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PREFACE.

IN the foliowi.g treatise, an attempt has been mafle to combine the

peculiar excellencies of Euclid and Legendre. The Elements of Euc.li

have long been celebrated as furnishing the most finished specimens 01

logic ; and on this account they still retain their place in many seminariea

of education, notwithstanding the advances which science has made in

modern times. But the deficiencies of Euclid, particularly in Solid Gf

ometry, are now so palpable, that few institutions are content with a

simple translation from the original Greek. The edition of Euclid

chiefly used in this country, is that of Professor Playfair, who has sought,

by additions and supplements, to accommodate the Elements of Euclid

to the present state of the mathematical sciences. But, even with these

additions, the work is incomplete on Solids, and is very deficient on

Spherical Geometry. Moreover, the additions are often incongruous

with the original text ; so that most of those who adhere to the use of

Playfair's Euclid, will admit that something is still wanting to a perfect

treatise. At most of our colleges, the work of Euclid has been super-

seded by that of Legendre. It seems superfluous to undertake a defense

of Legendre's Geometry, when its merits are so generally appreciated

No one can doubt that, in respect of comprehensiveness and scientific

arrangement, it is a great improvement upon the Elements of Euclid.

Nevertheless, it should ever be borne in mind that, with most students

in our colleges, the ultimate object is not to make profound mathemati

cians, but to make good reasoners on ordinary subjects. In order to

secure this advantage, the learner should be trained, not merely to give

the outline of a demonstration, but to state every part of the argument

with minuteness and in its natural order. Now, although the model of

Legendre is, for the most part, excellent, his demonstrations are

often mere skeletons. They contain, indeed, the essential part of an

argument ; but the general student does not derive from them the high

est benefit which may accrue from the study of Geometry as an exercise

in reasoning.

While, then, in the following treatise, I have, for the most part, fol

owed the arrangement of Legendre, I have aimed to give his demonstra

tions somewhat more of the logical method of Euclid. I have also made



VJ PREFACE,

gome changes in arrangement, feeveral of Legend re's propositions have

been degraded to the rank of corollaries, while some of his corollaries.

ri scholiums have been elevated to the dignity of primary propositions

lis lemmas have been proscribed entirely, and most of his scholiums

have received the more appropriate title of corollary. The quadrature

.4 the circle is developed in an order somewhat different from any thing

I have elsewhere seen. The propositions are all enunciated in general

terms, with the utmost brevity which is consistent with clearness ; and,

in order to remind the student to conclude his recitation with the enun

ciation of the proposition, the leading words are repeated at the close ot

each demonstration. As the time given to mathematics in our colleges

is limited, and a variety of subjects demand attention, no attempt has

been made to render this a complete record of all the known propositions

of Geometry. On the contrary, nearly every thing has been excluded

which is not essential to the student's progress through the subsequent

parts of his mathematical course.

Considerable attention has been given to the construction of the dia

grams. I have aimed to reduce them all to nearly uniform dimensions,

and to make them tolerable approximations to the objects they were de

signed to represent. I have made free use of dotted lines. Generally,

the black lines are nsed to represent those parts of a figure which aro

directly involved in the statement of the proposition ; while the dotted

lines exhibit the parts which are added for the purposes of demonstration.

In Solid Geometry the dotted lines commonly denote the parts which

would be concealed by an opaque solid
; while in a few cases, for pecul-

iar reasons, both of these rules have been departed from. Throughout

Solid Geometry the figures have generally been shaded, which addition,

it is hoped, will obviate some of the difficulties of which students frequent-

ly complain.

The short treatise on the Conic Sections appended to this volume is

designed particularly for those who have not time or inclination for the

fltudy of Analytical Geometry. Some acquaintance with the properties

of the Ellipse and Parabola is indispensable as a preparation for the

study of Mechanics and Astronomy. Those who pursue the study of

Analytical Geometry can omit this treatise on the Conic Sections if it

should be thought desirable. It is believed, however, that some knowl-

edge of the properties of these curves, derived from geometrical meth-

ods, forms an excellent preparation for the Algebraical and more general

processes of Analytical Geometry-
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ELEMENTS OF GEOMETRY,

BOOK I.

GENERAL PRINCIPLES.

Definitions.

1. GEOMETRY is that branch of Mathematics which treats

of the properties of extension and figure.
Extension has three dimensions, length, breadth, and thick

ness.

2. A line is that which has length, without breadth 01

thickness.

The extremities of a line are called points. A point, there-

fore, has position, but not magnitude.
3. A straight line is the shortest path from one point to

another.

4. Every line which is neither a straight line, nor compo
sed of straight lines, is a curved line.

E
Thus, AB is a straight line, ACDB is a

broken line, or one composed of straight
lines, and AEB is a curved line.

~D
5. A surface is that which has length and breadth, without

thickness.

6. A plane is a surface in which any two points being ta-

ken, the straight line which joins them lies wholly in that sur-

face .

7. Every surface which is neither a plane, nor composed
of plane surfaces, is a curved surface.

8. A solid is that which has' leiigth, breadth, and thick-

ness, and therefore combines the three dimensions of exten-

sion.

9. When two straight lines meet together, their inclina-
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tion, or opening, is called an angle. The point of meeting
:

.s called the vertex, and the lines are called Ihe sides of the

angle.

If there is only one angle at a point, it may
oe denoted by a letter placed at the vertex, as

the angle at A.

But if several angles are at one point, any one of them is

expressed by three letters, of which the middle one is the let

ter at the vertex.

B
Thus, the angle which is contained by the

straight lines BC, CD, is called the angle
BCD, or DCB.

c

Angles, like other quantities, may be added, subtracted,,

multiplied, or divided. Thus, the angle BCD is the sum of

the two angles BCE, ECD ; and the angle ECD is the differ

ence between the two angles BCD, BCE.
10. When a straight line, meeting another straight line

makes the adjacent angles equal to one another,
each of .them is called a right angle, and the

straight line which meets the other is called a

perpendicular to it.

11. An acute angle is one which is less than a

right angle.

An obtuse angle is one which :s greater
than a right angle.

12. Parallel straight lines are such as are

in tha same plane, and which, being produced
ever so far both ways, do not meet.

13. A plane figure is a plane terminated on all sides by
.ines either straight or curved.

If the lines are straight, the space they in-

close is called a rectilineal figure, or polygon,
and the lines themselves, taken together, form
the perimeter of the polygon.

14. The polygon of three sides is the simples of all, and is

called a triangle ; that -of four sides is called a quadrilateral :

that of five, a pentagon ; that of six, a hexagon, &c.
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15. An equilateral triangle is one which has its

three sides equal. / v

An isosceles triangle is that which has only two
sides equal.

A scalene triangle is one which has three un-

equal sides.

16. A right-angled triangle is one which has

a right angle. The side opposite the right an-

gle is called the hypothenuse.
An obtuse-angled triangle is one which has an obtuse an

gle. An acute-angled triangle is one which has three acute

angles.

17. Of quadrilaterals, a square is that which has

all its sides equal, and its angles right angles.

A rectangle is that which has all its angles right
[

angles, but all its sides are not necessarily equal.

A rhombus is that which has all its sides

equal, but its angles are not right angles.

A parallelogram is that which has its op-

posite sides parallel. *_

A trapezoid is that which has only two sides / \
rallel. / \parallel

18. The diagonal of a figure is a line B
which joins the vertices of two angles not

adjacent to each other.

Thus, AC, AD, AE are diagonals.

19. An equilateral polygon is one which has all its sides

equal. An equiangular polygon is one which has all its an-

gles equal.
20. Two polygons are mutually equilateral when they

have all the sides of the one equal to the corresponding sides

of the other, each to each, and arranged in the same order.
Two polygons are mutually equiangular when they have
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all the ang es of the one equal to the corresponding anglei
of the other, each to each, and arranged in the same order.

In both cases, the equal sides, or the equal angles, are call-

ed homologous sides or angles.
21. An axiom is a self-evident truth.

22. A theorem is a truth which becomes evident oy a train
of reasoning called a demonstration.

A direct demonstration proceeds from the premises by a

regular deduction.

An indirect demonstration shows that any supposition con-

trary to the truth advanced, necessarily leads to an absurd-

ity.

23. A problem is a question proposed which requires a so

lution.

24. A postulate requires us to admit the possibility of an

operation.
25. A proposition is a general term for either a theorem,

or a problem.
One proposition is the converse of another, when the con-

clusion of the first is made the supposition in the second.

26. A corollary is an obvious consequence, resulting from
one or more propositions.

27. A scholium is a remark appended to a proposition.
28. An hypothesis is a supposition made either in the enun-

ciation of a proposition, or in the course of a demonstration.

Axioms.

1. Things which are equal to the same thing are equal to

each other.

2. If equals are added to equals, the wholes are equal.
3. If equals are taken from equals, the remainders are

equal.
4. If equals are added to unequals, the wholes are unequal.
5. If equals are taken from unequals, the remainders are

unequal.
6. Things which are doubles of the same thing are equal to

each other.

7. Things which are halves of the same thing are equal to

each other.

8. Magnitudes which coincide with each other, that is,

which exactly fill the same space, are equal.
9. The whole is greater than any of its parts.
10. The whole is equal to the sum of all its parts.
11. From one point to another only one straight line can

be drawn.
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12. Twc straight lines, which intersect one another can

not both be parallel to the same straight line.

Explanation of Signs.

For the sake of brevity, it is convenient to employ, to soma

extent, the signs of Algebra in Geometry. Those chiefly em
ployed are the following :

The sign
= denotes that the quantities between which it

stands are equal ; thus, the expression A=B signifies that A
is equal to B.

The sign + is called plus, and indicates addition ; thus

A-fB represents the sum of the quantities A and B.

The sign is called minus, and indicates subtraction ; thus,

A B represents what remains after subtracting B from A.
The sign X indicates multiplication ; thus, AxB denotes

the product of A by B. Instead of the sign X, a point is

sometimes employed ; thus, A . B is the same as A X B. The
same product is also sometimes represented without any in-

termediate sign, by AB ;
but this expression should not be

employed when there is any danger of confounding it with

the line AB.
A parenthesis ( ) indicates tHat several quantities are to

be subjected to the same operation ; thus, the expression

Ax(B+C D) represents the product of A by the quantity
B+C D.

A
The expression -^

indicates the quotient arising from divi

ding A by B.

A number placed before a line or a quantity is to be re

garded as a multiplier of that line or quantity ; thus, SAB de
notes that the line AB is taken three times ; $A denotes the

half of A.
The square of the line AB is denoted by AB

2

; its cube b)
AB 3

.

The sign ^/ indicates a root to be extracted ; thus, ^/2 de-

notes the square root of 2 \/A X B denotes the square root

of the product of A and B.

N.B. The first six books treat only of planejigures, or fe
ures drawn on a plane surface.
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PROPOSITION I. THEOREM.

All 1 ight angles are equal to each nther.

Lei the straight line CD D -K IL
be perpendicular to AB, and
GH to EF ; then, by defini-

tion 10, each of the angles
ACD, BCD, EGH, FGH, will

be a right angle ; and it is to

be proved that the angle ACD is equal to the angle EGH.
Take the four straight lines AC, CB, EG, GF, all equal to

each other ; then will the line AB be equal to the line EF
(Axiom 2). Let the line EF be applied to the line AB,
so that the point E may be on A, and the point F on B

;

then will the lines EF, AB coincide throughout ; for other-

wise two different straight lines might be drawn from one

point to another, which is impossible (Axiom 11). More-

over, since the line EG is equal to the line AC, the point G
will fall on the point C

;
and the line EG, coinciding with

AC, the line GH will coincide with CD. For, if it could

have any other position, as CK, then, because the angle EGH
is equal to FGH (Def. 10), the angle ACK must be equal to

BCK, and therefore the angle ACD is less than BCK. Bui
BCK is less than BCD (Axiom 9) ; much more, then, is ACD
less than BCD, which is impossible, because the angle ACD
is equal to the angle BCD (Def. 10) ; therefore, GH can not

but coincide with CD, and the angle EGH coincides with

the angle ACD, and is equal to it (Axiom 8). Therefore, all

riejht angles are eoual to each other.

PROPOSITION II. THEOREM,

The angles which one straight line makes w>tk another, up j*

one side of it, are either two right angles, or are together eqiu<
to two right angles.

Let the straight line AB make with CD,
upon one side of it, the angles ABC, ABD ;

these are either two right angles, or are to-

gether equal to two right angles.
For if the angle ABC is equal to ABD,

each of them is a right angle (Def 10) ; but
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.1 not, suppose the line BE to be drawn from E|
the point B, perpendicular to CD ; then will

each of the angles CBE, DBE be a right

angle. Now the angle CBA is equal to the

sum of the two angles CBE, EBA. To
each of these equals add the angle ABD; c

then the sum of the two angles CBA, ABD will be equal to

the sum of the three angles CBE, EBA, ABD (Axiom 2).

Again, the angle DBE is equal to the sum of the two angles
DBA, ABE. Add to each of these equals the angle EBC;
then will the sum of the two angles DBE, EBC be equal to

the sum of the three angles DBA, ABE, EBC. Now things
that are equal to the same thing are equal to each other

(Axiom 1) ; therefore, the sum of the angles CBA, ABD is

equal to the sum of the angles CBE, EBD. But CBE, EBD
are two right angles ; therefore ABC, ABD are together

equal to two right angles. Therefore, the angles which one

straight line, &c.

Corollary 1. If one of the angles ABC. ABD is a right

angle, the other is also a right angle.
Cor. 2. If the line DE is perpendicular to D

AB, conversely, AB will be perpendicular to

DE. _
For, because DE is perpendicular to AB, A

the angle DCA must be equal to its adjacent

angle DCB (Def. 10), and each of them must
be a right angle. But since ACD is a right angle, its adja-
cent angle, ACE, must also be a right angle (Cor. 1). Hence
the angle ACE is equal to the angle ACD (Prop. I.), and AB
is perpendicular to DE.

Cor. 3. The sum of all the angles BAG, Dy
CAD, DAE, EAF, formed on the same / /E
side of the line BF, is equal to two right

angles; for their sum is equal to that of

the two adjacent angles BAD, DAF. B"

PROPOSITION in. THEOREM (Converse of Prop. II.).

Iff at a point in a straight line, two other straight lines, upon
tne opposite sides of it, make the adjacent angles together equal
to two right angles, these two straight lines are in one and th?

same straight line.

At the point B, in the straight line AB, let the two straight
linos BC, BD, upon the opposite sides of AB, make the adja-
cent angles, ABC, ABD, together equal to two righ angles-
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then will BD be in the same straight line

with CB.

For, if BD is not in the same straight
line with CB, let BE be in the same

straight line with it; then, because the

straight line CBE is met by the straight
c

line AB, the angles ABC, ABE are together equal to two

right angles (Prop. II.). But, by hypothesis, the angles ABC,
ABD are together equal to two right angles ; therefore, the

sum of the angles ABC, ABE is equal to the sum of the an-

gles ABC, ABD. Take away the common angle ABC, and
the remaining angle ABE, is equal (Axiom 3) to the remain-

ing angle ABD, the less to the greater, which is impossible.
Hence BE is not in the same straight line with BC ; and in

like manner, it may be proved that no other can be in the same

straight line with it but BD. Therefore, if at a point, &c.

PROPOSITION IV. THEOREM.

Two straight lines, which have two points common, coincide

with each other throughout their whole extent, andform but one

and the same straight line.

Let there be two straight lines, having p.
the points A and B in common ; these

h'nes will coincide throughout their whole
extent. E

It is plain that the two lines must co- - = g ^~j\
incide between A and B, for otherwise

there would be two straight lines' between A and B, which
is impossible (Axiom 11). Suppose, however, that, on being

produced, these lines begin to diverge at the point C, one

taking the direction CD, anc. the other CE. From the point
C draw the line CF at rignt angles with AC ; then, since

ACD is a straight line, the angle FCD is a right angle (Prop.
II , Cor. 1) ; and since ACE is a straight line, the angle FCE
is also a right angle ; therefore (Prop. I.), the angle FCB
is equal to the angle FCD, the less to the greater, which u
absurd. Therefore, two straight lines which have, &c.

PROPOSITION V. THEOREM.

If two straight lines cut one another, the vertical or opposib*.

angles are equal.

I et the two straigh. lines. AB, CD. cut one another in the
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point E ; then will the angle AEG be equal
to the angle BED, and the angle AED to

the angle CEB. __ _
For the angles AEC, AED, which the A ~~^\ B

straight line AE makes with the straight ;NV

line CD, are together equal to two right

angles (Prop. II.) ; and the angles AED, DEB, which the

straight line DE makes with the straight line AB, are also

together equal to two right angles ; therefore, the sum of the

r.wo angles AEC, AED is equal to the sum of the two angles

,YED, DEB. Take away the common angle AED, and the

-emaining angle, AEC, is equal to the remaining angle DEB
v
Axiom 3). In the same manner, it may be proved that the

angle AED is equal to the angle CEB. Therefore, if two

straight lines, &c.
Cor. 1. Hence, if two straight lines cut one another, the

four angles formed at the point of intersection, are together

equal to four right angles.
Cor. 2. Hence, all the angles made by any number of

straight lines meeting in one point, are together equal to four

right angles.

PROPOSITION VI. THEOREM.

If two triangles have two sides, and the included angle of the

vne, equal to two sides and the included angle of the other, each

to each, the two triangles will be equal, their third sides will be.

equal, and their other angles will be equal, each to each.

Let ABC, DEF be two triangles,

having the side AB equal to DE,
and AC to DF, and also the angle
A equal to the angle D; then will

:he triangle ABC be equal to the

triangle DEF.
For, if the triangle ABC is ap-

plied to the triangle DEF, so that the point A may be on D,
and the straight line AB upon DE, the point B will coincide

with the point E, because AB is equal to DE ; and AB, coin-

ciding with DE, AC will coincide with DF, because the an-

gle A is equal to the angle D. Hence, also, the point C will

coincide with the point F, because AC is equal to DF. But
the point B coincides with the point E ; therefore the base

BC will coincide with the base EF (Axiom 11), and will be

equal to it. Hence, also, the whole triangle ABC will coin

cide with the whole triangle DEF, and will be equal to it

B
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and the remaining angles of the one, will coincide with the

remaining angles of the other, and be equal to them, viz. : the

angle ABC to the angle DEF, and the angle ACB to the an-

gle DFE. Therefore, if two triangles, &c.

PROPOSITION VII. THEOREM.

If two triangles have two angles, and the included side of th*

one, equal to two angles and the included side of the other, each

to each, the two triangles will be equal, the other sides will be

equal, each to each, and the third angle of the one to the third

angle of the, other.

Let ABC, DEF be two

triangles having the angle
B equal to E, the angle C
equal to F, and the inclu-

ded sides BC, EF equal to

each other; then will the B CE
triangle ABC be equal to the triangle DEF.

For, if the triangle ABC is applied to* the triangle DEF, so

that the point B may be on E, and the straight line BC upon
EF, the point C will coincide with the point F, because BC
is equal to EF. Also, since the angle B is equal to the an-

gle E, the side BA will take the direction ED, and therefore

the point A will be found somewhere in the line DE. And
because the angle C is equal to the angle F, the line CA will

take the direction FD, and the point A will be found some-
where in the line DF ; therefore, the point A, being found at

the same time in the two straight lines DE, DF, must fall ai

their intersection, D. Hence the two triangles ABC, DEF
coincide throughout, and are equal to each other ; also, the

two sides AB, AC are equal to the two sides DE, DF, each
to each, and the angle A to the angle D. Therefore, if two

triangles, &c.

PROPOSITION VIII. THEOREM.

Any side of a triangle is less than the sum of the other two

Let ABC be a triangle ; any one of its

sides is less than the sum of the other two,
viz. : the side AB is less than the sum ofAC
and BC ; BC is less than the sum of AB and
AC ; and AC is less than the sum of AB B

and BC.
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For the straight line AB is the shortest path between tne

points A, and B (Def. 3) ;
hence AB is less than the sum of

AC and BC. For the same reason, EC is less than the sum
of AB and AC ; and AC less than the sum of AB and BC
Therefore, any two sides, &c.

PROPOSITION IX. THEOREM.

lff from a point withir* a triangle, two straight lines are

drawn to the extremities of either side, their sum will be less

han the sum of the other two sides of the triangle.

Let the two straight lines BD, CD be
drawn from D, a point within the triangle

ABC, to the extremities of the side BC ;

then will the sum of BD and DC be less

than the sum of BA, AC, the other two
sides of the triangle.
Produce BD until it meets the side AC B C

in E ; and, because one side of a triangle is less than the sum
of the other two (Prop. VIII.), the side CD of the triangle
CDE is less than the sum of CE and ED. To each of these

add DB; then will the sum of CD and BD be less than the

sum of CE and EB. Again, because the side BE of the tri-

angle BAE is less than the sum of BA and AE, if EC be add-

ed to each, the sum of BE and EC will be less than the sum
of BA and AC. But it has been proved that the sum of BD
and DC is less than the sum of BE and EC ; much more, then,
is the sum of BD and DC less than the suni of BA and AC,
Therefore, if from a point, &c.

PROPOSITION X. THEOREM.

The angles at the base of an isosceles triangle are equal to

one another.

Let ABC be an isosceles triangle, of which
the side AB is equal to AC ; then will the angle
B be equal to the angle C.

For, conceive the angle BAG to be bisected

by the straight line AD ; then, in the two trian-

gles ABD, ACD, two sides AB, AD, and the in-

cluded angle in the one, are equal to the two B D C

sides AC, AD, and the included angle in the other ; there-

fore (Prop. VI.), the angle B is equal to the angle C. There-
tore, the angles at the base, &c.
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Cor. 1. Hence, also, the line BD is equal to DC, and the

angle ADB equal, to ADC ; consequently, each of these an-

gles is a right angle (Def. 10). Therefore, the line bisecting
the vertical angle of an isosceles triangle bisects the base ai

right angles ; and, conversely, the line bisecting the base of an

isosceles triangle 2t right angles bisects also the vertical angle.
Cor. 2. Every equilateral triangle is also equiangular.
Scholium. Any side of a triangle may be considered as

its base, and the opposite angle as its vertex ; but in an isos

celes triangle, that side is usually regarded as the base,which
is not equal to either of the others.

PROPOSITION xi. THEOREM (Converse of Prop. X.).

If two angles of a triangle are equal to one another, the op-

posite sides are also equal.

Let ABC be a triangle having the angle
ABC equal to the angle ACB ; then will the

side AB be equal to the side AC.
For if AB is not equal to AC, one of them

must be greater than the other. Let AB be

the greater, and from it cut off DB equal to AC
the less, and join CD. Then, because in the tri- _

angles DBC, ACB, DB is equal to AC, and BC J

is common to both triangles, also, by supposition, the angle
DBC is equal to the angle ACB ; therefore, the triangle DBC
is equal to the triangle ACB (Prop. VI.), the less to the great-

er, which is absurd. Hence AB is not unequal to AC, that

>-s, it is equal to it. Therefore, if two angles, &c.
Cor. Hence, every equiangular triangle is also equilateral.

PROPOSITION XII. THEOREM.

The greater side of every triangle is opposite to the greater

angle ; and, conversely, the greater angle is opposite to thti

greater side.

Let ABC be a triangle, having the angle ACB
greater than the angle ABC ; then will the side /\D
AB be greater than the side AC.
Draw the straight line CD, making the angle

BCD equal to B ; then, in the triangle CDB, the

side CD must be equal to DB (Prop. XL). Add
AD to each, then will the sum of AD and DC
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be equal to the sum of AD and DB. But AC is less tnan the

sum of AD and DO (Prop. VIII.) ; it is, therefore, less than

AB.

Conversely, if the side AB is greater than the side AC, then

will the angle ACB be greater than the angle ABC.
For if ACB is not greater than ABC, it must be either

equal to it, or less. It is not equal, because then the side

AB would be equal to the side AC (Prop. XL), which is con-

trary to the supposition. Neither is it less, because then the

side AB would be less than the side AC, according to the for-

mer part of this proposition ; hence ACB must be greater
than ABC. Therefore, the greater side, &c.

PROPOSITION XIII. THEOREM.

If two triangles have two sides of the one equal to two siaes

of the other, each to each, but the included angles unequal, the

base of that which has the greater angle , will be greater thar
the base of the other.

Let ABC, DEF be two trian-

gles, having two sides of the one

equal to two sides of the other,
'- iz. : AB equal to DE, and AC to

DF, but the angle BAG greater
than the angle EDF; then will

the base BC be greater than the

base EF.
Of the two sides DE, DF, let DE be the side which is not

greater than the other ; and at the point D, in the straight
line DE, make the angle EDG equal to BAG ;

make DG
equal to AC or DF, and join EG, GF.

Because, in the triangles ABC, DEG, AB is equal to DE,
and AC to DG ; also, the angle BAG is equal to the angle
EDG ; therefore, the base BC is equal to the base EG (Prop.

VI.). Also, because DG is equal to DF, the angle DFG is

equal to the angle DGF (Prop. X.). But the angle DGF is

greater than the angle EGF ; therefore the angle DFG is

greater than EGF ; and much more is the angle EFG greater
than the angle EGF. Now, in the triangle EFG, because
the angle EFG is greater than EGF, and because the great
er side is opposite the greater angle (Prop. XIL), the side

EG is greater than the side EF. But EG has been proved
equal to BC ; and hence BC is greater than EF. Therefore,
3 two triangles, &c.
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/ROPUS:TION xiv. THEOREM (Convetse of Prop XT//.).

If two triangles have two sides of the one equal #.; two sides

of the other, each to each, but the bases unequal, the angle con-

tained by the sides of that which has the greater base, will be

greater than the angle contained by the sides of the other.

Let ABC, DEF be two triangles

having two sides of the one equal to

two sides of the other, viz. : AB equal
to DE, and AC to DF, but the base

BC greater than the base EF; then

will the angle BAG be greater than

the angle EDF.
For if it is not greater, it must be

either equal to it, or less. But the angle BAG is not equal
to the angle EDF, because then the base BC would be equal
to the base EF (Prop. VI.), which is contrary to the suppo-
sition. Neither is it less, because then the base BC would be

less than the base EF (Prop. XIII.) , which is also contrary
to the supposition ; therefore, the angle BAG is not less than

the angle EDF, and it has been proved that it is not equal
to it ; hence the angle BAG must be greater than the angle
EDF. Therefore, if two triangles, &c.

PROPOSITION XV. THEOREM.

If two triangles have the three sides of the one equal to tfie

three sides of the other, each to each, the three angles will also

be equal, each to each, and the triangles themselves will le

equal

Let ABC, DEF be two trian-

gles having the three sides of the

one equal to the three sides of the

other, viz. : AB equal to DE, BC
to EF, and AC to DF ; then will

the three angles also be equal,
viz. : the angle A to the angle D,
the angle B to the angle E, and the angle C to the angle F.

For if the angle A is not equal to the angle D, it must be

either greater or less. It is not greater, because then tie

base BC would be greater than the base EF (Prop. XIII )

which is contrary to the hypothesis; neithe: IE it less, be
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cause then the base BC would be less than the base El
(Prop. XIII.) ,

which is also contrary to the hypothesis.
Therefore, the angle A must be equal to .the angle D. In

the same manner, it may be proved that the angle B is equal
to the angle E, and the angle C to the angle F ; hence the

two triangles are equal. Therefore, if two triangles, &c.
Scholium. In equal triangles, the equal angles are oppo

site to the equal sides ; thus, the equal angles A and D are

opposite to the equal sides BC, EF.

PROPOSITION XVI. THEOREM.

From a point without a straight line* only one perpendicular
can be drawn to that line.

Let A be the given point, and DE the _A_

given straight line ; from the point A only
one perpendicular can be drawn to DE.

For, if possible, let there be drawn two

perpendiculars AB, AC. Produce the line

AB to F, making BF equal to AB, and join
CF. Then, in the triangles ABC, FBC, be-

cause AB is equal to BF, BC is common to

both triangles, and the angle ABC is equal to the angle FBC,
being both right angles (Prop. II., Cor. 1); therefore, two
sides and the included angle of one triangle, are equal to two
sides and the included angle of the other triangle ; hence the

angle ACB is equal to the angle FCB (Prop. VI.). But,
since the angle ACB is, by supposition, a right angle, FCB
must also be a right angle; and the two adjacent angles
BCA, BCF, being together equal to two right angles, the two

straight lines AC, CF must form one and the same straight
line (Prop. III.) ; that is, between the two points A and F,
two straight lines, ABF, ACF, may be drawn, which is im-

possible (Axiom 11) ; hence AB and AC can not both be per
pendicular to DE. Therefore, from a point, &c.

Cor. From the same point, C, in the

line AB, more than one perpendicular to

this line can not be drawn. For, if possi-

ble, let CD and CE be two perpendicu-
lars ; then, because CD is perpendicular
to AB, the angle DCA is a right angle ; A. ^ B
and, because CE is perpendicular to AB,
the angle EGA is also a right angle. Hence, the angle ACD
is equal to the angle ACE ^Prop. I.), the less to the greater

\
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which is absurd ; therefore, CD and CE can not both be pe
pendicular to AB from the same point C.

PROPOSITION XVII. THE DREM.

Ifijrom a point without a straight line, a perpendicular be

drawn to this line, and oblique lines be drawn to different

points :

1st. TJie perpendicular will be shorter than any oblique line

2d. Two oblique lines, which meet the proposed line at equa
distances from the perpendicular, will be equal.

3d. Of any two oblique lines, that which is further from tht

perpendicular will be the longer.

Let DE be the given straight line, and
A any point without it. Draw AB per-

pendicular to DE ; draw, also, the ob-

lique lines AC, AD, AE. Produce the

line AB to F, making BF equal to AB,
ind join CF, DF.

First. Because, in the triangles ABC,
FBC, AB is equal to BF, BC is common
to the two triangles, and the angle ABC is equal to the angle
FBC, being both right angles (Prop. II., Cor. 1) ; therefore,
two sides and the included angle of one triangle,are equal to

two sides and the included angle of the other triangle ; hence
the side CF is equal to the side CA (Prop. VI.). But the

straight line ABF is shorter than the broken line ACF (Prop.
VIII.) ; hence AB, the half of ABF, is shorter than AC, the
half of ACF. Therefore, the perpendicular AB is shorter
than any oblique line, AC.

Secondly. Let AC and AE be two oblique lines which
meet the line DE at equal distances from the perpendicular ;

they will be equal to each other. For, in the triangles ABC,
ABE, BC is equal to BE, AB is common to the two triangles,
and the angle ABC is equal to the angle ABE, being both

right angles (Prop. I.) ; therefore, two sides and the included

angle of one triangle are equal to two sides and the included

angle of the other ; hence the side AC is equal to the side

AE (Prop. VI.). Wherefore, two oblique lines, equally dis-

tant from the perpendicular, are equal.

Thirdly. Let AC, AD be two oblique lines, of which AD
is further from the perpendicular than AC ; then will AD be

longer than AC. For it has already been proved that AC is

equal to CF ; and in the same manner it may be proved that

AD is equal to DF. Now, by Prop. IX., the sum of the two
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Hnes AC, CF is less than Jie sum of the two lines AD, DP,
Therefore, AC, the half of ACF, is less than AD, the half of

ADF ; hence the oblique line which is furthest from the per

pendicular is the longest. Therefore, if from a point, &c.
Cor. 1. The perpendicular measures the shortest distance

of a point from a line, because it is shorter than any oblique
/me.

Cor. 2. It is impossible to draw three equal straight lines

from the same point to a given straight line.

PROPOSITION XVIII. THEOREM.

If through the middle point of a straight line a perpendic-
ular is drawn to this line :

1st. Each point in the perpendicular is equally distantfrom
the two extremities of the line.

2d. Any point out of the perpendicular is unequally dis

tantfrom those extremities.

Let the straight line EF be drawn perpen-
licular to AB through its middle point, C.

First. Every point of EF is equally dis-

tant from the extremities of the line AB ; for,

since AC is equal to CB, the two oblique
lines AD, DB are equally distant from the

perpendicular, and are, therefore, equal (Prop.

XVII.). So, also, the two oblique lines AE,
EB are equal, and the oblique lines AF, FB
are equal ; therefore, every point of the per-

pendicular is equally distant from the extremities A and B,

Secondly. Let I be any point out of the perpendicular.
Draw the straight lines IA. IB ; one of these lines must cut

the perpendicular in some point, as D. Join DB ; then, by
the first case, AD is equal to DB. To each of these equals
add ID, then will IA be equal to the sum of ID and DB.
Now, in the triangle IDB, IB is less than the sum of ID and
DB (Prop. VIII.) ; it is, therefore, less than IA ; hence, every
point out of the perpendicular is unequally distant from the

extremities A and B. Therefore, if through the middle

point, &c.
Cor. If a straight line have two points, each of which is

equally distant from the extremities of a second line, it will

De perpendicular to the second line at its middle point.
B
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PROPOSITION XIX. THEOREM.

If two right-angled triangles have the hypoJienuse and e

side of the one,equal to the hypothenuse and a side of the other

each to each, the triangles are equal.

Let ABC, DEF be two

right-angled triangles, having
the hypothenuse AC and the

side AB of the one, equal to

the hypothenuse DF and side

DE of the other; then will

the side BC be equal to EF, and the triangle ABC to the tri

angle DEF.
For if BC is not equal to EF, one of them must be greater

than the other. Let BC be the greater, and from it cut off

BG equal to EF the less, and join AG. Then, in the triangles
ABG, DEF, because AB is equal to DE, BG is equal to EF,
and the angle B equal to the angle E, both of them being

right angles, the two triangles are equal (Prop. VI.), and AG
is equal to DF. But, by hypothesis, AC is equal to DF, and

therefore AG is equal to AC. Now the oblique line AC, be

ing further from the perpendicular than AG, is the longei

(Prop. XVIL), and it has been proved to be equal, which is

impossible. Hence BC is not unequal to EF, that is, it is equa.
to it ;

and the triangle ABC is equal to the triangle DEF
(Prop. XV.") Therefore, if two right-angled triangles, &c

PROPOSITION XX. THEOREM.

Two straight lines perpendicular to a thi~d line, are pa? -

Let the two straight lines

AC, BD be both perpendicu-
lar to AB ; then is AC par-
allel to BD.
For if these lines are not

parallel, being produced, they
must meet on one side or the other of AB. Let them be pro

duced, and meet in O ; then there will be two perpendicu-

lars, OA, OB, let fall from the same point, on the same

straight line, which is impossible (Prop. XVI.). Therefore

two straight lines, &<



BOOK I. 27

PROPOSITION XXI. THEOREM.

If a straight line, meeting two other straight lines, makes t/ie

interior angles on the same side, together equal to two right an-

gles, the two lines are parallel.

Let the straight line AB, which A E c
meets the two straight lines AC, BD,
make the interior angles on the same

side, BAG, ABD, together equal to two

right angles ; then is AC parallel to

BD.
From G, the middle point of the line

AB, draw EGF perpendicular to AC ; it will also be perpen-
dicular to BD. For the sum of the angles ABD and ABF is

equal to two right angles (Prop. II.) ; and by hypothesis the

sum of the angles ABD and BAG is equal to two right an-

gles. Therefore, the sum of ABD and ABF is equal to the

sum of ABD and BAG. Take away the common angle
ABD, and the remainder, ABF, is equal to BAG ; that is

GBF is equal to GAE.
Again, the angle BGF is equal to the angle AGE (Prop

V.) ; and, by construction, BG is equal to GA ; hence the tri-

angles BGF, AGE have two angles and the included side of

the one, equal to two angles and the included side of the oth-

er ; they are, therefore, equal (Prop. VII.) ; and the angle
BFG is equal to the angle AEG. But AEG is, by construc-

tion, a right angle, whence BFG is also a right angle ; that

is, the two straight lines EC, FD are perpendicular to the

same straight line, and are consequently parallel (Prop.

XX.). Therefore, if a straight line, &c.
Scholium. When a straight line ^

intersects two parallel lines, the in- /

'terior angles on the same side, are ~/
those which lie within the parallels, A -/-

J3

and on the same side of the secant /

line, as AGH, GHC ; also, BGH, / ^
GHD. /k

Alternate angles lie within the
f.

parallels, on different sides of the ^
secant line, and are not adjacent to each other, as AGH
GHD ; also, BGH, GHC.

Either angle without the parallels being called ar. exterior

angle, the interior and opposite angle on the same side, lies

within the parallels, on the same side of the secant line, but
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aot adjacent; thus, GHD is an interior angle opposite to tha

exterior angle EGB ; so, also, with the angles CHG, AGE.

PROPOSITION XXII. THEOREM.

If a straight line, intersecting two other straight lines, makes
'he alternate angles equal to each other, or makes an exterior

ingle equal to the interior and opposite upon the same side of
the secant line, these two lines are parallel.

Let the straight line EF, which E
intersects the two straight lines AB, /
CD, make the alternate angles AGH, Q./
GHD equal to each other ; then AB A

~J~~
is parallel to CD. For, to each of /
the equal angles AGH, GHD, add ^ Z .D
the angle HGB ; then the sum of 75
AGH and HGB will be equal to the /
vum of GHD and HGB. But AGH
and HGB are equal to two right angles (Prop. II.) ; there-

fore, GHD and HGB are equal to two right angles ; and
hence AB is parallel to CD (Prop. XXL).

Again, if the exterior angle EGB is equal to the interior

and opposite angle GHD, then is AB parallel to CD. For,
the angle AGH is equal to the angle EGB (Prop. V.) ; and,

by supposition, EGB is equal to GHD ; therefore the angle
AGH is equal to the angle GHD, and they are alternate an-

gles ; hence, by the first part of the proposition, AB is par-
allel to CD. Therefore, if a straight line, &c.

PROPOSITION XXIII. THEOREM.

(Converse of Propositions XXI. and XXII.)

If a straight line intersect two parallel lines, it makes trie

alternate angles equal to each other ; also, any exterior angh
equal to the interior and opposite on the same side ; and the,

two intsrior angles on the same side together equal to two right

angles.

Let the straight line EF intersect

the two parallel lines AB, CD ; the

alternate angles AGH, GHD are

equal to each other ; the exterior an-

gle EGB is equal to the interior and

opposite angle on the same side, cGHD ; and the two interior angles on
the same side, BGH, GHD, are to-

gether euuid to two ripjhl an^le-
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For if AGH is not equal to GHD, through G draw the

line KL, making the angle KGH equal to GHD ; then KL
must be parallel to CD (Prop. XXII.). But, by supposition,
AB is parallel to CD ; therefore, through the same point, G.

two straight lines have been drawn parallel to CD, which is

impossible (Axiom 12). Therefore, the angles AGH, GHD
are not unequal, that is, they are equal to each other. Now
the angle AGH is equal to EGB (Prop. V.), and AGH has

been proved equal to GHD ; therefore, EGB is also equa to

GHD. Add to each of these equals the angle BGH ; then

will the sum of EGB, BGH be equal to the sum of BGH,
GHD. But EGB, BGH are equal to two right angles (Prop.

II.) ; therefore, also, BGH. GHD are equal to two right an

gles. Therefore, if a straight line, &c
Cor. 1. If a straight line is perpendicular to one of twc

parallel lines, it is also perpendicular to the other.

Cor. 2. If two lines, KL and CD, make with EF the twc

angles KGH, GHC together less than two right angles, then

will KL and CD meet, if sufficiently produced.
For if they do not meet, they are parallel (Def. 12). Bui

they are not parallel ; for then the angles KGH, GHC would
be equal to two right angles.

PROPOSITION XXIV. THEOREM.

Straight lines which are parallel to the same line, are paral
lei to each other.

Let the straight lines AB, CD be
i

each of them parallel to the line EF ; IE _! F
then will AB be parallel to CD.

For, draw any straight line, as C ^ D
PQR, perpendicular to EF. Then,
since AB is parallel to EF, PR, which A jp

B
is perpendicular to EF, will also be

perpendicular
to AB (Prop. XXIIL, Cor. 1) ; and since CD

is parallel to EF, PR will also be perpendicular to CD.
Hence, AB and CD are both perpendicular to the same

straight line, and are consequently parallel (Prop. XX.).
Therefore, straight lines which are parallel, &c.

PROPOSITION XXV. THEOREM.

Two parallel straight lines are every where equally distant

from each other.

Let AB CD be two parallel straight lines. From anj
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points, E ind F, in one of them, II

draw Lie lines EG, FH perpendic- c
\"~

ular to AB ; they will also be per-

pendicular to CD (Prop. XXIIL,

'D

Cor. 1). Join EH ; then, because A F E B
EG and FH are perpendicular to the same straight line AB
they are parallel (Prop. XX.) ; therefore, the alternate an

gles, EHF, HEG, which they make with HE are equal

(Prop. XXIIL). Again, because AB is parallel to CD, the

alternate angles GHE, HEF are also equal. Therefore, the

triangles HEF, EHG have two angles of the one equal to

two angles of the other, each to each, and the side Eli inclu

ded between the equal angles, common ; hence the triangles
are equal (Prop. VII.) ; and the line EG, which measures the

distance of the parallels at the point E, is equal tu the line

FH, which measures the distance of the same parallels at the

point F. Therefore, two parallel straight lines, &c.

PROPOSITION XXVI. THEOREM.

Two angles are equal, when their sides are parallel, each to

each, and are similarly situated.

Let BAG, DEF be two angles, having
he side BA parallel to DE, and AC to

EF; the two angles are equal to each

other.

Produce DE, if necessary, until it meets

AC in G. Then, because EF is parallel

to GC, the angle DEF is equal to DGC ^ -^
=.

(Prop. XXIIL) ; and because DG is par-
J

allel to AB, the angle DGC is equal to BAG ; hence the an

gle DEF is equal to the angle BAG (Axiom 1). Therefore,

two angles, &c.
Scholium. This proposition is restricted to the case in

which the sides which contain the angles are similarly situ-

ated ; because, if we produce FE to H, the angle DEH has

its sides parallel to those of the angle BAG ; but the two an-

gles are not equal.

PROPOSITION XXVII. THEOREM.

If one side of a triangle is produced, the exterior angle i

equal to the sum of the two interior and opposite angles ; and

the three interior angles of every triangle are equal to two

right angles.

Let ABC be anv plane triano'e, and let the side BC be
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produced 10 D ; then will the ex
tenor angle ACD be equal to the

sum of the two interior and oppo-
site angles A and B ; and the sum
of the three angles ABC, BCA,
CAB is equal to two right angles.

B

For, conceive CE to be drawn parallel to the side AB of

the triangle ; then, because AB is parallel to CE, and AC
meets them, the alternate angles BAC, ACE are equal (Prop.
XXIIL). Again, because AB is parallel to CE, and BD
meets them, the exterior angle ECD is equal to the interior

and opposite angle ABC. But the angle ACE was proved
equal to BAC ; therefore the whole exterior angle ACD is

equal to the two interior and opposite angles CAB, ABC
(Axiom 2). To each of these equals add the angle ACB ;

then will the sum of the two angles ACD, ACB be equal to

the sum of the three angles ABC, BCA, CAB. But the an-

gles ACD, ACB are equal to two right angles (Prop. II.) ;

hence, also, the angles ABC, BCA, CAB are together equal
to two right angles. Therefore, if one side of a triangle, &c.

Cor. 1. If the sum of two angles of a triangle is given, the

third may be found by subtracting this sum from two right

angles.
Cor. 2. If two angles of one triangle are equal to two an-

gles of another triangle, the third angles are equal, and the

triangles are mutually equiangular.
Cor. 3. A triangle can have but one right angle ; for if

there were two, the third angle would be nothing. Still less

can a triangle have more than one obtuse angle.
Cor. 4. In a right-angled triangle, the sum of the two acute

angles is equal to one right angle.
Cor. 5. In an equilateral triangle, each of the angles is one

>hird of two right angles, or two thirds of one right angle.

PROPOSITION XXVIII. THEOREM.

The sum of all the interior angles of a polygon, is equal to

twice as many right angles, wanting four, as the figurt has
sides

Let ABCDE be any polygon ; then the sum of all its inte-

rior angles A, B, C, D, E is equal to twice as many right an

gles, wanting four, as the figure has sides (see next page).
For, from any point, F, within it, draw lines FA, FB, FC,

&c , to all the angles The polygon is thus divided into as

many tri ingles as it has sides. Now the sum of the three*



GEOMETRY

angles of each of these triangles, is equal
to two right angles (Prop. XXVII.) ;

therefore the sum of the angles of all the

triangles is equal to twice as many right

angles as the polygon has sides. But
the same angles are equal to the angles
of the polygon, together with the angles
at the point F, that is, together with four

right angles (Prop. V., Cor. 2). Therefore the angles of the

polygon are equal to twice as many right angles as the fig-
ure has sides, wanting four right angles.

Cor. 1. The sum of the angles of a quadrilateral is four

right angles ; of a pentagon, six right angles ; of a hexagon,
eight, &c.

Cor. 2. All the exterior angles of a polygon are together

equal tofour right angles. Because every interior angle, ABC,
together with its adjacent exterior an-

gle, ABD, is equal to two right angles
(Prop. II.) ; therefore The sum of all the

interior and exterior angles, is equal to .v

twice as many right angles as the poly-

gon has sides ; that is, they are equal to

all the interior angles of the polygon,
together with four right angles. Hence
the sum of the exterior angles must be

equal to four right angles (Axiom 3).

PROPOSITION XXIX. THEOREM.

The opposite sides and angles of a parallelogram are equal
tc each other.

Let ABDC be a parallelogram ; then will ^ B
ts opposite sides and angles be equal to v ^\
each other. \ /''" \
Draw the diagonal BC ; then, because AB \X[ \

s parallel to CD, and BC meets them, the C D
alternate angles ABC, BCD are equal to each other (Prop.

XXIIL). Also, because AC is parallel to BD, and BC meets

them, the alternate angles BCA, CBD are equal to each oth-

er. Hence the two triangles ABC, BCD have two angles,

ABC, BCA of the one, equal to two angles, BCD, CBD, of

the other, each to each, and the side BC included between
.hese equal angles, common to the two triangles ; therefore

their other sides are equal, each to each, and the third angla
of the one to the third angle of the othei (Prop. VII.), viz.
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the side AB to the side CD, and AC 10 BD, and the angle
BAG equal to the angle BDC. Also, because the angle ABC
is equal to the angle BCD, and the angle CBD to the angle
BCA, the whole angle ABD is equal to the whole angle
A.CD. But the angle BAG has been proved equal to the an

gle BDC ; therefore the opposite sides and angles of a par

ailelogram are equal to each other.

Cor. Two parallels, AB, CD, comprehended between two
other parallels, AC, BD, are equal ; and the diagonal BC di

vides the parallelogram into two equal triangles.

PROPOSITION xxx. THEOREM (Converse of Prop. XXIX.)

If the opposite sides of a quadrilateral are equal, each to

each, the equal sides are parallel, and thefigure is a parallels

gram.

Let ABDC be a quadrilateral, having its A B
opposite sides equal to each other, viz. : the V
side AB equal to CD, and AC to BD ; then

will the equal sides be parallel, and the fig-

ure will be a parallelogram.
^

Draw the diagonal BC ; then the triangles ABC, BCD
have all the sides of the one equal to the corresponding sides

of the other, each to each ; therefore the angle ABC is equal
to the angle BCD (Prop. XV.), and, consequently, the side

AB is parallel to CD (Prop. XXII.). For a like reason, AC
is parallel to BD ; hence the quadrilateral ABDC is a par-

allelogram. Therefore, if the opposite sides, &c.

PROPOSITION XXXI. THEOREM.

If two opposite sides of a quadrilateral are equal andpar
ullel, the other two sides are equal and parallel, and the figure
i* a parallelogram.

Let ABDC be a quadrilateral, having the A B
sides AB, CD equal and parallel ; then will V~~ /'\
the sides AC, BD be also equal and parallel, \ / \
and the figure will be a parallelogram.

\ ^
Draw the diagonal BC ; then, because

AB is parallel to CD, and BC meets them, the alternate an

gles ABC, BCD are equal (Prop. XXIII). Also, because

AB is equal to CD, and BC is common to the two triangles
ABC BCD, the two triangles ABC, BCD have two sides and
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the included angle
of the one, equal to two sides and the in-

cluded angle of the other ; therefore, the side AC is equal
to BD (Prop. VL), and the angle ACB to the angle CBD
And,, because the straight line BC meets the two straight
lines AC, BD, making the alternate angles BCA, CBD equal
to each other, AC is parallel to BD (Prop. XXII.) ; hence
the figure ABDC is a parallelogram. Therefore, if two op-

posite sides, &c.

