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PREFACE

THIS book is an extension of a course of lectures prepared
originally by the authors for students of marine and mechanical

engineering and naval architecture in their classes at Webb's

Academy and Columbia University.

Graphical methods have had their widest application in the

analysis of the stresses in stationary structures, and therefore

the majority of the text-books on this subject have been written

for civil engineers. For the use of students of mechanical
and marine engineering, and as of possible service to engin-
eers in those professions, this book gives a brief review of the

principles of graphics and their application both to framed

structures and to mechanism. The text has been illustrated

fully by diagrams ;
occasional references have been furnished

to sources of additional information ;
the principles of Applied

Mechanics and of Strength of Materials which are involved in

graphic processes have been discussed where necessary; and

numerous problems have been assigned to test the students'

knowledge of the subject.

The authors desire to acknowledge their indebtedness to the

works of the pioneers in this science Culmann, Hermann,

Cremona, and Reuleaux whose methods have been freely

used.

NEW YORK, July I, 1910.

Hi

235521





CONTENTS

CHAPTER I

PAGB

GRAPHIC ARITHMETIC i

Art. i. Definitions 2. Graphic Arithmetic 3. Addition and
Subtraction 4. Multiplication 5. Division 6. Multiplication

by Ratios 7. Powers 8. Roots.

CHAPTER II

GRAPHIC MEASUREMENT OF AREAS 15

Art. 9. Triangular Areas 10. Quadrilateral Areas n. Areas

of Polygons having More than Four Sides 12. Areas of Figures
whose Peripheries are partially or wholly Curvilinear.

CHAPTER III

FORCES: CONCURRENT; NON-CONCURRENT, NON-PARALLEL . . 23

Art. 13. Definitions 14. Parallelogram of Forces
; Composi-

tion and Resolution of Forces 15. The Force Triangle 16. The
Force (Vector) Polygon 17. The Force Polygon is essentially the

Graphic Addition of Forces 18. The Force Polygon as applied
to Non-concurrent Forces 19. Jointed Frame in Equilibrium under

the Action of External Forces 20. The Equilibrium (Funicular
or Cord) Polygon 21. Resultant of Complanar, Non-concurrent

Forces 22. Equilibrium of Complanar Forces.

CHAPTER IV

PARALLEL FORCES; COUPLES; CENTRE OF GRAVITY ... 40

Art. 23. Force Polygon for Parallel Forces 24. Equilibrium of

Parallel Forces 25. Composition and Resolution of Parallel Forces

26. Parallel Forces Equal in Magnitude and with Lines of Action

at Equal Distances Apart 27. Couples 28. Centroid; Centre

of Gravity 29. Centre of Gravity of a Line 30 Centre of Gravity

of Polygonal Areas 31. Centre of Gravity of Curvilinear Areas

32. Centre of Gravity of Compound Areas 33. Centre of Gravity

of Partial Areas 34. Centre of Gravity of Irregular Areas.



VI CONTENTS

CHAPTER V
PAGE

MOMENTS 63

Art. 35. Moment of a Force with Respect to a Point 36. Mo-

ments of Complanar, Non-parallel Forces with Respect to a Point

37. Moments of Complanar, Parallel Forces with Respect to a

Point 38. Moment of a Couple with Respect to Any Point in its

Plane 39. Moment of the Resultant of Any System of Complanar
Forces 40. Conditions of Equilibrium 41. Bending Moment

42. Combined Bending Moments 43. Moment of a Force with

Respect to an Axis 44. Moment of an Area with Respect to an

Axis in its Plane
;
Centre of Gravity 45 . Moment of Inertia

;
Ra-

dius of Gyration 46. Moment of Inertia of a System of Complanar,
Parallel Forces 47. Moment of Inertia of an Area 48. Higher
Moment Surfaces; the nth Moment of an Area 49. Twisting
Moment

;
Polar Moment of Inertia 50. Twisting and Bending

Moments Combined.

CHAPTER VI

THE FUNDAMENTAL THEORY OF BEAMS 100

Art. 51. Definitions 52. Fundamental Laws of Tension and

Compression 53. Elasticity 54. Reactions at the Supports

55. The Vertical Shear 56. Shear Diagrams 57. The Bending
Moment 58. Relation between Bending Moment and Vertical

Shear 59. Maximum Bending Moment 60. Internal Stresses

and External Forces 61. Neutral Surface and Neutral Axis

62. Shearing Force and Bending Moment 63. The Elastic Curve.

CHAPTER VII

FUNDAMENTAL THEORY OF BEAMS (Continued) . . .124
Art. 64. Relation of Curves of Load, Shear, and Bending Mo-

