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PREFACE.

The volume now laid before the public, is the

first of a projected Course of Mathematical Sci-

ence. Many compendiums or elementary treatises

have appeared—at different times, and of various

merit ; but there seemed still wanting, in our lan-

guage, a work that should embrace the subject

in its full extent,—that should unite theory with

practice, and connect the ancient with the mo-

dern discoveries. The magnitude and difficulty

of such a task might deter an individual from

the attempt, if he were not deeply impressed

with the importance of the undertaking, and felt

his exertions to accomplish it animated by zeal,

and supported by active perseverance.

The study of Mathematics holds forth two capi-

tal objects :—While it traces the beautiful rela-

tions of figure and quantity, it likewise accustoms

the mind to the invaluable exercise of patient at-

tention and accurate reasoning. Of these distinct

objects, the last is perhaps the most important in

a course of liberal education. For this purpose.

j5^^f)rro^^
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the Geometry of the Greeks is the most powerful-

ly recommended, as bearing the stamp of that

acute people, and displaying the finest specimens

of logical deduction. Some of its conclusions,

indeed, might be reached by a sort of calculation
;

but such an artificial mode of procedure gives

merely an apparent facility, and leaves no clear or

permanent impression on the mind.

We should form a wrong estimate, however,

did we consider the Elements of Euclid, with all

its merits, as a finished production. That admi-

rable work was composed at the period when Geo-

metry was making its most rapid advances, and

new prospects were opening on every side. No
wonder that its structure should now appear loose

and defective. In adapting it to the actual state

of the science, I have therefore endeavoured care-

fully to retain the spirit of the original, but have

sought to enlarge the basis, and to dispose the

accumulated materials into a regular and more

compact system. By simplifying the order of

arrangement, I presume to have materially a-

bridged the labour of the student. The nume-

rous additions that are incorporated in the text,

so far from retarding, will rather facilitate his pro-

gress, by rendering more continuous the chain of

demonstration.

The view which I have given of the nature of

Proportion, in the Fifth Book, will contribute, I
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hope, to remove the chief difficulties attending that

important subject. The Sixth Book, which ex-

hibits the application of the Doctrine of Ratios,

contains a copious selection of propositions, not

only beq,utiful in themselves, but which pave the

way to the higher branches of Geometry, or lead

immediately to valuable practical results. The

Appendix, without claiming the same degree of

utility, will not perhaps be deemed the least in-

teresting portion of the volume, since the inge-

nious resources which it discloses for the construc-

tion of certain problems are calculated to afford

a very pleasing and instructive exercise.

The Elements of Trigonometry are as ample

as my plan would allow. I have explained fully

the properties of the lines about the circle, and

the calculation of the trigonometrical tables
;

nor have I omitted any proposition which has a

distinct reference to practice. Some of the pro-

blems annexed are of essential consequence in

marine surveying.

In the improvement of this edition, I have spa-

red no trouble or expence. The text has been

simplified and reduced to a shorter compass, by

throwing such propositions as were less elemen-

tary to the Notes Other Notes of a simpler

kind are intended chiefly to engage the attention

of the young student. In various parts of the

work, the demonstrations are occasionally abbre-
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viated. The Elements of Trigonometry ai'e much
expanded, and now brought to include whatever

appears to be most valuable in recent practice.

But the greatest additions have been made in the

Notes and Illustrations, which will be found to

contain a variety of useful and curious infor-

mation. The more advanced student may per»

use with advantage the historical and critical

remarks ; and some of the disquisitions, with the

solutions of certain more difficult problems re-

lative to trigonometry and geodesiacal operations,

in which the modern analysis is but sparingly

introduced, are of a nature snfficiently interest-

ing to claim the notice of proficients in science.

I have simplified, and materially enlarged the for-

mulae connected with trigonometrical computa-

tion ; explained the art of surveying, in its dif-

ferent branches ; and given reduced plans, blend-

ed with the narrative of the great operations

lately carried on both in England and France.

I have likewise shown a very simple method of

calculating heights from barometrical observa-

tions, accompanied by illustrative sections ; and

I have been thence led to state the law of climate,

as it is modified by elevation. On this attractive

subject, I should have dwelt with pleasure, had

the limits of the volume permitted.

My original design was to exhibit, within per-

haps the compass of five volumes, the Elements of
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Mathematical Science in their full extent, including

the principles and application of the Higher Cal-

culus. But, after due reflection, I have abandoned

that aspiring project. The publication of abstract

works in this country procures neither fame nor

emolument ; and after having discharged the more

pressing obligations which I had contracted, I shall

consider my time as more agreeably and perhaps

more beneficially employed in pursuing without

distraction the labyrinths ofphysical research. The

text of the present volume has, by successive im-

provements, arrived at such a state of maturity^

that I shall hardly be tempted in any future edi-

tion to alter it. It will be followed, without delay,

by another volume, which is to contain the tract

on Geometrical Analysis, enlarged and improved

;

the Geometry of Lines of the Second Order, ex-

panded to three books, and including the more

important of the Higher Curves ; and the Geo-

metry of Planes and Solids, embracing Spherical

Trigonometry, with Perspective and the Projec-

tion of the Sphere. I intend likewise to print,

with all convenient speed, a short treatise on the

Philosophy of Arithmetic. The substance of it is

already before the public, in the Supplement to

the Encyclopaedia Britannica ; but 1 shall endea-

vour to abridge, to modify and improve that article*

As a sequel, I wish to give a concise and accurate

view of the Elements of Algebra, though I will
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not absolutely pledge myself to the performance

of a task so much wanted.

It is the nature ot genuine science to ad-

vance in continual progression. Each step car-

ries it still higher ; new relations are descried

;

and the most distant objects seem gradually to

approximate. But, while science thus enlarges

its bounds, it likewise tends uniformly to sim-

plicity and concentration. The discoveries of

one age are, perhaps in the next, melted down

into the mass of elementary truths. What are

deemed at first merely objects of enlightened

curiosity, become, in due time, subservient to the

most important interests. Theory soon descends

to guide and assist the operations of practice. To
the geometrical speculations of the Greeks, we
may distinctly trace whatever progress the mo-

derns have been enabled to achieve in mechanics,

navagation, and the various complicated arts of

life. A refined analysis has unfolded the harmo-

ny of the celestial motions, and conducted the

philosopher, through a maze of intricate pheno-

mena, to the great laws appointed for the govern-

ment of the Universe.

College of Edinburgh,'
March 1. 1817.
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GEOMETRY

Ijeometry is that branch of natural science

which treats of bounded space.

Our knowledge concerning external objects is

derived entirely from the information received

through the medium of the senses. The science

of Physics considers Bodies as they actually exist,

invested at once with all 'their various qualities,

and endued with their peculiar affections : Its re-

searches are hence directed by that refined spe-

cies of observation which is termed Experiment.

But Geometry takes a more limited view ; and,

selecting only the generic property of Magnitude

y

it can safely pursue the most lengthened train of

investigation, and arrive with perfect certainty at

the reipotest conclusion. It contemplates mere-
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ly the forms which bodies present, and the spaces

which they occupy. Geometry is thus founded

likewise on external observation ; but such obser-

vation is so familiar and obvious, that the primary

notions which it furnishes might seem intuitive,

and have often been regarded as innate. This

science, proceeding from a basis of extreme sim-

plicity, is therefore supereminently distinguished,

by the luminous evidence which constantly attends

every step of its progress.

PRINCIPLES.

In contemplating an external object, we can,

by successive acts of abstraction, reduce the com-

plex idea which arises in the mind into others that

are successively simpler. Body, divested of all its

essential characters, presents the mere idea of sur-

face ; a surface, considered apart from its peculiar

qualities, exhibits only linear boundaries ; and a

line, abstracting its continuity, leaves nothing in

the imagination, but the points which form its ex-

tremities. A solid is bounded by surfaces ; a sur-

face is circumscribed by lines ; and a line is ter-

minated by points, A point marks position ; a line

measures distance ; and a surface presents ea^te?!-

sion. A line has only length ;, a surface has both

length and. breadth ; and a solid combines all the

tliree dimensipns of lengthy breadth, and thichiess.
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The uniform tracing of a line which through its

whole extent stretches in the same directioin, gives

the idea of a straight line. No more than one

straight line can thereforejoin two points ; and if

a straight line be conceived to turn as an axis about

both extremities, none of its intermediate points

will change their position.

From our idea of the straight line is derived

that of a jplane surface, which, though more com-

plex, has a like uniformity ofcharacter. A straight

line connecting any two points situate in a plane,

lies wholly on the surface ; and consequently

planes must admit, in every way, a mutual and

perfect application.

Two points ascertain the position of a straight

line ; for the line may continue to turn about one

of the points till it falls upon the other. But to

determine the position of a plane, it requires three

points ; because a. plane touching the straight line

which joins two of the points, may be made to re-

volve, till it meets the third point.

The separation or opening of two straight lines

at their point of intersection, constitutes an ajigle.

If we obtain the idea of distancey or linear extent,

from contemplating progressive motion, we derive

that of divergence, or angular magnitude, from the

consideration of revolving motion.
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Geometry is divided into Plane and Solid ; the

former confining its views to the properties of

space figured 6n the same plane ; the latter em-

bracing the relations of different planes or sur-

faces, and of the solids which these describe or ter-

minate. In the following definitions, therefore,

the points and lines are all considered as existing^

in the same plane.



BOOK I.

DEFINITIONS.

1. A croohed line is that which con-

sists of straight lines not continued in the

same direction.

2. A curved line is that of whicli no

portion is a straight line.

3. The straight lines which contain an angle are term-

ed its sides, and their .point of origin or intersection, its

vertex.

To abridge the reference, it is usual to denote an angle by-

tracing over its sides ; the letter at the ver-

tex, which is common to them both, being

placed in the middle. Thus, the angle con-

tained by the straight lines AB and BC, or

the opening formed by turning BA about the point B into the

position BC, is named ABC or CBA.
^

4. A right angle is the fourth part of an

entire circuit or revolution of a straight line.

It is manifest that all right angles, being derived from the

same measure, must be equal to each other.

If a straight line CB stand at equal angles CBA and CBD
on another straight line AD, and if the surface ACD be con-

ceived laid over towards the opposite side, the point B and
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the line AD remaining in the same place ; CB will, in this

new position EB, make angles EBA
and EBD equal to the former, and

therefore all of them equal to each

other. But the four angles ABC,
CBD, DBE, and EBA constitute, a-

bout the point B, a complete revolu-

tion ; or the line BA in forming them,

by its successive openings, would return into its original place,

—and consequently each of those angles is a right angle.

The angle contained by the opposite portions DA and DB
of a straight line is hence equal to two

right angles ; and, for the same rea-

son, all the angles ADC, CDE, EDF
and FDB, formed at the point D and

on the same side of the straight line

AB, are together equal to two right

angles.

5. The sides of a right angle are said to he perpendicu-

lar to each other.

6. An acute angle is less than a right

e.

7. An obfuse angle is greater than a

right angle.

8. One side of an angle forms with

the other produced a siippleme7ital or

exterior angle.
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9. A vertical angle is formed by the

production of both its sides.

10. The inverted divergence of the two sides of an an-

gle, or the defect of the angle from four right angles, is

named the reverse angle.

The angle DBE is vertical to ABC, ABD is the supplemental

or exterior angle, and the angle made

up of ABD, DBE, and EBC, or the

opening formed by the regression of

AB through the points D and E into

the position BC, is the reverse angle.

It is apparent that vertical angles, or those formed by the

same lines in opposite directions, must be equal ; for the an-

gles CBA and itfiD which stand on the straight line CD, be-

ing equal to two right angles, are equal to ABD and DBE,
and, omitting the common angle ABD, there remains CBA
equal to DBE.

. 11. Two straight lines are said to

be inclined to each other, if they

meet when produced ; and the an-

gle so formed is called trheir inclination.

12. Straight lines which have no in-

clination, are termed parallel.

13. Kfigure is a plane surface included by a hnear boun-

dary called its perimeter.

14j. Of rectilineal figures, the triangle h contained by

three straight lines.
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15. An isosceles triangle is that which has

two of its sides equal.'

16. An equilateral triangle is that which

has all its sides equal.

17. A triangle whose sides are une-

qual, is named scalene.

It will be shown (1. 9. cor. ) that every triangle has at least two

acute angles. The third angle may therefore, by its charac-

ter, serve to discriminate a triangle.

18. A right-angled trmngle is that which

has a right angle.

19. An obtuse angled triangle is that

which has an obtuse angle.

20. An acute angled triangle is that

which has all its angles acute.

21. Any side of a triangle may be called its base, &M
the opposite angular point its vertex,

22. A quadrilateral figure is contained hyfoiir straight

lines.

2S. Of quadrilateral figures, a trape-

zoid ( 1
) has two parallel sides : /
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24. A trapezium (2) has two of its

sides parallel, and the other two equal,

though not parallel, to each other :

25. A rhomboid (3) has its oppo-

site sides equal

:

^

26. A rhoTiihus (4-) has all its sides e-

qual:

27. An ohlong, or rectangle, (5) has a

right angle, and its opposite sides equal

:

28. A square (6) has a right angle, and all

its sides equal.

29. A quadrilateral figure, of which the opposite sides

are parallel, is called a parallelogram.

30. The straight line which joins

obliquely the opposite angular points

of a quadrilateral figure, is named a

diagonal.

31. If an angle of a rectilineal figure be less than two

right angles, it protrudes, and is called salient ; if it be

greater than two right angles, it makes a sinuosity, and is

termed re-entrant.

Thus the angle ABC is re-entrant, and ""^~~ ^ ^
the rest of the angles of the polygon

ABCDEF are salient at A, C, D, E and
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32. A rectilineal figure having more than four sides,

bears the general name of a polygon,

S3. A circle is a figure described by the revolution of a

straight line about one of its extremities :•a'

S^. The fixed point is called the centre

of the circle, the describing line its radius^

and the boundary traced by the remote end

of that line its circumference.

35. The diameter of a circle is a straight line drawn

through the centre, and terminated both ways by the cir-

cumference.

It is obvious that all radii of the same circle are equal to

each other and to a semidiameter. It likewise appears, from

the slightest inspection, that a circle can only have one centre,

and that circles are equal which have equal diameters.

36. Figures are said to be equals when, applied to each

other, they wholly coincide ; they are equivalent^ if, with-

out coinciding, they yet contain the same space.
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A Proposition is a distinct portion of abstract science.

It is either a problem or a theorem.

A Problem proposes to effect some combination.

A Theorem advances some truth, which is to be esta-

blished.

A problem requires solution, a theorem wants demonstra-

Hon ; the former implies an operation, and the latter ge-

nerally needs a previous construction.

K direct demonstration proceeds from the premises, by

a regular deduction.

An indirect demonstration attains its object, by showing

that any other hypothesis than the one advanced would in-

volve a contradiction, or lead to an absurd conclusion.

A subordinate property, included in a demonstration, is

sometimes, for the sake of unity, detached, and then it

forms a Lemma.

A Corollary is an obvious consequence that results

from a proposition.

A Scholium is an excursive remark on the nature and

application of a train of reasoning.

The operatio7is in Geometry suppose the dramming of

straight lities and the description of circles, or they require

in practice the use of the nde and compasses.
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PROPOSITION I. PROBLEM.

To construct a triangle, of which the three sides

are given.

Let AB represent the base, and G, H two sides of the

triangle which it is required to construct.

From the centre A, with the distance G, describe a cir-

cle ; and, from the centre B, with the distance H, describe

another circle, meeting the

former in the point C : ACB
is the triangle required.

Because all the radii of the

same circle are equal, AC is

equal to G ; and, for the same

reason, BC is equal to H.

Consequently the triangle ACB answers the conditions of

the problem. The limiting circles, after mutually intersect-

ing, must obviously diverge from each other, till, crossing

the extension of the base AB, they return again and meet

below it j thus marking two positions for the required tri-

angle.

Corollary, If the radii G and H be equal to each other,

the triangle will evidently be isosceles ; and if those lines

be likewise equal to the base AB, the triangle must be equi-

lateral.
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PROP. II. THEOREM.

Two triangles are equal, which have all the

sides of the one equal to those of the other.

Liet the two triangles ABC and DFE have the side AB
equal to DF, AC to DE, and BC to FE : These triangles

are equal.

For conceive the triangle ACB to be applied to DEF :

The point A being laid on D, and the side AC on DE,

their other extremities C and E must coincide, since AC
is equal to DE. And because AB is equal to DF, the

point B must occur in the circum-

ference of a circle described from

D with the distance DF ; and, for

the same reason, B must be found

in the circumference of a circle de-

scribed from E with the distance

EF: The vertex of the triangle ACB must, therefore, ap-

pear in a point which is common to both those circles, or,

by the first proposition, in F the vertex of the triangle

DFE. Consequently these two triangles, being rectilineal,

must entirely coincide. The angle CAB is equal to EDF,
ACB to DEF, and CBA to EFD ; the equal angles be-

ing thus always opposite to the equal sides.

Scholium. This proposition is only the preceding one

changed into a theorem. But any rectilineal figure may be

divided into triangles, which, being separately constructed

with the same corresponding sides, must, by their combi-

nation, hence form an equal figure.
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PROP. III. THEOR.

Two triangles are equal, if two sides and the

angle contained by these in the one be respective-

ly equal to two sides and the contained angle in

the other.

Let ABC and DEF be two triangles, of which the side

AB is equal to DE, the side BC to EF, and the angle ABC
contained by the former equal to DEF which is contained

by the latter : These triangles are equal.

For let the triangle ABC be applied to DEF : The ver-

tex B being placed on E, and the side BA on ED, the ex-

tremity A must fall upon D,

since AB is equal to DE.

And because the angle or

divergence ABC is equal to

DEF, and the side AB co-

incides with DE, the other side BC must lie in the same

direction with EF, and being of the same length, must ter-

minate with it ; and consequently, the points A and C rest-

ing on D and F, the straight lines AC and DF will also

coincide. Wherefore, the one triangle being thus per-

fectiy adapted to the other, a general equality must obtain

between them : The third sides AC and DF are hence

equal, and the angles BAC, BCA opposite to BC and BA
are equal respectively to EDF and EFD, which the corre-

sponding sides EF and ED subtend.

Schol. By applying this proposition to practice, the mu-
tual distance may be found between two remote objects

which have their communication obstructed.
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.PROP. IV. PROB.

At a point in a straight line, to make an angle

equal to a given angle.

At the point D in the given straight line DE, to form an

angle equal to the given angle BAG.

In the sides AB and AC of the given angle, assume the

points G and H, join GH,
from DE cut off DI equal

to AG, and on DI consti-

tute (I. 1.) a triangle DKI,

having the sides DK and

IK equal to AH and GH:
EDK or EDF is the angle required.

For all the sides of the triangles GAH and IDK being

respectively equal, the angles opposite to the equal sides

must be likewise equal (I. 2.), and consequently IDK is

equal to GAH.
Cor. If the segments AG, AH be taken equal, the con-,

struction will be rendered simpler and more commodious.

SchoL By the successive application of this problem

an angle may be continually multiplied. Two circles CEG
and ADF being described from the

vertex B of the given angle with radii

BC and BA equal to its sides, and the

base AC being repeatedly inserted be-

tween those circumferences ; a multi-

tude oftriangles will be thus formed, all

of them equal to the original triangle

ABC. Consequently the angle ABD is double of ABC,
ABE triple, ABF quadruple, ABG quintuple, &c.
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If the sides AB and BC of the given angle be supposed

equal, only one circle would be required,

a series of equal isosceles triangles being

constituted about its centre/ It is evi-

dent that this addition is without limit,

and that the angle so produced may con-

tinue to spread out, and its opening side

even make repeated revolutions.

PROP. V. PROB.

To bisect a given angle.

Let ABC be an angle which it is required to bisect.

In the side AB take any point D, and from BC cut off

BE equal to BD ; join DE, on whiph construct (I. 1.) the

isosceles triangle DFE, and draw the

straight line BF : The angle ABC
is bisected by BF.

For the two triangles DBF and

EBF, having the side DB equal to

EB, the side DF to EF, and BF
common to both, are (I. 2.) equal,

and consequently the angle DBF is equal to EBF.
Cor, Hence the mode of drawing a perpendicular from

a given point B in the straight line AC; for the angle

ABC, which the opposite seg-

ments BA and BC make with

each other, being equal to two

right angles, the straight line

that bisects it must be the per-

pendicular required. , Taking

BD, therefore, equal to BE, and
:ij
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constructing the isosceles triangle DFE ; the straight line

BF, which joins the vertex of the triangle, is perpendicular

to AC.

ScJioL In the general construction, the isosceles triangle

33FE may stand either below or above the base DE;
but if it were made equal to DBE, the vertex F would coin-

cide with B, and render the construction indeterminate.

PROP. VI. PROB.

To let fall a perpendicular upon a straight line,

from a given point above it.

From the point C, to let fall a perpendicular upon the

given straight line AB.

In AB take towards A the point D, and with the

distance DC describe a circle; and, in the same line,

take towards B another point E, and with the distance

EC describe a second circle intersecting the former

in F; join CF, crossing the gi-

ven line in G : CG is perpendicular

toAB.

For the straight lines DC, DF a-^^
[ U \r ^

and EC, EF being joined, the trian-

gles DCE and DFE have the side

DC equal to DF, EC to EF, and

DE common to them both ; whence (I. 2.) the angle CDE
or CDG is equal to FDE or FDG. And because, in the

triangles DCG and DFG, the side DC is equal to DF,
DG common, and the contained angles CDG and FDG
are proved to be equal; these subordinate triangles are

(I. 3.) equal, and consequently the angle DGC is equal

to DGF, and each of them a right angle, or CG is per-

pendicular to AB.
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PROP. VII. PROB.

To bisect a given finite straight line.

On the given straight line AB, construct two isosceles

triangles (I. 1.) ACB and ADB, and join their vertices C

and D by a straight line cutting AB in the point E : AB
is bisected in E.

For the sides AC and AD of the triangle

CAD being respectively equal to BC and

BD of the triangle CBD, and the side

CD common to them .both; these triangles

(I. 2.) are equal, and the angle ACD or

ACE k equal to BCD or B^CE. Again,

the inferior triangles ACE and BCE, having the side AC
equal to BC, CE common, and the contained angle ACE
equal to BCE, are (I. 3.) equal, and consequently the base

AE is equal to BE.

PROP. VIII. THEOR.

The exterior angle of a triangle is greater than

either of its interior opposite angles.

The exterior angle BCF, formed by producing a side

AC of the triangle ABC, is

greater than either of the op-

posite and interior angles CAB
and CBA.

For bisect the side BC in the

point D (I. 7.), draw AD, and

produce it until DE be equal to

AD, and join EC.
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The triangles ADB and EDC have, by construction, the

side DA equal to DE, the side DB to DC, and the vertical

angle BDA equal to CDE ; these triangles are, therefore,

equal (I. 3.), and the angle DCE is equal to DBA. But

the angle BCF is evidently greater than DCE ; it is con-

sequently greater than DBA qr CBA.
In like manner, it may be shown, that if BC be produ-

ced, the exterior angle ACG is greater than CAB. But

ACG is equal to the vertical angle BCF, and hence BCF
must be greater than either the angle CBA or CAB.

Cor. Hence all the exterior angles of a triangle are

greater than the interior, and likewise greater than three

right angles.

PROP. IX. THEOR.

Any two angles of a triangle are together less

than two right angles.

The two angles BAC and BCA of the triangle ABC are

together less than two right angles.

For produce the common sideAC.

And, by the last proposition, the ex-

terior angle BCD is greater than

BAC, add BCA to each, and the "^ C JD

two angles BCD and BCA are greater than BAC and
BCA, or BAC and BCA are together less than BCD and
BCA, that is, less than two right angles (Def. 4).

Cor. Hence a triangle can only have one right or ob-

tuse angle, its two remaining angles being always acute.
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PROP. X. THEOR.

The angles at the base of an isosceles triangle

are equal.

The angles BAG and BCA at the base of the isosceles

triangle ABC are equal.

For draw (I. 5.) BD bisecting the vertical angle ABC.

Because, by hypothesis, AB is equal to

BG, the side BD common to the two tri-

angles BDA and BDG, and the angles

ABD and GBD contained by them are

equal ; these triangles are equal (I. 3.),

and consequently the angle BAD is equal

to BGD.
Cor. Every equilateral triangle is also equiangular^

PROP. XL THEOR.

If two angles of a triangle be equal, the sides

opposite to them are likewise equal.

Let the triangle ABG have two equal angles BGA and

BAG ; the opposite sides AB and BG are also equal.

For if AB be not equal to GB, let it be equal to GD,
and join AD.

Comparing now the triangles BAG and DGA, the side

AB is by supposition equal to CD, AG is

common to both, and the contained angle

BAG is equal to DGA ; the two triangles

(L 3.) are, therefore, equal. But this con-

clusion is manifestly absurd. To suppose

then the inequality of AB and BG involves
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a contradiction j and consequently those sides must be

equal

Cor, Every equiangular triangle is also equilateral.

SchoL By the application of this proposition, the dis-

tance of an object inaccessible from one side may in some

cases be measured.

PROP. XII. THEOR.

In any triangle, that angle is the greater which

lies opposite to a greater side.

If a side BC of the triangle ABC be greater than BA

;

the opposite angle BAC is greater than BCA.
For make BD equal to BA, and join AD. The angle

CAB is evidently greater than DAB

;

but since BA is equal to BD, this angle /s.

DAB (I. 10.) is equal to ADB, and / \^^
consequentlyCAB is greater than ADB. f^^,^^

—

^

^
Again, the angle ADB, being an exte-

rior angle of the triangle CAD, is (I. 8.) greater than ACD
or ACB; wherefore the angle CAB is much greater than

ACB.

PROP. XIII. THEOR.

That side of a triangle is the greater which sub-

tends a greater angle.
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If, in the triangle ABC, the angle CAB be greater than

ACB ; its opposite side BC is greater than AB.

For if BC be not greater than AB, it must be either

equal or less. But it cannot be equal, be-

cause the angle CAB would then be equal

to ACB (I. 10.) ; nor can BC be less than

AB, for then AB would be greater than

BC, and consequently (I. 12.) the angle *^

ACB would be greater than CAB, or CAB less than ACB,
which is absurd. The side BC being thus neither equal

to AB, nor less than it, must therefore be greater than

AB. -

PROP. XIV. THEOR.

Two sides ofa triangle are together greater thai^

the third side.

The two sides AB and BC of the triangle ABC are to-

gether greater than the third side AC.

For produce AB until DB be equal to the side BC,
and join CD.

. Because BC is equal to BD, the angle BCD is equal to

BDC (I. 10.) ; but the angle ACD
is greater than BCD, and therefore

greater than BDC, or ADC 5 con-

sequently the opposite side AD is

greater than AC (I. 13.) ; and since

AD is equal to AB and BD, or to

AB and BC, the two sides AB and

BC are together greater than the diird side AC.
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PROP. XV- THEOR.

The difference between two sides of a triangle

is less than the third side.

Let the side AC be greater than AB, and from it cut off

a part AE equal to AB ; the remainder

EC is less than the third side BC. B
For the two ^ides AB and BC are to-

gether greater than AC (I. 14.); take

away the equal lines AB and AE, and

there remains BC greater than EC, or EC is less than BC.

PROP. XVI. THEOR.

Two straight lines drawn to a point within a

triangle from the extremities of its base, are toge-

ther less than the sides of the triangle, but con-

tain a greater angle.

The straight lines AD and CD, projected to a point D
within the triangle ABC from the extremities of the base

AC, are together less than the sides AB and CB of the

triangle, but contain a greater angle.

For produce AD to meet CB in E. The two sides AB
and BE of the triangle ABE are greater

than the third side AE (I. U.) ; add EC
to each, and AB, BE, EC, or AB and

BC, are greater than AE and EC. But

the sides CE and ED of the triangle

DEC are (I. 14.) greater than DC, and
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consequently CE, ED, together with DA, or CE and EA,

are greater than CD and DA. Wherefore the sides AB
and BC, being greater than AE and EC, which are

themselves greater than AD and DC, must be still greater

than AD and DC, or the lines AD and DC are less than

AB and BC, the sides of the triangle.

Again, the angle ADC, being the exterior angle of the

triangle DCE, is greater than DEC (I. 8.) ; and, for the

same reason, DEC is greater than ABE, the opposite in-

terior angle of the triangle EAB. Consequently ADC is

still greater than ABE or ABC.

PROP. XVII. THEOR,

If straight lines be drawn from the same point

to another straight line, the perpendicular is the

shortest of them all ; the lines equidistant from it

on both sides are equal ; and those more remote

are greater than such as are nearer.

Of the straight lines CG, CE, CD, andCF drawn from

a given point C to the straight line AB, the perpendicular

CD is the least, the equidistant lines CE and CF are equal,

but the remoter line CG is greater than either of these

two.

For the right angle CDE, equal to CDF, is (I. 8.) great-

er than the interior angle CFD of the triangle DCF, and

consequently the opposite

side CF is (I. 13.) greater

than CD, or CD is less than

CF.

But ifED be equal to FD, A Gr £ ;d :f Ji
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CD being common to the two triangles ECD and FCD,

and the contained angles CDE and CDF equal; these

triangles (I. 3.) are equal, and consequently their bases

CE and CF are equal.

Again, because GCD is a right-angled triangle, the an-

gle CGD or CGE is (I. 9. cor.) acute, and, for the same

reason, the angle CED of the triangle CDE is acute, and

consequently its adjacent angle CEG is obtuse. Where-

fore CEG, being greater than a right angle, is still greater

than CGE, and the opposite side CG must be greater

(L 13.) than CE.

Cot; Hence only a single perpendicular CD can be let

fall from the same point C upon a given straight line AB;

and hence also a pair only of equal straight lines greater

than CD can at once be extended from C to AB, making

on the same side, the one an obtuse angle CEA, and the

other an acute angle CFA.—As the term distance signi-

fies the shortest road, the distance between two points, is

the straight line which joins them ; and the distance from a

point to a straight line, is the perpendicular let fall upon it.

PROP. XVIII. THEOR.

If two sides of one triangle be respectively equal

to those of another, but contain a greater angle ;

the base also of the former will be greater than

that of the latter.

In the triangles ABC and DEF, let the sides AB and

BC be equal tb DE and EF, but the angle ABC greater

than DEF ; then is the base AC greater than DF.
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For, suppose AB one of the sides to be not greater than

BC or EF, and (I. 4.) draw BG equal to EF making an

angle ABG equal to DEF, join AG and GC.

Because AB and BG are equal to DE and EF, and

the contained angle ABG is equal to DEF; the triangles

ABG and DEF (I. 3.) are equal, and have equal bases AG
and DF.

First, let the triangles ABC an^ DEF be isosceles.

Since the side AB is equal

to BC, the angle BAC (1. 10.)

is equal to BCA ; but (I. 8.)

the angle BHC is greater

than the interior angle BAH
or BCH, and consequently

(I. IS.) the side BC or BG is greater than BH, or the

point G lies beyond H.

Next, suppose the side

BC or EF to be greater

than AB or DE. Where-

fore (I. 12.) the angle BAC
is greater than BCA ; but

(I. 8.) the exterior angle

BHC of the triangle ABH
is greater than BAH or BAC, and hence still greater than

BCA or BCH -, consequently the side BC or EF is (I. 13.)

greater than BH.
In every case, therefore, the point G must lie below the

base AC. But the triangle GBC being evidently isosceles,

its angles BGC and BCG (I. 10.) are equal. Whence the

angle AGC, being greater than BGC or BCG, which a-

gain is greater than ACG, must be still greater than ACG;
and therefore the opposite side AC is (I. 13.) greater than

AG or DF.
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PROP. XIX. THEOR.

If two sides of one triangle be respectively e-

qual to those of another, but stand on a greater

base ; the angle contained by the former will be

likewise greater than what is contained by the lat-

ter.

Let the triangles ABC and DEF have the sides AB and

BC equal to DE and EF, but the base AC greater than

PF; the vertical angle ABC is greater than DEF.

For if ABC be not greater than the angle DEF, it must

either be equal or less. But it

cannot be- equal to DEF, for

tfee sides AB, BC being then e-

qual to DE, EF, and contain-

ing equal angles, the base AC
would (I. S.) be equal to DF, which is contrary to the hy-

pothesis. Still more absurd it would be to suppose the an-

gle ABC less than DEF, since the triangles BAC and

EDF, having their sides AB, BC equal to DE, EF, but

the contained angle ABC less than DEF, or DEF great-

er than ABC, the base DF would, from the preceding pro-

position, be greater than AC, or AC would be less than

DF.

PROP. XX. THEOR.

Two triangles are equal, which have two angles

and a corresponding side in the one respectively

equal to those in the other.
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Let the triangles ABC and DEF have the angle BAC
equal to EDF, the angle BCA to EFD, and a side of the

one equal to a side of the other, whether it be interjacent

or opposite to those equal angles ; the triangles will be e*

qual.

First, let the equal sides be AC and DF, which are in-

terjacent to the equal angles in both triangles.—Apply the

triangle ABC to DEF ; the point A being laid on D, and

the straight line AC on DF, the other extremities C and

F must coincide, since those lines

are equal. And because the angle

BAC is equal to EDF, and the

side AC is applied to DF, the o-

ther side AB must lie along DE

;

and for the same reason, the an-

gles BCA and EFD being equal, the side CB must lie a-

long FE. Wherefore the point B, which is common to

both the lines AB and CB, will be found likewise in both

DE and FE ; that is, it must fall upon the corresponding

vertex E. The two triangles ABC and DEF, thus mu-

tually adapting, are hence entirely equal.

Next, let the equal sides be AB and DE, which are op-'

posite to the equal angles BCA and EFD. The triangle

ABC being laid on DEF, the sides AB and AC of the an-

gle BAC will apply to DE and DF,

the sides of the equal angle EDF;
and since AB is equal to DE, the

points B and E must coincide ; but

by hypothesis, the angles BCA and
"'''

EFD being equal, BC must adapt itself to EF, for other-

wise one of those angles becoming the exterior angle of a

secondary triangle, would (I. 8.) be greater than the other.
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Whence the triangles ABC, DEF are entirely coincident,

and have those sides equal which subtend equal angles,

Schol, By the application of the first case, where the

sides lying between the equal angles are equal, the distance

of an inaccessible object can be measured in all cases.

PROP. XXI. THEOR.

Two triangles are equal if two sides and a cor-

responding opposite angle be equal in both, and

the other opposite angles have the same character.

In the triangles ABC and DEF, let the side AB be equal

to DE, BC to EF, and the angles BAC, EDF, opposite to

BC, EF, be also equal j the triangles themselves are equal,

if the other angles BCA and EFD opposite to AB and DE
be of the same character, or at once right, or acute, ot

obtuse.

For, the triangle ABC being applied to DEF, the an-

gle BAC will adapt itself to EDF, since they are equal

;

and the point B must coincide with E, because the side AB
is equal to DE. But the other equal sides BC and EF,

now stretching from the same point

E towards DF, must likewise coin- y\ ^
cide J for if the angle at C or F be

right, there can exist no more than .

one perpendicular EF (I. 17. cor.)

and, in like manner, if this angle at F be either obtuse or

acute, the line EF, which forms it, can, for the same rea-

son, have only one corresponding position.—Whence, ia

each of these three cases, the triangle ABC admits of a

perfect adaptation with DEF.
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PROP. XXII. THEOR.

If a straight line fall upon two parallel straight

lines, it will make the alternate angles equal, the

exterior angle equal to the interior opposite one,

and the two interior angles on the same side to-

gether equal to two right angles.

Let the straight line EFG fall upon the parallels AB
and CD ; the alternate angles AGF and DFG are equal,

the exterior angle EFC is equal to the interior angle EGA,
and the interior angles CFG and AGF, or FGB and GFD,
are together equal to two right angles.

I^or conceive a straight line, produced both ways from

F, to turn about that point in the same plane; it

will first cut the extended line AB above G and to-

wards A, and will in its progress afterwards meet this

line on the other side below G and towards B. In

the position IFH, the angle EFH is the exterior angle

of the triangle FHG, and therefore greater than FGH
or EGA (I. 8.) But in the last position LFK, the exte-

rior angle EFL is equal to its vertical angle GFK in the

triangle FKG, and to which the

angle FGA is exterior -, conse-

quently (I. 8.) FGA is greater than

EFL, or the angle EFL is less

than FGA or EGA. When the

incident line EFG, therefore, meets

AB above the point G, it makes

an angle EFH greater than EGA

;

and when it meets AB below that

point, it makes an angle EFL,
which is less than the game angle. But in passing through
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all the degrees from greater to less, a varying magnitude

must evidently encounter the single interfnediate limit of

equality. Wherefore, there is a certain position CD, in

which the line revolving about the point F makes the ex-

terior angle EFC equal to the interior EGA, and at the

same instant of time meets AB neither towards the one

part nor the other, or is parallel to it.

And now, since EFC is proved to be equal to £GA,
and is also equal to the vertical angle GFD ; the alternate

angles FGA and GFD are equal. Again, because GFD
and FGA are equal, add the angle FGB to each, and the

two angles GFD and FGBi are equal to FGA and FGB

;

but the angles FGA and FGB, on the same side of AB,

are equal to two right angles, and consequently the inte-

rior angles GFD and FGB are likewise equal to two right

angles.

Cor. Since the position CD is individual, or that only

one sti'aight line can be drawn through the point F pa-

rallel to A B, it follows that the converse of the proposition

is hkewise true, and that those three properties of parallel

lines are criteria for distinguishing parallels.

PROP. XXIir. PROB.

Through a given point, to draw a straight line

parallel to a given straight line.

To draw, through the point C, a straight line parallel

to AB.

In AB take any point D, join CD,

and at the point C make (I. 4.) an an- \^
gle DCE equal to CDA ; CE is paral- -^^^^^^^^^

^^

leltoAB. (

^
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For the angles CDA and DCE, thus formed equal, are

the alternate angles which CD makes with the straight

lines CE and AB, and, therefore, by the corollary to the

last proposition, these lines are parallel.

PROP. XXIV. THEOR.

Parallel lines are equidistant, and equidistant

straight lines are parallel.

The perpendiculars EG, FH, let fall from any points

E,.Fin the straight line AB upon its parallel CD, are

equal ; and if these perpendiculars be equal, the straight

lines AB and CD are parallel.

For join EH : and because each of the interior angles

EGH and FHG is a right angle, they are together equal

to two right angles, and consequently the perpendiculars

EG and FH are (I. 22. cor.)

parallel to each other ; where- -^ ^^ ^

fore (I. 22.) the alternate an-

gles HEG and EHF are equal.
^

But, EF being parallel to GH,
the alternate angles EHG and HEF are likewise equal

;

and thus the two triangles HGE and HFE, having the

angles HEG and EHG respectively equal to EHF and

HEF, and the side EH common to both, are (I, 20.) e-

qual, and hence the side EG is equal to FH.
Again, if the perpendiculars EG and FH be equal, the

two triangles EGH and EFH, having the side EG equal

to FH, EH common, and the contained angle HEG equal

to EHF, are (I. 3.) equal, and therefore the angle EHG
equal to HEF, and (I. 22.) the straight line AB parallel

to CD.

Cr Jrl
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PROP. XXV. THEOR.

The opposite sides of a rhomboid are parallel.

If the opposite sides AB, DC, and AD, BC of the qua-

drilateral figure ABCD be equal, they are also parallel.

For draw the diagonal AC. And because AB is equal

to DC, BC to AD, and AC is com-

mon ; the two triangles ABC and

ADC are (I. 2.) equal. Conse-

quently the angle ACD is equal ^ ^

to CAB, and therefore the side AB (I. 22. cor.) parallel

to CD ', and, for the same reason, the angle CAD being

equal to A CB, the side AD is parallel to BC.

Cor, Hence the angles of a square or rectangle are ail

of them right angles ; for the opposite sides being equal,

are parallel ; and if the angle at A be right, the other in-

terior one at B is also a right angle (I. 22.), and conse-

quently the angles at C and D, opposite to these, are

right.—On this proposition depends the construction of

the instrument called a Parallel Ruler,

PROP. XXVI. THEOR.

The opposite sides and angles of a parallelo-

gram are equal.

Let the quadrilateral figure ABCD have the sides AB
and BC parallel to CD and AD ; these are respectively

equal, and so are likewise the opposite angles at A and C,

and at B and D.
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For join AC. Because AB is parallel to CD, the al-

ternate angles BAC and ACD are (I. 22.) equal; and

since AD is parallel to BC, the alternate angles ACB and

CAD are also equal. Where-

fore the triangles ABC and ADC,
having the angles CAB and ACB
equal to ACD and CAD, and the ^

inteijacent side AC common to both* are (I. 20.) equal.

Consequently, the side AB is equal to CD, and the side

BC to AD ; and these opposite sides being thus equal, the

opposite angles (I. 25.) must be likewise equal.

Cor, Hence the diagonal divides a rhomboid or paral-

lelogram into two equal triangles.

PROP. XXVII. TPIEOR.

If the parallel sides of a trapezoid be equal, the

other sides are likewise equal and parallel.

Let the sides AB and DC be equal and parallel j the

sides AD and BC are themselves equal and parallel.

For draw the diagonal AC. Because AB is parallel to

CD, the alternate angles CAB and ACD are (1. 22.) equal

;

and the triangles ABC and ADC, having the side AB
equal to CD, AC common to both,

and the contained angle CAB equal

to ACD, are, therefore, equal (1. 3.).

Whence the side BC is equal to AD,
and the angle ACB equal to CAD ; but these angles being

alternate, BC must also be parallel to AD (I. 22. cor.)
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PROP. XXVIIL THEOR.

Lines parallel to the same straight line, are pa-

rallel to each other.

If the straight line AB be parallel to CD, and CD pa-

rallel to EF; then is AB parallel to EF.

For let a straight line GH cut these v

^^"^'- a\i B
And because AB is parallel to CD, 7 \ ^ !^

the exterior angle GIA is equal (I. 22.) Z \ -j. ^
to the interior GKC ; and since CD is NT

parallel to EF, this angle GKC is, for \
the same reason, equal to GLE. There-

fore the angle GIA is equal to GLE, and consequently

AB is parallel to EF (I. 22. cor.)

PROP. XXIX. THEOR.

Straight lines drawn parallel to the sides of an

angle, contain an equal angle.

If the straight lines AB, AC be pa-

rallel to DE, DF i the angle BAC is

equal to EDF.
For draw the straight line GAD

through the vertices. And since AC
is parallel to DF, the exterior angle

GAC is (I. 22.) equal to GDF ; and,

for the same reason, GAB is equal to GDE ; there con-

sequently remains the angle BAC equal to EDF.
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PROP. XXX. THEOR.

An exterior angle of a triangle is equal to both

its opposite interior angles, and all the interior

angles of a triangle are together, equal to two

right angles.

The exterior angle BCD, formed by the production of

the side AC of the triangle ABC, is equal to the two op-

posite interior angles CAB and CBA, and all the interior

angles CAB, CBA and BCA of the triangles are together

equal to two right angles.

For, through the point C, draw (I. 23.) the straight

line CE parallel to AB. And, AB being parallel to CE,

the interior angle BAC is (I. 22.) equal to the exterior one

ECD j and, for the same reason, the alternate angle ABC
is equal to BCE. Wherefore the two

angles CAB and ABC are equal to

DCE and ECB, or to the whole exte-

rior angle BCD.
Again, add the adjacent angle BCA

to the exterior angle BCD, and to the

two interior angles CAB and ABC ; and all the interior

angles of the triangle ABC are together equal to the angles

BCD and BCA on the same side of the straight line AD,
that is, to two right angles.

Cor, 1. Hence the two acute angles of a right angled

triangle are together equal to one right angle ; and hence

each angle of an equilateral triangle is two-third parts of

a right angle.

Cor. 2. Hence if a triangle have its exterior angle, and

pne of its opposite interior angles, double of those in an-
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other triangle ; its remaining opposite interior angle will

also be double of the corresponding angle in the other.

SchoL On the second corollary depends the construction

of that invaluable reflecting angular instrument, called

Hadley's quadrant or sextant.

PROP. XXXI. THEOR. .

The interior angles of any rectilineal figure are

together equal to twice as many right angles (a-

bating four from the amount) as the figure has

sides.

For assume a point O within the figure, and draw

straight lines OA, OB, OC, OD, and OE, to the several

corners. It is obvious, that the figure is thus resolved in-

to as many triangles as it has sides,

and whose collected angles must, by

the last proposition, be equal to twice

as many right angles. But the an-

gles at the bases of these triangles

constitute the internal angles of the fi-

gure. Consequently, from the whole amount, there is to

be deducted the vertical angles about the point O, and

which are (Def. 4.) equal to four right angles.

Cor, Hence all the angles of a quadrilateral figure are

equal to four right angles, those of a pentelateral figure

equal to six right angles, and so forth ; increasing the ag-

gregate by two right angles, for each additional side.—The
same conclusion is derived from the successive apj5lication

of triangles, by which the figure, at each accession, has

the number of its sides increased by one, and the amount

©f its interior angles augmented by two right angles.
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PROP. XXXII. THEOR.

The e^iterior angles of a rectilineal figure are

together equal to four right angles.

The exterior angles DEF, CDG, BCH, ABI, and

EAK of the rectilineal figure ABCDE are taken together

equal to four right angles.

For each exterior angle DEF, with its adjacent interior

one AED, is equal to two right

angles. All the exterior an-

gles, therefore, added to the

interior angles, are equal ta

twice as many right angles as

the figure has sides. Conse-

quently the exterior angles

are equal to the four right an-

gles which, by the Proposition

immediately preceding, were

abated, to form the aggregate of the interior angles.

Cor, If the figure has a re-entrant angle BCD, the an-

gle BCK which occurs in place

of an exterior angle, must be

subducted in forming the a-

mount ; for the corresponding-

interior angle BCD, in this

case, exceeds two right angles,

by the angle BCK. Hence

the angles EFG, DEH, CDI,

ABL, FAM, diminished by

BCK, are equal to four right angles.
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Schol. The amount of the exterior angles might be de-

duced from the successive deflections which a side would

make before it has returned to its first position. Thus, in

the first case, AF makes a complete circuit, changing into

the positions EG, DH, CI, BK, and finally into AF again.

But in the second case, AG, after making similar deflec-

tionsy turns backwards at C from the position DK to GL.

PROP. XXXIII. THEOR.

If the opposite angles of a quadrilateral figure

he equal, its opposite sides will be likewise equal

and parallel.

In the quadrilateral figure ABCD, let the angle at B be

equal to the opposite one at D, and the angle at A equal

to that at C ; the sides AB and BC are equal and parallel

to DC and DA.
For all the angles of the figure being equal to four right

angles (1. 31. cor.), and the opposite angles being mutually

equal, each pair of adjacent angles ^ ^

.

must be equal to two right angles.

Wherefore ABC and BCD are

equal to two right angles, and the -A. 1>

lines AB and DC (I. 22. cor.) parallel; for the same rea-

son, ABC and BAD being together equal to two right an-

gles, the sides BC and AD, which limit them, are parallel.

But (I. 26.) the parallel sides of the figure are also equal.

Cor, Hence a quadrilateral figure contained by right

angles has its opposite sides equal and parallel,

t
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PROP. XXXIV. PROB.

To draw a perpendicular from the extremity of

a given straight line.

From the point B, to draw a perpendicular to AB, with-

out producing that line.

In AB take any point C, and on BC (I. 1. cor.) de-

scribe an isosceles triangle BDC, produce CD till DF be

equal to it; and BF being joined, is the perpendicular re-

quired.

For, since by construction DF is equal to CD or BD,

the triangle BDF is isosceles, and (I. 10.) the angle DBF
equal to DFB ; whence the angle CDB, , j.,

being equal (I. 30.) to the interior angles y
DBF and DFB, is double of DBF, or y'\
the angle DBF is half of CDB. But /
the triangle BDC being isosceles, the

angle CBD is equal to BCD ; consequently the angles DBF
and DBC are the halves of the vertical and base angles of

BDC, and therefore (I. 30.) the whole ang:le CBF is the

half of two right angles, or it is equal to one right angle.

SchoL This problem, of which the construction may be

slightly modified, is often more convenient in practice than

the one given in the corollary to Prop. 5. of this Book.

PROP. XXXV. PROB.

On a given finite straight line, to construct a

square.

Let AB be the side of the square which it is required to

construct.
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From the extremity B draw, by the last proposition,

BC perpendicular to BA and equal

to it, and, from the points A and C
with the distance BA or BC describe

two circles intersecting each other in

the point D, join AD and CD ; the

quadrilateral figure ABCD is the

square required.

For, by this construction, the figure has all its sides e-

qual, and one of its angles ABC a right angle ; which com-

prehends the whole of the definition of a square^

PROP. XXXVI. PROB.

To divide a given straight line into any number

of equal parts.

Let it be required to divide tho straight line AB into a

given number of equal parts, suppose five.

From the point A and at any

oblique angle with AB, draw a

straight line AC, in which take the

portion AD, and repeat it five times

from A to C, join CB, and from the

several points of section D, E, F,

and G draw -the parallels DH, EI,

FK, and GL, (I. 23.), cutting AB
in H, I, K, and L : AB is divided at these points into

five equal parts.

For (I. 23,) draw DM, EN, FO, and GP parallel to

AB. And because DH is parallel to EM, the exterior

ilLl-II Ki. B
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angle ADH is equal to DEM (I. 22.) ; and, for the same

reason, since AH is parallel to DM, the angle DAH is

equal to EDM. Wherefore the triangles ADH and

DEM, having two angles respectively equal and the inter-

jacent sides AD, DE—are (I. 20.) equal, and consequent-

ly AH is equal to DM. In the same manner, the tri-

angle ADH is proved to be equal to EFN, to FGO, and

GCP ; and therefore their bases, EN, FO, and GP are

all equal to AH. But these Hues are equal to HI, IK,

KL, and LB, for the opposite sides of parallelograms are

equal (I, 26.). Wherefore the several segments AH, HI,

IK, KL, and LB, into which the straight hne AB is di-

vided, are all equal to each other.

Scholium. The construction of this problem may be fa-

jcilitated in practice, by drawing from B in the opposite di-

rection a straight line parallel to AC, and repeating on

both of them portions equal to the assumed segment AD,
but only four times, or one fewer than the number of di-

visions required ; then joining D, the first section of AC,

with the last of its parallel, E with the next, and so on till

G, which connecting lines are (I. 27.) all parallel, and con-

sequently the former demonstration still holds.

\
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DEFINITIONS.

1 . In a right-angled triangle, the side that subtends the

right angle is termed the hypotenuse; either of the sides

which contain it, the base ; and the other side, the perpeU"

dicular.

2. The altitude of a triangle is

a perpendicular let fall from the

vertex upon the base or its ex-

tension.

3. The altitude of a trapezoid is the

perpendicular drawn from one of its

parallel sides to the other.

4. The complements of rhomboids about the diagonal of

a rhomboid, are the spaces required to

complete the rhomboid ; and the defect

of each rhomboid from the whole figure,

is termed a gnomon.
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5. A rhomboid or rectangle is said to be contained hy

any two adjacent sides.

A rhomboid is often indicated merely by the two letters pla-

ced at opposite corners.

PROP. I. THEOR.

Triangles which have the same altitude, and

stand on the same base, are equivalent.

The triangles ABC and ADC which stand on the same

base AC and havewthe same altitude, contain equal spaces.

For join the vertices B, D by a straight line, which pro-

duce both ways ; and from A draw AE (I. 23.) parallel to

CB, and from C draw CF parallel to AD.

Because the triangles ABC, ADC have the same altitude,

the straight line EF is parallel to AC (I. 24.), and con-

sequently the figures CE and AF
are parallelograms. Wherefore

EB, being equal to AC (I. 26.)

which is equal to DF, is itself e-

qual to DF. Add BD to each,

and ED is equal to BF; but EA is equal to BC (I. 26.),

and the interior angle AED is equal to the exterior angle

CBF (I. 22.). Thus the two triangles EDA, BFC have

the sides ED, EA equal to BF, BC, and the contained an-

gle AED equal to CBF, and are therefore equal (l. 3.).

Take these equal triangles CBF and EDA from the whole

quadrilateral space AEFC, and there remains the rhom-

boid AEBC equivalent to ADFC. Whence the tri-

angles ABC and ADC, which are the halves of these rhom-

boids (I. 26. cor.), are likewise equivalent.

Cor. Hence rhomboids on the same base and between

the same parallels, are equivalent.
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PROP. II. THEOR.

Triangles which have the same altitude, and

stand on equal bases, are equivalent.

The triangles ABC, DEF, standing on equal bases AC
and DF and having the same altitude, contain equal spaces.

For let the bases AC, DF be placed in the same

straight line, join BE, and produce it both ways, draw AG
and DH parallel to CB and FE (I. 23.), and join AH,
CE.

Because the triangles ABC, DEF are of equal altitude,

GE is parallel to AF (I. 24.), and GC, HF are parallelo-

grams. But AC, being equal to ^
DF, and DF equal (I. 26.) to

HE, must also be equal to HE,
and therefore (I. 27.) AE is

a rhomboid or parallelogram.

Whence the rhomboid GC is equivalent to AE (II. 1. cor.),

and this again* is, for the same reason, equivalent to HF j

consequently GC is equivalent to HF, and therefore their

halves or (I. 26. cor.) the triangles ABC and DEF are

equivalent.

Cor, 1. Hence rhomboids on equal bases and between the

same parallels, are equivalent.

Cor, 2. Hence triangles which have the same vertex,

and equal bases in the extension of the same straight line,

are equivalent; and hence straight Jines drawn from the

vertex of a triangle to equal sections of[the base, will like-

wise divide it into equivalent triangles.
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PROP. III. THEOIl.

Equivalent triangles on the same or equal bases>

have the same altitude.

If the triangles ABC and ADC, standing on the same

base AC, contain equal spaces, they have the same alti-

, tude, or the straight line which joins their vertices is pa-

rallel to AC.

For if BD be not parallel to AC, draw the parallel BE
hieeting AD or that side produced, in E, and join CE.

Because BE is made parallel to AC, the triangle ABC
is (11. 1.) equivalent to AEC ; but

ABC is by hypothesis equivalent to

ADC, and therefore AEC is equivalent

to ADC, which is absurd. The sup-

position then that BD is not parallel to
"^ ^

AC involves a contradiction.

The same mode of demonstration, it is obvious, will ap-

ply in the case where the equivalent triangles stand on e-

qual bases.

Co7\ Hence equivalent rhomboids on the same or equal

bases, have the same altitude.

PROP. IV. PROB.

To find a triangle equivalent to any rectilineal

figure.

Let it be required to reduce the five-sided figure ABCDE
to a triangle, or to find a triangle that shall contain ^a e-

qual space* ^
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Join any two alternate points A, C, and through the

intermediate point B, draw BF parallel to AC, meeting

either of the adjoining sides AE or CD in F ; which point,

when the angle ABC is re-entrant, will lie within the figure:

Join CF. Again, join the alter-

nate points C, E, and through

the intermediate pointD draw the

parallel DG, to meet in G either

of the adjoining sides AE or BC,

which, since the angle CDE is

salient, must for that eifect be ^ ^'

produced ; and join CG. The triangle FCG is equivalent

to the five-sided figure ABCDE.
Because the triangles CFA and CBA have by construc-

tion the same altitude and stand on the same base AC|

they are (II. 1.) equivalent; take each of them away from

the space ACDE, and there remains the quadrilateral fi-

gure FCDE equivalent to the five-sided figure ABCDE.
Again, because the triangles CDE and CGE are equal,

having the same altitude and the same base ; add the tri-

angle FCE to each, and the triangle FCG is equivalent

to the quadrilateral figure FCDE, and is consequently

equivalent to the original figure ABCDE.
In this manner, any polygon may, by successive steps,

be reduced to a triangle ; for an exterior triangle is always

exchanged for another equivalent one, which, attaching

itself to either of the adjoining sides, coalesces with the

rest of the figure.

Schol. This problem is of singular use in practice, since

it enables the surveyor greatly to abridge his computations,

by reducing any plan that he has delineated at once to an

equivalent triangle.

t
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PROP. V. PROB.

A triangle is equivalent to a rhomboid which

has the same altitude and stands on half the base.

The triangle ABC is equivalent to the rhomboid DEFC,
which stands on half the base DC, but has the same alti-

tude.

For join BD and EC. The triangles ABD and DBC
having the same vertex and equal

bases, are (11. 2. cor. 2.) equivalent.

But the diagonal EC bisects the

rhomboid DEFC (I. 26. cor.), and

the triangles DBC and DEC, having

the same altitude, are equivalent (II. 1.^; consequently

their doubles, or the triangle ABC and the rhomboid

DEFC, are equivalent. •

Cor. Hence the area of a triangle is equal to half the

rectangle contained under its base and its altitude—from

which property is derived the mensuration of any rectili-

neal figure.

PROP. VI. PROB.

To construct a rhomboid equivalent to a given

rectilineal figure, and having its angle equal to a

given angle.

Let it be required to construct a rhomboid which shall

be equivalent to a given rectilineal figure, and contain an

angle equal to G.

Reduce the rectilineal figure to an equivalent triangle
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ABC (II. 4.), bisect the base AC in the point D (I. 7.), and

draw DE making an angle CDE equal to the given angle

G (I. 4.), through B draw BF parallel to AC (I. 23.),

and through C the straight line

CF parallel to DE : DEFC is the

rhomboid that was required.

For the figure DF is by con-

struction a rhomboid, contains

an angle CDE equal to G, and is equivalent to the trian-

gle ABC (II.
5.

J, and consequently to the given rectili-

neal figure.

PROP. VII. THEOR.

^he complements of the rhomboids about the

diagonal of a rhomboid, are equivalent.

Let EI and HG be rhomboids about the diagonal of the

rhomboid BD 5 their Complements BF and FD contain

equal spaces.

Since the diagonal AF bisects the rhomboid EI (I. 26..

cor.), the triangle AEF is equivalent to AIF; and for the

i&ame reason, the triangle FHC is equi- -^ TC c
valent to FGC. From the whole tri- ^/T
angle ABC on the one side of the dia-

gonal, take away the two triangles
"^ I J3

AEF and FHC ; and from the triangle ADC, which is

equal to it, take away, on the other side, the two triangles

AlF and FGC, and there remains the rhomboid BF equi-

valent to FD.
Cor, The same property will extend to the spaces left on

both si^es of the diagonal by rhomboids any how combined.
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PROP. VIII. PROB.

With a given straight line to construct a rhom-

boid equivalent to a given rectilineal figure, and

having an angle equal to a given angle.

Let it be required to construct, with the straight line L, a

rhomboid, containing a given space, and having an angle

equal to K.

Construct (II. 6.) the rhomboid BF equivalent to the

given rectilineal figure, and having an angle BEF equal to

K ; produce EF until FG be e-

qual to L, through G draw DGC
parallel to EB and meeting the

extension of BH in C, join GF
and produce it to meet the exten-

sion of BE in A ; draw AD parallel to EF, meeting CG
in D, and produce HF to I : FD is the rhomboid re-

quired.

For FD and FB are evidently complementary rhom-

boids, and therefore (II. 7.) equivalent; and, by reason of

the parallels AE, IF, the angle FID is equal to EAI(1. 22.),

which again is equal to BEF or the given angle K.

ScJiol. This problem might also be solved by repeated

operations ; each triangle, into which the rectilineal figure

is divided, being successively converted into a rhomboid,

having an angle equal to K, and placed on a line equal to

L, or the summit of each preceding rhomboid. These

rhomboids will evidently coalesce and fulfil the conditions

required. The process is not so direct as when the figure

was previously reduced to an equivalent triangle ; but it

seems better adapted for the solution of another similar
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J)rq{)lem—To constitute under the same conditions a rhom-

boid equivalent to the difference between given figures. The

smaller rhomboid is here placed below the summit of the

other, leaving the defect standing on the original base.

PROP. IX. THEOfe.

A trapezoid is equivalent to the rectangle con-

tained by its altitude and half the sum of its pa-

rallel sides.

The trapezoid ABCD is equivalent to the rectangle con-

tained by its altitude and half the sum of the parallel sides

BC and AD.

For draw CE parallel to AB (I. 23.), bisect ED (I. 7.)

in Fj and draw FG parallel to AB, meeting the production

of BC in G.

Because BC is equal to AE (I. 26.), BC and AD are

together equal to AE and AD, or to twice AE with EDj
or to twice AE and twice EF, that is, to twice AF j con-*

sequently AF is half the sum of BC
K C Gr- .

and AD. Wherefore the rectangle A" "Vv /

contained by the altitude of the /^ / /X
trapezoid and half{he sum of its pa-

rallel sides, is equivalent to the rhomboid BF (II. 1. cor.),»

but the rhomboid EG is equivalent to th6 triangle ECD ^

(II. 5.), add to each the rhomboid BE, and the rhomboid

BF is equivalent to the trapezoid ABCD.
^hol. Hence the area is found of any rectilineal figure

referred to a given base j for it is equal to that of the aggre-

gate rectangles under the mean of each pair of perpendi-

culars and the interjacent portion of the base This pro-

position is of great use in surveying, since it abridges the
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mensuration of the irregular borders of a field, by help of

what are called offsets, or perpendiculars branching from,

the great line to each remarkable flexure of the extreme

boundary.

PROP. X. THEOR.

The square described on the hypotenuse of a

right-angled triangle, is equivalent to the squares

of the two sides.

Let the triangle ABC be right-angled at B ; the square

described on the hypotenuse AC is equivalent to'BF and

BI the squares of the sides AB and BC.

For produce DA to K, and through B draw MBL pa-

rallel to DA (I. 23.) and meeting FG produced in L.

Because the angle CAK, adjacent to CAD, is a right

angle, it is equal to BAFr'^from each of these take away

the anglfe BAK, and there

remains the angle BAC
equal to FAK. But the

angle ABC is equal to

AFK, both of them being

right angles. Wherefore

the triangles ABC and

AFK, thus having two an-

gles of the one respectively

equal to those of the other,

and the interjacent sideAF

equal to AB, are equal

(1. 20.), and consequently

the side AC is equal to AK. Hence the rectangle or

rhomboid AM is equivalent to ABLK (II. 2. cor.), since

they stand on equal bases AD and AK, and between the
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same parallels DK and ML. But ABLK is (11. 1. cor.)

equivalent to the rhomboid or square BF, for it stands on

the same base AB and between the same parallels FL and

AH. Wherefore the rectangle AM is equivelent to the

square of AB.

And in like manner, by drawing MB to meet the pro-

duction of HI, it may be proved, that the rectangle CM
is equivalent to the square of BC. Consequently the whole

square, ADEC, of the hypotenuse, contains the same space

as both together of the squares described on the two sides

ABandBG.
Cor. Hence the square of a side AB is equivalent to the

rectangle under the hypotenuse AC and the adjacent seg-

ment AN made by ,^ perpendicular.

Schol. This proposition is deservedly the most celebrated

of the whole Elements, and serves as the main link for con-

necting Geometry with the modern Algebra.—The de-

monstration may be variously modified ; but one of the

simplest forms is that in which CAKO is proved to be a

square, and the rectangle NK equivalent to the rhomboid

AL and to the square BF on the one side, while the remain-

ing rectangle NO is equivalent to the rhomboid CL and to

the square BI on the other.

PROP. XI. THEOR.

If the square of one side of a triangle be equiva-

lent to the squares of both the other sides, that

side subtends a right angle.

Let the square described on AC be equivalent to the

two squares of AB and BC ; the triangle ABC is right-

angled at B.
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For draw BD perpendicular to AB (I. S^.) and equal

to BC, and join AD.

Because BC is equal to BD, the square of BC is equal

to the square of BD, and consequently the squares of AB.

and BC are equal to the squares of AB and BD. But the

squares of AB and BC are, by hypothesis,

equivalent to the square of AC ; and sincie

ABD is, by construction, a right angle, the

squares of AB and BD are, by the preced-

ing proposition, equivalent to the square of,

AD. Whence the square of AC is equi-

valent to that of AD, and the straight line AC equal to

AD. The two triangles ACB and ADB, having all the

sides in the one respectively equal to those in the other,

are therefore equal (I. 2.), and consequently the angle

ABC is equal to the corresponding angle.ABD, that is, to

a right angle.

Cor. Hence the numbers 3, 4, and 5 will express the

sides and hypotenuse of a right-angled triangle— a proper-

ty which readily suggests another method of erecting a per-

pendicular at the extremity of a straight line.

PROP. XII. PROB.

To find the side of a square equivalent to any

number of giyen squares.

Let A, B, and C be the sides of the squares, to which

it is required to find an equivalent square.

Draw DE equal to A, and from its extremity E erect

{I. 34.) the perpendicular EF equal to B, join DF, and

again, perpendicular to this, draw FG equal to C, and join

PG : DG is the side of the square which was required.
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For, since DEF is a right-angled triangle,

the square ofDF is equivalent to the squares

of DE and EF (II. 10.), or of the lines A and

B. Add on both sides the square of FG or

of C, and the squares of DF and FG, which

are equivalent to the square ofDG (II. 10.),

are equivalent to the aggregate squares of ^
A, B, and C. And, by thus repeating the

process, it may be extended to any number of squares.

PROP. XIII. PROB.

To find the side of a square equivalent to the

difference between two given squares.

Let A and B be the sides of two squares ; it is required

to find a square equivalent to their difference.

Draw CD equal to the smaller line B, from its extre-

mity erect (I. 34-.) the indefinite per-

pendicular DE, and about the cen-

tre C, with a distance equal to thp

greater line A, describe a circle cut-

ting DE in F: DF is the side of

the square required.

For join CF. The triangle CDF
being right-angled, the square of

its hypotenuse CF is equivalent to

the squares of CD and DF (II. 10.), and consequently ta-

king the square of CD from both, the excess of the square

of CF above that of CD is equivalent to the square of DF,
or the square of DF is equivalent to the excess of the square

of A above that of B.
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PROP. Xiy. THEOR.

The rectangle contained by two straight lines,

is equivalent to the rectangles contained under

one of them and the several segments into which

the other is divided.

The rectangle under AC and AB, is equivalent to the

rectangles contained by AC and the segments AD, DE,
and EB.

For, through the points D and E, draw DF and EG
parallel and equal to AC (I. 23.).

The figures AF, DG, and EH are evidently rhomboid-

al ; they are also rectangular, for the

angles ADF, AEG, and ABH are A p f b

each equal to the opposite angle ACF
(I. 26.). And the opposite sides DF,

EG, and BH, being equal to AC,—the
spaces into which the rectangle BC is resolved, are equal

to the rectangles contained respectively by AC and AD,
DE and EB.

PROP. XV. THEOR.

The square described on the sum of two

straight lines, is equivalent to the squares of those

lines, together with twice their rectangle.

If AB and BC be two straight lines placed continuous

;

the square described on their sum AC, is equivalent to the

two squares of AB, BC, and twice the rectangle contained

by them.

ir
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G

For through B draw BI (1. 23.) parallel to AD, make

AF equal to AB, and through F draw FH parallel to

DE.
It is manifest that the spaces AG, GE, DG and CG,

into which the square of AC is divid-

ed, are all rhomboidal and rectangu-

lar. And because AB is equal to j^j j__—|j|;

AF, and the opposite sides equal,

the figure AG is equilateral, and ha-

ving a right angle at A, is hence a

square. Again, AD being equal to

AC, take away the equals AF and AB, and there remains

DF equal to BC, and consequently IG equal to GH
(I. 26.) : wherefore IH is likewise a square. The rect-"

angle DG is contained by the sides FG and DF, which

are equal to AB and BC ; and the rectangle CG is con-

tained by the sides GB and GH, which are likewise equal

to AB and BC. Consequently the whole square of AC is

composed of the two squares of AB and BC, together

with twice the rectangle contained by these lines.

PROP. XVI. THEOR.

The square described on the difference of two

straight lines, is equivalent to the squares of those

lines, diminished by twice their rectangle.

Let AC be the difference of two straight lines AB and

BC ; the square of AC is equivalent to the excess of the

two squares of AB and BC above twice their rectangle.

For let the squares of AB, BC and AC be completed,

and produce CE and DE the sides of the latter to H and I.
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It is evident, that GE is equal to BL or the square ofBC

;

to each add the intermediate rect-

angle EB, and GC isequal to IL

;

but the rectangle under AB and

BC is equal to the rectangle IL,

which is also equal to DG. From

the compound surface CAFGBKL,
or the squares of AB and BC, take

away the space DFGBKLC, or

the rectangles IL and DG, that is,

twice the rectangle under AB and BC,—and there remains

ADEC, or the square of the difference AC of the two lines

AB and BC.

i^" 7-r n-

33
K c

-A- C B
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PROP. XVIL THEOR.

The rectangle contained by the sum and diffe-

rence of two straight lines, is equivalent to the

difference of their squares.

Let AB and BD be two continuous straight lines, of

which AD is the sum and AC the difference ; the rectan-

gle under AD and AC, is equivalent to the excess of the

square of AB above that of BC.

For, having made AG equal to AC, draw GH parallel

to AD (I. 23.)> and CI, DH parallel to AE.

Because GK is equal to KC or HD, and EG is equal

to CB or BD, the rectangle EK is

equal to_ LD (IL 2. cor.); and

consequently, adding the rectangle

BG to each, the space AEIKLB
is equivalent to the rectangle AH.

But this space AEIKLB is the ex-

cess of the square of AB above IL

:< Z J -F

G K y. II

A JB D
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or the square of BC ; and the rectangle AH is contained by

AD and DH or AC. Wherefore the rectangle under

AD and AC is equivalent to the difference of the squares

of ABandBC.
Cor. 1. Hence if a straight line AB be bisected in C

and cut unequally in D, the rectangle under the unequal

segments AD, DB, together with the square of CD, the

interval between the points of section, is equivalent to

the square of AC, the half line. For

AD is the sum of AC, CD, and DB is > <;^
ir b

evidently their difference ; whence, by

the Proposition, the rectangle AD, DB is equivalent to

the excess^of the square of AC above that of CD, and

consequently the rectangle AD, DB, with the square of

CD, is equal to the square of AC.

Cor. 2. If a straight line AB be bisected in C and pro-

duced to D, the rectangle contained by AD the whole line

thus produced, and the produced part DB, together with

the square of the half line AC, is equivalent to the square

of CD, which is made up of the half line and the produced

part. For AD is the sum of AC, CD,

and DB is their difference; whence -^ ^ ? ?
the rectangle AD, DB is equivalent to

the excess of the square of CD above AC, or the rectangle

AD, DB, with the square of AC, is equivalent to the

square of CD.

Scholium. If we consider the distances DA, DB of the

point D from the extremities of AB as segments of this

line, whether formed by internal or external section ; both

corollaries may be comprehended under the same enun-

ciation. That, if a straight line be divided equally and

unequally, the rectangle contained by the unequal segments

is equivalent to the difference of the squares of the hklf

line and of the interval between the points of section.
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PROP. XVIII. THEOR.

The sum of the squares of two straight lines, is

equivalent to twice the squares of half their sum

and of half their difference.

Let AB, BC be two continuous straight lines, D the

middle point bf AC, and consequently AD half the sum of

these lines and DB half their difference; the squares of

AB and BC are together equivalent to twice the square of

AD, with twice the square of DB.
For erect (I. 5. cor.) the perpendicular DE equal to AD

or DC, join AE and EC, through B and F draw (I. 23.)

BF and FG parallel to DE and AC, and join AF.

Because AD is equal to DE, the angle DAE (I. 10.) is

equal to DEA, and since (I. 30. cor.) they make up toge-

ther one right angle, each of them must be half a right an-

gle. In the same manner, the angles DEC and DCE of

the triangle EDC are proved to be each half a right an-

gle; consequently the angle AEC, composed of AED and

CED, is equal to a whole right angle. And in the trian-

gle FBC, the angle CBF being equal

to CDE (I. 22.) which is a right

angle, and the angle BCF being half

a right angle—the remaining an-

gle BFC is also half a right angle

(I. 30.), and therefore equal to the angle BCF ; whence

(I. 11.) the side BF is equal to BC. By the same

reasoning, it may be shown, that the right angled triangle

GEF is likewise isosceles. The square of the hypotenuse
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EF, which is equivalent to the squares of EG and GF
(II. 10.), is therefore equivalent to twice the square of GF
or ofDB ; and the square of AF|, in the right angled tri-

angle ADE, is equivalent to the squares of AD arid DE,
or twice the square of AD. But since ABF is a right an-

gle, the square of AF is equivalent to the squares of AB
and BF, or BC; and because AEF is also a right an-

gle, the square of the same line AF is equivalent to the

squares of AE and EF, that is, to twice the squares ofAD
and DB. Wherefore the squares of AB, BC are toge-

ther equivalent to twice the squares of AD and DB.
Cor. Hence if a straight line AB be bisected in C and

cut unequally in D, whether by in-

terjial or external section, the squares A C p "B

ofthe unequal segments AD and DB ^ 9 ,^ P
are together equivalent to twice the

square of the half line AC, and twice the square of CD
the interval between the points of division.