PROPOSITION XXXII. THEOREM.

The diagonals of every parallelogram bisect each other

Let ABDC be a parallelogram whose di- A
agonals, AD, BC, intersect each other in E ; v

then will AE be equal to ED, and BE to

EC.
Because the alternate angles ABE, ECD C D

are equal (Prop. XXIII.), and also the alternate angles EAB,
EDC, the triangles ABE, DCE have two angles in the one

equal to two angles in the other, each to each, and the inclu-

ded sides AB, CD are also equal ; hence the remaining sides

are equal, viz. : AE to ED, and CE to EB. Therefore, the

diagonals of every parallelogram, &c.
Cor. If the side AB is equal to AC, the triangles AEB,

AEC have all the sides of the one equal to the corresponding
sides of the other, and are consequently equal ; hence the

angle AEB will equal the angle AEC, and therefore the di

vgunals of a rhombus bisect each other at right angles
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BOOK II.

RATIO AND PROPORTION.

On the Relation of Magnitudes to Numbers.

THE ratios of magnitudes may be expressed by numbers
either exactly or approximately ; and in the latter case, the

approximation can be carried to any required degree of pre
cision.

Thus, let it be proposed to find the numerical ratio of two

straight lines, AB and CD.
From the greater line AB, cut A ,, n _

~, ,
,

, f*\T\ -"- ill VT >

off a part equal to the less, CD,
(

, i | i

as many times as possible ; for

example, twice, with a remain- ^
der EB. From CD, cut off a

' ' '

part equal to the remainder EB as often as possible ; for ex

ample, once, with a remainder FD. From the first remain-

der, BE, cut off a part equal to FD as often as possible ; for

example, once, with a remainder GB. From the second re-

mainder, FD, cut off a part equal to the third, GB, as many
times as possible. Continue this process until a remainder is

found which is contained an exact number of times in the

preceding one. This last remainder will be the common
measure of the proposed lines ; and regarding it as the meas-

uring unit, we may easily find the values of the preceding
remainders, and at length those of the proposed lines ; whence
we obtain their ratio in numbers.
For example, if we find GB is contained exactly twice in

FD, GB will be the common measure of the two proposed
lines. Let GB be called unity, then FD will be equal to 2.

But EB contains FD once, plus GB; therefore, EB=3. CD
contains EB once, plus FD ; therefore, CD=5. AB contains

CD twice, plus EB ; therefore, AB= 13. Consequently, the

ratio of the two lines AB, CD is that of 13 to 5.

However far the operation is continued, it is possible that

we may never find a remainder which is contained an exact

number of times in the preceding one. In such cases, the ex-
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act ratio can not be expressed in numbers ; but, by taking the

measuring unit sufficiently small, a ratio may always be

found, which shall approach as near as we please to the true

ratio.

So, also, in comparing two sur- unit

faces, we seek some unit of meas- Q
ure which is contained an exact

number of times in each of them.

Let A and B represent two sur-

faces, and let a square inch be

the unit of measure. Now, if

this measuring unit is contained

15 times in A and 24 times in B, then the ratio of A to B is

that of 15 to 24. And although it may be difficult to find

this measuring unit, \ve may still conceive it to exist ; or, if

there is no unit which is contained an exact number of times

in both surfaces, yet, since the unit may be made as small as

we please, we may represent their ratio in numbers to any
degree of accuracy required.

Again, if we wish to find the ratio of two solids, A and B,

we seek some unit of measure which is contained an exact

number of times in each of them. If we take a cubic inch

as the unit of measure, and we find it to be contained 9 times

in A, and 13 times in B, then the ratio of A to B is the same
as that of 9 to 13. And even if there is no unit which is

contained an exact number of times in both solids, still, by
taking the unit sufficiently small, we may represent their ra-

tio in numbers to any required degree of precision.
Hence the ratio of two magnitudes in geometry, is the

same as the ratio of two numbers, and thus each magnitude
has its numerical representative. We therefore conclude

that ratio in geometry is essentially the same as in arith-

metic, and we might refer to our treatise on algebra for such

properties of ratios as we have occasion to employ. How-
ever, in order to render the present treatise complete in it-

self, we will here demonstrate the most useful properties.

Definitions.

Def. 1. Ratio is the relation which one magnitude bears to

another with respect to quantity.

Thus, the ratio of a line two inches in length, to another

six inches in length is denoted by 2 divided by 6, i. e., f or

i, the number 2 being the third part of G. So, also, the ra-

tio of 3 feef to 6 feet is expressed by or |.

A ratio is most conveniently written as a fraction ; thus.
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the ratio of A to B is written
^-.

The two magnitudes com

pared together are called the terms of the ratio ; the first is

called the antecedent, and the second the consequent.

Def. 2. Proportion is an equality of ratios.

Thus, if A has to B the same ratio that C has to D, these

fimr quantities form a proportion, and we write it

A C
B
=
D'

01 A : B : C : D.
Tne hist and last terms of a proportion are called the two

extremes, and the second and third terms the two means.
Of four proportional quantities, the last is called a fourth

proportional to the other three, taken in order.

Since
A_g,

it is obvious that if A is greater than B, C must be greater
than D ; if equal, equal ; and if less, less ; that is, if one ante-

cedent is greater than its consequent, the other antecedent

must be greater than its consequent ; if equal, equal ; and if

less, less.

Def. 3. Three quantities are said to be proportional, when
the ratio of the first to the second is equal to the ratio of the

second to the third ; thus, if A, B, and C are in proportion,
then

A : B : : B : C.

In this case the middle term is said to be a mean propo?
tional between the other two.

Def. 4. Two magnitudes are said to be equimultiples ol

two others, when they contain those others the same number
of times exactly. Thus, 7A, 7B are equimultiples of A and
B ; so, also, are mA. and mE.

Def. 5. The ratio of B to A is said to be the reciprocal of

the ratio of A to B.

Def. 6. Inversion is when the antecedent is made the con-

sequent, and the consequent the antecedent.

Thus, if A : B : C : D ;

then, inversely,
B : A . : D : C.

Def. 7. Alternation is when antecedent is compared with

antecedent, and consequent with consequent
Thus, if A : B : : C : D ;

then, by alternation,
A : C : : B : D.

Def. 8. Composition is when the sum of antecedent ana

consequent is compared either with the antecedent or con

seouent.
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Thus, if A : B : : C : D ;

then, by composition,
A+B : A : : C-fD : C, and A+B : B : : C+D : D.

Def. 9. Division is when the difference of antecedent ana

consequent is compared either with the antecedent or con

sequent.

Thus, if A : B : : C : D ;

fhen, by division,
A B : A : : C D : C, and A B : B : : C D : D.

Axioms.

1. Equimultiples of the same, or equal magnitudes, are

equal to each other.

2. Those magnitudes of which the same or equal magni-
tudes are equimultiples, are equal to each other.

PROPOSITION I. THEOREM.

Iffour quantities are proportional, the product of the two ex-

,mes is equal to the product of the two means.

It has been shown that the ratio of two magnitudes, wheth-
er they are lines, surfaces, or solids, is the same as that of
. wo numbers, which we call their numerical representatives.

Let, then, A, B, C, D be the numerical representatives of
four proportional quantities, so that A : B : : C : D ; the'.n

will AxD=BxC.
For, since the four quantities are proportional,

A__C
B~D*

Multiplying each of these equal quantities by B (Axiom 1)

we obtain

Multiplying each of these last equals by D, we have
AxD=BxC.

Cor. If there are three proportional quantities, the product
of the two extremes is equal to the square of the mean.

Thus, if A : B : : B : C ;

*hen, by ,he proposition,

, which is equa to Ba
.
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PROPOSITION ii. THEOREM (Converse of Prop. /.).

If the product of two quantities is equal to the product of twc

other quantities, the first two may be made the extremes, and
the other two the means of a proportion.

Thus, suppose we have AxD=BxC ; then will

A : B : : C : D.

For, since AxD=BxC, dividing each of these equals by
D (Axiom 2), we have

Dividing each of these last equals by B, we obtainAC
that is, the ratio of A to B is equal to that of C to D,
or, A : B : : C : D.

PROPOSITION III. THEOREM.

Iffour quantities are proportional, they are also proportion-
al when taken alternately.

Let A, B, C, D be the numerical representatives of foui

proportional quantities, so that A : B : : C : D ; then will

A : C : : B : D.

For, since A : B : : C : D,

by Prop. L, AxD=BxC.
And, since A XD=B X C,

bv Prop. II., A : C : : B : D.

PROPOSITION IV. THEOREM.

Ratios that are equal to the same ratio, are equal to each

other.

Let A : B : : C : D,
and A : B : : E : F ;

then will C : D : : E : F.

For, since A : B : : C : D,
. A C

we have T7=?V
r> \J
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And, since A : B : : E F,
A E

we have B
=

F*

C E A
But =: and being severally equal to ^ must be equal to

each other, and therefore

C : D : : E : F.

Cor. If the antecedents of one proportion are equai to the

antecedents of another proportion, the consequents are pro
portional.

If A : B : C : D,
and A:E::C:F;
then will B : D : : E : P.

For, by alternation (Prop. III.), the first proportion b&
comes

A : C : : B : D,
and the second, A : C : : E : F.

Therefore, by. the proposition,

EL; D : : E : F.

PROPOSITION V. THEOREM.

Iffour quantities are proportional, they are also proportion
al when taken inversely.

Let A
then will B

For, since A

: C : D ;

:D:C.
:C:D,

bvProp. I., AxD=BxC,
or, BXC=AXD;
therefore, by Prop. II.,

B : A : : D : C.

PROPOSITION VI. THEOREM.

Iffour quantities are proportional, they are also proportion
al by composition.

Let A : B : : C : D,
hen will A-fB : A : : C-fD . C.

For, since A : B : : C : D,

by Prop. I., BxC=AxD.
To each of these equals add

AxC=AxC,
then AxC-fBxC=AxC+AxD,
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(A+B)xC=Ax(C4-D;
Therefore, by Prop. II.,

A+B : A : : C+D : C.

PROPOSITION VII. THEOREM.

Iffour quantities are proportional, they are also proportion
At by division.

Let A : B C : D ;

then wiL A B : A : : C D : C.

For, since A : B : : C : D,

by Prop. I., BxC=AxD.
Subtract each of these equals from AxC;

then AxC BxC=AxC AxD,
or, (A B)xC=Ax(C D).

Therefore, by Prop. II.,

A B: A::C D : C.

Cor. A+B : A B : : C+D : C D.

PROPOSITION VIII. THEOREM.

Equimultiples of two quantities have the same ratio as trie

quantities themselves.

Let A and B be any two quantities, and mA, mE then

equimultiples ; then will

A f B : : mA : mE.
For 7/zx AxB=7?zx AxB,

or, AxmE E*mA.
Therefore, by Prop. II.,

A : B : : mA : mE.

PROPOSITION IX. THEOREM.

If any number of quantities are proportional, any one ante

&dent is to its consequent, as the sum of all the antecedents. 11

to the sum of all the consequents.

Let A : B : : C : D : : E : F, &c. ;

then will A : B : : A+C+E : B+D+F
For, since A : B : : C : D,

we have AxD=BxC.
And, since A : B : : E : F,

we have AxF=BxE.
To these equals a^d

AxB=AxB.



42 GEOMETRY

and we have
AxB+AxD+AxF=AxB+BxC+BxE

or, Ax(B+D+F)=Bx(A+ClE).
Therefore, by Prop. II.,

A : B : : A+C+E : B+D+F.

PROPOSITION X. THEOREM.

If four quantities are proportional, their squares or cubes

are also proportional.

Let A : B : : C : D ;

then will A 2
: B2

: : C a
: D 2

,

and A8
: B 3

: : C 8
: D 3

.

For, since A : B : : C : D,

ny Pro'p. L, AxD=BxC;
or, multiplying each of these equals by itself (Axiom 1), we
have

A2 xD 2=B2 xC 2

;

and multiplying these last equals by AxD= BxC, we have
A3 xD 3=B 8 xC s

.

Therefoie, by Prop. II.,

A2
: B2

: : C 2
: D9

,

and A9
: B 8

: : C 3
: D 3

.

PROPOSITION XI. THEOREM.

If there are two sets ofproportional quantities, the product*
oj the corresponding terms are proportional.

Let A : B : : C : D,
and E : F : : G : H ;

then will AxE : BxF : : CxG : DxH.
For, since A : B : : C : D,

by Prop. L, AxD=BxC.
And, since E : F : : G : H,

LyProp. L, ExH^FxG.
Multiplying together these equal quantities, we have

AxDxExH=BxCxFxG;
or, (AxE)x(DxH) = (BxF)x(CxG);
therefore, by Prop. II.,

AxE:BxF::CxG:DxH.
Cor. If A : B : : C : D,

and B : F : : G : H ;

then A :F:: CxG: DxH.
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Foi, by the proposition,
AxB:BxF::CxG:DxH .

Also, by Prop. VIIL,
AxB :BxF: : A : F;

hence, by Prop. IV.,

A :F::CxG:DxH.

PROPOSITION XII. THEOREM.

If three quantities are proportional, the first is to the /Aird,

as the square of thefirst to the square of the second.

Thus, if A:B::B :C;
then A : C : : Aa

: Ba
.

For, since A : B : : B : C,
and A : B : : A : B ;

therefore, by Prop. XL,
A3 :B 2

:: AxB:BxC.
But, by F;op. VIIL,

AxB:BxC:: A:C;
hence, by Prop. IV , A : C : : Aa

: Bs
,
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BOOK III

THE CIRCLE, AND THE MEASURE OF ANGLES.

Definitions.

1. A circle is a plane figure bounded by a line, every point
of which is equally distant from a point within, called the

center.

This bounding line is called the circumfer-
ence of the circle.

2. A radius of a circle is a straight line

drawn from the center to the circumference.

A diameter of a circle is a straight line

passing through the center, and terminated
both ways by the circumference.

Cor. All the radii* of a circle are equal ; all the diameters

are equal also, and each double of the radius.

3. An arc of a circle is any part of the circumference.

The chord of an arc is the straight line which joins its two
extremities.

4. A segment of a circle is the figure included between an
arc and its chord.

5. A sector of a circle is the figure included between an

arc, and the two radii draw,n to the extremities of the 'arc.

6. A straight line is said to be inscribed in a circle, when
its extremities are on the circumference.

An inscribed angle is one whose sides are

inscribed.

7. A polygon is said to be inscribed in a

c rcle when all its sides are inscribed. The
circle is then said to be described about the

polygon.
8. A secant is a line which cuts the cir-

cumference, and lies partly within and partly without the

circle.

9. A straight line is said to touch a "circle, when it meets

the circumference, and, being produced, does not cut it.

Such a line is called a tangent, and the point in which i*

meets the circumference, is called the point of contact.
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10. Two circumferences touch each

other when they meet, but do not cut

one another.

11. A polygon is described about a circle,

when each side of the polygon touches the cir-

cumference of the circle.

In the same case, the circle is said to be in-

scribed in the polygon.

PROPOSITION I. THEOREM.

Every diameter divides the circle and its circumference into

two equal parts.

Let ACBD be a circle, and AB its di-

ameter. The line AB divides the circle

and its circumference into two equal parts.

For, if the figure ADB be applied to the

figure ACB, while the line AB remains
common to both, the curve line ACB must
coincide exactly with the curve line ADB.
For, if any part of the curve ACB were to

fall either within or without the curve ADB, there would be

points in one or the other unequally distant from the center

which is contrary to the definition of a circle. Therefore

every diameter, &c.

PROPOSITION II. THEOREM.

A straight line can not meet the circumference of a circle t*

more than two points.

For, if it is possible, let the straight
line ADB meet the circumference CDE
in three points, C, D, E. Take F, the

center of the circle, and join FC, FD,
FE. Then, because F is the center of
the circle, the three straight lines FC,
FD, FE are all equal to each other;

hence, three equal straight lines have
been drawn from the same point to the same straight line.
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which is impossible (Prop. XVII., Cor. 2, Book I.\ There-

fore, a straight line, &c.

PROPOSITION III. THEOREM.

in equal circles, equal arcs are subtended by equal chords

and, conversely, equal chords subtend equal arcs.

Let ADB, EHF be

equal circles, and let the

arcs AID, EMH also be

equal ; then will the A[
chord AD be equal to

the chord EH.
For, the diameter AB

being equal to the diameter EF, the semicircle ADB may be

applied exactly to the semicircle EHF, and the curve line

AIDB will coincide entirely with the curve fine EMHF
(Prop. L). But the arc AID is, by hypothesis, equal to the

arc EMH ; hence the point D will fall on the point H, and

therefore the chord AD is equal to the chord EH (Axiom
11, B. L).

Conversely, if the chord AD is equal to the chord EH, then

the arc AID will be equal to the arc EMH.
For, if the radii CD, GH are drawn, the two triangles

ACD, EGH will have their three sides equal, each to each

viz. : AC to EG, CD to GH, and AD equal to EH ; the tri

angles are consequently equal (Prop. XV., B. I.), and the an

gle ACD is equal to the angle EGH. Let, now, the semicir-

cle ADB be applied to the semicircle EHF, so that AC may
coincide with EG ; then, since the angle ACD is equal to the

angle EGH, the radius CD will coincide with the radius GH,
and the point D with the point H. Therefore, the arc AID
must coincide with the arc EMH, and be equal to it. Hence,
in equal circles, &c.

PROPOSITION IV. THEOREM.

In equal circles, equal angles at the center, are subtended by

equal arcs ; and, conversely, equal arcs subtend equal angles at

the center.

Let AGB, DHE be two equal circles, and let ACB, DFE
be equal angles at their centers ; then will the arc AB be

equal to the arc DE. Join AB, DE ; and, because the cir
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cles AGB, DHE are equal, their

radii are equal. Therefore, the

two sides CA, CB are equal to

the two sides FD, FE ; also, the

angle at C is equal to the angle
at F ; therefore, the base AB is

equal to the base DE (Prop. VI.,

B. I.). And, because the chord AB
is equal to the chord DE, the arc AB must be equal to the

arc DE (Prop. III.).

Conversely, if the arc AB is equal to the arc DE, the an-

gle ACB will be equal to the angle DFE. For, if these an-

gles are not equal, one of them is the greater. Let ACB be

the greater, and take ACI equal to DFE ; then, because

equal angles at the center are subtended by equal arcs, the

arc AI is equal to the arc DE. But the arc AB is equal to

the arc DE ; therefore, the arc AI is equal to the arc AB,
the less to the greater, which is impossible. Hence the an-

gle ACB is not unequal to the angle DFE, that is, it is equa*
to it. Therefore, in equal circles, &c.

PROPOSITION V. THEOREM.

In the same circle, or in equal circles, a greater arc is sub

tended by a greater chord; and, conversely, the greater chord

subtends the greater arc.

In the circle AEB, let the arc AE be

greater than the arc AD ; then will the

chord AE be greater than the chord AD.
Draw the radii CA, CD, CE. Now, if

the arc AE were equal to the arc AD,
the angle ACE would be equal to the an-

gle ACD (Prop. IV.) ; hence it is clear

that if the arc AE be greater than the arc

AD, the angle ACE must be greater than the angle ACD.
But the two sides AC, CE of the triangle ACE are equal to

the two AC, CD of the triangle ACD, and the angle ACE is

greater than the angle ACD ; therefore, the third side AE is

greater than the third side AD (Prop. XIII. , B. I.) ; hence
the chord which subtends the greater arc is the greater.

Conversely, if the chord AE is greater than the chord AD
the arc AE is greater than the arc AD. For, because the

two triangles ACE, ACD have two sides of the one equal
to two sides of the other, each to each, but the base AE of

the one is greater than the base AD of the other, therefore
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the angle ACE is greater than the angle ACD (Prop. Xl V .

B. I.) ; and hence the arc .AE is greater than the arc AD
(Pi-op. IV.). Therefore, in the same circle, &c.

Scholium, The arcs here treated of are supposed to be
less than a semicircumference. If they were greater, the op-

posite property would hold true, that is, the greater the arc

the smaller the chord.

PROPOSITION VI. THEOREM.

The radius which is perpendicular to a chord, bisects

chord, and also the arc which it subtends.

Let ABG be a circle, of which AB is a

chord, and CE a radius perpendicular to

it; the chord AB will be bisected in D,
and the arc AEB will be bisected in E.
Draw the radii CA, CB. The two right-

angled triangles CDA, CDB have the side

AC equal to CB, and CD common ; there-

fore the triangles are equal, and the base

AD is equal to the base DB (Prop. XIX.,
B. I.).

Secondly, since ACB is an isosceles triangle, and the line

CD bisects the base at right angles, it bisects also the verti-

cal angle ACB (Prop. X., Cor. 1, B. I.). And, since the an-

gle ACE is equal to the angle BCE, the arc AE must be

equal to the arc BE (Prop. IV.) ; hence the radius CE, per-

pendicular to the chord AB, divides the arc subtended by
this chord, into two equal parts in the point E. Therefore,
the radius, &c.

Scholium. The center C, the middle point D of the chord

AB, and the middle point E of the arc subtended by this

chord, are three points situated in a straight line perpendic-
ular to the chord. Now two points are sufficient to deter-

mine the position of a straight line ; therefore any straight
jae which passes through two of these points, will necessari-

iy pass through the third, and be perpendicular to the chord.

Also, the perpendicular at the middle of a chord passes through
the center of the circle, and through {he middle of tlw arc

ten did by the chord.
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PROPOSITION VII. THEOREM.

Through three given points, not in the same straight lint

cue circumference may*be made to pass, and but one.

Let A, B, C be three points not in the same straight line ,

they all lie in the circumference of the same circle. Join

AB, AC, arid bisect these lines by the

perpendiculars DF, EF; DF and EF
produced wLI meet one another. For,

join DE ; then, because the angles ADF,
AEF are together equal to two right an-

gles, the angles FDE and FED are to-

gether less than two right angles ; there-

fore DF and EF will meet if produced
(Prop. XXIIL, Cor. 2, B. I.). Let them
meet in F. Since this point lies in the perpendicular DF, it is

equally distant from the two points A and B (Prop. XVIII.,'

B. I.) ; and, since it lies in the perpendicular EF, it is equally
distant from the two points A and C ; therefore the throe

distances FA, FB, FC are all equal; hence the circumfe-

rence described from the center F with the radius FA will

pass through the three given points A, B, C.

Secondly. No other circumference can pass through the

same points. For, if there were a second, its center could

not be out of the line DF, for then it would be unequally dis-

tant from A and B (Prop. XVIIL, B. I.) ; neither could it be
out of the line FE, for the same reason ; therefore, it must be
on both the lines DF, FE. But two straight lines can not

cut each other in more than one point ; hence only one cir-

cumference can pass through three given points. Therefore,

through three given points, &c.
Cor. Two circumferences can not cut each other in more

than two points, for, if they had three common points, they
would have the same center, and would coincide with each
other.

PROPOSITION VIII. THEOREM.

Equal chords are equally distantfrom the center ; and of two

unequal chords, the less is the more remotefrom the center.

Let the chords AB, DE, in the circle ABED, be equal to

;>ne another ; they are equally distant from the centei T.ke
C
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C, the center of the circle, and from it

draw CF, CG, perpendiculars to AB,
DE. Join CA, 3D ; then, because the

radius CF is perpendicular to the chord

AB, it bisects it (Prop. VI.). Hence
AF is the half of AB ; and, for the same
reason, DG is the half of DE. But AB
is equal to DE ; therefore AF is equal
to DG (Axiom 7, B. I.). Now, in. the

right-angled triangles ACF, DCG, the hypothenuse AC is

equal to the hypothenuse DC, and the side AF is equal to

tha side DG; therefore the triangles are equal, and CF is

equal to CG (Prop. XIX., B. I.) ; hence the two equal chords

AB, DE are equally distant from the center.

Secondly. Let the chord AH be greater than the chord DE ;

DE is further from the center than AH. For, because the

chord AH is greater than the chord DE, the arc ABH is

greater than the arc DE (Prop. V.). From the arc ABH
cut off a part, AB, equal to DE ; draw the chord AB, and
let fall CF perpendicular to this chord, and CI perpendicular
to AH. It is plain that CF is greater than CK, and CK
than CI (Prop. XVII., B. I.) ; much more, then, is CF great-
_er than CI. But CF is equal to CG, because the chords AB,
DE are equal ; hence CG is greater than CI. Therefore,

equal chords, &c.
Cor. Hence the diameter is the longest line that can be in

scribed in a circle.

PROPOSITION IX. THEOREM.

A straight line perpendicular to a diameter at its extremity,
ts a tangent to the circumference.

Let ABG be a circle, the center of which is C, and the di-

ameter AB ; and let AD be drawn from A perpendicular to

AB ; AD will be a tangent to the circum-

ference.

In AD take any point E, and join
CE ; then, since CE is an oblique line,

it is longer than the perpendicular CA
(Prop. XVIL, B. I.). Now CA is equal
to CK ; therefore CE is greater than

CK, and the point E must be without

Jie circle. But E is any point whatev-
er in the line AD ; therefore AD has

only the point A in common with the
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cncumference, hence it is a tangent (Def. 9). Therefore,

a straight line, &c.
Scholium. Through the same point A in the ciicumfer-

ence, only one tangent can be drawn. For, if possible let a

second tangent, AF, be drawn ; then, since CA can not be

perpendicular to AF (Prop. XVI., Cor., B. I.), another line,

CH, must be perpendicular to AF, and therefore CH must be

less than CA (Prop. XVII., B. I. ; hence the point H falls

within the circle, and AH produced will cut the circumfer-

ence.

PROPOSITION X. THEOREM.

Two parallels intercept equal arcs on the circumference.

The proposition admits of three cases:

First. When the two parallels are se-

cants, as AB, DE. Draw the radius CH
perpendicular to AB ; it will also be per-

pendicular to DE (Prop. XXIII., Cor.

1, B. I.) ; therefore, the point H will be

at the same time the middle of the arc

AHB, and of the arc DHE (Prop. VI.).
Hence the arc DH is equal to the arc

HE, and the arc AH equal to HB, and therefore the arc AD
is equal to the arc BE (Axiom 3, B. I.).

Second. When one of the two par- _.

allels is a secant, and the other a tan- D ^-.. *^ E
gent. To the point of contact, H, _

draw the radius CH ; it will be per-

pendicular to the tangent DE (Prop.

IX.), and also to its parallel AB. But
since CH is perpendicular to the chord

AB, the point H is the middle of the

arc AHB (Prop. VI.) ; therefore the

arcs AH, HB, included between the

parallels AB, DE, are equal.
Third. If the two parallels DE, FG are tangents, the one

at H, the other at K, draw the parallel secant AB ; then, ac-

cording to the former case, the arc AH is equal to HB, and

the arc AK is equal to KB ; hence the whole arc HAK is

equal to the whole arc HBK (Axiom 2, B. L). It is also ev-

ident that each of these arcs is a semicircum rerence. There
fore, two parallels, &c.
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PROPOSITION XI. THEOREM.

If two circumferences cut each other, the chord which joins
the points of intersection, is bisected at right angles by th&

straight line joining their centers.

Let two circum-

ferences cut each
other in the points A
and B ; then will the

ine AB be a com-
Tion chord to the

two circles. Now, if

a perpendicular be
erected from the middle of this chord, it will pass through C
and D, the centers of the two circles (Prop. VI., Schol.).
But only one straight line can be drawn through two given
points ; therefore, the straight line which passes through thft

centers, will bisect the common chord at right angles.

PROPOSITION XII. THEOREM.

If two circumferences touch each other, either externally 01

internally, the distance of their centers must be equal to the

turn or difference of their radii.

It is plain that the centers of the circles and the point of

contact are in the same straight line ; for, if possible, let the

point of contact, A, be without the straight line CD. From
A let fall upon CD, or CD produced, the perpendicular AE,
and produce it to B, making BE equal to AE. Then, in the

triangles ACE, BCE, the side AE is equal to EB, CE is com-

mon, and the angle AEC is equal to the angle BEC ; there-

fore AC is equal to CB (Prop. VI., B. I.), and the point B is

in the circumference ABF. In the same manner, it may be

*hown to be in the circumference ABG, and hence the point
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15 is in both circumferences. Therefore the two circumfe-

rences have two points, A and B, in common ; that is, they cut

each other, which is contrary to the hypothesis. Therefore,

the point of contact can not be without the line ^pining the

centers ;
and hence, when the circles touch each other exter-

nally, the distance of the centers CD is equal to the sum of

the radii CA, DA; and when they touch internally, the dis

tance CD is equal to the difference of the radii CA, DA
Therefore, if two circumferences, &c.

SchoL If two circumferences touch each other, externally

or internally, their centers and the point of contact are in

the same straight line.

PROPOSITION XIII. THEOREM.

If two circumferences cut each other, the distance between

their centers is less than the sum of their radii, and greater
than their difference.

Let two circumferences cut each
other in the point A. Draw the ra-

dii CA, DA ; . then, because any two
sides of a triangle are together great-
er than the third side (Prop. VIII., B.

I.), CD must be less than the sum of

AD and AC. Also, DA must be less

than the sum of CD and CA ; or, subtracting CA from these

unequals (Axiom 5, B. I.), CD must be greater than the dif-

ference between DA and CA. Therefore, if two circumfe-

rences, &c.

PROPOSITION XIV. THEOREM.

In equal circles, angles at the center have the same ratit

with the intercepted arcs.

Case first. When
tiie angles are in the

ratio of two whole
numbers.

Let ABG, DFH
be equal circles, and
let the angles ACB,
DEF at their cen-

ters be in the ratio of two whole numbers ; then will

the angle ACB : angle DEF : : arc AF : arc DF.
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Suppose, foi exan\ple, that the angles ACB, DEF are to

each other as 7 to 4 ; or, which is the same thing, suppose
that the angle M, which may serve as a common measure,
is contained seven times in the angle ACB, and four times in

the angle DEF. The seven partial angles into which ACB
is divided, being aach equal to any of the four partial angles
into which DEF is divided, the partial arcs will also be

equal to each other (Prop. IV.), and he entire arc AB will

be to the entire arc DF as 7 to 4. Now the same reasoning
would apply, if in place of 7 and 4 any whole numbers what-

ever were employed ; therefore, if the ratio of the angles
ACB, DEF can be expressed in whole numbers, the arcs AB,
DF will be to each other as the angles ACB, DEF.

Case second. When the ratio of the angles can not be ex

pressed by whole numbers.
Let ACB, ACD be two an-

gles having any ratio whatev-
er. Suppose ACD to be the

smaller angle, and let it be

placed on the greater; then

will the angle ACB : angle
ACD : : arc AB : arc AD.

For, if this proportion is not true, the first three terms re-

maining the same, the fourth must be greater or less than

AD. Suppose it to be greater, and that we have

Angle ACB : angle ACD : : arc AB : arc AI.

Conceive the arc AB to be divided into equal parts, each

(ess than DI ; there will be at least one point of division be-

Iweeu D and I. Let II be that point, and join CH. The
arcs AB, AH will be to each other in the ratio of two whole

numbers, and, by the preceding case, we shall have

Angle ACB : angle ACH : : arc AB : arc AH.
Comparing these two proportions with each other, and ob-

serving that the antecedents are the same, we conclude that

the consequents are proportional (Prop. IV., Cor., B. II.) ;

therefore,

Angle ACD : angle ACH : : arc AI : arc AH.
But the arc AI is greater than the arc AH ; therefore the

angle ACD is greater than the angle ACH (Def. 2, B. II.),

that is, a part is greater than the whole, which is absurd.

Hence the angle ACB can not be to the angle ACD as the

arc AB to an arc greater than AD.
In the same manner, it may be proved that the fourth term

of the proportion can not be less than AD ; therefore, it must

be AD, and we ha\'e the proportion

Angle ACB angle A ID : : arc AB : arc AD.
Cor. 1. Since the an^le at the center of a circle, and the
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arc intercepted by its sides, are so related, that when one is

increased or diminished, the other is increased or diminished

in the same ratio, we may take either of these quantities as

the measure of the other. Henceforth we shall take the arc

AB to measure the angle ACB. It is important to observe,
that in the comparison of angles, the arcs which measure
them must be described with equal radii.

Cor. 2. In equal circles, sectors are to each other as the it

arcs; for sectors are equal when their angles are equal.

PROPOSITION XV. THEOREM.

An inscribed angle is measured by half the arc included be-

tween its sides.

Let BAD be an angle inscribed in the circle BAD. The

angle BAD is measured by half the arc BD.
First. Let C, the center of the circle,

be within the angle BAD. Draw the di-

ameter AE, also the radii CB, CD.
Because CA is equal to CB, the angle

CAB is equal to the angle CBA (Prop. X.,
B. I.) ; therefore the angles CAB, CBA
are together double the angle CAB. But
the angle BCE is equal (Prop. XXVII., B.

I.) to the angles CAB, CBA ; therefore,

also, the angle BCE is double of the angle BAG. Now the

angle BCE, being an angle at the center, is measured by the

arc BE : hence the angle BAE is measured by the half of

BE. For the same reason, the angle DAE is measured by
half the arc DE. Therefore, the whole angle BAD is meas-
ured by half the arc BD.

Second. Let C, the center of the circle,

be without the angle BAD. Draw the di-

ametei AE. It may be demonstrated, as

in the first case, that the angle BAE is

measured by half the arc BE, and the an-

gle DAE by half the arc DE ; hence their

difference, BAD, is measured by half of
BD. Therefore, an inscribed angle, &c.

Cor. 1. All the angles BAG, BDC, &c.,
inscribed in the same segment are equal, for thev are all

measured by half the same arc BEG. (See next fig.)
Cor. 2. Every angle inscribed in a semicircle is a right

angle, because it is measured by half a semicircumference
th it is, the fourth part of a circumference
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Cor. 3. Every angle inscribed in a

segment greater than a semicircle is an
acute angle, for it is measured by half

an arc less than a semicircumference.

Every angle inscribed in a segment
less than a semicircle is an obtuse an-

gle, for it is measured by half an arc

greater than a semicircumference.

Cor. 4. The opposite angles of an in-

scribed quadrilateral, ABEC, are together equal to two right

angles ; for the angle BAG is measured by half the arc BEG,
and the angle BEG is measured by half the arc BAG ; there-

fore the two angles BAG, BEG, taken together, are measured

by half the circumference ; hence their sum is equal to two

right angles.

PROPOSITION XVI. THEOREM.

The angle formed by a tangent and a chord, is measured by

half the arc included between its sides.

Let the straight line BE touch the

circumference ACDF in the point A,
and from A let the chord AC be
drawn ; the angle BAG is measured by _
half the arc AFC.
From the point A draw the diameter

AD. The angle BAD is a right angle

(Prop. IX.), and is measured by half

the semicircumference AFD ; also, the
' A

angle DAG is measured by half the arc DC (Prop. XV.) ;

therefore, the sum of the angles BAD, DAC is measured by
half the entire arc AFDC.

In the same manner, it may be shown that the angle CAE
is measured by half the arc AC, included between its sides.

Cor. The angle BAG is equal to an angle inscribed in the

segment AGC ; and the angle EAC is equal to an angle in

scribed in the segment AFC.
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BOOK IV.

THE PROPORTIONS CF FIGURES.

Definitions.

1. fiqualfigures are such as maybe applied the one to tne

other, so as to coincide throughout. Thus, two circles having
equal radii are equal ; and two triangles, having the three sides

of the one equal to the three sides of the other, each to each,

are also equal.
2. Equivalent figures are such as contain equal areas

Two figures may be equivalent, however dissimilar. Thus,
a circle may be equivalent to a square, a triangle to a rec-

tangle, &c.
3. Similar figures are such as have the angles of the one

equal to the angles of the other, each to each, and the sides

about the equal angles proportional. Sides which have the

same position in the two figures, or which are adjacent to

equal angles, are called homologous. The equal angles may
also be called homologous angles.

Equal figures are always similar, but similar figures may
be very unequal. k

4. Two sides of one figure are said to be reciprocally pro-

portional to two sides of another, when one side of the first is

to one side of the second, as the remaining side of the sec-

ond is to the remaining side of the first.

5. In different circles, similar arcs, sectors, or segments, are

those which correspond to equal angles at the center.

Thus, if the angles A and D are

equal, the arc BC will be similar to

the arc EF, the sector ABC to the

sector DEF, and the segment BGC
to th*. segment EHF. B

6. The altitude of a triangle is the perpen-
dicular let fall from the vertex of an angle
on the opposite side, taken as a base, or on
the base produced
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7. The altitude of a parallelogram is the

perpendicular drawn to the base from the >

opposite side. Z.

8. The altitude of a trapezoid is the distance

between its parallel sides.

PROPOSITION I. THEOREM.

Parallelograms which have equal bases and equal altitudes

are equivalent.

Let the parallelo-

grams ABCD, ABEF
Be placed so that their

equal bases shall coin-

ride with each other.

Let AB be the common A
base ; and, since the two parallelograms are supposed to have
the same altitude, their upper bases, DC, FE, will be in the

same straight line parallel to AB.
Now, because ABCD is a parallelogram, DC is equal to

A.B (Prop. XXIX., B. I.). For the same reason, FE is equal
to AB, wherefore DC is equal to FE ; hence, if DC arid FE
be taken away from the same line DE, the remainders CE
and DF will be equal. But AD is also equal to BC, and AF
to BE ; therefore the triangles DAF, CBE are mutually equi
lateral, and consequently equal.
Now if from the quadrilateral ABED we take the triangle

ADF, there will remain the parallelogram ABEF ; and if

from the same quadrilateral we take the triangle BCE, there

will remain the parallelogram ABCD. Therefore, the two

parallelograms ABCD, ABEF, which have the same base
and the same altitude, are equivalent.

Cor. Every parallelogram is equivalent to the rectangle
which has the same base and the same altitude.

PROPOSITION II. THEOREM.

Every triangle is half of the parallelogram which has the

same base and the same altitude.

Let the parallelogram ABDE and the triangle ABC have
the same base, AB, and the same altitude ; the triangle is

half of the parallelogram.
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Complete the parallelogram ABFC ; c
then the parallelogram ABFC is equiv-
alent to the parallelogram ABDE, be-

cause they have the same base and the

same altitude (Prop. I.). But the tri-

angle ABC is half of the parallelogram
ABFC (Prop. XXIX., Cor., B. I.) ; wherefore the triangle
ABC is also half of the parallelogram ABDE. Therefore,

every triangle, &c.
Cor. 1. Every triangle is half of the rectangle which has

the same base and altitude.

Cor. 2. Triangles which have equal bases and equal alti

tudes are equivalent.

PROPOSITION III. THEOREM.

Two rectangles of the same altitude, are to each other as their

bases.

j
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Dequal parts, each less than EG ; there will

be at least one point of division between
E and G. Let H be that point, and draw
the perpendicular HI. The bases AB, AH
will be to each other in the ratio of two
whole numbers, and by the preceding case

we shall have
ABCD : AHID : : AB : AH.

But, by hypothesis, we have
ABCD : AEFD : : AB : AG.

In these two proportions the antecedents are equal ; thei e-

fore the consequents are proportional (Prop. IV., Cor., B. II.),

and we have
AHID : AEFD : : AH : AG.

But AG is greater than AH ; therefore the rectangle
AEFD is greater than AHID (Def. 2, B. II.) ; that is, a part is

greater than the whole, which is absurd. Therefore ABCD
can not be to AEFD as AB to a line greater than AE.

In the same manner, it may be shown that the fourth term
of the proportion can not be less than AE ; hence it must be

AE, and we have the proportion
ABCD : AEFD : : AB : AE.

Therefore, two rectangles, &c.

PROPOSITION IV. THEOREM.

Any two rectangles are to each other as the products of then
bases by their altitudes.

Let ABCD, AEGF be two rectangles ; the ratio of the rec-

tangle ABCD to the rectangle AEGF, is the same with the

ratio of the product of AB by AD, to ths product of AE by
AF ; that is,

ABCD : AEGF : : AB XAD : AE x AF.
Having placed the two rectangles so

that the angles at A are vertical, pro-
duce the sides GE, CD till they meet in

H. The two rectangles ABCD, AEHD
have the same altitude AD ; they are,

therefore, as their bases AB, AE (Prop.

III.). So, also, the rectangles AEHD, .

AEGF, having the same altitude AE,
are to each other as their bases AD, AF
two proportions

ABCD : AEHD : : AB AE,
AEHD : AEGF : : AD AF.

II

F

Thus, we have the
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Hence (Prop. XL, Cor., B. II.),

ABCD : AEGF : : ABxAD : AExAF.
Scholium. Hence we may take as the measure of a rec-

tangle the product of its base by its altitude ; provided we un-

derstand by it the product of two numbers, one of which ia

the number of linear units contained in the base, and the oth-

er the number of linear units contained in the altitude.

PROPOSITION V. THEOREM.

The area of a parallelogram is equal to the product of its

base by its altitude.

Let ABCD be a parallelogram, AF its
-p D EC

altitude, and AB its base ; then is its sur-

face measured by the product of AB by
AF. For, upon the base AB, construct a

rectangle having the altitude AF ; the par-

allelogram ABCD is equivalent to the rec-

tangle ABEF (Prop. L, Cor.). But the rectangle ABEF is

measured by AB XAF (Prop. IV., Schol.) ; therefore the area

of the parallelogram ABCD is equal to AB X AF.
Cor. Parallelograms of the same base are to each other as

their altitudes, and parallelograms of the same altitude are

to each other as their bases ; for magnitudes have the same
ratio that their equimultiples have (Prop. VIIL, B. II.).

PROPOSITION VI. THEOREM.

The area of a triangle is equal to half the product of its

base by its altitude.

Let ABC be any triang.e, BC its base, and
AD its altitude ; the area of the triangle ABC
i measured by half the product of BC by AD.
For, complete the parallelogram ABCE.

The triangle ABC is half of the parallelo-

gram ABCE (Prop. II.) ; but the area of the
J

parallelogram is equal to BC xAD (Prop. V.) ; hence the

area of the triangle is equal to one half of the product of
BC by AD. Therefore, the area of a triangle, &c.

Cor. 1. Triangles of the same altitude are to each other
as their bases, and triangles of the same base are to each oth-

er as their altitudes.

Cor 2 Equivalent triangles, whose bases are equal, have
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equal altituaes ;
and equivalent triangles, whose altitudes are

equal, have equi.l bases.

PROPOSITION VII. THEOREM.

The area of a trapezoid is equal to half the product of its

altitude by the sum of its parallel sides.

Let ABCD be a trapezoid, DE its al-

titude, AB and CD its parallel sides ;

'ts area is measured by half the product
of DE, by the sum of its sides AB, CD.

Bisect BC in F, and through F draw
GH parallel to AD, and produce DC to A E & B
H. In the two triangles BFG, CFH,
the side BF is equal to CF by construction, the vertical an-

gles BFG, CFH are equal (Prop. V., B. I.), and the angle
FCH is equal to the alternate angle FBG, because CH and
BG are parallel (Prop. XXIIL, B. I.) ; therefore the triangle
CFH is equal to the triangle BFG. Now, if from the whole

figure, ABFHD, we take away the triangle CFH, there will

remain the trapezoid ABCD ; and if from the same figure,

ABFHD, we take away the equal triangle BFG, there will

'emain the parallelogram AGHD. Therefore the trapezoid
ABCD is equivalent to the parallelogram AGHD, and is

measured by the product of AG by DE.
Also, because AG is equal to DH, and BG to CH, there-

rore the sum of AB and CD is equal to the sum of AG and

DH, or twice AG. Hence AG is equal to half the sum of

the parallel sides AB, CD ; therefore the area of the trape-
zoid ABCD is equal to half the product of the altitude DE
by the sum of the bases AB, CD.

Cor. If through the point F, the middle of BC, we draw
FK parallel to the base AB, the point K will also be the mid-
dle of AD. For the figure AKFG is a parallelogram, as

also DKFH, the opposite sides being parallel. Therefore
AK is equal to FG, and DK to HF. But FG is equal to FH,
since the triangles BFG, CFH are equal ; therefore AK is

equal to DK.
Now, since KF is equal to AG, the area of the trapezoid is

equal to DE xKF. Hence the area of a trapezoid is equal to

its altitude,multipliea by the line which joins the middle points
of the sides u hi 'k are not parallel.
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PROPOSITION VIII. THEOREM.

If a straight line is divided into any two parts, the square oj

the whole line is equivalent to the squares of the two parts, to-

gether with twice the rectangle contained by \he parts.

Let the straight line AB be divided into any two parts in

C ; the square on AB is equivalent to the squares on AC
CB, together with twice the rectangle contained by AC, CB
that is,

AB% or (AC+CB)
a=AC 2+CB2+2ACxCB.

Upon AB describe the square ABDE ; E j[ D
take AF equal to AC, through F draw FG
parallel to AB, and through C draw CH par-
allel to AE.
The square ABDE is divided into four

parts : the first, ACIF, is the square on AC,
since AF was taken equal to AC. The sec- -A-

ond part, IGDH, is the square on CB ; 'for, because AB is

equal to AE, and AC to AF, therefore BC is equal to EF
(Axiom 3, B. I.). But, because BCIG is a parallelogram,
GI is equal to BC ; and because DEFG is a parallelogram,
DG is equal to EF (Prop. XXIX., B. I.) ; therefore HIGD is

equal to a square described on BC. If these two parts are

taken from the entire square, there will remain the two rect-

angles BCIG, EFIH, each of which is measured by AC X
OB ; therefore the whole square on AB is equivalent to the

squares on AC and CB, together with twice the rectangle of

AC x CB. Therefore, if a straight line, &c.
Cor. The square of any line is equivalent to four times the

square of half that line. For, if AC is equal to CB, the four

figures AI, CG, FH, ID become equal squares.
Scholium. This proposition is expressed algebraicaJv

thus:

PROPOSITION IX. THEOREM.

The square described on the difference of two lines, is equiv
alent to the sum of the squares of the lines, diminished by twice

the rectangle contained by the lines.

Let AB, BC be an> two lines, and AC their difference ;

the square described on AC is equivalent to the sum of the
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I E

C B

squares on AB and CB, diminished by twice the rectangle
contained by AB, CB ; that is,

AC 2

, or (AB BC)
2=AB2+BC 2 SABxBC.

Upon AB describe the square ABKF; ^ p G K
take AE equal to AC, through C draw
CG parallel to BK, and through E draw
HI parallel to AB, and complete the

square EFLI.
Because AB is equa". to AF, and AC to

AE ; therefore CB is equal to EF, and GK
to LF. Therefore LG is equal to FK or AB

; and hence the

two rectangles CBKG, GLID are each measured by AB X
BC. If these rectangles are taken from the entire figure
ABKLIE, which is equivalent to AB 2

-fBC 2

, there will evi-

dently remain the square ACDE. Therefore, the square
described, &c.

Scholium. This proposition is expressed algebraically
hus:

(a b)
9=ai 2ab+b\

Cor. (a+b)*(aby=4ab.

PROPOSITION X. THEOREM.

H

Fhe rectangle contained by the sum and difference of two

lines, is equivalent to the difference of the squares of those lines

Let AB, BC be any two lines ; the rectangle contained by
the sum and difference of AB and BC, is equivalent to the

difference of the squares on AB and BC ;
that is,

(AB+BC) X (AB BC) =AB 2 BC 2
.

Upon AB describe the square ABKF, 3? & K
and upon AC describe the square ACDE ;

produce AB so that BI shall be equal to

BC, and complete the rectangle AILE.
The base AI of the rectangle AILE is

the sum of the two lines AB, BC, and its

altitude AE is the difference of the same -^ C B I

lines ; therefore AILE is the rectangle contained by the sum
and difference of the lines AB, BC. But this rectangle is

composed of the two parts ABHE and BILH ;
and the part

BILH is equal to the rectangle EDGF, for BH is equal to

DE, and BI is equal to EF. Therefore AILE is equivalent
to the figure ABHDGF. But ABHDGF is the excess of the

square ABKF above the square DHKG, which is the square
of BC ; therefore,

<AB-fBC)x(AB BC)=AB2 BC 2
.
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Scholium. This proposition is expressed algebraical!^
thus:

i< 6=aa
b*.

L E

PROPOSITION XI. THEOREM.

In any right-angled triangle, the square described on the ny>

fothenuse is equivalent to the sum of the squares on the other

twc sides.