ment 65. Relation of Curves of Bending Moment, Slope, and

Deflection 66. Stress Curves 67. Deflection Curves for Simple

Beams. 68. Graphic Method of constructing the Deflection Curve

69. Deflection Curves for Overhanging and Restrained Beams

70. Stiffness 71. Influence Diagrams 72. Influence Diagram
for Bending Moments due to a Single Moving Load 73. Influence

Diagram for Bending Moments due to a Uniform Moving Load

74. Influence Diagram for Bending Moments due to a Series of

Concentrated Loads 75. Influence Diagram for Shears due to a

Single Moving Load 76. Influence Diagram for Shears due to a



CONTENTS VU

PAGE

Uniform Moving Load 77. Influence Diagram for Shears due to

a Series of Concentrated Loads 78. Influence Diagrams for the

Left Reaction.

CHAPTER VIII

FRAMED STRUCTURES: ROOF TRUSSES; BRACED CANTILEVERS . 146

Art. 79. Assumptions in the Analysis of Framed Structures

80. Definitions 81. Notation 82. Methods of determining
Stresses 83. Roof Trusses : Definitions; Loads 84. Determi-

nation of Dead- and Snow-load Stresses 85. Wind Pressure on

Roofs 86. Determination of Wind-load Stresses 87. Maximum,
and Minimum Stresses 88. Method of Substitution 89. Braced

Cantilevers 90. Cranes 91. Accuracy in Drawing ;
Check on

Results.

CHAPTER IX

BRIDGE TRUSSES 176

Art. 92. Bridge Trusses: Definitions 93. Loads on Bridge
Trusses 94. Determination, by Stress Diagrams, of the Stresses

due to Dead Loads and to Uniform Live Loads, Panels not Counter-

braced 95. Intersections; Lattice Girders 96. Relation of Bend-

ing Moment and Chord Stress 97. Relation of Vertical Shear,

Web Stresses, and Chord Increment 98. Stresses in Diagonals

99. The Chord Increment 100. Stresses in Verticals 101. De-

termination of Dead-load Stresses by the Force and Equilibrium

Polygons 102. Live-load Shear; Maximum Shear 103. Counter-

bracing 104. Maximum Moments 105. Determination of Live-

load Stresses in Web Members by Stress Diagrams 106. De-

termination of Live-load Stresses due to Locomotive Wheel Loads

107. Trusses with Inclined Chords 108. Plate Girders.

CHAPTER X

GRAPHICS OF FRICTION ... . . 228

Art. 109. Efficiency of Mechanism 1 10. Friction 1 1 1 . Laws

of Sliding Friction 112. Coefficient of Friction 113. Friction

of Horizontal Plane Surfaces; Cone of Resistance 114. Wedge
Friction 115. Friction of Screw-threads II 6. Pivot Friction

117. Collar Friction 1 1 8. Journal Friction 119. Friction Circle

120. Friction of Link Connections 121. Chain Friction -

122. Ropes: their Internal Friction and Resistance in Bending

123. Friction of Spur-gear Teeth 124. Belt Friction 125. Roll-

ing Friction 126. Examples.



V1U CONTENTS

CHAPTER XI
PAGE

MOMENT DIAGRAMS FOR SHAFTING 269

Art. 127. Shear and its Resultant Stresses 128. Torsion

129. Torsion and Bending Combined 130. Axles 131. Shafts

for Power Transmission 132. Shaft with Single Overhung Crank

133. Shaft with Single Crank, Overhung and Offset 134. Cen-

tre-crank Shaft 135. Centre Cranks, Offset 136. Double Crank

Shaft.

INDEX 305



GRAPHIC STATICS

CHAPTER I

GRAPHIC ARITHMETIC

1. Definitions. Force is an action between two bodies which

causes, or tends to cause, change in their relative rest or motion

and in their form. In its effect upon a body, a force should be

considered with regard to its point of application to the body,

its magnitude, and its direction.

A rigid body is a solid whose change of form, under the

action of external forces, may be considered, in static and

kinetic analyses, as negligible. No body, subjected to the action

of such forces, is absolutely without change of form.

Equilibrium. When a body under the action of external

forces is not undergoing sensible change of form, it is con-

sidered to be in either static or kinetic equilibrium.

In static equilibrium, the body, under the action of external

forces, is either at rest or moving with uniform velocity (equal

spaces in equal times) in a straight line. In kinetic equilibrium,

the body is in motion and the velocity is not uniform, but

accelerated, the word acceleration denoting any change in-

crease or diminution in the velocity.