PROP. XIX. PROB.

To cut a given straight line, such that the

square of one part shall be equivalent to the rect-

angle contained by the whole line and the re-

maining part.

Let AB be the straight line which it is required to di-

vide into two segments, such that the square of the one

shall be equivalent to the rectangle contained by the whole

line and the other.
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Produce AB till BC be equal to

it, erect (I. 5. cor.) the perpendicu-

lar BD equal to AB or BC, bisect

BC in E (I. 7.), join ED and make

EF equal to it ; the square of the

segment BF is equivalent to the rectangle contained by the

whole line BA and its remaining segment AF.

For on BC construct the square BG (I. 35.), make BH
equal to BF, and draw IHK and FI parallel to AC and

BD (I. 23.). Since AB is equal to BD, and BF to BH j

the remainder AF is equal to HD : and it is farther evi-

dent, that FH is a square, and that IC and DK are rect-

angles. But BC being bisected in E and produced to F,

the rectangle under CF, FB, or the rectangle IC, toge-

ther with the square of BE, is equivalent to the square of

EF or of DE (II. 17. cor. 2.). But the square of DE is

equivalent to the squares of DB and BE (II. 10.) ; whence

the rectangle IC, with the square of BE, is equivalent to

the squares of DB and_BE; or, omitting the common
square of BE, the rectangle IC is equivalent to the square

of DB. Take away from both the rectangle BK, and there

remains the square BI, or the square of BF, equivalent to

the rectangle HG, or the rectangle contained by BA and

AF.

Cor. 1. Since the rectangle under CF and FB is equi-

valent to the square of BC, it is evident that the line CF
is likewise divided at B in a manner similar to the original

line AB. But this line CF is made up, by joining the

whoje line AB, now become only the larger portion, to its

greater segment BF, which next forms the smaller portion

in the new compound. Hence this division of a line being

once obtained, a series of other lines all possessing the same

property may readily be found, by repeated additions.
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Thus, let AB be so cut, that the square of BC is equiva-

lent to the rectangle BA, AC: Make successively, BD
equal to BA, DE equal to DC, EF equal to EB, and FG

AC B T) E.
'

ir a
I—

t

i 1 i i 1

equal to FD ; the lines CD, BE, DF, and EG, beginning

in succession at the points C, B, D, and E, are divided

at the points B, D, E, and F, such that, in each of them,

the square of the larger part is equivalent to the rectangle

contained by the whole and the smaller part.—It is obvious,

that this procedure might likewise be reversed. If FD,

EB, and DC be made successively equal to FG, EF and

DE, the lines DF, BE, and CD will be divided in the same

manner at the points E, D and B.

Cor. 2. Hence also the construction of anotlier problem

of the same nature ; in which it is required to produce a

straight line AB, such that the rectangle contained by the

whole line thus produced and the part produced, shall be

equivalent to the square of the line AB itself. Divide AB,
by this proposition, in C, so that the

rectangle BA, AC is equivalent to the -^ ^ ^ ^
square of BC, and produce AB until

BD be equal to BC : Then, from what has been demon-

strated, it follows that the rectangle under AD and DB is

equivalent to^^Vje square of the whole line AB.

It will be convenient
yfor the sake of conciseness, to desig-

nate in future this remarJcahle. division ofa line, where the

rectangle under the whole and one part is equivalent to the.

square of the other, hi/ the term Medial Section.
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PROP. XX. THEOR.

The square of the side of an isosceles triangle is

greater or less than the square of a straight line

drawn from the Vertex to the base or its exten-

sion, by the rectangle contained under its inter-

nal or external segments.

1. If BD be drawn from the vertex of the isosceles tri-

angle ABC to a point D in the base ; the square of AB
exceeds the square of BD, by the rectangle under the

segments AD, DC.
t'or (I. 7.) bisect the base AC in E, and join BE. Be-

cause the triangles ABE and CBE have ^
the sides AB, AE equal to BC, CE, and

the side BE common, they are equal

(1. 2.), and consequently the correspond-

ing angles BEA, BEC are equal, and

each of them (Def. 4.) a right angle.

Wherefore the square of AB is equi-
^

valent to the squares of AE and BE (II. 10.); and since

AC is cut equally in E and unequally in D, the square

of AE is equivalent to the square of DE, together with the

rectangles AD, DC (II. 17. cor. 1.) ; and consequently the

square of AB is equivalent to the squares of BE and DE,
together with the rectangle AD, DC. Bi;^the square of

BD is equivalent to the squares of BE and DE (II. 10.);

whence the square of AB is equivalent to the square of

BD, together with the rectangle AD, DC.

2. But the square of the straight line BD drawn from

the vertex to any point in the base produced, is greatefr
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than the square of AB by the rectangle contained under

AD and DC, the external seg-

ments of the base.

For draw BE, as before, to bi-

sect the base AC. The square of

DE is equivalent to the square of

AE, together with the rectangle

AD, DC, (IL 17. cor. 2.); to

each of these, add the square of

BE, and the squares of DE and BE,—that is, the square

of BD (II. 10.)—are equal to the squares of AE and BE,

or the square of BA, together with the rectangle AD, DC.

PROP. XXI. THEOR.

The difference between the squares of the

sides of a triangle, is equivalent to twice the

rectangle contained by the base and the distance

of its middle point from the perpendicular.

Let the side AB of the triangle ABC be greater than

BC ; and, having let fall the perpendicular BE, and bisect-

ed AC in D, the excess of the square of AB above that

of BC is equivalent to twice the rectangle contained by AC
and DE.

For the square of AB is equivalent to the squares ofAE
and BE (II. 10.), and the square of BC is equivalent to

the squares CE and BE ; wherefore the excess of the square

of AB above that of BC is equivalent

to the excess of the square of AE above

.

that of CE. But the excess of the

square of AE above that of CE, is (IL

17.) equivalent to the rectangle con-

tained by theiy sum AC and their difference, which is evi-
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dently the double of DE ; and consequently the difference

between the squares of AE and CE, being equivalent to

the rectangle contained by AC and the double of DE, is

equivalent to twice the rectangle under AC and DE.
' Cor, The difference between the squares of the sides of

a triangle, is equivalent to the difference between the

squares of the segments of the base made by a perpendicu-

lar ;—a property likewise easily derived from the preceding

proposition.

PROP. XXII. THEOR.

In any triangle, the sum of the squares of the

sides, is equivalent to twice the square of half the

base and twice the square of the straight line

which joins the point of its bisection with the ver-

tex.

Let BD be drawn from the vertex B of the triangle ABC
to bisect the base; the squares of the sides AB and BC are

together equivalent to twice the squares ofAD and DB.

For let fall the perpendicular BE (I. 6.) ; and if the

point D coincide with E, the triangle ABC
being evidently isosceles, the squares of AB
and BC are the same with twice the square

of AB, or twice the squares of AE and EB,

or of AD and DB (II. 10.) -^ dk c

But if the perpendicular fall upon C, the triangle is right

angled, and the squares of AB and BC
are then equivalent to the square of AC,

and twice the square of BC, or to twice

the squares of AD, DC and BC ; but (II.

10.) twice the squares of DC and BC are
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equivalent to twice the square of DB, and consequently the

squares of AB and BC are equivalent to twice the squares

of AD and DB.

In every other case, whether the perpendicular BE fall

within or without the base AC, the

squares of AE, EC, the unequal seg-

ments of AC, are (II. 19. cor.) equiva-

lent to twice the square of AD and twice

the square of DE ; add twice the square -^ X) E c

of EB to both, and the squares of AE,

EB and of CE, EB—or the squares of

the hypotenuses AB, BC—are equiva- H C T2

lent to twice the square of AD, and

twice the squares of DE, EB, that is, (II. 10.) to twice the

square of DB.

PROP. XXIII. THEOR.

The square of the side of a triangle is greater

or less than the squares of the base and the other

side, according as the opposite angle is obtuse or

acute,-

—

by twice the rectangle contained by the

base and the distance intercepted between the ver-

tex of that angle and the perpendicular.

In the oblique-angled triangle ABC, where the perpen-

dicular BD falls without the base j the square of the side

AB which subtends the oblique angle exceeds the squares

of the sides AC and BC which contain it, by twice the

rectangle under AC and CD.

For die square of AD, or of the sum of AC and CD, is

(II. 15.) equivalent to the squares of these lines AC, CD,
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together with twice their rectangle. Add the square of

DB to each side, and the squares of AD, -^

DB, or (II. 10.) the square of AB is equi-

valent to the square of AC^ and the

squares of CD, DB, together with twice -— ^ ^
the rectangle AC, CD ; but the squares

of CD, DB are (II. 10.) equivalent to the square of CB

;

whence. the square of AB exceeds the squares of AC, BC,

by twice the rectangle under AC and CD.

Again, in the acute-angled triangle ABC, where the

perpendicular BD falls within the triangle;

the square of the side AB that subtends the U

acute angle, is less than the squares of the

containing sides AC, BC, by twice the rect-

angle under the base AC and its intercept- -A. u c;

ed portion CD.

For the square of AD, or of the difference between AC
and CD, is (II. 16.) equivalent to the squares of AC and

CD, diminished by twice their rectangle. Add to each the

square of DB, and the squares of AD and DB—or the

square of AB—-are equivalent to the square of AC, with

the squares of CD and DB, or the square of BC, diminish-

ed by twice the rectangle under AC and CD. Conse-

quently the square of AB is less than the squares of AC
and BC, by twice the rectangle under AC and CD»

Cor. If the triangle ABC be isosceles, having equal sides

AC and BC, the square of the base AB is equivalent to

twice the rectangle under the side AC, and the adjacent

segment AD made by the perpendicular BD, whether the

vertical angle be obtuse or acute. For the square of AB
is equivalent to the sqnai'es of AC and BC, or twice the

square of AC increased or diminished by twice the rect-
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angle under AC and CD ; that is, equivalent to twice the

rectangle under AC and AD, the sum or difference of AC
and CD—This might also be demonstrated from the co-

rollary to Prop. 10.

ScJioL When the three sides of a triangle are given, the

segments of the base made by a perpendicular may be found

either by Prop. 21. or Prop. 23., and thence the perpen-

dicular can easily be determined from the application of

Prop. 10. But half the rectangle under this perpendicu-

lar and the base will, by corollary to Prop. 5., express the

area of the triangle.

PROP. XXIV. THEOR.

The squares of the sides of a rhomboid, are to-

gether equivalent to the squares of its diagonals.

Let ABCD be a rhomboid : The squares of all the sides

AB, BC, CD, and AD, are together equivalent to the

squares of the diagonals AC, BD.
For the angles BCE and CBE are equal to the alternate

angles DAE and x\DE, and the

interjacent sides BC and AD are

equal ; wherefore (I. 20.) the tri-

angles BEC and DEA are equal.

Consequently CE being equal to

EA,the squares of AB,?BC, are (II. 22.) equivalent to twice

the square of AE and twice the square of BE ; whence

twice the squares of AB, BC, or the squares of all the sides

of the rhomboid, are equivalent to four times the square of

AE and four times the square of BE, that is, to the squares

of AC and BD.
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DEFINITIONS.

1. Any portion of the cir-

cumference of a circle is called

an «rc, and the straight line

which joins the two extremi-

ties, a chord.

2. The space included between an arc and its chord, is

named a segment.

S. A sector is the portion of a circle con-

tained by two radii and the arc lying be-

tween them.

4. The tangent to a circle is a straight

line which touches the circumference, or

meets it only in a single point.
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5. Circles are said to touch

mutually, if they meet, but do

not cut each other.

6. The point where a straight line touches^ a circle, or

one circle touches another, is called the point of contact.

v. A straight line is said to be inflected

from a point, when it terminates in another

straight line, or a( the circumference of a

circle.
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PROP. I. THEOR.

A circle is bisected by its diameter.

The circle ADBE is divided into two equal portions,

by the diameter AB.

For let the portion ADB be reversed and applied to

AEB, the straight line AB and its

middle po^nt, or the centre C, re-

maining the same. And since the

radii of the circle are all equal, or

the distance of C from any point in

the boundary ADB is equal to its

distance from any point of the op-

posite boundary AEB, every point

D of the former must meet with a corresponding point of

the latter, and consequently the two portions ADB and

AEB will entirely coincide.

Cor, The portion ADB limited by a diameter, is thus a

semicircle, and the arc ADB la a semicircwmference,

PROP. II. THEOR.

A straight line cuts the circumference of a cir-

cle only in two points.

If the straight line AB cut the

circumference of a circle in D, it

can only meet it again in another

point E.

JFor join D and the centre C;

and because from the point C on-
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ly two equal straight lines, s».ich as CD and CE, can be

drawn to AB (I. 17. qor.) the circle described from C
through the point D will cross AB again only at E.

PROP. III. THEOR.

The chord of an arc lies wholly within the cir-

cle.

The straight line AB which joins two points A, B in

t circumference of a circle, lies wholly within the figure.

For, from the centre C, draw CD
to any point in AB, and join CA and

CB.

Because CDA is the exterior an-

gle of the triangle CDB, it is greater

(I. 8.) than the interior CBD or

CBA; but CBA, being (I. 10.) e-

<]ual to CAB or CAD, the angle CDA is consequently

greater than CAD, a!;id its opposite side CA (J. 13.) great-

er than CD, or CD is less than CA, and therefore the

point D must lie within the circle.

Cor. Hence a circle is concave towards its centre.

PROP. IV. THEOR.

A straight line drawn from the centre of a cir-

cle at right angles to a chord, likewise bisects it

;

and, conversely, the straight line which joins the

centre with the middle of a chord, is perpendicu-

lar to it.
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The perpendicular let fall from the centre C upon the

chord AB, cuts it into two equal parts AD, DB.

For join CA, CB : And, in the triangles ACD, BCD,

the side AC is equal to CB, CD is

common to both, and the right angle

ADC is equal to BDC ; these trian-

gles having thus their corresponding

angles atA and B both acute, are equal

(I. 21.) and consequently the side AD
is equal to BD.

Again, let AD be equal to BD ; the bisecting line CD
is at right angles to AB.

For join CA, CB. The triangles ACD and BCD, ha-

ving the sides AC, AD equal to CB, BD, and the remain-

ing side CD common to both, are equal (I. 2.), and con-

sequently the angle CDA is equal to CDB, and each of

them a right angle.

Cor. Hence a straight line cutting two concentric cir-

cles has equal portions intercepted by their circumferences.

PROP. V. THEOR.

A straight line which bisects a chord at right

angles, passes through the centre of the circle.

If the perpendicular FE bisect a

chord AB, it will pass through G
the centre of the circle.

For in FE take any point D, and

join DA and DB. The triangles

ADC and BDC, having the side

AC equal to BC, CD common, and
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the right angle ACD equal to BCD, are '^qual (I. 3.), and

CO! sequently the base AD is equal to BD. The point D
is, therefore, the centre of a circle described through A
and B j and thus the centres of the circles that can pass

through A and B are all found in the straight line EF.

The centre G of the circlt AEBF must hence occur in that

perpendicular.

Cor, The centre of a circle may hence be found by bi-

secting the chord AB by the diameter EF (I. 7,), and bi-

secting this again in G,

PROP. VI. THEOR.

The diameter is ihe greatest line that can be

inflected within a circle,

The diameter AB is greater than

any chord DE.

For join CD and CE. The two

sides DC and EC of the triangle

DCE are together greater than the

third side DE (I. 14.); but DC
and CE are equal to AC and CB,

or to the whole diameter AB. Wherefore AB is great-

er than DE.

PROP. VII. THEOR.

If from any eccentric point, two straight lines

be drawn to the circumference of a circle ; the

one which passes nearer the centre, is greater

than that which lies more remote.
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Let C be the centre of a circle,

and A a different point, from

which two straight lines AD and

AE are drawn to the circumfe-

rence ; of these lines, AD, which

lies nearer to B the opposite ex-

tremity of the diameter, is greater

than AE.

For the triangles ADC and

AEC have the side CD equal to

CE, the side CA common to both,

but the contained angle DCA
greater than ECA 5 wherefore (I.

18.) the base AD is likewise great-

er than the base AE.

Cor. 1. Hence the straight line

ACB, which passes through the

centre, is the greatest of all those

that can be drawn to the circum-

ference of the circle from the ec-

centric point A. For it is evident fropi the Proposition,

that the nearer the point D approaches to B, the greater

is AD ; consequently the point B forms the extreme limit

of majority, or AB is the greatest line that can be drawn

from A to the circumference.

Cor. 2. Hence also, whether the eccentric point be with-

in or without the circle, the straight line AH is the short-

est that can be drawn from A to the circumference. For

AE is less than AD, and AG less than AF ; and the near-

er the terminating point approaches to H, which is obvi-

ously the most remote from B, the sshorter must be its dis-

tance from A. Wherefore the point H marks the limit of
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minority, and AH is the shortest line that can be drawn

from A to the circumference of the circle.

PROP. VIIL THEOR.

From any eccentric point, not more than two

equal straight lines can be drawn to the circum-

ference, one on each side of the diameter.

Let A be a point which is not

the centre of the circle, and AD a

straight line drawn from it to the

circumference.

Find the centre C (III. 5. cor.)

join CA and CD, draw (I. 4.) CE
making an angle ACE equal to

ACD and cutting the circumfe-

rence in E, and join AE : The

straight lines AE, AD are equal.

For the triangles ADC, AEC,
having the side CD equal to CE,

the side AC common, and the con-

tained angle ACD equal to ACE, are equal (I. 3.), and

consequently the base AD is equal to AE.

But, except AE, no straight line can be drawn from A
on the same side of the diameter HB, that shall be equal

to AD : For if the line terminate in a point F between E
and B, it will be greater than AE (III. 7.) ; and if the line

terminate in G between E and H, it will, for the same rea-

son, be less than AE.

Cor, 1. That point from which more than two equal
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straight lines can be drawn to the circumference, is the cen-

tre of the circle.

Cor. 2. Hence a circle will not cut another in more

than two points.

PROP. IX. THEOR.

A circle may be described through three points

which are hot in the same straight line.

Let A, B, C, be three points not lying in the same di-

rection ; the circumference of a circle may be made to pass

through them.

For (I. 7.) bisect AB by the per-

pendicular DF, and BC by the per-

pendicular EF. These straight lines

DF, EF will meet ; because, DE be-

ing joined, the angles EDF, DEF
are less than BDF, BEF, and con-

sequently are together less than two

right angles, and DF, EF are not parallel (I. 22.), but

concur to form a triangle whose vertex is F.

Again, every circle that passes through the two points

A and B, has its centre in the perpendicular DF (III. 5.)

;

and, for the same reason, every circle that passes through

Band C has its centre in EF; consequently the circle

which would pass through all the three points, must have

its centre in F, the point common to both perpendicular*

DF and EF.

It is farther manifest, that there is only one circle which

can be made to pass through the three points A, B, C j
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for the intersection of the straight lines DF and EF, which

marks the centre, is a single point.

Cor, Hence the mode of describing a circle about a gi-

ven triangle ABC.

PROP. X. THEOR.

Equal chords are equidistant from the centre

of a circle \ and chords which are equidistant from

the centre, are likewise equal.

Let AB, DE be equal chords inflected within the same

circle ; their distances from the centre, or the perpendicu-

lars CF, CG, let fall upon them, are equal.

For the perpendiculars CF and CG bisect the chords

AB and DE (III. 4.), and consequently BF, DG, the

halves of these, are likewise equal. The right-angled tri-

angles CBF and CDG, which are

thus of the same character, having

the two sides BC, BF equal respec-

tively to DC, DG, and the corre-

sponding angle BFC equal to DGC,

are equal (I. 21.), and consequently

the side FC is equal to GC.

Again, if the chords AB, DE be equally distant from

the centre, they are themselves equal.

For the same construction remaining : The triangles

CBFandCDG are still right-angled, or of the same charac-

ter, and have now the two sides CB, CF equal to CD, CG,

and the angle BFC equal to DGC ; consequently they are

equal, and the side BF equal to DG ; the doubles of these,

therefore, or the whole chords AB, DE, are equal.
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PROP. XI. THEOR.

The greater chord is nearer the centre of the

circle ; and that chord which is nearer the centre

is also the greater.

Let the chord DE be greater than AB ; its distance from

the centre, or the perpendicular CG let fall upon it, is less

than the distance CF.

For in the right-angled triangle BCF, the square

of the hypotenuse BC is equivalent

to the squares of BF and FC (II.

10.) ; and, for the same reason, the

square of the hypotenuse DC of the

right angled triangle DCG is equiva-

lent to the squares ofDG and GC. But

the radii BC and DC are equal, and
,

consequently their squares ; wherefore the squares of DG
and GC are equivalent to the squares of BF and FC. And
since BE is greater than AB, its half DG, made by the

perpendicular from the centre, is greater than BF, and con-

sequently the square of DG is greater than the square

of BF ; the square of GC is, therefore, less than the square

of FC, because, when conjoined xyith the squares of DG
and BF, they produce the same amount, or the square of

the radius of the circle. Hence the perpendicular GC it-

self is less than FC.

Again, if the chord DE be nearer the centre than AB,
it is also greater.

For the same construction remaining : It has been proved

that the squares ofBF and FC are together equivalent to the

squares ofDG and GC ; but GC being less than FC, the
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square ofGC is less than the square ofFC, and consequently

the square ofDG is greater than the square ofBF ; whence

the side DG is greater than BF, and its double, or the

chord DE, greater than AB.

PROP. XII. THEOR.

In the same or equal circles, equal angles at the

centre are subtended by equal chords, and termi-

nated by equal arcs.

If the angle ACB at the centre C be equal to DCE, the

chord AB is equal to DE, and the arc AFB equal to

DGE.
For let the sector ACB be applied to DCE. The cen-

tre remaining in its place, the radius CA will lie on CD

;

and the angle ACB being equal to DCE, the radius CB
will adapt itself to CE. And be-

cause all the radii are equal, their

extreme points A and B must co-

incide with D and E ; wherefore

the straight lines which join those

points, or the chords AB and DE,

must coincide. But the arcs AFB
and DGE that connect the same points, will also coincide

;

for any intermediate point F in the one, being at the same

distance from the centre as every point of the other, must,

on its application, find always a corresponding point G.

The same mode of reasoning is applicable to the case of

equal circles.

Cor, 1 . Hence, in the same or equal circles, equal arcs
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are subtended by equal chords, and terminate equal angles

at the centre.

Cor, 2. Hence also, in the same or equal circles, equal

chords must subtend equal arcs of a like kind, that is, arcs

which are both greater or both less than a semicircumfe-

rence.

Schol. The length ofa chord in a circle is thus insufficient

alone to determine the magnitude of the angle which it

subtends at the centre. To remove the ambiguity, it is

requisite to know, whether this angle be greater or less than

two right angles.

PROP. XIII. PROB.

To bisect a given arc of a circle.

Let it be required to divide the arc AEB into two equal

portions.

Draw the chord AB, and bisect it (I. 7.) by the perpen-

dicular EF cutting the circumference AB in E: The arc

AE is equal to EB.

For the triangles ADE, BDE, have the side AD equal

to BD, the side DE common, and

the containing right angle ADE e-

qual to BDE; they are (I. 3.) con-

sequently equal, and the base AE
equal to BE. But these equal chords

AE, BE must subtend equal arcs of

a hke kind (III. 12. cor. 2.), and the

arcs AE, BE are evidently each of

them less than a semicircumference.

Cor. The correlative arc AFB is also bisected, by the

perpendicular EDF at the opposite point F.
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PROP. XIV. PROB.

An arc being given, to complete its circle.

Let ADB be an arc *, it is required to trace out the circle

to which it belongs.

Draw the chord AB, and bisect it

by the perpendicular CD (I. 7.), cut-

ting the arc in D, join AD, and from

A draw AC making an angle DAC
equal to ADC (I. 4.): The intersec-

tion C of this straight line with the

perpendicular, is the centre of the

circle required.

For join CB. The triangles ACE
and BCE, having the side EA equal

to EB, the side EC common, and the

contained angle AEC equal to BEC,

are equal (I. 3.)) and consequently AC
is equal to BC. But (I. 1 1.) AC is also

equal to CD, because the angle DAC
was made equal to ADC. Wherefore (III. 8. cor. 1.)

the three straight lines CA, CD, and CB being all equal,

the point C is the centre of the circle.

PROP. XV. THEOR.

The angle at the centre of a circle is double of

the angle which, standing on the same arc, has its

vertex in the circumference.

Let AB be an arc of a circle ; the angle which it termi-
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nates at the centre, is double of ADB the corresponding

angle at the circumference.

For join DC and produce it to the opposite circumfeo

rence. This diameter DCE, if it lie not on one of the sides

of the angle ADB, must either fall within that angle or

without it.

First, let DC coincide with DB. And because AC is

equal to DC, the angle ADC is equal

to DAC (I. 10.) ; but the exterior an-

gle ACB is equal to both of these (I.

30.)j and therefore equal to double of

either, or the angle ACB at the centre

is double of the angle ADB at the .

circumference.

Next, let the straight line DCE lie within the angle

ADB. Froni what has been demon-

strated, it is apparent, that the angle

ACE is double of ADE, and the an-

gle BCE double of BDE ; wherefore

the angles ACE, BCE taken together,

or the whole angle ACB, are double

of the collected angles ADE, BDE,
or the angle ADB at the circumference.

Lastly, let DCE fall without the angle ADB.
the angle BCE is double of BDE, and

the angle ACE is double of ADE ; the

excess of BCE above ACE, or the an-

gle ACB at the centre, is double of the

excess of BDE above ADE, that is, of

the angle ADB at the circumference.

Cor. Hence if an equal circle be described from any
point D in the circumference, its arc intercepted by the

Because
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lines DA and DB will hejhe half of AB, and the whole

of the interior arc half of the exterior.

PROP. XVI. THEOR.

The angles in the same segment of a circle are

equal.

Let ADB be the segment of a cir-

cle ; the angles AFB, AGB contain-

ed in it, or which stand on the same

opposite portion AEB of the cir-

cumference, are equal to each other.

For join CA, CB. The angle

ACB, or its reverse at the centre,

and terminated by the arc AEB, is

double of the angle AFB or AGB
at the circumference (III. 15.); these

angles AFB, AGB, which stand on

the same arc AEB, are, therefore,

in every case, the halves of the same

central angle ACB, and are consequently equal to each

other.

Co7\ Hence equal angles at the circumference must stand

on equal arcs ; for their doubles or the central angles, be-

ing equal, are terminated by equal arcs (III. 12.). Hence

also equal angles that stand on the same base, have their

vertices in the same segment of a circle.

Schol. Hence the ordinary construction of theatres, the

seats being disposed in large arcs of a circle, so that the

stage may to each spectator subtend an equal angle, or

present always the same visual magnitude.
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PROP. XVII. THEOR.

•The opposite angles of a quadrilateral figure

contained within a circle, are together equal to

two right angles.

Let ABCD be a quadrilateral figure described in a cir-

cle ; the angles A and C are together equal to two right

angles, and so are those at B and D.

For join EB and ED. The angle BED at the centre

is double of the angle BCD at the

circumference (III. 15.) •, and for the

same reason, the reverse angle BED
is double of BAD. Consequently

the angles BCD and BAD are the

halves of angles about the point E,

which make up four right angles;

wherefore the angles BCD and BAD are together equal

to two right angles.

In the same manner, by joining EA and EC, it may be

proved, that the angles ABC and ADC are together equal

to two right angles.

i
Cor, 1. Hence it is evident from Prop. I. 16., that a cir-

cle may be described about a quadrilateral figure which has

its opposite angles equal to two right angles.

Cor» 2. Hence if one side of a quadrilateral figure in-

scribed in a circle be produced, it will form an exterior e-

qual to the opposite angle.

Cor. 3. Hence the angles at the base of a triangle in-

scribed in a circle, are together equal to an angle contain-

ed in the segment opposite to its vertex.
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PROP. XVIII. THEOR.

Parallel chords intercept equal arcs of a circle.

Let the chord AB be parallel to CD ; the intercepted

arc AC is equal to BD.

For join AD. And because the

straight lines AB and CD are pa-

rallel, the alternate angles BAD and

ADC are equal (I. 22.) ; wherefore

these angles, having their vertices in

the circumference of the circle, must

stand on equal arcs (III. 16. cor.),

and consequently the arcs AC and BD are equal to each

other. ^

Cor, Hence, conversely, the straight lines which inter-

cept equal arcs of a circle are parallel; and hence ano-

ther mode of drawing a parallel through a given point to

a given straight line.

PROP. XIX. THEOR.

The angle in a semicircle is a right angle, the

angle in a greater segment is acute, and the angle

in a smaller segment is obtuse.

Let ABD be an angle in a semicircle, or that stands on

the semicircumference AED ; it is a right angle.

For ABD, being an angle at the

circumference, is half of the angle

at the centre on the same base

AED (III. 15.); it is, therefore,

half of the angle ACD formed by

the diverging of the opposite por-

tions CA, CD of the diameter, or
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or half of two right angles, and is consequently equal to

one right angle.

Again, let ABD be an angle in a segment greater than

a semicircle, or which stands on a less arc AED than the

semicircumference ; it is an acute angle.

For join CA, CD. The angle ABD is half of the cen-

tral angle ACD, which is evidently less than two right an-

gles ; wherefore ABD is less than

one right angle, or it is acute.

But the angle AED, in the small-

er segment, is obtuse. For AED
stands on the arc ABD, which is

greater than a semicircumference,

and is the base of an angle at the

centre, the reverse of ACD, and greater, therefore, than

two right angles ; AED is hence an obtuse angle.

Cor, Hence conversely the arc which contains a right

angle must be a semicircle.

SchoL From the remarkable property, that the angle in

a semicircle is a right angle, may be derived an elegant me-

thod of drawing perpendiculars.

PROP. XX. THEOR.

The perpendicular at the extremity of a diame-

ter is a tangent to the circle, and the only tangent

which can be applied at that point.

Let ACB be the diameter of a circle, to which the

straight hne EBD is drawn at right angles from the extre-
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mity B ; it will touch the cir-

cumference at that point.

For CB, being perpendicu-

lar, is the shortest distance of

the centre C from the straight

lineEBD (I. 17.) j wherefore

every other point in this line iis

farther from the centre than B,

and consequently, falls without the circle.

But EBD, drawn at right angles to the diameter, is the

only straight line which can pass through the point B
and not cut the circle. For were HBF such a line, the

perpendicular CG let fall upon it from the centre, would

be less than CB (I. 17.), and must therefore lie within the

circle ; consequently HBG, being extended, would again

meet the circumference.

Cor\ Hence a straight line drawn from the point of con-

tact at right angles to a tangent, must be a diameter, or

pass through the centre of the circle.

Scholium. The nature of a tangent to the circle is easily

discovered from the consideration of limits. For suppose

the straight line DE, extending

both ways, to turn about the extre-

mity B of the diameter AB ; it will

cut the circle first on the one side

of AB, and afterwards on the o-

ther. But the arc AH being less

than a semicircumference, the an-

gle HBA which the line D'E^

makes with the diameter is acute

(III. 19.); and, for the same reason, the angle KBA isa-

cute, and consequently its adjacent angle D'BA is obtuse.

Thus the revolving line DE, when it meets the semicir-
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cumference AHB, makes an acute angle with the diame-

ter J but when it comes to meet the opposite semicircum-

ference, it makes an obtuse angle. In passing, therefore,

through all the intermediate gradations from minority to

majority, the line DE must find a certain individual posi-

tion in which it is at right angles to the diameter, and cuts

the circle neither on the one side nor the other.

PROP. XXI. THEOR.

If, from the point of contact, a straight line be

drawn to cut the circumference, the angles which

it makes with the tangent are equal to those in the

alternate segments of the circle.

Let'CD be a tangent, andBE a straight line drawn from

the point of contact, cutting the circle into two segments

BAE and BFE ; the angle EBD is equal to EAB, and the

angle EBC to EFB.

,For draw BA perpendicular to CD (I. 5. cor.), join AE,

and from any point F in the opposite arc, draw FB and

FE.

Because BA is perpendicular to the tangent at B, it is

a diameter (III. 20. cor.), and con-

sequently AEFB is a semicircle ;

wherefore AEB is a right angle (III.

19.), and the remaining acute an-

gles BAE, ABE of the triangle, be-

ing together equal to another right

angle, are equal to ABE and EBD,
which compose the right angle ABD.
Take the angle ABE away from both, and the angle BAE
remains equal to EBD.
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Again, the opposite angles BAE and BFE of the qua-

drilateral figure BAEF, being equal to two right angles

(III. 17.), are equal to the angle EBD with its adjacent

angle EEC ; and taking away the equals BAE and EBD,
there remains the angle BFE equal to EBC.

Co7\ If a straight line meet the circumference of a cir-

cle, and make an angle with an inflected line equal to that

in the alternate segment, it touches the circle.

Schol. A tangent may be considered as only a secant

arrived at its ultimate position, when the two points through

which it is drawn come to coincide. Suppose the straight

line joining B and F were extended, it would make with

the chord BE an angle EBF, equal to what the arc EF
subtends from any point in the opposite circumference.

But, when the point F is brought into the situation B, and

BF merges into a tangent, the angle EBF passes into

EBD, and the angle of the opposite or alternate segment

becomes BAE.

PROP. XXII. PROB.

To draw a tangent to a circle, from a given

point without it.

Let A be a given point, from which it is required to draw

a straight line that shall touch the circle DGH.
Find the centre C (III. 5- cor.),

join AC, and on this as a diame-,

ter describe the circle AGCK, cut-

ting the given circle in the points

G, K : Join AG, AK ; either of

these lines is the tangent required.

For join CG, CK. And the angles CGA, CKA, be-
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ing each in a semicircle, are right angles (III. 19.), and

consequently AG, AK, touch the circle DGHK at the

points G, K (III. 20.).

Cm; Hence tangents drawn from the same point to a

circle are equal ; for the right angled triangles AGG and

ACK having the side CG equal to CK, CA common, are

equal (I. 21.), and consequently AG is equal to AK.

PROP. XXIII. PROB.

On a given straight line, to describe a segment

of a circle, that shall contain an angle equal to a

given angle.

Let AB be a straight line, on which it is required to de-

scribe a segment of a circle containing an angle equal to C.

If C be a right angle, it is evident that the problem will

be performed, by describing a semicircle on AB. But if

the angle C be either acute or

obtuse j draw AD (I. 4.) making

an angle BAD equal to C,

erect AE (I. 34.), perpendicular

to AD, draw EF (I. 5. cor.) to

bisect AB at right angles and

meeting AE in E, and, from

this point as a centre and with

the distance EA, describe the re-

quired segment AGB.
Because EF bisects AB at

right angles, the circle described through A must also pas$

through (III. 5.) the point B ; and since EAD is a right
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angle, AD touches the circle at A (III. 20.)> and the an-

gle BAD, which was made equal to C, is equal (III. 21.)

to the angle in the alternate segment AGB.

PROP. XXIV. THEOR.

Two straight lines drawn through the point of

contact of two circles, intercept arcs of which the

chords are parallel.

Let the circles ACE and ABD touch mutually in A,

and from this point the straight lines AC, AE be drawn to

cut the circumferences ; the chords CE and BD are paral-

lel.

For draw the tangent FAG, (III. 20.), which must

touch both circles.

In the case of internal contact, the

angle GAE is equal to ACE in the al-

ternate segment, (III. 21.); and, for

the same reason, GAE or GAD is

equal to ABD ; consequently the an-

gles ACE and ABD are equal, and

therefore (I. 22.) the straight lines CE
and BD are parallel.

When the contact is exter-

nal, the angle GAE is still e-

qual to ACE, and its vertical

angle FAD is, for the same

reason, equal to ABD; whence

ACE is equal to ABD ; and

these being alternate angles, the straight line CE (I. 22.)

is parallel to BD.
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PROP. XXV. THEOR.

If through a point, within or without a circle,

two perpendicular lines be drawn to meet the cir-

cumference, the squares of all the intercepted dis-

tances are together equivalent to the square of the

diameter.

Let E be a point within or without the circle, and AB,
CD two straight lines drawn through it at right angles to

the circumference ; the squares of the four segments EA,
EB, ED, and EC, are together equivalent to the square

of the diameter of the circle.

For draw BF parallel to CD, and join AF, AD, CB,

and DF.

Because BF is parallel to CD, the

arc BC is equal to the arc FD (III.

18.), and consequently the chord BC
is also equal to the chord FD (III. 12.

cor. 1.) ; but BC being the hypotenuse

of the right-angled triangle BEC, its

square, or that of FD is equivalent to

the squares of EB and EC (II. 10.),

and AED being likewise right-angled,

the square of AD is equivalent to the

squares of EA and ED. Whence the

squares of AD and FD are equivalent

to the four squares of EA, EB, ED,
and EC. But since ED is parallel to

BF, the interior angle ABF is equal to AED (I. 22.), and
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therefore a right angle ; consequently ACBF is a semicir-

cle (III. 19. cor.) and AF the diameter. The angle ADF
in the opposite semicircle is hence a right angle (III. 19.),

and the square of the diameter AF is equal to the squares

of AD and FD, or to the sum of the squares of the four

segments EA, EB, ED, and EC intercepted between the

circumference and the point E.

PROP. XXVI. THEOR.

If through a point, within or without a circle,

two straight lines be drawn to cut the circumfe-

rence ; the rectangle under the segments of the

one, is equivalent to that contained by the seg-

ments of the other.

Let the two straight lines AD and AF be extended

through the point A, to cut the circumference BFD of a

circle ; the rectangle contained by the segments AE and

AF of the one, is equivalent to the rectangle under AB
and AD, the distances intercepted from A in the other.

For draw AC to the centre, and produce it both ways

to terminate in the circumference at G and H ; let fall the

perpendicular CI upon BD (I. 6.), and join CD.

Because CI is perpendicular to AD, the difference be-

tween the squares of CA and CD, the sides of the trian*

gle ACD is equivalent to the diffe-

rence between the squares of the seg-

ments AI and ID the segments of

the base (II. 21. cor.) ; and the dif-

ference between the squares of two

straight lines being equivalent to the

rectangle under their sum and their
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difference (II. 17.), the rectangle

contained by the sum and differ-

ence of AC, CD is equivalent to

the rectangle contained by the

sum and difference of AI, ID.

But since the radius CG is equal

to CH, the sum of AC and CD
is AH, and their difference is

AG 5 and because the perpendicular CI bisects the chord

BD (III. 4.), the sum of AI and ID is AD, and their dif-

ference AB. Wherefore the rectangle AH, AG is equi-

valent to the rectangle AB, AD. In the same way it is

proved, that the rectangle AH, AG is equivalent to the

rectangle AE, AF; and consequently the rectangle AE,

AF is equivalent to the rectangle AB, AD.
Cor. 1. If the vertex A of the straight lines lie within

the circle and the point I coincide with

it, BD, being then at right angles to CA,

is bisected at A (III. 4.), and the rect-

angle AB, AD is the same as the square

of AB. Consequently the square of a

perpendicular AB limited by the circum-

ference is equivalent to the rectangle under the segments

AG, AH of the diameter.

Cor, 2. If the vertex A lie without the circle and the

point I coincide with B or D, the an-

gle ABC being then a right angle, the

incident line AB must be a tangent

(III. 20,), and consequently the two

points of section B and D must coa-

lesce in a single point of contact.

Wherefore the rectangle under the distances AB, AD be-

comes the same as the square of AB j and consequently

H

H
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the rectangle contained by the segments AG, AH of the

diameter, is equivalent to the square of the tangent AB.

PROR XXVII. PROB.

To construct a square equivalent to a given

rectilineal figure.

Let the rectilineal figure be reduced by Proposition 6.

Book II. to an equivalent rectangle, of

which A and B are the two contain-

ing sides ; draw an indefinite straight

line CE, in which take the part CD
equal to A and DE to B, on C de-

scribe a semicircle, and erect the per-

pendicular DF from the diameter to meet the circumfe-

rence : DF is the side of the square equivalent to the given

rectilineal figure.

For, by Cor. 1 . to the last Proposition, the square of the

perpendicular DF is equivalent to the rectangle under the

segments CD, DE of the diameter, and is consequently e-

quivalent to the rectangle contained by the sides A and B
of a rectangle that was made equivalent to the rectilineal

figure.

PROP. XXyill. THEOR.

A quadrilateral figure may have a circle describ-

ed about it, if the rectangles under the segments

made by the intersection of its diagonals be equi-
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valent, or if those rectangles are equivalent which

are contained by the external segments formed by

producing its opposite sides.

Let ABCD be a quadrilateral figure, of which AC and

BD are the diagonals, and such that the rectangle AE,

EC is equivalent to the rectangle BE, ED ; a circle may

be made to pass through the four points A, B, C, and D.

For describe a circle through

the three points A, B, C (III. 9.

cor.), and let it cut BD in G. Be-

cause AC and BG intersect each

other within a circle, the rectan-

gle AE, EC is equivalent to the

rectangle BE, EG (III. 26.) ; but

the rectangle AE, EC is by hypothesis equivalent to the

rectangle BE, ED. Wherefore BE, EG is equivalent to

BE, ED ; and these rectangles have a common base BE,

consequently (II. 3. cor.) their altitudes EG and ED are

equal, and hence the point G is the same as D, or the cir-

cle passes through all the four points A, B, C, and D.

Again, if the opposite sides CB and DA be produced'

to meet at F, and the rectangle CF, FB be equal to DF,

FA, a circle may be described about the figure.

For, as before, let a circle pass through the three

points A, B, C, but cut AD in H. And from the proper-

ty of the circle, the rectangle CF, FB is equivalent to HF,
FA ; but the rectangle CF, FB is also equivalent to DF,

FA ; whence the rectangle HF, FA is equivalent to DF,

FA, and the base HF equal to DF, or the point H is the

same as D.
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DEFINITIONS.

1. A rectilineal figure is said to be in*

scribed in a circle, when all its angular

points lie on the circumference*

2. A rectilineal figure circumscribes a

circle, when each of its sides is a tan-

gent.

5. A circle is inscribed, in a rectilineal

figure, when it touches all the sides.
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4, A circle is described about a rectili-

neal figure or circumscribes it, when the cir-

cumference passes through all the angular

points of the figure.

5. Polygons are equilateral, when their sides, in the

same order, are respectively equal : They are equiangular,

if an equality obtains between their corresponding angles.

6. Polygons are said to be regular, when all their sides

and their angles are equal.
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PROP. I. PROB.

Given an isosceles triangle, to construct ano-

ther on the same base, but with only half the ver-

tical angle.

Let ABC be an isosceles triangle standing on AC; it

is required, on the same base, to construct another isosce-

les triangle, that shall have its vertical angle equal to half

of the angle ABC.
Bisect AC in D (I. Y.), join DB,

which produce till BE be equal to BA
or BC, and join AE, CE : AEC is the

isosceles triangle required.

For, the straight line BE being e-

qual to BA and BC, the point B is the

centre of a circle which passes through

the points A, E, and C ; and consequently the angle ABC
is the double of AEC at the circumference (III. 15.), or

the vertical angle AEC is half of ABC. But the triangles

AED and CED, having the side DA equal to DC, the

side DE common to both, and the right angle ADE
(III. 4'.) equal to CDE are (I. 3.) equal, and consequent-

ly AE is equal to CE. Wherefore the triangle AEC is

likewise isosceles.

PROP. ti. PROBi.

Given an acute-angled isosceles triangle, to con-

struct another on the same base, which shall have

double the vertical angle.
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Let ABC be an acute-angled isos-

celes triangle; it is required, on the

base AC, to construct another isosce-

les triangle, having its vertical angle

double of the angle ABC.
Describe a circle through the three

points A, B, and C (III. 9. cor.), and draw AD, CD to

the centre D ; the triangle ADC is the isosceles triangle

required. For the angle ADC, being at the centre of the

circle, is (III. 15.) double of ABC, the angle at the cir-

cumference.

PROP. III. THEOR.

If an isosceles triangle have each angle at the

base' double of the vertical angle, its base will be

equal to the greater segment of one of its sides

divided by a medial section.

Let ABC be an isosceles triangle which has each of the

angles BAC, BCA double of the vertical angle J\.BC \ the

base AC is equal to the greater segment of the side Bx4i

formed by a medial section.

For draw CD to bisect the angle BCA (I. 5.), and

about the triangle BDC describe a circle (III. 9. cor.).

Because the angle BCA is double

of ABC and has been bisected by

CD, the angles ACD, BCD are

each of them equal to CBD, and

consequently the side BD is equal

to CD (I. 11.). But the triangles

BAC and DAC, having the angle
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ACD equal to ABC, and the angle at A common to both,

must have also (I. 30.) the remaining angle CDA equal

to BCA or CAD; whence (I. 11.) the triangle DAC is

likewise isosceles, and the side AC equal to CD ; but CD
being equal to BD, therefore AC is also equal to it. And

since the angle ACD -is equal to CBD in the alternate

segment of the circle, the straight line AC touches the

circumference at C (III. 21. cor.); wherefore the rectan-

gle contained by AB and AD (III. 26. cor. 2.) is equiva-^

lent to the square of AC, or the square of BD. Conse-

quently the base AC of this isosceles triangle is equal to

the greater segment BD of the side AB cut by a medial

section.

Cor, Hence the interior triangle ACD is likewise isos-

celes and of the same nature with ABC, having the great-

er segment of AB for its side, and the smaller segment for

its baso.

PROP. IV. PROB.

Given either one of the sides, or the base, to

construct an isosceles triangle, so that each of the

angles at the base may be double of its vertical

angle.

First, let one of the sides AB be given, to construct such

an isosceles triangle.

Divide AB by a medial section at C (II. 19.), and on

CB, as a base with the distance AB for each of the sides,

describe an isosceles triangle (I. 1.)
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Next, let the base AB be given, AC B
to construct an isosceles triangle of J[

'

^g
^

this nature.

Produce AB to C, such that the rectangle AC, CB be

equal to the square of AB (II. 19. cor. 2.), and on the

base AB, with the distance AC for each of the sides, de-

scribe an isosceles triangle.

These isosceles triangles will fulfil the conditions re-

quired. For it is evident, from the last Proposition, that

isosceles triangles constituted on CB or AB, with each of

the angles at the base double the vertical angle, would

have AB or AC for their sides, and consequently (I. 2.)

must coincide with the triangles now described.

Cor. Hence of such an isosceles triangle the vertical

angle is equal to the fifth , part of two right angles ; for

each of the angles at the base being double of the vertical

angle, they are both equal to four times it, and consequent-

ly this vertica} angle is the fifth part of all the angles of

the triangle, or of two right angl^.

PROP. V. PROB.

On a given finite straight line, to describe a re-

gular pentagon. i

Let AB be the straight line, on which it is required to

describe a regular pentagon.

On AB erect (IV. 4.) the isosceles triangle ACB, ha-

ving each of the angles at its base double of its vertical an-

(jle, from the centre A with the distance AB describe an
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arc of a circle, and from the cen-

tre B with the same distance de-

scribe another arc, and from C
inflect the straight lines CE, CD
equal to AB: The points C, D,

E mark out the pentagon.

For it is evident from this con-

struction that BF and AG bisect

the angles at the base of the triangle ACB, and conse-

quently (IV. 3.) AB is equal to BF and FC, or AG and

GC. Again, the triangles BAD and BFC, having the

sides AB, BD equal to BF, BC, and the contained angles

equal, are themselves equal (I. 3.), and consequently AB
is equal to AD, and the angle BAD equal to BFC, or

three times ACB. In the same way it is shewn that'AB
is equal to BE, and that the angles round the figure are

each equal to thrice the vertical angle of the original isos-

celes triangle.

PROP. VI. PROB.

On a given finite straight line, to describe a re-

gular hexagon.

Let AB be the given straight line, on which it is re-

quired to describe a regular hexagon.

On AB construct (I. 1.) the equilateral triangle AOB,
and repeat equal triangles about the vertex O ; these tri-

angles will together compose the hexagon required.

Because AOB is an equilateral triangle, each of its an-
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gles is equal to the third part of

two right angles (1. 30. cor. 1.)

;

wherefore the vertical angle

AOB is the sixth part of four

right angles, or six of such an-

gles may be placed about the

point O. But the bases of the

triangles AOB, AOC, COD,
DOE, EOF, and BOF are all equal ; and so are the an-

gles at the bases, and which, taken by pairs, form the inter-

nal angles of the figure BACDEF. This figure is, there-

fore, a regular hexagon.

PROP. VII. PROB.

On a given finite straight line, to describe a re-

gular octagon.

Let AB be the given straight line, on which it is re-

quired to describe a regular octagon.

Bisect AB (I. 7.) by the perpendicular CD, which make

equal to CA or CB, join DA and DB, produce CD until

DO be equal to DA or DB,

draw AO and BO, thus forming

(IV. 1.) an angle equal to the

halfofADB, and, about the ver-

tex O, repeat the equal trian-

gles AOB, AOE, EOF, FOG,
GOH, HOI, lOK, and KOB
to compose the octagon.

For the distances AD, BD are

evidently equal ; and because CA, CD, and CB are all
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equal, the angle ADB is contained in a semicircle, and

is therefore a right angle (III. 19.)» Consequently AOB
is equal to the half of a right angle, and eight such angles

will adapt themselves about the point O. Whence the fi-

gure BAEFGHIK, having eight equal sides and equal

angles, is a regular octagon.

PROP. VIII. PROB.

On a given finite straight line, to describe a re-

gular decagon.

Let AB be the straight line, on which it is required to

describe a regular decagon.

On AB construct (IV. 4.) an isosceles triangle having

each of the angles at its base double of the vertical angle,

and, about the point O, place

a series of triangles all equal

to AOB : A regular decagon

will result from this composi-

tion, ni

For the vertical angle AOB
of the isosceles triangle is e-

qual to the fifth part of two

right angles (IV. 4. cor.), or

to the tenth part of four right angles ; whence ten such

angles may be formed about the point O. The figure

BACDEFGHIK, having therefore ten equal sides and

eq^ual angles, is a regular decagon.

'
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PROP. IX. PROB.

On a given finite straight line, to describe a re-

gular dodecagon.

Let AB be the straight line, on which it is required to

describe a regular twelve-sided figure.

On AB construct (I. 1.) the equilateral triangle ACB,

and again (IV. 1.) the isosceles triangle AOB, having its

vertical angle equal to the half of ACB, and repeat this

triangle AOB about the point

O; a regular dodecagon will

be thus formed.

For ACB being an equilate-

ral triangle, each of its angles is

the third part of two right an-

gles (I. 30. cor. 1.) ; conse-

quently the angle AOB is the

sixth part of two right angles

or the twelfth part of four right angles, and twelve such an-

gles can, therefore, be placed about the vertex O.

Scholium. Hence a regular twenty- sided figure may be

described on a given straight line, by first constructing on

it an isosceles triangle having each of the angles at the

base double of the vertical angle, and then erecting ano-

ther isosceles ti'iangle with its vertical angle equal to the

half of this. And, by thus changing the elementary tri-

angle, a regular polygon maybe always described, with

twice the number of sides.
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PROP. X. PROB.

In a given triangle, to inscribe a circle.

Let ABC be a triangle, it which it is required to in-

scribe a circle.

Draw AD and CD (I. 5.) to bisect the angles CAB and

ACB, and from their point of concourse D, with its dis-

tance DE from the base, describe the circle EFG : This

circle will touch the triangle internally.

For let fall the perpendiculars DG and DF upon the sides

AB and BC (I. 6.). The trian-

gles ADE, ADG, having the an-

gle DAE equal to DAG, the right

angle DEA equal to DGA, and

the interjacent side AD common,

are equal (I. 20.), and therefore

the side DE is equal to DG. In

the same manner, it is proved, from the equality of the

triangles CDE, CDF, that DE is equal to DF; conse-

quently DG is equal to DF, and the circle passes through
the three points E, G, and F. But it also touches (III. 20.)

the sides of the triangle in those points, for the angles

DEA, DGA, and DEC are all of them right ano-les.

PROP. XL PROB.

In a given circle, to inscribe a triangle equian-
gular to a given triangle.

Let GDH be a circle, in which it is required to inscribe
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a triangle that shall have its angles equal to those of the

triangle ABC.
Assuming any point D in the circumference of the cir-

cle, draw (III. 22.) the tan^

gent EDF, and make the an-

gles EDG, FDH equal to

BCA, BAC, and join GH :

The triangle GDH is equi-

angular to ABC.
For EF being a tangent,

and DG drawn from the

point of contact, the angle EDG, which was made equal

to BCA, is equal to the angle DHG in the- alternate seg-

ment (III. 21.); consequently DHG is equal to BCA.
And for the same reason, the angle DGH is equal to BAC j

wherefore (I. 30.) the remaining angle GDH of the trian-

gle GHD is equal to the remaining angle ABC of the

triangle ACB, and these triangles are mutually equian-

gular.

PROP. XXL PROB.

About a given circle, to describe a triangle ^f

quiangular to a given triangle.

Let GIH be a circle, about which it is required to de-

scribe a triangle, having its angles equal to those of the

triangle ABC.

Draw any radius FG, and with it make (I. 4.) the an-

gles GFI, GFH equal to the exterior angles BAE, BCD
of the triangle ABC, and, from the points G, I, and H
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draw the tangents KM, KL, and LM to form the trian-

gle KLM : This triangle is equiangular to ABC.

For all the angles of the quadrilateral figure KIFG be-

ing equal to four right

angles, and the angles

KIF and KGF being

€ach a right angle (III. y/^\/^ \\^a; cHb
20.), the remaining an-

gles GKI and GFI are

together equal to two

right angles, and consequently equal to the angles BAG
and BAE on the same side of the straight line ED. But

the angle GFI was made equal to BAE ; whence GKI is

equal to CAB. In Hke manner, it may be proved that the

angleGMH is equal to ACB ; and the angles at K and M
being thus equal to BAC and BCA, the remaining angle

at L is (I. 30.) equal to that at B, and the two triangles

are therefore equiangular.

PROP. XIII. THEOR.

A straight line drawn from the vertex of an

equilateral triangle inscribed in a circle to any

point in the opposite circumference, is equal to

the two chords inflected from the same point to

the extremities of the base.

Let ABC be an equilateral triangle inscribed in a cir-

cle, and BDj AD, and CD chords drawn from it to a

point D in the circumference ; BD is equal to AD and

CD taken together.

If
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For, make DE equal to DA, and join AE. The angle

ADB is (III. 16) equal to ACB in

the same segment, which, being the

angle of an equilateral triangle, is e-

qual (I. SO. cor. 1.) to the third part

of two right angles. Bnt the triangle

ADE being isosceles by construction, ^
the angles DAE, DEA at its base are equal (I. 10.), and

each of them is, therefore, equal to half of the remaining

two-thirds of two right-angles, or to one-third part. Con-

sequently ADE is likewise an equilateral triangle (I. 11.

cor.), and the angle DAE equal to CAB ; take CAE from

both, and there remains the angle DAC equal to EAB

;

but the angle ABD is equal to ACD in the same segment.

And thus the triangles ADC and AEB have the angles

DAC, DCA equal to EAB, EBA, and the interjacent side

AC equal to AB ; they are consequently equal (I. 20.),

and the side DC is equal to EB. But DE was made equal

to DA ; wherefore DA and DC are togethei: equal to DE
and EB, or to DB.

PROP. XIV. THEOR.

About and in a given square, to circumscribe

and inscribe a circle.

J^ct ABCD be a square, about which it is required to

circumscribe a circle.

Draw the diagonals AC, DB intersecting each other in

Q, and, from that point with the distance AO, describe

the circle ABCD : This circle will circumscribe the

square.



BOOK IV. 115

Because the diagonals of the square ABCD are equal and

bisect each other, the straight

lines OA, OB, OC, and OD are

all equal, and consequently the

circle described through A
passes through the other points

B, C, and D.

Again, let it be required to

inscribe a circle in the square

ABCD.
From O the intersection of the diagonals and with its

distance from the side AD, describe the circle EGHF
This circle will touch the square internally.

For let fall the perpendiculars OG, OH, and OF (I. 6.).

And because the straight lines AB, BC, CD, and DA are

equal, they are equally distant from the centre O of the

exterior circle (III. 10.) ; wherefore the perpendiculars

OE, OG, OH, and OF are all equal, and the interior

circle passes through the points G, H, and F; but (III. 20.)

it likewise touches the sides of the square, since they are

perpendicular to the radii drawn from O.

Cor, Hence an octagon may be inscribed within a given

square. For let tangents be applied at the points I, K,

L, and M, where the diagonals cut the interior circle. It

is evident, that the triangle AOE is equal to DOE, lOP

to EOF, and EOZ to MOZ ; whence the angles POE
and ZOE are equal, being the halves of EOA and EOD,

and consequently the triangles PEO and ZEO are equal.

Wherefore PZ, the double of PE, is equal to PQ, the

double of PI ; and the angle EZM is, for a like reason,

equal to EPI. And, in this manner, all the sides and all

the angles about the eight-sided figure PQRSTWYZ are

proved to be equal.
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PROP. XV. PROB.

In and about a given circle, to inscribe and cir-

cumscribe a square.

Let EADB be a circle in which it is required to in-

scribe a square.

Draw the diameter AB, the perpendicular ED through

the centre, andjoin AD, DB, BE, and EA : The inscribed

figure ADBE is a square.

The angles about the centre C, being right angles, are

equal to each other, and are, therefore, subtended by equal

chords AD, DB, BE, and AE, but

one of the angles ADB, being in a se-

micircle, is (III. 19.) a right angle,

and consequently ADBE is a square.

Next, let it be required to circum-

scribe a square about the circle.

Apply tangents FG, GH, HI, and

FI at the extremities of the perpendicular diameters:

These will form a square.

For all the angles of the quadrilateral figure CG, being

together equal to four right angles, and those at C, A, and

D being each a right angle, the remaining angle at G is

also a right angle, CG is a rectangle ; and AC being equal

to CD, it is likewise a square. In the same manner, CH,
CI, and CF are proved to be squares ; the sides FG, GH,
HI, and IF of the exterior figure, being therefore the

doubles of equal lines, are mutually equal, and the angle

at G being a right angle, FH is consequently a square.

Co?\ Hence the circumscribing square is double of the

inscribed square, and this again is double of the square de-

scribed on the ra^us of the circle.
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PROP. XVI. PROB.

In and about a given circle, to inscribe and cir-

cumscribe a regular pentagon.

Let ABCDE be a circle in which it is required to in-

scribe a regular pentagon.

Construct an isosceles triangle having each of its an-

gles at the base double of its vertical angle (IV. 4.), and

equiangular to tliis, inscribe the triangle ACE within the

circle (IV. 11.), draw AD, EB bisecting the angles CAE,
CEA (I. 5.), and join AB, BC, CD, and DE; The figure

ABCDE is a regular pentagon.

For the angles AEB, BEC are each the half of

CEA, and therefore equal

to ACE; but the angles

EAD, DAC are likewise

equal to ACE. tlence these

angles, being all equal, must

stand on equal arcs (III. 16.

cor.); and the chords of

these arcs, or the sides AB,

BC, CD, DE, and AE are

equal (III. 12. cor.). And because the segments EAB,
ABC, BCD, CDE, and DEA are evidently equal, (III.

16.), the interior angles of the figure are all equal, and it

is, therefore, a regular pentagon.

Next, let it be required to circumscribe a regular pen-
tagon about the circle.

At the points A, B, C, D, and E apply tangents; these

will form a regular pentagon.

For FAK being a tangent, the angle KAE is equal to
ACE (III. 21.); and in like manner it is shown that the
angles AEK, DEI, EDI, CDH, DCH, BCG, CBG,
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ABF, BAF are all equal to ACE. The isosceles trian-

gles AKE, BFA, having, therefore, the angles at the base

equal and the bases themselves AE, AB,—-are equal

(L 20.); for the same reason, the triangles BGC, CHD,
DIE, EKA, are equal. Whence the internal angles of

the figure are equal, and its sides, being double of those of

the annexed triangles, are likewise equal : The figure is,

therefore, a regtilar pentagon.

PROP. XVII. PROB.

To inscribe a regular hexagon in a given circle.

Let it be required, in the circle FBD, to inscribe a hexa-

gon.

Draw the radius OA, on which construct the equilate-

ral triangle ABO (I. 1. cor.), and repeat the equal trian-

gles about the vertex O : These triangles will compose a

hexagon.

For the triangle ABO, being equilateral, each of its an-

gles AOB is the third part of

two right angles; and conse-

quently six of such angles may

be placed about the centre O.

But the bases of the triangles

AOB, BOC, COD, DOE,
EOF, and FOA form the sides

of the figure, and the angles at

those bases its internal angles ; wherefore it is a regular

hexagon.

Cor, 1. Tangents applied at the points A, B, C, D, E,

F, would evidently form a regular circumscribing hexa-

gon.—An equilateral triangle might be inscribed by join-

ing the alternate points 5 and, by applying tangents at
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those points> an equilateral triangle would be made to cir-

cumscribe the circle.

Cor, 2. The side AB of the inscribed hexagon is equal

to the radius ; and since ABD is a right-angled triangle,

and the squares of AB and BD are equal to the square of

AD or to four times the square of AO, the square of BD
the side of an inscribed equilateral triangle is triple the

square of the radius.

Cor. 3. The perimeter of the inscribed hexagon is equal

to six times the radius, or three times the diameter, of the

circle. Hence the circumference of a circle being, from

its perpetual curvature, greater than any intermediate sys-

tem of straight lines, is more than triple its diameter.

PROP. XVIII. PROB.

To inscribe a regular decagon in a given circle.

Let ADH be a circle, in which it is required to inscribe

a regular decagon.

Draw the radius OA, and with OA as its side describe

the isosceles triangle AOB, having each of its angles at

the base double of its vertical angle (IV. 4.)y repeat the

equal triangles about the centre O : These triangles will

compose a decagon.

For the vertical angle AOB
of the component isosceles tri-

angle, is the fifth part of two
"

right angles (IV. 4. cor.), and

consequently ten such angles

can be placed about the point

O. But the sides and angles

of the resulting figure are all "f^=Hffi^

evidently equal; it is, therefore, a regular decagon.



120 ELEMENTS OF GEOMETRY.

Co7\ Hence a regular pentagon will be formed, by join-

ing the alternate points A, C, E, G, I, and A. It is also

manifest, that a decagon and a pentagon may be circum-

scribed about the circle, by applying tangents at their se-

veral angular points.

PROP. XIX. THEOR.

The square of the side of a pentagon inscribed

in a circle, is equivalent to the squares of the sides

of the inscribed hexagon and decagon.

Let ABCDEF be half of a decagon inscribed in a cir-

cle whose diameter is AF ; the square of AC, the side of

an inscribed pentagon, is equivalent to the square of AB
the side of the inscribed decagon, and of the square of the

radius AO, or the side of an inscribed hexagon.

For join AD, and draw OB, OC, and OD. Since the

arc DEF is double of AB, the angle AOB at the centre is

(III. 15.) evidently equal to OAD or OAG at the circum-

ference •, and because the arc BCDEF again is double of

DEF, the angle OAB at the circumference is likewise e-

qual to AOG at the centre. Whence the triangles AOB
and AGO, having the an^

gles OAB and AOB equal

to AOG and OAG, and

the interjacent side AO
common, are equal (I. 20.),

and therefore the base AB
is equal to OG. Conse-

quently, (IV. 18.) GAO is au isosceles triangle having

each of the angles at its base double the vertical angle;
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wherefore (IV. 3.) OG is equal to the greater segment of

side AO divided by a medial section. But (II. 20.) the

square of AC, drawn from the vertex to a point in the

extension of the base of the triangle OAG, is equivalent

to the square of AG, together with the rectangle under OC
and CG, or the square of OG ; that is, the square of the

side of the inscribed pentagon is equivalent to the squares

ofAO and of AB, the sides of the hexagon and decagon.

Cor. The triple chord AD of the decagon is equal

to the combined sides AO and AB of the inscribed hexa-

gon and decagon. For the triangle OAG, being equal

to AOB or COD, the angle DCO or DCG is equal to

AGO or DGC, and consequently (I. 11.) CD is equal

to GD. Wherefore AD being equal to AG and GD, is

equal to AO with OG or AB.

Scholium. Hence the sides of the inscribed decagon

and pentagon may be found by a single construction. For

draw the perpendicular dia-

meters AC and EF, bisect OC
in D, join DE, make DG e-

qual to it, and join GE. It

is evident, that AO is cut me-

dially in G(II. 19.), and con-

sequently that OG is equal to

a side of the inscribed deca-

gon. But GOE being a right-

angled triangle, the square of GE is equivalent to the

squares of GO and OE (II. 10.), or the squares of the

sides of the decagon and hexagon ; whence GE is equal to

the side of the inscribed pentagon. It also follows, that

CG is equal to CI or CP, the triple chords of the inscri-

bed decagon.
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p^

X

M '^ ^

*^\ /

!f\ D '1

M.

i- 2ir



J 22 ELEMENTS OF GEOMETRY.

PROP. XX. PROB.

In a given circle, to inscribe regular polygons

of fifteen and of thirty sides.

Let AB and BC be die sides of an inscribed decagon,

and AD the side of a hexagon inscribed ; the arc BD will

be the fifteenth part of the circumference of the circle, and

DC the thirtieth part.

For, if the circumference were divided into thirty equal

portions, the arc AB would be

equal to three of these, and the

arcAD to five ; consequently the

excess BD is equal to two of these

portions, or it is the fifteenth part

of the whole circumference. A-

gain, the double arc ABC being equal to six portions, and

ABD to five, the defect DC is equal to one portion, or to

the thirtieth part of the circumference.

Scholium. From the inscription of the square, the pen-

tagon, and the hexagon,—may be derived that of a variety

of other regular polygons : For, by continually bisecting

the intercepted arcs and inserting new chords, the inscribed

figure will, at each successive operation, have the number

of its sides doubled. Hence polygons will arise of 6, 8,

and 10 sides; then of 12, 16, and 20; next of 24', 32,

and 40 ; again, of 48, 64, and 80 ; and so forth repeated-

ly. The excess of the arc of the hexagon above that of

the decagon, gives the arc of a fifteen-sided figure ; and

the continued bisection of this arc will mark out polygons

with 30, 60, or 120 equal sides, in perpetual succession.
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The same results might also be obtained from the diffe-

rences of the preceding arcs.

Of the regular polygons, three only are susceptible of

perfect adaptation, and capable therefore of covering, by

their repeated addition, a plane surface. These are the

equilateral triangle, the square, and the hexagon. The

angles of an equilateral triangle are each two-thirds of a

right angle, those of a square are right angles, and the

angles of a hexagon are each equal to four-third parts of

a right angle. Hence there may be constituted about a

point, six equilateral triangles, four squares, and three

hexagons. But no other regular polygon can admit of a

like disposition. The pentagon, for instance, having each

of its angles equal to six-fifths of a right angle, would not

fill up the whole space about a point, on being repeated

three times ; yet it would do more than cover that space,

if added four times. On the other hand, since each angle

of a polygon which has more than six sides must exceed

four-third parts of a right angle, three such polygons can-

not stand round a point. Nor can the space about a point

ever be bisected by the application of any regular polygons,

of whatever number of sides ; for their angles are always

necessarily each less than two right angles.
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BOOK V.

OF PROPORTION.

The prieceding Books treat of magnitude as

concrete, or having mere extension 5 and the sim-

pler properties of lines, of angles, and of surfaces,

were deduced, by a continuous process of reason-

ings grounded on the principle of superposition*

But this mode of investigation, how satisfactory so-

ever to the mind, is by its nature very limited and

laborious. By introducing the idea of Number

into geometry, a new scene is opened, and a far

wider prospect rises into view. Magnitude, being

considered as discrete, or composed of integrant

parts, becomes assimilated to multitude ; and un-

der this aspect, it presents a vast system of rela-
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tions, which may be traced out with the utmost

facility. -

Numbers were at first employed, to denote the

aggregation of separate, though kindred, ob-

jects ; but the subdivision of extent, whether ac-

tually effected or only conceived to exist, bestow-

ing on each portion a sort of individuality,

they came afterwards to acquire a more com-

prehensive application. In comparing together

two quantities of the same kind, the one may
contain the other, or be contai?ied by it ; that is,

the one may result from the repeated addition

of the other, or it may in its turn produce this

other by a successive composition. The one quan-

tity is, therefore, equal, either to so many times

the other, or to a certain aliquot part of it.

Such seems to be the simplest of the numerical

relations. It is very confined, however, in its ap-

plication, and is evidently, in this shape, insufficient

altogether for the purpose of general comparison.

But that object is attained, by adopting some in-

termediate term of reference. Though a quantity

neither contain another exactly, nor be contained

by it ; there may yet exist a third and smaller

quantity, which is at once capable of measuring

them both. This measure corresponds to the

arithmetical unit ; and as number denotes the col-

lection of units, so quantity/ may be viewed as the

aggregate of its component measures.

But mathematical quantities are not ajl suscep-
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tible of such perfect mensuration. Two quantities

maybe conceived to be so constituted, as not to ad-

mit of any other quantity that will measure them

completely, or be contained in bothwithout leaving

a remainder. Yet this apparent imperfection, which

proceeds entirely from the infinite variety ascri-

bed to possible magnitude, creates no real obstacle

to the progress of accurate science. The mea-

sure or primary element, being assumed succes-

sively still smaller and smaller, its corresponding

remainder must be perpetually diminished. This

continued exhaustion will hence approach nearer

than any assignable difference to its absolute term.

Quantities in general can, therefore, either ex-

actly or to any required degree of precision, be

represented abstractly by numbers ; and thus the

science of Geometry is at last brought under the

dominion of Arithmetic.

It is obvious, that quantities of any kind must

have the same composition, when each contains

its measure the same number of times. But quan-

tities, viewed in pairs, may be considered as ha-

ving a similar composition, if the corresponding

terms of each pair contain its measure equally.

Two pairs of quantities of a similar composition,

being thus formed by the same distinct aggrega-

tions of their elementary parts, constitute a Pro-

portion,
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DEFINITIONS.

1

.

Quantities are homogeneous^ which can be added to-

gether.

2. One quantity is said to contain another, when the

subtraction of the smaller—continued if necessary—leaves

no remainder.

3. A quantity which is contained in another, is said to

measure it.

4. The quantity which is measured by another, is called

its rhultiple ,• and that which measures the other, its sub-

multiple,

5. Lilce multiples and submultiples are those which

contain their measures equally, or which equally measure

their corresponding compounds.

6. Quantities are commensurable, which have a finite

common measure ; they are incommensurable^ if they will

admit of no such measure.

7. That relation which one quantity is conceived to bear

to another in regard to their composition, is named a ra-

tio.

8. When both terms of comparison are equal, it is call-

ed a ratio of equality ; if the first of these be greater than
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the second, it is a ratio of majority ; apd if the first be less

than the second, it is a ratio of minority,

9. A proportion or analogy consists in the identity of ra-

tios.

10. Four quantities are said to he proportional^ when a

submultiple of the first is contained in the second as often

as a hke submultiple of the third is contained in the fourth.

1 1

.

Of proportional quantities, the first of each pair is

named the antecedent^ and the second the consequent,

12. The antecedents are homologous terms; and so are

the consequents.

13. One antecedent is said to be to its consequent as

another antecedent to its consequent.

14. The first and last terms of a proportion are called

the extremes^ and the intermediate ones, the means.

15. A ratio is direct^ if it follows the order of the terms

compared ; it is inverse or reciprocal^ when it holds a re-

versed order.

Thus, if the ratio of A to B be direct^ that of B to A is the

inverse or reciprocal ratio.