Let ABC be a right-angled triangle,

having the right angle BAG ; the

square described upon the side BC is _
equivalent to the sum of the squares

upon BA, AC.
On BC describe tne square BCED,

and on BA, AC the squares BG, CH ;

and through A draw AL parallel to

BD, and join AD, FC.

Then, because each of the angles
BAG, BAG is a right angle, CA is in

the same straight line with AG (Prop. III., B. I.). For the

same reason, BA and AH are in the same straight line.

The angle ABD is composed of the angle ABC and the

right angle CBD. The angle FBC is composed of the same

angle ABC and the right angle ABF; therefore the whole

angle ABD s equal to the angle FBC. But AB is equal to

BF, being sides of the same square ; and BD is equal to BC
for the same reason ; therefore the triangles ABD, FBC have
two sides and the included angle equal ; they are therefore

equal (Prop. VI., E.I.).
But the rectangle BDLK is double of the triangle ABD S

because they have the same base, BD, and the same altitude,

BK (Prop. II., Cor. 1) ; and the square AF is double of the

triangle FBC, for they have the same base, BF, and the same
altitude, AB. Now the doubles of equals are equal to one
another (Axiom 6, B. I.) ; therefore the rectangle BDLK is

equivalent to the square AF.
In the same manner, it may be demonstrated that the rec-

tangle CELK is equivalent to the square AI ; therefore the

whole square BCED, described on the hypothenuse, is equiv-
alent to the two squares ABFG, ACIH, described on the two
other sides ; that is,

BC a =AB'4-ACa
.

Cor. 1. The square of one of the sides of a right-angled
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triangle is equivalent to the square of the hypothemise, dimin

ished bj the square of the other side ; that is,

AB 2=BC 2 AC 2
.

Cor. 2. The square BCED, and the rectangle BKLD, hav-

ing the same altitude, are to each other as their bases BC,
BK (Prop. III.). But the rectangle BKLD is equivalent to

the square AF ; therefore,
BC 3

: AB3
: : BC : BK.

In the same manner,
BC3

: AC 3
: : BC : KC.

Therefore (Prop. IV., Cor., B. II.),

AB3
: AC 2

: : BK : KC.
That is, in any right-angled triangle, if a line be drawn

from the right angle perpendicular to the hypothenuse, the

squares of the two sides are proportional to the adjacent seg-
ments of the hypothenuse ; also, the square of the hypothenuse
is to the square of either of the sides, as the hypothenuse is to

the segment adjacent to that side.

Cor. 3. Let ABCD be a square, and AC its

diagonal ; the triangle ABC being right-angled
and isosceles, we have

AC 2=AB 2+BC 2=2AB a

;

therefore the square described on the diagonal ofa

square, is double of the square described on a side.

If we extract the square root of each mem-
ber of this equation, we shall have

AC=ABv/2 ; or AC : AB : : ^/2 : 1.

PROPOSITION XII. THEOREM.

In any triangle, the square of a side opposite an acute angle,
is less than the squares of the base and, of the other side, by
twice th-3 rectangle contained by the base, and the distancefrom
the acute angle to the foot of the perpendicular let fallfrom the

opposite angle.

Let ABC be any triangle, and the angle at C one of its

acute angles, and upon BC let fall the perpendicular AD from

the opposite angle ; then will

AB 2=BCa-rAC3 -SBCxCD.
First. When the perpendicular falls with-

in the triangle ABC, we have BD=BC- CD,
and therefore BD 2=BC 2

-I-CD
2 2BC xCD

(Prop. IX.). To each of these equals add
AD2

; then BD 2+AD 2=BC 2+CD 2

fAD 2

SBC X CD But ii. trie right-angled triangle B*
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A

ABD. BD'+AD 2=AB2

; and in the triangle ADC. CD
AD*=AC 2

(Prop. XL); therefore

AB2=BC 2

-fAC 2 2BC xCD.
Secondly. When the perpendicular falls

without the triangle ABC, we have BD=
CD BC, and therefore BD 2=CD 3-fBC

2

2CDXBC (Prop. IX.). To each of these

equals add AD 2

; then BD2+AD2=CD 2+AD2

+BC 2 2CDXBC. But BD 2+AD2=AB2

;

andCD2+AD2=AC 2

; therefore

AB2=BC 2+AC 2 2EC xCD.
Scholium. When the perpendicular AD falls upon AB,

this proposition reduces to the same as Prop. XL, Cor. 1.

D B G

PROPOSITION XIII. THEOREM.

In obtuse-angled triangles, the square of the side opposite
i\e obtuse angle, is greater than the squares of the base and the

ether side, by twice the rectangle contained by the base, and the

distance from the obtuse angle to thefoot of the perpendicular
let fallfrom the opposite angle on the base produced.

Let ABC be an obtuse-angled triangle, having the obtuse

angle ABC, and from the point A let AD be drawn perpen-
dicular to BC produced ; the square of AC is greater than

the squares of AB, BC by twice the rectangle BC X BD.
For CD is equal to BC+BD ; therefore CD2

r-BC 2

-J-BD
2+2BCxBD (Prop. VIII.). To

^ach of these equals add AD 2

; then CD2+
AD 2- BC2+BD2+AD2+2BC X BD. But AC 2

is equal to CD 2+AD2

(Prop. XL), and AB2
is

equal to BD 2-fAD 2

; therefore AC 2=BC2+
AB2+2BCxBD. Therefore, in obtuse-an-

gled triangles, &c.
Scholium. The right-angled triangle is the only one in

which the sum of the squares of two sides is equivalent to the

square on the third side ; for, if the angle contained by the

two sides is acute, the sum of their squares is greater than

the square of the opposite side ;
if obtuse, it is less.

D B

PROPOSITION XIV. THEOREM.

In any triangle, if a straight line is drawnfrom the

to the middle of the base, the sum of the squares of the other two

sides is equivalent to twice the square of the bisecting line, to-

gether with twice the square of half the base.

Let ABC bo a trangte having a line AD drawn from the
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middle of the base to the opposite angle ; the squares of
and AC are together double of the squares of AD and BP
From A draw AE perpendicular to BC ;

then, in the triangle ABD, by Prop. XIIL,
AB2=AD 8+DB 2+2DBxDE;

and, in the triangle ADC, by Prop. XII.,
AC2=AD'+DC" 2DC x DE.

Hence, by adding these equals, and ob-

serving that BD=DC, and therefore BD2= B
DC 2

, and DBxDE=DCxDE, we obtain

AB2+AC 2=2AD2+2DB 2
.

Therefore, in any triangle, &c.

PROPOSITION XV. THEOREM.

In every parallelogram the squares of the sides are togetfic*

equivalent to the squares of the diagonals.

Let ABCD be a parallelogram, of which A. D
the diagonals are AC and BD ; the sum of ^~~
the squares of AC and BD is equivalent to

the sum of the squares of AB, BC, CD, DA.
The diagonals AC and BD bisect each B

other in E (Prop. XXXIL, B~ I.) ; therefore, in the triangle
ABD (Prop. XIV.),

ABM-AD=2BE 2+2AE 2

;

and, in the triangle BDC,
CD2+BC2=2BE 2+2EC 2

.

Adding these equals, and observing that AE is equal to

EC, we have
AB 2+BC 2+CD2+AD2=4BE 2+4AE 2

.

But 4BE 9=BD2

,and 4AE 2=AC a

(Prop. VIIL, Cor.) ; there-

fore

AB2+BCa+CD 3+AD2=BD2+AC 2
.

Therefore, in every parallelogram, &c.

PROPOSITION XVI. THEOREM.

If a straight line be drawn parallel to the base of a triangfe,
it will cut the other sides proportionally ; and if the sides be

cut proportionally, the cutting line will be parallel to the base

of the triangle.

Let DE be drawn parallel to BC, the base of the triangle
ABC then will AD DB : : AE : EC.
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Join BE and DC ; then the triangle BDE is

equivalent to the triangle DEC, because they
nave the same base, DE, and the same altitude,

since their vertices B and C are in a line par-
allel to the base (Prop. II., Cor. 2).

The triangles ADE, BDE, whose common
vertex is E, having the same altitude, are to

^___
each other as their bases AD, DB (Prop. VI., B C
Cor. 1) ; hence

ADE : BDE : : AD : DB.
The triangles ADE, DEC, whose common vertex is D,

having the same altitude, are to each other as their bases

AE, EC ; therefore

ADE : DEC : : AE : EC.

But, since the triangle BDE is equivalent to the triangle

DEC, therefore (Prop. IV., B. II.),

AD : DB : : AE : EC.

Conversely, let DE cut the sides AB, AC, so that AD : DB
: : AE : EC ;

then DE will be parallel to BC.
For AD : DB : : ADE : BDE (Prop. VI., Cor. 1) ; and AE

: EC : : ADE : DEC ; therefore (Prop. IV., B. II.), ADE :

BDE : : ADE : DEC ; that is, the triangles BDE, DEC have
the same ratio to the triangle ADE ; consequently, the trian-

gles BDE, DEC are equivalent, and having the same base DE,
their altitudes are equal (Prop. VI., Cor. 2), that is, they are

between the same parallels. Therefore, if a straight line, &c.
Cor. 1. Since, by this proposition, AD : DB : : AE : EC ;

by composition, AD+DB : AD : : AE+EC : AE (Prop. VI.,

B. II.), or AB : AD : : AC : AE ; also, AB : BD : : AC : EC.
Cor. 2. If two lines be drawn parallel to the

base of a triangle, they will divide the other sides

proportionally. For, because FG is draw**

parallel to BC, by the preceding proposition,
AF : FB : : AG : GC. Also, by the last cor-

ullary, because DE is parallel to FG, AF : DF
. : AG : EG. Therefore DF : FB : : EG : GC
(Prop. IV., Cor., B. II.). Also, AD : DF : :

B C

AE : EG.
Cor. 3. If any number of lines be drawn parallel to the

base of a triangle, the sides will be cut proportionally.

PROPOSITION XVII. THEOREM.

The line which bisects the vertical angle of a triangle, di-

vides the base into two segments, which are proportional to the

adjacent *ide*.
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Let the angle BAG of the triangle ABC be bisected by th*

straight line AD ; then will a
BD : DC : : BA : AC.

Through the point B draw BE par-
allel to DA, meeting CA produced in E.

The triangle ABE is isosceles. For,
since AD is parallel to EB, the angle
ABE is equal to the alternate angle
DAB (Prop. XXIII., B. I.) ; and the exterior angle CAD is

equal to the interior and opposite angle AEB. But, by hy-

pothesis, the angle DAB is equal to the angle DAC ; there-

fore the angle ABE is equal to AEB, and the side AE to the

side AB (Prop. XL, B. I.).

And because AD is drawn parallel to BE, the base of the

triangle BCE (Prop. XVI.),
BD : DC : : EA : AC.

But AE is equal to AB, therefore

BD : DC : : BA : AC.
Therefore, the line, &c.
Scholium. The line which bisects the exterior angle ol a

triangle, divides the base produced into segments, which are

proportional to the adjacent sides.

Let the line AD bisect the exterior .

angle CAE of the triangle ABC ; then

BD : DC : : BA : AC.

Through C draw CF parallel to

AD ; then it may be proved, as in the ..

preceding proposition, that the angle
ACF is equal to the angle AFC, and AF equal to AC. And
because FC is parallel to AD (Prop. XVI., Cor. 1), BD : DO

: BA : AF. But AF is equal to AC ; therefore

BD : DC : : BA : AC.

PROPOSITION XVIII. THEOREM.

Equiangular triangles have their homologous sides propor*
fional, and are similar.

Let ABC, DCE be two equiangular
triangles, having the angle BAG equal to

the angle CDE, and the angle ABC equal
to the angle DCE, and, consequently, the

angle ACB equal to the angle DEC ; then
the homologous sides will be proportion-
al, and we shall have

BC : CE : : BA : CD : : AC : DE.
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Place the triangle DCE so that the side CE may be COD

tiguous to BC, and in the same straight line with it ; and pro-
duce the sides BA, ED till they meet in F.

Because BCE is a straight line, and the angle ACB is

equal to the angle DEC, AC is parallel to EF (Prop. XXII.,
B. L). Again, because the angle ABC is equal to the angle
DCE, the line AB is parallel to DC ; therefore the figure
ACDF is a parallelogram, and, consequently, AF is equal to

CD, and AC to FD (Prop. XXIX., B. L).
And because AC is parallel to FE, one of the sides of the

triangle FBE, BC : CE : : BA : AF (Prop. XVI.) ; but AF is

equal to CD ; therefore

BC : CE : : BA : CD.

Again, because CD is parallel to BF, BC : CE : : FD : DE
But FD is equal to AC ; therefore

BC : CE : : AC : DE.
And, since these two proportions contain the same ratio

BC : CE, we conclude (Prop. IV., B. II.)

BA : CD : : AC : DE.
Therefore the equiangular triangles ABC, DCE have then

homologous sides proportional ; hence, by Def. 3, they are

similar.

Cor. Two triangles are similar when they have two an

gles equal, each to each, for then the third angles must also

be equal.
Scholium. In similar triangles the homologous sides are

opposite to the equal angles; thus, the angle ACB being
equal to the angle DEC, the side AB is homologous to DC,
and so with the other sides.

PROPOSITION XIX. THEOREM.

Two triangles which have their homologous sides proportion-
al, are equiangular and similar.

Let the triangles ABC, DEF
have their sides proportional, so

that BC : EF : : AB : DE : : AC
: DF ; then will the triangles
have their angles equal, viz. :

the angle A equal to the angle
D, B equal to E, and C equal to

I

F.

At the point E, in the straight
line EF, make the angle FEG equal to B, and at tiie point f
make the angle EFG equal to C ; the third angle G will b
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equa. to the third angle A, and the vwo triangles ABC, GEF
will be equiangular (Prop. XXVIL, Cor. 2, B. I.) ; therefore

6y the preceding theorem,
BC : EF : : AB : GE.

But, by hypothesis,
BC : EF : : AB : DE ;

therefore GE is equal to DE.
Also, by the preceding theorem,

BC:EF:: AC:GF;
but, by hypothesis,

BC : EF : : AC : DF ;

consequently, GF is equal to DF. Therefore the triangles

GEF, DEF have their three sides equal, each to each ; hence
their angles also are equal (Prop. XV., B, I.). But, by con-

struction, the iriangle GEF is equiangular to the triangle
ABC ; therefore, also, the triangles DEF, ABC are equiangu-
lar and similar. Wherefore, two triangles, &c.

PROPOSITION XX. THEOREM.

Two triangles are similar, when they have an angle of the

one equal to an angle of the other, and the sides containing
those angles proportional.

Let the triangles ABC, DEF have the angle A of the one,

equal to the angle D of the other, and let AB : DE : : AC
DF ; the triangle ABC is similar to the triangle DEF.
Take AG equal to DE, also AH A.

equal to DF, and join GH. Then
the triangles AGH, DEF are equal,
since two sides and the included

angle in the one, are respectively

equal to two sides and the included

angle in the other (Prop. VI., B. I.).

But, by hypothesis, AB : DE : : AC B C E
. DF ; therefore

AB : AG : : AC : AH ;

that is, the sides AB, AC, of the triangle ABC, are cut pro-

portionally by the line GH ; therefore GH is parallel to BC
(Prop. XVI.). Hence (Prop. XXIII., B. I.) the angle AGH is

equal to ABC, and the triangle AGH is similar to the trian-

gle ABC. But the triangle DEF has been shown to be

equal to the triangle AGH ; hence the triangle DEF is simi-

'ar to the triangle ABC. Therefore; two triangles, &c.
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PROPOSITION XXI. THEOREM.

Two triangles are similar, when they have their homologous
rides parallel or perpendicular to each other.

Let the triangles ABC, abc, DEF have their homologous
sides parallel or perpendicular to each other ; the triangles
are similar.

First. Let the homologous
sides be parallel to each other.

If the side AB is parallel to

ab, and BC to be, the angle B
is equal to the angle b (Prop.
XXVL, B. I.) ; also, if AC is

parallel to ac, the angle C is

equal to the angle c ; and hence
the angle A is equal to the ^ g-
angle a. Therefore the trian-

gles ABC, abc are equiangular, and consequently similar.

Secondly. Let the homologous sides be perpendicular to

each other. Let the side DE be perpendicular to AB, and
the side DF to AC. Produce DE to I, and DF to H ; then,

in the quadrilateral AIDH, the two angles I and H are right

angles. But the four angles of a quadrilateral are together
equal to four right angles (Prop. XXVIIL, Cor. 1, B. I.) ;

therefore the two remaining angles IAH, IDH are together

equal to two right angles. But the two angles EDF, IDH
are together equal to two right angles (Prop. II., B. I.);

therefore the angle EDF is equal to IAH or BAG.
la the same manner, if the side EF is also perpendicular to

BC, it may be proved that the angle DFE is equal to C, and,

consequently, the angle DEF is equal to B ; hence the trian-

gles ABC, DEF are equiangular and similar. Therefore, two

triangles &c.
Scholium. When the sides of the two triangles are para.-

iel, the parallel sides are homologous ; but when the sides are

perpendicular to each other, the perpendicular sides are ho-

mobgous. Thus DE is homologous to AB, DF to AC, and
EF to BC

D
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PROPOSITION XXII. THEOREM.

In a right-angled triangle, if a perpendicular is d' awnfrom
the right angle to the hypoihenuzz ,

1st. The triangles on each side of the perpendicular are sim-

ilar to the whole triangle and to each other.

2d. The perpendicular is a mean proportional between th*

segments of the hypothenuse.
3d. Each of the sides is a mean proportional between the hy

pothenuse and its segment adjacent to that side.

Let ABC be a right-angled triangle, hav- A

ing the right angle BAG, and from the angle
A let AD be drawn perpendicular to the

hypothenuse BC. ^ .

First. The triangles ABD, ACD are sim- B DO
ilar to the whole triangle ABC, and to each other.

The triangles BAD, BAG have the common angle B, also

the angle BAG equal to BDA, each of them being a right an-

gle, and, therefore, the remaining angle ACB is equal to the

remaining angle BAD (Prop. XXVIL, Cor. 2, B. I.) ; therefore

the triangles ABC, ABD are equiangular and similar. In

like manner, it may be proved that the triangle ADC is equi

angular and similar to the triangle ABC ; therefore the three

triangles ABC, ABD, ACD are equiangular and similar to

each other.

Secojidly. The perpendicular AD is a mean proportional be

tween the segments BD, DC of the hypothenuse. For, sinct

the triangle ABD is similar to the triangle ADC, their ho

mologous sides are proportional (Def. 3), and we have
BD : AD : : AD : DC.

Thirdly. Each of the sides AB, AC is a mean proportional
between the hypothenuse and the segment adjacent to that

side. For, since the triangle BAD is similar to the triangle

BAG, we have
BC : BA : : BA : BD.

And, since the triangle ABC is similar to the triangle ACD
we have

BC : CA : : CA : CD
Therefore, in a right-angled triangle, &c.

Cor. If from a point A, in the circumfe-

rence of a circle, two chords AB, AC are

drawn to the extremities of the diameter

BC, the triangle BAG will be right-angled
at A (Prop. XV., Cor. 2, B. III.) ; therefore

B
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the perpendicular AD is a mean proportional between BD
and DC, the two segments of the diameter ; that is,

AD 2=BDxDC.

PROPOSITION XXIII. THEOREM.

Two triangles,hamng an angle in the one equal to an angle
tn, the other, are to each other as the rectangles of ike sides

which contain the equal angles.

Let the two triangles ABC, ADE have
the angle A in common ; then will the trian-

gle ABC be to the triangle ADE as the rect-

angle AB XAC is to the rectangle AD X AE.
Join BE. Then the two triangles ABE,

ADE, having the common vertex E, have
ihe same altitude, and are to each other as

their bases AB, AD (Prop. VI., Cor. 1) ;

therefore

ABE : ADE : : AB : AD.
Also, the two triangles ABC, ABE, having the common

vertex B, have the same altitude, and are to each other aa

their bases AC, AE ; therefore

ABC : ABE : : AC : AE.
Hence (Prop. XL, Cor., B. II.).

ABC : ADE : : AB XAC : AD X AE.
Therefore, two triangles, &c.
Cor. 1. If the rectangles of the sides containing the equal

angles are equivalent, the triangles will be equivalent.
Cor. 2. Equiangular parallelograms are to each other as

trie rectangles of the sides which contain the equal angles.

PROPOSITION XXIV. THEOREM.

Similar triangles are to each other as the squares described

on their homologous sides.

Let ABC, DEF be two simi-

lar triangles, having the angle A
equal to D, the angle B equal to

E, and C equal to F ; then the

triangle ABC is to the triangle
DEF as the square on BC is to B
the square on EF.

By similar triangles, wre have (Def. 3)
AB : DE : : BC : EF.

\lsn. BC : EF : : BC : EF.
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Multiplying together the corresponding terms of these pro-

portions, we obtain (Prop. XL, B. II.),

ABxBC : DExEF : : BC 2
: EF 2

.

But, by Prop. XXIII.,
ABC : DEF : : ABxBC : DExEF;

*ence (Prop. IV., B. II.)

ABC : DEF : : BC2
: EF2

.

Therefore, similar triangles, &c.

PROPOSITION XXV. THEOREM.

Two similar polygons may be divided into the same numoei

of triangles, similar each to each, and similarly situated.

Let ABCDE, FGHIK
be two similar polygons ;

they may be divided into

the same number of sim-

ilar triangles. Join AC,
AD, FH, FI.

Because the polygon
ABCDE is similar to the B
polygon FGHIK, the angle B is equal to the angle G (Del.

3), and AB : BC : : FG : GH. And, because the triangles
ABC, FGH have an angle in the one equcU to an angle in

the other, and the sides about these equal angles proportion-
al, they are similar (Prop. XX.) ; therefore the angle BCA
is equal to the angle GHF. Also, because the polygons are

similar, the whole angle BCD is equal (Def. 3) to the whole

angle GHI ; therefore, the remaining angle ACD i-s equal to

the remaining angle FHI. Now, because the triangles ABC
FGH are similar,

AC : FH : : BC : GH.
And, because the polygons are similar (Def. 3),

BC : GH : : CD : HI ;

whence AC : FH : : CD : HI ;

that is, the sides about the equal angles ACD, FHI are pro*

portional ; therefore the triangle ACD is similar to the trian-

gle FHI (Prop. XX.). For the same reason, the triangle
ADE is similar to the triangle FIK; therefore the similar

polygons ABCDE, FGHIK are divided into the same num-
ber of triangles, which are similar, each to each, and similar-

ly situated.

Cor. Conversely, if two polygons are composed of the same
number of triangles, similar and similarly situated the poly-
gons we similar
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For, because the triangles are similar, the angle ABC is

equal to FGH ; and because the angle BCA is equal to GHF
and ACD to FHI, therefore the angle BCD is equal to GHI
For the same reason, the angle CDE is equal to HIK, and so

on for the other angles. Therefore the two polygons are mu-

tually equiangular.
Moreover, the sides about the equal angles are proportion-

al. For, because the triangles are similar, AB : FG : : BC :

GH. Also,BC : GH : : AC : FH,and AC : FH : : CD : HI;
hence BC : GH : : CD : HI. In the same manner, it may be

proved that CD : HI : : DE : IK, and so on for the other

sides. Therefore the two polygons are similar.

PROPOSITION XXVI. THEOREM.

The perimeters of similar polygons are to each other as then

homologous sides; and their areas are as the squares of those

sides.

Let ABCDE, FGHIK
be two similar polygons,
and let AB be the side

homologous' to FG; then

the perimeter of ABCDE
is to the perimeter of

FGHIK as AB is to FG ;

and the area of ABCDE E
is to the area of FGHIK as AB2

is to FG2

First. Because the polygon ABCDE is similar to the pol-

ygon FGHIK (Def. 3),

AB : FG : : BC : GH : : CD : HI, &c.;
therefore (Prop. IX., B. II.) the sum of the antecedents AB
fBC-fCD, &c., which form the perimeter of the first figure
is to the sum of the consequents FG-fGH+HI, &c., which
form the perimeter of the second figure, as any one antece-

dent is to its consequent, or as AB to FG.

Secondly, Because the triangle ABC is similar to the- tri.

angle FGH, the triangle ABC": triangle FGH : : AC2
: FHa

(Prop. XXIV.).
And, because the triangle ACD is similar to the triangle

FHI,
ACD : FHI : : AC 2

: FH 2
.

Therefore the triangle ABC : triangle FGH : : triangle
ACD : triangle FHI (Prop. IV., B. II.). In the same man-

ner, it may be proved that

ACD : FHI : : ADE : FIK.
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Therefore, as Jie sum of the antecedents ABC+ACD-f
ADE, or the polygon ABODE, is to the sum of the conse-

quents FGH+FHI+FIK, or the polygon FGHIK, so is any
one antecedent, as ABC, to its consequent FGH ; or, as AB*
to FG2

. Therefore, similar polygons, &o.

c

PROPOSITION XXVII. THEOREM.

If two chords in a circle intersect each other, the rectangle
contained by the parts of the one, is equal to the rectangle con-

tained by the parts of the other.

Let the two chords AB, CD in the circle

ACBD, intersect each other in the point E ;

the rectangle contained by AE, EB is equal
to the rectangle contained by DE, EC.

Join AC and BD. Then, in the triangles
ACE, DBE, the angles at E are equal, be-

ing vertical angles (Prop. V., B. I.) ; the

angle A is equal to the angle D, being in-

scribed in the same segment (Prop. XV., Cor. 1., B. III.) ;

therefore the angle C is equal to the angle B. The triangle*
are consequently similar ; and hence (Prop. XVIII.)

AE : DE : : EC : EB,
or (Prop. I., B. II.),

AExEB-DExEC.
Therefore, if two chords, &c.

Cor. The parts of two chords which intersect each other in

a circle are reciprocally proportional; that is, AE : DE : :

EC : EB.

PROPOSITION XXVIII. THEOREM.

Iffrom a point without a circle, a tangent and a secant be

drawn, the square of the tangent will be equivalent to the red

angle contained by the whole secant and its external segment.

Let A be any point without the circle

BCD, and let AB be a tangent, and AC a
secant ; then the square of AB is equiva-
lent to the rectangle AD X AC.

Join BD and BC. Then the triangles
ABD and ABC are similar ; because they
have the angle A in common ; also, the

angle ABD formed by a tangent and a
chord is measured by half the arc BD
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(Prop, XVI., B. III.) ; and the angle C is measured by half

the same arc, therefore the angle ABD is equal to C, and the

two triangles ABD, ABC are equiangular, and, consequently
similar therefore (Prop. XVIII.)

AC : AB : : AB : AD ;

whence (Prop. I., B. II.),

AB2=ACxAD.
Therefore, if from a point, &c.

Cor. 1. If from a point without a circle, a tangent and a se-

cant be drawn, the tangent will be a mean proportional be-

tween the secant and its external segment.
Cor. 2. If from a point without a circle, two secants be

drawn, the rectangles contained by the whole secants and
their external segments will be equivalent to each other ; foi

each of these rectangles is equivalent to the square of the

tangent from the same point.
Cor. 3. If from a point without a circle, two secants be

drawn, the whole secants will be reciprocally proportional to

their external segments.

PROPOSITION XXIX. THEOREM.

If an angle of a triangle be bisected by a line which cuts t/ie

base, the rectangle contained by the sides of the triangle, is

equivalent to the rectangle contained by the segments of thp

base, together with the square of the bisecting line.

Let ABC be a triangle, and let the an-

gle BAG be bisected by the straight line

AD ; the rectangle BA XAC is equiva-
lent to BD XDC together with the square
of AD.

Describe the circle ACEB about the

triangle, and produce AD to meet the cir-

cumference in E, and join EC. Then, be-

cause the angle BAD is equal to the an-

gle CAE, and the angle ABD to the angle AEC, for they are
in the same segment (Prop. XV., Cor. 1, B. III.), the trian-

gles ABD, AEC are mutually equiangular and similar ; there-

fore (Prop. XVIII.)
BA : AD : : EA : AC ;

consequently (Prop. I., B. II.),

BAxAC=ADxAE.
But AE=AD-f-DE ;

and multiplying each of these equals
by AD, we have (Prop. III.) ADxAE=AD'H-ADxDE.
But ADxDE=BDxDC (Prop. XXVII.); hence

BAxAC=BDxDC-J-AD'.
Therefore, if an angle, &c
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PROPOSITION XXX. THEOREM.

The rectangle contained by the diagonals of a quadrilateral
inscribed in a circle, is equivalent to the sum of the rectangle*

of the opposite sides.

Let ABCD be any quadrilateral in-

scribed in a circle, and let the diagonals
AC, BD be drawn; the rectangle ACx
BD is equivalent to the sum of the two

rectangles ADxBC and ABxCD.
Draw the straight line BE, making the

angle ABE equal to the angle DBG. To
each of these equals add the angle EBD ;

then will the angle ABD be equal to the angle EBC. But
the angle BDA is equal to the angle BCE, because they are

both in the same segment (Prop. XV., Cor. 1, B. III.) ; hence
the triangle ABD is equiangular and similar to the triangle
EBC. Therefore we have

AD : BD : : CE : BC
;

and, consequently, ADxBC=BDxCE.
Again, because the angle ABE is equal to the angle DBC

and the angle BAE to the angle BDC, being angles in the

same segment, the triangle ABE is similar to the triangle
DBC ; and hence

AB : AE : : BD : CD ;

consequently, AB X CD=BD X AE.
Adding together these two results, we obtain

ADxBC+ABxCD=BDxCE+BDxAE,
which equals BD x (CE+AE), or BD X AC.

Therefore, the rectangle, &c.

PROPOSITION XXXI. THEOREM.

Iffrom any angle of a triangle, a perpendicular be drawn
to the opposite side or base, the rectangle contained by the sum
and difference of the other two sides, is equivalent to the rect-

angle contained by the sum and difference of the segments of
the base

Let ABC be any triangle, and let AD be a perpendicular
drawn from the angle A on the base BC ; then

(AC+AB) x (AC-AB)= (CD+DB) x (CD-DB).
From A as a center, with a radius equal to AB, the short-
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cr of the two sides, describe a circumference BFE. Pro-

duce AC to meet the circumference in E, and CB, if neces-

sary, to meet it in F.

Then, because AB is equal to AE or AG, CE=AC+AB,
the sum of the sides ;

and CG=AC AB, the difference of the

sides. Also, because BD is equal to DF (Prop. VI., B. III.) ;

when the perpendicular falls within the triangle,CF=CD
DF=CD DB, the difference of the segments of the base.

But when the perpendicular falls without the triangle, CF=
CD+DF=CD+DB, the sum of the segments of the base.

Now in either case, the rectangle CE X CG is equivalent
to CBxCF (Prop. XXVIIL, Cor. 2) ; that is,

(AC + AB) x (AC-AB)= (CD +DB) x (CD-DB).
Therefore, if from any angle, &c.
Cor. If we reduce the preceding equation to a proportion

(Prop. II., B. II.), we shall have
BC : AC +AB : : AC-AB : CD-DB;

that is, the base of any triangle is to the sum of the two other

sides, as the difference of the latter is to the difference of the

segments of the base made by the perpendicular.

PROPOSITION XXXII. THEOREM.

The diagonal and side of a square have no common measure.

Let ABCD be a square, and AC its

diagonal ; AC and AB have no common
measure.

In order to find the common measure,
if there is one, we must apply CB to CA
as often as it is contained in it. For this

purpose, from the center C, with a radius

CB, describe the semicircle EBF. We A G

perceive that CB is contained once in AC, with a remainder
AE, which remainder must be compared wi.h BC or its

equal AB.
Now, since the angle ABC is a right angle, AB is a tan-

gent to he circumference ; and AE : AB : : AB : AF ('* rop.
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XXV1IL, Oor. 1). Instead, therefore, of

comparing AE with AB, we may substi-

tute the equal ratio of AB to AF. But
AB is contained twice in AF, with a re-

mainder AE, which must be again com-

pared with AB. Instead, however, of

comparing AE with AB, we may again

employ the equal ratio of AB to AF.
Hence at each operation we are obliged to compare AB with

AF, which leaves a remainder AE ; from which we see that

the process will never terminate, and therefore there is no
common measure between the diagonal and side of a square
that is, there 's no line which is contained an exact number
of times in each of them.
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BOOK V

PROBLEMS

Postulates.

\ A /".raight line may be drawn from any one point to

any other point. .

2. A terminated straight line may be produced to any
length in a straight line.

3. From the greater of two straight lines, a part may be

cut off equal to the less.

4. A circumference may be described from any center, and
with any radius.

PROBLEM I.

To bisect a given straight line.

Let AB be the given straight line

which it is required to bisect.

From the center A, with a radius great-
er than the half of AB, describe an arc of
a circle (Postulate 4) ; and from the cen-

ter B, with the same radius, describe an-

other arc intersecting the former in D and
E. Through the points of intersection, draw the straight line

DE (Post. 1) ; it will bisect AB in C.

For, the two points D and E, being each equally distanl

from the extremities A and B, must both lie in the perpen-
dicular, raised from the middle point of AB (Prop. XVIII.
Cor., B. I.). Therefore the line DE divides the line AB
into two equai parts at the point C.
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PROBLEM II.

To draw a perpendiculai to a straight line, from a given
point in tint line.

Let BC be the given straight line, and A
the point given in it

; it is required to draw
a straight line perpendicular to BC through .

'

the given poin. A.
In the straight line BC take any point B

and make AC equal to AB (Post. 3). From ^
B as a center, with a radius greater than

BA, describe an arc of a circle (Post. 4) ; and from C as a

center, with the same radius, describe another arc intersect-

ing the former in D. Draw AD (Post. 1), and it will be the

perpendicular required.

For, the points A and D, being equally distant from B and

C, must be in a line perpendicular to the middle of BC (Prop.
XVIIL, Cor., R L). Therefore AD has been drawn per-

pendicular to BC from the point A.
Scholium. The same construction serves to make a right

angle BAD at a given point A, on a given line BC.

PROBLEM III.

To draw a perpendicular- to a straight line, from a given

point without it.

Let BD bo a straight line of unlimited A
length, and let A be a given point without

it. It is required to draw a perpendicular
to BD from the point A.
Take any point E upon the other side

of BD ; and from the center A, with the ^--- -^ D
radius AE, describe the arc BD cutting
the line BCD in the two points B and D.
From the points B and D as centers, de-

scribe two arcs, as in Prob. II., cutting each other in F.

Join AF, and it will be the perpendicular required.
For the two points A and F are each equally distant from

the points B and D ; therefore the line AF has been drawn

perpendicular to BD (Prop. XVIIL, Cor., B. L), from the

given point A.
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PROBLEM IV.

At a given point in a straight line, if make an angle cquctt

U a given angle.

Let AB be the given straight
line. A the given point in it, and
C the given angle ; it is required
to make an angle at the point A
in the straight line AB, that shall A
be equal to the given angle C.

With C as a center, and any radius, describe an arc DE
terminating in the sides of the angle ; and from the point A
as a center, with the same radius, describe the indefinite arc

BF. Draw the chord DE ; and from B as a center, with a

radius equal to DE, describe an arc cutting the arc BF in G.
Draw AG, and the angle BAG will be equal to the given
angle C.

For the two arcs BG, DE are described with equal radii,

and they have equal chords ; they are, therefore, equal (Prop.
III., B. III.). But equal arcs subtend equal angles (Prop
IV., B. III.) ; and hence the angle A has been made equal to

the given angle C.

PROBLEM V.

To bisect a given arc or angle.

First. Let ADB be the given arc which
it is required to bisect.

Draw the chord AB, and from the center

C draw CD perpendicular to AB (Prob.

III.) ; it will bisect the arc ADB (Prop.
VI., B. III.), because CD is a radius per-

pendicular to a chord.

Secondly. Let ACB be an angle which it is required to bi-

sect. From C as a center, with any radius, describe an arc

AB ; and, by the first case, draw the line CD bisecting the

arc ADB. The line CD will also bisect the angle ACB. For
the angles ACD, BCD are equal, being subtended by the

equal arcs AD, DB (Prop. IV., B. III.).

Scholium. By the same construction, each of the halves

AD, DB may be bisected ; and thus by successive bisections

an arc or angle may be divide 1 into four equal parts, intc

eight, sixteen, &c.
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PROBLEM VI.

Thrcugh % given point, to draw a straight line parallel to

a given line.

Let A be the gi /en point, and BC the
-g DC

given straight line ; it is required to draw ~s-
through the goint A, a straight line paral-
lel to BC.

, -^ g
In BC take any point D, and join AD.

Then at the point A, in the straight line AD, make the angle
DAE equal to the angle ADB (Prob. IV.).

Now, because the straight line AD, which meets the ,twc

straight lines BC, AE, makes the alternate angles ADB, DAE
equal to each other, AE is parallel to BC (Prop. XXII. , B.

I.). Therefore the straight line AE has been drawn through
the point A, parallel to the given line BC.

PROBLEM VII.

Two angles of a triangle being given, tofind the third angle.

The three angles of every triangle are to-

gether equal to two right angles (Prop.
XXVIL, B. I.). Therefore, draw the in-

definite line ABC. At the point B make
the angle ABD equal to one of the givenADC
angles (Prob. IV.), and the angle DBE equal to the other

given angle ; then will the angle EBC be equal to the third

angle of the triangle. For the three angles ABD. DBE,
EBC are together equal to two right angles (Prop. II., B
I.), which is the sum of all the angles of the triangle.

PROBLEM VIII.

Given two sides and the included angle of a triangle, to con

struct the triangle.

Draw the straight line BC equal to one A
of the given sides. At the point B make
the angle ABC equal to the given angle

(Prob. IV.) ; and take AB equal to the other

side. Join AC. and ARC will he. the



BOOK V 87

triangle required. For its sides AB, BC are made equal tc

the given sides, and the included angle B is made equal to

the given angle.

PROBLEM IX.

Given one side and two angles of a triangle, to construct tfo

triangle.

The two given angles will either be both adjacent to the

given side, or one adjacent and the other opposite. In the

latter case, find the third angle (Prob. VII.) ; and then the

two adjacent angles will be.known.
Draw the straight line AB equal to the

given side ; at the point A make the angle
BAG equal to one of the adjacent angles ;

and at the point B make the angle ABD
equal to the other adjacent angle. The tw6
lines AC, BD will cut each other in E, and

J

ABE will be the triangle required ; for its side AB is equal
to the given side, and two of its angles are equal to the given

angles.

PROBLEM X.

Given the three sides of a triangle, to construct the triangle

Draw the straight line BC equal to one of

the given sides. From the point B as a cen-

ter, with a radius equal to one of the other

sides, describe an arc of a circle ; and from
the point C as a center, with a radius equal
to the third side, describe another arc cutting ^_____
the former in A. Draw AB, AC ; then will

3

ABC be the triangle required, because its three sides are

equal to the three given straight lines.

Scholium. If one of the given lines was greater than the

sum of the other two, the arcs would not intersect each other,

and the problem would be impossible ; but the solution will

always be possible when the sum of any two sides is gi eater

than the third.
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PROBLEM XT.

Given two sides of a triangle, and an angle opposite on* cj

tnem, to construct the triangle.

Draw an indefinite straight line

BC. At the point B make the angle
ABC equal to the given angle, and
make BA qual to that side which is

adjacent to the given angle. Then
from A as a center, with a radius

equal to the other side, describe an arc cutting BC in the

points E and F. Join AE, AF. If the points E and F both

fall on the same side of the angle B, each of the triangles

ABE, ABF will satisfy the given conditions ; but if they fall

upon different sides of B, only one of them, as ABF, will

satisfy the conditions, and therefore this will be the triangle

required.
If the points E and F coincide with one another, which

will happen when AEB is a right angle, there will be only
one triangle ABD, which is the triangle required.

Scholium. If the side opposite the given angle were less

than the perpendicular let fall from A upon BC, the problem
would be impossible.

PROBLEM XII.

Given two adjacent sides of a parallelogram, and the in-

cluded angle, to construct the parallelogram.

Draw the straight line AB equal to

one of the given sides. At the point A
make the angle BAG equal to the

given angle ; and take AC equal to

the other given side. From the point
(/ as a center, with a radius equal to

A

AB, describe an arc ; and from the point B as a center, with

a radius equal to AC, describe another arc intersecting the

former in D. Draw BD, CD ; then will ABDC be the paral-

lelogram required.

For, by construction, the opposite sides are equal ; there-
rore the figure is a parallelogram (Prop. XXX., B. I.), and it

s formed with the given sides and the given angle
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Cor. If the given angle is a rig at ait/gle, the figure will be

a rectangle ; and if, at the same time, the sides are equal, it

will be a square.

PROBLEM XIII.

Tofind the center of a given circle or arc.

Let ABC be the given circle or arc
;

it is required to find 'ts center.

Take any three points in the are, as

A B, C, and join AB, BC. Bisect AB
in 1) (Prob. L), and through D draw DF A'

perpendicular to AB (Prob. II.). In the

same manner, draw EF perpendicular to

BC at its middle point. The perpen-
diculars DF, EF will meet in a point F equally distant from
the points A, B, and C (Prop. VII., B. III.) ; and therefore F ia

the center of the circle.

Scholium. By the same construction, a circumference may
be made to pass through three given points A, B, C ; and

also, 3. circle may be described about a triangle.

PROBLEM XIV.

Through a given point, to draw a tangent to a given circle

First. Let the given point A be
without the circle BDE ; it is re-

quired to draw a tangent to the cir-

cle through the point A.
Find the center of the circle C, and

join AC. Bisect AC in D ; and with
D as a center, and a radius equal to

AD, describe a circumference intersecting the given circuin
ference in B. Draw AB, and it will be the tangent required.
Draw the radius CB. The angle ABC, being inscribed in

a semicircle is a right angle (Prop. XV., Cor. 2, B. III.).
Hence the line AB is a perpendicular at the extremity of the
radius CB ; it is, therefore, a tangent to the circumference

(Prop IX., B. III.).

Secondly. If the given point is in the circumference of the
. circle, as the point B, draw the radius BC, and make BA
perpendicular to BC, BA will be the tangent required
(Prop. IX., B. III.).
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Schdium. When the point A lies without the circle, two

tangents may always be drawn; for the circumference whose
center is D intersects the given circumference in two points.

PROBLEM XV.

To inscribe a circle in a given triangle.

Let ABC be the given triangle ; it is

required to inscribe a circle in it.

Bisect the angles B and C by the

ines BD, CD, meeting each other in

the point D. From the point of inter-

section, let fall the perpendiculars DE,
DF, DG on the three sides of the tri-

angle ; these perpendiculars will all be

equal. For, by construction, the angle
B

EBD is equal to the angle FED ; the right angle DEB is

equal to the right angle DFB ; hence the third angle BDE
is equal to the third angle BDF (Prop. XXVIL, Cor. 2, B.

L). Moreover, the side BD is common to the two triangles
BDE, BDF, and the angles adjacent to the common side are

equal ; therefore the two triangles are equal, and DE is equal
to DF. For the same reason, DG is equal to DF. There-

fore the three straight lines DE, DF, DG are equal to each

other ; and if a circumference be described from the center

D, with a radius equal to DE, it will pass through the ex-

tremities of the lines DF, DG. It will also touch the straight
lines AB, BC, CA, because the angles at the points E, F, G
are right angles (Prop. IX., B. III.). Therefore the circle

EFG is inscribed in the triangle ABC (Def. 11, B. III.)

Scholium. The three lines which bisect the angles of a

triangle, all meet in the same point, viz., the center of the in

scribed circle.

PROBLEM XVI.

Upon a given straight line, to describe a segment of a circle,

which shall contain a given angle.

Let AB be the given straight line, upon which it is re-

quired to describe a segment of a circle containing a given

angle.
At the point A, in the straight line AB, make the angle

SAD equal to the given angle ; and from the point A draw
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D' F
AC psrpendicular to AD. Bisect AB in E, and from E
draw EC perpendicular to AB. From the point C, where
these perpendiculars meet, with a radius equal to AC, de

scribe a circle. Then will AGB be the segment required.

For, since AD is a perpendicular at the^ extremity of the

radius AC, it is a tangent (Prop. IX., B. III.) ; and the angle
BAD is measured by half the arc AFB (Prop. XVI., B. III.).

Also, the angle AGB, being an inscribed angle, is measured

by half the same arc AFB ; hence the angle AGB is equal to

the angle BAD, which, by construction, is equal to the given
angle. Therefore all the angles inscribed in the segment
A.GB are equal to the given angle.

Scholium. If the given angle was a right angle, the re-

quired segment would be a semicircle, described on AB as a

diameter.

PROBLEM XVII.

To divide a given straight line into any number of equal

parts, or into parts proportional to given lines.

First. Let AB be the given straight
line which it is proposed to divide into

any number of equal parts, as, for ex-

ample, five.

From the point A draw the indefinite

straight line AC, making any angle
with AB. In AC take any point D,
and set offAD five times upon AC. Join BC, and draw DE
parallel to it ; then is AE the fifth part of AB.

For, since ED is parallel to BC, AE : AB : : AD : AC
(Prop. XVI., B. IV.). But AD is the fifth part of AC ;

therefore AE is the fifth part of AB.

Secondly. Let AB be the given straight line, and AC a di-

vided line ; it is required to divide AB similarly to AC. Sup-
'

pose AC *o be divided in the points D and E. Place AB,
AC so as to contain any angle ; join BC, and through the
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points D, E draw DF, EG parallel to BC.
The line AB wil. be divided into parts

proportional to those of AC.
For, because DF and EG are both par-

allel to CB, we have AD : AF : : DE : FG
: EC : GB (Prop. XVI., Cor. 2, B. IV.). A G l]

PROBLEM XVIII.

To find a fourth proportional to three given lines.

From any point A draw two straight
lines AD, AE, containing any angle
DAE ; and make AB, BD, AC respect-

ively equal to the proposed lines. Join

B, C ; and through D draw DE parallel
to BC ; then will CE be the fourth pro-

portional required.

For, because BC is parallel to DE, we have
AB : BD : : AC : CE (Prop. XVL, B. IV.).

Cor. In the same manner may be found a third propor
tional to two given lines A and B ; for this will be the same
as a fourth proportional to the three lines A, B, B.

PROBLEM XIX.

Tofind a mean proportional between two given lines.

.,..
I>

/

Let AB, BC be the two given straight
lines ; it is required to find a mean pro-

portional between them.

Place AB, BC in a straight line ; upon
AC describe the semicircle ADC ; and
from the point B draw BD perpendicular

Ĵ

to AC. Then will BD be the mean proportional required.
For the perpendicular BD, let fall from a point in the cir-

cumference upon the diameter, is a mean proportional be-

tween the two segments of the diameter AB, BC (Prop.
XXII., Cor., B. IV.) ; and these segments are equal to tha

wo given lines,
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PROBLEM XX.

To divide a given line into two parts, such that ihe greater

part may be a mean proportional between the whole line and

the other part.

Let AB be the given straight line ;

it is required to divide it into two

parts at the point F, such that AB :

AF : : AF : FB.
At the extremity of the line AB,

erect the perpendicular BC, and make
,

it equal to the half of AB. From C
as a center, with a radius equal to CB, describe a circle.

Draw AC cutting the circumference in D ; and make AF
equal to AD. The line AB will be d'jvided in the point F in

the manner required.

For, since AB is a perpendicular to the radius CB at its ex-

tremity, it is a tangent (Prop. IX., B. III.) ; and if we pro-
duce AC to E, we shall have AE : AB : : AB : AD (Prop.

XXVIIL, B. IV.). Therefore, by division (Prop. VII., B.

L), AE AB : AB : : AB AD : AD. But, by construction,

AB is equal to DE ; and therefore AE AB is equal to AD
or AF ; and AB AD is equal to FB. Hence AF : AB :

FB : AD or AF ; and, consequently, by inversion (Prop. V
B. II.),

AB : AF : : AF : FB.
Scholium. The line AB is said to be divided in extreme

and mean ratio. An example of its use may be seen in Prop.
V., Book VI.

PROBLEM XXI.

Through a given point in a given angle, to draw a straight

line so that the parts included between the point and the sides

of the angle, may be equal.

Let A be the given point, and BCD the

given angle ; it is required to draw through
A a line BD, so that BA may be equal to

AD.

Through the point A draw AE parallel to

BC ; and take DE equal to CE. Through
ihe points D and A draw the line BAD ;

it
*

ivilj be the line required.
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For, because AE is parallel to BC we ihave (Prop, XVI,
B. IV.),

DE : EC : : DA : AB.
But DE is equal to EC ; therefore DA is equal to AB.

