$$
\equiv
$$

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

ELEMENTS

GEOMETRY:

BY
G. A. WENTWORTH, A. M.,

BOSTON:
PUBLISHED BY GINN AND HEATH.
1881.

Copyright, 1877.
BY GIN AND HEATH.

$$
38286
$$

Press of Rockwell and Churchill, 39 Arch St., Boston.

PREFACE.

Most persons do not possess, and do not easily acquire, the power of abstraction requisite for apprehending the Geometrical conceptions, and for keeping in mind the successive steps of a continuous argument. Hence, with a very large proportion of begimers in Geometry, jt depends mainly upon the form in which the subject is presented whether they pursue the study, with indifference, not to say aversion, or with increasing interest and pleasure.

In compiling the present treatise, this fact has been kept constantly in view. All unnecessary discussions and scholia have been avoided ; and such methods have been adopted as experience and attentive observation, combined with repeated trials, have shown to be most readily comprehended. No attempt has been made to render more intelligible the simple notions of position, magnitude, and direction, which every child derives from observation ; but it is believed that these notions have been limited and defined with mathematical precision.

A few symbols, which stand for words and not fur operations, have been used, but these are of so great utility in giving style and perspicuity to the demonstrations that no apology seems necessary for their introduction.

Great pains have been taken to make the page attractive. The figures are large and distinet, and are placed in the middle of the page, so that they fall directly under the eye in immediate connection with the corresponding text. The given lines
of the figures are full lines, the lines employed as aids in the demonstrations are short-dotted, and the resulting lines are longdotted.

In each proposition a concise statement of what is given is printed in one kind of type, of what is required in another, and the demonstration in still another. The reason for each step is indicated in small type between that step and the one following, thus preventing the necessity of interrupting the process of the argument by referring to a previous section. The number of the section, however, on which the reason depends is placed at the side of the page. The constituent parts of the propositions are carefully marked. Moreover, each distinct assertion in the demonstrations, and each particular divection in the constructions of the figures, begins a new line; and in no case is it necessary to turn the paye in reading a demonstration.

This arrangement presents obvious advantages. The pupil perceives at once what is given and what is required, readily refers to the figure at every step, becomes perfectly familiar with the language of Geometry, acquires facility in simple and accurate expression, rapidly learns to reason, and lays a foundation for the complete establishing of the science.

A few propositions have been given that might properly be considered as corollaries. The reason for this is the great difficulty of convincing the average student that any importance should be attached to a corollary. Original exercises, however, have been given, not too numerous or too difficult to discourdge the beginner, but well adapted to afford an effectual test of the degree in which he is mastering the subjects of his reading. Some of these exercises have been placed in the early part of the work in order that the student may discover, at the outset, that to commit to memory a number of theorems and to reproduce them in an examination is a useless and pernicious labor; but to learn their uses and applications, and to acquire a readiness in exemplifying their utility, is to derive the full benefit of that mathematical training which looks not so much to the
attainment of information as to the discipline of the mental faculties.

It only remains to express my sense of obligation to D_{r}. D. F. Wells for valuable assistance, and to the University Press for the elegance with which the book has been printed; and also to give assurance that any suggestions relating to the work will be thankfully received.

G. A. WENTWORTH.

> Pilillips Exeter Academy, January, 1 S78.

NOTE TO THIRD EDITION.

In this edition I have endeavored to present a more rigorous, but not less simple, treatment of Parallels, Ratio, and limits. The changes are not sufficient to prevent the simultaneous use of the old and new editions in the class; still they are very important, and have been made after the most careful and prolonged consideration.

I have to express my thanks for valuable suggestions received from many correspondents ; and a special acknowledgment is due from me to Professor C. H. Judson, of Furman University, Greenville, South Carolina, to whom I am indebted for assistance in effecting many improvements in this edition.

TO THE TEACHER.

When the pupil is reading each Book for the first time, it will be well to let him write his proofs on the blackboard in his own language ; care being taken that his language be the simplest possible, that the arrangement of work be vertical (without side work), and that the figures be accurately constructed.

This method will furnish a valuable exercise as a language lesson, will cultivate the habit of neat and orderly arrangement of work, and will allow a brief interval for deliberating on each step.

After a Book has been read in this way the pupil should review the Book, and should be required to draw the figures free-band. He
should state and prove the propositions orally, using a pointer to indicate on the figure every line and angle named. He should be encouraged, in reviewing each Book, to do the original exercises; to state the converse of propositions ; to determine from the statement, if possible, whether the converse be true or false, and if the converse be true to demonstrate it ; and also to give well-considered answers to questions which may be asked him on many propositions.

The Teacher is strongly advised to illustrate, geometrically and arithmetically, the principles of limits. Thus a rectangle with a constant base b, and a variable altitude x, will afford an obvious illustration of the axiomatic truth contained in [4], page 88. If x increase and approach the altitude a as a limit, the area of the rectangle increases and approaches the area of the rectangle $a b$ as a limit ; if, however, x decrease and approach zero as a limit, the area of the rectangle decreases and approaches zero for a limit. An arithmetical illustration of this truth would be given by multiplying a constant into the approximate values of any repetend. If, for example, we take the constant 60 and the repetend .3333 , etc., the approximate values of the repetend will be $\frac{8}{10}, \frac{38}{100}, \frac{838}{1000}, \frac{8388}{10000}$, etc., and these values multiplied by 60 give the series $18,19.8,19.98,19.998$, etc., which evidently approach 20 as a limit ; but the product of 60 into $\frac{1}{3}$ (the limit of the repetend .333 , etc.) is also 20 .

Again, if we multiply 60 into the different values of the decreasing series, $\frac{1}{30}, \frac{1}{300}, \frac{1}{3000}, \frac{1}{80000}$, etc., which approaches zero as a limit, we shall get the decreasing series, $2, \frac{1}{5}, \frac{1}{50}, \frac{1}{500}$, etc. ; and this series evidently approaches zero as a limit.

In this way the pupil may easily be led to a complete comprehension of the whole subject of limits.

The Teacher is likewise advised to give frequent written examinations. These should not be too difficult, and sufficient time should be allowed for accurately constructing the figures, for choosing the best language, and for determining the best arrangement.

The time necessary for the reading of examination-books will be diminished by more than one-half, if the use of the symbols employed in this book be permitted.

[^0]
CONTENTS.

PLANE GEOMETRY.

book I. Rectilinear Figures. Pagr
Inthoductory Remahks 3
Definitions 4
Straight Lines 6
Plane Angles 7
Angular Magnitude 9
Supbrposition 10
Mathematical Terms 11
Axioms and Postulates 12
Symbols and Abbreviations 13
Perpendicular and Oblique Lines 14
Parallel Lines 24
Thiangles 37
Quadrilaterals 58
Polygons in General. 68
BOOK II. Circles.
Definitions 73
Straight Lines and Circles 75
Measurement 86
Theory of Limits 87
Supplementary Propositions 100
Constructions 103
BOOK III. Proportional Lines and Similar Polygons.
Theory of Proportion 128
Proportional Lines 139
Similar Polygons 143
Constructions 164BOOK-IV. Comparison and Measurement of the Sur-faces of Polygons.
Comparison and Measurement of Polygons 174
Constructions 194
Book V. Regular Polygons and Circles.
Regular Polygons and Circles. 210
Constructions 224
Isoperimetrical Polygons. Supplementary 237
Symmetry. Supplementary 245

ELEMENTS OF GEOMETRY.

BOOK I.

RECTILINEAR FJGURES.

Introductory Remarks.

A rough block of marble, under the stone-cutter's hammer, may be made to assume regularity of form.

If a block be cut in the shape represented in this diagram,

It will have six ylat faces.
Each face of the block is called a Surface.

If these surfaces be made smooth by polishing, so that, when a straight-edge is applied to any one of them, the straight-edge in every part will touch the surface, the surfaces are called Plane Surfaces.

The sharp edge in which any two of these surfaces meet is called a Line.

The place at which any three of these lines meet is called a Point.

If now the block be removed, we may think of the place occupied by the block as being of precisely the same shape and size as the block itself; also, as having surfaces or boundaries which separate it from surrounding space. We may likewise think of these surfaces as having lines for their boundaries or limits ; and of these lines as having points for their extremities or limits.

A Solid, as the term is used in Geometry, is a limited portion of space.

After we acquire a clear notion of surfaces as boundaries of solids, we can easily conceive of surfaces apart from solids, and
suppose them of unlimited extent. Likewise we can conceive of lines apart from surfaces, and suppose them of unlimited length; of points apart from lines as having position, but no extent.

Diefinitions.

1. Def. Space or Extension has three Dimensions, called Length, Breadth, and Thickness.
2. Def. A Point has position without extension.
3. Def. A Line has only one of the dimensions of extension, namely, length.

The lines which we draw are only imperfect representations of the true lines of Geometry.

A line may be conceived as traced or generated by a point in motion.
4. Def. A Surface has only two of the dimensions of extension, length and breadth.

A surface may be conceived as generated by a line in motion.
5. Def. A Solid has the three dimensions of extension, length, breadth, and thickness. Hence a solid extends in all directions.

A solid may be conceived as generated by a surface in motion.
Thus, in the diagram, let the upright surface $A B C D$ move to the right to the position $E F H K$. The points A, B, C, and D will generate the lines $A E, B F, C K$, and, $D H$ respectively.
 And the lines $A B, B D, D C$, and $A C$ will generate the surfaces $A H, B H, D K$, and $A K$ respectively. And the surface $A B C D$ will generate the solid $A I I$.

The relative situation of the two points A and H involves three, and only three, independent elements. To pass from A to $I I$ it is necessary to move East (if we suppose the direction $A E$ to
be due East) a distance equal to $A E$, North a distance equal to $E F$, and down a distance equal to $F H$.

These three dimensions we designate for convenience length, breadth, and thickness.
6. The limits (extremities) of lines are points. The limits (boundaries) of surfaces are lines. The limits (boundaries) of solids are surfices.
7. Def. Extension is also called Magnitude.

When reference is had to extent, lines, surfaces, and solids are called magnitudes.
8. Def. A Straight line is a line which has the same direction throughout its whole extent.
9. Dep. A Curved line is a line which changes its direction at every point.
10. Def. A Broken line is a series of con-
 nected straight lines.
When the word line is used a straight line is meant; and When the word curve is used a curved line is meant.
11. Def. A Plane Surface, or a Plane, is a surface in which, if any two points be taken, the straight line joining these points will lie wholly in the surface.
12. Def. A Curved Surface is a surface no part of which is plane.
13. Figure or form depends upon the relative position of points. Thus, the figure or form of a line (straight or curved) depends upon the relative position of points in that line; the figure or form of a surface depends upon the relative position of points in that surface.

When reference is had to form or shape, lines, surfaces, and solids are called figures.
14. Def. A Plane Figure is a figure, all points of which are in the same plane.
15. Def. Geometry is the science which treats of position, magnitude, and form.

Points, lines, surfaces, and solids, with their relations, are the geometrical conceptions, and constitute the subject-matter of Geometry.
16. Plane Geometry treats of plane figures.

Plane figures are either rectilinear, curvilinear, or mixtilinear.
Plane figures formed by straight lines are called rectilinear figures ; those formed by curved lines are called curvilinear figures ; and those formed by straight and curved lines are called mixtilinear figures.
17. Def. Figures which have the same form are called Similar Figures. Figures which have the same extent are called Equivalent Figures. Figures which have the same form and extent are called Equal Figures.

On Straight Eines.

18. If the direction of a straight line and a point in the line be known, the position of the line is known ; that is, a straight line is determined in position if its direction and one of its points be known.

Hence, all straight lines which pass through the same point in the same direction coincide.

Between two points one, and but one, straight line can be drawn ; that is, a straight line is determined in position if two of its points be known.

Of all lines between two points, the shortest is the straight line; and the straight line is called the distance between the two points.

The point from which a line is drawn is called its origin.
19. If a line, as $C B, A=B$, be produced through C, the portions $C B$ and $C A$ may be regarded as different lines having opposite directions from the point C :

Hence, every straight line, as $A B, \underbrace{B}_{B}$, has two opposite directions, namely from ${ }^{-} A$ toward B, which is expressed by saying line $A B$, and from B toward A, which is expressed by saying line $B A$.
20. If a straight line change its magnitude, it must become longer or shorter. Thus by prolonging $A B$ to $C, A \quad C$, $A C=A B+B C$; and conversely, $B C=A C-A B$.

If a line increase so that it is prolonged by its own magnitude several times in succession, the line is multiplied, and the resulting line is called a multiple of the given line. Thus, if $A B=$
 $3 A B$, etc.

It must also be possible to divide a given straight line into an assigned number of equal parts. For, assumed that the u th part of a given line were not attainable, then the double, triple, quadruple, of the nth part would not be attainable. Among these multiples, however, we should reach the u th multiple of this nth part, that is, the line itself. Hence, the line itself would not be attainable ; which contradicts the hypothesis that we have the given line before us.

Therefore, it is alvays possible to add, subtract, multiply, and divide lines of given length.
21. Since every straight line has the property of direction, it must be true that two straight lines have either the same direction or different directions.

Two straight lines which have the same direction, without coinciding, can never meet; for if they could meet, then we should have two straight lines passing through the same point in the same direction. Such lines, however, coincide.
22. Two straight lines which lie in the same plane and lave different directions must meet if sufficiently prolonged ; and must have one, and but one, point in common.

Conversely: Two straight lines lying in the same plane which do not meet have the same direction; for if they had different directions they would meet, which is contrary to the hypothesis that they do not meet.

Two straight lines which meet have different directions; for if they had the same direction they would never meet (§ 21), which is contrary to the hypothesis that they do meet.

On Plane Angles.

23. Def. An Angle is the difference in direction of two lines. The point in which the lines (prolonged if necessary) meet is called the Vertex, and the lines are called the Sides of the angle.

An angle is designated by placing a letter at its vertex, and one at each of its sides. In reading, we name the three letters, putting the letter at the vertex between the other two. When the point is the vertex of but one angle we usually name the letter at the vertex only; thus, in Fig. 1, we read the angle by

Fig. 1.

Fig. 2.
calling it angle A. But in Fig. 2, H is the common vertex of two angles, so that if we were to say the angle H, it would not be known whether we meant the angle marked 3 or that marked 4. We avoid all ambiguity by reading the former as the angle $E H D$, and the latter as the angle $E H F$.

The magnitude of an angle depends wholly upon the extent of opening of its sides, and not upon their length. Thus if the sides of the angle $B A C$, namely, $A B$ and $A C$, be prolonged, their extent of opening will not be altered, and the
 size of the angle, consequently, will not be changed.
24. Def. Adjacent Angles are angles having a common vertex and a common side between them. Thus the angles $C D E$ and $C D F$ are adjacent angles.

25. Def. A Right Angle is an angle included between two to straight lines which meet each other so that the two adjacent angles formed by producing one of the lines
through the vertex are equal. - Thus if the straight line $A B$ meet the straight line $C D$ so that the adjacent angles $A B C$ and $A B D$ are equal to one another, each of these angles is called a right angle.
26. Def. Perpendicular Lines are lines which make a right angle with each other.
27. Def. An Acute Angle is an angle, less than a right angle ; as the angle $B A C$.
28. Def. An Obtuse Angle is an angle, greater than a right angle; as the angle $D E F$.
29. Def. Acute and obtuse angles, in

 distinction from right angles, are called oblique angles; and intersecting.lines which are not perpendicular to each other are called oblique lines.
30. Drf. The Complement of an angle is the difference between a right angle and the given angle. Thus $A B D$ is the complement of the angle $D B C$; also $D B C$ is the complement of the angle $A B D$.

31. Def. The Supplement of an angle is the difference between two right angles and the given angle. Thus $A C D$ is the supplement of the angle $D C B$; also $D C B$ is the supplement of the angle $A C D$.
32. Def. Vertical Angles are angles which have the same vertex, and their sides extending in opposite directions. Thus the angles $A O D$ and $C O B$ are vertical angles, as also the angles $A O C$ and $D O B$.

On Angular Magnitude.
33. Let the lines $B B^{\prime}$ and $A A^{\prime}$ be in the same plane, and let $B B^{\prime}$ be perpendicular to $A A^{\prime}$ at the point O.

Suppose the straight line $O C$ to move in this plane from coincidence with $O A$, about the point O as a pivot, to the position $O C$; then the line $O C$ describes or generates the angle $A O C$.

The amount of rotation of the line, from the position $O A$ to the position $O C$, is the Angular Magnitude $A O C$.

If the rotating line move from the position $O A$ to the position $O B$, perpendicular to $O A$, it generates a right angle ; to the position $O A^{\prime}$ it generates two right angles ; to the position $O B^{\prime}$, as indicated by the dotted line, it generates three right angles; and if it continue its rotation to the position $0 A$, whence it started, it generates four right angles.

Hence the whole angular magnitude about a point in a plane is equal to four right angles, and the angular magnitude about a point on one side of a straight line drawn through that point is equal to two right angles.

Fig. 1.

Fig. 2.
34. Now since the angular magnitude about the point O is neither increased nor diminished by the number of lines which radiate from that point, the sum of all the angles about a point in a plane, as $A O B+B O C+C O D$, etc., in Fig. 1, is equal to four right angles; and the sum of all the angles about a point on one side of a straight line draun through that point, as $A O B+B O C+C O D$, etc., Fig. 2, is equal to two right angles.

Hence two adjacent angles, $O C A$ and $O C B$, formed by two straight lines, of which one is produced from the point of meeting in both directions, are supplements of each other, and may \bar{A}
 be called supplementary adjacent angles.

On the Method of Superposition.

35. The test of the equality of two geometrical magnitudes is that they coincide point for point.

Thus, two straight lines are equal, if they can be so placed that the points at their extremities coincide. Two angles are equal, if they can be so placed that their vertices coincide in position and their sides in direction.

In applying this test of equality, we assume that a line may be moved from one place to another without altering its length; that an angle may be taken up, turned over, and put down, without altering the difference in direction of its sides.

This method enables us to compare unequal magnitudes of the same kind. Suppose we have two angles, $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$. Let the side $B C$ be placed on the side
 $B^{\prime} C^{\prime}$, so that the vertex B shall fall on B^{\prime}, then if the side $B A$ fall on $B^{\prime} A^{\prime}$, the angle $A B C$ equals the angle $A^{\prime} B^{\prime} C^{\prime}$; if the side $B A$ fall between $B^{\prime} C^{\prime}$ and $B^{\prime} A^{\prime}$ in the direction $B^{\prime} D$, the angle $A B C$ is less than $A^{\prime} B^{\prime} C^{\prime \prime}$; but if the side $B A$ fall in the direction $B^{t} E$, the angle $A B C$ is greater than $A^{\prime} B^{\prime} C^{\prime}$.

This method of superposition enables us to add magnitudes of the same kind. Thus, if we have two straight lines $A B$ and $C D$, by placing the point C on B, and keeping $C D$ in the same direction with $A B$, we shall have one continuous straight line $A D$ equal to the sum of the lines $A B$ and $C D$.

Again: if we have the angles $A B C$ and $D E F$, by placing the vertex B on E and the side $B C$ in the direction of $E D$, the angle $A B C$ will take the position $A E D$, and the angles $D E F$ and $A B C$ will together equal the angle $A E F$.

Mathematical Terms.

36. Def. A Demonstration is a course of reasoning by which the truth or falsity of a particular statement is logically established.
37. Def. A Theorem is a truth to be demonstrated.
38. Def. A Construction is a graphical representation of a geometrical conception.
39. Def. A Problem is a construction to be effected, or a question to be investigated.
40. Def. An Axiom is a truth which is admitted without demonstration.
41. Def. A Postulate is a problem which is admitted to be possible.
42. Def. A Proposition is either a theorem or a problem.
43. Def. A Corollary is a truth easily deduced from the proposition to which it is attached.
44. Def. A Scholium is a remark upon some particular feature of a proposition.
45. Def. An Hypothesis is a supposition made in the enunciation of a proposition, or in the course of a demonstration.
46. Axioms.
47. Things which are equal to the same thing are equal to each other.
48. When equals are added to equals the sums are equal.
49. When equals are taken from equals the remainders are equal.
50. When equals are added to unequals the sums are unequal.
51. When equals are taken from unequals the remainders are unequal.
52. Things which are double the same thing, or equal things, are equal to each other.
53. Things which are halves of the sàme thing, or of equal things, are equal to each other.
54. The whole is greater than any of its parts.
55. The whole is equal to all its parts taken together.
56. Postulates.

Let it be granted -

1. That a straight line can be drawn from any one point to any other point.
2. That a straight line can be produced to any distance, or can be terminated at any point.
3. That the circumference of a circle can be described about any centre, at any distance from that centre.
4. Symbols and Abbreviations.
\therefore therefore.
$=$ is (or are) equal to.
\angle angle.
\&s angles.
\triangle triangle.
A triangles.
II parallel.
\square parallelograin
[s parallelograms.
\perp perpendicular.
16 perpendiculars.
rt. \angle right angle.
rt. Σs right angles.
$>$ is (or are) greater than.
$<$ is (or are) less than.
rt. Δ right triangle.
rt. A right triangles.
\odot circle.
(5) circles.

+ increased by.
- diminished by.
X multiplied by.
\div divided by.

Post. postulate.
Def. definition.
Ax. axiom.
Hyp. hypothesis.
Cor. corollary.
Q. E. D. quod erat demonstrandum.
Q. E. F. quod crat faciendum.

Adj. adjacent.
Ext.-int. exterior-interior.
Alt.-int. alternate-interior.
Iden. identical.
Cons. construction.
Sup. supplementary.
Sup. adj. supplementary-adjacent.
Ex. exercise.
Ill. illustration.

On Perpendicular and Oblique Lines.

Prepasition I. Theorem.

49. When one straight line crosses another straight line the vertical angles are equal.

Let line $O P$ cross $A B$ at C.

$$
\begin{gathered}
\text { We are to prove } \angle O C B=\angle A C P . \\
\angle O C A+\angle O C B=2 \text { rt. } \triangle, \\
\text { (being supp.adj. } \triangle \text {) } .
\end{gathered}
$$

Take away from each of these equals the common $\angle O C A$. Then

$$
\angle O C B=\angle A C P .
$$

In like manner we may prove

$$
\angle A C O=\angle P C B .
$$

Q. E. D.
50. Corollary. If two straight lines cut one another, the four angles which they make at the point of intersection aro together equal to four right angles.

Proposition II. Theorem.

51. When the sum of two arljacent angles is equal to two right angles, their exterior sides form one and the same straight line.

Let the adjacent angles $\angle O C A+\angle O C B=2 \mathrm{rt}$. Ls.
We are to prove $A C$ and $C B$ in the same straight line.
Suppose $C F$ to be in the same straight line with $A C$.
Then

$$
\angle O C A+\angle O C F=2 \mathrm{rt.} \angle \mathrm{~s}
$$

(bcing sup.-adj. \&).
But

$$
\angle O C A+\angle O C B=2 \mathrm{rt.} \angle \mathrm{~s}
$$

Hyp.
$\therefore \angle O C A+\angle O C F=\angle O C A+\angle O C B . \quad$. x .1 .
Take away from each of these equals the common $\angle O C A$.
Then

$$
\angle O C F=\angle O C B
$$

$\therefore C B$ and $C F$ coincide, and cannot form two lines as represented, in the figure.
$\therefore A C$ and $C B$ are in the same straight line.
Q. E. D.

Proposition III. Theorem.
52. A perpendicular measures the shortest distance from a point to a straight line.

Let $A B$ be the given straight line, C the given point, and $C O$ the perpendicular.
We are to prove $C O<$ any other line drawn from C to $A B$, as $C H$.

Produce $C O$ to E, making $O E=C O$.
Draw EF.
On $A B$ as an axis, fold over $O C F$ until it comes into the plane of $O E F$.

The line $O C$ will take the direction of $O E$, (since $\angle C O F=\angle E O F$, each being a rt. \angle).
The point C will fall upon the point E, (since $O C=O E$ by cons.).
\therefore line $C F=$ line $F E$,
(having their extremities in the same points).

$$
\therefore C F+F E=2 C F,
$$

and

$$
C O+O E=2 C O
$$

But $\quad C O+O E<C F+F E$,
(a straight line is the shortest distance between two points).
Substitute $2 C O$ for $C O+O E$,
and $2 C F$ for $C F+F E$; then we have

$$
\begin{aligned}
& 2 C O<2 C F . \\
& \therefore C O<C F .
\end{aligned}
$$

Proposition IV. Theorem.
53. Two oblique lines drawn from a point in a perpendicular, cutting off equal distances from the foot of the perpendicular, are equal.

Let $F C$ be the perpendicular, and $C A$ and $C O$ two oblique lines cutting off equal distances from F.

We are to prove $\quad C A=C O$.
Fold over $C F A$, on $C F$ as an axis, until it comes into the plane of CFO .
$F^{\prime} A$ will take the direction of $F O$, (since $\angle C F A=\angle C F O$, each being a rt. \angle).

Point A will fall upon point O, ($F A=F O$, by hyp.).
\therefore line $C A=$ line $C O$,
(their extremities being the same points).

Proposition V. Theorem.

54. The sum of two lines drawn from a point to the extremities of a straight line is greater than the sum of two other lines similarly drawn, but included by them.

Let $C A$ and $C B$ be two lines drawn from the point C to the extremities of the straight line $A B$. Let $0 A$ and $O B$ be two lines similarly drawn, but included by $C A$ and $C B$.

We are to prove $C A+C B>O A+O B$.
Produce $A O$ to meet the line $C B$ at E.
Then

$$
A C+C E>A O+O E
$$

(a straight line is the shortest distance between two points), and

$$
B E+O E>B O \text {. }
$$

Add these inequalities, and we have

$$
C A+C E+B E+O E>O A+O E+O B .
$$

Substitute for $C E+B E$ its equal $C B$, and take away $O E$ from each side of the inequality.
We have $\quad C A+C B>O A+O B$.

Proposition VI. Theorem.

55. Of two oblique lines drawn from the same point in a perpendicular, cutting off unequal distances from the foot of the perpendicular, the more remote is the greater.

Let $C F$ be perpendicular to $A B$, and $C K$ and $C H$ two oblique lines cutting off unequal distances from k. We are to prove $\quad C H>C K$.

Produce $C F$ to E, making $F E=C F$.
Draw $E K$ and $E H$.

$$
C H=H E, \text { and } C K=K E,
$$

(two oblique lines drawn from the same point in a \perp, eutting off equal distances from the foot of the \perp, are equal).

But

$$
C H+H E>C K+K E
$$

(The sum of two oblique lines drawn from a point to the extremities of a straight line is greater than the sum of two other lines similarly drawn, but included by them);

$$
\begin{aligned}
\therefore & 2 C H>2 C K \\
& \therefore C H>C K .
\end{aligned}
$$

Q. E. D.
56. Corollary. Only two equal straight lines can be drawn from a point to a straight line ; and of two unequal lines, the greater cuts off the greater distance from the foot of the perpendicular.

Proposition VII. Theorem.

57. Two equal oblique lines, Irawn from the same point in a perpendicular, cut off equal distances from the foot of the perpendicular.

Let $C F$ be the perpendicular, and $C E$ and $C K^{*}$ be two equal oblique lines drawn from the point C.

We are to prove $\quad F E=F K$.
Fold over $C F A$ on $C F$ as an axis, until it comes into the plane of $C F B$.

> The line $F E$ will take the direction $F K$, $$
(\angle C F E=\angle C F K \text {, each being a } r t . \angle) \text {. }
$$

Then the point E must fall upon the point K;
otherwise one of these oblique lines must be more remote from the \perp,
and \therefore greater than the other; which is contrary to the hypothesis.

$$
\therefore F E=F K
$$

Q.E. D.

Proposition VIII. Theorem.

58. If at the middle point of a straight line a perpendicular be erected,
I. Any point in the perpendicular is at equal distances from the extremities of the straight line.
II. Any point without the perpendicular is at unequal distances from the extremities of the straight line.

Let $P R$ be a perpendicular erected at the middle ol the straight line $A B, O$ any point in $P R$, and C any point without Pl.
I.

$$
\text { Draw } O A \text { and } O B .
$$

We are to prove

$$
\begin{aligned}
& O A=O B \\
& P A=P B \\
& O A=O B
\end{aligned}
$$

(twoo oblique lines drawn from the same point in a \perp, cutting off equal distances from the foot of the \perp, are equal).
II. Draw $C A$ and $C B$.

We are to prove $C A$ and $C B$ unequal.
One of these lines, as $C A$, will intersect the \perp. From D, the point of intersection, draw $D P$.

$$
D B=D A
$$

(two oblique lines drawn from the same point in a \perp, cutting off equal distances from the foot of the \perp, are equal).

$$
C B<C D+D B
$$

(a straight line is the shortest distance between two points).
Substitute for $D B$ its equal $D A$, then

$$
C B<C D+D A
$$

But

$$
\begin{array}{cl}
C D+D A=C A, & \text { Ax. } 9 . \\
\therefore C B<C A . & \text { Q. Е. D. }
\end{array}
$$

59. The Locus of a point is a line, straight or curved, containing all the points which possess a common property.

Thus, the perpendicular erected at the middle of a straight line is the locus of all points equally distant from the extremities of that straight line.
60. Scholum. Since two points determine the position of a straight line, two points equally distant from the extremities of a straight line determine the perpendicular at the middle point of that line.

Ex. 1. If an angle be a right angle, what is its complement?
2. If an angle be a right angle, what is its supplement?
3. If an angle be $\frac{3}{5}$ of a right angle, what is its complement?
4. If an angle be $\frac{3}{8}$ of a right angle, what is its supplement?
5. Show that the bisectors of two vertical angles form one and the same straight line.
6. Show that the two straight lines which bisect the two pairs of vertical angles are perpendicular to each other.

Proposition IX. Theorem.
61. At a point in a straight line only one perpendicular to that line can be drawn; and from a point without a straight line only one perpendicular to that line can be drawn.

Fig. 1.

Fig. 2.

Let $B A$ (fig. 1) be perpendicular to $C D$ at the point B.
We are to prove $B A$ the only perpendicular to $C D$ at the point B.

If it be possible, let $B E$ be another line \perp to $C D$ at B.
Then $\quad \angle E B D$ is a rt. \angle.
But $\quad \angle A B D$ is a rt. \angle.

$$
\therefore \angle E B D=\angle A B D \text {. }
$$

That is, a part is equal to the whole ; which is impossible.
In like manner it may be shown that no other line but $B A$ is \perp to $C D$ at B.

Let $A B$ (fig. 2) be perpendicular to $C D$ from the point A.
We are to prove $A B$ the only \perp to $C D$ from the point A.
If it be possible, let $A E$ be another line drawn from $A \perp$ to $C D$.

Conceive $\angle A E B$ to be moved to the right until the vertex E falls on B, the side $E B$ continuing in the line $C D$.

Then the line $E A$ will take the position $B F$.
Now if $A E$ be \perp to $C D, B F^{\prime}$ is \perp to $C D$, and there will be two 1 s to $C D$ at the point B; which is impossible.

In like manner, it may be shown that no other line but $A B$ is \perp to $C D$ from A.
Q.E.D.
62. Corollary. Two lines in the same plane perpendicular to the same straight line have the same direction ; otherwise they would meet ($\S 22$), and we should have two perpendicular lines drawn from their point of meeting to the same line; which is impossible.

On Parallel Lines.

63. Purallel Lines are straight lines which lie in the same plane and have the same direction, or opposite directions.

Parallel lines lie in the same direction, when they are on the same side of the straight line joining their origins.

Parallel lines lie in opposite directions, when they are on opposite sides of the straight line joining their origins.
64. Two parallel lines cannot meet.
65. Two lines in the same plane perpendicular to a given line lave the same direction (§62), and are therefore parallel.
66. Through a given point only one line can be drawn parallel to a given line.
§ 18

If a straight line $E F$ cut two other straight lines $A B$ and $C D$, it makes with those lines eight angles, to which particular names are given.

The angles 1, 4, 6, 7 are called Interior angles.
The angles 2, 3, 5, 8 are called Exterior angles.
The pairs of angles 1 and 7, 4 and 6 are called Alternateinterior angles.

The pairs of angles 2 and 8, 3 and 5 are called Alternateexterior angles.

The pairs of angles 1 and 5, 2 and 6, 4 and 8, 3 and 7 are called Exterior-interior angles.

Proposition X. Theorem.
67. If a straight line be perpendicular to one of two parallel lines, it is perpendicular to the other.

Let $A B$ and $E F$ be two parallel lines, and let $H K$ be perpendicular to $A B$.

We are to rove $H K \perp$ to $E F$.
Through C draw $M N \perp$ to $M K$.
Then

$$
M N \text { is } \| \text { to } A B
$$

(Two lines in the same plane \perp to a given line are parallel).
But $E F$ is \| to $A B$,
$\therefore E F^{\prime}$ coincides with $M N$.
(Through the same point only one line can be drawn II to a given line).

$$
\therefore E F \text { is } \perp \text { to } H K \text {, }
$$

that is $\quad H K$ is \perp to $E F$.
Q. E. D.

Proposition XI. Theorem.
68. If two parallel straight lines be out by a third straight line the alternate-interior angles are equal.

Let $E F$ and $G H$ be two parallel straight lines cut by the line $B C$.
We are to prove $\quad \angle B=\angle C$.
Through O, the middle point of $B C$, draw $A D \perp$ to $G I$.
Then $\quad A D$ is likewise \perp to $E F$, $\quad 67$ (a straight line \perp to one of two lls is \perp to the other), that is, $C D$ and $B A$ are both \perp to $A D$.
Apply figure $C O D$ to figure $B O A$ so that $O D$ shall fall on 0 A .

Then
$O C$ will fall on $O B$, (sincc $\angle C O D=\angle B O A$, being vertical ©);
and point C will fall upon B, (since $O C=O B$ by construction).
Then $\quad \perp C D$ will coincide with $\perp B A$, (Grom a point weithout a straight line only one \perp to that line can be draun).
$\therefore \angle O C D$ coincides with $\angle O B A$, and is equal to it.

> Q. E. D.

Scholicm. By the converse of a proposition is meant a proposition which has the hypothesis of the first as conclusion and the conclusion of the first as hypothesis. The converse of a truth is not necessarily true. Thus, parallel lines never meet; its converse, lines which never meet are parallel, is not true unless the lines lie in the same plane.

Note. - The converse of many propositions will be omitted, but their statement and demonstration should be required as an important exercise for the student.

Proposition XII. Theorem.

69. Conversely: When two straight lines are cut by a third straight line, if the alternate-interior angles be equal, the two straight lines are parallel.

Let $E F$ cut the straight lines $A B$ and $C D$ in the points H and K, and let the $\angle A H K=\angle H K D$.

$$
\text { We are to prove } \quad A B \| \text { to } C D \text {. }
$$

Through the point $I I$ draw $M N \|$ to $C D$;
then

$$
\angle M H K=\angle H K D
$$ (being alt.-int. \&) .

$$
\begin{align*}
& \angle A H K=\angle H K D \\
& \therefore \angle M H K=\angle A H K
\end{align*}
$$

Нур.
\therefore the lines $M N$ and $A B$ coincide.
But

$$
M N \text { is } \| \text { to } C D
$$

Cons.
$\therefore A B$, which coincides with $M N$, is $\|$ to $C D$.
Q. E. D.

Proposition XIII. Theorem.

70. If two parallel lines be cut by a third straight line, the exterior-interior angles are equal.

Let $A B$ and $C D$ be two parallel lines cut by the straight line E F, in the points H and K.

$$
\text { We are to prove } \quad \angle E H B=\angle H K D \text {. }
$$

$$
\angle E H B=\angle A H K \text {, }
$$ (being vertical $\stackrel{1}{5}$).

But

$$
\begin{gathered}
\angle A H K=\angle H K D, \\
\text { (being all.-int. © © } .
\end{gathered}
$$

$$
\therefore \angle E H B=\angle H K D .
$$

In like manner we may prove

$$
\angle E H A=\angle H K C .
$$

Q. E. D.
71. Corollary. The alternate-exterior angles, E II B and $C K F$, and also $A H E$ and $D K F$, are equal.

Proposition XIV. Theorem.

72. Conversely: When two straight lines are cut by a third straight line, if the exterior-interior angles be equal, these two straight lines are parallel.

Let $E F$ cut the straight lines $A B$ and $C D$ in the points H and K, and let the $\angle E H B=\angle H K D$.

$$
\text { We are to prove } \quad A B \| \text { to } C D \text {. }
$$

Through the point H draw the straight line $M N \|$ to $C D$.
Then

$$
\begin{gathered}
\angle E H N=\angle H K D, \\
\text { (being ext.-int. } \angle \mathrm{s}) \text {, }
\end{gathered}
$$

But

$$
\angle E H B=\angle H K D
$$

$$
\therefore \angle E H B=\angle E H N .
$$

\therefore the lines $M N$ and $A B$ coincide.
But

$$
M N \text { is } \| \text { to } C D,
$$

$\therefore A B$, which coincides with $M N$, is \| to $C D$.
Q. E. D.

Proposition XV. Theorem.
73. If two parallel lines be cut by a third straight line, the sum of the two interior angles on the same side of the secant line is equal to two right angles.

Let $A B$ and $C D$ be two parallel lines cut by the straight line $E F$ in the points H and K.

We are to prove $\angle B H K+\angle H K D=$ two rt. $\angle \mathrm{s}$.

$$
\begin{gathered}
\angle E H B+\angle B H K=2 \mathrm{rt.} \triangle s, \quad \S 34 \\
\text { (being sup.-adj. } \boxed{*}) .
\end{gathered}
$$

But

$$
\begin{gather*}
\angle E H B=\angle H K D, \\
\text { (being ext. -int. } \angle \widehat{s}) .
\end{gather*}
$$

Substitute $\angle H K D$ for $\angle E H B$ in the first equality ;
then

$$
\angle B H K+\angle I K D=2 \mathrm{rt} . \angle \mathrm{s}
$$

Q. E. D.

Proposition XVI. Theorem.
74. Conversely: When two straight lines are cut by a third straight line, if the two interior angles on the same side of the secant line be together equal to two right angles, then the two straight lines are parallel.

Let $E F$ cut the straight lines $A B$ and $C D$ in the points $I I$ and K, and let the $\angle \dot{B} H K+\angle H K D$ equal two right angles.

We are to prove $A B \|$ to $C D$.
Through the point H draw $M N \|$ to $C D$.
Then

$$
\angle N H K+\angle H K D=2 \mathrm{rt.} \angle \mathrm{~s}
$$ (being two interior \mathbb{S} on the same side of the secant line).

But

$$
\angle B H K+\angle H K D=2 \mathrm{rt} . \angle \mathrm{s}
$$

Нур.
$\therefore \angle N H K+\angle H K D=\angle B H K+\angle H K D$. $\Lambda \mathrm{x} .1$.
Take away from each of these equals the common $\angle I K D$, then

$$
\angle N H K=\angle B H K
$$

\therefore the lines $A B$ and $M N$ coincide.
But

$$
M N \text { is } \| \text { to } C D
$$

Cons.
$\therefore A B$, which coincides with $M N$, is \| to $C D$.
Q. E D.

