, B, C obtain the fourth proportional measured from D.
3. By a method similar to that of the fourth deduction from VI. 11, find a fourth proportional to three given straight lines,
4. Given a triangle or $\|^{\mathrm{m}}$; construct another triangle or $\|^{\mathrm{m}}$ which shall have to it a giver ratio.
5. $A B$ and $A C$ are two straight lines, and D is a point between them. Draw through D a straight line such that the parts of it intercepted letween D and the two given straight ine: may be in a given ratio.

PROPOSITION 13. Problem.

To find a mean proportional between two given straight lines

Let $A B, B C$ be the two given straight lines: ir is required to find a mean proportional between $A B, B C$.

Place $A B, B C$ in the same straight line, and on $A C$ describe the semicircle $A D C$; I. 10 from B draw $B D \perp A C$. I. 11
$B D$ is the mean proportional.
Join $A D, C D$.
Then $\triangle A D C$ is right-angled, and $A C$ is the hypotenuse ; III. 31
$\therefore B D$ is a mean proportional between $A B, B C$. VI. 8, Cor:

1. If the given straight lines were $A C, B C$, placed as in the figure to the proposition, show how to find a mean proportional between them.
2. To find a mean proportional between $A B, B C$ placed as in the figure to the proposition. Describe any circle passing throngh A and C; join B to the centre O, and draw $D B E=O P^{2}$ meeting the $O^{c e}$ at D and $E . B D$ or $B E$ is the mean proportional.
3. To find a mean proportional between $A C, B C$, placed as in the figure to the proposition. Describe any segment of a circle on $A C$, make $\angle C B D=$ the angle in the segment, and join $C D . C D$ is the mean proportional.
4. Half the sum of two straight lines is greater than the mean proportional between them.
5. A point E is taken in the side $A B$ of a $\|^{\mathrm{m}} A B C D ; D E$ meets $B C$ produced in F. Prove $\triangle A E F$ a mean proportional between $\triangle \mathrm{s} A E D$ and $B E F$.
6. By repetitions of the process of finding a mean proportional, what numbers of mean proportionals could be found between two given straight lines so as to form a continued proportion? Devise an algebraical expression which will include all these numbers.

PROPOSITION 14. Theorems.

Equal parallelograms, which have one angle of the one equal to one angle of the other, have their sides about the equal angles reciprocally proportional.
Conversely: Parallelograms which have one angle of the one equal to one angle of the other, and the sides about the equal angles reciprocally proportional, are equal.

(1) Let $A B$ and $B C$ be equal $\|^{m s}$, having $\angle D B F=$ $\angle G B E$:
${ }^{\prime}{ }^{\circ}$ is required to prove that $D B: B E=G B: B F$.
Plaee the $\|^{\text {mas }}$ so that $D B$ and $B E$ may be in one straight line.

Then since $\quad \angle G B E=\angle D B F^{\prime}$; Hyp.
$\therefore \angle G B E+\angle F B E=\angle D B F+\angle F B E$,

$$
=2 \mathrm{rt} . \angle \mathrm{s} ;
$$

I. 13
$\therefore G B$ and $B F$ are in one straight line.
I. 14

Complete the $\|^{\mathrm{m}} F E$.
Because $\left\|^{m \mathrm{~m}} A B=\right\|^{\mathrm{m}} B C, \quad$ Hyp.
$\therefore\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{mm}} F E=\left\|^{\mathrm{m}} B C:\right\|^{\mathrm{m}} F E . \quad$ V. 7 .
But $\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{m}} F E=D B: \quad B E$,
VI. 1 and $\left\|^{\mathrm{m}} B C:\right\|^{\mathrm{m}} F E=G B: \quad B F ; \quad$ VI. 1
$\therefore D B: B E=G B: B F . \quad$ V. 11
(2) Let $\angle D B F=\angle G B E$, and $D B: B E=G B: B F^{\prime}$: it is required to prove $\left\|^{\mathrm{m}} A B=\right\|^{\mathrm{m}} B C$.

Make the same construction as before.
Because $D B: \quad B E=G B: B F$, Hyp.
and $D B: \quad B E=\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{ma}} F E$, VI. 1
and $\quad G B: \quad B F^{\prime}=\left\|^{\mathrm{m}} B C:\right\|^{\mathrm{m}} F E$; VI. 1
$\therefore \quad\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{m}} F E^{\prime}=\left\|^{\mathrm{m}} B C:\right\|^{\mathrm{m}} F^{\prime} E^{\prime} ;$
V. 11
\therefore

$$
\left\|^{\mathrm{m}} A B=\right\|^{\mathrm{m}} B C .
$$

V. 9

1. Prove the proposition by joining $E F$ and $D G$, and using the fifth deduction from VI. 2.
2. Prove $A D, C G$ and the diagonal of the $\|^{\text {an }} F E$ drawn through B concurrent.
3. Prove $A C \| E F$.
4. Equal rectangles have their bases and altitudes reciprocally proportional, and conversely.
5. Equal $\|^{m n}$ that have their sides reciprocally proportional ane mutually equiangular.

PRINPOSITION 15. Throrems.

Equal triangies which have one angle of the one equal to one angle of the other have their sides about the equal angles reciprocally proportional.
Conversely: Triangles which have one angle of the one equai to one angle of the other, and their sides about the equal angles reciprocally proportional, are equal

(1) Let $B A C, D A E$ be equal triangles having
$\angle B A C=\angle D A E$:
it is required to prove that $A C: A D=A E: A B$.
Place the triangles so that $A C$ and $A D$ may be in one straight line.
Then since $\quad \angle D A E=\angle B A C, \quad H_{3} p$.
$\therefore \angle D A E+\angle B A D=\angle B A C+\angle B A D$,

$$
=2 \mathrm{rt} . \angle \mathrm{s} ;
$$

I. 1:
$\therefore E A$ and $A B$ are in one straight line.
I. 14 Join $B D$.

Because $\quad \triangle B A C=\triangle . D A E$,
Hyp.
$\therefore \quad \triangle B A C: \triangle B A D=\triangle D A E: \triangle B A D$. V. \%
But $\triangle B A C: \triangle B A D=A C: A D$,
VI. :
and $\triangle D A E \cdot \triangle B A D=A E: A B ; \quad$ VI. 1
$\therefore \quad A C: A D=A E: A B . \quad$ V. 11

(2) Lot $-B A C=\angle D A E$, and $A C: A D=A E: A B$. it is required to prove $\triangle B A C=\triangle D A E$.

Make the same construction as before.
Because $A \mathscr{C}: A D=A E: A B, \quad H y p$.
and $\quad A C: \quad A D=\triangle B A C: \triangle B A D, \quad V I .1$
and $\quad A E: \quad A B=\triangle D A E: \triangle B A D ; \quad V I .1$
$\therefore \triangle B A C: \triangle B A D=\triangle D A E: \triangle B A L ; \quad$ V. 11
$\therefore \quad \triangle B A C=\triangle D A E . \quad V .9$

1. Could this proposition have been inferred from VI. 14 ?
2. Prove the proposition by joining $C E$, and using the fifth deducelion from VI. 2.
3. If in the figure to VL 14, $A B$ and $E G$ be joined, what modification of this proposition should we be enabled to prove?
4. If $\triangle A B C$ is right-angled at B, and $B D$, the perpendicular on $A C$, is produced to E so that $D E$ is a third proportional to $B D$ and $D C, \triangle A D E=\triangle B D C$.
5. Equal triangles which have the sides about one pair of angles reciprocally proportional have those angles either equal or supplementary.
6. If, in the fig. to VI. $8, B E$ be drawn $\perp B A$, and meet $A D$ produce at E, then $\triangle A B D=\triangle E C D$.

- Find a pint in a side of a triangle, from which two straight lines drawn, one to the opposite angle, and the other || the base, shall cut off towards the vertex and towards the base, equal triangles.
Examine the case for a point in a side produced.

PROPOSITION 16. Theorems.

If four straight lines be proportional, the rectangle contained oy the extremes is equal to the rectangle contained by the means.
Conversely: If the rectangle contained by the extremes be equal to the rectangle contained by the means, the four straught lines are proportional.

(1) Let $A B: C D=E F: G H$:
it is required to prore $A B \cdot G H=C D \cdot E F$.
From A draw $A K \perp A B$, and $=G H, \quad$ I. 11, 3
frem $\quad C$ draw $C L \perp(D)$, and $=E F ; \quad I .11,3$
and complete the rectangles $K B, L D$.
Incause $A B: C D=E F^{*} . G H, \quad$ Hyp.
and $\quad C L=E F$, and $A K \approx G H$; Const.
$1 \therefore \quad A B: C D=C L: A K$, V. 7
that is, the sides about the equal angles of the $\|^{m s} K B, L D$ are reciprocally proportional.
$\therefore \quad K B=L D$;
WI. 14
$\therefore A B \cdot A K=C D \cdot C L$;
$\therefore A B \cdot G H=C D \cdot E F$.
(2) Let $A B \cdot G I I=C D \cdot E F$:
it is required to prove $A B: C D=E F G H$.

Nake the same construction as before.

- Because $A B \cdot G I=C D \cdot E F, \quad H y p$.
and $\quad A K=G I I$, and $C L=E H$; Const. $\therefore \quad A B \cdot A K=C D \cdot C L$,
that is, the $\|^{\mathrm{ms}} K B, L D$ which have $\angle A=\angle C$, are equal.
$\therefore A B: C D=C L: A K$;
VI. 14
$\therefore A B: C D=E F: G H$.
V. 7

1. In the figure to VI. 8, prove (1) $B D \cdot D C=A D)^{2}$, (2) $C B \cdot B D$ $=A B^{2}$, (3) $B C \cdot C D=A C^{2}$, (4) $B C \cdot A D=B A \cdot A C$.
2. Using the results (2) and (3) of the preceding deduction, piove I. 47.
3. Show that these results are established in Enelid's proof of I. 47.
4. Two chords $A C, B D$ of a circle $A B C$ intersect at E, either within or without the circle; prove $A E \cdot E C=B E \cdot E D$.
5. In the figure to the fourth deduction from VI. S, prove
(1) $B D \cdot C E=A D \cdot A E$,
(2) $C B \cdot B D=A B^{2}$,
(3) $B C \cdot C E=A C^{2}$,
(4) $B C \cdot A E=B A \cdot A C$.
6. Using the results (2) and (3) of the preceding deduction, show that wheu $\angle B A C$ is acute, $A B^{2}+A C^{2}$ is greater than $B C^{2}$ by $B C \cdot D E$: when $\angle B A C$ is obtuse, $A B^{2}+A C^{2}$ is less than $B C^{2}$ by $B C \cdot D E$.
7. What lecomes of the rectangle $B C \cdot D E$ when $\angle B A C$ is right?
o. Give another proof of III. 35 and its Cor.

3 A square is inseribed in a right-angled triangle, one sile of the spuare coinciding with the hypotemnse; prove that the area of the square $=$ the rectangle contained by tha extrene segments of the liywotenuze.

PROPOSITION 17. Theorems.

If three straight lines be proportional, the rectangle contiainea by the extremes is equal to the square on the meari.
Conversely: If the rectangle contained by the extremes bo equal to the squure on the mean, the three straight linew are proportional.

(i) Let $A: B=B: C$.
it is required to prove $A \cdot C=B^{2}$.
Make $D=B$.
Because $A: B=B: C$,

$$
\therefore \quad A: B=D: C
$$

$\therefore \quad A \cdot C=B \cdot D$, $=B^{2}$.
V.
VI. 16
(2) Let $A \cdot \dot{C}=B^{2}$.
it is required to prove $A: B=B: C$.
Make the same construction as before.

$$
\begin{array}{ll}
\text { Because } A \cdot C=B^{2} \\
\therefore & A \cdot C=B \cdot D ; \\
\therefore & A: B=D: C ; \\
\therefore & A: B=B: C
\end{array}
$$

Hyp.
VI. 16
V. 7

1. Of which proposition is this merely a particular case?
2. Prove that a straight line divided in extreme and mean ratio is divided in medial section, and conversely.
3. From B, one of the vertices of $\|^{\mathrm{m}} A B C D$, a straight line is drawn cutting the diagonal $A C$ at $E, C D$ at F, and $A D$ produced at $G:$ prove $G E \cdot E F=B E^{2}$.

PROPOSITION 18. Problem.

On a gittern straight line to deveribe a rectilinear figure which Δ^{7} all be similar to a given. rectilineal figure."