PROBLEM XXII.

To describe a square that shall be equivalent to a gnen
parallelogram, or to a given triangle.

First. Let ABDC be the given paral- *C_p
telogram, AB its base, and CE its altitude.

Find a mean proportional between AB and
CE (Prob. XIX.), and represent it by X ; ^

the square described on X will be equiva- A E B
lent to the given parallelogram ABDC.

For, by construction, AB : X : : X : CE ; hence Xa
is equaJ

to AB X CE (Prop. L, Cor., B. II.). But AB X CE is the

measure of the parallelogram ; and X2
is the measure of the

square. Therefore the square described on X is equivalent
to the given parallelogram ABDC.

Secondly. Let ABC be the given triangle,
BC its base, and AD its altitude. Find a

mean proportional between BC and the half

of AD, and represent it by Y. Then will

the square described on Y be equivalent to

the triangle ABC.
'

For, by construction, BC : Y : : Y : x AD
; ence a

equivalent to BC X AD. But BC

D
hence Y 2

AD is the measure
the triangle ABC ; therefore the square described on Y
eauivalent to the triangle ABC.

is

PROBLEM XXIII.

Upon a given line, to construct a rectangle equivalent to a

given rectangle.

Let AB be the given straight
line, and CDFE the given rect-

angle. It is required to con-
struct on the line AB a rectan-

gle equivalent to CDFE.
Find a fourth proportional

A
Prob. XVIII.) to the three lines AB, CD, CE, and let AG
oe that fourth proportional. The rectangle constr icted on
ihe lines AB, AG will be equivalent to CDFE.
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For, because AB : CD : : CE : AG, by Prop. I., B. II.,

ABxAG=CDxCE. Therefore the rectangle ABHG is

equivalent to the rectangle CDFE; End it. is constructed

upon the given line AB.

PROBLEM XXIV.

To construct a triangle which shall be equivalent to a given

polygon.

Let ABODE be the given polygon ; it

s required to construct a triangle equiva-
ent to it.

Draw the diagonal BD cutting off the E<

triangle BCD. Through the point C,
draw CF parallel to DB, meeting AB
produced in F. Join DF ; and the poly-

gon AFDE will be equivalent to the polygon ABODE.
For the triangles BFD, BCD, being upon the same base

BD, and between the same parallels BD, FC, are equivalent.
To each of these equals, add the polygon ABDE ; then will

the polygon AFDE be equivalent to the polygon ABCDE ;

that is, we have found a polygon equivalent to the given

polygon, and having the number of its sides diminished by
one.

In the same manner, a polygon may be found equivalent
to AFDE, and having the number of its sides diminished by
one; and, by continuing the process, the number of sides

may be at last reduced to three, and a triangle be thus obtain

ed equivalent to the given polygon.

PROBLEM XXV.

To make a square equivalent to the sum or difference of twt

(riven squares.

First. To make a square equivalent to the surr of twc

given squares. Draw two indefinite lines

AB, BC at right angles to each other. Take
AB equal to the side of one of the given
squares, and BC equal to the side of the ^
other. Join AC ; it will be the side of the A. B
required square.
For the triangle ABC, being right-angle i at B, the squa-e
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on AC will be equivalent to the sum of the squares upon AB
and BC (Prop. XL, B. IV.).

Secondly. To make a square equivalent to the difference

of two given squares. Draw the lines AB, BC at right an

gles to each other ;
and take AB equal to the side of the less

square. Then from A as a center, with* a radius equal to the

side of the other square, describe an arc intersecting BC in

C ; BC will be the side of the square required ; because the

square of BC is equivalent to the difference of the squares of

AC and AB (Prop. XL, Cor. 1, B. IV.).
Scholium. In the same manner, a square may be made

equivalent to the sum of three or more given squares ; for

the same construction which reduces two of them to one
will reduce three of them to two, and these two to one.

PROBLEM XXVI.

Upon a given straight line, to construct a polygon simila

to a given polygon.

Lot ABODE be the giv-
en polygon, and FG be
the given straight line ; it

/s required upon the line

FG to construct a poly-

gon similar to ABCDE.
Draw the diagonals BD, }-

BE. At the point F, in
A

the straight line FG, make the angle GFK equal to the angle
BAE ; and at the point G make the angle FGK equal to the

angle ABE. The lines FK, GK will intersect in K, and
FGK will be a triangle similar to ABE. In' the same man-

ner, on GK construct the triangle GKI similar to BED, and
on GI construct the triangle GIH similar to BDC. The

polygon FGHIK will be the polygon required. For these

two polygons are composed of the same number of triangles,
which are similar to each other, and similarly situated ; there-

fore the polygons are similar (Prop. XXV., Ccr., B. IV.)

PROBLEM XXVII.

Given the area of a rectangle, and the sum of two adjacent
udes, to construct the rectangle.

Let AB be a straight line equal to the sum of the sides of

he reauired rectangle.
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-JOUpcn AB as a diameter, describe a

semicircle. At the point A erect the

perpendicular AC, and make it equal to-

the side of a square having the given
area. Through C draw the line CD par-

-A- E B
allel to AB, and let it meet the circumference in D ; and
from D draw DE perpendicular to AB. 1 hen will AE and
EB be the sides of the rectangle required.

For, by Prop. XXII., Cor., B. IV., the rectangle AE xEB
is equivalent to the square of DE or CA, which is, by con-

struction, equivalent to the given area. Also, the sum of the

sides AE and EB is equal to the given line AB.
Scholium. The side of the square having th% given .are a,

must not be greater than the half of AB ; for in that case the

line CD would not meet the circumference ADB.

PROBLEM XXVIII.

Given the area of a rectangle, and the difference of two ad-

jacent sides, to construct the rectangle.

Let AB be a straight line equal to the

difference of the sides of the required rect-

angle.

Upon AB as a diameter, describe a cir-

cle ; and at the extremity of the diameter,
draw the tangent AC equal to the side of

a square having the given area. Through
the point C and the center F draw the

secant CE ; then will CD, CE be the adjacent sides of the

rectangle required.
For, by Prop. XXVIIL, B. IV., the rectangle CDxCE is

equivalent to the square of AC, which is, by construction,

equivalent to the given area. Also, the difference of the lines

CE, CD is equal to DE or AB.
E
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BOOK VI.

REGULAR POLYGONS, AND THE AREA OF THE CIRCLE.

Definition.

A regular polygon is one which is both equiangular and

equilateral.
An equilateral triangle is a regular polygon of three sides ;

a square is one of four.

PROPOSITION I. THEOREM.

Regular polygons of the same number of sides are similar

figures.

Let ABCDEF, abcdef be

two regular polygons of the

same number of sides ; then

will they be similar figures.

For, since the two polygons
have the same number of

sides, they must have the

same number of angles. Moreover, the sum of the angles of

the one polygon is equal to the sum of the angles of the other

(Prop. XXVIII., B. I.) ; and since the polygons are each

equiangular, it follows that the angle A is the same part of

the sum of the angles A, B, C, D, E, F, that the angle a is

of the sum of the angles a, 6, c, d, e, f. Therefore the two

angles A and a are equal to each other. The same is true

of the angles B and 6, C and c, &c.

Moreover, since the polygons are regular, the sides AB,
BC, CD, &c., are equal to each other (Def.) ; so, also, are the

sides ab, be, cd, &c. Therefore AB : ab : : BC : be : : CD : cd,

&c. Hence the two polygons have their angles equal, and
their homologous sides proportional ; they are consequently
similar (Def. 3, B. IV.). Therefore, regular polygons, &c.

Cor. The perimeters of two regular polygons ot the same
number of sides, are to each other as their homologous sides,
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and their areas are us the squares of ,hose aides (Prop.

XXVL, B. IV.).
Scholium. The angles of a regular polygon are de'r

mined by the number of its sides.

PROPOSITION II. THEOREM.

A circle may be described about any regular polygon, and

another may be inscribed within it.

Let ABCDEF be any regular polygon ;

a circle may be described about it, and
another may be inscribed within it.

Bisect the angles FAB, ABC by the

straight lines AO, BO ; and from the point
O in which they meet, draw the lines OC.
OD, OE, OF to the other angles of the

polygon.
Then, because in the triangles OBA, OBC, AB is, by

hypothesis, equal to BC, BO is common to the two triangles,
and the included angles OBA, OBC are, by construction,

equal to each other ; therefore the angle OAB is equal to the

ingle OCB. But OAB is, by construction, the half of FAB ;

ind FAB is, by hypothesis, equal to DCB ; therefore OCB is

the half of DCB ; that is, the angle BCD is bisected by the

line OC. In the same mafiner it may be proved that the an

gles CDE, DEF, EFA are bisected by the straight lines OD
OE, OF.
Now because the angles OAB, OBA, being halves of equal

angles, are equal to each other, OA is equal to OB (Prop.
XL, B. I.). For the same reason, OC, OD, OE, OF are each
of them equal to OA. Therefore a circumference described

from the center O, with a radius equal to OA, will pass

through each of the points B, C, D, E, F, and be described
about the polygon.

Secondly. A circle may be inscribed within the polygon
ABCDEF. For the sides AB, BC, CD, &c., are equa.
chords of the same circle ; hence they are equally distant

from the center O (Prop. VIII., B. III.) ; that is, the perpen-
diculars OG, OH, &c., are all equal to each other. There-

fore, if from O as a center, with a radius OG, a circumference
be described, it will touch the side BC (Prop. IX., B. III.),

and each of the other sides of the polygon ; hence the circle

will be inscribed within the polygon. Therefore a circle

may be described, &c.
Scholium 1. In regular polygons, the center of the inscribed
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and circumscrioed circles, is also called the center of the poly-

gon; and the perpendicular from the center upon one of the

sides, that is, the radius of the inscribed circle, is called the

apothein of the polygon.
Since all the chords AB, BC, &c., are equal, the angles at

the center, AOB, BOG, &c., are equal ; and the value of each

may be found by dividing four right angles by the number
of sides of the polygon.

Scholium 2. To inscribe a regular polygon of any numbei
of sides in a circle, it is only necessary to divide the circum-

ference into the same number of equal parts ; for, if the

arcs are equal, the chords AB, BC, CD, &c., will be equal.
Hence the triangles AOB, BOC, COD, &c., will also be

equal, because they are mutually equilateral ;
therefore all

the angles ABC, BCD, CDE, &c., will be equal, and the

figure ABCDEF will be a regular polygon.

PROPOSITION III. PROBLEM.
*

To inscribe a square in a given circle.

Let ABCD be the given circle ; it is re-

quired to inscribe a square in it.

Draw two diameters AC, BD at right

angles to each other ; and join AB, BC,
CD, DA. Because the angles AEB, EEC,
&c., are equal, the chords AB, BC, &c.,
are also equal. And because the angles
ABC, BCD, &c., are inscribed in semicir-

cles, they are right angles (Prop. XV., Cor. 2, B. III.).

Therefore ABCD is a square, and it is inscribed in the circle

ABCD.
Cor. Since the triangle AEB is right-angled and isosceles,

we have the proportion, AB : AE : : ^/2 : 1 (Prop. XL, Cor.

3, B. IV.) ; therefore the side of the inscribed square is to the

"adius, as the square root of 2 is to unity.

PROPOSITION IV. THEOREM.

The side of a regular hexagon is equal to the radius of th*

circumscribed circle.

Let ABCDEF be a regular hexagon inscribed in a circle

whose center is O; then any side as AB will be equal to the

AO.
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Draw the radius BO. Then the angle
\OB is the sixth part of four right angles

(Prop. II., Sch. 1), or the third part of two

right angles. Also, because the three an- A|i

gles of every triangle are equal to two

right angles, the two angles OAB, OBA
are together equal to two thirds of two

right angles ; and since AO is equal to BO, each of these an

gles is one third of two right angles. Hence the triangle
AOB is equiangular, and AB is equal to AO. Therefore the

side of a regular hexagon, &c.
Cor. To inscribe a regular hexagon in a given circle, the

radius must be applied six times upon the circumference.

By joining the alternate angles A, C, E, an equilateral trian-

gle will be inscribed in the circle.

PROPOSITION V. PROBLEM.

To inscribe a regular decagon in a given circle.

Let ABF be the given circle ; it is re-

quired to inscribe in it a regular decagon.
Take C the center of the circle ; draw

the radius AC, and divide it in extreme
and mean ratio (Prob. XX., B. V.) at

the point D. Make the chord AB equal
to CD the greater segment ; then will

AB be the side of a regular decagon in-

scribed in the circle.

Join BC, BD. Then, by construction, A
AC : CD : : CD : AD ; but AB is equal to CD ; therefore

AC : AB : : AB : AD. Hence the triangles ACB, ABD
have a common angle A included between proportional
sides ; they are therefore similar (Prop. XX., B. IV.) And
because the triangle ACB is isosceles, the triangle ABD must
also be isosceles, and AB is equal to BD. But AB was made

equal to^CD ; hence BD is equal to CD, and the angle DBC
is equal to the angle DCB. Therefore the exterior angle
ADB, which is equal to the sum of DCB and DBC, must be
double of DCB. But the angle ADB is equal tc DAB ; there-

fore each of the angles CAB, CBA is double of the angle
ACB. Hence the sum of the three angles of the triangle
ACB is five times the angle C. But these three angles are

equal to two right angles (Prop. XXVIL, B. I.) ; therefore^
the angle C is the fifth part of two right angles, or the tenth'

part of four right angles. Henc the ar AB is one ten/-J> f
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the circumference, and the cnord AB is the side of a regular

decagon inscribed n the circle.

Cor. 1. By joining the alternate angles of the regular dec-

agon, a regular pentagon may be inscribed in the circle.

Cor. 2. By combining this Proposition with the preceding,
a regular pentedecagon may be inscribed in a circle.

For, let AE be the side of a regular hexagon ; then the arc
AE will be one sixth of the whole circumference, and the arc

AB one tenth of the whole circumference. Hence the arc

BE will be TV or y
1

^, and the chord of this arc will be the

side of a regular pentedecagon.
Scholium. By bisecting the arcs subtended by the sides of

any polygon, another polygon of double the number of sides

may be inscribed in a circle. Hence the square will enable
us to inscribe regular polygons of 8, 16, 32, &c., sides; the

hexagon will enable us to inscribe polygons of 12, 24, &c.,
sides

; the decagon will enable us to inscribe polygons of

20, 40, &c., sides ; and the pentedecagon, polygons of 30, 60,

&c., sides.

The ancient geometricians were unacquainted with any
method of inscribing in a circle, regular polygons of 7, 9, 11,

13, 14, 17, &c., sides; and for a long time it was believed

that these polygons could not be constructed geometrically ;

but Gauss, a German mathematician, has shown that a regu
lar polygon of 17 sides may be inscribed in a circle,by em-

Dloying straight lines and circles only.

PROPOSITION VI. PROBLEM.

A regular polygon inscribed' in a circle being given, to dp
scribe a similar polygon about the circle.

Let ABCDEF be a regular polygon
inscribed in the circle ABD ; it is re-

quired to describe a similar polygon
about the circle.

Bisect the arc AB in G, and through
G draw the tangent LM. Bisect also

the arc BC in H, and through H draw
the tangent MN, and in the same man-
ner draw tangents to the middle points
of the arcs CD, DE, &c, These tangents, by their intersec-

tions, will form a circumsciibed polygon similar to the one
inscribed.

Find O the center of the circle, and draw the radii OG
OH. Then, because OG is perpendicular to the tangent LM
(Prop. IX., B. III.), and also to the chord AB (Prop. VI
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Sch., B. III.), the tangent is parallel to the chord (Prop. XX.,
B. I.). In the same manner it may be proved that the other

sides of the circumscribed polygon are parallel to the sides

of the- inscribed polygon ; and therefore the angles of the

circumscribed polygon are equal to those of the inscribed one

(Prop. XXVI., B. L).
Since the arcs BG, BH are halves of the equal arcs AGB,

BHC, they are equal to each other ; that is, the vertex B is

at the middle point of the arc GBH. Join OM ; the line OM
will pass through the point B. For the right-angled trian-

gles OMH, OMG have the hypothenuse OM common, and
the side OH equal to OG ; therefore the angle GOM is equal
to the angle HOM (Prop. XIX., B. L), and the line OM passes

through the point B, the middle of the arc GBH.
Now because the triangle OAB is similar to the triangle

OLM, and the triangle OBC to the triangle OMN, we have
the proportions

AB : LM : : BO : MO ;

also, BC : MN : : BO : MO ;

therefore (Prop. IV., B. II.),

AB : LM : : BC : MN.
But AB is equal to BC ; therefore LM is equal to MN. In

the same manner, it may be proved that the other sides of the

circumscribed polygon are equal to each other. Hence this

polygon is regular, and similar to the one inscribed.

Cor. 1. Conversely, if the circumscribed polygon is given,
and it is required to form the similar inscribed one, draw the

lines OL, OM, ON, &c., to the angles of the polygon ; these

lines will meet the circumference in the points A, B, C, &c.
Join these points by the lines AB, BC, CD, &c., and a similar

polygon will be inscribed in the circle.

Or we may simply join the points of contact G, H, I, &c.

by the chords GH, HI, &c., and there will be formed an in

scribed polygon similar to the circumscribed one.

Cor. 2. Hence we can circumscribe about a circle, any
regular polygon which can be inscribed within it, and con

versely.
Cor. 3. A side of the circumscribed polygon MN is equa

to twice MH, or MG+MH.

PROPOSITION VII. THEOREM.

The area of a regular polygon is equivalent to the product
of its perimeter, ~by half the radius of the inscribed circle.

Let ABCDEF be a regular polygon, and G the center 01
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the inscribed circle. From G draw
lines to all the angles of the polygon.
The polygon will thus be divided into

as many triangles as it has sides ; and
the common altitude of these triangles A<

is GH, the radius of the circle. Now,
.the area of the triangle BGC is equal to

the product of BC by the half of GH
(Prop. VI., B. IV.) ; and so of all the

other triangles having their vertices in G. Hence the sum
of all the triangles, that is, the surface of the polygon, is

equivalent to the product of the sum of the bases AB, BC.
&c. ; that is, the perimeter of the polygon, multiplied by half

of GH, or half the radius of the inscribed circle. Therefore,
*he area of a regular polygon, &c.

PROPOSITION VIII. THEOREM.

The perimeters of two regular polygons of the same numbei

of sides, are as the radii of the inscribed or circumscribed cir-

cles, and their surfaces are as the squares t>f the radii.

Let ABCDEF, abcdef be
two regular polygons of the

same number of sides ; let G
and g be the centers of the

circumscribed circles
; and

let GH, gh be drawn per-

pendicular to BC and be;
then will the perimeters of the polygons be as the radii BG.

bg ; and, also, as GH, gh, the radii of the inscribed circles.

The angle BGC is equal to the angle bgc (Prop. II., Sch.

1) ; and since the triangles BGC, bgc are isosceles, they are

similar. So, also, are the right-angled triangles BGH, bgh ;

and, consequently, BC : be : : BG : bg : : GH : gh. But the

perimeters of the two polygons are to each other as the sides

BC, be (Prop. L, Cor.) ; they are, therefore, to each other as

the radii BG, bg of the circumscribed circles ; and also as the

radii GH, gh of the inscribed circles.

The surfaces of these polygons are to each other as the

squares of the homologous sides BC, be (Prop. L, Cor.) ; they
are, therefore, as the squares of BG, bg, the radii of the cir

cumscribed circles ; or as the squares of GH, gh, the radii of

the inscribed circles.
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PROPOSITION IX. PROBLEM.

The surface of a regular inscribed polygon, and tJiat of a

similar circumscribed polygon^being given ; tofind the surfaces

of regular inscribed and circumscribed polygons having double

the number of sides.

Let AB be a side of the given in

scribed polygon ; EF parallel to AB, a

side of the similar circumscribed poly-

gon; and C the center of the circle.

Draw the chord AG, and it will be the

side of the inscribed polygon having
double the number of sides. At the

points A and B draw tangents, meeting
EF in the points H and I ; then will

HI, which is double of HG, be a side of

the similar circumscribed polygon (Prop. VI., Cor. 1). Let

p represent the inscribed polygon whose side is AB, P the

corresponding circumscribed polygon ; p 1 the inscribed poly
gon having double the number of sides, P/ the similar cir-

cumscribed polygon. Then it is plain that the space CAD is

the same part of p, that CEG is of P
; also, GAG of p r

,
and

CAHG of P' ; for each of these spaces must be repeated the

same number of times, to complete the polygons to which they
severally belong.

First. The triangles ACD, ACG, whose common vertex is

A, are to each other as their bases CD, CG ; they are also to

each other as the polygons p and p' ; hence

p : pf : : CD : CG.

Again, the triangles CGA, CGE, whose common vertex is

G are to each other as their bases CA, CE ; they are also to

each other as the polygons p r and P
; hence

pf : P : : CA : CE.
But since AD is parallel to EG, we have CD : CG : : CA
CE

; therefore,

that is, the polygon p' is a mean proportional between the

two given polygons.
Secondly. The triangles CGH, CHE, having the common

altitude CG, are to each other as their bases GH, HE. But
since CH bisects the angle GCE, we have (Prop. XVII

, B.

IV.),
GH:IIE::CG:CE: : CD CA, or CG ::'.

Therefore, CGH : CHE : p.p*;
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hence (Prop. VI., B. II.)

CGH : CGH + CHE, or CGE : . p :p+pf
or 2CGH : CGE : : 2p : p+pt.
But 2CGH, or CGHA : CGE : : P' P.

Therefore, F : P ; : 2p : p+p' ; whence P/-

that is, the polygon P' isfound by dividing twice the product oj

the two given polygons by the sum of the two inscribed polygons
Hence, by means of the polygons p and P, it is easy to find

the polygons p
1 and P' having double the number of sides.

PROPOSITION X. THEOREM.

A circle being given, two similar polygons can always be

found, the one described about the circle, and the other inscribed

in it, which shall differ from each other by less than any as-

signable surface.

Let ACD be the given circle, and the square of X any
given surface ; a polygon can be inscribed in the circle

ACD, and a similar polygon be described about it, such
that the difference between them shall be less than the

square of X.
Bisect AC a fourth part of the circumference, then bisect

'

the half of this fourth, and so continue the bisection, until an
arc is found whose chord AB is less than X. As this arc
must be contained a certain number of times exactly in the

whole circumference, if we apply chords AB, BC, &c., each

equal to AB, the last will tarminate at A, and a regular

polygon ABCD, &c., will be inscribed in the circle.

Next describe a similar polygon about the circle (Prop.

VI.) ; the difference of these two polygons will be less than
the square of X.

Find the center G, and draw the

diameter AD. Let Et be a side

of the circumscribed polygon ; and

join EG, FG. These lines will pass

through the points A and B, as was
shown in Prop. VI. Draw GH to

the point of contact H ; it will bisect

AB in I, and be perpendicular to it

(Prop. VI., Sch., B. III.). Join, also,
BD.

Let P represent the circumscribed polygon, and p the in-

scribed polygon. Then, because the polygons are similar,

they are as the squares of the homologous sides EF and AB
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(Prop. XXVL, B. IV.) ; that is, because the triangles EFG
ABG are similar, as the square of EG to the square of AG
-hat is, of HG.
Again, the in angles EHG, ABD, having their sides paral

.el to each other, are similar ; and, therefore,
EG : HG : : AD : BD.

But the polygon P is to the polygon p as the square of EG
to the square of HG ;

hence P : p : : AD 2
: BD 2

,

and, by division, P : P p : : AD 2
: AD 2 BD S

, or AB2
.

But the square of AD is greater than a regular p.a.ygon of

eight sides described about the circle, because it contains
that polygon ; and for the same reason, the polygon of eight
sides is greater than the polygon of sixteen, and so on.

Therefore P is less than the square of AD ; and, consequent-
ly (Def. 2, B. II.), P p is less than the square of AB ; that is,

less than the given square on X.- Hence, the difference of
the two polygons is less than the given surface.

Cor. Since the circle can not be less than any inscribed

polygon, nor greater than any circumscribed one, it follows
that a polygon may be inscribed in a circle, and another de-

scribed about it, each of which shall differ from the circle by
less than any assignable surface.

PROPOSITION XI. PROBLEM.

Tofind the area of a circle whose radius is unity-.

If the radius of a circle be unity, the diameter will be rep
resented by 2, and the area of the circumscribed square wiL
oe 4 ; while that of the inscribed square, being half the cir-

cumscribed, is 2. Now, according to Prop. IX., the surface
of the inscribed octagon, is a mean proportional between the
two squares p and P, so that pf=^/8= 2.82843. Also, the

circumscribed octagon P'=-A-= =3.31371. Hav-
p+p 1 2+v/8

ing thus obtained the inscribed and circumscribed octagons,
we may in the same way determine the polygons having
twice the number cf sides. We must put p= 2.82843, and
P= 3.31371, and we shall have p'= V~pP= 3.06 147 ; and

P /

=-^-7
=3.18260. These polygons of 16 sides will furnish

us those of 32 ; and thus we may j *oceed, until there is no
difference between the inscribed and circumscribed polygons,
at least for anv number of decimal pi aces which may b<* de-
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sired. The following table gives the results of this compute
tion for five decimal places :

Number of Sides. Inscribed Polygon. Circumscribed Polygon

4 2.00000 4.00000
8 2.82843 3.31371

16 3.06147 3.18260
32 3.12145 3.15172
64 3.13655 3.14412
128 3.14033 3.14222
256 3.14128 3.14175
512 3.14151 3.14163
1024 3.14157 3.14160

2048 3.14159 3.14159

Now as the inscribed polygon can not be greater than the

circle, and the circumscribed polygon can not be less than
the circle, it is plain that 3.14159 must express the area of a

circle, whose radius is unity, correct to five decimal places.
After three bisections of a quadrant of a circle, we obtain

the inscribed polygon of 32 sides, which differs from the cor-

responding circumscribed polygon, only in the second decimal

place. After five bisections, we obtain polygons of 128 sides,

which differ only in the third decimal place ; after nine bisec-

tions, they agree to five decimal places, but differ in the sixth

place ; after eighteen bisections, they agree to ten decimal

places ; and thus, by continually bisecting the arcs subtended

by the sides of the polygon, new polygons are formed, both

inscribed and circumscribed, which agree to a greater num-
ber of decimal places. Vieta, by means of inscribed and cir-

cumscribed polygons, carried the approximation to ten places
of figures ; Van Ceulen carried it to 36 places ; Sharp com-

puted the area to 72 places ; De Lagny to 128 places ; and
Dr. Clausen has carried the computation to 250 places of de-

cimals.

By continuing this' process of bisection, the difference be-

tween the inscribed and circumscribed polygons may be
made less than any quantity we can assign, however small.

The number of sides of such a polygon will be indefinitely

great ; and hence a regular polygon of an infinite number of

sides, is said to be ultimately equal to the circle. Henceforth,
we shall therefore regard the circle as i regular polygon of

an infinite number of sides.
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PROPOSITION XII. THEOREM.

The ar*2 of a circle is equal to the product of its circuits

\erence by half the radius.

Let ABE be a circle whose center is C
and radius CA ; the area of the circle is

*qual to the product of its circumference by
half of CA.

Inscribe in the Circle any regular polygon,
and from the center draw CD perpendicular
to one of the sides. The area of the poly-

gon will be equal to its perimeter multiplied
A

by half of CD (Prop. VII.). Conceive the number of sides

of the polygon to be indefinitely increased, by continually

bisecting the arcs subtended by the sides ; its perimeter
will ultimately coincide with the circumference of the circle

the perpendicular CD will become equal to the radius CA
and the area of the polygon to the area of the circle (Prop
XL). Consequently, the area of the circle is equal to tb<~

product of its circumference by half the radius.

Cor. The area of a sector is equal to the product of its arc

by half its radius.

For the sector ACB is to the whole circle

ABD, as the arc AEB is to the whole cir-

cumference ABD (Prop. XIV. ; Cor. 2, B.

III.) ; or, since magnitudes have the same
ratio which their equimultiples have (Prop.
VIIL, B. II.), as the arc AEB XIAC is to the

circumference ABD X |AC. ; But this last ex- "V*.......
.*'

pression is equal to the area of the circle ;
* I)

therefore the area of the sector ACB is equal to the product
of its arc AEB by half of AC.

PROPOSITION XIII. THEOREM.

The circumferences of circles are to each other as their radii,
and their areas are as the squares of their radii.

Let R and r denote the radii of two circles ; C and c their

circumferences ; A and a their areas ; then we shall have
C : c : : R : r.

and A : a : : R3
: r

tt

Inscribe within the circles, two regular polygons having
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the same number of sides. Now wnatever be tne numbei
of sides of the polygons, their perimeters will be to each other

as the radii of the circumscribed circles (Prop. VIII.). Con-

ceive the arcs subtended by the sides of the polygons to be

continually bisected, until the number of sides of the polygons
becomes indefinitely great, the perimeters of the polygons will

ultimately become equal to the circumferences of the circles,

find we shall have
C : c : : R : r.

Again, the areas of the polygons are to each other as the

squares of the radii of the circumscribed circles (Prop. VIIL).
But when the number of sides of the polygons is indefinitely

increased, the areas of the polygons become equal to the

ureas of the circles, and we shall have
A : a : : Ra

: r\

Cor. 1. Similar arcs are to each other as their radii; and
similar sectors are as the squares of their radii.

For since the arcs AB, ab are

imilar, the angle C is equal to the

single c (Def. 5, B. IV.). But the

ingle C is to four right angles, as

tfie arc AB is to the whole circum-
ference described with the radius

AC (Prop. XIV., B. III.) ; and the

angle c is to four right angles, as the arc ab is to the circum-
ference described with the radius ac. Therefore the arcs

AB, ab are to each other as the circumferences of which they
form a part. But these circumferences are to each other as

AC, ac ; therefore,
Arc AB : arc ab : : AC : ac.

For the same reason, the sectors ACB, acb are as the en
tire circles to which they belong ; and these are as the squares
of their radii ; therefore,

Sector ACB : sector acb : : AC 2
: ac\

Cor. 2. Let n represent the circumference of a circle whose
diameter is unity ; also, let D represent the diameter, R the

radius, and C the circumference of any other circle ; then,
since the circumferences of circles are to each other as theii

diameters,
1 : rr : : 2R : C ;

therefore, C=2nR= nD
that is, the circumference of a circle is equal to the product of
its diameter by the constant number n.

Cor. 3. According to Prop. XII., the area of a circle is

equal to the product of its circumference by half the radius
If we put A to represent the area of a circle, then
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that is, the ar-a of a circle is equal to the product of the square

of its radius ~y the constant number TT.

Cor. 4, When R is equal to unity, we have A=TT ; that is,

TT is equal to the area of a circle whose radius is unity. Ac-

cording to Prop. XL, TT is therefore equal to 3.14159 nearly
This number is represented by TT, because it is the first letter

of the Greek word which signifies circumference.
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SOLID GEOMETRY.

BOOK VII.

PLANES AND SOLID ANGLES

Definitions.

1. A STRAIGHT line is perpendicular to a

plane, when it is perpendicular to every
straight line which it meets in that plane.

Conversely, the plane in this case is per
pendicular to the line.

The foot of the perpendicular, is the

point in which it meets the plane.
2. A line is parallel to a plane, when it can not meet the

plane, though produced ever so far.

Conversely, the plane in this case is parallel to the line.

3. Two planes are parallel to each other, when they can
not meet, though produced ever so far.

4. The angle contained by two planes which cut each othe-f

.3 the angle contained by two lines drawn
from any point in the line of their common
section, at right angles to that line, one in

each of the planes.
This angle may be acute, right, or obtuse.

If it is a right angle, the two planes are

perpendicular to each other.

5. A solid angle is the angular space con-
tained by more than two planes which meet at

the same point.

PROPOSITION I. THEOREM

One part of a straight line can not be in a plane, and anothet

pert without it.

For from the definition of a plane (Def. 6, B. I.), wlun o
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straight line has two points common with- a plane it lies

wholly in that plane.
Scholium. To discover whether a surface is plane, we ap

ply a straight line in different directions to this surface, and

Kee if it touches throughout its whole extent.

PROPOSITION II. THEOREM.

Any two straight lines which cut each other, are in one plane,
and determine its position.

Let the two straight lines AB, BC cut

each other in B; then will AB, BC be in

the same plane.
Conceive a plane to pass through the

straight line BC, and let this plane be turned Z
about BC, until it pass through the point A. B

Then, because the points A and B are situated in this plane
the straight line AB lies in it (Def. 6, B. I.). Hence the posi-
tion of the plane is determined by the condition of its con-

taining the two lines AB, BC. Therefore, any two straight

lines, ccc.

Cor. 1. A triangle ABC, or three points A, B, C, not in the

same straight line, determine the position of a plane.
Cor. 2. Two parallel lines AB, CD N

determine the position of a plane. For ^ \E g
if the line EF be drawn, the plane of \
the two straight lines AE, EF will be G -4 D
the same as that of the parallels AB,
CD ; and it has already been proved that two straight lines

which cut each other, determine the position of a plane

PROPOSITION III. THEOREM.

If two planes cut each other, their common section is a

M'J aight line.

Let the two planes AB, CD cut each

other, and let E. F be two points in their

common section. From E to F draw the

straight line EF. Then, since the points E
and F are in the plane AB, the straight line

EF which joins them, must lie wholly in

that plane (Def. 6, B. L). For the same
reason, EF must lie wholly in the plane
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UD. Therefore the straight line EF is common to the two

planes AB, CD ; that is, it is their common section. Hence,
if two planes, &c.

PROPOSITION IV. THEOREM.

If a straight line be perpendicular to each of two straight
Lines at their point of intersection, it will be perpendicular to

the plane in which these lines are.

Let the -straight line AB be perpen-
dicular to each of the straight lines

CD, EF which intersect at B ; AB will

also be perpendicular to the plane MN
which passes through these lines.

Through B draw any line BG, in the

plane MN ; let G be any point of this

line, and through G draw DGF, so that

DG shall be equal to GF (Prob. XXL,
B. V.). Join AD, AG, and AF.

Then, since the base DF of the triangle DBF is bisected

in G, we shall have (Prop. XIV., B. IV.),
BD 2+BF2=2BG2+2GF2

.

Also, in the triangle DAF,
AD 2+AF2=2AG2+2GF2

.

Subtracting the first equation from the second, we have
AD2 BD 2+AF2 BF2=2AG2 2BG2

.

But, because ABD is a right-angled triangle,
AD 2-BD 2=AB 2

;

and, because ABF is a right-angled triangle,
AP-BF2=AB*.

Therefore, substituting these values in the former equation,
AB2+AB2=2AG2-2BG2

;

whence AB2=AG2-BG8

,

or AG2=AB2+BG2
.

Wherefore ABG is a right angle (Prop. XIIL, Sch., B. IV.)
that is, AB is perpendicular to the straight line BG. In like

manner, it may be proved that AB is perpendicular to any
other strai^*

Tine passing through B in the plane MN ; hence

it is perpewrflcular to the plane MN (Def. 1). Therefore, if

a straight line, &c.
Scholium. Hence it appears not only that a straight line

may be perpendicular to every straight line which passes

through its foot in a plane, but that it always must be so

whenever it is perpendicular to two lines in the plane, wWh
shows that the first definikm involves no impossibility.
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Cor. 1 The perpendicular AB is shorter than any oblique
ine AD ; it therefore measures the true distance of the point
A from the plane MN.

Cor. 2. Through a given point B in a plane, only one per-

pendicular
can be drawn to this plane. For, if there could

be two perpendiculars, suppose a plane to pass through them,
whose intersection with the plane MN is BG; then these

two perpendiculars would both be at right angles to the line

BG, at the same point and in the same plane, which is im-

possible (Prop. XVL, Cor., B. L).
It is also impossible, from a given point without a plane, to

let fall two perpendiculars upon the plane. For, suppose AB,
AG to be two such perpendiculars; then the triangle ABG
will have two right angles, which is impossible (Prop. XXVIL,
Cor. 3, B. L).

PROPOSITION V. THEOREM.

Oblique lines drawn from a point to a plane, at equal dis-

tances from the perpendicular, are equal ; and of two oblique
lines unequally distantfrom the perpendicular, the more remote

is the longer.

Let the straight line AB be
drawn perpendicular to the plane
MN; and let AC, AD, 'AE be ob-

lique lines drawn from the point A.,

equally distant from the perpendic-
ular ; also, let AF be more remote
from the perpendicular than AE

;

then will the lines AC, AD, AE all

be equal to each other, and AF be

longer than AE.
For, since the angles ABC, ABD, ABE are right angles

and BC, BD, BE are equal, the triangles ABC, ABD, ABE
have two sides and the included angle equal ; therefore the
third sides AC, AD, AE are equal to each other.

So, also, since the distance BF is greater than BE, it is

plain that the oblique line AF is longer than AE (Prop. XVII.,
B. L).

Cor. All the equal oblique lines AC, AD, AE, &c., termi-

nate in the circumference CDE, which is described from B,
the foot of the perpendicular, as a center.

If, then, it is required to draw a straight line perpendiculai
to the plane MN, from a point A without it, take three points
in the plane C, D, E, equally distant from A, and find B th
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center of the circle which passes througn these points. Join

AB, and it will be the perpendicular required.
Scholium. The angle AEB is called the inclination of t/ia

line AE to the plane MN. All the lines AC, AD, AE,~&cM
which are equally distant from the perpendicular, have the

same inclination to the plane; because all the angles ACB
ADB, AEB, &c., are equal.

PROPOSITION VI. THEOREM.

If a straight line is perpendicular to a plane, every plane
which passes through that line, is perpendicular to the first-
mentioned plane.

Let the straight line AB be perpen-
dicular to the plane MN ; then will

every plane which passes through AB
be perpendicular to the plane MN.
Suppose any plane, as AE, to pass

through AB, and let EF be the common
section of the planes AE, MN. In the

plane MN, through the point B, draw
CD perpendicular to the common sec-

tion EF. Then, since the line AB is perpendicular to the

plane MN, it must be perpendicular to each of the two

straight lines CD, EF (Def. 1). But the angle ABD, formed

by the two perpendiculars BA, BD, to the common section

EF, measures the angle of the two planes AE, MN (Def. 4) ;

and since this is a right angle, the two planes must be per-

pendicular to each other. Therefore, if a straight line, &c.
Scholium. When three straight lines, as AB, CD, EF, are

perpendicular to each other, each of these lines is perpen-
dicular to the plane of the other two, and the three planes
are perpendicular to each other.

PROPOSITION VII THEOREM.

If two planes are perpendicular to each other, a straight line

drawn in one of them perpendicular to their common section*

will be perpendicular to the other plane.

Let the plane AE be perpendicular to the plane MN, and
let the line AB be drawn in the plane AE perpendicular to

the common section EF ; then will AB be perpendicular to

the plane MN.
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For in the plane MN, draw CD
tnrough the point B perpendicular to

EF. Then, because the planes AE and

MN are perpendicular, the angle ABD
is a right angle. Hence the line AB is

perpendicular to the two straight lines

CD, EF at their point of intersection ;

it is consequently perpendicular to their

plane MN (Prop. IV.). Therefore, if

two planes, &c.
Cor. If the plane AE is perpendicular to the plane MN,

and if from any point B, in their common section, we erect a

perpendicular to the plane MN, this perpendicular will be in

the plane AE. For if not, then we may draw from the same

point, a straight line AB in the plane AE perpendicular to

EF, and this line, according to the Proposition, will be per-

pendicular to the plane MN. Therefore there would be two

perpendiculars to the plane MN, drawn from the same point,
which is impossible (Prop. IV., Cor. 2).

PROPOSITION VIII. THEOREM.

If two planes, which cut one another, are each of them per-

pendicular to a third plane, their common section is perpen*
dicular to the same plane.

Let the two planes AE, AD be each
of them perpendicular to a third plane
MN, and let AB be the common sec-

tion of the first two planes ; then will

AB be perpendicular to the plane MN.
For, from the point B, erect a per-

pendicular to the plane MN. Then, by
the Corollary of the last Proposition,
this line must be situated both in the

plane AD and in the plane AE ; hence it is their common
fection AB. Therefore, if two planes, &c.

PROPOSITION IX. THEOREM.

Two straight lines which are perpendicular to the same plane,
ire i'-'J-iJlel to each other.

Let the two sti.
:

grht lines AB, CD be each of them perpen-
dicular to the'same plane MN ; then will AB be parallel to CD
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In the plane MN, draw the straight
line BD joining the points B and D.

Through the lines AB, BD pass the

plane EF; it will be perpendicular to

the plane MN (Prop. VI.) ; also, the

line CD will lie in this plane, because it

is perpendicular to MN (Prop. VII.,

Cor.). Now, because AB and CD are

both perpendicular to the plane MN,
they are perpendicular to the line BD in that plane ; and since

AB, CD are both perpendicular to the same line BD, and lie

m the same plane, they are parallel to each other (Prop.
XX., B. I.). Therefore, two straight lines, &c.

Cor. 1. If one of two parallel lines be perpendicular to a

plane, the other will be perpendicular to the same plane. If

AB is perpendicular to the plane MN, then (Prop. VI.) the

plane EF will be perpendicular to MN. Also, AB is per-

pendicular to BD ; and if CD is parallel to AB, it will be

perpendicular to BD, and therefore (Prop. VII.) it is perpen-
dicular to the plane MN.

Cor. 2. Two straight lines, parallel to a third, are parallel
to each other. For, suppose a plane to be drawn perpen-
dicular to any one of them ; then the other two, being paral-
lel to the first, will be perpendicular to the same plane, by
the preceding Corollary ; hence, by the Proposition, they wil-

be parallel to each other.

The three straight lines are supposed not to be in the same

plane ; for in this case the Proposition has been already de
monstrated

PROPOSITION X. THEOREM.

If a straight tine, without a given plane, be parallel to a

straight line in the plane, it will be parallel to the plane.

Let the straight line AB be parallel A U
to the straight line CD, in the plane /~~

MN; then will it be parallel to the M^jL -^ /,

plane MN. W&- l\
Through the parallels AB, CD sup- V/fp

~-
ly

\

pose a plane ABDC to pass. If the line \__ __\
AB can meet the plane MN, it must N
meet it in some point of the line CD, which is the common
intersection of the two planes. But AB can not meet CD
since they are parallel ; hence it can not meet the plane MN
that is, AB is parallel to the plane MN (Def. 2). Therefore

'

if a straight line &c.
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PROPOSITION XI. TFEOREM.

Two planes, which are perpendicular to the same straight

line, are parallel to each other.

Let the planes MN, PQ be

perpendicular to the line AB ;

then will they be parallel to each
other.

For if they are not parallel,

they will meet if produced. Let
them be produced and meet in C.

Join AC, BC. Now the line AB,
which is perpendicular to the plane MN, is perpendicular to

the line AC drawn through its foot in that plane. For the

same reason AB is perpendicular to BC. Therefore CA and
CB are two perpendiculars let fall from the same point C
upon the same straight line AB, which is impossible (Prop.
XVI., B. I.). Hence the planes MN, PQ, can not meet when
produced ; that is, they are parallel to each other. There-

fore, two planes, &c.

PROPOSITION XII. THEOREM.

If two parallel planes are cut by a third plane, their common
sections are parallel.

Let the parallel planes MN, PQ be
cut by the plane ABDC ; and let their

common sections with it be AB, CD ;

then will AB be parallel to CD.
For the two lines AB, CD are in the

same plane, viz., in the plane ABDC
which cuts the planes MN, PQ; and
if these lines were not parallel, they
would meet when produced ; therefore

the planes MN, PQ would also meet, which is mpossible, be-

cause they are parallel. Hence the lines AB. CD are paral
lei. Therefore, if two para lei planes, &c.
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PROPOSITION XIII. THEOREM.

If two planes are parallel, a straight line which is perpen
dicular to one of them, is also perpendicular to the other.

Let the two planes MN, PQ be par-

allel, and let the straight line AB be

perpendicular to the plane MN ; AB
will also be perpendicular to the plane
PQ.
Through the point B, draw any line

BD in the plane PQ ; and through the

lines AB, BD suppose a plane to pass intersecting the plane-

MN in AC. The two lines AC, BD will be parallel (Prop.

XII.). But the line AB, being perpendicular to the plane
MN, is perpendicular to the straight line AC which it meets
in that plane ; it must, therefore, be perpendicular to its par-
allel BD (Prop. XXIIL, Cor. 1, B. I.). But BD is any line

drawn through B in the plane PQ, ; and since AB is perpen-
dicular to any line drawn through its foot in the plane PQ,
it must be perpendicular to the plane PQ (Def. 1). There
r
ore, if two planes, &c.

PROPOSITION XIV. THEOREM.

Parallel straight lines included between two parallel plane*
fire equal.

Let AB, CD be the two parallel

straight lines included between two

parallel planes MN, PQ ; then will AB
be equal to CD.

Through the two parallel lines AB,
CD suppose a plane ABDC to pass, in-

tersecting the parallel planes in AC and
BD. The lines AC, BD will be parallel to each other (Prop.

XII.). But AB is, by supposition, parallel to CD ; therefore

the figure ABDC is a parallelogram ; and, consequently, AB
is equal to CD (Prop. XXIX., B. L). Therefore, parallel

straight lines, &c.
Cor. Hence two parallel planes are every where equidis-

tant; for if AB, CD are perpendicular to the plane MTV, they
will be perpendicular to the parallel plane PQ (Prop. XIII.) ;

and being both perpendicular to the same plane, they will be

parallel to each other (Prop IX.), and, consequently, equal
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PROPOSITION XV. THEOREM.

If two angles, not in tk? same plane, have their sides

parallel and similarly situated, these angles will be

and their planes will be parallel.

Let the two angles ABC, DEF, lying
in different planes MN, PQ, have their

sides parallel each to each and similarly
situated

;
then will the angle ABC be

equal to the angle DEF, and the plane
MN be parallel to the plane PQ,.

Take AB equal to DE, and BC equal
to EF, and join AD, BE, CF, AC, DF.

Then, because AB is equal and parallel to DE, the figure
ABED is a parallelogram (Prop. XXXL, BI.) ;

and AD is

equal and parallel to BE. For the same reason CF is equal
and parallel to BE. Consequently, AD and CF, being each

of them equal and parallel to BE, are parallel to each other

(Prop. IX., Cor. 2), and also equal ;
therefore AC is also equal

and parallel to DF (Prop. XXXI., B.
I.).

Hence the triangles

ABC, DEF are mutually equilateral, and the angle ABC is

equal to the angle DEF (Prop. XV., B. I.).

Also, the plane ABC is parallel to the plane DEF. For,
if they are not parallel, suppose a piano to pass through A
parallel to DEF, and let it meet the' straight lines BE, CF in

the points G- and H. Then the three lines AD, G-B, HF will

be equal (Prop. XIV.). But the three lines AD, BE, CF havo

already been proved to be equal; hence BE is equal to GrE,
and CF is equal to HF, which is absurd

; consequently, the

plane ABC must be paralM to the plane DEF. Therefore,
if two angles, &c.

Cor. 1. If two parallel planes MN, PQ, are met by two
other planes ABED, BCFE, the angles formed by the inter-

sections of the parallel planes will be equal. For the section

AB is parallel to the section DE (Prop. XII.) ;
and BC is

parallel to EF
; therefore, by the Proposition, the angle ABC

is equal to the angle DEF.
Cor. 2. If three straight lines AD, BE, CF, not situated in

the same plane, are equal and parallel, the triangles ABC/
DEF, formed by joining the extremities of these lines, will
be equal, and their planes will be parallel. For, since AD i3

equal and parallel to BE, the figure ABED is a parallel-

ogram ;
hence the side AB is equal and parallel to DE, For
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the same reason, the sides BC and EF are equal and parai
lei; as, also, the sides AC and DF. Consequently, the two

triangles ABC, DEF are equal ; and, according to the Prop-
osition, their planes are parallel.

PROPOSITION XVI. THEOREM.

If two straight lines are cut by parallel planes, they will b&

cut in the same ratio.

Let the straight lines AB, CD be cut

by the parallel planes MN, PQ, RS in

the points A, E, B, C, F, D ; then we
shall have the proportion

AE : EB : : CF : FD.
Draw the line BC meeting the plane

PQ in G, and join AC, BD, EG, GF.
Then, because the two parallel planes
MN, PQ are cut by the plane ABC, the

common sections AC, EG are parallel (Prop. XII.). Also, be
cause the two parallel planes PQ, RS are cut by the plane
BCD, the common sections BD, GF are parallel. Now, be-
cause EG is parallel to AC, a side of the triangle ABC (Prop.
XVI., B. IV.), we have

AE : EB : : CG : GB.
Also, because GF is parallel to BD, one side of the triangle
BCD, we have

CG : GB : : CF : FD ;

hence (Prop. IV., B. II.),

AE : EB : : CF : FD.
Therefore, if two straight lines, &c.