Statics treats of the principles and problems relating to

bodies in static equilibrium. The subject includes, therefore,

only the treatment of balancedforces. When a body, under the

action of external forces, is at rest, it is apparent that the forces

must exactly balance each other. Again, if this body be in

uniform motion in a straight line, the same condition as to
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equilibrium must prevail. Thus, when a railway car moves at

constant speed on a straight track, the external forces which

act on it the forward pull of the car in front, the backward

drag of the car in rear, the friction of the rails, the resistance

of the air, the weight of the car acting downward, and the corre-

sponding upward pressure of the rails must exactly balance

each other in order to maintain a uniform speed of the car.

Graphic statics covers the same field, but the algebraic analyses

used in statics are replaced wholly by geometrical constructions.

Its methods are fundamentally simple, since, for example, it is

possible to represent the magnitude, direction, and point of

application of a force by the length, inclination, and position

of a straight line. Through the employment of graphic pro-

cesses, there are thus obviated wholly the intricate and laborious

computations which, in many cases, would otherwise be required.

2. Graphic Arithmetic. Graphic arithmetic treats of the em-

ployment of graphic methods in arithmetical calculations. In

its general application to the computation of values of any

character, it does not form a part of Graphic Statics proper;

in its special uses in calculations relating to forces, it is, how-

ever, an essential branch of that science.

In graphic arithmetic, all computations are made by the use

of lines, the magnitudes of the quantities being measured by
the lengths of these lines. The lines may designate abstract

numbers only, as 2, 33.5, 100, etc., or may represent quantities

of any character, as pounds, dollars, cubic feet, etc., if the same

unit of quantity be used throughout the calculation. Any con-

venient unit of length may be used to represent a unit of

quantity, and the length of the line representing a given quantity

will, therefore, be proportional to the number of units of quantity

which the given quantity contains. Thus, if the scale be

o.i inch = i pound, then 37 pounds will be represented by a

line 3.7 inches long.
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3. Addition and Subtraction. The methods of these opera-

tions are self-evident. Thus, to add 25 pounds and 7.5 pounds
on a scale of o. I inch = i

pound, lay off, in Fig. I, AB * *
T

c

= 25 Ibs. = 2.5 in., and BC
= 7-5 Ibs. =0.75 in.; then, ,

AC = 3.2$ in. = 32.5 Ibs. is the FIG. i.

sum required.

Similarly, to subtract 7.5 pounds from 25 pounds, lay off

ab 25 Ibs. = 2.5 in. and from b set off be = 7.5 Ibs. = 0.75 in.
;

then, ca = 1.75 in. = 17.5 Ibs. is the remainder required.

4. Multiplication. The methods used in this operation are

based on the properties of similar

triangles. These triangles are

mutually equiangular. Thus, in

Fig. 2, the triangles ABC and

DEF will be similar if the angle

C A = angle D, angle B angle E,

and angle C angle F.

Again, the triangles ABC and DEF will be similar, if their

corresponding sides are proportional, i.e., if :

AB :DE:: BC : EF : : CA : FD.

Further, these triangles will be similar, if they have an angle

in each equal and the including sides proportional, i.e., if the

angle B = angle E, and also if :

BA \ED\\BC\ EF.

Finally, they will be similar, if their sides are parallel each to

each or perpendicular each to each, i.e., if DE, EF, and FD are

parallel or perpendicular to AB, BC, and CA, respectively.

In graphic multiplication, we are required to find a line of

length x = a*b, a*b KC, etc., which shall represent, on the
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given scale, the product of two or more quantities, also repre-

sented on the same scale by lines of length a, b, c, etc. This

operation may be performed graphically in a number of ways ;

the following general cases

will suffice.

(a) Two factors, a and b,

each greater than unity. In

Fig. 3, lay off AB = i; at B
draw BC perpendicular to AB

;

D from A lay off AC=a, meet-

ing BC at C\ on AB prolonged

set off AD = b
;
from D erect

DE meeting AC prolonged at

E. Then, AE=xa x b, since the triangles ABC and ADE
are similar and :

AE\ AC \\AD\AB, or

x : a : : b : i.

.'. x = ab.

Thus, if a= 1.25, b= 1.5, x 1.875. It will be observed that

the fundamental principle of the method is to construct two

similar triangles, one of which has a side whose length = i.

(b) Two factors, a and b, each less than unity, Fig. 4. The

method is the same as that in (a\ except that DE is inclined

toward A, and, since b is

less than unity, DE is

within the triangle ABC ^
although still parallel to

BC. The triangles ABC
and ADE are similar and :

AEi AC \\AD\AB, or

x\a :: b: i.

FIG .
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(c) Three factors, a, b, and c, so that the product y = abc.

The method in this case is

simply an extension of those

given previously. Thus, in

Fig. 5, find as in (a) the

product AE = x=ab, and

use it as a single factor for

the final product y = ab x c.