16. Quantities form a continued proportion, when the

intervening terms stand in the double relation of conse-

quents and antecedents.
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17. When a proportion consists of three terms, the

middle one is said to be a mean proportional between the

two extremes.

18. The ratio which one quantity has to another may

be considered as compounded of all the connecting ratios

among any interposed quantities.

Thus, the ratio of A to D is viewed as compounded of that of

A to B, that of B to C, and that of C to E).

19. Of quantities in a continued proportion, the first is

said to have to the third, the duplicate ratio of what it

has to the second; to have to the fourth, a triplicate ratio ;

to the fifth, a quadruplicate ratio ; and so forth, according

to the number of ratios introduced between the extreme

terms.

20. If quantities be continually proportional, the ratio

of the first to the second is called the suhduplicate of the

ratio of the first to the third, the suhtriplicate of the ratio

of the first to the fourth, &c,

To facilitate the language of demonstration relative to

numbers or abstract quantities, it is expedient to adopt a

clear and concise mode of notation.

1, The sign = expresses equality^ t^ majority^ and .^^n

minority: Thus A= B denotes that A is equal to B,
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A'liP'B signifies that A is greater than B, and A.,^^ im-

ports that A is less than B.

2. The signs + and — mark the addition and subtrac-

tion of the quantities to which they are prefixed : Thus,

A-f-B denotes that B is to be joined to A, and A—B sig-

nifies that B is to be taken away from A. Sometimes

these two symbols are combined together : Thus, Ar±=B

represents either the sum of A and B, or the excess of A
above B.

3. To express multiplication, the quantities are placed

close together ; or they may be connected by the point (.),

or the cross X : Thus, AB, or A.B, or A X B, denotes the

product of A by B ; and ABC indicates the result of the

continued multiplication of A by B, and of this product

again by C.

4. When the same number is repeatedly multiplied, the

product is termed its iponsoer ,- and the number itself, in re-

ference to that power, is called the root. The notation is

here still farther abridged, by retaining only a single letter

wfth a small figure over it, to mark how often it is under-

stood to be repeated : This figure serves also to distinguish

the order of the power. Thus AA, or A% signifies that

A is multiplied by A, and that the product is the second

poxioer of A j and AAA, or A^, in like manner, imports

that AA is again multiplied by A, and that the result is

the third power o^ K.

5. The roots are denoted, by prefixing a contracted t

or the symbol V , Thus VA or VA marks the second

root of A, or that number of which A is the second power

;

V A signifies the third y^oot of A, or the number which

has A for its third power.
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6. To represent the multiplication ofcomplex quantities,

they are included by a parenthesis. Thus, A(BH-C—D)
denotes that the amount of B+ C—D, considered as a

single quantity, is multiplied into A.

7. Ratios and analogies are expressed, by inserting points

in pairs between the terms. Thus A : B denotes the ra-

tio of A to B i and the compound symbols A : B : ; C ; D,.

signify that the ratio of A to B is the same as that of C to

D, or that A is to B as C to D.
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The pi^oduct of a number into the sum or dif-

ference of two numbers, is equal to the sum or

difference of its products by those numbers.

Let A, B, and C be three numbers ; the product of the

sum or difference of B and C by the number A, is equal

to the sum or difference of the separate products AB and

AC.

For the product AB is the same as each unit contained

in B repeated A times, and the product AC is the same as

the units in C likewise repeated A times ; whence the sum
of the products AB and AC is equal to the units contain-

ed in both B and C, all repeated A times, or it is equal to

the sum of the numbers B and C multiplied by A.

Again, for the same reason, the difference between the

products AB and AC must be equal to the difference be-

tween the units contained in B and in C, repeated A times ;

that is, it must be equal to the difference between the num-

bers B and C multiplied by A.

Cor, 1. Hence a number which measures any two num-

bers, will measure also their sum and their difference.

Cor, 2. It is hence manifest, that the first part of the

proposition may be extended to more numbers than two

;

or that AB+AC-I-AD+, &c.=A(B+C+D+, &c.)
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PROP. Ii: THEOR.

The product which arises from the continued

multiplication of any numbers, is the same in what-

ever order this operation be performed.

Let A and B be two numbers ; the product AB is equal

to BA.

For the product AB is the same as each unit in B add-

ed together A times, that is, the same as A itself repeated

B times, or BA.

Next, let there be three numbers A, B, and C; the

products ABC, ACB, BAG, BCA, CAB, and CBA are

all equal.

For put D=AB or BA ; then DCzrCD, that is, ABC
= CAB, and BAC= CBA.
Again, put E= AC or'CA; then EB= BE, that is,

ACB= BAC, and CAB= BCA.
Lastly, put F= BC or CB ; then FA= AF, that is,

BCA = ABC, and CBA= ACB.
And thus the several products are all mutually equal.

It is also manifest, that the same mode of reasoning

might be extended to the products of any multitude of

numbers.

PROP. IIL THEOR.

Homogeneous quantities are proportional to

their like multiples or submultiples.
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het A, B be two quantities of the same kind, andj^A,

j^B their Hke multiples ; then A : B : : pA : ^B.

For, since A and B are capable of being measured to

any required degree of precision, suppose a to be the mea-

sure which A and B contain m and 7i times, or that A=
9n.a and Bzzn.a ; consequently pA=p.via, and p3=p,na.

But (V. 2.) p.ma= m.pa, and p,na=i7i.pa. Wherefore a

andi pa are like submultiples of A and of pA, which con-

tain them respectively m times ; and these like submultiples

are both contained equally, or n times, in B and in /?B.

Consequently (V. def. 10.) the quantities A, B, and pA,

^B are proportional ; and A, /;A are the antecedents, and

B, ^B, the consequents, of the analogy.

Again, because the ratio of pA. to ^B is thus the same

as that of A to B, which, in reference to pA and^B, are

only like submultiples, it follows that homogeneous quanti-

ties are also proportional to their like submultiples.

PROP. IV. THEOR.

In proportional quantities, according as tlie

first term is greater, equal, or less than the se-

condi the third term is greater, equal, or less than

the fourth.

Let A: B : : C: D; if A^^B, then C:::^D ; if A= B,

then C=D ; or if A.^B, then C^-nD.

For, if A be greater than B, then the measure or submul-

tiple ofA must be contained oftener in B, and hence the like

submultiple of C will be contained oftener in D ; where-

fore C is greater than D.



IS»6 ELEMENTS OF GEOMETRY.

If A be equal to B, the measure of A is contained e-

qually in B, and hence that of C in D, or C is equal to D.

But, if A be less than B, the measure of A is not con-

tained so often in B, and hence the measure of C is not

contained so often in D, or C is less than D.

Scholium, On this proposition is grounded the mode of

stating a proportion in the Rule of Three, while the arith-

metical operation will be found to depend on Prop. VI.

PROP. V. THEOR.

Of four proportionals, if the first be a multiple

or submultiple of the second, the third is a like

multiple or submultiple of the fourth.

Let A : B : : C : D ; if A=:;?B, then C=^D.
For, suppose the approximate measures of A and C to

be a and c, and let Kzzzmp.a^ and C= »zp.r, It is evident,

from the hypothesis, that A=:j)'B=:mp,a, or B= W2.ff ,• but

the consequents B and D must contain their measures

equally (V. def. 10. )> and therefore D=»2.c. Whence C
=zmp.czz(y, 2,) p,mc=zp'D.

Again, if 5'A = B; then will qC= T>,

For, let A= na, and C^=wc; therefore B= g'A=rgrw«=

(V. 2.) nq.af and, from the definition of proportion, D=
nq.c=z (V. 2.) q.7lc:=:qC,
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PROP. VI. THEOR.

If four numbers be proportional, the product

of the extremes is equal to that of the means j

and of two equal products, the factors are con-

vertible into an analogy, of which these form se-

verally the extreme and the mean terms.

Let A : B : : C ; D-, then AD= BC.

For (V. 3.) A.D : B.D : : B-C : B.D ; and the second

term of this analogy being equal to the fourth, therefore

{V. 4.) AD= BC.

Again, let AD=BC ; then A : B : : C r D.

For, by identity of ratios, AD : BD : : BC : BD, and

hence (V. 3.) A : B : : C : D.

Cor. 1. Hence the greatest and least terms of a propor-

tion, are either extremes or means.

Cor. 2. Hence also a proportion is not affected, by trans-

posing or interchanging its extreme and mean terms. On
this principle are founded the two following theorems.

PROP. VII. THEOR.

The terms of an analogy are proportional by

inversion^ or the second is to the first, as the fourth

to the third.

Let A : B ; : C : D ; then imersely B : A ; : D : C.

For the extreme and mean terms are thus only mutual*

ly interchanged, and consequently the same equality of

products AD and BC still obtains.
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PROP. VIII. THEOR.

Numbers are proportional by alternation^ or the

iirst is to the third, as the second to the fourth.

Let A : B : : C : D J then alternately A : C : : B : D.

For the extreme terms being still retained, the mean

terms are merely transposed with respect to each other

;

the same equality of products, therefore, also here subsists.

I»ROP. IX. THEOR.

The terms of an analogy are proportional by

composition ; or the sum of the first and second is

to the second, as the sum of the third and fourth

to the fourth.

Let A : B : : C : D ; then by composition A+B : B : :

C+D : D.

Because A : B : : C : D, the product AD=BC (V. 6.)

;

add to each of these the product BD, and AD+BD=
BC+BD. But (V. 1.) AD+BD= D(A+B), and

BC+BD=B(C+D) ; wherefore (V. 6.) assuming the fac-

tors of these equal products for the extreme and mean

terms, A+B : B : : C+D : D.
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PROP. X. THEOR.

The terms of an analogy are proportional by

division ; or the difference of the first and second

is to the second, as the difference of the third and

fourth to the fourth.

Let A : B : : C : D ; suppose A to be greater than B,

then will C be greater than D (V. 4.) : It is to be proved

that A—B : B : : C—D : D.

For, since A : B : : C : D, the product AD=:BC
(V. 6.), and, taking BD from both, the compound product

AD—BD is equal to BC—BD; wherefore* by resolution,.

(A—B)D= B(C-D), and consequently A—B : B : :

C—D : D.

If B be greater than A, then BD—AD=BD—BC, and,

by resolution, (B—A) D= B (D—C) ; whence B—A : B
: : D-C : D.

PROP. XI. THEOR.

The terms of an analogy are proportional by

tonversioii ; that is, the first is to the' sum or dif-

ference of the first and second, as the third to the

sum or difference of the third and fourth.

Let A : B : : C : D, and suppose A^^B 5 then A :A=i=B

: : C : C=i=:D.

For, since (V. 6.) the product AD= BC, add or sub-
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stract these to or from the product AC ; and AC=t:AD
= AC=i=BC. Wherefore, by resolution, A(C=t:D)=
C(A=±=B), and consequently A : A=1=B : : C : C=±:D.

If A--^B, then AD—AC= BC—AC, and, by resolu-

tion, A(D—C)=rC(B—A), whence A : B—A: : C: D-C
Cor, Hence, by inversionj A=t:B : A : : C=izD : C, or

B--A : A : : D—C : C.

PROP. XII. THEOR.

The terms of an analogy are proportional by

mixing ; or the sum of the first and second is to

the difference, as the sum of the third and fourth

to their difference.

Let A : B : : C : D, and suppose kr^^ ; then A+B

:

A—B::C+D:C—D.

For, by conversion, A : A+B : : C : C+ D, and alter-

nately A : C : : A+ B : C+ D.

Again, by conversion, A : A—B : : C : C—D, and al-

ternately A : C : : A—B : C—D. Whence, by identity

of ratios, A+ B : C+D : : A—B : C~ D, and alternately

A+ B : A—B : : C+D : C--D.

The same reasoning will hold if A be less than B, the

order of these terms being only changed.
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PKOP. XIII. THEOR.

A proportion will subsist, if the homologous

terms be multiplied by the same numbers.

Let A : B : : C : D 5 then pK : qBi-.pC : qD.

For, since A : B : : C : D, alternately A : C : : B : D;

but the ratio of A to C is the same as pA : pC (V. 3.),

and the ratio of B to D is the same as qB : ^D Where-

fore^A : pC : : ^^B : g'D, and, by alternation, jpA : g'B : :

^C : ^D.

Car. The Proposition may be extended likewise to the

division of homologous terms, by employing submultiples.

PROP. XIV. THEOR.

The greatest and least terms ofa proportion, are

together greater than the intermediate ones.

Let A : B : : C : D ; and A being supposed to be the

greatest term, the other extreme D is the least (V. 6. cor.

1.) : The sum of A and D is greater than the sum of B
and C.

Because A : B : : C : D, by conversion A : A—B :

;

€ : C—D, and alternately A : C : : A—B : C—D; but

A, being the greatest term, is therefore greater than C,

and consequently (V. 4.) A—B is greater than C—D ; to

each add B+D, and A+D is greater than B+ C.
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The same reasoning is. applicable, if any other term of

the analogy be supposed the greatest.

Cor, Hence the mean term of three proportionals, is less

than half the sum of both extremes.

PROP. XV. THEOR.

If two analogies have the same antecedents,

another analogy may be formed, having the con-

sequents of the one for its antecedents, and the

consequents of the other for its consequents.

Let A : B : : C : Dand A : E : : C : F ; then B : E : :

D : F.

For, alternating the first analogy, A : C : : B : D, and

alternating the second, A : C : : E : F ; whence, by iden-

tity of ratios, B : D : : E : F. This inference is named a

direct equality.

PROP. XVI. THEOR.

If the consequents of one analogy be antece-

dents in another, a third analogy will arise, ha-

ving the same antecedents as the former, and the

same consequents as the latter.

LetA : B : : C : D, and B : E : : D : Fj then A : E : :

C: F.

For, alternating both analogies, A : C : : B : D, and
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B : D : : E : F; whence, by identity of ratios, A : C : ;

E : F. This conclusion is also named a direct equality.

PROP. XVII. THEOR.

If two analogies have the same means, the ex-

tremes of the one, with those of the other as the

mean terms, will form a third analogy.

Let A:B: : C:D,andE: B;: C: F;thenA;E: :

F: D.

For, since A : B : : C : D, AD=BC (V. 6.) ; and be-

cause E : B : : C : F, EF= BC. Whence AD= EF, and

A : E : : F : D.

Co7\ Hence the extreme and mean terms being inter-

changeable, it likewise follows, that, if A : B : : C : D, and

,A:E::F:D, thenBiE:: F:C.

PROP. XVIII. THEOR.

If the extremes of one analogy are the mean
terms in another, a third analogy will subsist, ha-

ving the means of the former as its extremes, and

the extremes of the latter as its means.

Let A : B : : C : D, and E : A : : D : F; then B : E :

:

F:C.
For, from the first analogy AD=:BC, and, from the ser-
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cond, EF=AD ; whence BC= EF, and consequently

B : E : : F : C.

Cor, Hence also, if A : B : : C : D and B : E : : F : C
j

then E : A ; : D : F. The principle of this and the pre-

ceding Proposition is named inverse, or perturbatey eqiia-

lity,

PROP. XIX. THEOR.

If there be any number of proportionals, as one

antecedent is to its consequent, so is the sum of

all the antecedents to the sum of all the conse^

quents,

Let A : B : : C : D : : E : F : : G : H; then A : B : :

A+C+E+G : B+D+F+H.
Because A : B : : C : D, (V. 6.) AD= BC; and, since

A : B : : E : F, AF=BE, and, for the same reason, AH
= BG. Consequently, the aggregate products, AB+AD
+AF+AH=BA+BC+ BE4-BG; and, by resolution,

A(B+D+F+H)= B(A + C+E+G;; whence A : B :

:

A+C+E+G: B+D+F+ H.

C(yi\ I. It is obvious, that the Proposition will extend

likewise to the difference of the homologous terms, and

may, therefore, be more generally expressed thus : A : B :

:

A=±=CdtE=±=G : B=i=D=±=F=t=H.

Cor, 2. Hence, in continued proportionals, as one ante-

cedent is to its consequent, so is the sum or difference of

the several antecedents^ to the corresponding sum or diffe-

rence of the consequents. For, if A : B ; ; B : C ; : C :
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then, by corollary 1, A : B : : AdtB=i=E : BdfcDdfcF, or

(V. 8.) A : Adt:C=i=E : : B : B=t=D=i=F; wherefore

(V. 11.) A : C=S=E : : B : D=4=F, and (V. 8.) A : B : :

C=t:E : D=i=F.

PROP. XX. THEOR.

If two analogies have the same antecedents,

another analogy may be formed of these antece-

dents, and the sum or diiFerence of the conse-

quents.

LetA:B::C:D, and A:E: : C : F; then A: BdfcE

: : C : D=±=F. For, by alternation, these analogies become

A : C : : B : D, and A : C : : E : F •, whence (V. 19.

cor. 2.) A : C : : B=i=E : D=fcF, and alternately, A : B=±:E

: : C : D=±zF.

Cor. If A : B : : C : D, and E : B : : F : D -, then

A=i=:E : B : : C=t:F : D. For, by alternating the analo-

gies, A : C : : B : D, and E : F : : B : D ; whence

(V. 19. cor. 2.) B : D : : A=t=E : C=±=F, and, by alterna-

tion and inversion, A=±=E : B : : C=i=F : D.

PROP. XXI. THEOR.

In continued proportionals, the difference be-

tween the first and second is to the first, as the

difference between the first and last terms to the

sum of all the terms excepting the last.
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Let A : B : : B : C : : C : D : : D : E; then if A-::^B,

A—B : A : : A—E : A+B+C+ D.

For (V. 19.), A : B : : A+B+C+D : B+C+D+E,
and consequently (V. 11. cor.),A—B : A :: (A+B+C+D)
^(B+C+D+E) : A+B+C+D; that is, omitting

B+C+Dinthe third term, A-B:A::A-E:A+B+C+D.
If A^B, then B—A : A : : (B+C+D+E)—(A+B

+C+D) : A+B+C+D, that is, B—A : A : : E—A : A
+B+C+D.
The same reasoning, it is evident, will hold for any num-

ber of terms.

Scholium. Hence the summation of continued progres-

sions, whether ascending or descending, is easily derived.

PROP. XXII. THEOR.

The products of the like terms of any numeri-

cal proportions, are themselves proportional.

Let A :B: :C::D
E::F::;G;:H
I: K:::L::M;

then AEI ;:BFK : : CGL :DHM.
For (V. 6.), from the first analogy AD= BC, from the

second analogy EH= FG, and from the third analogy IM
= KL; whence the compound product AD.EH.IMi=

BC.FG KL. But AD.EH.IM=AEI.DHM (V. 2.), and

BC.FG.KL = BFK.CGL ; wherefore AEI.DHM =
BFK.CGL, and consequently (V. 6.), AEI : BFK : :

CGLiDHM.
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The sAme reason, it is obvious, will apply to any number

of proportionals.

Cor. 1. Hence the powers of the successive terms of nu-

merical proportions, are likewise proportional. For, if A :

B : : C : D, and, repeating the analogy, A ; B : : C : D ;

then, by multiplication, AA : BB : : CC : DD, or A* :

B» : : C* : D^
Again, let A : B : : C : D, and, repeating the analogy,

A:Br:C:D,
and A : B : : C : D i whence, by multiplying the

corresponding terms,

AJ : B» :: CJ : D.
And so the induction may be pursued generally.

Cor. 2. Hence also the roots of the terms of a numeri-

cal proportion, are proportional. If A : B : : C : D, then

VA: VB: : VC: VD. For let VA:>/B:: VC: VE,
and, by the last corollary, A : B : : C : E ; but A : B
: : C : D, whence C : E : : C ; D, and consequently

E= D, or VA : VB : : VC : VD.—In the same man-

ner, it may be shewn in general that, ifA : B : : C : D,

VA: VB:; VC: VD.

PROP. XXIII. THEOR.

The ratio which is conceived to be compounded

of other ratios, is the same as that of the products.

of their corresponding numerical expressions.

Suppose the ratio of A : D is compounded of A : B, of

B : C, and of C : D, and let A : B : : K : L, B : C : :
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M : N, and C : D : : O : P ; then will A : D : :

KMO : LNP.
For, since A : B : : K : L,

B : C : : M : N,

and C : D : : O : P,

the products of the similar terms are proportional (V. 22.),

or ABC : BCD:: KMO : LNP. But A :D: : ABC: BCB
(V. 3.), and consequently A : D : : KMO : LNP.
The same mode of reasoning is applicable to any num-

ber of component ratios.

PROP. XXIV. THEOR.

A duplicate ratio is the same as the ratio of the

second powers oT the terms of its numerical ex-

pression, and a triplicate ratio is the same as that

of the third powers of those terms.

Let A : B : : B : C : : C : D ; then A* : B* : : A : C,

and A^ : B^ : : A : D.

For, since A : B : : B : C,

and A : B : : A : B, the products of the corre-

sponding terms are proportional (V. 22.), or A* : B* : :

BA : CB. Whence (V. 3.) A* : B^ : : A : C.

Again, since A : B : : B : C,

and A : B : : C : D,

and A : B : : A : B, as before, (V.

22.), A' : B^ : BCA : CDB. And consequently (V. 3.)

A':B^::A:D.
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A T>

J3 C

oD.-

PROP. XXV. THEOR.

The product of the numbers expressing the sides

of a rectangle, will represent its quantity of sur-

face, as measured by a square described on the li-

near unit.

Let ABCD be a rectangle and OP the linear measure

;

and suppose the side AB to contain OP, m times, and the

side BC to contain it, n times*

Divide these sides accordingly

(1. 36.), and, through the points

of section, draw straight lines

(I. 23.) parallel to AD and

DC : the whole rectangle will

thus be divided into cells, each

of them equal to the square of OP. It is evident, that there

stand on BC, w columns, and that each of these columns

contains, m cells ; consequently the entire space includes,

m.n cells, or is equal to the square of OP repeated »m times.

Cor. 1. If »2= w, then AB= BC, and the rectangle be-

comes a square ; but 7nn is in that case equal to 7iny or »*,

Whence the surface of a square is expressed by the second

power of the number denoting its side.

Cor. 2. Rectangles which have the same altitude m are

as their bases n and p ; for (V. 3.) mn : mp : : n : p. And
triangles having the same altitude, being (II. 5. cor.) the

halves of these rectangles, must likewise be as their bases.

Cor, 3. If two rectangles be equal, their respective sides

are reciprocally proportional, or form the extremes and

means of an analogy. For if mn ^pq^ then (V. 6.) w : jp : :

q '. n.
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PROP. XXVL PROB.

Given two homogeneous quantities^ to find, if

possible, their greatest common measure.

Let it be required to find the greatest common measure,

which two quantities A and B, of the same kind, will admit.

Supposing A to be greater than B, take B out of A, till

the remainder C be less than it ; again, take C out of B>

till there remain only D ; and continue this alternate ope-

ration, till the last divisor, suppose E, leave no remainder

whatever ; E is the greatest common measure of the quan-

tities proposed.

For, the quantity sought, as it measures B, will measure

its multiple ; and since it also measures A, it must mea-

sure the difference between the multiple of B and A
(V. l.cor. 1.), that is, C; the required measure, there-

fore, measures the multiple of C, and consequently the

difference of this multiple and B, which it measured,—that

is D : And lastly, this measure, as it measures the multiple

of D, must consequently measure the difference of this from

C, or it must measure E. Supposing the decomposition

to terminate here, the common measure of A and B, since

it measures E, must be E itself; and it is also the greatest

possible measure, for nothing greater than E can be con-

tained in this quantity.

By retracing the steps likewise, it might be shown, that

E actually measures, in succession, all the preceding terms

D, C, B, and A.

If the process of decomposition should never terminate,

the quantities A and B do not admit of a common mea-
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sure,—or they are incommensurable. But, as the residue of

the subdivision is necessarily diminished at each step of this

operation, it is evident that some element may always be

discovered, which will measure A and B nearer than any

^issignable limit.

PROP. XXVII. PROB.

To express by numbers, either exactly or ap-

proximately, the ratio of two given homogeneous

quantities.

Let A and B be two quantities of the same kind, whose

numerical ratio it is required to discover.

Find, by the last proposition, the greatest common mea-

sure E of the two quantities ; and let A contain this mea-

sure K times, and B contain it I^ times : Then will the ra-

tio K : L express the ratio of A : B.

For the numbers K and L severally consist of as many

units, as the quantities A and B contain their measure E.

It is also manifest, since E is the greatest possible divisor,

that K and L are the smallest numbers capable of express-

ing the ratio of A to B.

IfA and B be incommensurable quantities, their decom-

position is capable at least of being pushed to an unlimited

extent ; and, consequently, a divisor can always be found

so extremely minute, as to measure them both to apy de-

gree of precision.
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PROP. XXVIII. THEOR.

A straight line is incommensurable with its seg-

ments formed by medial section.

If the straight line AB be cut in C, such that the rect-

angle AB, BC is equivalent to the square of AC ; no part

of AB, however small, will measure the segments AC, BC.

For (V. 26.) take AC out

of AB, and again the re- a T'f V C ^
mainder BC out ofAC. But

AD, being made equal to BC, the straight line AC is like-

wise divided in D, by medial section (11. 19. cor. 1.); and,

for the same reason, taking away the successive remainders

CD, or AE, from AD, and DE or AF from AE, the sub-

ordinate lines AD and AE are also divided medially in

the points E and F. This operation produces, therefore,

a series of decreasing lines, all of them divided by medial

section : Nor can such a process of decomposition ever ter-

minate ; for though the remainders BC, CD, DE, and

EF continually diminish, they must still constitute the seg_

ments of a similar division. Consequently there exists no

final quantity capable of measuring both AB and ACc

Cor, Since (V. 6. and V. 24.) the whole line is to its

smaller segment in the duplicate ratio of the same line to

its greater segment, it evidently follows that the squares of

the parts of a line divided by medial section are likewise

mutually incommensurable.
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PROP. XXIX. THEOR.

The side of a square is incommensurable with

its diagonal.

Let ABCD be a square and AC its diagonal; AC and

AB are incommensurable.

For make CE equal to AB or BC, draw (I. 5. cor.) the

perpendicular EF, and join BE.

Because CE is equal to BC, the angle CEB (I. 10.) is

equal to CBE ; and since CEF and CBF are right angles,

the remaining angle BEF is e-

qual to EBF, and the side EF
(I. 11.) equal to BF; butEFis

also equal to AE, for the angles

EAF and EFA of the triangle

AEF are evidently each ofthem

half a right angle. Whence,

making FH equal to FB, FE
or AE,—the excess AE of the

diagonal AC above the side AB, is contained twice in AB,

with a remainder AH ; and AEl again, being the excess of

the diagonal AF of the derived or secondary square GE
above the side AE, must, for the same reason, be contain-

ed twice in AG, with a new remainder AL ; and this re-

mainder will likewise be contained twice with a correspond-

ing remainder in AH, the side of the ternary square KH.
This process of subdivision is, therefore, interminable, and

the same relations are continually reproduced.
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The doctrine of Proportion, grounded on the

simplest theory of numbers, furnishes a most

powerful instrument, for abridging and extending

mathematical investigations. It easily unfolds

the primary relations subsisting among figures, and

those of the sections of lines and circles ; but it

also discloses with admirable felicity that vast con-

catenation of general properties, not less impor-

tant than remote, which, without such aid, might

for ever have escaped the penetration^ of the geo-

meter. The application of Arithmetic to Geome-

try forms, therefore, one of those grand epochs

which occur, in the lapse of ages, to mark and

accelerate the progress of scientific discovery.
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DEFINITIONS.

1. Straight lines drawn from the Same point, are termed

diverging lines.

2. Straight lines are divided similarli/f when their cor-

responding segments have the same ratio.

3. A straight line is cut in extreme and mean ration when

the one segment is a mean proportional between the other

segment and the whole line.

4. A straight line is said to be cut harmonically, if it

consist of three segments, such that the whole line is to

one extreme, as the other extreme to the middle part.

5. The area of a figure is the quantity of space which

its surface occupies.

6. Similar figures are such as have their angles respec-

tively equal, and the containing sides proportional.

7. If two sides of a rectilineal figure be the extremes of

an analogy, of which the means are two corresponding

sides in another rectilineal figure ; those figures are said

to have their sides reciprocally proportional.



BOOK VI. 157

PROP. I. THEOR.

Parallels cut diverging lines proportionally.

The parallels DE and BC cut the diverging lines AB
and AC into proportional segments.

Those parallels may lie on the same side of the vertex,

or on opposite sides ; and they may consist of two, or of

more straight lines.

1. Let the two parallels DE and BC intersect the di-

verging lines AB and AC, on the same side of the vertex

A ; then are AB and AC cut proportionally, in the points

D and E,~or AD : AB : : AE : AC.

For if AD be commensurable with AB, find (V. 26.)

their common measure M, which repeat from the vertex A
to B, and, from the corresponding points of section in AD
and AB, draw (I. 23.) the parallels FI, GK, and HL. It

is evident, from Book I. Prop. 36.

that these parallels will also divide

the straight lines AE and AC equal-

ly. Wherefore the measure M, or

AF the submultiple of AD, is con- X v o -P H B
tained in AB, as often as AI, the m
like submultiple of AE, is contained in AC ; consequently

(V. def. 10.) the ratio of AD to AB is the same with that

ofAEtoAC.
But if the segments AD and AB be incommensurable,

they may still bie expressed numerically, to any required de-

gree of precision. For AD being divided (I. 36.) into e-r

qual sections, these parts, continued towards B, will, to-

gether with some residuary portion, compose the whole of
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AB. Let this division ofAD extend through DB as far as h^

and draw the parallel he. Let the parts ofAD and AB he

again subdivided, and the corresponding residue will evi-

dently be diminished ; consequently, at each successive sub-

division, the terminating parallel he

will approximate perpetually to BC.

Wherefore, by continuing this pro- K
cess of exhaustion, the divided lines

Kb and Arwill approach their limits

AB and AC, nearer than^any finite

or assignable interval. Consequently, from the preceding

demonstration, AD : AB : : AE : AC.

And since AD : AB : : AE : AC, it follows, by conver-

sion (V. 11.), that AD ; DB ; : AE : EC, and again, by

composition (V. 9.), that AB : DB : : AC : EC.

2. Let the two parallels DE and BC cut the diverging

lines DB and EC, on opposite sides of A ; the segments

AB, AD have the same ratiowith AC, AE,—or AB : AD ;

:

AC : AE.

For, make AO equal to AD, AP to AE, and join OP.
The triangles APO and

AED, having the sidesAO,

AP equal to AD, AE, and

the contained vertical an-

gle OAP equal to DAE,
are equal (L 3.), and con-

sequently the angle AOP
is equal to ADE ; but these

being alternate angles, the straight line OP (I. 22.) is pa-

rallel to DE or BC, and hence, from what was already de-

monstrated, AB : AO or AD : : AC : AP or AE.

And since AB : AD : : AC ; AE, by composition BD :
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AD : : CE : AE, and, by conversion, BD : AB : : CE :

AC.

3, Lastly, let more than two parallels, BC, DE, FH,
and GI, intersect the diverging lines AB and AC ; the seg-

ments DA, AF, FG, and GB, in DB, are proportional re-

spectively to EA, AH, HI, and IC, the corresponding

segments in EC.

For, from the second case,

AD : AF : : AE : AH ; and,

from the first case, AF : FG :

:

AH : HI. But from the same

case, AG : FG : : AI : HI,

and AG : GB : : AI : IC;

whence (V. 15.) FG : GB : :

HI:IC.
Cor. 1 . Hence the converse of the proposition is also

true, or straight lines which cut diverging lines pro-

portionally are parallel ; for it would otherwise follow, that

a new division of the same line would not alter the rela-

tion among the segments, which is evidently absurd.

Cor, 2. Hence, if the segments of one diverging line be

equal to those of another, the straight lines which join them

are parallel.

PROP. II. THEOR.

t)iverging lines are proportional to the corre-

sponding segments into which they divide paral-

lels.
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Let two diverging lines

AB and AC cut the parallels

BC and DE; then AB :

AD : : BC : DE.

For draw DF parallel to

AC. And, by the last Pro*

position, the parallels AC
and DF must cut the straight

linesAB and BC proportion-

ally, or AB : AD :: BC : CF.

But CF is equal (I. 26.)

to the opposite side DE of

the parallelogram DECF;
and consequently AB : AD:;

BC : DE.

Next, let more than two diverging lines, AB, AF and

AC intersect the parallels BC and DE j the segments BF
and FC have respectively to DG
and GE thesame ratio as AB has

to AD.
' From what has been already

demonstrated, it appears, that

AB : AD : : BF : DG, and al-

so that AF : AG : : FC : GE.

But by the last Proposition, AB :

AD : : AF : AG ; wherefore AB : AD : : FC : GE.

The same mode of reasoning, it is obvious, might be ex-

tended to any number of sections. "Whence AB : AD : :

BF : DG : : FC : GE.

Cor. 1. Hence the straight lines which cut diverging lines

equally, being parallel (VI. 1. cor. 2.), are themselves pro-

portional to the segments intercepted from the vertex.
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Cor, 2. Hence parallels are cut proportionally by diver-

ging lines.

PROP. III. PROB.

To find a fourth proportional to three given

straight lines.

Let A, B, and C be three straight lines, to which it is

required to find a fourth proportional.

Draw the diverging lines

DG and DH^ make DE equal

to A, DF to B, and DG to

C, join EF, and through G
draw (I. 23.) GH parallel to

EF and meeting DH in H;
DH is a fourth proportional

to the straight lines A, B, and

C.

For the diverging lines DG and DH are cut propor-

tionally by the parallels EF and GH (VI. 1.), or DE : DF
: : DG : DH, that is, A : B^- : C : DH.

Cor, If the mean terms B and C be equal, it is obvious

that DG will become equal to DF, and that DH will be

jfbund a third proportional to the two given terms A and B.

PROP. IV. PROB.

To cut a given straight line into segments,

which shall be proportional to those of a divided,

straight line.
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Let AB be a straight line, which it is required to cut

into segments proportional to those of a given divided

straight line.

Draw the diverging line AC,

and make AD, DE, and EC,

equal respectively to the seg-

ments of the divided line, join

CB, and draw EG and DF
parallel to it (I. 23.) and meet-

ing AB in G and Fj AB is

cut in those points proportionally to the segments oi AC.

For the parallels DF, EG, and CB must cut the di-

verging lines AB and AC proportionally (VI. l.)> or

AF : FG : : AD : DE, and FG : GB : : DE ; EC.

PROP. V. PROB.

To cut offthe successive parts ofa given straight

line.

Let AB be a straight line, from which it is required to

cut off successively the half, th^e third, the fourth, the fifth,

Stc.

Oil AB describe (I. 23.) the rhomboid ABCD, and

through E, the intersection of its diagonals AC and BD,

draw EF parallel to AD, join DF, and through G, where

it cuts AC, draw GH likewise parallel to AD, again join

DH and draw the parallel IK, and so repeat the opera-

tion : Then will AF be the half of AB, AH the third,

AK the fourth, and AM the fifth part of it.

The triangles AED and CEB are equal (I. 20.), since
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KKH Jf

they have (1. 23.) the angles DAE and ADE equal to BCE
and CBE, and the interjacent sides AD and CB (I. 26.)

likewise equal ; and therefore DE= EB. But AD and EF
being parallel, DE : EB: : AF : FB (VI. 1.)'; whence (V. 4.)

AF= FB, or AF is the half of AB. And AD and EF being

intercepted parallels, AD : EF : : AB : BF (VI. 2.) ; con-

sequently, since AB is double of BF, AD is likewise double

ofEF(V.5.) Again, the ^y C
diverging lines AGE and

DGF are proportional to

the intercepted parallels

AD and EF (VI. 2.), or

AD : EF : : AG : GE

;

and GH being parallel to

EF, AG : GE : : AH : HF (VI. 1.), whence AD : EF :

:

AH : HF; but AD was shown to be double of EF, where-

fore AH is double of HF (V. 5), or AH is two-thirds of

AF, or of the half of AB, and is consequently the third

part of the whole AB. Now, since AF : HF : : AD : GH,
(VI. 2.) and AFis triple ofHF, it is evident that AD is triple

of GH; but AD : GH : : AI : IG : : AK : KH, and, AD
being triple of GH, AK must also be triple of KH ; or

AK is three-fourths of AH, which was proved to be the

third of AB, whence the segment AK is the fourth part of

the whole line AB. By a like process, it is shown that

AM is the fifth part of AB.

Cor. This construction likewise exhibits other portions

of the line AB. For, since AF is the half, and AH the

third, their difference FH must be the sixth part. Again,

AH and AK being the third and fourth parts, the inter-

val HK is the twelfth. In like manner, it is shown that

KM i§ the twentieth part of AB.
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PROP. VI. PROB.

To divide a straight line harmonically, and in a

given ratio.

Let AB be a straight line, which it is required to cut

harmonically, in the ratio ofK to L.

Through A draw the diverging line AC, and produce

it both ways till AC and AD be each equal to K, make

AE equal to L, join

CB, draw EF parallel

to AB, and FG paral-

lel to CA, and join

DF cutting AB in H;
the straight line AB is

divided harmonically

in the points H and G,

such that K : L : : AB :

BG : : AH : HG.
For the parallelsAC

and GF, being intercepted by the diverging lines AB and

CB, AC : GF : : AB : BG (VL2.). Again, the diverging

lines AG and DF are cut by the parallels AD and FG,
whence (VI. 2.) AD or AC : GF : : AH : HG. Where-

fore, AB : BG : : AH : HG; and each of these ratios is

the same as that of AC or AD to GF, or that of K to L.

Cor. Hence AG is divided, internally in H and exter-

nally in B, in the same ratio. In like manner, BH is di-

vided proportionally, by an external and internal section

in A and G ; for AB : BG : : AH : HG, and alternately

AB : AH : : BG : HG.
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PROP. VII. THEOR.

If a straight line be divided internally and ex-

ternally in the same ratio, half the line is a mean

proportional between the distances of the middle

from the two points of unequal section.

Let the straight line AB be divided in the same ratio,

internally and externally in C and D, and also be bisected

in E ; the half EB is a mean

proportional between EC and ) "-^ ^ ^f ^
ED, or EC : EB : : EB : ED.

For since AC : CB : : AD : DB, by mixing and inver-

sion AC—CB : AC+CB : : AD~DB : AD+DB, that

is, 2EC : AB : : AB : 2ED, and, halving all the terms of

the analogy, (V. 3.) EC : EB : : EB : ED.

Cor, Hence if a straight line be cut internally and exter-

nally in the same ratio, the square of the interval between

the points of section is equivalent to the difference between

the rectangles under the internal and external segments.

For (II. 17.) AD.DB=ED^--EB% and AC.CB=EB*^
EC^; consequently AD.DB—AC.CB = ED*—2EB*+
ECS or (V. 6. and VI. 7.) ED*—2ED.EC+EC% which

(IL 16.) is the square ofED—EC or of CD.

PROP. VIII. THEOR.

If diverging lines divide a straight line harmo-

nically, they will cut every intercepted straight

line also in harmonic proportion.
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Let the diverging lines EA, EC, EB, and ED termi-

nate in the harmonic section of the straight line AD ; any

intercepted straight line FG will be likewise cut by them

harmonically, or FG : GI : : FH : HI.

For, through the points B and I, draw (I. 23.) KL and

MN parallel to AE.

Because the parallels AE and BL are intercepted by

the diverging lines DA and DE, AD : DB : : AE : BL
(YI. 2.) ; and for the same reason, the parallels AE and

BK being intercepted by the diverging lines AB and EK>

AC : CB : : AE : BK.

And since AD is divided

harmonically, AD : DB : :

AC : CB ; wherefore AE :

BL : : AE : BK, and con-

sequently (V. 8. and 4;.) BL
= BK. But, KL being

parallel to MN, BL ; BK
::IN:IM(VI. 2. cor. 2.);

consequently, BL being

equal to BK, IN must also

be equal to IM; whence

FE : IN : : FE : IM. Again, FE : IN : : FG : GI, for

the parallels FE and IN are cut by the diverging lines GF
and GE ; and FE : IJVI : : FH : HI, since the parallels

FE and IM are cut by the diverging lines FI and EM.
Wherefore, by identity of ratios, FG : GI : : FH : HI;
or the intercepted straight line FG is cut harmonically in

the points H and I.
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PROP. IX. THEOR.

A straight line drawn from the concourse of

two tangents to the concave circumference of a

circle, is divided harmonically, by the convex cir^

cumference and the chord which joins the points

of contact.

Let ED and FD be two tangents applied to the circle

AEBF; the secant DA, drawn from their point of con-

course, will be cut in harmonic proportion, by the convex

circumference EBF and the chord EF which joins the

points of contact,—or AD : DB : : AC : CB.

For the tangents ED and FD are equal (III. 22. cor.),

and EDF being thus an

isosceles triangle, DE*
= DC* + EC.CF (II.

20.); (but III. 26. cor. 2.)

DE* is also equal to

AD.DB, and the chords

ABandEF, by their mu-

tual intersection, make

the rectangle EC, CF equal to AC, CB. Whence
DC*=AD.DB—AC.CB, and therefore (VI. 7. cor.)

AC : CB : : AD : DB.

Cor. Hence by applying Prop. 7, it follows, that half

the chord AB is a mean proportional between the distan-

ces of its middle point from C and D ; and that, when AD
passes through the centre of the circle, the square of the

radius is equivalent to the rectangle under the distances of

the chord and of the intersection of the tangents from the

centre.
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PROP. X. THEOR.

A straight line which bisects, either internally

or externally, the vertical angle of a triangle, will

divide its base into segments, internal or external,

that are proportional to the adjacent sides of the

triangle.

Let the straight line BD bisect the vertical angle of the

triangle ABC ; it will cut the base AC into segments

which have the same ratio as the adjacent sides, or

AD : DC : : AB : BC.

For through C draw CE parallel to DB (I. 23.), and

meeting the production of AB in E.

Because DB and CE are parallel, the exterior angle

ABD is equal to BEC, and the

alternate angle DBC equal to
J^

BCE (I. 22.) > wherefore the

angle ABD being equal by hy-

pothesis to DBC, the angle 33/

BEC is equal to BCE, and con-

sequently (I. 11.) the triangle

CBE is isosceles, or BE is e-

qual to BC. But the parallels

DB and CE cut the diverging

lines AC and AE proportionally (VI. 1.), or AD: DC : :

AB : BE ; that is, since BE= BC, AD : DC : : AB : BC.
Again, let the vertical line BD bisect the exterior angle

CBG of the triangle ; it will divide the base into external

segments AD and DC, which are also proportional to the

adjacent sides AB and BC.
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For through C draw CE parallel to DB, and meeting

AB in E.

The equal angles

GBD and DBC
are, from the pro-

perties of parallel

straight lines, re-

spectively equal to

BEC and BCE, ^

and consequently ^ C

the triangle C'BE is isosceles, or the side BC is equal to

BE. And since the diverging lines AD and AB are cut

by the parallels DB and CE proportionally, AD : DC : :

AB : BE or BC.

Cor, Hence the converse of the Proposition is likewise

true, or if a straight line be drawn from the vertex of a

triangle to cut the base in the ratio of the adjacent sides,

it will bisect the vertical angle •, for it is evident, from

VI. 6. cor., that a straight line is only capable of a single

section, whether internal or external, in a given propor-

tion.

Scholium, The vertical line BD must bisect the base

AC of the triangle, when the sides AB and BC are equal.

In the case where BD bisects the exterior angle CBG, if

AB be supposed to approach to an equality with BC, the

straight Hne EC will come nearer to AC, and consequent-

ly the incidence D of the parallel BD with AC will be

thrown continually more remote. But when the side AB
is equal to BC, the straight line BD, being now parallel

to AC, will never meet it, or there can be no equality of

external section ; for though the ratio of AD to CD tends

towards the ratio of equality as the point D retires, yet the



170 ELEMENTS OF GEOMETRY.

constant difference AC betwreen those distances must al-

ways bear a sensible relation to them. After BD, in turn-

ing about the point B, has passed the limits of distance

beyond C, it re-appears in an opposite direction beyond

A, when AB, receding from equality, has become less than

BC.

PROP. XL THEOR.

Triangles are similar, which have their corre-

sponding angles equal.

Let the triangles ABC and DEF have the angle CAB
equal to FDE, CBA to FED, and consequently (L 30.)

the remaining angle BCA equal to EFD ; these triangles

are similar, or the sides in both which contain equal an-

gles are proportional.

For make BG equal to ED, and draw GH parallel to

AC.

Because GH is parallel

to AC, the exterior angle

BGH is equal (I. 22.) to

BAC, that is to EDF;
and the angle at B is, by

hypothesis, equal to that

at E, and the interjacent

side BG was made equal to

ED; wherefore (I. 20.) the triangle GBH is equal to

DEF. But, the diverging lines BA and BC being cut

proportionally by the parallels AC and GH (VI. J.), AB
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is to BC as BG to BH, or as ED to EF. Again, thosi^

diverging lines being proportional to the intercepted seg-

ments AC and GH of the parallels (VI. 2.), AB is to

BG as AC is to GH, and alternately AB is to AC as BG
is to GH, or as ED to DF. In the same manner, as BC
is to BH so is AC to GH, and alternately, as BC is to

AC so is BH or EF to GH or DF. And thus, the sides

opposite to equal angles in the triangles ABC and DEF
are the homologous terms of a proportion.

Cor, Isosceles triangles are similar which have their ver-

tical angles equal. For the supplementary angles at the

base, forming (I. 30.) the same amount, must consequently

be equal to each other.

Scholium, It is obvious that the twentieth Proposition of

Book I. is but a particular case of this theorem.

PROP. XII. THEOR.

Triangles which have the sides about two of

their angles proportional, are similar.

In the triangles ABC and DEF, let AB: AC : : DE : DF
and BC : AC ; : EF : DF; then is the angle BAC equal

to EDF, and the angle BCA equal to EFD.

For (1. 4.) draw DG and FG, making angles FDG and

DFG equal to CAB and ACB.

B}" the last Proposition, the triangle ABC is similar to

DGF, and consequently AB : AC : : DG : DF; but by

hypothesis, AB : AC : : DE : DF, and hence, from iden-
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tity of ratios, DG : DF :

:

DE :DF, or DG.is e-

qual to DE. In the same

manner, BC : AC : :

EF : DF, and BC AC :

:

GF:DF;whenceEF:DF

: ; GF : DF, and EF is e-

qual to FG. Wherefore

the triangles DEF and DGF, having thus the sides DE
and EF equal to DG and FG, and the side DF common
to both, are (I. 2.) equal ; consequently the angle EDF is

equal to FDG or BAC, and the angle EFD is equal to

DFG or BCA.
Cor. Hence isosceles triangles which have either side

proportional to the base, are similar.

Scholium. The second Proposition of Book I. may be

considered as only a particular case of this theorem.

PROP. XIII. THEOR.

i

Triangles are similar, if each have an equal an-

gle, and its containing sides proportional.

In the triangles BAC and EDF, let the angle ABC
be equal to DEF, and the sides which contain the one

be proportional to those which contain the other, or

AB : BC : : DE : EF; the triangles BAC and EDF are

similar.

For, from the points E and F, draw EF and FG, ma-

king the angles FEG and EFG equal to CBA and BCA.
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The triangles BAG and EGF, having thus their corre-

sponding angles equal, are similar (VI. 11. )j and therefore

AB : BC : : EG : EF. But by hypothesis, AB : BC : :

ED : EF; where-

fore EG : EF : : ^

^^

ED : EF, and con- ^ ^
^

sequently EG is e-

qual to ED. Hence

the triangles GFE
and DFE, having the side EG equal to ED, EF common
to both, and the contained angle GEF equal to ABC or

DEF, are equal (I. 3.), and therefore the angle EFG or

BCA is equal to EFD; consequently the remaining angles

BAG and EDF of the triangles ABG and DEF are equal

(I. 30.), and these triangles are (VI. 11.) similar.

Scholiwn. The third Proposition of Book I. is merely a

particular case of this general theorem.

PROP. XIV. THEOR.

Triangles are similar, which have each an equal

angle, and the sides containing another angle of

the same character proportional.

Let the triangles GAB and FDE have the angle ABC
equal to DEF, and the sides that contain the angles at C
and F proportional, or BC : AG : : EF : FD ; while those

angles are both of them either acute or obtuse, the trian-

gles ABG and DEF are similar.

For, from the points E and F draw EG and FG,
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making the an-

gles FEG and

EFG equal to

ABC and BCAv
The triangle'

ABC is evidently

similar to GEF,
and BC : CA : : EF : FG; but, by hypothesis, BC : CA :

:

EF : FD, and therefore £F : FG : : EF : FD, and FG is

equal to FD. Whenee the triangles EGF and EDF, ha-

ving the angle FEG equal to FED, the side FG equal to

FD, and the side EF common, and being both of the sanie

character with CAB, are equal (I. 21.) ; consequently the

angle GFE or ACB is equal to DFE, and therefore

(VI. 11.) the triangles ABC and DEF are similar.

Scholium, This Theorem exhibits the general property

of which Prop. 2. Book II. is only a particular case.

PROP. XV. THEOR.

A perpendicular let fall upon the hypotenuse

of a right-angled triangle from the opposite ver-

tex, will divide it into two triangles that are simi-

lar to the whole and to each other.

Let the triangle ABC be right-angled at B, from which

the perpendicular BD falls upon the hypotenuse AC; the

triangles ABD and DBC, thus formed, are similar to each

other, and to the whole triangle ACB.
For the triangles ABD and ACB, having the angle

BAC common, and the right angle ADB equal to ABC,
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are similar (VI. 1 1 .).] Again, the

triangles DBC and ACB are si-

milar, since they have the angle

BCD common, and the right an-

gle BDC equal to ABC. The tri-

angles ABD and DBC being,

therefore, both similar to the same triangle ABC, are evi-

dently similar to each other (VI. 11.).

Cor, Hence the side of a right-angled triangle is a mean

proportional between the hypotenuse and the adjacent seg-

ment, formed by a perpendicular let fall upon it from the

opposite vertex; and the perpendicular itself is a mean

proportional between those segments of the hypotenuse.

For the triangles ABC and ADBbeing similar, AC : AB :

;

AB : AD ; and the triangles ABC and BDC being si-

milar, AC : BC : : BC : CD; again, the triangles ADB
and BDC are similar, and therefore AD : DB : : DB : DC.

Scholium, This corollary affords an easy demonstration

6f the celebrated theorem contained in Prop. 10. Book 1.;.

PROP. XVI. PROB.

To find the mean proportional between two gl*

ven straight lines.

Let it be required to find the mean proportional between

the straight lines A and B.

Find C (III. 27.) the side of a

square which is equivalent to the rect- -g,
,

angle contained by A and B ; C is C\—' «

the mean proportional required.

For since C^= AB, it follows (V. 6.) that A : C : : C : B.
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PROP. XVIL PROB.

To divide a straight line, whether internally or

externally, so that the rectangle under its seg-

ments shall be equivalent to a given rectangle.

Let AB be the straight line which it is required to cut,

so that the rectangle under its segments shall be equivalent

to a given rectangle.

From the extremities of AB, erect the perpendiculars AD
and BE, equal to the sides of the given rectangle, and

in the same or in opposite directions, according as the

line is to be cut inter-

nally or externally"; join

DE, on which, as a dia-

meter, describe a circle,

meeting AB or its exten-

sion in the point C : AC
and CB are the segments

required.

For join DC and CE.

The angle DCE, being

contained in a semicircle,

is a right angle (III. 19.),

and therefore, in both

cases, the angles ACD
and BCE are together

equal to a right angle.

But the angles ACD and

CDA are likewise toge-

ther equal to a right angle (1. 30. cor. 1.) ; and consequent-
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\y the angles BCE and CDA are equal. Wherefore the

right-angled triangles GBE aYid CAD, having the acute

angle ADC equal to BCE, are similar (VI. 11.); whence

AC : AD : : BE : CB, and (V. 6.) AC.CB= AD.BE.

Scholium. It is obvious that, in the second case, the cir-

cle, lying on both sides of the given line AB, must always

intersect its extension in two points C and C. But, in the

first case, the circle may either cut AB in two points C and

C, or touch it in a single point, which will hence mark a

limitation of the problem. A straight line drawn from the

centre of the circle parallel to AD or BE, must (Vl. 1.).

divide AB proportionally, and hence bisect it -, but that

parallel would also be perpendicular (I. 22.) to AB, and

therefore (III. 4.) bisect the chord CC^ Consequently the

points C and C are equally distant from the middle of AB,

and the portion AC is equal to BC. When these points

come to coincide, they rhust therefore pass into the middle

point of AB, or that of its contact with the circle. When
the circle does not reach AB, the problem fails, because

(11. 17. cor. 1.) no straight litie can be divided internally,

such that the rectangle under the segments shall exceed the

square of its half. This impossibility is indicated by the

circle not reaching the straight line AB.

This proposition furnishes one of the simplest and most

elegant methods for constructing quadratic equations ; the

segments of the line denoting the roots, and indicating by

position their character. The first case has two additive

roots, which may become equal or merge in a single root,

then limiting the possibility of the equation ; the second

case has always two unequal roots, the one additive and the

other subtractive. In both cases, those roots, conjoined

in their actual position, complete the line AB.

N
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PROP. XVIII. THEOR.

The rectangle under any two sides of a trian-

gle is equivalent to the rectangle under the per-

pendicular let fall on the base and the diameter of

the circumscribing circle.

Let ABC be a triangle, about which is described a cir-

cle having the diameter BE ; the rectangle under the sides

AB and BC is equivalent to the rectangle under BE and

the perpendicular BD let fall from the vertex of the trian-

gle upon the base AC.

For join CE. The angle BAD is

equal to BEC (III. 16.), since they

both stand upon the same arc BCj
and the angle ADB, being a right an-

gle, is (III. 19.) equal to ECB,
which is contained in a semicircle.

Wherefore the triangles ABD and

EBC, being thus similar (VI. 11.), AB : BD : : EB : BC,

and consequently (V. 6.) AB.BC=EB.BD.

PROP. XIX. THEOR.

The square of a straight line that bisects, whe-

ther internally or externally, the vertical angle of

a triangle, is equivalent to the difference between

the rectangle under the sides, and the rectangle

under the segments into which it divides the base.
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In the triangle ABC, let BE bisect the vertical angle

CBA or its adjacent angle CBF ; then BE^ =AB.BC—
AE.EC, or AE.EC—AB.BC.

For (III. 9. cor.) about the triangle describe a circle,

produce BE to the circumference, and join CD.

TheanglesBAE and BDC,

standing upon the same arc

BC, are (III. 16.) equal, audi

the angle ABE is, by hypo-

thesis, equal to DBC; where-

fore (VI. 11.) the triangles

AEB ^nd DCB are similar,

and AB : BE : : DB : BC.

Consequently (V. 6.)

AB.BC= BE.BD; but

BE.BD = BE.liD + BE»,

or BE.ED^BE^ and (III.

26.) BE.ED= AE.EC;

wherefore AB.BCnAE.EC+BE% or AE.EC—BE* ;

and consequently BE* =AB.BC—AE.EC, or AE.EC—
AB.BC.

PROP. XX. THEOR.

The rectangles under the opposite sides of a

quadrilateral figure inscribed in a circle, are toge-

ther equivalent to the. rectangle under its diago-

nals.

In the circle ABCD, let a quadrilateral figure be in-

scribed, and join the diagonals AC, BD ; the rectangles

AB, CD and BC, AD, are together equivalent to the rect-

angle AC, BD.
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For (I. 4.) draw BE, making an angle ABE equal to

CBD.
The triangles AEB and DCB, having thus the angle

ABE equal to DBC, and the an-

gle BAE or BAG equal (III. 16.)

to BDC, are similar (VI. 11.),

and hence AB : AE : : BD : CD ;

whence (V. 6.)AB.CD= AE.BD.

Again, because the angle ABE
is equal to DBC, add EBD to

each, and the whole angle ABD
is equal to EBC ; and the angle ADB is equal to ECB
(III. 16.) i wherefore the triangles DAB and CEB are

similar (VI. 11.), and AD : BD : : EC : BC, and con-

sequently BC.ADrzEC.BD. V^hence the rectangles

AB, CD and BC, Al) are together equal to the rectangles

AE, BD and EC, BD, that is, to the whole rectangle

AC, BD.

PROP. XXI. THEOR.

Triangles which have a common angle, are to

each other in the compound ratio of the contain-

ing sides.

Let ABC and DBE be two triangles, having the same

or an equal angle at B ; ABC
is to DBE in the ratio com-

pounded of that of BA to BD,

and of BC to BE.

For join AE and CD. The

ratio of the triangle ABC to

DBE may be conceived as com-

pounded of that of ABC to
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DBC, and of DBC to DBE. But (V. 25. cor. 2.) the

triangle ABC is to DBC, as the base BA to BD ; and,

for the same reason, the triangle DBC is to DBE, as the

base BC to BE ; consequently the triangle ABC is to DBE
in the ratio compounded of that of BA to BD, and of BC
to BE, or (V. 23.) in the ratio of the rectangle under BA
and BC to the rectangle under BD and BE.

Cor. 1. Hence similar triangles are in the duplicate ra-

tio of their homologous sides. For, if the angle at B be

equal to that at E, the triangle ABC is to DEF in the

A.

ratio compounded of that of AB to DE, ^nd of CB to

FE; but, these triangles being similar, the ratio of AB to

DE is the same as that of CB to FE (VI. 11.), and con-

sequently the triangle ABC is to DEF in the duplicate ra-

tio of AB to DE, or (V. 24:.) as the square of AB to the

square of DE.
Cor, 2. Hence triangles which have the sides that con-

tain an equal angle re-

ciprocally proportional,

are equivalent. For, the

angle at B being equal

to that at E, the triangle

ABC is to DEF as

AB.CBtoDE.FE;but
AB : DE::FE:CB,
andAB.CB = DE.FE;
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consequently (V. 4.), the third and fourth terms of the

analogy being equal, the first and second must also be

equal.

PROP. XXII. THEOR.

Similar rectilineal figures may be divided into

corresponding similar triangles.

Let ABCDE and FGHIK be similar rectilineal figures,

of which A and F are corresponding points ; these figures

ma}" be resolved into a like number of triangles respective-

ly similar.

For, from the point A in the one figure, draw the

straight lines AC, AD, and, from F in the other, draw

FH, FI ; the triangles BAG, CAD, and DAE are re-

spectively similar to GFH, HFI, and IFK.

Because the polygon ABCDE is similar to FGHIK,
the angle ABC is e-

qual to FGH, and

AB:BC::FG:GH;
wherefore (VI. 13.)

the triangle BAC is

similar to GFH.
Hence the angle

BCA is equal to GHF j and the whole angle BCD being

equal to GHI, the remaining angle ACD must be equal

to FHI. But BC : AC : : GH : FH, and BC : CD : :

GH : HI, consequently (V. 15.) AC : CD : : FH : HI,

and the triangles CAD and HFI (VI. 13.) are similar.

Whence, the angle CDA being equal to HIF and the
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angle CDE to HIK, the angle ADE is equd to FIK;

and since CD : DA : : HI : IF, and CD : DE : : HI : IK,

therefore (V. 15.) DA : DE : : IF : IK, and the tri-

angles DAE and IFK are similar.

The same train of reasoning, it is obvious, would apply

to polygons of any number of sides.

PROP. XXIII. PROB.

On a given straight line, to construct a rectili-

neal figure similar to a given rectilineal figure.

Let FIC be a straight line, on which it is required to

construct a rectilineal figure similar to the figure ABCDE.
Join AC and AD, dividing the given rectilineal figure

into its component triangles. From the points F and K
draw FI and KI, making the angles KFI and FKI equal

to EAD and AED ; from F and I draw FH and IH
making the angles IFH and FIH equal to DAC and

ADC ; and lastly from F and H draw FG and HG ma-

king the angles HFG and FHG equal to CAB and ACB.

The figure FGHIK is similar to ABCDE.
For the several triangles KFI, IFH, and HFG, which

compose the figure FGHIK, are, by the construction, evi-

dently similar to the triangles EAD, DAC, and CAB, in-

I>

B

IT

K F K
to which the figure ABCDE was resolved. Whence

FK : KI : : AE : ED ; also KI : IF : : ED : DA, and
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IF : IH : : DA : DC, and consequently (V. 16.) KI : IH : :

ED : DC. Again, IH : HF : : DC : CA, and HF : HG : .

CA : CB ;—and hence (V. 16.) IH : HG : : DC : CB. But

HG : GF: : CB : BA ; and the ratio of GF to FK, being

compounded of that ofGF to FH, ofFH to FI, and of FI

to FK, is the same with the ratio of BA to AE, which is

compounded of the like ratios of BA to AC, of AC to

AD, and AD to AE. Wherefore all the sides about the

figure FGHIK are proportional to those about ABCDE;
but the several angles of the former, having a like com-

position, are respectively equal to those of the latter.

"Whence the figure FGHIK is similar to the given figure.

The same reasoning, it is manifest, would extend to po-

lygons of any number of sides.

Scholium. The general solution of this problem is derived

from the principle, that similar triangles, by their compo-

sition, form similar polygons. The mode of construction,

however, admits of some variation. For instance, if the

straight line FK be parallel to AE, or in the same exten-

sion with that homologous side,—the several triangles

FIK, FHI, and FGH may be more easily constituted in

succession, by drawing the straight lines FI and KI, FH
and IH, and FG and GH parallel to the corresponding

sides in the original figure ABCDE ; because (I. 29.) a

correspond ing equality of angles will be thus produced.

But, if FK have no determinate position, the construc-

tion may be still farther sim-

plified ; For, having made AK
/ equal to that base and joined

AD and AC, draw KI, IH,

and HG parallel to ED, DC,

andCB. The figure AKIHG
js evidently similar to AEDCB,
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since its component triangles have the same vertical angles

as those of the original figure, and the angles at the bases

equal (I. 22.).

If the given base FK be parallel to the corresponding

side AE of the original figure, a more general construction

will result. Jom AF, EK, and produce them to meet in

O; join OB, OC, and GD, and draw FG, GH, HI,

and therefore IK, parallel to AB, BC, CD, and DE

:

The figure FGHIK thus formed is similar to ABCDE.
For the triangles KOF, FOG, GOH, HOI, and lOKare

evidently similar to the triangles EGA, AOB, BOC,

COD, and DOE. But these triangles compose severally

the two polygons, when the point O lies within the ori-

ginal figure; and when that point of concurrence lies

without the figure ABCDE, the similar triangles lOK
and DOE being taken away from the similar compound

polygons FGHIOK and ABCDOE, there remains the

figure FGHIK similar to the original one.

It farther appears, from these investigations, that a rec-

tilineal figure may have its sides reduced or enlarged in a
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given ratio, by assuming any point O and cutting thd di-

verging lines OE, OA, OB, OC, and OD in that ratio

;

the corresponding points of section being joined, will ex-j'

hibit the figure recjuired.

PROP. XXIV, THEOR.

Of similar figures, the perimeters are propor-

tional to the corresponding sides, and the areas

are in the duplicate ratio of those homologous

terms.

Let ABCDE and FGHIK be similar polygons, which

bave the corresponding sides AB and FG ; the perimeter,

or linear boundary, ABCDE is to the perimeter FGHIK,
as AB to FG, BC to GH, CD to HI, DE to IK, or EA
to KF; but the area of ABCDE, or the contained surr

face, is to the area of FGHIK, in the duplicate ratio of

AB to FG, of BC to GH, of CD to HI, of DE to IK,

or of EA to KF.

For, by drawing the diagonals AC, AD in the one, and

FH, FI in the other,

these polygons will be

resolved into similar

triangles. Whence

the several analogies

AB:BC::FG:GH,
BC:AC::GH:FH,
AC : CD : : FH : HI, CD : AD : : HI : FI, and

AD : DE : : FI : IK ; wherefore, by equality and alterna-

]tion, AB : FG : : BC : GH : : CD : HI : : DE : IK : :

K :\r K.
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AE : FK, and consequently (V. 19.) as one of the antece-

dents AB, BC, CD, DE or AE, is to its consequent FG,
GH, HI, IK or FK, so is the amount of all those ante-

cedents, or the perimeter ABCDE, to the amount of all

the consequents, or the perimeter FGHIK.
Again, the triangle CAB is to the triangle HFG (VI.

21. cor. 1.) in the duplicate ratio of AB to FG,—the tri-

angle DAC is to the triangle IFH in the duplicate ratio

of AC to FH, orof AB to FG,—and the triangle EAD
is to KFI in the duplicate ratio of AD to FI or of AB to

FG; wherefore (V. 19.) the aggregate of the triangles

CAB, DAC, and EAD, or the area of the polygon

ABCDE, is to the aggregate of the triangles HFG, IFH,
and KFI, or the area of the polygon FGHIK, in the du-

plicate ratio of AB to FG, of BC to GH, of CD to HI,

or of DE to IK.

Cor, Hence also the perimeter ABCDE is to the peri-

meter FGHIK, as any diagonal AD to the correspondr

ing diagonal FI, and the area ABCDE is to the area

FGHIK in the duplicate ratio of AD to FI.

PROP. XXV. PROB.

To constriijct a rectilineal figure that shall be

similar to one, and equivalent to another, given

rectilineal figure.

Let it be required to describe a rectilineal figure similar

to A, and equivalent to B.

On CD, a side of A, describe (II. 8.) the rectanglq

CDFE, equivalent to that figure, and on DF describe the
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B

rectangle DGHF equivalent to the figure B ; find

(VI.16.)IKamean

proportional be-

tween CD and

DG, and on IK
construct, in the

same position, a fi-

gure X similar to

the rectilineal fi- X .IT

A.

« G K

TI

gure A ; this will be likewise equivalent to B.

For the figures A and X, being similar, must (VI. 24.)

be in the duplicate ratio of their homologous sides CD and

IK ; and since IK is a mean proportional between CD and

DG, the duplicate ratio of CD to IK is the same as the

ratio of CD to DG (V. 24.) ; consequently the figure A is

to the figure X as CD to DG, or (Y. 25. cor. 2.) as the

rectangle CF to the rectangle DH ; but the figure A is

equivalent to the rectangle CF, and therefore (V. 4.) the

figure X is equivalent to the rectangleDH, that is, to the

figure B.

PROP. XXVI. THEOR.

A rectilineal figure described on the hypote-

nuse of a right-angled triangle, is equivalent to

similar figures described on the two sides.

Let ABC be a right-angled triangle ; the figure ACFE
described on the hypotenuse is equivalent to the similar

figures AGHB and BIKC, described on the sides AB
and BC.
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Foi' drawBD perpendicular to the hypotenuse. And since

(VI. 15. cor. 1.) AC:AB::
AB : AD, therefore AC is

to AD in the duplicate ra-

tio of AC to AB, that is,

(VI. 24.), as the figure on

AC to the figure on AB.
For the same reason, AC is

to CD in the duplicate ratio

ofAG to BC, or as the figure

on AC to the figure on BC.

Whence (V. 19. cor. 2.) AC is to the two segments AD
and CD taken together, as the figure on AC to both the

figures on AB and BC ; and the first term of the analogy

being thus equal to the second, the third must be equal to

the fourth (V. 4.), or the figure described on the hypote-

nuse is equivalent to the similar figures described on the

two sides.

PROP. XXVII. THEOR.

The arcs of a circle are proportional to the an-

gles which they subtend at the centre.

Let the radii CA, CB, and CD intercept arcs AB and

BD ; the arc AB is to BD, as the angle ACB to BCD.
For (I. 5.) bisect the angle ACB, bisect again each of

its halves, and repeat the operation indefinitely. An angle

ACa will be thus obtained less than any assignable angle.

Let this angle ACa or BCb (I. 4.) be repeatedly applied
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about the point C, from BC towards DC ; it must hence,

by its multiplication, fill up the

angle BCD, nearer than any pos-

sible difference. But the elemen-

tary angle ACa being equal to

BC6, the corresponding arc A«
is (III. 12.) equal to BL Conse-

quently this arc Aa and its angle

ACa, are like measures of the

arc AB and the angle ACB, and they are both contained

equally in the arc BD and its corresponding angle BCD.
Wherefore AB : BD : : ACB : BCD.

Cor. Hence the arc AB is also to BD, as the sector

ACB to the sector BCD ; for these sectors may be viewed

as alike composed of the elementary sector ACa,

PROP. XXVIII. THEOR.

The circumference of a circle is proportional

to the diameter, and its area to the square of that

diameter.

Let AB and CD be the diameters of two circles ;-*the

circumference AFG is to the circumference CKL, as AB
to CD ; and the area contained by AFG is to the area

contained by CKL, as the square of AB to the square of

CD.

For inscribe the regular hexagons AEFBGH and

CIKDLM. Because these polygons are equilateral and

equiangular, they are similar ; and consequently (VL 24.
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cor.) the diagonal AB is to the corresponding diago-

nal CD, as the perimeter AEFBGH to the perimeter

CIKDLM. But this proportion must subsist, whatever

be the number of chords inscribed in either circumference.

Insert a dodecagon in each circle between the hexagon

and the circumference, and its perimeter will evidently ap-

proach nearer to the length of that circumference. Pro-

ceeding thus, by repeated duplications,—the perimeters of

the series of polygons that arise in succession, will conti-

nually approximate to the curvilineal boundary, which

forms their ultimate limit. Wherefore this extreme term,

or the circumference AEFBGH, is to the circumference

CIKDLM, as the diameter AB to the diameter CD.
Again, the hexagon AEFBGH (VI. 24. cor.) is to the

hexagon CIKDLM in the duplicate ratio of the diagonal

AB to the corresponding diagonal CD, or (V. 24.) as the

square of AB to the square of CD. Wherefore the suc-

cessive polygons which arise from a repeated bisection of

the intermediate arcs, and which approach continually to

the areas of their containing circles, must have still that

same ratio. Consequently the limiting space, or the circle

AEFBGH, is to the circle CIKDLM, as the square of

AB to the square of CD.

Cor, L It hence follows, that if semicircles be described.



192 ELEMENTS OF GEOMETRY.

on the sides AB, BC of a right-angled triangle, and on the

hypotenuse AC another semicircle be described, passing

(III. 19.) through the vertex B, the crescents AFBD and

BGCE are together equivalent to the triangle ABC. For,

by the Proposition, the square of AC is to the square of

AB, as the circle on AC to the circle on AB, or (V. 3.)

as the semicircle ADBEC to the semicircle AFB ; and,

for the same reason, the square of AC is to the square of

BC, as the semicircle ADBEC
to the semicircle BGC. Whence
(V.8. and 19.) the square ofAC
is to the squares ofAB and BC,

as the semicircle ADBEC to the

semicircles AFB and BGC. But

(II. 10.) the square of AC is equivalent to the squares of

AB and BC, and therefore (V. 4.) the semicircle ADBEC
is equivalent to the tvvo semicircles AFB and BGC ; take

away the common segments ADB and BEC, and there re-

mains the triangle ABC equivalent to the tvvo crescents or

lunes AFBD and BGCE.
Cor, 2. Hence the method of dividing a circle into

equal portions, by means of concentric circles. Let it be

required, for instance, to tri-

sect the circle of which AB
is a diameter. Divide the

radius AC into three equal

parts, from the points of sec-

tion draw perpendiculars

DF, EG meeting the cir-

cumference of a semicircle

described on AC, join CF,

CG, and from C as a centre, with the distances CF, CG, de-
s
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scribe the circles FHI, GKL: The circle on AB will be

divided into three equal portions, by those interior circles.

Forjoin AF andAG : Because AFC, being in a semicircle,

is a right angle (III. 19.), AC is to CD (VI. 15, cor. 1.

and V. 21-.), as the square of AC to the square of CF, that

is, as the circle on AB to the circle FHI ; but CD is the

third-part of AC ; wherefore (V. 5.) the circle FHI is the

third part of the circle on AB. In like manner, it is pro-

ved, that the circle GKL is two third-parts of the circle on

AB. Consequently, the intervening annular spaces, and

the circle FHI, are all equal.

PROP. XXIX. THEOR.

The area of any triangle is a mean proportional

between the rectangle under the semiperimeter

and its excess above the base, and the rectangle

under the separate excesses of that semiperimeter

above the two remaining sides.

The area of the triangle ABC is a mean proportional

between the rectangle under half the sum of all the sides

and its excess above AC, and the rectangle under the ex-

cess of that semiperimeter above AB and its excess above

BC.