PROPOSITION XVII. THEOREM.

If a solid angle is contained by three plane angles, tfte fum

of any two of these angles is greater than the third.

Let the solid angle at A be con-
tained by the three plane angles
BAG, CAD, DAB; any two of these

angles will be greater than the third.

If these three angles are all equal
to each other, it is plain that any
two of them must be greater than
the third. But if they are not equal
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let BAG be that angle wnich is no less than either of the

other two, and is greater than one of them BAD. Then, at

the point A, make the angle BAE equal to the angle BAD ;

take AE equal to AD ; through E draw the line BEC cutting
AB, AC in the points B and C ; and join DB, DC.
Now, because, in the two triangles BAD, BAE, AD is

equal to AE, AB is common to both, and the angle BAD is

equal to the angle BAE ; therefore the base BD is equal to

the base BE (Prop. VI., B. I.). Also, because the sum of the

lines BD, DC is greater than BC (Prop. VIII., B. L), and BD
is proved equal to BE, a part of BC, therefore the remaining
line DC is greater than EC. Now, in the two triangles

CAD, CAE, because AD is equal to AE, AC is common, but

the base CD is greater than the base CE ; therefore the an
e CAD is greater than the angle CAE (Prop. XIV., B. L).

ut, by construction, the angle BAD is equal to the angle
BAE ; therefore the two angles BAD, CAD are together

greater than BAE, CAE ; that is, than the angle BAG.
Now BAG is not less than either of the angles BAD, CAD ;

hence BAG, with either of them, is greater than the third.

Therefore, if a solid angle, &c.

PROPOSITION XVIII. THEOREM.

The plane angles which contain any solid angle, are togethe*
less thanfour right angles.

Let A be a solid angle contained by any
number of plane angles BAG, CAD, DAE,
EAF, FAB ; these angles are together less

than four right angles.
Let the planes which contain the solid an-

gle at A be cut by another plane, forming
the polygon BCDEF. Now, because the

solid angle at B is contained by three plane

angles, any two of which are greater than

the third (Prop. XVIL), the two angles ABC,
ABF are greater than the angle FBC. For
the same reason, the two angles ACB, ACD are greater than
the angle BCD, and so with the other angles of the polygon
BCDEF. Hence, the sum of all the angles at the bases of the

triangles having the common vertex A, is greater than the

sum of all the angles of the polygon BCDEF. But all the

angles of these triangles are together equal to twice as many
right angles as there are triangles (Prop. XXVIL, B. L), that

*s. ns there are sides of the polygon BCDEF. Also, ths an*
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gles of the polygon, together with lour right angles, are equal
to twice as many right angles as the figure has sides (Prop.
XXVIIL, B. I.) ; hence all the angles of the triangles are

equal to all the angles of the polygon, together with four

right angles. But it has been proved that the angles at the

oases of the triangles, are greater than the angles of the

polygon. Hence the remaining angles of the triangles, viz.,

those which contain the solid angle at A, are less than four

right angles. Therefore, the plane angles, &c.
Scholium. This demonstration supposes that the solid an-

gle is convex ; that is, that the plane of neither of the faces,

if produced, wouid cut the solid angle. If it were otherwise,
the sum of the plane angles would no longer be limited, and

might be of any magnitude.

PROPOSITION XIX. THEOREM.

If two solid angles are contained by three plane angles which

are equal, each to each, the planes of the equal angles will be

equally inclined to each other.

Let A and a be two solid

angles, contained by three

plane angles which are

equal, each to each, viz., the

angle BAG equal to bac,

the angle CAD to cad, and
BAD equal to bad; then B
will the inclination of the

planes ABC, ABD be equal
to the inclination of the planes abc, abd.

In the line AC, the common section of the planes ABC,
ACD, take any point C ; and through C let a plane BCE
pass perpendicular to AB, and another plane CDE perpen-
dicular to AD. Also, take ac equal to AC ; and through c

let a plane bee pass perpendicular to ab, and another plane
rde perpendicular to ad.

Now, since the line AB is perpendicular to the plane BCE,
it is perpendicular to every straight line which it meets in

that plane ; hence ABC and ABE are right angles. For the

same reason abc and abe are right angles. Now, in the tri

angles ABC, abc, the angle BAG is, by hypothesis, equal to

bac, and the angles ABC, abc are right angles ; therefore the

angles ACB, acb are equal. But the side AC was made
equal to the side ac; hence the two triangles are equal
(JNop. VII., U. U ; that is, the side AB is equal to ab, and BC
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lo be. In the same manner, it may be proved that AD ia

equal to ad, and CD to cd.

We can now prove that the quadrilateral ABED is equal
to the quadrilateral abed. For, let the angle BAD be placed
upon the equal angle bad, then the point B will fall upon the

point b, and the point D upon the point d; because AB ia

equal to ab, and AD to ad. At the same time. BE, which ia

perpendicular to AB, will fall upon be, which is perpendicu
Jar to ab ; and for a similar reason DE will fall upon de

Hence the point E will fall upon e, and we shall have BE
equal to be, and DE equal to de.

Now, since the plane BCE is perpendicular to the line AB,
it is perpendicular to the plane ABD which passes through
AB (Prop. VI.) . For the same reason CDE is perpendicular
to the same plane ; hence CE, their common section, is per-

pendicular to the plane ABD (Prop. VIII.). In the same man-
ner, it may be proved that ce is perpendicular to the plane
abd. Now, in the triangles BCE, 6ce,the angles BEC, bee are

right angles, the hypothenuse BC is equal to the hypothenuse
be, and the side BE is equal to be ; hence the two triangles
are equal, and the angle CBE is equal to the angle cbe. But
the angle CBE is the inclination of the planes ABC, ABD
(Def. 4) ; and the angle cbe is the inclination of the planes
abc, abd; hence these planes are equally inclined to each
other.

We must, however, observe that the angle CBE is not,

propei'ly speaking, the inclination of the planes ABC, ABD,
except when the perpendicular CE falls upon the same side

of AB is AD does. If it fall upon the other side of AB, then
the angle between the two planes will be obtuse, and this

angle, together with the angle B of the triangle CBE, will

make two right angles. But in this case, the angle between
the two planes abc, abd will also be obtuse, and this angle,

together with the angle b of the triangle cbe, will also make
two right angles. And, since the angle B is always equal to

the angle b, the inclination of the two planes ABC, ABD will

always be equal to that of the planes abc, abd. Therefore, if

;wo solid angles, &c.
Scholium. If two solid angles are contained by three

plane angles which are equal, each to each, and similarly
situated, the angles will be equal, and will coincide when
applied the one to the other. For we have proved that the

quadrilateral ABED will coincide with its equal abed

Now, because the triangle BCE is equal to the triangle bee,

the line CE, which is perpendicular to the plane ABED, ia

equal to the line ce, which is perpendicular to the plane abed.

And since only one perpendicular can be drawn to a plane
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From the same point (Prop.
IV., Cor. 2), the lines CE, ce

must coincide with each oth-

er, and the point C coincide

with the point c. Hence
the two solid angles must
coincide throughout.

It should, however, be ob-

served that the two solid an-

gles do not admit of superposition, unless the three equal plane

angles are similarly situated in both cases. For if the per-

pendiculars CE, ce lay on opposite sides of the planes ABED
abed, the two solid angles could not be made to coincide

Nevertheless, the Proposition will always hold true, that the

planes containing the equal angles are equally inclined to

other.
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BOOK VIII.

POLYEDRONS

Definitions.

1 . A polyedron is a solid included by any number of planes
which are called its faces. If the solid have only four faces,

which is the least number possible, it is called a tetraedron ,

if six faces, it is called a hexaedron ; if eight, an octaedron

if twelve, a dodecaedron ; if twenty, an icosaedron, &c.
2. The intersections of the faces of a polyedron are called

*ts edges. A diagonal of a polyedron is the straight line

which joins any two vertices not lying in the same face.

3. Similar polyedrons are such as have all their solid an-

gles equal, each to each, and are contained by the same num-
ber of similar polygons.

4. A regular polyedron is one whose solid angles are all

equal to each other, and whose faces are all equal and regu
lar polygons.

5. A prism is a polyedron having two faces

which are equal and parallel polygons ; and
the others are parallelograms. The equal
and parallel polygons are called the bases of

the prism ; the other faces taken together
form the lateral or convex surface. The alti-

tude of a prism is the perpendicular distance

between its two bases. The edges which join
the corresponding angles of the two polygons
are called the principal edges of the prism.

6. A right prism is one whose principal edges are all pei
pendicular to the bases. Any other prism is called an ob-

lique prism
7. A prism is triangular, quadrangular, pentagonal, hex-

agonal, &c., according as its base is a triangle, a quadri-
lateral, a pentagon, a hexagon, &c.

8. A parallelepiped is a prism whose
bases are parallelograms. A right par-
allelopiped is one whose faces are all rect- M ./
angles. /--"" L^

9. A cube, is a nght parallelepiped bounded by six equac
squares.
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10. A pyramid is a polyedron contained by
several triangular planes proceeding from the

same point, and terminating in the sides of a

polygon. This polygon is called the base of

the pyramid ;
and the point in which the planes

meet, is the vertex. The triangular planes form
the convex surface.

11. The altitude of a pyramid is the perpen-
dicular let fall from the vertex upon the plane
of the base, produced if necessary. The slant height of a

pyramid is a line drawn from the vertex, perpendicular to

one side of the polygon which forms its base.

12. A pyramid is triangular', quadrangular, &c., according
as the base is a triangle, a quadrilateral, &c.

13. A regular pyramid is one whose base is a regular poly-

gon, and the perpendicular let fall from the vertex upon the

base, passes through the center of the base. This perpendic-
ular is called the axis of the pyramid.

14. A frustum of a pyramid is a portion of the solid next

the base, cut off by a plane parallel to the base. The alti-

tude of the frustum is the perpendicular distance between
the two parallel planes.

PROPOSITION I. THEOREM.

The convex surface of a right prism is equal to the pe*
rimeter of its base multiplied by its altitude.

Let ABCDE-K be a right prism ;
then will

its convex surface be equal to the perimeter
of the base of AB+BC-fCD+DE+EA multi-

E
|

plied by its altitude AF.
For the convex surface of the prism is

equal to the sum of the parallelograms AGr,

BH, CI, &c. Now the area of the parallelo-

gram AGr is measured by the product of its

base AB by its altitude AF (Prop. IV., Sch.,

B. IV.). The area of the parallelogram BH is measured by
BCxBGr; the area of CI is measured by CDxCH, and so

of the others. But the lines AF, BG-, CH, &c., are all equal
to each other (Prop. XIV., B. VII.), and each equal to the

altitude of the prism. Also, the lines AB, BC, CD, &c., taken

together, from the perimeter of the base of the prism. There-

fore, the sum of these parallelograms, or the convex surface

of the prism, is equal to the perimeter of its base, multiplied

by its altitude.
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Cat'. l
f two right prisms have the same altitude, theii

convex surfaces will be to each other as the perimeters of

their bases.

PROPOSITION II. THEOREM.

In every prism, the sections formed by parallel planes art

equal polygons.

Let the prism LP be cut by the parallel

planes AC, FH ;
then will the sections ABC

DE, FG-HIK, be equal polygons.
Since AB and FGr are the intersections

of two parallel planes, with a third plane
LMON, they are parallel. The lines AF,
BG- are also parallel, being edges of the

prism; therefore ABGrF is a parallelogram,-.-!
and AB is equal to FGr. For the same
reason BC is equal and parallel to GrH, CD
to IH, DE to IK, and AE to FK.

Because the sides of the angle ABC are parallel to those of

FG-H, and are similarly situated, the angle ABC is equal to

FGrH (Prop. XV., B. VII.). In like manner it may be proved
that the angle BCD is equal to the angle GrHI, and so of the

rest. Therefore the polygons ABCDE, FGrHIK are equal.
Cor. Every section of a prism, made parallel to the base,

is equal to the base.

M

PROPOSITION III. THEOREM.

Two prisms are equal, when they have a solid angle con-

tained by three faces which are equal, each to each, ana

similarly situated.

Let AI, ai be two prisms

having the faces which con-

tain the solid angle B equal
to the faces which contain

the solid angle b ; viz., the

base ABCDE to the base

abode, the parallelogram
AG- to the parallelogram

ag, and the parallelogram
BH to the parallelogram bh

to the prism ai.

B c
then will the prism AI be equaJ
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Let ihe prism AI be

applied to t\ie prism ai, so

that the equal bases AD
and ad may coincide, the

point A falling upon a, B
upon b, and so on. And
because the three plane

angles which contain the

solid angle B, are equal
to the three plane angles
which contain the solid angle b, and these planes are similarly

situated, the solid angles B and b are equal (Prop. XIX., Sch.

B. VII.). Hence the edge BG will coincide with its equal bg
and the point G will coincide with the point g. Now, be-

cause the parallelograms AG and ag are equal, the side Gt
will fall upon its equal gf; and for the same reason, GH wiL
fall upon gh. Hence the plane of the base FGHIK will coin-

cide with the plane of the basefghik (Prop. II., B. VII.). But
since the upper bases are equal to their corresponding lowei

bases, they are equal to each other ; therefore the base FI will

coincide throughout with/i; viz., HI with hi, IK with ik, and
KF with kf; hence the prisms coincide throughout, and are

equal to each other. Therefore, two prisms, &c.
Cor. Two right prisms, which have equal bases and equal

altitudes, are equal.

For, since the side AB is equal to ab, and the altitude BG
to bg, the rectangle ABGF is equal to the rectangle abgf,
So, also, the rectangle BGHC is equal to the rectangle bghc ;

hence the three faces which contain the solid angle B are

equal to the three faces which contain the solid angle b

consequently, the two prisms are equal.

PROPOSITION IV. THEOREM.

The oppositefaces of a parallelepiped are equal and parallel

Let ABGH be a parallelepiped ; then

will its opposite faces be equal and parallel.
From the definition of a parallelopiped

(Def. 8) the bases AC, EG are equal and

parallel ; and it remains to be proved that

the same is true of any two opposite faces,

as AH, BG. Now, because AC is a par- __
.

allelogram, the side AD is equal and par-
allel to BC. For the same reason AE is equal and parallel
to BF ; hence he angle DAE is equal to the angle CBF
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(Prop, XV., B. VII.), and the plane DAE is parallel to the

plane CBF. Therefore also the parallelogram AH is equal
to the parallelogram BG. In the same manner, it may be

proved that the opposite faces AF and DG are equal and

parallel. Therefore, the opposite faces, &c.
Cor. 1. Since a parallelepiped is a solid contained by six

faces, of which the opposite ones are equal and parallel, any
face may be assumed as the base of a parallelepiped.

Cor. 2. The four diagonals of a parallelepiped bisect each

other.

Draw any two diagonals AG, EC ; they
will bisect each other. Since AE is equal
and parallel to CG, the figure AEGC is a

parallelogram ; and therefore the diago-
nals AG, EC bisect each other (Prop.
XXXIL, B. L). In the same manner, it

may be proved that the two diagonals BH
and DF bisect each other; and hence the

four diagonals mutually bisect each other, in a point whicn

may be regarded as the center of the parallelepiped.

PROPOSITION V. THEOREM.

If a parallelopiped be cut by a plane passing through the

diagonals of two opposite faces, it will be divided into two

equivalent prisms.

Let AG be a parallelopiped, and AC,
EG the diagonals of the opposite parallelo-

grams BD, FH. Now, because AE, CG are
each of them parallel to BF, they are par-
allel to each other ; therefore the diagonals
AC, EG are in the same plane with AE,
CG ; and the plane AEGC divides the solid

AG into two equivalent prisms.

Through the vertices A and E draw the

planes AIKL, EMNO perpendicular to AE,
meeting the other edges of the parallelo-

piped in the points I, K, L, and in M, N, O.
The sections AIKL, EMNO are equal, because they are

formed by planes perpendicular to the same straight line,

and, consequently, parallel (Prop. II.). They are also par-

allelograms, because AI, KL, two opposite sides of the same
section, are the intersections of two parallel planes ABFE,
DCGH,by the same plane.
For the same reason, the figure ALOE is a parallelogram ;
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so, also, are AIME, IKNM, KLON, the

other lateral faces of the solid AIKL-H
EMNO

;
hence this solid is a prism (Def.

5) ;
and it is a right prism because AE is

perpendicular to the plane of its base. But
the right prism AN is divided into two

equal prisms ALK-N, AIK-N
;

for theD
basis of these prisms are equal, being halves L'-^

cf the same parallelogram AIKL, and they
have the common altitude AE

; they are

therefore equal (Prop. III. Cor.).

Now, because AEHD, AEOL are parallelograms, the sided

DH, LO, being equal to AE, are equal to each other. Take

away the common part DO, and we have DL equal to HO.
For the same reason, CK is equal to G-N. Conceive now that

ENO, the base of the solid ENG-HO, is placed on AKL, the

base of the solid AKCDL
;
then the point falling on L and

N on K, the lines HO, GN will coincide with their equals

DL, CK, because they are perpendiculars to the same plane
Hence the two solids coincide throughout, and are equal to

each other. To each of these equals, add the solid ADC-N
;

then will the oblique prism ADC-G- be equivalent to the

right prism ALK-N.
In the same manner, it may be proved that the oblique

prism ABC-G is equivalent to the right prism AIK-N. But
the two right prisms have been proved to be equal ;

hence
the two oblique prisms ADC-G, ABC-G are equivalent to

each other. Therefore, if a parallelepiped, &c.
Cor. Every triangular prism is half of a parallelepiped

having the same solid angle, and the same edges AB, BC, BF.
Scholium. The triangular prisms into which the oblique

parallelepiped is divided, can not be made to coincide, because
the plane angles about the corresponding solid angles are not

similarly situated.

PROPOSITION VI. THEOREM.

Parallelopipeds, of the same base and the same altitude,
Are equivalent.

Case first. When their upper bases are between the samp

parallel lines.

Let the parallelepipeds AG-, AL haVe the base AC common,
and let their opposite bases EG, IL be in the same plane,
and between the same parallels EK, HL ;

then will the solid

AG- be equivalent to the solid AL.
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Because AF, AK are parallel-

ograms, EF and IK are each

equal to AB, and therefore equal
to each other. Hence, if EF and
IK be taken away from the same
line EK, the remainders El and
FK will be equal. Therefore
the triangle AE1 is equal to the

triangle BFK. Also, the parallelogram EM is equal to the

parallelogram FL, and AH to BG. Hence the solid angles
at E and F are contained by three faces which are equal to

each other and similarly situated ; therefore the prism AEI-
M is equal to the prism BFK-L (Prop. III.).

Now, if from the whole solid AL, we take the prism
AEI-M, there will remain the parallelepiped AL ; and if

from the same solid AL, we take the prism BFK-L, there

will remain the parallelepiped AG. Hence the parallelopi

peds AL, AG are equivalent to one another.

Case second. When their upper bases are not between the

same parallel lines.

Let the parallelepipeds AG,op M T
AL have the same base AC and v - ^
the same altitude ; then will their

opposite bases EG, IL be in the

same plane. And, since the sides

EF and IK are equal and parallel
to AB, they are equal and paral-
lel to each other. For the same
reason FG is equal and parallel
to KL. Produce the sides EH,
FG, as also IK, LM, and let A B
them meet in the points N, O, P, Q ; the figure NOPQ is a

parallelogram equal to each of the bases EG, IL ; and, con-

sequently, equal to ABCD, and parallel to it.

Conceive now a third parallelepiped AP, having AC for its

^wer baseband NP for its upper base. The solid AP will

be equivalent to the solid AG, by the first Case, because they
have the same lower base, and their upper bases are in the
same plane and between the same parallels, EQ, FP. For
the same reason, the solid AP is equivalent to the solid AL ;

hence the solid AG is equivalen. to ,he sol ;d AL. There-
fore, parallelepipeds, &c,
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II

PROPOSIT ON VII. THEOREM.

Any paraU&opiped is equivalent to a right parallelepiped

having the same altitude and an equivalent base.

Let AL be any parallelepiped ; it is equivalent to a right

parallelepiped having the same altitude and an equivalent
base.

From the points A, B, C, D draw AE, BF, CG, DH, per-

pendicular to the plane of the low-

er base, meeting the plane of the

upper base in the points E, F, G,
H. Join EF, FG, GH, HE ; there

will thus be formed the parallele-

piped AG, equivalent to AL (Prop.

VI.) ;
and its lateral faces AF, BG,

CH, DE are rectangles. If the

base ABCD is also a rectangle,
AG will be a right parallelepiped,
and it is equivalent to the parallel-

epiped AL. But if ABCD is not a rectangle, from A and B
draw AI, BK perpendicular to CD; and K]yr
from E and F draw EM, FL perpendicu-
lar to GH ; and join IM, KL. The solid

ABKI-M will be a right parallelepiped.
For, by construction, the bases ABKI and
EFLM are rectangles ; so, also, are the

lateral faces, because the edges AE, BF.
KL, IM are perpendicular to the plane of

the base. Therefore the solid AL is a right

parallelepiped. But the two parallelepipeds
AG, AL may be regarded as having the same base AF, and
the same altitude AI ; they are therefore equivalent. But the

parallelepiped AG is equivalent to the first supposed parallel-

epiped ; hence this parallelepiped is equivalent to the ricfh

para lelopiped AL, having the same altitude, and an equiva
lent \ ase. Therefore, any parallelepiped, fcc.
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PROPOSITION VIII. THEOREM.

Right paralhlopipeds, having the same base, are to each oth-

er as their altitudes.

Let AG, AL be two right parallelepipeds

having the same base ABCD ; then will they
be to each other as their altitudes AE, AL

Case first. When the altitudes are in the

ratio of two whole numbers.

Suppose the altitudes AE, AI are in the

latio of two whole numbers ; for example, as

seven to four. Divide AE into seven equal

parts ; AI will contain four of those parts.

Through the several points of division, let

planes be drawn parallel to the base ; these

planes will divide the solid AG into seven A
small parallelepipeds, all equal to each other, having equal
bases and equal altitudes. The bases are equal, because ev-

ery section of a prism parallel to the base is equal to the base

(Prop. II., Cor.) ; the altitudes are equal, for these altitudes

are the equal divisions of the edge AE. But of these seven

equal parallelepipeds, AL contains four ; hence the solid AG
is to the solid AL, as seven to four, or as the altitude AE is

to the altitude AI.

Case second. When the altitudes are not in the ratio of two
whole numbers.
Let AG, AL be two parallelepipeds whose altitudes have

any ratio whatever ; we shall still have the proportion
Solid AG : solid AL : : AE : AI.

For if this proportion is not true, the first three terms re-

maining the same, the fourth term must be greater or less

than AI. Suppose it to be greater, and that we have
Solid AG : solid AL : : AE : AO.

Divide AE into equal parts each less than OI ; there will

be at least one point of division between O and I. Designate
that point by N. Suppose a parallelepiped to be construct-

ed, having ABCD for its base, and AN for its altitude ; and

represent this parallelepiped by P. Then, because the alti-

tudes AE, AN are in the ratio of two whole numbers, w
shall have, by the preceding Case,

Solid AG : P : : AE : AN.
But, by hypothesis, we have

Solid AG : solid AL : : AE : AO.
Hence (Prop IV., nor., B. TI.) f
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Solid AL if: :AO:AN.
But AO is greater than AN

;
hence the solid AL must be

greater than P (Def. 2, B. II.) ;
on the contrary, it is less

s

which is absurd. Therefore the solid AG- can not be to the

solid AL, as the line AE to a line greater than AI.

In the same manner, it may be proved that the fourth term
of the proportion can not be less than AI

;
hence it must he

AI, and we have the proportion.
Solid AG- : solid AL : : AE : AL

Therefore, right parallelepipeds, &c.

PROPOSITION IX. THEOREM.

Right parallelepipeds, having' the same altitude, are to

each other as their bases.

Let AG-, AN be two right parallelepipeds having the sam
altitude AE

;
then will they be to each other as their bases;

that is,

Solid AG- : solid AN : : base ABCD : base AIKL.
Place the two solids so that their M E

surfaces may have the common
angle BAE

; produce the plane
LKNO till it meets the plane DCG-H
in the line PQ; a third parallelopiped

AQ will thus be formed, which may
oe compared with each of the paral-

lelopipeds AG-, AN. The two solids

AG-, AQ,, having the same base

AEHD, are to each other as their

altitudes AB, AL (Prop. VIII.) ;
and

the two solids AQ, AN, having the same base ALOE, are to

each other as their altitudes AD, AL Hence we have th*

two proportions
Solid AG : solid AQ : : AB : AL

;

Solid AQ : solid AN : : AD : AI.

Hence (Prop. XL, Cor., B. II.),

Solid Ad : solid AN : : ABxAD : ALx AI.

But ABXAD is the measure of the base ABCD (Prop. IV.,

Sch., B. IV.) ;
and AL X AI is the measure of the base AIKL

f

hence
Solid AO : solid AN : : base ABCD : base AIKL

Therefore, right parallelepipeds, &c.
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PROPOSITION X THEOREM; -

Any two right parallelepipeds are to each, oilier as the pro&
ucts of their bases by their altitudes.

Let AG, AQ De two right paral-

lelopipeds, of which the bases are

the rectangles ABCD, AIKL, and
(he altitudes, the perpendiculars AE,
AP; then will the solid AG be to

the solid AQ, as the product of

ABCD by AE, is to the product of

AIKL by AP.
Place the two solids so that their V-'"-^-^;

surfaces may have the common an- 3
IjNl J

gle BAE ; produce the planes ne-

cessary to form the third parallele-

piped AN, having the same base with AQ, and the same alti-

tude with AG. Then, by the last Proposition, we shall have
Solid AG : solid AN : : ABCD : AIKL.

But the two parallelepipeds AN, AQ, having the same base

AIKL, are to each other as their altitudes AE, AP (Prop.

VIII.) ; hence we have
Solid AN : solid AQ : : AE : AP.

Comparing these two proportions (Prop. ^L, Cor., B. II.)

we have
Solid AG : solid AQ : : ABCD XAE : AIKL X AP.

If instead of the base ABCD,we put its equal ABxAD,
and instead of AIKL, we put its equal AI X AL, we shall have

Solid AG : solid AQ : : ABxADxAE : AIxALxAP.
Therefore, any two right parallelepipeds, &c.

Scholium. Hence a right parallelepiped is measured oy
the product of its base and altitude, or the product of its iAree

dimensions.

It should be remembered, that by the product of two 01

more lines, we understand the product of the numbers which

represent those lines ; and these numbers depend upon the

linear unit employed, which may be assumed at pleasure.
If we take a foot as the unit of measure, then the number of

feet in the length of the base, multiplied by the number of

feet in its breadth, will give the number of square feet in the

base. If we multiply this product by the number of feet in

the altitude, it will give the number of cubic feet in the par-

allelopiped. If we take an inch as the unit of measure, we
shall obtain in the same manner the number of cubic inches

in the parallelopiped.
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PROPOSITION XI. THEOREM.
4

The solidity of a prism is measured by the product of it*

base by its altitude.

For any parallelepiped is equivalent to a right parallele-

piped, having the same altitude and an equivalent base (Prop.

VII.). But the solidity of the latter, is measured by the prod-
uct of its base by its altitude ; therefore the solidity of the

former is also measured by the product of its base by its al-

titude.

Now a triangular prism is half of a parallelepiped having
the same altitude and a double base (Prop. V.). But the

solidity of the latter is measured by the product of its base by
ts altitude ; hence a triangular prism is measured by the

product of its base by its altitude.

But any prism can be divided into as many triangular

prisms of the same altitude, as there are triangles in the poly-

gon which forms its base. Also, the solidity of each of these

triangular prisms, is measured by the product of its base by
its altitude ; and since they all have the same altitude, the

sum of these prisms will be measured by the sum of the tri-

angles which form the bases, multiplied by the common alti-

tude. Therefore, the solidity of any prism is measured by
the product of its base by its altitude.

Cor. If two prisms have the same altitude, the products of

ihe bases by the altitudes, will be as the bases (Prop. VIII.,
B. II.) ; hence prisms of the same altitude are to each other as

their bases. For the same reason, prisms of the same base

are to each other as their altitudes ; and prisms generally art

to each other as the products of their bases and altitudes.

PROPOSITION XII. THEOREM.

Similar prisms are to each other as the cubes of their homol

vgous edges.

Let ABCDE-F, abcde-f be two similar prisms ; then wil.

the prism AD-F be to the prism ad-f, as AB 3
to ab*, or as

AF S
to af.

For the solids are to each other as the products of their

bases and altitudes (Prop. XL, Cor.) ; that is, as ABODE X
AF, to abcde X af. But since the prisms are similar, the bases

are similar figures, and ire to each other as the squares of
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B C

(he i homologous sides ; that is, as AB2
to ab*. Therefore,

we have
Solid FD : solidfd : : AB'xAF : atfxaf.

But since BF and bf are similar figures, their homologous
sides are proportional ; that is,

AB : ab : : AF : of,
whence (Prop. X., B. IL),

AB2
: ab* : : AF3

: of*.
Also AF : af : : AF : of.
Therefore (Prop. XL, B. IL),

AB2 x AF : atfxaf: : AF3
: af

3
: : AB 3

: ab9
.

Hence (Prop. IV., B. IL), we have
Solid FD : solidfd : : AB3

: ab3
: : AF 3

: af.
Therefore, similar prisms, &c.

PROPOSITION XIII. THEOREM.

If a pyramid be cut by a plane parallel to its base,
1st. The edges and the altitude will be dividedproportionally.
2d. The section will be a polygon similar to the base.

Let A-BCDEF be a pyramid cut by a

plane bcdef parallel to its base, and let

AH be its altitude ; then will the edges
AB, AC, AD, &c., with the altitude AH,
be divided proportionally in b, c, d, e, f,
h ; and the section bcdef will be similar to

BCDEF.
First. Since the planes FBC, fbc are

parallel, their sections FB, fb with a third

plane AFB are parallel (Prop. XIL, B.

VII.) ; therefore the triangles AFB, Afb
are similar, and we have the proportion

AF: A/:: AB : A&.
For the same reason,

AB : Ab : : AC : Ac.

d,
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and so for the other edges. Thei'efo:e, tiie edges AB, AC,
&c., are cut proportionally in b, c, &c. Also, since BH and

bh are parallel, we have
AH : Ah : : AB : Ab.

Secondly Becausefb is parallel to FB, be to BC, cd x> CD
&c., the angle fbc is equal to FBC (Prop. XV., B. VII.), tht

angle bed is equal to BCD, and so on. Moreover, since the

triangles AFB, Afb are similar, we have
FB :fb : : AB Ab.

And because the triangles ABC, Abe are similar, we have
AB : Ab : : BC : be.

Therefore, by equality of ratios (Prop. IV., B. II.),

FB :fb : : BC : be.

For the same reason,
BC : be : : CD : cd, and so on.

Therefore the polygons BCDEF, bcdef have their angles

equal, each to each, and their homologous sides proportional ;

hence they are similar. Therefore, if a pyramid, &c.
Cor. 1. If two pyramids, having the same altitude, and their

bases situated in the same plane, are cut by a plane parallel to

their bases, the sections will be to each other as the bases.

Let A-BCDEF, A-MNO
be two pyramids having
the same altitude, and their

^ases situated in the same

plane ; if these pyramids
are cut by a plane parallel
to the bases, the sections

bcdef, mno will be to each

other as the bases BCDEF,
MNO.

For, since the polygons
BCDEF, bcdef are similar,

their surfaces are as the squares of the homologous sides BC
be (Prop. XXVI., B. IV.). But, by the preceding Proposition

BC : be : : AB : Ab.

Therefore, BCDEF : bcdef: : AB2
: Ab\

For the same reason,
MNO : mno : : AM 2

: Am1
.

But since bcdef and mno are in the same plane, we have
AB : Ab : : AM : Am (Prop. XVI., B. VII.) ;

consequently, BCDEF : bcdef : : MNO : mno.

Cor. 2. If the bases BCDEF, MNO are equivalent, th

sections bcdef, mno will also be equivalent.
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The convex surface of a regular pyramid, is equal to the

verimeter of its base, multiplied by half the slant height

Let A-BDE be a regular pyramid, whose

base is the polygon BCDEF, and its slant

height AH ;
then will its convex surface be

equal to the perimeter BC+CD-j-DE, &c.,

multiplied b> half of AH.
The triangles AFB, ABC, ACD, &o., are

all equal for the sides FB, BC, CD, &c., are

all equal, (Def. 13) ;
and since the oblique

lines AF, AB, AC, &c., are all at equal dis-

tances from the perpendicular, they are

equal to each other (Prop. V., B. VII.).
Hence the altitudes of these several triangles
are equal. But the area of the triangle AFB is equal to FB,
multiplied by half of AH

;
and the same is true of the other

triangles ABC, ACD, &c. Hence the sum of the triangles is

equal to the sum of the bases FB, BC, CD, DE, EF, multiplied

by half the common altitude AH
;
that is, the convax surface

of the pyramid is equal to the perimeter of its base, multiplied

by half the slant height.
Cor. 1. The convex surface of a frustum of a regular

pyramid is equal to the sum of the perimeters of its two bases,

multiplied by half its slant height.
Each side of a frustum of a regular pyramid, as FB/, is a

trapezoid (Prop. XIII.).. Now the area of this trapezoid is

equal to the sum of its parallel sides FB, fb, multiplied by
half its altitude HA (Prop. VII., B. IV.). But the altitude

of each of these trapezoids is the same
; therefore the area of

all the trapezoids, or the convex surface of the frustum, is

equal to the sum of the perimeters of the two bases, multiplied

by half the slant height.
Cor. 2. If the frustum is cut by a plane, parallel to the bases,

and at equal distances from them, this plane must bisect the

edges B&, Cc, &c. (Prop. XVI., B. IV.) ;
and the area of each

trapezoid is equal to its altitude, multiplied by the line which

joins the middle points of its two inclined sides (Prop. VII.
,

Cor., B. IV.). Hence the convex surface of a frustum of a

pyramid is equal to its slant height, multiplied by the

perimeter of a section at equal distances between the two
bases.
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PROPOSITION XV. THEOREM.

Triangular pyramids, having equivalent bases and equal

Etudes, are equivalent.

Let A-BCD, a-bcd be two triangular pyramids having
equivalent bases BCD, bed, supposed to be situated in the

same plane, and having the common altitude TB ; then will

the pyramid A-BCD be equivalent to the pyramid a-bcd.

For, if they are not equivalent, let the pyramid A-BCD
exceed the pyramid a-bcd by a prism whose base is BCD
and altitude BX.

Divide the altitude BT into equal parts, each less than

BX ; and through the several points of division, let planes be

made to pass parallel to the base BCD, making the sections

EFG, efg equivalent to each other (Prop. XIIL, Cor. 2)
-

also, HlK equivalent to hik, &c.
From the point C, draw the straight line CR parallel to

BE, meeting EF produced in R ; and from D draw DS par-
alle. to BE, meeting EG in S. Join RS, and it is plain that

the solid BCD-ERS is a prism lying partly without the pyr
amid. In the same manner, upon the triangles EFG, HIK,
&c., taken as bases, construct exterior prisms, having for

edges the parts EH, HL, &c., of the line AB. In like man
ner, on the bases efg, hik, Imn, &c., in the second pyramid,
construct interior prisms, having for edges the corresponding
oarts of ab. It is plain that the sum of all the exterior prisms
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ut tne pyramid A-BCD is greater than this pyi&mid; and,

also, that the sum of all the interior ^risms of the pyramid
a bed is smaller than this pyramid. Hence the difference

between the sum of all the exterior prisms, and the sum of

all the interior ones, must be greater than the difference be

tween the two pyramids themselves.

Now, beginning with the bases BCD, bed, the second ex

terior prism EFG-H is equivalent to the first interior prism
efgb, because their bases are equivalent, and they have the

same altitude. For the same reason, the third exterior prism
HIK-L and the second interior prism hik-e are equivalent ;

the fourth exterior and the third interior ; and so on, to the

last in each series. Hence all the exterior prisms of the pyr-
amid A BCD, excepting the first prism BCD E, have equiv-
.ent corresponding ones in the interior prisms of the pyramid
a-bcd. Therefore the prism BCD-E is the difference be-

tween the sum of all the exterior prisms of the pyramid
A-BCD, and the sum of all the interior prisms of the pyr-
amid a-bcd. But the difference between these two sets of

prisms has been proved to be greater than that of the two

pyramids ; hence the prism BCD-E is greater than the prism
BCD X ; which is impossible, for they have the ^same base

BCD, and the altitude of the first, is less than BX, the altitude

of the second. Hence the pyramids A-BCD, a-bcd are not

unequal ; that is, they are equivalent to each other. There-

fore, triangular pyramids, &c.

PROPOSITION XVI. THEOREM.

Every triangular pyramid is the third part of a tnangulai

prism having the same base and the same altitude.

Let E-ABC be a triangular pyramid,
and ABC-DEF a triangular prism hav-

ing the same base and the same altitude ;

then will the pyramid be one third of the

prism.
Crrf off from the prism the pyramid

E-AiiC by the plane EAC ; there will re-

main the solid E-ACFD, which may be
considered as a quadrangular pyramid
whose vertex is E, and whose base is the

paiaJelogram ACFD. Draw the diago-
nal CD, and through the points C, D, E pass a plane, dividing
.he quadrangular pyramid into two triangular ones E-ACD
E-CFD. Then, because ACFD is a oarallelo^ram, of whin?
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CD is the diagonal, the triangle ACD is

equal to the triangle CDF. Therefore
the pyramid, whose base is the triangle
ACD, and vertex the point E, is equiva-
lent to the pyramid whose base is the tri-

angle CDF, and vertex the point E. But
the latter pyramid is equivalent to the

pyramid E-ABC for they have equal
bases, viz., the triangles ABC, DEF, and
the same altitude, viz., the altitude of the

prism ABC-DEF. Therefore the three

pyramids E-ABC, E-ACD, E-CDF, are equivalent to each

other, and they compose the whole prism ABC-DEF ; hence
the pyramid E-ABC is the third part of the prism which
has the same base and the same altitude.

Cor. The solidity of a triangular pyramid is measured hv
the product of its base by one third of its altitude.

PROPOSITION XVII. THEOREM.

The solidity of every pyramid is measured by the product oj
tts base by one third of its altitude.

Let A-BCDEF be any pyramid, whose
base is the polygon BCDEF, and altitude

AH ; then will the solidity of the pyramid
be measured by BCDEF x^AE.

Divide the polygon BCDEF into triangles

by the diagonals CF, DF ; and let planes

pass through these lines and the vertex A ;

they will divide the polygonal pyramid
A-BCDEF into triangular pyramids, all

having the same altitude AH. But each of

these pyramids is measured by the product
of its base by one third of its altitude (Prop.
XVI., Cor.) ; hence the sum of the triangular pyramids, or

the polygonal pyramid A-BCDEF, will be measured by ihe

gum of ..the triangles BCF, CDF, DEF, or the polygon
BCDEF, multiplied by one third of AH. Therefore every
pyramid is measured by the product of its base by one third

of its altitude.

Cor. 1. Every pyramid is one third of a prism having the

ame base and altitude.

Cor. 2. Pyramids of the same altitude are to each other

as their bases ; pyramids of the same base are to each other
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as their altitudes ; and pyramids generally are to each other
as the products of their bases by their altitudes.

Co/ 3. Similar pyramids are to each other as the cubes
of their homologous edges.

Scholium. The solidity of any polyedron may be found

by dividing it into pyramids, by planes passing through its

vertices.

PROPOSITION XVIII. THEOREM.

A frustum of a pyramid is equivalent to the sum of tnree

pyramids, having the same altitude as the frustum, and whose
bases are the lower base of the frustum, its upper base, and a

mean proportional between them.

Case first. When the base of the frustum is a triangle.
Let ABC-DEF be a frustum of a tri-

angular pyramid. If a plane be made to

pass through the points A, C, E, it will

cut off the pyramid E-ABC, whose alti-

tude is the altitude of the frustum, and
its base is ABC, the lower base of the

frustum.

Pass another plane through the points
C, D, E ; it will cut off the pyramid
C-DEF, whose altitude is that of the

frustum, and its base is DEF, the upper
base of the frustum.

To find the magnitude of the remaining pyramid E-ACD,
draw EG parallel to AD ; join CG, DG. Then, because the

two triangles AGC, DEF have the angles at A and D equal
to each other, we have (Prop. XXIIL, B. IV.)

AGC : DEF : : AG XAC : DE xDF,
: : AC : DF, because AG is equal to DE.

Also (Prop. VI., Cor. 1, B. IV.),
ACB : ACG : : AB : AG or DE.

But, because the triangles ABC, DEF are similar (Prop.

XIII.), we have
AB : DE : : AC : DF.

Therefore (Prop. IV., B. II.),

ACB : ACG : : ACG : DEF ;

that is, the triangle ACG is a mean proportional between
ACB and DEF, the two bases of the frustum.

Now the pyramid E-ACD is equivalent to the pyramid
G-ACD, because it hat the same base and the same altitude

for EG is parallel to AD, and, consequently, parallel to the

G
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plane ACD. But the pyramid G-ACD has the same altitude

as the frustum, and its base ACG is a mean proportional be
tween the two bases of the frustum.

Case second. When the base of the frustum is any polys oa
Let ECVEF-bcdef be a A G

"

frustum of any pyramid.
v *

Let G-HIK be a trian-

gular pyramid having the

same altitude and an equiv-
alent base with the pyramid
A-BCDEF, and from it let

a frustum HIK /M& be cut

off, having the same altitude

with the frustum BCDEF- C

bcdef. The entire pyramids are equivalent (Prop. XVII.;
and the small pyramids A-bcdef, G-hik are also equivalent,
for their altitudes are -equal, and their bases are equivalent

(Prop. XIII., Cor. 2). Hence the two frustums are equiva-
lent, and they have the same altitude, with equivalent bases.

But the frustum HIK.-hik has been proved to be equivalent to

the sum of three pyramids, each having the same altitude as

the frustum, and whose bases are the lower base of the frus-

tum, its upper base, and a mean proportional between them
Hence the same must be true of the frustum of any pyramid
Therefore, a frustum of a pyramid, &c.

PROPOSITION XIX. THEOREM.

There can be butJive regular polyedrons.

Since the faces of a regular polyedron are regular poly

gons, they must consist of equilateral triangles, of squares, of

regular pentagons, or polygons of a greater number of sides.

First. If the faces are equilateral triangles, each solid an-

le of the polyedron may be contained by three of these trr

angles, forming the tetraedron ; or by four, forming the 0c-

taedron ; or by five, forming the icosaedron.

No other regular polyedron can be formed with equilat
eral triangles ; for six angles of these triangles amount t
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lour right angles, and can not form a solid angle

(Prop. XVIIL, B. VII.).

Secondly. If the faces are squares, their an-

gles may be united three and three, forming
the hexaedron, or cube.

Four angles of squares amount to four right

angles, and can not form a solid angle.

Thirdly. If the faces are regular penta-

gons, their angles may be united three and

three, forming the regular dodedhedron. Four

angles of a regular pentagon, are greater
than four right angles, and can not form a

solid angle.

Fourthly. A regular polyedron can not be
formed with regular hexagons, for three angles of a regular

hexagon amount to four right angles. Three angles of a

regular heptagon amount to more than four right angles ;

and the same is true of any polygon having a greater number
of sides.

Hence there can be but five regular jolyedrons; three

formed with equilateral triangles, one with squares, and one
with pentagons
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BOOK IX.

SPHERICAL GEOMETRY

Definitions.

1. A sphere is a solid bounded by a curved surface, all the

of which are equally distant from a point within, call-

ed the center.

The sphere may be conceived to be de-

scribed by the revolution of a semicircle

ADB, about its diameter AB, which re-

mains unmoved.
2. The radius of a sphere, is a straight

line drawn from the center to any point of

the surface. The diameter, or axis, is a line

passing through the center, and terminated

each way by the surface.

All the radii of a sphere are equal ; all the diameters are

also equal, and each double of the radius.

3. It will be shown (Prop. I.), that every section of a

sphere made by a plane is a circle. A great circle is a sec-

tion made by a plane which passes through the center of the

sphere. Any other section made by a plane is called a small

circle.

4. A plane touches a sphere,when it meets the sphere, but

being produced, does not cut it.

5. The pole of a circle of a sphere, is a point in the surface

equally distant from every point in the circumference of

this circle. It will be shown (Prop. V.), that every circle,

whether great or small, has two poles.
6. A spherical triangle is a part of the sur-

face of a sphere, bounded by three arcs of

great circles, each of which is less than a semi-

circumference. These arcs are called the sides

of the triangle ; and the angles which their

planes make with each other, are the angles
of the triangle.

"i A spherical triangle is called right-angled, isosceles or

tquiiateral, in the SJMne cases as a plane triangle.
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:. A spherical polygon is a part of Ine sur-

face of a sphere bounded by several arcs of

great circles.

9. A lune is a part of the surface of a sphere in-

cluded between the halves of two great circles.

10. A spherical wedge, or ungula, is that portion
of the sphere included between the same semicir-

cles, and has the lune for its base.

11. A spherical pyramid is a portion of the

sphere included between the planes of a solid

angle, whose vertex is at the center. The base

of the pyramid is the spherical polygon inter-

cepted by those planes.

12. A zone is a part of the surface of a

sphere included between two parallel planes.
13. A spherical segment is a portion of the

sphere included between two parallel planes.
14. The bases of the segment are the sec-

tions of the sphere ; the altitude of the seg-
ment, or zone, is the distance between the

sections. One of the two planes may touch the sphere, ir.

which case the segment has but one base.

15. A spherical sector is a solid de-

scribed by the revolution of a circular

sector, in the same manner as the

sphere is described by the revolution

of a semicircle.

While the semicircle ADB, revolving
round its diameter AB, describes a

sphere, every circular sector, as ACE
or ECD, describes a spherical sector.

16. Two angles which are together
equal to two right angles ; or two arcs

which are together equal to a semicircum'erer.ce, are called

the supplements of each other.

E
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PROPOSITION I. THEOREM.

'Ewy section of a sphere, made by i plane, is a circle

Let ABD be a section, made by a

plane, in a sphere whose center is C.

From the point C draw CE perpendicu-
lar to the plane ABD ; and draw lines

CA, CB, CD, &c., to different points of

the curve ABD which bounds the sec-

tion.

The oblique lines CA, CB, CD are

equal, because they are radii of the

sphere; therefore they are equally distant from the perpen-
dicular CE (Prop. V., Cor., B. VII.). Hence all the lines

EA, EB, ED are equal ; and, consequently, the section ABD
is a circle, of which E is the center. Therefore, every sec-

tion, &c.
Cor. 1. If the section passes through the center of the

sphere, its radius will be the radius of the sphere ; hence al 1

great circles of a sphere are equal to each other.

Cor. 2. Two great circles always bisect each other ; for,

since they have the same center, their common section is a

diameter of both, and therefore bisects both.

Cor. 3. Every great circle divides the sphere and its sur-

face into two equal parts. For if the two parts are separated
and applied to each other, base to base, with their convexities

turned the same way, the two surfaces must coincide
;
oth-

erwise there would be points in these surfaces unequally dis-

tant from the center.

Cor. 4. The center of a small circle, and that of the sphere,
are in a straight line perpendicular to the -plane of the small

circle.

Cor. 5. The circle which is furthest from the center is the

least ; for the greater the distance CE, the less is the chord

AB, which is the diameter of the small circle ABD.
Cor. 6. An arc of a great circle may be made to pass

through any two points on the surface of a sphere ; for the

two given points, together with the center of the sphere,
make three points which are necessary to determine the posi-
tion of a plane. If, however, the two given points were sit-

uated at the extremities of a diameter, these two points and

the center would then be in one straight line, and any mini

ber of great oi'des might be made to pass through them.
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PROPOSITION II. THEOREM.

Any tw<) sides of a spherical triangle are together great-
er than the third.

Let ABC be a spherical triangle ; any
two sides as, AB, BC, are together greater
than the third side AC.