Proposition XVII. Theorem.
75. Two straight lines which are parallel to a third straight line are parallel to each other.

Let $A B$ and $C D$ be parallel to $E F$.
We are to prove $A B \|$ to $C D$.

$$
\text { Draw } H K \perp \text { to } E F \text {. }
$$

Since $C D$ and $E F$ are $\|, H K$ is \perp to $C D, \quad \S 67$ (if a straight line be \perp to one of two lls, it is \perp to the other also).

Since $A B$ and $E F$ are $\|, H K$ is also \perp to $A B, \quad \S 67$
$\therefore \angle H O B=\angle H P D$,
(each being a rt. \angle).
$\therefore A B$ is $\|$ to $C D$,
§ 72
(when two straight lines are cut by a third straight line, if the ext.-int. \&s be equal, the two lines are II).

> Q. E. D.

Proposition XVIII. Theorem.
76. Two parallel lines are everywhere equally distant from each other.

Let $A B$ and $C D$ be two parallel lines, and from any t wo points in $A B$, as E and $I I$, let $E F$ and $H K$ be drawn perpendicular to $A B$.
We are to prove $E F=H K$.
Now $E F$ and $H K$ are \perp to $C D$,
(a line \perp to one of two lls is \perp to the other also).
Let M be the middle point of $E H$.

Draw $M P \perp$ to $A B$.

On $M P$ as an axis, fold over the portion of the figure on the right of $M P$ until it comes into the plane of the figure on the left.
$M B$ will fall on $M A$,
(for $\angle P M H=\angle P M E$, cuch being a rt. \angle);
the point $I I$ will fall on E,
(for $M H=M E$, by hyp.) ;
$H K$ will fall on $E F$,
(for $\angle M H K=\angle M E F$, euch being a rt. \angle);
and the point K will fall on $E F$, or $E F$ produced.
Also, $P D$ will fall on $P C$, ($\angle M P K=\angle M P F$, each being a rt. \angle); and the point K will fall on $P C$.
Since the point K falls in both the lines $E F$ and $P C$, it must fall at their point of intersection F.

$$
\therefore H K=E F \text {, }
$$

(their extremities being the same points).
Q. E. D.

Proposition XIX. Theorem.

77. Two angles whose sides are parallel, two and two, and lie in the same direction, or opposite directions, from their vertices, are equal.

Fig. 1.

Fig. 2.

Let $\triangle B$ and E (Fig. 1) have their sides $B A$ and $E D$, and $B C$ and $E F$ respectively, parallel and lying in the same direction from their vertices.
We are to prove the $\quad \angle B=\angle E$.
Produce (if necessary) two sides which are not \| until they intersect, as at H;
then

$$
\begin{align*}
& \angle B=\angle D H C, \\
& (\text { being ext.-int. } \&) \text {, }
\end{align*}
$$

and

$$
\begin{align*}
& \angle E=\angle D H C, \\
& \therefore \angle B=\angle E . \tag{Ax. 1}
\end{align*}
$$

Let $\measuredangle B^{\prime}$ and E^{\prime} (Fig. 2) have $B^{\prime} A^{\prime}$ and $E^{\prime} D^{\prime}$, and $B^{\prime} C^{\prime}$ and $E^{\prime \prime} l^{\prime \prime}$ respectively, parallel and lying in opposite directions from their vertices.
We are to prove the $\quad \angle B^{\prime}=\angle E^{\prime}$.
Produce (if necessary) two sides which are not \| until they intersect, as at $I I^{\prime}$.

Then

$$
\angle B^{\prime}=\angle E^{\prime} H^{\prime} C^{\prime},
$$

(being ext.-int. \&),
and

$$
\angle E^{\prime}=\angle E^{\prime} H^{\prime} C^{\prime},
$$

(being alt.-int. ©) ;
$\therefore \angle B^{\prime}=\angle E^{\prime}$, Ax. 1.

Proposition XX. Theorem.
78. If two angles liave two sides parallel and lying in the same direction from their vertices, while the other two sides are parallel and lie in opposite directions, then the two angles are supplements of each other.

Let $A B C$ and $D E F$ be two angles having $B C$ and $E D$ parallel and lying in the same direction from their vertices, while $E F$ and $B A$ are parallel and lie in opposite directions.

We are to prove $\angle A B C$ and $\angle D E F$ supplements of each other.

Produce (if necessary) two sides which are not \| until they intersect as at Π.

$$
\begin{align*}
& \angle A B C=\angle B H D, \\
& \text { (being ext.-int. } \& \text {). } \\
& \angle D E F=\angle B H E \text {, } \\
& \text { § } 68 \\
& \text { (being alt.-int. ©). }
\end{align*}
$$

But $\angle B H D$ and $\angle B I E$ are supplements of each other, § 34 (bring sup.-arlj. 太).
$\therefore \angle A B C$ and $\angle D E F$, the equals of $\angle B I D$ and $\angle B H E$, are supplements of each other.
Q. E. D.

On Triangles.

79. Def. A Triangle is a plane figure bounded by three straight lines.

A triangle has six parts, three sides and three angles.
80. When the six parts of one triangle are equal to the six parts of another triangle, each to each, the triangles are said to be equal in all respects.
81. Def. In two equal triangles, the equal angles are called Homologous angles, and the equal sides are called Homologous sides.
82. In equal triangles the equal sides are opposite the equal angles.

SCALENE.

ISOSCELES.

EQUILATERAL.
83. Def. A Scalene triangle is one of which no two sides are equal.
84. Def. An Isosceles triangle is one of which two sides are equal.
85. Def. An Equilateral triangle is one of which the three sides are equal.
86. Def. The Base of a triangle is the side on which the triangle is supposed to stand.

In an isosceles triangle, the side which is not one of the equal sides is considered the base.

RIOHT.

ostuse.

ACUTE.
87. Def. A Right triangle is one which has one of the angles a right angle.
88. Def. The side opposite the right angle is called the Hypotenuse.
89. Def. An Obtuse triangle is one which has one of the angles an obtuse angle.
90. Def. An Acute triangle is one which has all the angles acute.

equiangular.

91. Def. An Equiangular triangle is one which has all the angles equal.
92. Dep. In any triangle, the angle opposite the base is called the Vertical angle, and its vertex is called the Vertex of the triangle.
93. Def. The Altitude of a triangle is the perpendicular distance from the vertex to the base, or the base produced.
94. Def. The Esterior angle of a triangle is the angle included between a side and an arljacent side produced, as $\angle C^{\prime} B D$.
95. Def. The two angles of a triangle which are opposite the exterior angle, are called the two opposite interior angles, as $\triangle A$ and C.

96. Any side of a triangle is less than the sum of the other two sides.

Since a straight line is the shortest distance between two ${ }^{*}$ points,

$$
A C<A B+B C .
$$

97. Any side of a triangle is greater than the difference of the other two sides.

In the inequality $A C<A B+B C$,
take away $A B$ from each side of the inequality.
Then

$$
\begin{gathered}
A C-A B<B C ; \text { or } \\
B C>A C-A B
\end{gathered}
$$

Ex. 1. Show that the sum of the distances of any point in a triangle from the vertices of three angles of the triangle is greater than half the sum of the sides of the triangle.
2. Show that the locus of all the points at a given distance from a given straight line $A B$ consists of two parallel lines, drawn on opposite sides of $A B$, and at the given distance from it.
3. Show that the two equal straight lines drawn from a point to a straight line make equal acute angles with that line.
4. Show that, if two angles have their sides perpendicular, each to each, they are either equal or supplementary.

Proposition XXI. Theorem.
95. The sum of the three angles of a triangle is equal to two right angles.

Let $A B C$ be a triangle.
We are to prove $\angle B+\angle B C A+\angle A=$ two rt. $\angle \mathrm{s}$.
Draw $C E \|$ to $A B$, and prolong $A C$.
Then $\angle E C F+\angle E C B+\angle B C A=2 \mathrm{rt} . \angle \mathrm{s}, \quad \S 34$ (the sum of all the \mathbb{S} about a point on the same side of a straight line $=2 r t$. 逄) .

But
$\angle A=\angle E C P$,
(being c.xt.-int. © ©),
and $\angle B=\angle B C E$,
§ 68
(being alt.-int. © S)
Substitute for $\angle E C F$ and $\angle B C E$ their equal $\angle S, A$ and B.
Then

$$
\angle A+\angle B+\angle B C A=2 \mathrm{rt.} \angle \mathrm{~s}
$$

Q. E. D.
99. Corollary 1. If the sum of two angles of a triangle be known, the third angle can be found by taking this sum from two right angles.
100. Cor. 2. If two triangles have two angles of the one equal to two angles of the other, the third angles will be equal.
101. Cor. 3. If two right triangles have an acute angle of the one equal to an acute angle of the other, the other acute angles will be equal.
102. Cor. 4. In a triangle there can be but one right angle, or one obtuse angle.
103. Cor. 5 . In a right triangle the two acute angles are complements of each other.
104. Cor. 6. In an equiangular triangle, each angle is one third of two right angles, or two thirds of one right angle.

Proposition XXII. Theorem.
105. The exterior angle of a triangle is equal to the sum of the two opposite interior angles.

Let $B C H$ be an exterior angle of the triangle $A B C$.
We are to prove $\quad \angle B C H=\angle A+\angle B$.
$\angle B C H+\angle A C B=2 \mathrm{rt} . \angle \mathrm{s}$,
(being sup.-adj. ©) .

$$
\angle A+\angle B+\angle A C B=2 \mathrm{rt.} \angle \mathrm{~s}
$$ (three $\&$ of $a \triangle=$ two rt. 太 ©).

$\therefore \angle B C H+\angle A C B=\angle A+\angle B+\angle A C B$. Ax.1.
Take away from each of these equals the common $\angle A C B$;
then

$$
\angle B C H=\angle A+\angle B
$$

Proposition XXIII. Theorem.
106. Two triangles are equal in all respects when two sides and the included angle of the one are equal respectively to two sides and the included angle of the other.

In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, let $A B=A^{\prime} B^{\prime}$, $A C=A^{\prime} C^{\prime}, \angle A=\angle A^{\prime}$.

We are to prove $\quad \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime}$.
Take up the $\triangle A B C$ and place it upon the $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $A B$ shall coincide with $A^{\prime} B^{\prime}$.

Then $\quad A C$ will take the direction of $A^{\prime} C^{\prime}$, (for $\angle A=\angle A^{\prime}$, by hyp.),
the point C will fall upon the point C^{\prime}, (for $A C=A^{\prime} C^{\prime}$, by hyp.) ;

$$
\therefore C B=C^{\prime} B^{\prime}
$$

(their 'extremities being the same points).
\therefore the two Δ coincide, and are equal in all respects.
Q. E. D.

Proposition XXIV. Theorem.

107. Two triangles are equal in all respects when a side and two adjacent angles of the one are equal respectively to a side and two adjacent angles of the other.

In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, let $A B=A^{\prime} B^{\prime}$, $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$.

We are to prove $\quad \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime \prime}$.
Take up $\triangle A B C$ and place it upon $\triangle A^{\prime} B^{\prime} C^{\prime \prime}$, so that $A B$ shall coincide with $A^{\prime} B^{\prime}$.
$A C$ will take the direction of $A^{\prime} C^{\prime \prime}$, (for $\angle A=\angle A^{\prime}$, by hyp.) ;
the point C, the extremity of $A C$, will fall upon $A^{\prime} C^{\prime}$ or $A^{\prime} C^{\prime}$ produced.
$B C$ will take the direction of $B^{\prime} C^{\prime}$, (for $\angle B=\angle B^{\prime}$, by hyp.) ;
the point C, the extremity of $B C$, will fall upon $B^{\prime} C^{\prime}$ or $b^{\prime \prime} C^{\prime}$ produced.
\therefore the point C, falling upon both the lines $A^{\prime} C^{\prime}$ and $B^{\prime} C^{\prime}$, must fall upon a point common to the two lines, namely, C^{\prime}.
\therefore the two \triangle coincide, and are equal in all respects.
Q. E. D.

Proposition XXV. Theorem.
108. Two triangles are equal when the three silles of the one are equal respectively to the three sides of the other.

In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, let $A B=A^{\prime} B^{\prime}$, $A C=A^{\prime} C^{\prime}, B C=B^{\prime} C^{\prime}$.
We are to prove $\quad \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime \prime}$.
Place $\triangle A^{\prime} B^{\prime} C^{\prime}$ in the position $A B^{\prime} C$, having its greatest side $A^{\prime} C^{\prime}$ in coincidence with its equal $A C$, and its vertex at B^{\prime}; opposite B.

Draw $B B^{\prime}$ intersecting $A C$ at $I I$.

$$
\text { Since } A B=A B^{\prime} \text {, }
$$

Нур.
point A is at equal distances from B and B^{\prime}.

$$
\text { Since } B C=B^{\prime} C \text {, }
$$

Нур.
point C is at equal distances from B and B^{\prime}.

$$
\therefore A C \text { is } \perp \text { to } B B^{\prime} \text { at its middle point, } \quad \oint 60
$$ (two points at equal distances from the extremitics of a straight line determine the \perp at the middle of that line).

Now if $\triangle A B^{\prime} C$ be folded over on $A C$ as an axis until it comes into the plane of $\triangle A B C$,
$I I B^{\prime}$ will fall on $I I B$,
(for $\angle A H B=\angle A H B^{\prime}$, each being a rt. \angle), and point B^{\prime} will fall on B, (for $H B^{\prime}=H B$).
\therefore the two \triangle coincide, and are equal in all respects.

Proposition XXVI. Theorem.
109. Two right triangles are equal when a side and the liypotenuse of the one are equal respectively to a side and the hypotenuse of the other.

In the right triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, let $A B=A^{\prime} B^{\prime}$, and $A C=A^{\prime} C^{\prime}$.

We are to prove $\quad \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime \prime}$.
Take up the $\triangle A B C$ and place it upon $\triangle A^{\prime} B^{\prime} C^{\prime}$, so that $A B$ will coincide with $A^{\prime} B^{\prime}$.

Then $\quad B C$ will fall upon $B^{\prime} C^{\prime}$, (for $\angle A B C=\angle A^{\prime} B^{\prime} C^{\prime}$, each being a rt. \angle),
and point C will fall upon C^{\prime};
otherwise the equal oblique lines $A C$ and $A^{\prime} C^{\prime \prime}$ would cut off unequal distances from the foot of the \perp, which is impossible,
(two equal oblique lines from a point in a \perp cut off equal distances from the foot of the \perp).
\therefore the two \triangle coincide, and are equal in all respects.
Q. E. D.

Proposition XXVII. Theorem.

110. Two right triangles are equal when the hypotenuse and an acute angle of the one are equal respectively to the hypotenuse and an acute angle of the other.

In the right triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, let $A C=A^{\prime} C^{\prime}$, and $\angle A=\angle A^{\prime}$.

We are to prove $\quad \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime}$.

$$
\begin{array}{lr}
A C=A^{\prime} C^{\prime}, & \text { Hyp. } \\
\angle A=\angle A^{\prime}, & \text { Hyp. } \\
\angle C=\angle C^{\prime}, & \S 101
\end{array}
$$

then
(if two rt. © have an acute \angle of the one equal to an acute \angle of the other, then the other acute \leftarrow are equal).

$$
\therefore \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime}
$$

(two A are equal when a side and two adj. © of the one are equal respectively to a side and two adj. \AA of the other).
Q. E. D.
111. Corollary. Two right triangles are equal when a side and an acute angle of the one are equal respectively to an homologous side and acute angle of the other.

Proposition XXVIII. Theorem.
112. In an isosceles triangle the angles opposite the equal sides are equal.

Let $A B C$ be an isosceles triangle, having the sides $A C$ and $C B$ equal.

We are to prove $\angle A=\angle B$.
From C draw the straight line $C E$ so as to bisect the $\angle A C B$.

In the $\triangle A C E$ and $B C E$,

$$
\begin{array}{cc}
A C=B C, & \text { Hyp. } \\
C E=C E, & \text { Iden. } \\
\angle A C E=\angle B C E ; & \text { Cons. } \\
\therefore \triangle A C E=\triangle B C E, & \S 106
\end{array}
$$

(two © are equal when two sides and the included \angle of the one are equal respectively to two sides and the included \angle of the other).

$$
\therefore \angle A=\angle B \text {, }
$$

(being homologous $\mathbb{\&}$ of equal \&).
Q. E. D.

Ex. If the equal sides of an isosceles triangle be produced, show that the angles formed with the base by the sides produced are equal.

Proposition XXIX. Theorem.

113. A straight line which bisects the angle at the verter af an isosceles triangle divides the triangle into two equal. triangles, is perpendicular to the base, and bisects the base.

Let the line $C E$ bisect the $\angle A C B$ of the isosceles $\triangle A C B$.

We are to prove I. $\triangle A C E=\triangle B C E$;
II. line $C E \perp$ to $A B$;
III. $A E=B E$.
I. In the $\triangle A C E$ and $B C E$,

$$
\begin{array}{cc}
A C=B C, & \text { Hyp. } \\
C E=C E, & \text { Iden. } \\
\angle A C E=\angle B C E . & \text { Cons. } \\
\therefore \triangle A C E=\triangle B C E, & \S 106
\end{array}
$$

(having two sides and the included \angle of the one equal respectively to two sides and the included \angle of the other).
Also, II. $\quad \angle C E A=\angle C E B$, (being homologous $\mathbb{\&}$ of equal ©).

$$
\therefore C E \text { is } \perp \text { to } A B
$$

(a straight line meeting another, making the adjacent $\&$ equal, is \perp to that line).

$$
\begin{aligned}
& \text { Also, III. } \begin{array}{l}
\text { (being homologous sides of equal ©). }
\end{array} \quad \text { Q. E. D. }
\end{aligned}
$$

Proposition XXX. Theorem.

114. If two angles of a triangle be equal, the sides opposite the equal angles are equal, and the triangle is isosceles.

In the triangle $A B C$, let the $\angle B=\angle C$.
We are to prove $A B=A C$.
Draw $A D \perp$ to $B C$.
In the rt. $\triangle A D B$ and $A D C$,

$$
\begin{align*}
& A D=A D \\
& \angle B=\angle C \\
& \therefore \text { rt. } \triangle A D B=\text { rt. } \triangle A D C,
\end{align*}
$$

(having a side and an acute \angle of the one equal respectively to a side and an acute \angle of the other).

$$
\therefore A B=A C \text {, }
$$

(being homologons sides of equal 太).
Q. E. D.

Ex. Show that an equiangular triangle is also equilateral.

Proposition XXXI. Theorem.

115. If two triangles have two sides of the one equal respectively to two sides of the other, but the included angle of the first greater than the included angle of the second, then the third side of the first will be greater than the third side of the second.

In the $\triangle A B C$ and $A B E$, let $A B=A B, B C=B E$; but $\angle A B C>\angle A B E$.

We are to prove $A C>A E$.
Place the \triangle so that $A B$ of the one shall coincide with $A B$ of the other.

Draw $B F$ so as to bisect $\angle E B C$.
Draw $E F$.
In the $\triangle E B F$ and $C B F$

$$
\begin{aligned}
E B & =B C \\
B H & =B F \\
\angle E B F & =\angle C B F
\end{aligned}
$$

\therefore the $\triangle E B F$ and $C B F$ are equal,
(having two sides and the included \angle of one equal respectively to two sides and the included \angle of the other).

$$
\therefore E F=F C,
$$

(being homologous sides of equal ©).
Now

$$
A F+F H>A E,
$$

(the sum of two sides of $a \triangle$ is greater than the third side).
Substitute for $F E$ its equal $F C$. Then

$$
\begin{gathered}
A H+r C>A E ; \text { or, } \\
A C>A E .
\end{gathered}
$$

Proposition XXXII. Theorem.

116. Conversely: If two sides of a triangle be equal respectively to two sides of another, but the third side of the first triangle be greater than the third side of the second, then the angle opposite the third side of the first triangle is greater than the angle opposite the third side of the second.

In the $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, let $A B=A^{\prime} B^{\prime}, A C=A^{\prime} C^{\prime}$; but $B C>B^{\prime} C^{\prime}$.

We are to prove $\quad \angle A>\angle A^{\prime}$.
If

$$
\angle A=\angle A^{\prime}
$$

then would $\quad \triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime}$,
(having two sides and the included \angle of the one equal respectively to two sides and the included \angle of the other),
and

$$
B C=B^{\prime} C^{\prime}
$$

(being homologous sides of cqual ©).
And if

$$
A<A^{\prime}
$$

then would

$$
B C<B^{\prime} C^{\prime}
$$

(if two sides of a Δ be equal respectively to two sides of another \triangle, but the included \angle of the first be greater than the included \angle of the second, the third side of the first will be greater than the third side of the second.)
But both these conclusions are contrary to the hypothesis;
$\therefore \angle A$ does not equal $\angle A^{\prime}$, and is not less than $\angle A^{\prime}$.

$$
\therefore \angle A>\angle A^{\prime}
$$

Proposition XXXIII. Theorem.

117. Of two sides of a triangle, that is the greater. which is opposite the greater angle.

In the triangle $A B C$ let angle $A C B$ be greater than angle B.

We are to prove $A B>A C$.
Draw $C E$ so as to make $\angle B C E=\angle B$.
Then

$$
E C=E B
$$ (being sides opposite equal ©) .

Now

$$
A E+E C>A C
$$

(the sum of two sides of a \triangle is greater than the third side).
Substitute for $E C$ its equal $E B$. Then

$$
\begin{gathered}
A E+E B>A C, \text { or } \\
A B>A C .
\end{gathered}
$$

Q. E. D.

Ex. $A B C$ and $A B D$ are two triangles on the same base $A B$, and on the same side of it, the vertex of each triangle being without the other. If $A C$ equal $A D$, show that $B C$ cannot equal $B D$.

Proposition XXXIV. Theorem.

118. Of two angles of a triangle, that is the greater which is opposite the greater side.

In the triangle $A B C$ let $A B$ be greater than $A C$.
We are to prove $\angle A C B>\angle B$.
Take $A E$ equal to $A C$;
Draw EC.
$\angle A E C=\angle A C E$,
(being \& opposite cqual sides).
But $\angle A E C>\angle B$, § 105
(an exterior \angle of a \triangle is greater than either opposite interior \angle),
and

$$
\angle A C B>\angle A C E .
$$

Substitute for $\angle A C E$ its equal $\angle A E C$, then

$$
\angle A C B>\angle A E C .
$$

Much more is $\angle A C B>\angle B$.
Q. E. D.

Ex. If the angles $A B C$ and $A C B$, at the base of an isosceles triangle, be bisected by the straight lines $B D, C D$, show that $D B C$ will be an isosceles triangle.

Proposition XXXV. Theorem.
119. The three lisectors of the three angles of a triangle meet in a point.

Let the two bisectors of the angles A and C meet at O, and $O B$ be drawn.

Tre are to prove $B O$ bisects the $\angle B$.
Draw the $1 s$ OK, OP and $O H$.
In the rt. $\triangle O C K$ and $O C P$,

$$
\begin{aligned}
O C & =O C \\
\angle O C K & =\angle O C P
\end{aligned}
$$

$$
\therefore \triangle O C K=\triangle O C P
$$

(having the hypotenuse and an acute \angle of the one equal respectively to the hypotenuse and an acute \angle of the other).

$$
\therefore O P=O K
$$

(homologous sides of equal ©).
In the rt. $\triangle O A P$ and $\dot{O} A H$,

$$
\begin{array}{cl}
O A=O A & \text { Iden. } \\
\cdot \angle O A P=\angle O A H, & \text { Cons. } \\
\therefore \triangle O A P=\triangle O A H, & \S 110
\end{array}
$$

Shaving the hypotenuse and an acute \angle of the one equal respectively to the hypotenuse and an acute \angle of the other).

$$
\therefore O P=O H,
$$

(being homologous sides of cqual ©).
But we have already shown $O P=O K$,

$$
\therefore O H=O K
$$

Now in rt. © $O H B$ and $O K B$

$$
\begin{gather*}
O H=O K, \text { and } O B=O B, \\
\therefore \triangle O H B=\triangle O K B,
\end{gather*}
$$

(having the hypotenuse and a side of the one equal respectively to the hypotenuse and a side of the other),
$\therefore \angle O B H=\angle O B K$,
(being homologous \& of equal $\mathbb{\otimes}$).
Q. E. D.

Proposition XXXVI. Theorem.
120. The three perpendiculars erected at the middle points of the three sides of a triangle meet in a point.

Let $D D^{\prime}$, E $E^{\prime}, F F^{\prime}$, be three perpendiculars erected at D, E, F, the middle points of $A B, A C$, and $B C$.
We are to prove they meet in some point, as O.
The two $\perp s D D^{\prime}$ and $E E^{\prime}$ meet, otherwise they would be parallel, and $A B$ and $A C$, being $\perp \perp$ to these lines from the same point A, would be in the same straight line;
but this is impossible, since they are sides of a \triangle.
Let O be the point at which they meet.
Then, since O is in $D D^{\prime}$, which is \perp to $A B$ at its middle point, it is equally distant from A and B.

Also, since O is in $A^{\prime} E^{\prime}, \perp$ to $A C$ at its middle point, it is equally distant from A and C.
$\therefore O$ is equally distant from B and C;
$\therefore O$ is in $F^{\prime} F^{\prime} \perp$ to $B C$ at its middle point, . § 59 (the locus of all points cqually distant from the extremities of a straight line is the \perp crected at the middle of that line).

Proposition XXXVII. Theorem.

121. The three perpendiculars from the vertices of a triangle to the opposite sides meet in a point.

In the triangle $A B C$, let $B P, A H, C K$, be the perpendiculars from the vertices to the opposite sides.

We are to prove they meet in some point, as O.
Through the vertices A, B, C, draw

$$
\begin{aligned}
& A^{\prime} B^{\prime} \| \text { to } B C \\
& A^{\prime} C^{\prime} \| \text { to } A C \\
& B^{\prime} C^{\prime} \| \text { to } A B
\end{aligned}
$$

In the $\triangle A B A^{\prime}$ and $A B C$, we have

$$
\begin{array}{cc}
A B=A B, & \text { Iden. } \\
\angle A B A^{\prime}=\angle B A C, & \S 68 \\
(\text { being alternate interior } \S), & \S 68 \\
\angle B A A^{\prime}=\angle A B C . & \S 107 \\
\therefore \triangle A B A^{\prime}=\triangle A B C, & \\
\text { (having a side and two adj. \&s of the one equal respectively to a side and } \\
\text { tuoo adj. } \leqslant \text { of the other). } \\
\therefore A^{\prime} B=A C \text {, } & \\
\text { (being homologous sides of egual \&). }
\end{array}
$$

In the $\triangle C B C^{\prime}$ and $A B C$,

$$
\begin{array}{cc}
B C=B C, & \text { Iden. } \\
\angle C B C^{\prime}=\angle B C A, & \S 68 \\
\text { (being alternate interior \&). } &
\end{array}
$$

$$
\angle B C C^{\prime}=\angle C B A
$$

$$
\therefore \triangle C B C^{\prime}=\triangle A B C,
$$

(having a side and two adj. © of the one equal respectively to a side and two adj. $\$$ of the other).

$$
\therefore B C^{\prime}=A C
$$

(being homologous sides of equal ©).
But we have already shown $\Lambda^{\prime} B=A C$,

$$
\therefore A^{\prime} B=B C^{\prime}
$$

$\therefore B$ is the middle point of $A^{\prime} C^{\prime}$.

$$
\begin{array}{cl}
\text { Since } B P \text { is } \perp \text { to } A C, & \text { Hyp. } \\
\text { it is } \perp \text { to } A^{\prime} C^{\prime}, & \S 67
\end{array}
$$

(a straight line which is \perp to one of two lls is \perp to the other also).
But B is the middle point of $A^{\prime} C^{\prime}$;
$\therefore B P$ is \perp to $A^{\prime} C^{\prime}$ at its middle point.
In like manner we may prove that

$$
A H \text { is } \perp \text { to } A^{\prime} B^{\prime} \text { at its middle point, }
$$ and $C K \perp$ to $B^{\prime} C^{\prime}$ at its middle point.

$\therefore B P, A H$, and $C K^{-}$are is erected at the middle points of the sides of the $\triangle A^{\prime} B^{\prime} C^{\prime}$.
\therefore these 1 s meet in a point.
§ 120
(the three $\perp s$ erected at the middle points of the sides of $a \Delta$ meet in a point).

On Quadrilaterals.

122. Def. A Quadrilateral is a plane figure bounded by four straight lines.
123. Def. A Trapezium is a quadrilateral which has no two sides parallel.
124. Def. A Trapezoid is a quadrilateral which has two sides parallel.
125. Def. A Parallelogram is a quadrilateral which has its opposite sides parallel.

TRAPEZIUM.

TRAPEZOID.

PARALLELOGRAM.
126. Def. A Rectangle is a parallelogram which has its angles right angles.
127. Def. A Square is a parallelogram which has its angles right angles, and its sides equal.
128. Def. A Rhombus is a parallelogram which has its sides equal, but its angles oblique angles.
129. Def. A Rhomboid is a parallelogram which has its angles oblique angles.

The figure marked parallelogram is also a rhomboid.

RECTANGLE.

square.

вномвия.
130. Def. The side upon which a parallelogram stands, and the opposite side, are called its lower and upper bases; and the parallel sides of a trapezoid are called its bases.
131. Def. The Altitude of a parallelogram or trapezoid is the perpendicular distance between its bases.

132. Def. The Diagonal of a quadrilateral is a straight line joining any two opposite vertices.

Proposition XXXVIII. Theorem.
133. The diagonal of a parallelogram divides the figure into two equal triangles.

Let $A B C E$ be a parallelogram, and $A C$ its diagonal.
We are to prove $\triangle A B C=\triangle A E C$.
In the $\triangle A B C$ and $A E C$

$$
\begin{array}{cc}
A C=A C, & \text { Iden. } \\
\angle A C B=\angle C A E, & \S 68 \\
\text { (being alt.-int. } \&) . & \S 68 \\
\angle C A B=\angle A C E, & \S 107 \\
\therefore \triangle A B C=\triangle A E C, & \text { Q. E. D. }
\end{array}
$$

Proposition XXXIX. Theorem.
134. In a parallelogram the opposite sides are equal, and the opposite angles are equal.

Let the figure $A B C E$ be a parallelogram.
We are to prove $B C=A E$, and $A B=E C$, also, $\angle B=\angle E$, and $\angle B A E=\angle B C E$.

Draw $A C$.
$\triangle A B C=\triangle A E C$,
(the diagonal of a divides the figure into two equal Δ).

$$
\therefore B C=A E \text {, }
$$

and

$$
A B=C E,
$$

(being homologous sides of equal ©).

$$
\angle B=\angle E
$$

(being homologous \& of equal is).
and

$$
\angle B A C=\angle A C E
$$

$$
\angle E A C=\angle A C B
$$

(being homologous \&s of equal ©).

Add these last two equalities, and we have
or,

$$
\begin{gathered}
\angle B A C+\angle E A C=\angle A C E+\angle A C B \\
\angle B A E=\angle B C E .
\end{gathered}
$$

135. Corollary. Parallel lines comprehended between parallel lines are equal.

Proposition XL. Theorem.

136. If a quadrilateral have two sides equal and parallel, then the other two sides are equal and parallel, and the figure is a parallelogram.

Let the figure $A B C E$ be a quadrilateral, having the side $A E$ equal and parallel to $B C$.

We are to prove $A B$ equal and $\|$ to $E C$.
Draw $A C$.
In the $\triangle A B C$ and $A E^{\prime} C$

$B C=A E$,	Hyp.
$A C=A C$,	Iden.
$\angle B C A=\angle C A E$,	$\S 68$
(boing alt.-int. \triangle).	

$\therefore \triangle A B C=\triangle A C E$,
§ 106
(harving two sides and the included \angle of the one equal respectively to two sides and the included \angle of the other).

$$
\therefore A B=E C \text {, }
$$

(being homologons sides of equal $\$$).
Also,

$$
\angle B A C=\angle A C E,
$$

(being homologous \triangleq of equal ©);

$$
\therefore A B \text { is } \| \text { to } E C \text {, }
$$

(when two straight lines are cut by a third straight line, if the alt.-int. \& be equal the lines are parallel).
\therefore the figure $A B C E$ is a \square,
(the opposite sides being parallel).

Proposition XLI. Theorem.

137. If in a quadrilateral the opposite sides be equal, the figure is a parallelogram.

Let the figure $A B C E$ be a quadrilateral having $B C=A E$ and $A B=E C$.

We are to prove figure $A B C E a \square$.

Draw $A C$.

In the $\triangle A B C$ and $A E C$

| $B C=A E$, | Hyp. |
| ---: | :--- | ---: |
| $A B=C E$, | Hyp. |
| $A C=A C$, | Iden. |
| $\therefore \triangle A B C=\triangle A E C$, | § 108 |

(having three sides of the one cqual respectively to thrce sides of the other).

$$
\therefore \angle A C B=\angle C A E,
$$

and

$$
\angle B A C=\angle A C E
$$ (being homologous \&\& of equal ©).

$$
\therefore B C \text { is } \| \text { to } A E \text {, }
$$

and
$A B$ is \| to $E C$,
(when two straight lines lying in the same plane are cut by a third straight line, if the alt.-int. Ls be equal, the lines are parallel).
\therefore the figure $A B C E$ is a \square,
(having its opposite sides parallel).

Proposition XLII. Theorem.

138. The diagonals of a parallelogram bisect each other.

Let the figure $A B C E$ be a parallelogram, and let the diagonals $A C$ and $B E$ cut each other at O.

We are to prove $A O=O C$, and $B O=O E$.
In the $\triangle A O E$ and $B O C$

$$
A E=B C
$$

(being opposilc sides of $a \square$),

$$
\begin{array}{ll}
\angle O A E=\angle O C B, & \S 68 \\
& (\text { being all.-int. } \triangle), \\
\angle O E A=\angle O B C ; & \S 68 \\
\therefore \triangle A O E=\triangle B O C, & \S 107
\end{array}
$$

(having a side and two adj. © of the one equal respectively to a side and two adj. $\&$ of the other).

$$
\therefore A O=O C
$$

and

$$
B O=O E .
$$

(being homologous sides of equal ©).
Q. E. D.

Proposition XLIII. Theorem.

139. The diagonals of a rhombus bisect each other at right angles.

Let the figure $A B C E$ be a rhombus, having the diagonals $A C$ and $B E$ bisecting each other at O.

We are to prove $\angle A O E$ and $\angle A O B r t . *$.
In the $\triangle A O E$ and $A O B$,

$$
A E=\Lambda B,
$$

(being sides of a rhombus) ;

$$
O E=O B,
$$

(the diagonals of $a \square$ biscet each other) ;

$$
\begin{array}{cl}
A O=A O, & \text { Iden. } \\
\therefore \triangle A O E=\triangle A O B, & \text { § } 108
\end{array}
$$

(having three sides of the one equal respectively to three sides of the other);

$$
\begin{aligned}
& \therefore \angle A O E=\angle A O B, \\
&(\text { being homologous } \triangle \text { of equal } \mathbb{A}) ; \\
& \therefore \angle A O E \text { and } \angle A O B \text { are rt. } \angle S .
\end{aligned}
$$

(When one straight line mects another straight line so as to make the adj. As equal, each \angle is a rt. \angle).
Q. E. D.

Proposition XLIV. Theorem.
140. Two parallelograms, having two sides and the included angle of the one equal respectively to two sides and the included angle of the other, are equal in all respects.

In the parallelograms $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, let $A B=A^{\prime} B^{\prime}, A D=A^{\prime} D^{\prime}$, and $\angle A=\angle A^{\prime}$.
We are to prove that the ss are equal.
Apply $\square A B C D$ to $\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, so that $A D$ will fall on and coincide with $A^{\prime} D^{\prime}$.

Then $A B$ will fall on $A^{\prime} B^{\prime}$, (for $\angle A=\angle A^{\prime}$, by lyp.),
and the point B will fall on B^{\prime}, (for $A B=A^{\prime} B^{\prime}$, by hyp.).
Now, $B C$ and $B^{\prime} C^{\prime}$ are both $\|$ to $A^{\prime} D^{\prime}$ and aro drawn through point B^{\prime};
\therefore the lines $B C$ and $B^{\prime} C^{\prime}$ coincide,
and C^{\prime} falls on $B^{\prime} C^{\prime}$ or $B^{\prime} C^{\prime}$ produced.
In like manner $D C$ and $D^{\prime} C^{\prime}$ are $\|$ to $A^{\prime} B^{\prime}$ and are drawn through the point D^{\prime}.
$\therefore D C$ and $D^{\prime} C^{\prime}$ coincide;
§ 66
\therefore the point C falls on $D^{\prime} C^{\prime}$, or $D^{\prime} C^{\prime}$ produced ;
$\therefore C$ falls on both $B^{\prime} C^{\prime}$ and $D^{\prime} C^{\prime}$;
$\therefore C$ must fall on a point common to both, namely, C^{\prime}.
\therefore the two ss coincide, and are equal in all respects.

> Q. E. D.
141. Corollary. Two rectangles having the same base and allitude are equal; for they may be applied to each other and will coincide.

Proposition XLV．Theorem．

142．The straight line which connects the middle points of the non－parallel sides of a trapezoid is parallel to the par－ allel sides，and is equal to half their sum．

Let $S O$ be the straight line joining the middle points of the non－parallel sides of the trapezoid $A B C E$ ．

We are to prove $S O \|$ to $A E$ and $B C$ ；

$$
\text { also } \quad S O=\frac{1}{2}(A E+B C) \text {. }
$$

Through the point O draw $F I \|$ to $A B$ ，

$$
\text { and produce } B C \text { to meet } F O H \text { at } H \text {. }
$$

In the $\triangle F O E$ and $C O H$

$$
\begin{align*}
& O E=O C, \\
& \angle O E F=\angle O C H, \\
& \text { (being alt.-int. © §), } \\
& \angle F O E=\angle C O H \text {, } \\
& \text { (being vertical \&). } \\
& \therefore \triangle F O E=\triangle C O H, \\
& \text { Cons. } \\
& \text { (being vertical 太太). } \\
& \therefore \triangle F O E=\triangle C O H, \\
& \text { (having a side and two adj. Ls of the one equal respectively to a side and two } \\
& \text { adj. \&s of the other). }
\end{align*}
$$

$$
\therefore F E=C H \text {, }
$$

and

$$
O F=O H
$$

(being homologous sides of equal ©).
Now

$$
F H=A B
$$

(II lines comprehended between \| lines are equal) ;

$$
\therefore F O=A S . \quad \text { Ax. } 7
$$

$$
\therefore \text { the figure } A F O S \text { is a } \square,
$$

(having two opposite sides equal and parallel).

$$
\therefore S O \text { is } \| \text { to } A F
$$

$S O$ is also \| to $B C$,
(a straight line $\|$ to one of two \| lines is $\|$ to the other also).
Now

$$
S O=A F
$$

(being opposite sides of $a \square$),
and

$$
S O=B H .
$$

But
$A F=A E-F E$,
and

$$
B H=B C+C H
$$

Substitute for $A F$ and $B H$ their equals, $A E-F E$ and $B C+C H$,
and add, observing that $C H=F E$;
then

$$
\begin{aligned}
2 S O & =A E+B C \\
\therefore S O & =\frac{1}{2}(A E+B C)
\end{aligned}
$$

Q. E. D.

On Polygons in General.