For produce the sides BA and BC, draw the straight

lines BE, AD, and AE bisecting the angles CBA, BAC,^

and CAI, join CD and CE, and let fall the perpendicu-

lars DF, DG, and DH within the triangle, and the per-

pendiculars EI, EK, and EL without it.
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The triangles ADF and ADG, having the angle DAF
equal to DAG, the angles F and G right angles, and the

common side AD,—are (I. 20.) equal; for the same rea-

son, the triangles BDG and BDH are equal. In like

manner, it is proved, that the triangles AEI and AEK
are equal, and the triangles BEI and BEL. Whence the

triangles CDH and CDF, having the side DH equal to

DF, the side DC common, and the right angle CHD
equal to CFD,—are (I. 21.) equal; and, for the same rea-

son, the triangles CEK and CEL are equal. The peri-

meter ofthe triangleABC
is therefore equal to twice

the segments AF, FC, and

BG ; consequently BG is

the excess of the semiperi-

meter above the base AC,

and AG is the excess of

that semiperimeter—or of

the segments BH, HC,

and AG,—above the side

BC. But the sides AB
and BC, with the segments AK and CK, or AI and CL,

also form the perimeter ; whence, BI being equal to BL,

the part AI is the excess of the semiperimeter above the

side AB*

Now, because DG and EI, being perpendicular to BI,

are parallel, BG : DG : : BI : EI (VI. 2.), and consequently

(V. 25. cor. 2.) BI X BG : BI xDG : :DG X BI : DG X EI.

But since AD and AE bisect the angle BAC and its ad-

jacent angle CAI, the angles GAD and EAI are together

equal to a right angle, and equal, therefore, to lEA and

EAI ; whence the angle GAD is equal to lEA, and the
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right-angled triangles DGA and AIE are similar. Where-

fore (VI. ll.)DG:AG:: AI:EI, and (V. 6.)DGxEl
= AG X AI ; consequently BI X BG : DG X BI : :

DG X BI : AG X AI. But the triangle ABC is composed

of three triangles ADB, BDC, and CDA, which have the

same altitude j and therefore its area is equal to the rect-

angle under DG and half their bases AB, BC, and AC,

or the semiperimeter BI. Whence the area of the tri-

angle ABC is a mean proportional between the rectangle

under BI and its excess above AC, and the rectangle un-

der its excess above BC and that above AB.

Co7\ Hence the area of a triangle will be expressed nu-

merically, by the square root of the continued product of

the semiperimeter into its excesses above the three sides*

PROP. XXX. PROB.

To convert a given regular polygon into an-

other, which shall have the same perimeter, but

double the number of sides.

It is evident that, by lines radiating from the centre of

the inscribed or circumscribing circle, a regular polygon

may be divided into as many equal and isosceles triangles

as it has sides. Let AOB be such a sector of the given

polygon ; from the centre O let fall the perpendicular OC,
and produce it to D> till OD be equal to OA or OB, and

join AD and BD. The isosceles triangle ADB is there-

fore (IV. 1 .) constructed on the same base with AOB, and

has only half the vertical angle. Consequently twice as

many of such angles could be constituted about D, as were
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placed about O. Bisect

AD and BD in E and F,

and the straight line joining

these points must (VI. 2.)

be equal to halfthe base AB.

Wherefore the triangle

EDF, repeated about the

vertex D, would form a re-

gular polygon with twite as

many sides as before, but

under the same extent of

perimeter, since each of

those sides has only half

the former length.

Cor. 1. Hence DG, the radius of the circle inscribing

the derived polygon, is half of CD, that is, half of the sum

of OC and OA, the radii of the circles inscribing and cir-

cumscribing the given polygon. Again, since AOD is evi-

dently isosceles, AD^=20A.CD (II. 23. cor.), and conse-

quentlyDE the radius of the circumscribing derived poly-

gon, being the half of AD, is a mean proportional between

OA and DG, the radius of the circle circumscribing the

given polygon, and the radius of the circle inscribing the

derived polygon.

Cor. 2. Hence the area of a circle is equivalent to the

rectangle under its radius, and a straight line equal to half

its circumference. For the surface of any regular circum-

scribing polygon, being composed of triangles such as EDF,
which have all the same altitude DG, is equivalent (11. 5.)

to the rectangle under DG, and half the sum of their

bases, or the semiperimeter of the polygon. Therefore the

circle itself, since it fgrras the ultimate limit of the polygon,
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must have its area equivalent to the rectangle under the ra-

dius or the limit of all the successive altitudes and the se-

micircumference, which limits also the corresponding semi-

perimeters.

Scholium, From this proposition is derived a very sim-

ple and elegant method of approximating to the numeri-

cal expression for the area of a circle. Let the original po-

lygon be a square, each side of which is denoted by unit ;

the component sector AOB is therefore a right-angled

isosceles triangle, having the perpendicular OC, or the

radius of the inscribed circle equal to .5, and the side OA
of the circumscribing circle equal to V.5 or .7071067812.

But DG, the radius of a circle inscribed in an octagon of

OA+OC .5H-.707106812
the same perimeter, is = -

—

^ = =

.6035533906 ; and DE the radius of the circle circumscri-

bing that octagon, is = V(OA.DG)= V(.603533906X

.707 1068 12)= .65328 14824. Again, the radius of the cir-

cle inscribed in a polygon of 16 sides with the same peri-

.603533906+ .65328 1 4824
meter, is =— = .62844174365 ;

and the radius of the circle circumscribing that polygon,

is =V(.6284174365 X .6532814824)= .64072SS619. In

like manner, the radii of circles inscribing and circum-

scribing the polygons of 32, 64, 128, &c. sides, under the

same perimeter, are successively found, by an alternate se-

ries of arithmetical and geometrical means. It may be ob-

served, that these radii mutually approximate about four

times nearer at each step : For (II. 10.) CA*= OA"*-—OC*
= (II. 17) (OA~OC)(OA+ OC); and, for the same rea-

son, GE^= DE*—DG^=(DE—DG)(DE+DG) But,

CA being double of GE, and CA* = 4GE*, it is evident

that (OA—OC) (OA+OC)=4(DE—PG) (DE+DG)

;
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and since the successive radii must approach on both sides

to form the same amount, or OA+OC=D£4-DG near-

ly, it follows tJiatOA—OCrz4(DE—DG) nearly. In the

subjoine4 table, where the computation is carried to ten

decimal places, this rate of mutual approximation will be

found true to the last figure, in the expressions for the

radii of the circles attached to all the polygons beyond

that of 256 sides. Thus, for the polygon of 512 sides,

.6366237671-^.6366117828 ^^^^^^^^^^ ti • i= .0000029960, which is the
4

difference between .6366207710 and .6366177750, the

radii of the circles described about and within the polygon

of 1024 sides.

After five or six terms have been computed, the rest

may be found by a simple process, because the mean

proportional between two proximate lines is very nearly

equal to half their sum, or the arithmetical mean. While

each number in the first column, therefore, is always equal

to half the sum of the preceding terms in both columns,

the corresponding number in the second column may be

considered as equal to half the sum of that number and

of the term immediately above itself. Thus, .6366207710,

the radius of the circle circumscribing the polygon of 1024?

sides, is equal to half the sum of .6366177750, the radius

of its inscribed circle, and of .6366237671, the radius of

the circle circumscribing the polygon of 5 1 2 sides.

But the final term may be discovered still more expedi-

tiously ; for, since the numbers in both columns are formed

by taking successive means, tho^e of the second column must

each time be diminished by the fourth-part of the common
difference, and consequently (V. 21.) the continued dimi-

nution will accumulate to one-third of that difference.

Wherefore the ultimate radius of the inscribed and cir-
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cumscribing circles, is the third-part of the sum of a radius

of inscription and of double the corresponding radius ofcir-

cumscription. Thus, stopping at the polygon of 256 sides,

.6366587814-1 +2(.6366357516) ^o^^1V^,^^. xi. n i-^ ^ =.6366197724, the final

result.

NO. of sides of Radius of Inscribed Radius of Circum-
the Polygon. Circle. scribing Circle.

4 5000000000 •707 10678 12

8 •6035533906 •6532814824
16 •6284174365 •6407288619
32 •6345731492 •6376435773
64 •6361 083633 '636S755077
128 •6364919355 '63668369^
Q56 •6365878141 '6366357516
512 •6366117828 •6366237671
1024 •6366177750 •6366207710
2048 •6366192730 •6366200220
4096 '6366l964>75 •6366198348

8192 •6366197411 •6366 197880
16384 •6366i976i<5 '6366197763
32768 •6366197704 •6366107733
65536 '63661977^9 •6366197726
131072 •6366197722 •6366197724
262144 •6366197723 •6366197724

Hence the radius of a circle, whose circumference is

4, or the diameter of a circle whose circumference is 2,

will be denoted by .6366197724 ; wherefore, reciprocally,

the circumference of a circle whose diameter is 1, will be

expressed by 3.1415926536, and its area, or that of the

ultimate polygon, by .7853981434.

In most cases, however, it will be sufficiently accurate

to retain only the first four figures. Wherefore 3.1416,

multiplied into the diameter of a circle, will denote its cir-

cumference, and .7854, multiplied into the square of the

diameter, will give the numerical expression for its area,





APPENDIX.

The constructions used In Elementary Geome-

try, were effected, by the combination of straight

lines and circles. Many problems, however, can

be resolved, by the single application ofthe straight

line or the circle 5 and such solutions are not on-

ly interesting, from the ingenuity and resources

which they display, but may, in a variety of in-

stances, be employed with manifest advantage.

This Appendix is intended to exhibit a selection

of Geometrical Problems, resolved by either of

those methods singly. It is accordingly divided

into Two Parts, corresponding to the rectilineal

and the circular constructions.
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PART L

Problems resolved hy help ofthe Ruler^ or by

Straight Lines only,

PROP. I. PROB.

To bisect a given angle.

Let BAG be an angle, which it is required to bisect, hy
drawing only straight lines.

In AB take any two points D and E, from AC cut off

AF equal to AD and AG to AE, draw EF and DG, cross-

ing in the point H : AH will bisect the angle BAG.
For the triangles EAF and DAG, haying the sides EA

and AF equal by construc-

tion to GA and AD, and

the contained angle DAG
common to both, are equal

(I. 3.), and consequently the

angle AEF is equal to AGD.
And since AE is equal to

AG, and the part AD to AF,

the remainder DE must be .

equal to FG ; wherefore the

triangles DEH and HGF, having the angle at E equal to

that at G, the vertical angles at H equal, and also their op-

posite sides DE and FG, are equal (1. 20.) ; and hence the

side DH is equal to FH. Again, the sides AD and DH
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are equal to AF and FH, and AH is common to the two

triangles AHD and AHF, which are therefore equal (1. 2.),

and consequently the angle DAH is equal to FAH.

PROP, II. PROB.

To bisect a given finite straight line.

Let it be required to bisect AB, by a rectilineal construc-

tion.

DrawAK diverging from AB, and makeAC=CD= DE,
join EBj and continue it beyond B till BF be equal to BE,

and lastly join FC ; which will bisect AB in the point G.

For draw BH parallel to AE.

And because BD evidently bi-

sects the sides EC and EF of

the triangle CEF, it is parallel

to the base CF (VI. 1. cor. 2.)

;

wherefore BDCH is a parallelo-

gram, which has (I. 26.) its op-

posite sides BH and CD equal.

But AC being parallel to BH,
the angles GAC and GCA are

equal to GBH and GHB, and

the side AC, being made equal

to CD, is hence equal to its cor-

responding interjacent side BH; whence the triangles

AGC and BGH -are equal (I. 20.), and therefore AG i^

equal to BG.
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PROP. III. PROB.

Through a given point, to draw a line parallel

to a given straight line.

Let it be required, by a rectilineal construction, to draw-

through C a straight line parallel to AB,

In AB take any two points D and F, join CD, which

produce till DE be equal to it ; ^ ^
again Join E with the point F,

and continue this till FG be e-

qual to EF: Then CG, being ^ B'^ /f B
joined, will be parallel to AB.

For, since AB or DF evident-

ly bisects the sides EC and EG
of the triangle CEG, it must be parallel to the base CG
(VI. l.cor. 2.).

PROP. IV. PROB.

From a point in a given straight line, to erect

a perpendicular.

Let C be a given point, from which it is required, by

help of straight lines merely, to erect a perpendicular to

AB.

In AB, having taken any point D, draw DE equal to

DC and inclined to AB, join EC and produce it until CG
be equal to CD or DE, make GF equal to CE, join FG
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and produce this till GH be equal to GC : Then CH will

be perpendicular to AB.

For the triangles DCE
and GCF, having the sides

DC, CE equal to GC, CF,

and the contained angles

vertical at C, are equal

(I. 3.); whence FG=CD
=CG=GH. The point

G is therefore the centre of

a semicircle which would

pass through F, C, H, and

consequently the angleFCH
is a right angle (III. 19.), or CH is perpendicular to AB.

A B

PROP. V. PROB.

To let fall a perpendicular upon a given straight'

line, from a point -without it.

Let C be a given point, from which it is required, by a

rectilineal construction, to let fall a perpendicular to AB.

In AB take any

point D, draw DF ob-

liquely, and make DE
=DF=DG, join FE
and produce it until

EH be equal to EG,

make EI= EF, join

HI, and (Appendix,

Part I. Prop. 3.) draw

CK parallel to it : CK is the perpendicular required.

A.G IB
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For the point D being obviously the centre of a semi-

circle passing through G, F, and E, the angle GFE is a

right angle ; and the triangles EOF, EHI, having the

sides GE, EF equal to HE, EI, and their contained an-

gles vertical,—are equal (I. 3.), and consequently the an-

gle HIE is equal to GFE, or is a right angle ; but since

CK and HI are parallel, the angle CKA is equal to HIE
(I. 22.), and therefore is also a right angle, or CK is per-

pendicular to AB.

PART 11.

Geometrical Prohlems resolved by means ofCompas-

ses, or by the mere description of Circles*

PROP. I. PROB.

To repeat a given distance in the same direc-

tion.

Let A and B be two given points; it is required io find,

by means of compasses only, a series of equidistant points

in the same extended line.

From B as a centre, with the given distance BA, de-

scribe a portion of a circle, in which inflect that distance

three times to C ; from C, with the same radius, describe
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another circle, and InseK

the triple chords to D ; re-

peat that process from D,

E, &c. : The equidistant

points A, B, C, D, E, &c. will all lie in the same straight

line.

For, by this construction, three equilateral triangles are

formed about the point B, and consequently (I. SO. cor. 1.)

the whole angle ABC, made by the opposite distances BA
and BC, is equal to two right angles, or ABC is a straight

line. The same reason applies to the successive points, D,

E, &c.

PROP. 11. PROB.

To find the direction of a perpendicular from a

given point to the straight line joining it with

another given point.

Given the points A and B : to find a third point, sucl>

that the straight line connecting it with B shall be at right

angles to BA.

From A and B, with any conve-
, M . NT)

nient distance, describe two arcs in-

tersecting in C, from which, with /'

the same radius, describe a portion ,/S

of a circle passing through the points

A and B, and insert that radius three x'c

times from A to D : BD is perpen-
—

'

dicular to BA.
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For it is evident, from the last Proposition, that the arc

ABD is a semicircumference, and consequently (III. 19.)

the angle ABD contained in it is a right angle.

Scholium, The construction would be somewhat simpli-

fied, by taking the distance AB for the radius.

PROP. III. PROB.

To find the direction of a perpendicular let fall

from a given point upon the straight line which

connects two given points.

Let C be a point, from which a perpendicular is to be

let fall upon the straight line joining A and B.

From A as a centre, with the
C

distance AC, describe an arc, ;

and from B as a centre, with the
|

distance BC, describe another '
|

arc, intersecting the former in ''^
;

^

the point D : CD is perpendicu- i

lar to AB. %
For CAD and CBD are evi-

dently isosceles triangles, and consequently (I. 7.) their

vertices must lie in a straight line AB which bisects their

base CD at right angles.

Scholium, It will be perceived that this construction dif-

fers not in any respect from the mode employed in Prop. 6.

Book I. of the Elements.
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PROP. IV. PROB.

To bisect a given distance.

Let A and B be two given points ; it is required to find

the middle point in the same direction.

From B as a centre, with the radius BA, describe a se-

micircle, by inserting that distance successively from A to

C, D, and E ; from A as a centre, with the distance AE, de-

scribe a portion of a circle FEG, in which, from the point

E, inflect the chords EF and EG equal to EC; and from the

points F and G, with the same

radius EC describe arcs intersect-

ing in H : This point bisects

the distance AB.

For, by the first Proposition,

the points A, B, and E extend

in a straight line ; but the trian-

gles FAG, FHG, and FEG, be-

ing evidently isosceles, their ver-

tices A, H, and E (I. 7.) must

lie in a straight line ; whence

the point H lies in the direction

AB. Again, because EFH is an isosceles triangle,

AF*—HF^ = EA.AH (II. 20.); that is, AE*—EC% or

(III. 19. and II. 10.) AC* or AB*= EA.AH. Wherefore,

since EA is double of AB, the segment AH must be its

half.
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pAop. v. prob.

To trisect a given distance.

Let it be required to find two intermediate points that

are situate at equal intervals in the line of communication

AB.

Repeat (App. II. 1.) the distance AB on both sides to

C and D ; from these points, with the radius CD, describe

the arcs EDF and GCH, from D and C inflect the chords

DE and DF, CG and

CH, all equal to DB, E/ \G:

and, with the same dis-

tance and from the

points E and F, G and

H, describe arcs inter-

secting in I and K:

The distance AB is tri-

sected by the points I

and K.

For it may. be de-

monstrated, as in the

last proposition, that

the points I and K lie

in the same direction

AB. In like manner, it appears (II. 20») that DG*
KG^= CD.DK, or 9AB^-.4AB% or 5AB*=3AB.DK ;

and consequently 5AB=3DK, or2AB=3AK, and AB=:
3BK. But, for the same reason, AB= 3AI.

'•'-]C



PART II. 211

T 13 C X) E F

I

PROP. VI. PROB.

To cut off any aliquot part of a given distance.

Suppose It were required to cut off the fifth part of the

distance between the points A and B.

Repeat (App. II. 1.) the distance AB four times, to F ^

from F, with the radius FA, describe the arc GAH ; in-

flect the chords AG
and AH equal to AB, '^-

and, with that radius

and from the points G -A

and H, describe^ arcs

intersecting in I : AI

is the fifth part of the line of communication AB.

For, as before, the point I is situate in AB. But since

AGI is evidently an isosceles triangle, and AF is equal to

FG, it follows (II. 23. cor.) that AG*= AF.AI, and con-

sequently AB^=5AB.AI; whence AB=5AI.

PROP. VII. PROB.

To divide a given distance by medial section.

Let it be required to cut the distance AB, such that

BH* = BA.AH.
From B describe a circle with the radius BA, which

insert successively from A to D, E, C, and F ; from

the extremities of the diameter AC and with the chord

AE, describe two arcs intersecting in G ; and, from the
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^

points E and F with the distance BG, describe other two

arcs intersecting in H : This is the point of medial section.

For it is evident that this point H lies in the straight line

AB. And because the trian-

gles AGB, CGB have their

sides respectively equal, the

angle ABG (I. 2.) is a right

angle, and consequently (II.

10.) AG*= AB^+ BG^; but

AG=AE, and AE^= 3AB*

(IV. 17. cor. 2.); wherefore

SAB* = AB* + BG% and

BG* = 2AB*. Now since

BE= EC, it follows, (II. 20.)

that HE*—BE* = CH.HB; but HE*—BE* =BG*—
BE* = AB*, and therefore AB*= CH.HB. Whence CH
is cut by a medial section at B, and consequently (II. 19.

cor. 1.) its greater segment BC or AB is likewise divided

medially at H by the remaining portion BH.

PROP. VIII. PROB.

To bisect a given arc of a circle.

Let it be required to bisect the arc AB of a cifcle whose

centre is C.

- From the extremities A and B with the radius AC, de-

scribe opposite arcs, and from the centre C inflect the

chord AB to D and E ; from these points, with the dis-

tance DB describe arcs intersecting in F; and from D or

E, with the distance CF, cut the given arc AB in G : AB
is bisected in that point.
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For the figures ABCD and ABEC being evidently

rhomboids, DC and CE are parallel to AB, and hence con-

stitute one straight

'line; consequently y<(^

the triangles DEC
and EEC having

their correspond-

ing sides equal, the

angle DCF is a

right angle, and

(II. 10.) DF^ =
DC^ + CE^ But,

in the rhomboid ABCD, DB*+ CA^=2DC^+2CB*
(II. 22.), or BD^=2DC^+ CB^; and since DB=DF,
2DC*+ CB^= DC^+ CF% whence DC*+ CB^= CF%
or DC*+ CG* = DG*, and therefore (II. 11.) DCG is a

right angle. And because CG is perpendicular to DC, it

is likewise (I. 22.) perpendicular to AB, and the triangles

CAP and CBP are equal (I. 21.), and the angle ACG
equal to BCG ; whence (III. 12.) the arc AG= BG.

PROP. IX. PROB.

To find the centre of a circle.

Assume an arc AB greater than a quadrant, and from

one extremity B, with the distance BA, describe a semi-

circle ADC, cutting the given circumference in D ; from

the points B and C, with the distance CD, describe arcs

intersecting in E, and, from that point with the same dis-

tance, describe an arc cutting ADC in F ; and lastly, fron^
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the points A and B, with the distance AF, describe arcs

intersecting in G : This point is the centre of the circle

ADB.
For the isosceles triangles BEC, BEF, being evidently

equal, the angle FBC is equal to both the angles at the

base ; but FBC is (I. S2. El.) equal to the interior angles

BAF and BFA of the iso-

sceles triangle ABF, and ^^^
hence that triangle is simi- ,-' /\
lar to BEF. Wherefore >''' •' \

BE : BF : : BA : AF, or

CD : BD : : BA : AG;
consequently the isosceles

triangles CBD and BGA
(VI. 12. cor.) are similar,

and the angle BCD is e-

qual to GBA ; BG is, therefore, parallel to CD, and hence

(I. 30. p.) the angle BDC, or BCD, is equal to GBD.
The triangles BGA and BGD, having thus the side BA
equal to BD, BG common, and equal contained angles

GBA and GBD, are (I. 3. El.) equal, and therefore the

side GA is equal to GD. The point G being thus equi-

distant from three points. A, D, and B in the circumfe-

rence, is hence (III. 8. cor.) the centre of the circle.

PROP. X. PROB.

To divide the circumference of a given circle

successively into four, eight, twelve, and twenty-

four equal parts.
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1. Insert the radius AB three times from A to D, E,

and C ; from the extremities of the diameter AC, and with

a distance equal to the chord AE, describe arcs in-

tersecting in the point F ; and from A, with the distance

BF, cut the circumference on opposite sides at G and H :

AG, GC, CH, and HA are quadrants.

For, as before, AF*==AE^ = 3AB*; and the triangle

ABF being right-angled, 3AB^= AF* = AB^+BFS and

therefore BF' =AG*=2AB* j whence (11. 12.) ABG is

a right angle, and AG a quadrant.

2. From the point F with -p

the radius AB, cut the circle in ,-^^

I and K, and from A and C in-

ject the chord AI to L, H and

M; the circumference is divided

into eight equal portions by the

points A, I, G, K, C, M, H,
and L.

For BF*, being equal to

2AB*, is equal to the squares

of BI and IF, and consequently PIF is a right angle ; but

the triangle BIF is also isosceles, and therefore the angle

IBF at the base is half a right angle ; whence the arc IG
is an octant,

3. The arc DG, on being repeated, will form twelve e-

qual sections of the circumference.

For the arc AD is the sixth or two-twelfth parts of the

circumference, and AG is the fourth or three-twelfths

;

consequently the difference DG is one-twelfth.

4. The arc ID is the twenty-fourth part of the circum-

ference.

For the octant AI is equal to three twenty-fourths, and
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tbe sextant AD is equal to four twenty-fourths ; their dif-

ference ID is hence one twenty-fourth part of the circum-

ference.

PROP. XI. PR OB.

To divide the circumference of a given circle

successively into five, ten, and twenty equal parts.

Mark out the semicircumference ADEC, by the triple

insertion of the radius, from A and C, with the double

chord AE, describe arcs intersecting in F, from A, with the

distance BF, cut the circle in G and K, inflect the chords

GH and GI equal to the radius AB, and, from the points

H and I, with the distance \^
BF or AG, describe arcs in- ^
tersecting in L. ^Dx'' ^"^^"^^iE

It is evident from App. II. pry \t
7, that BL is the greater 7 \
segment of the radius BH a[ i _q
divided by a medial section ; \ I

wherefore(;iV.23.cor.2. Eh) \ X /
AL is equal to the side of ^s^ ^^
the inscribed pentagon, and ^ J^

BL to that of the decagon inscribed in the given circle.

Hence AL may be inflected five times in the circumfe-

rence, and BL ten times ; and consequently the arc MK,
or the excess of the fourth above the fifth, is equal to the

twentieth part of the whole circumference.

Scholium. This proposition, and the preceding, include

the happiest application of the circle to the solution of

such problems.
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PROP. XII. PROB.

From a given side to trace out a square.

Let the points A and B terminate the side of a square,

which it is required to trace.

From B as a centre describe

the semicircle ADEC, from A
and C, with the distance AE,

describe arcs intersecting in F,

from A, with the distance BF,

cut the circumference in G,

and from A and G, with the

radius AB, describe arcs intersecting in H : The points

H and G are corners of the required square.

For (App. II. 10.) the angle ABG is a right angle, and

the distances AB, AH, HG, and GB, are, by construction,

all equal.

PROP. XIII. PROB.

Given the side of a regular pentagon, to find

the traces of the figure.

From B describe through A the circle ADECF, in

which the radius is inflected four times, from A and C
with the double chord AE describe arcs intersecting in G,

from E and F, with the distance BG, describe arcs inter-

secting in H, from A, with the radius AB, describe a por-

tion of a circle, inflect BH thrice from B to L and from
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.t

A to O, and lastly from L and O, with the radius AB,
describe arcs intersecting in P : The points A, L, P, O,

B mark out the polygon.

For, from App. II. 7, it is evident that BH is the greater

segment of the distance

AB divided by a medial X.
section. Consequently ^y
(IV. 3. El.) the isosceles

triangles BAI, lAK,

KAL, ABM, MBN,
and NBO, have each of

the angles at the base

double their vertical an-

gle. Wherefore the an-

gles BAL and ABO are

each of them six-fifths of a right angle (IV. 4. cor.), and

hence (I. S3, cor.) the points L and O are corners of the

pentagon ; but P is evidently the vertex of the pentagon,

since the sides LP and OP are each equal to AB.

Scholium. The pentagon might also have been traced, as

in Book IV. Prop. 5, by describing arcs from A and B
with the distance HC, and again, from their intersection

P, and with the radius AB, cutting those arcs in L and O.

It is likewise evident, from Book IV. Prop. 8, that the

same previous construction would serve for describing a

decagon, P being made the centre of a circle in which AB
is inflected ten times.
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PROP. XIV. PROB.

The side of a regular octagon being given, to

mark out the figure.

Let the side of an octagon terminate in the points A and

B ; to find the remaining corners of the figure.

From the centres A and B, with the radius AB, de-

scribe the two semicircles AEFC and BEGD ;
with

the double chord AF, and from A, C and B, D de-

scribe arcs intersecting in H, I ; from these points, with

the radius AB, cut the semicircles in K, L :
on HI de-

scribe the square HMNI, by making the diagonals HN,

IM equal to BH, and

the sides equal to AB

;

and, on MH and NI,

describe the rhombus-

ses MOKH and

NPLI : The points A,

B,K,0,M,N,P,and I-

L, are the several cor-

ners of the octagon.

For (by App. II.

Prop. 10.) BH, AI are both of them perpendicular to

BA, and BKH, ALI are right angled isosceles triangles

;

HI is therefore parallel to BA, and HMNI, consisting of

triangles equal to BKH, is a square ; whence all the sides

AB, BK, KO, OM, MN, NP, PL, and LA of the octa-

gon are equal : But they likewise contain equal angles ; for

ABK, composed of ABH and HBK, is equal to three

half right angles, and BKO, by reason of the parallels BH
and KO, being the supplement of HBK, is also equal to
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three half right angles. In the same manner, the other

angles of the figure may be proved to be equal.

PROP. XV. PROB.

On a given diagonal to describe a square.

Let the points A and B be the opposite corners of a

square which it is required to trace.

From B as a centre describe the semicircle ADEC,
from A and C with the double chord AE describe arcs in-

tersecting in F, from C with the distance BF describe an

arc and cut this from A with the radius AD in G, and

lastly from B- and A with the

distance BG describe arcs inter- ><

secting in H and I : ABHI is ^
the required square. /rrV^ \

For, in the triangle AGC, the / .^, \
straight line GB bisects the base, //' '\

\

and consequently (II. 22.) AG* -^\ /^ ^

+ CG* = 2AB* + 2BG* ; but, *y
'

(by App. II. Prop. 10.) CG*= ^

BF*= 2AB*; whence AG*= AB* = 2BG% and (II. 11.)

AHB is a right angle ; and the sides AH, HB, BI, and

lA being all equal, the figure is therefore a square.

PROP. XVI. PROB.

Two distances being given, to find a third pro-

portional.
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Let it be required to find a third proportional to the dis-

tances AB and CD.

From any point E, K ^j j3

and with the distance '•.*". Ci OO

AB, describe aportion

of a circle, in which / ' \H
inflectFG equal to CD,

and from G, with that ,^r^i.^^-_L^.i^^, -
t-

distance, describe the j^\ 133

semicirde FHI ; HI ^^^.^^-.......,B

is the third propor-

tional required. / /£'

For-the atigfes GEH
and IGH are each of ^^-- ^G i

them double the angle GFH or IFH at the circumference

(III. 17. EL); whence the triangles GEH and IGH must

ako have the angles at the base equal, and are consequent-

ly similar : Wherefore (VI. 12. El.) EG : GH : : GH : HI.

If the first term AB be less than half the second term

CD, this construction, without some help, would evident-

ly not succeed. But AB may be previously doubled, or

assumed 4, 8, or 16 times greater, so that the circle FGH
shall always cut FHI ; and in that case, HI, being like-

wise doubled, or taken 4, 8, or 16 times greater, will give

the true result.

PROP. XVII. PROB.

To find a fourth proportional to three givea

distances.
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Let it be required to find a fourth proportional to the

distances AB, CD, and EF.

From any point G, de-

scribe two concentric circles

HI and KL with the distan-

ces AB and EF; in the cir-

cumference of the first inflect

HI equal to CD, assume any

point K in the second 'cir-

cumference, and cut this in

L by an arc described from I

with the distance HK ; the

chord LK is the fourth pro-

portional required.

For the triangles ILG and HKG are equal, since their

corresponding sides are evidently equal ; whence the an-

gle IGL is equal to HGK, and taking away HGL, ther

angle IGH remains equal to LGK ; consequently the iso-

celes triangles GIH and GLK are similar, and GI : IH :

:

GL : LK, that is, AB : CD : : EF : LK.

If the third term EF be more than double the first AB,

this construction, it is obvious, will not answer without

some modification. It may, however, be made to suit all

the variety of cases, by multiplying equally AB and the

chord LK, as in the last proposition.

PROP. XVIII. PROB.

To find the linear expressions for the square

roots of the natural numbers, from one to ten in-

clusive.
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This problem is evidently the same as, to find the sides

of squares which are equivalent to the successive multiples

of the square constructed on the straight line representing

the unit. Let AB, therefore, be that measure : And from

B as a centre, describe a circle, in which inflect the radius

four times, from A to C, D, E, and F ; from the opposite

points A and E, with the double chord AD, describe arcs

intersecting in G and H,—with the same distance, and

from the points D, F, describe arcs intersecting in 1,

—

and, with still the same distance and from E, cut the cir-

cumference in K ;

and from A and K,

with the radius AB,

describe arcs inter-

secting in L ; Then

will AK^ = 2AB%
AD* = 3AB*, AE*
=4AB% IK^ =
5AB%IG*=6AB*j
IC*=7AB^GH*=
8AB% IA*=9AB%
andIL*= 10AB^

For, in the isosceles triangles ACB and BDE, the per-

pendiculars CO and DP must bisect the bases AB^'and

BE ; and the triangle ADI being likewise isosceles, IP=
AP, and consequently IB=AE= 2AB. But, from what

has been formerly shown, it is evident that AK* =2AB*
and AD*= 3AB*; and since AE= 2AB, AE*=4.AB^
In the right-angled triangles IBK and IBG, IK*= IB*-f-

BK*=4EB*+ BK* = 5AB%IG* = IB*+ BG* = 4AB*+
2AB* = 6AB*5 but (II. 23.) IC* = IB*-}-BC*+ IB.2BO

=4AB*+AB*^-2AB* = 7AB^ Again, GH being double

--XT

^
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of BG, GH*= 4j . 2AB* =8AB% and AI being the triple

of AE, AI*=9AB* ; and lastly, lAL being a right-an-

gled triangle, IL* =IA* +AL* =9AB» +AB* = lOAB*.

If AB, therefore, denote the unit of any scale, it will

follow, that AK=V2, AD=V3, AE=V4, IK=V5,
IG= V6, IC= V7, GH= VS, IA= V9, and IL= VlO.
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OP

PLANE TRIGONOMETRY.

Trigonometry is the science of calculating the

sides or angles of a triangle. It grounds its con-

clusions on the application of the principles of

Geometry and Arithmetic.

The sides of a triangle are measured, by refer-

ring them to some definite portion of linear ex-

tent, which is fixed by convention. The mensu-

ration of angles is effected, by means of that uni-

versal standard derived from the partition of a

circuit. Since angles were shown to be propor-

tional to the intercepted arcs of a circle described

from their vertex, the subdivision of the circum-

ference therefore determines their magnitude. A
quadrant, or the fourth-part of the circumference,

as it corresponds to a right angle, hence forms

the basis of angular measures. But these mea-

sures depend on the relation of certain orders of

lines connected with the circle, and which it is

necessary previously to investigate.
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DEFINITIONS.

1

.

The complement of an arc is its defect from a quadrant

;

its supplement is its defect from a semicircumference ; and

its explement is its defect from the whole circumference.

2. The sine of an arc is a perpendicular let fall from

one of its extremities upon a diameter passing through the

other.

3. The versed sine of an arc is that portion of a diame-

ter intercepted between its sine and the circumference.

4. The iarigent of an arc is a perpendicular drawn at

one extremity to a diameter, and limited by a diameter

extending through the other.

5. The secant of an arc is a straight line which joins

the centre with the termination of the tangent.

In naming the sine^ tangent, or secant, of the complement of an

arc, it is usual to employ the abbreviated terras of cosine, cotan-

gent and cosecant, A farther contraction is frequently made in

noting the radius and other lines connected with the circle, by

retaining only the first syllable of the word, or even the mere

initial letter.

Let ACFE be a circle, of which the diameters AF and CE
are at right angles ; having taken any arc AB, produce the

radius OB, and draw BD, AH perpendicular to AF, and BG,
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CI perpendicular to CE. Of this assumed arc AB, the com-

plement is BC, and the supplement

BCF ; the sine is BD, the cosine

BG or OD, the versed sine AD,

the coversed sine CG, and the sup-

plementary versed sine FD ; the

tangent of AB is AH, and its co-

tangent CI ; and the secant of the

same arc is OH, and its cosecant

01.

Several obvious consequences flow from these defini-

tions :—

1. Since the diameter which bisects an arc bisects also

the chord at right angles, it follows that half the chord of

any arc is equal to the sine of half that arc.

2. In the right-angled-triangle ODB, BD*+ Or)* =
OB* ; and hence the squares of the sine and cosine of an

arc are together equal to the square of the radius.

3. The triangle ODB being evidently similar to OAH,
OD : DB ; OA : AH ; that is, the cosine of an arc is to

the sine, as the radius to the tangent.

4. From the similar triangles ODB and OAH, OD : OB
; : OA : OH ; wherefore the radius is a mean proportional

between the cosine and the secant of an arc.

5. Since BD*=AD.FD, it is evident that the sine of an

arc is a mean proportional between the versed sine and the
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supplementary versed sine, or between the sum and differ-

ence of the radius and the cosine.

6. Hence also the chord of an arc is a mean proportional

between the versed sine and the diameter 5 for AB*=
AD.AF.

7. The triangles OAH and ICO being similar, AH : OA
: : OC : CI j and hence the radius is a mean proportional

between the tangent of an arc and its cotangent.

8. Since OD*= BG=^ = CG.CE, it follows that the cosine

of an arc is a mean proportional between the sum and the

difference of the radius and the sine.

The circumference of the circle is commonly divided

into 360 equal parts, called degrees, each of them being

subdivided into 60 minutes, and these again being each

distinguished into 60 seconds. It very seldom is required

to carry this subdivision any farther. Degrees, minutes,

seconds, or thirds, are conveniently noted by these marks,
o / // ttt

Thus, 23° 27' 43'^ 42''', signifies 23 degrees, 27 minutes,

43 seconds, and 42 thirds.

Scholium, To discern more clearly the connection of the

lines derived from the circle, it will be proper to trace their

successive values, while the corresponding arc is supposed

to increase. Let the arc AB', on the opposite side, be made

equal to AB, draw the diameter FOA, extend the diame-

ters 5'OB and 60B', join BB' and 66', and at A apply the
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double tangent HAH'. It is evident that BE=zbe, or that

the sine of the arc AB is equal to the sine of its supple-

ment ABb. But B'E and 6V, or the sines of ABF6' and

ABFZj'B' which lie on the opposite side of the diameter,

are likewise equal to BE ; that

is, the inverted sine of an arc

is equal to the sine of that arc

or of its supplement, augment-

ed, each by a semicircumfe-

rence. The arc AB, and its

defect A^FB' from a whole

circumference, have both the

same cosine OE ; and the sup-

plemental arc ABb, and its de-

fect from a whole circumference, have likewise the same

cosine, although with an inverted position. AH and OH
are respectively the tangent and secant not only ofAB, but

of the arc ABbFb\ which is compounded of the original

arc and a semicircumference ; and the similar lines AH'
and OH', on the opposite side, are at once the tangent

and secant of the supplementary arc AB^, and of AB6F6'B',

likewise compounded of that arc and a semicircumference.

As the prolonged diameter Z>'OBH, therefore, turns a-

bout the centre, the sine and tangent both increase, till the

arc attains 90°, when the sine becomes equal to the radius,

and the tangent vanishes into unlimited extent. Between

90^ and 180^, the sine again diminishes, and the tangent,

re-appearing in the opposite direction, likewise contracts

by successive diminutions. In the third quadrant, the sine

emerges with a contrary position, and increases till it be-

comes equal to the radius j while the tangent, resuming
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its first position, stretches out till it vanishes away. Be-

tween 270^^ and 360", the opposite sine again contracts,

and the tangent, re-appearing on the same side, shrinks

also by degrees to a point. In the firs^t and fourth qua-

drants, the cosine lies on the same side of the centre, while

the secant stretches from it in the direction of the extre-

mity of the arc ; but, in the second and third quadrants,

the cosine shifts to the opposite side, and the secant shoots

from the centre in a direction opposite to the termination

of the arc.

The same phases are thus repeated at each succeeding re-

volution. Hence, if m denote any integral number, the sine

of an arc a is equal to the sine ofthe arc {^m—i) 180*^—a,

and to opposite sines of (2/w-i) 180^+ « and of 2»2.180°

—

a,

the cosine and secant of an arc a are equal to the cosine

and secant of 2w.l80®

—

a^ and to the opposite cosines and

secants of (2?w—i) 180°—« and of (2w—i) 180°+ «; and

the tangent or cotangent of an arc a is equal to the tangent

or cotangent of the arc (2w—i) 180°
-J- «, and to the op-

posite tangents or cotangents of the arcs (27w— i) 180

—

a

and 2»z.l80—«.

An arc may, by a simple extension of analogy, be con-

ceived to comprehend innumerable other arcs. Thus, the

arc AB, in fact, represents all the arcs which have their

origin at A and their termination at B j it therefore in-

cludes not only the small arc AB, but that arc as aug-

mented by successive revolutions, or the repeated addition

of entire circumferences. Hence the sine or tangent of an

arc a are the same with the sine or tangent of any arc

«.360«'+ff.
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PROP. I. THEOR.

The rectangle under the radius and the sine of

the sum of two arcs, is equal to the sum of the

rectangles under their alternate sines and cosines.

Let A and B denote two arcs, of which A is the great-

er; then, R.sin{A-{''B)=:sinA.cos'B-{-cosA.sinB.

For it is evident that AC will represent the sum of the

arcs AB and BC ; make BC equal to BC, and join OB
and CC, and draw HFH' parallel, and CE, FG, BD,
and HC'E' perpendicular, to the radius OA.

The triangles COF and C'OF, having the side CO equal

to CO, OF common, and the contained angles FOC and

FOC measured by the equal arcs

BC and BC, are equal ; wherefore

OF bisects CC at right angles. But

the triangles OBD and OFG being

similar, OB : BD : : OF : FG, or

HE, and consequently OB.HE=
BD.OF. The triangles OBD and

CFH are likewise similar, for the

right angleCFO being equal to HFG, ifHFO be taken from

both, the remaining angle CFH is equal to OFG or OBD ;

whence OB : OD : : CF : CH, and OB.CH= OD.CF.
Wherefore OB.HE+ OB.CH, or OB.CE=BD.OF+
OD.CF. But BD and OD are the sine and cosine of the

arc AB, CF and OF the sine and cosine of BC, and CE
is the sine of the compound arc AC. Consequently,

B smAC=sinA'B cosBC+ cosAB sinBC,

E'A
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Cor, 1. Hence, likewise, the rectangle under the radius

and the sine of the difference of two arcs, is equal to the

difference of the rectangles under their alternate sines and

cosines \ or R sinAU= sinAB cosBC-^cosAB sinBC.

Cor, 2. If the two arcs A and B be equal, it is obvious

thsit R sin2A=: sinA 2cosA,

Cor. 3. Let the arc A contain 45° ; then

R 5m(45<?=fcrB)=sm45°(co5B=±:5mB)= V lR''{cosB=t:sinB)

or RMn{^5'^z±zB)z:2RVl{cosB=±z$inB),

Cor. 4. Let 2A=C, and, by the second corollary,

RsinC=isin^C 2cos^C.

PROP. IL THEOR.

The rectangle under the radius and the cosine

of the sum of two arcs, is equal to the difference

of the rectangles under their respective cosines

and sines.

Let A and B denote two arcs, of which A is the great-

er ', then R cos{A+ B)

=

cosA cosB—sinA si?iB.

For, in the preceding figure, the triangles OBD and

OFG being similar, OB : OD : : OF : OG, and OB.OG=
OD.OF, and the triangles OBD and CFH being likewise

similar, OB : BD : : CF : FH, or GE, and consequently

OB.GE = BD.CF. Wherefore OB.OG— OB.GE=
OB.OE=OD.OF—BD.CF ; that is,

R cosACzz cosAB cosBC—sinAB sinBC,
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Cor. 1. Hence, likewise, the rectangle under the radius

and the cosine of the difference of two arcs is equal to the

sum of the rectangles under their respective cosines and

sines ; or R.cosAC= cosAB cosBC+ sinAB sinBC,

Cor. ^. IfA and B represent two equal arcs, it will follow,

thatB'Cos2A= cosA^—sinA^ = {cosA+smA){cosA—sinA)

;

or, since cosA^:=:R^—sinA^^

B cos2A=i^*-:-25^wA*=2co5A*—i2^

Cor. 3. Since, sinA^=^R{R—cos2A)^ and

sinB^=l;R{R—cos2B); therefore

sfwA*—5mB^ =4i2(co52B—C052A).

Cor, 4. Let the arc A be equal to 45^, and

R co5(45?=±=B)=5m4.5°(co5B=:p5/wB).

Cor. 5, Let 2A= C, and by the second corollary,

R cosC=:R^-'2sinlC*=z2cosiC^^R\

PROP. in. THEOR.

Of the equidifferent arcs, the rectangle under

the radius and the sum of the sines of the ex-

tremes, is equal to twice the rectangle under the

cosine of the c.ommon difference and the sine of

the mean arc.

Let A—B, A, and A+B represent three arcs increasing

by the difference B ; then

R{^sin{A+B)+sin{A^B)\=z2cosB sitiA.
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The property is easily deduced by combining the preced-

ing theorems; but it

will be more easily

perceived, by refer-

ring immediately to

the original figure.

The triangles OBD
and OFG being si-

milar, OB : BD : :

OF : FG, or OB :

BD:: 20F : 2FG
or CE+C'E', and

OB (CE+C'EO=
20F.BD; that is, E{sinAC'{-smAC)=:2cosBC sinAB.

Cor, 1 . Hence, likewise, of three equidifferent arcs, the

rectangle under the radius and the difference of the sines

of the extremes, is equal to twice the rectangle under the

sine of the common difference and the cosine of the mean

arc ; or Rlsin^A+ B)—sin{A—B)\ =2«»B cosA,

Cor, 2, Hence R(cos{A'-B)+cos{A-^'B)\=2cosB cos Af

and R(cos{A—B)—co5(A+ B)'\ z=2sznB shiA.

For OB : OD : : OF : OG :t20F :20Gor OE'+OE,
and OB(OE'+OE)=20F.OD; that is,

BicosAC+ cosAC)= 2cosBC cosAB,

Again, OB : BD : : CF : FH : : 2CF : 2FH, or

OE'-—OE, and OB(OE'—OE)=2CF.BD ; that is,

Ji{cosAC^cosAC)= 2sinBC sinAB,



TRIGONOMETRY. 235

Cor, 3. Let the radius be expressed by unit, and the arcs

B and A, denoted by a and na ; then collectively

2sm a.cos ?ia= si7i(n+ \)a—sin{n— 1)«,

^cos a . sin na= sm{n+ 1 )«

+

sin{«— 1 )a,

2sin a.sin naz=:cos{n— \)a—cos[n-\-\)af and

2cos a.cos 7ia= cos{7j— l)a-\-cos{ii-{-l)a.

Cor. 4. Since versB=R—cosB, it follows that

R (sin{A+ B)+sm{A—B)\ = 222 sinA—2vei'sB sinA,

and consequently R sin{A+ B) =2jB sinA—R sin{A—B)-

2versB sinA, oi R{sin{A+B)—sinA)=:R[sinA-sin{A'-B)\

^"^versB sinA,

In the same way, it may be shown that R{cos{A—B)

—

cosA)

z=R(cosA—cos{A+ B)\—2t;^5B cosA,

Cor, 5. If the mean arc contain 60°, then R(sin(60''-\'B)

—S2w(60°—B)) = 2sinB cos60% or sinB 2sinS0°, But twice

the sine of 30° being (cor. 1. def.) equal to the chord of

60° or the radius, it is evident that sin{60^ + B)—
si7i{60°—B)=5/wB, or

sm(60o+B)= sin{60^'^B)+sinB.

Cor. 6. Produce CE to the circumference, join CI
meeting the production of FG in K, and join OK. Since

FK is parallel to CI and bisects CC, it likewise bisects

IC; and hence OK is perpendicular to KC, which is,

therefore, the sine of half the arc lAC, or of half the sum of

the arcs AC and AC, as CF is the sineof half their differ-

ence. But(II.21.El.)IC*-CC'^= IC.2CE',orCK^-CF*
= CE.C'E' ; consequently siii^AB-siti^BC

=

sinAC si7iAC',

or, employing the general notation,
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j/tzA*— smB* = sm(A + B) sin{\— B) = (2. cor. 3.)

l7?(cos2B—C05 2A.)
'

Scholium. By help of this proposition, the sines and co-

sines of multiple arcs are easily determined ; but the ex-

pressions for them will become simpler, if, as in cOr. 2.

the radius be supposed equal to unit. For A, 2A and 3

A

being three equidifferent arcs,

sinA-\-sin3Az=2cosA sin2A=:2cosA 2casA sinA, or

sinSAc=:4!C0sA^.sinA—sinA ; and

eosA+ cosSA= 2cosA.cos2A= 2cosA (2cosA^-j)=
4cosA'

—

2cosA, or

cos3A= 4:cosA '—3cosA,

Again, since 2A, SA, and 4A are equidifferent arcs,

5m2A+s/w4A=2cosA sin3A:=ScosA^ sinA—2cosA sinA^

or sini!A=ScosA^ sinA—4co5A sinA

;

cos2A+ cos^A= 2co5A.e:o53A

=

2cosA{^cosA ^—3co5A),

or cos^A = ScosA* — ScosA^ + l* In like manner, as-

suming the equidifferent arcs 3A, 4A, 5A, the sine and

cosine of 5A are found ; and this mode of procedure

may be continually repeated. To abridge the notation,

however, it will be proper to express the sine and the co-

sine of the arc a, by s and c. The results are thus ex-

pressed in a tabular form :

Sin 2a = 2cs.

Sin %a = . 4c*5 — s.^

Sin \a = 8c^5 — 4cs.

(1.) Sin 5a = I6c^s—I2c*s + s.

Sin 6a = 32c^s^S2c^s + 6cs,

Sin la = 64c<^5— 80c*5 -f 24 ess,

&c. &c. &c.
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Cos 2« = 2c* — 1.

Cos 3« = 4cJ — 3c.

(2.)' Co5 4fl = 8c^ — 8c* + 1.

Co5 5a = 16c*—20c5 +5c.

Co5 6a = S^c'^—48c^+18c»— 1.

&c. &c. &c.

If in these expressions, i—s* be substituted for c*, in

the sines of the odd multiples of a, and in the cosines of

the even multiples,—the sines and cosines of such multiple

arcs will be represented merely by the powers of the sine On

Sin 2,a = 35—45^.

(3.) Sin 5a = 55—2055 + 165.

Sin 7a = 75—56s' +1125*—645^

&c. &c. &c.

Co5 2a rr + 1 — 25*.

(4,) Co5 4« = + 1 — 85* +85*.

Co5 6a = + 1 — 185^+ 485*—32s*.

&c. &c. &c.

If the terras of the first table be repeatedly multiplied

by 2s, and those of the second by 2c, observing the sub-

stitutions of cor. 2, there will result expressions for the

sines and cosines. Thus, 2sin a^ =z2s.s =— cos 2a + 1,

4 sin a' =— 2s.co5 2a+ 2s =— sin 3a + sin a + 2s =r

—sin 3a+ 3s, and 8 sin a* =—2s.sm 3a+ 2s.3s=r + cos 4a

—cos 2a—3cos 2a+ 3 = cos 4a—4 cos2a+ 3 , Again, 2 cos a*

=2c.c = cos 2a +1,4 cosa^ = 2c,cos 2a+2c^ cos 2a +
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COS a •{• 2c -=. COS Sa + 3 cos a, and 8 cos a^ = ^Cxos So. +
2c.3cosazzcos^a'{-cos2a+Scos2a+ S=:cos4!a+^cos2a-^S,

In this manner, the following tables are formed.

Sifi a =z s,

2 Sin «* = — cos 2a + 1

.

4 Sin a' = — 52/« S« 4- 35. —

(5.) 8 Sin fl* = + cos 4a5 —- 4 cos 2« + 3.

16 /Sm «* = 4- s/w 5a — 5 sm 3a + 10s.

82 Sin a^ z=i — cos 6a + 6 cos 4a — 15 cos 2a+ 10.

64 Sin a' = — sin 7a + 7 si?i 5a— 2 Ism 3a+ 35s.

&c. &c. &c.

' Cos a =r c.

2 Cos a^ = cos 2a +1.
4 Cos a' = cos 3a + 3c,

l(6.) 8 Cos a* = cos 4a + 4 cos2a + 3.

16 Cos a' = cos 5a + 5 cosSa + 10c.

32 Cos a^ = cos 6a + 6 cos4a + 15 cos2a + 10.

64 Cos a' = cos 7a + 7 cos5a + 21 cos 3a + 35c.

. &c. &c. &c.

PROP. IV. THEOR.

The sum of the sines of two arcs is to their dif-

ference, as the tangent of half the sum of those

arcs to the tangent of half the difference.

If A and B denote two arcs; s?wA+smB : si?iA—si?iB

^ A+B , A-B
: : tkin—t— : tan—-

—
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For, let AC and AC be the sum 'aad difference of the

arcsABandBCjOrBC;
draw the perpendiculars

CE, and C'E', extend the

chord CC^, and apply at

B the parallel tangent

HBL, meeting in K and

L the diameter produced,

and draw OCH, OFB
and OC'H^ Because CE
is parallel to CE', and CK to HL, CE : CE' : : CK ; C'K
(VI. 2. El.) HL : HX ; and consequently CE+C'E' :

CE-C'E' : : HL+HX : HL—HL', that is, 2BL :

2BH, or BL : BH. But CE and CE' are the sines of

the arcs AC and AC, and BL and BH are the tangents

of AB and BC, or of half the sum and half the differ-

ence of those arcs. Wherefore smAC+ sinAC : sinAC—
sinAC : : ta7i

AC+AC
ta?i
AC—AC

2 2

Cor. 1. The sines of the sum and difference of two

arcs are proportional to the sum and difference of their

tangents. For CE : CE' : : HL, or BL+13H : H'L,

or BL—BH ; that is, resuming the general notation,

5/w(A+ B) : sin{A—B) : : tanA-\-ta?il^ : tanA—ta7i^.

Cor. 2. Let the greater arc be equal to a quadrant; and

R+sinB : R-^sinB : : /«7?(45^+|B) : ^a!w(4.5«»—4.B), or

co/(4;5°4-4.B). But, the radius being a mean proportional

between the tangent and cotangent of any arc, and the

cosine of an arc being a mean proportional between the

sum and difference of the radius and the sine, it follows

that R+sinB : cosB :: R: if«w(45^—^-B), and

R-^sinB : cosB, or cosB : R+sinB :: R: ^«w(45<'+iB).
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Or, if instead of B, there be substituted its complement,

these analogies will become R+cosB : smB : : JR : tan^Bf

and R —cosB : sinB : : R : cot^B.

Cor, 3. Since cosB : R f: R^sinB : i?«»(45^—|B), and

cosB :R:: R+sinB : ifa7?(45<' +I.B), therefore (VI. 19. El.)

cosB : R : : 2R : tan{4!5°-~i.B)+ tan{4!5° +i.B) ; that is,

supposing B to be the complement of 2C, sin2C : 2R : :

R : tanQ+ cotC, But (Prop. 1. cor. l,)R.sin2C— 2cosC

^inC, and consequently cosC.sinC : R^ : : R : tanC+colC.

Cor, 4. Since (4< cor. def.) cosB : R : : R : secB, and

(3. cor. def) cosB : sin B • : R : ia?iB, therefore

cosB : R-\'SinB : : R : tanB-\'SecB, and consequently

(2. cor. def)^aw(45°+^B)= i^«wB+ 5£?cB.—This also ap-

pears clearly from the figure, on supposing OH'=HX',
or the angle LOH' equal to OLH', and consequently the

arc AC equal to the complement of AB.

PROP. V. THEOR.

As the difference of the square of the radius

and the rectangle under the tangents of two arcs,

is to the square of the radius,—so is the sum of

their tangents, to the tangent of the sum of the

arcs.

Let A and B denote any two arcs ; then,

R*-^tanK,tanB : R'' : : tanA+ taiiB : tan{A+B.)
In reference to a diagram, let AB and BC^be the two

arcs, AD and BE their tangents, and AF consequently

the tangent of their sum HC. From the centre O, draw
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to meet the extension of this tangent, draw OH perpen-

dicular to OD and OG making the

angle AOG equal to BOC; and

from D draw DI parallel to BE,

or (I. 23. El.) OH.
The triangle AOG is evidently

equal (I. 20. El.) to BOE, and

therefore AG equal to BE. Be-

cause the parallels BE and DI

(VI. 2. El.) cut the diverging

lines OD and OJ, BE or AG : DI

: : OB or OA : OD ; but the

right angled triangle DOH being

(VI. 15. El.) divided by th^ per-

pendicular OA into similar tri-

angles, OA : OD : : AH : OH, and

consequently AG : DI : : AH : OH,

or by alternation AG : AH : :

DI : OH. Again, since the parallels DI and OH are

intercepted by the diverging lines FH and FO, (VI. 2.)

DI: OH::FD:FH; wherefore AG : AH: : FD : FH,

and (V. 10. El.) GH : AH : : DH : FH : : (V. 19. 1. cor.

El.) DG : AF. Consequently (V. 25. cor. 2. El.) GH.AD :

AH.AD::DG:AF; but (VI. 15. cor. El.) AH.AD=OA%
and hence GH.AD = OA* — AD.AG ; wherefore

OA=^—AD.BE : 0A» : ; DG : AF. Now OA is the

radius, AD and BE the tangents of the arcs AB and BC,

DG their sum, and AF the tangent of the compound arc

AC ; consequently the proposition is manifest.

Cor, 1. Hence it follows, by changing the position of the

figure ;—That as the sum of the square of the radius, an4

n
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the rectangle under the tangents of two arcs, is to the square

ofthe radius, so is the difference of their tangents to the tan-

gent ofthe difference of the arcs. IfA and B denote the two

arcs, then R^+tanA tan B : R* : : tan A-^tan B : tan{A-B,)

Cor, 2, Let the two arcs be equal; and

E^'-'tanA^ iR"- :: ^tanA : tan2A,

Cor, 3. Let the greater arc contain 45®, whose tan-

gent is equal to the radius, then R^ r+= R.tan^ : iJ*

: : RdtztanB : ^a5w(45^=fc:B), or R=^tanB : Rz±ztanB : :

R : i^«w(45°=l=B).

Scholium. Assuming the radius equal to unit, expressions

are hence easily derived for the tangents of multiple arcs.

Let t denote the tangent of an arc a ; then i

—

t^ : i : : 2t:

tan^azzj-j^ and i—t-^;;^ : i :
: ^+7Z^-^^"^^=7Il3^-

In like manner, it will be found that

Tan 4«=

6Y—-20;5+6^5

&c. &c. &c.

Ihe^e/ormulcc might also be derived from expressions for

the sine and cosine of the multiple arc which involve the

powers of the tangent. Thus, from ( 1 ), sin 2a = 2cs =r

c* (2-j=c*.2^, and 5m3« = 4c*5—5 = 3c*5— (i--c*)5 =

^3 /s-—^^=cH3^—J^'); again, from (2), c$s2a=2c*—i=
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c?—s»=c^ A—O =^'*(i— ^*)> and cosSasi4}C^ -—Scsz

c5-.3c(i-.c*)=c5(l—3-il)=J^Ui—3^*)- In this way, the

following tables are formed :

Sin 2a = c^.2L

SmSa=: c^{3t--'t^),

(8.) Sin ^a = c*(4j?—4ifJ).

;S/w 6« = c\6t^20t^ +6^0'

&c. &c. &c.

Co5 3a = c5(l— 3^»).

(9.) Co5 4«=^;*(l--6/^»+2f*).

Cos 5« = cs( 1—10^*4-5^*).

Co5 6a = c^{\-^l5t'- + \6t^-'t^).

&c. &c. &c.

The first set of expressions being divided by the second,

will evidently give the same results for the tangent of the

multiple arc.

PROP. VI. THEOR.

The supplemental chord of half an arc, is a

mean proportional between the radius, and the

sum of the diameter and the supplemental chord

of the whole arc.
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This property, which is only a modification of cor. 2. to

Pr. 2. will admit of a more direct demonstration. For draw

the chord AB, the semichords AE and BE, and the supple-

mental chords CB and

CE, and the radius

OE. The isosceles

triangles AEB and

COE are similar, for

the angles OCE and

EAB at the base

stand on equal arcs AE and EB; consequently AE : AB
: : CO : CE. But, ACBE being a quadrilateral figure

contained in a circle, CE.AB = AE.CB+ EB.CA= AE
(CA+ CB), or AE : AB : : CE : CA+ CB; wherefore

CO: CE:: CE: CA+ CB, or CE» =CA(^^±^).

Cor, Hence, in small arcs, the ratio of the sine to the

arc approaches that of equality. For, let the semiarcs AE
and EB be again bisected in the points F and G ; and,

continuing their subdivision indefinitely, let the successive

intrrmediate chords be drawn. The ratio of the sine BD
to the arc AB may be viewed as compounded of the ratio

of BD to the chord AB, of that of AB to the two chords

AE and EB, of that of AE and EB to the four chords

AF, FE, EG, and GB, and so forth. But thpse ratios,

it has been shown, are the same respectively as those of

the supplemental chords CB, CE, CF, &c. to the diame-

ter CA. And since each of the ratios CB : CA, CE : CA,

CF : CA, 3cc. approaches to equality, it is evident that

their compounded ratio, or that of the sine to its corre-

sponding arc, must also approach to equality.
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Scholium, Hence the ratio of the sine BD to the arc

AB 15 expressed numerically, by the ratio of th« continued

product of the series of supplemental chords CB, CE, CF,

&c. to the relative continued power of the diameter CA*

The ratio may, therefore, be determined to any degree of

exactness, by the repeated application of the proposition

in computing those derivative chords. But a very con-

venient approximation is more readily assigned. Make

CD to ei as CB to CA, CI to CK as CE to CA, CK to

CL as CF to CA, and so forth, tending always towards

the limit Z ; then the ratio of CD to CZ, being com-

pounded of these ratios, must express the ratio of the sine

BD to its corresponding arc AB. Now CD : CB : :

CB : CA; consequently CI= CB, and CD : CI : :

CI : CA, or the point I nearly bisects DA. Again,

CE*=CA (^5A±^\ and therefore CE differs from

CA, by nearly the fourth part of the diiferenee between CB
and CA. These differences being small in comparison of

the quantities themselves, the series of supplemental chords

may be considered as forming a regular progression, each

succeeding term of which approaches four times nearer

to the length of the diameter. Wherefore IK=|DI,

KL=iIK, and so continually. But (V. 21. El.) as the

difference between the first and second term, is to the first,

so is the difference between the first and last tern>, or DI
itself, to the sum of all the terms, or the extreme limit

DZ ; that is, 3 : 4 : : DI : DZ ; and consequently

DZ=|DA. The i^tio of the sine BD to the arc AB is,

therefore, nearly that of CD to CD-f|DA, or of 3CD to

CD+2CA.
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This approximation may be differently modified. Since

SCD=60A—3DA, and CD+2AC=60A—DA, it fol-

lows that BD is to AB, as 60A—3DA to 60A—DA.
But this ratio, which approaches to equality, will not be

sensibly affected, by annexing or taking away equal small

diflPerences. Whence the sine is to the arc, as 60A—6DA
to 60A—4DA, or 30D to 0A+20D. But OD is to

OA, as the sine ofAB is to its tangent ; and consequently

the triple of that arc is equal to its tangent together with

twice its sine.

Again, both terms of the ratio increased by the minute

difference DA become 60A—2DA, and 60A ; wherefore

BD is to AB, as 30A—DA to 30A, or as 20C+0D to

SCO. Hence, if CP be

made equal to the radius

CO, and PBH be drawn

to meet the tangent,

—

the arc AB will be near- O DA

ly equal to the intercepted portion AH. For BD :AH :

:

PD : PA, or 20C-fOD : 30C ; that is, as the sine BD
is to its arc AB.

Another approximation, of much higher importance,

may be hence derived ; for PD : PA : : BD : AH, or as

the sine to its arc nearly. But (V. 3. El.) PD.CD is to

PA.CD in the same ratio, and PA.CD= PD.CD

+

AD.CD = (III. 26. cor. 1.) PD.CD+BD^ ; whence

PD.CD is to PD.CD+ BD*, as the sine to its arc nearly.

If the arc be small, it is evident that OD will be very

nearly equal to AO, and consequently PD may be as-

sumed equal to 3AO, and CD equal to 2AO. Where-

fore 6A0^ : 6AO*+BD* : : BD : AB nearly; or, the ra-

dius being unit, and a and s denoting a small arc and its



TRIGONOMETRY. 247

sine, 6 : 6+s^ : :s : a, and hence a = s +r—nearly. But

since a and s are very small, a^ will approach extremely

near to 5', and it may, therefore, be inferred conversely^

that s = a——

.

6

A convenient approximation for the versed sine of an

arc is easily derived from the fundamental property of the

lines themselves; for 2AO.AD = AB* -, BD'+AD*, or

employing v to denote the versed sine, 2t;=5*4-^% and

«^=~ +^* If> therefore, the arc be small, it maybe suffi-

ciently near the truth to assume v=r— > but should great-

er accuracy be required, substitute this value of v in the

second term of the complete expression, andv=2r-+^>

which will form a very close approximation.

Calculation ofthe Trigonometric Lines.

The preceding theorems contain all the principles re-

quired in constructing Trigonometric Tables. The ra-

dius being denoted by unit, the several lines connected

with the circle are referred to that standard, and are ge-

nerally computed to seven decimal places.

The first object is to compute the Sines for every arc

of the quadrant.

Since the semicircumference of a circle whose radius is

unit was found, by the scholium to Prop. SO. Book VI. of

the Elements, to be 3.1 4 15926536, the length of the arc of
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one minute is .0002909, which, in so small an arc, may be'

assumed as equal to the sine, and consequently the versed

sine of a minute = |(.0002909)* = .000,000,042,308.

Whence, by cor. 3. to Prop. 3. sin{K + 1') = 2sinK—
2^mA X .000,000,042,308—5m(A— 1') •, and therefore, by

a series of repeated operations, the intermediate arc being

successively 1', 2', 3', 4', &c. the sines of 2', 3', 4', 5', &c.

in their order will be calculated.

The numbers thus obtained will at first scarcely differ

from ^n uniform progression, the versed sine of 1', which

forms the multiplier of deviation, being so extremely small.

It is hence superfluous, to compute rigidly all those mi-

nute variations. The labour may be greatly shortened,

by calculating the sines for each degree only, and employ-

ing some abridged process for filling up the sines, corre-

sponding to the subdivision in minutes.

The arc ofone degree being equal to ,0174533, it fol-

lows from the scholium to Prop. 6., that the sine of

1°=:.0174533—|.(.0174533)' =.0174524, and hence the

versed sine of 1°=4-(.0174524)^=:.0001523. Wherefore

5m(A-f- l°)=25/wA—25fwA X .0001523—5zw(A— 1°); or, if

from tmce the sine of an arc, diminished by its 6566*** part,

the sine of an arc one degree lower be subtracted, the re^

mainder will exhibit the sine ofan arc, which is one degree

higher. Thus,

Sin2^ =z2sinl--2sinl'' X .0001523=.0349048--.0000053

=.0348995.

Sin3°z:z2sin2°^2sin2° X .0001523—5ml °=:.0697990—

.0000 1pe—.0 1 74524= .0523360.

6'm4°=2sm3°—25z>z3«^ X .0001523—.5^2°=. 1046720—

.0000160—.0348995.=:0697565.
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After this manner, the sine for each degree is computed

in succession.

But the sines may be found, independently of the pre-

vious quadrature of the circle. Assuming an arc whose

chord is aheady known, it is easy, from Prop. 6. to deter-

mine the successive chords and supplemental chords of its

continued bisection. Let that arc be 60° j its chord is

equal to the radius, and (IV. 17. cor. 2.) its supplemental

chord ^v'Sz: 1.7320508076. Whence the supplemental

chordof30° = V(2+ 1.7320508076)=1.93185I6525. In

this way, by continued extractions, the supplemental chords

of 15°, 7° 30', 3° 45', and 1° 52% are succcjsively compu-

ted, the last one being equal to 1,9997322758. Again, the

chords themselves are deduced by a series of analogies

;

for 1.9318516525 : 1 : : 1 : .5l763809004.=chord of 30°,

and so repeatedly, till the chord of 1° 52'i., which is

.0327234633. Hence, taking the halves of those num-

bers, the sine of 56'i- = .0163617317 and the cosine of

56':^=9998661379, and therefore (cor. 3. defin.) the tan-

gent of that arc is .0163639215 j consequently the arc itself

4- (2 X.0163617317 + .0163639215)=.01636246]6, and

thence the length of the arc of a minute is .0002908832086.

Wherefore the sine of 1'=.0002908882—.^(.0002908832>»

= .0002908882604^6, and the versed sine of 1'=

4.(.U0029088826046)* = .000000042308.

Employing these data, therefore,

Sifi2'= '2sini'-2sinl' X .000000042308=r.00Q58 17763845 ;

SinS'= 2si7i2'-'2sm2' X .000000042308—5^1'=

.0008726645152; and so forth.

But it is very seldom requisite to push the estimation

to such extreme nicety. The sines being calculated for

each degree as before, those corresponding to the subdivi-
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sion in minutes, may be found by a mere expeditious me-

thod, though founded on ulterior considerations. Ifthe sines

increased uniformly, the sine of A^'+w' would exceed that

n
of A by the quantity —-(5mA+l°

—

sin\—1°)= B. But

the rate of this augmentation, being continually retarded,

occasions a defect, equal to w* X5WA X .000,000,04^2308= C.

Again, since the retardation itself gradually relaxes, it re-

quires a small compensation, which may be estimated at

(60-~7^')B X .00000 1 3 =D. The sine of A° + /j' is then

very nearly=s?ViA+ B—C+ D. Thus, the sines of 31°, 32°,

and 33° being respectively .5150381, .5299193, and

.5446390, let it be required to find the sine of 32° 40'.

40
Here B=—-(5^w33°~sm31«^ = .0098670,

C = 1600 X sm32 X .0000000423=r.0000359,

and D=20 X .0098670 X .00000 1 3 = .0000003.

Whence sm32° 40' =i= .5299193+ .0098670—0000359+
.0000003 = .5397507.

After the sines are calculated up to 60°, the rest are de-

duced from cor. 4. Prop. 3. by simple addition. Thus,

5m61°=52w59°+5ml°=.8571673+ .0l74524=.8746197.

The Versed Sines and supplementary versed sines are

only the difference and sum of the radius and the sines.

The Tangents are easily derived from the sines, by help

of the analogy given in the third corollary to the definition^.

Thus, C(?s32°: 52W32 .-.R: tan32°, or, .8480481 : .5299193

: : 1 : ,62^869^—tanS2°, Beyond 45°, the calculation is

simphfied, the radius being (cor. 7. defin.) a mean propor-

tional between the tangent and cotangent, or the cotan-

gent is the reciprocal of the tangent.
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The Secants are deduced by cor. 4. to the definitions,

since they are the reciprocals of the cosines^

From the lower tangents and secants, the tangents ofarcs

that exceed 45® are most easily derived; for (cor. 4. Prop. 4.)

tan{^5°+a)=sec2a+taji2a. Thus, tan4!6°=sec2''+ta?t2°,

or 1.0355303= 1.0006095+ .0349208.

PROP. VII. THEOR.

In a right angled triangle, the radius is to the

sine of an oblique angle, as the hypotenuse to tlie

opposite side.

Let the triangle ABC be right angled at B ; then

R : sinCAB : : AC : CB.

For assume AR equal to the given radius, describe the arc

RD, and draw the perpendicu-

lar RS. The triangles ARS
and ACB are evidently simi- ^^^

lar, and therefore AR ; RS
: : AC : CB. But, AR being

the radius, RS is the sine of

the arc RD which measures

the angle RAD or CAB; and consequently^ : sinA
: : AC : CB.

Cor. Hence the radius is to the cosine of an angle, as
the hypotenuse to the adjacent side ; for R : sinC or cosA
: : AC : AB,
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PROP. VIII. THEOR.

. In a right angled triangle, the radius is to the

tangent of an oblique angle, as the adjacent side

to the. opposite side.

Let the triangle ABC be right angled at B ; then

R:tanBAC::AB:BC.
For, assuming AR equal to the given radius, describe

the arc RD, and draw the per-

pendicular RT. The triangles C
Art and ABC being similar,

AR : RT : : AB : BC. But,

AR being the radius, RT is

the tangent of the arc RD
which measures the angle at

A ; and therefore R : tanA : :

AB:BC.

Cor. Hence the radius is to the secant of an angle, as

the adjacent side to the hypotenuse. For AT is the se-

cant of the arc RD, or of the angle at A ; and, from simi-

lar triangles, AR : AT : : AB ; AC.

PROP. IX. THEOR.

The sides of any triangle are as the sines of

their opposite angles.