Lay off AD' = AE\ pro-

long BC to BO', meeting

AC =c at C\ draw the

perpendicular D fE' meeting

AC' prolonged at E f

. Then,

the triangles ABC' and

AD'E' are similar and AEf

=y = abc. FIG. 5.

5. Division. Dividing a by b is the same as multiplying a

by i/b. Hence, we must construct similar triangles from which

may be derived the equation :

x= ax i/b = a/bt

c found from the proportion :

x : i : : a : b,

which is the same as that in

Art. 4 (a), except that the order

is different, showing that the

position of the sides, a and x,

must be changed. In Fig. 6, lay

off AB= i
;

at B erect a per-

pendicular meeting the denominator, b = AD
y

at D\ prolong

AD to C, making AC= the numerator a\ from C let fall the

perpendicular CE parallel to BD. Then, the triangles ABD
and AEC are similar and AE x

t
for:

FIG. 6.
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AE:AB::AC:AD,or
x : i : : a : b.

As in the case of graphic multiplication, the operation of

division may be performed in a number of ways. For example,

the two triangles maybe so constructed that the \mtx = a/b

shall form either the altitude or the hypothenuse of the triangle

ABD, Fig. 6. By inclining BD toward A, the methods of Fig. 6

may be applied to the conditions of Art. 4 (b).

6. Multiplication by Ratios. This operation combines those

of multiplication and division.

(a) If it be desired to multiply a straight line of length a by
the ratio b : c of two similar lines, we must construct two similar

triangles of such form that the sides x, a, b, c will give the

proportion :

x : a : : b : c.

.-. x = ab/c.

Comparison of this

proportion with that in

Art. 4 (a) shows that the

only change required in

Fig. 3 is to make AB c

instead of i. Referring

to this figure as thus

changed, we have :

AE \AC\\AD\AB, or

<-f| \ x-a'.-b'.c.

FIG. 7. .'. x= ab/c.

(b) To multiply the ratio a : b by the ratio c : d similar

triangles must be constructed with sides so proportioned that

we may derive the equation :

x = a/b x c/d= ac/bd.
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Evidently the operation is, in general, a combination of those

shown in Figs. 3 and 6. Thus, in Fig. 7, construct the lines

AE = a x c and AE' = b x d, by the methods shown in Fig. 3.

Then, revolve the line AE' until it meets at C" the line BCC
prolonged; lay off AE" = a x c on AC" prolonged; from E"

drop the line E"D" parallel to BC". Then, the triangles ABC 1

and AD"E" are similar and :

AD":AB::AE":AC", or

^r : i : : ac : bd.

/. x = ac/bd.

As drawn, the lines a, b, c, d 'have a value greater than

unity. The diagram may be readily modified, by methods

given previously, to provide for smaller values in any case.

7. Powers. To find the power of a number by graphical

arithmetic the method of similar triangles may be again used.

Thus, in Fig. 3, if b = a,

then AE=a x = ^2
;
simi-

larly, in Fig. 5, if c=b=a,
then AE' = a x b x c a3

.

(a) Figure 8, based on

this principle, gives a

simple construction for

finding a line representing

the required power of a

quantity indicated by a

given line of length a. In

this figure, AB = I is laid

out on a horizontal line

and a perpendicular BC
FIG.

is erected from B to meet

AC=a drawn from A; AC is then revolved to AD in AB

prolonged and the perpendicular DE erected meeting AC pro-
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longed at E. Then, the triangles ABC and ADE are similar

and :

AE: AD \\AC\AB, or

AE \a\\a\ I.

.-. AE = a2.

The triangle AE' D' is constructed in the same way by re-

volving AE to AD 1 and erecting the perpendicular D'E' . The

triangles ABC and AD'E' are similar and :

AE':AD' ::AC:A, or

AE' :a*::a:i.

/. AE' = a3
.

A similar construction will give the negative powers of a, i.e.
y

a~ l = i/a, a~2 = I/a
2

, etc.; thus, in Fig. 8, revolve AB to AC
1

and drop the perpendicular C^D^. Then :

AD
l
:AC

l
::AB:ACt Qr

: i : : i : a.

Again, revolve AD
1
to AC2 and drop the perpendicular

Then:
AD

2 :AC2 ::A:AC, or

: i/a:: i : a.

This construction is convenient and compact, but it is limited

to values of a which are greater than unity.

(b) The spiral polygon, with a constant angle of 90 between

each pair of consecutive sides, is a construction which has been

applied
* in the graphical computation of powers and which is

suitable for any value of a, greater or less than unity.