Let D be the center of the sphere ; and
^oin AD, BD, CD. Conceive the planes

ADB, BDC, CDA to be drawn, forming a

solid angle at D. The angles ADB, BDC,
CDA will be measured by AB, BC, CA,
he sides of the spherical triangle. But
when a solid angle is formed by three plane angles, the sum
of any two of them is greater than the third (Prop. XVII., B.

VII.) ; hence any two of the arcs AB, BC, CA must b

greater than the third. Therefore, any two sides, &c.

PROPOSITION III. THEOREM.

The shortest path from one point to another on the surface,

:-f
a sphere, is the arc of a great circle joining the two given

points.

Let A and B be any two points on the surface of
a sphere, and let ADB be the arc of a great circle

which joins them ; then will the line ADB be the

shortest path from A to B on the surface of the

sphere.
For, if possible, let the shortest path from A to B

pass through C, a point situated out of the arc of a.

great circle ADB. Draw AC, CB, arcs of great
circles, and take BD equal to BC.

By the preceding theorem, the arc ADB is less than AC-f-

CB. Subtracting the equal arcs BD and BC, there will re-

main AD less than AC. Now the shortest path from B to C,
whether it be an arc of a great circle, or some other line, is

equal to the shortest path from B to D ; for, by revolving
BC around B, the point C may be made to coincide with D,
and thus the shortest path from B to C must coincide with
the shortest path from B to D. But the shortest path from
A to B was supposed to pass through C ; hence the shortest

path from A to C, can not be greater than the shortest path
A to D.
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Now the arc AD has been proved to be less than AC ; and
therefore if AC be revolved about A until the point C falls

on the arc ADB, the point C will fall between D and B.

Hence the shortest path from C to A must be greater than

the shortest path from D to A
; but it has just been proved

not to be greater, which is absurd. Consequently, no poin,
of the shortest path from A to B, can be out of the arc of 9

great circle ADB. Therefore, the shortest path, &c.

PROPOSITION IV. THEOREM.

The sum of the sides of a spherical polygon, is less than the

4 circumference of a great circle.

Let ABCD be any spherical polygon ;

then will the sum of the sides AB, BC, CD,
DA be less than the circumfeience of a

great circle.

Let E be the center of the sphere, and

join AE, BE, CE, DE. The solid angle
at E is contained by the plane angles AEB,
BEC, CED, DEA, which together are less

than four right angles (Prop. XVIIL, B.

VII.) . Hence the sides AB, BC, CD, DA,
which are the measures of these angles, are

together less than four quadrants described with the radius

AE ; that is, than the circumfeience- of a great circle

Therefore, the sum of the sides, &c.

PROPOSITION V. THEOREM.

The extremities of a diameter of a sphere? are the poles of aH
circles perpendicular to that diameter.

Let AB be a diameter perpendicu-
ar to CDE, a great circle of a sphere,
and also to the small circle FGH ;

then will A and B, the extremities of

the diameter, be the poles of both

these circles.

For, because AB is perpendicular
to the plane CDE, it is perpendicular
to every straight line CI, DI, El, &c.,
drawn through its foot in the plane ;

nence all the arcs AC, AD, AE, &c., are quarters of the
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cumference. So, also, the arcs BC, BD, BE, &c., are quar-
ters of the circumference ; hence the points A and B are

each equally distant from all the points of the circumference
CDE ; they are, therefore, the poles of that circumference

(Def. 5).

Secondly. Because the radius AI is perpendicular to the

plane of the circle FGH, it passes through K, the center of

that circle (Prop. I., Cor. 4). Hence, if we draw the oblique
lines AF, AG, AH, these lines will be equally distant from
the perpendicular AK, and will be equal to each other (Prop.
V., B. VIL). But since the chords AF, AG, AH are equal,
the arcs are equal ; hence the point A is a pole of the small

circle FGH ; and in the same manner it may be proved that

B is the other pole.
Cor. 1. The arc of a great circle AD, drawn from the pole

to the circumference of another great circle CDE, is a qua-
drant ; and this quadrant is perpendicular to the arc CD.
For, because AI is perpendicular to the plane GDI, every
plane ADB which passes through the line AI is perpendicu
far to the plane GDI (Prop. VI., B. VII.) ; therefore the an

gle contained by these planes, or the angle ADC (Def. 6), is

a right angle.
Cor. 2. If it is required to find the pole of the arc CD,

draw the indefinite arc DA perpendicular to CD, and take DA
equal to a quadrant ; the point A will be one of the poles of

the arc CD. Or, at each of the extremities C and D, draw
the arcs CA and DA perpendicular to CD ; the point of inter

section of these arcs will be the pole required.
Cor. 3. Conversely, if the distance of the point A from

each of the points C and D is equal to a quadrant, the point
A will be the pole of the arc CD ; and the angles ACD,
ADC will be right angles.

For, let I be the center of the sphere, and draw the radii

AI, CI, DI. Because the angles AIC, AID are right angles,
the line AI is perpendicular to the two lines CI, DI ; it is,

therefore, perpendicular to their plane (Prop. IV., B. VIL).
Hence the point A is the pole of the arc CD (Prop. V.) ; and
therefore the angles ACD, ADC are right angles (Cor. 1).

Scholium. Circles may be drawn upon the surface of a

sphere, with the same ease as upon a plane surface. Thus,

by revolving the arc AF around the point A, the point F will

describe the smail circle FGH ; and if we revolve the qua-
drant AC around the point A, the extremity C will describe

the great circle CDE.
If it is required to produce the arc CD, or if it is required

to draw an arc of a great circle through the two points C
and D, then from the points C a^d D Hi renters, with a radius



154 GEOMETRY

equal to a quadrant, describe two arcs intersecting each
other .11 A. The point A will be the pole of the arc CD ;

and, therefore, if, from A as a center, with a radius equal to a

quadrant, we describe a circle CDE, it will be a great circle

passing through C and D.
If it is required to let fall a perpendicular from any point

G upon the arc CD ; produce CD to L, making GL equal to

a quadrant ; then from the pole L, with the radius GL, de-

scribe the arc GD ; it will be perpendicular to CD.

PROPOSITION VI. THEOREM.

A plane,perpendicular to a diameter at its extremity, touches

the sphere.

Let ADB be a plane perpendicular A_
to the diameter DC at its extremity ;

then the plane ADB touches the

sphere:
Let E be any point in the plane

ADB, and join DE, CE. Because CD
is perpendicular to the plane ADB, it

is perpendicular to the line AB (Def.

1, B. VII.) ; hence the angle CDE is a right angle, and the

line CE is greater than CD. Consequently, the point E lies

without the sphere. Hence the plane ADB has only the point
D in common with the sphere ; it therefore touches the sphere
(Def. 4). Therefore, a plane, &c.

Cor. In the same manner, it may be
\
roved that two

spheres touch each other, when the distance between their

centers is equal to the sum or difference of their radii ; in

which case, the centers and the point of contact lie in one

straight line.

PROPOSITION VII. THEOREM.

The angle formed by two arcs of great circles, is equal to

the angle formed by the tangents of those arcs at the point of
their intersection ; and is measured by the arc of a great cir-

cle describedfrom its vertex as a pole, and included between its

sides.

Let BAD be an angle formed by two arcs of great circles;

then will it be equal to the an^le EAF formed by the tan-
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gents of these arcs at the point A ,

and it is measured by the arc DB de-

scribe 1 from the vertex A as a pole.
For the tangent AE, drawn in the

plane of the arc AB, is perpendicular
to the radius AC (Prop. IX., B. III.) ;

also, the tangent AF, drawn in the

plane of the arc AD, is perpendicular
to the same radius AC. Hence the

angle EAF is equal to the angle of the

planes ACB, ACD (Def. 4, B. VII.), which is the same a

that of the arcs AB, AD.
Also, if the arcs AB, AD are each equal to a quadrant, the

lines CB, CD will be perpendicular to AC, and the angle
BCD .will be equal to the angle of the planes ACB, ACD ;

hence the arc BD measures the angle of the planes, or the

angle BAD.
Cor. 1. Angles of spherical triangles may be compared

with each other by means of arcs of great circles described

from their vertices as poles, and included between their,

sides ; and thus an angle can easily be made, equal to a given
angle.

Cor. 2. If two arcs of great circles AC,
DE cut each other, the vertical angles ABE,
DBC are equal ; for each is equal to the an-

gle formed by the two planes ABC, DBE.
Also, the two adjacent angles ABD, DBC
are together equal to two right angles.

PROPOSITION VIII. THEOREM.

If from the vertices of a given spherical triangle, as poles,
arcs of great circles are described, a second triangle is formed,
whose vertices are poles of the sides of the given triangle.

Let ABC be a spherical triangle ;

and from the points A, B, C, as poles,
let great circles be described inter-

secting each other in D, E, and F ;

then will the points D, E, and F be
the poles of the sides of the triangle
ABC.

For, because the point A is the pole
of the arc EF, the distance from A to

E is a quadrant. Also, because the

point C is the pole of the arc DE, the
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distance from C to E is a quadrant. Hence the point E is at

a quadrant's distance from each of the points A and C ; it is,

therefore, the pole of the arc AC (Prop. V., Cor. 3). In the

same manner, it may be proved that D is the pole of the arc

BC, and F the pole of the arc AB.
Scholium. The triangle DEF is called the polar triangle

of ABC ;
and so, also, ABC is the polar triangle of DEF.

Several different triangles might be formed by producing
the sides DE, EF, DF ; but we shall confine ourselves to the

central triangle, of which the vertex D is on the same side

of BC with the vertex A ; E is on the same side of AC
with the vertex B ; and F is on the same side of AB with

the vertex C.

PROPOSITION IX. THEOREM.

The sides of a spherical triangle, are the supplements of the

arcs which measure the angles of its polai triangle ; and con-

versely.

Let DEF be a spherical triangle,
ABC its polar triangle ; then will the

side EF be the supplement of the arc

which measures the angle A ; and
the side BC is the supplement of the

arc which measures the angle D.
Produce the sides AB, AC, if ne-

cessary, until they meet EF in G and
H. Then, because the point A is the

pole of the arc GH, the angle A is

measured by the arc GH (Prop. VII.).

Also, because E is the pole of the arc AH, the arc EH is a

quadrant ; and, because F is the pole of AG, the arc FG is a

quadrant. Hence EH and GF, or EF and GH, are together

equal to a semicircumference. Therefore EF is the supple-
ment of GH, which measures the angle A. So, also, DF is

the supplement of the arc which measures the angle B ;
and

DE is the supplement of the arc which measures the angle C,

Conversely. Because the point D is the pole of the arc BC,
the angle D is measured by the arc IK. Also, because C is

the pole of the arc DE, the arc 1C is a quadrant ; and, be-

cause B is the pole of the arc DF, the arc BK is a quadrant.
Hence 1C and BK, or IK and BC, are together equal to a

semicircumference. Therefore BC is the supplement of IK,

which measures the angle D. So, also, AC is the supple-
ment of the arc which measures the angle E ; and AB is thf

supplement of the arc which measures the angle F.
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PROPOSITION X. THEOREM

The sum of the angles of a spherical triangle ,
is greater than

two, and less than six right angles.

Let A, B, and C be the angles of a spherical triangle.
The arcs which measure the angles A, B, and C, together
with the three sides of the po[ar triangle, are equal to three

semicircumferences (Prop. IX ). But the three sides of the

polar triangle are less than two semicircumferences (Prop.
IV.) ; hence the arcs which measure the angles A, B, and C
are greater than one semicircumference ; and, therefore, the

angles A, B, and C are greater than two right angles.
Also, because each angle of a spherical triangle is less than

two right angles, the sum of the three angl-es must be less

than six right angles.
Cor. A spherical triangle may have two, or /\

even three, right angles ; also two, or even / \
three, obtuse angles. If a triangle have three / \
right angles, each of its sides will be a qua- / \
drant, and the triangle is called a quadrantal I \

triangle. The quadrantal triangle is contain- ^^ ^
ed eight times in the surface of the sphere.

PROPOSITION XI. THEOREM.

If two triangles on equal spheres are mutually equilateral,

they are mutually equiangular.

Let ABC, DEF be two triangles on equal spheres, having
the sides AB equal to DE, AC to DF, and BC to EF ; then
will the angles also be equal, each to each.

D

B E
Let the centers of the spheres be G and H, and draw the

radii GA, GB, GC, HD, HE, HF. A solid angle may be con
ceived as formed at G bt the three plane angles AGB, AGU
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BGC; and another solid angle at H by the, thiee plane an-

gles DUE, DHF, EHF. Then, because the arcs AB, DE
are equal, the angles AGB, DHE, which are measured by
these arcs, are equal. For the same reason, the angles AGO,
DHF are equal^ to each other ; and, also, BGC equal to EHF

D

E
Hence G and H are two solid angles contained by three equal

plane angles ; therefore the planes of these equal angles are

equally inclined to each other (Prop. XIX., B. VII.) . That

is, the angles of the triangle ABC are equal to those of the

triangle DEF, viz., the angle ABC to the angle DEF, BAG
to EDF, and ACB to DFE.

Scholium. It should be observed that the two triangles

ABC, DEF do not admit of superposition, unless the three

sides are similarly situated in both cases. Triangles which
are mutually equilateral, but can not be applied to each othei

so as to coincide, are called symmetrical triangles.

PROPOSITION XII. THEOREM.

If two triangles on equal spheres are mutually equiangular

Ihey are mutually equilateral.

Denote by A and B two spherical triangles which are mu-

tually equiangular, and by P and Q their polar triangles.
Since the sides of P and Q, are the supplements of the arcs

which measure the angles of A and B (Prop. IX.), P and

Q, must be mutually equilateral. Also, because P and Q are

mutually equilateral, they must be mutually equiangular

(Prop. XL). But the sides of A and B are the supplements
of the arcs which measure the angles of P and Q ; and;

therefore, A and B are mutually equilateral.

PROPOSITION XIII. THEOREM.

If two triangles on equal spheres have two sides, and the in

eluded angle of the one, equal to two sides and the included

angle of the other, each to each, their third sides will be equal,
and their other angles will be equal, each to each.
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Let ABC, DEF be two triangles, having the side AB equal
to DE. AC equal to DF, and the angle BAG equal to the an

gle EDF ;
then will the side BC be equal to EF, the angle

ABC to DEF, and ACB to DFE.
If the equal sides in the two triangles are similarly sit-

uated, the triangle ABC may be applied to the triangle DEF
in the same manner as in plane tri- .

angles (Prop. VI., B. I.) ; and the two

triangles will coincide throughout.
Therefore all the parts of the one tri-

angle, will be equal to the correspond-

ing parts of the other triangle.
But if the equal sides in the two tri-

angles are not similarly situated, then

construct the triangle DF'E symmet-
rical with DFE, having DF' equal to

"

DF, and EF/ equal to EF. The two triangles DEF', DEF,
oeing mutually equilateral, are also mutually equiangular
(Prop. XL). Now the triangle ABC may be applied to the

triangle DEF', so as to coincide throughout ; and hence all

the parts of the one triangle, will be equal to the correspond-
ing parts of the other triangle. Therefore the side BC, be-

ing equal to EF', is also equal to EF ; the ai^gle ABC, being
equal to DEF', is also equal to DEF ; and the angle ACB,
being equal to DF'E, is also equal to DFE. Therefore, if

two triangles, &c.

PROPOSITION XIV. THEOREM.

If two triangles on equal spheres have two angles, and the

included side of the one, equal to two angles and the included side

of the other, each to each, their third angles will be equal and
their other sides will be equal, each to each.

If the two triangles ABC, DEF A
have the angle BAG equal to the an-

gle EDF, the angle ABC equal to

DEF, and the included side AB equal
to DE ; the triangle ABC can be

placed upon the triangle DEF, or

upon its symmetrical triangle DEF',
so as to coincide. Hence the remain-

ing parts of the triangle ABC, will be

equal to the remaining parts of the triangle DEF; that is,

the side A 1 will be equal to DF, BC to EF, and the angle
ACB to the angle DFE Therefore, if two triangles, &c
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PROPOSITION XV. THEOREM.

If two triangles on equal spheres are mutually equilateral,

they are equivalent.

Let ABC, DEF be two triangles
which have the three sides of the

one, equal to the three sides of the

other, each to each, viz., AB to

DE, AC to DF, and BC to EF ;

then will the triangle ABC be

equivalent to the triangle DEF.
Let G be the pole of the small

circle passing through the three

points A, B, C; draw the arcs GA, GB, GC ; these arcs will

be equal to each other (Prop. V.). At the point E, make the

angle DEH equal to the angle ABG; make the arc EH
equal to the arc BG ; and join DH, FH.

Because, in the triangles ABG, DEH, the sides DE, EH
are equal to the sides AB, BG, and the included angle DEH
is equal to ABG ;

the arc DH is equal to AG, and the angle
DHE equal to AGB (Prop. XIII.).

Now, because the triangles ABC, DEF are mutually equi-

lateral, they are mutually equiangular (Prop. XL) ; hence

the angle ABC is equal to the angle DEF. Subtracting the

equal angles ABG, DEH, the remainder GBC will be equal
to the remainder HEF. Moreover, the sides BG, BC are

equal to the sides EH, EF ; hence the arc HF is equal to the

arc GC, and the angle EHF to the angle BGC (Prop. XIIL).
Now the triangle DEH. may be applied to the triangle

ABG so as to coincide. For, place DH upon its equal BG
and HE upon its equal AG, they will coincide, because the

angle DHE is equal to the angle AGB ; therefore the two

triangles coincide throughout, and have equal surfaces. For
the same reason, the surface HEF is equal to the surface

GBC, and the surface DFH to the surface ACG. Hence
ABG+GBC-ACG=DEH+EHF-DFH ;

or, ABC=DEF;
that is, the two triangles ABC, DEF are equivalent. There

fore, if two triangles, &c.
Scholium. The poles G and H might be situated within

the triangles ABC, DEF ; in which case it would be neces-

sary to add the three triangles ABG, GBC, ACG to form the

triangle ABC; and als3 to add the three triangles DEH



BOOK IX. 16J

EHF, DFH to form the triangle DEF; otherwise the demon-
stration would be the same as above.

Cor. If two triangles on equal spheres,-are mutually equi-

angular, they are equivalent. They are also equivalent, if

they have two sides, and the included angle of the one, equal
to two sides and the included angle of the other, each to

each ;
or two angles and the included side of the one equal

to two angles and the included side of the other

PROPOSITION XVI. THEOREM.

In an isosceles spherical triangle, the angles opposite the

equal sides are equal; and, conversely, if two angles of a

spherical triangle are equal, the triangle is isosceles.

Let ABC be a spherical triangle, having
the side AB equal to AC ; then will the angle
ABC be equal to the angle ACB.
From the point A draw the arc AD to the

middle of the base BC. Then, in the two tri-

angles ABD, ACD, the side AB is equal to

AC, BD is equal to DC, and the side AD is

common ; hence the angle ABD is equal to

the angle ACD (Prop. XI.).

Conversely. Let the angle B be equal to the

angle C ; then will the side AC be equal to

the side AB.
For if the two sides are not equal to each

other, let AB be the greater ; take BE equal
to AC, and join EC. Then, in the triangles
EBC, ACB, the two sides BE, BC are equal to

the two sides CA, CB, and the included angles B
EBC, ACB are equal ; hence the angle ECB is equal to the

angle ABC (Prop. XIII.). But, by hypothesis, the angle ABC
_s equal to ACB ;

hence ECB is equal to ACB, which is ab-

surd. Therefore AB is not greater than AC ; and, in the

same manner, it can be proved that it is not less ; it is, con-

sequently, equa. to AC. Therefore, in an isosceles spherical

triangle, &c.
Cor. The angle BAD is equal to the angle CAD, and the

angle ADB to the angle ADC ; therefore each of the last two

angles is a right angle. Hence the arc drawnfrom the vertex

of an isosceles spherical triangle, to the middle of the base .,#

perpendicular to the base, and bisects the vertical angle.
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PROPOSITION XVII. THEOREM.

In a sphei ical triangle, the greater side is opposite the greale?

tngle, and conversely.

Let ABC be a spherical triangle, hav-

mg the angle A greater than the angle
B; then will the side BC be greater
than the side AC.
Diaw the arc AD, making the angle

BAD equal to B. Then, in the triangle

ABD, we shall have AD equal to DB B

(Prop. XVI.) ; that is, BC is equal to the sum of AD and DC
But AD and DC are together greater than AC (Prop. II.) ;

hence BC is greater than AC.

Conversely. If the side BC is greater than AC, then will

the angle A be greater than the angle B. For if the angle
A is not greater than B, it must be either equal to it, or less.

It is not equal ; for then the side BC would be equal to AC
(Prop. XVI.), which is contrary to the hypothesis. Neither

can it be less ; for then the side BC would be less than AC,

by the first case, which is also contrary to the hypothesis
Hence the angle BAG is greater than the angle ABC.
Therefore, in a spherical triangle, &c.

PROPOSITION XVIII. THEOREM.

The area of a lime is to the surface of the sphere, as the an-

gle of the lune is to four right angles.

Let ADBE be a lune, upon a sphere
whose center is C, and the diameter

AB ; then will the area of the lune be

to fhe surface of the sphere, as the an-

gle DCE to four right angles, or as the

arc DE to the circumference of a great
circle.

First. When the ratio of the arc to

the circumference can be expressed in

whole numbers.

Suppose the ratio of DE to DEFG to be as 4 to 25. Now
if we divide the circumference DEFG in 25 equal parts, DE
will contain 4 of those parts. If we join the pole A and the

several points of division, bv arcs of great circles ; there wilt
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be formed on the hemisphere ADEFG, 25 triangles, all equal
to each other, being mutually equilateral. The entire sphere
will contain 50 of these small triangles, and the June ADBE
8 of them. Hence the area of the lune is to the surface of

the sphere, as 8 to 50, or as 4 to 25 ; that is, as the arc DE
to the circumference.

Secondly. When the ratio of the arc to the circumference

can not be expressed in whole numbers, it may be proved, as

in Prop. XIV., B. III., that the lune is still to the surface of

the sphere, as the angle of the lune to four right angles.
Cor. 1. On equal spheres, two lunes are to each other as

the angles included between their planes.
Cor. 2. We have seen that the entire surface of the sphere

is equal to eight quadrantal triangles (Prop. X., Cor.). It

the area of the quadrantal triangle be represented by T, the

surface of the sphere will be represented by 8T. Also, if we
take the right angle for unity, and represent the angle of the

lune by A, we shall have the proportion
area of the lune : 8T : : A : 4.

8A X T
Hence the area of the lune is equal to , or 2AxT.

4
Cor. 3. The spherical ungula, comprehended by the planes

ADB, AEB, is to the entire sphere, as the angle DCE is to

four right angles. For the lunes being equal, the spherical

ungulas will also be equal ; hence, in equal spheres, two un-

gulas are to each other as the angles included between their

planes.

PROPOSITION XIX. THEOREM.

If two great circles intersect each other on the surface of a

hemispliere, the sum of the opposite triangles thus formed, u
equivalent to a lune, whose angle is equal to the inclination of
the two circles.

Let the great circles ABC, DBE in-

tersect each other on the surface of
the hemisphere BADGE ; then will the

sum of the opposite triangles ABD,
CBE be equivalent to a lune whose

angle is CBE.
For, produce the arcs BC, BE till

they meet in F ; then will BCF be a

semicircumference, as a'so ABC. Sub-

tracting BC from each, we shall have CF 'equal to AB. For
the same reason EF is equal to DB, and CE is equal to AD.
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Hence the two triangles ABD, CFE are mutua ly equilat-

eral ; they are, therefore, equivalent (Prop. XV.). But the

two triangles CBE, CFE compose the lune BCFE, whose an-

gle is CBE ; hence the sum of the triangles ABD, CBE is

equivalent to the lune whose angle is CBE. Therefore, if

two great circles, &c.

PROPOSITION XX, THEOREM.

The surface of a spherical triangle is measured by the tx

cess of the sum of its angles above two right angles, multiplier

by the quadrantal triangle.

Let ABC be any spherical triangle ; its

surface is measured by the sum of its an-

gles A, B, C diminished by two right an-

gles, and multiplied by the quadrantal tri-

angle.
Produce the sides of the triangle ABC,

until they meet the great circle DEG,
drawn without the triangle. The two

triangles ADE, AGH are together equal
to the lune whose angle is A (Prop. XIX.) ; and tliits lune is

measured by 2A X T (Prop. XVIIL, Cor. 2). Henoe we have
ADE+AGH= 2AxT.

For the same reason,

BFG+BDI=2BxT;
ilso, CHI+CEF=2CxT.
But the sum of these six triangles exceeds the surface of

the hemisphere, by twice the triangle ABC ; and the hemi-

sphere is represented by 4T ; hence we have

4T+2ABC=2AxT+2BxT+2CxT;
or, dividing by 2, and then subtracting 2T from each ol

these equals, we have
ABC=AxT+BxT-fCxT 2T,

=(A+B+C-2)XT.
Hence every spherical triangle is measured by the sum of

its angles diminished by two right angles, and multiplied by
the quadrantal triangle.

Cor. If the sum of the three angles of a triangle is equal
to three right angles, its surface will be equal to the. quad-
rantal triangle ; if the sum is equal to four right angles, the

surface of the triangle will be equal to two quadrantal trian-

gles ; if the sum is equal to five right angles, the surface will

be equal to three quadrantal triangles, etc.
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PROPOSITION XXI. THEOREM.

TJie surface of a spherical polygon is measured by the sum

(fits angles, diminished by as many times two right anghs as

it has sides less two, multiplied by the quadrantal triangle.

Let ABODE be any spherical polygon.
From the vertex B draw the arcs BD,
BE to. the opposite angles ; the polygon
will be divided into as many triangles as

it has sides, minus two. But the surface

of each triangle is measured by the sum
of its angles minus two right angles, mul-

tiplied by the quadrantal triangle. Also,
the sum of all the angles of the triangles, is equal to the sum
of all the angles of the polygon ; hence the surface of the

polygon is measured by the sum of its angles, diminished by
as many times two right angles as it has sides less two, mul-

tiplied by the quadrantal triangle.
Cor. If the polygon has five sides, and the sum of its an

gles is equal to seven right angles, its surface will be equal to

the quadrantal triangle ; if the sum is equal to eight right an-

gles, its surface will be equal to two quadrantal triangles ; if

the sum is equal to nine right angles, the surface will be

equal to three quadrantal triangles, etc.
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BOOK X.

THE THREE ROUND BODIES.

Definitions.

1. A cylinder is a solid described by the revolu-

tion of a rectangle about one of its sides, which
remains fixed. The bases of the cylinder are the

circles described by the two revolving opposite
sides of the rectangle.

2. The axis of a cylinder is the fixed straight
line about which the rectangle revolves. The op-

posite side of the rectangle describes the convex

surface.
3. A cone is a solid described by the revolu-

tion of a right-angled triangle about one of the

sides containing the right angle, which side re-

mains fixed. The base of the cone is the cir-

cle described by that side containing the right

angle, which revolves.

4. The axis of a cone is the fixed straight
line about which the triangle revolves. The

hypothenuse of the triangle describes the convex surface.
The side of the cone is the distance from the vertex to the

circumference of the base.

5. A frustum of a cone is the part of a cone next the

base, cut off by a plane parallel to the base.

6. Similar cones and cylinders are those which have their

axes and the diameters of their bases proportionals.

PROPOSITION I. THEOREM.

The convex surface of a cylinder is equal to ike prcduct of
its altitude by the circumference of its base.

Let ACE-G be a cylinder whose base is the circle ACE
and altitude AG ; then will its convex surface be equal to

'he product of AG by the circumference ACE.
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In the circle ACE inscribe the regular
polygon ABCDEF; and upon this polygon G
.et a right prism be constructed of the same
altitude with the cylinder. The edges AG,
BH, CK, &c., of the prism, being perpen-
dicular to the plane of the base, will be con-
tained in the convex surface of the cylinder.
The convex surface of this prism is equal to

the product of its altitude by the perimeter
of its base (Prop. L, B. VIII.). Let, now,
the arcs subtended by the sides AB, BC, &c., be bisected,
and the number of sides of the polygon be indefinitely in-

creased ; its perimeter will approach the circumference of the

circle, and will be ultimately equal to it (Prop. XL, B. VI.),-
and the convex surface 6f the prism will become equal to

the convex surface of the cylinder. But whatever be the

number of sides of .the prism, its convex surface is equal to

the product of its altitude by the perimeter of its base ; hence
the convex surface of the cylinder is equal to the product of

its altitude by the circumference of its base.

Cor. If A represent the altitude of a cylinder, and R the

radius of its base, the circumference of the base will be repre-
sented by 2rrR (Prop. XIIL, Cor. 2, B. VI.) ; and the convex
surface of the cylinder by 2-RA.

PROPOSITION II. THEOREM.

The solidity of a cylinder is equal to the product of its bast

by its altitude.

Let ACE-G be a cylinder whose base is

the circle ACE and altitude AG ; its solidity G
is equal to the product of its base by its al-

titude.

In the circle ACE inscribe the regular

polygon ABCDEF ; and upon this polygon
let a right prism be constructed of the same
altitude with the cylinder. The solidity of

this prism is equal to the product of its base

by its altitude (Prop. XL, B. VIIL). Let,

now, the number of sides of the polygon be indefinitely in

creased ; its area will become equal to that of the circle, and

the solidity of the prism becomes equal to that of the cylinder.
But whatever be the number of sides of the prism, its solidity
is equal to the product of its base by its altitude ; hence the

solidity of a cylinder is equal to the product of its ?ase by its

altitude
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Cor. 1. If A represent the altitude of a cylinder, and K
the radius of its base, the area of the base will be represent-
ed by 7rRa

(Prop. XIII., Cor. 3, B. VI.) ; and the solidity of

the cylinder will be 7rR
2A.

Cor. 2. Cylinders of the same altitude, are to each otaer

as their bases; and cylinders of the same base, are to each
other as their altitudes.

Cor. 3. Similar cylinders are to each other as the cubea
of their altitudes, or as the cubes of the diameters of their

bases. For the bases are as the squares of their diameters ;

and since the cylinders are similar, the diameters of the bases

are as their altitudes (Def. 6). Therefore the bases are as

the squares of the altitudes ; and hence the products of the

bases by the altitudes, or the cylinders themselves, will be as

the cubes of the altitudes.

PROPOSITION III. THEOREM.

The convex surface of a cone is equal to the product of hall

its side, by the circumference of its base.

Let A-BCDEFG be a cone whose base is

the circle BDEG, and its side AB ; then will

its convex surface be equal to the product
of half its side by the circumference of the

circle BDF.
In the circle BDF inscribe the regular

polygon BCDEFG; and upon this polygon
let a regular pyramid be constructed having
A for its vertex. The edges of this pyramid
will lie in the convex surface of the cone.

From A draw AH perpendicular to CD, one of the sides of

the polygon. The convex surface of the pyramid is equal to

the product of half the slant height AH by the perimeter of

its base (Prop. XIV., B. VIII.). Let, now, the arcs subtend-

ed by the sides BC, CD, &c., be bisected, and the numbei
of sides of the polygon be indefinitely increased, its perimeter
wix. become equal to the circumference of the circle, the slant

height AH becomes equal to the side of the cone AB, and
he convex surface of the pyramid becomes equal to the con-

vex surface of the cone. But, whatever be the number of

faces of the pyramid, its convex surface is equal to the prod-
act of half its slant height by the perimeter of its base ; hence

the convex surface of the cone, is equal to the product of

half its side by the circumference of its base.

Cor* If S represent the side of a cone, and R the radius
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of its base, then the circumference of the base will be repre-
sented by 27rR, and the convex surface of the cone by

PROPOSITION IV. THEOREM.

The convex surface of a frustum of a cone is equal to th&

vroduct of its side, by half the sum of the circumferences of its

two bases.

Let BDF-&e?f be a frustum of a cone
whose bases are BDF, bdf, and B6 its

side ; its convex surface is equal to the

product of Eb by half the sum of the cir-

cumferences BDF, bdf.

Complete the cone A-BDF to which the

frustum belongs, and in the circle BDF
inscribe the regular polygon BCDEFG ;

and upon this polygon let a regular pyr-
amid be constructed having A for its

vertex. Then will BDF-bdf be a frus-

tum of a regular pyramid, whose convex
surface is equal to the product of its slant height by half the

sum of the perimeters of its two bases (Prop. XIV., Cor. 1, B.

VIII.). Let, now, the number of sides of the polygon be in-

definitely increased, its perimeter will become equal to the

circumference of the circle, and the convex surface of the

pyramid will become equal to the convex surface of the cone.

But, whatever be the number of faces of the pyramid, the con-

vex surface of its frustum is equal to the product of its slant

neight, by half the sum of the perimeters of its two bases.

Hence the convex surface of a frustum of a cone is equal to

the product of its side by half the sum of the circumferences
of its two bases.

Cor. It was proved (Prop. XIV., Cor. 2, B. VIII.), that the

convex surface of a frustum of a pyramid is equal to the

product of its slant height, by the perimeter of a section at

equal distances between its two bases ; hence the convex sur-

face of a frustum of a cone is equal to the product oj its side,

by the circumference of a section at equal distances between the

two bases

H
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PROPOSITION V. THEOREM.

The solidity of a cone is equal to one third of the inoduct of

its base and altitude.

Let A-BCDF be a cone whose base is the

circle BCDEFG, and AH its altitude ; the

solidity of the cone will be equal to one thira

of the product of the base BCDF by the al-

titude AH.
In the circle BDF inscribe a regular poly-

gon BCDEFG, and construct a pyramid
whose base is the polygon BDF, and having B(
its vertex in A. The solidity of this pyra-
mid is equal to one third of the product of

the polygon BCDEFG by its altitude AH (Prop. XVIL, B.

VIII.). Let, now, the number of sides of the polygon be in-

definitely increased; its area will become equal to the area

of the circle, and the solidity of the pyramid will become

equal to the solidity of the cone. But, whatever be the

number of faces of the pyramid, its solidity is equal to one
third of the product of its base and altitude ; hence the solidity
of the cone is equal to one third of the product of its base and
altitude.

Cor. 1. Since a cone is one third of a cylinder having the

*&me base and altitude, it follows that cones of equal alti

Judes are to each other as their bases ; cones of equal bases

are to each other as their altitudes ; and similar cones are as

the cubes of their altitudes, or as the cubes of the diameters
of their bases.

Cor. 2. If A represent the altitude of a cone, and R the

radius of its base, the solidity of the cone will be represented

by 7rR
a X A, or iTrR'A.

PROPOSITION VI. THEOREM.

A frustum of a cone is equivalent to the sum of three cones,

saving the same altitude with the frustum, and whose bases are

the lower base of the frustum, its upper base, and a mean pro*

portional between them.

Let BDF-fo/f be any frustum of a cone. Complete the

cone to which the frustum belongs, and in the circle BDF in

scribe the regular polygon BCDEFG ; and upon this poly
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gon let a regular pyramid be construct-

ed having its vertex in A. Then will

BCVEFG-bcdefg be a frustum of a reg-
ular pyramid, whose solidity is equal to

three pyramids having the same altitude

with the frustum, and whose bases are

the lower base of the frustum, its upper
base, and a mean proportional between
them (Prop. XVIIL, B. VIII.). Let, now,
the number of sides of the polygon be in-

definitely increased, its area will become

equal to the area of the circle, and the

frustum of the pyramid will become the frustum of a cone
Hence the frustum of a cone is equivalent to the sum of three

cones, having the same altitude with the frustum, and whose
bases are the lower base of the frustum, its upper base, and
a mean proportional between them.

M

PROPOSITION VII. THEOREM.

The surface of a sphere is equal to the product of its diame

ter by the circumference of a great circle.

Let ABDF be the semicircle by the revo-

lution of which the sphere is described. In-

scribe in the semicircle a regular semi-poly-

gon ABCDEF, and from the points B, C, D,
E let fall the perpendiculars BG, CH, DK,
EL upon the diameter AF. If, now, the

polygon be revolved about AF, the lines AB,
EF will describe the convex surface of two
cones ; and BC, CD, DE will describe the

convex surface of frustums of cones.

From the center I, draw IM perpendicular
to BC ; also, draw MN perpendicular to AF,
and BO perpendicular to CH. Let circ. MN represent the

circumference of the circle described by the revolution of

MN. Then the surface described by the revolution of BC,
will be equal to BC, multiplied by circ. MN (Prop. IV.

Cor.).

Now, the triangles IMN, BCO are similar, since their sides

are perpendicular to each other (Prop. XXL, B. IV.) ; whence
BC : BO or GH : : IM : MN,

: : circ. IM : circ. MN.
Hence (Prop. I., B. II.),

BC X circ. MN= GH X circ. IM.
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Therefore the surface described by BC, is

equal to the altitude GH, multiplied by circ. "-"
IM, or the circumference of tne inscribed /^f
circle.

// H
In like manner, it may oe proved that the c/ |X : \S

surface described by CD is equal to the alti-

tude HK, multiplied by the circumference of

he inscribed circle; and the same may be

proved of the other sides. Hence the entire

surface described by ABCDEF is equal to

the circumference of the inscribed circle, mul-

tiplied by the sum of the altitudes AG, GH,
HK, KL, and LF ; that is, the axis of the polygon.

Let, now, the arcs AB, BC, &c., be bisected, and the num-
ber of sides of the polygon be indefinitely increased, its pe-
rimeter will coincide with the circumference of the semicircle,

and the perpendicular IM will become equal to the radius of

the sphere ; that is, the circumference of the inscribed circle

will become the circumference of a great circle. Hence the

surface of a sphere is equal to the product of its diameter by
the circumference of a great circle.

Cor. I. The area of a zone is equal to the product of its al

titude by the circumference of a great circle.

For the surface described by the lines BC, CD is equal to

the altitude GK, multiplied by the circumference of the in-

scribed circle. But when the number of sides of the polygon
is indefinitely increased, the perimeter BC-}-CD becomes the

arc BCD, and the inscribed circle becomes a great circle.

Hence the area of the zone produced by the revolution of

BCD, is equal to the product of its altitude GK by the cir

cumference of a great circle.

Cor. 2. The area of a great circle is equal to the prod-
uct of its circumference by half the radius (Prop. XII., B.

VI.), or one fourth of the diameter ; hence the surface of a

sphere is equivalent tofour of its great circles.

Cor. 3, The surface of a sphere is equal to the convex su.r

face of the circumscribed cylinder.
For the latter is equal to the product of its

altitude by the circumference of its base. But
its base is equal to a great circle of the sphere,
and its altitude to the diameter ; hence the

convex surface of the cylinder, is equal to the

product of its diameter by the circumference

of a great circle, which is also the measure of

the surface of a sphere.
Cor. 4. Two zones upon equal spheres, are to each othei

RS their altitudes ;
and any zone is to the surface of its
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sphere, as the altitude of the zone is to the diameter of the

sphere.
Cor. 5. Let R denote the radius of a sphere, D its diame-

ter, C the circumference of a great circle, and S the surface

of the sphere, then we shall have
C= 2:rR, or rrD (Prop. XIIL, Cor. 2, B. VI.).

Also, S=27rR x 2R= 4rrR
2

, or TrD
2
.

If A represents the altitude of a zone, its area will be
27rRA.

PROPOSITION VIII. THEOREM.

The solidity of a sphere is equal to one third the product of

its surface by the radius.

Let ACEG be the semicircle by the revo-

lution of which the sphere is described. In-

scribe in the semicircle a regular semi-poly-

gon ABCDEFG, and draw the radii BO,
CO, DO, &c.
The solid described by the revolution of

the polygon ABCDEFG about AG, is com-

posed of the solids formed by the revolu-

tion of the triangles ABO, BCO, CDO, &c.,
about AG.

First. To find the value of the solid form-

ed by the revolution of the triangle ABO.
From O draw OH perpendicular to AB,

and from B draw BK perpendicular to AO.
The two triangles ABK, BKO, in their revolution about AO,
will describe two cones having a common base, viz., the cir-

cle whose radius is BK. Let area BK represent the area

of the circle described by the revolution of BK. Then the

solid described by the triangle ABO will be represented by
Area BKx^AO (Prop. V.).

Now the convex surface of a cone is expressed by *n-RS

(Prop. III., Cor.) ; and the base of the cone by 7rR
a
. Hence

the convex surface : base : : TrRS : -R2

,

: : S : R (Prop. VIII., B. II.).

But AB describes the convex surface of a cone, of which
BK describes the base ; hence
the surface described by AB : area BK : : AB BK

: : AO : OH,
because the triangles ABK, AHO are similar. Hence

Area BKx AO= OHx surface described by AB,
or Area BK x |AO ^ ^OH x surface described by AB.
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But we have proved that the solid de-

scribed by the triangle ABO, is equal to

area BKxjAO; it is, therefore, equal to

iOH x surface described by AB.

Secondly. To find the value of the solid

formed by the revolution of the triangle
BCO.
Produce BC until it meets AG produced

in L. It is evident, from the preceding
demonstration, that the solid described by
the triangle LCO is equal to

^OM x surface described by LC ;

and the solid described by the triangle LBO
is equal to

iOM X surface described by LB ;

hence the solid described by the triangle BCO is equal to

^OM X surface described by BC.
In the same manner, it may be proved that the solid de-

scribed by the triangle CDO is equal to

iON x surface described by CD ;

and so on for the other triangles. But the perpendiculars
OH, OM, ON, &c., are all equal ; hence the solid described

by the polygon ABCDEFG, is equal to the surface described

by the perimeter of the polygon, multiplied by -|OH.
Let, now, the number of sides of the polygon be indefinite-

ly increased, the perpendicular OH will become the radius

OA, the perimeter ACEG will become the semi-circumference

ADG, and the solid described by the polygon becomes a

sphere ; hence the solidity of a sphere is equal to one third

jf the product of its surface by the radius.

Cor. 1. The solidity of a spherical sector is equal to the prod-
uct of the zone whichforms its base, by one third of its radius.

For the solid described by the revolution of BCDO \

equal to the surface described by BC+CD, multiplied b;
iOM. But when the number of sides of the polygon is in

definitely increased, the perpendicular OM becomes the

radius OB, the quadrilateral BCDO becomes the sector

BDO, and the solid described by the revolution of BCDO
becomes a spherical sector. Hence the solidity of a spheri-
cal sector is equal to the product of the zone which forms its

base, by one third of its radius.

Cor. 2. Let R represent the radius of a sphere, D its di-

ameter, S its surface, and V its solidity, then we shall have
S=47rR 2

or TrD
3

(Prop. VII., Cor. 5).

Also, V=^RxS= |7rR
3
or |7rD

3

;

hence the solidities of svheres are to each other as the cubes of
their radii
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If we put A to represent the altitude of the zone which
forms the base of a sector, then the solidity of the sector will

be represented by
.

Cor. 3. Every sphere is two thirds of the circumscribed

cylinder.

For, since the base of the circumscribed cylinder is equal
lo a great circle, and its altitude to a diameter, the solidity
of the cy.inder is equal to a great circle, multiplied by the

diameter (Prop- II.). But the solidity of a sphere is equal
to four great circles, multiplied by one third of the radius ; or

one great circle, multiplied by f of the radius, or f of the

diameter. Hence a sphere is two thirds of the circumscribed

cylinder.

PROPOSITION IX. THEOREM.

A spherical segment with one base, is equivalent to half of
i cylinder having the same base and altitude, plus a sphere
whose diameter is the altitude of the segment.

Let BD be the radius of the base of the

segment, AD its altitude, and let the segment
be generated by the revolution of the circu-

lar half segment AEBD about the axis AC.
Join CB, and from the center C draw CF per-

pendicular to AB.
The solid generated by the revolution of

the segment AEB, is equal to the difference of the solids gen-
erated by the sector ACBE, and the triangle ACB. Now,
the solid generated by the sector ACBE is equal to

|7rCB
3 xAD (Prop. VIIL, Cor. 2).

And the solid generated by the triangle ACB, by Prop. VIIL,
is equal to ^CF, multiplied by the convex surface described

by AB, which is SrrCF xAD (Prop. VII.), making for the "solid

generated by the triangle ACB,
|TrCF

2 xAD.
Therefore the solid generated by the segment AEB, is equal
to |7rADx(CB

2 CF2

),

or fTrADxBF
2

;

that is, iTrADxAB2

,

"

because CB2 CF2
is equal to BF2

, and BFa
is equal to one

fourth of AB2
.

Now the cone generated by the triangle ABD is equal to

iTiADxBD2

(Prop. V., Cor. 2).
Therefore the spherical segment in question, which is the

sum of the solids described by AEB and ABD, is equal to
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that is, i7rAD(3BD
2

-f AD2

),

because ABa
is equal to BD 2 +AD2

.

This expression may be separated into the two parts

and
The first part represents the solid-

ity of a cylinder having the same
base with the segment and half its

altitude (Prop. II.) ; the other part

represents a sphere, of which AD is

the diameter (Prop. VIII., Cor. 2).

segment, &c.
Cor. The solidity of the spherical seg-

ment of two bases, generated by the revolu-

tion of BCDE about the axis AD, may be
found by subtracting that of the segment of
one base generated by ABE, from that of the

segment of one base generated by ACD.

Therefore, a spherical

7

j\

D



CONIC SECTIONS,

THERE are three curves whose properties are extensively

applied in Astronomy, and many other brunches of science,

which, being the sections of a cone made by a plane in dif

ferent positions, are called the conic sections. These are

The Parabola,
The Ellipse, and
The Hyperbola.

PARABOLA.

Definitions.

1. A parabola is a plane curve, every point of which is

equally distant from a fixed point, and a given straight line.

2. The fixed point is called the focus of the parabola and

the given straight line is called the directrix.

Thus, if F be a fixed point, and BC a B
given line, and the point A move about F A ^

in such a manner, that its distance from F D
is always equal to the perpendicular dis-

tance from BC, the point A will describe

a parabola, of which F is the focus, and

BC the directrix.

3. A diameter is a straight line drawn

through any point of the curve perpen-
dicular to the directrix. The vertex of

the diameter is the point in which it cuts c
the curve.

Thus, through any point of the curve, as A, draw a line

DE perpendicular to the directrix BC ; DE is a diameter oi

the parabola, and the point A is the vertex of this diameter.

4. The axis of the parabola is the diameter which passes

through the focus ;
and the point in which it cuts the curve

is called the principal vertex.

Thus, draw a diameter of the parabola, GH, through the
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focus F ; GH is the axis of the, parabola, B
and the point V, where the axis cuts the ^
curve, is called the principal vertex of

the parabola, or simply the vertex.

It is evident from Def. 1, that the line
3

FH is bisected in the point V.
5. A tangent is a straight line which E

meets the curve, but, being produced, does

not cut it. C

6. An ordinate to a diameter, is a straight line drawn from

any point of the curve to meet that diameter, and is parallel
to the tangent at its vertex.

Thus, let AC be a tangent to the

parabola at. B, the vertex of the di-

ameter BD. From any point E of the

curve, draw EGH parallel to AC ;

then is EG an ordinate to the diame-
ter BD.

It is proved in Prop. IX., that EG
is equal to GH ; hence the entire line

EH is called a double ordinate.

7. An abscissa is the part of a diameter intercepted be-

tween its vertex and an ordinate.

Thus, BG is the abscissa of the diameter BD, correspond-
ing to the ordinate EG.

8. A subtangent is that part of a diameter intercepted be-

tween a tangent and ordinate to the point of contact.

Thus, let EL, a tangent to the curve at E, meet the di-

ameter BD in the point L ; then LG is the subtangent of BD,
corresponding to the point E.

9. The parameter of a diameter is the double ordinate

which passes through the focus.

Thus, through the focus F, draw IK parallel to the tan-

gent AC ; then is IK the parameter of the diameter BD.
10. The parameter of the axis is called the principal pa-

rameter, or latus rectum.

11. A normal is a line drawn perpendicular to a tangent
from the point of contact, and terminated by the axis.

12. A. subnormal is the part of the axis

intercepted between the normal, and the

corresponding ordinate.

Thus, let AB be a tangent to the

parabola at any point A. From A
draw AC perpendicular to AB ; draw,
also, the ordinate AD. Then AC is the

normal, and DC is the subnormal cor-

responding to the point A
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PROPOSITION I. PROBLEM.

To describe a parabola.