In the triangle ABC, the side AB is to BC, as the sine

of the angle at C to the sine of that at A.
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For let a circle be described about the triangle ; and the

sides AB and BC, being chords

of the intercepted arcs or of the

angles at the centre, are (cor. def.)

equal to twice the sines of the

halves of those angles, or the

angles ACB and CAB at the

circumference. But, of the same

angles, the chords or sines (VI.

11. cor El.) are proportional to the radius; and conse-

quently AB : BC : : sinC : sinK,

Cor. Since the straight lines AB and BC are chords,

not only of the arcs AB and BC, but of the arcs ACB and

BAC, or the defects of the former from the circumference,

it follows that the sides of the triangle are proportional also

to the sines of half these compound arcs, or to the sines of

the supplements of their opposite angles.—A like inference

results from the definition, for the sine of an arc and that

of its supplement are the same.

PROP. X. THEOR.

In any triangle, the sum of two sides, is to the

difference, as the tangent of half the sum of the

angles at the base, to the tangent of half their difr

ference.

In the triangle ABC,

AB+AC : AB—AC : ; tan^^ : tarP"^.
2 %
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From the vertex A, and with a distance equal to the

greater side AB, describe the semicircle FBD, meeting the

other side AC extended both ways to F and D, join BD
and BF, which produce to meet a straight line DE drawn

parallel to CB.

Because the isosceles

triangle DAB, has the /^ \B.

same vertical angle with

the triangle CAB, each

of its remaining angles

ADB and ABD is (1. 30. "^

El.) equal to half the sum of the angles ACB and ABC

;

and therefore the defect of ABC from that mean, that is

the angle CBD, or its alternate angle BDE, must be equa}

to half the difference of those angles. Now FBD being

(III. 19. El.) a right angle, BF and BE are tangents of

the angles BDF and BDE, to the radius DB, and hence

are proportional to the tangents of those angles with any

other radius. But since CB and DE are parallel, CF, or

AB+AC : CD, or AB—AC : : BF: BE; consequently

ATI. An Ajy An . ACB+ABC , ACB—ABCAB+AC: AB

—

AC:: tan i
: tan >

2 '^

or AB+AC : AB—AC : : cotlA : cot(B+hA), or

—co/(C+iA).

Cor. Suppose another triangle abc to have the sides eib^

and ac equal to AB and AC, but containing a

right angle : It is obvious that tan-^ : tan-^

^ ACB+ABC ^ ACB—ABC
: : tan ^r : tan -, or

h
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that is,

R : tan{4i5-^b) : : cotl A : coi(B+\A), or--co2f(C+.lA).

Now, in the right angled triangle abc, ah or AB, is to «r,

or AC, as the radius, to the tangent of the angle at h.

PROP. XI. THEOR.

In any triangle, as twice the rectangle under

two sides, is to the difference between their

squares and the square of the base, so is the ra-

dius to the cosine of the contained angle.

In the triangle ABC, 2AB.AC : AB^+AC^—BC^ : :

R : C05BAC ; the angle BAC being acqte or obtuse,

according as BC* is less or

greater than AB*+ AC^.

For let fall the perpendicu-

lar BD. In the rigjit angled

triangle ADB, AB : AD : :

R : s2>iABD or C05BAC ; con-

sequently 2AB.AC : 2AD.AC
: : R : cosBAC. But (II. 23.

El.) twice the rectangle under

AD and AC is equal to the

difference of the squares AB _, .

and AC from the square of BC. Whence
2AB.AC : AB*+AC*—-BC* : : R : C05BAC.

Cor. The radius being denoted by unit, it follows (V. 6.

El.) that AB*+AC^—BC*=2AB.ACco5BAC, and con-

sequently BC^=AB*+AC*—2AB.ACC05BAC, or BC=
V(AB»+AC;i-~2AB.AC C05BAC).
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PROP. XII. THEOR.

In any triangle, the rectangle under the semipe-

rimeter and its excess above the base, is to the

rectangle under its excesses abovje the two sides,

as the square of the radius, to the square of the

tangent of half the contained angle.

In the triangle ABC, the perimeter being denoted by P,

|P(|P—AC : (iP--AB) (iP-.BC) : : R* : tan^BK

For, employing the construction of Prop* 29., Book VJ.

of the Elements; since the triangles BIE and BGD
are right angled, BI : IE : : R : tanlBE, or tan^B,

and BG : GD : : R : tanGBB, or tanlB ;

whence (V. 22. El.) BI.BG : lE.GD : : R* : tanhB\

But it was proved that -q

IE.GD= AI.AG ; where-

fore BI.BG : AI.AG : :

R* : tanlB'', Now BI is

equal to the semiperime-

ter, BG is its excess above

the base AC, and AI, AG
are its excesses above the

sides AB and BC ; conse-

quently the proportion is

established.
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PROP. XIIL THEOR.

In any triangle, the rectangle under two sides,

is to the rectangle under the semiperimeter, and

its excess above the base, as the square of the i a-

dius, to the square of the cosine of half the con-

tained angle.

In the triangle ABC, the perimeter being denoted by P,

AB.BC : 4P(,P—AC) : : RM cos.B^.

For, the same construction remaining ; in the right-

angled triangles BIE and BGD,
BE : BI : : R : sz>BEl, or cos B,

and BD : BG : : R : smBDG, or cos B ;

whence BE.BD : BI.BG : : R* : co5 B*.

But the quadrilateral figure EADC, being right angled

at A and C, is (III. 17. El.) contained in a circle, and

consequently (III. 16. El.) the angle AED or AEB is

equal to ACD or to DCB ; wherefore, ^ince by construc-

tion the angle ABE. is equal to DBC, the triangles BAE
and BDC are similar, and BE : AB : : BC : BD, or

BE.BD = ABBC. Hence AB.BC : BI.BG : :

"R^'.coslW. Now BI is the semiperimeter, and BG its

excess above IG or AC ; wherefore the proposition is de-

monstrated.
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PROP. XIV. THEOR.

In any triangle, as the rectangle under two side^

is to the rectangle under the excesses of the semi*

perimeter above those sides, so is the square of

the radius, to the square of the sine of half their

contained angle*

In the triangle ABC, the perimeter being stili denoted

by P, AB.BC : (|P—AB) (iP—BC) ; : R' : sinlB',

For, the same construction being retained, in the right-

angled triangles BIEand BGD, BE : IE : : R : sin^B,

and BD : GD : : R : siiiiB

;

whence BE.BD : lE.GD : : R* : sinkB"^.

But it has been proved

that BE.BD= AB.BC, or

the rectangleunder thecon-

taining sides of the trian-

gle; and IE.GD=AI.AG,
or the rectangle under the

excesses of the semiperi-

meter above the sides AB
and BC. Wherefore the

proposition is
' establish-

ed.

Scholium, > The three last propositions are demonstrated

here by an independent process; but they are only modi-

fications of the same principle, and might consequently be

derived from a comparison with the first of the train.

The eight preceding theorems contain the grounds of

trigonometrical calculation. A triangle has only five va-
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riable parts—the three sides and two angles, the remain-

ing angle being merely supplemental. Now, it is a gene-

ral principle, that, three of those parts being given, the

rest may be thence determined. But the right-angled tri-

angle has necessarily one known angle ; and, in conse-

quence of this, the opposite side is deducible from the con-

taining sides. In right-angled triangles, therefore, the

number of parts is reduced to four, any two of which being

the assigned, the others may be found*

JPROP. Xy. PROB.

Two variable parts of a right-angled triangle

being given, to find the rest.

This problem divides itself into four distinct cases, ac*

cording to the different combination of the data.

1. When the hypotenuse and a side are given*

2. When the two sides containing the right angle are given,

^. When the hypotenuse and an angle are giveni

4. When either of the sides and an dhgle are giverii

The first and third cases are solved by the application

bf Proposition 7, and the second and fourth cases receive

their solution from Proposition 8. It may be proper,

however, to exhibit the several analogies in a tabulaif

form*
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J 1

,a

SOLUTION.

I.
AC,
A B

A, or C,

BC
AC : AB : : R : sinC, or cos.\.

R : sinA : : AC : BC.

11.

AB,
BC

A, or C
AC.

AB : BC : : R : tanA, or cotC

cosX : R : : AB : AC, or

R ; secA : : AB : AC

III.
AC
A

AB
BC

R : cos\ : : AC : AB.

R : sinA : : AC : BC.

IV.

AB,
A

BC
AC

R : tank : ; AB : BC.

cosA : R : : AB : AC, or

R'.secA : : AB : AC.

In the first and second cases, BC or AC might also be

deduced, by the mere application of Prop. 11. Book II.

of the Elements

:

For AC^ = AB* +BC% or AC= V (AB*+ BC*)

andBC^ =AC^-AB* = (AC+ AB) (AC-AB),

or BC= V((AC+ AB) (AC—AB)).

Cor. Hence the first case admits of a simple approxi-

mation* For, by the scholium to Proposition 6, it appears,

that, AC being made the' radius, 2AC+AB is to 3AC, as

the side BC is to the arc which measures its opposite angle

CAB, or alternately 2AC+AB is to BC, as 3AC to the
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arc corresponding to BC. But the radius is equal to an

0/1/ III o

arc of 57 17 44? 48, or 57| nearly ; wherefore 3AC is to

o

the arc which corresponds to BC, as 3 >C 57 a, or 172°, to the

number of degrees contained in the angle CAB, and con-

sequently 2AC+AB : BC: :172° ; the expression of the

angle at A, or AC+^AB : BC : : 86° : number of degrees

in the angle at A.

This approximation will be the more correct, when the

side opposite to the required angle becomes small in com-

parison with the hypotenuse ; but the quantity of error

can never amount to 4? minutes.

PROP. XVI. PROB.

Three variable parts of an oblique angled tri-

angle being given, to find the other two.

This general problem includes three distinct cases, one

of which again is branched into two subordinate divisions.

1

.

Whtn all the three sides are given,

2. When two sides and ati angle are given ,• which angle

may either (1.) he contained by these sidesy or {2,) subtended

hy one ofthem,

3. When a side and two of the angles are given.

The first case admits of four different solutions, derived

from Propositions 11, 12, 13, and 14, and which have

their several advantages. The second case, consisting of
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two branches, is resolved by the application of propositions

9 and 10 ; and >he solution of the third case flows imme-
diately from the former of these propositions.

-T?

6
Given.

Sought.

SOLUTIOl^.

I.

AB,
BC,
ind

AC.

B.

AB . BC : (iP-AB) (^P-BC) ::R^: sin\B\

iP(iP-AC) : (iP-AB) (iP-BC) ::7^*:/flwi'B^

AB . BC : iP (iP-AC) ::R^: cos\B\

?AB . BC : AB' + BC^ ~AC^ ::R : cosB.

1

9

3

4

il.

1

AB,
BC,
and

c.

A,
and

AC.

AB ; BC : : ^iwC : sinA ; whence B, and

sinC'.sinB:: AB : AC
5

6

^2

AB,
BC,
and

B.

A,

c,
Hnd

AC.

AB+BC : AB-BC : : cot\B : : co^(A+iB).

or - co/(C+iB).

rAB: BC: ;R: itanb; and

I R : tan(^5°'d) : : cot^B : eo^( A+^B),
or-co^(C+iB).

sinA : sinB : : BC : x\C, or

AC=V( AB^^-BC^—2AB.BC CQ*B.)

7

8

9

10

rii.

AB,
A,
B,
and

thence

c.

BC,
AC.

sinC : sinA : : AB : BC,

sinC : sinB : : AB : AC.

11

12
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For the resolution of the first Case, the analogy set

down first, is on the whole the most convenient, particu-

larly if the angle sought do not approach to two right

angles. The second analogy may be applied with obvious

advantage through the entire extent of angles. The third

and fourth analogies, especially the latter, are not adapted

for the calculation of very acute angles ; they will, how-

ever, answer the best when the angle sought is obtuse. It

is to be observed, that the cosines of an angle and of its

supplement are the same, only placed in opposite direc-

tions ; and hence the second term of the analogy, or the

difference of AB^ + BC* from AC^, is in excess or defect,

acc6rding as the angle at B is acute or obtuse.—These re-

marks are founded on the unequal variation of tKe sine and

tangent, corresponding to the uniform increase of an arc.

The first part of Case II. is ambiguous, for an arc and

its supplement have the same sine. This ambiguity, how-

ever, is removed if the character of the triangle, as acute

or obtuse, be previously known.

For the solution of the second part of Case II. the first

analogy is the most usual, but the double analogy is the

best adapted for logarithms. In astronomy, this mode of

calculation is particularly commodious. The direct ex-

pression for the sid9 subtending the given angle is very

convenient, where logarithms are not employed.
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PROP. XVIi. PROB.

Given the horizontal distance of an object and

its angle of elevation, to find its height and abso-

lute distance,

Let the angle ABC, which an object A makes at the

station B, with an horizontal line, and also the distance BC
of a perpendicular AC, to find

that perpendicular, and the hy-

potenusal or aerial distance BA.

In the' right-angled triangle

BCA, the radius is to the tan-

gent of the angle at B, as BC to AC ; and the radius is

to the secant of die angle at B, or the cosine of the angle

at B is to the radius, as BC to AB.

PROP. XVIII. PROB.

Given the acclivity of a line, to find its corre-

sponding vertical and horizontal length.

In the preceding figure, the angle CBA and the hypo-

tenusal distance BA being given to find the height and

the horiz{;ntal distance of the extremity A.

The triangle BCA bein;. rigiit angled, the radius is to

the sine of the angle CBA as BA to AC, and the ra-

dius is to the cosine of CBA as BA to BC.
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Scholium* If the acclivity be small, and A denote the

measure of that angle in minutes ; then AC=BA X

nearly. But the expression for AC, will be rendered

more accurate, by subtracting from it, as thus found, the

^. ACJ
quantity ^^^.

In most cases when CBA is a small angle, the horizontal

distance may be computed with sufficient exactness, by de-

AC*
ducting ~jj^, or BA X A* X .000^000,0423, from the hy-

potenusal distance.

PROP. XIX. PROB.

Given the interval between two stations, and

the direction of an object viewed from them, to

find its distance from each.

Let BC be given, with the angles ABC and ACB, to

calculate AB and AC.

In the triangle CBA, the angles ABC and

ACB being given, the remaining or supple-

mental angle BAC is thence given; and

consequently, swBAC : 5/wACB : : BC: AB,
and smBAC : smABC : : BC : AC.

Cor, if the observed angles ABC and

ACB be each of them 60^, the triangle will

be evidently equilateral ; and if the angle at

the station B be right, and that at C half a right angle,

the distance AB will be equal to the base BC.
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PROP. XX. PROB.

Given the distances of two objects from any
station and the angle which they subtend, to find

their mutual distance.

Let AC, BC, and the angle ACB be

given, to determine AB.
In the triangle ABC, since two

sides and their contained angle are gi-

ven, therefore, by corollary to Propo-

sition 10. AC + BC : AC — BC ; :

cot\C : cot{A'\-\C)f then sinA : sinC : :

BC : AB; or (from the cor. to Prop. 11.)

AB= >/(AC*-hBC*—2AC.BC cosC.)

Cor, By combining this with the preceding proposition,

the distance of an object may be found from two stations,

between which the communication is in-

terrupted. Thus let A be visible from

B and C, though the straight line BC
cannot be traced. Assume a third sta-

tion D, from which B and C are both

seen. Measure DB and DC, and ob-

serve the angles BDC, ABC and ACB.

In the triangle BDC, the base BC is

found as above ; and thence, by the preceding proposition,

$he sides AB and AC of the triangle ABC are determined
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PROP. XXI. PROB.

Given the interval between two stations, and

the directions of two remote objects viewed from

them in the same plane, to find the mutual dis^

t^nce, and relative position of those objects.

Let the points A, B represent the two objects, and C,

D the two stations from which these are observed ; the in-

terval or base CD being measured, and also the angles

CDA, CDB at the first station, and DCA, DCB at the

second ; it is thence required to determine the transverse

distance AB, and its direction.

It is obvious that each of the points A and B would be

assigned geometrically by the intersection of two straight

lines, and consequently that the position of the objects will

not be determined, unless each of them appears in a diffe-

rent direction at the successive stations.

1. Suppose one of the stations C to lie in the direction of

the two objects A and B,

At C observe the angle BCD, and at

D the angles CDA and BDC. Then

by Prop. 9.slnCAD : sinCDA : : CD :

CA, and sinCBD : sinCDB : : CD :

CB ; the difference or sum of CA and

(pB is AB, the distance sought.

2. When neither station lies in the direction of the t'w^

objects^ and the base Cf) has a transverse position.
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Find by Prop. 19. the distances AC and BC of both ob-

jects from one of the stations ^

C J then the contained angle

ACB, or the excess of DCA
above DCB, being likewise gi-

ven, the angles at the base AB
of the triangle BCA, and the

base itself, may be calculated,

from the analogies exhibited

for the solution of the second

branch of Case second. For AC+BC : AC—BC : :

cotiACB : cot{\ACB'\-CAB), and thus the angle CAB is

found. Or more conveniently by two successive opera-

tions, AC : BC : : R : fan b, and R : tan{i5°—b) : :

cotkACB : co/(|ACB+CAB. Now, sinCAB : sinACB

:

:

BC : AB, or AB= V(AC^ + BC*—2AC.BC cosACB).

The inclination of AB to CD' in the first case is given

by observation, and in the second case it is evidently the

supplement of the interior angles CAB and DCA. A pa-

rallel to AB may hence be drawn from either station.

Cor. Hence the converse of this problem is readily sol-

ved. Suppose two remote objects A and B, of which the

mutual distance is already known, are observed from the

stations C and D, and it were thence required to deter-

mine the interval CD. Assume unit to denote CD, and

calculate AB according to the same scale of measures;

the actual distance AB being then divided by that result,

will give CD r For the several triangles which combine to

form the quadrilateral figure CABD, are evidently given

in species.
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PROP. XXII. PROB.

Given the directions of two inaccessible objects

viewed in the same plane from two given stations,

to trace the extension of the straight line con-

necting them.

Let the angles ACD, BCD be observed at C, and

ADC, BDC at D, with the base CD -, to find a point E
in the straight line ABF produced through A and B.

By the last proposition, find

AD and the angle DAB, and

assume any angle ADE. In

the triangle DAE, the angles

at the base AD, and conse-

quently the vertical angle

AED, being known, it fol-

lows, by Prop. 9., that 5mAED : sinEAD : : AD : DE.
Wherefore, measure out DE on the ground, and its ex-

tremity E will mark the extension of AB.

PROP. ;XXIII. PROB.

Given on the same plane the direction of two

remote objects separately seen from two stations

and their direction as viewed at once from an in-

termediate station, with the distances of those

stations, from the middle station,—to find the

mutual distance of the objects.
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Let object A be visible from the station D, and B from

E, and both of them be seen at once from the station C j

the compound base DC, C£ be-

ing measured, and the angle

DCA, ACB and BCE, with

ADC and BEC, observed,—to

determine AB.

In the triangles DAC, CBE,
the sides AC and BC are found

by Prop. 19., and in the triangle

ACB, the baseAB is thence found

by the application of Prop. 20.

It is evident that the mode of investigation will not be

altered, if the three stations D, C and E should lie in the

game straight line*

PROP. XXIV. PROB.

Given four stations, with the direction of a re-*

mote object viewed from the first and second sta-

tions, and the direction of another remote object

viewed from the third and fourth stations, all in

the same plane,—tb find the distance between

the objects-

Let the bases EC, CD, and DF be given, with the an-

gles ECD and CDF, and suppose that at the stations E
and C the angles CEA and EGA are observed, and the

angles BDF and BFD at D and F ; to find the transverse

distance AB.
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In the triangles EAC and

DBF, find by Prop. 19. the

sides AC and BD ; and in the

triangle CAD, the sides AC,

CD, with their contained an-

gle ACD, being given, the base

DA and the angle CDA are

found by Case II. But the

distances DA, DB being now given, with their contained

angle ADB, the base AB is found by Prop. 20. '

PROP. XXV. PROB-

The mutual distances of three remote objects

being given, with the angles which they subtend

at a station in the same plane, to find the relative

place of that station.

Let the three points A, B, and C, and the angles ADB
and BDC which they form at a fourth point D, be given j

to determine the position of that point.

1. Suppose the station D to he situate in the direction of

two of the objects A, C*

All the sides AB, AC and BC of the triangle ABC be-

ing given, the angle BAC is

found by Case I. ; and in the

triangle ABD, the side AB with

the angles at A and D being

given, the side AD is found by

Case III. and consequently the
^

position of the point D is determined^
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2. Suppose the three objects Ay B and C to lie in the same

direction.

Describe a circle about the extreme objects A, C and

the station D, join DA, DB and DC, produce DB to meet

the circumfe;rence in E, and join AE and CE.

In the triangle AEC, the side AC is given, and the an-

gles EAC and ECA, being equal (III. 16. El.) to CDE and

ADE, are consequently given ; wherefore the side AE is

found b}^ Case III. The triangle AEB, having thus the

sides AE, AB, and their contained angle EAB or BDC
given, the angle ABE, and its

supplement ABD are found by

Case II. Lastly, in the triangle

ABD, the angles ABD and

ADB, wth the side AB, are

given ; whence BD is found by

Case III. But since the angle

ABD and the distance BD are

assigned, the position of the station D is evidently deter-

mined.

3. Let the three objects form a triangle, and the station

jy lie either without or "within it.

Through D and the extreme points A and C describe a

circle, draw DB cutting the circumference in E, and join

AE and CE.

1. In the triangle AEC, the side AC, and the angles

ACE and CAE, which are equal (III. 16. El.) to ADB
and BDC, being given, the side AE is found by Case III.
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2. All the sides of the trian-

gle ABC being given, the angle

CAB is found by Case I.

3. In the triangle BAE, the

sides AB and AE are given, and

their contained angle EAB, or

thediiferenceofCAEandCAB,

are given, whence, by Case II.,

the angle ABE orABD is found.

4. Lastly, in the triangle

DAB, the side AB and the angles ABD and ADB being

given, the side AD or BD is found by Case III., and con-

sequently the position of the point D, with respect to A and

B is determined. By a like process, the relative position

of D and C is deduced ; or CD may be calculated by Case

XL from the sides AC, AD, and the angle ADC, which

are given in the triangle CAD.

It is obvious that the calculation will fail, if the points B
and E should happen to coincide. In fact, the circle then

passing through B, any point D whatever in the opposite

arc ADC will answer the conditions required, since the

angles ADB and BDC, being now in the same segment,

must remain unaltered.

PROP. XXVI. THEOR.

The mutual distances of three remote objects,

two of which only are seen at once from the same

station, being given, with the angles observed at
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two stations in the same plane, and the interme-

diate direction of these stations^—^to find their re-

lative places.

Suppose the three points A, B
and C are given, with the angle

AEB which A and B subtend at

E, and BFC, which B and C
subtend at F, and likewise the

angles AEF and EFC ; to find

the relative situation of each of \ /

those stations E and F.
'^ ^

Produce AE and CF to meet in D, and join BD. The
angle EDF, being equal to AEF+CFE— 180<^, is given.

Now in the triangle EBF, sinBFE : sinEBF : : EB : EF;
and in the triangle EDF, si7iET>F : siriBFE : : EF : ED

;

whence, (V. 23. El.) sinBFE.shiEBF : siiiEBF.sinBFE

: : EB : ED, and consequently the ratio of EB to ED
is found. Again the angle BED, being the supple-

ment of AEB, is given, (Prop. 10. cor.) si7iBFE.sinET>F

: sinEBF.sinDFE : : R : tan b, and R : tan (45

—

b) : :

co^i:BED :—coi:(iBED+EBD), or co/(180<?-~i.BED--

EBD), whence the angle EDB is given. The angles which

all the three objects A, B, and C subtend at the point D
are therefore all given, and hence the position ofD is de-

termined by the preceding proposition. But BD, being

found, the several distances BE, ED, and BF, FD are

thence obtained, and consequently the position of each ox

the stations E and F is determined.
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PROP. XXVII.

Given the angles of elevation at which an ob-

ject is seen from three known points in a horizon-

tal plane, to find its position and altitude.

Let A, B, and C be the three points of observation, and

D the foot of the perpendicular from the given object to

the horizontal plane. It is evident from Proposition 17,

that the horizontal distances AD, BD and CD are pro-

portional to the co-tangents of the vertical angles at the sta-

tions A, B, C •, let these co-tangents be respectively denot-

ed by the lines L, M, and N. Divide AB, the base of the

triangle ADB,
internally and

externally at

the points E
and F, in the

ratio of L to

M, and the

lines DE and

DF joining the

vertex D must

(VI. 10. cor.

El.) bisect in-

ternally and externally the angle ; whence EDF is a right

angle, and (III. 19. El.) contained in a semicircle. In

the same manner, divide CB internally and externally at

G and H in the ratio of M to N, and on GH describe a

semicircle. The point D, being common to both semicir-

cles, must occur in their intersection.
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From this construction, the trigonometrical calculation,

is readily deduced. For L+M : M : : AB : BE, and

L—M : M : : AB : BF ; whence EF and its half DE, or

the radius KE, is found. In like manner, N+M : M : :

CB : BG, and N—M : M: : CB : BH; consequently DI=
—

. In the triangle IBK, the sides BI and BK,

with their included angle, are given, and therefore (Prop.

10.) the angle BKI and the base IK are found. Again,

all the sides of the triangle IDK being given, the angle

IKD (Prop. 14.) is found. Hence, in the triangle ADK,
the whole angle AKD and its containing sides are given,

and therefore the base AD, or the horizontal distance of

the object from the station A is found, and consequently

its altitude.—The opposite semicircles will, likewise, by

their intersection, give, on the other side, a second posi-

tion for that point. In practice, the ambiguity would

easily be removed.

If the object be seen at the same elevation from all the

three points, the arcs of the circles will evidently pass in-

to tangents which bisect at right angles the sides of the

triangle ABC. The projection D of the object on the ho-

rizontal plane will then be the centre of the circle circum-

scribing that triangle, and therefore the radius, or the dis-

tance AD, will be found by Prop. 18. Book VI. of the

Elements.

If the three points of observation should lie in the same

straight line, the centres of the determining circles will

likewise occur in that line or its extension, and hence the

process of calculation will be greatly abridged.

General Scholium, In all the foregoing problems, the an-

gles on the ground are supposed to be taken by means of
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a theodolite ; which, being adjusted by spirit-levels, mea-

sures only horizontal and vertical angles, or decomposes

other angles into these elements. If the sextant be em-

ployed for the same purpose, such angles, when oblique,

must be reduced by calculation to their projections on the

horizontal plane.

In surveying an extensive country, a base is first care-

fully measured ; and the directions of the prominent dis-

tant objects being observed from both of its extremities,

they are all connected with it by a series of triangles. To
avoid, in practice, the multiplication of errors, these trian-

gles should be chosen, as nearly as possible, equilateral.

—

After a similar method, large estates are the most cor-

rectly planned and measured ; the ordinary practice of

carrying the theodolite with a chain round the boundary

being subject to much inaccuracy.

If the inequality of the surface of the ground will not

admit of the measurement of a base of a sufficient length,

a smaller one may be selected at first, and another base

derived from this, by combining with it one or more tri-

angles. These triangles, to preclude the multiplication of

errors, should be as nearly as possible right-angled, and si-

milar, having their sides increasing in a continued propor-

tion. When this rate of increase is not less than the ra-

tio of the radius to the side of an inscribed equilateral tri-

angle, the number of intermediate triangles between the

measured and the computed base will be rather favourable

to the accuracy of the result.

The vertical angles employed in the mensuration of

heights, since they are estimated from the varying direction

of the level or the plummet, must evidently, when the sta-

tions are distant, require some correction. I^et the points A
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and B represent two remote objects, and C their centre of
gravitation ; with the radius CA describe a circle, draw
CB cutting the circumferer.ee in D and E, and join EA
and AD. The converging lines AC and BC will indicate

the direction of the plummet at A and B, the intercepted

arc AD, will trace the contour of a quiescent fluid, and
the tangent AZ, being applied

to A, will mark the line of the

horizon from that station.

Wherefore the vertical angle

observed at A is only ZAB,
which is less than the true an-

gle DAB, by the exterior an-

gle DAZ. But (III. 2J. El.)

DAZ being equal to the angle

AED in the alternate segment,

is (III. 15. El.) equal to half the angle ACD at the centre.

Hence the true vertical angle at any station will be found,

by adding to the observed angle half the measure of the

intercepted arc j and this measure depending on the cur-

vature of the earth, which is neither unifoim nOr quite re-

gular, must be deduced, for each particular place, from

the length to the corresponding degree of latitude.

Such nicety, however, is very seldom required. It will

be sufficiently accurate in practice to assume the mean

quantities, and to consider the earth as a globe, whose cir-

cumference is 24',856 miles, and diameter 7,912. The arc

of a minute on the meridian being, therefore, equal to 6076

feet, the correction to be added to the observed vertical

angle must amount to one second, for every 69 yards con-

tained in the intervening distance.

The quantity of depression ZD below the horizon is
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hence easily computed; for (III. 26. El.) AZ*= EZ.ZD,

or very nearly ED.ZD; and consequently the visual de-

pression of an object is proportional to the square of its dis-

tance AZ from the observer. In the space of one mile,

this depression will amount to y|g parts of a foot ; and

generally, therefore, it may be expressed in feet, by two-

thirds of the square of the distance in miles. Thus, at

twenty miles, the depression is 266| feet ; and at the dis-

tance of fifty miles, it amounts to 1666|, or nearly the

third of a mile.

But the effect of the earth's curvature is modified by an-

other cause, arising from optical deception. An object is

never seen by us in its true position, but in the direction of

the ray of light which conveys the impression. Now the

luminous particles, in traversing the atmosphere, are, by

the force of superior attraction, refracted or bent continu-

ally towards the perpendicular, as they penetrate the lower

and denser strata ,• and consequently they describe a cur-

ved track, of which the last portion, or its tangent, indi-

cates the apparent elevated situation of a remote point.

This trajectory, suffering almost a regular inflexure, may

be considered as very nearly an arc of a circle, which has

for its radius six times the radius of our globe. Hence, to

correct the error occasioned by refraction, it will not only

be requisite to diminish the effects of the earth's curvature

by one-sixth part, or to deduct, from the vertical angles,

the twelfth part of the measure of the intervening terres-

trial arc. The quantity of horizontal refraction, however,

as it depends on the density of the air at the surface, is ex*

tremely variable, especially in our unsteady climate.





NOTES,

AND

ILLUSTRATIONS.





NOTES

AND

ILLUSTRATIONS.

NOTES TO BOOK I.

DEFINITIONS.

1. 1 HE primary objects which Geometry contemplates are,

from their nature, incapable of decomposition. No wonder

that ingenuity has only wasted its efforts to define such ele-

mentary notions. It appears more philosophical to invert the

usual procedure, and endeavour to trace the successive steps

by which the mind arrives at the principles of the science.

Though no words can paint a simple sound, this may yet be

rendered intelligible, by describing the mode of its articula-

tion.

The founders of mathematical learning among the Greeks

were in general tinctured with a portion of mysticism, trans-

mitted from Pythagoras, and cherished in the school of Plato.

Geometry became thus infected at its source. By the later

Platonists, who flourished in the Museum of Alexandria, it

was regarded as a pure intellectual science, far sublimed above

the grossness of material contact. Such visionary metaphy-

sics could not impair the solidity of the superstructure, but did

contribute to perpetuate some misconceptions, and to give a

wrong turn to philosophical speculation. It is full time to re-

store the sobriety of reason. Geometry, like the other scien-

ces which are not concerned about the operations of mind,

must .ultimately rest on external observation. But those uiti-
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mate facts are so few, so distinct, and obvious, that the subse-

quent train of reasoning is safely pursued to unlimited extent,

without ever appealing again to the evidence of the senses.

The science of Geometry, therefore, owes its perfection to

the extreme simplicity of its basis, and derives no visible adr

vantage from the artificial mode of its construction. The
axioms are here rejected, as being totally useless, and rather

apt to produce obscurity.

2. The term Surface^ in Latin superficies^ and in Greek ixi^»'

vetxj conveys a very just idea, as marking the niere expansion

which a body presents to our sense of sight. Line, or ^^uf^fAx,

signifies a stroke ; and, in reference to the operation of writ-

ing, it expresses the boundary or contour of a figure. A
straight line has two radical properties, which are distinctly

marked in different languages. It holds the same undeviating

course—and it traces the shortest distance between its ex-

treme points. The first property is expressed by the epithet

recta in Latin, and droite in French ; and the last seems in-

timated by the English term straight, which is evidently de-

rived from the verb to stretch. Accordingly Proclus defines

a straight line as stretched between its extremities

—

k stt xk^a/v

S. The word Point in every language signifies a mark, thus

indicating its essential character, of denoting position. In

Greek, the term e-ny^cc was first used : but, this being de-

graded in its application, the diminutive a-n^eiov, formed from

e-7ifi»,a signal, came afterwards to be preferred. The neatest

and most comprehensive description of a point was given by

Pythagoras, who defined it to be *< a monad having position."

Plato represents the hj/postasisy or constitution of a point, as

adamantine ; finely alluding to the opinion which then prevail-

ed, that the diamond is absolutely indivisible, the art of cut-

ting this refractory substance being the discovery of modern

ages,

4. The conception of an Angle is one of the most difficult
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perhaps in the whole compass of Geometry. The term cor-

responds, in most languages, to corner^ and therefore exhibits

a most imperfect picture of the object intimated. Apollonius

defined it to be *^ the collection of space abont a point.'* Eu-

clid makes an angle to consist in " the mutual inclination, or

xA^o-K, of its containing lines,"—a definition which is obscure

and altogether defective. In strictness, this can apply only,

to acute angles, nor does it give any idea of angular magni-

tude ; though this really is as capable of augmentation as the

magnitude of lines themselves* It is curious to observe the

shifts to which the author of the Elements is hence obliged to

have recourse. This remark is particularly exemplified in the

20th and 21st Propositions of his Third Book. Had Euclid

been acquainted with Trigonometry, which was only begun to

be cultivated in his time, he would certainly have taken a

more enlarged view of the nature of an angles

5. In the definition of Reverse Angle, I find that I have been

anticipated by the famous mechanician Stevin of Bruges, who
flourished about the end of the sixteenth century. It is sa-

tisfactory to have the countenance of an authority so highly

respectable.

6. A Square is commonly described as having all its angles

right. This definition errs however by excess, for it contains

more than what is necessary. The original Greek, and even

the Latin version, by employing the general terms «^6oyavicvt

and rectanglum, dexterously, avoided that objection. The
word Rhombus comes from pifi/ietv, to sling, as the figure repre-

sents only a quadrangular frame disjointed. The Lozetig^^^jsi..

heraldry and commerce, is that species of rhombus which is

composed of two equilateral triangles placed on opposite sides

of the same base.

7. It scarcely deserves notice, but I will anticipate the ob-
jection which may be brought against me, for having changed
the definition o{ Trapezium, The fact is, that I have only re-

stricted the word to its appropriate meaning, from which
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Euclid had, according to Proclus, taken the liberty to depart.

In the original, it signifies a table ; and hence we learn the

prevailing form of the tables used among the Greeks. In-

deed the ancients would api.tar to have had some predilection

for the figure of the trapezium, since the doors now seen in

the ruins of the temples at Athens are not exactly oblong,

but wider below than above.

8. Language is capable of more precision, in proportion as

it becomes copious. As I have confined the epithet right to

angles, and straight to lines, I have likewise appropriated the

word diagonal to rectilineal figures, and diameter to the circle.

In like manner, I have restricted the term arc to a portion of

the circumference, its synonym arch being assigned to the use

of architecture. For the same reason, I have adopted the term

eqitivalent, from the celebrated Legendre, whose Elemens de

Geometric is one of the ablest works that has appeared in our

times. These distinctions evidently tend to promote perspi-

cuity, which is the great object of an elementary treatise-

Euclid and all his successors define an isosceles triangle to

have only two equal sides, which would absolutely exclude

the. equilateral triangle. Yet the equilateral triangle is after-

wards assumed by them to be a species of isosceles triangle,

since the equality of its angles is inferred at once as a co-

rollary from the equality of the angles at the base of an

isosceles triangle. This inadvertency, slight as it may appear,

is now avoided.

PROPOSITIONS.

9. The tenth Proposition may be very simply demonstra-

ted, in the same manner as the next or its

converse, by a direct appeal to superposi-

tion or mental experiment. For, suppose

a copy of the triangle ABC were inverted

and applied to it, the sides BA and BC

being equal, if BA be laid on BC, the side

BC again will evidently lie on BA, and

the base AC coincide with CA, Consequently the angle
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BAC, occupying now the place of BCA, must be equal t©

this angle.

It may be worth while to remark, that Euclid's demonstra-

tion of this Proposition, which, being placed near the com-

mencement of the Elements, has from its intricacy been styled

the Pons Asinoruniy is in fact essentially the same with what

has now been given. This will readily appear on a review of

the several steps of his reasoning :

—

The sides BA and BC of the isosceles triangle being pro-

duced, the equal segments AD and CE are assumed, and AE,

CD joined.— 1. The complex triangles ABE and CBD are

compared : The sides AB and BC are equal,

and likewise BE and BD, which consist of

equal parts, and the contained angles EBA
and DBC are the same with DBE ; whence

(I. 3.) these triangles are equivalent, and the

base AE equal to CD, the angle BAE equal

to BCD, and the angle BEA to BDC—2. The

additive triangles CAE and ACD are next

compared: The sides EC and EA being equal to DA and

DC, and the contained angle CEA equal to ADC, the tri-

angles are (I. 3.) equivalent, and therefore the angle CAE is

equal to ACD.—3. Lastly, since the whole angle BAE is

equal to BCD, and the part CAE to ACD, the remainder

BAC must be equal to BCA.
Now this process of reasoning is at best involved and cir-

cuitous. The compound triangles ABE and CBD consist of

the isosceles triangle ABC joined to each of the appended
triangles ACE and CAD ; when, therefore, as the demon-
stration implies, ABE is laid on CBD, the common part ABC
is reversed, or it is applied to CBA, and the other part ACE
is laid on CAD. But the superposition of ABC or CBA is

easily perceived by itself; nor is the conception of that invert-

ed application anywise aided by having recourse to the super-

position, first of the enlarged triangles ABE and CBD, and
then contracting these by the superposition of the subsidiary
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triangles ACE and CAD. In this, as in some other instances,

Euclid has deceived himself, in attempting a greater than

usual strictness of reasoning.

10. The fourteenth Proposition may be demonstrated other-

wise.

Draw (1. 5. El.) BE bisecting the angle ABC. The angle

BEA (I. 8. El.) is greater than the inte-

rior angle EBC or EBA, and therefore

(1. 13. El.) the side AB is greater than

AE. In like manner, the angle BEC is

greater than the interior angle EBA or

EBC, and consequently (I. 13. El.) the

side CB is greater that CE. Wherefore the two sides AB and
CB, being each of them greater than the adjacent segments
AE and CE, are together greater than the whole base AC.

11. The fifteenth Proposition might also be demonstrated

otherwise. For join BE (I. 12,) the exterior angle BEC af

the triangle BAE is (I. 12.) greater than

*the interior ABE or (I. 10.) AEB, which ^
again is the exterior angle of the triangle

ECB, and therefore (I. 12.) greater than

GBE. Whence (I. 13.) the side BC oppo-
^ -^ ^

site to the greater angle is greater than CE, or CE the differ-

ence between the sides AB and AG is less than the third side

BC.

12. From the property that two sides of a triangle are to-

gether greater than the third side, may be derived the gene-

ric character of a straight line

:

The .shortest line that can be draton betiveen tuoa points, is a

straight line.

Let the points A and B be connected by straight lines

joining an intermediate point C ; and the two sides AC and

BC of the triangle ACB are greater than AB (I. 15.). Now
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let a third point D be interposed between A and C ; and be-

cause AD and DC are together

greater than AC, add BC to both,

and the three lines AD, DC, and

CB are greater than AC and BC,

and consequently still greater than

AB. Again, suppose a fourth

point E to connect B with C ;

and the sides BE and CE of the triangle BCE being greater

than BC, the four straight lines AD, DC, CE, and EB are

together, by a still farther access, greater than AB. By thus

repeatedly multiplying the interjacent points, two sides of a

triangle will at each successive step come in place of a third

side, and consequently the aggregate polygonal or crooked

line AFDGCHEIB will acquire continually some farther ex-

tension. Nay, since there is no limit to the possible number

of those connecting points, they may approach each other

nearer than any assignable interval ; and consequently the

proposition is also true in that extreme case where the boun-

dary is a curve line, or of which no portion can be deemed

rectilineal.

The proposition now demonstrated is commonly assumed as

an axiom. It is indeed forced uj.on our earliest observation,

being suggested by the stretching of a cord, and other fami-

liar occurrences in life. But thus to multiply principles, ap-

pears quite unphilosophical. The two radical properties of a

straight line—the congruity of its parts—and its shortness of

trace—are distinct, though connected. The latter is shown

to be the necessary consequence of the former ; but it would

be impossible, by any direct process, to infer the uniformity

of straight lines, from their marking out the nearest routes.

In the demonstration, I could not avoid introducing the

consideration of limits. This will occasion, I presume, no mate-

rial difficulty, since the reasoning is actually the same as that

by which our most familiar conceptions are gradually ex-

panded.

Mr Schwab, author of a small tract, entitled Elemens de

Geometrief and published at Nancy in 1813, has endeavoured
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to define a straigiit line as that which, being turned like an

axis about its two extremities, all its intermediate points will con-

stantly preserve the same position. This ingenious idea I have

adopted, in distinguishing the character of a straight line.

The same intelligent writer has, I find, referred the gene-

ration of angles to a revolving motion. He considers the right

angle as derived from the quartering of a whole revolution ;

and he likewise views, as I have done, the angle which a portion

of a straight line makes with its opposite portion, as formed by

g semi-revolution.

13. In reference to the eighteenth Proposition, the ingenious

MrT. Simpson has very justly

remarked, in his Elements of

Geometry, that the demon-

stration which Euclid gives

of this proposition is defec-

tive, since it assumes that

the point G must lie below

the base AC. He has there-

fore legitimately supplied the

deficiency of the proof; and it is surprising that so rigorous

a geometer as Dr Robert Simson should have so far yielded

to his prejudices, as to resist such a decided improvement.

The demonstration inserted in the text appears to be rather

simpler and more natural than that of Mr T. Simpson,

14. The nineteenth Proposition is capable of being demon-

strated directly.

Let the triangles ABC and DEF have the sides AB and

BC equal to DE and EF, but

the base AC greater than DF

;

the vertical angle ABC is great-

er than DEF.
From the greater base AC cut

oflt' AG equal to DF, construct

(I. 1.) the triangle AHG ha-

ying tjie sides AH and GH e-
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qual to AB and BC or DE and EF, join HB, and produce HG
to meet BC in I.

Because HI is greater than HG, it is greater than the equal

side BC, and therefore much greater than BI. Consequently

the opposite angle IBH of the triangle BIH is (I. 13.) greater

than BHI. But AB being equal to AH, the angle HBA is

(I. 10.) equal to BHA, and therefore the two angles IBH
and HBA are greater than IHB and BHA, that is, the whole

angle CBA is greater than IHA or GHA. And since the

sides of the triangle AGH are by construction equal to those

of EDF, the corresponding angle AHG is equal to DEF
(I. 2,) ; and hence the angle ABC, which is greater than

AHG, is likewise greater than DEF.—In like manner, this

may be demonstrated, if BH should f^ll without the base,

15. It is not difficult to perceive that the whole structure of

geometry is grounded on the mqtual comparison of triangles,

the simplest of all the rectilineal figures. The conditions which

iix the equality of those elementary portions of surface, are all

contained in the 2d, 3d, 20th and 21st propositions of this Book.

Such original theorems derive their evidence from the super-

position of the triangles themselves ; which, in reality, is no-

thing but an ultimate appeal, though of the easiest and most

familiar kind, to external observation, The same conclusions,

however, might be deduced more concisely,- from the circum-

stances required to determine the constitution of an indivi-

dual triangle. Suppose AB, BC, and AC, any one of which is

shorter than the other two conjoined in a straight line, to be

three inflexible rods moveable at pleasure.— (1.) Place them

with their ends meeting each other, and they will evidently

rest in the same position, and contain a distinct triangle,—

which corresponds to Proposition 2.

—

(2.) Having joined the rods AB and BC
at B, continue to open them at that point,

till they form a given vertical angle ABC ;

their position then becomes fixed, and con-

sequently determines the rod AC which

connects their extremities and completes the

triangle. This inference evidently agrees
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with Proposition 3.--(3.) While the rod AC retains its place,

let two rods AB and CB of unlimited length, and applied at

the ends A and C, be opened gradually till the one forms with

AC a given angle CAB, and the other a given angle ACB ;

it is evident that AB and BC will then rest crossing each

other in those positions, and containing a determinate triangle,

of which the vertex B is their point of mutual intersection.

This property corresponds with Proposition 20.—(1.) Let the

rod AB of a given length make a given angle with the unli-

mited rod AC, and applying at the end B another given rod,

turn this gradually round till it meets AC. If BC exceeds

the distance of B from AC, it will evidently, after stretching

beyond AC, again come to meet that boundary. With such

conditions, therefore, the rods might contain two determinate

triangles, the one acute and the other obtuse, and which are

hence distinguished from each other by those obvious charac-

ters. This qualified property, omitted in most elementary works,

Is yet of extensive application, and was requisite to complete

the conditions of the equality of triangles. It corresponds

with Proposition 21,

The four preceding theorems are reducible, however, to a

single property, which includes all the different requisites to

the equality of triangles. The sides of a triangle are obvious-

ly independent of each other, being subject to this condition

only, that any one of them shall be less than the remaining

two sides. But since all the angles of a triangle are together

equal to two right angles, the third angle must, in every case,

be the necessary result of the other two angles. A triangle

has, therefore, only five original and variable parts—the three

sides and two of its angles. Any three of these jiarts being as-

certained^ the triangle is absolutely determined. Thus—when

(1.) all the three sides aii«e given,—when (2.) two sides and

their contained angle are given,—when (4.) two sides and

an opposite angle are given, with the affection of the triangle,

or when (3.) one side and two angles, and thence the third

angle are given,—the triangle is completely marked out.

M. Legendre, in a very elaborate note to his Elemens dc
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Geometrie, has sought, with much ingenuity, to deduce a pri^

ori the radical properties of triangles i'rom the theory of

Junctions. But, like other similar attempts, his investigation

actually involves in it a latent assumption. This subtle logi-

cian sets out with the principle which would seem almost in-

tuitive, that a triangle is determined when the base and its ad-

jacent angles are given. The vertical angle, therefore, de-

pends wholly on these data,^—the base and its adjacent angles.

Call the base c, its adjacent angles A, B, and the vertical or op-

posite angle C. This third angle, being derived from the quan-

tities A, B and c, must be a determinate function of them, or

formed from their combination. Whence, adopting his nota-

tion, Cz=.(p : (A, B, c). But the line c is of a nature hetero-

geneous to the angles A and Bj and therefore cannot be com-

pounded with these quantities. Consequently C=r^ : (A, B),

or the vertical angle C is a function merely of the angles A and

B at the base ; and hence the third angle of a triangle must

depend wholly on the other two.

To a speculative mathematician this argument is very se-

ductive, though it will not bear a rigid examination. Many
quantities in fact appear to result from the combined relation

of other quantities that are altogether heterogeneous. Thus,

the space which a moving body describes, depends on the

joint elements of time and velocity, things entirely distinct in

their nature ; and thus, the length of an arc of a circle is com-

pounded of the radius, and of the angle it subtends at the

centre, which are obviously heterogeneous magnitudes. For

aught we previously knew to the contrary, the base c might,

by its combination with the angles A and B, modify their re-

lation, and thence affect the value of the vertical angle C. In

another parallel case, the force of this remark is easily per-

ceived. Thus, when the sides a, b and their contained angle C
are given, the triangle is determined, as the simplest observa-

tion shows. Wherefore the base c is derived solely from these

data, or c=(p : («, 5, C). But the angle C, being heterogene-

ous to the sides a and by cannot coalesce with them into an
equation, and consequently the base c is simply a function of

a and 6, or it is the necessary result merely of the other two
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sides. In other words, as the third angle of a triangle depends

on the other two angles, so the base of a triangle must have its

magnitude determined by the lengths of the two incumbent

sides. Such is the extreme absurdity to which this sort of

reasoning would lead ! In both of these instances, indeed, the

conclusion is admitted by implication, only in the one it is

consistent with truth, while in the other it is palpably false.

—That such an acute philosopher could overlook the fallacy

of his argument, can only be ascribed to the influence which

peculiar trains of thought acquire over the mind, and to the

extreme facility with which elementary principles insinuate

and blend themselves with almost every process of reasoning.

The objections here directed against the celebrated abstruse

attempt to demonstrate, a priori^ the equality of triangles from

the nature of equations, and the properties of homogeneous

quantities, have, generally, I believe, been deemed conclu-

sive. I have scarcely heard, indeed, of a geometer of any emi-

nence in the island, (except the learned writer of a critique

which appeared in the Edinburgh Review), who is not per-

fectly convinced of the fallacy lurking in the argument advan-

ced by its very ingenious inventor. On this occasion, I shall

take the liberty of introducing an extract from a letter to me,

dated October 20. 1816, from an old friend and fellow-student,

who now stands decidedly at the head of our mathematicians.

** With regard to Legendre*s demonstration, I am of opi-

nion, that there is involved in the mise en equation^ (reduced

to an equation,) a principle which is equivalent to Euclid's

12th axiom, (If a straight line meets two straight lines, so as

to make the two interior angles on the same side of it taken

together less than two right angles, these straight lines, being

continually produced, will at length meet on that side on which

are the angles which are less than two right angles.) Using

the notation of your book, his assumption is, that C =
(p : (A, B, c) : Now, this means that we shall get the angle C,

by combining the angles A and B with the line c, in a certain

way ; and it is implied, that this is true, whatever value the line

c may have ; or, in other Words, it is true for all values of c.

Suppose then an individual triangle, of which c is the base,
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and A, B, the angles at Its extremities ; conceive an indefinite

number of lines, of any lengths, c', c", d", &c. and at the ends of

each of these lines, angles to be made equal to A and B,—will

a triangle be thus formed upon each of the lines c', c", c'", &c*

or not ? If you say that you cannot allow the existence of such

triangles without proof, you agree with the Greek geometer,

but then you must deny the legitimacy of Legendre's equa-

tion, C z= (p: (A, B, c) ; for it supposes the possibility of such

triangles, since it is a determination of the third angle of each

of them from knowing the base and the other two angles. If

you grant the possibility of the triangles, then Legendre's

equation will be established ; but you also admit Euclid's 12th

axiom : For you assume, that two lines drawn at the extremi-

ties of any third line, so as fo make with it two angles equal

to any two angleis of a triangle, do meet one another when pro-

duced. On examination you will find, that the only relation

generally true of two angles of a triangle is this, that they are

together less than two right angles. I cannot, therefore, ad-

mit, that Legendre's demonstration contributes in any degree

to remove the difficulty in geometry. The intrinsic evidence

of a principle, or proposition, is the same whether it be ex-

pressed in common language, or translated into the language

of functions. Grant to the geometer the same assumption

which is implied in the functional equation of the analyst, and

he will be no longer embarrassed with the theory of parallel

lines. Legendre endeavours to justify his equation, by sa)'-

ing that two triangles are identical when they have their bases

equal, and likewise the angles adjacent to their bases equal,

each to each. But this does not prove, that of all the infinite

number of triangles which can be formed upon a line greater

or less than the base of a given triangle, there is always one

that has the angles at its base equal to the angles at the base

of the given triangle. If this be thought a more self-evident

principle than those that geometers have employed, let it be

transferred to geometry, and that science will no longer have

need to borrow aid from the theory of functions."

To these acute and judicious remarks, I think it unneces-

sary to subjoin any farther observations ; but, in justice to the
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illustrious author of the argument drawn from the higher ana-

lysis, I must state, that he still remains persuaded of its legiti-

macj'. In- a very flattering letter, which he did me the honour

to write, bearing date, Paris, 5th February 1816, he thus ad-

verts to the subject in dispute. ** Ayant un tres grande idee

de la superiorite de vos lumieres, Monsieur, j'eprouve un re-

gret d'autant plus vif de voir que vous n'approuviez pas, ou

meme que vous regardiez comme illusoire la demonstration

que j*ai donnee dans mes notes du principe sur les trois angles

du triangle. J'ai cependant la conviction intime que cette

demonstration est parfaitement rigoureuse, et j'ose vous prier

d'y donner encore quelqu' attention, persuade que vous recon-

noitrez son exactitude. La loi de I'homogenite est une loi

generale, qui n'est jamais en defaut, et qui doit 6tre range6

parmi les principes elementaires les plus generaux et les plus

simples. L'angle est un quantite que je mesure toujours, par

son rapport avec I'angle droit, car I'angle droit est I'unite na-

turelle des angles : Dans cette notion tres simple, une angle

est toujours un nombre. 11 n'en est pas de meme des lignes :

une ligne ne peut entrer dans le calcul, dans une equation

quelconque, qu'avec une autre ligne que sera prise pour unite,

ou qui aura un rapport connu avec la ligne unite.

«* Ainsi Inequation C = (f>: (A, B, c) rapportee, pag. 403, ou

A, B, C, sont des angles, et par consequent des nombres, ne

sauroit subsister, a moins que c ne disparoisse. Car si c ne dis-

paroit pas, il faudra qu'une longueur absolue c soit determinee

par des nombres, sans que Punite de longueur soit connue, ce

> qu? est une absurdite. L'objection faite, pag. suiv, sur Tequa-

tion c = ^ : («, ^, C) se resout tres facilement. Rien n'em-

peche que C, qui est un nombre, (par rapport a Pangle droit

pris pour unite), ne soit une fonction de a, b, C, pourvu que

cette fonction soit de nulle dimension, c'est-a-dire, pourvu que

le fonction de a, b, C se reduise a une fonction de deux rapports,

tels que — , — . Et en effet, c'est ce qui a lieu d'apres I'equa-

1+ ~—S-
fion trigonometrique, cos C = ^ "\^—r—-^ = a

*

2 ae 2 _
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Ajouteral-je ti ces raisons, une idee qui m'est venue plu-

sieurs fois. Suppose que le meme triangle, dont
^^

yous vous occupez, soit mis sous les yeux d'un

etre intelligent, dont la stature et celle des objets

qui l*environnent soient cent fois plus grandes

que celle des objets environnans—mon raisonne-

ment sera toujours le meme, et ne perdra rien de

la force. Croiez-vous, cependant, qu'il fut possible que c restat

dans Inequation, C = <p : (A, B, c) ? Et si c restoit, les geans

dont je parle deduiroient-iis de cette equation la meme valeur

que vous ? II faudroit que cela fut, car Pobjet a les memes

dimensions dans les deux cas."

I am sorry that, on reconsidering the subject maturely, I

cannot assent to the force of this reasoning, however clearly and

neatly it is here developed. The whole stress of the argu-

ment, it may be perceived, lies in the distinction which M.
Legendre endeavours to establish between angles and lines,

—a distinction which I hold at bottom to be merely arbitrary.'

Angles and lines are both equally real quantities, though of

different kinds ; they are capable of being measured, and con-

sequently represented by numbers, by referring each of them

to some determinate measure or unit of its own denomination.

Angles are measured or expressed numerically by angles,

and lines by lines. It is true, that the mensuration of angles is

facilitated by a reference to the subdivision of the circuit or

entire revolution ; yet even this mode of denoting angular

magnitude is evidently only conventional. As standards for

measuring straight lines, nature has furnished the limbs of

the human body, and the extent of our globe itself. Such
units of mensuration are not indeed very definite or readily

attainable ; but they are not therefore the less real or pro-

minent. Nor is there any' essential difference in principle be-

tween the expressing of an angle by degrees, of which 360 or

400 are contained in a complete revolution, and the denoting

of a straight line on the French system, for instance, by the

number of metres it includes, each of which is the forty mil-

lionth part of the entire circumference of the earth. Angles
and lines hence present to the mind no radical or absolute
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discrimination, and therefore the argument grounded on such

a distinction must lose all its efficacy.

Admitting, however, what the slightest inspection readi-

ly confirms, that the third angle is merely derived from the

other two, M. Legendre demonstrates with great elegance,

the property that the three angles of a triangle are equal to

two right angles. Letting fall from the right angle a perpen-

dicular on the hypotenuse, he divides any right-angled tri-

angle into two subordinate triangles, which have each of them

two angles equal to those of the original triangle ; whence the

acute angles of that triangle are alternately equal to the angles

which compose the right angle. But every triangle may be

divided into two right-angled triangles, by letting fall a per-

pendicular from the vertex on the base, and consequently the

acute angles of both these triangles, and which form the angles

at the base, and the vertical angle of the primary triangle,

—

are together equal to two right angles.

This theorem may be proved somewhat more directly. In

the triangle ABC, let the angle CBA be greater than ACB,
and draw BD, and then DE, making the angles ABD and

BDE each equal to ACB. The

triangles ABC and ADB having ^J?
the common angle BAC and the ^^^ I \
angle ACB equal to ABD, their ^^ I ^^\
third angles ABC and ADB ^ ^ ^
must be equal. But the tri-

angles BCD and BDE have also a common angle CBD, and

equal angles DCB and BDE : whence the third angle BDC
is equal to BED, and therefore the supplementary angle ADB,
equal to ABC, is equal to DEC. Again, the triangles ABC
and DEC having two common or equal angles, their third

angles BAC and EDC are equal ; wherefore the three angles

ABC, BCA and BAC of the original triangle, are respective-

ly equal to BDA, BDE and EDC, and hence equal to two

right angles.—If the triangle ABC be equiangular, divide it

into two scalene triangles ABD and CBD, the angles of

which, or the angles of the original triangle, together with the
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adjoining angles ADB and BDC, must be equal to four right

angles, and consequently the angles of that triangle are equal

to two right angles.

But the proposition is easily derived from another view of

the subject. If we suppose a ruler turning

about the point A, to change its direction

AC into AB, then opening at B till it gains

the direction BC, and finally wearing about

the point C till it acquires the opposite po-

sition CA ; thus changing its direction with

respect to a remote object, by three successive openings all

to the same side, the ruler, being now reversed, must have

performed half a circuit ; that is, the three angles of a tri-

angle, which constitute those openings, are equal to two right

anij

The profound geometer already quoted, pursuing his re*

fined argument, has, from the consideration of homogene-

ous quantities, likewise attempted to deduce the proportiona*

lity of the sides of equiangular triangles. But in this ab-

struse research, assumptions are still disguised and mixed up

in the progress of induction. Such indeed must be the case

with every kind of reasoning on mathematical or physical ob-

jects, which proceeds a priori, without appealing, at least in

the first instance, to external observation. Of this kind are

some of those ingenious analytical investigations respecting

the laws of motion and the composition of forces. In fact,

no elementary physical truth can ever be discovered by any

process of calculation, which merely combines or embodies

the various assumptions that have been tacitly made into a ge-

neral result. The principle o'i sufficient reason, introduced by
Leibnitz, appears to be nothing but an artificial mode of dress-

ing out an hypothesis, which the celebrated Boscovich has well

exposed in his excellent notes to a didactic poem by Stay,

entitled Philosophia Recentior.
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14. Proposition twenty-second. The subject of parallel

lines has exercised the ingenuity of modern geometers ; for

Euclid had only endeavoured to evade the difficulty, by styl-

ing the fundamental proposition an axiom. The investigation

now given seems to be one of the best adapted to the natural

progress of discovery. It is almost ridiculous to scruple

about admitting the idea of motion, which I have employed

for the sake of clearness. But even that futile objection

might be obviated, by considering merely the successive

positions of the straight line extending through the given

point. .

15. Proposition thirtieth. That invaluable instrument,

Hadley's quadrant, is founded on the

second corollary, annexed as an ob-

viousconsequenceoftheproposition.

A ray of light SA, from the sun, imr

pinging against the mirror at A, is

reflected at an angle equal to its in*

cidence ; and now striking the half-

silvered glass at C, it is again re-

flected to E, where the eye like-

wise receives, through the transpa-

rent part of that glass, a direct ray

from the boundary of the horizon.

Hence the triangle AEC has its ex-

terior angle ECD and one of its in-

terior angles CAE, respectively double of the exterior angle

BCD and the interior angle CAB, of the triangle ABC

;

wherefore the remaining interior angle AEC, or SEZ, is

double of ABC ; that is, the altitude of the sun above the

horizon is double of the inclination of the two mirrors. But

the glass at C remaining fixed, the mirror at A is attached

to a moveable index, which marks their inclination.

The same instrument, in its most improved state, and fitted

with a telescope, forms the sextant, which, being admirably

calculated for measuring angles in general, has rendered the

most important services to geography and navigation.
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16. Proposition thirty-fourth. This problem is generally

constructed somewhat differently.

In AB take any point C, and on BC (I. 1. cor.) describe

an equilateral triangle CDB, on

its side DB, another DEB; and

on DE the side of this, a third

equilateral triangle DFE ;
join the

last vertex F with the point B ;

and BF is the perpendicular re-

quired.

Because the triangles CDB and

DBE are equilateral, the angles CBD and DBE are each of

them equal to two-third parts of a right angle (I. 30. cor. 1.)

;

and the triangles BDF, BEF, having the sides BD, DF equal

to BE, EF, and the side BF common, are (I. 2.) equal, and

consequently the angles FBD and FBE are equal, and each

of them the half of DBE. The angle FBD, being therefore

one-third part of a right angle, and the angle DBA two-third

parts, the whole angle FBC must be an entire right angle, ox*

the straight line BF is perpendicular to AB.

BOOK II.

1. A simple proposition might be here introduced.

A straight line bisecting ttvo sides of a triangle^ is parallel t9

the base.

The straight line DE which joins the middle points of the

sides AB and BC, is parallel to the base AC of the triangle

ABC.
For join: AE and CD. Because the triangles ADC, BCD

stand on equal bases AD, DB, and have the same vertex or

altitude, they are (II. 2.) equivalent, and therefore ADC is
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half of the whole triangle ABC. For the

same reason, since CE is equal to EB, the

triangle AEG is equivalent to AEB, and

is consequently half of the whole triangle

ABC Whence the triangles ADC and

AEC are etjuivalent ; and they stand on a. G C

the same base AC, and have therefore the same altitude

(11. 3.), or DE is parallel to AC.

Cor. Hence the triangle DBE cut off by the line DE, is

the fourth part of the original triangle. For bisect AC in G,

and join DG, which is therefore parallel to BC. The triangle

ADG is equivalent to GDC (II. 2.), and GDC, being the half

of the rhomboid CE, is equivalent to DEC, which again is

(II. 2.) equivalent to DEB. The triangle ABC is thus divided

into four equivalent triangles, of which DBE is one. Hence

also the rhomboid GDEC is half of the original triangle.

2. From the preceding proposition the following theoreni is

easily derived:

Straight lines Joining the successive middle points ofthe sides

ofa quadrilateralJigure,Jbrm a rhomboid.

If the sides of the quadrilateral figure ABCD be bisected,

and the points of section joined in their order ; EFGH is a

rhomboid.

For draw AC, BD. And because FG bisects AB, BC, it

is parallel to AC ; and for the same

reason, EH, as it bisects AD and

DC, is parallel to AC. Wherefore

FG is parallel to EH (I. 28.). In

like manner, it is proved that EF is

parallel to HG ; and consequently

the figure EFGH is a rhomboid or

parallelogram.

It is likewise evident, that the inscribed rhomboid is half of

the quadrilateral figure ; for IG is half of the triangle ABC
^nd IH is half of the triangle ADC.
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3. Proposition fourth. This problem is of great use in prac-

tical geometry. The plan, for instance, of any grounds, how-

ever irregular, is divided into a number of triangles, which

are successively reduced to a simple triangle, and this again

is converted (by II. 6.) into a rectangle. Instead of comput-

ing, therefore, each component triangle, it may be sufficient

to calculate the area of the final triangle or rectangle.

4. Proposition ninth. On this proposition is founded the

method of offsets, which enters so largely into the practice

of land-surveying. In measuring a field of a very irregular

shape, the principal points only are connected by straight

lines forming sides of the component triangles, and the dis-

tance of each remarkable flexure of the extreme boundary is

taken from these rectilineal traces. The exterior border of

the polygon is therefore considered as a collection of trape-

zoids, which are measured by multiplying the mean of each

pair of offsets or perpendiculars into their base or intermediate

distance.

5. Proposition tenth. This beautiful property is easily de-

rived from Propositions fifteenth and sixteenth of Book II.

1 . Let ABC be a triangle right-angled at B ; produce the base

AB till AD be equal to the perpendicular BC ; on the com-

pound line BD describe the square BDEF, and make DG and

EH equal to AB, and join AG, GH and HC.
The triangles ABC and GDA, having the sides AB, BC evi-

dently equal to DG, AD, and the right angle at B equal to

that at D, are (I. 3.) equal. In

the same manner, the triangles HEG
and CHF are proved to be equal to

ABC. But (I. 30.) the exterior an-

gle GAB is equal to the interior

angles ADG and AGD, from which

take away the equal angles CAB
and AGD, and there remains GAC
equal to ADG, and consequently a

right angle. Wherefore the quadrilateral figure AGHC, havln*
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likewise all its sides equal, is a square. But by Prop. 15. Book
II. the square BDEF, described on the sum of the sides AB and

BC, is equivalent to the squares of those sides, together with

twice their rectangle. Now (cor. 5. Book U.) the rectangle

under AB and BC is double of the triangle ABC ; and conse-

quently the square BDEF is equivalent to the squares of AB
and BC, and the four triangles CBA, ADG, GEH and HFC ;

but the same square is equivalent to the interior square

AGHC, with those four triangles ; "wherefore the squares of

the base AB and of the perpendicular BC, are equivalent to

the single square described on the hypotenuse AC.
2. From the base AB, cut off a part AD equal to the per-

pendicular BC, and on the remaining portion BD construct

the square BDEF ; produce DE and EF, till EG and FH be

equal to AD, and join AG, GH, and HC The triangles

CBA, ADG, GEH, and HFC are proved to be equal as before.

Again, the angle CAG being equal to the angles CAB and

DAG or BCA, the acute angles of the right-angled triangle

ABC, is consequently a right angle.'

Wherefore the quadrilateral figure

ACHG is a square. But, by Prop.

16. Book 11. the square BDEF, de-

scribed on BD the difference be-

tween the base AB and BC the

perpendicular is equivalent, to the

squares of AB and BC, diminished

by twice their rectangle, or by the

four triangles CBA, ADG, GEH, and HFC. But the square

BDEF is evidently equivalent to the square ACHG described

on the hypotenuse AC, diminished by those triangles, and

therefore equivalent to the squares of the base AB and of the

perpendicular BC.

This famous proposition appears to have been brought from

the East by Pythagoras. Both the demonstrations now given

are common in Persia and India. The second mode, however,

1
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would seem to be the favourite, since the figure used is in

Hindustan styled the bridal chair or conchy in allusion, no doubt,

to its prolific virtues. This figure, and the preceding one, are

well adapted for exhibiting the result, by the dissection and

transposition of their several parts. The very meagre treatises

of geometry written in the ancient Sanscrit language, and the

versions of Euclid's Elements by Persian or Arabian commen-

tators, display some variety of such dissections. The method

generally adopted is ascribed to the Persian astronomer Nassir

Eddin, who flourished in the thirteenth century of our aera,

under the munificent patronage of the conqueror Zingis Khan.

It may gratify the young student in geometry to see the

mode of performing this dissection. Having drawn AL pa-

rallel to BF, and IC and GO pa-

rallel to DB, place the triangle CKA y^ X. II l^"

on CFH, invert the triangle GOA
on ADG, place the triangle GOM
on AKN, and transfer the small tri-

angle GIN to HLM. In this way, ,7._>^! j-— '4q

the square AGHC is transformed

into the two squares CKLF and

ADIK. By reversing the process,

the squares of the side^ of the right-

angled triangle may be compounded into the single square of

the hypotenuse.

X o \\:jsi

\
K /

6. It was a favourite speculation with the Greek geome-

ters, to express numerically the sides of a right-angled tri-

angle. The rules which they delivered for that purpose are

equally simple and ingenious. For the sake of conciseness,

it will be convenient, however, to adopt the language of sym-

bols. Let 71 denote any odd number ; then,

according to Pythagoras, w,
n*—

I

and^I+i,
2 '

or

according to Plato, 2 w, w*— 1 and w*-|-l, will repre-

sent the perpendicular, the base, and hypotenuse, of a right-

angled triangle.—Thus, n being supposed equal to 3, the num-
bers thence resulting are 3, 4, and 5, or 6, 8, and 10. These
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analytical expressions are fundamentally the same, and are

easily derived from Proposition 17. Book II. : For

2^^^X2= (2«)^—Or without having recourse to algebraical

notation, since the square of the perpendicular is equivalent

to the difference between the squares of the hypotenuse and

of the base, it must, by Prop. 17. Book II. be equivalent to

the rectangle under the sum and difference of the hypotenuse

and base. Wherefore, if the perpendicular be an odd num-
ber, its square may be divided into two contiguous factors,

the one even and the other odd. Thus, assuming the perpen-

dicular equal to 3, its square 9 gives, by division, 4 and 5, for

the base and hypotenuse ; if the perpendicular be 5, the square

25 is parted into 12 and 13, for the corresponding base and

hypotenuse ; or if this perpendicular be denoted by 7, whose

square is 49, the base and perpendicular must, by partition, be

24 and 25. Again, if the perpendicular be supposed to be an

even number, its square may be divided into two adjacent

factors, whose sum is the half and their difference 2. Thus, the

perpendicular being 4, the half of its square, or 8, is split into

-3 and 5, for the base and hypotenuse ; if 6 be the perpendicu-

lar, the half of its square, or 18, is divided into 8 and 10, for

the base and hypotenuse ; and were 8 to represent the perpen-

dicular, the half of its square, or 32, gives \5 and 17, for the

corresponding base and perpendicular.

7. We may here introduce, from the Mathematical Collec-

tions of Pappus, an elegant extension of the famous Tenth

Proposition.

In any triangle, rhomboids described on the ttvo sides, are to-

gether equivalent to a rhomboid described on the base, and limit-

ed by these and by parallels to the line which joins the vertex tvith

their point of concourse.

Let ADEB and BGFC be rhomboids described on the two

sides AB and BC of the triangle ABC ; produce the summits

DE and FG to meet in H, join this point with the vertex B,

to BH draw the parallels AK, CL, and join KL. It is obvi-

ous that AK and CL, being equal and parallel to BH, are
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likewise equal and parallel to each other, and that the figure

AKLC is a parallelogram or rhomboid—This rhomboid is

equivalent to the two rhomboids BD and BF.

For produce HB to meet the base AC in I. And because

the rhomboids KI and AH
stand on the same base AK
and between the same

parallels, they are equiva-

lent (II. I. cor.) ; but

the rhomboids AH and

BD, standing on the same

base AB and between the

same parallels, are also equivalent. Whence KI is equiva-

lent to BD. And in the same manner, it may be proved that

LI is equivalent to BF. Consequently the whole rhomboid

K!C is equivalent to the two rhomboids BD and BF,

If the triangle ABC be right-angled at B, this theorem will

pass into a case of the twenty-sixth of Book VI. ; the rhom-

boid, described on the hypotenuse, being equivalent to the

similar rhomboids described on the two sides. When these

rhomboids become squares, the proposition becomes the same

as the tenth ; the only difference in the construction being,

that a square AKOC (p. 52.) is constructed above the hypote-

nuse AC, instead of the square ADEC constructed below it.

8. Ffoto the proposition in the last article, an important

theorem may be derived, which deserves a place in an ele*

mentary work :

In any triangle^ the square described on the base is equivalent

to the rectangles contained by the two sides and their segments in-

terceptedjrom the base by perpendiculars letJail upon themfrom
its opposite extremities.

Let the perpendiculars AP, CN be let fall from the points

A, C upon the opposite sides BC and AB of the triangle

ABC ; the square of AC is equivalent to the rectangles con-

tained by AB, AN, and by BC, CP.