Let $A B$ be the given straight line, $C D E F$ the riven rectilineal figure :
it is required to describe en $A B$ a rectilineu figure vahich shall be similar to CDEF.
join $D H^{h}$.
AE A make $\angle B A G=\angle D C F$, and at B make $\angle A B G$
$=\angle C D F^{\prime}$;
I. 23
then $\triangle G A B$ is equiangular to $\triangle F C D$. I. 32, Cor: 1 At G make $\angle B G H=\angle D F E$, and at B make $\angle G B H$
$=-F D F ;$
I. 23
then $\triangle H G B$ is equiangular to $\triangle E F l$. I. 32 , Cor. $A B H G$ is the tionure required.
(1) To prove ABIIG ant CDEF mutually equiangular.

Because $\angle A G B=\angle C F^{\prime} H$, and $\angle B G H=$

- DIE,
\therefore the whole $\angle A C H=$ the whole $\angle C F E$.
similarly, - ABII = - CDE.
But $L A-C$, and $-H=\angle E ; \quad$ Cont., I. 32, Cor. 1
$\therefore A B H G^{\prime}$ and $C D E F$ are mutually equiangular.
* The second case added by Simson has been omitted as unnecessary.
(2) To prove that $A B H G$ and $C D E F$ have their sides proportional.
Because $\triangle \mathrm{s} A G B, C F D$ are mutually equiangular, $\therefore A G: G B=C F: F D$.
VI. 4

Because $\triangle \mathrm{s} B\left(\begin{array}{rl} \\ I\end{array}, D F E\right.$ are mutually equiangular,
$\therefore B G: G H=D F: F E$.
VI. 4

Now since $A G, G B, G H$ are three magnitudes, and $\quad C F, F D, F E$ other three ;
and since it has been proved that $A G: G B=C F: F D$,

$$
\begin{equation*}
\text { and } G B: G H=F D: F E \text {; } \tag{V. 22}
\end{equation*}
$$

$\therefore A G: G H=C F: F E$, by direct equality.
Similarly, $A B: B H=C D: D E$.
But $B A: A G=D C: C F, \quad$ VI. 4
and $G H: H B=F E: E D$; VI. 4
$\therefore A B H G$ and $C D E F$ have their sides about the equal angles proportional.
Hence $A B H G$ and $C D E F$ are similar. VI. Def. 1
The method of construction and proof would be similar if the given rectilineal figure had more than four sides.

1. How many polygons could be described on $A B$ similar to the polygon CDEF?
2. Would the following constructions answer the same purpose as that given in the text? (a) Place $A B$ and $C D$ either paralle] or in the same straight line; through A and B draw $A G$, $B G$ respectively $\| C F, D F$; through G and B draw $G H$, $B H$ respectively $\| F E, D E$. (b) Place $A B \| C D$, and let $A C$, $B D$ meet at O. Join $O E, O F$, and let $A G, B H$ drawn respectively $\| C F, D E$ meet $O F, O E$ at G, H. Join $G H$.
3. If on $B .4, B G, B H$, or on these lines produced, there be taken points L, M, N, such that $B L: B A=B M: B G=B N: B H$, the figure $B L, M N$ is similar and similarly situated to the figure BAGlI.
t. How could a figure $B L M N$ similar and oppositely situated to the figure BAGH be obtained?

PROPOSITION 19. Theorem.

Similar triangles are to one unother in the duplicato ?aines of their homologous sides.

Let $A B C$ and $D E F$ bé similar triangles, having $\angle B=$ $\angle E$, and $-C=\angle F$, so that $l C$ and $E P$ ar homologous sides:
it is required to prove $\triangle A B C: \triangle D E F=$ duplicato , $\cdot \hat{\jmath}$ $B C: E F$.

Take $B G$ a third proportional to $B C$ and $E F$, so that $B C: E F^{\prime}=E F: B G$; and join $A G$.

$$
\begin{array}{rlrl}
\text { Because } A B: B C & =D F: E F, & & H z n, \\
\therefore & A B: D F & =B C^{\prime}: F F, \text { by alternation, } & \\
& & V .13 \\
& & F F: B C ; & \\
& & &
\end{array}
$$

that is, the siles of $\triangle s A B C, D E F$ about their equal angles B and E are reciprocally propertional.

$$
\begin{equation*}
\therefore \triangle A B G=\triangle D E F . \tag{VI. 15}
\end{equation*}
$$

Again, because $B C: E F=E F: B F$,
$\therefore \quad B C: B G=$ duplicate of $B C: E F$.

$$
\text { V. Def. } 13, C r
$$

But $\quad B C: \quad B G=\triangle A B C: \triangle A B G$,
$\therefore \triangle A B C: \triangle A B G=$ duplicate of $B C: E F ; \quad V .11$
$\therefore \triangle A B C: \triangle D E F=$ duplicate of $B C: E F$.
V 7

1. If three straight lines be proportional, as the first is to the third so is any triangle described on the first to a similar and similarly described triangle on the second.
Prove the proposition with either of the following constructions:
2. Take $E G$, measured along $E F$ produced, a third proportional to $E F$ and $B C$, and join $D G$.
3. From $B C$ cut off $B G=E F$; join $A G$, and through G draw $G H \| A C$.
4. Similar triangles are to one another in the duplicate ratio of (1) their corresponding medians, (2) their corresponding altitudes, (3) the radii of their inscribed circles, (4) the radii of their circumscribed circles. (Assume, what can be easily proved from V. 23, Cor., that if two ratios be equal, their duplicates are equal.)

PROPOSITION 20. Theorem.

Similar polygons may be divided into the same number of similar triangles, having the same ratio to one another. that the polygons have; and the polygons are to one another in the duplicate ratio of their homologous sides.

M

Let $A B C D F, F G I I F L$ be similar polygons, and let $A L$ and $F G$ be homologous sides :
it is requirel to prove that $A B C D E$ and $F G H K L$ may be divided into the same number of similar triangles; that these triangles have each to each the same ratio which the polygons have; and that the polygons are to one another int the duplicate ratio of their homologous sides.

Join BE, ECC, GL, LHI.
Beeause the polygon $A B C D E$ is similar to the polygon FGHKL,

II! ! 1 .
$\therefore \angle A=\angle F$, and $B A: A E=G F: F L ; \quad$ VI. Def.l
$\therefore \triangle A B E$ is similar to $\triangle F G L$.
VI. 6
lecause the polygons are similar,
$\therefore \angle A B C=\angle F G H$;
II. Def. 1
and because $\triangle \mathrm{s} A B E, F G L$ are similar,
$\therefore \angle A B E=\angle F G L$;
IT. Def. 1
\therefore the remainder, $\angle E B C=$ remainder, $\angle L G I I$.
And beeause $\triangle \mathrm{s} A B E, F G L$ are similar,
$\therefore E B: B A=L G: G F^{\prime}$;
VI. Def. I
and because the polygons are similar,
$\therefore B A: B C=C r F: G H$.
I'I. Def. 1
$\therefore E H: B C=L G: G I I$, by direct equality :
I. 22
that is, the sides about the equal $\angle \& E H C, L G I I$ are proprertional ;
$\therefore \triangle E B C$ is similar to $\triangle L G H$.
I'I. 6
For the same reason, $\triangle E D C$ is similar to $\triangle L K H$.
Because $\triangle A B E$ is similar to $\triangle F G L$,
$\therefore \triangle A B E: \triangle F G L=$ duplicate of $B E: G L$. II. 19

$\therefore \triangle A B E: \triangle F G L=\triangle E B C: \triangle L G H$. I: 11
Becauss $\triangle E B C$ is similar to $\triangle L G i l l$,
$\therefore \triangle E B C: \triangle L G H=$ duplicate of $E C:$ LII. VI. 19

Similarly, $\triangle E C D: \triangle I H K=$ duplicate of $E C: L H$,
$\therefore \triangle E B C: \triangle L(Y I I=\triangle E C D): \triangle L H K$. V. 11
Hence $\triangle A B E: \triangle F^{\prime}(i L=\triangle E B C: \triangle L G H=\triangle E C D$: \triangle LIIK;
$\therefore \triangle A B E: \triangle F G L=\triangle A B E+\triangle E B C+\triangle E C D$
$: \triangle F G L+\triangle L G H+\triangle L I H K, \quad$ V. 12
= polyson ABCDE: polygon FGHLL
Lastly, $\triangle A B E: \triangle F G L=$ duplicate of $A B: F G ; V .19$
$\therefore \quad A B C D E: F G H K L=$ duplicate of $A B: F G . \quad V .11$
Cor.-If three straight lines be proportional, as the first is to the third, so is any rectilineal figure described on the first to the similar and similarly described rectilineal figure on the second.
For, take M a third proportional to $A B$ and $F G$. VI. 11
Then since $A B: F G=F G: M, \quad$ Cunst.
$\therefore A B: M=$ duplicate of $A B: F G, \quad$ V. Def. 13, Cor.
But $A B C D E: F G H K L=$ duplicate of $A B: F G, \quad I^{\prime} I .20$
$\therefore A B: M=A B C D E: F G H K L$. I. 11

1. Squares are to one another in the duplicate ratio of their sides.
2. Similar polygons are to one another as the squares on their homologons sides, or homolngous diagonals.
3. The perimeters of similar polygons are to one another as the homologous sides.
4. Polygons are similar which can be divided into the same number of similar and similarly situated triangles.
5. Prove that similar polygons may be divided into the same number of similar triangles having their vertices at points situated within the polygons. (Such points are called homologous points with reference to the polygons.)
6. Could homologous points with reference to similar polygons be situated outside the polygons, or on their sides?
7. If two polygons be similar and similarly situated, the straight lines joining their eorresponding vertices are conenrrent. Examine the case when the polygons are similar and oppositely situated.
S. Use the preceding theorem to inscribe a square in a given triangle. How many squares can be inscribed in a triangle?
8. In a given triangle inscribe a rectangle similar to a gives rectangle. How many such rectangles can be inscribed?

PROPOSITION 21. Theorem.

Polygons which are similar und equal have their homologous sides equal.*

Let $A B C D, E F G I I$ be two similar and equal polygons, having $B C$ and $F G$ homologous sides:
it is required to prove $B C=F C$.
Take $K L$ a third proportional to $B C$ and $F G$. VI. 11
Because $B C^{\prime}: F^{\prime}\left(r=F G^{\prime}: K^{\prime} l\right.$, Const.
$\therefore \quad B C: K L L=A B C D: F F(r l I$. VI, 20, Cor.
But $\quad A B C D=E N(\dot{H} H ; \therefore B C=K \%$. V. 14
Again, since $B C^{\prime}: F\left(G=F\left(F^{\prime}: K L\right.\right.$,
Const.
$\therefore \quad \quad B C \cdot K=F\left(r^{2}\right.$.
VI. 17

But $\quad B C \cdot K L=B C^{2}$, since $B C=K L$;
$\therefore \quad \quad B C^{2}=F C^{2}$, and $\quad B C=F^{\prime} G^{\prime}$.
Prove the proposition intirectly:

[^25]
PROPOSITION 22. Theorems.

If four straight lines be proportional, und there be similarly described on the first and secoml any tuo smitur poly. gons, and on thie third and fourth any two similar polygone, the polygons shall be proportional.
Conversely: If there be similurly described on the first ami seconil of four straight lines two similar polygons, and two similar polygons on the third and fourth, und if the polygons be proportional, the four straight lines shall be proportional.

(1) Let $A B: C D=E F: G H$,
a.del let there be similarly described on $A B$ and $C D$ the similar polygons $K A B, L C D$, and on $E F$ and $G H$ the similar polygons $M F, N H$:
it is required to prove $K A B: L C D=M F: N H$.
Take X a third proportional to $A B$ and $C D, \quad V I .11$
and $\quad O$ a third proportional to $E F$ and $G H$. VI. 11

Because $A B: C D=E F: C i l I$		$H y P$,
and	$A B: C D=C D: X$,	Const.
and	$E F: G H=G H: O ;$	Const.
\therefore	$C D: X=G H: O$.	$V .11$

－．－－

Now since $A B, C D, X$ are three magnitudes， and $E F, G I I, O$ other three ；
and since $A B: C D=E F: G H$ ，
and $C D: X=G H: O$ ；
$\therefore \quad A B: X=E F: O$ ，by direct equality．V． 22
But $A B: X=K A B: L C D, \quad$ VI．20，Cor．
and $\quad E F: O=M F: N H ; \quad$ VI．20，Cor．
$\therefore \quad K A B: L C D=M F: N H$ ．
（2）Let $K A B: L C D=M F: N H$ ．
it is required to more $A B: C D=E F:$ crII．
Take $P R$ a fourth proportional to $A B, C D, E F, \quad V T 12$ and on $P R$ let a polygon sli be similar and similarly described to the polygons $M F, \underset{\sim}{N} I L$ ．

I\％． 18
Because $A B: C D=E F: P R$ ，
Const．
$\therefore \quad K A B: I . C \prime=M F^{\prime}: S R$ ．VI． 22
But KAB：LCD $=M F: N H$ ；Hyp．
$\therefore \quad M F: S R=M F: N H: \quad V .11$
$\therefore \quad S R=$ N゙ $/ I . \quad$ V． 9
Hence $\quad P R=G I I$ ，sincestRand N / I are similar．VI． 21
Nぃッ $A B: C D=E F: l^{\prime} R$ ；
Const．
$\therefore \quad A B: C D=E \cdot F^{\prime}:(11$ ．
V． 7
1．If $A B: C H=E F^{\prime}:\left(B I I\right.$ ，then $A B^{2}: C D^{2}=E F^{2}: G H^{3}$ ．
2．If two ratios be equal，their duplicates are equal

PROPOSITION 23. Theorem.