143. Def. A Polygon is a plane figure bounded by straight lines.
144. Def. The bounding lines are the sides of the polygon, and their sum, as $A B+B C+C D$, etc., is the Perimeter of the polygon.

The angles which the adjacent sides make with each other are the angles of the polygon.
145. Def. A Diagonal of a polygon is a line joining the vertices of two angles not adjacent.

146. Def. An Equilateral polygon is one which has all its sides equal.
147. Def. An Equiangular polygon is one which has all its angles equal.
148. Def. A Convex polygon is one of which no side, when produced, will enter the surface bounded by the perimeter.
149. Def. Each angle of such a polygon is called a Salient angle, and is less than two right angles.
150. Def. A Concave polygon is one of which two or more sides, when produced, will enter the surface bounded by the perimeter.
151. Def. The angle $F D E$ is called a Re-entrant angle.

When the term polygon is used, a convex polygon is meant.
The number of sides of a polygon is evidently equal to the number of its angles.

By drawing diagonals from any vertex of a polygon, the figure may be divided into as many triangles as it has sides less two.
152. Def. Two polygons are Equal, when they can be divided by diagonals into the same number of triangles, equal each to each, and similarly placed; for the polygons can be applied to each other, and the corresponding triangles will evidently coincide. Therefore the polygons will coincide, and be equal in all respects.
153. Def. Two polygons are Mutually Equiangular, if the angles of the one be equal to the angles of the other, each to each, when taken in the same order; as the polygons $A B C D E F$, and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$, in which $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$, $\angle C=\angle C^{\prime}$, etc.
154. Def. The equal angles in mutually equiangular polygons are called Homologous angles; and the sides which lie between equal angles are called Homologous sides.
155. Def. Two polygons are Mutually Equilateral, if the sides of the one be equal to the sides of the other, each to each, when taken in the same order.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Two polygons may be mutually equiangular without being mutually equilateral ; as Figs. 1 and 2.

And, except in the case of triangles, two polygons may be mutually equilateral without being mutually equiangular; as Figs. 3 and 4.

If two polygons be mutually equilateral and equiangular, they are equal, for they may be applied the one to the other so as to coincide.
156. Def. A polygon of three sides is a Trigon or Triangle ; one of four sides is a Tetragon or Quadrilateral ; one of five sides is a Pentagon; one of six sides is a Hexagon; one of seven sides is a Heptagon; one of eight sides is an Octagon; one of ten sides is a Decagon ; one of twelve sides is a Dodecagon.

Proposition XLVI. Theorem.

157. The sum of the interior angles of a polygon is equal to two right angles, taken as many times less two as the figure has sides.

Let the figure $A B C D E F$ be a polygon having n sides.
We are to prove

$$
\angle A+\angle B+\angle C, \text { etc. },=2 r t . \angle B(n-2) ;
$$

From the vertex A draw the diagonals $A C, A D$, and $A E$.
The sum of the \mathbb{B} of the $\mathbb{A}=$ the sum of the angles of the polygon.

$$
\text { Now there are }(n-2) \mathbb{A} \text {, }
$$

$$
\text { and the sum of the } \triangle \Delta \text { of each } \triangle=2 \mathrm{rt} \text {. } \triangle \text {. }
$$

\therefore the sum of the \triangle of the \triangle, that is, the sum of the \triangle of the polygon $=2 \mathrm{rt}$. $\angle(n-2)$.
Q. E. D.
158. Corollary. The sum of the angles of a quadrilateral equals two right angles taken $(4-2)$ times, i. e. equals 4 right angles; and if the angles be all equal, each angle is a right angle. In general, each angle of an equiangular polygon of n sides is equal to $\frac{2(n-2)}{n}$ right angles.

Proposition XLVII. Theorem.

159. The exterior angles of a polygon, made by producing each of its sides in succession, are together equal to four. right angles.

Let the figure $A B C D E$ be a polygon, having its sides produced in succession.
-We are to prove the sum of the pext. $\Delta=4 \mathrm{rt}$. A .
Denote the int. \triangle of the polygon by A, B, C, D, E;
and the ext. \angle by a, b, c, d, e.

$$
\begin{aligned}
& \angle A+\angle a=2 \mathrm{rt.} \angle s \\
& \text { (being sup.-adj. } \triangle \text {) } \\
& \angle B+\angle b=2 \mathrm{rt.} \angle \mathrm{~S}
\end{aligned}
$$

In like manner each pair of adj. $\measuredangle s=2 \mathrm{rt}$. Δ;
\therefore the sum of the interior and exterior $\angle s=2 \mathrm{rt}$. $\angle \mathrm{s}$ taken as many times as the figure has sides,

But the interior $\measuredangle s=2 \mathrm{rt}$. δ taken as many times as the figure has sides less two, $=2 \mathrm{rt} . \triangle(n-2)$,
or,

$$
2 n \mathrm{rt.} . \Delta s-4 \mathrm{rt.} \text { s. }
$$

\therefore the exterior $\measuredangle S=4 \mathrm{rt} . \triangle \mathrm{s}$.

Exercises.

1. Show that the sum of the interior angles of a hexagon is equal to eight right angles.
2. Show that each angle of an equiangular pentagon is $\frac{6 \pi}{6}$ of a right angle.
3. How many sides has an equiangular polygon, four of whose angles are together equal to seven right angles?
4. How many sides has the polygon the sum of whose interior angles is equal to the sum of its exterior angles?
5. How many sides has the polygon the sum of whose interior angles is double that of its exterior angles?
6. How many sides has the polygon the sum of whose exterior angles is double that of its interior angles? H and
7. Every point in the bisector of an angle is equally distant from the sides of the angle ; and every point not in the bisector, but within the angle, is unequally distant from the sides of the angle.
8. $B A C$ is a triangle having the angle B double the angle A. If $B D$ bisect the angle B, and meet $A C$ in D, show that $B D$ is equal to $A D$.
9. If a straight line drawn parallel to the base of a triangle bisect one of the sides, show that it bisects the other also ; and that the portion of it intercepted between the two sides is equal to one half the base.
10. $A B C D$ is a parallelogram, E and F the middle points of $A D$ and $B C$ respectively ; show that $B E$ and $D F$ will trisect the diagonal $A C$.
11. If from any point in the base of an isosceles triangle parallels to the equal sides be drawn, show that a parallelogram is formed whose perimeter is equal to the sum of the equal sides of the triangle.
12. If from the diagonal $B D$ of a square $A B C D, B E$ be cut off equal to $B C$, and $E F$ be drawn perpendicular to $B D$, show that $D E$ is equal to $E F$, and also to $F C$.
13. Show that the three lines drawn from the vertices of a triangle to the middle points of the opposite sides meet in a point.

BOOK II.

CIRCLES.

Definitions.
160. Def. A Circle is a plane figure bounded by a curved line, all the points of which are equally distant from a point within called the Centre.
161. Def. The Circumference of a circle is the line which bounds the circle.
162. Def. A Radius of a eirele is any straight line drawn from the centre to the circumference, as 0 A , Fig. 1.
163. Def. A Diameter of a circle is any straight line passing through the centre and having its extremities in the circumference, as A B, Fig. 2.

By the definition of a circle, all its radii aro equal. Hence, all its diameters are equal, since the diameter is equal to twice the radius.

Fig. 1.

Fig. 2.

Fig. 3.
164. Def. An Arc of a circle is any portion of the circumference, as $A M B$, Fig. 3.
165. Def. A Semi-circumference is an arc equal to one half the circumference, as $A M B$, Fig. 2.
166. DeF. A Chord of a circle is any straight line having its extremities in the circumference, as $A B$, Fig. 3.

Every chord subtends two ares whose sum is the circumference. Thus the chord $A B$, (Fig. 3), subtends the arc $A M B$ and the arc $A D B$. Whenever a chord and its arc are spoken of, the less are is meant unless it be otherwise stated.
167. Def. A Segment of a circle is a portion of a circle enclosed by an are and its chord, as $A M B$, Fig. 1.
168. Def. A Semicircle is a segment equal to one half the circle, as $A D C$, Fig. 1.
169. Def. A Sector of a circle is a portion of the circle enclosed by two radii and the arc which they intercept, as $A C B$, Fig. 2.
170. Def. A Tangent is a straight line which touches the circumference but does not intersect it, however far produced. The point in which the tangent touches the circumference is called the Point of Contact, or Point of Tangency.
171. Def. Two Circumferences are tangent to each other when they are tangent to a straight line at the same point.
172. Def. A Secant is a straight line which intersects the circumference in two points, as $A D$, Fig. 3.

173. Def. A straight line is Inscribed in a circle when its extremities lie in the circumference of the circle, as $A \mathrm{~B}$, Fig. 1.

An angle is inscribed in a circle when its vertex is in the circumference and its sides are chords of that circumference, as $\angle A B C$, Fig. 1 .

A polygon is inscribed in a circle when its sides are chords of the circle, as $\triangle A B C$, Fig. 1.

A circle is inscribed in a polygon when the circumference touches the sides of the polygon but does not intersect them, as in Fig. 4.
174. Def. A polygon is Circumscribed about a circle when all the sides of the polygon are tangents to the circle, as in Fig. 4.

A circle is circumscribed about a polygon when the circumference passes through all the vertices of the polygon, as in Fig. 1.
175. Def. Equal circles are circles which have equal radii. For if one circle be applied to the other so that their centres coincide their circumferences will coincide, since all the points of both are at the same distance from the centre.
176. Every diameter bisects the circle and its circumference. For if we fold over the segment $A M B$ on $A B$ as an axis until it comes into the plane of $A P B$, the are $A M B$ will coincide with the arc $A P B$; because every point in each is equally dis-
 tant from the centre 0 .

Proposition I. Theorem.

177. The diameter of a circle is greater than any other chord.

Let $A B$ be the diameter of the circle $A M B$, and $A E$ any other chord.

We are to prove $A B>A E$.
From C, the centre of the \odot, draw $C E$.

$$
C E=C B,
$$

(being radii of the same circle).
But

$$
A C+C E>A E
$$

(the sum of two sides of $a \Delta>$ the third side).
Substitute for $C E$, in the above inequality, its equal $C B$.
Then

$$
\begin{gathered}
A C+C B>A E, \text { or } \\
A B>A E .
\end{gathered}
$$

> Q. E. D.

Proposition II. Theorem.

178. A straight line cannot intersect the circumference of a circle in more than two points.

Let $H K$ be any line cutting the circumference $A M P$.
We are to prove that $H K$ can intersect the circumference in only two points.

If it be possible, let $H K$ intersect the circumference in three points, H, P, and K.

From O, the centre of the \odot, draw the radii $O I I, O P$, and $O K$.

Then

$$
\begin{aligned}
& O H, O P \text {, and } O K \text { are equal, } \\
& \text { (bcing radii of the same circle). }
\end{aligned}
$$

$$
\S 163
$$

\therefore if $H K$ could intersect the circumference in three points, we should have three equal straight lines $O I I, O P$, and $O K$ drawn from the same point to a given straight line, which is impossible, (only two equal straight lines can be drawn from a point to a straight line).
\therefore a straight line can intersect the circumference in only two points.
Q. E. D.

Proposition III. Theorem.

179. In the same circle, or equal circles, equal angles at the centre intercept equal arcs on the circumference.

In the equal circles $A B P$ and $A^{\prime} B^{\prime} P^{\prime}$ let $\angle O=\angle O^{\prime}$.
We are to prove $\quad \operatorname{arc} R S=\operatorname{arc} R^{\prime} S^{\prime}$.

$$
\text { Apply } \odot A B P \text { to } \odot A^{\prime} B^{\prime} P^{\prime},
$$

so that $\angle O$ shall coincide with $\angle 0^{\prime}$.
The point R will fall upon R^{\prime},

$$
\text { and the point } S \text { will fall upon } S^{\prime}
$$

(for $O S=O^{\prime} S^{\prime}$, being radii of equal (3).
Then the are $R S$ must coincide with the are $R^{\prime} S^{\prime}$.
For, otherwise, there would be some points in the circumference unequally distant from the centre, which is contrary to the definition of a circle.
Q. E. D.

Proposition IV. Theorem.

180. Conversely: In the same circle, or equal circles, equal arcs subtend equal angles at the centre.

In the equal circles $A B P$ and $A^{\prime} B^{\prime} P^{\prime}$ let arc $R S$ $=\operatorname{arc} R^{\prime} S^{\prime}$.

We are to prove $\angle R O S=\angle R^{\prime} O^{\prime} S^{\prime}$.

$$
\text { Apply } \odot A B P \text { to } \odot A^{\prime} B^{\prime} P^{\prime},
$$

so that the radius $O R$ shall fall upon $O^{\prime} R^{\prime}$.
Then S, the extremity of arc $R S$,
will fall upon S^{\prime}, the extremity of arc $R^{\prime} S^{\prime \prime}$, (for $R S=R^{\prime} S^{\prime}$, by hyp.).
$\therefore O S$ will coincide with $O^{\prime} S^{\prime \prime}$, (their extremities being the same points).
$\therefore \angle R O S$ will coincide with, and be equal to, $\angle R^{\prime} O^{\prime} S^{\prime}$.
Q. E. D.

Proposition V. Theorem.

181. In the same circle, or equal circles, equal arcs are subtended by equal chords.

In the equal circles $A B P$ and $A^{\prime} B^{\prime} P^{\prime}$ let arc $R S$ $=\operatorname{arc} R^{\prime} S^{\prime}$.

We are to prove chord $R S=$ chord $R^{\prime} S^{\prime}$.
Draw the radii $O R, O S, O^{\prime} R^{\prime}$, and $O^{\prime} S^{\prime}$.
In the $\triangle R O S$ and $R^{\prime} O^{\prime} S^{\prime}$

$$
O R=O^{\prime} R^{\prime},
$$ (being radii of equal ©),

$$
\begin{align*}
& O S=O^{\prime} S^{\prime}, \\
& \angle O=\angle O^{\prime}
\end{align*}
$$

(equal ares in equal (s) subtend equal \& at the centre).

$$
\therefore \triangle R O S=\triangle R^{\prime} O^{\prime} S^{\prime}, \quad \S 106
$$

(two sides and the included \angle of the one being equal respectively to two sides and the included \angle of the other).
\therefore chord $R S=$ chord $R^{\prime} S^{\prime}$,
(being homologous sides of equal ©).
Q. E. D.

Proposition VI. Theorem.

182. Conversely: In the same circle, or equal circles, equal chords subtend equal arcs.

In the equal circles $A B P$ and $A^{\prime} B^{\prime} P^{\prime}$, let chord $R S$ $=$ chord $R^{\prime} S^{\prime}$.

We are to prove $\operatorname{arc} R S=\operatorname{arc} R^{\prime} S^{\prime}$.
Draw the radii $O R, O S, O^{\prime} R^{\prime}$, and $O^{\prime} S^{\prime}$.
In the $\mathbb{A} O S$ and $R^{\prime} O^{\prime} S^{\prime}$

$$
\begin{array}{cc}
R S=R^{\prime} S^{\prime}, & \text { Hyp. } \\
\text { O } R=O^{\prime} R^{\prime}, & \S 176 \\
\text { (being radii of equal ©), } &
\end{array}
$$

$$
\begin{gather*}
O S=O^{\prime} S^{\prime \prime} \\
\therefore \triangle R O S=\triangle R^{\prime} O^{\prime} S^{\prime}
\end{gather*}
$$

(three sides of the one being equal to thrce sides of the other).

$$
\therefore \angle O=\angle O^{\prime} \text {, }
$$

(being homologous is of equal ©s).

$$
\therefore \operatorname{arc} R S=\operatorname{arc} R^{\prime} S^{\prime},
$$

(in the same \odot, or equal © , equal \& at the centre intercept equal arcs on the circumference).
Q. E. D.

Proposition VII. Theorem.
183. The radius perpendicular to a chord bisects the chord and the arc subtended by it.

aq

Let $A B$ be the chord, and let the radius $C S$ be perpendicular to $A B$ at the point M.

We are to prove $\quad A M=B M$, and $\operatorname{arc} A S=\operatorname{arc} B S$.

$$
\text { Draw } C A \text { and } C B .
$$

$$
C A=C B
$$

(being radii of the same \odot) ;
$\therefore \triangle A C B$ is isosceles, (the opposite sides being equal) ;
$\therefore \perp C S$ bisects the base $A B$ and the $\angle C$, (the \perp drawn from the vertex to the base of an isosceles \triangle bisccts the base and the \angle at the vertex).

$$
\therefore A M=B M
$$

Also,

$$
\text { since } \angle A C S=\angle B C S
$$

$$
\operatorname{arc} A S=\operatorname{arc} S B
$$

(equal $\$$ at the centre intercept equal arcs on the circumference).
Q. E. D.
184. Corollary. The perpendicular erected at the middle of a chord passes through the centre of the circle, and bisects the are of the chord.

Proposition VIII. Theorem.

185. In the same circle, or equal circles, equal chords are equally distant from the centre; and of two unequal chords the less is at the greater distance from the centre.

In the circle $A B E C$ let the chord $A B$ equal the chord $C F$, and the chord $C E$ be less than the chord C F. Let $O P, O H$, and $O K$ be $1 s$ drawn to these chords from the centre 0 .
We are to prove $O P=O H$, and $O H<O K$. Join $O A$ and $O C$.
In the rt. $\triangle A O P$ and $C O H$

$$
\begin{align*}
& \left.\qquad \begin{array}{l}
O A=O C \\
\text { (being radii of the same } \odot) ; \\
A P=C H, \\
\text { (being halves of cqual chords); } \\
\therefore \triangle A O P=\triangle C O H \text {, }
\end{array}\right\} 183 \\
& \text { (tuco rt. © are equal if they have a side and hypotenuse of the one cqual to } \\
& \text { a side and hypotenuse of the other). }
\end{align*}
$$

$$
\therefore O P=O H \text {, }
$$

(being homologous sides of equal ©).
Again, \quad since $C E<C F$,
the $\perp O K$ will intersect $C F$ in some point, as m.
Now
$0 K>0 m$.
Ax. 8
But
$\mathrm{Om}>0 \mathrm{H}$, ($a \perp$ is the shortest distance from a point to a straight line). \therefore much more is $0 K>0 H$.
Q. E. D.

Proposition IX. Theorem.
186. A straight line perpendicular to a radius at its extremity is a tangent to the circle.

Let $B A$ be the radius, and $M O$ the straight line perpendicular to $B A$ at A.

We are to prove MO tangent to the circle.
From B draw any other line to $M O$, as $B C H$.

$$
B H>B A,
$$

($a \perp$ measures the shortest distance from a point to a straight line).
\therefore point H is without the circumference.
But $B H$ is any other line than $B A$,
\therefore every point of the line $M O$ is without the circumference, except A.
$\therefore M O$ is a tangent to the circle at A.
Q. E. D.
187. Corollary. When a straight line is tangent to a circle, it is perpendicular to the radius drawn to the point of contact, and therefore a perpendicular to a tangent at the point of contact passes through the centre of the circle.

Proposition X. Theorem.

188. When two circumferences intersect each other, the line which joins their centres is perpendicular to their common chord at its middle point.

Let C and $C^{\prime \prime}$ be the centres of two circumferences which intersect at A and B. Let $A B$ be their common chord, and $C C^{\prime}$ join their centres.
We are to prove $C C^{\prime \prime} \perp$ to $A B$ at its middle point.
A \perp drawn through the middle of the chord $A B$ passes through the centres C and $C^{\prime \prime}$, § 184 ($a \perp$ crected at the middle of a chord passes through the centre of the \odot).
\therefore the line $C C^{\prime \prime}$, having two points in common with this \perp, must coincide with it.
$\therefore C C^{\prime}$ is \perp to $A B$ at its middle point.

> Q. E. D.

Ex. 1. Show that, of all straight lines drawn from a point without a circle to the circumference, the least is that which, when produced, passes through the centre.

Ex. 2. Show that, of all straight lines drawn from a point within or without a circle to the circumference, the greatest is that which meets the circumference after passing through the centro.

Proposition XI. Theorem. 818 B

189. When two circumferences are tangent to each other. their point of contact is in the straight line joining their centres.

Let the two circumferences, whose centres are C and C^{7}, touch each other at O, in the straight line $A B$, and let $C^{\prime} C^{\prime}$ be the straight line joining their centres.

We are to prove O is in the straight line $C C^{\prime \prime}$.
$A \perp$ to $A B$, drawn through the point O, passes through the centres C and C^{\prime},
§ 187 ($a \perp \omega$ a tangent at the point of contact passes through the centre of the \odot).
\therefore the line $C C^{\text {e }}$, having two points in common with this \perp, must coincide with it.

$\therefore O$ is in the straight line $C C^{\prime}$.

Q. E. D.

Ex. $A B$, a chord of a circle, is the base of an isosceles triangle whose vertex C is without the circle, and whose equal sides meet the circle in D and E. Show that $C D$ is equal to $C E$.

$$
E_{1+2}^{2}=
$$

On Measurement.

190. Def. To measure a quantity of any kind is to find how many times it contains another known quantity of the same kind. Thus, to measure a line is to find how many times it contains another known line, called the linear unit.
191. Def. The number which expresses how many times a quantity contains the unit, prefixed to the name of the unit, is called the numerical measure of that quantity; as 5 yards, etc.
192. Def. Two quantities are commensurable if there be some third quantity of the same kind which is contained an exact number of times in each. This third quantity is called the common measure of these quantities, and each of the given quantities is called a multiple of this common measure.
193. Def. Two quantities are incommensurable if they have no common measure.
194. Def. The magnitude of a quantity is always relative to the magnitude of another quantity of the same kind. No quantity is great or small except by comparison. This relative magnitude is called their Ratio, and this ratio is always an abstract number.

When two quantities of the same kind are measured by the same unit, their ratio is the ratio of their numerical measures.
195. The ratio of a to b is written $\frac{a}{b}$, or $a: b$, and by this is meant :

How many times b is contained in a; or, what part a is of b.

I. If b be contained an exact number of times in a their ratio is a whole number.

If b be not contained an exact number of times in a, but if there be a common measure which is contained m times in a and n times in b, their ratio is the fraction $\frac{m}{n}$.
II. If a and b be incommensurable, their ratio cannot be exactly expressed in figures. But if b be divided into n equal parts, and one of these parts be contained m times in a with a remainder less than $\frac{1}{n}$ part of b, then $\frac{m}{n}$ is an approximate value of the ratio $\frac{a}{b}$, correct within $\frac{1}{n}$.

Again, if each of these equal parts of b be divided into n equal parts ; that is, if b be divided into n^{2} equal parts, and if one of these parts be contained m^{\prime} times in a with a remainder less than $\frac{1}{n^{2}}$ part of b, then $\frac{m^{\prime}}{n^{2}}$ is a nearer approximate value of the ratio $\frac{a}{b}$, correct within $\frac{1}{n^{2}}$.

By continuing this process, a series of variable values, $\frac{m}{n}, \frac{m^{\prime}}{n^{2}}, \frac{m^{\prime \prime}}{n^{8}}$, etc., will be obtained, which will differ less and less from the exact value of $\frac{a}{b}$. We may thus find a fraction which shall differ from this exact value by as little as we please, that is, by less than any assigned quantity.

Hence, an incommensurable ratio is the limit toward which its successive approximate values are constantly tending.

On the Theory of Limits.

196. Def. When a quantity is regarded as having a fixed value, it is called a Constant; but, when it is regarded, under the conditions imposed upon it, as having an indefinite number of different values, it is called a Variable.
197. Def. When it can be shown that the value of a variable, measured at a series of definite intervals, can by indefinite continuation of the series be made to differ from a given constant by less than any assigned quantity, however small, but camnot be made absolutely equal to the constant, that constant is called the Limit of the variable, and the variable is said to approach indefinitely to its limit.

If the variable be increasing, its limit is called a superior limit ; if decreasing, an inferior limit.

198. Suppose a point 1 | M | $\boldsymbol{M}^{\prime \prime}$ | B |
| :--- | :--- | :--- | :--- | :--- | to move from A toward B, under the conditions that the first second it shall move one-half the distance from A to B, that is, to M; the next second, one-half the remaining distance, that is, to M^{\prime}; the next second, one-half the remaining distance, that is, to $M^{\prime \prime}$, and so on indefinitely.

Then it is evident that the moving point may approach as near to B as we please, but will never arrive at B. For, however
near it may be to B at any instant, the next second it will pass over one-half the interval still remaining ; it must, therefore, approach nearer to B, since half the interval still remaining is some distance, but will not reach B, since half the interval still remaining is not the whole distance.

Hence, the distance from A to the moving point is an increasing variable, which indefinitely approaches the constant $A B$ as its limit ; and the distance from the moving point to B is a decreasing variable, which indefinitely approaches the constant zero as its limit.

If the length of $A B$ be two inches, and the variable be denoted by x, and the difference between the variable and its limit, by v :

$$
\begin{array}{lll}
\text { after one second, } & x=1, & v=1 ; \\
\text { after two seconds, } & x=1+\frac{1}{2}, & v=\frac{1}{2} ; \\
\text { after three seconds, } & x=1+\frac{1}{2}+\frac{1}{4}, & v=\frac{1}{4} ; \\
\text { after four seconds, } & x=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}, & v=\frac{1}{8} ; \\
\text { and so on indefinitely. } &
\end{array}
$$

Now the sum of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$ etc., is evidently less than 2 ; but by taking a great number of terms, the sum can be made to differ from 2 by as little as we please. Hence 2 is the limit of the sum of the series, when the number of the terms is increased indefinitely ; and 0 is the limit of the variable difference between this variable sum and 2 .
lim. will be used as an abbreviation for limit.
199. [1] The difference between a variable and its limit is a variable whose limit is zero.
[2] If two or more variables, $v, v^{\prime}, v^{\prime \prime}$, etc., have zero for a limit, their sum, $v+v^{\prime}+v^{\prime \prime}$, etc., will have zero for a limit.
[3] If the limit of a variable, v, be zero, the limit of $a \pm v$ will be the constant a, and the limit of $a \times v$ will be zero.
[4] The product of a constant and a variable is also a variable, and the limit of the product of a constant and a variable is the product of the constant and the limit of the variable.
[5] The sum or product of two variables, both of which are either increasing or decreasing, is also a variable.

Proposition I.

[6] If two variables be always equal, their limits are equal.
Let the two variables AM and $A N$ be always equal, and let $A C$ and $A B$ be their respective limits.

We are to prove
$A C=A B$.
Suppose $A C>A B$. Then we may diminish $A C$ to some value $A C^{\prime \prime}$ such that $A C^{\prime}=A B$.

Since $A M$ approaches indefinitely to
 $A C$, we may suppose that it has reached a value $A P$ greater than $A C^{\prime \prime}$.

Let $A Q$ be the corresponding value of $A N$.
Then

$$
A P=A Q
$$

Now $A C^{\prime}=A B$.
But both of these equations cannot be true, for $A P>A C^{\prime}$, and $A Q<A B . \quad \therefore A C$ cannot be greater than $A B$.

Again, suppose $A C<A B$. Then we may diminish $A B$ to some value $A B^{\prime}$ such that $A C=A B^{\prime}$.

Since $A N$ approaches indefinitely to $A B$ we may suppose that it has reached a value $A Q$ greater than $A B^{\prime}$.

Let $A P$ be the corresponding value of $A M$.
Then
$A P=A Q$.
Now
$A C=A B^{\prime}$.
But both of these equations cannot be true, for $\Lambda P<A C$, and $A Q>A B^{\prime} . \quad \therefore A C$ cannot be less than $A B$.

Since $A C$ cannot be greater or less than $A B$, it must be equal to $A B$.
[7] Corollary 1. If twe variables be in a constant ratio, their limits are in the same ratio. For, let x and y be two variables having the constant ratio r, then $\frac{x}{y}=r$, or, $x=r y$, therefore $\lim .(x)=\lim .(r y)=r \times \lim .(y)$, therefore $\frac{\lim .(x)}{\lim .(y)}=r$.
[8] Cor. 2. Since an incommensurable ratio is the limit of its successive approximate values, two incommensurable ratios $\frac{a}{b}$ and $\frac{a^{\prime}}{b^{\prime}}$ are equal if they always have the same approximate values when expressed within the same measure of precision.

Proposition II.

[9] The limit of the algebraic sum of two or more variables is the algebraic sum of their limits.

Let x, y, z, be variables, a, b, and c, their respective limits, and v, v^{\prime}, and $v^{\prime \prime}$, the variable differences between x, y, z, and a, b, c, respectively.

We are to prove lim. $(x+y+z)=a+b+c$.

Now, $x=a-v, y=b-v^{\prime}, z=c-v^{\prime \prime}$.
Then, $x+y+z=a-v+b-v^{\prime}+c-v^{\prime \prime}$.

$$
\begin{equation*}
\therefore \lim .(x+y+z)=\lim .\left(a-v+b-v^{\prime}+c-v^{\prime \prime}\right) . \tag{6}
\end{equation*}
$$

But, lim. $\left(a-v+b-v^{\prime}+c-v^{\prime \prime}\right)=a+b+c$.
$\therefore \lim .(x+y+z)=a+b+c$.
Q. E. D.

Proposition III.

[10] The limit of the product of two or more variables is the product of their limits.
\dot{L} et x, y, z, be variables, a, b, c, their respective limits, and $v, v^{\prime}, v^{\prime \prime}$, the variable differences between x, y, z, and α, b, c, respectively.

$$
\text { We are to prove lim. }(x y z)=a b c
$$

Now,

$$
x=a-v, y=b-v^{\prime}, z=c-v^{\prime \prime}
$$

Multiply these equations together.
Then, $x y z=a b c \mp$ terms which contain one or more of the factors $v, v^{\prime}, v^{\prime \prime}$, and hence have zero for a limit.
$\therefore \lim .(x y z)=\lim .(a b c \mp$ terms whose limits are zero). $[6]$
But lim. ($a b c \mp$ terms whose limits are zero) $=a b c$.

$$
\therefore \lim .(x y z)=a b c .
$$

For decreasing variables the proofs are similar.

Note. - In the application of the principles of limits, reference to this section (§199) will always include the fundamental truth of limits contained in Proposition I. ; and it will be left as an exercise for the student to determine in each case what other truths of this section, if any, are included in the reference.

Proposition XII. Theorem.
200. In the same circle, or equal circles, two commensurable arcs have the same ratio as the angles which they subtend at the centre.

In the circle $A P C$ let the two arcs be $A B$ and $A C$, and $A O B$ and $A O C$ the $\$$ which they subtend.

We are to prove $\frac{\operatorname{arc} A B}{\operatorname{arc} A C}=\frac{\angle A O B}{\angle U C}$.
Let $H K$ be a common measure of $A B$ and $A C$.
Suppose $H K$ to be contained in $A B$ three times, and in $A C$ five times.

Then

$$
\frac{\operatorname{arc} A B}{\operatorname{arc} A C}=\frac{3}{5}
$$

At the several points of division on $A B$ and $A C$ draw radii.
These radii will divide $\angle A O C$ into five equal parts, of which $\angle A O B$ will contain three,
§ 180
(in the same \odot, or equal ©, equal ares sublend equal $\&$ at the centre).

$$
\therefore \angle \frac{\angle O B}{A O C}=\frac{3}{5} .
$$

But

$$
\begin{align*}
& \frac{\operatorname{arc} A B}{\operatorname{arc} A C}=\frac{3}{5} \\
\therefore & \frac{\operatorname{arc} A B}{\operatorname{arc} A C}=\frac{\angle A O B}{\angle A O C} .
\end{align*}
$$

Q. E. D.

Proposition XIII. Theorem.

201. In the same circle, or in equal circles, incommensurable arcs have the same ratio as the angles which they subtend at the centre.

In the two equal © $A B P$ and $A^{\prime} B^{\prime} P^{\prime}$ let $A B$ and $A^{\prime} B^{\prime}$ be two incommensurable arcs, and $C, C^{\prime \prime}$ the $₫$ which they subtend at the centre.
We are to prove $\frac{\operatorname{arc} A^{\prime} B^{\prime}}{\operatorname{arc} A B^{\prime}}=\frac{\angle C^{\prime \prime}}{\angle C}$.
Let $A B$ be divided into any number of equal parts, and let one of these parts be applied to $A^{\prime} B^{\prime}$ as often as it will be contained in $A^{\prime} B^{\prime}$.

Since $A B$ and $A^{\prime} B^{\prime}$ are incommensurable, a certain number of these parts will extend from A^{\prime} to some point; as D, leaving a remainder $D B^{\prime}$ less than one of these parts.

Draw $C^{\prime} D$.
Since $A B$ and $A^{\prime} D$ are commensurable,

$$
\frac{\operatorname{arc} A^{\prime} D}{\operatorname{arc} A B}=\frac{\angle A^{\prime} C^{\prime} D}{\angle A C B},
$$

(two commensurable arcs have the same ratio as the \mathbb{L} which they subtend at the centre).
Now suppose the number of parts into which $A B$ is divided to be continually increased ; then the length of each part will become less and less, and the point D will approach nearer and nearer to D^{\prime}, that is, the are $A^{\prime} D$ will approach the arc $A^{\prime} B^{\prime}$ as its limit, and the $\angle A^{\prime} C^{\prime \prime} D$. the $\angle A^{\prime} C^{\prime \prime} B^{\prime}$ as its limit.

Then the limit of $\frac{\operatorname{arc} A^{\prime} D}{\operatorname{arc} A B}$ will be $\frac{\operatorname{arc} A^{\prime} B^{\prime}}{\operatorname{arc} A B}$,
and the limit of $\frac{\angle A^{\prime} C^{\prime} D}{\angle A C B}$ will be $\angle \frac{A^{\prime} C^{\prime} B^{\prime}}{\angle A C B}$.
Moreover, the corresponding values of the two variables, namely,

$$
\frac{\operatorname{arc} A^{\prime} D}{\operatorname{arc} A B} \text { and } \frac{\angle A^{\prime} C^{\prime \prime} D}{\angle A C B}
$$

are equal, however near these variables approach their limits.
\therefore their limits $\frac{\operatorname{arc} A^{\prime} B^{\prime}}{\operatorname{arc} A B}$ and $\frac{\angle A^{\prime} C^{\prime} B^{\prime}}{\angle A C^{\prime} B}$ are equal. § 199
Q. E. D.
202. Scholium. An angle at the centre is said to be measured by its intercepted arc. This expression means that an angle at the centre is such part of the angular magnitude about that point (four right angles) as its intercepted are is of the whole circumference.

A circumference is divided into 360 equal arcs, and each are is called a degree, denoted by the symbol $\left({ }^{\circ}\right)$.

The angle at the centre which one of these equal arcs subends is also called a degree.

A quadrant (ono-fourth a circumference) contains thereore 90°; and a right angle, subtended by a quadrant, conains 90°.

Hence an angle of 30° is $\frac{1}{3}$ of a right angle, an angle of 45° s $\frac{1}{2}$ of a right angle, an angle of 135° is $\frac{3}{2}$ of a right angle.

Thus we get a definite idea of an angle if we know the number of degrees it contains.

A degree is subdivided into sixty equal parts called minates, denoted by the symbol (').

A minute is subdivided into sixty equal parts called seconds, denoted by the symbol (").

Proposition XIV. Theorem.

203. An inscribed angle is measured by one-half of the arc intercepted between its sides.

Fig. 1.

Fig. 2.

Fig. 3.

Case I.
In the circle $P A B$ (Fig. 1), let the centre C be in one of the sides of the inscribed angle B.

We are to prove $\angle B$ is measured by $\frac{1}{2} \operatorname{arc} P A$.
Draw $C A$.

$$
C A=C B
$$

(being radii of the same \odot).

$$
\therefore \angle B=\angle A
$$

(being opposite equal sides).

$$
\angle P C A=\angle B+\angle A
$$

(the exterior \angle of $a \triangle$ is equal to the sum of the two opposite interior $\mathbb{\S}$).
Substitute in the above equality $\angle B$ for its equal $\angle A$.
Then we have $\quad \angle P C A=2 \angle B$.

$$
\text { But } \angle P C A \text { is measured by } A P \text {, }
$$

(the \angle at the centre is measured by the intercepted arc).
$\therefore 2 \angle B$ is measured by $A P$.
$\therefore \angle B$ is measured by $\frac{1}{2} A P$.

Case II.
In the circle $B A E$ (Fig. 2), let the centre C fall within the angle EBA.
We are to prove $\quad \angle E B A$ is measured by $\frac{1}{2} \operatorname{arc} E A$.
Draw the diameter $B C P$.
$\angle P B A$ is measured by $\frac{1}{2} \operatorname{arc} P A, \quad$ (Case I.) $\angle P B E$ is measured by $\frac{1}{2} \operatorname{arc} P E$, (Case I.)
$\therefore \angle P B A+\angle P B E$ is measured by $\frac{1}{2}(\operatorname{arc} P A+\operatorname{arc} P E)$. $\therefore \angle E B A$ is measured by $\frac{1}{2}$ arc $E A$.

Case III.

In the circle $B F P$ (Fig. 3), let the centre C fall without the angle $A B F$.
We are to prove $\angle A B F$ is measured by $\frac{1}{2} \operatorname{arc} A F$.
Draw the diameter $B C P$.
$\angle P B F$ is measured by $\frac{1}{2}$ arc $P F, \quad$ (Case I.)
$\angle P B A$ is measured by $\frac{1}{2} \operatorname{arc} P A, \quad$ (Case I.)
$\therefore \angle P B F-\angle P B A$ is measured by $\frac{1}{2}(\operatorname{arc} P F-\operatorname{arc} P A)$. $\therefore \angle A B F$ is measured by $\frac{1}{2}$ arc $A F$.
Q. E. D.
204. Corollary 1. An angle inscribed in a semicircle is a right angle, for it is measured by one-half a semi-circumference, or by 90°.
205. Cor. 2. An angle inscribed in a segment greater than a semicircle is an acute angle; for it is measured by an arc less than one-half a semi-circumference ; i. e. by an arc less than 90°.
206. Cor. 3. An angle inscribed in a segment less than a semicircle is an obtuse angle, for it is measured by an are greater than one-half a semi-circumference; i. e. by an are greater than 90°.
207. Cor. 4. All angles inscribed in the same segment are equal, for they are measured by one-half the same are.

Proposition XV. Theorem.