For complete the rhomboids ADHB and CFHB, and let

fall the perpendiculars BR and BS upon DH and FH.
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It is manifest, that the rhomboids AH and CH are equiva-

lent to the square of AC. But the rhomboid AH is equivalent

to the rectangle contained byAB and BIl

II. 1 . cor.). Comparing the trianglesBH

R

and ACN; the angle BRH, being a

right angle, is equal to ANC ; and the

two acute angles BHR and RBH, being

together equal to a right angle, are e-

qual to DAN and NAC ; but DAB is

equal to DHB (1. 26.), whence the angle

RBH is equal to NAC. These triangles

BHR and ACN, having thus two angles

respectively equal, and the correspond-

ing side BH in the one equal to AD or

AC in the other, are therefore equal

(I. 20.), and consequently the side BR
is equal to AN. The rectangle AB and

BR, which is equivalent to the rhom-

boid AH, is hence equivalent to the

rectangle contained by AB and AN (IL

1. cor.).

In the same manner, it may be demonstrated, by compa-

ring the triangles BHS and PAC, that the rectangle under BC
and BS, which is equivalent to the rhomboid CH, is equivalent

to the rectangle contained by BC and CP. Wherefore the

two rectangles of AB, AN and BC, CP are together equiva-

lent to the square described on AC.
If the triangle ABC be right-angled at the vertex B, the

perpendiculars CN and AP will evidently meet at the vertex,

and consequently the rectangles AB, AN and BC, CP will

become the squares of AB and BC. And hence the beauti-

ful Proposition II. 10- is derived, being only a remarkable

case of a much more general property.

9. Proposition tenth. It may be proper to notice likewise

an extension of this beautiful proposition, which is easily de-

monstrated, after a similar mode, from the decomposition of

tjie figure.
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Equilateral triangles described on the sides of a right-angled

triangley are together equivalent to an equilateral triangle de-

scribed on the hypotenuse.

Let ABC be a right-angled triangle, around which are con-

structed the equilateral triangles ADB, BEC and CFA ; the

triangles ADB and BEC are equivalent to CFA.

For let fall the perpendiculars DG,

BH and FI, and join CD, BF, CG, BI

and HF. It is evident (I. 21.) that

the^ perpendiculars DG and FI bi-

sect the bases AB and AC, and di-

vide the triangles ADB and CFA
into two equal triangles. But the

angle DAB is equal to CAF, being

angles of an equilateral triangle :

add BAC to each, and the whole

angle DAC is equal to BAF. But

the containing sides DA and AC are respectively equal to

BA and AF, and consequently (I. 3.) the triangle ADC is

equal td ABF. Now the triangle ADC is composed of the

three triangles ACG, ADG, and DCG, and the triangle ABF
is composed of ABI, AFI, and FBI ; but, since AB and AC
are bisected in G and H, the triangles ACG and ABI are

(II. 2.) halves of the original triangle ABC, and consequently

equivalent to each other. Wherefore the remaining triangles

ADG and DCG are together equivalent to AFI and FBI.

But DG and CB being both perpendicular to AB, are (1. 22.)

parallel ; and, for the same reason, BH is parallel to FI.

Whence (II. 1.) the triangle DCG is equivalent to DBG, and

the triangle FBI equivalent to FHI; and therefore the tri-

angles ADG and DBG, or the whole triangle ADB, must be

equivalent to AFI and FHI, or the whole triangle AFH.—in

like manner, it may be shown that the triangle BEC is equi-

valent to the triangle CFH ; and consequently the equilateral

triangles ADB and BEC are equivalent to AFH and CFH,
which make up the whole triangle AFC.

This demonstration is the second of those given by the cele*

brated Italian geometer Torricelli, the favourite disciple of

Galileo, and inventor of the barometer.
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10. A useful proposition may be introduced here :

The square described on a straight line, is equivalent to the

squares of the segments into tvhich it is divided, and tmce the

rectangles contained hy each pair ofthese segments.

The square of AB is equivalent to the squares of AC, of

CD and of DB, with twice the rectangles of AC, CD, of AC,
DB, andofCD, DB.
For make AE and EF equal to AC and CD draw EM, FL

parallel to AB, and CH, Dl parallel to AG.
It is manifest that AO is the square

of AC, OQ the square of CD, and QK Q_II_XJf
the square of DB. Nor is it less obvi-

ous that the two rectangles CN and

EP are contained by AC, CD, that the

two rectangles NL and PI are contain-

ed by CD, DB, and that the two rect-

angles DM and FH are contained by

AC, DB. But those squares and those double rectangles

qomplete the whole square of AB. Wherefore the truth of

the Proposition is established. #

Co)'. Hence if a straight line be divided into three portions,

the squares of the double segments AD, BC, together with

twice the rectangle under the extreme segments AC, BD,

are equivalent to the squares of the whole line AB and of the

intermediate segment CD. For the squares FD, HM, toge-

ther with the equal rectangles GP, NB, evidently fill up the

whole square AB, with the repetition of the internal square

OQ ; that is, the squares of AD and BC, with twice the rect-

angle AC, DB, are equivalent to the squares of AB and CD.

11. Since rectangles correspond to numerical products, the

properties of the sections of lines ar'e easily derived from sym-

bolical arithmetic or algebra

:

1. In Prop. 14. let AC be denoted by a, and the segments

©f AB by hf c and d; then a{b-{-c-\-'d')z=ab-{-ac-\'ad.

2. In Prop. 15. let the two lines be denoted by a and b j

then ia+ byz::a'+ b^+2ab.
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a. In Prop. 16. let the two lines be denoted by a and b ;

then («—6)*=«^+^^—2«6.

4. In Prop. 17. let the two lines be denoted by a and b ;

then (a+ Z»)(a—6)=a^—^^

5. In the Proposition contained in the last paragraph of the

notes on this Book, let the segments of the compound line be

denoted by a, b and c ; then

{a+ b+ cy=a^-{-b^+c'^+ ^ab+ ^ac+ 2bc.

6. In Prop. 18. let the two lines be denoted by a and ^/

/a4-b\^ /a

—

b\^,
then a^-h^^= i(«+^)*+i(«--*)'=2(^-2~J '^\~2~

)

7. In Prop. 19. let the whole line be denominated by a, and

its greater segment byx; then x^z=aia—x), andx^+ax:=a\

whence xzzdtz^-^ -^ ==±ifl(V|

—

\). Hence, if unit

represent the whole line, the greater segment is .618033984'28,

&c. and the smaller segment .38196601572, &c.

From Cor. 1. an extremely neat approximation is likewise

obtained. Assuming the segments of the divided line as at

first equal, and each denoted by 1, the following successive

numbers will result from a continued summation ;

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, &c.

which are thus composed,

l+,2=z3, 2+3= 5, 3+5 = 8, 5+ 8= 13, 8+ 13= 21, &c.

These numbers form, therefore, a simple recurring series,

a kind of approximation which was first noticed in this actual

case early in the seventeenth century, by Gerard, an ingeni-

ous Flemish mathematician.

Hence, if the original line contained 144 equal parts, its

greater segment would include 89, and its smaller segment 55

of these parts, very nearly ; but 55 X 144 = 7920, being only

one less than 7921, the square of 89.

12. Proposition nineteenth, cor. 2. This problem may, how-

ever, be constructed somewhat differently, without employing

the collateral properties.
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For bisect AB in C (I. 7.)> draw (I. 5. cor.) the perpen-

dicular BD equal to BC, join AD and

continue it until DE be equal to DB
or BC, and on AB produced take AF
equal to AE : The line AF is the re-

quired extension of AB. For make DG
equal to DB or BC ; and because

(11. 17. cor. 2.) the rectangle EA, AG, together with the square

of DG or DB, is equivalent to the square of DA, or to the

squares of AB and DB ; the rectangle EA, AG, or FA, FB,

is equivalent to the square of AB.

13. Proposition twenty-third. This proposition is of great

use in practical geometry, since it enables us to divide a tri-

angle, of which all the sides are given, into two right-angled

triangles, by determining the position, and consequently the

length, of the perpendicular.

Thus, suppose the base of the triangle to be 15, and the

two sides 13 and 14: Then 15* + 13' — 14' = 225 +
169— 196= 198, which shows that the perpendicular falls

198
within the triangle ; and —^ =: 6.6) the segment adjacent to

the short side, whence the perpendicular rr/y^ ((13/

—

{6.6j^) =
^(169—43.56)= 11.2. The area is therefore 15 X 5.6= 84.

Again, let the base be 9, and the two sides 17 and 10:

Then 17*— 9'— 10' = 289— 81— 100 = 108, indicating that

108
the perpendicular falls without the base. Wherefore, =

18

6, the external segment, and a/( 10»—-6') = ^(100—36)=
9x8

^^64 = 8, the perpendicular; which gives —Q— = 36, for

the area of the triangle.

Lastly, if the base were 10, and the sides 21 and 17 : Then

2P— 17'— 10' =441 --289.— 100= 52, which shows that

the perpendicular falls somewhat beyond the base. Whence

— = 2.6, the external segment; and v^ (
17' — 2.6') =
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V^(289— 6.76) = v^282.24^=: 16.8, which gives 84 for the

area, as in the first example.

The same results are obtained by applying the Twenty-First

Proposition. Thus, in the first example, the distance of the

perpendicular from the middle of the base is —= .9,

and therefore the segments of the base are 8.4, and 6.6» In

the second example, the distance of the perpendicular from

the middle of the base is = 10.5, and consequently

the segments of the base are 15 and 6. In the last example,

the distance of the perpendicular fronf the middle part of the

21*—17*
base is -— = 76, and the segments of that base are hence

12.6 and 2.6.—The length of the perpendicular and the area

of the triangle are, in each case, therefore, easily deduced

from these data.

M. From the corollary to the last proposition is derived a

very simple construction of the problem, " to find a square

equivalent to a given rectangle."

Let ABCD be the given rectangle,

of which the side AD is greater than

AB. In AB or its production, take

AE equal to the half of AD and place

it from E to F ; then AF being joined,

is the side of the equivalent square.

For (II. 23. cor. El.) since the sides '^-^^
1 /

AE and EF of the triangle AEF are
'
'^4''*

equal, the square of AF is equivalent '^

to the rectangle under twice AE and AB, that is, from the
construction, the rectangle under AD and AB.

The same construction might likewise be deduced from
the demonstration of the celebrated property of the right-
angled triangle. For, in the figure of page 52, suppose BO
were drawn to the hypotenuse AC, making an angle ABO
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equal to BAO or BAG ; since the two acute angles are to«.

gether equal to a right angle, the angle BCA is equal to the

remaining portion CBO of the right angle at B, and conse-

quently the triangles AOB and COB are isosceles, and the

sides OA, OB and OC all equal. Wherefore AB, the side of

a square equivalent to the rectangle ADMN or that under

AK and AN, is determined by making AO equal to the half of

AK or AC and inserting it from O to B.—The inspection of

the same figure also points put the mode of dissecting the

rectangle, and thence compounding the square ; for a perpen-

dicular let fall from K on AB is evidently equal to GB or AB.
Hence, on AF, in the original construction, let fall the per-

pendicular DG, transpose the triangle FBA in the situation

DHI, and slide the quadrilateral portion into the place of

KAHI ; the rectangle ABCD is now transformed into the

square KGDI.—A slight modification will be required when

AB is less than the half of AD.
In this construction of the problem, the application of the

circle which (III. 37. EL) is indispensably required, is only

not brought into view—When the side AD is double of AB,
the point G coincides with F, and the rectangle is resolved

into three triangles, which combine to form a square.

15. To this Book some neat propositions may be subjoined.

PROP. I. THEOR.

If,from the hypotenuse of a right-angled triangle, portions be

cut offequal to the adjacent sides ; the square of the middle seg-

7nent thusformed, is equivalent to twice the rectangle contairied

hy the extreme segments*

Let ABC be a triangle which is right-angled at B ; from

the hypotenuse AC, cut off AE equal to AB, and CD equal
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to CB : Twice the rectangle under AD and CE is equivalent

to the square of DE.
For the straight line AC being divided

into three portions, the squares of AE and

CD, together with twice the rectangle AD,

CE are equivalent to the squares of AC j^ jO E~C
and DE (art. 10.). But the squares of

AB and BC, or those of AE and CD, are equivalent to the

square of AC (II. 10.). There consequently remains twice

the rectangle AD, CE equivalent to the square of DE.
By an inverse process of reasoning it will appear, that if

twice the rectangle AD, CE be equal to the square of DE,
the straight line AC, so composed, is the hypotenuse of a

right-angled triangle, of which AB and BC are the sides.

This proposition will furnish another convenient method of

discovering the numbers which represent the sides of a right-

angled triangle : For since DE^=:2AD.CE, it is evident that

iDE*=:AD.CE ; and consequently, expressing DE by an even

whole number, and resolving ^DE* into the factors AD and

CE, AD-f-DE and CE+DE will represent the two sides, and

AD+ CE-fDE the hypotenuse. Thus, if 2 be taken, the fac-

tors of half its square are 1 and 2, which produce the numbers

3, 4, and 5. Again, if 4 be assumed, the factors are 2 and 4,

or 1 and 8 ; whence result these numbers, 6, 8, and 10, or 5,

12, and 13. In this way, a very great variety of numbers can

be found, to express the sides of a right-angled triangle.

PROP. II. THEOR.

The squares of lines draiunjrom any point to the opposite cor-

ners ofa rectangle are together equivalent,

Iffromapoint E, either within or without the rectangle

ABCD, straight lines be drawn to the four corners, the

squares of AE, EC are together equivalent to the squares of

BE, ED,
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For join E with F, the intersection of the diagonals AC,
BD. Because it follows readily from Prop. 27- Book I. that these

diagonals are equal, and bisect each

other, the lines AF, BF, CF, and

DF are all equal. Wherefore the

squares of AE, EC are equivalent

to twice the square of AF, and

twice the square of EF (II. 22.);
"

and the squares of BE, ED are like-

wise equivalent to twice the square

of BF and twice the same square

of EF ; consequently, the squares of

AF and BF being equal, the squares

of AE, EC, are together equivalent

to the squares of BE, ED.

PROP. HI. THEOR.

Ifstraight lines be draxionjrom the angularpoints ofa triangle

to Used thb opposite sides, thrice the squares of these sides are

together equivalent to Jour times the squares of the bisecting

lines.

Let the sides of the triangle ABC be bisected in D, E, and

F, and straight lines drawn from these points to the opposite

vertices ; thrice the squares of the sides AB, BC, and AC
are together equivalent to four times the squares of BD, CE
and AF.

For, by Proposition II. 22. the squares of AB, BC are equi-

valent to twice the square of BD and

twice the square of AD, that is, half the

square of AC ; the squares of BC, AC
are equivalent to twice the squares of

CE and half the square of AB ; and the

squares of AC, AB are equivalent to

twice the square of AF and half the

square of BC. Whence the squares of the sides of the tri-
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angle, repeated twice, are equivalent to twice the squares of

BD, CE, and AF, with half the squares of the sides of the tri-

angle. Consequently four times the squares of AB, BC, and

AC are equivalent to four times the squares of BD, CE, and

AF, with once the squares of AB, BC, and AC ; wlierefore

thrice the squares of the sides AB, BC, and AC are together

equivalent to four times the squares of the bisecting lines BD,

CE, and AF.

PROP. IV. THEOR.

The squares of the sides of a quadrilateral figure are together

equivalent to the squares of its diagonals^ together tmthJour times

the square ofthe straight linejoining their middle points.

Let ABCD be a quadrilateral figure, in which the straight

lines AC, BD, drawn to the opposite corners, are bisected at

the points E, F ; the squares of AB, BC, CD, and DE, are

together equivalent to the squares of AC, BD, togjBther with

four times the square of EF.

For join EF. And because AC is bisected in F, the squares

of AB and BC are equivalent to twice the square of AF and

twice the square of BF'(II. 22.) ; .^

and, for the same reason, the squares

of CD and DA are equivalent to

twice the square of AF and twice

the square of DF. Consequently

the squares of all the sides AB, BC,
CD, and DA, are equivalent to four

times the square of AF—or the

square of AC—with twice the squares of BF and of DF. But

twice these squares of BF and DF is equivalent (II. 22.) to

four times the square of BE, or the square of BD, with four

times the square of EF; whence the squares of all the sides

of the quadrilateral figure are together equivalent to the

squares of its diagonals AC, BD, with four times the square

of the straight line EF which joins their points of equal sec-

tion.
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This general theorem seems to have been first given by
the illustrious Leonard Euler in the Petersburg Memoirs. It

evidently comprehends the twenty-fourth Proposition of

this Book ; for when the quadrilateral figure becomes a

rhomboid, the diagonals bisect each other, and the middle

points E and F coincide ; whence the squares of all the sides

are equivalent simply to the squares of those diagonals.—If

this rhomboid again becomes a rectangle, it will have equal

diagonals, and consequently, as in the 10th Proposition of the

Second Book, the squares of the sides of a right-angled tri-

angle are equivalent to the square of the hypotenuse.

BOOK III.

1. Proposition fifteenth. Hence angles are sometimes mea-

sured by a circular instrument, from a point in the circum-

ference, as well as from the centre.

2. Proposition eighteenth. On this proposition depends the

construction of amphitheatres ; for the visual magnitude of an

object is measured by the angle which it subtends at the eye,

and consequently the whole extent of the stage, the interme-

diate objects being purposely darkened or obscured, will be

seen with equal advantage by every spectator seated in the

same arc of a circle.

3. Proposition twenty-second. To erect a perpendicular, any

point D is taken, as in Prop. S^. Book T,,

and from it a circle is described passing

through C and B ; the diameter CDF, by d.

its intersection at the point B, determines

the position of the perpendicular BF. To r—
let Jail a perpendicular, draw to AB any

straight line FC, which bisect in D, and from this poiirt as a
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centre describe a circle through the points C, B and F ; FJB

is the perpendicular required.

4-. To this Book may be subjoined some useful propositions.

PROP. I. THE OR.

The inclination of tiuo straight lines is equal to the angle tcT'

minated at the circumference by the sum or difference of the arcs

which they intercept^ according as their vertex is xoithin or xvith'

out the circle.

If the two straight lines AB and CD intersect each other

in the point E within a circle ; the angle AED which they

form, is equal to an angle at the circumference and standing

on the sum of the intercepted arcs AD and BC.

For draw the chord BF parallel to CD. Because ED and

BF are parallel, the angle AED (I.' 22.)

is equal to the interior angle ABF,
which stands on the arc AF ; but since

the chords BF and CD are parallel, the

arc BC is equal to DF (III. 1 8.) and

consequently the arc AF, which termi-

nates at the circumference an angle

equal to AED, is the sum of the two

intercepted arcs AD and BC.

Again, if the straight lines AB and CD meet at E, without

the circle, their inclination AED is e-

qual to an angle at the circumference,

having for its base the excess of the

arc AD above BC^

For BF being drawn parallel to CD,
the arc BC is equal to FD, and conse-

quently the arc AF is the excess of

AD above BC ; but the angle ABF
which stands on AF, is equal to the

interior angle AED.
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Cor, Hence if two chords intersect each other at right

angles within a circle, the opposite intercepted arcs are equal

to the semicircumference.

This proposition is of some utility in practice, for an angle

may be hence measured by help of a circular protractor, with-

out the trouble of applying the centre to its vertex or the

point of concourse of the sides. The same principle is likewise

applicable to the construction of some optical instruments,

adapted to measure lateral angles by the intersection of micro-

meter wires.

PROP. II. THEOR-

If a circle he described on the radius of another circle, any

straight line dratvn from the point where they meet to the outer

circumference, is bisected hy the interior one,
^

Let AEC be a circle described on the radius AC of the

circle ADB, and AD a straight line

drawn from A to terminate in the ex-

terior circumference ; the part AE in

the smaller circle is equal to the part

ED intercepted between the two cir-

cumferences.

For join CE. And because AEC is

a semicircle, the angle contained in it

is a right angle (III. 19.) ; consequently the straight line CE,

drawn from the centre C, is perpendicular to the chord AD,

and therefore (III. 4.) bisects it.

PROP. III. THEOR.

If, on each side of any point in the circumference of a circle^

equal arcs be repeated; the chords which join the opposite points

of section will be together equal to the last chord extended till it

meets a straight line drawn through the middle point a?id either

extremity qfthefrst chord.
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Let BAG be the circumference of a circle, in which the

arcs AB, BC, CD on the one side of a point A, and the cor-

responding arcs AE, EF, FG on the other side, are all assum-

ed equal ; the chords BE, CF, and DG, are together equal to

the line GH, formed by extending GD till it meets the pro-

duction of AB.
For join FD and CE, and produce this to meet GH in the

point I.

Because the arcs BC
and CD are equal to

EF and FG, the chords

BE, CF, and DG are

parallel ; but, for the

same reason, since the

arcs BC and CD are e-

qual to AE and EF, the chords BA, CE and DF are likewise

parallel. Hence the figures HBEI and ICFD are rhomboids,

and therefore the extended chord GH, being composed of the

segments HI, ID, and DG, is equal to the sum of their op-

posite chords BE, CF and DG.—It is obvious that the same

train of reasoning may be pursued to any number of equal

arcs.

PROP. IV. THEOR.

Ifjrom any 'point in the diameter of a circle or its extension,

straight lines be drawn to the ends of a parallel chord / the.

squares of these lines are together equivalent to thi squares ofthe

segments into xuhich the diameter is divided^

Let BEFD be a circle, and from the point A in its extend-

ed diameter the straight lines AE and AF be drawn to the

ends of the parallel chord EF . the squares of AE and AF
are together equivalent to the squares of AB and AD.

For, from the centre C, let fall the perpendicular CG upon
EF (I. 6.), and join AG and CE.

Y
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Because CG cuts the chord EF
at right angles, GE is equal to GF
(ill. 4.) ; wherefore the squares of

AE and AF are equivalent to twice

the squares of AG and GE (11. 22.)

But ACG being a right-angled tri-

angle, the square of AG is equiva-

lent to the squares of AC and CG
(II. 10.), or twice the square of AG
is equivalent to twice the squares of

AC and CG. Wherefore the squares

of AE and AF are equivalent to

twice the three squares of AC, CG,
and GE. Of these, the two squares

of CG and GE are equivalent to the square of CE or CB, for

the triangle CGE is right-angled. Consequently the squares

of AE and AF are equivalent to twice the squares of AC and
CB. But the straight line BD being cut equally at C and un-

equally at A, the squares of the unequal segments AB and
AD are together equivalent to twice the squares of AC and
CB (II. 18. cor.); whence the squares of AE and AF are toge-

ther equivalent to the squares of AB and AD.

u\-I5

PROP. V. THEOR.

The rectangle under the segments of a chord is greater or less

than the rectangle under the segments into tvhich a perpendicular

from the point &fsection divides a diameter, by the square ofthat

perpendicular—according as it lies without or xiithin the circle.

Let the perpendicular CF be let fall from a point C in the

chord ACB upon a diameter DE ; the rectangle BC, CA, is

greater or less than the rectangle EF, FD, by the square of

the perpendicular CF, according as this lies without or with-

in the circle.

First, let the perpendicular CF lie without the circle, and

join CE and DG.
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The square of the hypotenuse

CE is equivalent to the squared

of FE and CF (II. 10.). But

the square of CE is composed of

the rectangles CE, EG, and CE,

CG (II. 14.) ; and the square of

FE is composed of the rectangles

FE, ED, and FE, FD : Where-

fore the rectangles CE, EG and

CE, CG are equivalent to the rectangles FE, ED and FE,

FD, together with the square of CF. And since EGD, stand-

ing in a semicircle, is a right angle (III. 19.), its adjacent

angle CGD is also right, and the angle opposite to this at F
is right; consequently (III. 17. cor. 1.) a circle might be de-

scribed through the four points C, G, D, F. Whence (III. 26.)

the rectangle CE, EG is equivalent to FE, ED : and taking

these from the terras of the former equality, there remains the

rectangle CE, CG, that is, (III. 26.) AC, CB, equivalent to

the rectangle FE, FD, together with the square of CF.

Next, let the perpendicular CF lie within the circle.

The same construction being made,

the rectangle CE, EG is still equiva-

lent to the rectangle FE, ED. But

the rectangle CE, EG is (II. 14-.) e-

quivalent to the rectangle CE, CG,

and the square of CE, or the squares

of FE and CF; and the rectangle FE,

ED is equivalent to the rectangle FE,

FD and the square of FE. From
these equal quantities, therefore, take away the common
square of FE, and there remains the rectangle CE, CG, or

AC, CB, with the square of CF, equivalent to the rectangle

FE, FD.
Lastly, if the perpendicular CF lie partly without and part-

ly within the circle, the Proposition must be slightly modi-

fied.

The former construction being retained; Because the

square of CE is equivalent to the squares of CF and
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FE, the rectangles CE, EG and CE,

CG are together equivalent to the

square of CF and the dift'erence be-

tween the rectangle FE, ED and FE,

FD ; but the rectangle CE, EG is e-

quivalent to the rectangle FE, ED,
and consequently the rectangle CE,

CG, or the rectangle AC, CB, is

equivalent to the difference between

the square of CF and the rectangle

FE, FD.

In the first case, if the square of FH be equivalent to the

rectangle FD, FE, the square of CH will be likewise equiva-

lent to the rectangle CG, CE ; for the rectangle AC, CB, be-

ing equivalent to the rectangle FD, FE, or the square of FH,
together with the square of CF, must (II. 10. El.) be equiva-

lent to the square of CH.

PROP. VI. THEOR.

A straight line draxunjrom the vertex ofa triangle through the

intersection oftwo perpendicularsJrom the extremities of the base

to the opposite sides, is likemse perpendiculiir to the base.

In the triangle ABC, the straight line BFG drawn from the

vertex B through F, the intersec-

tion of the perpendiculars AE and

CD from A and C upon the oppa-

site sides CB and ABis perpendi-

cular to the base AC.

For join DE. Because BDF and

BEF are right angles, the quadrila-

teral figure ADEC (III. 17. cor. 1.) is

contained in a circle; and for the

same reason, the quadrilateral ADEC is contained in a circle.

Wherefore the exterior angle BDE (III. 17. cor. 2.) is equal to

ACE ; but ( III. 1 6. ) BDE is equal to the angleBEE in the same

Segment, which is therefore equal to ACE or GCE, and con-
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sequently the quadrilateral CEFG is also contained in a cir-

cle. Whence (III. 17.) the opposite angles CEF and CGF
are equal to two right angles, and CEF being a right angle

by hypothesis, EGF must likewise be right ; or the straight

Ixne BFG is perpendicular to the base AC.

PROP. VII. PROB.

Through a given point , hetvueen two diverging straight lines^ to

dratu a straight line that shall have equal segments terminated by

them.

Let AB and AC be two diverging straight lines given in

a position, and F an intermediate point, through which it is re*

quired to draw GFH, such that the intercepted segments FG
and FH shall be equal.

This may be easily effected, by drawing a parallel from F to

AB, and doubling the portion so cut off, from A to G, to mark

the position of GFH. But the problem may be constructed in

another way, which, though more complex, is important in its

application to the Theory of Lines of the Second Order.

Draw AD bisecting the angle BAC, and upon it let fall the

perpendicular FE, which pro-

duce both ways to B and C ;

from B erect BD perpendicu-

lar to AB, join DF ; and EFH,
being drawn perpendicular to

it, is the line required*-

For join DC, DGand DH.
The right-angled triangles

ABD and ACD are (I. 20.)

equal, and consequently BDC
is isosceles. But GBD and

GFD being right angles, and therefore equal, the quadrilateral

figure GB, FD (III. 16.) is contained in a circle, and hence
the angle DGF is equal to DBF ; for the same reason, since

DCH and DFH are right angles, the quadrilateral figure

PCHF is likewise contained in a circle, and hence the angle
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DHF is equal to DCF. Consequently the angle DGF is equal

to DHF, and the right-angled triangles DFG and DFH are

equal, and the base FG equal to FH.

If the point F were taken in the extension of the line EB,
the perpendicular to DF may then be shown to have equal

segments intercepted by the sides of the exterior angle form-

ed by AG and the production of CA beyond the vertical point

A.

BOOK IV.

r. The equilateral triangle, the square, the pentagon, tho

hexagon, and other polygons derived from these, were the

only regular figures known to the Greeks. The inscription

of all the rest has for ages been supposed absolutely to trans-

cend the powers of elementary geometry. But a carious

and most unexpected discovery was lately made by Mr
Gauss, now Professor in the University of Gottingen, who
has demonstrated, in a work entitled Disquisitiones Arith-

meticce, and published at Brunswick in 1801, that certain very

complex polygons can yet be described merely by help of

circles. Thus, a regular polygon containing 17, 257, 65537,

&c. sides, is capable of being inscribed, by the application of

elementary geometry ; and in general, when the number of

sides may be denoted by 2"+ 1, and is at the same time a

prime number. The investigation of this principle is rathei:

intricate, being founded on the arithmetic of sines and the

theory of equations ; and the constructions to which it would

lead are hence, in every case, unavoidably and most excessive-

ly complicated. Thus the cosine of the several arcs arising

from the division of the circumference of a circle into seven-

teen equal parts, are all contained in this very involved ex-

pression :

l-ZCn+Sv"^?—V'(34-.2-/17)—2^/(34.t.2V17))
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As the radicals may be taken either positive or negative, their

various combinations, rightly disposed, will produce eight dis-

tinct results.

Let 5r denote the circumference ; then

cos— = oos^ == .9324722294, cos ±L=cos^=:'
17 17 17 17

.7390089172, cos— = cos— =.H51SS3558 cos— =
17 17 17

eos~ = .0922683595 cos^ = cos ?^=—.27366229901,

cos ^^z=cos^^z=^ .6026346364, cos l^=::cos^=:

— .8502171357, and cos 1^ =r cos^ = — .9829730997.

2. Pythagoras was the first who remarked tlie simple pro-

perty, that only three regular figures,—the square, the equi-

lateral triangle, and the hexagon,—can be constituted about

a point. Here the mystic philosopher might again admire

the union ofthe monad with the triad.—It may not be super-

fluous perhaps to observe, that on this property is founded

the adaptation of patchwork, and the construction of tessellat-

ed pavement.

S. Several interesting propositions may be annexed to this

Book.

PROP. I. THEOR.

The square ofthe side of a regtdar octagon inscribed in a cir-

clCf is equivalent to the rectangle contained by the radius and the

difference between the diameter and the side of the inscribed

square*

Let ABCD be a square inscribed in a circle, and
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AEBFCGDH an octagon, which is formed evidently by the

bisection of the quadrants AB, BC, CD, and DA : The square

of AE is equivalent to the rectangle under AO and the dif-

ference between AB and AC.

For draw the diameter EG. It

is manifest, that the triangles

AIO and BIO are right-angled

and isosceles ; and because AO
is equal to EO, and AI perpendi-

cular to it,—the square of AE
(IF. 23. cor. E|.) is equivalent to

twice the rectangle under EO
and EI, or the rectangle under

AO and twice EI. But EI is

the difference of EO and 10, and

twice EI is, therefore, "equal to the difference of twice EO or

AC and twice 10 or AB. Whence the square of AE, the

side of the octagon, is equivalent to the rectangle under the

radius and the difference of the diameter and AB the side of

the inscribed square.

PROP. II. THEOR.

In and about a given circle, to inscribe and circumscribe an

equilateral triangle.

Let AEB be a circle, in which it is required to inscribe an

isosceles triangle.

Draw the diameter AB, describe (I. 1.) the equilateral tri-

angle ADB, join CD meeting the circumference in E, draw

{I. ^23.) EF, EG parallel to AD, BD, and join FG : The tri-

angle EFG is equilateral.

For the triangles ADC, BDC having the two sides DA, AC
equal to DB, BC, and the third side DC common to both, are

(I. 2.) equal, and the angle DCA is equal to DCB ; whence

the arc AE is (III. 12.) equal to BE. And the triangle ADB
(I. 10. cor.) being likewise equiangular, the angle DBA is
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equal to DAB, and the arc AEM equal to BEL, and the re-

maining arc ME equal to LE.

But EF and EG being parallel

to LA and MB, the arcs AF and

BG are equal to LE and ME,
and to each other ; hence FG is

parallel to AB, and the inscribed

triangle FEG is (L 29.) equi-

angular, and consequently equi-

lateral.

Again, let it be required to

describe an equilateral triangle

about the circle AEB.
The same construction remaining ; at the points F, E, and

G, apply the tangents HI, HK, and KI, to form the circum-

scribing triangle IHK : This triangle is equilateral.

For because IH is a tangent and FG is inflected from the

point of contact, the angle IFG is equal to the angle FEG in

the alternate segment (IIL 21.), and therefore IH is parallel

to EG (L 22. cor.). In like manner it is proved, that HK,
KI are parallel to GF, FE, and consequently (I. 29.) the

angles of the triangle IHK are equal to those of FEG, and

therefore equal to each other.

Cor. Hence the circumscribing equilateral triangle con-

tains four times that which is inscribed ; for the figures EFIG,

EHFG, and EFGK are evidently equal rhombuses, and con-

tain equilateral triangles which are all equal. Hence also the

side of the circumscribing, is double of that of the inscribed,

equilateral triangle.

PROP. III. THEOll.

To inscrihe and circumscribe a circle in and about a given re^

gidar pentagon.

Let ABCDE be a regular pentagon, in which it is required

to inscribe a circle.
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Draw AO and EO to bisect the angles at A and E, let fall

the perpendicular OF, and from O as a centre, with the dis-

tance OF, describe a circle FGHIK : This circle will touch

the pentagon internally.

For, from the point O, let

fall perpendiculars on the op-

posite sides of the figure. The
angles EAO and AEO, being

the halves of the angles of the

pentagon, are equal, and con-

sequently the triangle AOE is

isosceles, and the perpendicu-

lar OF bisects the base. And
the triangles AOG and BOG,
having the angles OAG and

OGA equal to OBG and

0GB and the common side OG, are (1.20.) equal. Again, the

triangles BOG and BOH have now the angles OBG and

0GB equal to OBH and OHB, with the side BO common to

both, and are therefore equal. In like manner, all the tri-

angles about the centre O are proved to be equal ; conse-

quently the perpendiculars OF, OG, OH, 01, and OK are

equal, and the circle touches the pentagon in the points F^

G, H, I, and K.

Next, let it be required to describe a circle about the pen-

tagon.

From the same centre O, with the distance OA, describe a

circle : It will pass through the points B, C, D, E ; for the

triangles about O being all equal, the straight lines OA, OB,

OC, OD, and OE must be likewise equal.

PROP. IV: THEOR.

In and about a regular hexagon to inscribe and circumscribe a

circle.

Let ABCDEF be a regular hexagon, in which it is requi-

red to inscribe a circle.
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Draw AO and FO, bisecting the angles BAF and AFE
(1.5.) ; and from the point of intersection O, with its distance

from the side AF, describe a circle : This circle will touch

the hexagon internally.

For let fall perpendiculars

from O upon the sides of the

figure. It may be demonstra-

ted, as in the last proposi-
'

tion, that the triangles AOB,
BOC, COD, DOE, and EOF
are all equal to AOF; and, in

like manner, it will appear

that the intermediate bisect-

ed triangles are equal. Hence

the perpendiculars OG, OH,
OI, OK, OL, and OM, are all equal, and a circle must touch

these at the points, G, H, I, K, L, and M.
Again, let it be required to describe a circle about the hex-

agon.

From the same point O, as a centre, with the distance

OA, describe a circle, which must pass through the points B,

C, D, E, and F; for the straight lines OA, OB, OC, OD,
OE, and OF were proved to be equal.

Cor. Hence, in any regular polygon, the centre of the in-

scribing an4 circumscribing circle is the same, and may be de-

termined in general, by drawing lines to bisect the adjacent

angles of the figure.

BOOK V.

DEFINITIONS.

1. The words ;vey«? in Greek and ratio in Latin, signifying

reason or manner of thought^ indicate vaguely a philosophical

conception. The compound term haXoyisc comes nearer to
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this idea ; but its correlative, proportio, marks very distinctly

a radical similarity of composition.

The doctrine of proportion has been a source of much con-

troversy. In their mode of treating that important subject,

authors differ widely ; some rejecting the procedure of Euclid

as circuitous and embarrassed, while others appear disposed

to extol it as one of the happiest and most elaborate monu-

ments of human ingenuity. But, to view the matter in its

true light, we should endeavour previously to dispel that mist

which has so long obscured our vision. The Fifth Book of

Euclid, in its original form, is not found to answer the pur-

pose of actual instruction ; and this remarkable and indisputed

fact might alone excite a suspicion of its intrinsic excellence.

The great object which the framer of the Elements had propo-

sed to himself, by adopting such an artificial definition of pro-

portion, was to obviate the difficulties arising from the consi-

deration of incommensurable quantities. Under the shelter of

a certain indefinitude of principle, he lias contrived rather to

evade those difficulties than fairly to meet them. Euclid seems

not indeed to grasp the subject with a steady and comprehen-

sive hold. In his Seventh Book, which treats of the properties

of number, he abandons his former definition of proportion,

for another that is more natural, though imperfectly developed.

Through the whole contexture of the Elements, we may dis-

cern the influence of that mj'sticism which prevailed in the

Platonic school. The language sometimes used in the Fifth

Book would imply, that ratios are not mere conceptions of the

mind, but have a real and substantial essence.

The obscurity that confessedly pervades the fifth book of

Euclid being thus occasioned solely by the attempt to extend

the definition of proportion to the case of incommensurables,

the theory of which is contained in his tenth book—the perti-

nacity of modern editors of the Elements in retaining such an

intricate definition, appears the more singular, since, omitting

all the books relating to the properties of numbers, they have

not given the slightest intimation respecting even the existence

of incommensurable quantities.

The notion of proportionality involves in it necessarily the
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idea of number. The doctrine of proportion hence constitutes

a branch of universal arithmetic ; and had I not, on this occa-

sion, yielded to the prevalence of custom, I should, after the

example of M. Legendre, have rejected it from the Elements

of Geometry, and deferred the consideration of the subject till

I came to treat of Algebra, where it is sometimes indeed given,

but in a very contracted and insufficient form. The properties

themselves are extremely simple, and may be regarded as only

the exposition of the same principle under different aspects.

The various transformations of which analogies are susceptible,

resemble exactly the changes usually effected in the reduction

of equations.

According to Euclid, " The first of four magnitudes is said

to have the same ratio to the second which the third has to the

fourth, when any equimultiples whatsoever of the first and third

being taken, and any equimultiples whatsoever of the second

and fourth ; if the multiple of the first be less than that of the

second, the multiple of the third is also less than that of the

fourth; or, if the multiple of the first be equal to that of the

second, the multiple of the third is also equal to that of the

fourth ; or, if the multiple of the first be greater than that of

the second, the multiple of the third is also greater than that

of the fourth." This definition, however perplexed and ver-

bose, is yet easily derived from that which appears to furnish

the simplest and most natural criterion of proportionality

;

For, let A : B : : C : D ; it was stated as a fundamental prin-

ciple, that, if the mth part of A be contained n times in B, the

With part of C will likewise be contained n times in D. Whence
?jA=?nB, and wC=wD ; which is the basis of Euclid's defini-

tion. But when the terms are incommensurable, such equali-

ty cannot absolutely subsist. In this case, no single trial would

be sufficient for ascertaining proportionality. It is required

that, every multiple whatever, twA, being greater or less than

?iB,—the corresponding multiple, ?wC, shall likewise be con-

stantly greater or less than nD. Actually to apply the definition

is therefore impossible ; nor does it even assist us at all in di-

recting our search. In the natural mode of proceeding, by as-

suming successively a smaller divisor, we are, at each time,

brought nearer to th^ incommensurable limit* But Euclid's
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famous definition leaves us to grope at random after its object,

and to seek our escape, by having recourse to some auxiliary

train of reasoning or induction.

The author of the Elements has likewise given what Dp
,.^]^arrow calls a metaphysical definition of ratio :

*' Ratio is a

mutual relation of two magnitudes of the same kind to one an-

other, in respect of quantity^ This sentence, as it now
stands, appears either tautological, or altogether devoid of

meaning; and Dr Simson, anxious for the credit of Euclid,

considers it, in his usual manner, as the interpolation of some

Omskilful editor. I am inclined to think, however, that the

passage will admit of a version which is not only intelligible,

but conveys a most correct idea of the nature of ratio. The

original runs thus : Aoyo^ sa-n ^vo yAyzSm o[Aoy%vm 4 x^lss Unhixol-^ei

TTgej »h.MKec Tirtnec, iryjitrni, Now the term ci-jjAix*?, on which the

whole evidence hinges, though commonly rendered quantus,

may be translated quotus^ as expressing either magnitude or

multitude. In its primitive sense, it probably denoted ivamher,

and came afterwards to signify quantity^ as this word itself has,

in the French language, undergone the reverse process, \w

confirmation of this opinion, it maybe stated, that the relative

term «A<x<fl: properly denotes age^ and thence stature or size.

According to this interpretation, therefore, ** Ratio is a cer-

tain mutual habitude of two homogeneous magnitudes with re-

spect to quotityt or numerical composition."

It is very vmfortunate that, from the poverty of language,

and the slow progress of science, the terms used in com-

>^mon life, though unavoidably deficient in precision, were

V. adopted into Geometry. But the vagueness of expression is

nowhere more apparent than in what concerns Proportion.—.

Thus, the words denoting time are, in most dialects, blended

with those which signify number. To express how often a part

is contained In a whole, we intimate how many xmys It is to be

placed, how many/hidings are required, or how many ti7nes the

operation of admeasurement must be repeated. In the Greek

and Latin languages, the adverbs compounded from plica, a

fold, are very extensive. In English, the corresponding terms

are limited, and mark too obviously their composition : for
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duplex^ tripleXf qiiadruplex, we have double, triple or quadruple^

ivoqfold, threefold or fourfold. But our application of the

word ijoay is still more confined : we have only tvoice and thricci

or tiao laays and three ways. When we seek to go farther, we
are absolutely obliged to borrow the word time; thus, we say

that one number is four or five times greater than another ; or

that it would require the addition of the part so often, to form

the whole. The German language involves the same idea

without bringing it so prominently forward ; the termination

mal, the same originally with our word meal, referring to the

regular succession of the hours of refreshment. The French

is in this instance more happy, the termfois, derived from voye,

in the Latin and Italian via, a ivay, having been abridged from

ioutevoye or always, and converted into a general adverb.

2. Proposition fourteenth. This proposition is easily de-

rived from geometry ; for, since of

proportional lines the rectangle un-

der the extremes is equal to that of

the means, the segments AG and

AH of the diameter in the figure

are (III. 7- El.) the greatest and

least terms of an analogy, of which

AB and AD are the intermediate

terms, and consequently (111.6. El.) the diameter GH, or the

sum of AG and AH, is greater than the chord BD, or the sum
of AB and AD.

3. PS'oposition twenty-seventh. The numerical expression

of the ratio A : B, may be deduced indirectly, from the series

of quotients obtained in the operation for discovering their

common measure.

Let A contain B, m times, with a remainder C ; B contain

C, n times, with a remainder D ; and, lastly, suppose C to con-

tain D, p times, with a remainder E, and which is contained in

D, ^ times exactly. Then DrryE, Czr^^D+E, BrrwC-j-D,

and A=w2B-i-C ; whence the terms D, C, B, and A, are suc-

cessively computed; as multiples of E ; A and B will, there-
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fore, be found to contain E their common measure K and L
times, or the numerical expression for the ratio of those quan-

tities is K : L.

It is more convenient, however, to derive the numerical ra-

tio, from the quotients of subdivision in their natural order ;

and this method has besides the peculiar advantage of exhi-

biting a succession of elegant approximations.

The quantities A, B, C, D, &c. are determined, as before,

by these conditions: ArrmB+C, B=wC+D, C=pD+E,
D=yE-f-F, &c. But other expressions will arise from substi-

tution: For,

1. A=mB-t-C=?w(«C4-D)-fC=r(w?«+l)C4.wD, or, put-

ting ?w.«-}-l=?w', Azzm'C^-wD.

2. A=m'C4-w«D=w2'(pD-f E)4-mD=(m'p+m) D+m'E,
or, putting m^p-^m^m", A=:?w"D-j-w'E.

or, putting ?n^^.q-\-m'=m"', A=zm'"E-\.m'^F,

Again, the successive values of B are developed in the same

manner

:

l.B=«C+D=«(;9D+E)+D=(«;74-l)D+wE, or, putting

7i.p^ 1= n', B=w'D+ wE.

2.B=n'D+wE=w'(yE4.F)+«E=(w'y4-w)E+?2'F,or,put.

ting n'.q-^nz=:n", B=w"E+w'F.

These results will be more apparent in a tabular form

:

A=w2B+C,
I

Bz=:nC+D,

=:m'C4-W7D,

=w"D+w'E,
z=:nrE^m"F,

=«'D+wE,
=Z7l"E+7l%

&C.

The substitutions are thus arranged :

7W.W-}-l= 7?i',

m'.p-{-niz=:m"f

m".q-{-m'zzm"'i

&c.

n.p'\-\:=.n',

n*.q'\'nz=:7i"y

Whence, the law of the formation of the successive quanti-

ties, is easily perc5eived.



KOTES AND ILLUSTKATIONS. S37

But, to find the ratio of A to.B, it is not requisite to know

the values of the remainders C, D, E, &c. Suppose the sub-

division to terminate at B; then A=mB, and consequently

A : B, as mB : B, or m : 1, If the subdivision extend to C,

then A=7?2'C, and B=nC ; whence A : B, as m' : n. In gene-

ral, therefore, the second terra, in the expressions (or A and

B, may be rejected, and the letter which precedes it consider-

ed as the ultimate measure, and corresponding to the arithme-

tical unit. Hence, resuming the substitutions, and combining

the whole in one view, it follows, that the ratio of A to B may
thus be successively represented ;

l.m:l,
2. mw-f- 1 : w, or jw' : n,

3. m'p^m : np-\- 1, or w" : n'.

4. m"q-{''m' : n'q-\-nj or vi'" : n",

&c. &c. &c.

The formation of these numbers will evidently stop, when
the corresponding subdivision terminates. But even though

the successive decomposition should never terminate, as in the

case of incommensurable quantities,—yet the expression thus

obtained must constantly approach to the ratio ofA : B, since

they suppose only the omission of the remainder of the last

division, and which is perpetually diminishing.

4. Proposition twenty-pinth. The sanie conclusion is de-

rived from the division of surds. Thus— = 1
-f-

I \/2+l ^. a/2—1 , . • ,, ^

y^ , ="

—

^=:2-\--—-— , and then contmually the ex-

pansion of the same residue —.-—
- , which therefore gives 2

as a repeated integral quotient. Hence m being 1 and n, p,
y, r, &c. all equal to 2, the successive approximations are, by
the last note, 1 : 1, 2 ; 3, 5 : 7, 12 : 17, 29 : 41, 70 ; 99, &c.

The ratios of the squares of these numbers are 4 : 9, 25 ; 49,

144 : 289, 841 : 1681, 4900 : 9801, thus approaching rapidly

to the ratio of one to ttvo, but alternately in excess and de-

fect.

z
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BOOK VI.

] . Proposition first. The consideration of diverging lines

furnishes the simplest and readiest means, for transferring the

doctrine of proportion to geometrical figures. The order which

Euclid has followed, beginning with parallelograms, and thence

passing from surfaces to lines, appears to be less natural.

2. Proposition fourth. It will be proper here to notice the

several methods adopted in practice, for the minute subdivi-

sion of lines. The earliest of these—the diagonal scale—de-

pending immediately on the proposition in the text, is of the

most extensive use, and constituted the first improvement on
astronomical instruments.

Thus, in the figure annexed, the extreme portion of the ho-

rizontal line is divided into ten equal parts, each of which

again is virtually subdivided into ten secondary parts. The
subdivision is efiected by means of diagonal lines, which de-

cline from the perpendicular by intervals equal to the primary

divisions, and which are cut transversely into ten equal seg-

ments by equidistant paral-

lels. Suppose, for example,

it were required to find the

length of2 and 38—100 parts

of a division ; place one foot

of the compasses in the se-

cond vertical at the eight in-

terval which is marked with a dot, and extend the other foot,

along the parallel, to the dot on the third diagonal. The

distance between these dots may, however, express indiffe-

tently 2.38, 23.8, or 238, according to the assumed magnitude

of the primary unit.



NOTES AND ILLUSTRATIONS. 3S9

Nunez, or Nonius, in a Treatise De CrepuscuUs, printed at

Lisbon in 154^2, proposed one more complicated. He placed

a number of parallel scales, or concentric circles, differently

divided, and forming a regular ascending gradation of 89, 88,

87, &c. equal parts, from 90 to 46 inclusive. An index laid

any where across these scales might, therefore, be presumed

to cut at least on.e of them at some of the divisions, and hence

the intercepted space would be expressed by a corresponding

fraction:

But the method of subdivision which was afterwards intro-

duced by Peter Vernier, a gentleman of Franche Comte, and

published by him in a small tract printed at Brussels in 1631,

being itself an improvement on the method used in the con-

struction of Tycho Brahe*s astronomical instruments, is much
simpler and far more ingenious. It is founded on the diffe-

rence of two approximating scales, one of which is move-

able. Thus, if a space equal to n—i parts on the limb of

the instrument be divided into n parts, these evidently will

each of them be smaller than the former, by the nth part of a

division. Wherefore, on shifting forward this parasite or

Vernier scale, the quantity of aberration will diminish at each

successive division, till a new coincidence obtains, and then

the number of those divisions on that scale will mark the frac-

tional value of the displacement.

Thus in the annexed figure, nine divisions of the primary

scale, forming ten equal parts in the attached or sliding scale,

the moveable

2:ero stands
1 f f ? ffi'l?i ?

beyond the " Vi
'^ ^TH-Vf?T- |

J^

i M i

|
i i i i

j^,

first interval

between the third and fourth division. To find this minute

difference, observe where the opposite sections of the scales

come to coincide, which occurs under the fourth division of

the sliding scale, and therefore indicates the quaAtity 1.34.

3. Proposition fifth. This problem could be otherwise sol-

ved. Through B draw the inclined straight line CBG extend-

ed both ways, in this take any point C, and make BD, DE,
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EF, FG, &c. each equal to BC, complete the parallelograoi

ABCI, and join ID, IE, IF, IG, &c. cutting AB in the point

K, L, M, N, &c. ; then is the segment AK the half of AB,

AL the third, AM the fourth, and AN the fifth part of the

same given line.

For the segments of the straight line AB must be propof-

tional to the segments of the parallels AI and BG, intercepted

by the diverging lines ID, IE, IF, IG, &c. Thus, AK : KB.

: : Al : BD; but, by con-

struction, BC or AlrrBD,
whence (V. 4.) AK=KB,
and therefore AK is the

half of AB. Again, AL :

LB : : AI : BE ; and since

BE=2AI, it follows that

LB=2AL, or AL is tho

third part of AB. In the

same manner, AM : MB :

:

AI : BF; but BF=3AI,
whence MB=3AM, orAM
is the fourth part of AB.

And, by a like process, it may be showrn that AN is the fifth

part of AB.

4. Proposition seventeenth. The solution of this impor-

tant problem now inserted in the text, was suggested to me
by Mr Thomas Carlyle, an ingenious young mathematician,

formerly my pupil. But I here subjoin likewise the original

construction given by P»ppus, which, though rather more

complex, has yet some peculiar advantages.

Let AB be a straight line, which it is required to cut, so

that the rectangle under its segments shall be equivalent to a

given rectangle.

On AB describe the semicircle AFB, at A and B apply tan-

gents AD and BE equal to the sides of the given rectangle,

and both in the same or in opposite directions, according as

the line is to be cut internally or externally ; join DE, and

from tlie point F where it meets the circumference, draw the
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perpetidiciilar FC ; this will divide the given line AB into A^*
and BC, the segments required.

For the right angle DFC is

equal (III. 19.) to the angle

AFB contained in the semi-

circle, and consequently their

difference from AFC or the

angles DFA and CFB are

equal. For the same rea-

son, the angle AFB being

likewise equal to CFE, add

or take away CFB, and the

angle BFE will be equal to

AFC. But AD being a tan-

gent, and AF a straight line

inflected to the circumfe-

rence, the exterior angle

DAF is equal (III. 21.) to

the angle in the alternate seg-

ment AF or the angle CBF (III. 17. cor. 2.). Again, BE
being a tangent and BF an inflected line, the exterior angle

EBF is equal to BAF. Wherefore the triangles DAF and

AFC are similar to BFC and BFE ; and hence AD : AF : :

CB : BF, and AF : AC : : BF : BE ; consequently (V. 16.)

AD : AC : : CB : BE, and (V. 6.) AD.BE=AC.CB.
Cor. If the sides of the given rectangle be equal, the con-

struction of the problem will become materially simplified.

First, in the case of internal section: The tangents AD
BE being equal, it is evident that DE
must be parallel to AB and the per-

pendicularFC parallel to EB. Whence,

employing this construction, or erect-

ing the perpendicular BE equal to the

sides of the given square, and drawing

the parallel EF to meet the circumference F, from which is

let fall on AB the perpendicular FC, the rectangle under the

segments AC and CB is equivalent to the square of BE ; which
also follows from Prop. 26. cor. 1. Book III,

A-

\-
^\. CK
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Next, in the case of external section ; The opposite tan.

gents AD, BE being equal,

the triangles AGD and BGE
are evidently equal, and

therefore DE passes through

the centre. Hence the tri-

angles BGE and FGC are

also equal, and GC equal to

GE. The modified construc-

tion is therefore to erect the

perpendicular BE equal to the side of the given square, join

GE, and where this cuts the circumference apply the tangent

FC to meet AB produced : Then AC and CB are the required

external segments of the 'given line AB. For it is evident that

the rectangle AC, CB will be equal to the square of BE ;

which is also deduced from Prop, 26. cor. 2. Book III., since

CF is now a tangent and AC.CB=CF* or BE».

If AB be equal to BE, the construction will exactly corre-

spond with what was before given.

In applying this problem to the construction of quadratic

equations, it is necessary previously to ascertain the precise

import of the ordinary signs used in Algebra, when extended to

geometrical quantities The signs -f- and— intimate, in general,

nothing more than that the number, or the magnitude express-

ed by number, to which they are respectively prefixed, is to

be added to, or taken away from, any other number, with which

it comes to be combined. It would be more correct language,

therefore, to call the quantities carrying such signs additive

and subtractive, implying merely a casual and mutable rela-

tion ; instead of the usual appellations ofpositive and negative,

which seem to bestow a distinct and absolute character, and

have hence led incautious reasoners into mystery and paradox.

A similar degree of reserve is indispensable in Geometry.

Following the European mode of writing from left to right, we

might fancy it almost natural to draw a line in thesame direction

:

When we want to extend a line, we apply an additional line to

the right; but when we seek to contract it. we retrace a deft-
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cient line to the left. Thus, if NO be annexed to the right of

MN, there results f__ l_ I i

MO; or if NO' be M o' N O
taken to the left of the extremity N, there will remain MO'c

The position of NO or NO^ to the right or left, will, therefore,

in reference to a combination with any line MN, have the

same effect as the signs of addition or subtraction produce in

Algebra. Following out the same analogy, while lines drawn

upwards may correspond to additive quantities, lines drawn

downwards must express subtractive quantities.

Quadratic equations are reducible to these four forms :

1. x^ •}- ax=z •{• be

2. x^-—ax=z ^ be

3. a:* 4" ^^ = — ^^

4. X*— ax =— be.

The two first may be constructed from the second case of

Proposition seventeenth ; and the two last will receive their

construction from the first case of that problem. We shall

resume the equations in their order

:

1. x^^ax= +bc, then j:=— -|db:i/^+ 3c, these beingt
2 '4

roots, the greater subtractive, and the less additive.

Employing the construction of the second case of the pro

blem, let AB = a, AD = b,

and BE = — c, since it

stretches below AB ; ifBC
represent

—

x, then CA, in

the reverse position, will

be denoted by — a — x.

Wherefore BC x CA =
(

—

a— x)x=r— ax— x\
and consequently AD.BE
=

—

be=— ax— x*, or, by
inversion, a:' + ar = -j- be.

The roots' are, consequent-

ly, the shorter segment BC which is additive, and the longer

segment BC which is subtractive.

wo
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2. x'^ax=-\-bc, then j:=+ 1=1=^-1 +^c; there being now

likewise two roots, but the greater additive, and the less sub-

tractivp.

Here AB, AD and BE being denoted by a, by and —c, as

before ; if AC represent x, C'B in a reverse position will be
expressed by a^x. Consequently AC'.OB =r (a—ar)x=
ax—x^i and therefore AD.BE=

—

hcz=.ax x% or x^ ax

=;:+ be. The roots are hence the greater segment AC, which is

additive, and the less segment AC, which is subtractive.

In this case, the quadratic equation will alwdys admit of a
double solution, since the radical part of the root is both ad-

ditive and subtractive, while the circle crossing AB must ne-

cessarily cut it in two parts.

The third and fourth forms of the equation are constructed

by the application of the first case of the problem.

3. x'-\-ax-=:-—bcy then xz=.—%r±i\^^-r -^bc ; the two roots

having the same character, and both of them subtractive.

Let AB = a, AD = h, and BE
=rc; if BC denote— X, AC or

AB—BC, will be expressed by

a Jr X. Whence AC.BC =
(fl-{-ar)-^=-«^-^% andAD.BE

= 5c = — ax— x"". By transpo-

sition, therefore, :r* 4- ax =— be.

The values x are consequently

BC and BC, both of ihem sub-

tractive.

4. x^—ax^z-^bc, then a=z-\- ^ =±: y -

—

bcj both rootshaving

likewise the same character, but additive.

Let AB, AD, and BE be expressed as before by a, b and c

;

if AC represent x, CB will be denoted by a—x. Wherefore,

AC.CB=(a

—

x)x=ax—j;% and AD.BE=bc=:ax—j;\ Con-

sequently by transposition x*—ax=—be. The roots of this

equation are, therefore, expressed by AC and AC, both of

them additive.
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When the rectangle undef the perpendicular AD and BE,

becomes equivalent to the square of half of AB, the circle

touches AB, and the two points C and C merge in a single

point. At this limit, too, the radical part z±z /_ — l>c of the

Value of :r vanishes, and there results a single root, which is ad-

ditive or subtractive according to the sign of the second term

of the quadratic equation. If it were sought that the rectan-

gle linder AD, BE, or under the segments AC, CB, should

exceed the square of the half of AB, the circle would not meet

this straight line, while the radical would evidently become

impossible, and thus betray the same incongruity of hypo-

thesis.

It may be observed, that the algebraical solution of these

quadratic equations flows from the geometrical construction.

For, suppose AB were bisected in O ; it is evident that

AD.BE=AC.CB=:AO^-.OC% or ,OC^--AO», or OC'=
AO*—AD.BE, of AD.BE-f-AO% according as the intersec-

tion takes place within or without AB. Wherefore OC always

represents the radical part z±:^ — z^bc of the expression for

the values of or, which are formed by its combination with OA.
If the construction of Pappus be used, while the perpendi-

culars AD, BE, and the transverse line DE remain the same
as before, the intersection of this with a circle described on

AB determines the position of a perpendicular to it, dividing

the diameter internally or externally into the required seg-

ments.

i?. Proposition eighteenth. To this proposition might be
added a corollary : Thatfour times the area ofa triangle is to

the rectangle under any ttvo sides, as the base to the radius ofthe
circumscribing circle.

For the area of the triangle ABC is (Prop. 5. 11.) equivalent

to half the rectangle contained by the base AC and the per-

pendicular BD, and consequently four times this area is equi-

valent to twice the rectangle AC, BD. But (VI. 18.) the
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rectangle under the sides AB and BC
is equivalent to the rectangle under the

perpendicular BD and BE, the diame-

ter of the circumscribing circle, or to

twice the rectangle under BD and the

radius of that circle. Whence four

times the area of the triangle is to the

rectangle under the sides AB and BC,
as twice the rectangle under BD and AC to twice the rectan-

gle under BD and the radius of the circumscribing circle, or

as the base AC to that radius.

Let a, b and c denote the three sides of a triangle, and S

halftheir sum or the semiperimeter ; then, combining Prop. 29.

Book VI. with this corollary, the radius of the circumscribing

circle will be expressed by ^ ,,^ ^ j^—j—rr-— .. Thus*,

if the sides of the triangle be 13, 14, 15, the radius of the cir-

6. Proposition nineteenth. This well-known proposition is

now rendered more general, by its extension to the case

of the exterior angle of the triangle. The two cases com-

bined afford an easy demonstration of the corollary to Propo-

sition 7. Book Vi. ; for the straight lines bisecting the vertical

and its adjacent angle form a right-angled triangle, of which

the hypotenuse is the distance on the base between the points

of internal and external section.

7. Proposition twenty-third. The latter part of the scho-

lium was added to this proposition, with a view to ex-

plain the principle of the construction of the pantagraphy a

very useful instrument contrived for copying, reducing, or

even enlarging plans. It consists of a jointed rhombus DBFE,
framed of wood or brass, and having the two sides BD and BF
extended to double their length ; the side DE and the branch

DA are marked from D with successive divisions, DO being

made to BO always in the ratio of DP to BC j small sliding
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boxes for holding a pencil or tracing point are brought to the

corresponding graduations,

and secured in their positions

by screws ; the point O is

made the centre of motion,

and rests on a fulcrum or

support of lead; and the

tracer is generally fixed at

C, while the crayon or draw-

ing point is lodged at P,

From the property of diver-

ging lines intersectLpg paral-

lels, the three pomfs O, P
and C must evidently range

in the same straight line, and which is divided at P in the de^

terminate ratio. While the point C, therefore, is carried along

the boundaries of any figure, the intermediate point P will,

by the scholium, trace out a similar figure, reduced in the

proportion of OC to OP or of OB to OD, and which, in the

present instance, is that of three to one.

But the point P may be placed in the fulcrum, the tracer

inserted at O, and the crayon held at C ; in which case, C
would delineate a figure which is enlarged in the ratio of OP
to PC or of OD to DB. If the points O and P were now
brought to coincide with A and E, the distances AE and EC
being equal, the original figure would be transferred into a

copy exactly of the same dimensions.

In reducing small figures, however, artists commonly pre-

fer another method, which is partly mechanical. The origi-

nal is divided into a number of^mall squares, by means of

equidistant and intersecting parallels. Other reduced squares

are drawn for the copy, which is then filled up, by observing

the same relative position and form of the boundaries.—One
material advantage results from this practice ; for if oblongs

be used in the copy instead of squares, the original figure will

be more reduced in one dimension than another, which is of-

ten very convenient where height and distance are represent-

ed on different scales.
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8. Proposition twenty-eight. The curious properties of
the crescents, or lu7iu/ce, contained in the first corollary, were
discovered by Hippocrates of Chios, in his attempts to square
the circle. But a beautiful extension of them was briefly

suggested by the Reverend Mr Lawson, and afterwards ex-
plained and demonstrated by Dr Hutton of Woolwich, in

whose ingenious Mathematical Tracts it now appears. It is

a mode of dividing a given circle into equal portions, and
contained within equal circular

boundaries. For example, let

it be required to cut the circle

APBQ into five equal spaces.

Divide the diameter AB into

five equal parts at the points

C, D, E and F ; on AC, AD,
AE, and AF describe the se-

micircles AGC, AID, ALE,
and ANF, and on BC, BD,
BE, and BF, towards the op-

posite side, describe the semicircles BHC, BKD, BME, and

BOF ; the circle APBQ will be divided into five equal por-

tions, by the equal compound semicircumferences AGCHB,
AIDKB, ALEMB, and ANFOB.
For the diameter AB is to the diameter AD, as the circum-

ference of AB to the circumference of AD, or (V. 3.), as the

semicircumference APB to the semicircumference AID ; and

AB is to BD, as the semicircumference APB to the semicir-

cumference BKD. Wherefore (V. 20.) AB is to AD and BD
together as the semicircumference APB to the compound

boundary AIDKB ; and consequently these interior bounda-

ries AGCHB, AIDKB, ALEMB, and ANFOB, are all equal

to the semicircumference of the original circle.

Again, the circle on AB is to the circles on AE and AF, as

the square of AB to the squares of AE and AF ; and conse-

quently (V. 20.) the circle on AB is to the difference between

the circles on AE and AF, as the square of AB to the diffe-

rence between the squares of AE and AF, that is (II. 17.),

the rectangle under the sum and difference of AE and AF, or
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twice the rectangle under EF and AS, the distance of A from

the middle point of EF. Whence the circle APBQ is to the

difference of the semicircles ALE and ANF, or the space

ALEFN, as the square of AB to the rectangle under AS and

EF; and, for the same reason, the circle APBQ is to the

space FOBME, as the square of AB is to the rectangle under

BS and EF; consequently (V. 20.) the circle APBQ is to the

compound space ALEMBOFN, as the square of AB to the

rectangles under AS and EFand BSand EF, or the rectangle

under AB and EF ; but the square of AB is to the rectangle

under AB and EF, (V. 25. cor. 2.) as AB to EF, which is the

fifth part of AB; wherefore (V. 5.) any of the intermediate

spaces, such as ALEMBOFN, is the fifth part of the whole

circle.

9. Proposition twenty-ninth. This elegant theorem admits

of an algebraical investigation. Put AC=«, AB=^, BC=:c,

and let s denote the scmipgrimeter, and T the

area ofthe triangle ; then, by Prop. 23. Book II.,

2AC.CD= a^4-c^-~^% consequently CD=:

*±f!=:£, and BD^=BC^—CD^=
2a .A. D C

c*—'v^^^^t|^-^)^ and, therefore, by Prop. 5. Book IL, T'=

AC^BP'__4aV— (g^ 4- c'— b^y

4 ~ 16

I^ut this expression, consisting of the difference oftwo squares,

may be decomposed, by Prop. 17. Book II. ; whence T^z=
2ac+ a'-+ c^^b'' 2ac-^a''—c'^

-f. b^_ (a+ cf—6^ b^—{a—cf
4

*

4
~

4 " i
'

and, decomposing these factors again,

_a±b^ a—b+ c a-^-b—c —a-^-b+c
~ 2 * 2 * 2 2

"'

Now, ^±1+^ = s, ^-^+^= s--b, ^+^-' =

^^^~^=5

—

o-'y wherefore we obtain, by substitution,

T = >V/(5(5—«) (5—W (5-C) ).

Suppose the sides of the triangle to be 13, 14, and \5 ; then
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the area is = v'( 21.8.7.6) = ^^7056 = 84-. If the sides were
21, 17 and 10, the area would be the same, for >v/(24?.3.7.14)=

^^7056= 8^.

This mosl^ useful proposition was known to the Arabians,

but seems to have been re-invented in Europe about the latter

part of the fifteenth century.

Another corollary might be subjoined to this proposition

:

As the scmiperimeler of a triangle is to its excess above the base,

so is iJie rectangle under its excesses above the tivo sides to tJte

square ofthe radius of the inscribed circle,

ForBIrBG:: EI : DQ,
and consequently (V. 25.

cor. 2.)BI:BG:: EI.DG :

DG* ; but it was proved

that EI.DG is equivalent to

AG.AI, and hence BI : BG
: : AG.AI : DG\ Now
BI has been shown to be

the semiperimeter, and BG,
AG and AI its excesses

above the base and the other

two sides of the triangle,

of which DG is the radius

of the inscribed circle.

Hence let the sides of the triangle be denoted by a, b and

c, and the semiperimeter by S ; the square of the radius of the

inscribed circle will then be expressed by —^^^-^—^ •

Suppose, for example, the sides of the triangle were 13, 14-

and 15, the radius of the inscribed circle would be the square
O >T /? ~

root of ~j^— , or of 16, that is 4.

Employing the same notation, it is not diflScult to perceive

that the continued product of all the sides of a triangle must

be equivalent to the product of twice their sum into the ra-

dii of the inscribed and circumscribing circles. Thus,

13.14.15=: 2730=84^.4.81.
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Recurring to the last figure, it is evident that BG : BI : :

DG : EI : : DG.EI : EI% or, since DG.EI = AG.AI,

BG : BI : : AG.AI : EP ; that is, As the excess of the peri-

meter above the base is to the scmiperimeter itself, so is the rect-

angle under its excesses above the other two sides ofthe triangle to

the square of the radius of the circle ofexternal contact below the

base. Thus, in the triangle taken for illustration, 6:21 : : 8.7 : 196,

and consequently the radius of the circle under the base is 14.

Again, 7 : 21 : : 8.6 : 144, and the radius of the circle touch-

ing externally the side 14 is therefore 12. And, in the same

manner, 8 : 21 : : 7.6 : llOJ; which gives 10^ for the radius

of the circle applied beyond the shortest side 13.

10. Proposition thirtieth. A similar and very important

problem, which formerly occupied a place in the text, must

not be omitted. It likewise furnishes an ingenious and concise

approximation to the quadrature of the circle, first published

at Padua in the year 1668, by James Gregory, my illustrious

predecessor in the mathematical chair of the University of

Edinburgh ; and seems the more deserving of attention, as it

probably led that original author to the investigation of the

Method of Series.

Given the area of an inscribed, and that ofa circumscribed, re-

gular polygon ; tofind the areas of inscribed and circumscribed

regular polygons, having double the number of sides.

Let TKNQ and HBDF be given similar inscribed and cir-

cumscribed rectilineal figures ; it is required thence to deter-

mine the surfaces of the corresponding inscribed and circum-

scribed polygons AKCNEQGT and VILMOPRS, which have

twice the number of sides.

From the centre of the circle, draw radiating lines to all the

angular points. It is evident that the triangles ZXK and ZAB
are like portions of the given inscribed and circumscribed fi-

gures TKNQ and HBDF; and that the triangle ZAK, and
the quadrilateral figure ZAIK are also like portions of the de-

rivative polygons AKCNEQGT and VILMOPRS. And since
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XK is parallel to AB, ZX : ZA : : ZK : ZB (VI.2.); butZX
is to ZA as the triangle ZXK is to the triangle ZAK (V. 25.

cor. 2.), and, for the same reason, ZK is to ZB as the triangle

ZAK is to the triangle ZAB ; whence ZXK : ZAK : ; ZAK

:

ZAB, and consequeDtly the derivative inscribed polygon
AKCNEQGT is a mean proportional between the ins/^ribed

and circumscribed figures TKNQ and HBDF.
Again, because ZI bisects

the angle AZB, ZA is to ZB,
t>r ZX is to ZK, as At to IB
(VI. 10.), and consequently

(V. 25. cor. 2.) the triangle

XZK is to the triangle AZK,
as the triangle AZI to the "l\

triangle IZB. Hence the in-
,
\\

scribed figure TKNQ is to
^^

its derivative incribed figure

AKCNEQGT as the trian- H
gle AZI to the triangle IZB ;

wherefore (V. 11. and 13.) TKNQ and AKCNEQGT toge-

ther are to twice TKNQ, as the triangles AZI and IZB, or

a\ZB, to twice the triangle AZI, or the space AII^Z,—that

is, as HBDF to VILMOPRS. And thus the two inscribed

polygons are to twice the simple inscribed polygon, as the

surface of the circumscribing polygon to the surface of the de-

rivative circumscribing polygon with double the number of

sides.

Cor. Hence the area of a circle is equivalent to the rectan-

gle under its radius and a straight line equal to half its cir-

cumference. For the surface of any regular circumscribing

polygon, such as VILMOPRS, being composed of a number

of triangles AZI, which have all the same altitude ZA, is equi*

yalent (II. 6.) to the rectangle under ZA and half the sum of

their bases, or the semiperimeter of the polygon. But the

circle itself, as it forms the ultimate limit of the polygon,

must have its area, therefore, equivalent to the rectangle un-

der the radius ZA, and the semicircumference ACE.
Scholium, This solution, it was obseryed, affords one of the

1
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best elementary methods of approximating to the numerical ex-

pression for the area of a circle. Supposing the radius of a circle

to be denoted by unit ; the surface of the circumscribing square

will be expressed by 4, and consequently (IV. 15. cor.) that of its

inscribed square by 2. Wherefore the surface of the inscribed

octagon is =-v/2^4=2,8284;27 1247; and the surface of the cir-

cumscribing octagon is found by the analogy, 2-f- 2.8284271247:

2 X 2 : : 4 ; 3.3137084990. Again, ^^ (2.8284271247 X
3.3137084990)= 3.0614674589, which expresses the area of

the inscribed polygon of 16 sides ; and 2.8284271247-h
3.0614674589 : 2x2,8284271247, or 5,8898945836 :

5.6568542494 : : 3.313708499 : 3.1825979781, which de-

notes the area of the circumscribing polygon of 16 sides. Pur-

suing this mode of calculation, by alternately extracting a

square root and finding a fourth proportional, the following

Table will be formed, in which the numbers expressing the

surfaces of the inscribed and circumscribed polygons conti-

nually approach to each other, and consequently to the mea-

sure of their intermediate circle.