* Reuleaux, "The Constructor," Suplee's translation, Philadelphia, 1893, p. 25.

Von Ott, "Grundziige des graphischen Rechnens und der graphischen Statik,"

Prague, 1871, p. IO.
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To construct this polygon, draw, in Fig. 9, the axes X'OX
and YO Y' at right angles ;

on OX' lay off OB = i
;
on O Y set

off OA = a, whose

value in this case

will be taken as less

than i
;
from A draw

A 2, at right angles

to AB and meeting
OX at 2. Then, the

triangles OBA and

OA 2 are similar and :

Os-.OA ::OA :OB,

or O 2 : a : : a : i .

.-. O2 = a\ FIG. 9.

Again, draw 2, j at right angles to A 2 and meeting O V at j.

Then, the triangles OBA and 6*2,3 are similar and:

O 3 : O2i: OA : OB, or

O 3 : a2
: : a : i .

.'.03~#.

Continuing this process, we find the succeeding positive

powers of a, the even powers on the axis X'OX, and the odd

powers on the axis YO Yr
.

To find the negative powers of a, the spiral polygon is con-

tinued in the opposite direction from B. Thus, draw the line,

B, /, at right angles to AB and meeting OY' at i. Then,

the triangles OBA and O, /, B are similar and :

O, - i : OB : : OB : OA, or

O, i : i : : i : a.

.-. O, - i= i/a = ar l
.

Again, the triangles OBA and O, 2, i are similar and :

O,-2\O,- i\\OB\ OA, or

O, -2 : i/a : : I \a.
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For a value of a which is greater than unity, the construction

of the spiral polygon is similar to that already given, the only

difference being that the spiral expands with positive, and con-

tracts with negative, powers.

\A

FIG. 10.

from A
to each

side,

similar,

8. Roots, (a) The square root,

fourth root, eighth root, etc., can be

readily obtained by similar triangles.

Thus, Fig. 10, if it is desired to find

the square root of a quantity, a,

greater than unity, lay off BD= I,

and, on BD prolonged, BCa\
erect the perpendicular DA, and,

as a vertex, draw the lines AB and AC at right angles

other and completing the triangle ABC. Then, the

= -Va, since the triangles, ABC and DBA, are

and :

BC'.BA ::BA :BD, or

a \x \\ x \ \.

.-. x^ a and x = ~Va.

To find the fourth root, make BC=^/a, the latter value hav-

ing been previously obtained as above. Similarly, for the eighth

root, make BC= ~\/a.

If' a is less than unity, construct the triangle, Fig. 10, so that

BC i and BD = a; then, as before :

BC:BA::BA\BD,Qr
I \x : : x : a.

-. x = Vtf .

The triangle ABC may be drawn most readily by using BC
as a diameter from which to describe a semicircle BAC, and

then drawing the perpendicular DA to meet the circumference

at A. In any triangle formed thus of two chords and a diam-

eter, the angle A is a right angle, and either chord, as BA, is
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a mean proportional between the diameter BC and the segment
of the diameter BD, adjacent to that chord.

(U) For obtaining the odd-numbered roots, as the cube root,

fifth root, etc., there are several methods, all somewhat complex.
For example, referring to Fig. 9, we note, as to the lines drawn

from the origin O to the vertices of the polygon, that :

OA/OB = a/i and O2/OA = a 2
/a= a

;

i.e., that there is the same ratio, a, between each pair of con-

secutive lines thus drawn, and hence that these lines represent

by their lengths the values of the terms of a geometrical pro-

gression, an operation in which each term is equal to the pre-

ceding term, multiplied or divided by a constant number called

the ratio.

Again, while in Fig. 9 the angle, as BOA, formed by lines

drawn from the origin to two consecutive vertices of the poly-

gon, is 90, it is evident that this angle may have varying values

in different spiral polygons, providing it is always the same

throughout any given polygon. Hence, the angle may be

assumed to decrease in an infinite series of polygons until it

becomes infinitely small, in which case the spiral polygon would

be replaced by a curve called the Equiangular Spiral, of which

curve any line, as OA, Fig. 9, is a radius vector.

Owing to the properties of these radii vectores as terms of a

geometrical progression, the equiangular spiral may be used in

obtaining odd- or even-numbered roots. Thus, if / be the last

term and a the first term of a geometrical progression, n the

number of terms, and r the common ratio, then :

/= ar-\ I/a = ^~\ and r=

If, then, we wish to find graphically the I root of a quantity

equal to I/a, the equiangular spiral is constructed, and to it

there are drawn a radius vector equal to a and another equal to

/, and the angle included between these vectores is divided into
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n i equal parts. The radii vectores bounding these equal

angular divisions will be the intermediate terms of the geo-

metrical progression of which a is the first and / the last term.