Mutually equiangular parallelograms hare to one another the ratio which is compounded of the ratios of their sides.*

Let $\|^{\text {m }} A B$ be equiangular to $\|^{m} B C$, having $\angle D B F$ $=\angle G B E$:
it is required to prove $\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{m}} B C=\left\{\begin{array}{c}D B: B E \\ F B: B G\end{array}\right\}$.
Place the $\|^{m s}$ so that $D B$ and $B E$ may be in one straight line ;
then $G B$ and $B F$ are in one straight line.
VI. 14 Complete the $\|^{m} F E$.
Then $\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{m}} F E=D B: \quad B E, \quad$ I'I. 1
and $\left\|^{\mathrm{m}} F E:\right\|^{\mathrm{m}} B C=F B: \quad B G$; VI. 1 $\left\{\begin{array}{ll}\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{m}} F E \\ \left\|^{\mathrm{m}} F E:\right\|^{\mathrm{m}} B C\end{array}\right\}=\left\{\begin{array}{cc}D B: & B E \\ F B: & B G\end{array}\right\}$. I. 23, Cor.

$\therefore \quad\left\|^{\mathrm{m}} A B:\right\|^{\mathrm{m}} B C=\left\{\begin{array}{cc}D B: & B E \\ F B: & B C_{r}\end{array}\right\} . \quad V .11$

1. Triangles which have one angle of the one equal or supplementary to one angle of the other are to one another in the ratio compornded of the ratios of the sides about those angles.

[^26]2. Show that VI. 14 is a particular case of the proposition.

3. Show that $\left\{\begin{array}{l}D B: B E \\ F B: B G\end{array}\right\}=D B \cdot B F: E B \cdot B G$.
4. Hence enunciate differently the proposition and the first deduction.
5. Prove the proposition from the accompanying figure.
6. Deduce V'I, 19 from the first deduction.

PROPOSITION 24. Theorem.

Parallelograms ubout a dingonal of any purallelogram ure similar to the whole parallelogram, and to one another.

Let $A B C D$ be a $\|^{m}, A C$ one of its dingonals, and let $E G$, $H K$ le $\|^{m s}$ about $A C$:
it is required to prove that $\|^{\mathrm{ms}} \mathrm{EG}, \mathrm{HK}$ are simitar to $\|^{\mathrm{m}}$ ABCD, and to one unother.

Becanse $D C$ is $\| G F, \quad \therefore \angle A D C=\angle A C F ; \quad I .29$
and because $B C$ is $\| E F, \quad \therefore \angle A B C=\angle A F F . \quad I .29$

$\therefore \|^{m} A B C D$ is equiangular to $\|^{m} A E F\left(E^{\prime}\right.$.
Again, because $\angle A B C=\angle A E F F$,

1. 29
and $\angle B A C$ is common ;
$\therefore \triangle \mathrm{s} A B C, A E F$ are mutually equiangular ; I. 32, Cor. 1
$\therefore A B: B C=A E: E F$.
VI. 4

But since the opposite sides of $\|^{\mathrm{ms}}$ are equal, I. 34
$\therefore A B: A D=A E: A G$,
V. 7
and $C D: B C=F G: E F$,
V. 7
and $C D: D A=F G: G A$;
V. 7
that is, the sides of the $\|^{\mathrm{ms}} A B C D, A E F G$ about their equal angles are proportional.
$\therefore \|^{\mathrm{m}} A B C D$ is similar to $\|^{\mathrm{m}} A E F G$.
VI. Def. 1

Hence also, $\|^{\mathrm{m}} A B C D$ is similar to $\|^{\mathrm{m}} F H C K$;
$\therefore \|^{\mathrm{m}} A E F G$ is similar to $\|^{\mathrm{m}} F H C K$.

1. From this proposition and VI. 14, deduce I. 43.
2. Prove $\left\|^{m} E G:\right\|^{m} B F=\left\|^{m} F D:\right\|^{m} H K$.
3. Prove that $E \cdot G, B D$, and $H K$ are parallel.

PROPOSITION 25. Problem.

To describe a rectilineal figure which shall be similar to one and equal to unother given rectilineal figure.

Let $A B C$ be the one, and D the other given rectilineal figure:
it is required to describe a figure similar to $A B C$, and $=D$.
On $B C$ describe any $\|^{m} B E=$ the figure $A B C, \quad I .45$ and on $C E$ describe the $\|^{m} C M=$ the figure D, and having $\angle F C E=\angle C B L$.
I. 45

Between $B C$ and $C F$ find a mean proportional $G I I$; VI. 13 and on $G H$ construct the figure $K G H$ similar and similarly described to the figure $A B C$.
VI. 18 $K G H$ is the figure required.
It may be proved as in I. 45 that $B C$ and $C F^{\prime}$ forn one straight line, and also $L E$ and EM;
$\begin{aligned} \therefore B C: C F & =\left\|^{\mathrm{m}} B E:\right\|^{\mathrm{m}}\left(C^{\prime} M,\right. \\ & =A B C: D .\end{aligned}$
VI. 1
V. 11

But because $B C: G H=G I: C F$, Const.
and because $A B C, K G H$ are similar and similarly describer ;
$\therefore \quad B C: C F=A B C: K(i H$. VI. 20, Cor:
Hence $A B C: D=A B C: K G H$;
\therefore
$K G H=D$.
V. 9

1. Construct an equilateral triangle $=a$ given square .
2. Construct a square $=$ a given equilateral triangle.
3. Construct a sipuare $=$ a given regular pentagon.
4. Construct a resular pentagon $=a$ given square.
5. Construct an equilateral trian_le $=$ a given regular hexagon.
6. Construct a regular hexagon $=a$ given equilateral triangle.
7. Construct a polygon similar to a given polygon, and having a given perimeter.
8. Construct a polygon similar to a given polygon, and having a given ratio to it.
9. Through a given point inside a circle draw a chord so that it shall be divided at the point in a given ratio.

PROPOSITION 26. Theorem.

If two similar parallelograms hare a common angle and be similarly situuted, they are about the same diagonal.

leo the $\|^{\text {ms }} A B C D, A E F G$ be similar and similarly situatel, and have the common angle $B A D$:
it is required ro prove that they are about the same diagonal.
Join $A C, A F$.
Because $\|^{\mathrm{ms}} A B C D, A E F G$ are similar and similarly situated,
$\therefore A C$ and $A F$ will drvide them into similar triangles; VI. 20
$\therefore \triangle A B C$ is similar to $\triangle A E F$;
$\therefore \angle B A C=\angle E A F$;
VI. Def. 1
$\therefore A F$ falls along $A C$.
Note--This proposition is the converse of VI. 24, and should be read immediately after it.

1. Prove the proposition by supposirig $A C$ to cut $E F$ at I, and drawing $H K \| E A$ to meet $A G$ at K.
2. Extend the proposition to the case of two similar and oppositely situated $\|^{\text {ms }}$.
3. From a given $\|^{m}$ cut off a similar $\|^{m}$ having a given ratiu to the given $\|^{\mathrm{m}}$.

PROPOSITION 27. 'Theorem.

Of all the paralleloyrams inscriberl in a trianyle so as to have one of the cmyles ut the base commun to thrme ull, the greatest is that which is descritect on hulf the base. "

Let $A B C$ be a triangle, having its base $B C$ bisected at D. Let $B E$ and $B I I$ be $\|^{\text {ms }}$ inscribed in it so as to lave $\angle B$ of the triangle common to both :
it is required to prove $\|^{\mathrm{m}}$ BE greater than $\|^{\mathrm{mm}}$ BH.
Complete the $\|^{m} F B C L$, and produce $G H, K M$ to M and N.

$$
\begin{array}{rlrl}
\text { Because } B D & =D C, \therefore F E=E L ; & & I .34 \\
\therefore & \|^{m} K^{\prime} & =\|^{\mathrm{m}} E N . & \\
\text { A. } 36 \\
\text { grain, }^{\mathrm{m}} M \|^{\mathrm{m}} & =\|^{\mathrm{m}} D I I . & & \text { I. } 43
\end{array}
$$

But $\|^{m} E L$ is greater than $\|^{m} M N$;
$\therefore \quad \|^{\mathrm{m}} \mathscr{H}^{\prime} E^{\prime}$ is greater than $\|^{\mathrm{m}} D I I$.
Add to each of these mequals $\|^{m} K D$;
then $\|^{m} B E$ is greater than $\|^{m} B H$.

1. Make the construction and prove the proposition when G lies between B and D.
2. When $A B=B C$ and $\angle B$ is right, what does the proposition become?
[^27]
PROPOSITION 28.* Problem.

To divide a given straight line internally so that the rectangle contuined by its sergments may be equal to a given rectangle.

Let $A B$ be the given straight line; K^{\prime} and L the sides of the given rectangle :
it is required to divide $A B$ internally so that the rectangle contained by the segments may be $=K \cdot L$.

$$
\begin{array}{ll}
\text { Draw } A C \perp A B \text {, and }=K, & I .11,3 \\
\text { and on the same side of } A B \text { draw } B D \perp A B \text {, and } \\
=L . & I .11,3
\end{array}
$$

Join $C D$, and on it as diameter describe the semicircle $C E D$ cutting $A B$ at $E . \quad A E \cdot E B$ shall be $=K \cdot L$.

Join CE, ED.
Because $\angle C E D$ is right,
III. 31
$\therefore \angle A E C=$ complement of $\angle B E D, \quad$ I. 13 $=\angle B D E ;$
I. 32
and $\angle C A E=\angle E B D$.

[^28]$\therefore \triangle \mathrm{s} A E C, B D E$ are mutually equiangular ; I. 32, Cor. 1
$\therefore A E: A C=B D: B E$;
$\therefore A E \cdot E B=A C \cdot B D$,
VI. 16 $=K \cdot L$.

1. If E^{\prime} be the other point in which the semicircle cuts $A B$, prove $\Lambda E^{\prime} \cdot E^{\prime} B=K^{*} \cdot L$.
2. Prove $A E^{\prime \prime}=B E^{\prime}$ and $E^{\prime \prime} B=A E^{\prime}$.
3. What limits are there to the size of the rectangle $K \cdot L$?
4. Solve the problem otherwise by converting the rectangle $K \cdot L$ into a square.

PROPOSITION 20 . Problem.

To divile a giten struight lime rittermally so theat the rectanyle contuined by its seyments may be ripual to a given rectangle.

I.et $A B$ be the given straight line, K and L the sides of the given retangle:
it is remerival to divide AB estornully so that the rectangle contuined by the segments musy be $=K \cdot L$.

1) raw $A C \perp A R$, and $=K, \quad I .11,3$ and on the opposite side of $A B$ draw $1: I) \perp A B$, and $=L$.
I. 11,3

Join $C D$, and on it as diameter describe the semicircle $C E D$, cutting $A B$ produced at $E . \quad A E \cdot E B$ shall be $=K \cdot L$.

Join $C E, E D$.
Because $\angle C E D$ is right,
III. 31
$\therefore \angle A E C=$ complement of $\angle B E D$,

$$
\begin{equation*}
=\angle B D E ; \tag{I. 32}
\end{equation*}
$$

and $\angle C A E=\angle E B D$.
$\therefore \triangle \mathrm{s} A E C, B D E$ are mutually equiangular; I.32, Cor .1
$\therefore A E: A C=B D: B E$;
VI. 4
$\therefore A E \cdot E B=A C \cdot B D$, VI. 16

$$
=K \cdot L .
$$

1. If E^{\prime} be the point in which the semicircle described on the other side of $C D$ cuts $A B$ produced, prove $A E^{\prime \prime} \cdot E^{\prime} B=K \cdot L$.
2. Prove $A E^{\prime \prime}=B E$ and $E^{\prime} B=A E$.
3. What limits are there to the size of the rectangle $K \cdot L$?
4. Solve the problem otherwise by converting the rectangle $K \cdot L$ into a square.