Number of Area of the in- Area of the circum-
Sides. scribed Polygon. scribing Polygon.

4 2.0000000000 4.0000000000
8 2.8284271247 3.313708*990
16 3.0614674589 3.1825979781
32 3.1214451523 3.1517249074
64 3.1365484905 3.1441184852
128 3.1403311570 3.1422236917
256 3.1412772509 3.1417503692
512 3.1415138011 3.1416321807
1014 3.1415729037 3.1416025026
2048 3.1415877253 3.1415951177
4096 3.1415914215 3.1415932696
8192 3.1415923456 3.1415928076
16384 3.1415925766 3.1415926921
32768 3.1415926344 3.1415926632
65536 3.1415926488 3.1415926560
131072 3.1415926524 3.1415926542
1262144 3.1415926533 3.1415926537

J52428S 3.1415926535 3.1415926536
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The computation of this table might be greatly abridged,

by attending to the successive formation of the numbers. Let
a and b denote the area of an inscribed and circumscribing po-

lygon of the same number of sides, and a' and b' the areas

of correspo^ing polygons having double the number of sides.

Since «' =\/ a,b, when a and b approach to equality, it is ob-

vious that a'= —"J- nearly, or a^—«= -^ : Wherefore, af-

ter the sides of the polygon are multiplied, the numbers of the

first column v/ill be formed, by constantly adding half their

difference from those of the second column. Again, because

b^z=—,— , by substitution b' = -—-—.. and hence b — i' =i:

~~~r-j = (b—a)
r>
—

7~T ; but, since a and b come to differ little,

the fraction -——, may be reckoned to jr. or b—b^z= -—-—
Ha'^b •' *

4-

very nearly. Consequently the higher numbers in the second

column may be filled up, by subtracting one-fourth of the com-

mon difference. It follows likewise, from combining this result

with what has been shown before, that a number in the second

column, diminished by the third^2LVi of the common difference,

must give very nearly the final result. Thus, the areas of the

inscribed and circumscribing polygon of 2048 sides, being

3,1415877253 and 3.1415951177, thdir difference is 73924, and

the third of this, or 24641 , taken away from the greater, leaves

3.1415926536, for the ultimate value, or the area of the circle

itself.

Of the two modes of approximating to the mensuration of

the circle, the one contained in the text, though not so direct^

is on the whole simpler than the other. In the course of my
geometrical lectures, I generally mentioned, that the first pro-

position of the fourth book, by enabling us to discover a series

of regular polygons with the same sides continually doubled,

admitted of an easy application. But not having pursued the

calculation to any length, I neglected the obvious advantage

which results from reducing the perimeter at each step to the

same extent, till I was led to reconsider the subject, in con-

sequence of meeting with the small work of Schwab, before

quoted. It somehow had escaped my notice, that M. Legen-

dre, in the additions to his Geometry, has cursorily treated the

subject in the same way.
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The numbers contained in the last table were copied and

interpolated from the tract of James Gregory, entitled Vera

Circuli el Hyperbolce Quadraturat as reprinted in the Opera

Fana of Huygens. For the calculation of the table contain-

ed in the text, and of other two tables which will be annexed

to this note, accompanied by several acute remarks concern-

ing the formation of the successive numbers, I am indebted to

the very obliging assiduity of a young friend, Mr G. A. Wal-

ker Arnott, whose solid talents and unwearied application pro-

mise the happiest fruits.

Let the same mode of computation be applied to the suc-

cessive polygons derived from the hexagon. The radius of

the circle being unit, the perpendicular from the centre to the

base of each component triangle of the inscribed hexagon will

be = v^l, and consequently the area of the figure = 4-V'^ =^

2.5980762114. Again, each side of the circumscribing hexa-

gon is = ^4 =: 2-v/j, and therefore its area, or that of the six

contained triangles, is = 6-/^=2^3=-/ 12 = 3464-1016151,

or one-third more than the former. Hence the following table

is constructed.

Number of Area of the Area of the

Sides. Inscribed Polygon. Circumscribing Polygon.

6 2.5980762114 3.4641016151
12 3.0000000000 3.2153903092
24 3.1058285412 3.1596599421
48 3.1326286134 3.1460862150
96 3.1393502030 3.1427145996
192 3.1410319509 3.1418730499
384 3.1414524723 3.1416627470
768 3.1415576079 3.1416101766
1536 3.1415838921 3.1415970343
3072 3.1415904632 3.1415937487
6144 3.1415921060 3.1415929274
12288 3.1415925167 3.1415927220
24576 3.1415926194 3.1415926707
49152 3.1415926450 3.1415926579
98304 3,1415926514 3.1415926547
196608 3.1415926531 3.1415926539
393216 3.1415926535 3.1415926537
786432 3.1415926536 3.1415926536
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If the method employed in the text for discovering the ra-

dius of the circle, which has twice the number of sides under
the same extent of perimeter, be applied to the hexagon or its

elementary equilateral triangle, the numbers will stand as be-

low.

Number of Radius of Inscrib- Radius of Circum-
Sides. ed Circle. scribing Circle.

6 .8660254038 1.0000000000
12 .9330127019 .9659258263
24 .9494692641 .9576621969
48 .9535657305 .9556117687
96 .9545887496 .9551001222
192 .9548444359 .9549722705
384 .9549083532 .9549403113
768 .9549243322 .9549323217
1536 .9549283270 .9549303243
3072 .9549293257 .9549298250
6144 .9549295753 .9549297002
12288 .9549296378 .9549296690

"

24576 .9549296534 .9549296612
49152 .9549296573 .9549296592
98304 .9549296582 .9549296587
196608 .9549296585 .9549296586
393216 .9549296586 .9549296586

Wherefore, .95492965855 : 1 : : 3 : 3.1415926536; and hence

3.1415926536 is the nearest expression, consisting often de-

cimal places, for the area of the circle whose radius is 1. But

the semicircumference in this case denoting also the surface,

the same number must represent the circumference of a cir-

cle whose diameter is 1. Consequently, if D denote the dia-

meter of any circle, the circumference will be expressed ap-

proximately, by 3.1415926536 xD; whence the area will be

^D^ X 3.1415926536, or D^ X .7853981634.

By help of the note to Prop. 27. Book V. lower numbers may
be found, approximating to the same results. For in this case
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5K=S, K='7, 7>=16, and ^=11: whence, remounting from these

conditional equahties, the ratio of the diameter to the circmn-

ference of a circle is denoted progressively, by 1 : 3—by 7 :

22—by 113: 355—and by 1250 : 3927- Tjie ratio of 1 to 3

is the rudest approximation, being the same as that of the dia-

meter of the circle to the perimeter of its inscribed hexagon ;

the ratio of 7 to 22 is what was discovered by Archimedes ;
the

ratio of 113 to 355, in which the three first odd numbers ap-

pear in pairs, was first proposed by Adrian Metius ofAlkmaer,

Professor of Mathematics and Medicine at Franeker, who died

in 1636 ; and the ratio of 1250 to 3927, the same as 1 to

3.1416, is that generally adopted by the Hindus. Hence also

the circle is to its circumscribing square nearly—as 1 1 to 1 4,

or, still more nearly—as 355 to 452.

To this Book may be added the following Propositions.

PROP. I. THEOR.

JfJroTii any point in the circumferejice ofa circle, straight lines

he drawn to the extremities ofa chord, and meeting the perpendi-

cular diameter, they mil divide that diameter, internally and ex-

ternally, in the same ratio.

Let the chord EF be perpendicular to the diameter AB of

a circle, and from its extremities F and E straight lines FG
and EG be inflected to a point G in the circumference, and

cutting the diameter internally and externally in C and D ;

then will AC : CB : : AD : : DB.
For join AG and BG, and draw HBI parallel to AG.
Because AEGB is a semicircle, the angle AGB is a right

angle (III. 19.); wherefore AG and HI being parallel, the alter-

nate angle GBI is right (I. 22.), and likewise its adjacent angle

GBH. But the diameter AB, being perpendicular to the chord
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EF, must (III. 4. and 13.) bisect the arc FAE, and therefore

the angle EGA is equal to AGF (III. 12. cor.) or (lil. 17.),
its supplement. And since AG is parallel to HI, the angle

EGA is equal to the an- •

gle GIB or its supple- '^-

ment (1. 22.); and for

the same reason, the an-

gle AGF is equal to the

alternate angle GHB.
Whence the angle GIB
is equal to GHB ; but

theanglesGBIandGBH
being both right angles,

are equal, and the side

GB is common to the

two triangles BIG and

BHG, which are, there-

fore, equal (I. 20.), and

consequently BH is e-

qual to BI, and AG : BH : : AG : BI. Now, because the pa-

rallels AG and BH are intercepted by the diverging lines AB
and GH, AG : BH : : AC : CB (VI. 2.) ; and since the pa-

rallels AG and BI are intercepted by the diverging lines GD
and AD, AG : BI : : AD : DB. Wherefore, by identity of

ratios, AC : CB : : AD : DB, that is, the straight line AB is

cut in the same ratio, internally and externally, or the whole

line AD is divided harmonically in the points C and B.

Cor, 1. As the points E and G
come nearer each other, it is ob-

vious that the straight line EGD
will approach continually to the

position of the tangent, which is

its ultimate limit. Hence the tan-,

gent and the perpendicular, from the point of contact or mu-
tual coincidence, cut the diameter proportionally, or AC :

CB : : AD : DB/ It is, therefore, evident (VI. 7.) that, O be-

ing the centre, OC : OB : : OB : OD.
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Cor. 2. Since OC : OB : : OB : OD, it follows (V. 19. cor. 2.)

that OC : OD : : OB^—OC^ or AC.CB : OD^ —OB' or

AD.DB ; whence, by division, CD : OD : : AD.DB—AC.CB,
or VI. 7. COB.) CD^ : AD.DB.

PROP. 11. THEOR.

If two straight lines he inflectedJ'rom the extremities of the

base ofa triangle to cut the opposite sides proportionally, another

straight line, dravonjrom the vertex through their point of con

-

course, will bisect the base.

In the triangle ABC, let AE and CD, drawn from the ex-

tremities of the base to cut the opposite sides proportionally,

intersect each other in F, join BF, which produce if necessary

to meet the base in the point G ; AG will be equal to (jC,

For join DE. And because the sides AB and BC are cut

proportionally, DE is parallel to AC
(VI. 1. cor,), whence BD : BA : :

BH : BG (VI. 1.) ; but BD : BA :

:

DE : AC (VL 2.), and therefore

BH : BG : : DE : AC, Again, the

parallels DE and AC being cut by

the diverging lines AE and CD,
DE ; AC : : DF : FC (VI. 2.) and

DF : FC : : FH ; FG (VI. 1.) ; where-

fore BH : BG : : FH : FG, or BF is

cut internally and externally in the same ratio. But DH be-

ing parallel to AG, BH : BG : : DH ; AG ; and since DH is

also parallel to GC, HF : FG : : DH : GC ; whence DH ;

AG : : DH : GC, and consequently AG is equal to GC.

PROP. III. THEOR.

If a semicircle be described on the side of a rectangle, and

through its extremities two straight lines he drawnfrom any point
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in the circumfej-ence to meet the opposite side produced both xvat/s ;

the altitude of the rectangle xuill he a mean proportional hetxueen

the segments thus intercepted.

Let ABED be a rectangle, which has a semicircle ACB de-

scribed on the side AB, and the straight lines CA and CB
drawn from a point C in the circumference to meet the exten-

sion of the opposite side DE ; the altitude AD of the rectan-

gle will be a mean proportional between the exterior segments

FDandEG.
For, the angle ADF, being evidently a right angle, is equal

to the angle ACB, which stands in a semicircle (III. 19.). and

the angle DFA is equal to the exterior angle BAG (I. 22.);

wherefore (VI. 11.) thp triangle FAD is similar to ABC. In

the same manner, it is proved that the triangle BGE is simi-

lar to ABC ; whence the triangles DAF and BGE are similar

to each other, and consequently (VI. 11.) FD : AD ; : BE or

AD: EG.

If the straight lines CD and CE be drawn, they will(VI. 2.)

divide the diameter AB into segments AH, HI, and IB, which

are respectively proportional to the segments FD, DE, and EG
of the extended side DE. Consequently when ABED is a

square, and therefore DE a mean proportional between FD
and EG, it must follow that HI is likewise a mean propor-

tional between AH and IB.

If the rectangle ABED have its altitude AD equal tp the

side of a square inscribed within the circle, the square of the
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diameter AB is equivalent to the squares of the two segments

AI and BH. For FD : AD : : AD : EG, whence (V. 6.)

FD.EG = AD.% or sFD.EG = 2AD* ; but (IV. 15. cor.)

2Ap= = AB^ or DE% and consequently sFD.EGnDE* ;

wherefore (VI. 2.) 2AH.IB = HP, and hence, by the first ad-

ditional proposition to Book II., the segments AI, BH are the

sides of a right-angled triangle, of which AB is the hypote-

nuse, or AB*=AP+BH=.

PROP. IV. THEOR,

A chord of a circle is divided vi continued proportion, hy

straight lines iriflected to any point in the opposite circumference

from the extremities of a parallel tangent, xiohich is limited by

another tangent applied at the origin ofthe chord.

Let AB, AC be two tangents applied to a circle, CD a

chord drawn parallel to AB, and AE, BE straight lines in-

flected to a point E in the opposite circumference ; then will

the chord CD be cut in continued proportion at the points F

and G, or CF : CG : : CG : CD,
For join BD, BC, and CE. Because the tangent AB is

equal to AC (III. 22. cor.),

the angle ABC is equal to

ACB (I. 10.); but ABC
is equal to the angle BCD
(I. 22.), and to the angle

BDC (III. 21.); whence

(VI. 1 1 .) the triangles BAC
and BDC are similar, and

AB : BC : : BC : CD, and

consequently (V. 6.) BC*r=AB.CD. Again, the triangles

CBG and CBE are similar, for they have a common angle

CBE, and the angle BCG or BCD is equal to BDC or BEC
(III. 16.): Wherefore BG : BC : : BC : BE, and BC^=BG.BE.
Hence AB.CD=BG.BE, and AB : BE : : BG : CD ; but FG
being parallel to AB, AB : BE : : FG : GE (VI. 2.), and
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consequently FG : GE : : BG : CD ; therefore (V. 6.) FG.CDr-
BG.GE; antLsince (III. 26.) BG.GEnCG.GD, it follows

that CG.GD=FG.CD, and FG : CG : : GD : CD, and hence

(V. 10.)CF: CG::CG:CD,

PROP. V. THEOR.

If,from the vertex ofa triangle, two straight lines he dratm,

making equal angles tvith the sides and cutting the base; the

squares of the sides are proportional to the rectangles under the

adjacent segments ofthe base, *

In the triangle ABC, let the

straight lines BD and BE make the

angle ABD equal to CBE ; then

AB^ : BC : : DA.AE ; ECCD.
For (III. 9. cor.) through the

points B, D, and E describe a cir-

cle, meeting the sides AB and BC
of the triangle in F and G, and

join FG.

Because the angles DBF and EBG are equal, they stand

(III. J 6. cor.) on equal

arcs DF and EG, and con-

sequently (III. 18. cor,)

FG is parallel to DE.
Whence (VI. 1.) AB

:

BC:: AF:CG, and there-

fore (V. 13.) AB^:BC^ ::

AB.AF:BC.CG;but(III.

26.) AB.AF = DA.AE,
and BC.CG = ECCD.
Wherefore AB^ : CD^ :

:

DA.AE : ECCD.
If the triangle ABC be right-angled at C, and the vertical
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lines BD and BE cut the base internal-

ly ; then BC^+AC.CE : BC* : : AE : CD.

Tor make AH equal to EC. Because

AB^ : BC" : : DA.AE : EC.CD, and (II.

10.) AB^=AC^+BC% therefore AC^+
BC^ : BC" : : DA.AE : EC.CD, and, by

division, AC^ : BC: : DA.DE*—EC.CD :

EC.CD. But,by successive decomposition,DA.AE-^EC.CD=:

DA.AC—DA.EC—EC.CD = DA.AC~-EC.AC=AC.HD;
whence AC* : BC* : : AC.HD : EC.CD, and (V. 13. and cor.)

AC.EC : BC* ; : EC.HD : EC.CD, or (V. 3.) : : HD : CD ; con-

sequently (V. 9.) BC*+AC-EC : BC^- : : HC : CD ; but, AH
being equal to EC, HC is equal to AE ; wherefore BC*+
AC.EC : BC* : : AE : CD.

If the vertical lines BD, BE cut the base AC of a right-

angled triangle ACB
ejfternally ; then will

BC^~AC.EC : BC^ ::

AE : CD. For make

AH = EC. It is de-

monstrated as before,

that AC^- : BC^ : :

DA.AE-EC.CD : EC.CD ; but DA.AE-EC.CDrrDA.AC-f-

DA.EC—EC.CD = DA.AC—EC.AC = AC.HD : wherefore

AC* : BC* : : AC.HD : EC.CD, and AC.EC : BC* : ; EC.HD :

EC.CD : : HD : CD, and consequently BC*—AC.EC : BC* : :

HC or AE : CD.

PROP. VI. THEOR.

The perpendiculqr tvithin a circle, is a mean proportional to

the segments Jbrmed on it hy straight lineSf draximjrom the ex-

tremities ofthe diameter^ through any point in the circumference.

Cet the straight lines AEC and BCG, drawn from the ex-
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tremitics of the diameter of a circle

through a point C in the circumfe-

rence, cut the perpendicular to AB j

the part DF within the circle is o

mean proportional between the seg-

ments DE and DG.
For the angle ACB, being in a se-

micircle, is a right angle (IIL 19.),

and the angle ABG is common to

the two triangles ABC and GBD,
which q^re, therefore, similar (Vf.

11.}. Hence the remaining angle

BAG is equal to BGD, and conse-

quently the triangles ADE and GDB
are similar; wherefore AD : DE :

;

DG:DB, and (V. 6.) AD.DB=:
DE.DG. But (III. 26. cor.), the

rectangle under AD and DB is equi-

valent to the square of DF ; whence

DE.DG=DF% and (V. 6.) DE :

DF :DF:DG.

The Appendix to the books of Geometry cannot fail, by its

novelty and singular beauty, to prove highly interesting. The
first part is taken from a scarce tract of Schooten, who was

Professor of Mathematics af Leyden, early in the seventeenth

century. But the second and most important part is chiefly

selected from a most ingenious work of Mascheroni, a cele-

brated Italian mathematician; which in 1798 was translated

into French, under the title of Geomeirie du Compas. It will

be perceived, however, that I have adapted the arrangement

to my own views, and have demonstrated the propositions

more strictly in the spirit of the ancient geometry.
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NOTES TO TRIGONOMETRY.

1. The French philosophers have, at the instance ofBor-

da, lately proposed and adopted the centesimal division of

the quadrant, as easier, more consistent, and better adapted to

our scale of arithmetic. On that basis, they have also con-

structed their ingenious system of measures. The distance of

the Pole from the Equator vi^as determined with the most scru-

pulous accuracy, by a chain of triangles extending from Calais

to Barcelona, and since prolonged to the Balearic Isles. Of
this quadrantal arc, the ten millionth part, or the tenth part of

a second, and equal to 39.371 English inches, constitutes the

metre, or unit of linear extension. From the metre again, are

derived the several measures of surface and of capacity ; and

water, at its greatest degree of contraction, furnishes the stan-

dard of weights.

It would be most desirable, if this elegant and universal sys-

tem were adopted, at least in books of science. Whether,

with all its advantages, it be ever destined to obtain a general

currency in the ordinary affairs of life, seems extremely ques-

tionable. At all events, its reception must necessarily be very

slow and gradual ; and, in the meantime, this innovation is pro-

ductive of much inconvenience, since it not only deranges our

habits, but lessens the utility of our delicate instruments and

elaborate tables. The fate of the centesimal division may fi-

nally depend on the continued merit of the works framed aftei'

Ihat model.

2. The remarks contained in the preliminary scliolium, will

obviate an objection which may be made against the succeed-

ing demonstrations, that they are not strictly applicable, ex-

cept when the arcs themselves are each less than a quadrant.

But this in fact is the only case absolutely wanted, all the de-

rivative arcs being at once comprehended under the definition

of the sine or tangent. To follow out the various combina-

tions, would require a fatiguing multiplicity of diagrams ; and
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such labour would still be quite superfluous, because the moJe
of extending or accommodating the results from the general

principle is so easily perceived.

3. The general properties of the sines of compound arcs

may be derived with great facility from Prop. 20. of Book VL
of the Elements. For, since AB.CD+BC.AD=AC.BD, it is

evident that ^AB.iCD-|-iBC.iAD=:^AC.|BD; but (cor. 1.

def. Trig.) the semichord of an arc

is the same as the sine of half the

arc, and consequently, by substitu-

tion, sin \Pi.^sin\CT> + sin\\^Q sin

iABCD ±= sin\k^C x sin^J^QT>.

Let iAB=±L, iBC=M, and iCD
i=N ; wherefore iABCI> = L+
M + N, iABC = L + M, and

iBCD=M+ N, and hence the ge-

neral result ; sinljsin^ + siriMsiniJu 4. M -{- N)=:^/w(L-|-IVI)'

5in(M-f-N}, in which L, M and N are any arcs whatever.

This expression, variously transformed, will exhibit all the

theorems respecting sines. For the sake of conciseness, let

the radius be denoted as usual by 1, and the semicireurafe-

rence by tt.

I. Put A=M, B=N, and let L be the complement of A.

Then, cosK sin^ -f sinA sin (A 4-B -f
-—A )

=

sin (-—A -|- A

)

s?n(A4-B); that is, since the sijie of an arc increased by a

quadrant is the same as its cosine, sinh. C05B + cosK sinBzz

5^»(A+B).

2. Let the arc B be taken on the opposite side, or substitute

—B for it in the last expression, and sinAcosB—cosAsinBzz-

sin{A—B).

3. In art. I, for A substitute its coniplement ; theft

sin{A-^B)=zsinQ-A+B)=sin[^+ A—B)=cos{A^B)yand

hence cosAcosB-^sinAsiuB=cos(A—B).

4. In art. 2, likewise substitute for A its complement, and

the result will become cosAcosB^-^siuAsinBz^ cos(A-^B).



NOTES AND ILLUSTRATIONS. 367

5. In art. 1, let ArrB, and 2sinAcosA=zsin2A,

6. In art. 4, let A=B, and cosA''-sinA''=zcos2A.

7. In art. 3, let A=B, and cosA'^-\-sinA'^:=il.

8. Add the Jbrtnulce in art. 1. and 2, and 2sinAcosB = 5i»

(A+B)4-5f«(A—B).
9. Subtract the Jormidce of art. 2. from that of art. 1, and

2cosAsinB=s?n{A'\-B)—sin{A—B).

10. Conjoin the Jbrnmlce of art. 3. and 4/, and 2cosAcosB=!:

cos{A+ B
)

+

cos (A—B )

.

11. Take the Jormu/cu of art. 4. from that of art. 3, and

2sinAsi7i'B=cos{A—B)—co5(A+B).

12. In art. 8, let B be the complement of A, and 2««A*=

sin (A+ A)-{-sin (A—- -f A)= 1

—

cos^Az^versQA.

J 3. In art. 9, let B be the complement of A, and 2cosA'z::

5/w(A4- -— A)

—

{sin

A

\'A)=zl-\-cos2A=suvers2A.

14. In art. 5, instead of A substitute its half, and 2sin\A X
cos^AzrsinA^

15. In art 6, likewise substitute the half of A for A, and

{cos^AY— {sin\Ay:=:cosA.

16. In art. 12, for A substitute its half, and 2(«n^A)*=
1

—

cosA, or sinlAzz \/{\{ i

—

cosA))z=\/\versA.

17. Make the same substitution in art. 13, and 2(co5^A)'=

i-f-co^A, or cos\A=:x/{{{\-^co6A))=:^{suversA.

18. In art 8, transform A and B into A-[-B and A—B, and

consequently, for A-}-B and A—B, substitute 2A and 2B ;

then 2sin{A -{- B)c<^5(A—B) = sin2A-{~sin2B, or ^m(A4-B)
cos{A^B)=^si7i'2A+sin2B).

19. Make the same transformation in art. 9, and 2co5(A-f- B)
cos{A— B) = si7i2A— «'«2B, or cos(A + B)sin(A— B) =
\{sin2A—sin2B).

20. Repeat this transformation in art. 10, and 2cos{A^B)
^;o5(A--B)= cos2A + cos2B, or cos{Aj^B) cos{A ^ B) =
^cos(2A+cos2B).

2 ! . The same transformation being still made in art. l ]

,

2sin{A+ B)5f;<A_B)=co62B—C052A , or sin(A -}- B)sin{A--B)z=

i{cos2B—coi,2A).

22. Suppose L=:N=:B, and M=A-—B; then the general
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expression becomes sinB'^siu{A~B)sin{A-{-B)=zsinA\ or
sin{A~^.B)si7i{A—B ) =:sinA'-—smB\

23. Instead of A in the last article, take its complement, and

sin{'^- A^B)si7i(^- A—B) = cosA^—sinB\ or cos(A— B)

cos(A-{- B)=zcosA'—sinB'»

24. Compare art. 21. with 22, and l(cos2B^cos2A)=:smA^-^
sinB\

25. Comparing likewise art. 20. with 23, and l{cos2A+
cos2B)=:cosA'-—sinB^.

26. Resolve the difference of the squares in art. 22. into its

factors, and 5m( A-|. B)sin(A~^B)=:(si7iA^sinB)(sinA—siiiB).

27. Make a similar decomposition in art. 23, and co*(A4-B)

cos(A—B)= ( C05A+ smB){cosA—sinB )

.

24-. In art. 18, instead of A and B take their halves, and
sinA+sinB=2sinl{A-{.B)cosl{A'^B).

25. Make the same change in art. 19, and sinA-^sinBz=

25fw^(A—•B)co5i ( A-f B).

26. Change likewise art. 20, and cosB-{.co$A=z2cosl(A-\.B)

co4(A~-B).

27. Do the same thing in art. 21, and cosB— cosA = 2sin^

{A--B)sin\(A+By

From the third additional proposition to Book III., a very

simple expression may be derived for the sum of the sines of

progressive arcs. Suppose the diameter AO were drawn ; then

BE + CF+ DG = HG = HO+ DO, or 2si7iAB-{. 25mAC

+

2si7iAD = HO + sinADy and siTiAB + si7iAC -}- si7jAD =
1H0+ IsinAD = iAO.taiiBAO+ ^siriAD, Wherefore, in

general, si7i a -j- sin2a -\- shiSa sItv 7ia =: \vers 7ia.cot^a-^

\sin Tia. Hence the sum of the sines in the whole semicircle

is=:c(H\a. Thus, if the sines for each degree up to 180°, the

radius being unit, were added together, the amount would be

114,58866.

4. On examining the formation ofthe successive terms of the

first and second tables, it will appear that the coefficients are

certain multiples of the powers of 2, whose exponents likewise

at every step decrease by two. It is farther manifest, that if 1

,
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A, B, C, &c. 1, A', B', C, &c. and 1, A\ B\ C\ &c. denote the

multiples corresponding to the arcs 7i.a, n + i««» ^^^ n—~i.a ;

then A + 1=A', B+ A'=B', C+B'r: C, &c. Whence the va-

lues of A, B, C, &c. are determined, either by the method of

finite differences, adopting the appropriate notation, or from

the theory of functions. Thus in the first table, AA=1, and

A = «— 2 ; AB=A'=»—3, and 6.=^=^^; AC = B'=

, and C= ^ —

T

Wherefore m general

(1.) Sin na=2^^^c"~^^—;z^2.2"-^c"-^^+
^^'~^^^""^

,2>^V-^^~

n—^,n—5.W—6^„ 7 „ ? . ^— 2""*^C'^^5+ &c.

( 2. ) Cos nazz2»-i.c"—«.2"-^.c«-2^ !!:!!^.2«-^c"-!r~

,2?^^.c"-^+ &c.

The third and fourth tables are evidently formed by multi-

plying constantly by 2cos 2a or 2—4s*, and subtracting the

term preceding ; or the multiplication by 4s* produces the se-

cond differences of the successive quantities. Hence in the

former, AaA=4w", AAB=4A", &c. ;

wherefore AArrw-f-i.w-f-i, and A := ^ ^o •—

5

AU-2( -g -^J-, ^ ,

_ _, n.n—i.w+T.w—3.W+3 ^ . . _ .1 . , ,

and B= J^ . ^
-^--. But m the fourth table,

2.3.4.5

AAA+4, AAB+4A", AAC'=4B''; and consequently AA =r

2w4-2, andA=| ; AB=S(2.«+2.w-t-2)==~i-^^^^±^, and

^_«\«--2£2+_2 Wherefore in general,
2.«3.4

w*—I 3 , w*—I w*—9 5

2.3 2,3 4-5
(3.) Sm nazzn.s^n s^-^n— ^s

2.3 4.5 6.7 ^
B
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(4.) Cos «a=l «*+- . 5* . -^6^4-. &c

In the fifth and sixth tables, the coefficients are evidently

the same as those of the power of a binomial, only proceeding

from both extremes to the middle terms. Hence, according

as n is odd or even,

(5.)
2«-i sin u''=z±=sin na=fin.sin{n—2)a:=i=:nJ^—sin(n-4!)az:f:

n—I n—2 . ^^ „n ._,

—

sin(^n—6)adb:«&c. ; and

2«—
1 sin a" =r=t:co5 tw, =+= n.cos(n—2)az±zn!^— cos{n—^jaqR

n. . co5(«—6)«, &c.
2 3

Again,

(6.) 2»-i cos a"=:cos na^n,cos(n—2)aJ^n, ~-—^cos{n—4a)4-

n—I n—2 ,
71. .—-;

—

»cos{n—6}a, &c.

In these three expressions, half the last term, which corre-

sponds to the middle in the expansion of the binomial, is to be

taken, when n is an even number.

It will be satisfactory likewise to subjoin an investigation of

the sine of the multiple arc, as derived from the Theory of

Functions.

It appears from inspecting the successive formation of the

sines of the multiple arcs, 1. that the odd powers only of j oc-

cur ; 2. that the coefficient of the first term is only n, and the

other coefficients are itR functions of third, fifth, &c. orders

;

and 3. that since, in the case when wrzi, the rest of the coef-

ficients evidently vanish, those coefficients in general, as af-

fected by opposite signs, must in each term produce a mutual

balance.

Let therefore sin jiazzn.s-^-n.s^J^n^s^ S:c. ; where s denotes



NOTES AND ILLUSTRATIONS. 371

/ in mil

the sine of the arc cr, and n, n, n, &c. the successive odd or-

ders of the functions of w. It is evident, from (Prop. 3. cor. 2.

Trig.) that, by substitution

(«+ i)+(«--i))5+^(«+ i)+ («-i))53+((n+ i)+ (n-i)J5S

/ /// /////

4- &c. —^^/{^s^) sin na=(2—s^—^s\ &c.) {ns+ns^-^-ns^, &c.)

=2«5+(2«—7^)$3_|.(27^_?^__J-w)s', &c. Now, equating corre-

sponding terms, and rejecting the powers of 5, we obtain these

general results

:

/// /// /// / «/// //y/ ///// /// /

27l'ez=2n^; (w-}-l)-J-(?2-f.I)=2W—W; (72 -f.I)-|-(w

—

l)=27t—71 ^W.

It remains hence to discover the several orders of the func-

tions of w.

1. The equation 2n'=^2n' contains a mere identical proposi-

tion ; but other considerations indicate that n must always de-

note the first term, or that the first function of w is w itself.

Ill in III I

2. The equation (w
-J- 1) -j-(w—1)=2«—w fixes the conditions

of the third function of w, which, from the nature of the rela-

tion, is obviously imperfect, and wants the second term. Put

therefore, ?i"'=«?z^-f./3w ; and, by substitution, 2«w^-{-6««w-f-

2/3w=2fitw^-f-2/3w—w. Equating now the corresponding terms,

and 6«=—I, or «=—^; but <«-f-/3=o, and therefore /3=-}-|..

/// w'—

I

Whence n=.=—|.?z3-|- ^n=—m.-^^ •

.
iiiii mil 'III! m 4

3. Again,m the third equation, (w+ 1) -t-(w—i)=2w--w—Jw,

mil

substitute ?z=«n5-{-/3«3-t-yn, and the conditions of the fifth or-

der of the function of n will be determined by this compound
expression : 2xn^ -f (20« -f- 2^)n3+ ( 1 0^ -f 6/3-}- 2y)»= 2«»^-f-

(2|3-t-|)n3-t- (2y— I-
— t)w. Equate the corresponding terms,

and 20«-t- 2/3= 2/34- 1., or «=—=:—__ In like manner,

10^-1-6^4-27=27—^—;^, and ^= —y^—^—^V= —^ =
1Q 9

^^^^^
; but ^+/3+ 7 = 0, whence 7=53^5 . . : . . ; ..
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Collectively, therefore, r=^^-^Q^^+g^^=;,;!^^.^!=zL^^
2.3.4..5 • 2.3 4.5

Whence, resuming all the terms, sin na=:ns— w. - ""-js ^
«*—1 w*i-9 .

,'

«• a g
— . rv-s —&c. as before.

From the expression for the sine of a multiple arc, may be
deduced the series for the sine of any arc, in terms of the arc

itself, and conversely. Let na=A, and therefore ar=— ; if «
n

be supposed indefinitely great, then a must be indefinitely

sniall, and consequently in a ratio of equality to s. Whence,
A

substituting A for na, and— for s in the general expression,

there results, 5f«A==A---^!=^A*+^!=L^!^!=I?.:^_&c.
.^,3 n*^ 2,3 4.5 n*

But n being indefinitely great, the composite fractions—^—

&c. are each in effect equal to unit, which forms their.a '

extreme limit. Consequently, assuming that modification.

Again, putting a=rA and 5=8, suppose n to be indefinitely

small, and sinnaz=:naz=:nA ; whence, by substitution,

«A = »S-«.'il=i S3+ «.—.'-^ S=_, &c. and

A=S - !^ S^+ n."-!^'!^^^ S5-&C.
2.3 '

2.3 4.5

But, if 72 vanish from all the terms, the series will pass into

a simpler form.

A= S'+ ^-S'+ll. S5+ -il^-?^ S7+ , &c.
' 2.3 ^ 2.3.4.5 ^ 2.3.4.5.6.7

'

By a similar investigation, the series for the cosine of an arc

is likewise found.

^
1/2^2.3.4 2.3.4.5.6 "*
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These series' are very commodious for the calculation 6f

sines, since they converge with sufficient rapidity when the

arc is not a large portion of the quadrant. Though the method

explained in the text is on the whole much simpler, yet as the

errors of computation are thereby unavoidably accumulated,

it would be proper at intervals to calculate certain of the sines

by an independent process.

The series' now given furnish also various modes for the rec-

tification of the circle. Thus, assuming an arc equal to the

radius, its sine is, 1-
1 1 ^— &c. =.84<147l, and its

2.S ' 2.3.4^.5

cosine is, 1— -
i -i—&c.= 440302. But that arc evidently

2 '2.3.4

approaches to 60*, of which the sine is \/l=.866025, and the

cosine .500000. Wherefore (Pr. 1. Trig.) the sine of the dif-

ference of these two arcs is .866045X -540302— .81.1471 X
.500000= .047 1 8, and consequently, by the series, that inter-

val itself is .0472. Hence the length of the arc of 60° is

1.0472, and the circumference of a circle which has unit for

its diameter is 3 X 1.0472=3.1416; an approximation extreme-

ly convenient.

5. The Fifth Proposition may be otherwise demonstrated from

the corollaries at p, 363.

Let AB and BC, or BC, be two

arcs, of which AB is the greater

;

make AD, or AD', equal to BC,

and apply the respective tangents.

Because OAE is a right-angled tri-

angle, and OG', OF, are drawn,

making equal angles with OA and

OE, it follows, that OA^—AE.AG':
OA^ : : EG' : AF, and consequently

R^^tanAB . tanBC : R^ : :

tanAB + tanBC : tan{AB -|- BC).

Again, since OG and OF' make
equal angles with OA and OE, it is
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evident that OA^+AE.AG ; OA* : : EG : AF\ and hence

R*+ianABtanBC :1V:'. tanAB-^tanBC : ^an(AB—-BC).

6. Tlie radius being expressed by unit, the sum of the tan-

gents of the angles of any triangle is equal to the number

arising from their continued product. For, let A, B, and C,

denote the several angles of the triangle ; and since two of

these, such as A and B, are supplementary to the remaining

one C, the tangent of A4-B is the same (schol. def. Trig.) as

that of the third angle in an opposite direction. Whence

-

—

^ "v. ^
—n = — tanC, and therefore ian A 4- ta7i B =

— tan C -\- tan A tan B tan C, or tan A -|- tan B 4- i<^^ C =
tan A tan B tan C.

7« The properties of the tangents are easily derived fram

those of the sine&,

-. m » . T> sinA , siiiB sinAcosB-X-cosAsinB
1. TanA-^-tanBzz ^^4-—5= x-

—^ =
' cosA* cosB cosAcosB

(art. 1. N0.3.)*-^<4±^'.
' cosAcoso

2. Change the sign of B in the last article, and tanA—tanBzz

sin{A—B)
cosAcosB

3. Instead of A and B in art. I. substitute their complements,

andco«A+.o/B = £i'?i^.
* smAsmp

4. Make the same substitution in art. 2, and cot B— cot A-=:

sin{A—B)
sinAsinB

5. Tan(A+ B) = ^1(1^ '=^^''' ^' "^^ *' ^^^ ^'^

sinAcosB+cosAsinB
^ ^^. ^.^.^^^ ^ ^^^ ^ ^^^g ^^,

cosAcosB—smAstnB » o

, . ^ . , A . T.% tanA-^tanB cotB-\-cotA
dnAsznB.giyes tan(A+B)= i^^^^A^anB^co^ co^A-l*

6. Change the sign of B in the last article, and /o«(A—B)=:
fanA—tanB _ cotB—cotA

IJ^tanAtanB "" cotB cotA+V
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7. Divide the expression in the first article by that in the se-

, , sin(A+B) tanA-^-tanB cotB+ cotA
cond, and . .

' p{= ^ a ^—15= ^i> —rx-
sin{A—B) tanA—tanB cutB—cotA

8. In the last article, change the sign of B, and instead of A
•

, .

.

, ^ , cos{A+ B) cot B — tan A
take Its complement, and —/a pv= . t. . . r> =^ '

cos{A-^B) cot B 4- ^aw B
cotA—ta7iB

cotA-\- tanB'

9. Divide the expression of art. 12. NO. 3. by that of art. 5.,

1—co*2A__ 2s2mA* ___sinA__

sin2A "^^sinAcosA cosA ""

10. Divide the expression of art. 5. in the same number, by

^u . c .10 J sin2A 2sinAcosA sinA ^ ^that of art. 13. and =-~— .rA = o a*—=—r=^«wA.
1 -|- C052A 2co5A* cosA

11. Multiply the expressions of the tviro preceding articles,

- 1—cos2A , A 2 ^ A / 1—C052A

12. Decompose the expression in art. 9., and tanAzz . —

^.J^ = cosec2A—co^2A.
stn2A

13. In the last article, change A into its complement, and

co^A= coscc2A+ co/2A.

14. Subtract the last expression from the one preceding it,

and tanA—cotA=—2co^2A, or tanAzzcotA—2co^2A.

15. In art. 9, 10, and 11, for 2A and A, take A and ^A, and

i4 — 1

—

cosA __ sinA _ /i—cosA
tan^A^

siwA ""l+cosA""V i-f-cosA*

16. Multiply the expressions of art. 1. and 2., and(fawA+ifawB)

(tanA^tanB):^tanA^^tanB^= ^^L^^±^^^^,

17. Multiply the expressions of art. 3. and 4., and vco^B+co^A)

.A, sinlA—B) sinAJfB)
{cotB^cotA) = cotB^^otA'= -^IfH^SB^^^-

18. Divide art. 28. of NO. 3. by art. 29., and^f]^|±^ =

2sin\ (A+B ) cos\ (A—B

)

_tanl{A+B)
2coi\[A 4-B ) sin\ (A—B

)

"tan^ (A—Bf
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19. Divide art. 30. ofthe same NO. by art. 31 ., and ^?^2±£^ -

cosB—cos A.

2cosl{A+ B) cq4(A~-B)_ cotl (A+ B

)

2sinl{A+ B) ;s2«i(A—B)"" ^a«i(A—B )

*

Since by art. 14. cotA—2cot2A=ztanA, if the arc A and its

compound expression be continually bisected, there will arise

:

\dot\A— cot Azz^tan^A

fcotfA-^cot^A=z-^tanfA

^cot^A—~co/;^A=|^awfA
&c. &c. &c.

Wherefore, collecting these successive terms, and observing the

effects of the opposite signs, the general result will come out,

1 A 1 A
^^J^ot—^^cotAzzlianlA+^tanfA+^Jan^,A . . . + -^ian~.

If n be supposed to become indefinitely large, then

1 ,A 1 1 . „. . , 1 1 2» 1— • cot ^^zz¥"=¥'—li ''
"^^'"^"'^^^

2^- A =T«- A' ^'^ A '

tan
2" 2"

and consequently j- zzcotA-^-ltanlA-i-ftan^A-i- Ifan^A ^
^ya«^A+&c.

This neat and very simple investigation is given in the se-

cond French edition of Cagnoli's Trigonometry, printed at

Paris in 1800, and forming the completest treatise which has

yet appeared on the subject. It was also, and nearly about

the same time, communicated by my friend Mr Wallace of the

Royal Military College at Sandhurst, a geometer of the first

order, to the Royal Society of Edinburgh ; another instance

of that accidental coincidence which has occurred so frequent-

ly in the history of mathematical discovery.

8. It is obvious that the terms of the series for the tangent

of the multiple arc are formed out of the coefficients of the

powers of a binomial. Wherefore,
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{1.)Tanna-- ^ ^
n^—i , n—I n—2 n—5^,i—n 1^ J- n, -7:- •——-/*—&c.
2 2 3 4

Hence also,

„ V „. , . w—I n—2,„ , ?i—I w—2?i—8 n—4«,

(8.) Szw na=:cnfnt-^7i.-- t^-{.Ji,—~ ;:
— .

/o—
^ ^ 2 3 2 o 4 • 5

&c.) and

(9.) Cos na = c«(l—n. /* + w. . . /4—

^

—

^J^T^.^—

3

^
7?—4 «—

5

.C o N

"• 2 3*4*5^6 *^

9. The series for the tangent in terms of the arc, is easily de-

rived, by the theory of functions, from the expression of the

tangent of the double arc. Since ^ffw2a=: ^ =2^4- 2/3 j.
I t

n^ 4- &c. Put tzza-{- Aa3 ^ Ba^ + &c., and, by substitu-

tion, tan2a zz 2a -^ sAa^ + 32Ba^ -f &c.= 2a + (2A+ 2)a3^
(2B + 6A -J- 2)a^-}-, &c. Equating, therefore, the corre-

sponding terms, we obtain, sA = 2A + 2, or A = i, and
52B = 2B + 6A + 2, or soB = 4, and B = ^. Whence,

in general, /«»a=a-J-§-a3-|,^a^ &c. Again, revert this se-

ries, and az=t--^i^+j.i^-^^t^+&c.

The last series affords the most expeditious mode for the

rectification of the circle. Assume an arc a, whose tangent t

is one-fifth part of the radius, and tmiazz —J^ — 1~? •^ 1—6/^+^* ~" 119*

consequently (Prop. 5. Trig.) tajt (4a — 45°) = -i-=r

.004,184,100,418. Wherefore, computing the terms of the
series, ^=.197,395,559,850, and 4a=.789,582,239,400. In
like manner, we find 4«--45°=.004, 184,076,000, and hence
the difference between these values, or .785,398,1634 exhibits

the length of the octant ; which number, multiplied by 4,

gives 3,1415926536 for the circumference of a circle whose
diameter is 1

.
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10. Proposition sixth, with its corollaries, would furnish a
simple quadrature of the circle. The sine of a semiarc being
equal to half the chord, it follows that the ratio of an arc to

its chord is compounded of the successive ratios of the radius

to the cosines of the continued bisections of half that arc.

Assuming therefore the arc of 60°, whose chord is equal to the
radius, the logarithm of the ratio of the circumference of a
circle to its diameter will be thus computed

:

Arith. comp. log. Cos 15° = .0150562219

Co* 7* 30' = .0037314339,

Cos 3° 45' = .0009308547

Cos 1° 52' SO" = .0002325891

Cos 0° 56' 15" = .0000581395

Cos 0° 28' 7i" = .0000145344

One-iliird ofthe last term, ~ .0000048448

Logarithm of 3 . = .477] 212547

.4971493730, which

exceeds only by 3 in the last place the logarithm of

3,l4l59i654. As the successive terms come to form very

nearly a progression that descends by quotients of 4, the third

of the last one is, for the reason stated in page 245, consider-

ed as equal to the result of the continued addition.

» 11. An elegant mode of forming the approximate sines cor-

responding to any division of the quadrant, may be derived

from the principles stated in the calculation of trigonome-

tric lines : For the successive differences of the sines for the

arcs A— B, A, and A+ B, are sinA. — sin(A — B,) and

5fw (A 4. B) — sin A; and consequently the difference be-

tween these again, or the second diflference of the sines, is

sin(A 4. B) 4- 5m(A — B)~2«V/A=(Prop. 3. cor. 3. Trig.) -*

2versBsinA, The second differences of the progressive sines

are hence subtractive, and always proportional to the sines

themselves. Wherefore the sines may be deduced from their

second differences, by reversing the usual process, and recom-

pounding their separate elements. Thus, the sines of A~E
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and A being already known, their second and descending dif-

ference, as it is thus derived from the sine of A, will combine

to form the succeeding sine of A+ E, which ia—^versBsinA^

(sinA—sin(A—B) ) -f-
sinA. It only remains then, to deter-

mine, in any trigonometrical system, the constant multiplier

of the sine, or twice the versed sine of the component arc.

Suppose the quadrant to be divided into 24 equal parts, each

containing 3° 45' or 225'. The length of this arc is nearly

OO 111 .11
^ •4o='|^» ^"^ consequently twice its versed sine =(t^)'

—

( __) in approximate terms. If the successive sines, corre-
Zoo

sponding to the division of the quadrant into 24? equal parts,

be therefore continually multiplied by the fraction —-, or di-

vided by the number 233, the quotients thence arising will

represent their second differences. But, since 233 is nearly

equal to 225, or the length in minutes of the primary or com-

ponent arc, and which differs not sensibly from its sine,—this

last may be assumed as the divisor, the small aberration so

produced being corrected by deferring the integral quotients.

In this way the following Table is constructed.

It will be seen that the number 225, which expresses the

length of the component arc, and therefore represents very near-

ly its sine, is here employed as the constant divisor. Thus, 225,

divided by 225, gives a quotient 1 ; and this, subtracted from 225

leaves 224, which, being joined to 225, forms 449, the sine of

the second arc. Again, 449 divided by 225, gives 2 for its in-

tegral quotient, which taken from 224, leaves 222 ; and this,

added to 449, makes 671, the sine of the third arc. In this

way, the sines are successively formed, till the quadrant is

completed. The integral quotients, howev«er, are deferred

;

that is, the nearest whole number in advance is not always ta-

38
ken. Thus the quotient of 1315 by 225, is 5— , which ap-

preaches nearer to 6, and yet 5 is still retained. These ef-

forts to redress the errors of computation are marked with

asterisks.
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Parts of the

quadrant.
Arcs. Sines. IstDiff. 2d Diff. Arcs.

1 225' 225 224 1 3" 45'
r» 450 449 222 2 7 30
3 675 671 219 3 11 \5
4 900 890 -215 4 15

5 1125 1105 210 5 18 45
0^ 1350 1315 205 5 22 30
7 1575 1520 199 6 26 15
8 1 800 1719 191 * 7 30

9 2025 1910 183 8 33 45
JO 2250 2093 174 9 37 30
1

1

2475 2267 164 10 41 15

12 2700 2431 154 * 10 45
13 2925 2585 143 11 48 45
14 3150 2728 131 12 52 30
15 3375 2859 119 * 12 56 15

]6 3600 2978 106 13 60
17 3825 3084 93 13 63 45
18 4050 3177 79 14 67 30
T9 4275 3256 65 14 71 \5

20 4500 3321 51 14 75
21 4725 3372 37 * 14 78 45
22 4950 3409 22 15 82 30
23 5175 3431 7 13 86 15

1 - 5400 3438 15
(

90

Each of the three composite columns, we may observe,

really forms a recurring series. In the second quadrant, the

first differences become subtractive, and the same numbers

for the sines are repeated in an inverted order. By continuing

the process, these sines are reproduced in the third and fourth

quadrants, only on the opposite side.

Such is the detailed explication of that very ingenious mode,

which, in certain cases, the Hindu astronomers employ, for

constructing the table of approximate sines. But, ignorant

totally of the principles of the operation, those humble calcu-

lators are content to follow blindly a slavish routine. The
Brahmins must, therefore, have derived such information from

people farther advanced than themselves in science, and of a
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bolder and more inventive genius. Whatever may be the pre-

tensions of that passive race, their knowledge of trigonometri-

cal computation has no solid claim to any high antiquity. It

was probably, before the revival of letters in Europe, carried

to the East, by the tide of victory. The natives of Hindustan

Baight receive instruction from the Persian astronomers, who

were themselves taught by the Greeks of Constantinople, and

stimulated to those scientific pursuits by the skill and liberali-

ty of their Arabian conquerors—This opinion seems to derive

strong confirmation from the Lilawati, a very meagre and de-

fective practical treatise of arithmetic and geometry, which I

had some time since an opportunity of examining, with the

kind assistance of the learned Dr Wilkins, at the library of the

India House. Of that singular performance, a translation from

the original Sanscrit by Dr John Taylor, printed at the ex-

pence of the Literary Society at Bpmba}', has just reached us,

and will enable the European mathematicians, who are ac-

quainted with the state of science at the revival of letters in

Italy, to reduce the lofty pretensions of the Brahmins to their

just level. They will perceive the utter nakedness of a sys-

tem, which, in the language of ignorance and oriental exagge-

ration, the Hindus represented as endued with a sort ofmagical

virtue, that would enable the person who understands it " to

tell, in the twinkling of an eye, the number of leaves on a tree,

or of blades of grass in a meadow, or the number of grains of

sand on the sea shore."

The principles before stated lead to an elegant construction

of the approximate sines, entirely adapted to the decimal scale

pf numeration, and the nautical division of the circle. Suppose

a quadrant to contain 16 equal parts, or halfpoints ; the length

22 111
of each arc is nearly—^•^:;—=—-, and consequently twice its

ver&ed sine is(— )*, or, in round numbers, — , It will be
1 1-^ 105

sufficiently accurate, therefore, to employ 100 for the constant

divisor. The sine of the first being likewise expressed by 100,^

let the nearer integral quotients be always retained, and the

sine of the whole quadrant, or the radius itself, will come out
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exactly 1000. The first term being divided by 100 gives 1 for

the second difference, which, subtracted from 100, leaves 99

for the first diflference, and this joined to 100, fornns the second

term. Again, dividing 199 by 100, the quotient 2 is the se-

cond difference, which, taken from 99, leaves 97 for the first

difference, and this added to 199, gives the third term. In

like manner, the rest of thq terms are found.

Half
Arcs. Sines. IstDiff. 2d Diff. Excess.

Correct

points. Sines.

1 5« 3?i' 100 99 1 3 97
2 11 15 199 97 2 4 195
3 16 521 296 94 3 5 291
4 22 30 390 90 4 6 384
5 28 7k 480 85 5 7 473
6 33 45 565 79 6 8 557

7 39 22i 644 73 6 9 635 ^

8 45 00 717 66 7 10 707
9 50 37

1

783 58 8 9 774.

10 56 15 841 50 8 8 833
11 61 52| 891 41 9 7 884
12 67 30 9^^ 32 9 6 9'^6

13 73 7h 964 22 10 5 959
14 78 45 986 12 10 4 982
15 84 22| 998 22 3 995
16 90 00 1000

The errors occasioned by neglecting the fractions accumu-

late at first, but afterwards gradually diminish, from the effect

of compensation. The greatest deviation takes place, as might

be expected, at the middle arc, whose sine is 707 instead of

7l7. Reckoning the error in excess as limited by lO, and de-

clining uniformly on each side, the correct sines are finally de-

duced. The numbers thus obtained seldom differ, by the

thousandth part, from the truth, and are hence far more accu-

rate than the practice of navigation ever requires. This sim-

ple and expeditious mode of forming the sines is not merely

an object of curiosity, but may be deemed of very consider-
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able importance, as it will enable the mariner, altogether in*

dependent of the aid of books, to the loss of which he is often

exposed by the hazards of the sea, to construct a table of de--

parture and difference oflatitude, sufficiently accurate for every

real purpose.

12. In trigonometrical investigations, it is often requisite to

determine the proportion which the difference of an arc bears

to that of its related lines. With this view, let A denote the

increment or finite difference of the quantity to which it is

prefixed.

1. In art. 29. of NO. S. change A into A+AA, and B into

A ; then will

AsinA=9,si?i\6,Acos{^PsL-\-\di.Ay

2. Make the same change in art. 31. of that number, and

AcosA=—25mJ^AA.5m(A4-iAA),

3. In art. 2. of NO. 7. let a similar change be made, and

.. . sinAA
AtanAzz .

cosAcos{A-{-AA)

4. Do the same thing in art. 4>. and

. . sinAA
AcotA=

sinAsin{A-\. aA)

5. In art 22. of NO. 3. make a like substitution, and

AsinA^= sinAAsin(2A+ aA).

6. Let the same change be made in art 23., and

Aco5A*=—sinAAsin{2A-\-AA).

7. Do the same thing in art. 16. of NO. 7. and

^ j__5i«AA(5m2 A-f AA^
'~

cosA^cos A+ aA)*

8. Lastly, let a similar change be made in art. 17. of that

number, and

sinA A(sin 2A 4-^A)
AcofA^= : ^^ = •

stnA^sin{A~\-AAy-

If the differences be conceived to diminish indefinitely and

pass into differentials, these expressions, in coming to denote

only limiting ratios, will drop their excrescences and acquire

a much simpler form. Thus, adopting the characteristic dj
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t

^Ince the ratio of an arc to its sine is ultimately that of equa-

lity, and the sine of A+g?A may be considered as the same
with the sine of A ; it follows, that

1. d smA—-\~cosAdA,

t2. d cosA=z—sinAdA.

3. dtanA=+.^^ .

cosA^

4. d cotA =—
StnA^

.; , ;

5. d, sinA^—
-f-

2sinAcosAdA^

6. dcosA^zz—2sinAcosAdA.

2tanAdA
7. dtanA^=z^

S. dcotA^zz^.

cosA"-

2cotAdA

sinA^

J 3. Since, by NO. 12. d si?iA=cosAdA, or the variation of

the sine of an arc is proportional to its cosine ; it follows that,

near the termination of the quadrant, the slightest alteration

in the value of a sine would occasion a material change in the

arc itself. Again, from the same Note, d tanA=——-, or the
cosA"-

Tariation of the tangept is inversely as the square of the cosine,

and must therefore increase with extreme rapidity as the are

approaches to a quadrant.

14.. It is convenient to reduce the solution of triangles to al-

gebraicJbrmulce. Let a, h and c denote the sides of any plane

triangle, and A, B, and C their opposite angles. The various

relations which connect these quantities may all be derived

from the application of Prop. 11.

o. But, since (art. 16. NO. 3.) sin\A.'-=i\{i—cosA\ it fol-

lows, by substitution, that «n|A'=f^£Z^!:z£!±^

-

—

}-.—^=:L_L 11 x_/ and therefore, s denoting the
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setniperimeter, Sm|A* = (f— M^—g) . ^j^jch corresponds to

Prop. 14.

3. Again, because (art. 17. Note 3.) cos\A^z=\{l+cosA),

by substitution, cos^A' = ^
^^

-=^—^^^ =

V. \ -r ^''^^^ ^ ' ^ % and consequently

Co5|A'=: ^-T—^; which agrees with Prop. 13.

4. The second expression being now divided by the third,

gives tan^A"^ =4 ^-^—', corresponding to Prop. 12. •

These are theJbrmulce wanted for the solution of the first

case of oblique-angled triangles. To obtain the rest, another

transformation is required.

5. It is manifest that sinA'zz 1~cq5A'=
^^'<^'—(^'+g'—«')^

4T*
and consequently, by Note 5. Book VI., sinA'^ = -—-^ or

o c ,

2T 2T
sin A z= -7- • Fcg: the same reason, sinB =—, and hence

be ac

^?^=-? ; which corresponds to Prop. 9.
sino b

6. Again, by composition.'^^^= |=|. and therefore,

by art. 18. Note 7-

a^ tani{A-^B)
^^^^^^ ^ ^j^j^ p ^

a+b tan^{A+B)' ^ *

7. Lastly, transforming the first expression, there results,

a = ^(b^+c^-^2bc co5A)=>/( (^—c)*4-2^c ver^A)

= >/ ( (b+cy^2bc{l-\-cosA)).

The iprecedmg Jbrmulce will solve all the cases in plane tri-

gonometry ; but, by certain modifications, they may be some-

times better adapted for logarithmic calculation.

2c
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8. Divide the terms of art. 6. by a, and ?^i(^~^)= ± .

!etA=: tanx, andf^-t^^l^j-f^ ^^ = (art. 6. Ko, 7.)

^aw (45°-^^). Wherefore,— zz tan x, and tan(^5°—x) =
ianlC tanl(A—B)z=tanlC cot(\C-\-B)=

ta7i\C(—cot(\C+A)).

9. Again, from art. 7. «= >/ ( (^^-tc)*+2^c versA)zs

2bc
(h—<?)'V^(1+ /T—w. wr^A) ; consequently find tan xzs

X^—-y' vers A-zz^-r—dn\Ay and a •=. (h—c) secxzz^^^^^.
C C COS X

10. But the expression in art. 1., bya different decomposition,

2bc
^ivesa=:-\/((^+c'-26c5Mver5A))=:(5+0V'(^""7AX~T^ ^"*'^^*^) i

wherefore find sin x — X-,— VsmersA =r 2 ~- cos\Ai and

11. Other expressions are likewise occasionally used. Thus,

by art. 1., 2bc.cosA-=zb^-\-c^—a*, or c'

—

2bc»cosAzza^—5*, and,

solving this quadratic, we obtain czz b cosA z±z \/ (a* — 6^4-

b^cosA^) zz b cosAz±ZA/(a''—b'- sinA^, or c=^ cosAztz\/{{a+b

sinA){a-'bsinA) ). When two sides and an angle opposite to

one of them are given, the third side is thus found by a direct

process.

12. From art. 5., c=za-^-x ; but C being a supplementary

angle, its sine is the same as that of A-f-B, and consequently

.sinAcosB^cosAsinB. t, • -i . z*
c = a{ —J-^ ^ ). By a similar transformation,

__ sinC __ ,
sinC v__ a

"" A7«(B+C)"" ^sinBcosC-{-cosBsinC''^cosB'^-smBcotC'

;S. Lastly, from art. 3. of Note 7, cotA+coiC = -J~^t§^^
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-, . ^f

^

=: -L-y and therefore cotX = -^—^01 C =

b—a cosO . m asinQ, ,

—7^', or tan A =r , r-^^i
a smC —a un\j

If the angle A be assumed equal to 90°, the preceding^or-

wm/<^ will become restricted to the solution of right-angled

triangles.

14. From art. 1., co*A= 0= -"H^'"~^'; whence, a*=i*+c%

which expresses the radical property of the right-angled tri-

angle.

15. From art. 5.,-S^ =— , and consequently sin B =—

,

which corresponds with Prop. 7.

,_ . . ^ ^, . , b sinB sinB ,

16. Agam, from the same article, —= . ^ =—5, ana°
c stnC cosB

therefore tan B =:—= cotC,
c

For the convenience of computing with logarithms, other

expressions may be produced.

17. Thus, from art. 14., i*=a'—c*, and hence

bz=^/((a+c){a^c)).

c* c
18. Since a^=zb* (1— -^), put j- zztan x, and a=.b(sec c)=:

b

cosx'

19: Lastly, because 5* = a* (I4. —j-), put— = sin x, and

6 =: a.cos x.

Besides the regular cases in the solution of triangles, other

combinations of a more intricate kind sometimes occur in

practice. It will suffice here to notice the most remarkable

of these varieties.

20. Thus, suppose a side, with its opposite angle and the

sum or difference of the containing sides, were given, to de«
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termine the triangle. By art. 5., a=^4^ = ^^, '^and

therefore ^=-^0^^^^ = ^ sM+sinC = ^'''' ^' ^"^

18 Notes )
(^+02.^'^MB+C)^q4(B+C)_(^+c)cq4(B+C)

'' 2sin^{B+ C)cosl{B--.C] "" co^^B—C) '

"But co5i(B+ C)=sinlAy and hence co4(B—C)='i^+£M^

;

and the difference of the supplementary angles B and C be-

ing known, these angles themselves are hence found.

In like manner, it will be found that sinl{B-^C)=:
{lf—c)cos\A^

a

21. Let a side with its adjacent angle and the sum of the

other sides be given, to determine the triangle. By art. 4.

ianlA'' = ^ -'~~^— and tan |B*= n""^~^
. whence ^a«|A*

s.s—a s,s—6

tanlB^ = £-

—

_^l ^ > and consequently faw|A^«w|B=

Again by art. 1., 2^cco5A=: 5^ + c*— a% or a*

—

b^— c*=
— 2bc.cosA, and adding 2a6 + 26^ to both sides, a^ + 2ab +
g=—c*=2tti4-25'—25c.co5A, or {a-\-b)*—c^z;::2b(a-\-b—c.cosA) ;

whence
( {«+ ^) -j- c)((a + b)—c) = 26(a-f-i

—

c.cosA), and

"" * {a-{-b)—c.cosA

If the sign of b be changed, and the supplement of its adja-

cent angle therefore assumed, we shall obtain

* * c—{a—b) c.cosA— [a—b)

The relation of the sides and angles of a triangle might also

be in some cases conveniently expressed by a converging se-

ries,
^, b smB sinB sinB
Thus — =-7—r =r

a sinA sin{B-\-C) sinBcosC-{- cosBsinC

and consequently b sinB cosC -f- b cos B sin C = a sin B, or

bstnC
^^J!!^^tanB, Wherefore, by actual division, ^««B=

'b cosC cosB'
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—siiiC -i—rSinC cosC H

—

-smCcosC*+ —TsinCcosC^-\-&c.;

and, in substituting the powers of this expression for those of

the tangent in the series of Note 9., we obtain B= — smC-{-

^sinC cosC +5^3(4co5C'— 1

)

sinC + -^{ 2 cos C -^ I) sin C

h b^ h'^ h*
cosC +&€.; or

—

sinC 4- -— sin2Q-\--—sinSC •{-—. sin^Q +
&c.

In certain extrenje cases, approximations can likewise be

employed with advantage. Thus, suppose the angles A and

B to be exceedingly small ; then, by the last paragraph of

page 247, their versed sines are very nearly equal to lialf the

squares of the sines. Wherefore, sinQ, or sin (A+B ) =r (art. 1

.

Note 3.), sinA{\—\sinB^)-\'sinE{l'—\sinA.^) nearly, and con-

sequently, by art. 5., c=(a+ ^) (I

—

\sinK sinB) ; or, the arcs

being nearly equal to their sines, substitute c for a-\- bin the

second or differential term, and c~a^b—|cAB. Again, put

C = TT

—

6, or d = A + B, and {a-\-b){\sinAsinB)=i\siii\sin^

l^zTzf^LQz nearly, orc=a4-i—1^*——7-.

15. Propositiipn twenty-fifth, which is employed with great ad-

vantage in maritime surveying, admits likewise of a convenient

analytical solution. Let the given distances AB, BC and AC be

denoted by a, b and c, and the observed angles ADB and CDB

by m and n; then (art. 5. Note 3.) BD = 5^"?^_?-
*' * Sin m

b sinBCD b sin m sinBAD , b sin m—a sin n
^

, or — -.— = T^.,.^ and -—: :—

~

Sinn asmn smBLu b stn m-\- a sin 7t

sinBAD-^sinBCD _ .
^ lo xr f 7 ^ /a«i(BAD~BCD)

5mBAD4-5f«BCD - ^^''^' ^^' ^"^^^ ^'^ 7awi(BAD+ BCD)-
But the angles ABC and ADC of the quadrilateral figure

DABC being evidently given, the sum of the remaining an-

gles BAD and BCD is given, and each of them is consequent-

ly found. Hence the triangles ABD and CBD are imme-
diately determined.
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This most useful problem was first proposed by Mr Town-
ley, and solved in its various cases by Mr John Collins, in the

Philosophical Transactions for the year 1671. The second so-

lution"'given in the text is borrowed from Legendre.

16. The reduction of oblique angles to their projection on a

horizontal plane, is commonly solved by the help of sphe-

rical trigonometry. It admits, however, of a simple and ele-

gant general solution, derived from the arithmetic of sines.

Let a and b denote the two vertical angles, or the acclivities

of the diverging lines, A the oblique angle which these con-

tain, and A' the reduced or horizontal angle. Since the mag-

nitude of an angle depends not on the length of its sides, as-

sume each of them equal to the radius or unit, and it is evi-

dent that the base of the isosceles triangle thus limited will be

the chord of the oblique angle A, the perpendiculars from its

extremities to the horizontal plane, the sines,—and the hori-

zontal traces or projections, the cosines, of the vertical angles

a and b. The base of the isosceles triangle forms the hypotenuse

of a right-angled vertical triangle, of which the perpendicular

is the difference between the vertical lines. Consequently the

square of the reduced base is equal to the excess of the square

of the chord of A above the square of the difference of the

sines of a and ^, or

(cor. 6. def. Trig.) 2

—

^cosA.—(sin a—sinby^:

(II. 16. El.) 2

—

2cosA—sin a*—si?i b* •\-'2sin a sin bz=i

(2. cor. def. Trig.) cos a^'\-CQS b^ -^^sin a sin b—2cosA:

Wherefore (Prop. 11. Trig.) in the triangle now traced on the

horizontal plane, 2cos a cos b cos A.' zz2cosA—2sin a sin b ; and

multiplying by \ sec a sec b, there results (cor. 4. def. Trig.),

1

.

CosA' =r sec a sec 5 cosA—tan a tan b.

This expression appears concise and commodious, but it

may be still variously transformed.

For vers A' = 1— co5 A' = 1 + tan a tanb—sec a sec b cosA
= sec a sec b {cos a cosb-{'Sin a sin b—cosA)=z

(Prop. 2. Trig.) seca sec b{cos{a—b)—cosA) : whence

2. VersA'zzsec asecb{ versA—vers(a—b).)
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Again, because (2. cor. l.andS. cor. o,Trig.)versA'zz2sm\A'*'

and versA—vers(a^b)z^2sm^:±i±Z^, sin
A-(g--&)^

^e ob.

tain, by substitution,

3. 5i;ziA* = sec a secb(isin^i±J^^Z^. sin
A-(| -f ^)),

Of these JbrmuicBf the first, I presume, is new, and appears

distinguished by its simplicity and elegance. The last one

however, is, on the whole, the best adapted for logarithmic

calculation*

When the vertical angles are skftall, the problem will admit

of a very convenient approximation. For, assumiDg the arcs

a, b as equal to their tangents, it follows, by substitution, that

cosA'=cosA^(l~^a'')>^{l+b^)-<ib^cosA((l+ld'Xl+lb^))—ab

=co5A(l+^rt^4-^6*—)a3, nearly. Whence, by Note 13, the

decrement of the cosine of that oblique angle is

ab—cosA{ia^-^\b^); but

(II. 17. El.) «^=(«_+i).^(«JZ^)S and .

(II. 18. El.) Xa^+xi«=(fL±i)*+(?Lri)-

wherefore the decrement of co^A'zs

Consequently the increment of the oblique angle itself is, hf
Note 13,

Such is the theorem which the celebrated Legendre has gi-

ven, for reducing an oblique angle to its projection on the ho-

rizental plane. It is very neat, and extremely useful in prac«
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tice. But to connect it with our division of the quadrant, re-

quires some adaptation. Let a and b express the vertical aftigles

in minutes; then will ^(l±i)z;«,^iA_(l=i)^ cot\A.^^

denote, likewise in minutes, the quantity of reduction to be

applied to the oblique angle.

17. In computing very extensive surveys, it becomes necessary

to allow for the minute derangements occasioned by the con-

vexity of the surface of our globe. The sides of the triangles

which connect the successive stations, though reduced to the

same horizontal plane, may be considered as formed by arcs of

great circles, and their solution hence belongs to Spherical

Trigonometry. But, avoiding such laborious calculations, for

which indeed our Tables are not fitted, it seems far better to

estimate merely the deviation of those incurved triangles from

triangles with rectilineal sides. For effecting that correction

two ingenious methods have lately been proposed on the Con-

tinent. The first is that employed by M. Delambre, who sub-

stitutes the chords for their arcs, and thus converts the small

spherical, into a plane, triangle. This conversion requires two

distinct steps. 1. Each spherical angle, or that formed by tan-

gents at the surface of the globe, is changed into its corre-

sponding plane angle contained by the chords. Let a and /S

express the sides or arcs in miles ; and the angles of elevation,

or those made by the tangents and the respective chords, will

, , 21600^ , 21600
be (IlL 29. El.) denoted by 94^56'^^ ^ 24856 ^^ ^" minutes,

1350' ^ 1350' , t. u r . , .
or oj7y7-«* and o .q^ 7^* insert these, thereiore, m place of a

and b in the fonrmla of the preceding note, and the quantity of

reduction of the angle A, contained by the small arcs ct and/3,

will be (U -f- fiYianlA— (u— (ifcot\K) Y^xi^^
seconds.

2. Each arc is concerted into its chord : But, by the Scholium

to Proposition VL of the Trigonometry, an arc » is to its chord,
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«*

as 1 to 1— "FjSi; wherefore the diminution of that arc in pass-

ing into its chord, amounts to the 375~600000 ^^^^ ^^ ^^®

whole.

These reductions bestow great accuracy, and are sufficient-

ly commodious in practice. But the second method of^cor-'

recting the effects of the earth's convexity, and which was

given by M. Legendre, is distinguished by its conciseness and

peculiar elegance. That profound geometer viewed the sphe-

rical triangle as having its curved sides stretched out on a

plane, and sought to determine the variation which its angles

would thence undergo. Analysis led him, through a compli-

cated process, to the discovery of a theorem of singular beau-

ty. But the following investigation, grounded on other prin-

ciples, appears to be much simpler.

Let A and B denote any two angles in the small spherical

triangle, and a and /3 express in miles the opposite sides, or

those or its extension upon a plane. Since (Prop. 9. Trig.)

u : /i : : sinA : sinB, there must exist some minute arc &j such

that sin» : sinfi : : sin{A -f- 6) : sin(B + 6.). But (art. 1. Note 3.)

sin {A + 6) zzsinA-^ 6 cosA, and (Schol. Prop. VI. Trig.)

sinec = ec— -^i whence u—^ : /3 — g- : : sinA -^ 6 cos A: sinB

-|- 6 cosB. Now fi'.x:: sinB : sinAy and therefore, (V. 9. El.)

1— -g- : i — -g- : : sinA sinB -f 6 cosA sinB : sinAsinB +
6sinA cosB. But the first and second terms being very nearly

equal, and likewise the third and fourth,—it is obvious that the

analogy will not be disturbed, if each of those pairs be increa-

sed equally. Hence 1 : 1 +—g— : : sinA sinB : sinA sinB 4-

6(sinAcosB — cosA sitiB) ; and since (Prop. I. Trig.) sinA
cos B — cos A sin B = sin (A—B), therefore (V. 10. El.)

1 : —p— : : sinA sinB : 6 sin{A—B). Consequently, since x and

3 are proportional to 677?A and sinB, $ (sinA^B) =: sinA sinB
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^ ,-, ^ (^mA*— 52«B*; =: (Proposition III. cor. 5. Tri-
6 ' 6 •

gonometry,)-g (5m(A+B)5m(A—B)), or 6 = —sin (A + B).

But the sine of the sum of A and B is the same as that of their

supplement C, or ofthe angle contained by the sides cc and /3, and

consequently & is the third part of-^^mC, the area of the tri-

angle, or the third part of the excess of the angles of the sphe-

rical, above those of the plane triangle. Wherefore the sines

of the sides, which, in the spherical triangle, are as the sines

of their opposite angles, are likewise proportioned, in the plane

triangle, to the sines of those angles, increasing each by the

common excess. It is hence evident, that the angles of the

plane triangle are obtained from those of the spherical, by de-

ducting from each the third part of the excess above two right

angles, as indicated by the area of the triangle.

The whole surface of the globe being proportioned to 720'',

720^
that of a square mile will correspond to

24856x 7912 » °^

the >yKOQ part <» a second. Hence each angle of the small

spherical triangle requires to be diminished by «,4 sinC

455:28 ^^ ^^^°"^'-

18. Another problem of great use in the practice of delicate

surveying, is to reduce angles to the centre of the station. In-

stead of planting moveable signals at each point of observa-

tion, it will often be found more convenient to select the more

notable spires, towers, or other prominent objects which oc-

cur interspersed over the face of the country. In such cases,

it is evidently impossible for the theodolite or circular instru-

ment, although brought within the cover of the building, to

be placed immediately under the vane. The observer ap-

proaches the centre of the station as near, therefore, as he can

with advantage, and calculates the quantity of error which the
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minute displacement may occasion. Thus, suppose it were

required to determine the

angle AOB which the re-

mote object A and B sub-

tend at O, the centre of a

permanent station : The

instrument is placed in the

immediate vicinity at the

point C, and the distance

CO, with the angle ofdevia-

tion OCA, are noted, while

the principal angle ADCB
is observed. The central

angle AOB may kence be

computed from the rules

of trigonometry; but the

calculation is effected by simpler and more expeditious me-

thods. Since (I. 30. E\.) the exterior angle ADB is equal

both to AOB with OAC, and to ACB wJth OBC ; it is evi-

dent that AOB = ACB + OBC—OAC. But the angles OBC
and OAC, being extremely small, may be considered as equal

CO
to their sines, and (art. 5. Note 14.) &in OBC = /jg sinBCO,

CO
and sinOAC == q^ sinACO ; wherefore the angle AOB at.

f sinBCO sinACO^
the centre, is nearly equal to ACB + C0\^

= ACB + C0 r^^7>H^^^''^
- -)•

OA ;

Call the dis-

OB
sinACO

OB OA"
tances AC and BC of the point of observation, a and b, the

distances AO and BO of the centre a^ and &' ; the displace-

ment CO, and the angle ACO of deviation m and ^, while the

subtended angles ACB and AOB are denoted by C and C,
and the opposite angles ABO and OAB by A and B ; then C

~r) 3438'. If the centre O lies oh

AC, the correction of the observed angle, expressed in mi-

nutes, will be merely \-r^sinC } 3438',

^c + ,»(^^2i^
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But the problem admits of a simpler approximation. Let

a circle circumscribe the points A, O, ami B , and cut AC in

E. The angle AOB = (IlL 16. El.) AEB = ACB -f CBE ;

CE
but sinCBE = jg^ sinACB, and sinOEC = sinAEO or ABO

CO
is equal to^ sinCOE or AEO—ACO, and hence by com-

,. . . r.r.T^
CO ^iwACB 5m(AB0->AC0) ^.

bmation sm CBE =^ SaBO ^^^^^^

therefore, EB is nearly equal to OB, and the small angle CBE
may be regarded as equal to its sine, the correction to be add-

m
ed to the observed angle is denoted in minutes by -r?

sinCsin(A—<P)^,^„ ^, . ... ., .„ .

^^^ 34<38. Ihis quantity, it is evident, will entirely

vanish when (p becomes equal to A, or the angle ABO equals

ACO ; in which case, the point of observation C coincides

with E, or lies in the circumference of a circle that passes

through the two remote points A and B and centre of the sta-

tion. To place the instrument at E, therefore, would only re-

quire to move it along CA, till the angle AEO be equal to

ABO.
Both these methods for the reduction of an angle to the

centre are given by Delambre ; but, in his calculations, he ge-

nerally preferred the last one, as being simpler and sufficient-

ly accurate for practice. The investigation, however, will be

found to be now considerably shortened.

19. The accuracy of trigonometrical operations must depend

on the proper selection of the connecting triangles. It is very

important, therefore, in practice, to estimate the variations

which are produced among the several parts of a triangle, by

any change of their mutual relations. Suppose two of the