The required root is equal to the ratio r, and that ratio is the

quotient of any one of the radii vectores, divided by the one

immediately preceding it.

The characteristic property of the equiangular spiral is that

the curve cuts all of the radii vectores at a constant angle, i.e.,

that the angle between the tangent at any point of the curve and

the radius vector drawn to that point, is constant. The polar

equation of the curve is :

r=a9
,

or, log r log a,

in which r is the length of the radius vector, a is an arbitrary

constant, and 9 is the vectorial angle.

This curve is also called the logarithmic spiral. The modu-

lus of the system of logarithms which has a as its base is

-
,
and this modulus is the tangent of the constant angle be-

dr

FIG. n. A

tween any radius vector and the tangent to the curve at the

point where the radius vector cuts the curve.

One method of constructing the equiangular spiral is shown

in Fig. n. With the pole O as a centre and any convenient
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radius, as Oa, describe a circle
;
on the circumference, lay off

the equal arcs ab, be, cd, etc.
;
the lines Oa, Ob, Oc, etc., joining

these points of division with the pole, are the radii vectores,

which are thus spaced at equal angular intervals. From any

point, as A, on Oa, draw the line AB, giving the angle OAB
any convenient value, preferably 90 or 120

;
from B, draw

BC, making angle OBC equal to angle OAB. The A,B,C...f,
thus found, are points on the equiangular spiral, as may readily

be seen from the similar triangles OAB, OBC, OCD, etc.
;

through these points, a fair curve may be drawn and the spiral

thus described.

PROBLEMS

// will be understood that, throughout this book, all problems

assigned shall be worked by graphic methods.

1. A monument 275 feet high stands upon a plain whose elevation above

the sea is 350 feet. Find the height of the top of the, monument above sea

level.

2. Find the difference in the readings of two Centigrade thermometers in

one of which the mercury stood at 72 and in the other at 80.

3. Represent the area of a triangle whose altitude is 1.5 feet and base 3.5

yards.

4. Indicate the ratio of the specific gravity of glass, taken as 3.3, to that

of iron, taken as 7.7.

5. Find 2/3 of 4/5 of 10.

6. Represent the ratio of a diagonal to the side of a square 17 inches in

length.

7. Find the cubic contents of a tank each dimension of which is 12 feet.

C. Find the sum of 3.4 pounds and 5.2 pounds.

9. Given the lines A and B
;
find their sum.

10. From 8.6 tons subtract 6 tons.

11. From an iron rod 12 feet long, weighing 16 pounds, there is cut a

piece 5 pounds in weight. Find the length of the remainder.

12. Multiply 2.5 by 4.2.
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13. Find a force which is 8.5 times as great as the force F .

14. Find the length of one of the seven equal parts of a line 12 inches

long.

15. If a line 9 inches long represents an area of 1500 square feet, de-

termine the length of a line which will represent one-fourth of that area.

16. Find the third power of 3, if a scale of half inch equals one unit.

17. Find the fourth power of 4. taking any convenient scale for a unit.

18. With a scale of two inches equal one unit, find the cube root of 2.

19. Find the length of a line corresponding to the 3/2 power of 2.5, using

a scale 2 inches equals one unit.

20. Find the length of a radius vector of the logarithmic spiral, when a

equals 2, 6 equals U4.6, using a scale of one inch equals one unit.



CHAPTER II

GRAPHIC MEASUREMENT OF AREAS

THE area of a rectangle is the product of its length by its

breadth, that of a triangle the product of the base by one-half

the altitude. In either case, it is evident that the operation is

one of multiplication simply, which operation can be performed,

as in Art. 4, by graphic methods and a line obtained which shall

represent the magnitude of the area of the figure ; i.e., if one

inch is the unit of measurement and the line thus determined is

3.5 inches long, the required area will be 3.5 square inches.

The graphic measurement of areas thus obviates computation,

and further, as will be shown, the methods used make possible

the replacement of an area of curvilinear or other irregular form

by an equivalent area bounded by straight lines and having as

small a number of sides as is desired.

9. Triangular Areas. If b be the base of a triangle and a its

altitude, the area, x = ab/2. From Art. 4, it is evident that, in

finding the line x which shall represent this area, two similar

triangles must be so constructed that their dimensions, a, b, x,

and 2, shall form the

members of a propor-

tion.

(a) Let ABC, Fig.

12, be the triangle

whose area is re-

quired.

On AC prolonged

lay off AD =2; draw FlG - I2 -

a straight line from D to B
;
from C, draw CE parallel to BD ;

15
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from E drop the perpendicular EFon the base AC. Then, the

triangles AEC and ABD are similar, and the required area,

x = ab/2 = EF, since :

EF:BG::AC:AD, or

x : a : : b : 2.