Let BC be a ruler laid upon a plane,
and lei DEG be a square. Take a

thread equal in length to EG, and attach

one extremity at G, and the other at

some point as F. Then slide the side

of the square DE along the ruler BC,
and, at the same time, keep the thread

continually tight by means of the pencil
A ; the pencil will describe one part of

a parabola, of which F is the focus, and
BC the directrix. For, in every posi-
tion of the square,

AF+AG=AE+AG,
and hence AF=AE ;

that is, the point A is always equally distant from the focus

F and directrix BC.
If the square be turned over, and moved on the other side

of the point F, the other part of the same parabola may be
iescribed.

PROPOSITION II. THEOREM.

A tangent to the parabola bisects the angle formed at the

point of contact, by a perpendicular to the directrix, and a lin*

drawn to the focus.

Let A be any point of the parabola
from which draw the line AF to

the focus, and AB perpendicular to the

directrix, and draw AC bisecting the an-

gle BAF ; then will AC be a tangent to

the curve at the point A.

For, if possible, let the line AC meet
the curve in some other point as D.
Join DF, DB, and BF ; also, draw DE
perpendicular to the directrix.

Since, in the two triangles ACB, ACF, AF is equal to AB
(Def. 1), AC is common to both triangles, and the angle CAB
is, by supposition, equal to the angle CAF ; therefore CB is

equal to CF, and the angle ACB to the angle ACF.
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Again, in the two triangles DCB, DCF, because B(J ,s

equal to CF, the side DC is common to both triangles, and
the angle DCB is equal to the angle DCF ; therefore DB is

equal to DF. But DF is equal to DE (Def. 1) ; hence DB
is equal to DE, which is impossible (Prop. XVII., B. L).
Therefore the line AC does not meet the curve in D ; and in

the same manner it may be proved that it does not meet the

curve in any other point than A ; consequently it is a tangent
to the parabola. Therefore, a tangent, &c.

Cor. 1. Since the angle FAB continually, increases as the

point A moves toward V, and at V becomes equal to two

right angles, the tangent at the principal vertex is perpendicu-
lar to the axis. The tangent at the vertex V is called the.

vertical tangent.
Cor. 2. Since an ordinate to any diameter is parallel to

the tangent at its vertex, an ordinate to the axis is perpen
dicular to the axis.

PROPOSITION III. THEOREM.

The lotus rectum is equal tofour times the distancefrom tht

focus to the vertex.

Let AVB be a parabola, of which F is the

focus, and V the principal vertex ; then the ~
latus rectum AFB will be equal to four

times FV.
Let CD be the directrix, and let AC be

drawn perpendicular to it; then, according D
to Def. 1, AF is equal to AC or DF, because
ACDF is a parallelogram. But DV is equal
to VF ; that is, DF is equal "to twice VF.
Hence AF is equal to twice VF. In the

same manner it may be proved that BF is equal to twice
VF ; consequently AB is equal to four times VF. There-

fore, the latus rectum, &c.

PROPOSITION IV. THEOREM.

If a tangent to the parabola cut the axis produced, the

points of contact and of intersection are equally distant from
the focus.

Let AB be a tangent to the parabola GAH at the point A,
and let it cut the axis produced in B ; also, let AF be drawn
to the focus ; then will the line AF be equal tc BF.
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Draw AC perpendicular to the di-

rectrix; then, since AC is parallel to

BF, the angle BAG is equal to ABF.
But the angle BAG is equal to BAF
(Prop. II.) ; hence the angle ABF Is

equal to BAF, and, consequently, AF
is equal to BF. Therefore, if a tan-

gent, &c.
Cor. 1. Let the normal AD be

drawn. Then, because BAD is a

right angle, it is equal to the sum of the two angles ABD
ADB, or to the sum of the two angles BAF, ADB. Take

away the common angle BAF, and we have the angle DAF
equal to ADF. Hence the line AF is equal to FD. There-

fore, if a circle be described with the center F, and radius FA,
it will pass through the three points B, A, D.

Cor. 2. The normal bisects the angle made by the diameter

at the point of contact, with the line drawn from that point to

the focus.
For, because BD is parallel to CE, the alternate angles

ADF, DAE are equal. But the angle ADF has been proved
equal to DAF; hence the angles DAF, DAE are equal to

each other.

Scholium. It is a law in Optics, that the angle made by a

ray of reflected light with a perpendicular to the reflecting

surface, is equal to the angle which the incident ray makes
with the same perpendicular. Hence, if GAH represent a

concave parabolic mirror, a ray of light falling upon it in the

direction EA would be reflected to F. The same would be

true of all rays parallel to the axis. Hence the point F, in

which all the rays would intersect each other, is called the

fccus, or burning point.

PROPOSITION V. THEOREM.

The subtangent to the axis is bisected by the vertex.

Let AB be a tangent to the parab-
o a ADV at the point A, and AC
an ordinate to the axis; then wi.l

BC be the subtangent, and it will be

bisected at the vertex V.
For BF is equal to AF (Prop.

IV.) ;
and AF is equal to CE, which

is the distance of the point \. from
the directrix. But CE is e^ual to

the sum of CV and VE, or (TV and VF. Hence BF, 01
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BV+VF is jqual .o CV+VF ; that is, BV is equal to C V
Therefore, the subtangent, &c.

Cor. 1. Hence the tangent at D, the extremity of the latus

~ectum, meets the axis in E, the same point with the direc-

trix. For, by Def. 8, Ef
1

is the subtangent corresponding to

the tangent DE.
Cor. 2. Hence, if it is required to draw a tangent to the

curve at a given point A, draw the ordinate AC to the axis,

Make BV equal to VC ; join the points B, A, and the line

BA will be the tangent required.

PROPOSITION VI. THEOREM.

The subnormal is equal to half the latus rectum.

Let AB be a tangent to the parab-
ola AV at the point A, let AC be
he ordinate, and AD the normal from
the point of contact ; then CD is the

subnormal, and is equal to half the

latus rectum.
For the distance of the point A

from the focus, is equal to its distance

from the directrix, which is equal to

VF+VC, or 2VF+FC ; that is,

FA=2VF+FC,
or 2VF=FA~FC.
Also, CD is equal to FD FC, which is equal to FA FC
(Prop. IV., Cor. 1). Hence CD is equal to 2VF, which is

equal to half the latus rectum (Prop. III.). Therefore, the

subnormal, &c.

PROPOSITION VII. THEOREM.

If a perpendicular be drawn from the focus to any tangent,
the point of intersection will be in the vertical tangent.

Let AB be any tangent to the pa-
rabola AV, and FC a perpendicular let

fall from the focus upon AB ; join VC ;

then will the line VC be a tangent to

the curve at the vertex V.
Draw the ordinate AD to the axis

Since FA is equal to FB (Prop. IV.),
and FC is drawn perpendicular to

A.B. it divide? the triangle AFB into
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two equal parts, and, therefore, AC is equal to BC. Bu*

BV is equa. to VD (Prop. V.) ; hence
BC : CA : : BV : VD,

and, therefore, CV is parallel to AD (Prop. XVL, B. IV.). But

AD is perpendicular to the axis BD ; hence CV is also per

pendicular to the axis, and is a tangent to the curve at the

point V (Prop. II., Cor. 1). Therefore, if a perpendicular,
&c.

Cor. 1. Because the triangles FVC, FCA are similar, we
have FV : FC : : FC : FA ;

that is, the perpendicularfrom the focus upon any tangent, is a

mean proportional between the distances of the focus from the

vertex, and from the point of contact.

Cor. 2. Ifis obvious that FV: FA : :FC2
:FA2

.(Prop. XII., B. II.)

Cor. 3. From Cor. 1, we have
FC2=FVxFA.

But FV remains constant for the same parabola ; therefore

the distancefrom the focus to the point of contact, varies as the

square of the perpendicular upon the tangent.

PROPOSITION VIII. THEOREM.

The square of an ordinate to the axis, is equal to the product
of the lotus rectum by the corresponding abscissa.

Let AVC be a parabola, and A any point
of the curve. From A draw the ordinate

AB ; then is the square of AB equal to the

product of VB by the latus rectum.

For AB3
is equal to AF2 FB2

.

But AF is equal to VB+VF, and FB is

equal to VB-VF.
Hence AB2

=(VB-hVF)
2-(VB-VF)

2

,

which, according to Prop. IX., Cor., B. IV.,

is equal to

4VBXVF,
or VBx the latus rectum (Prop. III.).

Therefore, the square, &c.
Cor. 1. Since the latus rectum is constant for the same

parabola, the squares of ordinates to the axis, are to each other

a? their corresponding abscissas.

Cor. 2. The preceding demonstration is equally applicable
to ordinates on either side of the axis ; hence AB is equal to

BC, and AC is called a double ordinate. The curve is sym-
metrical with respect to the axis, and the wh^lo pr-.-.ibola is

bisected by the axis.



184 CONIC SECTIONS.

PROPOSITION IX. THEOREM.

The square of an ordinate to any diameter, is equal to foui
times the product of the corresponding abscissa, by the distance

from the vertex of that diameter to the focus.

Let AD be a tangent to the

parabola VAM at the point

A; through A draw the di-

ameter HAG, and through

any point of the curve, as B,

draw BC parallel to AD ;

draw also AF to the focus ;

then will the square of BC be

equal to4AFxAC.
Draw CE parallel, and EBG

perpendicular to the directrix HK ; and join BH, BF, HF,

Also, produce CB to meet HF in L.

Because the right-angled triangles FHK, HCL are simi-

lar, and AD is parallel to CL, we have
HF : FK : : HC : HL

: : AC : DL.
Hence (Prop. L, B. II.),

HFxDL= FKxAC,
or 2HF X DL=2FKX AC, or 4VF X AC.
But 2HFxDL=HL2-LF2

(Prop. X., B. IV.)
=HB2 BF2

=HG2 orCE 3
.

Hence CE2
is equal to 4VFxAC.

Also, because the triangles BCE, AFD are similar, we have

CE
Therefore CE 2

CB
CB2

DF : AF.
DF : AF2

(Prop. X., B. II.)

VF : AF (Prop. VII., Cor. 2)

4VFxAC:4AFxAC.
But the two antecedents of this proportion have been prove/I
to be equal ; hence the consequents are equal, or

BC 2=4AFxAC.
Therefore, tne square of an ordinate, &c.

Cor. In like manner it may be proved that the square of

CM is equal to 4AF x AC. Hence BC is equal to CM ; raid

since the same may be proved for any ordinate, it follows

that every diameter bisects its double ordinates.
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PROPOSITION X. THEOREM..

The parameter of any diameter, is equal to four times

distancefrom its vertex to the focus.

Let BAD be a parabola, of which
F is the focus, AC is any diameter,
and BD its parameter; then is BD
equal to four times AF.
Draw the tangent AE ; then, since

AEFC is a parallelogram, AC is equal
to EF, which is equal to AF (Prop.

IV.).

Now, by Prop. IX., BC2
is equal to

4AF X AC ; that is, to 4AF2
. Hence

BC is equal to twice AF, and BD is equal to four times AF
Therefore, the parameter of any diameter, &c.

Cor. Hence the square of an ordinate to a diameter, is

equal to the product of its parameter by the corresponding
abscissa.

PROPOSITION XI. THEOREM.

If a cone be cut by a plane parallel to its side, the section ts

a parabola.

Let ABGCD be a cone cut by a plane
VDG parallel to the slant side AB ; then

will the section DVG be a parabola.
Let ABC be a plane section through

the axis of the cone, and perpendicular to

the plane VDG ; then VE, which is their

common section, will be parallel to AB.
Let bgcd be a plane parallel to the base
of the cone ; the intersection of this plane
with the cone will be a circle. Since the B
plane ABC divides the cone into two

equal parts, BC is a diameter of the circle G-

BGCD, and be is a diameter of the circle bgcd. Let DEG
deg be the common sections of the plane VDG with the

planes BGCD, bgcd respectively. Then DG is perpendicular
to the plane ABC, and, consequently, to the lines VE, BC.
For the same reason, dg is perpendicular to the two lines

VE, be.
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Now, since be is parallel to BE, ana

bE to eE, the figure 6BEe is a parallelo-

gram, and be is equal to BE. But be-

cause the triangles Vec, VEC are similar,

we have
ec : EC : : Ve : VE ;

and multiplying the first and second terms

of this proportion by the equals be and

BE, we have
foXeciBExEC:: Ve: VE.

But since be is a diameter of the circle

bgcd, and de is perpendicular to be (Prop.
XXII., Cor., B. IV.),

bey.ec = de\

For the same reason, BExEC=DE a
.

Substituting these values of beXec and BExEC in the pre-

ceding proportion, we have
de

9
: DE 3

: : Ve : VE ;

that is, the squares of the ordinates are to each other as the

corresponding abscissas ; and hence the curve is a parabola,
whose axis is VE (Prop. VIIL, Cor. 1.). Hence the .-nrab-

ola is called a conic section, as mentioned on page 177.

PROPOSITION XII. THEOREM.

Every segment of a parabola is two thirds of its circum

scribing rectangle.

Let AVD be a segment of

a parabola cut off by the

straight line AD perpendicu-
lar to the axis ; the area of

AVD is two thirds of the cir-

cumscribing rectangle ABCD.
Draw the line AE touching

the parabola at A, and meet-

ing the axis produced in E;
and take a point H in the

surve, so near to A that the

tangent and curve may be regarded as eoincicj^ng. Through
H draw KL perpendicular, and MN parallel to the axis,

'"'hen the

rectangle AL : rectangle AM : : AGxGL : ABxAN
:: AGxGE: ABxAG
: : GE A B,

i)
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because GL or NH : AN : : GE : AG. But GE is equal to

twice GV or AB (Prop. V.) ; hence
AL : AM : : 2 : 1 ;

that is, AL is double of AM.
Hence the portion of the parabola included between two or-

dinates indefinitely near, is double the corresponding portion
of the external space ABV. Therefore, since the same is

true for every point of the curve, the whole space AVG is

double the space ABV. Whence AVG is two thirds of

ABVG; and the segment AVD is two thirds of the rectai*-

gle ABCD. Therefore, every segment, &c
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ELLIPSE.

Definitions.

1 . AN ellipse is a plane curve, in which the sum of the dis-

tances of each point from two fixed points, is equal to a given
line.

2. The two fixed points are called the foci.
Thus, if F, F' are two fixed points,

and if the point D moves about F in

such a manner that the sum of its dis-

tances from F and F' is always the

same, the point D will describe an

ellipse, of which F and F' are the foci.

3. The center is the middle point of

the straight line joining the foci.

4. The eccentricity is the distance from the center to either

focus.

Thus, let ABA'B' be an ellipse, B
F and F' the foci. Draw the line

FF' and bisect it in C. The point
C is the center of the ellipse ; and ,

CF or CF' is the eccentricity.
5. A diameter is a straight line

drawn through the center, and
terminated both ways by the

curve.

6. The extremities of a diameter are called its vertices.

Thus, through C draw any straight line DD' terminated

by the curve ; DD' is a diameter of the ellipse ;
D and D'

are its vertices.

7. The major axis is the diameter which passes through
the foci ; and its extremities are called the principal vertices.

S. The minor axis is the diameter which is perpendicular
to the major axis.

Thus, produce the line FF' to meet the curve in A and
A' ; and through C draw BB' perpendicular to AA' ; then is

AA' the major axis, and BB' the minor axis.

9. A tangent is a straight line which meets the curve, but

Deing produced, does not cut it.

D'
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10. An ordinate to a diameter, is a straight line drawn
from any point of the crave to the diameter, parallel to the

tangent at one of its vertices.

Thus, let DD' be any diameter,
and TT' a tangent to the ellipse
at D. From any point G of the

curve draw GKG' parallel to TT'
and cutting DD' in K ; then is

GK an ordinate to the diameter
DD'.

It is proved in Prop. XIX., Cor.

1, that GK is equal to G'K ; hence the entire line GG' is call-

ed a double ordinate.

11. The parts into which a diameter is divided by an or-

dinate, are called abscissas.

Thus, DK and D'K are the abscissas of the diameter DD'
corresponding to the ordinate GK.

12. Two diameters are conjugate to one another, when
each is parallel to the ordinates of the other.

Thus, draw the diameter EE' parallel to GK, an ordinate

to the diameter DD', in which case it will, of course, be par-
allel to the tangent TT' ; then is the diameter EE' conju-

gate to DD'.
13. The latus rectum is the double ordinate to the major

axis which passes through one of the foci.

Thus, through the focus F'

draw LL/ a double ordinate to

the major axis, it will be the latus

rectum of the ellipse.

14. A subtangent is that part
of the axis produced which is in-

cluded between a tangent and the

ordinate drawn from the point of

contact.

Thus, if TT' be a tangent, to the curve at D, and DG an

ordinate to the major axis, then GT is the correspond ing
subtangeiit.

15. If a tangent, LT, to the

ellipse be drawn through one

extremity of the latus rectum,

LL', meeting the axis produced
in T, a straight line, GT, drawn

through the point of intersec-

tion perpendicular to the axis,

is called the directrix of the ellipse.
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PROPOSITION I. PROBLEM.

To describe an ellipse.

Let F and F' be any two fixed

points. Take a thread longer .than
the distance FF', and fasten one of

its extremities at F, the other at F'.

Then let a pencil be made to glide

along the thread so as to keep it al-

ways stretched ; the curve described

by the point of the pencil will be an

ellipse. For, in every position of the

pencil, the sum of the distances DF, DF' will be the same,

viz., equal to the entire length of the string.

PROPOSITION II. THEOREM.
-v

The sum of the two lines drawnfrom any point of an ellipse,

to the foci, is equal to the major axis.

Let ADA' be an ellipse, of

which F, F/ are the foci, AA' is

the major axis, and D any point of

the curve ; then will DF+DF' be

equal to AA'.

For, by Def. 1, the sum of the

distances of any point of the curve
from the foci, is equal to a given line. Now, when the point
D arrives at A, FA+F'A or 2AF+FF' is equal to the given
line. And when D is at A', FA'+F'A' or 2A'F>+FF' is

equal to the same line. Hence
2AF+FF'= 2A'F'+FF' ;

consequently, AF is equal to A'F'.
Hence DF+DF', which is equal to AF+AF', must be equal
to AA'. Therefore, the sum of the two lines, &c.

Cor. The major axis fo bisected in the center. For, by Def.

3, CF is equal to CF' ; and we have just proved that AF is

equal to A'F' ; therefore AC is equal to A'C.
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PROPOSITION III. THEOREM

Every diameter is bisected in the center.

Let D be any point of an ellipse ;

join DF, DF', and FF'. Complete the

parallelogram DFD'F', and join DD'.

Now, because the opposite sides of

a parallelogram a-re equal, the sum of

DF and DF' i equal to the sum of

D'F and D'F' * hence D' is a point in

the ellipse. But the diagonals of a parallelogram bisect each
other ; therefore FF' is bisected in C ; that is, C is the center

of the ellipse, and DD' is a diameter bisected in C. There-

fore, every diameter, &c.

PROPOSITION IV. THEOREM.

The distance from eitherfocus to the extremity of the minor

axis, is equal to half the major axis.

Let F and F' be the foci of an

ellipse, AA' the major axis, and
BB' the minor axis ; draw the

straight lines BF, BF' ; then BF,
BF' are each equal to AC.

In the two right-angled trian-

gles BCF, BCF', CF is equal to

CF', and BC is common to both

triangles ; hence BF is equal to BF'. But BF+BF' is equal
to 2AC (Prop. II.); consequently, BF and BF' are each

equal to AC. Therefore, the distance, &c.
Cor. 1. Half the minor axis is a mean proportional between

the distances from eitherfocus to the principal vertices.

For BC 2
is equal to BF'-FC a

(Prop. XL, B. IV.), which
is equal to AC 2 FC (Prop. IV.). Hence (Prop. X., B. IV.),

BC'= (AC+FC) x(AC-FC)=AF'xAF; and, therefore,
AF : BC : : BC : FA'.

Cor. 2. The square of the eccentricity is equal to the differ-
ence of the squares of the semi-axes.

For FC3
is equal to BF2 BC 2

, which is equal to ACa

BC 2
.
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PROPOSITION V. THEOREM.

A tangent, to the ellipse makes equal angles with straight

''ines drawnfrom the point of contact to the foci.

Let F, F' be the foci of an ellipse,

and D any point of the curve ; if

through the point D the line TT'
be drawn, making the angle TDF
equal to T'DF', then will TT' be

a tangent to the ellipse at D.

For if TT' be not a tangent, it

must meet the curve in some other

point than D. Suppose it to meet the curve in the point E.

Produce F'D to G, making DG equal to DF ; and join EF,
EF', EG, and FG.
Now, in the two triangles DFH, DGH, because DF is equal

to DG, DH is common to both triangles, and the angle FDH
is, by supposition, equal to F'DT', which is equal to the ver-

tical angle GDH ; therefore HF is equal to HG, and the an-

gle DHF is equal to the angle DHG. Hence the line TT'
is perpendicular to FG at its middle point ; and, therefore,

EF is equal to EG.
Also, F'G is equal to F'D+DF, or F'E+EF, from the na-

ture of the ellipse. But F'E+EG is greater than F'G (Prop.
VIII., B. I.) ;

it is, therefore, greater than F'E+EF. Con-

sequently EG is greater than EF; which is impossible, for

we have just proved EG equal to EF. Therefore E is not

a point of the curve, and TT' can not meet the curve in any
other point than D ; hence it is a tangent to the curve at the

point D. Therefore, a tangent to the ellipse, &c.
Cor. 1. The tangents at the vertices of the axes, are per-

pendicular to the axes ; and hence an ordinate to either axis

is perpendicular to that axis.

Cor. 2. If TT' represent a plane mirror, a ray of light

proceeding from F in the direction FD,would be reflected in

the direction DF', making the angle of reflection equal to the

angle of incidence. And, since the ellipse may be regarded
as coinciding with a tangent at the point of contact, if rays
of light proceed from one focus of a concave ellipsoidal mir-

ror, they will all be reflected to the other focus. For this

reason, the points F, F' are called the/oci, or burning points.
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PROPOSITION VI. THEOREM.

Tangents to the ellipse at the vertices of a diameter, are pai<
allel to each other.

Let DD be any diame-

ter of an ellipse, and TT'W tangents to the curve
at the points D, D' ; then

will they be parallel to each _,,

other.

Join DF, DF', D'F, D'F' ;

then, by the preceding Prop-
osition, the angle FDT is

equal to F'DT', and the an-

gle FD'V is equal to F'D'V'. But, by Prop. III., DFD'F' is

a parallelogram ; and since the opposite angles of a parallelo-

gram are equal, the angle FDF' is equal to FD'F' ; therefore

the angle FDT is equal to F'D'V' (Prop. II., B. I.). Also,

since FD is parallel to F'D', the angle FDD' is equal tc

F'D'D ; hence the whole angle D'DT is equal to DD'V ;

and, consequently, TT' is parallel to VV. Therefore, tan-

gents, &c.
Cor. If tangents are drawn through the vertices of any

two diameters, they will form a parallelogram circumscribing
the ellipse.

PROPOSITION VII. THEOREM.

Iffrom the vertex of any diameter, straight lines are drawn

through the foci, meeting the conjugate diameter, the part in

tercepted by "the conjugate is equal to half the major axis.

Let EE' be a diameter conju-
gate to DD', and let the lines DF,
DF' be drawn, and produced, if

necessary, so as to meet EE' in

II and K ; then will DH or DK
be equal to AC.
Draw FG parallel to EE' or

TT'. Then the angle DGF is

equal to the alternate angle
F'DT', and the angle DFG is equal to FDT. But the angles
FDT, F'DT' are equal to each olhe, (Prop. V.) ; hence the
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angles DGF, DFG are equal to each other, and DG is equa.
to DF. Also, because CH is parallel to FG, and CF is equa
to CF' ; therefore HG must be equal to HF'.
Hence FD+F'D is equal to 2DG+2GH or 2DH. But

FD+F'D is equal to 2AC. Therefore 2AC is equal to 2DH,
or AC is equal to DH.

Also, the angle DHK is equal to DKH ; and herce DK is

equal to DII or AC. Therefore, if from the vertex. &c.

PROPOSITION V11I. THEOREM.

Perpendiculars drawn from the foci upon a tangent to the

ellipse, meet the tangent in the circumference of a circle, whose

diameter is the major axis.

Let TT' be a tangent to the

ellipse at D, and from F' draw
F'E perpendicular to T'T ; the

point E will be in the circum-

ference of a circle describe^!

upon AA' as a diameter.

Join CE, FD, F'D, and pro-
duce F'E to meet FD produced
inG.

Then, in the two triangles
DEF', DEG, because DE is com-
mon to both triangles, the angles
at E are equal, being right angles ; also, the angle EDF' i?

equal to FDT (Prop. V.), which is equal to the vertical an-

gle EDG ; therefore DF' is equal to DG, and EF' is equal
to EG.

Also, because F'E is equal to EG, and F'C is equal to CF,
CE must be parallel to FG, and, consequently, equal to half

ofFG.
But, since DG has been proved equal to DF', FG is equal

to FD+DF', which is equal to AA'. Hence CE is equal to

half of AA' or AC ; and a circle describe^ with C as a cen-

ter, and radius CA, will pass through the point E. The same

may be proved of a perpendicular let fall upon TT' from the

focus F. Therefore, perpendiculars, &c.
Cor. CE is parallel to DF, and if CH be joiner , CH will

be parallel o DF7
.
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PROPOSITION IX. THEOREM.

The product of the perpendicularsfrom the foci ufon a tan

gent, is equal to the square of half the minor axis.

Let TT' be a tangent to the

ellipse at any point E, and let

the perpendiculars FD, F'G be

drawn from the foci ; then will

the product of FD by F'G, be

equal to the square of BC.
On AA', as a diameter, de-

scribe a circle ;
it will pass

hrough the points D and G
(Prop. VIII.). Join CD, and

produce it to meet GF' in D'.

Then, because FD and F'G are perpendicular to the same

straight line TT', they are parallel to each other, and the al-

ternate angles CFD, CF'D' are equal. Also, the vertical

angles DCF, D'CF' aie equal, and CF is equal to CF'.
Therefore (Prop. VII., B. I.) DF is equal to D'F', and CD is

equal to CD' ; that is, the point D' is in the circumference of

the circle ADGA'.
Hence DFxGF' is equal to D'F'xGF', which is equal to

A'F'xF'A (Prop. XXVIL, B. IV.), which is equal to BCa

(Prop. IV., Cor. 1). Therefore, the product, &c.
Cor. The triangles FDE, F'GE are similar ; hence

FD : F'G : : FE : F'E ;

that is, perpendiculars let fall from the foci upon a tangent,
are to each other as the distances of the point of contact, from
the foci

PROPOSITION X. THEOREM.

If a tangent and ordinate be drawnfrom the same point of
an ellipse, meeting either axis produced, half of that axis will

be a mean proportional between the distances of the two inter

sectionsfrom the center.

Let TT' be a tangent to the ellipse, and DG an ordinate

to the major axis from the point of contact ; then we shall

have CT : CA : : CA : CG.
Join DF, DF' ; then, since the exterior ang.e of the trian

jrle FDF' is bisected by DT (Prop. V.), we have
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FT : FT : : FD : FD (Prop. XVIL, Sch., B. IV).
Hence, by Prop. VII, Cor., B. II.,

F'T+FT : FT FT : : F'D+FD : F'D-FD,
or 2CT : FF : : 2CA : F'D-FD ; 9
that is, 2CT : 2CA : : FF : FD-FD. (1)

Again, because DG is drawn from the vertex of the trian*

gle FDF perpendicular to the base FF', we have (Prop.

XXXI., Cor., B. IV.),
FF : FD FD : : FD+FD : FG FG,

or FF : F'D-FD : : 2CA : 2CG. (2)

Comparing proportions (1) and (2), we have
2CT : 2CA : : 2CA : 2CG,

or CT: CA
It may also be proved that

CT' : CB
Therefore, if a tangent, &c.

CA: CG.

CB : OG'.

; PROPOSITION XI. THEOREM.

The subtangent of an ellipse, is equal to the corresponding

subtangent of the circle described upon its major axis.

Let AEA' be a circle de-

scribed on AA', the major
axis of an ellipse ; and from

any point E in the circle,

draw the ordinate EG cut-

the ellipse in D. Draw
touching the ellipse at

join ET; then will ET

E

ii a tangent to the circle at E.
Toin CE. Then, by the last Proposition,

CT : CA : : CA : CG ;

or, because CA is equal to CE,
CT : CE : : CE : CG

Hence the triangles GET, CGE, having the angle at C com
Don, and the sides about this angle proportional, are similar

Therefore the angle CET, being equal to the angle CGE, is
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a right angle ;
that is, the line ET is perpendicular to the

radius CE, and is, consequently, a tangent to the circle (Prop.
IX., B. III.). Hence GT is the subtangent corresponding to

each of the tangents DT and ET. Therefore, the subtan-

gent, &c.
Cor. A similar property may bo proved of a tangent to the

ellipse meeting the minor axis. 3>

PROPOSITION XII. THEOREM.

The square of either axis, is to the square of the other, as tha

rectangle of the abscissas of the former, is to the square of their

ordinate.

Let DE be an ordinate to the

major axis from the point D ;

then we shall have
CA2 :CB2

:: AExEA':DE2
.

Draw TT' a tangent to the

ellipse at D, then, by Prop. X.,

CT : CA : : CA : CE..
Hence (Prop. XII., B. II.),

CA8
: CE2

: : CT : CE ;

and, by division (Prop. VII., B.

II.), CA2
: CA2-CE 2

Again, by Prop. X.,
CT' : CB : : CB

Hence (Prop. XII., B. II.),

CB 2
: DE2

: :

But, by similar triangles,
CT' : DE

therefore CB2
: DE 2

: : CT : ET.

: CE' or DE.

CT/ : DE.

(2)

CT : ET
;

CT : ET.
Comparing proportions (1) and (2), we have

CA2
: CA2-CE 2

: : CB2
: DE2

.

But CA2 CE2
is equal to AExEA' (Prop. X., B. IV.);

hence CA2
: CB2

: : AE xEA' : DEa
.

In the same manner it may be proved that

CB2
: CA2

: : BE'xE'B' : DE'2
.

Therefore, the square, &c.
Cor. 1. CA2

: CB2
: : CA2-CE2

: DE;.
Cor. 2. The squares of the ordinates to either axis, are to

each other as the rectangles of their abscissas.

Cor. 3. If a circle be described on either axis, then any or-

dinate in the circle, is to the corresponding ordinate in th&

ellipse, as the axis of that ordinate, is to the other aris.
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For, by the Proposition,
CAa

: CB 2
: : AE xEA' : DE 2

.

But AE X EA' is equal to GE 2

(Prop. XXIL, Cor., B. IV.).

Therefore CA8
: CB2

: : GE 2
: DE 2

,

or CA : CB : : GE : DE.
In- the same manner it may be

proved that

CB : CA : : G'E' : DE'. <D

PROPOSITION XIII. THEOREM.

The latus rectum is a third proportional to the major ana
minor axes.

Let LL' be a double ordinate to

the major axis passing through the

focus F ; then we shall have
AA' : BB' : : BB' : LL'.

Because LF is an ordinate to the

major axis,

AC 2 BC a AFxFA':LF2

(Prop
: : BC 2

: LF2

(Prop. IV.,
Hence AC : BC : : BC : LF,
or AA' : BB' : : BB' : LL'.

Therefore, the latus rectum, &c.

B'

. XII.).
Cor. 1).

PROPOSITION XIV. THEOREM.

Iffrom the vertices of two conjugate diameters, ordinates are

drawn to either axis, the sum of their squares will be equal to

the square of half the other axis.

Let DD', EE' be any
two conjugate diameters,
DG and EH ordinates to

the major axis drawn
from their vertices ; in

which case, CG and CH
will be equil to the ordi-

nates to the minor axis

drawn from the same points ; then we shall have
CA2=CG2+CH 2

, and CB2= DG2+EH 2
.

Let DT be a tangent to the ellipse at D, and ET' a tan

(jent at E. Then, by Prop. X.,
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whence CG : CH
CGxCT is equal to CA2

, or CHxCT';
: CT' : CT ; or, by similar triangles,
: CE : DT ; that is,

: CH : GT.
Hence CH 2= GT XCG,

= (CT CG)XCG
= CG xCT-CG3

= CAa-CGa

(Prop. X.);
that is, CAa= CGa +CHa

.

In t.ie same manner it may be proved that

CB2=DG2+EH 2
.

Therefore, if from the vertices, &c.
Cor. 1. CHa

is equal to CA2 CG8
; that is, CGxGT;

hence (Prop. XII., Cor. 1),

CAa :CB2 ::CGxGT : DG2
.

Cor. 2. CGa
is equal to CA2 CH2 or AHxHA' ; hence
CAa

. CBa
: : CG2

: EH 2
.

PROPOSITION XV. THEOREM.

The sum of the squares of any two conjugate diameters, rs

equal to the sum of the squares of the axes.

Let DD', EE' be any two con-

jugate diameters ; then we shall

have
DD' 2+EE' 2=AA' 2+BB' 2

.

Draw DG, EH ordinates to the

major axis. Then, by the prece-

ding Proposition,
CG2+CH2=CA2

,

and DG2+EH 2=CB2
.

Hence CG2+DG2+CH 2-fEH 9= CA'+CB2

,

or CD2+CE 2=CA2+CB2

;

that is, DD' 2+EE' a=AA' 2+BB' a
.

Therefore, the sum of the squares, &c.

PROPOSITION XVI. THEOREM.

The parallelogram formed by drawing tangents through tnc

vertices of two conjugate diameters, is equal to the rectangle of
the axes.

Let DED'E' be a parallelogram, formed by drawing tan

gents to the e^ipse through the vertices of two conjugate
diameters DD', EE f

; its area is equal to AA'xBB'.
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>T

Let the tangent at D, meet the major axis produced in T i

join E'T, and draw the ordinates DG, E'H.
Then, by Prop. XIV., Cor. 2, we have

CA2
: CBa

: : CGa E'H 2

,

or CA : CB : : CG E'H.
But CT : CA : : CA CG (Prop. X.) ;

hence CT : CB : : CA E'H,
or CA x CB is equal to CT x E'H,
which is equal to twice the triangle CE'T, or the parallelo

gram DE' ; since the triangle and parallelogram have the

same base CE', and are between the same parallels.
Hence 4CAxCB or AA'xBB', is equal to 4DE', or the

parallelogram DED'E'. Therefore, the parallelogram, &c.

PROPOSITION XVII. TIIEGHEM.

Iffrom the vertex of any diameter, straight lines are drawn
to the foci, their product is equal to the square of half the con-

jugate diameter.

Let DD', EE' be two conjugate
diameters, and from D let lines

be drawn to the foci ; then will

FDxF'D be equal to ECa
.

Draw a tangent to the ellipse
at D, and upon it let fall the per-

pendiculars FG, F'H ; draw, also,

DK perpendicu.ar to EE'.

Then, because the triangles

DFG, DLK, DF'H are similar, we have
FD:FG : :DL:DK.

Also, F'D : PH : : DL : DK.
Whence (Prop. XL, B. II.),

FDxF'D : FGxF'H : : DL2
: DK2

. (1\
But, by Prop. XVI , ACxBC=ECxDK;
whence AC or DL : DK : : EC : BC,
and DL2

: DK2
: : EC a

: BC 2
. (2)
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Comparing proportions (1) and (2) we have

FDxF'D : FGxF'H : : EC 2
: BC a

.

But FGxF'H is equal to BC 2

(Prop. IX.) ; hence FDxF'D
is equal to EC 2

. Therefore, if from the vertex, &e.

PROPOSITION XVIII. THEOREM.

If a tangent and ordinate be drawn from the same point of
an ellipse to any diameter

-, half of that diameter will be a mean

proportional between the distances of the two intersections from
the center.

Let a tangent EG and an ordinate EH be drawn from the

same point E of an ellipse, meeting the diameter CD pro-

; then we shall have
CG : CD : : CD : CH.

o
Produce EG and EH to meet the major axis in K and L ;

draw DT a tangent to the curve at the point D, and draw
DM parallel to GK. Also, draw the ordinates EN, DO.

By Prop. XIV., Cor. 1, CA2
: CB2

: : COxOT : DO2

,

:CNxNK:EN2
.

Hence
COxOT : CNxNK : : DO2

: EN2

: : OT 2
: NL2

, by similar triangles. (l y

Also, by similar triangles, OT : NL : : DO : EN
: : OM : NK. (2)

Multiplying together proportions (1) and (2) (Prop. XL,
B. II.), and omitting the factor OT 2

in the antecedents, and
NKxNL in the consequents, we have

CO:CN::OM:NL;
and, bj composition, CO : CN : : CM : CL. (3)

Also, by Prop. X., CKxCN=CA2=CTxCO;
hence CO : CN : : CK : CT. (4)

Comparing proportions (3) and (4), we have
CK : CM : : CT : CL.

But CK : CM : : CG : CD,
and CT : CL : : CD : CH ;

nence CG : CD : CD : CH.
Therefore, if a tangent, &c.
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PROPOSITION XIX. THEOREM.

The squan oj any diameter, is to the square of its conjugate^
as the rectangle of its abscissas, is to the square of their or*

dinate.

Let DD', EE' be two conjugate T/
diameters, and GH an ordinate to

" ~

DD'; then

DD' 3
: EE' 2

: : DHxHD' : GH2
.

Draw TT' a tangent to the

curve at the point G, and draw
GK an ordinate to EE'. Then,

by Prop. XVIII.,
CT : CD : : CD

and CD2
: CHa

: : CT : CH (Prop. XII., B. II.) ;

whence, by division,

CD' : CD 2 CH2
: : CT : HT. (1)

Also, by Prop. XVIII.,
CT' : CE : : CE : CK,

and CE 2
: CK2

: : CT' : CK or GH,
: : CT : HT. (2)

Comparing proportions (1) and (2), we have
CD2

: CE 2
: : CD 2 -CH 2

: CK2
or GH 2

,

or DD'2
: EE'2

: : DH x HD' : GH 2
.

Therefore, the square, &c.
Cor. 1. In the same manner it may be proved that

DD' 2
: EE'2

: : DH x HD' : G'H*
; hence GH is equal to G'H,

or every diameter bisects its double ordinates.

Cor. 2. The squares of the ordinates to any diameter, are

to each other as the rectangles of their abscissas.

PROPOSITION XX. THEOREM.

^
")

If a cone be cut by a plane, making an angle with the base

less than that made by the side of the cone, the section is an

ellipse.

Let ABC be a cone cut by a plane DEGH, making an an-

gle with the base, less than that made by the side of the cone ;

the section DeEGH/i is an ellipse.
Let ABC be a section through the axis of the cone, and

perpendicular to the plane DEGH. Let EMHO. emho be

circular sections parallel to the base ; then EH, the intersec-
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tion of the planes DEGH, EMHO, will

be perpendicular to the plane ABC,
and, consequently, to each of the lines

DG, MO. So, also, th will be perpen-
dicular to DG and mo.

Now, because the triangles DNO,
Dno are similar, as also the triangles

GMN, Gmn, we have the proportions,
NO i no : : DN : DTI,

and MN : mn : : NG : nG.

Hence, by Prop. XL, B. II.,

MNxNO : mnxno : : DNxNG : DnxnG.
But since MO is a diametei of the circle EMHO, and EN is

perpendicular to MO, we have (Prop. XXII., Cor., B. IV.).
MNxNO=EN2

.

For the same reason, mnxno= eri*.

Substituting these values of MNxNO and mnxno, in the

preceding proportion, we have
EN3

-.en
1

:: DNxNG : DrcxrcG;
that is, the squares of the ordinates to the diameter DG, are

to each other as the products of the corresponding abscissas.

Therefore the curve is an ellipse (Prop. XII., Cor. 2) whose

major axis is DG. Hence the ellipse is called a conic section.

as mentioned on page 177.

PROPOSITION XXI. THEOREM.

The area of an ellipse is a mean proportional between

two circles described on its axes.

Let AA' be the major axis of an

ellipse ABA'B'. On AA' as a di-

ameter, describe a circle ; inscribe

in the circle any regular polygon
AEDA', and from the vertices E,
D, &c., of the polygon, draw per-

pendiculars to AA'. Join the

points B,. G, &c., in which these

perpendiculars intersect the ellipse,
and there will be inscribed in the

ellipse a polygon of an equal num-
ber of sides.

Now the area of the trapezoid CEDH, is equal to (CE-f

DH) x- ; and the area of the trapezoid CBGH, is equal to



204 CONIC SECTIONS.
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vCB+GH)x . These trapezoids

are to each other, as CE+DH to

CB+GH, or as AC to BC (Prop.
XII., Cor. 3).

In the same manner it may be

proved that each of the trapezoids

composing the polygon inscribed in

the circle, is to the corresponding
trapezoid of the polygon inscribed

in the ellipse, as AC to BC. Hence,
the entire polygon inscribed in the circle, is to the polygon in

scribed in the ellipse, as AC to BC.
Since this proportion is true, whatever be the number oi

sides of the polygons, it will be true when the number is in

definitely increased ; in which case one of the polygons coin

cides with the circle, and the other with the ellipse. Hence
we have

Area of circle : area of ellipse : : AC : BC.
But the area of the circle is represented by TrAC 2

; hence
the area of the ellipse is equal to TTAC x BC, which is a mean
proportional between the two circles described on the axes.

i:

PROPOSITION XXII. THEOREM.

The distance of any point in an ellipsefrom the directrix is to

its distancefrom the focus nearest the directrix, in the constant

ratio of half the major axis to the eccentricity.

Let D be any point in the el-

lipse ;
let DGr be drawn perpen-

dicular to the directrix GrT
;
DE

erpendicular to the axis
;
and A'

et DF, DE' be drawn to the

two foci. Take H, a point in

the axis, so that AH=DF, and,

consequently, HA'^DF' ;
then CH is half the difference be-

tween A'H and AH, or DF' and DF
;
and CE is half the

difference between F'E and FE.

By Prop. XXXI., B. IV.,
DF'+DF : FF :: F'E-FE : DF'~DF.

Dividing each term by two, CA : CF :: CE : CH.

By Prop. X., Ellipse, CA*=CF.CT
;
or CA : CF :: CT : CA.

Therefore CT : CA : : CE : CH.
Hence, Prop. VIL, B. II, CT-CE : CA-CH
or

that is,

CT
ET:AH::CT:CA::CA
DG:DF::CA:CF.

CA,
CF;
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Definitions.

1. AN hyperbola is a plane curve, in which the difference

of the distances of each point from two fixed points, is equal
to a given line.

2. The two fixed points are called the foci.

Thus, if F and F' are two fixed

points, and if the point D moves
about F in such a manner that the

difference of its distances from F and
F' is always the same, the point D
will describe an hyperbola, of which
F and F' are the foci.

If the point D' moves about F' in

such a manner that D'F D'F' is

always equal to DF' DF, the point D' will describe a sec-

ond hyperbola similar to the first. The two curves are call-

ed opposite hyperbolas.
3. The center is the middle point of the straight line join-

ing the foci.

4. The eccentricity is the distance from the center to either

focus.

Thus, let F and F' be the foci of
two opposite hyperbolas. Draw the

line FF', and bisect it in C. The

point C is the center of the hyperbola,
and CF or CF' is the eccentricity.

5. A diameter is a straight line

drawn through the center, and termi-

nated by two opposite hyperbolas.
6. The extremities of a diameter are

called its vertices.

Thus, through C draw any straight line DD' terminated

by the opposite curves ; DD' is a diameter of the hyperbola ;

D and D' are its vertices.

7. The major axis is the diameter which, when produced,
passes through the foci ; and its extremities are called the

principal vertices.

8. The minor axis is a line drawn through the center per-
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pendicular to the major axis, and terminated by the circum-

ference described from one of the principal vertices as a cen-

ter, and a radius equal to the eccentricity.

Thus, through C draw BB' perpendicular to AA', and with

A as a center, and with CF as a radius, describe a circum-

ference cutting this perpendicular in B and B' ; then AA' is

the major axis, and BB' the minor axis.

If on BB' as a major axis, opposite hyperbolas are de-

scribed, having AA' as their minor axis, these hyperbolas are

said to be conjugate to the former.

9. A tangent is a straight line which meets the curve, but,

being produced, does not cut it.

10. An ordinate to a diameter, is a straight line drawn
from any point of the curve to meet the diameter produced,

parallel to the tangent at one of its vertices.

Thus, let DD' be any diame-

ter, and TT' a tangent to the

hyperbola at D. From any
point G of the curve draw
GKG' parallel to TT' and cut-

ting DI)' produced in K ; then
is GK an ordinate to the di-

ameter DD'.
It is proved, in Prop. XIX.,

Cor. 1, that GK is equal to

G'K ; hence the entire line GG' is called a double ordinate.

11. The parts of the diameter produced, intercepted be
tween its vertices and an ordinate, are called its abscissas.

Thus, DK and D'K are the abscissas of the diameter DD'
corresponding to the ordinate GK.

12. Two diameters are conjugate to one another, when
each is parallel to the ordinates of the other.

Thus, draw the diameter EE' parallel to GK an ordinate

to the diameter DD', in which case it will, of course, be par-
allel to the tangent TT' ; then is

the diameter EE' conjugate to DD'.
13. The latus rectum is the double

ordinate to the major axis which

passes through one of the foci.

Thus, through the focus F' draw
LL/ a double ordinate to the major
axis, it will be the latus rectum of

the hyperbola
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15. A subtangent is that part of the axis produced which
is included between a tangent, and the ordinate drawn from the

point of contact.

Thus, if TT' be a tangent to the curve at D, and DG an
ordinate to the major axis, then GT is the corresponding
subtangent.

PROPOSITION I. PROBLEM.

To describe an hyperbola.

Let F and F' be any two fixed

points. Take a ruler longer than

the distance FF', and fasten one

of its extremities at the point F'.

Take a thread shorter than the

ruler, and fasten one end of it at

F, and the other to the end H of the

ruler. Then move the ruler HDF'
about the point Fr

, while the thread is kept constantly stretched

by a pencil pressed against the ruler ; the curve described by
the point of the pencil, will be a portion of an hyperbola.
For, in every position of the ruler, the difference of the lines

DF, DF' will be the same, viz., the difference between the

length of the ruler and the length of the string.
If the ruler be turned, and move on the other side of the

point F, the other part of the same hyperbola may be de-

scribed. Also, if one end of the ruler be fixed in F, and that

of the thread in F', the opposite hyperbola may be described.

PROPOSITION II. THEOREM.

The difference of the two lines drawn from any point of an

hyperbola to the foci, is equal to the major axis.

Let F and F' be the foci of two

opposite hyperbolas, AA' the major
axis, and D any point of the curve ;

.hen will DF'-DF be equal to A A'.

For, by Def. 1, the difference of the

distances of any point of the curve
from the foci, is equal to a given line.

Now when the point D arrives at A,
F'A FA, or AA'+F'A' FA, is equal to the given lino.

And when D is at A', FA' PA', or AA'-*-AF A'F', i

equal to the same line. Hence
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AA'-rAF-A'F'=AA'+F'A'-FA,
or 2AF=2A'F';
that Ls, AF is equal to A'F'.

Hence DF' DF, which is equal t AF' AF, must be

equal to AA'. Therefore, the difference of the two lines, &c,

Cor. The major axis is bisected in the center. For, by
Def. 3, CF is equal to CF' ; and we have just proved that

AF is equal to A'F' ; therefore AC is equal to A'C.

PROPOSITION III. THEOREM.

Every diameter is bisected in the center.

Let D be any point of an hyper-
bola ; join DF, DF', and FF'. Com-

plete the parallelogram DFD'F', and

join DD'.

Now, because the opposite sides of

a parallelogram are equal, the differ-

ence between DF and DF' is equal
to the difference between D'F and
D'F' ; hence D' is a point in the opposite hyperbola. But
the diagonals of a parallelogram bisect each other ; there-

fore FF' is bisected in C ; that is, C is the center of the hy
perbola, and DD' is a diameter bisected in C. Therefore,

^very diameter, &c.

PROPOSITION IV. THEOREM.

Half the minor axis is a mean proportional between the dis-

tancesfrom eitherfocus to the principal vertices.

Let F and F' be the foci of opposite

hyperbolas, AA' the major axis, and BB'
the minor axis ; then will BC be a mean

proportional between AF and A' F/
Join AB. Now BCa

is equal to ABa

AC3
, which is equal to FC 2 AC3

(Def.

8). Hence (Prop. X., B. IV.),

BC'=(FC-AC)x(FC+AC)= AFxA'F;
and hence AF : BC : : BC : A'F.