three determining parts of a triangle to remain constant, while

the rest undergo some partial change ; and let, as before, the

small letters a, b and c denote the sides of the triangle, and

the capitals A, B and C their opposite angles.
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Case I.—When two sides a and b are constant.

Since the angles A and B, after passing into A -J- AA and

B + AB, must have their sines still proportional to the oppo-

sinA. sin B
site sides, it is evident that ,-(a+aA) = liM^+'E^y ^^^

sin(A 4- AA)—sin A. sin{B-\-AB)—sinB
consequently^(a+ AA) + ;s//zA

= sin{B+AB)+^inB
*

wherefore, by alternation and art. 7. Note 12.,

^ tanl^AA ^aw(A4-^,AA)
* taniAB^ tan{B^^ABy
Next, in the incremental triangle formed by the sides Cp

c+Ac, and the contained angle AA, (art. 1. Note 12.)

J^ ^^^(B+ JAB) ^^^ j^^^^^ reciprocally,
C+ ^Ac-" cothAA ir j»

'^aw^AA"" co^(B-J-6AB)

In like manner, from the incremental triangle contained by-

the sides c, c-{- Ac and the angle aB, it follows that

iAc __ C'\-lAc

' tanhaB co^(A-f-. aA)

Again, the base of the incremental isosceles triangle con-

tained by the equal sides b, b, and the vertical angle aC, is

(art. 15. Note 12.) ^bsin^AC; wherefore, in the incremental

triangle formed with the same base and the sides c and c+Ac,

bv art. 20. Note 12., co5(A+iAA) = ^ ^+|^^'"^^^^
;

whence

sin^AB __ __ a co5( a 4- JaA)

*5m|AC ^+:;Ac

After the same manner, it will be found that

sinlAA __ acoA(B4-|AB(

*m.^AC f-f-. Ac

Muhiply the expressions of art. 4-. into those of art 3. and
^Ac __ bsin{A-\- ^aA)

' sinh^C coshAB
*
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7.

Multiply likewise the expressions of art. 2, and 5., and

§Ac _ asin{B+hAB)

sin tAC coshAA
If, in all the preceding formula^ the increments annexed to

the varying quantities be omitted, there will arise much sim-

pler expressions for the differentials.

# ] ^^ —.
^«wA

*o dc ^ c

' dK cotB"

* 3. ^ = ^—
' dB cotA

*4. ^=-,A.o5A.
dC c

*5.^=:^±cosB.
dC c

*6. ~=: bsinA.
dC

*7. ^=a«nB.

Case 11

—

When one side a, and its opposite angle A, are con"

stant.

Since (art. 5/Note 12.) -^= A, it is evident that
smA stnB

a sinBzzb sinA, and taking the differences by art. 1. of Note

10. Ab sinA = 2a sinlABcos{B -f i aB), whence !J:l\^ -_

gCQg(B+|AB) * ^"^ consequently, by art. 5. of Note 12.

g^
f^iAB _ ^^V^^AC_ ^z/iB

lhb~ iA<^ ~^C05(B+|aB)*
In like manner, it will be found that

^m^AB ^sin\AC _ sinC

i^C — ^AC "" "~CC05(C-f.iAC)'

Combine the two last expressions, and
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Ac ~" cos{C^^AC)

The differentials are discovered, by rejecting the modifica-

tions of the variable quantities,

^ dB __ sinB __ tanB
' db "^ b cosB "" b, '

^ c?B __ __^
jinC __ tanC

dc
"~ ccosC

""
C~~"

#10 ^^ — ^^^^

dc cosC

Case III—When one side a, and Us adjacent angle B, are con*

stant.

In the incremental triangle contained by the sides ^, 5 4- A5
and Ac, it is evident, (art. 5. Note 12.), that

2j Ac -^^ _ ^ ^+A
'^mAC"" 52wAA~"«w(A-|-AA)"~ sinA

'

Again, in the same incremental triangle, (art. 6. Note
12.)

ig^
^A^ _.__ l^l> _ b+ \Ab

' tan^AQ tan\AA. ^aw(A-f-iAA)'

Or, transforming the preceding expression,

\Ab tan\AK , ,

7-rv—r= —• r-~TirT~mr:* ^"^ consequently
b^\Ab ^aw(A-i-iAA) ^ ^

\^b tan\AA / . , XT . ».v

'-T-= ~

r

.HA+^aAA)+^a.|AA = ^^^'^ ^- ^^^^ 7-)

52w(A+AA) ^ * V««(A+AA;)
wherefore,

13 |A& __ jA^ _ ^/co5(A4-^AA )x

* 5W^aC 5iw^AA ^5m(A-|-AA) /

Again, in the same incremental triangle, by art. 20. Note

]2.

co5(A+|AA)=—(—co4aC)=—cos\aA ; whence
Ac Ac

14,
^^ _ CQ^(A4-|AA)

*Ac"~" co^^aA
*
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The differentials are found as before, by the omission of the

minute excrescences.

dc dc b
* 11. -77:: :r:

dC dA smA

12 —- —-^ *

dC dA tanA

^^^ db db , (cosA\ , ,

.

* 14'. -y-zzcosA,
dc

To compute the values of the finite differences, when these

differences themselves are involved in their compound expres-

sion, the easiest method is to proceed by repeated approxima-

tions. Thus, from art. 3» Acr=——^^^^7jY^-TT (2c+Ac) ; as-

taizkAB
sume, therefore, first, Ac = —

cotiA-L ^aA\ ^^ ' ^"^ then, ^c

tanlAB tan^AB^

= - coiiA+ iAA) (2^- cot{A+lAA) ^')' ^"^ '^ ^^" '^^'

dom be requisite to advance beyond two steps ; though the

process, if continued, would evidently form an infinite converr

ging series.

When only one part of a triangle remains constant, the ex-

pressions for the finite differences will often become extremely

complicated. It may be sufficient in general to discover the

relations of the differentials merely. To do this, let each in-

determinate part be supposed to vary separately, and find, by

the precedingy<>nwM/<^, the effect produced ; these distinct ele-

ments of variation being collected together, will exhibit the

entire differential.

The materials of this intricate Note appear in Cagnoli, but

the subject was first started by our countryman Mr Cotes, a

mathematician of profound and original genius, in a brief tract,

entitled Estimatio errorum in mixta Mathesi, It is unfortunate

that I have not room for explaining the application of those

JbrmulcB to the selection and proper combination of triangles in

nice surveys.
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'iO. Having in some of the preceding notes briefly pointed

out the several corrections employed in the more delicate geo-

desiacal operations, I shall subjoin a few general remarks on the

application of trigonometry to practice. The art of surveying

consists in determining the boundaries of an extended surface.

When performed in the completest manner, it ascertains the

positions of all the prominent objects within the scope of ob-

servation, measures their mutual distances and relative heights,

and consequently defines the various contours which ;iiark the

surface. -But the land-surveyor seldom aims at such minute

and scrupulous accuracy ; his main object is to trace expedi-

tiously the chief boundaries, and to compute the superficial

contents of each field. In hilly grounds, however, it is not the

absolute surface that is measured, but the diminished quantity

which would result, had the whole been reduced to a horizon-

tal plane. This distinction is founded on the obvious princi-

ple, that, since plants shoot up vertically, the vegetable pro-

duce of a swelling eminence can never exceed what would

have grown from its levelled base. All the sloping or hypo-

tenusal distances are, therefore, reduced invariably to their

horizontal lengths, before the calculation is begun.

Land is surveyed either by means of the chain simply, or by
combining it with a theodolite or some other angular instru-

ment. The several fields are divided into large triangles, of

which the sides are measured by the chain ; and if the exterior

boundary happens to be irregular, the perpendi<jular distance

or offset is taken at each bending. The surface of the com-
ponent triangles is then computed from Prop. 29. Book VI. of

the Elements of Geometry, and that of the accrescent space by
Note 4. to Prop. 9. Book 11. In this method the triangles

should be chosen as nearly equilateral as possible ; for if they

be very oblique, the smallest error in the length of their sides

will occasion a wide difference in the estimate of the surface.

The calculation is much simpler from the application of Prop. 5.

Book 11. of the Elements, the base and altitude of each tri-

angle only being measured ; but that slovenly practice appears

liable to great inaccuracy. The perpendicular may indeed be

ti-aced by help of the surveying cross, or more correctly by

2d
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the box sextant, or the optical square, which is only the same

instrument in a reduced and limited form ; yet such repeated

and unavoidable interruption to the progress of the work will

probably more than counterbalance any advantage that might

thence be gained.

The usual mode of surveying a large estate, is to measure

round it with the chain, and observe the angles at each turn

by means of the theodolite. But these observations would re-

quire to be made with great care. If the boundaries of the

estate be tolerably regular, it may be considered as a polygon,

of which the angles, being necessarily very oblique, are there-

fore apt to affect the accuracy of the results. It would serve

to rectify the conclusions, were such angles at each station

conveniently divided, and the more distant signals observed.

The best method of surveying, if not always the most expedi-

tious, undoubtedly is to cover the ground with a series of con-

nected triangles, planting the theodolite at each angular point,

and computing from some base of considerable extent, which

has been selected and measured with nice attention. The la-

bour of transporting the instrument might also in many cases

be abridged, by observing at any station the bearings at once

of several signals. Angles can be measured more accurately

than lines, and it might therefore be desirable that surveyors

would generally employ theodolites of a better construction,

and trust less to the aid of the chain.

The quantity of surface marked out in this way is easily

computed from trigonometry Adopting the general nota-

tion, the area of a triangle which has two sides, and their in-

ab
eluded angle known, it is evident, will be denoted by -^'sinC,

and the area of a triangle of which there are given q}\ the

a' sinB sinC»
angles and a side, is J'-^Ji^^A"

From the same principles may be determined the area of a

quadrilateral figure inscribed in a circle. Let the sides a and b

contain an acute angle A, and the opposite sides c and ^ must

contain the obtuse supplementary angle. The common base of

these triangles, or diagonal of the quadrilateral figure, is hence
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expressed by-/(«'+ ^'-2aico5A), and by -v/(c'+a?'+ 2^^ ^05A);

and consequently a^-f5'—c*

—

d^=2ab cosK-{- 2cd cosA,

<'--A=^^Sw^"- Wherefore l+co.A=

2a^+ 'icd
"~ ^ab^ ''led

a^^^^^lab^^i^^^
consequently

'2a6 + 2cc? 2ab-\-cd ^ ^

(I4-C05A) (1—cosA)= l—co5A*=5iwA^=
la^J>?-±=d_YM->>j'-(oY)\ But the area of the qua-

drilateral figure, or that of its two component triangles, is

sinhi-^-— \z=i\sinK'^ah-\^'icd)y and therefore its square is=

4^inh} ( 2a^+ 2cf^)S or ^^.{a+hf-^c-^f.ia^by-^c^dY =

4<

*

4
""

a^bJ{-c—d a-\-b^c+d a—b^c-{-d —g^hJ^cJf-d

2
'

2
*

2
*

2
•

Or, if 5 denote the semiperimeter, the square of the area will

be expressed by 5

—

a,s—b.s—c,s—d. If one of the sides d were
supposed to vanish, the quadrilateral figure would pass into a

triangle, whose area would be s.s~a,s—b.s—c,—the same as

was before investigated.

The English chain is 22 yards, or 66 feet in length, and equi-

valent to four poles ; it is hence the tenth part of a furlong, or

the eightieth part of a mile. The chain is divided into a hun-

dred links, each occupying 7.92 inches. An acre contains ten

square chains or 100,000 links. A square mile, therefore, in-

cludes 640 acres ; and this large measure is deemed sufficient,

in certain rude and savage countries, as the Back Settlements

of America, where vast tracts of new land are allotted merely

by running lines north and south, and intersecting these by

perpendiculars, at each interval of a mile.

The Scotch chain consists of 24 ells, each containing 37.069

inches, and ought therefore to have 74-.138 feet for its correct

length. The English acre is hence to the Scotch, in round

numbers, as 11 to 14, or very nearly as the circle to its cir-

cumscribing square. But this provincial measure is gradual-
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ly wearing into disuse, and already the statute acre seems to

be generally adopted in the counties south of the Forth.

21. Levelling is a delicate and important branch ofgeneral

surveying. It may be performed very expeditiously by help

of a large theodolite, capable of measuring with precision the

vertical angle subtended by a remote object, the distance

being calculated, and allowance made for the effect of the

earth's convexity and the influence of refraction. But the

raore usual and preferable method is to employ an instrument

designed for the purpose, and termed a spirit-levelj which is

accompanied by a pair of square staves, each composed of two

parts that slide out into a rod of ten feet in length, every foot

being divided centesimally. Levelling is distinguished into

two kinds, the simple and the compound; the former, which

rarely admits of application, assigns the difference of altitude

by a single observation; but the latter discovers it from, a

combined series of observations carried along an irregular sur-

face, the aggregate of the several descents being deducted

from that of the ascents. The staves are therefore placed

successively along the line of survey, at suitable intervals ac-

cording to the nature of the ground and not exceeding 400

yards, the levelling instrument being always planted nearly in

the middle between them, and directed backwards to the first

staff, and then forwards to the second. The difference between

the heights intercepted by the back and the fore observation,

must evidently give at each station the quantity of ascent or

descent, and the error occasioned by the curvature of the globe

may be safely overlooked, as on such short distances it will

not amount at each station to the hundredth part of a foot. To

discover the final result of a series of operations, or the diffe-

rence o^ altitude between the extreme stations, the measures

of the back and fore observations are all collected severally,

and the excess of the latter above the former indicates the ep-

tire quantity of descent.

As an example of levelling, I shall take the concluding part

of a survey, which my friend Mr Jardine, civil engineer, has

recently made for the Town-Council of Edinburgh, with a de-

gree of accuracy seldom attempted, in tracing the descent

from the Black and Crawley springs, near the summits of the
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PentUnd chain, to the Reservoir on the Castlehill, with a view

to the conducting of a fresh supply of water from those heights.

To avoid unnecessary conaplication, however, i shall only no-

tice the principal stations. The figure annexed represents a

profile or vertical section of the ground, LV is the level of the

Black spring, and the several perpendiculars from it denote

the varying depth of the surface, referred to the base assu-

med 700 feet below. The stations marked are as follow :

L Lowest point in the Meadow.
M Cleansing cocks on the north side of the Meadow.
N Sunk fence in Lord Wemyss's garden.

O Air cock in Archibald's nursery.

P South side of Lauriston road.

Q Bottom of Heriot's Green Reservoir.

R Head of Hamilton's close.

S Strand on south side of Grassmarket.

T Cleansing cock on north side of Grassmarket.

U Gaelic Chapel.

V Upper side of the belt of Castlehill Reservoir.

Back Ob- Fore Ob-
Stations. Distance. servation. servation. Ascent.

Feet. Feet Feet. Feet.

L
M 370 4.59 2.04 2.55
N 640 8.68 3.05 8.18
O 905 9-12 2.22 15.08
P 1236 29.43 2.11 42.40
Q 1493 16.24 1.40 57.24
R 1925 2.54 26.98 32.80
s 2260 4.69 53.28 —15.79
T 2352 4.22 4.42 —15.99
U 2540 32.40 1,25 15.15
V 2705 94.77 997 99.95
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Black spring, being 620.05 feet above the level of the Mea-
dow, is therefore 520.1 feet higher thiin the belt of the reser-

voir. The numbers exhibited in the last column, are obtained

by taking the differences of the aggregates of the two preced-

ing columns. Where the ground either sinks or rises suddenly,

some intermediate observations are here grouped together in-

to a single amount. Thus, three observations were made be-

tween O and P, two between P and Q, three between Q and

R, five between R and S, three between T and U, and no fewer

than nine between U and V. The slight sketch between

the perpendiculars from Q and R, shows the mode of planting

and directing the instrument.

The mode of levelling on a grand scale, or determining the

heights of distant mountains, will receive illustration from the

third volume of the Trigonometrical Survey, which Colonel

Mudge has been kindly pleased to communicate to me before

its publication. I shall select the largest triangle in the series,

being one that connects the North ofEngland with the Borders

of Scotland. The distance of the station on Cross Fell to that

on Wisp Hill, is computed at 235018,6 feet, or 44.511 miles,

which, reckoning 6094?^ feet for the length of a minute near

that parallel, corresponds, on the surface of the globe, to an

arc of 38' 33".?. Wisp Hill was seen depressed 30' 4-8" from

Cross Fell, which again had a depression of 2' 31" when view-

ed from Wisp Hill. The sum of these depressions is 33' 19",

which, taken from 38' 33".7, the measure of the intercepted

arc, or the angle at the centre, leaves 5' 14".7, for the joint

effect of refraction at both stations. The deflection of the

visual ray produced by that cause, which the French philo-

sophers estimate in general at .079, had therefore amounted

only to .06805, or a very little more than the Jifteenth part of

the intercepted arc. Hence, the true depression of Wisp Hill

was 30'48"—16'39".5=14'8''.5; and consequently, estimating

from the given distance, it is 967 feet lower than Cross Fell.

From Wisp Hill, the top of Cheviot appeared exactly on

the same level, at the distance of 185023.9 feet, or 35.0424

miles. Wherefore, two-thirds of the square of this last num-

ber, or 819, would, from the scholium at page 276, express in

feet the approximate height of Cheviot above Wisp Hill. But

refraction gave the mountain a more towering elevation than
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it really had ; and the measure being reduced in the former

ratio of 38' 33".7 to 33' 19", is hence brought down to 708 feet.

Again, the distance 292012.7 feet, or 55.3054? miles, of

Cross Fell from Cheviot, corresponds to an arc of 4-7' 54?'/.8,

which, reduced by the effect of refraction, would leave

41' 23".8 for the sum of the depressions at both stations. Con-

sequently, Cheviot had, from Cross Fell, a true depression of

only 23/ 4<4"—20' 4r'.9 or 3> 2".l, and is therefore lower than

that mountain by 258 feet.

These results agree very nearly with each other. The height

of Cross Fell above the level of the sea being 2901, that of

Wisp Hill is 1934, and that of Cheviot 2642 or 2643. In the

Trigonometrical Survey, the latter heights are stated at 1940

and 2658 ; a difference of small moment, owing to a balance

of errors, or perhaps to the adoption of some other data with

respect to horizontal refraction, and which do not appear on

record.

From the same valuable work, I am tempted to borrow ano-

ther example, which *has more local interest. From Lums-

dane Hill, the north top of Largo Law, at the distance of

189240.1 feet, or 35.84 miles, appeared sunk 9' 32" below the

horizon. Here the intercepted arc is 31' 3", and the effect of

the earth's curvature, modified by refraction, is 13' 24".8

;

whence the true elevation of Largo Law was 1 3' 24".8—9' 32",

or 3' 52//.8, which makes it 213 feet higher than Lumsdane
Hill, or 938 feet above the level of the sea. In the Trigono-

metrical Survey, this height is stated at 952 ; but I am in-

clined to prefer the former number, having once found it by
a barometrical measurement, in weather not indeed the most

favourable, to be only 935 feet.

Through the kindness of Captain Colby of the Royal Engi-

neers, who has for several years so ably conducted the survey

under the direction of Colonel Mudge, I am enabled to subjoin

some more examples, from the observations made last season.

From Dunrich Hill the station on Cross Fell appeared de-

pressed 19' 21", at the distance of 349,343 feet or 66.1634

miles. This corresponds on the same parallel to an intercepted

arc of 57' 19"; the half of which, diminished by one-twelfth of

the whole, gives 23' 53, for the effect of curvature modified by



40S NOTES AND ILLUSTRATIONS.

refraction. Cross Fell had therefore an elevation of 4' S2^',

the excess of 23' 53'' above 19' 21'', which, at the given dis-

tance, makes it to be 461 feet higher than Dunrich Hill. Con-
.sequently, the altitude of Dunrich Hill above the level of the

sea is 2901

—

4-61^ or 2440 feet. This altitude^ detern>ined

IVom nearer bases, was only 2421 feet.

Again, from Cairnsmuir upon Deugh, at the height of 2597
feet above the sea, the top of Ben-Lomond appeared with a

depression of 18' 24", the distance being nearly 352,004 feet,

or 66.6673 miles. The intercepted arc on the earth's surface

was hence 57' 45^", and the effect of curvature, as modified

by refraction, 24' 4". Wherefore, R : ^a«6'40", the real ele-

vation : : 352,004 : 580, which, added to 2597, gives 3177 for

the altitude of Ben-Lomond.

We shall select another example, which affords an approxi-

mation to the diameter of our globe. From the station at the

observatory on the Calton-hill, at the altitude of 350 feet, the

horizon of the sea was found depressed 18' 12" But refrac-

tion being supposed to have diminished the effect by one-

twelfth part, if the eleventh part be added of this remaining

quantity, there will result 19' 43" for the true measure of de-

pression. The angle at the centre is consequently the half

of 1
9' 43" or 9' 51 1"

; wherefore, tan 9' 51.^" : 11 : : 350 : 122,048

feet, or 23.1 152 miles, the distance at which the extreme visual

ray grazes the sea. Again, tan 9 51|" : R : : 23.1152 : 4030

miles, the radius of the earth, a near approximation to the

real measure, or 3956. It should be noticed, that the state of

the tide would have some effect in modifying the angle of de-

pression. Thus, on the 12th May 1816, at 7f p. ni. the de-

pression towards the mouth of the Firth of Forth, between

the Isle of May and the Bass Rock, was found to be 18' 14"

;

but it was 18/ 16" in a direction more to the north and near

the Fife coast, because the sea had ebbed nearly five hours,

the current outwards running first along the northern shore.

On the following day, at three quarters after twelve o'clock,

and therefore two hours and a half before high water, the de*

pression about the middle of the Firth was 18' 9", and only

IS' 6" on the northern shore, the tide then flowing up princi-

pally in the middle of the channel.
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^22. MARITIME Surveying is of a mixed nature : It not only

determines the positions of the remarkable headlands, and

other conspicuous objects that present themselves along the

vicinity of a coast, but likewise ascertains the situation of the

various inlets, rocks, shallows and soundings which occur in

approaching the shore. To survey a new or inaccessible coast,

two boats are moored at a proper interval, which is carefully

measured on the surface o( the water ; and from each boat the

bearings of all the prominent points of land are taken by means

of an azimuth compass, or the angles subtended by these points

and the other boat are measured by a Hadley's sextant Ha-

ving now on paper drawn the base to any scale, straight lines

radiating from each end at the observed angles, as in Prop.

21. of the Trigonometry, will by their intersections give the

positions of the several points from which the coast may be

sketched.—But a chart is more accurately constructed, by

combining a survey made on land, with observations taken on

the water. A smooth level piece of ground is chosen, on

which a base of considerable length is measured out, and sta-

tion staves are fixed at its extremities. If no such place can

be found, the mutual distance and position of two points con-

veniently situate for planting the staves, though divided by a

broken surface, are determined from one or more triangles,

which connect with a shorter and temporary base assumed

near the beach. A boat then explores the offing, and at every

rock, shallow, or remarkable sounding, the bearings of the sta-

tion staves are noticed. These observations furnish so many
triangles, from which the situation of the several points are

easily ascertained.—When a correct map of the coast can be

procured, the labour of executing a maritime survey is mate-

rially shortened. From each notable point of the surface of

the water, the bearings of two known objects on the land are

taken, or the intermediate angles subtended by three such ob-

jects are observed. In the first case, those various points have

their situations ascertained by Prop. 21. and the second case

by Prop. 25. of the Trigonometry. To facilitate the last con-

struction, an instrument called the Station-Pointer has been

invented, consisting of three brass rulers, which open and set

at the given angles.
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23. The nice art ofobserving has in its progress kept pace with

the improved skill displayed in the construction of instruments.

Surveys on a vast scale have lately been performed in Europe,

with that refined accuracy which seems to mark the perfection

of science. After the conclusion of the American war, a me-

moir of Count Cassini de Thury was transmitted by the French

Government to our Court, stating the important advantages

which would accrue to astronomy and navigation, if the dif-

ference between the meridians of the observations of Green-

wich and Paris were ascertained by actual measurement. A
spirit of accommodation and concert fortunately then prevail-

ed. Orders were speedily given for carrying the plan into

execution ; and General Koy, who was charged with the con-

duct of the business on this side of the Channel, proceeded

with activity and zeal. In the summer of 178'i, a fundamental

base, rather more than five miles in length, was traced on

Hounslow Heathj about 54< feet above the level of the sea, and

measured with every precaution, by means of deal rods, glass

tubes, and a steel chain, allowance being made for the effects

of the variable heat of the atmosphere in expanding those ma-

terials. The same line was, seven years afterwards, remea-

sured with an improved chain, which yet gave a difference on

the whole of only three inches. The mean result, or 27404'.2

feet, at the temperature of 62° by Fahrenheit's scale, is there-

fore assumed as the true length of the base. Connected with

this line, and commencing from Windsor Castle, a series of

thirty-two primary triangles was, in 1787 and 1788, extended

to Dover and Hastings, on the coast of Kent and Sussex.

Two triangles more stretched across the Channel. The hori-

zontal and vertical angles at each station were taken with sin-

gular accuracy by a theodolite, which the celebrated artist

Ramsden had, after much delay, constructed, of the largest

dimensions and the most exquisite workmanship. At the

same period, a new base of verification was measured on Rom-

ney Marsh, 15^ feet above the sea, and found, after various

reductions, to be 28535.6773 feet in length. This base, com-

puted from the nearest chain of triangles dependent on that

of Hounslow Heath, ought to have been 28533.3 ; differing

scarcely more than two feet on a distance of eighty miles.

The mean, or 28534'.5, is adopted for calculating the adjacent
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and subsequent triangles. These triangles near the coast

were unavoidably confined and oblique ; but their sides are

generally deduced from larger and more regular triangles, ex-

panding over the interior of the country. The annexed figure

exhibits the most interesting portion of this memorable sur-

vey, and represents the various combination of triangles. At-

tached to it is a scale of English miles.

A Frant Church.

B Goodhurst Church.

C Hollingborn Hill.

D Tenterden Church.

E Fairlight Down.

F Allington Knoll.

G Lydd Church.

H Ruckinge.

I High Nook.

K Folkstone Turnpike.

L Padlesworth.

M Swingfield Church.

N Dover Castle.

O Church at Calais.

P Blancnez Signal.

R Fiennes Signal.

S Montlambert Signal.

KL The base of verification.

hm CE±

Calculation ofthe sides ofthe Triangles,

ACE
A 70*» 23' 2"

C 52 II 2 *

E 48 25 55

A 27
B 136
C 16

ABC
4 36.13

27 35.87

27 48 *

141744.4
113926
107895.7

71298.5

44391.2

ABE
A 43* <S' 25.'/87

B 105 39 28.86

E 31 2 5.27

BCD
68 13 10.5

44 38 44.04 *

67 7 56.46

-JQ

93629.2

71887.5
54376.5



412 NOTtS AND ILLUSTRATIONS.

DDE
B 49° 39' 2>i".77 7\637.'2

D ()4 59 25.81 93629:2
li 35 20 58.42

CDF
C 40 5'6.96 * 6]777-5
T> 91 34 22.01, .96039.8
r 48 24 39

DFG
1) 43 45 23.18 47850.9
¥73 27 66169.2
G 63 14 9.82 *

DEG
D 62 32 32.51 71692.2
E 54 59 17-31

G 62 27 50.18* 71637.2

478509
EFG

E 21 18 37*
r 32 59 23
G 125 42 106926.2

FGI
F 33 8 46.1 31363.7
G 26 57 29.9* 23185.7
1 121 53 44

FHI
E 91 27 19-5 28534.5
H 54 19 18.5

I 34 13 22 16053

FGK
F 109 50 3935 84662.8
G 38 2 23.76 554631.6
K 33- 6 56.89 *

E 13

G 154
L 12

EGL
38 2.95

5 54 4
16 2.65

79536.1

14739.2

F;K
5170cS

1 79 41 0.5 .

K 24 17 6.25

IKL
I 14 48 25.5 * 14714.3
K 57 2 48305.2
L 108 9 345

KLM
K 60 27 39.5 170566
L 70 54 5.5 18525 8

M 48 38 15

30560.4

31555 7

42562.7

KMN
K 19 43 53.5

M 75 36 40
N 34 39 26.5

KLN
K 130 11 33
L 34 29 42.5
N 15 18 44.5

ELN
E 6 6 39.43
L 152 15 25.15 186119
N 21 37 55.42 *

ENP
E 25 33 55.02 II6660
N 110 55 29.83* 252505,6
P 43 30 35.15*

ENS
43 19 53.32

87 30 29.38

49 9 31.9

N 23
P 119
S 36

25
41

53

NPS
0.25

41.64

18 11

168827
245786

77237 2



NOTES AND ILLUSTRATIONS, 413

.. In this register, each angle in the successive triangles is, for

the sake of conciseness, marked by the single letter affixed to

it, and the computed length of its opposite side in feet ranges

in the same line. Tlie addition of an asterisk denotes that an

angle was not actually observed, but only deduced from cal-

culation. The oblique triangles ABC and ABE have their

sides BC and BE derived from other larger triangles, which

were nearly equiangular. The triangles ELN and E-NP had

their angles discovered from conjoined observations. In ge-

neral the several angles, as affected by the spherical excess,

were corrected for computation by a sort of tentative process.

It results from a train of calculations, that Dover Castle lies

south 67° 44' 34" east, and at the distance of 328231 feet or

62.165 miles, from Greenwich Observatory. On their part,

the French astronomers, under the direction of Cassini, car-

ried forward the trigonometrical operations from Dunkirk to

Paris ; employing Borda*s repeating circle, an instrument much
smaller and less perfect than Ramsden's theodolite, but form-

ed on a principle which always procures the observer a near

compensation of errors. From a comparison of the whole, it

follows, that the meridian of the Observatory of Paris lies 2°

19' ^l" east from that of Greenwich, differing only nine se-

conds in defect from what the late Dr Maukelyne had pre-

viously determined from combined astronomical observations.

The success with which that great survey was attended,

gave occasion both in France and England to still more ex-

tensive projects. The National Assembly, amidst other es-

sential improvements which it meditated, having resolved to

adopt a general and consistent system of measures, the length

of a degree of the meridian at the middle point between the

pole and the equator was proposed as a permanent basis. But
to secure greater accuracy in determining the standard, it had

been decided to prolong the observations on both sides of the

mean latitude, and trace a chain of triangles over the whole

extent from Dunkirk to Barcelona. This bold plan was exe-

cuted in the course of the years 1792, 1793, 1794 and 1795,

with equal sagacity and resolution, by MM. Delambre and

Mechain, who, during all the horrors of revolutionary com-
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motion, yet pressed forward their operations in spite of obsta-

cles and dangers of the most sickening kind. After the va-

rious triangles, amounting in total to 115, had been observed,

they were connected, in the neighbourhood of Paris, with a

base of more than seven miles in length, and measuring, at

the temperature of 16^° on the centigrade scale, or 6l^° by

Fahrenheit, 6075.9 toises from Melun to Lieursaint. A base

of verification was likewise traced near the southern extremity

of the line of survey, extending 6006.25 toises along the road

from Perpignan to Narbonne. This base appeared not to differ

one foot from the calculation founded on the other, though

separated by a distance of 400 miles,—a convincing proof of

the accuracy with which the observations had been made. A
specimen of the French triangulation is given in the figure be-

low, where the vertical line represents the meridian of Dun-

kirk, with the distances expressed by intervals of 10,000 toises.

A St Martin du Tertre.

B Dammartin.

C Pantheon at Paris.

D Belle Assise.

E Brie,

F Montlheri.

G Lieursaint.

H Melun.

I Malvoisine,

K Torfou.

L Foret.

M Chapelle.

N Pithiviers.

O Bois Commun.

P Chatillon.

Q Chateau-neuf.

R Orleans.

GH The primary base.
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Calculation ofthe sides ofthe Triangles,

ABC
A 76^ 2'30\66 17310.3013

B 57 20 17.82 150173211
C 46' 37 11.52

BCD
B 59 52 2.20 15756.8013

C 48 17 34.50 13601.3539

D 7150 23.30

CDE
C 37 1 40.59 9516.5896
D 57 21 1.87 13305.8528

E 85 37 17.54

CEF
C 61 13 47.94 13101.0845

E 55 51 48.75 12370.8194
F 62 54 23.31

EFI
E 40 32 37.60

F 45 18 40.41

1 74 8 41.99

8852.8293
12374.2130

FIG
F 49 34 22.32 8369.1673
I 76 47 42.98 10703.5616
G 53 37 54.70

IGH
I 40 36 56.68

G 75 39 29.67

H 63 43 33.65

6075.S993
9042.5510

FIK
F 55 10 1.03 7357.8627
I 43 52 3.25 6212.1595
K 80 57 55.72

IKL
53° 22' 24" 93 8349.1059

81 36 49.90 10^92.0814

45 45.17

I 70 51

L 62 47
M 46 20

ILM
37.77 13438.2345

29.54 12650.5655

52.69

LMN
L 68 35 59.16 14402.0625

M 51 5 13.26 12036.0949
N 60 IS 47.58

MNO
M 31 58 52.87 9190.1355
N 91 55 5.70 17341,8323
O 56 6 1.43

NOP
N 31 53 2.40 4877.2386
O 52 33 5,48 7330.6l66
P 95 33 52.12 • .

OPQ
O 62 31 30.34 10446 5520
P 93 17.27 11758.3955
Q 24 28 1239

PQR
P 50 28 6.42 12053.9075
Q 87 35 8.93 15614.7105
R 41 56 44.65

Through the whole process of their survey, the French
astrgnomers have certainly displayed superior science. In de-
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ducing the correct results, they seem to exhaust all the re-

finements of calculation. The angles measured by the re-

peating circle, it was necessary to reduce, not only to the ho-

rizontal plane, but generally besides to the centre of observa-

tion. This would have required much nice and tedious com-
putation ; the labour of performing such reductions was how-
ever greatly simplified and abridged, by help of concise fov'
mulcB^ and the application of auxiliary tables. There is even

room to suspect that those ingenious philosophers have car-

ried the fondness for numerical operations to an excess, and
often pushed the decimal places to a much greater length in

their estimates than the nature of the observations themselves

could safely warrant.

In the spring of 1799, the registers of all these operations

. were referred to a commission, consisting of the ablest mem-
bers of the Institute, and some other learned men deputed

from the countries then at peace with France. The various

calculations were carefully examined and repeated ; and a

comparison of the celestial arc with that which had been mea-

sured in Peru having given —- for the oblateness of the earth,

the length of the quadrant of the meridian, or the distance of

the pole from the equator, was finally determined at 5130710

toises, the ten millionth part of which, or the space of

443.295936 lines forms the metre. This standard was after-

wards definitively decreed by the Legislative Body.

Mechain, however, still anxious to realize his early project

of extending the meridian as far as the Balearic Isles, again

repaired to Spain, and conducted with incredible exertions a

chain of triangles over the savage heights from Barcelona to

Tortosa, and was about to observe the altitude of the stars,

and measure the base of Oropesa, when, worn out by continued

fatigue, he caught an epidemic fever, which fatally closed his

meritorious labours, at Castellon de la Plana, in the kingdom

of Valentia, about the latter part of September 1805.—The

prosecution of the plan was subsequently committed to

MM. Biot and Arago, who brought it to a fortunate conclu-

sion. In the winter of 1806 and the spring of 1807, these
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philosophers contin»ed the series of triangles from Barce-

lona to the kingdom of Vaientia, and joined that coast with

the Balearic Isles, by an immense triangle, of which one of

the sides exceeded an hundred miles in length. At such

prodigious distances, the stations, however elevated, and not-

withstanding the fineness of the climate, could not be seen

during the day ; but they were rendered visible at night, by

combining Argand lamps with powerful reflectors. These ob-

servations give a result which agrees almost exactly with what

had been already found by Delambre and Mechain. If the

mean were adopted, it would yet scarcely affect the length of

the metre by the diminution of a four millionth part, making

this to be 443.322 lines of the toise brought by the Academi-

cians from Peru. The meridional arc extending from Dunkirk

to Formentera, measures 12° 22' 13".395 ; and from this ample

basis, the circumference of the earth is computed to be 24855.42

English miles, and the ratio of its axes that of 308 to 309.

The fourth volume of the Base Metrique, containing the ac-

count of the trigonometrical observations made by Biot and

Arago in Spain and the Balearic Isles, has been long promi-

sed ; and I was induced, for a considerable time, to defer the

publication of this edition, in the hope of being able to draw

come additional information from such a valuable source. In

the prosecution, however, of the French measurement, an ap-

plication from the Institute has been transmitted by Count

Laplace to Colonel Mudge, to have Ramsden's Zenith Sector

erected near Yarmouth, in order to connect the English arc

thence across the sea to near Dunkirk, with the meridional

measurement extending through France and Spain to For-

mentera, which would have the important advantage of being

nearly bisected by the parallel of 45^. This proposition, I am
happy to learn, will be carried into immediate effect.

In England, the prosecution of the trigonometrical survey,

without aiming at such splendid views, has, suitably to the ge-

nius of the people, been directed to objects of more domestic

interest, and perhaps real utility and importance. The per-

plexing inaccuracy of our best maps and charts had long been

the subject of most serious complaint. It was in consequence

resolved to extend the series of connected triangles over the

2E
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wliole surface of the Island. But the death of General Roy,

happening so early as 1790, threatened to prove fatal to the

completion of his favourite scheme, for which the talents and

experience he possessed had so eminently fitted him. Af-

ter some interruption, however, an opportunity was embraced

of resuming that noble plan ; and it was, under the direction

of the Board of Ordnance, committed to the care of Colonel

Mudge, who, with equal ability and undiminished ardour, has,

during the space now of upwards oftwenty years, been engaged

in carrying on the most extensive and varied system of ope-

rations ever attempted, and in a style of execution which re-:

fleets on him the highest credit. In 1793 and 1794^, the chain

of primary triangles was continued from Shooter's Hill to Dun-

nose in the Isle of Wight, including a great part of Surry, Sus-

sex, Hants, Wiltshire and Dorsetshire, and connecting with a

new base of verification measured on Salisbury Plain. This

base had, after correction, a length of 36571-4^ feet, or 6.92697

miles, having lost almost a whole foot in being reduced from

an elevation of .588 feet to the level of the sea. It differed

scarcely an inch from the computation founded on the base of

Hounslow Heath. In 1795, the triangles were carried into

Devonshire ; and they were continued in 1796 through Corn*

wall to the Sciliy Islands. The West of England became the

scene of repeated operations. In 1798, a third base was mea-

sured on King's Sedgeraoor near Somerton, and found, after

various corrections, to be 27680 feet, or 5.242425 miles, dif-

fering only about a foot from the result of the calculation de-

pendent on that of Salisbury Plain. The survey now advanced

to the centre of England, and was extended in 1803 to Clif-

ton in Yorkshire ; another base of verification, 2.6342.7 feet

in length, having been measured at Misterton Carr,on the north

of Lincolnshire. The triangles were next carried towards

Wales, and made to rest on a base of 24514.26 feet, stretch-

ing from the western borders of Flintshire to Llandulas in Den-

bighshire. From this last base, numerous triangles have been

extended in different directions ; one series bending through

Anglesea and by Cardigan Bay, to tlie Bristol Channel ; an-

other penetrating into the central parts of England ; while a

third series stretches northwards, through Lancashire, Cum-
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berland and Westmoreland, into Scotland, and uniting with

the collateral chain of Misterton Carr from Yorkshire and

Northumberland, is prolonged to the heights immediately be-

yond the Firth of Forth. We look forward with anxiety to

the conclusions of this arduous undertaking. The mountains

and islands near the western coast of Scotland will furnish tri-

angles of vast extent. Colonel Mudge will not omit, we are

confident, the opportunities that such stations may afford to

determine the quantity of horizontal refraction, noting at the

same time the variable state of the atmosphere. The indica-

tions of the hygrometer would then require attention. We
have perfect reliance in the accuracy of his observations ; yet

it would be desirable in all cases, as in the French operations,

that the third angle of each triangle were actually measured.

It would likewise be satisfactory, in surveying the more moun-

tainous tracts, that the barometer should always accompany

the theodolite, that both modes of determining the altitudes

of the stations might be compared.

The triangulation has been extended along the east coast

of Scotland as far as the county of Banff and the borders

of Ross-shire. It has also been carried towards the same

points from Cumberland, through the heights of Galloway and

Dumfries-shire, to the summit ofBen-Lomond; and from Dum-
bartonshire and the vicinity of Glasgow in a north-easterly di-

rection, connecting all the remarkable mountains of Perth-

shire. The sands of Belhelvie, a few miles westward of Aber*

deen, the spot formerly pointed oiit by General Roy, is now
selected for a base of verification, which Colonel Mudge in-

tends to measure in person this summer. It would no doubt

Be very desirable to have another intermediate base determi-

ned nearer the west side of the island. For this purpose, the

plain between Kinniel and Carron, in the Carse of Falkirk,

might seem eligible.

Besides the principal triangles thus determined, a multitude

of subordinate ones were ascertained in the progress of the

survey, which serve to connect all the remarkable objects

that occurred over the face of the country. The capital points

were hence established for constructing: the most accurate

charts and provincial maps. A number of royal military sur-
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veyors, of approved skill, have since been constantly employed

in filling up the secondary triangles, and embodying the ske-

leton plans. The various materials are collected at the draw-

ing-room of the Tower, and there adjusted, reduced and com-

bined. Under the same able direction, an extensive establish-

ment has been formed in those spacious apartments, where

a voluminous series of maps, on the largest scale, are not

only delineated but engraved. This truly national work ad-

vances with great activity, and has already proved highly ad-

vantageous to the public service. The Ordnance Maps, in

elaborate accuracy, and even beauty of execution, surpass

every thing hitherto designed.

The publication of these valuable geographical details, after

having been suspended for some years, is again free. Five

parts have already appeared, including Devonshire, Essex,

Sussex, Dorsetshire, Kent, the Isle of Wight, Hampshire and

Cornwall. Other maps are in a state of great forwardness, as

far northward as the parallel from Caernarvon through Shrews-

bury and Warwick to twenty miles beyond Boston in Lincoln-

shire. The completion of a work of such vast magnitude

must require proportional tinve and perseverance. The ma-

ritime counties will probably be first given to the public, and

the districts of the interior afterwards delivered.

For a concise and perspicuous exemplification of all the re-

finements adopted in the practice of-tfigonometrical surveying,

I have much satisfaction in referring to the late work ofBaron

Zach sur PAttraction des Montagues ; nor can I omit this op-

portunity of testifying my respect and regard for that able

and very learned astronomer, in whose interesting society I

made a delightful excursion, in the month oi August 1814,

from Lyons by Orange to Vaucluse, and thence by Avignon

to Marseilles, where he was then residing, as chamberlain to

her Highness the Dowager Duchess of Saxe-Gotha.

22. To determine geometrically the altitude ofa mountain re-

quires, it hence appears, a nice operation performed with some

large instrument. The barometrical mensuration of heights

is therefore, in most cases, preferred, as much easier and often

more exact. This curious application was early suggested, by
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the objections themselves which ignorance opposed to Torri-

celli's iiipnortal discovery of the weight of our atmosphere.

But more than a century elapsed before the improvements in

mechanics had completely adapted the machine to that pur-

pose, and experiment combined with observation had ascer-

tained the proper corrections. Barometers of various con-

structions are now made quite portable, and which indicate

with the utmost precision the height of the mercurial column

supported by the pressure of the atmosphere.

The air which invests our globe, being a fluid extremely

compressible, must have its lower portions always rendered

denser by the weight of the incumbent mass. To discover the

law that connects the densities with the heights in the atmos-

phere, it is only requisite, therefore, to apply the fact which

experiment has established,-^that the elasticity counterbalan-

cing the pressure is exactly proportioned to the density. The
elasticity of the air at any point of elevation, is hence mea-

sured by a column possessing the same uniform density, with

a certain constant altitude. Let AB denote the height of this

equiponderant column, and the perpendicular Bl its density

;

and suppose the mass of air below to be distinguished into nu-

merous strata^ having each the same thickness BC. It is evi-

dent that the weight of the niinute stratum at B will be ex-

pressed by BC ; whence AB is to A,C, or BI to CK, as the.

pressure at B to the augmented pressure at C, and therefore

the density at C is denoted by CK, Again, having joined IC,

Be^Di5.FG:.lC

and drawn KD parallel, BI : CK : : BC : CD ; and conse-

quently CD will, on the same scale of density, express the

weight of the stratum at C. Hence, AC is to AD, as CK to

DL, or as the density at C is to that at D. It thus appears,

that, repeating this process, the densities BI, CK, DL, &c. of

the successive strata form a continued geometrical progression.

But the same relation will evidently obtain at equal though

sensible intervals. Thus, the density of the atmosphere is re-
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duced nearly to one half, tor every % miles of perpendicular

ascent. At 7 miles in height, the corresponding density is

one-fourth ; at 10| miles, one-eighth ; and at 14 miles, one-

sixteenth.

The difference of altitude between two points in the atmos-

phere, is hence proportional to the difference of the logarithms

of the corresponding densities or vertical pressures. But the

heights of mountains may be computed from barometrical

measurement to any degree of exactness, by a simple nume*

rical approximation. Since AB, AC, AD, &c. are continued

proportionals, it follows that AB: BC : : AB+AC+AD, &c.

;

BC-f-CD-fDE, &c. or BH. Let n denote the number of sec-

tions or strata contained in the mass of air, and — (AB4- AH)

will nearly express the sum of the progression AB, AC, AD,
&c.; wherefore, AB+AH : BH : : 2AB : wBC, or the absolute

difference of altitude. The height AB of the equiponderant

column, reduced to the temperature of freezing water, is near-

ly 'zG^O feet ; and hence this general rule,

—

As the sum of
the mercurial columns is to their difference, so is the constant num-

ber 52,000 to the approximate height. This number is the more

easily remembered, from the division of the year into weeks.

Two corrections depending on the variation of temperature

are besides required. 1. Mercury expands about the 5,000th

part of its bulk, for each degree of the centigrade scale ; and

hence the i,mall addition to the upper column mil he found, hy

removing the decimal pointfour places to the left, and multiplying

hy tvoice the difference hettveen the degrees ofthe attached thermo ^

meters. 2. But the correction afterwards applied to the prin-

cipal computation is of more consequence. Air has its vo-

lume increased by one 250th part, for each degree of heat

on the same scale. If therefore, the approximate height, ha-

ving its decimal point shifted back three places, be midtiplied by

ituice the sum of the degrees on the detached thermometers, the

product ivill give the addition to he made. If it were worth

while to allow for the effect of centrifugal force in diminishing

the pressure of the aerial column, this will be easily done be-

fore the last multiplication takes place, by adding to twice the

degrees on the detached thermometers the j(^M par^ of the

piean temperature corresponding to the latitude.
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An example will elucidate the whole process. In August

1775, General Roy observed the barometer on Caernarvon

Quay at 30.091 inches, the attached thermometer being 15° .7,

and the detached 15°.6 centigrade, while on the Peak of Snow-

don the barometer stood at 26.409, the attached thermometer

marking 10°.0, and the detached 8°.8. Here, twice the dif-

ference of the attached thermometers is 11°.4, which multi-

plied into .00264 gives .030, for the correction of the upper

barometer. Next, 30.091 + 26.439 : 30.091 — 26.439, or

56.530 : 3.652 : : 52000 : 3359. Again, twice the sum of the

degrees marked on the detached thermometers is 48.8, which

multiplied into 3.359 gives 164 ; wherefore, the true height of

Snowdon above the Quay of Caernarvon is 3359-}- 164, or 3533

feet. The correction for centrifugal force is only 7 feet more.

This mode of approximation may be deemed sufficiently

near, for any heights which occur in this island ; but greater

accuracy is attained by assuming intermediate measures. To

illustrate this, I shall select another example. At the very

period when General Roy was making his barometrical obser-

vations at home, Sir George Shuckburgh Evelyn found the

barometer to stand at 24.167 on the summit of the Mole, an

insulated mountain near Geneva, the attached and detached

thermometers indicating 14°.4 and 13°.4, while they marked

16°.3 and 17°.4 at a cabin below and only 672 feet above the

lake, the altitude of the barometer at this station being 28.132.

Now, 3.8x.0024=.009, and 24.167-^009=24.176; the arith-

metical mean between which and 28.1 32 is 26.154 ; and hence,

separately, 50.330 : 1.978 : : 52000 : 2044, and 54.286 : 1.978 :

:

52000 : 1895. Wherefore, joining these two parts, 2044-}- 1895,

or 3939 expresses the approximate height. Tiie final correc-

tion is 61.6x3.939=243, or 254 feet, if allowance be made
for the effect of centrifugal force,^ and consequently the Mole
has its summit elevated 4865 feet above the lake of Geneva,

and 6063 above the level of the sea.

In general, let A and A -|- w6 denote the correct lengths of

the columns of mercury at the upper and the lower stations
;

the approximate height of the mountain will be expressed by

\2A:fb+ 2A4.3^ + 2A+ 5b
'" + 2A+ 2n^].b}

^^^^'
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If w were assumed a large number, the result would approadb

to the accuracy of a logarithmic computation, though such an

extreme degree of precision will be scarcely ever wanted.

To expedite the calculation of heights from barometrical

observations, I have now caused Mr Gary, optician in London,

to make for sale a sliding-rule, of an easy and commodious

construction. That small instrument, which should be accom-

panied with a barometer of the lightest and most portable

kind, will be found very useful to mineralogical travellers who
have occasion to explore mountainous tracts. Nothing could

tend more to correct our ideas of physical geography, than to

have the principal heights in all countries measured, at least

with some tolerable degree of precision. But the elevation of

any place above the sea may be ascertained very nearly, from

the comparison of even very distant barometrical observations,

especially during the steadiness of the fine season in the hap-

pier climates. In the summer of 181 4, Engelhardt and Par-

rot, two Prussian travellers, by a series of fifty-one barometri-

cal observations, made along the distance of 711 miles, from

the Caspian to the Black Sea, ascertained the former to be

334< English feet below the level of the latter, which complete-

ly oversets the supposition of any subterranean communica-

tion existing between those seas. By the same mode may be

traced a profile or vertical section, that shall exhibit at one

glance the great features of a country. As a specimen, I have

combined and reduced the sections which the celebrated philo-

sophic traveller Humboldt has given of the continent of Ame-

rica, running in a twisted direction from Acapulco to Vera

Cruz, and connecting the Pacific with the Atlantic Ocean.

A Acapulco. f Venta de Chalco.

a Peregrino, g St Martin,

B Chilpansingo. E La Puebla de los Angeles.

b Mescala. h El Pinal

c Tepecuacuilco. I Perote,

d Puente de Istla, k Cruz Blanca.

C Cuernavaca. F Xalafa.

e La Cruz del Marques, G Vera Cruz.

D Mexico.
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The divided scale expresses the horizontal distance in miles,

while the parallels, on a much larger scale, mark the elevation

in feet. This profile is really composed of four successive

sections, which are distinguished by opposite shadings. The

survey proceeded first along the road from Acapulco to Mex-

ico, thence to Puebla de los Angeles, next to Cruz Blanca,

and finally to Vera Cruz. These several directions and dis-

tances are expressed in the ground plan.

An attempt is likewise made in this profile, to convey some

idea of the geological structure of the external crust

:

Limestone is represented by straight lines slightly inclined

from the horizontal position.

Basalt, by straight lines slightly reclined from the perpendi-

cular.

Porphyry, by waved lines somewhat reclined.

Granite, by confused hatches.

Amygdaloid, by confused points.

But the easiest way of estimating within moderate limits the

elevation of a country, is founded on the difference between

the standard and the actual mean temperature as indicated by

deep wells or copious aod shaded springs. Professor Mayer
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©f Gottingen, from a comparison of distant observations (m

the surface of the globe, proposed aformuhf which, with a

slight modification, appears to exhibit correctly the tempera-

ture ofany place at the level of the sea. Let (p denote the la-

titude ; and 29 cos(p*,

er .14^ suvers 2<p, b
will express, in de-

grees of the centi-

grade scale, the me-

(diura heat on the

coast. But the gra-

dations of climate

are more easily con-

eeLved by help of a

geometrical diagram

.

From the centre C,

draw straight lines

to the several de-

grees of the qua-

drant, and cutting

the interior semi-

circle; then the radius CA denoting 29% the perpendiculars

from the points of section will intercept segments proportional

to the mean temperature expressed on DE.^

The higher regions are invariably colder than the plains

;

and I have been able, after a delicate and patient research, to

fix the law which connects the decrease of temperature with

the altitude. If B and b denote the barometric pressure at the

-7 ^) Q5 express,

©n the centigrade scale, the diminution of heat in ascent.

Hence, for any given latitude, that precise point of elevation

Bmay be found, at which eternal frost prevails. Put x rr

and t = the standard temperature ; then /— -— x ) 25=^, or

V
^

x^ -{• .04<txz=: 1, which quadratic equation being resolved,

gives the relative elasticity of the air at the limit of congela-

tion, whence the corresponding height is determined. From

these data the following table has been calculated.
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Mean temperature at Mean temperature at 1

Lati.

tude.
the level of the Sea. Height ofCurve

of Congelation.

T f-Latu
tude.

the level of the Sea. ' Height ofcurve
of Congelation.

Feet.

74020°

Centigrade

29°.00

Fahrenheit.

46°

Centigrade

1S°.99

Fahrenheit.

570.284°.2 15207

1 28.99 84.2 15203 47 13.49 56.3 7133
2 28.96 84.1 15189 48 12.98 55.4 6,865

5 28.92 84.0 15167 49 12.43 54.5 6599
4 28.86 83.9 15135
5 28.78 83.8 15095 50 11.98 53.6 6334

6 28.68 83.6 15047 51 11.49 52.7 6070

7 28.57 83.4 14989 52 10.99 51.8 5808
8 28.44 83.2 14923 53 10.50 509 5548

9 28.29 82.9 14848 54 10-02 50.0 5290
53 9.54 49.2 5034

10 28.15 82.6 14764 56 9.07 48.3 4782

11 27.94 82.3 14672 57 8.60 47.5 4534
12 27.75 82.0 14571 58 8.14 46.6 4291

13 27.53 81.6 14463 59 7.69 45.8 4052
14 27.30 81.1 14345
15 27.06 80.7 14220 60 7.25 45.0 3818

16 26.80 80.2 14087 61 6.82 44.3 3589
17 26.52 79.7 13947 62 6.39 4.3.5 3365
18 26.2.3 79.2 1379S 63 5.98 42.8 3145

19 25.93 78. 13642 64 5.57 42.0 2930
65 5.18 41.3 2722

30 25.61 78.1 15478 66 4.80 40.6 2520
21 25.28 77.5 13308 67 4.43 40.0 2325
22 24.93 76.9 13131 68 4.07 39.3 2136
23 24.57 76.2 12946 69 3.72 38.7 1953
24 24.20 75.6 12755
25 23.82 74.9 12557 70 3.39 38.1 1778

26 23.43 74.2 12354 71 3.07 37.5 1611

27 23.02 73.6 12145 72 2.77 37.0 1451

28 22.61 72.7 11930 73 2.48 36.5 1298
29 22.18 71.9 11710 74 2,20 5;.o 1155

75 1.94 35.5 1016

50 21.75 71.1 11484 76 1.70 35.1 887
31 21.31 70.3 11253 77 1.47 34.6 767
32 20.88 69.5 11018 78 1.25 34.2 656
33 20.40 68.7 10778 79 1.06 33.9 552
34 19.93 67.9 10534
35 19.46 67.0 10287 80 .87 S3.6 457
36 18.98 66.2 10036 81 .71 33.3 571
87 18.50 65.3 9781 82 .56 33.1 294
38 18.01 64.4 9523 83 .43 32.8 226
39 77.51 65.5 9263 84 .32 32.6 167

85 .22 32.4 117
40 17.02 62.6 9001 86 .14 32.3 76
41 16.52 61.7 8738 87 .08 32.2 44
42 16.02 60.8 8473 88 .04 3-^.1 20
43 15.51 59.9 8206 89 .01 32.0 5
44 15.01 59.0 7939

1

90 .00 32.0
45 14.50 . 58.1 7671

1
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This table will facilitate the approximation to the altitude

of any place, which is inferred either from its mean tempera-

ture or its depth below the boundary of perpetual congelation.

The decrements of heat at equal ascents are not altogether

uniform, but advance more rapidly in the higher regions of

the atmosphere. At moderate elevations, however, it will be

sufficiently near the truth, to assume the law of equable pro-

gression, allowing in this chmate one degree of cold by Fah-

renheit's scale for every ninety yards of ascent, and for every

hundred yards in the tropical regions. Thus, the tempe-

ratures of the Crawley and Black springs on the ridge of

the Pentland hills, were observed by Mr Jardine, where they

first issue from the ground, to be 46°.2 and 45° ; which, com-

pared with the standard temperature at the same parallel of

latitude, would give 567 and 891 feet of elevation above the

sea. The real heights found by levelling were respectively

5634 and 882; a coincidence most surpiising and satisfactory—

-

This ready mode of estirnation claims especially the attention

of agriculturists.

Dr Francis Buchanan informs me, that he found the tempe-

rature of a spring at Chitlong, in the Lesser Valley of Nepal,

to be 14°.7 centigrade. But the mean temperature in the pa-

rallel of 27°38' being 22o.8, the density of the atmosphere cor-

responding to difference 8°.l, is .8510, which gives 4500 feet

for the corrected altitude. From other observations of the

same accurate traveller, we may conclude that Kathmandre,

the capital of Nepal, is elevated about 2780 feet above the

level of the sea. 1 found myself the temperature of the ce-

lebrated fountain of Vaucluse, which gushes with such vo-

lume as to form almost immediately a respectable river, to be

13° centigrade, or 2° less than what corresponds to its latitude

or 43° 55'. It may hence be inferred, that Vaucluse is 1080 feet

above the level of the Mediterranean.

The rule stated above for computing the measurements by

the barometer, seems to give results somewhat less, on the

wbple, thau tbose which are obtained from geometrical ob-

servations. It would ensure greater accuracy, perhaps, to

view the approximate height as answering to a temperature

one degree under the point of congelation ; and consequent*

ly, in applying the last correction, to add unit to the indi-
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cations of the detached thermometers. But the whole sub-

ject demands a more thorough investigation. The elasticity

of air is affected by moisture as well as heat, although the

want of an exact instrument for measuring the former has

hitherto prevented its influence from being distinctly noticed.

When the hygrometer which I have invented shall become

better known to the public, it may not seem presumptuous

to expect, in due time, more correct data concerning the mo-

difications of the atmosphere. Yet, after all, in ascertaining,

the volume of a fluid subject to incessant fluctuation, it would

be preposterous to look for that consummate harmony which

belongs exclusively to astronomical science ; nor can I help

regarding the introduction of 5ome late refinements into the

formulce for measuring heights by the barometer, which would

embrace the minutest anomalies of atmospheric pressure, as

rather a waste of the powers of calculation.

I shall now subjoin a concise table of the most remarkable

heights in different parts of the world, expressed in English

feet. The altitudes measured by the barometer are marked
B, while those derived from geometrical operations, and taken

chiefly from the observations of Colonel Mudge, are distin-

guished by the letter G.

Snae Fiall Jokul, on the north-'west point qflcelandy 4558 G,
Hekla, volcanic mountain in Iceland^ - - 3950 G
Sulitelma, m Z«/?/aw^, - * . 5910 B
Snahatta, centre ofthe 'Norwegian mountains, - 8 1 20 B
Harebacke, Alpine ridge ofNortvaj/j - 4575 B
Pap of Caithness, - - - . 1929
Ben Nevis, Inverness-shire, ... 4380 B
Cairngorm, Inverness-shire, - - - 4080 B
Cairnsmuir upon Deugh, Galloxuay, - - 2597 G
Ben Lawers, Perthshire, - - « 4015 B
Ben More, Perthshire, - - . - 3870 B
Schihallien, Perthshire, - - - 3281 G
Ben Ledi, Perthshire, - - - - 3009 B
Ben Lomond, Stirlingshire, - - . 3240 B
Lomond Hills, east and west, Fifeshire, 1466 and 1721 G
-Soutra Hill, on the ridge ofLammermuir, - 1716 G
Coulter Fell, Lanarkshire, - _ . 2440 G
Carnethy, high point ofthe Pentland ridge, - 1700 B
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Tintoc Hill, Lanarkshire, - - _ . 2306 (J

Leadhills, the house of the Director of the mines, 1280 B
Broad Law, near Crook Inn, Peebles-shire, - 2741 G
Queensbery Hill, Dumfries-shire, - - 2259 G
Caifnsmuir of Fleet, Galloxioay, - - 2329 G
Hert Fell, near Moffat, - - - ' 2635 G
Dunrich Hill, Roxburghshire, - - , - 24'21 G
Elden Hills, near Melrose, Roxburghshire, - 1364 G
Whitcomb Hill, Peebles-shire, - - 2685 G
Lother Hill, Dumfries-shire, - - 2396 G
Ailsa Rock, in the Firth of Clyde, - - 1 103 G
Crif Fell, near New Abbey, Kirkcudbright, - 1831 G
Kells Range, Galloway, - - - 2659 G
Goat Fell, in the Isle of Arran, - - 2865 G
Paps of Jura, south and north, in Argyleshire, 2359 and 2470

' Snea Fell, in the Isle ofMan, - - - 2004 G
South Beru\e, in Isle ofMan, - - 1584G
Macgillicuddy's Reeks, County of Kerry, - 3404

Sliebh Donard, the highest ofthe Mourne Mountains, 2786 G
Helvellyn, Cumberland, - - - 3055 G
Skiddaw, Cumberland, - - - 3022 G
Saddleback, Cumberland, - - - 2787 G
Whernside, Yorkshire, - - - 2384 G
Ingleborough, Yorkshire, - - - 2361 G
Shunnor Fell, Yorkshire, - - - 2329 G
Snowdon, Caernarvonshire, - - . 3571 G
Cii^er IdiVis, Caernarvonshire, - ^ » - 2914 G
Beacons of Brecknock, - - . 2862 G
Plynlimmon, Cardiganshire, - - 2463 G
Penmaen Mawr, Caernarvonshire, • - 1540 G
Malvern Hills, Worcestershire, - - 1444 G
Cawsand Beacon, Devonshire, - - 1792 G
Rippin Tor, Devonshire, - - - 1549 G
Brocken, in the Hartz-forest, Hanover, - '- 3690

Priel, in Upper Austria, - - - 7000 B
Peak of Loranitz, in the Carpathian ridge, - 8870 B
Terglou, in Carniola, - - - - 10390 B
Mont Blanc, Switzerland, - - - 15646 G
Village of Chamouni, below Mont Blanc, - 3367 G
Jungfrauhorn, Sxvitzerland, - - 13730
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^t Goihardy Switzerland, - - 9075

Hospice of the Great St Bernard, - - 8040 B

Village of St Pierre, on the road to Great St Bernard, 5338 B

Passage of Mont Cenis, - - -

Gross-Glockner, between ike Tyrol andCorintUa,

Ortler Spitze, in the Tyrol,

lligiberg, abo-oe the lalce of Lucerne^

Dole, the highest point ofthe chain ofJura,

Mont Perdu, in the Pyrenees,

Loneira, in the department of the high Alps,

6778 B
12780 B
15430

^408

5412 B
11283

14451

Peak of Arbizon, in the department ofthe high Pyrenees, 8344

Puy de Dome, in Auvergne, - - ^ 4858 G
Montd'Or, . . - . 6202 G
Summit of Vaucluse, wear ^w^wow, - - 2150

Village on Mont Genevre, - - 5.945 B
St Pilon, near Marseilles, - - - 3295 G
Soracte, 7iear Rome, - - - 2271 G
Monte Velino, in the kingdom of Naples, - 8397 G
Mount Vesuvius, volcanic mountain beside Naples, 3978

iEtna, volcanic mountain in Sicily, - 10963 B
St Angelo, in the Lipari Islajids, - - 5260

Top of the Rock of Gibraltar, - - 1439 B
Mount Athos, in Rumelia, - - - 3353

Diana's Peak, in the Island of St Helena, - 2692

Peak of Teneriffe, one ofthe Canary Islands, - 12358 B
Ruivo Peak, the highest point of Madeira, - 5162

Table Mountain, near the Cape ofGood Hope, 3520

Chain of Mount Ida, beyond the plain of Troy, 4960

Chain of Mount Olympus, in Anatolia, - 6500

Italitzkoi, in the Altaic chain, - - 10735

Awatsha, volcanic mountain in KamtchatJca, - 9600

The Volcano, in the Isle of Bourbon, - - 7680
Ophir, in the centre ofthe Island of Sumatra, - 13842

St Elias, on the western coast ofNorth America, 12672
White Mountain, in the State of Massachusets, 6230 B

^ Chimborazo, highest summit of the Andes, - 21440 B
Antisana, volcanic mountain in the kingdom of Q,uito, 19150 B
Shepherd station on that mountain, - - 13500 B
Cotopaxi, volcanic mountain in the kingdom of Qjuito, 18890 B
Tonguragua, volcanic mountain^ near Riobomba, 16579 B
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Rucu de Pichincha, in the kingdom of Quito, - 15940 G
Heights of Assuay, the ancient Peruvian road, 15540 B
Peak of Orizaba, volcanic mountain eastfrom Mexico, 17390 G
Lake of Toluca, in the kingdom ofMexico, - 12195 B
City of Quito, - - - 9560 B
City of Mexico, - - - 7476 B
Silla de Caraccas, part of the chain of Venezuela, 8640 B
Blue Mountains, in the Island ofJamaica, - 7431

Pelee, in the Island ofMartinique, - - 5100

Morne Garou, in the Island of St Vincent*s, - 5050

In this list of altitudes, I have not ventured to insert the

Himalaya Mountains, or Great Central Chain of Upper Asia,

to which some recent accounts from India would assign the

stupendous elevation from 23,000 to 27,000 feet. Such at

least are the results of observations made with a small sextanC

and an artificial horizon, at the enormous distance of226 or 232

miles, as computed indeed from very short bases. But even

with the best instruments, and under the most favourable cir-

cumstances, the determination of minute vertical angles is liable

to much uncertainty. The progress of accurate observation

has uniformly reduced the estimated altitudes of mountains.

I shall conclude with briefly stating the French measures^.

The Parisian foot was to the English, or the toise to the fa-

thom, as 1.065777 to 1, or nearly as 16 to 15. The metre,

or base of the new system, and equal to 39.371 English

inches, ascends decimally, forming the decametre or perch, the

hectometre, the kilometre or mile, and the myriametre or league,

equivalent to 6.213856 of our miles; and descending by the

same scale, it forms successively the decimetre or palm, the

centimetre or digit, and the millimetre or stroke. The square

of the decametre constitutes the are, and that of the hectametre,

the hectare or acre, and equal to 2.47117 English acres. The

cube of a metre, or 35.3171 feet, forms the unit of solid mea-

sure or the stere, that o^ a decimetre, or 61.028 inches forming

the litre or pint ; and the weight of this bulk of water at its

greatest contraction makes the kilogramme ov pound, equivalent

to 2.1133 pounds Troy, ih^ gramme answering to 15.444 grains,

FINIS.



ERRATA.

P. 36. line 9./or triangles read triangle

— 144. bottom, /or B : C : : C read C : D : : E : F
—233. 5th line from bottom, /or Of the equidifferent arcs, read Oi three

equicUft'erent arcs,
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