PROPOSITION 30. Problem.

To divide a given straight line in extreme and mean ratio.

Let $A B$ be the given straight line:
it is required to divide it in extreme and mean ratio.
Divide $A B$ internally at C so that $A B \cdot B C=A C^{2} .1 I .11$
Because $A B \cdot B C=A C^{2}$;
Const.
$A B: A C=A C: B C$.
VI. 1 "

1. If in the figure to VI. $8, B C$ be divided in extreme and mean ratio at D, then $A C=B D$; and conversely.
2. $A B$ and $D E$ are two straight lines divided internally at C and F so that $A C: C B=D F: F E$; if $A B \cdot B C=A C^{2}$, prove $D E \cdot E F=D F^{\prime 2}$.

PROPOSITION 31. Theorem.

Any rectilincel figure described on the hempotenuse of a rightangled triangle is equal to the similar and simitarly described figures on the other two sides.

Let $\triangle A B C$ be right-angled at A, and let X, Y, Z be rectilineal figures, similar and similarly described on $B C$, $A B, A C$:
it is required to prove $X=Y+Z$.
Draw $A D \perp B C$.
I. 12

Then $\quad C B: B A=A B: B D$;
VI. 8, Cor.
$\therefore \quad C B: B D=X: Y$,
VI. 20, Cor.
and $\quad B D: C B=Y: X$, hy inversion.
V. A.

Similarly, $D C: C B=Z: X$;
$\therefore B D+D C: C B=Y+Z: X$.
V. 24

But $B D+D C=C B ; \quad \therefore Y+Z=X$.

1. From this proposition deduce I. 47.
2. Has I. 47 ever been used in any of the propositions which help to prove VI. 31?
3. Prove V'I. 31 from VI. 22 and I. 47.
4. If on $A B, A C, B C$ semicircles are described, those on $A B$ and $A C$ being exterior to the triangle, that on $B C^{\prime}$ not being so , the sum of the areas of the two crescent-shaped figures will $=\triangle A B C$. Assume that semicircles are similar figures. The crescent-shaped figures are often called the lunules of Hippocrates of Chios (about 450 B.c.).

PROPOSITION 32. Theorem.

If two triangles, which have two sides of the one proportional to two sides of the other, be joined at one angle so as to have their homologous sides parallel, the remaining sides shall be in the same straight line.

Let $A B C, D C E$ be two triangles, having $B A: A C=$ $C D: D E$, and having $A B \| D C$, and $A C \| D E$: it is required to prove $B C$ and $C E$ in the sume straight line.

Because $A B$ is $\| D C$, and $A C$ is $\| D E$, Hyp.
$\therefore \angle A=\angle D$.
And because $B A: A C=C D: D E$,
I. 34, Cor.
$\therefore \triangle \mathrm{s} A B C, D C E$ are mutually equiangular;
Нур.
$\therefore \angle B=\angle D C E$.
To each of these equals add $\angle B C D$;
then $\angle B+\angle B C D=\angle D C E+\angle B C D$.
But $\angle B+\angle B C D=2$ rt. $\angle \mathrm{s}$;
I. 29
$\therefore \quad \angle D C E+\angle B C D=2 \mathrm{rt} . \angle \mathrm{s} ;$
$\therefore B C$ and $C E$ are in the same straight line.
I. 14

1. Show, by producing $E D$ its own length to F and joining $C F$, that the enunciation of the proposition is defective.
2. From the points A and B there are drawn, either in the same or in opposite directions, two parallels $A C, B D$, and in like manner two other parallels $A E, B F$; if $A C: B D=A E: B F$, then $B A, D C, F E$ are concurrent. (Simson's Sectiones Conicce, 1735, ii., Lemma 2.)
3. The same things being supposed as in the last deduction, if CII , $D L$ drawn parallel to each other mect $A B$, or $A B$ produced at H and L, then $E H$ and $F L$ will be parallel. (Lemma 3.)

rROPOSITION 33. Theorem.

In equal circles, angles, whether at the centres or at the circumferences, have the sume rations the ures on which they stamd; so ulso have the sectors.*

Let $A B C, D E F$ be equal circles, and let $\angle \mathrm{s} B C C, E H F$ be at their centres, and $-\mathrm{s} A$ and ν at their $\bigcirc^{\text {ces }}$: it is required to proce

$$
\begin{aligned}
& \text { arc } B C: \operatorname{arc} E F=\angle B C C: \angle E I F, \\
& \text { arc } B C: \operatorname{arc} E F=\angle A: \angle D, \\
& \text { arc } B C: \text { arc } F F=\text { sector } B C C: \text { sector } E I I F .
\end{aligned}
$$

Take any number of ares $C K, K L, L M$ each $=B C$, and $F P, P Q$, any number of them, each $=E F$; and join GK, GL, GM, HI', HQ.

Because arcs $B C, C K, K L, L M$ are all equal, Comst. $\therefore \angle s B G C, C G K, K C i L, L$ Lill are all equal. III. 27
\therefore whatever multiple are $B . W$ is of are $B C$, the same multiple is $\angle B G M$ of $\angle B G O$.
*The last part of the theorem was added by Theon of Alexandria (about 330 A.D.). The proof in the text is not his.

Similarly, whatever multiple arc $E Q$ is of arc $E F$, the same multiple is $\angle E H Q$ of $-E H F$.
And if arc $B M$ be equal to, greater, or less than arc $E Q$,
$\angle B C r M$ will be equal to, greater, or less than
$\angle E I I Q$.
III. 27

Now since there are four magnitudes $B C, E F, \angle B C C$, LEHF;
and of $B C$ and $\angle B G C$ (the first and third) any equimultiples whatever have been taken, namely, $B M$ and $\therefore B G M$,
and of $E F$ and $\angle E H F$ (the second and fourth) any equimultiples whatever have been taken, namely, $E Q$ and $\angle E H Q$;
and since it has been shown that if $B M$ be equal to, greater, or less than $E Q$,
$\angle B G M$ is equal to, greater, or less than $\angle E H Q$;
$\therefore \operatorname{arc} B C: \operatorname{arc} E F=\angle B G C: \angle E H F$. I. Def. 5
Again, because arc $B C$: are $E F=\angle B G C:-E H F$;
\therefore arc $B C$: arc $E F=$ half $\angle B G C$: half $\angle E H F$, V. 15, 11

$$
=\quad \angle A: \quad \angle D . \quad \text { III. } 20
$$

Lastly, because arcs $B C, C K, K L, L M$ are all equal;
\therefore sectors $B G C, C G K, K G L, L G M$ are all equal ; $I I I .27, C o r$.
\therefore whatever multiple arc $B M$ is of arc $B C$, the same multiple is sector $B G M$ of sector $B G C$.
Similarly, whatever multiple are $E Q$ is of are $E F$, the same multiple is sector $E H Q$ of sector EIFF.
And if arc $B M$ be equal to, greater, or less than arc $E Q$, sector $B G M$ will be equal to, greater, or less than sector $E \| Q$. III. 27, Coi:

Hence, as before, arc $B C$: arc $E F=$ sector $B G C$: sector $E H F$.
V. Def. 5

If ares of different circles have a common chord, straight lines diverging from one of its extremities will cut the ares proportionally.

PROPOSITION B.* Theorem.

If the interior or the exterior vertical anyle of a triangle ve bisected by a straight line which also cuts the base, the square on this bisector slull be equal to the difference between the rectangle contained by the sides of the triangle and the rectangle contained by the segments of the base.

(1) Let $A B C$ be a triangle, having the interior vertical $\angle B A C$ bisected by AI):
it is required to proce $A D^{2}=A B \cdot A C-B D \cdot D C$.
About the $\triangle A B C$ circumscribe a circle ;
IV. 5 produce $A D$ to meet the $\bigcirc^{\text {ce }}$ at E, and join $E C$.

$$
\text { In } \triangle s A B l, A E C,\left\{\begin{array}{l}
\angle B A D=i E A C \quad I I!p .
\end{array}\right.
$$

\therefore these triangles are mutually equiangular. I. 32, Cor. 1
$\therefore A B: A D=A E: A C$;
$\therefore A B \cdot A C=A E \cdot A D$,

$$
=E D \cdot A D+A D^{2}
$$

$$
\text { II. } 3
$$

$$
=B I \cdot I C+A D D^{2}
$$

III. 35
$\therefore \quad A D^{2}=A B \cdot A C-B D \cdot D C$.

[^29](2) Let $A B C$ be a triangle, haviug the exterior vertical $\angle B^{\prime} A C$ bisected by $A D$:
is is required to prove $A D^{2}=B D \cdot D C-A B \cdot A C$.
About the $\triangle A B C$ circumscribe a circle ; IV. 5 produce $D A$ to meet the $O^{\text {co }}$ at E, and join $E C$.

Because $\quad \angle B^{\prime} A D=\angle C A D$; Hyp.
\therefore supplement of $\angle B^{\prime} A D=$ supplement of $\angle C A D$;
$\therefore \quad \angle B A D=\angle E A C$. I. 13
In $\triangle \mathrm{s} A B D, A E C,\left\{\begin{array}{l}\angle B A D=\angle E A C \\ \angle A B D=\angle A E C ;\end{array}\right.$
III. 21
\therefore these triangles are mutually equiangular. I. 32 , Cor. 1
$\therefore A B: A D=A E: A C$;
VI. 4
$\therefore A B \cdot A C=A E \cdot A D$,
$=I D \cdot A D-A D^{2}$,
VI. 16
II. 3
$=B D \cdot D C-A D^{2} ; \quad$ III. 35, Cor.
$\therefore \quad A D^{2}=B D \cdot D C-A B \cdot A C$.

1. If, in fig. $1, A E$ be a diameter of the circle, of what shape will $\triangle A B C$ be?
2. In that case prove $A D^{2}=A B \cdot A C-B D \cdot D C$, if $A D$ be any straight line drawn to the base $B C$.
3. Could the bisector of the exterior vertical angle of a triangle be a diameter of the circle circumscribed about the triangle?
4. Prove $A E \cdot E D=B E^{2}$ or $C E^{2}$.
5. If a straight line be cut internally and externally in the same ratio, the square on the segment between the points of section $=$ the difference between the rectangle contained by the external segments, and the rectangle contained by the internal segments.
6. Prove that the converse of the proposition is true except when $A B=A C$.
7. Lxpress in terms of a, b, c, the siles of a triangle, the bisectors of the interior and the exterior vertical angles.
8. Construct a triangle having given two sides and
(1) the bisector of the angle included by them,
(2) the bisector of the angle adjacent to that included by them.

PROPOSITION C.* Theorem.

If from the rertical angle of a triangle a pirponenticular be draun to the base, the rectumgle romtained ling thie sides of the triangle is aqual to the rectumgle contiment loy the perpencticulur and the diameter of the circle. circumscriled about the triangle.

Let $A B C$ be a triangle, $A D$ the perpendicular from A on the base $B C$, and $A E$ a dimeter of the circle circumscribed ahout $A B C$:
it is required to mare $A B \cdot A C=A D \cdot A E$.
Join $E C$.
In $\triangle \mathrm{s} A B D, A E C,\left\{\begin{array}{l}\angle A D B=\angle A C E \quad \text { III. } 31 \\ \angle A B I=\angle A E C ; H I .21, m 22, C o r .\end{array}\right.$
\therefore these triangles are mutually erquiangular. I. 32 , C'or. I
$\therefore A B: A D=A E: A C$;
$\therefore A B \cdot A C=A D \cdot A E$.
II. 16

1. Conversely, if $A B C$ be a triangle, $A E$ the dianeter of the circumscribed circle, and if $A I$) he drawn to $B C$ so that $A I \cdot A E=A B \cdot A C$, then $A D$ is $\perp B C$.
2. Construct a triancle, having givan the base, the vertical angle, and the rectangle eontained by the sides.
3. If a cirele be circumscribed about a triangle, and two straight lines he drawn from the vertex making equal angles with the sides, one of the straight lines mecting the base, or the ase
*Given by Brahmegupta, an Indian mathernatician (born 598 c.D.).
produced, and the other the $O^{\text {ce }}$, the rectangle contained by these straight lines $=$ the rectangle contained by the sides of the triangle.
4. From the preceding deduction deduce VI. B and C.
5. Express the circumscribed radius of a triangle in terms of any two sides and the perpendicular on the third side; and the area of the triangle in terms of the three sides and the circumscribed radius.
6. The rectangles contained by any two sides of triangles inscribed in the same or equal circles are proportional to the perpendiculars on the third sides.
7. If in the figure to VI. D the diagonals intersect at F, prove $B A \cdot B C: C B \cdot C D=B F^{\prime}: C F$, and conversely.
8. In the same figure prove
$A B \cdot A D+C B \cdot C D: B A \cdot B C+D A \cdot D C=A C: B D$.