208. An angle formed by two chords, and whose vertex lies between the centre and the circumference, is measured by one-half the intercepted arc plus one-half the arc intercepted by its sides produced.

Let the $\angle A O C$ be formed by the chords $A B$ and $C D$.
We are to prove
$\angle A O C$ is measured by $\frac{1}{2} \operatorname{arc} A C+\frac{1}{2} \operatorname{arc} B D$.
Draw $A D$.

$$
\angle C O A=\angle D+\angle A
$$

(the exterior \angle of $a \triangle$ is equal to the sum of the two opposite interior $\mathbb{\&}$).

| But $\quad \angle D$ is measured by $\frac{1}{2}$ arc $A C$, | $\S 203$ |
| :--- | :--- | :--- |
| (an inscribed \angle is measured by $\frac{1}{2}$ the intercepted arc) ; | |
| and $\quad \angle A$ is measured by $\frac{1}{2}$ arc $B D$, | $\S 203$ |

$\therefore \angle C O A$ is measured by $\frac{1}{2} \operatorname{arc} A C+\frac{1}{2}$ arc $B D$.
Q.E. D.

Ex. Show that the least chord that can be drawn through a given point in a circle is perpendicular to the diameter drawn through the point.

Proposition XVI. Theorem.
209. An angle formed by a tangent and a chord is measured by one-half the intercepted arc.

Let $H A M$ be the angle formed by the tangent $O M$ and chord $A H$.

We are to prove
$\angle H A M$ is measured by $\frac{1}{2} \operatorname{arc} A E H$.
Draw the diameter $A C F$.

$$
\angle F A M \text { is a rt. } \angle, \quad \S 186
$$

(the radius draven to a tangent at the point of contact is \perp to $i t$).
$\angle F A M$, being a rt. \angle, is measured by $\frac{1}{2}$ the semi-circumference $A E F$.
$\angle F A H$ is measured by $\frac{1}{2}$ are $F H$,
(an inscribed \angle is measured by $\frac{1}{2}$ the intercepted arc) ;
$\therefore \angle F A M-\angle F A H$ is measured by $\frac{1}{2}($ arc $A E F-$ arc $H F)$.
$\therefore \angle H A M$ is measured by $\frac{1}{2}$ arc $A E H$.
Q. E. D.

Proposition XVII. Theorem.
210. An angle formed by two secants, two tangents, or a tangent and a secant, and which has its vertex without the circwmference, is measured by one-half the concave arc, minus one-half the convex arc.

Fig. 1.

Fig. 2.

Case I.
Let the angle O (Fig. 1) be formed by the two secants $O A$ and $O B$.

We are to prove
$\angle O$ is measured by $\frac{1}{2} \operatorname{arc} A B-\frac{1}{2} \operatorname{arc} E C$.
Draw $C B$.

$$
\angle A C B=\angle O+\angle B
$$ (the exterior \angle of a \triangle is equal to the sum of the two opposite interior $₫$).

By transposing,

$$
\angle O=\angle A C B-\angle B
$$

But $\quad \angle A C B$ is measured by $\frac{1}{2}$ arc $A B$,
(an inscribed \angle is measured by $\frac{1}{2}$ the intercepted arc).
and $\quad \angle B$ is measured by $\frac{1}{2} \operatorname{arc} C E$,
$\therefore \angle O$ is measured by $\frac{1}{2} \operatorname{arc} A B-\frac{1}{2}$ arc $C E$.

Case II.

Let the angle O (Fig. 2) be formed by the two tangents $O A$ and $O B$.

We are to prove
$\angle O$ is measured by $\frac{1}{2}$ arc $A M B-\frac{1}{2}$ arc $A S B$.
Draw $A B$.

$$
\angle A B C=\angle O+\angle O A B
$$

(the exterior \angle of $a \triangle$ is equal to the sum of the two opposite interior $\$$).
By transposing,

$$
\angle O=\angle A B C-\angle O A B
$$

But $\angle A B C$ is measured by $\frac{1}{2}$ are $A M B$, $\quad 209$ (an \angle formed by a tangent and a chord is measured by $\frac{1}{2}$ the intercepted arc), and $\quad \angle O A B$ is measured by $\frac{1}{2}$ arc $A S B$. $\$ 209$
$\therefore \angle O$ is measured by $\frac{1}{2}$ are $A M B-\frac{1}{2}$ arc $A S B$.

Case III.

Let the angle 0 (Fig. 3) be formed by the tangent $O B$ and the secant $O A$.

We are to prove

$$
\angle O \text { is measured by } \frac{1}{2} \text { arc } A D S-\frac{1}{2} \text { arc } C E S .
$$

Draw $C S$.

$$
\angle A C S=\angle O+\angle C S O
$$

(the exterior \angle of $a \triangle$ is equal to the sum of the two opposite interior \&\$).
By transposing,

$$
\angle O=\angle A C S-\angle C S O
$$

But $\quad \angle A C S$ is measured by $\frac{1}{2}$ arc $A D S$,
and $\quad \angle C S O$ is measured by $\frac{1}{2}$ arc $C E S$, (being an \angle formed by a tangent and a chord).
$\therefore \angle O$ is measured by $\frac{1}{2}$ arc $A D S-\frac{1}{2}$ arc $\subset E S$.

> Q. E. D.

Supplementary Propositions.

Proposition XVIII. Theorem.
211. Two parallel lines intercept upon the circum. ference equal arcs.

Fig. 1.

Fig. 2.

Let the two parallel lines $C A$ and $B F$ (Fig. 1), intercopt the arcs $C B$ and $A F$.

We are to prove $\quad \operatorname{arc} C B=\operatorname{arc} A F$.
Draw $A B$.

$$
\angle A=\angle B
$$

(being alt.-int. \&\$).
But the arc $C B$ is double the measure of $\angle A$.
and the arc $A F$ is double the measure of $\angle B$.

$$
\therefore \operatorname{arc} C B=\operatorname{arc} A F .
$$

$$
\text { Ax. } 6
$$

Q. E. D.
212. Scholium. Since two parallel lines intercept on tho circumference equal arcs, the two parallel tangents $M N$ and $O P$ (Fig. 2) divide the circumference in two semi-circumferences $A C B$ and $A Q B$, and the line $A B$ joining the points of contact of the two tangents is a diameter of the circle.

Proposition XIX. Theorem.

213. If the sum of two arcs be less than a circumbference the greater are is subtended by the greater chord; and conversely, the greater chord subtends the greater arc.

In the circle $A C P$ let the $t w o$ arcs $A B$ and $B C$ together be less than the circumference, and let $A B$ be the greater.
We are to prove chord $A B>$ chord $B C$.

Draw $A C$.

In the $\triangle A B C$
$\angle C$, measured by $\frac{1}{2}$ the greater arc $A B$,
§ 203
is greater than $\angle A$, measured by $\frac{1}{2}$ the less are $B C$.
\therefore the side $A B>$ the side $B C$,
§ 117 (in a \triangle the greater \angle has the greater side opposite to $i t$).
Conversely : If the chord $A B$ be greater than tho chord $B C$.

We are to prove $\operatorname{arc} A B>\operatorname{arc} B C$.
In the $\triangle A B C$,

$$
\begin{array}{ll}
A B>B C, & \text { Hyp. } \\
\therefore \angle C>A, & \S 118
\end{array}
$$

(in a \triangle the greater side has the greater \angle opposite to $i t$).
\therefore arc $A B$. double the measure of the greater $\angle C$, is greater than the are $B C$, duuble the measure of the less $\angle A$.
Q. E. D.

Proposition XX. Theorem.

214. If the rdmo of two arcs be greater than a circumference, the greater arc is subtended by the less chord; and, conversely, the less chord subtends the greater arc.

In the circle $B C E$ let the arcs $A E C B$ and $B A E C$ together be greater than the circumference, and let arc $A E C B$ be greater than arc $B A, E C$.
We are to prove chord $A B<$ chord $B C$.
From the given arcs take the common arc $A E C$; we have left two arcs, $C B$ and $A B$, less than a circumference, of which $\dot{C} B$ is the greater.
\therefore chord $C B>$ chord $A B$,
(when the sum of two arcs is less then a circumference, the greater arc is subtended by the greater chord).
\therefore the chord $A B$, which subtends the greater arc $A E C B$, is less than the chord $B C$, which subtends the less arc $B A E C$.

Conversely : If the chord $A B$ be less than chord $B C$.
We are to prove $\operatorname{arc} A E C B>\operatorname{arc} B A E C$.
Arc $A B+\operatorname{arc} A E C B=$ the circumference.
Arc $B C+\operatorname{arc} B A E C=$ the circumference.
$\therefore \operatorname{arc} A B+\operatorname{arc} A E C B=\operatorname{arc} B C+\operatorname{arc} B A E C$.
But $\operatorname{arc} A B<\operatorname{arc} B C$,

On Constructions.

Proposition XXI. Problem.
215. To find a point in a plane, having given its disfarces from two known points.

$$
\dot{A} \quad \dot{B}
$$

Let A and B be the two known points; n the dislance of the required point from A, o its distance from B.

It is required to find a point at the given distances from A and B.

From A as a centre, with a radius equal to n, describe an arc.
From B as a centre, with a radius equal to o, describe an are intersecting the former are at C.
C is the required point.
Q. E. F.
216. Corollary 1. By continuing these arcs, another point below the points A and B will be found, which will fulfil the conditions.
217. Cor. 2. When the sum of the given distances is equal to the distance between the two given points, then the two arcs described will be tangent to each other, and the point of tangency will be the point required.

Let the distance from A to B equal $n+o$.
From A as a centre, with a radius equal to n, describe an are ; A.
and from B as a centre, with a radius equal to o, describe an arc.

These ares will touch each other at C, and will not intersect.
$\therefore C$ is the only point which can be found.
218. Scholium 1. The problem is impossible when the distance between the two known points is greater than the sum of the distances of the required point from the two given points.

Let the distance from A to B be greater than $n+o$.
Then from A as a centre, with a radius equal to n, de- A. scribe an arc;
and from B as a centre, with a radius equal to o, describe an arc.

These ares will neither touch nor intersect each other ;
hence they can have no point in common.
219. Scho. 2. The problem is impossible when the distance between the two given points is less than the difference of the distances of the required point from the two given points.

Let the distance from A to B be less than $n-o$.
From A as a centre, with a radius equal to n, describe a circle ;
and from B as a centre, with a radius equal to o, describe a circle.

The circle described from B as a centre will fall wholly within the circle described from A as a centre; hence they can have no point in \qquad
 common.

Proposition XXII. Problem.
220. To bisect a given straight line.

Let $A B$ be the given straight line.
It is required to bisect the line $A B$.
From A and B as centres, with equal radii, describe arcs intersecting at C and E.

Join $C E$.

Then the line $C E$ bisects $A B$.
For, C and E, being two points at equal distances from the extremities A and B, determine the position of $a \perp$ to the middle point of $A B$.
Q.E.F.

Proposition XXIII. Problem.
221. At a given point in a straight line, to erect a perpendicular to that line.

Let O be the given point in the straight line $A B$.
It is required to erect $a \perp$ to the line $A B$ at the point O. Take $O H=O B$.
From B and H as centres, with equal radii, describe two arcs intersecting at R.

Then the line joining $R O$ is the \perp required.
For, O and R are two points at equal distances from B and H, and
\therefore determine the position of $a \perp$ to the line $H B$ at its middle point O.

Proposition XXIV. Problem.

222. From a point without a straight line, to let fall a perpendicular upon that line.

Let $A B$ be a given straight line, and C a given point without the line.

It is required to let fall $a \perp$ to the line $A B$ from the point C. From C as a centre, with a radius sufficiently great, describe an arc cutting $A B$ at the points H and K.

From H and K as centres, with equal radii, describe two ares intersecting at 0 .

$$
\text { Draw } C O
$$

and produce it to meet $A B$ at m.

$$
C m \text { is the } \perp \text { required. }
$$

For, C and O, being two points at equal distances from H and K, determine the position of a \perp to the line $H K$ at its middle point.
Q. E. F.

Proposition XXV. Problem.
223. To construct an are equal to a given arc whose centre is a given point.

Let C be the centre of the given arc $A B$.
It is required to construct an arc equal to arc $A B$.

$$
\text { Draw } C B, C A \text {, and } A B
$$

From C^{\prime} as a centre, with a radius equal to $C B$, describe an indefinite arc $B^{\prime} F$.

From B^{\prime} as a centre, with a radius equal to chord $A B$,
describe an are intersecting the indefinite are at A^{\prime}.
Then $\operatorname{arc} A^{\prime} B^{\prime}=\operatorname{arc} A B$.
For,
draw chord $A^{\prime} B^{\prime}$.
The (5) are equal, (being described with equal radiu),
and

$$
\text { chord } A^{\prime} B^{\prime}=\operatorname{chord} A B
$$

$$
\therefore \operatorname{arc} A^{\prime} B^{\prime}=\operatorname{arc} A B
$$

(in equal © equal chords subtend equal arcs).

Proposition XXVI. Problem.

224. At a given point in a given straight line to construct an angle equal to a given angle.

Let C^{\prime} be the given point in the given line $C^{\prime} B^{\prime}$, and C the given angle.
It is required to construct an \angle at C^{\prime} equal to the $\angle C$.
From C as a centre, with any radius as $C B$, describe the arc $A B$, terminating in the sides of the \angle. Draw chord $A B$.

From C^{\prime} as a centre, with a radius equal to $C B$, describe the indefinite arc $B^{\prime} F$.
From B^{\prime} as a centre, with a radius equal to $A B$, describe an arc intersecting the indefinite are at A^{\prime}.

Draw $A^{\prime} C^{\prime \prime}$.

$$
\text { Then } \angle C^{\prime}=\angle C \text {. }
$$

For, join $A^{\prime} B^{\prime}$.
The (5) to which belong $\operatorname{arcs} A B$ and $A^{\prime} B^{\prime}$ are equal, (being described with equal radii).
and

$$
\operatorname{chord} A^{\prime} B^{\prime}=\operatorname{chord} A B ;
$$

$$
\therefore \operatorname{arc} A^{\prime} B^{\prime}=\operatorname{arc} A B
$$

(in equal (s) equal chords subtend equal arcs).

$$
\begin{gathered}
\therefore \angle C^{\prime}=\angle C, \\
\text { (in equal © equal arcs subtend equal \& at the centre). } \begin{array}{l}
\text { Q. E. F. }
\end{array} \text { (80 }
\end{gathered}
$$

Proposition XXVII. Problem.

225. To bisect a given arc.

Let $A O B$ be the given arc.

It is required to bisect the arc $A O B$.
Draw the chord $A B$.
From A and B as centres, with equal radii, describe ares intersecting at E and C.

Draw $E C$.

$E C$ bisects the arc $A O B$.
For, E and C, being two points at equal distances from A and B, determine the position of the \perp erected at the middle of chord $A B$;
and $a \perp$ erected at the middle of a chord passes through the centre of the \odot, and bisects the arc of the chord. § 184
Q. E. F.

Proposition XXVIII. Problem.

226. To bisect a given angle.

Let $A E B$ be the given angle.
It is required to bisect $\angle A E B$.
From E as a centre, with any radius, as $E A$, describe the arc $A O B$, terminating in the sides of the \angle.

Draw the chord $A B$.
From A and B as centres, with equal radii, describe two arcs intersecting at C.

Join EC.
$E C$ bisects the $\angle E$.
For, E and C, being two points at equal distances from A and B, determine the position of the \perp erected at the middle of $A B$.

And the \perp erected at the middle of a chord passes through the centre of the \odot, and bisects the arc of the chord.

$$
\S 184
$$

$$
\therefore \operatorname{arc} A O=\operatorname{arc} O B
$$

$$
\therefore \angle A E C=\angle B E C
$$

(in the same circle equal arcs subtend equal $\&$ at the centre).

> Q. E. F.

Proposition XXIX. Problem.

227. Through a given point to draw a straight line parallel to a given straight line.

Let $A B$ be the given line, and H the given point.
It is required to draw through the point H a line II to the line $A B$.

Draw $H A$, making the $\angle H A B$.
At the point Π construct $\angle A H E=\angle H A B$.
Then the line $H E$ is $\|$ to $A B$.

For,

$$
\angle E H A=\angle H A B
$$

Cons.
$\therefore H E$ is $\|$ to $A B$, § 69
(when two straight lines, lying in the same plane, are cut by a third straight line, if the all.-int. Δ be equal, the lines are parallel). Q. E. F.

Ex. 1. Find the locus of the centre of a circumference which passes through two given points.
2. Find the locus of the centre of the circumference of a given radins, tangent externally or internally to a given circumference.
3. A straight line is drawn through a given point A, intersecting a given circumference at B and C. Find the locus of the middle point P of the intercepted chord $B C$.

Proposition XXX. Problem.
228. Two angles of a triangle being given to find the third.

Let A and B be two given angles of a triangle.
It is required to find the third \angle of the \triangle.
Take any straight line, as $E F$, and at any point, as H.

$$
\text { construct } \angle R H F \text { equal to } \angle B \text {, }
$$ and $\angle S H E$ equal to $\angle A$.

Then $\quad \angle R H S$ is the \angle required.
For, the sum of the three $\angle s$ of a $\triangle=2 \mathrm{rt} . \angle s, \quad \S 98$
and the sum of the three $\angle s$ about the point H, on the same side of $E F=2 \mathrm{rt}$. $\angle \mathrm{s}$.

Two $\&$ of the \triangle being equal to two $\angle s$ about the point H, Cons.
the third \angle of the \triangle must be equal to the third \angle about the point H.
Q. E. F.

Proposition XXXI. Problem.

229. Two sides and the included angle of a triangle being given, to construct the triangle.

Let the two sides of the triangle be E and F, and the included angle A.

It is required to construct a Δ having two sides equal to E and F respectively, and their included $\angle=\angle A$.

Take $H K$ equal to the side F.
At the point H draw the line $H M$,
making the $\angle K H M=\angle A$.
On $H M$ take $H C$ equal to E.
Draw $C K$:
Then $\quad \triangle C H K$ is the \triangle required.
Q.E. F.

Proposition XXXII. Problem.

230. A side and two adjacent angles of a triangle being given, to construct the triangle.

Let $C E$ be the given side, A and B the given angles.
It is required to construct a having a side equal to $C E$, and two $\triangle s$ adjacent to that side equal to $\angle \lessgtr A$ and B respectively.

At point C construct an \angle equal to $\angle A$.
At point E construct an \angle equal to $\angle B$.
Produce the sides until they meet at O.
Then $\triangle C O E$ is the \triangle required.
Q. E. F.
231. Scholium. The problem is impossible when the two given angles are together equal to, or greater than, two right angles.

Proposition XXXIII. Problem.

232. The three sides of a triangle being given, to construct the triangle.

Let the three sides be m, n, and o.
It is required to construct a Δ having three sides respectively, equal to m, n, and o.

Draw $A B$ equal to n.
From A as a centre, with a radius equal to 0,

> describe an are ;
and from B as a centre, with a radius equal to m, describe an arc intersecting the former arc at C.

Draw $C A$ and $C B$.
Then $\triangle C A B$ is the \triangle required. Q. E. F.
233. Scholium. The problem is impossible when one side is equal to or greater than the sum of the other two.

Proposition XXXIV. Problem.

234. The hypotenuse and one side of a right triangle being given, to construct the triangle.

\qquad

Let m be the given side, and o the hypotenuse.
It is required to construct a rt. \triangle having the hypotenuse equal o and. one side equal m.

Take $A B$ equal to m.
At A erect a $\perp, A X$.
From B as a centre, with a radius equal to 0 ,
describe an are cutting $A X$ at C.
Draw $C B$.
Then $\triangle C A B$ is the \triangle required.
Q. E. F.

Proposition XXXV. Problem.
235. The base, the altitude, and an angle at the base, of a triangle being given, to construct the triangle.

Let o equal the base, m the altitude, and C the angle at the base.

It is required to construct a having the base equal to 0 , the altitude equal to m, and an \angle at the base equal to C.

Take $A B$ equal to o.
At the point A, draw the indefinite line $A R$, making the $\angle B A R=\angle C$.

At the point A, erect a $\perp A X$ equal to m.
From X draw $X S \|$ to $A B$, and meeting the line $A R$ at S.

Draw $S B$.
Then $\triangle A S B$ is the \triangle required.

Proposition XXXVI. Problem.

236. Two sides of a triangle and the angle opposite one of them being given, to construct the triangle.

Case I.

When the given angle is acute, and the side opposite to it is less than the other given side.

Let c be the longer and a the shorter given side, and $\angle A$ the given angle.
It is required to construct a \triangle having two sides equal to a and c respectively, and the \angle opposite a equal to given $\angle A$.

Construct $\angle D A E$ equal to the given $\angle A$. On $A D$ take $A B=c$.
From B as a centre, with a radius equal to a, describe an arc intersecting the side $A E$ at C^{\prime} and $C^{\prime \prime}$.

$$
\text { Draw } B C^{\prime} \text { and } B C^{\prime \prime} \text {. }
$$

Then both the $\triangle A B C^{\prime}$ and $A B C^{\prime \prime}$ fulfil the conditions, and hence we have two constructions.

When the given side a is exactly equal to the $\perp B C$, there will be but one construction, namely, the right triangle $A B C$.

When the given side a is less than $B C$, the are described from B will not intersect $A E$, and hence the problem is impossible.

Case II.

When the given angle is acute, right, or obtuse, and the side opposite to it is greater than the other given side.

Fig. 1.

Fig. 2.

When the given angle is obtuse.
Construct the $\angle D A E$ (Fig. 1) equal to the given $\angle S$.
Take $A B$ equal to a.
From B as a centre, with a radius equal to c, describe an arc cutting $E A$ at C, and $E A$ produced at $C^{\prime \prime}$.

Join $B C$ and $B C^{\prime}$.
Then the $\triangle A B C$ is the \triangle required, and there is only one construction; for the $\triangle A B C^{\prime \prime}$ will not contain the given $\angle S$.

When the given angle is acute, as angle $B A C^{\prime \prime}$.
There is only one construction, namely, the $\triangle B A C^{\prime \prime}$ (Fig. 1).
When the given \angle is a right angle.
There are two constructions, the equal $\triangle B A C$ and $B A C^{\prime}$ (Fig. 2).
Q. E. F.

The problem is impossible when the given angle is right or obtuse, if the given side opposite the angle be less than the other given side.

Proposition XXXVII. Problem.

237. Two sides and an included angle of a parallelogram being given, to construct the parallelogram.

R

Let m and o be the two sides, and C the included angle.
It is required to construct a \square having two adjacent sides equal to m and o respectively, and their included \angle equal to $\angle C$.

Draw $A B$ equal to o.
From A draw the indefinite line $A R$, making the $\angle A$ equal to $\angle C$.
On $A R$ take $A H$ equal to m.
From H as a centre, with a radius equal to o, describe an are.

From B as a centre, with a radius equal to m, describe an arc, intersecting the former are at E.

Draw $E H$ and $E B$.
The quadrilateral $A B E H$ is the \square required.
For,

$$
\begin{aligned}
& A B=H E, \\
& A H=B E,
\end{aligned}
$$

\therefore the figure $A B E H$ is a \square,

Proposition XXXVIII. Problem.

238. To describe a circumference through three points not in the same straight line.

Let the three points be A, B, and C.
It is required to describe a circumference through the three points A, B, and C '.

Draw $A B$ and $B C$.
Bisect $A B$ and $B C$.
At the points of bisection, E and F, erect \perp intersecting at 0 .

From O as a centre, with a radius equal to $O A$, describe a circle.

$$
\odot A B C \text { is the } \odot \text { required. }
$$

For, the point O, being in the $\perp E O$ erected at the middle of the line $A B$, is at equal distances from A and B;
and also, being in the $\perp \mathcal{F} O$ erected at the middle of the line $C B$, is at equal distances from B and C, (every point in the \perp erected at the middle of a straight line is at equal distances from the extremities of that line).
\therefore the point O is at equal distances from A, B, and C,
and a \odot described from O as a centre, with a radius equal to $O A$, will pass through the points A, B, and C.
Q. E. F.
239. Scholium. The same construction serves to describe a circumference which shall pass through the three vertices of a triangle, that is, to circumscribe a circle about a given triangle.

Proposition XXXIX. Problem.
240. Through a given point to draw a tangent to a given circle.

Fig. 1.

Case 1. - When the given point is on the circumference.
Let $A B C$ (Fig. 1) be a given circle, and C the given point on the circumference.
It is required to draw a tangent to the circle at C.
From the centre O, draw the radius $O C$.
At the extremity of the radius, C, draw $C M \perp$ to $O C$.
Then $C M$ is the tangent required, $\S 186$ (a straight line \perp to a radius at its extremity is tangent to the \odot).

Case 2. - When the given point is without the circumference.
Let $A B C$ (Fig. 2) be the given circle, O its centre, E the given point without the circumference.
It is required to draw a tangent to the circle $A B C$ from the point E.
Join OE.

On $O E$ as a diameter, describe a circumference intersecting the given circumference at the points M and H.

Draw $O M$ and $O I I, E M$ and $E H$.
Now

$$
\angle O M E \text { is a rt. } \angle
$$

(being inscribed in a semicircle).
$\therefore E M$ is \perp to $O M$ at the point M;
$\therefore E M$ is tangent to the \odot,
(a straight line \perp to a radius al its cxtremity is tangent to the \odot).
In like manner we may prove II E tangent to the given \odot. Q. E. F.
241. Corollary. Two tangents drawn from the same point to a circle are equal.

Proposition XL. Problem.

242. To inscribe a circle in a given triangle.

Let $A B C$ be the given triangle.
It is required to inscribe $a \odot$ in the $\triangle A B C$.
Draw the line $A E$, bisecting $\angle A$, and draw the line $C E$, bisecting $\angle C$.

Draw $E H \perp$ to the line $A C$.
From E, with radius $E H$, deseribe the $\odot K M H$.
The $\odot K H M$ is the \odot required.
For, draw $E K \perp$ to $A B$, and $E M \perp$ to $B C$.
In the rt. © $A K E$ and $A H E$

$$
\begin{aligned}
& A E=A E \text {, } \\
& \angle E A K=\angle E A H \text {, } \\
& \therefore \triangle A K E=\triangle A H E \text {, } \\
& \text { Iden. } \\
& \text { (Two rt. } \triangle \text { are equal if the hypotenuse and an acute } \angle \text { of the one be equal } \\
& \text { respectively to the hypotenuse and an acute } \angle \text { of the other). }
\end{aligned}
$$

$$
\therefore E K=E H \text {, }
$$

(being homologous sides of equal ©).
In like manner it may be shown $E M=E H$.
$\therefore E K, E H$, and $E M$ are all equal.
\therefore a \odot described from E as a centre, with a radius equal to $E H$, will touch the sides of the Δ at points H, K, and M, and be inscribed in the Δ.

Proposition XLI. Problem.

243. Upon a given straight line, to describe a segment which shall contain a given angle.

Let $A B$ be the given line, and M the given angle.
It is required to describe a segment upon the line $A B$, which shall contain $\angle M$.

At the point B construct $\angle A B E$ equal to $\angle M$.
Bisect the line $A B$ by the $\perp l^{\prime} H$.
From the point B, draw $B O \perp$ to $E B$.
From O, the point of intersection of $F H$ and $B O$, as a centre, with a radius equal to $O B$, describe a circumference.

Now the point O, being in a \perp erected at the middle of $A B$, is at equal distances from A and B,
§ 58 (every point in a \perp erected at the middle of a straight line is at equal dis. tances from the extremities of that line) ;
\therefore the circumfcrençe will pass through A.
Now

$$
B E \text { is } \perp \text { to } O B,
$$

$\therefore B E$ is tangent to the \odot,
(a straight line \perp to a radius at its extremity is tungent to the ©).

$$
\begin{aligned}
& \therefore \angle A B E \text { is measured by } \frac{1}{2} \text { arc } A B \text {, } \\
& \text { (being an } \angle \text { formed by a tangent and a chord). }
\end{aligned}
$$

Also any \angle inscribed in the segment $A H B$, as for instance $\angle A K^{\prime} B$, is measured by $\frac{1}{2}$ arc $A B$,

$$
\therefore \angle A K B=\angle A B E \text {, }
$$

$$
\text { (being both measured by } \frac{1}{2} \text { the same arc) ; }
$$

$$
\therefore \angle A K B=\angle M .
$$

\therefore segment $A H B$ is the segment required.
Q. E. F.

Proposition XLII. Problem.

244. To find the ratio of two commensurable straight lines.

Let $A B$ and $C D$ be two straight lines.
It is required to find the greatest common measure of $A B$ and. $C D$, so as to express their ratio in figures.

Apply $C D$ to $A B$ as many times as possible.
Suppose twice with a remainder $E B$.
Then apply $E B$ to $C D$ as many times as possible.
Suppose three times with a remainder $F D$.
Then apply $F D$ to $E B$ as many times as possible.
Suppose once with a remainder $H B$.
Then apply $H B$ to $F D$ as many times as possible.
Suppose once with a remainder $K D$.
Then apply $K^{*} D$ to $H B$ as many times as possible.
Suppose $K D$ is contained just twice in $H B$.
The measure of each line, referred to $K D$ as a unit, will then be as follows:-

$$
\begin{aligned}
H B & =2 K D \\
F D & =H B+K D=3 K D \\
E B & =F D+H B=5 K D \\
C D & =3 E B+F D=18 K D \\
A B & =2 C D+E B=41 K D \\
& \therefore \frac{A B}{C D}=\frac{41 K D}{18 K D}
\end{aligned}
$$

\therefore the ratio of $\frac{A B}{C D}=\frac{41}{18}$.

Exercises.

1. If the sides of a pentagon, no two sides of which are parallel, be produced till they meet; show that the sum of all the angles at their points of intersection will be equal to two right angles.
2. Show that two chords which are equally distant from the centre of a circle are equal to each other ; and of two chords, that which is nearer the centre is greater than the one more remote.
3. If through the vertices of an isosceles triangle which has each of the angles at the base double of the third angle, and is inscribed in a circle, straight lines be drawn touching the circle ; show that an isosceles triangle will be formed which has each of the angles at the base one-third of the angle at the vertex.
4. $A D B$ is a semicircle of which the centre is C; and $A E C$ is another semicircle on the diameter $A C ; A T$ is a common tangent to the two semicircles at the point A. Show that if from any point F, in the circumference of the first, a straight line $F C$ be drawn to C, the part $F K$, cut off by the second semicircle, is equal to the perpendicular $F H$ to the tangent $A T$.
5. Show that the bisectors of the angles contained by the opposite sides (produced) of an inscribed quadrilateral intersect at right angles.
6. If a triangle $A B C$ be formed by the intersection of three tangents to a circumference whose centre is O, two of which, $A M$ and $A N$, are fixed, while the third, $B C$, touches the circumference at a variable point P; show that the perimeter of the triangle $A B C$ is constant, and equal to $A M+A N$, or $2 A$ M. Also show that the angle $B O \in$ is constant.
7. $A B$ is any chord and $A C$ is tangent to a circle at A, $C D E$ a line cutting the circumference in D and E and parallel to $A B$; show that the triangle $A C D$ is equiangular to the triangle $E A B$.

Constructions.

1. Draw two concentric circles, such that the chords of the outer circle which touch the inner may be equal to the diameter of the inner circle.
2. Given the base of a triangle, the vertical angle, and the length of the line drawn from the vertex to the middle point of the base : construct the triangle.
3. Given a side of a triangle, its vertical angle, and the radius of the circumscribing circle : construct the triangle.
4. Given the base, vertical angle, and the perpendicular from the extremity of the base to the opposite side: construct the triangle.
5. Describe a circle cutting the sides of a given square, so that its circumference may be divided at the points of intersection into eight equal arcs.
6. Construct an angle of 60°, one of 30°, one of 120°, one of 150°, one of 45°, and one of 135°.
7. In a given triangle $A B C$, draw $Q D E$ parallel to the base $B C$ and meeting the sides of the triangle at D and E, so that $D E$ shall be equal to $D B+E C$.
8. Given two perpendiculars, $A B$ and $C D$, intersecting in O, and a straight line intersecting these perpendiculars in E and F; to construct a square, one of whose angles shall coincide with one of the right angles at O, and the vertex of the opposite angle of the square shall lie in $E F$. (Two solutions.)
9. In a given rhombus to inscribe a square.
10. If the base and vertical angle of a triangle be given ; find the locus of the vertex.
11. If a ladder, whose foot rests on a horizontal plane and top against a vertical wall, slip down; find the locus of its middle point.

BOOK III.

PROPORTIONAL LINES AND SIMILAR POLYGONS.

On the Theory of Proportion.
245. Def. The Terms of a ratio are the quantities compared.
246. Def. The Antecedent of a ratio is its first term.
247. Def. The Consequent of a ratio is its second term.
248. Def. A Proportion is an expression of equality between two equal ratios.

A proportion may be expressed in any one of the following forms: -

$$
\begin{aligned}
& \text { 1. } a: b:: c: d \\
& \text { 2. } a: b=c: d \\
& \text { 3. } \frac{a}{b}=\frac{c}{d} .
\end{aligned}
$$

Form 1 is read, a is to b as c is to d.
Form 2 is read, the ratio of a to b equals the ratio of c to d.
Form 3 is read, a divided by b equals c divided by d.
The Terms of a proportion are the four quantities compared.

The first and third terms in a proportion are the antecerlents, the second and fourth terms are the consequents.
249. The Extremes in a proportion are the first and fourth terms.
250. The Means in a proportion are the second and third terms.
251. Def. In the proportion $a: b:: c: d ; d$ is a Fourth Proportional to a, b, and c.
252. Def. In the proportion $a: b:: b: c ; c$ is a Third Proportional to a and b.
253. Def. In the proportion $a: b:: b: c ; b$ is a Mean Proportional between a and c.
254. Def. Four quantities are Reciprocally lroportional when the first is to the second as the reciprocal of the third is to the reciprocal of the fourth.

Thus

$$
a: b:: \frac{1}{c}: \frac{1}{d} .
$$

If we have two quantities a and b, and the reciprocals of these quantities $\frac{1}{a}$ and $\frac{1}{b}$; these four quantities form a reciprocal proportion, the first being to the second as the reciprocal of the second is to the reciprocal of the first.

$$
\text { As } \quad a: b:: \frac{1}{b}: \frac{1}{a}
$$

255. Def. A proportion is taken by Alternation, when the means, or the extremes, are made to exchange places.

Thus in the proportion

$$
a: b:: c: d
$$

we have either

$$
a: c:: b: d, \quad \text { or, } d: b: c: a
$$

256. Def. A proportion is taken by Inversion, when the means and extremes are made to exchange places.

Thus in the proportion

$$
a: b:: c: d
$$

by inversion we have

$$
b: a:: d: c
$$

257. Def. A proportion is taken by Composition, when the sum of the first and second is to the second as the sum of
the third and fourth is to the fourth; or when the sum of the first and second is to the first as the sum of the third and fourth is to the third.

Thus if

$$
a: b:: c: d
$$

we have by composition,

$$
\text { or, } \quad a+b: a:: c+d: c
$$

258. Def. A proportion is taken by Division, when the difference of the first and second is to the second as the difference of the third and fourth is to the fourth; or when the difference of the first and second is to the first as the difference of the third and fourth is to the third.

Thus if $a: b:: c: d$,
we have by division

$$
\begin{aligned}
& a-b: b:: c-d: d \\
& a-b: a:: c-d: c
\end{aligned}
$$

Proposition I.

259. In every proportion the product of the extremes is equal to the product of the means.

$$
\text { Let } a: b:: c: d .
$$

We are to prove $\quad a d=b c$.
Now

$$
\frac{a}{b}=\frac{c}{d}
$$

whence, by multiplying by $b d$,

$$
a d=b c
$$

Q. E. D

In the treatment of proportion, it is assumed that fractions may be found which will represent the ratios. It is evident that a ratio may be represented by a fraction when the two quantities compared can be expressed in integers in terms of any common unit. Thus the ratio of a line $2 \frac{1}{3}$ inches long to a line $3 \frac{1}{4}$ inches long may be represented by the fraction $\frac{28}{3} \frac{8}{9}$ when both lines are expressed in terms of a unit $\frac{1}{12}$ of an inch long.

But it often happens that no unit exists in terms of which both the quantities can be expressed in integers. In such cases, however, it is possible to find a fraction that will represent the ratio to any required degree of accuracy.

Thus, if a and b denote two incommensurable lines, and b be divided into any integral number (n) of equal parts, if one of these parts be contained in a more than m times, but less than $m+1$ times, then $\frac{a}{b}>\frac{m}{n}$ but $<\frac{m+1}{n}$; so that the error in taking either of these values for $\frac{a}{b}$ is $<\frac{1}{n}$. Since n can be increased at pleasure, $\frac{1}{n}$ can be made less than any assigned value whatever. Propositions, therefore, that are true for $\frac{m}{n}$ and $\frac{m+1}{n}$, however little these fractions differ from each other, are true for $\frac{a}{b}$; and $\frac{m}{n}$ may be taken to represent the value of $\frac{a}{b}$.

Proposition II.

260. A mean proportional between two quantities is equal to the square root of their product.

In the proportion $a: b:: b: c$,

$$
b^{2}=a c
$$

(the product of the extremes is equal to the product of the means).
Whence, extracting the square root,

$$
b=\sqrt{a c .}
$$

Proposition III.

261. If the product of two quantities be equal to the product of two others, either two nnay be made the extremes of a proportion in which the other two are made the means.

$$
\text { Let } a d=b c
$$

We are to prove $a: b:: c: d$.
Divide both members of the given equation by $b d$.

Then $\frac{a}{b}=\frac{c}{d}$,
or, $a: b:: c: d$.
Q. E. D.

Proposition IV.
262. If four quantities of the same lind be in proporlion, they will be in proportion by alternation.

$$
\text { Let } a: b:: c: d
$$

We are to prove $a: c:: b: d$.

Now,

$$
\frac{a}{b}=\frac{c}{d}
$$

Multiply each member of the equation by $\frac{b}{c}$.

Then

$$
\frac{a}{c}=\frac{b}{d}
$$

or,

$$
a: c:: b: d
$$

Q. E. D.

Proposition V.

263. If four quantities be in proportion, they will be in proportion by inversion.

$$
\text { Let } a: b:: c: d
$$

We are to prove $b: a:: d: c$.
Now,

$$
\frac{a}{b}=\frac{c}{d}
$$

Divide 1 by each member of the equation.

Then

$$
\frac{b}{a}=\frac{d}{c}
$$

or,

$$
b: a:: d: c
$$

Proposition VI.

264. If four quantities be in proportion, they will be in proportion by composition.

$$
\text { Let } a: b:: c: d
$$

We are to prove $a+b: b:: c+d: d$.

Now

$$
\frac{a}{b}=\frac{c}{d}
$$

Add 1 to each member of the equation.
Then

$$
\frac{a}{b}+1=\frac{c}{d}+1
$$

that is,

$$
\frac{a+b}{b}=\frac{c+d}{d}
$$

or,

$$
a+b: b:: c+d: d
$$

Proposition VII.