.*. x = ab/2.

Since the same result will be obtained from the proportion :

x : b : : a : 2,

it is evident that the diagram can be so constructed that the line

representing 2 units shall be parallel to the given altitude BG,
in which case x will be a segment of the base AC, or of that

base prolonged.

(b) The line representing two units need not, however, be

parallel to, or a segment of, either the base or the altitude of

the given triangle. Thus, in Fig. 13, let ABC be the triangle

whose area is required.

From B, lay off BD = 2

intersecting A C at D
;
from

A draw AF parallel to BD,
and from C draw CF per-

pendicular to AF. Then,

the triangles BED and

CFA are similar and:

CF:BE::AC:BD, or

x : a : : b : 2.

.-. x = ab/2.

Ai\ D\

X

\
VF
FIG. 13.

10. Quadrilateral Areas. The line representing the area of a

quadrilateral figure may be obtained in any one of several ways.
If the area is that of a parallelogram, the product of the length b

by the breadth a may be found by the methods of Art. 4 ;
or any

quadrilateral figure may be divided by a diagonal into two tri-

angles, the areas of the latter found separately, and their sum
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taken as that of the quadrilateral ; or, finally, the quadrilateral

may be reduced to its equivalent triangle and the area of the

latter ascertained. The first two methods have been already
discussed.

(a) Let ABCD, Fig. 14, be the quadrilateral whose area is to

be found. Draw the

diagonal, BD, and the

line CE parallel there-

to, intersecting AD
prolonged at E

;
draw

BE. Then, the tri-

angles BDC and
BDE are equal in

area, as they have the

same base, BD, and

the same altitude in

the perpendicular dis-

tance betweenBD and

CE. As these triangles are equal, the triangles :

FlG

BFD + BFC = BFD + DFE.

.-. BFC'= DFE.

Hence, the triangle ABE is equal in area to the quadrilateral

ABCD. Drop the perpendicular BH on AE\ with BG= 2

units, intersect AE at G\ draw EK parallel to BG, and AK per-

pendicular to EK. Then, the triangles AKE and BHG are

similar and :

AK\AE \\BH\BG, or

AK \b\a\ 2.

:. AK = ab/2 = ABE = area ABE = area ABCD.

11. Areas of Polygons having More than Four Sides. When

the polygon has more than four sides, its area is most readily

found by the method just explained, i.e., by reducing the poly-
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gon to its equivalent triangle and determining the area of the

latter.

(a) Thus, Fig. 15, let ABCDEF be an irregular, six-sided

polygon whose area is required.

From A draw AC, forming the

triangle ABC\ from B draw BG
parallel to AC and meeting DC
prolonged at G\ connect^ and

G. Then, the triangles ACS
andACG are equal in area, since

D K they have the same base AC
FIG. 15. and the same altitude. Hence

ACG may be substituted for ABC and the polygon becomes

AGDEF, which is five-sided.

Similarly, draw the diagonal AE, FH parallel thereto and

meeting DE produced at //, and also the line AH. Substi-

tuting the equivalent triangle AEH for the triangle AEF, the

polygon becomes AGDH, which is a quadrilateral.

Finally, draw the diagonal AD and the line HK parallel

thereto and meeting GD prolonged at K\ connect A and K.

Substituting the triangle ADK for the triangle ADH, the poly-

gon becomes three-sided as the triangle AGK, whose area may
be found by the

method of Art. 9.

(#) Again, it may
be desired, as in

rectifying a boun-

dary line, to replace

an irregular polyg-

onal area by an

equivalent quadri-

lateral, one of whose sides is a continuation of a specified side

of the original polygon. Figure 16 gives a simple method* of

effecting this.
* Cremona, Graphical Statics, Oxford, 1890, p. 81.

FIG. 16.
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In this figure, the polygon ABCoi2$45 is to be replaced

by an equivalent quadrilateral, one of whose sides shall be

a continuation of the side CO of the polygon. Draw the

diagonal 02 and the line i
1
1 parallel thereto, intersecting CO

prolonged at i'. Then, the triangles 021 and 021' are equal

in area; substituting the latter for the former, the polygon
becomes ABCi'2345. Similarly, draw lines, intersecting CO

prolonged, as follows :

22' parallel to 31' ;
draw 2'3; polygon becomes ABC 2'345 \

33' parallel to 42' ;
draw 3'4 ; polygon becomes ABC'3*'45;

44' parallel to 53' ;
draw ^'5; polygon becomes ABC 4'5 ;

$D parallel to A4' ;
draw DA

; polygon becomes ABCD.