Cor. The square of the eccentricity is equal to the sum of th*

squares of the semi-axes.

For FC 3
is equal to AB3

(Def. 8), which is equal to AC'-f
BC a

.
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PROPOSITION V. THEOREM.

A tangent to the hyperbola bisects the angle contained by
lines drawnfrom the point of contact to the foci.

Let F, F' be the foci of two

opposite hyperbolas, and D any
point of the curve ; if through the

point D, the line TT' be drawn

bisecting the angle FDF' ; then

will TT' be a tangent to the hy-

perbola at D.
For if TT' be not a tangent, let

it meet the curve in some other

point, as E. Take DG equal to

DF ; and join EF, EF', EG, and FG.
Now, in the two triangles DFH, DGH, because DF is

equal to DG, DH is common to both triangles, and the angle
FDH is, by supposition, equal to GDH

;
therefore HF is

equal to HG, and the angle DHF is equal to the angle DHG.
Hence the line TT' is perpendicular to FG at its middle

point ; and, therefore, EF is equal to EG.
Now F'G is equal to F'D DF, or F'E-EF, from the

nature of the hyperbola. But F'E EG is less than F'G
(Prop. VIIL, B. I.) ; it is, therefore, less than F'E EF.

Consequently, EG is greater than EF, which is impossible,
for we have just proved EG equal to EF. Therefore E is

not a point of the curve ; and TT' can not meet the curve in

any other point than D ; hence it is a tangent to the curve
at the point D. Therefore, a tangent to the hyperbola, &c.

Cor. 1. The tangents at the vertices of the axes, are per
pendicular to the axes : and hence an ordinate to either axis

is perpendicular to that axis.

Cor. 2. If TT' represent a plane mirror, a ray of light

proceeding from F in the direction FD, would be reflected in

a line which, if produced, would pass through F 7

, making the

angle of reflection equal to the angle of incidence. And,
since the hyperbola may be regarded as coinciding with a

tangent at the point of contact, if rays of light proceed from
one focus of a concave hyperbolic mirror, they will be re-

flected in lines diverging from the other focus. For thii

reason, the points F, F' are called the foci.
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PROPOSITION VI. THEOREM.

Tangents to the hyperbola at the vertices of a diameter, are

parallel to each other.

Let DD/ be any diameter of an

hyperbola, and TT/, VV/ tangents
to the curve at the points D, D' ;

then will they be parallel to each
other.

Join DF, DF/, D'F, D/F/. Then,

by Prop. III., FDF/D/ is a paral-

lelogram ; and, since the opposite

angles of a parallelogram are equal,
the angle FDF' is equal to FD/F/.
But the tangents TT/, VV/ bisect the angles at D and D'

(Prop. V.) ; hence the angle F/DT/, or its alternate angle
FT'D, is equal to FD/V. But FT'D is the exterior angle op-

posite to FD/V ; hence TT' is parallel to VV/. Therefore

tangents, <fcc.

Cor. If tangents are drawn through the vertices of any
two diameters, they will form a parallelogram.

PROPOSITION VII. THEOREM.

If through the vertex of any diameter, straight lines art

drawn from the foci, meeting the conjugate diameter, the part

intercepted by the conjugate is equal to half of the major axis.

Let EE/ be a diameter conjugate to

DD/, and let the lines DF, DF/ be /\
drawn, and produced, if necessary, so

as to meet EE/ in H and K ; then will

DH or DK be equal to AC.
Draw F/G parallel to EE/ or TT/,

meeting FD produced in G. Then the

angle DGF/ is equal to the exterior

angle FDT/ ; and the angle DF/G is

equal to the alternate angle F/DT/.
But the angles FDT/, F/DT/ are equal
to each other (Prop. V.) ; hence the

angles DGF', DF'G are equal to each other, and DG is equa'.

to DF/. Also, because CK is parallel to F/G, and CF is equa
to CF/ ; therefore FK must be equal to KG.
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Hence F'D-FD is equal to GD FD or GF 2DF; that

is, 2KF 2DF or SDK. But F/D FD is equal to 2AC.
Therefore 2AC is equal to 2DK, or AC is equal to DK.

Also, the angle DHK is equal to DKH ; and hence DH is

equal to DK or AC. Therefore, if through the vertex, &c.

PROPOSITION VIII. THEOREM.

Perpendiculars drawn from the foci upon a tangent to t/ie

hyperbola, meet the tangent in the circumference of a circle

whose diameter is the major axis.

Let TT/ be a tangent to the hyper-
bola at D, and from F draw FE per-

pendicular to TT/ ; the point E will

be in the circumference of a circle de-

scribed upon AA/ as a diameter.

Join CE, FD, F/D, and produce FE
to meet F/D in G.

Then, in the two triangles DEF,
DEG, because DE is common to both

triangles, the angles at E are equal, be-

ing right angles ; also, the angle EDF is equal to EDG
(Prop. V.) ; therefore DF is equal to DG, and EF to EG.

Also, because FE is equal to EG, and CF is equal to CF/,
CE must be parallel to F/G, and, consequently, equal to half

ofF'G.

But, since DG has been proved equal to DF, F/G is equal
to F/D FD, which is equal to AA/. Hence CE is equal to

half of AA/ or AC
; and a circle described with C as a cen-

ter, and radius CA, will pass through the point E. The same
may be proved of a perpendicular let fall upon TT' from the
focus F/. Therefore, perpendiculars, &c.

PROPOSITION IX. THEOREM.

The product of the perpendiculars from the foci upon a tan-

gent, is equal to the square of half the minor axis.

Let TT/ be a tangent to the hyperbola at any point E,
and let the perpendiculars FD, F/G be drawn from the foci ;

then will the product of FD by F/G, be equal to the square
ofBC.
On AA/ as a diameter, describe a circle ; it will pass

through the points D and G (Prop. VIII.) . Join CD, and



212 CONIC SECTIONS.

produce it to meet GF' in D'. Then,
because FD and F'G are perpendicu
lar to the same straight line TT', they
are parallel to each other, and the al-

ternate angles CFD, CF'D' are equal.
Also, the vertical angles DCF, D'CF'
are equal, and CF is equal to CF'.
Therefore (Prop. VII., B. L), DF is

equal to D'F', and CD is equal to C
that is, the point D' is in the circum-
ference of the circle ADA'G.
Hence DFxGF' is equal to D'F'xGF', which is equal to

A'F'XF'A (Prop. XXVIII., Cor. 2, B. IV.), which is equal
to BC 3

(Prop. IV.). Therefore, the product, &c.
Cor. The triangles FDE, F'GE are similar ; hence

FD : F'G : : FE : F'E ;

that is, perpendiculars letfallfrom the foci upon a tangent, are

to each other as the distances of the point of contact from the

foci.

an

PROPOSITION X. THEOREM.

If a tangent and ordinate be drawn from the same point oj
an hyperbola, meeting either axis produced, half of that axis

will be a mean proportional between the distances of the two in-

tersectionsfrom the center.

Let DTT' be a tangent to the

hyperbola, and DG an ordinate to

the major axis from the point of

contact ; then we shall have
CT : CA : : CA : CG.

Join DF, DF' ; then, since the

angle FDF' is bisected by DT
(Prop. V.), we have

F'T : FT : : F'D ; FD
(Prop. XVIL, B. IV.).

Hence, by Prop. VIL, Cor., B. II.,

F'T FT : F'T+FT : : F'D FD
or 2CT : F'F : : 2CA : F'D+FD ;

that is, 2CT : 2CA : : F'F : F'D+FD.

F'D+FD,

(1)

Again, because DG is drawn from the vertex of the tnan

gle FDF' perpendicular to the base FF' produced, we have

(Prop. XXXI., Cor., B. IV.),
FF . F'D+FD : . F'D-FD : F'G-fFG,

or F'F : F'D+FD ; : 2CA : 2CG. (2)
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Comparing proportions (1) and (2), we have
2CT : 2CA : : 2CA : 2CG,

or CT : CA : : CA : CG.
It may also be proved that

CT' : CB : : CB : CG'.

Therefore, if a tangent, &c.

PROPOSITION XI. THEOREM.

The subtangent of an hyperbola, is equal to the correspond-

ing subtangent of the circle described upon its major axis.

Let AEA' be a circle described on
AA' the major axis of an hyperbola ;

and from any point E in the circle,

draw the ordinate ET. Through T
draw the line DT touching the hyper-
bola in D, and from the point of con-

tact draw the ordinate DG. Join GE ;

then will GE be a tangent to the cir-

cle at E.
Join CE. Then, by the last Proposition,

CT : CA : : CA : CG ;

or, because CA is equal to CE,
CT : CE : : CE : CG.

Hence the triangles GET, CGE having the angle at C
common, and the sides about this angle proportional, are simi-

lar. Therefore the angle CEG, being equal to the angle
CTE, is a right angle ; that is, the line GE is perpendicular
to the radius CE, and. is, consequently, a tangent to the cir-

cle (Prop. IX., B. III.). Hence GT is the subtangent cor-

responding to each of the tangents DT and EG. Therefore,
the subtangent, &c.

PROPOSITION XII. THEOREM.

Fhe square of either axis, is to the square of the other, as the

rectangle of the abscissas of theformer, is to the square of their

ordinate.

Let DE be an ordinate to the major axis from the point
D ; then we shall have

CA3 :CB3
:: AExEA':DE a

.

Draw DTT' a tangent to the hyperbola at D ; then, by
Prop, X, CT : CA : : CA : CE.
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Hence (Prop. XII., B. II.)

CA2
: CE 2

: : CT : CE ;

and, by division (Prop. VII., B. II.),

CA2
: CE'-CA2

: : CT : ET. (1)

Again, by Prop. X.,
CT' : CB : : CB : CE' or DE.

Hence (Prop. XIL, B. II.),

CBa
: DE 3

: : CT' : DE.
But, by similar triangles,

CT' : DE : : CT :

therefore CB2
: DE 2

: : CT :

Comparing proportions (1) and (2), we have
CA2

: CE 2 CA2
: : CB2

: DE 2
.

But CE 2 CA2
is equal to AE x EA' (Prop. X., B. IV.) ; hence
CA2 :CB2

: : AExEA':DE a
.

In the same manner it may proved that

CB3
: CA3

: : BE' X E'B' : D'E' 2 -

Therefore, the square, &c.
Cor. 1. CA2

: CB2
: : CE2 CA2

: DE2
.

Cor. 2. The squares of the ordinates to either axis, are to

each other as the rectangles of their abscissas.

Cor. 3. If a circle be described on
the major axis, then any tangent to

the circle, is to the corresponding or-

dinate in the hyperbola, as the major
axis is to the minor axis.

For, by the Proposition,
CAa :CB3

: : AExEA'rDE 3
.

But AE xEA' is equal to GE 2

(Prop.
XXVIII., B. IV.).
Therefore CA2

: CB2
: : GE 2

: DE 2

,

or CA : CB : : GE : DE.

PROPOSITION XIII. THEOREM.

The lotus rectum is a third proportional to the major ana
minor axes.

Let LL/ be a double ordinate to

*he major axis passing through t.ie

focus F ; then we shall have
AA' : BB' : : BB' : LL'.

Because LF is an ordinate to the ma-

jor axis,

<YC' : BC 2
: : AF X FA' : LF' (Prop. XIL)
::BC 2

: LP (Prop. IV.)
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Hence AC : BC : : BC : LF,
or AA' : BB' : : BB' : LI/.

Therefore, the latus rectum, &c.

PROPOSITION XIV. THEOREM.

Iffrom the vertices of two conjugate diameters, ordinates are

drawn to either axis, the difference of their squares will be

equal to the square of half the other axis.

Let DD', EE' be any two conju-

gate diameters, DG and EH ordinates

to the major axis drawn from their

vertices, in which case, CG and CH
will be equal to the ordinates to the

minor axis drawn from the same

points ; then we shall have
CA2=CG2-CH 3

, and CB2=EHa-DG2
.

Let DT be a tangent to the curve at

D, and ET> a tangent at E. Then, by Prop. X.,

whence
CG

CGxCT is equal to CA a

, or CHxCT'

CH CT' : CT ; or, by similar triangles,
: : CE : DT ; that is,

: : CH : GT.
Hence CH 3=GTxCG

= (CG CT)xCG
=CG2-CGxCT
=CG2-CAa

(Prop. X.);
that is CA2=CG2-CH 2

.

In the same manner it may be proved that

CB2=EH 2-DG2
.

Therefore, if from the vertices, &c.
Cor. 1. CH2

is equal to CG2-CAa
; that is,CGxGT; heice

(Prop. XII., Cor. 1),

CA2 :CB2 ::CGxGT:DG2

Cor. 2. By Prop. X1L,
CB2

: CA2
: : EH 2 CB2

: CH .

By composition,
"

CB a CA2
: : EH2

: CA2
-fCH2

or CG'
Hence CA8

: CB 3
: : CG3

: EH'.
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PROPOSITION XV. THEOREM.

The difference of the squares of any two conjugate diameters*

is equal to th& difference of the squares of the axes.

Let DD', EE' be any two conju-

gate diameters ; then we shall have
DD' a EE' a=AA' a BB> 2

.

Draw DG, EH ordinates to the ma-

jor axis. Then, by the preceding

Proposition,
CG2 CH2=CAa

,

and EH2-DG9=CB2
.

Hence CG2+DG2-CH2 EH a=CA2 CBa

,

or CD2 CEa=CA2-CB2

;

that is, DD' a EE' 2=AA' 2 BB' 2
.

Therefore, the difference of the squares, &c.

PROPOSITION XVI. THEOREM.

The parallelogramformed by drawing tangents through the

vertices of two conjugate diameters, is equal to the rectangle of
the axes.

Let DED'E' be a parallelogram,
formed by drawing tangents to the

conjugate hyperbolas through the

vertices of two conjugate diame-

ters DD', EE' ; its area is equal to

AA'XBB'.
Let the tangent at D meet the

major axis in T ; join ET, and. draw
the ordinates DG, EH.

Then, by Prop. XIV., Cor. 2, we have

or
But
hence
or

CAa
: CB3

CA :CB
CT :CA
CT :CB

: CG2
: EH 2

,

: CG : EH.
: CA : CG (Prop. X.) ;

: CA : EH,
CA X CB is equal to CT x EH,

which is equal to twice the triangle CTE, or the parallelo-

gram DE ; since the triangle and parallelogram have the

same base CE, and are between the same parallels.
Hence 4CAxCB or AA'xBB' is equal to 4DE, or the

uarallelogram DED'E'. Therefore, the parallelogram, &c.
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PROPOSITION XVII. THEOREM.

Iffrom tie vertex of any diameter, straight lines are drawn

to ike foci, their product is equal to the square of half the con-

Jugate diameter.

Let DD', EE' be two conjugate
diameters, and from D let lines

be drawn to the foci; then will

FDxF'DbeequaltoEC
2
.

Draw a tangent to the hyper-
bola at D, and upon it let fall the

perpendiculars FG, F'H ; draw,

also, DK perpendicular to EE'.

Then, because the triangles

DFG, DLK, DF'H are similar,

we have
FD:FG : :DL

Also, F'D : F'H : : DL
Whence (Prop. XL, B. II.),

FDxF'D: FGxF'H ::DL2

But, by Prop. XVI., ACxBC=ECxDK;
whence AC or DL : DK : : EC : BC,
and DL2

: DK2
: : EC 2

: BC 2
.

DK 5

0)

(2)

Comparing proportions (1) and (2), we have
FDxF'D : FGxF'H : : EC 2

: BC 2
.

But FGxF'H is equal to BC 2

(Prop. iX.) ; hence FDxF'D
,s equal to EC2

. Therefore, if from the vertex, &c.

PROPOSITION XVIII. THEOREM.

If a tangent and ordinate be drawn from the same point of
an hyperbola to any diameter, half of that diameter will' be a
mean proportional between the distances of the two intersections

from the center.

Let a tangent EG and an ordinate EH be drawn from the

same point E of an hyperbola, meeting the diameter CD
produced ; then we shall have

CG : CD : : CD : CH.
Produce GE and HE to meet the major axis in K and L ;

drav/ DT a tangent to the curve at the point D, and draw
.DM A irallel to GK. Also, draw the ordinates EN, DO.

B, rop. XIV., Cor. 1, CA 2
: CB2

: : COxOT : DO2

,

: :CNxNK:EN3
.

K
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T L KANM
Hence
"OxOT : CNxNK : : DO3

: EN3

: : OT 3
: NL 3

, by similar triangles. (I)

Also, by similar triangles, OT : NL : : DO : EN
: : OM : NK. (2)

Multiplying together proportions (1) and (2) (Prop. XL,
B. II.), and omitting the factor OT 3

in the antecedents, and
NKxNL in the consequents, we have

CO : CN : : OM : NL ;

and, by division, CO : CN : : CM : CL. (3)

Also, by Prop. X., CKxCN-CA2=CTxCO;
hence CO : CN : : CK : CT. (4)

Comparing proportions (3) and (4), we have
CK : CM : : CT : CL.

But CK : CM : : CG : CD,
and CT : CL : : CD : CH ;

hence CG : CD : : CD : CH.
Therefore, if a tangent, &c.

Scholium. The same property may be demonstrated when
the tangent and ordinate are drawn to the conjugate diameter.

PROPOSITION XIX. THEOREM.

The square of any diameter, is to the square of its conjugate,

as the rectangle of its abscissas, is to the square of their ordinate.

Let DD', EE' be two conju-

gate diameters, and GH an or-

dinate to DD' ;
then

DD' 3
: EE' 3

: : DH xHD' : GH2
.

Draw GTT' a tangent to the

curve at the point G, and draw
GK an ordinate to'EE'. Then,

by Prop. XVIII.,
CT : CD : : CD : CH,

and CD3
: CH3

: : CT : CH
'1'ron. XII.. B. II.),
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*
whence, by division, CD 2

: CH 2 - CD3
: : CT : IIT. (1)

Also, by Prop. XVIIL, Scholium, CT' : CE :: CE : CK,
and CEa

: CK3
: : CT' : CK or GH,
: : CT : HT. (2)

Comparing proportions (1) and (2), we have
CD2

: CE 2
: : CH2-CD3

: CK3
or GH 3

,

or DD> 3
: EE' 2

: : DH x HD' : GH 3
.

Therefore, the square, &c.
Cor. 1. In the same manner it may be proved that DD'* .

EE' 3
: : DHxHD' : G'H 2

; hence GH is equal to G'H, or

every diameter bisects its double ordinates.

Cor. 2. The squares of the ordinates to any diameter, ar

to each other as the rectangles of their abscissas.

PROPOSITION XX. THEOREM.

If a cone be cut by a plane, not passing through the vertex^

and making an angle with the base greater than that made by
the side of the cone, the section is an hyperbola.

Let ABC be a cone cut by a plane
DGH, not passing through the vertex,
and making an angle with the base

greater than that made by the side of

the cone, the section DHG is an hyper-
bola.

Let ABC be a section through the axis

of the cone, and perpendicular to the

plane HDG. Let bgcd be a section

made by a plane parallel to the base of ^<
the cone ; then DE, the intersection of
the planes HDG, BGCD, will be perpen-
dicular to the plane ABC, and, consequently, to each of the
lines BC, HE. So, also, de will be perpendicular to be and
HE. Let AB and HE be produced to meet in L.

Now, because the triangles LBE, Ue are similar, as also

the triangles HEC, Hec, we have the proportions
BE : be : : EL : eL
EC : ec : : HE : He.

Hence, by Prop. XL, B. II.,

BExEC : bey.ec : : HExEL : HeXeL.
But, since BC is a diameter of the circle BGCD, and DE is

perpendicular to BC, we have (Prop. XXIL, Cor., B. IV.),

BExEC=DE 3
.

For the same reason,
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Substituting these values of BE xEC and beXec, in the pre-*

ceding proportion, we have
DE 2 :de2

: : HExEL:HexcL;
that is, the squares of the ordinates to the diameter HE, are

to each other as the products of the corresponding abscissas.

Therefore the curve is an hyperbola (Prop. XII., Cor. 2)

whose major axis is LH. Hence the hyperbola is called a

a aic section, as mentioned on page 177

OF THE ASYMPTOTES.

Definition. An asyjnptote of an hyperbola is a straight
iins drawn through the center, which approaches nearer the

curve, the further it is produced, but being extended ever so

far, can never meet the curve.

PROPOSITION XXI. THEOREM.

If tangents to four conjugate hyperbolas be drawn througfi
the vertices of the axes, the diagonals of the rectangle so formed
ire asymptotes to the curves.

Let AA', BB' be the axes of

four conjugate hyperbolas, and

through the vertices A. A', B,

B', let tangents to the curve be

drawn, and let CE, CE' be the

diagonals of the rectangle thus

:ied; CE and CE' will be

asymptotes to the curves.

From any point D of one of the

curves, draw the ordinate DG,
and produce it to meet CE in H.
Then, from similai; triangles, we shall have

CG2
: GH 2

: : CA2
: AE 2

or CB2

,

: : CG'-CA' : DG2

(Prop. XII., Cor. 1).

Now, according as the ordinate DG is drawn at a greater
distance from the vertex, CG3

increases in comparison with
CA8

; that is, the ratio of CG2
to CG2 CA2

continually ap-

proaches to a ratio of equality. But however much CG may
be increased, GG 2 CA2 can never become equal to CG 2

:

hence DG can never become equal to HG, but approaches
continually nearer to an equality with it, the further we re-

cede from the vertex. Hence CH is an asymptote of the

hyper) o!n ; since it is a line drawn through the center, which
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approaches nearer the curve, the further it is pioduced. but

being extended ever so far, can never meet the curve.

In the same manner it may be proved that CH' is an

asymptote of the conjugate hyperbola.
Co; . 1. The two asymptotes make equal angles with the

major axis, and also with the minor axis.

Cor. 2. The line AB joining the vertices of the two axes, is

bisected by one asymptote, and is parallel to the other.

Cor. 3. All lines perpendicular to either axis, and termi-

nated by the asymptotes, are bisected by that &xis

PROPOSITION XXII. THEOREM.

If an ordinate to either axis be produced to meet the asymp
totes, the rectangle of the segments into which it is divided by
the curve, will be equal to the square of half the other axis.

Let DG be an ordinate to the

major axis, and let it be produced
to meet the asymptotes in II and
H' ; then will the rectangle HD X
DH' be equal to BC 2

.

For, by Prop. XII., Cor. 1,

CA2
: AE 2

: : CG2-CA2
: DG2

,

or, by similar triangles,
: : CG2

: GH 2
.

flence

CG2
: GH 2

: : CG 2_CA 2
: DG2

,

and, by division,

CG2
: GH 2

: : CA2
: GH'-DG2

, or as CA2
: AE 2

.

Since the antecedents of this proportion are equal to each
other, the consequents must be equal ; that is,

AE 2
or BC 2

is equal to GH 2 DG2

;

which is equal to HD xDH'.
So, also, it may be proved that

CA2=D'KXD'L.
Cor. HDxDH'=BC a=KMxMK'; that is, if ordinates to

the major axis be produced to meet the asymptotes, the rect-

angles of the segments into which these lines are divided by
the curve are equal to each other.
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PROPOSITION XXIII. THEOREM.

All the $ arallelograms formed by drawing lines from any
point of an hyperbola parallel to the asymptotes, are equal ic

each other.

Let CH, CH' be the asymptotes
of an hyperbola ; let the lines AK,
DL be drawn parallel to CH', and
the lines AK', DL' parallel to CH ;

then will the parallelogram CLDL'
be equal to the parallelogram
CKAK'.
Through the points A and D

draw EE', HH', perpendicular to

the major axis ; then, because the

triangles AEK, DHL are similar,

as also the triangles AE'K', DH'L',
we have the proportions

AK : AE : : DL : DH.
Also, AK' : AE' : : DL' : DH'.
Hence (Prop. XL, B. II),

AKxAK' : AExAE' : : DLxDL' : DHxDH'.
But, by Prop. XXII, the consequents of this proportion are

equal to each other; hence
AKxAK' is equal to DLxDL'.

But the parallelograms CA, CD being equiangular, are as

the rectangles of the sides which contain the equal angles

(Prop. XXIII, Cor. 2, B. IV.) ; hence the parallelogram CD
is equal to the parallelogram CA.

Cor. Because the area of the rectangle DL x DL' is con

stant, DL varies inversely as DL' ; that is, as DL' increases,

DL diminishes ; hence the asymptote continually approaches
the curve, but never meets it. The asymptote CH may,
therefore, be considered as a tangent to the curve at a point

infinitely distant from C.
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I IGE 9, Def. III. For the sake of brevity, the word line is often used to des

Igm le a straight line.

P. 12, Ax. II. This axiom, when applied to geometrical magnitudes; must be
undiTstood to refer simply to equality of areas. It is not designed to assert that,

whe.i equal triangles are united to equal triangles, the resulting figures wih
idmii of coincidence by superposition.
P. 32, Prop. XXVIII. When this proposition is applied

to polygons which have
re-entering angles, each of these an-

gles ia to be regarded as
greater

than two right angles. But,
n order to avoid ambiguity, we shall confine our reasoning
to polygons which have only salient angles, and which may
be called convex polygong. Every convex polygon is such,
that a straight line, however drawn, can not meet the pe-
rimeter of the polygon in more than two points.

P. 32, Cor. 2. This corollary supposes that all the sides of the polygon are

produced outward in the same direction.

P. 53, Props. XII. and XIII. It will be perceived that the relative situation

of two circles may present five cases.

1st. When the distance between their centers is greater than the sum of their

radii, there can be neither contact nor intersection.

2d. When the distance between then: centers is equal to the sum of their

radii, there is an external contact.

3d. When the distance between their centers is less than the sum of their

radii, but greater than their difference, there is an intersection.

4th. When the distance between their centers is equal to the difference of
their radii, there is an internal contact.

5th. When the distance between their centers is less than the difference of
their radii, there can be neither contact nor intersection.

P. 55, Cor. 1. An angle inscribed in a segment is the angle contained by two

straight lines drawn from any point in the circumference of the segment to the
extremities of the chord, which is the base of the segment.

P. 63, Prop. VIII. Every right-angled parallelogram, or rectangle, is said to be
coiitained by any two of the straight lines which are about one of the right angles

P. 70, Scholium. By the segments of a line we understand the portions into

which the line is divided at a given point. So, also, by the segments of a line

produced to a given point, we are to understand the distances between -the giv
en point and the extremities of the line.

P. 71, Props. XVIII. and XIX. It willbe perceived by these two propositions,
that when the angles of one triangle are respectively equal to those of another,
the sides of the former are proportional to those of the latter, and conversely ;

so that either of these conditions is sufficient to determine the similarity of two

triangles.^
This is not true of figures having more than three sides ; for with re

spect to these ofonly four sides, or quadrilaterals, we may
alter the proportion of the sides without changing the

angles, or change the angles without altering the sides ;

thus, because the angles are equal, it does not follow
that the sides are proportional, or the converse. It is

evident, for example, that by drawing EF parallel to

BC, the angles of the quadrilateral AEFD are equal to

those of the quadrilateral ABCD, but the proportion of
the sides is different. Also, without changing the four
sides AB, BC, CD, DA, we can make the point A ap-

A
proach C, or recede from it, wvrich would change the angles.
These two propositions, which, properly speaking, form but one, together

with Prop. XL, are the most important and the most fruitful in results of any in

Geometry. They are almost sufficient of themselves for all subsequent applica-
-3, ani for the resolution of every problem. The reason is, that all figures



NOTES.

may be divided into triangles, and any triangle into two right-angled triangles

Thus, the general properties of triangles involve those of all rectilineal figures.

Page 113, Prop. II. In this and the following propositions, the planes spokea
of are supposed to be of indefinite extent.

P. 157, Prop. X In all the preceding propositions it has been supposed, in

conformity with Def. 6, that spherical triangles always have each of their sidea

less than "a semicircumfereuce ;
in which case their angles are always less than

two right angles. For if the side AB is less than

a semicircumference, as also AC, both of these

arcs must be produced, in order to meet in D.
Now the two angles ABC, DBC, taken together,
are equal to two right angles ;

therefore the angle
ABC is by itself less than two right angles.

It should, however, be remarked that there

are spherical triangles, of which certain sides are

greater than a semicircumference, and certain an-

gles greater than two right angles. For if we
produce the side AC so as to form an entire cir-

cumference, ACDE, the part which remains, after

taking from the surface of the hemisphere the triangle ABC, is a new triangle,
which may also be designated by ABC, and the sides of which are AB, BO,
CDEA. Here we see that the side CDEA is greater than the semicircumfer-
ence DEA, and at the same time the opposite angle ABC exceeds two right

angles by the quantity CBD.
Triangles whose sides and angles are so large have been excluded by the

definition, because their solution always reduces itself to that of triangles em-
braced in the definition. Thus, if we know the sides and angles of the triangle
ABC, we shall know immediately the sides and angles of the trian-gle of the
same name, which is the remainder of the surface of the hemisphere.

P. 178. The subtangent is so called because it is below the tangent, being
limited by the tangent and ordinate to the point of contact. The subnormal is

so called because it is below the normal, being limited by the normal and crdi-

nate. The subtangent and subnormal may be regarded as the projections cf tl*i

tangent and normal upon a diameter.

P. 179, Prop. I. By the method here indicated a

parabola may be described with a continuous motion.
It may, however, be described by points as follows:

In the axis produced take VA equal to VF, the focal

distance, and draw any number of Hues, BB, B'B'

etc., perpendicular to the axis AD; then, with the

distances AC, AC', AC", etc., as radii, and the focus

F as a center, describe arcs intersecting the perpen-
diculars in B, B', etc. Then, with a steady hand,
draw the curve through all the points B, B', B", etc.

r.'

P. 179, Prop. II. It may be thought that if the

point D can not lie on the curve, it may fall within

it, as is represented in the annexed figure. This

may be proved to be impossible, as follows :

Let the line DE, perpendicular to the directrix,
meet the curve in G, and ioin FG. Now, by Prop.
VIII., B. L,

FG+GD>FD.
Hence FG>FD GD,

>ED-GD,
That ia, FG is greater than EG which is contrary to
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Page 183, Prop. VIII. As no attempt is here made to compare figures by RU

perposition, the equality spoken of is only to be understood as implying equal
areas. Throughout the remainder of this treatise the word equal is employed
instead of equivalent.

P. 185, Prop. XL The conclusion that DVG is a parabola would not be

legitimate, unless it was proved that the property that " the squares of the ordi

Dates are to each other as the corresponding abscissas"

is peculiar to the parabola. That such is the case, ap-

pears from the fact that, when the axis and one point
of a parabola are given, this property will determine
the position of every other point. Thus, let VE be
the axis of a parabola, and g any point of the curve,
from which draw the ordinate ge. Take any other

point in the axis, as E, and make GE of such a length
that Ve : VE : : ge* : GE2

.

Since the first three terms of this proportion are given, the fourth is de-

termined, and the same proportion will determine any number of points cf the

curve.

A similar remark is applicable to Prop. XX. of the Ellipse and Hyperbola.
P. 196, Prop. X. It may be proved that CT' : CB : : CB : CG' in the follow

ing manner. Draw DH perpendic- m/
ular to TT', and it will bisect the

angle FDF'.
Hence

F'H : HF : : F'D : DF,
: : F'T : FT.

Therefore, Prop. VII., Cor. B. II..

2CF : 2CH : : 2CT : 2CF.
Whence CTxCH^CF*.
But we have proved that

CTxCG=CA3
.

Hence CTxGH=CA2 CF2=CB2
.

Again, because the triangles CTT' and DGH are similar, we have
CT : CT' : : DG : GH.

Whence CTxGH=CT'xDG=:CT'xCG';
Therefore, CT'xCG'^CB2

,

or CT' : CB : : CB : CG'.
The following demonstration of Prop. X. was suggested to me by Professor

J. H. Coffin.

Let TT' be a tangent to the ellipse, and DG an ordinate to the major axis from

the point of contact ; then we shall have
CT : CA : : CA : CG.

From F draw FH perpendicular to TT', and join DF, DF', CH, and GH. Then,

by Prop. VIII., Cor., CH is parallel to DF' ; and since DGF, DHF are both right
angles, a circle described on DF as a diameter will pass through the points G
and H. Therefore, the angle HGF is equal to the angle HDF (Prop. XV., Cor. 1,

B. Ill), which is equal to T'DF' or DHC. Hence the angles CGH and CHT
which are the supplements of HGF and DHC, are equal. And since the angle
C is common to the two triangles CGH, CHT, they are equiangular, and w$
have CT : CH : : CH : CG.
But CH is equal to CA (Prop. VIII); therefore

CT : CA : : CA : CG.
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Page .98, Prop. XIV. That the triangles CDT, GET' aie similar, may b*

proved as follows

AG.GA'=CAa-CG2

=CG.CT-CG2
, Prop. X.

=CG.GT. /i)
In the same manner, AH.HA'=CH.HT'.

Since the triangles DGT, EHC are similar,
GT : CH : : DG : EH

;

or GT3
: CH2

: : DG8
: EH2

;

::AG.GA':AH.HA. Prop. XII., Cor. 2
: : CG.GT : CH.HT , by Equation (1),

Therefore, CG : HT' : : GT : CH
: : DG : EH.

Hence the triangles CDG, EHT' are similar
; and, therefore, the whole triangles

CDT, CET' are similar.

Page 207, Prop. I. The hyperbola may be
described by points, as follows :

In the major axis AA' produced, take the foci

F, F' and any point D. Then, with the radii AD,
A'D, and centers F, F', describe arcs intersecting
each other in E, which will be a point in the
curve. In like manner, assuming other points,

D', D", etc., any number of points of the curve

may be found. Then, with a steady hand, draw
the curve through all the points E, E', E", etc.

In the same manner may be constructed the
two conjugate hyperbolas, employing the axis BP'

P. 209, Prop. V It may be thought
that if the point E can not lie on the

curve, it may fall within it, as is repre-
sented in the annexed figure. This may
be proved to be impossible, as follows :

Join EF', meeting the curve in K, and
Join KF. Now, by Prop. VIII., B. I.,

FK>EF-EK;
therefore,

F'K-FK<F'K+EK-EF
<EF'-EF;

But EF' EF=F'G=DF / DF.
Hence F'K-FK<DF'-DF,
which is contrary to Def. 1.

P. 212, Prop. X. This proposition may be otherwise demonstrated, lik*

Prop X. af the Ellipse.

EDtfD*



GEOMETRICAL EXERCISES.

A FEW theorems without demonstrations, and problems
without solutions, are here subjoined for the exercise of the

pupil. They will be found admirably adapted to familiarize

the beginner with the preceding principles, and to impart dex-

terity in their application. No general rules can be prescribed
which will be found applicable in all cases, and infallibly lead

to the demonstration of a proposed theorem, or Hhe Solution
of a problem, The following directions may prove of some
service.

ANALYSIS OF THEOREMS.

1. Construct a diagram as directed in the enunciation, and
assume that the theorem is true.

2. Consider what consequences result from this admission,

by combining with it theorems which have been already

proved, and which are applicable to the diagram.
3. Examine whether any of these consequences are already

known to be true or to be false,
4. If any one of them be false, we have arrived at a reduc-

tio ad absurdum, which proves that the theorem itself is false,

as in Book I.-, Prop. 4, 16, etc.

5. If none of the consequences so deduced be known to be
either true or false, proceed to deduce other consequences
from all or any of these until a result is obtained which is

known to be either true or false.

6. If we thus arrive at some truth which has been previous-

ly demonstrated, we then retrace the steps of the investiga
tion pursued in the analysis, till they terminate in the theorem
which was assumed. This process will constitute the demon-
stration of the theorem.

ANALYSIS OF PROBLEMS.

1. Construct the diagram as directed in the enunciation,
and suppose the solution of the problem effected.

2. Examine the relations of the lines, angles, triangles, etc.,

in the diagram, and find the dependence of the assumed solu-

tion on some theorem or problem in the Geometry.
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3. If such can not be found, draw other lines, parallel or

perpendicular, as the case may require ; join given points or

points assumed in the solution, and describe circles if neces-

sary ;
and then proceed to trace the dependence of the as-

sumed solution on some theorem or problem in Geometry.
4. If we thus arrive at some previously demonstrated or ad

mitted truth, we shall obtain a direct solution of the problem
by assuming the last consequence of the analysis as the first

step of the process, and proceeding in a contrary order through
the several steps of the analysis, until the process terminate in

the problem required.

It may perhaps be expedient to defer attempting the solu-

tion of the following problems, until Book V. has been studied

GEOMETRICAL EXERCISES ON BOOK I.

THEOREMS.

Prop. 1 . The difference betwe.en any two sides of a trian-

gle is less than the third side.

Prop, 2. The sum of the diagonals of a quadrilateral is less

than the sum of any four lines that can be drawn from any
point whatever (except the intersection of the diagonals) to

the four angles.

Prop. 3, If a straight line which bisects the vertical an-

gle of a triangle also biseqts the base, the remaining sides

of the triangle are equal to each other.

Prop. 4- If the base of an isosceles triangle be produced,
twice the exterior angle is greater than two right angles by
the vertical angle.

Prop. 5. In any right-angled triangle, the middle point of

the hypothenuse is equally distant from the three angles.

Prop. 6. If on the sides of a square, at equal distances

from the four angles, four points be taken, one on each

side, the figure formed by joining those points will also be a

square.

Prop. 7. If one angle of a parallelogram be a right angle,
the parallelogram will be a rectangle.

Prop. 8. If the diagonals of a quadrilateral bisect each oth-

er, the figure is a parallelogram.

Prop. 9. The parallelogram whose diagonals are equal is

rectangular.

Prop. 10. Any line drawn through the centre of the diag-
onal of a parallelogram to meet the sides, is bisected in that

point, and also bisects the parallelogram.
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PROBLEMS.

Prop. 1. On a given line describe an isosceles triangle, each
of whose equal sides shall be double of the base.

Prop. 2. On a given line describe a square, of which the

line shall be the diagonal.

Prop. 3. Divide a right angle into three equal angles.

Prop. 4. One of the acute angles of a right-angled triangle
is three times as great as the other

;
trisect the smaller of

these.

Prop. 5. Construct an equilateral triangle, having given
the length of the perpendicular drawn from one of the angles
on the opposite side.

GEOMETRICAL EXERCISES ON BOOK m.

THEOREMS.

Prop. 1 . Every chord of a circle is less than the diameter.

Prop. 2. Any two chords of a circle which cut a diameter
in the same point, and at equal angles, are equal to each
other.

Prop. 3. The straight lines joining toward the same parts,
the extremities of any two chords in a circle equally distant

from the centre, are parallel to each other.

Prop. 4. The two right lines which join the opposite ex-

tremities of two parallel chords, intersect in a point in that

diameter which is perpendicular to the chords.

Prop. 5. All the equal chords in a circle may be touched

by another circle.

Prop. 6. The lines bisecting at right angles the sidles of a

triangle, all meet in one point.

Prop. 7. If two opposite sides of a quadrilateral figure in-

scribed in a circle are equal, the other two sides will be par-
allel.

Prop. 8. If an arc of a circle be divided into three equal

parts by three straight lines drawn from one extremity of the

arc, the angle contained by two of the straight lines will be

bisected by the third.

Prop. 9. If the diameter of a circle be one of the equal sides

of an isosceles triangle, the base will be bisected by the cir-

cumference.

Prop. 10. If two circles touch each other externally, and

parallel diameters be drawn, the straight line joining the op-

posite extremities of these diameters will pass through the

point of contact.
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Prop. 11. The lines which bisect the angles of any paraL
lelogram form a rectangular parallelogram, whose diagonals
are parallel to the sides of the former.

Prop. 12. If two opposite sides of a parallelogram be bi-

sected, the lines drawn from the points of bisection to the op-

posite angles will trisect the diagonal.

PROBLEMS.

Prop. 1 . From a given point without a given straight line,

draw a line making a given angle with it.

Prop. 2. Through a given point within a circle, draw a

chord which shall be bisected in that point.

Prop. 3. Through a given point within a circle, draw the

least possible chord.

Prop, 4. Two chords of a circle being given in magnitude
and position, describe the circle.

Prop. 5. Describe three equal circles touching one anoth-
er

;
and also describe another circle which shall touch them

all three.

Prop. 6. How many equal circles can be described around
another circle of the same magnitude, touching it and one an-

other ?

Prop. 7. With a given radius, describe a circle which shall

pass through two given points.

Prop. 8. Describe a circle which shall pass through two

given points, and have its centre in a given line.

Prop. 9. In a given circle, inscribe a triangle equiangular to

a given triangle.

Prop. 10. From one extremity of a line which can not be

produced, draw a line perpendicular to it.

Prop. 11. Divide a circle into two parts such that the an-

gle contained in one segment shall equal twice the angle con-

tained in the other.

Prop. 12. Divide a circle into two segments such that the

angle contained in one of them shall be five times the angle
contained in the other.

Prop. 13. Describe a circle which shall touch a given cir-

cle in a given point, and also touch a given straight line.

Prop. 14. With a given radius, describe a circle which shall

pass through a given point and touch a given line.

Prop. 15. With a given radius, describe a circle which
shall touch a gwen line, and have its centre in another given
line.
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GEOMETKICAL EXERCISES ON BOOK IV.

THEOREMS.

Prop. 1. The area of a triangle is equal to its perimeter

multiplied by half the radius of the inscribed circle.

Prop. 2. If from any point in the diagonal of a parallelo-

gram, lines be drawn to the angles, the parallelogram will be
divided into two pairs of equal triangles.

Prop. 3. If the sides of any quadrilateral be bisected, and
the points of bisection joined, the included figure will be a

parallelogram, and equal in area to half the original figure.

Prop. 4. Show how the squares in Prop. XL, Book IV.,

may be dissected, so that the truth of the proposition may be
made to appear by superposition of the parts.

Prop. 5. In the figure to Prop. XL, Book IV.,

(a.) If BG and CH be joined, those lines will be parallel.

(b.) If perpendiculars be let fall from F and I on BC pro-
duced, the parts produced will be equal, and the perpendic-
ulars together will be equal to BC.

(c.) Join GH, IE, and FD, and prove that each of the

triangles so formed is equivalent to the given triangle ABC.
(d.) The sum of the squares of GH, IE, and FD will be

equal to six times the square of the hypothenuse.

Prop. 6. The square on the base of an isosceles triangle
whose vertical angle is a right angle, is equal to four times the

area of the triangle.

Prop. 7. If from one of the acute angles of a right-angled

triangle, a straight line be drawn bisecting the opposite side,

the square upon that line will be less than the square upon
the hypothenuse, by three times the square upon half the line

bisected.

Prop. 8. In a right-angled triangle, the square on either of

the two sides containing the right angle, is equal to the rect-

angle contained by the sum and difference of the other sides.

Prop. 9. In any triangle, if a perpendicular be drawn from
the vertex to the base, the difference of the squares upon the

sides is equal to the difference of the squares upon the seg-
ments of the base.

Prop. 10. The squares of the diagonals of any quadrilateral

figure are together double the squares of the two lines joining
the middle points of the opposite sides.

Prop. 11. If one side of a right-angled triangle is double
the other, the perpendicular from the vertex upon the hypoth-
enuse will divide the hypothenuse into parts which are in the
ratio of 1 to 4.
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Prop. 12. If two circles intersect, the common chord pro-
duced will bisect the common tangent.

Prop. 13. The tangents to a circle at the extremities of

any chord, contain an angle which is twice the angle contain-

ed by the same chord and a diameter drawn from either of the

extremities.

Prop. 14. Tf two circles cut each other, and if from any
point in the straight line produced wrhich joins their intersec-

tions, two tangents be drawn, one to each circle, they will be

equal to one another.

Prop. 15. If from a point without a circle, two tangents be

drawn, the straight line which joins the points of contact will

be bisected at right angles by a line drawn from the centre to

the point without the circle.

PROBLEMS.

Prop. I . Inscribe a square in a given right-angled isosceles

triangle.

Prop. 2. Inscribe a circle in a given rhombus.

Prop. 3. Describe a circle whose circumference shall

pass through one angle and touch two sides of a given

square.

Prop. 4. In a given square, inscribe an equilateral triangle

having its vertex in the middle of a side of the square.

Prop. 5. In a given square, inscribe an equilateral triangle

having its vertex in one angle of the square ,

Prop. 6. If the sides of a triangle are in the ratio of the

numbers 2, 4, and 5, show whether it will be acute-angled or

obtuse-angled.

Prop. 7. Given the area and hypothenuse of a right-angled

triangle, to construct the triangle.

Prop. 8. Bisect a triangle by a line drawn from a given

point in one of the sides.

Prop. 9. To a circle of given radius, draw two tangents
which shall contain an angle equal to a given angle.

Prop 10. Construct a triangle, having given one side, the

angle opposite to it, and the ratio of the other two' sides.

Prop. 11. Construct a triangle, having given the perimeter
and the angles of the triangle.

*

Prop. 12. Upon a given base, describe a right-angled trian-

gle, having given the perpendicular from the right angle upon
the hypothenuse.

Prop. 13. Construct a triangle, having given one angle, a

side opposite to it, and the sum of the other two sides.

Prop. 14. Construct a triangle, having given one angle, an

adjacent side, and the sum of the other two sides
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Prop. 15. Trisect a given straight line, and hence divide

an equilateral triangle into nine equal parts.

GEOMETRICAL EXERCISES ON BOOK VI.

THEOREMS.

Prop. 1. The square inscribed in a circle is equal to half

the square described about the same circle.

Prop. 2. Any number of triangles having the same base and

the same vertical angle, may be circumscribed by one circle.

Prop. 3. If an equilateral triangle be inscribed in a circle,

each of its sides will cut off one fourth part of the diameter

drawn through the opposite angle.

Prop. 4. The circle inscribed in an equilateral triangle has

the same centre with the circle described about the same tri-

angle, and the diameter of one is double that of the other.

Prop. 5. If an equilateral triangle be inscribed in a circle,

and the arcs cut off by two of its sides be bisected, the line

joining the points of bisection will be trisected by the sides.

Prop. 6. The side of an equilateral triangle inscribed in a

circle is to the radius, as the square root of three is to unity.

Prop. 7. The sum of the perpendiculars let fall from any
point within an equilateral triangle upon the sides, is equal to

the perpendicular let fall from one of the angles upon the op-

posite side.

Prop. 8. If two circles be described, one without and the

other within a right-angled triangle, the sum of their diame-
ters will be equal to the sum of the sides containing the right

angle.

Prop. 9. If a circle be inscribed in a right-angled triangle,
the sum of the t\vo sides containing the right angle will ex-

ceed the hypothenuse, by a line equal to the diameter of the

inscribed circle..

Prop. 10. The square inscribed in a semicircle is to the

square inscribed in the entire circle, as 2 to 5.

Prop. 11. The square inscribed in a semicircle is to the

square inscribed in a quadrant of the same circle, as 8 to 5.

Prop. 12. The area of an equilateral triangle inscribed in a

circle is equal to half that of the regular hexagon inscribed in

the same circle.

Prop. 13. The square of the side of an equilateral triangle
inscribed in a circle is triple the square of the side of the reg-
ular hexagon inscribed in the same circle.

Prop. 14. The area of a regular hexagon inscribed in a

circle is three fourths of the regular hexagon circumscribed
about the same circle.
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Prop. 15. The triangle, square, and hexagon are the only

regular polygons by which the space about a point can be

completely filled up.

frop. 16. The perpendiculars let fall from the three an-

gles of any triangle upon the opposite sides, intersect each
other in the same point.

PROBLEMS.

Prop. 1. Trisect a given circle by dividing it into three

equal sectors.

Prop. 2. The centre of a circle being given, find two op-

posite points in the circumference by means of a pair of com-

passes only.

Prop. 3. Divide a right angle into five equal parts.

Prop. 4. Inscribe a square in a given segment of a circle.

Prop. 5. Having given the difference between the diagonal
and side of a square, describe the square.

Prop. 6. Inscribe a square in a given quadrant.

Prop. 7. Inscribe a circle in a given quadrant.

Prop. 8. Describe a circle touching three given straight
lines.

Prop. 9. Within a given circle describe six equal circles,

touching each other and also the given circle, and show that

the interior circle which touches them all, is equal to each of

them.

Prop. 10. Within a given circle describe eight equal cir-

cles, touching each other and the given circle.

Prop. 11. Inscribe a regular hexagon in a given equilateral
faiangle.

Prop. 12. Upon a given straight line describe a regular

octagon.

THE END.
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