265. If four quantities be in proportion, they will be in proportion by division.

$$
\text { Let } a: b:: c: d
$$

We are to prove $a-b: b:: c-d: d$.
Now

$$
\frac{a}{b}=\frac{c}{d}
$$

Subtract 1 from each member of the equation.
Then

$$
\frac{a}{b}-1=\frac{c}{d}-1
$$

that is, $\quad \frac{a-b}{b}=\frac{c-d}{d}$.
or, $a-b: b:: c-d: d$.
Q. E. D.

Proposition VIII.

266. In a series of equal ratios, the sum of the antecerlents is to the sum of the consequents as any antecedent is 10 its consequent.

$$
\text { Let } a: b=c: d=e: f=g: h
$$

We are to prove $a+c+e+g: b+d+f+h:: a: b$. Denote each ratio by r.

Then

$$
r=\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{h} .
$$

Whence, $\quad a=b r, \quad c=d r, \quad e=f r, \quad g=h r$.
Add these equations.
Then $\quad a+c+e+g=(b+d+f+h) r$.
Divide by $\quad(b+d+f+h)$.
Then

$$
\frac{a+c+e+g}{b+d+f+h}=r=\frac{a}{b}
$$

or, $a+c+e+g: b+d+f+k:: a: b$.

Proposition IX.

267. The products of the corresponding terms of two or more proportions are in proportion.

$$
\text { Let } \begin{aligned}
a & : b:: c: d, \\
e & : f:: g: h, \\
k & : l:: m: n,
\end{aligned}
$$

We are to prove $a e k: b f l:: c g m: d h n$.
Now

$$
\frac{a}{b}=\frac{c}{d}, \quad \frac{e}{\bar{f}}=\frac{g}{h}, \quad \frac{k}{l}=\frac{m}{n}
$$

Whence by multiplication,

$$
\frac{a e k}{d f l}=\frac{c g m}{d h n}
$$

or, $\quad a e k: b f l:: c g m: d h n$.
Q. E. D.

Proposition X.

263. Like powers, or like roots, of the lerms of a proportion are in proportion.

$$
\text { Let } a: b:: c: d
$$

We are to prove $a^{n}: b^{n}:: c^{n}: d^{n}$,
and

$$
a^{\frac{1}{n}}: b^{\frac{1}{n}}:: c^{\frac{1}{n}}: d^{n}
$$

Now

$$
\frac{a}{b}=\frac{c}{d}
$$

By raising to the $n^{\text {th }}$ power,

$$
\frac{a^{n}}{b^{n}}=\frac{c^{n}}{d^{n}} ; \text { or } a^{n}: b^{n}:: c^{n}: d^{n}
$$

By extracting the $n^{\text {th }}$ root,

$$
\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}}=\frac{c^{\frac{1}{n}}}{d^{\frac{1}{n}}} ; \text { or, } a^{\frac{1}{n}}: b^{\frac{1}{n}}:: c^{\frac{1}{n}}: d^{\frac{1}{n}}
$$

Q. E. D.
269. Def. Equimultiples of two quantities are the products obtained by multiplying each of them by the same number. Thus $m a$ and $m b$ are equimultiples of a and b.

Proposition XI.
270. Equimultiples of two quantities are in the same ralio as the quantities themselves.

Let a and b be any two quantities.

We are to prove $m a: m b:: a: b$.
Now .

$$
\frac{a}{b}=\frac{a}{b}
$$

Multiply both terms of first fraction by m.
Then

$$
\frac{m a}{m b}=\frac{a}{b}
$$

or,

$$
m a: m b:: a: b .
$$

Q. E. D.

Proposition XII.

271. If two quantities be increased or diminished by like parts of each, the results will be in the same ratio as the quantities themselves.

Let a and b be any two quantities.
We are to prove $a \pm \frac{p}{q} a: b \pm \frac{p}{q} b:: a: b$.
In the proportion,

$$
m a: m b:: a: b
$$

substitute for $m, 1 \pm \frac{p}{q}$.
Then
or

$$
\begin{gathered}
\left(1 \pm \frac{p}{q}\right) a:\left(1 \pm \frac{p}{q}\right) b:: a: b \\
a \pm \frac{p}{q} a: b \pm \frac{p}{q} b:: a: b
\end{gathered}
$$

Q. E. D.
272. Def. Euclid's test of a proportion is as follows :-
"The first of four magnitudes is said to have the same ratio to the second which the third has to the fourth, when any equimultiples whatsoever of the first and third being taken, and any equimultiples whatsoever of the second and fourth ;
"If the multiple of the first be less than that of the second, the multiple of the third is also less than that of the fourth ; or,
"If the multiple of the first be equal to that of the second, the multiple of the third is also equal to that of the fourth ; or,
"If the multiple of the first be greater than that of the second, the multiple of the third is also greater than that of the fourth."

Proposition XIII.

273. If four quantities be proportional according to the algebraical definition, they will also be proportional according to Euclid's definition.

Let a, b, c, d be proportional according to the algebraical definition; that is $\frac{a}{b}=\frac{c}{d}$.

We are to prove a, b, c, d, proportional according to Euclid's definition.

Multiply each member of the equality by $\frac{m}{n}$.

Then

$$
\frac{m a}{n b}=\frac{m c}{n d}
$$

Now from the nature of fractions,
if $m a$ be less than $n b, m c$ will also be less than $n d$;
if $m a$ be equal to $n b, m c$ will also be equal to $n d$;
if $m a$ be greater than $n b, m c$ will also be greater than $n d$.
$\therefore a, b, c, d$ are proportionals according to Euclid's definition.
Q. E. D.

Exercises.

1. Show that the straight line which bisects the external vertical angle of an isosceles triangle is parallel to the base.
2. A straight line is drawn terminated by two parallel 'straight lines; through its middle point any straight line is drawn and terminated by the parallel straight lines. Show that the second straight line is bisected at the middle point of the first.
3. Show that the angle between the bisector of the angle A of the triangle $A B C$ and the perpendicular let fall from A on $B C$ is equal to one-half the difference between the angles B and C.
4. In any right triangle show that the straight line drawn from the vertex of the right angle to the middle of the hypotenuse is equal to one-half the hypotenuse.
5. Two tangents are drawn to a circle at opposite extremities of a diameter, and cut off from a third tangent a portion $A B$. If C be the centre of the circle, show that $A C B$ is a right angle.
6. Show that the sum of the three perpendiculars from any point within an equilateral triangle to the sides is equal to the altitude of the triangle.
7. Show that the least chord which can be drawn through a given point within a circle is perpendicular to the diameter drawn through the point.
8. Show that the angle contained by two tangents at the extremities of a chord is twice the angle contained by the chord and the diameter drawn from either extremity of the chord.
9. If a circle can be inscribed in a quadrilateral ; show that the sum of two opposite sides of the quadrilateral is equal to the sum of the other two sides.
10. If the sum of two opposite sides of a quadrilateral be equal to the sum of the other two sides; show that a circle can be inscribed in the quadrilateral.

On Proportional Lines.

Proposition I. Theorem.
274. If a series of parallels intersecting any two straight lines intercept equal parts on one of these lines, they will intercept equal parts on the other also.

Let the series of parallels $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}, E E^{\prime}$, intercept on $H^{\prime} h^{\prime}$ equal parts $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, C^{\prime} D^{\prime}$, etc.
We are to prove
they intercept on $H K$ equal parts $A B, B C, C D$, etc.
At points A and B draw $A m$ and $B n \|$ to $H^{\prime} K^{\prime}$.

$$
A m=A^{\prime} B^{\prime},
$$

(parallels comprehendsd between parallels are equal).

$$
B n=B^{\prime} C^{\prime},
$$

$$
\therefore A m=B n .
$$

In the $\triangle B A m$ and $C B n$,

$$
\angle A=\angle B,
$$

(huving their sides respectively $\|$ and lying in the same direction from the vertices).
and

$$
\angle m=\angle n,
$$

$\therefore \triangle B A m=\triangle C B n$,
(haring a side and tro adj. ©s of the one equal respectively to a side and two adj. \&8 of the other).

$$
\therefore A B=B C,
$$

(heing homologous sides of equal ©).
In like manner we may prove $B C=C D$, etc.

Proposition II. Theorem.
275. If a line be drawn through two sides of a triangle parallel to the third side, it divides those sides proportionally.

Fig. 1.

Fig. 2.

In the triangle $A B C$ let $E F$ be drawn parallel to $B C$.
We are to prove $\frac{E B}{A E}=\frac{F C}{A H}$.
Case I. - When A E and E B (Fig. 1) are commensurable.
Find a common measure of $A E$ and $E B$, namely $B m$.
Suppose $B m$ to be contained in $B E$ three times, and in $A E$ five times.

Then

$$
\frac{E B}{A E}=\frac{3}{5}
$$

At the several points of division on $B E$ and $A E$ draw straight lines $\|$ to $B C$.

These lines will divide $A C$ into eight equal parts, of which $F C$ will contain three, and $A F$ will contain five, $\S 274$ (if parallels intersecting any two straight lines intercept equal parts on one of these lines, they will intercept equal parts on the other also).

But

$$
\begin{aligned}
\therefore \frac{F C}{A F} & =\frac{3}{5} \\
\frac{E B}{A E} & =\frac{3}{5}, \\
\therefore \frac{E B}{A E} & =\frac{F C}{A F} .
\end{aligned}
$$

Case. II. - When A E and E B (Fig. 2) are incommensurable.
Divide $A E$ into any number of equal parts,
and apply one of these parts to $E B$ as often as it will be contained in $E B$.

Since $A E$ and $E B$ are incommensurable, a certain number of these parts will extend from E to a point K, leaving a remainder $K B$, less than one of the parts.

Draw $K H \|$ to $B C$.

Since $A E$ and $E K$ are commensurable,

$$
\begin{equation*}
\frac{E K}{A E}=\frac{F H}{A F} \tag{CaseI.}
\end{equation*}
$$

Suppose the number of parts into which $A E$ is divided to be continually increased, the length of each part will become less and less, and the point K will approach nearer and nearer to B. The limit of $E K$ will be $E B$, and the limit of $F H$ will be $F C$.
\therefore the limit of $\frac{E K}{A E}$ will be $\frac{E B}{A E}$,
and the limit of $\frac{F H}{A F}$ will be $\frac{F C}{A F}$.
Now the variables $\frac{E K}{A E}$ and $\frac{F H}{A F}$ are always equal, however near they approach their limits;
\therefore their limits $\frac{E B}{A E}$ and $\frac{F C}{A F}$ are equal,
Q. E. D.
276. Corollary. One side of a triangle is to either part cut off by a straight line parallel to the base, as the other side is to the corresponding part.

Now $\quad E B: A E:: F C: A F$.
By composition,

$$
\begin{gather*}
E B+A E: A E:: F C+A F: A F, \\
\text { or, }
\end{gather*}
$$

Proposition III. Theorem.
277. If a straight line divide two sides of a triangle proportionally, it is parallel to the third side.

In the triangle $A B C$ let $E F$ be drawn so that $\frac{A B}{A E}=\frac{A C}{A F}$,
We are to prove $E F \|$ to $B C$.
From E draw $E H \|$ to $B C$.
Then

$$
\frac{A B}{A E}=\frac{A C}{A H}
$$

(one side of a Δ is to cither part cut off by a line \| to the base, as the other side is to the corresponding part).

But

$$
\begin{aligned}
\frac{A B}{A E} & =\frac{A C}{A H} \\
\therefore \frac{A C}{A H} & =\frac{A C}{A H}, \\
\therefore A F & =A H
\end{aligned}
$$

$\therefore E F$ and $E H$ coincide, (their extremities being the same points).
But $E H$ is $\|$ to $B C$; Cons. $\therefore E F$, which coincides with $E H$, is $\|$ to $B C$.
Q. E. D.
278. Def. Similar Polygons are polygons which have their homologous angles equal and their homologous sides proportional.

Homologous points, lines, and angles, in similar polygons, are points, lines, and angles similarly situated.

On Similar Polygons.

Proposition IV. Theorem.
279. I'wo triangles which are mutually equiangular are similar.

In the $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ let $\measuredangle A, B, C$ be equal to $\measuredangle A^{\prime}, B^{\prime}, C^{\prime}$ respectively.
We are to prove $A B: A^{\prime} B^{\prime}=A C: A^{\prime} C^{\prime}=B C: B^{\prime} C^{\prime}$.
Apply the $\triangle A^{\prime} B^{\prime} C^{\prime}$ to the $\triangle A B C$, so that $\angle A^{\prime}$ shall coincide with $\angle A$.
Then the $\triangle A^{\prime} B^{\prime} C^{\prime}$ will take the position of $\triangle A E H$.
Now $\quad \angle A E I$ (same as $\left.\angle B^{\prime}\right)=\angle B$.

$$
\therefore E H \text { is } \| \text { to } B C \text {, }
$$

(when two straight lines, lying in the same plane, are cut by a third straight line, if the ext. int. Δ be equal the lines are parallel).

$$
\therefore A B: A E=A C: A H,
$$

(one side of $a \Delta$ is to either part cut off by a line ll to the base, as the other side is to the corresponding part).
Substitute for $A E^{\prime}$ and $A I$ their equals $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$.
Then $\quad A B: A^{\prime} B^{\prime}=A C: A^{\prime} C^{\prime}$.
In like manner we may prove

$$
A B: A^{\prime} B^{\prime}=B C: B^{\prime} C^{\prime}
$$

\therefore the two A are similar.
280. Cor. 1. Two triangles are similar when two angles of the one are equal respectively to two angles of the other.
281. Cor. 2. Two right triangles are similar when an acute angle of the one is equal to an acute angle of the other.

Proposition V. Theorem.
282. Two triangles are similar when their homologous sides are proportional.

In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ let

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime \prime}}=\frac{B C}{B^{\prime} C^{\prime}}
$$

We are to prove
$\triangle A, B$, and C equal respectively to $\triangle A^{\prime}, B^{\prime}$, and C^{\prime}.
Take on $A B, A E$ equal to $A^{\prime} B^{\prime}$, and on $A C, A H$ equal to $A^{\prime} C^{\prime}$. Draw $E H$.

$$
\begin{equation*}
\frac{A B}{A^{\prime} B^{\prime \prime}}=\frac{A C}{A^{\prime} C^{\prime}} \tag{Нур.}
\end{equation*}
$$

Substitute in this equality, for $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$ their equals $A E$ and $A H$.

Then

$$
\frac{A B}{A E}=\frac{A C}{A H}
$$

$\therefore E H$ is $\|$ to $B C$,
iif a line divide two sides of a Δ proportionally, it is $\|$ to the third side).
Now in the $\triangle A B C$ and $A E H$

$$
\angle A B C=\angle A E H \text {, } A
$$

$$
\begin{array}{cr}
\angle A C B=\angle A H E, & \S 70 \\
\angle A=\angle A . & \text { Ilen. } \tag{Ilen.}\\
\therefore \triangle A B C \text { and } A E H \text { are similar, } & \S 279 \\
\text { (two mutually equiangular \& are similar). } &
\end{array}
$$

$$
\therefore \frac{A B}{B C}=\frac{A E}{E H},
$$

(homologous sides of similar A are proportional).

But
Нур.

Since

$$
\begin{aligned}
\frac{A B}{B C} & =\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}} \\
\therefore \frac{A E}{E H} & =\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}} \\
A E & =A^{\prime} B^{\prime} \\
E H & =B^{\prime} C^{\prime} .
\end{aligned}
$$

$$
\text { Ax. } 1
$$

Now in the $\triangle A E H$ and $A^{\prime} B^{\prime} C^{\prime}$,

$$
\begin{aligned}
E H= & B^{\prime} C^{\prime}, A E=A^{\prime} B^{\prime}, \text { and } A H=A^{\prime} C^{\prime} \\
& \therefore \triangle A E H=\triangle A^{\prime} B^{\prime} C^{\prime}
\end{aligned}
$$

(having three sides of the one equal respectively to three sides of the other).
But $\quad \triangle A E H$ is similar to $\triangle A B C$.
$\therefore \triangle A^{\prime} B^{\prime} C^{\prime}$ is similar to $\triangle A B C$.
Q. E. D.
283. Scholium. The primary idea of similarity is likeness of form; and the two conditions necessary to similarity are:
I. For every angle in one of the figures there must be an equal angle in the other, and
II. the homologous sides must be in proportion.

In the case of triangles either condition involves the other, but in the case of other polygons, it does not follow that if one condition exist the other does also.

Thus in the quadrilaterals Q and Q^{\prime}, the homologous sides are proportional, but the homologous angles are not equal and the figures are not similar.

In the quadrilaterals R and R^{\prime}, the homologous angles are equal, but the sides are not proportional, and the figures are not similar.

Proposition VI. Theorem.

284. Two triangles having an angle of the one equal to an angle of the other, and the including sides proportional, are similar.

In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ let

$$
\angle A=\angle A^{\prime}, \text { and } \frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime \prime}}
$$

We are to prove $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ similar.
Apply the $\triangle A^{\prime} B^{\prime} C^{\prime}$ to the $\triangle A B C$ so that $\angle A^{\prime}$ shall coincide with $\angle A$.

Then the point B^{\prime} will fall somewhere upon $A B$, as at E,
the point C^{\prime} will fall somewhere upon $A C$, as at H, and $B^{\prime} C^{\prime}$ upon $E H$.

Now

$$
\begin{equation*}
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}} \tag{Нур.}
\end{equation*}
$$

Substitute for $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$ their equals $A E$ and $A H$.
Then

$$
\frac{A B}{A E}=\frac{A C}{A H}
$$

\therefore the line $E H$ divides the sides $A B$ and $A C$ proportionally ;

$$
\therefore E H \text { is } \| \text { to } B C \text {, }
$$

(if a line divide two sides of a \triangle proportionally, it is $\|$ to the third side).
\therefore the $\triangle A B C$ and $A E H$ are mutually equiangular and similar. $\therefore \triangle A^{\prime} B^{\prime} C^{\prime}$ is similar to $\triangle A B C$.

Proposition VII. Theorem.

285. Two triungles which have their sides respectively farallel are similar.

In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ let $A B, A C$, and $B C$ be parallel respectively to $A^{\prime} B^{\prime}, A^{\prime} C^{\prime \prime}$, and $B^{\prime} C^{\prime \prime}$.

We are to prove $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ similar.
The corresponding $\angle s$ are either equal, § 77
(two \& whose sides are II, two and two, and lie in the same direction, or opposite directions, from their vertices are equal).
or supplements of each other,
(if two \measuredangle have two sides II and lying in the same direction from their vertices, while the other two sides are II and lie in opposite directions, the 6 are supplements of each other).

Hence we may make three suppositions:
1 st. $A+A^{\prime}=2 \mathrm{rt} . ~ \measuredangle s, \quad B+B^{\prime}=2 \mathrm{rt} .\left\lfloor\mathrm{s}, \quad C+C^{\prime}=2 \mathrm{rt} . \angle s\right.$.
2d. $\quad A=A^{\prime}, \quad B+B^{\prime}=2 \mathrm{rt} .\left\lfloor\mathrm{s}, \quad C+C^{\prime}=2 \mathrm{rt} .\lfloor\mathrm{s}\right.$.
3d. $\quad A=A^{\prime}, \quad B=B^{\prime} \quad \therefore C=C^{\prime}$.
Since the sum of the \mathbb{S} of the two $\mathbb{\Delta}$ cannot exceed four right angles, the 3 d supposition only is admissible.
\therefore the two $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar, § 279 (two mutually equiangular \& are similar).
Q. E. D.

Proposition VIII. Theorem.
286. Two triangles which have their sides respectively perpendicular to each other are similar.

In the triangles $E F D$ and $B A C$, let $E F, F D$ and $E D$, be perpendicular respectively to $A C, B C$ and $A B$.

We are to prove $\perp E F D$ and $B A C$ similar.
Place the $\triangle E F D$ so that its vertex E will fall on $A B$, and the side $E F, \perp$ to $A C$, will cut $A C$ at F^{\prime}.

Draw $F^{\prime} D^{\prime} \|$ to $F D$, and prolong it to meet $B C$ at H. In the quadrilateral $B E D^{\prime} H$, $L^{2} E$ and H are rt. \mathcal{E}.

$$
\therefore \angle B+\angle E^{\prime} D^{\prime} H=2 \mathrm{rt} . \angle \mathrm{B} .
$$

$$
\text { § } 158
$$

But

$$
\angle E D^{\prime} F^{\prime}+\angle E^{\prime} D^{\prime} H=2 \mathrm{rt} . \notin .
$$

$$
\therefore \angle E D^{\prime} F^{\prime}=\angle B
$$

Ax. 3 .
Now

$$
\angle C+\angle H F^{\prime} C=\mathrm{rt.} . \angle
$$

(in a rt. \triangle the sum of the two acute $\mathbb{E}=a$ rt. \angle);
and

$$
\begin{gathered}
\angle E F^{\prime} D^{\prime}+\angle H F^{\prime} C=\mathrm{rt} . \angle . \\
\therefore \angle E F^{\prime \prime} D^{\prime}=\angle C .
\end{gathered}
$$

$$
\text { Ax. } 9 .
$$

$$
\text { Ax. } 3
$$

$\therefore \triangle B E F^{\prime \prime} D^{\prime}$ and $B A C$ are similar. $\S 280$
But $\triangle E^{\prime} F^{\prime} D$ is similar to $\triangle E F^{\prime} D^{\prime}$. § 279
$\therefore \triangle E F D$ and $B A C$ are similar.
Q. E. D.
287. Scholium. When two triangles have their sides respectively parallel or perpendicular, the parallel sides, or the perpendicular sides, are homologous.

Proposition IX. Theorem.
285. Lines drawn through the vertex of a triangle divide proportionally the lase and its parallel.

In the triangle $A B C$ let $H L$ be parallel to $A C$, and let $B S$ and $B T$ be lines drawn through its vertex to the base.

We are to prove

$$
\frac{A S}{H O}=\frac{S T}{O R}=\frac{T C}{R L}
$$

© $B H O$ and $B A S$ are similar, (two © ichich are mutually equiangular are similar).
$\triangle B O R$ and $B S T$ are similar,
$\triangle B R L$ and $B T C$ are similar, § 279
$\therefore \frac{A S}{H O}=\left(\frac{S B}{O B}\right)=\frac{S T}{O R}=\left(\frac{B T}{B R}\right)=\frac{T C}{R L}$,
(homologous sides of similar are proportional).
Q. E. D.

Ex. Show that, if three or more non-parallel straight lines divide two parallels proportionally, they pass through a common point.

Proposition X. Theorem.

289. If in a right triangle a perpendicular be drawn from the vertex of the right angle to the hypotenuse:
I. It divides the triangle into two right triangles which are similar to the whole triangle, and also to each other.
II. The perpendigular is a mean proportional between the segments of the hypotenuse.
III. Each side of the right triangle is a mean proportional between the hypotenuse and its adjacent segment.
4 IV. The squares on the two sides of the right triangle have the same ratio as the adjacent segments of the hypotenuse.
V. The square on the hypotenuse has the same ratio to the square on either side as the hypotenuse has to the segrent adjacent to that side.

In the right triangle $A B C$, let $B F^{\prime}$ be drawn from the vertex of the right angle B, perpendicular to the hypotenuse AC.
I. We are to prove
the $\triangle A B F, A B C$, and $F B C$ similar.
In the rt. $\triangle B A F^{\prime}$ and $B A C$,
the acute $\angle A$ is common.
\therefore the \triangle are similar,
(two rt. © are similar when an acute \angle of the one is equal to an acute \angle of the other).
In the rt. $\triangle B C F$ and $B C A$,
the acute $\angle C$ is common.
\therefore the $\& \Delta$ are similar.
Now as the rt. © $A B F$ and $C B F$ are both similar to $A B C$, by reason of the equality of their $\triangle \mathcal{E}$,
they are similar to each other.
II. We are to prove $A F: B F:: B F: F C$.

In the similar $\triangle A B F$ and $C B F$,
$A F$, the shortest side of the one,
: $B F$, the shortest side of the other,
: : $B F$, the medium side of the one, : $F C$, the medium side of the other.
III. We are to prove $A C: A B:: A B: A F$.

In the similar $\triangle A B C$ and $A B F$,
$A C$, the longest side of the one,
: $A B$, the longest side of the other,
: : $A B$, the shortest side of the one,
: A F , the shortest side of the other.
Also in the similar $\triangle A B C$ and $F B C$,
$A C$, the longest side of the one, : $B C$, the longest side of the other,
: : $B C$, the medium side of the one,
: $F^{\prime} C$, the medium side of the other.
IV. We are to prove $\frac{\overline{A B}^{2}}{\overline{B C}^{2}}=\frac{A F}{F C}$.

In the proportion $A C: A B:: A B: A F$,

$$
\begin{equation*}
\overline{A B}^{2}=\Lambda C \times A F \tag{8259}
\end{equation*}
$$

(the product of the cxtremes is equal to the product of the means).
and in the proportion $A C: B C:: B C: F C$,

$$
\overline{B C}^{2}=A C \times F C
$$

Dividing the one by the other,

$$
\frac{\overline{A B}^{2}}{\overline{B C}^{2}}=\frac{A C \times A F}{A C \times F C}
$$

Cancel the common factor $A C$, and we have

$$
\frac{\overline{A B}^{2}}{\overline{B C^{2}}}=\frac{A F}{F^{\prime} C}
$$

V. We are to prove $\frac{\overline{A C}^{2}}{\overline{A B}^{2}}=\frac{A C}{A F}$.

$$
\widehat{A C}^{2}=A C \times A C
$$

$$
\begin{equation*}
\overline{A B^{2}}=A C \times A F \tag{CaseIII.}
\end{equation*}
$$

Divide one equation by the other ;
then $\quad \frac{{\overline{C C^{2}}}^{2}}{\overline{A B}^{2}}=\frac{A C \times A C}{A C \times A F^{\prime}}=\frac{A C}{A F}$.
Q. E. D.

Proposition XI. Theorem.

290. If two chords intersect each other in a circle, their segments are reciprocally proportional.

Let the two chords $A B$ and $E F$ intersect at the point 0 .
We are to prove $A O: E O: O F: O B$.
Draw $A F$ and $E B$.
In the $\triangle A O F$ and $E O B$,

$$
\angle F=\angle B
$$

(each being measured by $\frac{1}{2}$ arc $A E$).

$$
\angle A=\angle E
$$

(each being measured by $\frac{1}{2}$ arc $F B$).

$$
\therefore \text { the } \triangle \text { are similar. }
$$

(theo $\mathbb{\&}$ are similar when two $\mathbb{\&}$ of the one are equal to two \mathbb{S} of the other).
Whence $A O$, the medium side of the one,
: EO, the medium side of the other,
: : $O F$, the shortest side of the one,
: $O B$, the shortest side of the other.
Q. E. D.

Proposition XII. Theorem.

291. If from a point without a circle two secants be drawn, the whole secants and the parts without the circle are reciprocally proportional.

Let $O B$ and $O C$ be two secants drawn from point O. We are to prove $O B: O C: O M: O H$.

Draw $H C$ and $M B$.
In the $\triangle O H C$ and $O M B$
$\angle O$ is common,

$$
\angle B=\angle C,
$$

(each being measiured by $\frac{1}{2} \operatorname{arc} H M$).
\therefore the two \triangle are similar,
(two © are similar when two \& of the one are equal to two $\&$ of the other).
Whence $O B$, the longest side of the one,
: $O C$, the longest side of the other,
: : $O M$, the shortest side of the one,
: $O I I$, the shortest side of the other.

Proposition XIII. Theorem.

292. If from a point without a circle a secant and a tangent be drawir, the tangent is a mean proportional betwcen the whole secant and the part without the circle.

Let $O B$ be a tangent and $O C$ a secant drawn from the point O to the circle MBC.
We are to prove $O C: O B:: O B: O \mathrm{M}$.
Draw $B M$ and $B C$.
In the $\triangle O B M$ and $O B C$
$\angle O$ is common.
$\angle O B M$ is measured by $\frac{1}{2}$ are $M B$,
(being an \angle formed by a tangent and a chord).
$\angle C$ is measured by $\frac{1}{2}$ arc $B M$, § 203 (being an inscribed \angle).

$$
\therefore \angle O B M=\angle C .
$$

$\therefore \triangle O B C$ and $O B M$ are similar, (having two \&s of the one cquel to two \& of the other).

Whence $O C$, the longest side of the one,
: $O B$, the longest side of the other,
: : O B, the shortest side of the one,
: O M, the shortest side of the other.
Q. E. D.

Proposition XIV. Theorem.

293. If two polygons be composed of the same number of triangles which are similar, each to each, and similarly placed, then the polygons are similar.

In the two polygons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$, let the triangles $B A E, B E C$, and $C E D$ be similar respectively to the triangles $B^{\prime} A^{\prime} E^{\prime}, B^{\prime} E^{\prime} C^{\prime \prime}$, and $C^{\prime \prime} b^{\prime} D^{\prime}$.
We are to prove
the polygon $A B C D E$ similar to the polygon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.

$$
\angle A=\angle A^{\prime},
$$

(being homologous is of similar A).

$$
\begin{aligned}
& \angle A B E=\angle A^{\prime} B^{\prime} E^{\prime}, \\
& \angle E B C=\angle E^{\prime} B^{\prime} C^{\prime \prime},
\end{aligned}
$$

Add the last two equalities.
Then $\angle A B E+\angle E B C=\angle A^{\prime} B^{\prime} E^{\prime}+\angle E^{\prime} J^{\prime} C^{\prime}$;
or, $\quad \angle A B C=\angle A^{\prime} B^{\prime} C^{\prime}$.
In like manner we may prove $\angle B C D=\angle B^{\prime} C^{\prime} D^{\prime}$, etc.
\therefore the two polygons are mutually equiangular.
Now $\frac{A E}{A^{\prime} E^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}=\left(\frac{E B}{E^{\prime} B^{\prime}}\right)=\frac{B C}{B^{\prime} C^{\prime \prime}}=\left(\frac{E C}{E^{\prime} C^{\prime \prime}}\right)=\frac{C D}{C^{\prime} D^{\prime}}=\frac{E^{\prime} D}{E^{\prime} D^{\prime}}$
(the homologous sides of similar $\&$ are proportional).
\therefore the homologous sides of the two polygons are proportional.

$$
\therefore \text { the two polygons are similar, }
$$ (having their homologous \&s equal, and thcir homologous sides proportional). Q. ․ D.

Proposition XV. Theorem.

294. If two polygons be similar, they are composel of the same number of triangles, which are similar and similarly placed.

Let the polygons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime} E^{\prime}$ be similar.
From two homologous vertices, as E and $E^{\prime \prime}$, draw diagonals $E B, E C$, and $E^{\prime} B^{\prime}, E^{\prime} C^{\prime}$.
We are to prove © $A E B, E B C, E C D$
similar respectively to $\Delta A^{\prime} E^{\prime} B^{\prime}, E^{\prime} B^{\prime} C^{\prime \prime}, E^{\prime \prime} C^{\prime \prime} D^{\prime}$.
In the $\triangle A E B$ and $A^{\prime} E^{\prime \prime} B^{\prime}$,

$$
\angle A=\angle A^{\prime}
$$

(being homoloynus \& of similar polygons).

$$
\frac{A E}{A^{\prime} E^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}
$$

(being homologous sides of similar polygons).

$$
\begin{aligned}
& \text { § } 284 \\
& \text { (having an } \text { on the me equal to an } \angle \text { of the other, and the including }_{\text {and }} \\
& \text { sides proportional). } \\
& \angle A B C=\angle A^{\prime} B^{\prime} C^{\prime} \text {, } \\
& \text { (being homolngmes } \frac{1}{5} \text { of similar polygoms). } \\
& \angle A B E=\angle A^{\prime} B^{\prime} E^{\prime}, \\
& \text { (being homologons } \mathbb{A} \text { if similar ©) . } \\
& \therefore \angle A B C-\angle A B E=\angle A^{\prime} B^{\prime} C^{\prime \prime}-\angle A^{\prime} B^{\prime} E^{\prime} . \\
& \text { That is } \\
& \angle E B C=\angle E^{\prime} B^{\prime} C^{\prime} \text {. }
\end{aligned}
$$

Now

$$
\frac{E^{\prime} B}{E^{\prime} B^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}},
$$

(beiny homologous sides of similar ©);
also

$$
\frac{B C}{B^{\prime} C^{\prime \prime}}=\frac{A B}{A^{\prime} B^{\prime \prime}},
$$

(being homologous sides of similar polygons).

$$
\begin{equation*}
\therefore \frac{E B}{E^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime \prime}} \text {, } \tag{Ax. 1}
\end{equation*}
$$

$\therefore \triangle E^{\prime} B C^{\prime}$ and $E^{\prime} B^{\prime} C^{\prime}$ are similar, (having an \angle of the one equal to an \angle of the other, and the including sides proportional).
In like manner we may prove $\triangle E C D$ similar to $\triangle E^{\prime} C^{\prime} D^{\prime}$. Q. E. D.

Proposition XVI. Theorem.

295. The perimeters of two similar polygons have the same ratio as any two homologous sides.

Let the two similar polygons be $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime} E^{\prime}$, and let P^{\prime} and P^{\prime} represent their perimeters.

We are to prove $P^{\prime}: P^{\prime}:: A B: \Lambda^{\prime} B^{\prime}$.
$A B: A^{\prime} B^{\prime}:: B C: B^{\prime} C^{\prime}: C D: C^{\prime} D^{\prime}$ ete. § 278
(the homologous sides of similar polygons are proportional).
$\therefore A B+B C$, etc. : $A^{\prime} B^{\prime}+B^{\prime} C^{\prime}$, etc. : : $A B: A^{\prime} B^{\prime}, \S 266$ (ine a scrics of cqual ratios the sum of the mutecedents is to the sum of the consequents as any antecedent is to its consequent).

That is

$$
P: P^{\prime}:: A B: A^{\prime} B^{\prime} .
$$

Proposition XVII. Theorem.
296. The homologous altitudes of two similar triangles have the same ratio as any two homologous sides.

In the two similar triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, let the altitudes be $B O$ and $B^{\prime} O^{\prime}$.

We are to prove $\frac{B O}{B^{\prime} O^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}$.
In the rt. $\triangle B O A$ and $B^{\prime} O^{\prime} A^{\prime}$,

$$
\angle A=\angle A^{\prime}
$$

(being homologous \&of the similar © $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$).

$$
\therefore \triangle B O A \text { and } \triangle B^{\prime} O^{\prime} A^{\prime} \text { are similar, }
$$

(two rt. A haring an acute \angle of the one equal to an acute \angle of the other are similar).
\therefore their homologous sides give the proportion

$$
\frac{B O}{B^{\prime} O^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}
$$

> Q. E. D
297. Cor. 1. The homologous altitudes of similar triangles have the same ratio as their homologous bases.

In the similar \& $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$,

$$
\frac{A C}{A^{\prime} C^{\prime \prime}}=\frac{A B}{A^{\prime} B^{\prime}}
$$

(the homologous sides of similar A are proportional).
And in the similar $\triangle B O A$ and $B^{\prime} O^{\prime} A^{\prime}$,

$$
\begin{align*}
& \frac{B O}{B^{\prime} O^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}, \\
\therefore & \frac{B O}{B^{\prime} O^{\prime}}=\frac{A C}{A^{\prime} C^{\prime \prime}}, \tag{Ax. 1}
\end{align*}
$$

298. Con. 2. The homologous altitudes of similar triangles have the same ratio as their perimeters.

Denote the perimeter of the first by P, and that of the second by P^{\prime}.

Then

$$
\frac{P}{P^{\prime \prime}}=\frac{A B}{A^{\prime} B^{\prime}}
$$

(the perimeters of theo similar polygons luve the same ratio as any two homologous sides).

But

$$
\begin{align*}
\frac{B O}{B^{\prime} O^{\prime}} & =\frac{A B}{A^{\prime} B^{\prime}} \\
\therefore \frac{B O}{B^{\prime} O^{\prime}} & =\frac{P}{P^{\prime}}
\end{align*}
$$

Ax. 1

Ex. 1. If any two straight lines be cut by parallel lines, show that the corresponding segments are proportional.
2. If the four sides of any quadrilateral be bisected, show that the lines joining the points of bisection will form a parallelogram.
3. Two circles intersect ; the line $A H K B$ joining their centres A, B, meets them in H, K. On $A B$ is described an equilateral triangle $A B C$, whose sides $B C, A C$, intersect the circles in F, E. $F E$ produced meets $B A$ produced in P. Show that as $P A$ is to $P K$ so is $C F$ to $C E$, and so also is $P I I$ to $P B$.

Proposition XVIII. Theorem.
299. In any triangle the product of two sides is equal to the prodluct of the segments of the third side formed by the busector of the opposite angle together with the square of the bisector.

Let $\angle B A C$ of the $\triangle A B C$ be bisected by the straight line $A D$.
We are to prove $B A \times A C=B D \times D C+\overline{A D}^{2}$.
Describe the $\odot A B C$ about the $\triangle A B C$;
produce $A D$ to meet the circumference in E, and draw $E C$.
Then in the $\triangle A B D$ and $A E C$,

$$
\begin{align*}
\angle B A D & =\angle C A E, \\
\angle B=\angle E, & \text { Hyp. }
\end{align*}
$$

(each being measured by $\frac{1}{2}$ the arc $A C$).
$\therefore \triangle A B D$ and $A E C$ are similar,
(thoo \mathbb{A} are similar when two $\frac{1}{}$ of the one are equal respectivcly to two 1 of the other).
Whence $B A$, the longest side of the one, : $E \cdot A$, the longest side of the other, $:: A D$, the shortest side of the one, : $A C$, the shortest side of the other;

$$
\text { or, } \quad \frac{B A}{E A}=\frac{A D}{A C}
$$

(homologous sides of similar \mathbb{A} are proportional).

$$
\therefore B \Lambda \times A C=E \Lambda \times \Lambda D
$$

But

$$
E \Lambda \times A D=(E D+\Lambda D) A D
$$

$$
\therefore B A \times A C=E D \times A D+A D^{2} .
$$

But

$$
E D \times A D=B D \times D C
$$

(the segments of two chords in a \odot urhich intersect cach other aro reciprocally proportional).
Substitute in the above equality $B D \times D C$ for $E D \times A D$, then $B A \times \Lambda C=B D \times D C+\overline{A D}^{2}$.

Proposition XIX. Theorem.

300. In any triangle the product of two sides is equal to the product of the diameter of the circumscribed circle by the perpendicular let fall upon the third side fiom the vertex of the opposite angle.