PROPOSITION D.* Theorem.

The rectangle contained by the diagonals of a quadrilateral inserilued in a circle is equal to the sum of the two rectanyles contained by its opposite sides.

Let $A B C D$ be a quadrilateral inscribed in a circle, and $A C, B D$ its two diagonals:
it is required to proce $A C \cdot B D=A B \cdot C D+A D \cdot B C$.
Make $\angle B A E=\angle D A C$.

[^30]

To each of these equals add $\angle E A C$;
$\therefore \angle B A C=\angle E A D$.
In $\triangle \mathrm{s} A B C, A E D,\left\{\begin{array}{l}\angle B A C=\angle E A D \\ \angle A C B=\angle A D E ;\end{array}\right.$
III. 21
\therefore these triangles are mutually equiangular. I. 32, Cor. 1
$\therefore B C: C A=E D: D A$;
$\therefore A D \cdot B C=A C \cdot E D$.
VI. 16

In $\triangle \mathrm{s} A B E, A C D,\left\{\begin{array}{l}\angle B A E=\angle C A D \\ \angle A B F=\angle A C D ;\end{array}\right.$ Const.
III. 21
\therefore these triangles are mutually equiangular. I. $32, C(1) .1$
$\therefore A B: B E=A C: C D$;
$\therefore A B \cdot C D=A C \cdot B E$.
VI. 16

Heuce, $A B \cdot(' D)+A D \cdot B C=A C \cdot B E+A C \cdot E D$,

$$
=A C \cdot B I . \quad I I .1
$$

1. An equilateral triangle is inscribed in a cizsle, and from anj. point on the $O^{\text {ce }}$ straight lines are drawn to the vertices; prove that one of these is equal to t? : sum of the other two.
2. In all quadrilaterals that cannot be inscribed in a circle, the rectangle contained by the diagonals is less than the sum of the two rectangles contained by the opposite sides.
3. I'rove the converse of the proposition.
4. $A B C$ is a triangle inseribed in a circle; D, E are taken on $A B, A C$ so that l, D, E, C are concyclie ; the circle $A D E$ cuts the former in F. Prove that $F^{\prime} h+F^{\prime} B: F^{\prime} C^{\prime}+F^{\prime} D=$ $A B: A C$. (k. Tucker.)

APPENDIX VI.

TRANSVERSALS.

Def. 1.-When a straight line intersects a system of straight lines, it is called a transversal.

This definition of a transversal is not the most general (that is, comprehensive) one, but it will suffice for our present purpose.

Proposition 1.

If a transversal cut the sides, or the sides proauced, of a triangle, the product of three alternate segments taken cyclically is equal to the product of the other three, and conversely.*

Let $A B C$ be a triangle, and let a transversal cut $B C, C A, A B$, or these sides produced at D, E, F respeectively :
it is required to prove $A F \cdot B D \cdot C E=F B \cdot D C \cdot E A$.
Draw $A G \| B C$, and meeting the transversal at G. I. 31
Then $\triangle \mathrm{s} A F G, B F D$ are mutually equiangular ; I. 29
$\therefore A F: A G=B F: B D$; VI. 4
$\therefore A F \cdot B D=A G \cdot B F$. (1)
VI. 16

* Given in the third book of the Spherics of Menelaus, who lived at Alexandria towards the elose of the first century A.D. For a full account of the theorem, see Chasles' Apcrçu Historique sur l'origine et le développement des Méthodes en Géométrie, p. 291.

Again, $\triangle \mathrm{s} A E G, C E D$ are mutually equiangular ;
I. 29
$\therefore A G: A E=C D: C E$;
VI. 4
$\therefore A G \cdot C E=C D \cdot A E$. (2)
VT. 16
Multiply equations (1) and (2) together, and strike out the common factor $A G$; theu $A F \cdot B D \cdot C E=F B \cdot D C \cdot E A$.

Cor. 1.-The equation $A H^{\prime} \cdot B D \cdot C E=F B \cdot D C \cdot E A$ may be put in any of the following four useful forms:

$$
\begin{gathered}
A F: F B=D C \cdot E A: B D \cdot C E, \\
B D: D C=E A \cdot F B: C B \cdot A F \\
C E: E A=F B \cdot D C: A F \cdot D D, \\
\frac{A F}{H B} \cdot \frac{B D}{D C} \cdot \frac{C E}{F A}=1 .
\end{gathered}
$$

Cor. 2.-Consider $A B C$ as the triangle, $D E F$ as the transversal : then $A F \cdot B I) \cdot C b=F B \cdot C \cdot E A$. (1)
Consider $A F F$ as the trianglo, $B(J)$ as the transversal ;
then $A B \cdot F I) \cdot E(=B F \cdot D E \cdot C A$. (2)
Consider $B D F$ as the trinngle, $A E C$ as the transversal ;
then $B C \cdot D E \cdot F A=C D \cdot E F \cdot A B$. (3)
Consider $C E D$ as the triangle, $A F B$ as the transversal;
then $C E \cdot D F \cdot V A=E D \cdot F E \cdot A C$. (4)
Any one of these four equations may be deduced from the other three by multiplying thein together and striking out the fachors common to both sides.

The converse of the theorem (which may he proved indirectly) is, If two puints be taken in the sides of a triangle, amd a third mint in the third side promluced, or if three pints bo taken in the three sides promberl of a trianglo, such that the prowhet of three alternate aegments taken eyelically is equal to the produet of the other three, the three points are collinear.

Proposition 2.

If three concurrent straight lines be drawn from the vertices of a triangle to meet the opposite sides, or two of those sides produced, the product of three allernate segments of the sides taken cyclically is equal to the product of the other three; and conversely.*

Let $A B C$ be a triangle, and let $A D, B E, C F$, which pass through any point O, meet the opposite sides in D, E, F^{\prime} :
it is required to prove $A F^{\prime} \cdot B D \cdot C E=F B \cdot D C \cdot E A$.
Consider $A B D$ as a triangle cut by the transversal COF;
then $A F \cdot B C \cdot D O=F B \cdot C D \cdot O A$. (1) App. VY. 1 Consi ler $A D C$ as a triangle cut by the transversal $B O E$; then $10 \cdot D B \cdot C E=O D \cdot B C \cdot E A$. (2) App.VI. 1 Multiply equations (1) and (2) together, and strike out the common factors $A O, D O, B C$;
then $A F^{\prime} \cdot B D \cdot C E=F B \cdot D C \cdot E A$.
Cor.-Repeat Cor. 1 to the preceding theorem.
The converse of the theorem (which may be proved indirectly) is, If three straight lines be drawn from the vertices of a triangle to meet the opposite sides, or two of those sides produced, so that the product of three alternate segments of the sides taken cyclically is equal to the product of the other three, the three straight lines are concurrent.

* This theorem is first found in a work of the Marquis Giovanni Ceva, De lineis rectis se invicem secantilus, statica constructio (1678), Book L., Prop. 10. The proof given in the text is due to Carnot, the founder ot the Theory of Transversals. See his Essai sur la Théoric dcs Tranaversales (1806), p. 7 .

Note-To distinguish readily between the converse of Menelaus's theorem and that of Ceva's, it should be observed that in the first ease an even number of the points D, E, F are situated on the sides, and an odd number on the sides produced; in the secoud case metters are reversed.

Proposition 3.

'i two triangles be situated so that the straight lines joining corresponding vertices are concurrent, the points of intersection of corresponding siles are collinear ; and conversely.*

Teet $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles such that $A A^{\prime}, B B^{\prime}, C O^{\prime}$ are concurrent at O; and let the corresponding sides $B C, B^{\prime} C^{\prime}$ meet in $L, A C^{\prime}, A^{\prime} C^{\prime}$ in $M, A l B, A^{\prime} B^{\prime}$ in N : it is required to prove $L, 11, N$ collinear.

Consider $A O B$ as a triangle cut by the transversal $A^{\prime} B^{\prime} N$;
then $A N \cdot B B^{\prime} \cdot O A^{\prime}=N B \cdot B^{\prime} O \cdot A^{\prime} A$. (1) App, VI. 1 Consiler $A O C$ as a triangle cut ly the transversal $A^{\prime} C^{\prime} M$; then $A^{\prime} A^{\prime} \cdot O C^{\prime} \cdot C M=A^{\prime} O \cdot C^{\prime} C \cdot M A$. (2) App; VI. 1 Consider $B O C$ as a triangle cut by the transversal $B^{\prime} C^{\prime} L$; then $B^{\prime} O \cdot C^{\prime \prime}\left(\cdot \cdot L B=B F^{\prime} \cdot O C^{\prime} \cdot C L\right.$. (3)

App. VI. 1

[^31]Multiply the equations (1), (2), (3) together, and strike out the common factors;
then $A N \cdot B L \cdot C M=N B \cdot L C \cdot M A$;
$\therefore L, M, N$ are collinear.
App. V1. 1
The converse of the theorem (which may be proved indirectly) is, If two triangles be situatel so that the points of intersection of corresponding sides are collinear, the straight lines joining corresponding vertices are concurrent.

HARMONICAL PROGRESSION.

DeF. 2.-If a straight line be cut internally and externally in the same ratio it is said to be cut harmonically; and the two points of section are said to form with the ends of the straight line a harmonic range.

Thus, if $A B$ be cut internally at C, and externally at D, in the same ratio, $A B$ is said to be cut harmonically; and the points A, C, B, D are said to form a harmonic range.

Def. 3.-The points C and D are said to be harmonically conJugate to each other (harmonic conjugates) with respect to the points A and B. The segments $A B, C D$ are sometimes (Chasles' Géométrie Supérieure, § 58) called harmonic conjugates.

Since a straight line can be cut internally, and therefore externally in any ratio, it may be cut harmonically in au infinite number of ways.

The ancient Greck mathematicians* defined three magnitudes to be in harmonical progression when the first is to the third as tise d. fference between the first and second is to the difference between the second and third. Now, if $A B$ be cut internally at C and externally at D in the same ratio,

$$
\begin{aligned}
A D: D B & =A C: C B ; \\
A D: A C & =D B: C B \text { by alternation, V. } 16 \\
& =A D-A B: A B-A C .
\end{aligned}
$$

Hence, if $A D, A B, A C$ be regardel as the three magnitudes, it will be seen that they are in harnonical progression, since they conform to the definitior.

[^32]
Proposition 4.

If C and D are harmonic conjugates with respect to A and B, then A and B are harmonic conjugates with respect to C and D.

Since C and D are harmonic conjugates with respect to A and B, $\therefore A B$ is cut internally at C and externally at D in the same ratio;
$\therefore A D: D B=A C: C B$; App. I'I. Def. 3
$\therefore A D: A C=D B: C B$, by alternation, V. 16 that is, $C D$ is cut externally at A and internally at B in the same ratio;
$\therefore A$ and B are harmonic conjugates with respect to C and D.
Cor. 1.-Hence, if A, C, B, D form a harmonic range, not only are $A D, A B, A C$ in harmonic progression, but also $A D, C D, B D$.

Cor. 2.-The points which are harmonic conjugates to two given points are always situated on the same side of the middle of the line joining the two given points.

(1)

Suppose A and B the given points, O the middle of $A B$.
Since C and D are harmonic conjugates with respect to A and B, $\therefore A D: D B=A C: C B$.

App. VI. Def. 3
Now if I) be situated (as in figs. 1 and 2) to the right of O,
then $A D$ must he greater than $D B$;
$\therefore A C$ must be greater than $C B$,
that is, C also is situated to the right of O.
If D be sitnated (as in figs. 3 and 4) to the left of O, then $A D$ must be less than $L B$;
$\therefore A C$ must be less than $C B$,
that is, C also is situated to the left of O.

Cor. 3.-If any three of the points forming a harmonic ravge be given, the fourth may be determined.

Four cases are all that can arise, namely, when A, C, B, or D is to be found.
(1) If A, C, B are given, D can be found by dividing $A B$ externally in the ratio $A C: C B$.
(2) If C, B, D are given, A can be found by dividing $D C$ externally in the ratio $D B: B C$.
(3) If A, B, D are given, C can be found by dividing $A B$ internally in the ratio $A D: D B$.
(4) If A, C, D are given, B can be found by dividing $D C$ internally in the ratio $D A: A C$.

Proposition 5.