Let $A B C$ be a triangle, and $A D$ the perpendicular from A to $B C$.
Describe the circumference $A B C$ about the $\triangle A B C$.
Draw the diameter $A E$, and draw $E C$.
We are to prove $B A \times A C=E A \times A D$.
In the $\triangle A B D$ and $A E C$

$$
\begin{aligned}
& \angle B D A \text { is a rt. } \angle, \\
& \angle E C A \text { is a rt. } \angle,
\end{aligned}
$$ (being inseribed in a scmicircle).

$$
\begin{gather*}
\therefore \angle B D A=\angle E C A . \\
\angle B=\angle E
\end{gather*}
$$

(each being measured by $\frac{1}{2}$ the arc $A C$).
$\therefore \triangle A B D$ and $A E C$ are similar,
(theo rt. © having an acuete \angle of the one equal to an acute \angle of the other are similar).

Whence $B A$, the longest side of the one, : E A, the longest side of the other, : : $A D$, the shortest side of the one,
: $A C$, the shortest side of the other ;

$$
\text { or, } \begin{align*}
\frac{B A}{E A} & =\frac{A D}{A C} . \\
\therefore B A \times A C & =E A \times A D .
\end{align*}
$$

Proposition XX. Theorem.

301. The product of the two diagonals of a quadrilaterai inscriberl in a circle is equal to the sum of the prorlucts of its opposite sides.

Let $A B C D$ be any quadrilateral inscribed in a circle, $A C$ and $B D$ its diagonals.

We are to prove $B D \times A C=A B \times C D+A D \times B C$.
Construct $\quad \angle A B E=\angle D B C$,
and add to each $\angle E B D$.
Then in the $\triangle A B D$ and $B C E$,
and

$$
\angle A B D=\angle C B E,
$$

Ax. 2
$\angle B D A=\angle B C E$, § 203
(each being measured by $\frac{1}{2}$ the arc $A B$).
$\therefore \triangle A B D$ and $B C E$, are similar, § 280 (tuo \mathbb{A} are similar when two $\mathbb{\&}$ of the one are equal respectively to two $\mathbb{\&}$ of the other).

Whence $A D$, the medium side of the one,
: $C E$, the medium side of the other,
$:: B D$, the longest side of the one,
: $B C$, the longest side of the other,
or,

$$
\frac{A D}{C^{\prime} E^{\prime}}=\frac{B D}{B C^{\prime}}
$$

(the homologous sides of similar $\mathbb{\Delta}$ are proportional).

$$
\therefore B D \times C E=A D \times B C
$$

Again, in the $\triangle A B E$ and $B C D$,

$$
\begin{align*}
& \angle A B E=\angle D B C \\
& \angle B A E=\angle B D C
\end{align*}
$$

Cons.
and
(each being measured by $\frac{1}{\frac{1}{2}}$ of the arc $B C$).

$$
\therefore \triangle A B E \text { and } B C D \text { are similar, } \quad \S 280
$$ of the other).

Whence $A B$, the longest side of the one, : $B D$, the longest side of the other,
: : A E, the shortest side of the one,
: $C D$, the shortest side of the other.
or,

$$
\frac{A B}{B D}=\frac{A E}{C D}
$$

(the hmnolcgous sides of similar A are proportional).

$$
\therefore B D \times A E=A B \times C D
$$

But

$$
B D \times C E=A D \times B C .
$$

Adding these two equalities,

$$
\begin{gathered}
B D(A E+C E)=A B \times C D+A D \times B C \\
\text { or } \quad B D \times A C=A B \times C D+A D \times B C
\end{gathered}
$$

Ex. If two circles are tangent internally, show that chords of the greater, drawn from the point of tangency, are divided proportionally by the circumference of the less.

On Constructions.

Proposition XXI. Problem.

302. To divide a given straight line into equal parts.

Let $A B$ be the given straight line.
It is required to divide $A B$ into equal parts.
From A draw the indefinite line $A 0$.
Take any convenient length, and apply it to ΛO as many times as the line $A B$ is to be divided into parts.

From the last point thus found on $A O$, as C, draw $C B$.
Through the several points of division on $A O$ draw lines $\|$ to $C B$.

These lines divide $A B$ into equal parts, $\quad \$ 274$
(if a serics of $\|_{s}$ intersecting any tweo straight, lines, intercept equal parts on one of these lines, they intercept equal parts on the other also).
Q. E. F.

Ex. To draw a common tangent to two given circles.
I. When the common tangent is exterior.
II. When the common tangent is interior.

Proposition XXiI. Problem.

303. To divide a given straight line into parts proportional to any number of given lines.

Let $A B, m, n$, and o be given straight lines.
It is required to divide $A B$ into parts proportional to the given lines m, n, and o.

Draw the indefinite line $A X$.
On $A . X$ take

$$
\begin{aligned}
& A C=m, \\
& C E=n,
\end{aligned}
$$

and

$$
E^{\prime} F=0 .
$$

Draw $F B$. From E and C^{\prime} draw $E K$ and $C I \|$ to $F B$.
K and I are the division points required.
For $\quad\left(\frac{A K}{A E}\right)=\frac{A I I}{A C}=\frac{H K}{C E}=\frac{K B}{E F}$,
In line drawn through two sides of a $\Delta \|$ to the third side divides those sides proportionally).

$$
\therefore A H: H K: K B:: A C: C E: E F .
$$

Substitute m, n, and o for their equals $A C, C E$, and $E F$.
Then

$$
A H: H K: K B:: m: n: o .
$$

Proposition XXIII. Problem.
304. To find a fourth proportional to three given straight lines.

Let the three given lines be m, n, and o.
It is required to find a fourth proportional to m, n, and o. Take $A B$ equal to n.

Draw the indefiuite line $A R$, making any convenient \angle with $A B$.

On $A R$ take $A C=m$, and $C S=o$.
Draw $C B$.
From S draw $S F^{\prime} \|$ to $C B$, to meet $A B$ produced at F.
$B F$ is the fourth proportional required.
For,

$$
A C: A B:: C S: B r
$$

(a line draien through two sides of a $\triangle \|$ to the third side divides those sides proportionally).

Substitute m, n, and o for their equals $A C, A B$, and $C S$.
Then

$$
m: n:: o: B F .
$$

Q. E. F.

Proposition XXIV. Problem.
305. To find a third proportional to two given straight lines.

Let $A B$ and $A C$ be the two given straight lines.
It is required to find a third proportional to $A B$ and $A C$.
Place $A B$ and $A C$ so as to contain any convenient \angle.
Produce $A B$ to D, making $B D=A C$.
Join BC.
Through D draw $D E \|$ to $B C$ to meet $A C$ produced at E.

$$
C E \text { is a third proportional to } A B \text { and } A C . \quad \S 251
$$

For,

$$
\frac{A B}{B D}=\frac{A C}{C E},
$$

(a line drawn through two sides of $a \Delta \|$ to the third side divides those sides proportionally).

Substitute, in the above equality, $A C$ for its equal $B D$;
Then

$$
\frac{A B}{A C}=\frac{A C}{C E},
$$

or,

$$
A B: A C:: A C: C E .
$$

Q. E. F.

Proposition XXV. Problem.
306. To find a mean proportional between two given lines.

Let the two given lines be m and n.
It is required to find a mean proportional between m and n.
On the straight line $A E$

$$
\text { take } A C=m, \text { and } C B=n
$$

On $A B$ as a diameter describe a semi-circumference.

At C erect the $\perp C H$.

$C I I$ is a mean proportional between m and n.
Draw $H B$ and $H A$.
The $\angle A / / B$ is a rt. \angle,
(bein! inseribed in a semicircle),
and $I I C$ is a \perp let fall from the vertex of a rt. \angle to the hypotenuse.

$$
\therefore A C: C H:: C H: C B
$$

(the \perp let fall from the vertex of the rt. \angle to the hypotenuse is a mean proportional between the seyments of the hypotenuse).
Substitute for $A C$ and $C B$ their equals m and n.
Then

$$
m: C H:: C I I: n
$$

Q. E. F.
307. Corollary. If from a point in the circumference a perpendicular be drawn to the diameter, and chords from the point to the extremities of the diameter, the perpendicular is a mean proportional between the segments of the cliameter, and each chord is a mean proportional between its adjacent segment and the diameter.

Proposition XXVI. Problem.

305. To divide one side of a triangle into two parts proportional to the other two sides.

Let $A B C$ be the triangle.
$I t$ is required to divide the side $B C$ into two such parts that the ratio of these two parts shall equal the ratio of the other two sides, $A C$ and $A B$.

Produce $C A$ to F, making $A F=A B$.

> Draw Fls.

From A draw $A E \|$ to F.
E is the division point required.
For

$$
\frac{C A}{A F}=\frac{C E}{E B}
$$

(a line dranen through two sides of a $\Delta \|$ to the third side divides those sides propon'tionally).
Substitute for $A F$ its equal $A B$.
Then

$$
\frac{C A}{A B}=\frac{C E}{E B}
$$

> Q. E. F.
309. Corollary. The line $A E$ bisects the angle $C A B$.

For

$$
\angle F^{\prime}=\angle A B F,
$$ (being oppositc equal sides).

$$
\angle F=\angle C A E,
$$ (being ext.-int. \&S).

$$
\angle A B F=\angle B A E,
$$

$$
\begin{equation*}
\therefore \angle C A E=\angle B A E \tag{Ax. 1}
\end{equation*}
$$

310. Def. A straight line is said to be divided in extreme and mean ratio, when the whole line is to the greater segment as the greater segment is to the less.

Proposition XXVII. Problem.

311. To divide a given line in extreme and mean ratio.

Let $A B$ be the given line.
It is required to divide $A B$ in extreme and mean ratio.
At B erect $a \perp B C$, equal to one-half of $A B$.
From C as a centre, with a radius equal to $C B$, describe a \odot.
Since $A B$ is \perp to the radius $C B$ at its extremity, it is tangent to the circle.

Through C draw $A D$, meeting the circumference in E and D.

$$
\text { On } A B \text { take } A I=A E \text {. }
$$

H is the division point of $A B$ required.
For

$$
A D: A B:: A B: A E,
$$

(if from a point without the circumference a secant and a tangent be drawn, the tangent is a mean proportional between the whole secant and the part without the circumference).

$$
\begin{array}{r}
\text { Then } A D-A B: A B:: A B-A E: A E \\
0 h: h
\end{array}
$$

Since

$$
A B=2 C B,
$$

and

$$
E D=2 C B,
$$ (the diameter of $a \odot$ being twice the radius),

$$
A B=E D .
$$

Ax. 1

$$
\therefore A D-A B=A D-E D=A E \text {. }
$$

But

$$
\begin{gathered}
A E=A H, \\
\therefore A D-A B=A H .
\end{gathered}
$$

Cons.
Ax. 1
Also $A B-A E=A B-A H=H B$.
Substitute these equivalents in the last proportion.
Then $A H: A B:: H B: A H$.
Whence, by inversion, $A B: A H:: A H: H B . \quad \S 263$
$\therefore A B$ is divided at H in extreme and mean ratio.
Q. E. F.

Remark. $A B$ is said to be divided at H, internally, in extreme and mean ratio. If $B A$ be produced to H^{\prime}, making $A H^{\prime}$ equal to $A D, A B$ is said to be divided at H^{\prime}, externally, in extreme and mean ratio.

Prove $\quad A B: A H^{\prime}:: A H^{\prime}: I H^{\prime} B$.
When a line is divided internally and externally in the same ratio, it is said to be divided harmonically.

Thus $A B \xrightarrow{C}{ }^{B}$ is divided harmonically at C and D, if $C A: C B:: D A: D B$; that is, if the ratio of the distances of C from A and B is equal to the ratio of the distances of D from A and B.

This proportion taken by alternation gives :
$A C: A D:: B C: B D$; that is, $C D$ is divided harmonically at the points B and A. The four points A, B, C, D, are called harmonic points; and the two pairs A, B, and C, D, are called conjugate points.

Ex. 1. To divide a given line harmonically in a given ratio. 2. To find the locus of all the points whose distances from two given points are in a given ratio,

Proposition XXVIII. Problem.

312. Upon a given line homologous to a given side of a given polygon, to construct a polygon similar to the given polygon.

Let $A^{\prime} E^{\prime}$ be the given line, homologous to $A E$ of the given polygon $A B C D E$.
It is required to construct on $A^{\prime} E^{\prime}$ a polygon similar to the given polygon.

From E draw the diagonals $E B$ and $E C$.
From E^{\prime} draw $E^{\prime} B^{\prime}$, making $\angle A^{\prime} E^{\prime} B^{\prime}=\angle A E^{\prime} B$.
Also from A^{\prime} draw $A^{\prime} B^{\prime}$, making $\angle B^{\prime} A^{\prime} E^{\prime}=\angle B A E$, and meeting $E^{\prime} B^{\prime}$ at B^{\prime}.
The two $\triangle A B E$ and $A^{\prime} B^{\prime} E^{\prime}$ are similar, § 280 (two \& are similar if they have two \& of the one equal respectively to two \&s of the other).
Also from E^{\prime} draw $E^{\prime} C^{\prime \prime}$, making $\angle B^{\prime} E^{\prime} C^{\prime}=\angle B E C$.
From B^{\prime} draw $B^{\prime} C^{\prime}$, making $\angle E^{\prime} B^{\prime} C^{\prime}=\angle E^{\prime} B C$, and meeting $E^{\prime} C^{\prime}$ at C^{\prime}.
Then the two \& $E^{\prime} B C$ and $E^{\prime} B^{\prime} C^{\prime}$ are similar, $\S 280$ (two © are similar if they have two 1 of the one equal respectively to two $\mathbb{\&}$ of the other).
In like manner construct $\triangle E^{\prime} C^{\prime} D^{\prime}$ similar to $\triangle E C D$.
Then the two polygons are similar,
§ 293
(two polygons composed of the some number of A similur to euch other and similarly placed, are similar).
$\therefore A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ is the required polygon.
Q. E. F.

Exercises.

1. $A B C$ is a triangle inscribed in a circle, and $B D$ is drawn to meet the tangent to the circle at A in D, at an angle $A B D$ equal to the angle $A B C$; show that $A C$ is a fourth proportional to the lines $B D, A D, A B$.
2. Show that either of the sides of an isosceles triangle is a mean proportional between the base and the half of the segment of the base, produced if necessary, which is cut off by a straight 'line drawn from the vertex at right angles to the equal side.
3. $A B$ is the diameter of a circle, D any point in the circumference, and C the middle point of the are $A D$. If $A C, A D$, $B C$ be joined and $A D$ cut $B C$ in E, show that the circle circumseribed about the triangle $A E B$ will touch $A C$ and its diameter will be a third proportional to $B C$ and $A B$.
4. From the obtuse angle of a triangle draw a line to the base, which shall be a mean proportional between the segments into which it divides the base.
5. Find the point in the base produced of a right triangle, from which the line drawn to the angle opposite to the base shall have the same ratio to the base produced which the perpendicular has to the base itself.
6. A line touching two circles cuts another line joining their centres; show that the segments of the latter will be to each other as the diameters of the circles.
7. Required the locus of the middle points of all the chords of a circle which pass through a fixed point. =
8. O is a fixed point from which any straight line is drawn meeting a fixed straight line at P; in $O P$ a point Q is taken such that $O Q$ is to $O P$ in a fixed ratio. Determine the locus of Q.
9. O is a fixed point from which any straight line is drawn meeting the circumference of a fixed circle at P; in $O P$ a point Q is taken such that $O Q$ is to $O P$ in a fixed ratio. Determine the locus of Q.

BOOK IV.

COMPARISON AND MEASUREMENT OF THE SURFACES OF POLYGONS.

Proposition I. Theorem.
313. Two rectangles having equal altitudes are to each other as their bases.

Let the two rectangles be $A C$ and $A F$, having the the same altitude $A D$.
We are to prove $\frac{\text { rect. } A C}{\text { rect. } A F^{\prime}}=\frac{A B}{A E}$.
CASE I. - When $A B$ and $A E$ are commensurable.
Find a common divisor of the bases $A B$ and ΛE, as $A O$.
Suppose $A O$ to be contained in $A B$ seven times and in $A E$ four tinies.

Then

$$
\frac{A B}{A E}=\frac{7}{4} .
$$

At the several points of division on $A B$ and $A E$ crect $\mathbb{\perp}$.
The rect. $A C$ will be divided into seven rectangles, and rect. $A F$ will be divided into four rectangles.
These rectangles are all equal, for they may be applied to each other and will coincide throughout.

But

$$
\begin{aligned}
\therefore \frac{\operatorname{rect} A C}{\operatorname{rect} A F} & =\frac{7}{4} . \\
\frac{A B}{A E} & =\frac{7}{4} . \\
\therefore \frac{\operatorname{rect} A C}{\operatorname{rect} A B} & =\frac{A B}{A E} .
\end{aligned}
$$

Case II. - When $A B$ and $A E$ are incommensurable.

Divide $A B$ into any number of equal parts, and apply one of these parts to $A E$ as often as it will be contained in $A E$.

Since $A B$ and $A E$ are incommensurable, a certain number of these parts will extend from A to a point K, leaving a remainder $K E$ less than one of these parts.

Draw $K I I \|$ to $E F$.
Since $A B$ and $A K$ are commensurable,

$$
\begin{equation*}
\frac{\text { rect. } A H}{\text { rect. } A C}=\frac{A K}{A B} \text {, } \tag{Case 1}
\end{equation*}
$$

Suppose the number of parts into which $A B$ is divided to be continually increased, the length of each part will become less and less, and the point K will approach nearer and nearer to E.

The limit of $A K$ will be $A E$, and the limit of rect. $A H$ will be rect. $A F$.
\therefore the limit of $\frac{A K}{A B}$ will be $\frac{A E}{A B}$,
and the limit of $\frac{\text { rect. } A H}{\text { rect. } A C}$ will be $\frac{\text { rect. } A F}{\text { rect. } A C}$.
Now the variables $\frac{A K}{A B}$ and $\frac{\text { rect. } A I I}{\text { rect. } A C}$ are always equal however near they approach their limits;
\therefore their limits are equal, namely, $\frac{\text { rect. } A F}{\text { rect. } A C}=\frac{A E}{A B}$,
Q. E. D.
314. Corollary. Two rectangles having equal bases are to each other as their altitudes. By considering the bases of these two rectangles $A D$ and $A D$, the altitudes will be $A B$ and $A E$. But we have just shown that these two rectangles are to each other as $A B$ is to $A E$. Hence two rectangles, with the sime base, or equal bases, are to each other as their altitudes.

Another Demonstration.
Let $A C$ and $A^{\prime} C^{\prime}$ be two rectangles of equal altitudes.

We are to prove $\frac{\text { rect. } A C}{\text { rect. } A^{\prime} C^{\prime \prime}}=\frac{A D}{A^{\prime} D^{\prime}}$.
Let b and b^{\prime}, S and S^{\prime} stand for the bases and areas of these rectangles respectively.

Prolong $A D$ and $A^{\prime} D^{\prime}$.
Take $A D, D E, E F \ldots m$ in number and all equal, and $A^{\prime} D^{\prime}, D^{\prime} E^{\prime}, E^{\prime} F^{\prime}, F^{\prime} G^{\prime} \ldots n$ in number and all equal.

Complete the rectangles as in the figure.
Then

$$
\text { base } A F=m b
$$

and base $A^{\prime} G^{\prime}=n b^{\prime}$;
rect. $A P=m S$,
and rect. $A^{\prime} P^{\prime}=n S^{\prime}$.

Now we can prove by superposition, that if $A F$ be $>A^{\prime} G^{\prime}$, rect. $A P$ will be $>$ rect. $A^{\prime} P^{\prime}$; and if equal, equal ; and if less, less.

That is, if $m b$ be $>n b^{\prime}, m S$ is $>n S^{\prime \prime}$; and if equal, equal ; and if less, less.

Hence, $\quad b: b^{\prime}:: S: S^{\prime}, \quad$ Euclid's Def., $\S 272$
Q. E. D.

Proposition II. Theorem.
 315. Two rectangles are to each other as the products of

 their bases by their altitudes.

Let R and R^{\prime} be two rectangles, having for their bases - b and l^{\prime}, and for their altitudes a and a^{\prime}.

We are to prove $\frac{R}{R^{\prime}}=\frac{a \times b}{a^{\prime} \times b^{\prime}}$.
Construct the rectangle S, with its base the same as that of R and its altitude the same as that of R^{\prime}.

Then

$$
\therefore \frac{R}{\bar{S}}=\frac{a}{a^{\prime}}
$$

(rectangles haviny the same base are to each other as their altitudes);
and

$$
\frac{S}{R^{\prime}}=\frac{b}{b^{\prime}}
$$

(redangles having the same altitude are to each other as their bases).
By multiplying these two equalities together

$$
\frac{R}{R_{i^{\prime}}^{\prime}}=\frac{a \times b}{a^{\prime} \times b^{\prime}}
$$

> Q. E. D.
316. Def. The Area of a surface is the ratio of that surface to another surface assumed as the unit of measure.
317. Def. The Unit of measure (except the acre) is a square a side of which is some linear unit; as a square inch, etc.
318. Def. Equivalent figures are figures which have equal areas.

Rem. In comparing the areas of equivalent figures the symbol $(=)$ is to be read "equal in area."

Proposition III. Theorem.
319. The area of a rectangle is equal to the prodluct of its base and altitude.

Let R be the rectangle, b the base, and a the altitude; and let U be a square whose side is the linear unit.

We are to prove the area of $R=a \times b$.

$$
\frac{R}{U}=\frac{a \times b}{1 \times 1}
$$

(two rectangles are to each other as the product of their bases and altitudes).
But

$$
\frac{R}{U} \text { is the area of } R
$$

\therefore the area of $R=a \times b$.
Q. E. D.
320. Scholium. When the base and altitude are exactly divisible by the linear unit, this proposition is rendered evident by dividing the figure into squares, each equal to the unit of

measure. Thus, if the base contain seven linear units, and the altitude four, the figure may be divided into twenty-eight squares, each equal to the unit of measure; and the area of the figure equals 7×4.

Proposition IV. Theorem.
321. The area of a parallelogram is equal to the product of its base and altitude.

Let $A E F D$ be a parallelogram, $A D$ its base, and CD its altitude.
We are to prove the area of the $\square A E F D=A D \times C D$.
From A draw $A B \|$ to $D C$ to meet $F E$ produced.
Then the figure $A B C D$ will be a rectangle, with the same base and altitude as the $\square A E F D$.

In the rt. $\triangle A B E$ and $C D F$,

$$
A B=C D,
$$ (being opposile sides of a rectangle).

and

$$
A E=D F,
$$

$$
\text { (being opprosite sides of } a \square \text {) ; }
$$

$$
\therefore \triangle A B E=\triangle C D F
$$

(tuo rt. © are equal, when the hypotonuse and a side of the one are equal respectively to the hypotenuse and a side of the other).
Take away the $\triangle C D F$ and we have left the rect. $A B C D$.
Take away the $\triangle A B E$ and we have left the $\square A E F D$.

$$
\therefore \text { rect. } A B C D=\square A E F D \text {. }
$$

But the area of the rect. $A B C D=A D \times C D, \S 319$ (the area of a rectangle equals the product of its base and altitude).
\therefore the area of the $\square A E F D=A D \times C D$. Ax. 1 Q.E.D.
322. Corollary 1. Parallelograms having equal bases and equal altitudes are equivalent.
323. Cor. 2. Parallelograms having equal bases are to each other as their altitudes; parallelograms having equal altitudes are to each other as their bases; and any two parallelograms are to each other as the products of their bases by their altitudes.

Proposition V. Theorem.
324. The area of a triangle is equal to one-half of the product of its buse by its altitude.

Let $A B C$ be a triangle, $A B$ its base, and $C D$ its altitude.
We are to prove the area of the $\triangle A B C=\frac{1}{2} A B \times C D$.
From C draw $C H \|$ to $A B$.
From A draw $A \|$ to $B C$.
The figure A B C H is a parallelogram,
(having its opposite sides parallel), and $A C$ is its diagonal.

$$
\therefore \triangle A B C=\triangle A H C,
$$

(the diagonal of $a \square$ divides it into two equal $\mathbb{\Delta}$).
The area of the $\square A B C H$ is equal to the product of its base by its altitude:
\therefore the area of one-half the \square, or the $\triangle A B C$, is equal to one-half the product of its base by its altitude,
or,

$$
\frac{1}{2} A B \times C D
$$

Q. E. D.
325. Corollary 1. Triangles having equal bases and equal altitudes are equivalent.
326. Cor. 2. Triangles having equal bases are to each other as their altitudes; triangles having equal altitudes are to each other as their bases; any two triangles are to each other as the product of their bases by their altitudes.

Propositign VI. Theorem.

327. The area of ot trapezoid is equal to one-half the sum of the parallel sides mittiplied by the altitude.

Let $A B C I f$ be a trapezoid, and $E F$ the altitude.
We are to prove area of $A B C H=\frac{1}{2}(H C+A B) E H$. Draw the diagonal $A C$.
Then the area of the $\triangle A H C=\frac{1}{2} H C \times E F, \quad \S 324$ (the area of a \triangle is equil to onc-half of the product of its base by its altitude), and the area of the $\triangle A B C=\frac{1}{2} A B \times E F^{\prime}, \quad \S 324$

$$
\begin{gathered}
\therefore \triangle A I I C+\triangle A B C \\
\text { area of } A B C H=\frac{1}{2}(I C+A B) E F
\end{gathered}
$$

OV,
Q. E. D.
328. Corollary. The area of a trapezoid is equal to the product of the line joining the midlle points of the non-parallel sides multiplied by the altitude; for the line $O P$, joining the middle points of the non-parallel sides, is equal to $\frac{1}{2}$ (IIC $+A B)$.
\therefore by substituting $O P$ for $\frac{1}{2}(H C+A B)$, we have,

$$
\text { the area of } A B C H=O P \times E F \text {. }
$$

329 . Scholium. The area of an irregular polygon may be found by dividing the polygon into triangles, and by finding the area of each of these triangles separately. But the method generally employed in
 practice is to draw the longest diagomal, and to let fall perpendiculars upon this diagonal from the other angular points of the polygon.

The polygon is thus divided into figures which are right triangles, rectangles, or trapezoids ; and the areas of each of these figures may be readily found.

Proposition VII. Theorem.

330. The area of a circumscribed polygon is equal to onehalf the product of the perimeter by the radius of the inscribed circle.

Let $\triangle B S Q$, etc., be a circumscribed polygon, and C the centre of the inscribed circle.

Denote the perimeter of the polygon by P, and the radius of the inscribed circle by R.

We are to prove
the area of the circumscribed polygon $=\frac{1}{2} P \times R$.
Draw $C A, C B, C S$, etc. ;
also draw $C O, C D$, etc., \perp to $\Lambda B, B S$, etc.
The area of the $\triangle C A B=\frac{1}{2} A B \times C O, \quad \S 324$ (the area of $a \Delta$ is equal to one-half the product of its buse and altitude).

The area of the $\triangle C B S=\frac{1}{2} B S \times C D, \quad \S 324$
\therefore the area of the sum of all the $\triangle C A B, C B S$, etc., $=\frac{1}{2}(A B+B S$, etc. $) C O$,
§ 187
(for C O, CD, etc., are equal, being radii of the same \odot).
Substitute for $A B+B S+S Q$, etc., P, and for $C O, R$;
then the area of the circumscribed polygon $=\frac{1}{2} P \times R$.
Q. E. D.

Propasition VIII. Theorem.
331. The sum of the squares described on the two sides of a right triangle is equivalent to the square described on the hypotenuse.

Let $A B C$ be a right triangle with its right angle at C. We are to prove $\overline{A C}^{2}+\overline{C B}^{2}=\overline{A B}^{2}$
Draw $C O \perp$ to $A B$.
Then

$$
\overline{A C}^{2}=A O \times A B
$$

(the square on a side of a rt. \triangle is equal to the product of the hypotenuse by the adjacent segment marle by the \perp let fall from the vertex of the rt. \angle);
and $\quad \overline{B C}^{2}=B O \times A B$,
§ 289
By adding, $\overline{A C}^{2}+\overline{B C}^{2}=(A O+B O) A B$,

$$
\begin{aligned}
& =A B \times A B \\
& =\overline{A B}
\end{aligned}
$$

Q. E. D.
332. Corollary. 'The side and diagonal of a square are incommensurable.
Let $A B C D$ be a square, and $A C$ the diagonal.
Then

$$
\begin{aligned}
\overline{A B}^{2}+\overline{B C}^{2} & =\overline{A C}^{2} \\
2 \overline{A B}^{2} & =\overline{A C}^{2} .
\end{aligned}
$$

Divide both sides of the equation by $\overline{A B}^{2}$,

$$
\frac{\overline{A C}^{2}}{\overline{A B}^{2}}=2
$$

Extract the square root of both sides the equation,
then

$$
\frac{A C}{A B}=\sqrt{2} .
$$

Since the square root of 2 is a number which cannot be exactly found, it follows that the diagonal and side of a square are two ineommensurable lines.

Another Demonstration.
333. The square described on the hypotenuse of a right triangle is equivalent to the sum of the squares on the other two sides.

Let $A B C$ be a right \triangle, having the right angle $B A C$. We are to prove $\overline{B C}^{2}=\overline{B A}^{2}+\overline{A C}^{2}$.

On $B C, C A, A B$ construct the squares $B E, C H, A F$. Through A draw $A L \|$ to $C E$.

Draw $A D$ and $F C$.
$\angle B A C$ is a rt. \angle,
Hyp.
and $\quad \angle B A G$ is a rt. \angle, Cons.
$\therefore C A G$ is a straight line.
Also

$$
\angle C A I \text { is a rt. } \angle,
$$

$\therefore B A H$ is a straight line.
Now

$$
\angle D B C=\angle F^{\prime} B A
$$ (each being a rt. \angle).

[^1] that
$$
\square C L=\text { square } C H
$$

Now the square ou $B C=\square B L+\square C L$,

$$
\begin{aligned}
& =\text { square } A F+\text { square } C H, \\
\therefore \overline{B C}^{2} & =\overline{B A}^{2}+\overline{A C}^{2} .
\end{aligned}
$$

Q. E. D.

On Projection.

334. Def. The Projection of a Point upon a straight line of indefinite length is the foot of the perpendicular let fall from the point upon the line. Thus, the projection of the point C upon the line $A B$ is the point P.

Fig. 1.

Fig. 2.

The Projection of a Finite Straight Line, as $C D$ (Fig. 1), upon a straight line of indefinite length, as $A B$, is the part of the line $A B$ intercepted between the perpendiculars $C P$ and $D R$, let fall from the extremities of the line $C D$.

Thus the projection of the line $C D$ upon the line $A B$ is the line $P R$.

If one extremity of the line $C D$ (Fig. 2) be in the line $A B$, the projection of the line $C D$ upon the line $A B$ is the part of the line $A B$ between the point D and the foot of the perpendicular $C P$; that is, $D P$.

Proposition IX. Theorem.
335. In any triangle, the square on the side opposite an acute angle is equivalent to the sum of the squares of the other two sides diminished by twice the product of one of those sides and the projection of the other upon that side.

Let C be an acute angle of the triangle $A B C$, and $D C$ the projection of $A C$ upon $B C$.

We are to prove $\overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}-2 B C \times D C$.
If D fall upon the base (Fig. 1),

$$
D B=B C-D C
$$

If D fall upon the base produced (Fig. 2),

$$
D B=D C-B C
$$

In either case $\overline{D B}^{2}=\overline{B C}^{2}+\overline{D C}^{2}-2 B C \times D C$.
Add $\overline{A D}^{2}$ to both sides of the equality ;
then, $\bar{D}^{2}+{\overline{D D^{2}}}^{2}=\overline{B C}^{2}+\overline{D D}^{2}+\overline{D C}^{2}-2 B C \times D C$.
But

$$
\overline{A D}^{2}+\overline{D B}^{2}=\overline{A B}^{2}
$$

(the sum of the squares on two sides of a rt. \triangle is.equivalent to the square on the hypotenuse) ;
and

$$
\overline{A D}^{2}+\overline{D C}^{2}=\overline{A C}^{2}
$$

Substitute $\overline{\triangle B}^{2}$ and $\overline{A C}^{2}$ for their equivalents in the above equality ;
then, $\overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}-2 B C \times D C$.
Q. E. D.

Proposition X. Theorem.

336. In any obtuse triangle, the square on the side opposite the obtuse angle is equivalent to the sum of the squares of the olher two sides increased by twice the product of one of those sintes and the projection of the other on that side.

Let \dot{C} be the obtuse angle of the triangle $A B C$, and $C D$ be the projection of $A C$ upon $B C$ produced.
We are to prove $\overline{A B}^{2}=\overline{B C}^{2}+\overline{C C}^{2}+2 B C \times D C$.

$$
D B=B C+D C
$$

Squaring, $\overline{D B^{2}}=\overline{B C}^{2}+\overline{D C}^{2}+2 B C \times D C$.
Add $\overline{D D}^{2}$ to both sides of the equality ;
then, $\bar{D}^{2}+\overline{D B}^{2}=\overline{B C}^{2}+\overline{D D}^{2}+\overline{D C}^{2}+2 B C \times D C$.
But

$$
\overline{M D}^{2}+\overline{D B}^{2}=\overline{A B}^{2}
$$

(the sum of the squarcs on two sides of a rt. Δ is equiivalent to the square on the hypotenuse) ;
and

$$
\overline{A D}^{2}+\overline{D C}^{2}=\overline{A C}^{2} .
$$

Substitute $\overline{A B}^{2}$ and $\overline{A C}^{2}$ for their equivalents in the above equality ;
then, $\overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}+2 B C \times D C$.

> Q. E. D.
337. Definition. A Medial line of a triangle is a straight line drawn from any vertex of the triangle to the middle point of the opposite side.

Proposition XI. Theorem.

338. In any triangle, if a merlial line be drawn from the vertex to the base:
I. The sum of the squares on the two sides is equivalent to twice the square on half the base, increased by twice the square on the medial line;
II. The difference of the squares on the two sides is equivalent to twice the product of the base by the projection of the medial line upon the base.

In the triangle $A B C$ let $A M$ be the medial line and $M D$ the projection of $A M$ upon the base $B C$. Also let $A B$ be greater than $A C$.
We are to prove

$$
\text { I. } \overline{A B}^{2}+\overline{A C}^{2}=2 \overline{B M}^{2}+2 \overline{A M}^{2} \text {. }
$$

$$
\text { II. } \overline{A B}^{2}-\overline{A C}^{2}=2 B C \times M D \text {. }
$$

Since $A B>A C$, the $\angle A M B$ will be obtuse and the $\angle A M C$ will be acute.

Then $\overline{A B}^{2}=\overline{B M}^{2}+\overline{A M}^{2}+2 \dot{B M} \times M D, \quad \S 336$
(in any obtuse \triangle the square on the side opposite the obtuse \angle is equivalent to the sum of the squares on the other two sides incrensed by twice the product of one of those sides and the projection of the other on that side);
and $\overline{A C}^{2}=M^{2}+\bar{M}^{2}-2 M C \times M D$,
lin any \triangle the square on the side opposite an acute \angle is equivalent to the sum of the squares on the other two sides, diminished by twice the product of one of those sides and the projection of the other upon that sidec).
Add these two equalities, and observe that $B M=M C$.
Then $\overline{A I}^{2}+\overline{A C}^{2}=2 \overline{B M}^{2}+2 \bar{M}^{2}$.
Subtract the second equality from the first.
Then

$$
\overline{A B}^{2}-\overline{A C}^{2}=2 B C \times M D
$$

Proposition XII. Theorem.
339. The sum of the squares on the four sides of any quadrilateral is equivalent to the sum of the squares on the diagonals together with four times the square of the line joining the middlle points of the diagonals.

In the quadrilateral $A B C D$, let the diagonals be $A C$ and $B D$, and $F^{\prime} E^{\prime}$ the line joining the middle points of the diagonals.
We are to prove

$$
\overrightarrow{A B}^{2}+\overline{B C}^{2}+\overline{C I}^{2}+\overline{D A}^{2}=\overline{A C}^{2}+\overline{B D}^{2}+4{\overrightarrow{E H^{2}}}^{2}
$$

Draw $B E$ and $D E$.
Now $\overrightarrow{A B}^{2}+\overline{B C}^{2}=2\left(\frac{A C}{2}\right)^{2}+2 \overline{B E}^{2}$,
§ 338
(the sum of the squares on the twoo sides of $a \Delta$ is equivalent to twice the square on half the base increased by twice the square on the medial line to the base),

$$
\text { and } \quad \overline{C D}^{2}+\overline{D A}^{2}=2\left(\frac{A C}{2}\right)^{2}+2 \overline{D E}^{2}
$$

§ 338
Adding these two equalities,

$$
\overrightarrow{A B}^{2}+\overline{B C}^{2}+\overline{C D}^{2}+\overline{D A}^{2}=4\left(\frac{A C}{2}\right)^{2}+2\left(\overline{B E}^{2}+\overline{D E}^{2}\right) .
$$

But $\overline{B E}^{2}+\overline{D E^{2}}=2\left(\frac{B D}{2}\right)^{2}+2 E F^{2}$,
§ 338
(the sum of the squares on the two sides of a Δ is equivalent to twice the square on half the base increased by twice the square on the medial line to the base).

Substitute in the above equality for $\left(\overline{B E}^{2}+\overline{D E^{2}}\right)$ its equivalent;
then $\overline{A B}^{2}+\overline{B C}^{2}+\overline{C D}^{2}+\overline{D A}^{2}=4\left(\frac{A C}{2}\right)^{2}+4\left(\frac{B D}{2}\right)^{2}+4{\overline{E F^{2}}}^{2}$

$$
=\overline{A C}^{2}+\overline{B D}^{2}+4{\overline{E F_{\text {Q. E. D. }}}}^{2}
$$

340. Corollary. The sum of the squares on the four sides of a parallelogram is equivalent to the sum of the squares on the diagonals.

Proposition XIII. Theorem.
341. Two triangles having an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles.

Let the triangles $A B C$ and $A D E$ have the common angle A.

We are to prove $\frac{\triangle A B C}{\triangle A D E}=\frac{A B \times A C}{A D \times A E}$.
Draw $B E$.

Now

$$
\frac{\triangle A B C}{\triangle A B E}=\frac{A C}{A E}
$$

($\$$ having the same altitude are to each other as their bases).

Also

$$
\frac{\triangle A B E}{\triangle A D E}=\frac{A B}{A D}
$$

(A having the same altitude are to each other as their bases).
Multiply these equalities ;
then

$$
\frac{\triangle A B C}{\triangle A D E}=\frac{A B \times A C}{A D \times A E}
$$

Q. E. D.

Proposition XIV. Theorem.
342. Similar triangles are to each other as the squares on their homologous sides.