If $A D, A B, A C$ are in harmonical progression, and the mean $A B$ is öisectel at O, then $O D, O B, O C$ are in geometrical prouression; and conversely.*

Since $A D, A B, A C$ are in harmonical progression,
$\therefore \quad A D: D B=A C: C B ; \quad$ App. VI. Def. 2
$\therefore O D+O B: O D-O B=O B+O C: O B-O C$;
$\therefore \quad O D: O B=O B: O C$. Converse of $\mathrm{V} . \mathrm{D}$
Cor. 1.-Since $O D: O B=O B: O C, \therefore O R^{2}=O C \cdot O D$. I I. 17 Now if A and B are fixed points, $O B^{2}$ is constant; $\therefore O C . O D$ is constant.
Hence if $O C$ diminishes, $O D$ increases, that is, if C moves nearer to O, D moves farther away ; and if $O C$ increases, $O D$ diminishes, that is, if C moves away from O, D moves nearer to O. In other words, if C and D move in such a manner as always to remain harmonic conjugates with respect to the fixed points A and B, they must move in opposite directions. Also, the nearer C approaches to O, the farther does D recede from it ; and when C coincides with O, D must be infinitely distant from it, or as it is ofte expressed, at infinity.

[^33]Cor. 2. $O D: C D=O B^{2}: A C \cdot C B$.
Cor. 3. $O C: O D=A C^{2}: A D^{2}$.
[Corr. 2, 3 are given in De La Hire's Sectiones Conicre, 16S5, p. 3.]

l'roposition 6.

If $A D, A B, A C$ are in harmonical progression, and the mean $A B$ is bisected at O, then $A D, O D, C D, B D$ are proportionals; and conversely.*

For $A D \cdot D B=(O D+O B) \cdot(O D-O B)$,
$=O D^{2}-O B^{2}$,
II. 5, Cor.
$=O D^{2}-O D \cdot O C$,
$=O D \cdot C D$;
App. VI. 5
II. 3
$\therefore A D: O D=C D: B D$.
VI. 16

Cor. 1.-Since $O D \cdot C D=A D \cdot D B$;
$\therefore \quad 2 O D \cdot C D=2 A J \cdot D B$;
$\therefore \quad(A D+D B) \cdot C D=2 A D \cdot D B$,
a result which, considering $A D, C D, B D$ as the terms in harmonical progression, may be stated thus:

The rectangle under the harmonic mean and the sum of the extremes is equal to twice the rectangle under the extremes.

Cor. 2.-The geometric mean between two straight lines is a geometric mean between the arithmetic and the harmonic means of the same straight lines. [The arithmetic mean hetween two magniturdes is half their sum.]

Denote the arithmetic, genmetric, and harmonic means between $A D$ and $D B$ by ", !\% / I respectively ;
then $a=\frac{1}{2}(A D+D B)=O D, y^{2}=A D \cdot D B, \quad h=C D$.
Now sunce $A D \cdot D B=O D \cdot C D, \therefore g^{2}=a \cdot h$;
$\therefore a: g=g: h$

$$
\text { * Papıus, 니. } 160 .
$$

Proposition 7.

If $A D, A B, A C$ are in harmonical progression, and the mean $A B$ is bisected at O, then $C B: C D=C O: C A$; and conversely.*

For $A C \cdot C B=(O B+O C) \cdot(O B-O C)$,

$$
\begin{array}{lr}
=O B^{2}-O C^{2}, & \text { II. 5, Cor. } \\
=O C \cdot O D-O C^{2}, & \text { App. VI. } 5
\end{array}
$$

$$
=O C \cdot C D
$$

$$
\text { II. } 3
$$

$\therefore \quad C B: C D=C O: C A$.
II. 16

Cor. 1. $D B: D C=A O: A C$. (De La Hire's Sectiones Conicce, p. 3.)

Cor. 2. $A B \cdot C D=2 A C \cdot B D=2 A D \cdot B C$.
Cor. 3. $A B^{2}+C D^{2}=(A C+B D)^{2}$.

Proposition 8.

If $A D, A B, A C$ are in harmonical progression, then $A D \cdot D B-A C \cdot C B=C D^{2}$; and conversely.

Bisect $A B$ at 0 .
Then $A D \cdot D B=(O D+O B) \cdot(O D-O B)=O D^{2}-O B^{2}, I I .5$, Cor.
and $\quad A C \cdot C B=(O B+O C) \cdot(O B-O C)=O B^{2}-O C^{2} ; I I .5$, Cor.
$\therefore A D \cdot D B-A C \cdot C B=O D^{2}-2 O B^{2}+O C^{2}$,
$=O D^{2}-2 O D \cdot O C \div O C^{2}$, App. VI. 5
$=(O D-O C)^{2}=C D^{2} . \quad I I .7$
The theorem may also be proved without bisecting $A B$.

The following definitions are necessary for some of the deductions:
Def. 4.-If four points A, C, B, D forming a harmonic range be joined to another point O, the straight lines $O A, O C, O B, O D$ are said to form a harmonic pencil $O A, O C, O B, O D$ are called the rays of the pencil, and the pencil is denoted by $O \cdot A C B D$.

[^34]Def. 5.-If the straight line joining the centres of two circles be divided internally and externally in the ratio of the radii, the priuts of section are called the internal and external centres of similitude of the two circles. (The phrase 'centre of similitude' is due to Euler, 17i7. See Nov. Act. Petrop., ix. 154.)

Def. 6.-The figure which results from producing all the sides of any ordinary quadrilateral till they intersect is called a complete quadrilateral; and the straight line joining the intersections of pairs of opposite sides is called the third diagonal. (Carnot, Essai sur la Théorie des Transversales, p. 69.)

To the notation adopted for points and lines conrected with the triangle $A B C$ on pp. 98-100, 252,253 , should be added the following:
N, P, Q denote the points where the bisectors of the interior $\angle \mathrm{s} A, B, C$ meet the opposite sides.
$N^{\prime}, P^{\prime}, Q^{\prime}$ denote the points where the bisectors of the exterior $\angle s . A, B, C$ meet the opposite sides.
\triangle by itself denotes the area of $\triangle A B C$.
ρ denotes the radius of the circle inscribed in the orthocentric $\triangle X Y Z$.

DEDUCTIONS.

1. C and D are two points both in $A B$, or both in $A B$ produced : show that $A C: C B$ is not $=A 1): D B$.
2. Find the geometric mean between the greatest and the least straight lines that can be drawn to the $O^{\text {ce }}$ of a circle from a point (1) within, (2) without the circle.
3. In the figure to IV. 10, $\angle \mathrm{s} A B D, A C D, D C B$ are in geometrical progression.
4. Construct a right-angled triangle whose sides shall be in geometrical progression.
5. If a straight line lee a common tangent to two circles which touch each other externally, that part of the tangent lwetween the points of contact is a geometric mean between the diameters of the circles.
6. Any regular polygon inscribed in a circle is a geometric mean between the inscribed and circumscribed regular polygons of half the number of sides.
7. To find a mean proportional between $A B$ and $B C, C$ being situated between A and B. Produce $A B$ to E, making $B E=A C$; with A and E as centres and $A B$ as radius, describe arcs cutting in D; join $B D . \quad B D$ is the mean proportional. (See Wallis's Algebra, Additions and Emendations, 16S5, p. 164.)
Of three straight lines in geometrical progression :
8. Given the mean and the sum of the extremes, to find the extremes.
9. Given the mean and the difference of the extremes, to find the extremes.
10. Given one extreme and the sum of the mean and the other extreme, to find the mean and the other extreme.
11. Given one extreme and the difference of the mean and the other extreme, to find the mean and the other extreme.
12. Find two straight lines from any two of the six following data : their sum, their difference, the sum of their squares, the difference of their squares, their rectangle, their ratio.
13. If two triangles have two angles supplementary and other two angles equal, the sides about their third angles are proportional.
14. Divide a straight line into two parts, the squares on which shall have a given ratio.
15. Describe a square which shall have a given ratio to a given polygon.
16. Cut off from a given triangle another similar to it, and in a given ratio to it.
17. Cut off from a given angle a triangle $=$ a given space, and such that the sides about that angle shall have a given ratio.
18. $A C B$ is a semicircle whose diameter is $A B$, and on $A B$ is described a rectangle $A D E B$, whose altitude $=$ the chord of half the semicircle ; from C, any point in the $O^{c e}, C D, C E$ are drawn cutting $A B$ at F and G. Prove $A G^{2}+B F^{2}=A B^{2}$. (Due to Fermat, 165s. See Wallis's Opera Mathematica, 1695 , vol. i. p. 858.$)$
19. If two chords $A B, C D$ intersect each other at a point E inside a circle, the straight lines $A D, B C$ cut off equal segments from the chord which passes through E and is there bisected.
20. Enunciate and prove the preceding theorem when the chords $A B, C D$ intersect each other outside the circle.

Prove the following properties of $\triangle A B C$:
21. $s(s-a): \Delta=\Delta:(s-b)(s-c)$.
22. $s: s-a-(s-b)(s-c): r^{2}=r_{1}^{2}:(s-b)(s-c \%$.

2?. $r r_{1} r_{2} r_{3}=\Delta^{2}$.
-4. $s^{2}=r_{2} r_{3}+r_{2} r_{3}+r_{3} r_{1}$.
2). $s a=r_{1}\left(r_{2}+r_{3}\right), s h=r_{2}\left(r_{3}+r_{1}\right), s c-r_{3}\left(r_{1}+r_{2}^{\prime}\right.$.

Q(. $r\left(r_{1}+r_{2}+r_{3}\right)=A F^{\prime} \cdot F B+B D \cdot D C+C E \cdot E \cdot I$.
27. $\Delta=\frac{1}{2} R(X Y+Y Z+Z Y)$.
23. 2s: $\mathrm{XY}+\mathrm{Y} \%+Z \mathrm{X}=R: r$.
29. $\triangle A B C: \triangle N 1 \%=R: \rho$.
30. $2 R \rho=A O \cdot O X=B O \cdot O Y=C O \cdot O Z$.
31. $a^{2}+b^{2}+c^{2}=8 l^{2 \prime}+4 R \rho$.
32. $S I^{2}=R(R-2 r)$.
33. $S I_{1}{ }^{2}=R\left(l_{1}+2 r_{1}\right), S I_{2}{ }^{2}=R\left(R+2 r_{2}\right), S I_{3}{ }^{2}=R\left(R+2 r_{3}\right)$.
34. $S I^{2}+S I_{1}{ }^{2}+S I_{2}{ }^{2}+S I_{3}{ }^{2}=12 I^{2}$.

3\%. $a^{2}+l^{2}+c^{2}+r^{2}+r_{1}{ }^{2}+r_{2}{ }^{2}+r_{3}{ }^{2}=16 r^{2}$.
36. $I I_{1}{ }^{2}+I I_{2}{ }^{2}+I I_{3}{ }^{2}+I_{1} I_{2}{ }^{2}+I_{2} I_{2}{ }^{2}+I_{3} I_{1}{ }^{2}=4 \mathrm{~S} R^{2}$.

33. $H \mathrm{X} \cdot N D=H D \cdot D X: \quad H \mathrm{~N} \cdot N D_{1}=H D_{1} \cdot D_{1} \mathrm{X}$.
39. $H \mathrm{X} \cdot N^{\prime} D_{2}=\left\|D_{2} \cdot D_{2} X: H X \cdot N D_{3}=\right\| D_{3} \cdot I_{3} X$.
40. $H N \cdot N X=D N^{\prime} \cdot N D_{1} ; H N^{\prime} \cdot N^{\prime} N=V_{2} N^{\prime \prime} \cdot N^{\prime \prime} D_{3}$
[Regarding theorem 21 , see p. 145. It has, however, been conjectured, and with probability, that the treatise in which it oceurs is a work of Heron the younger, and therefore long subsequent to the date of the elder Heron. The theorem was known to Brahmegupta, 6i28 a.d. For theorems 20, 36, 25, 20, see Davies in Ludies' Diury, 1535, pp. 56, 59; 1836, p. 51) ; and Philosophical Mayazine for June 1827, p. 29. For 23 and 24, se Lhtilier, Flémens d'Analyse, 1 . 224. For 27, 28, 29, 30, 31, 34, 3.5, see Fentrbach, Eigenschaiten, \&c., section vi., theorems $3,4,5,6,7$; section ir., § $\mathrm{S}_{0} 0$; section ii., s $\because 9$. Theorem 32 is usually attributed to Luler, who gave it in 176. It occurs, however, in vol. i. page 123, by William Chapple, of the Miscellenca Curiosu Mathometica, and probably appeared alout 1746. Theorem 33 is given in John Landen's Mathematical Lucubrations, $1755, \mathrm{p}$. S. Some of the pruperties $37-40$ are well known : but I cannot trace them to their sources. Hundreds of uther beantiful properties of the triaugle may be fonnd in Thomas Weddie's paprers in the Lady's and Gentleman's Diary for 1843, 1845, 1848.]