Let the two triangles be $A C B$ and $A^{\prime} C^{\prime} B^{\prime}$.
We are to prove $\frac{\triangle A C B}{\triangle A^{\prime} C^{\prime} B^{\prime}}=\frac{{\overline{A B^{2}}}^{2}}{A^{\prime B^{\prime}}}$.
Draw the perpendiculars $C O$ and $C^{\prime} O^{\prime}$.
Then $\frac{\triangle A C B}{\triangle A^{\prime} C^{\prime} B^{\prime}}=\frac{A B \times C O}{A^{\prime} B^{\prime} \times C^{\prime} O^{\prime}}=\frac{A B}{A^{\prime} B^{\prime \prime}} \times \frac{C O}{C^{\prime} O^{\prime}}, \quad \S 326$
(theo A are to each other as the products of their bases by their altitudes).
But

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{C O}{C^{\prime} O^{\prime}},
$$

(the homologous altitudes of similar \mathbb{A} have the same ratio as their homologous bases).
Substitute, in the above equality, for $\frac{C O}{C^{\prime} O^{\prime}}$ its equal $\frac{A B}{A^{\prime} B^{\prime}}$;

$$
\text { then } \frac{\Delta A C B}{\triangle A^{\prime} C^{\prime} B^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} \times \frac{A B}{A^{\prime} B^{\prime}}=\frac{\overline{A B}^{2}}{{\overline{A^{\prime} B^{\prime}}}^{2}} \text {. }
$$

Q. E. D.

Proposition XV. Theorem.
343. Two similar polygons are to each other as the squares on any two homologous sides.

Let the two similar polygons be $A B C$, etc., and $A^{\prime} B^{\prime} C^{\prime}$, etc.
We are to prove $\frac{A B C \text {, etc. }}{A^{\prime} B^{\prime} C^{\prime \prime} \text {, etc. }}=\frac{{\overline{A B^{2}}}^{\bar{A}^{\prime B^{2}}}}{}$.
From the homologous vertices A and A^{\prime} draw diagonals.
Now

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}} \text {, etc., }
$$

(similar polygons have their homologous sides proportional);
\therefore by squaring, $\frac{\overline{A B}^{2}}{{\overline{A^{\prime} B^{\prime}}}^{2}}=\frac{{\overline{B C^{2}}}^{B^{\prime} C^{\prime 2}}}{=} \frac{\overline{C D}^{2}}{\overline{C^{\prime} D^{\prime \prime}}}$, etc.
The $\triangle A B C, A C D$, etc., are respectively similar to $\Lambda^{\prime} B^{\prime} C^{\prime}$, $A^{\prime} C^{\prime} D^{\prime}$, etc., (two similar polygons are composed of the same number of \mathbb{S} similar to each other and similarly placed).

$$
\therefore \frac{\triangle A B C}{\triangle \Lambda^{\prime} B^{\prime} C^{\prime \prime}}=\frac{\overline{A B}^{2}}{{\overline{A^{\prime} B^{\prime}}}^{\prime}}
$$

(similar \& are to cach other as the squares on their homologous sides),
and

$$
\frac{\triangle A C D}{\triangle A^{\prime} C^{\prime} D^{\prime}}=\frac{\overline{C D}^{2}}{\bar{C}^{\prime} D^{\prime \prime}}
$$

But

$$
\begin{aligned}
\frac{\overline{C D^{2}}}{\overline{C^{\prime} D^{\prime 2}}} & =\frac{A \bar{B}^{2}}{{\overline{A^{\prime} B^{2}}}^{2}} \\
\therefore \frac{\triangle A B C}{\triangle A^{\prime} B^{\prime} C^{\prime \prime}} & =\frac{\triangle A C D}{\triangle A^{\prime} C^{\prime} D^{\prime}}
\end{aligned}
$$

In like manner we may prove that the ratio of any two of the similar \triangle is the same as that of any other two.

$$
\begin{aligned}
& \therefore \frac{\triangle A B C}{\triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{\triangle A C D}{\triangle A^{\prime} C^{\prime} D^{\prime}}=\frac{\triangle A D E}{\triangle A^{\prime} D^{\prime} E^{\prime}}=\frac{\triangle A E F}{\triangle A^{\prime} E^{\prime} l^{\prime \prime}}, \\
& \therefore \frac{\triangle A B C+A C D+A D E+A E F}{\triangle A^{\prime} B^{\prime} C^{\prime \prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} D^{\prime} E^{\prime}+A^{\prime} E^{\prime} F^{\prime \prime}}=\frac{\triangle A B C}{\triangle A^{\prime} B^{\prime} C^{\prime \prime}},
\end{aligned}
$$

(in a scries of equal ratios the sum of the antecedents is to the sum of the consequents as any antecedent is to its consequent).

But

$$
\frac{\triangle A B C}{\triangle A^{\prime} B^{\prime} C^{\prime \prime}}=\frac{\overline{A B}^{2}}{\bar{A}^{\prime} B^{\prime 2}}
$$

(similar A are to each other as the squares on their homologous sides) ;

$$
\therefore \frac{\text { the polygon } A B C \text {, etc. }}{\text { the polygon } A^{\prime} B^{\prime} C^{\prime} \text {, etc. }}=\frac{\overrightarrow{A B^{2}}}{A^{\prime} B_{\prime^{\prime}}{ }^{2}} .
$$

Q. E. D.
344. Corollary 1. Similar polygons are to each other as the squares on any two homologous lines.
345. Cor. 2. The homologous sides of two similar polygons have the same ratio as the square roots of their areas.

Let S and $S^{\prime \prime}$ represent the areas of the two similar polygons $A B C$, etc., and $A^{\prime} B^{\prime} C^{\prime}$, etc., respectively.

Then

$$
S: S^{\prime}:: \overline{A B}^{2}:{\overline{A^{\prime}}}^{2}
$$

(similar polygons are to cach other as the squares of their homologous sides).

$$
\begin{array}{ll}
\therefore & \sqrt{S}: \sqrt{S^{\prime}}:: A B: A^{\prime} B^{\prime} \\
\text { or, } & A B: A^{\prime} B^{\prime}:: \sqrt{S}: \sqrt{S^{\prime}}
\end{array}
$$

On Constructions.

Proposition XVI. Problem.
346. To construct a square equivalent to the sum of two given squares.

Let R and R^{\prime} be two given squares.
It is required to construct a square $=R+R^{\prime}$.
Construct the rt. $\angle A$.
Take $A B$ equal to a side of R, and $A C$ equal to a side of R^{\prime}.

Draw $B C$.
Then $B C$ will be a side of the square required.
For

$$
\overline{B C}^{2}=\overline{A B}^{2}+\overline{A C}^{2},
$$

(the square on the hypotenuse of a rt. Δ is equivalent to the sum of the squares on the two sides).

Construct the square S, having each of its sides equal to $B C$.

Substitute for $\overline{B C}^{2}, \overline{A B}^{2}$ and $\overline{A C}^{2}, S, R$, and R^{\prime} respectively ;
then

$$
S=R+R^{\prime}
$$

$\therefore S$ is the square required.

Proposition XVII Problem.

347. To construct a square equivalent to the difference of two given squares.

Let R be the smaller square and R^{\prime} the larger.
It is required to construct a square $=R^{\prime}-R$.
Construct the rt. $\angle A$.
Take $A B$ equal to a side of R.
From B as a centre, with a radius equal to a side of R^{\prime}, describe an are cutting the line $A X$ at C.

Then $A C$ will be a side of the square required.
For draw $B C$.

$$
\overrightarrow{A B}^{2}+\overrightarrow{A C}^{2}=\overline{B C}^{2}
$$

(the sum of the squares on the two sides of a rt. \triangle is equivalent to the square on the hypotenuse).

By transposing, $\overline{A C}^{2}=\overline{B C}^{2}-\overline{A B}^{2}$.
Construct the square S, having each of its sides equal to $A C$.
Substitute for $\overline{A C}^{2}, \overline{B C}^{2}$, and $\overline{A B}^{2}, S, R^{\prime}$, and R respectively ;
then

$$
S=R^{\prime}-R
$$

$\therefore S$ is the square required.

Proposition XVIII. Problem.

348. To construct a square equivalent to the sum of any number of given squares.

Let m, n, o, p, r be sides of the given squares.
It is required to construct a square $=m^{2}+n^{2}+o^{2}+p^{2}+r^{2}$.
Take $A B=m$.

$$
\text { Draw } A C=n \text { and } \perp \text { to } A B \text { at } A .
$$

Draw $B C$.
Draw $C E=0$ and \perp to $B C$ at C, and draw $B E$.
Draw $E F=p$ and \perp to $B E$ at E, and draw $B F$.
Draw $F^{\prime} H=r$ and \perp to $B F$ at F, and draw $B I$.
The square constructed on $B H$ is the square required.
For $\quad \overline{B H}=\vec{F} H^{2}+\overline{F F}^{2}$,

$$
\begin{aligned}
& =\overrightarrow{F H}^{2}+E B^{2}+\overline{E B}^{2} \text {, } \\
& =\overline{F H}^{2}+\overline{E F}^{2}+\overline{E C}^{2}+\overline{C B}^{2}, \\
& =\overline{F H}^{2}+\overline{E F}^{2}+\overline{E C}^{2}+\overline{C A}^{2}+\overline{A B}^{2}, \S 331
\end{aligned}
$$

(the sum of the squares on two sides of a rt. Δ is equivalent to the square on the hypotenuse).
Subsstitute for $A B, C A, E C, E F$, and $F H, m, n, o, p$, and r respectively;
then

$$
\overline{B H^{2}}=m^{2}+n^{2}+o^{2}+r^{2}+r^{2} .
$$

Q. E. F.

Proposition XIX. Problem.

349. To construct a polygon similar to two given similar polygons and equivalent to their sum.

Let R and R^{\prime} be two similar polygons, and $A B$ and $A^{\prime} B^{\prime}$ two homologous sides.
It is required to construct a similar polygon equivalent to $R+R^{\prime}$.

Construct the rt. $\angle P$.

$$
\begin{gathered}
\text { Take } P H=A^{\prime} B^{\prime} \text {, and } P O=A B . \\
\text { Draw } O H .
\end{gathered}
$$

Take $A^{\prime \prime} B^{\prime \prime}=O H$.
Upon $A^{\prime \prime} B^{\prime \prime}$, homologous to $A B$, construct the polygon $R^{\prime \prime}$ similar to R.

Then $R^{\prime \prime}$ is the polygon required.
For

$$
R^{\prime}: R::{\overline{A^{\prime}}}^{2}: \overline{A B}^{2}
$$

(similar poiygons are to each other as the squares on their homologous sides).

$$
\text { Also } \quad R^{\prime \prime}: R^{\prime}::{\overline{A^{\prime \prime} B^{\prime \prime \prime}}}^{2}:{\overline{A^{\prime} B^{\prime}}}^{2} \text {. }
$$

In the first proportion, by composition,

$$
\begin{align*}
R^{\prime}+R: R^{\prime} & :: \bar{A}^{2}+\overline{A B}^{2}:{\overline{A^{\prime} B^{\prime}}}^{2} \\
& :: \overline{P H}^{2}+\overline{P O}^{2}: \overline{P H}^{2} \\
& ::{\overline{H O^{2}}}^{2}: \overline{P H}^{2}
\end{align*}
$$

But

$$
\begin{gathered}
R^{\prime \prime}: R^{\prime}::{\overline{A^{\prime \prime} B^{\prime \prime}}}^{2}:{\overline{A^{\prime B^{\prime}}}}^{2} \\
:{\overline{\Pi O^{2}}:{\overline{P \Pi^{2}}}^{2}}_{\therefore R^{\prime \prime}: R^{\prime}:: R^{\prime}+R: R^{\prime}} \quad \therefore R^{\prime \prime}=R^{\prime}+R .
\end{gathered}
$$

Proposition XX. Problem.
350. To construct a polygon similar to two given similar polygons and equivalent to their difference.

Let R and R^{\prime} be two similar polygons, and $A B$ and $A^{\prime} B^{\prime}$ two homologous sides.
It is required to construct a similar polygon which shall be equivalent to $R^{\prime}-R$.

> Construct the rt. $\angle P$, and take $P O=A B$.

From O as a centre, with a radius equal to $A^{\prime} B^{\prime}$, describe an arc cutting $P \mathrm{X}$ at H.

Draw $O H$.

$$
\text { Take } A^{\prime \prime} B^{\prime \prime}=P I I
$$

On $A^{\prime \prime} B^{\prime \prime}$, homologous to $A B$, construct the polygon $R^{\prime \prime}$ similar to R.

Then $R^{\prime \prime}$ is the polygon required.
For

$$
R^{\prime}: R:: A^{B^{\prime}}{ }^{2}: \overline{A B}^{2}
$$

(similar polygons are to each other as the squares on their homologous sides).
Also $\quad R^{\prime \prime}: R::{\overline{A^{\prime \prime}} B^{\prime \prime}}^{2}: \bar{B}^{2}$.
In the first proportion, by division,

$$
\begin{aligned}
R^{\prime}-R: R & ::{\overline{A^{\prime}}}^{2}-{\overline{A B^{2}}}^{2}:{\overline{A B^{3}}}^{2}, \quad \S 265 \\
& :: \overline{O H}^{2}-{\overline{O P^{2}}}^{2}: \overline{O P}^{2} \\
& :: \overline{P H}^{2}:{\overline{O P^{2}}}^{2}
\end{aligned}
$$

But

$$
\begin{aligned}
& R^{\prime \prime}: R::{\overline{\Lambda^{\prime \prime} B^{\prime \prime}}}^{2}:{\overline{A B^{2}}}^{2} \\
&:: \overline{P H^{2}}:{\overline{O P^{2}}}^{2} \\
& \therefore R^{\prime \prime}: R:: R^{\prime}-R: R ; \\
& \therefore R^{\prime \prime}=R^{\prime}-R .
\end{aligned}
$$

Proposition XXI. Problem.
351. To construct a triangle equivalent to a given polygon.

Let $A B C D H E$ be the given polygon.
It is required to construct a triangle equivalent to the given polygon.

From D draw $D E$, and from H draw $H F \|$ to $D E$.
Produce $A E$ to meet $H F$ at F, and draw $D F$.
The polygon $A B C D F$ has one side less than the polygon $A B C D H E$, but the two are equivalent.

For the part $A B C D E$ is common,
and the $\triangle D E F=\triangle D E H$, for the base $D E$ is common, and their vertices F and H are in the line $F H \|$ to the base, § 325 (A having the same base and equal altitudes are equivalent).
Again, draw $C F$, and draw $D K \|$ to $C F$ to meet $A F$ produced at K.

Draw $C K$.

The polygon $A B C K$ has one side less than the polygon $A B C D F$, but the two are equivalent.

For the part $A B C F$ is common,
and the $\triangle C F K=\triangle C F D$, for the base $C F$ is common, and their vertices K and D are in the line $K D \|$ to the base. § 325

In like manner we may continue to reduce the number of sides of the polygon until we obtain the $\triangle C I K$.
Q. E. F.

Proposition XXII. Problem.

352. To construct a square which shall have a given ratio to a given square.

Let R be the given square, and $\frac{n}{m}$ the given ratio.
It is required to construct a square which shall be to R as n is to m.

On a straight line take $A B=m$, and $B C=n$.
On $A C$ as a diameter, describe a semicircle.
At B erect the $\perp B S$, and draw $S A$ and $S C$.
Then the $\triangle A S C$ is a rt. \triangle with the rt. \angle at $S, \S 204$ (being inscribed in a semicircle.)
On $S A$, or $S A$ produced, take $S E$ equal to a side of R.

$$
\text { Draw } E F \| \text { to } A C \text {. }
$$

Then $S F$ is a side of the square required.
For

$$
\frac{\overline{S A}^{2}}{\overline{S C}^{2}}=\frac{A B}{B C}
$$

(the squares on the sides of a rt. \triangle have the same ratio as the segments of the hypotenuse made by the \perp let fall from the revtex of the rt. \angle).
Also $\quad \frac{S A}{S C}=\frac{S E}{S F}$,
(a straight line dravn through two sides of a Δ, parallel to the third side, divides those sides proportionally).
Square the last equality ;
then

$$
\frac{\overline{S A}^{2}}{\overline{S C}^{2}}=\frac{\overline{S E}^{2}}{\overline{S F}^{2}}
$$

Substitute, in the first equality, for $\frac{S^{2}}{S^{2}}$ its equal $\frac{S^{2}}{\overline{S F^{2}}}$;
then

$$
\frac{S F^{2}}{S F^{2}}=\frac{A B}{B C}=\frac{m}{n}
$$

that is, the square having a side equal to $S F$ will have the same ratio to the square R, as n has to m.
Q. E. F.

Propusition XXIII. Problem.

353. To construct a polygon similar to a given polygon and having a given ratio to it.

Let R be the given polygon and $\frac{n}{m}$ the given ratio.
It is required to construct a polygon similar to R, which shall be to R as n is to m .

Find a line, $A^{\prime} B^{\prime}$, such that the square constructed upon it shall be to the square constructed upon $A B$ as n is to m. § 352

Upon $A^{\prime} B^{\prime}$ as a side homologous to $A B$, construct the polygon S similar to R.

Then S is the polygon required.

For

$$
\frac{S}{R}=\frac{A^{A^{\prime} B^{2}}}{\overline{A^{2}}},
$$

(similar polygons are to each other as the squares on their homologous sides).

$$
\text { But } \quad \frac{A^{T} B^{2}}{\overline{A B^{2}}}=\frac{n}{m} ;
$$

Cons.
$\therefore \frac{S}{R}=\frac{n}{m}, \quad$ or, $\quad S: R:: n: m$.
Q. E. F.

Proposition XXIV. Problem.

354. To construct a square equivalent to a given parallelogram.

Let $A B C D$ be a parallelogram, b its base, and a its altitude.

It is required to construct a square $=\square A B C D$.
Upon the line $M X$ take $M N=a$, and $N O=b$.
Upon $M O$ as a diameter, describe a semicircle.

$$
\text { At } N \text { erect } N P \perp \text { to } M O \text {. }
$$

Then the square R, constructed upon a line equal to $N P$, is equivalent to the $\square A B C D$.

For
$M N: N P:: N P: N O$,
($a \perp$ let fall from any point of a circumference to the diametor is a mean proportional between the segments of the diameter):

$$
\therefore \overline{N P}=M N \times N O=a \times b,
$$

(the product of the means is equal to the product of the extremes).
Q. E. F.
355. Corollary 1. A square may be constructed equivalent to a triangle, by taking for its side a mean proportional between the base and one-half the altitude of the triangle.
356. Cor. 2. A square may be constructed equivalent to any polygon, by first reducing the polygon to an equivalent triangle, and then constructing a square equivalent to the triangle.

Proposition XXV. Problem.

357. To construct a parallelogram equivalent to a given square, and having the sum of its base and altitude equal to a given line.

Let R be the given square, and let the sum of the base and altitude of the required parallelogram be equal to the given line $M N$.
It is required to construct a $\square=R$, and having the sum of $i t s$ base and altitude $=M N$.

Upon $M N$ as a diameter, describe a semicircle.
At M erect a $\perp M P$, equal to a side of the given square R.
Draw $P Q \|$ to $M N$, cutting the circumference at S.
Draw $S^{\prime} C \perp$ to $M N$.
Any \square having $C M$ for its altitude and $C N$ for its base, is equivalent to R.

For
$S C$ is $\|$ to $P M$,
(tivo straight lines \perp to the same straight line are II).

$$
\therefore S C=P M,
$$

(lls comprehended between \|s are equat).

$$
\therefore \overline{S C}^{2}=\overline{P M}^{2}=R .
$$

But $M C: S C:: S C: C N$, $\quad 307$ ($a \perp$ let fall from any point in a circumference to the diameter is a means proportional between the segments of the diameter).

Then

$$
\overline{S C}^{2}=M C \times C N
$$

(the product of the means is equal to the product of the extremes).

> Q. E. F.
358. Scholium. The problem is impossible when the side of the square is greater than one-half the line $M N$.

Proposition XXVI. Problem.

359. To construct a parallelogram equivalent to a given square, and having the difference of its base and altitude. equal to a given line.

Let R be the given square, and let the difference of the base and altitude of the required parallelo. gram be equal to the given line $M N$.

It is required to construct a $\square=l$, with the difference of the base and altitude $=M N$.

Upon the given line $M N$ as a diameter, describe a circle.
From M draw $M S$, tangent to the \odot, and equal to a side of the given square R.

Through the centre of the \odot, draw $S B$ intersecting the circumference at C and B.

Then any \square, as R^{\prime}, having $S B$ for its base and $S C$ for its altitude, is equivalent to R.

For $\quad S B: S M:: S M: S C$,
(if from a point without a \odot, a secant and a tangent be drawn, the tangent is a mean proportional between the whole secant and the part without the \odot).

Then

$$
S M^{2}=S B \times S C
$$

and the difference between $S B$ and $S C$ is the diameter of the \odot, that is, $M N$.

Proposition XXVII. Problem.

360. Given $x=\sqrt{2}$, to construct x.

m
Let m represent the unit of length.
It is required to find a line which shall represent the square root of 2 .

On the indefinite line $A B$, take $A C=m$, and $C D=2 m$.
On $A D$ as a diameter describe a semi-circumference.
At C erect a \perp to $A B$, intersecting the circumference at E.
Then $C E$ is the line required.

For

$$
A C: C E:: C E: C D,
$$

(the \perp let fall from any point in the circumference to the diameter, is a mean proportional between the segments of the diameter);

$$
\begin{align*}
& \therefore C E^{2}=A C \times C D, \\
& \therefore C E=\sqrt{A C \times C D} \\
& =\sqrt{1 \times 2}=\sqrt{2}
\end{align*}
$$

Q. E. F.

Ex. 1. Given $x=\sqrt{5}, y=\sqrt{7}, z=2 \sqrt{3}$; to construct x, y, and z.
2. Given $2: x:: x: 3$; to construct x.
3. Construct a square equivalent to a given hexagon.

Proposition XXVIII. Problem.
361. To constrict a polygon similar to a given polygon P, and equivalent to a given polygon Q.

Let P and Q be two given polygons, and $A B$ a side of polygon P.

It is required to construct a polygon similar to P and equivalent to Q.

Find a square equivalent to P, and let m be equal to one of its sides.

Find a square equivalent to Q,
and let n be equal to one of its sides.
Find a fourth proportional to m, n, and $A B$.
Let this fourth proportional be $A^{\prime} B^{\prime}$.
Upon $A^{\prime} B^{\prime}$, homologous to $A B$, construct the polygon P^{\prime} similar to the given polygon P.

Then P^{\prime} is the polygon required.

For

$$
\frac{m}{n}=\frac{A B}{A^{\prime} B^{\prime}} .
$$

Cons.

Squaring,

$$
\frac{m^{2}}{n^{2}}=\frac{\overline{A B}^{2}}{\bar{A}^{\prime} B^{\prime 2}} .
$$

But

$$
P=m^{2},
$$

and

$$
Q=n^{2} ;
$$

Cons.
Cons.

$$
\therefore \frac{P}{\bar{Q}}=\frac{m^{2}}{n^{2}}=\frac{\overline{A B^{2}}}{\overline{A^{\prime} B^{\prime 2}}} \text {. }
$$

But

$$
\frac{P}{P^{\prime \prime}}=\frac{\overrightarrow{B^{2}}}{\bar{A}^{\prime} B^{2}},
$$

(similar polygons are to each other as the squares on their homologous sides);

$$
\begin{equation*}
\therefore \frac{P}{Q}=\frac{P}{P^{\prime}} ; \tag{Ax. 1}
\end{equation*}
$$

$\therefore P^{\prime}$ is equivalent to Q, and is similar to P by construction.
Q. E. F.

+ Ex. 1. Construct a square equivalent to the sum of three given squares whose sides are respectively 2,3 , and 5 .
+2 . Construct a square equivalent to the difference of two given squares whose sides are respectively 7 and 3 .

3. Construct a square equivalent to the sum of a given friangle and a given parallelogram.
4. Construct a rectangle having the difference of its base and altitude equal to a given line, and its area equivalent to the sum of a given triangle and a given pentagon.
5. Given a hexagon ; to construct a similar hexagon whose area shall be to that of the given hexagon as 3 to 2 .
6. Construct a pentagon similar to a given pentagon and equivalent to a given trapezoid.

Proposition XXIX. Problem.
362. To construct a polygon similar to a given polygon, and having two and a half times its area.

Let P be the given polygon.
It is required to construct a polygon similar to P, and equivalent to $2 \frac{1}{2} P$.

Let $A B$ be a side of the given polygon P.
Then
or

$$
\begin{aligned}
& \sqrt{1}: \sqrt{2 \frac{1}{2}}:: A B: x \\
& \sqrt{2}: \sqrt{5}:: A B: x
\end{aligned}
$$

(the homologous sides of similar polygons are to each other as the square roots of their areas).
Take any convenient unit of length, as $M C$, and apply it six times to the indefinite line $M N$.

On $M O(=3 M C)$ describe a semi-circumference ;
and on $M N(=6 M C)$ describe a semi-circumference.
At C erect a \perp to $M N$, intersecting the semi-circumferences at D and H.

Then $C D$ is the $\sqrt{2}$, and $C H$ is the $\sqrt{5}$.
Draw $C Y$, making any convenient \angle with $C H$. On $C Y$ take $G E=A B$.

From D draw $D E$, and from H draw $H Y \|$ to $D E$.

Then $C Y$ will equal x, and be a side of the polygon required, homologous to $A B$.

For $\quad C D: C H:: C E: C Y$,
(a line draven through two sides of a $\Delta, \|$ to the third side, divides the two sides proportionally).

Substitute their equivalents for $C D, C H$, and $C E$;
then

$$
\sqrt{2}: \sqrt{5}:: A B: C Y .
$$

On $C Y$, homologous to $A B$, construct a polygon similar to the given polygon P;
and this is the polygon required.
Q. E. F.

Ex. 1. The perpendicular distance between two parallels is 30 , and a line is drawn across them at an angle of 45°; what is its length between the parallels?
$\mathbf{~ 2 . ~}^{2}$. Given an equilateral triangle each of whose sides is 20 ; find the altitude of the triangle, and its area.
3. Given the angle A of a triangle equal to $\frac{2}{3}$ of a right angle, the angle B equal to $\frac{1}{3}$ of a right angle, and the side a, opposite the angle A, equal to 10 ; construct the triangle.
4. The two segments of a chord intersected by another chord are 6 and 5 , and one segment of the other chord is 3 ; what is the other segment of the latter chord?
5. If a circle be inscribed in a right triangle : show that the difference between the sum of the two sides containing the right angle and the hypotenuse is equal to the diameter of the circle.
6. Construct a parallelogram the area and perimeter of which shall be respectively equal to the area and perimeter of a given triangle.
7. Given the difference between the diagonal and side of a square ; construct the square.

BOOK V.

REGULAR POLYGONS AND CIRCLES.

363. Def. A Regular Polygon is a polygon which is equilateral and equiangular.

Proposition I. Theorem.

364. Every equilateral polygon inscribed in a circle is a regular polygon.

Let $A B C$, etc., be an equilateral polygon inscribed in a circle.

We are to prove the polygon $A B C$, etc., regular.

$$
\text { The } \operatorname{arcs} A B, B C, C D \text {, etc., are equal, }
$$

(in the same \odot, cqual chords subtend equal arcs).

$$
\therefore \text { ares } A B C, B C D \text {, etc., are equal, Ax. } 6
$$

\therefore the $\measuredangle S A, B, C$, etc., are equal, (being inscribed in equal segments).
\therefore the polygon $A B C$, etc., is a regular polygon, being equilateral and equiangular.
Q. E. D.

Proposition II. Theorem.
365. I. A circle may be circumscribed about a regular polygon.
II. A circle may be inscribed in a regular polygon.

Let A BCD, etc., be a regular polygon.
We are to prove that $a \odot$ may be circumscribed about this regular polygon, and also a \odot may be inscribed in this regular polygon.
Case I. - Describe a circumference passing through A, B, and C.
From the centre O, draw $O A, O D$, and draw $O s \perp$ to chord $B C$.
On $O s$ as an axis revolve the quadrilateral $O A B s$, until it comes into the plane of $O s C D$.

The line $s B$ will fall upon $s C$, (for $\angle O s B=\angle O s C$, both being rt. © \mathbb{C}). The point B will fall upon C, (since s $B=s C$).
The line $B A$ will fall upon $C D$,
The point A will fall upon D,
\therefore the line $O A$ will coincide with line $O D$,
(their extrenities being the same points).
\therefore the circumference will pass through D.
In like manner we may prove that the circumference, passing through vertices B, C, and D will also pass through the vertex E, and thus through all the vertices of the polygon in succession.
Case II. - The sides of the regular polygon, being equal chords of the circumscribed \odot, are equally distant from the centre, § 185
\therefore a circle described with the centre 0 and a radius 0 s will touch all the sides, and be inscribed in the polygon. § 174
366. Def. The Centre of a regular polygon is the common centre O of the circumscribed and inscribed circles.
367. Def. The Radius of a regular polygon is the radius $O A$ of the circumscribed circle.
368. Def. The Apothem of a regular polygon is the radius $O s$ of the inscribed circle.
369. Def. The Angle at the centre is the angle included by the radii drawn to the extremities of any side.

Proposition III. Theorem.

370. Each angle at the centre of a regular polygon is equal to four right angles divided by the number of sides of the polygon.

Let $A B C$, etc., be a regular polygon of n sides.
We are to prove $\angle A O B=\frac{4 \mathrm{rt} . \Delta s}{n}$.
Circumscribe a \odot about the polygon.
The $\& A O B, B O C$, etc., are equal, (in the same \odot equal arcs subtend equal $\stackrel{\Delta}{ }$ at the centre).
\therefore the $\angle A O B=4 \mathrm{rt}$. \angle divided by the number of $\angle \stackrel{y}{ }$ about O.
But the number of \angle about $O=n$, the number of sides of the polygon.

$$
\therefore \angle A O B=\frac{4 \mathrm{rt.} \angle \mathrm{~s}}{n}
$$

Q. E. D.
371. Corollary. The radius drawn to any vertex of a regular polygon bisects the angle at that vertex.

Proposition IV. Theorem.

372. Two regular polygons of the same number of sides are similar.

Let Q and Q^{\prime} be two regular polygons, each havingn sides.

We are to prove Q and Q^{\prime} similar polygons.
The sum of the interior $\&$ of each polygon is equal to 2 rt. $\angle(n-2)$, § 157 (the sum of the interior \triangle of a polygon is equal to 2 rt . © taken as many times less 2 as the polygon luas sidcs).
Each \angle of the polygon $Q=\frac{2 \mathrm{rt} . \measuredangle \mathrm{s}(n-2)}{n}, \quad \S 158$ (for the $\&$ of a regular polygon are all equal, and hence each \angle is equal to the sum of the \triangle divided by their number).

$$
\text { Also, each } \angle \text { of } Q^{\prime}=\frac{2 \mathrm{rt.} . \angle(n-2)}{n}
$$

\therefore the two polygons Q and Q^{\prime} are mutually equiangular.
Moreover,

$$
\frac{A B}{B C^{\prime}}=1
$$

(the sides of a regular polygon are all equal);
and

$$
\begin{gather*}
\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}=1, \\
\therefore \frac{A B}{B C}=\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}
\end{gather*}
$$

Ax. 1
\therefore the two polygons have their homologous sides proportional ; \therefore the two polygons are similar.
§ 278
Q. E. D.

Proposition V. Theorem.

373. The homologous sides of similar regular polygons have the same ratio as the radii of their circumscribed circles, and, also as the radii of their inscribed circles.

Let O and O^{\prime} be the centres of the two similar regular polygons $A B C$, etc., and $A^{\prime} B^{\prime} C^{\prime}$, etc.

From O and O^{\prime} draw $O E, O D, O^{\prime} E^{\prime}, O^{\prime} D^{\prime}$, also the Is $O m$ and $O^{\prime} m^{\prime}$.
$O E$ and $O^{\prime} E^{\prime}$ are radii of the circumscribed (5), §367 and $O m$ and $O^{\prime} m^{\prime}$ are radii of the inscribed (s).

We are to prove $\frac{E D}{E^{\prime} D^{\prime}}=\frac{O E}{O^{\prime} \cdot E^{\prime \prime}}=\frac{O m}{O^{\prime} m^{\prime}}$.
In the $\triangle O E D$ and $O^{\prime} E^{\prime} D^{\prime}$
the $\angle O E D, O D E, O^{\prime} E^{\prime} D^{\prime}$ and $O^{\prime} D^{\prime} E^{\prime}$ are equal, §371 (being halves of the equal \& $F E D, E D C, F^{\prime} E^{\prime} D^{\prime}$ and $E^{\prime} D^{\prime} C^{\prime}$);

$$
\therefore \text { the } \triangle O E D \text { and } O^{\prime} E^{\prime} D^{\prime} \text { are similar, }
$$

(if two \mathbb{Q} have two \mathbb{S} of the one equal respuctively to two \mathbb{S} of the other, they are similar).

$$
\therefore \frac{E D}{E^{\prime} D^{\prime}}=\frac{O E}{O^{\prime} E^{\prime \prime}},
$$

(the homologous sides of similar As are proportional).
Also,

$$
\frac{E D}{E^{\prime} D^{\prime}}=\frac{O m}{O^{\prime} m^{\prime}}
$$

(the homologous altitudes of similar \mathbb{A} have the same ratio as their homologous bases).
Q. E. D.

Proposition VI. Theorem.

374. The perimeters of similar regular polygons have the same ratio as the radii of their circumscribed circles, and, also as the radii of their inscribed circles.

Let P and P^{\prime} represent the perimeters of the two similar regular polygons $A B C$, etc., and $A^{\prime} B^{\prime} C^{\prime \prime}$, etc. From centres O, O^{\prime} draw $O E, O^{\prime} E^{\prime}$, and $\perp s m$ and $O^{\prime} m^{\prime}$.

We are to prove $\frac{P}{P^{\prime \prime}}=\frac{O E}{O^{\prime} E^{\prime}}=\frac{O m}{O^{\prime} m^{\prime}}$.

$$
\frac{P}{P^{\prime \prime}}=\frac{E D}{E^{\prime} D^{\prime}},
$$

(the perimeters of similar polygons have the same ratio as any two homologous sides).

Moreover, $\quad \frac{O E}{O^{\prime} E^{\prime}}=\frac{E D}{E^{\prime} D^{\prime}}$,
§ 373
(the homologous sides of similar regular polygons have the same ratio as the radii of their circumscribed (5).

Also

$$
\frac{O m}{O^{\prime} m^{\prime}}=\frac{E D}{E^{\prime} D^{\prime}},
$$

(the homologous sides of similar regular polygons have the same ratio as the radii of their inscribed (3).

$$
\therefore \frac{P}{P^{\prime}}=\frac{O E}{O^{\prime} E^{\prime}}=\frac{O m}{O^{\prime} m^{\prime}} .
$$

Proposition VII. Theorem.

375. The circumferences of circles have the same ratio as their radii.

Let C and C^{\prime} be the circumferences, R and R^{\prime} the radii of the two circles Q and Q^{\prime}.

We are to prove $C: C^{\prime \prime}:: R: R^{\prime}$.
Inscribe in the (5) two regular polygons of the same number of sides.

Conceive the number of the sides of these similar regular polygons to be indefinitely increased, the polygons continuing to be inscribed, and to have the same number of sides.

Then the perimeters will continue to have the same ratio as the radii of their circumscribed circles, (the perimeters of similar regular polygons have the same ratio as the radii of their circumscribed (),
and will approach indefinitely to the circumferences as their limits.
\therefore the circumferences will have the same ratio as the radii of their circles,

$$
\therefore C: C^{\prime}:: R: R^{\prime}
$$

Q. E. D.
376. Corollary. By multiplying by 2, both terms of the ratio $R: R^{\prime}$, we have

$$
C: C^{\prime}:: 2 R: 2 R^{\prime}
$$

that is, the circumferences of circles are to each other as their diameters.

Since
or,

$$
\begin{gathered}
C: C^{\prime}:: 2 R: 2 R^{\prime} \\
C: 2 R:: C^{\prime}: 2 R^{\prime} \\
\frac{C}{2 R}=\frac{C^{\prime}}{2 R^{\prime}}
\end{gathered}
$$

That is, the ratio of the circumference of a circle to its diameter is a constant quantity.

This constant quantity is denoted by the Greek letter π.
377. Sciolium. The ratio π is incommensurable, and therefore can be expressed only approximately in figures. The letter π, however, is used to represent its exact value.

Ex. 1. Show that two triangles which have an angle of the one equal to the supplement of the angle of the other are to each other as the products of the sides including the supplementary angles.
2. Show, geometrically, that the square described upon the sum of two straight lines is equivalent to the sum of the squares described upon the two lines plus twice their rectangle.
3. Show, geometrically, that the square described upon the difference of two straight lines is equivalent to the sum of the squares described upon the two lines minus twice their rectangle.
4. Show, geometrically, that the rectangle of the sum and difference of two straight lines is equivalent to the difference of the squares on those lines.

Proposition VIII. Theorem.

378. If the number of sides of a regular inscribed polygon be increased indefinitely, the apothem will be an increasing variable whose limit is the radius of the circle.

In the right triangle $O C A$, let $O A$ be denoted by l, $O C$ by r, and $A C$ by b.

We are to prove lim. $(r)=R$.

$$
r<R
$$

($n \perp$ is the shortest distance from a point to a straight line).
And

$$
l-r<b
$$

(one side of $a \Delta$ is greater than the difference of the other two sides).
By increasing the number of sides of the polygon indefinitely, $A B$, that is, $2 b$, can be made less than any assigned quantity.
$\therefore b$, the half of $2 b$, can be made less than any assigned quantity.
$\therefore k-r$, which is less than b, can be made less than any assigned quantity.

$$
\therefore \lim .(R-r)=0 .
$$

$\therefore R-\lim .(r)=0$.
$\therefore \lim (r)=I$.
Q. E. D.

Proposition IX. Theorem.

379. The area of a regular polygon is equal to one-half the product of its apothem by its perimeter.

Let P represent the perimeter and R the apothem of the regular polygon $A B C$, etc.

We are to prove the area of $A B C$, etc., $=\frac{1}{2} R \times P$.
Draw $O A, O B, O C$, etc.
The polygon is divided into as many \mathbb{S} as it has sides.
The apothem is the common altitude of these Δ, and the area of each Δ is equal to $\frac{1}{2} R$ multiplied by the base.
\therefore the area of all the \mathbb{A} is equal to $\frac{1}{2} R$ multiplied by the sum of all the bases.

But the sum of the areas of all the \mathbb{A} is equal to the area of the polygon,
and the sum of all the bases of the \mathbb{A} is equal to the perimeter of the polygon.
\therefore the area of the polygon $=\frac{1}{2} R \times P$.
Q. E. D.

Proposition X. Theorem.
380. The area of a circle is equal to one-half the product of its radius by its circumference.

Let R represent the radius, and C the circumference of a circle.

We are to prove the area of the circle $=\frac{1}{2} R \times C$.
Inscribe any regular polygon, and denote its perimeter by P, and its apothem by r.

Then the area of this polygon $=\frac{1}{2} r \times P, \quad \S 379$ (the area of a regular polygon is cqual to one-hulf the product of its apothem by the perimeter).
Conceive the number of sides of this polygon to be indefinitely increased, the polygon still continuing to be regular and inscribed.