Construct a tr angle, having given :
41. The vertical angle, the ratio of the sides containing it, and the base. (Pappus, VII. 155.)
42. The vertical angle, the ratio of the sides containing it, and the diameter of the circumscribed circle.
43. The vertical angle, the median from it, and the angle which the median makes with the base.
44. The vertical angle, the perpendicular from it to the base, and the ratio of the segments of the base made by the perpendicular.
45. The vertical angle, the perpendicular from it to the base, and the sum or difference of the other two sides.
46. The base, the perpendicular from the vertex to the base, and the ratio of the other two sides.
47. The base, the perpendicular from the vertex to the base, and the rectangle contained by the other two sides.
48. The segments into which the perpendicular from the vertex divides the base, and the ratio of the other two sides.
49. The perpendiculars from the vertices to the opposite sides.
50. The sides containing the vertical angle, and the distance of the vertex from the centre of the inscribed circle.

TRANSVERSALS.

The following fire triads of straight lines are concurrent:

1. The medians of a triangle.
2. The bisectors of the angles of a triangle.
3. The bisector of any angle of a triangle and the bisectors of the two exterior opposite angles.
4. The perpendiculars from the vertices of a triangle on the opposite sides.
5. $A L, B K, C F$ in the figure to I. 47 .
6. If two sides of a triangle be cut proportionally (as in VI. 2), the straight lines drawa from the points of section to the opposite vertices will intersect on the median from the third vertex; and conversely.
7. The points in which the bisectors of any two angles of a triangle and the bisector of the exterior third angle cut the opposite sides are collinear.
8. The points in which the bisectors of the three exterior angles of a triangle meet the opposite sides are collinear.
9. If a circle be circumseribed about a tringgle, the points in which tangents at the vertices meet the opposite siles are colluear.
10. The perpendiculars to the lisectors of the angles of a triangle at their middle points meet the sides opposite those angles in three points which are collinear. (G. de Longchamps.)
11. $O A, O^{\prime} A^{\prime}, O^{\prime \prime} A^{\prime \prime}$ are three parallel straight lines; $O O^{\prime}, A A^{\prime}$ meet at $B^{\prime \prime} ; O^{\prime} O^{\prime \prime}, A^{\prime} A^{\prime \prime}$ at $B ; O^{\prime \prime} O, A^{\prime \prime} A$ at B^{\prime}. Prove $B, B^{\prime}, B^{\prime \prime}$ collinear.
12. If a transversal eut the sides, or the sides produced, of any polygon, the product of one set of alternate segments takeu cyclically is equal to the product of the other set. (Carnot's Essai sur la Théorie des Transversale., p. 70.)
13. If a hexagon be inscribed in a eircle, and the opposite sides be produced to meet, the three points of intersection are collinear. (Particular case of Pascal's theorem.)
14. Prove with reference to fig. on p . 345.
$A O \cdot B O \cdot C O: D O \cdot E O \cdot F O=A B \cdot B C \cdot C A: A F \cdot B D \cdot C E$.
(Davies's edition of Hutton's Mathematics, 1843, vol. ii. p. 219.)
15. If a point A be joined with three collinear points B, C, D, then will

$$
A C^{2} \cdot B D \pm A B^{2} \cdot C D=A D^{2} \cdot B C \pm B D \cdot D C \cdot B C
$$

the upper sign being taken when D lies between B and C, and the lower when it does not. (Matthew Stewart's Some General Theorems of considerable use in the higher parts of Mathematics, 1746, Prop. II.) Deduce from the preceding theorent, App. II. 1; deduction 1 on p. 151 ; VI. B ; and App. VI. 8.
16. If the $0^{\text {ce }}$ of a circle cut the sides $B C, C A, A B$, or those sides prorluced, of $\angle A B C$ at the points $D, D^{\prime}, E, E^{\prime}, F, F^{\prime \prime}$, then will $A F^{\prime} \cdot A F^{\prime} \cdot B D \cdot B D^{\prime} \cdot C E \cdot C^{\prime} E^{\prime}=F B \cdot F^{\prime} B \cdot D C \cdot D^{\prime} C \cdot E A \cdot E^{\prime} A$. (Carnot's Essni, \&c., 1. 72.)
17. Prove with reference to fig. on p. 251.
$A I \cdot B I \cdot C I: A B \cdot B C \cdot C A=A B \cdot B C \cdot C A: A I_{1} \cdot B I_{2} \cdot C I_{3}$.
(C. Adams's Di, merkurierdijsten Eigenschaften des geradlinigen IJreiecks, 1816, 1. 20.)
18. Prove the following triads of straight lines conuected with $\triangle A B C$ coneurrent :

(1) $A D, B E, C \overline{ }$	(7) $A D_{3}, B E, C F_{1}$	(13) $B C, E_{2} F_{3}, E_{1} F_{1}$
(2) $A D_{1}, E E_{1}, C F_{1}^{\prime}$	(8) $A D ., B E_{1}, C F$	(14) $C A, F_{3} D_{1}, F_{2} D_{2}$
(3) $A D_{2}, B E_{2}, C F_{2}$	(9) $A B, D E, D_{2} E_{1}$	(15) $A B, N P, I_{1} I_{2}$
(4) $A D_{3}, B E_{3}, C F_{3}$	(10) $B C, E F F, E_{3} F_{2}^{\prime}$	(16) $B C, P Q, I_{2} \dot{I}_{3}$
(5) $A D_{1}, B E_{2}, C F_{3}$	(11) CA, FD,$\quad F_{1} D_{3}$	(17) $C A, Q N, I_{3}$
(6) $A D, B E_{3}, C F_{2}$	(12) $A B, D_{1} E_{2}, D_{3} E^{2}$	

19. If the triads (5), (6), (7), ($\$$) meet at the points $I^{\prime}, I_{1}^{\prime}, I_{2}{ }_{2}^{\prime}, I_{3}^{\prime}$ respectively, prove that these four points are the inscribed and escribed centres of the triangle formed by drawing through A, B, C parallels to the opposite sides.
20. If the triads (9), (10), (11) meet at the points Q_{1}, N_{1}, P_{1},

$"$	$(12),(13),(14)$	$"$	$"$	$Q,, N_{2}, P_{2}$,
$"$	$(15),(16),(17)$	$"$	$"$	$Q_{3}, N_{3}, P_{3} ;$

then $Q_{1}, \lambda_{1}, P_{1}$ will lie on one straight line n,

$$
\begin{array}{llll}
Q_{2}, N_{2}, P_{2} & " & " & p, \\
Q_{3}, N_{3}, P_{3} & " & " & q ;
\end{array}
$$

and the three straight lines n, p, q will be concurrent. (Stephen Watson in the Ladly's and Gentleman's Diary for 1867, p. 72.)

HARMONICAL PROGRESSION.

1. When a straight line is cut in extreme and mean ratio, the difference of the segments equals half the harmonic mean between them.
Of three straight lines in harmonical progression, having given
2. The mean aud the greater extreme, find the less extreme.
3. The mean and the less extreme, find the greater extreme.
4. The two extremes, find the mean. (Pappus, III. 9, 10, 11.)
5. If from any point in the $0^{c e}$ of a circle straight lines be drawn to the extremities of a chord, and meeting the diameter \perp the chord, they will divide the diameter harmonically. (Pappus, VII. 156.)
6. If two tangents be drawn to a circle, any third tangent is cut barmonically by the two former, by their chord of contact, and by the circle.
7. In the figures to VI. 2, if $B E, C D$ intersect at F, then $A F$ is cut harmonically by $D E$ and $B C$; and $A F$ bisects $B C$.
8. If from a point outside a circle two tangents and a secant be drawn, that part of the secant between the external point
and the chorl of contact of the tangents is cut harmonically by the ce. (Yappus, VII. 154.)
9. $A,(, B, l)$ form a harmonic range ; on $A B$ as diameter a circle is described, and from D there is drawn a perpendicular to $A D$. If E be any point in this perpendicular, $E C$ is cut harmonically by the $O^{\text {ce }}$ of the circle. (Pappus, VII. 161.)
10. $A F B$ is a circle, of which $A B$ is a diameter ; D is any point in $A B$, and $J) F^{\prime}$ is $\perp A B ; E D C$ is a chord drawn through D such that $D E$ equals the radius. Show that $D E \prime, D F, D C$ are the arithmetic, geometric, and harmonic means between $A D$ and $D B$; and prove App. VI., 6 , Cor. 2.
11. $A P B$ is a circle of which $A B$ is a diameter; D is any point in $A B$ produced, and $D F$ is a tangent to the circle; $F C$ is drawn $\perp A B$, and E is the middle point of $A B$. Show that $D E, D F, D C$ are the arithmetic, geometric, and harmonic means between $A D$ and $D B$; and prove App. Vi., 6, Cor. 2.
12. If one of the four rays of a pencil be $\|$ a transversal, and the alternate ray bisect the segment of the transversal between the remaining rays, the pencil is harmouic.
13. If a transversal be $\|$ one ray of a harmonic pencil, the conjugate ray will bisect that segment of the transversal intercepted by the other pair of rays.
14. The base of a triangle is cut harmonically by the bisectors of the interior and exterior vertical angles.
15. If two alternate rays of a harmonic pencil be at right angles, one of them bisects the angle included by the remaining jair of rays, and the other bisects the supplementary angle.
16. If a pencil divide one transversal harmonically, it will divide all transversals harmonically.
17. A, C, B, D and $A, C^{\prime}, B^{\prime}, D^{\prime}$ are harmonic ranges. Prove that $C C^{\prime}, B B^{\prime}, D D^{\prime}$ are concurrent.
18. $A B$ is a straight line, and C any point in it ; on $A B$ any $\triangle A B E$ is described, and $C E$ is joined; in $C E$ any point O is taken, and $A O, B O$ are joined and produced to meet $B E$ and $A E$ in F and G. P'rove that $F G$ produced will cut $A B$ at D, the point harmonically conjugate to C with respect to A and B.
[The last seven theorems are given in De La Hire's Sectiones Conice,] ${ }^{\prime}$ p. $5-9$; theorem 16, however, is a particular case of Pappus, VII. 129.]
19. $A B C$ is a triangle ; $A D$ and $A E$, the bisectors of the interior and cxterior vertical angles, meet the base $B C$ at D and E. Prove that the rectaugles $B D \cdot D C, B A \cdot A C, B E \cdot E C$ are in arithmetical progression when the difference of the base angles is equal to a right angle, in geometrical progression when one of the base angles is right, and in harmonical progression when the vertical angle is right. (Lardner's Elements of Euclid, 1843, p. 206.)
20. If K and L represent two regular polygons of the same wumber of sides, the one inscribed in, and the other circumscribed about, the same circle, and if M and N represent the inscribed and circumscribed polygons of twice the number of sides; M shall be a geometric mean between K and L, aud N shall be a harmonic mean between L and M. (Library of Useful Knowledge, Geometry, 1847, p. 96.)

CENTRES OF SIMILITUDE.

1. When is the internal centre of similitude situated on botk circles? How, in that case, is the external centre situated?
2. When is the external centre of similitude situated on both circles? How, in that case, is the internal centre situated?
3. When are both centres of similitnde outside both circles, and when inside both circles?
4. When is the internal centre of similitude inside botin circles, and the external centre outside buth?
5. When two circles intersect, the straight line joining either point of intersection to the internal centre of similitude bisects the angle between the radii drawn to this point, and the straight line joining it to the external centre of similitude bisects the external angle between the radii.
6. The direct common tangents to two circles pass through the external, and the transverse common tangents through the internal, eentre of similitude.
7. If from either centre of similitude of two circles a tangent be drawn to one of the circles, it will be a tangent also to the other. (Pappus, VII. i18.)
8. The vertices of a triangle are the external centres of similitude of the inscribed circle and each of the escribed circles, and
the internal centres of similitude of every pair of the escribed circles.
9. The points in which the bisectors of the interior angles of a triangle meet the opposite sides are the internal centres of similitude of the inscribed circle and each of the escribed circles.
10. The points in which the bisectors of the exterior angles of a triangle meet the opposite sides are the external centres of similitude of every pair of the escribed circles.
11. The secants drawn through the ends of parallel radii of two circles pass through the two centres of similitude. (Compare Pappus, VII. 110.)
12. If through either centre of similitude of two circles a commor secant be drawn, and the points of intersection on each circle joined with the centre of that circle, the resulting radii will be parallel in pairs
13. Any common secant drawn through either centre of similitude divides the circles into pairs of similar segments.
14. The straight line joining the vertex of a triangle to the escribed point of contact on the base, intersects the inscribed radius perpendicular to the base on the inscribed circle.
15. Enunciate and prove the corresponding property for the inscribed point of contact on the base.
16. The middle point of the base of a triangle, the inscribed centre, and the middle of the line drawn from the vertex to the point of inscribed contact on the base, are collinear.
17. Enunciate and prove the corresponding property for the escribed centre.
18. If a variable circle have with two fixed circles, contacts of the same species (that is, either both external, or both internal), the chord of contact will pass through the external centre of similitude of the two fixed circles; if contacts of different species, through the internal centre of similitude. (Poncelet, Propriétes Projectives, § 261. Compare Pappus, IV. 13.)
19. If each of two circles have contacts with another pair of circles either both of the same species, or loth of different species, a centre of similitude of either pair lies on the radical axis of the other pair. (Poncelet, Propriéfés Projectives, § 26S.)
20. The six centres of similitude of three circles lie three and thres
on four straight lines, called axes of similitude. (This theorem is attributed sometimes to D'Alembert, 1716-1783, sometimes to Monge.)