Then the perimeter of the polygon approaches the circumference of the circle as its limit,
the apothem, the radius as its limit,
$\S 378$
and the area of the polygon approaches the \odot as its limit.
But the area of the polygon continues to be equal to onehalf the product of the apothem by the perimeter, however great the number of sides of the polygon.
\therefore the area of the $\odot=\frac{1}{2} R \times C$.
§ 199
Q.E.D.
381. Corollary 1. Since $\frac{C}{2 R}=\pi$,

$$
\therefore C=2 \pi R .
$$

In the equality, the area of the $\odot=\frac{1}{2} R \times C$, substitute $2 \pi R$ for C;

$$
\text { then the area of the } \odot=\frac{1}{2} R \times 2 \pi R \text {, }
$$

$$
=\pi l^{2}
$$

That is, the area of $a \odot=\pi$ times the square on its radius.
382. Cor. 2. The area of a sector equals $\frac{1}{2}$ the product of its radius by its arc; for the sector is such part of the circle as its are is of the circumference.
383. Def. In different circles similar ares, similar sectors, and similar segments, are such as correspond to equal angles at the centre.

Proposition XI. Theorem.

354. Two circles are to each olher as the squares on their radii.

Let R and l^{\prime} be the radii of the two circles Q and Q^{\prime}. We are to prove $\frac{Q}{Q^{\prime}}=\frac{R^{2}}{1 i^{\prime 2}}$.
Now

$$
Q=\pi R^{2}
$$

(the aren of $a \odot=\pi$ times the square on its radius),
and

$$
Q^{\prime}=\pi R^{\prime 2}
$$

$$
\oint 381
$$

Then

$$
\frac{Q}{Q^{\prime}}=\frac{\pi R^{2}}{\pi R^{\prime 2}}=\frac{R^{2}}{R^{\prime 2}} .
$$

Q. E. D.
385. Corollary. Similar arcs, being like parts of their respective circumferences, are to each other as their radii; similar sectors, being like parts of their respective circles, are to each other as the squares on their radii.

Proposition XII. Theorem.

386. Similar segments are to each other as the squares on their radii.

Let $A C$ and $A^{\prime} C^{\prime}$ be the radii of the two similar segments $A B P$ and $A^{\prime} B^{\prime} P^{\prime}$.
We are to prove $\frac{A B P}{A^{\prime} B^{\prime} P^{\prime \prime}}=\frac{\overline{A C}^{2}}{{\overline{A^{\prime} C^{\prime 2}}}^{2}}$.
The sectors $A C B$ and $A^{\prime} C^{\prime} B^{\prime}$ are similar, (having the \mathbb{Q}^{∞} at the centre, C^{\prime} and C^{\prime}, cqual).
In the $\triangle A C B$ and $A^{\prime} C^{\prime} B^{\prime}$

$$
\angle C=\angle C^{\prime}
$$

(being corresponding $\mathbb{\leftrightarrow}$ of similar sectors).

$$
\begin{aligned}
A C & =C B, & \S 163 \\
A^{\prime} C^{\prime} & =C^{\prime} B^{\prime} ; & \S 163
\end{aligned}
$$

\therefore the $\triangle A C^{\prime} B$ and $A^{\prime} C^{\prime} B^{\prime}$ are similar,
(having an \angle of the one equal to an \angle of the other, and the includiny sides proportional).

$$
\text { Now } \quad \frac{\text { sector } A \dot{C} B}{\text { sector } A^{\prime} C^{\prime} B^{\prime}}=\frac{\overline{A C^{2}}}{{\overline{A^{\prime} C^{\prime}}}^{2}} \text {, }
$$

(similar sectors are to each other as the squares on their radii);
and

$$
\frac{\triangle A C B}{\triangle A^{\prime} C^{\prime} B^{\prime}}=\frac{{\overline{A C^{2}}}^{2}}{{\overline{A^{\prime} C^{\prime}}}^{2}}
$$

(similar are to each other as the squares on their homologous sides).

$$
\text { Hence } \frac{\text { sector } A C B-\triangle A C B}{\text { sector } A^{\prime} C^{\prime} B^{\prime}-\triangle A^{\prime} C^{\prime} B^{\prime}}=\frac{\sqrt{C^{2}}}{\sqrt[A^{\prime} C^{\prime 2}]{2}} \text {, }
$$

$$
\text { or, } \quad \frac{\text { segment } A B P}{\text { segment } A^{\prime} B^{\prime} P^{\prime}}=\frac{\overline{A C^{2}}}{{\overline{A^{\prime} C^{2}}}^{2}} \text {, }
$$

(if two quantities be increased or diminished by like parts of each, the results will be in the same ratio as the quantitics themselves).

Exercises.

1. Show that an equilateral polygon circumscribed about a circle is regular if the number of its sides be odd.
2. Show that an equiangular polygon inscribed in a circle is regular if the number of its sides be odd.
3. Show that any equiangular polygon circumscribed about a circle is regular.
4. Show that the side of a circumscribed equilateral triangle is double the side of an inscribed equilateral triangle.
5. Show that the area of a regular inscribed hexagon is three-fourths of that of the regular circumscribed hexagon.
6. Show that the area of a regular inscribed hexagon is a mean proportional between the areas of the inscribed and circumscribed equilateral triangles.
7. Show that the area of a regular inscribed octagon is equal to that of a rectangle whose adjacent sides are equal to the sides of the inscribed and circumscribed squares.
8. Show that the area of a regular inscribed dodecagon is equal to three times the square on the radius.
9. Given the diameter of a circle 50 ; find the area of the circle. Also, find the area of a sector of 80° of this circle.
10. Three equal circles touch each other externally and thus inclose one acre of ground ; find the radius in rods of each of these circles.
11. Show that in two circles of different radii, angles at the centres subtended by arcs of equal length are to each other inversely as the radii.
12. Show that the square on the side of a regular inscribed pentagon, minus the square on the side of a regular inscribed decagon, is equal to the square on the radius.

On Constructions.

Proposition XIII. Problem.
387. To inscribe a regular polygon of any number of sides in a given circle.

Let Q be the given circle, and n the number of sides of the polygon.

It is required to inscribe in Q, a regular polygon having n sides.

Divide the circumference of the \odot into n equal arcs.
Join the extremities of these arcs.
Then we have the polygon required.
For the polygon is equilateral,
(in the same \odot equal arcs are subtended by equal chords);
and the polygon is also regular, (an equilateral polygon inscribed in $a \odot$ is regular).
Q.E. F.

Proposition XIV. Problem.

388. To inscribe in a given circle a regular polygon which has double the number of sides of a given inscribed regular polygon.

Let $A B C D$ be the given inscribed polygon.
It is required to inscribe a regular polygon having double the number of sides of $A B C D$.

Bisect the arcs $A B, B C$, etc.
Draw $A E, E B, B F$, etc.,
The polygon $A E B F C$, etc., is the polygon required.
For the chords $A B, B C$, etc., are equal, § 363 (being sides of a regular polygon).
\therefore the $\operatorname{arcs} A B, B C$, etc., are equal, (in the same \odot equal chords subtend equal arcs).

Hence the halves of these arcs are equal,
or, $\quad A E, E B, B F, F C$, etc., are equal ;
\therefore the polygon $A E B F$, etc., is equilateral.
The polygon is also regular, § 364 (an equilateral polygon inscribed in a \odot is regular);
and has double the number of sides of the given regular polygon.

Proposition XV. Problem.

389. To inscribe a square in a given circle.

Let O be the centre of the given circle.
It is required to inscribe a square in the circle.
Draw the two diameters $A C$ and $B D \perp$ to each other.
Join $A B, B C, C D$, and $D A$.
Then $A B C D$ is the square required.
For, the $\angle S A B C, B C D$, etc., are rt. $\angle s, \quad \S 204$ (being inscribed in a semicircle),
and the sides $A B, B C$, etc., are equal, § 181 (in the same \odot equal arcs are subtended by equal chords);
\therefore the figure $A B C D$ is a square,
(having its sides equal and its $\mathbb{S} r$ t. ©).
Q. E. F.
390. Corollary. By bisecting the arcs $A B, B C$, etc., a regular polygon of 8 sides may be inscribed ; and, by continuing the process, regular polygons of $16,32,64$, etc., sides may be inscribed.

Proposition XVI. Problem.

391. To inscribe in a given circle a regular hexagon.

Let O be the centre of the given circle.
It is required to inscribe in the given \odot a regular hexagon. From O draw any radius, as $O C$.

From C as a centre, with a radius equal to $O C$, describe an are intersecting the circumference at F. Draw $O F$ and $C F$.

Then $C F$ is a side of the regular hexagon required.
For the $\triangle O F^{\prime} C$ is equilateral, Cons. and equiangular,
\therefore the $\angle F O C$ is $\frac{1}{3}$ of 2 rt . $\angle \mathrm{s}$, or, $\frac{1}{6}$ of $4 \mathrm{rt} . \angle \mathrm{s} . ~ § 98$
\therefore the arc $F C$ is $\frac{1}{6}$ of the circumference $A B C F$,
\therefore the chord $F C$, which subtends the arc $F C$, is a side of a regular hexagon ;
and the figure CFD, etc., formed by applying the radius six times as a chord, is the hexagon required.

> Q. E. F.
392. Corollary 1. By joining the alternate vertices A, C, D, an equilateral Δ is inscribed in a circle.
393. Cor. 2. By bisecting the arcs $A B, B C$, etc., a regular polygon of 12 sides may be inscribed in a circle; and, by continuing the process, regular polygons of 24,48 , etc., sides may be inscribed.

Proposition XVII. Problem.

394. To inscribe in a given circle a regular decagon.

Let O be the centre of the given circle.
It is required to inscribe in the given \odot a regular decagon.
Draw the radius $O C$,
and divide it in extreme and mean ratio, so that $O C$ shall be to $O S$ as $O S$ is to $S C$.

From C as a centre, with a radius equal to $O S$, describe an are intersecting the circumference at B.

$$
\text { Draw } B C, B S \text {, and } B O \text {. }
$$

Then $B C$ is a side of the regular decagon required.
For

$$
O C: O S:: O S: S C
$$

$$
B C=O S
$$

Substitute for $O S$ its equal $B C$,
then

$$
O C: B C:: B C: S C .
$$

Moreover the $\angle O C B=\angle S C B$,
Iden.
\therefore the $\triangle O C B$ and $B C S$ are similar, $\$ 284$ (having an \angle of the me equal to an \angle of the other, and the including sides proportional).

But the $\triangle O C B$ is isosceles, § 160 (its sides $O C$ and $O B$ being radii of the sume circle).
\therefore the $\triangle B C S$, which is similar to the $\triangle O C B$, is isosceles,

and	$B S=B C$,	$\S 114$
But	$O S=B C$,	Cons.
$\therefore O S$	$=B S$,	Ax. 1

\therefore the $\triangle S O B$ is isosceles,
and
the $\angle O=\angle S B O$,
(being opposite equal sides).

$$
\text { But the } \angle C S B=\angle O+\angle S B O
$$

(the exterior \angle of $a \Delta$ is equal to the sum of the two opposite interior \&s).
\therefore the $\angle C S B=2 \angle 0$.

$$
\angle S C B(=\angle C S B)=2 \angle O
$$

and

$$
\angle O B C(=\angle S C B)=2 \angle O
$$

\therefore the sum of the \triangle of the $\triangle O C B=5 \angle O$.

$$
\therefore 5 \angle O=2 \mathrm{rt.} . \Delta,
$$

and $\quad \angle O=\frac{1}{6}$ of $2 \mathrm{rt} . \angle \mathrm{s}$, or $\frac{1}{10}$ of $4 \mathrm{rt}$. . $\angle \mathrm{s}$.
\therefore the arc $B C$ is $\frac{1}{10}$ of the circumference, and
\therefore the chord $B C$ is a side of a regular inscribed decagon.
Hence, to inscribe a regular decagon, divide the radius in extreme and mean ratio, and apply the greater segment ten times as a chord.
Q. E. F.
395. Corollary 1. By joining the alternate vertices of a regular inscribed decagon, a regular pentagon may be inscribed.
396. Cor. 2. By bisecting the ares $B C, C F$, etc., a regular polygon of 20 sides may be inscribed, and, by continuing the process, regular polygons of 40,80 , etc., sides may be inscribed.

Proposition XVIII. Problem.

397. To inscribe in a given circle a regular pentedecagon, or polygon of fifteen sides.

Let Q be the given circle.
It is required to inscribe in Q a regular pentedecagon.
Draw $E H$ equal to a side of a regular inscribed hexagon, § 391 and $E F$ equal to a side of a regular inscribed decagon. § 394 Join $F H$.

Then $F H$ will be a side of a regular inscribed pentedecagon.
For the arc $E H$ is $\frac{1}{6}$ of the circumference, and the are $E F$ is $\frac{1}{10}$ of the circumference ;
\therefore the arc $F H$ is $\frac{1}{6}-\frac{1}{10}$, or $\frac{1}{15}$, of the circumference.
\therefore the chord $F H$ is a side of a regular inscribed pentedecagon,
and by applying $F H$ fifteen times as a chord, we have the polygon required.
Q. E. F.
398. Corollary. By bisecting the arcs F II, H A, etc., a regular polygon of 30 sides may be inscribed; and by continuing the process, regular polygons of 60,120 , etc. sides may be inscribed.

Proposition XIX. Problem.

399. To inscribe in a given circle a regular polygon similar to a givenr regular polygon.

Let $A B C D$, etc., be the given regular polygon, and $C^{\prime} D^{\prime} E^{\prime}$ the given circle.

It is required to inscribe in $C^{\prime} D^{\prime} E^{\prime}$ a regular polygon. similar to $A B C D$, etc.

From O, the centre of the polygon $A B C D$, etc. draw $O D$ and $O C$.

From O^{\prime} the centre of the $\odot C^{\prime} D^{\prime} E^{\prime}$,

$$
\begin{gathered}
\text { draw } O^{\prime} C^{\prime} \text { and } O^{\prime} D^{\prime} \text {, } \\
\text { making the } \angle O^{\prime}=\angle O
\end{gathered}
$$

Draw $C^{\prime} D^{\prime}$.
Then $C^{\prime} D^{\prime}$ will be a side of the regular polygon required.
For each polygon will have as many sides as the $\angle 0$ $\left(=\angle O^{\prime}\right)$ is contained times in $4 \mathrm{rt} . ~ \boxed{~}$.
\therefore the polygon $C^{\prime} D^{\prime} E^{\prime}$, etc. is similar to the polygon $C D E$, etc., § 372
(two regular polygons of the same number of sides are similar).
Q. E. F.

Proposition XX. Problem.

400. To circumscribe about a circle a regular polygon similar to a given inscribed regular polygon.

Let $H M R S$, etc., be a given inscribed regular polygon.
It is required to circumscribe a regular polygon similar to HMRS, etc.

At the vertices H, M, R, etc., draw tangents to the \odot, intersecting each other at A, B, C, etc.

Then the polygon $A B C D$, etc. will be the regular polygon required.

Since the polygon $A B C D$, etc.
has the same number of sides as the polygon $H M R S$, etc.,
it is only necessary to prove that $A B C D$, etc. is a regular polygon.

In the $\triangle \triangle B H M$ and $C M R$,

$$
H M=M R
$$

the $\angle B H M, B M H, C M R$, and $C R M$ are equal, $\S 209$ (being measured by halves of equal arcs);
\therefore the $\triangle B H M$ and $C M R$ are equal,
§ 107
(having a side and two udjacent \&of the one equal respectively to a side and two adjacent \&s of the other).

$$
\therefore \angle B=\angle C
$$

(being homologous $\mathbb{\star}$ of equal ©).
In like manner we may prove $\angle C=\angle D$, etc.
\therefore the polygon $A B C D$, etc., is equiangular.
Since the $\triangle B H M, C M R$, etc. are isosceles, $§ 241$ (two tangents drawn from the same point to a \odot.are equal),
the sides $B H, B M, C M, C R$, etc. are equal, (being homologous sides of equal isosceles ©).
\therefore the sides $A B, B C, C D$, etc. are equal, Ax. 6 and the polygon $A B C D$, etc. is equilateral.
Therefore the circumscribed polygon is regular and similar to the given inscribed polygon.

Ex. Let R denote the radius of a regular inscribed polygon, r the apothem, a one side, A one angle, and C the angle at the centre ; show that

1. In a regular inscribed triangle $a=R \sqrt{3}, \quad r=\frac{1}{2} R$, $A=60^{\circ}, C=120^{\circ}$.
2. In an inscribed square $a=R \sqrt{2}, r=\frac{1}{2} R \sqrt{2}, A=90^{\circ}$, $C=90^{\circ}$.
3. In a regular inscribed hexagon $a=R, r=\frac{1}{2} R \sqrt{3}$, $A=120^{\circ}, C=60^{\circ}$.
4. In a regular inscribed decagon $a=\frac{R(\sqrt{5}-1)}{2}$, $r=\frac{1}{4} R \sqrt{10+2 \sqrt{5}}, A=144^{\circ}, C=36^{\circ}$.

Proposition XXI. Problem.

401. To find the value of the chord of one-half an arc, in terms of the chord of the whole arc and the radius of the circle.

Let $A B$ be the chord of arc $A B$ and $A D$ the chord of one-half the arc $A B$.

It is required to find the value of ΛD in terms of $A B$ and R (radius).

From D draw $D H$ through the centre O,

$$
\text { and draw } O A
$$

$H D$ is \perp to the chord $A B$ at its middle point $C, \S 60$ (two points, O and D, equelly distant from the extremitics, A and B, determine the position of $a \perp$ to the middle point of $A B$).

$$
\begin{aligned}
& \text { The } \angle H A D \text { is a rt. } \angle \text {, } \\
& \text { (being inscribed in a sernicircle), }
\end{aligned}
$$

$$
\therefore A \bar{D}^{2}=D H \times D C
$$

(the square on one side of a rt. \triangle is equal to the product of the hyppotenuse by the adjacent segment made by the \perp let fall from the vertex of the $r t . \angle$).

$$
\begin{array}{cc}
\text { Now } & D H=2 R \\
\text { and } & D C=D O-C O=R-C O \\
& \therefore A \bar{D}^{2}=2 R(R-C O)
\end{array}
$$

Since $A C O$ is a rt. \triangle,

$$
\begin{array}{r}
\overline{A O^{2}}={\overline{A C^{2}}+\overline{C O}^{2}}_{\therefore \overline{C O} \bar{O}^{2}={\overline{A O^{2}}-\overline{A C}^{2}}_{\therefore C O=}=\sqrt{\left({\left.\overline{A O^{2}}-\overline{A C^{2}}\right)}^{\therefore C O}\right.}}^{=\sqrt{R^{2}-\left(\frac{1}{2} A B\right)^{2}},} \\
=\sqrt{R^{2}-\frac{1}{4} \overline{B B}^{2}} \\
=\sqrt{\frac{4 R^{2}-\overline{A B}^{2}}{4}} \\
=\frac{\sqrt{4 R^{2}-\overline{A B}}}{2}
\end{array}
$$

In the equation $A D^{2}=2 R(R-C O)$, substitute for $C O$ its value $\frac{\sqrt{4 R^{2}-\overline{A B}}}{2}$;
then

$$
\begin{aligned}
A D^{2} & =2 R\left(R-\frac{\sqrt{4 R^{2}-\overline{A B^{2}}}}{2}\right) \\
& =2 R^{2}-R\left(\sqrt{4 R^{2}-\overline{A B^{2}}}\right) . \\
\therefore A D= & \sqrt{2 R^{2}-R\left(\sqrt{4 R^{2}-\overline{A b^{2}}}\right) .} .
\end{aligned}
$$

Q. E. F.
402. Corollary. If we take the radius equal to unity, the equation $A D=\sqrt{2 R^{2}-R\left(\sqrt{4 l^{2}-\bar{A} \bar{B}^{2}}\right)}$ becomes

$$
A D=\sqrt{2-\sqrt{4-\overline{A B^{2}}}}
$$

Proposition XXII. Problem.

403. To compute the ratio of the circumference of a circle to its cliameter, approximately.

Let C be the circumference and l the radius of a circle.
Since

$$
\pi=\frac{C}{2 R}
$$

$$
\text { when } R=1, \pi=\frac{C}{2}
$$

It is required to find the numerical value of π.
We make the following computations by the use of the formula obtained in the last proposition,

$$
A D=\sqrt{2-\sqrt{4-\overline{A B}^{2}}}
$$

when $A B$ is a side of a regular hexagon :
In a polygon of

No. Sides.	Forin of Computation.	Length of side.	Perimeter.
12	$A D=\sqrt{2-\sqrt{4-1^{2}}}$.51763809	6.21165708
24	$A D=\sqrt{2-\sqrt{4-(.51763809)^{2}}}$.26105238	6.26525722
48	$A D=\sqrt{2-\sqrt{4-(.26105238)^{2}}}$.13080626	6.27870041
96	$A D=\sqrt{2-\sqrt{4-(.13080626)^{2}}}$.06543817	6.28206396
192	$A D=\sqrt{2-\sqrt{4-(.06543817)^{2}}}$.03272346	6.28290510
384	$A D=\sqrt{2-\sqrt{4-(.03272346)^{2}}}$.01636228	6.28311544
768	$A D=\sqrt{2-\sqrt{4-(.01636228)^{2}}}$.00818121	6.28316941

Hence we may consider 6.28317 as approximately the circumference of a \odot whose radius is unity.

$$
\therefore \pi, \text { which equals } \frac{C}{2},=\frac{6.28317}{2}
$$

On Isoperimetrical Polygons. - Supplementary.
404. Def. Isoperimetrical figures are figures which have equal perimeters.
405. Def. Among magnitudes of the same kind, that which is greatest is a Maximum, and that which is smallest is a Minimum.

Thus the diameter of a circle is the maximum among all inseribed straight lines; and a perpendicular is the minimum among all straight lines drawn from a point to a given straight line.

Proposition XXIII. Theorem.

406. Of all triangles having two sides respectively equal, that in which these sides include a right angle is the maximum.

Let the triangles $A B C$ and $E B C$ have the sides $A B$ and $B C$ equal respectively to $E B$ and $B C$; and let the angle $A B C$ be a right angle.
We are to prove $\triangle A B C>\triangle E B C$.
From E, let fall the $\perp E D$.
The $\triangle A B C$ and $E B C$, having the samre base $B C$, are to each other as their altitudes $A B$ and $E D$, § 326
(A having the same base are to cach other as their altitudes).
Now
$E D$ is $<E B$,
§ 52
($a \perp$ is the shortest distance from a-point to a straight line).
But

$$
E B=A B
$$

Нур.
$\therefore E D$ is $<A B$.
$\therefore \triangle A B C>\triangle E B C$.
Q. E. D.

Proposition XXIV. Theorem.
407. Of all polygons formed of sirles all given but one, the polygon inscribed in a semicircle, having the undetermined side for its diameter, is the maximum.

Let $A B, B C, C D$, and $D E$ be the sides of a polygon inscribed in a semicircle having $A E$ for its diameter.

We are to prove the polygon $A B C D E$ the maximum of polygons having the sides $A B, B C, C D$, and $D E$.

From any vertex, as C, draw $C A$ and $C E$.
Then the $\angle A C E$ is a rt. \angle,
§ 204 (being inseribed in a semicircle).

Now the polygon is divided into three parts, $A B C, C D E$, and $A C E$.

The parts $A B C$ and $C D E$ will remain the same, if the $\angle A C E$ be increased or diminished ;
but the part $A C E$ will be diminished, § 406
(of all A having two sides respectively equal, that in which these sides include a rt. \angle is the maximum).
$\therefore A B C D E$ is the maximum polygon.
Q. E. D.

Proposition XXV. Theorem.
408. The maximum of all polygons formed of given sides can be inscribed in a circle.

Let $A B C D E$ be a polygon inscribed in a circle, and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ be a polygon, equilateral with respect to ABCDE, but which cannot be inscribed in a circle.

We are to prove
the polygon $A B C D E>$ the polygon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.
Draw the diameter $A H$.
Join $C H$ and $D H$.
Upon $C^{\prime \prime} D^{\prime}(=C D)$ construct the $\triangle C^{\prime} H^{\prime} D^{\prime}=\triangle C H D$, and draw $A^{\prime} H^{\prime}$.
Now the polygon $A B C H>$ the polygon $A^{\prime} B^{\prime} C^{\prime} H^{\prime}, \S 407$ (of all polygons formed of sides all given but one, the polygon inseribed in a semicircle having the undetermined side for its diameter, is the maximum).
And the polygon $A E D H>$ the polygon $A^{\prime} E^{\prime} D^{\prime} H^{\prime}$. § 407 Add these two inequalities, then the polygon $A B C H D E>$ the polygon $A^{\prime} B^{\prime} C^{\prime} H^{\prime} D^{\prime} E^{\prime}$.
Take away from the two figures the equal $\triangle C H D$ and $C^{\prime} H^{\prime} D^{\prime}$.

Then the polygon $A B C D E>$ the polygon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$. Q. E. D.

Proposition XXVI. Theorem.
409. Of all triangles having the same base and equal perimeters, the isosceles triangle is the naximum.

Let the $\mathbb{A} A C B$ and $A D B$ have equal perimeters, and let the $\triangle A C B$ be isosceles.

We are to prove $\quad \triangle A C B>\triangle A D B$.
Draw the s $C E$ and $D F$.

$$
\frac{\triangle A C B}{\triangle A B D}=\frac{C E}{D F},
$$

(B having the same base are to each other as their altitudes).
Produce $A C$ to H, making $C H=A C$.
Draw II B.
The $\angle A B H$ is a rt. \angle, for it will be inscribed in the semicircle drawn from C as a centre, with the radius $C B$.

From C let fall the $\perp C K$;

and from D as a centre, with a radius equal to $D B$, describe an arc cutting $H B$ produced, at P.

$$
\text { Draw } D P \text { and } A P
$$ and let fall the $\perp D M$.

Since

$$
A H=A C+C B=A D+D B
$$

and

$$
\begin{gathered}
A P<A D+D P \\
\therefore A P<A D+D B \\
\therefore A H>A P . \\
\therefore B H>B P .
\end{gathered}
$$

Now

$$
B K=\frac{1}{2} B H,
$$

($a \perp$ draum from the vertex of an isosceles \triangle bisects the base),
and

$$
B M=\frac{1}{2} B P .
$$

But

$$
C E=B K,
$$

(lls comprehended betueen lis are equal);
and

$$
D F=B M,
$$

$$
\therefore C E>D F
$$

$$
\therefore \triangle A C B>\triangle A D B
$$

Pruposition XXVII. Theorem.

410. The maximum of isoperimetrical polygons of the same number of sides is equilateral.

Let $A B C D$, etc., be the maximum of isoperimetrical polygons of any given number of sides.
We are to prove $A B, B C, C D$, etc., equal.
Draw $A C$.
The $\triangle A B C$ must be the maximum of all the \triangle which are formed upon $A C$ with a perimeter equal to that of $\triangle A B C$.

Otherwise, a greater $\triangle A K C$ could be substituted for $\triangle A B C$, without changing the perimeter of the polygon.

But this is inconsistent with the hypothesis that the polygon $A B C D$, etc., is the maximum polygon.

$$
\therefore \text { the } \triangle A B C, \text { is isosceles, } \S 409
$$

(of all Δ having the same base and equal perimeters, the isosceles \triangle is the maximum).
In like manner it may be proved that $B C=C D$, etc.

> Q. E. D.
411. Corollary. The maximum of isoperimetrical polygons of the same number of sides is a regular polygon.

For, it is equilateral,
§ 410
(the maximum of isoperimetrical polygons of the same number of sides is equilateral).

$$
\text { Also it can be inscribed in a } \odot, \quad \S 408
$$ (the maximum of all polygons formed of given sides can be inseribed in a \odot).

> Hence it is regular,
§ 364
(an equilateral polygon inscribed in a \odot is reqular).

Proposition XXVIII. Theorem.
412. Of isoperimetrical regular polygons, that is greatest which has the greatest number of sides.

Let Q be a regular polygon of three sides, and Q^{\prime} be a regular polygon of four sides, each having the same perimeter.

We are to prove $\quad Q^{\prime}>Q$.
In any side $A B$ of Q, take any point D.
The polygon Q may be considered an irregular polygon of four sides, in which the sides $A D$ and $D B$ make with each other an \angle equal to two rt. $\angle s$.

Then the irregular polygon Q, of four sides is less than the regular isoperimetrical polygon Q^{\prime} of four sides, § 411 (the maximum of isoperimetrical polygons of the same number of sides is a regular polygon).

In like manner it may be shown that Q^{\prime} is less than a regular isoperimetrical polygon of five sides, and so on.
Q. E. D.
413. Corollary. Of all isoperimetrical plane figures the circle is the maximum.

Proposition XXIX. Theorem.
414. If a regular polygon be constructed with a given area, its perimeier will be the less the greater the number of its sides.

Let Q and Q^{\prime} be regular polygons having the same area, and let Q^{\prime} have the greater number of sides. We are to prove the perimeter of $Q>$ the perimeter of Q^{\prime}.

Let $Q^{\prime \prime}$ be a regular polygon having the same perimeter as Q^{\prime}, and the same number of sides as Q.

Then

$$
Q^{\prime} \text { is }>Q^{\prime \prime}
$$

(of isoperimetrical regular polygons, that is the greatest which has the greatest number of sides).

But

$$
Q=Q^{\prime},
$$

$$
\therefore Q \text { is }>Q^{\prime \prime} \text {. }
$$

\therefore the perimeter of Q is $>$ the perimeter of $Q^{\prime \prime}$.
But the perimeter of $Q^{\prime}=$ the perimeter of $Q^{\prime \prime}, \quad$ Cons.
\therefore the perimeter of Q is $>$ that of Q^{\prime}.
Q. E. D.
415. Corollary. The circumference of a circle is less than the perimeter of any other plane figure of equal area.

On Symmetry. - Supplementary.

416. Two points are Symmetrical when they are situated on opposite sides of, and at equal distances from, a fixed point, line, or plane, taken as an object of reference.
417. When a point is taken as an object of reference, it is called the Centre of Symmetry; when a line is taken, it is called the Axis of Symmetry; when a plane is taken, it is called the Plane of Symmetry.
418. Two points are symmetrical with respect to a centre, if the centre bisect the straight line terminated by these points. Thus, P, P^{\prime} are symmetrical with respect to C, if C bisect the straight line $P P^{\prime \prime}$.

419. The distance of either of the two symmetrical points from the centre of symmetry is called the Radius of Symmetry. Thus either $C P$ or $C P^{\prime}$ is the radius of symmetry.
420. Two points are symmetrical with respect to an axis, if the axis bisect at right angles the straight line terminated by these points. Thus, P, P^{\prime} are symmetrical with respect to the axis $X X^{\prime}$, if $X X^{\prime}$ bisect $P P^{\prime}$ at
 right angles.
421. Two points are symmetrical with respect to a plane, if the plane bisect at right angles the straight line terminated by these points. Thus P, P^{\prime} are symmetrical with respect to $M N$, if $M N$ bisect $P P^{\prime}$ at right angles.

422. Two plane figures are symmetrical with respect to a centre, an axis, or a plane, if every point of either figure have its corresponding symmetrical point in the other.

Fig. 1.
Thus, the lines $A B$ and $A^{\prime} B^{\prime}$ are symmetrical with respect to the centre C (Fig. 1), to the axis $X^{\prime} X^{\prime}$ (Fig. 2), to the plime $M N$ (Fig. 3), if - every point of either have its corresponding symmetrical point in the other.

Fig. 4.

Fig. 5.

Fig. 6.

Also, the triangles $A B D$ and $A^{\prime} B^{\prime} D^{\prime}$ are symmetrical with respect to the centre C (Fig. 4), to the axis $X^{\prime} X^{\prime}$ (Fig. 5), to the plane $M N$ (Fig. 6), if every point in the perimeter of either have its corresponding symmetrical point in the perimeter of the other.
423. Def. In two symmetrical figures the corresponding symmetrical points and lines are called homologous.

Two symmetrical figures with respect to a centre can be brought into coincidence by revolving one of them in its own plane about the centre, every radius of symmetry revolving through two right angles at the same time.

Two symmetrical figures with respect to an axis can be brought into coincidence by the revolution of either about the axis until it comes into the plane of the other.
424. DeF. A single figure is a symmetrical figure, either when it can be divided by an axis, or plane, into two figures symmetrical with respect to that axis or plane; or, when it has a centre such that every straight line drawn through it cuts the perimeter of the figure in two points which are symmetrical with respect to that centre.

Fig. 1.

Fig. 2.

Thus, Fig. 1 is a symmetrical figure with respect to the axis $X X^{\prime}$, if divided by $X X^{\prime}$ into figures $A B C D$ and $A B^{\prime} C^{\prime} D$ which are symmetrical with respect to $X X^{\prime}$.

And, Fig. 2 is a symmetrical figure with respect to the centre O, if the centre O bisect every straight line drawn through it and terminated by the perimeter.

Every such straight line is called a diameter.
The circle is an illustration of a single figure symmetrical with respect to its centre as the centre of symmetry, or to any diameter as the axis of symmetry.

Proposition XXX. Theorem.

425. Two equal and parallel lines are symmetrical with respect to a centre.

Let $A B$ and $A^{\prime} B^{\prime}$ be equal and parallel lines.
We are to prove $A B$ and $A^{\prime} B^{\prime}$ symmetrical.
Draw $A A^{\prime}$ and $B B^{\prime}$, and through the point of their intersection C, draw any other line $H C H^{\prime}$, terminated in $A B$ and $A^{\prime} B^{\prime}$.

In the $\triangle C A B$ and $C A^{\prime} B^{\prime}$

$$
A B=A^{\prime} B^{\prime}, \quad \text { Нур. }
$$

also, $\measuredangle A$ and $B=\measuredangle A^{\prime}$ and B^{\prime} respectively, $\S 68$ (being alt.-int. ©), $\therefore \triangle C A B=\triangle C A^{\prime} B^{\prime}$;
$\therefore C A$ and $C B=C A^{\prime}$ and $C B^{\prime}$ respectively, (beiny homologous sides of equal \&).
Now in the $\triangle A C H$ and $A^{\prime} C H^{\prime}$

$$
A C=A^{\prime} C
$$

$\triangle S A$ and $A C H=\measuredangle \subseteq A^{\prime}$ and $A^{\prime} C H^{\prime}$ respectively,

$$
\therefore \triangle A C H=\triangle A^{\prime} C H^{\prime},
$$

(having a side and two adj. ©s of the one equal respectively to a side and two a(j). ©s of the other).

$$
\therefore C H=C H^{\prime},
$$

(being homoloyous sides of equal ©).
$\therefore H^{\prime}$ is the symmetrical point of H.
But H is any point in $A B$;
\therefore every point in $A B$ has its symmetrical point in $A^{\prime} B^{\prime}$.
$\therefore A B$ and $A^{\prime} B^{\prime}$ are symmetrical with respect to C as a centre of symmetry.
Q. E. D.
426. Corollary. If the extremities of one line be respectively the symmetricals of another line with respect to the same centre, the two lines are symmetrical with respect to that centre.

Proposition XXXI. Theorem.
427. If a figure be symmetrical with respect to two axes perpendicular to each other, it is symmetrical with respect to their intersection as a centre.

Let the figure $A B C D E F G H$ be symmetrical to the t wo axes $X X^{\prime}, Y Y^{\prime}$ which intersect at O.
We ure to prove O the centre of symmetry of the figure.
Let I be any point in the perimeter of the figure.
Draw $I K L \perp$ to $X^{\prime} X^{\prime}$, and $I M N \perp$ to $Y Y^{\prime}$.
Join $L O, O N$, and $K M$.
Now

$$
K I=K L
$$

(the figure being symmetrical with respect to $X X^{\prime}$).
But

$$
K I=O M,
$$

(lls comprehended between \|ls are egual).

$$
\therefore K L=O M .
$$

$\therefore K L O M$ is a \square,
(having two sides equal and parallel).
$\therefore L O$ is equal and parallel to $K M$,
§ 134 (being oppposite sides of a \square).
In like manner we may prove $O N$ equal and parallel to $K M$.
Hence the points L, O, and N are in the same straight line drawn through the point $O \|$ to $K M$.

Also

$$
L O=O N
$$

(since each is equal to $K M$).
\therefore any straight line $L O N$, drawn through O, is bisected at 0 .
$\therefore O$ is the centre of symmetry of the figure.

Exercises.

1. The area of any triangle may be found as follows: From half the sum of the three sides subtract each side severally, multiply together the half sum and the three remainders, and extract the square root of the product.

Denote the sides of the triangle $A B C$ by a, b, c, the altitude by p, and $\frac{a+b+c}{2}$ by s. Show that

$$
a^{2}=b^{2}+c^{2}-2 c \times A D
$$

$A D=\frac{b^{2}+c^{2}-a^{2}}{2 c}$;
and show that

$$
\begin{aligned}
& p^{2}=b^{2}-\frac{\left(b^{2}+c^{2}-a^{2}\right)^{2}}{4 c^{2}}, \\
& p=\frac{\sqrt{4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}}}{2 c}, \\
& p=\frac{\sqrt{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}}{2 c} .
\end{aligned}
$$

Hence, show that area of $\triangle A B C$, which is equal to $\frac{6 \times p}{2}$,

$$
\begin{aligned}
& =\frac{1}{4} \sqrt{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}, \\
& =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

2. Show that the area of an equilateral triangle, each side of Which is denoted by a, is equal to $\frac{a^{2} \sqrt{3}}{4}$.
3. How many acres are contained in a triangle whose sides are respectively 60,70 , and 80 chains?
4. How many feet are contained in a triangle each side of which is 75 feet?
8

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

	MAY 13 1946
JCT 141937	
FEB 71938	$5 \text { Avonf }$ $\frac{5}{8!\operatorname{lin} 50 i f}$
	20Mar 5650
FEB 41939	-
NOV 6193	
	$\log _{\operatorname{lig}_{8}} 1956$
FED 11941	REC'D LD
0CT 271942	FEB 221962
	DRE0
MAR 101943	MAY 4-1966 30
	$26^{\circ} 6540$ CD
Hon 10 192	
	LD $21-95 m \cdot 7 ; 37$

UNIVERSITY OF CALIFORNIA LIBRARY

[^0]: Phillips Exeter Academy, January, 1879.

[^1]: Add to each the $\angle A B C$;
 then

 $$
 \angle A B D=\angle F B C
 $$

 $$
 \therefore \triangle A B D=\triangle F B C
 $$

 Now $\quad \square B L$ is double $\triangle A B D$, (being on the same base $B D$, and between the same $\| s, A L$ and $B D$), and square $A F$ is double $\triangle F B C$,
 (being on the same base $F B$, and between the same $\| s, F B$ and $G C$);

 $$
 \therefore \square B L=\text { square } A F \text {. }
 $$

 In like manner, by joining $A E$ and $B K$, it may be proved