Locr.

1. Straight lines are drawn parallel to the base of a triangle and terminated by the other sides or the other sides produced; find the locus of their middle points.
2. Straight lines are drawn from a given point to a given straight line, and are cut internally or externally in a given ratio ;

- find the locus of the points of section.

3. Straight lines are drawn from a given point to the ofe of a given circle, and are cut internally or externally in a given ratio ; find the locus of the points of section.
4. Hence find the locus of the centroid of a triangle whose base and vertical angle are given.
5. Find the locus of the points the ratio of whose distances from two given straight lines is equal to a given ratio.
6. If A, B, C be three points in a straight line, and D a point at which $A B$ and $B C$ subtend equal angles, the locus of D is the $O^{c \theta}$ of a circle.
7. Given the base of a triangle and the ratio of the other two gides; find the locus of the vertex.
8. Find the locus of the intersection of the diagonals of all the rectangles that can be inscribed in a triangle.
9. $A B C$ and $A D E$ are similar triaugles; $A B C$ remains fixed, but $A D E$ is rotated round A. Find the locus of the intersection of the straight lines which join the corresponding vertices B and D, C and E.
10. $A B C D$ is a rhombus whose diagonal $A C$ is equal to each of its sides; through D a straight line $P Q$ is drawn to meet $B A$ and $B C$ produced at P and Q, and $A Q, C P$ are joined, intersecting at M. Find the locus described by M when $P Q$ turns round D.
11. A series of triangles have the same base $B C$, and the sides which terminate at B are equal to a given length; find the locus of the point at which the bisector of the angle B intersects the opposite side.
Examine the case of the bisector of the exterior angle at B.
12. $A B$ is a diameter of a circle. A right angle, whose vertex is at A, revolves ronnd A, and its sides intersect the tangent at B in the points C and D; find the locus of the intersection of the tangents drawn to the cirele from the points C and D.
13. $X Y$ and $X^{\prime \prime} Y^{-1}$ are two parallel straight lines, and A, B, C three fixed collinear points. A straight line revolver ronnd A and meets $X Y$ and $X^{\prime} Y^{\prime}$ at D and E; find the loci of the intersections of $B E$ and $C D$, and of $B D$ and $C E$.
14. $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel straight lines, and O is a point midway between them. Through O straight lines are drawn terminated by $X^{\prime} Y^{-}$and $X^{\prime} Y^{\prime}$, and equilateral triangies are described on these straight lines; find the locus of the third vertices of the triangles.
:5. $X^{\prime} Y$ and $X^{\prime} Y^{\prime \prime}$ are two parallel straight lines, and O is a fixed point. Through O straight lines are drawn to $X^{\prime} Y^{\prime}$ and $\mathbb{X}^{\prime} i$, and on the segments intercepited between $J^{I} Y$ and $X^{\prime} Y^{\prime}$ similar triangles are described; find the locus of the third vertices of the triangles. (The last three examples are taken from Vuibert's Journal de Mathématiques Élémentaires, $1^{\text {ro }}$ Année, 1p. 13, $20 ; 3^{\text {e }}$ Année, p. 5.)

MISCELLANEOUS.

-. Show that the perpendiculars of a triangle are enncurrent, hy a methol which will prove at the same time that the circme. scribed centre, the centroid, and the orthocentre are collinear, and that their distances from each other are in a constant ratio.
2. The circumscribed centre, the centroid, the medinscribed centre, and the orthocentre form a harmonic range; and the centroid and the orthocentre are the intermal and external centres of similitude of the circumseribed and medioseribed eireles.
3. All straight lines drawn from the urthocentre to the $\mathrm{O}^{\text {ce }}$ of the circumscribed carcle are bisected by the O^{∞} of the medioseribel circle.
4. What is the analogons property for the straight lines drawn from the eentroid the the ore of the ciremmscribed circle?
5. The inscribed centre, the wentroint, amit the point I^{\prime} (see the 19th deduction on $\mu^{3.3 .77)}$ are collinear, and their distances from each other are in a constant ratio.
6. The middle point J of $I^{\prime} I$ is the centre of the circle inscribed in the centroidal $\triangle H K L$.
7. The points H, J, and the middle point of $A I^{\prime}$ are collinear.
S. The points I^{\prime}, J, G, I form a harmonic range ; and G and I^{\prime} are the internal and external centres of similitude of the circles inscribed in $\triangle s A B C, H K L$.
9. The inscribed circle of $\triangle H K L$ is also the inscribed circle of the triangle formed by joining the middle points of $A I^{\prime}, B I^{\prime}, C I^{\prime}$.
10. Deduce the properties corresponding to those in the last five deductions for the escribed centres, the centroid, and the points $I_{1}^{\prime}, I_{2}^{\prime}, I_{3}^{\prime}$. (See the 19th deduction on p. 357.)
11. To tind the centre of the circle $A B C$. With any point P on the $O^{\text {ce }}$ as centre, and any radius $P B$, describe the circle $A B D$ cutting the given circle at A and B. In this circle place the chord $B D=B P$, and join $A D$, meeting the given circle at E; $E B$ or $E D$ will he the radius of the given circle. (J. H. Swale. See Philosophical Magazine, 1851, p. 541.)
12. $A B C$ is a triangle, right-angled at C. Angle B is bisected by $B D$, which meets $A C$ at D; prove $2 B C^{2}: B C^{2}-C D^{2}=$ $C A: C D$. (John Pell, 1644. This theorem is susceptible of a good many proofs.)
ic. Of the four triangles formed bv $\Pi_{1}, I_{1}, I_{2}, I_{3}$ (see fig. on p. 251), the centroid of any one is tne orthocentre of the triangle formed by the centroids of the other three.
14. The middle points of the three diagonals of a complete quadrilateral are in one straight line. The circles described on these -three diagonals as diameters have the same radical axis; this radical axis is perpendicular to the straight line through the middle points of the diagonals, and it contains the orthocentres of the four triangles formed by taking the sides of the quadrilateral three and three. (The first part of this theorem is ascribed to Gauss, 1810 ; the last part is due to Steiner. See his Gesammelte Werke, vol. i. p. 128.)
15. In a given circle to inscribe a triangle
(a) whose three sides shall be parallel to three given straight hnes.
(b) two of whose sides shall be parallel to two given straight lines, and the third shall pass through a given point.
(c) two of whose sides shall pass through two given points, and the third shall be parallel to a given straight line. ((π) whose three sides shall pass through three given 1 wints.
[The last of these problems is often ealled Castillon's, whose solution was published in 1756. A very full history, by T. S. Davics, both of it and of the more general problems to which it gave rise, will be found in The Mathematician, vol. iii. (1856), pp. 75-87, 140-154, 225-233, 311-322. It may be interesting to compare alse Pappus, VLI., $105,107,105,109,117$.]

[^0]: * Def.-A mediar line, or a median, is a straight line drawn from any vertex of a triangle o the middle point of the opposite side.

[^1]: * The proof given in the text is different from Euclid's, which is defective.

[^2]: * It is sometimes stated that the problem to trisect any angle is beyond the power of Geometry. This is not the case. The problem is beyond the power of Elementary Geometry, which allows the use cf only the ruier and the compasses.

[^3]: * See Friedlein's Proclus, p. 426.

[^4]: ${ }^{*}$ Pappus, VII. 62. The proof here given seems to be due to F. J. Servois : see his Solutions peu connues de différens problèmes de Géométrie. pratique (1804), p. 15. It is attributed to Gauss by Dr R. Baltzer.

[^5]: * First given by Euler in 1765. See Novi Commentarii Academice Scientiarum Imperialis Petropolitance, vol. xi. pp. 13, 114.

[^6]: * One figure is inseribed in another when the vertioes of the first figure are on the sides of the secont

[^7]: * In certain written examinations in England, the only abbreviation allowed for 'the rectangle contained by $A B$ and $B C$ ' is rect. $A B, B C$, and for 'the square described on $A B$,' sq. on $A B$; the pupil, therefore, if preparing for these examinations, should practise himself in the use of such abbreviations.

[^8]: * The phrase, 'medial section,' seems to he due to Leslie. See his "lements of Cicometry (1s0:n), 1. B6.
 + Sometimes the all ect ve 'orthogonal' is prefixed to the word pro'eetion, to distinguish this kiml from uthers,

[^9]: * Another less known figure was, from its shape, called by the ancient geometers, 'the shoemaker's knife.' See Pappus, IV. section 14.

[^10]: * Due to Mauricius Brescius iof Grenoble), a professor of Mathematics in Paris (probably about the end of the sixteenth century).

[^11]: - Clatii Commentarin in Euclidis Elementa Gcometrica (1612), p. 23.

[^12]: *The second part of this proposition is not given by Euclud.

[^13]: * Pappus, VII. 122.

[^14]: - Pappus, VII. 120.

[^15]: * Euclid's proof is indirect. The one in the text is, found in Clavii Commenluria in Éuclidis Elementa (1612), p. 109.

[^16]: * In the MSS. of Euclid, two proofs of this proposition occur, ortly the second of which Simson inserted in his edition. The one given in the text is the first.

[^17]: * A tigure is circumscribed about a cirele when its sides tonch the circie.

[^18]: * The second part of this proposition is not given by Euclid.

[^19]: - The recond part of this proposition is not given by Euclid, and he proves the first part by joining $A C, B L$.

[^20]: *The second part of this proposition is not given by Euclid.

[^21]: * This theorem, in one of its cases, is attributed to Monge (1746-1818), tn Poncelet's Propriétés Projectives des Figures, § 71.

[^22]: *This useful extension was introduced by Robert Simson.

[^23]: *This theorem is usually attributed to Thales (640-546 b.c.).

[^24]: *This proposition has been inserted instead of Euclid's terth, which is given as the first dednotion.

[^25]: * Euclid's 21st proposition is 'Reetilineal figures whieh are similar to the same rectilineal figure are similar to each other,' a theorem which may be regarded as self-evident. In place of it there has been substituted the lemma which occurs after the 22 d proposition, and which is assumed in the proof of it. The demonstration of this lemina given in the text is due to Commandine (Euclidis Elementorum Lilri XV., 1572).

[^26]: *The proof in the text, due to Franciseus Flussas Candalla, 1566, is 30mewhat shorter than Euclid's.

[^27]: * The ennuciation of this proposition is different from tuat given hy Enclid, but the proposition itself is substantially the same. The proof has been somewhat modificd.

[^28]: * Some tditors of Euclid omit this and the following proposition. In the form in which Euclid presents them, they are difficult to understand and apply. The problems in the text are particular cases of Euclid's propositions, and the solutions given are to be found in Willebrord Snell's Apollonius Batavus, or Edmund Halley's Apollonii Pergøi Conica (1710), Book VIII. Prop. 18, Scholion.

[^29]: * The first part of the theorem is given in Schooten's Exercitationes Mathematicce (1657), p. 65.

[^30]: * This theorem is often called Ptolemy's (about 140 A.D.) because it occurs in his Almagest, I. 9.

[^31]: - Ihue to (iiraril Derarg?es, an architect of Lyon, who was born 1593 , and died 16if2. See I'oudra's WEurres de Desargucs, tome i pp. 413, 430.

[^32]: * Pythagoras probably first. On the different progressions, see Pappus, III., section 12 .

[^33]: * Pappus, VII. 1/;0.

[^34]: * Pappus, VIL. 160.