The polygon ABCo12345 is therefore reduced to the equiva-

lent quadrilateral ABCD, and the portion, 012345A, of the periph-

ery which was made up of a number of segments at various

angles, is rectified as the line AD, intersecting the specified

side CO, produced, at D.

(c) The method as given above of drawing the diagram

so that all the new vertices of the polygon shall fall on a speci-

fied side, is of especial

value in finding the al-

gebraic sum of the areas

of the segments of a poly-

gon whose periphery is

self-cutting, as at X, Fig.

17. The area thus found

is the difference between

those of the larger and smaller segments of the polygon.

In Fig. 17, let CXO be the specified side of the polygon

ABCoi234 on which the new vertices are to fall. Draw 20 and

//' parallel thereto and intersecting CXO prolonged at i
1

;
draw

21'. Then, the triangles 021 and 021' are equal in area.

Substituting the latter for the former, the polygon becomes
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ABC1*234. Similarly, draw lines, intersecting CXO prolonged,

as follows :

22 1

parallel to 31 ;

33' parallel to 42* ;

4D parallel to A3' ;

and the polygon is thus reduced to the quadrilateral ABCD,
whose area is the difference between the areas of the polygons

ABCX4 and Xu2$. The area of the quadrilateral may be

found by reducing it to its equivalent triangle. This method

is of service when the segments of the self-cutting polygonal

circuit represent areas whose difference is desired, as, for

example, that of the cross-section of an embankment and that

of an excavation which is required in connection with it.

12. Areas of Figures whose Peripheries are partially or wholly

Curvilinear. When an area is bounded, wholly or in part, by

curves, graphic processes for its determination are necessarily

approximate. The approximation, however, may be made very

close by proper subdivision of the curve.

(a) If the curve be circular, radii drawn from its ends to the

B centre of the circle will enclose, with the

arc, a sector, as OABCO, Fig. 18. The
c

area of this figure is equal to one-half the

product of the radius by the developed

o length of the arc, i.e., the area of a circle

whose ra
f
dius is r is Tr;-

2
,
that of a 60 sector

= 77^/6; the circumference of the circle = 2 vrr, one-sixth of

that circumference = 7rr/3 ;
then Tr^/6 -5- Trr/3

= r/2. The area

of a segment, as ABCA, Fig. 18, is evidently equal to that of

the sector, less that of the triangle OAC formed by the two

radii and the chord of the arc.

If, then, a portion of the periphery of an area be a circular

curve, a chord may be drawn to the arc, thus forming a segment,

and the latter may be replaced by a triangle whose dimensions
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are obtained as above. To make the operation entirely graphic,

the development of the arc to form one side of the triangle

which is equivalent to the sector, may be performed by stepping
off along a tangent a section of the arc sufficiently small to

make this subdivision of the arc practically equal in length to

its chord, the latter being set off on the tangent as many times

as it is contained in the arc.

(b) For curvilinear peripheries in general, Culmann made
use of the property of the pa-

rabola by which the area of a

parabolic segment, as ABCA,
Fig. 19, is equal to that of a FIG. 19.

triangle whose base is the chord AC and whose altitude is equal

to four-thirds of the perpendicular distance OB between the

chord and the tangent DE parallel thereto.

If an irregular curvilinear periphery be divided into small

sections and each of these sections be regarded as a parabolic

arc and its chord drawn, then the segments thus formed may be

replaced by their equivalent triangles as above, a chord forming

one side of each of these triangles. The polygonal periphery

thus constructed may be rectified by the method of Art. 1 1 (b).

PROBLEMS

21. Find the area of a triangle whose altitude is 4 inches and base 6

inches.

22. The sides of a triangle are 8, 10, and 12. Find its area.

23. Given the area of a triangle, 16; its base, 2.4. Find its altitude.

24. Find the area of a quadrilateral whose sides are respectively 4, 5, 6,

and 7: (a) by the method of dividing it into triangles and finding the sum

of the areas of those triangles ; (b) by the method of reducing to an equiva-

lent triangle and rinding the area of that triangle.

25. Find the total area of the faces of a cubical block whose edge is 6.

26. Find the difference in area between an ellipse and an inscribed circle

whose centres coincide.
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27. Find the area included between two circular arcs.

28. Find the difference in area between a parabolic segment and the in-

scribed triangle whose vertex coincides with that of the segment.

29. Find the area of a Carnegie angle iron, 6x 6 x ^ inches.

30. Find the area between two parallel chords of a circle, one of which

subtends an angle of 45 at the centre, and the other an angle of 30, the

radius being 8.



CHAPTER III

FIG. 20.

FORCES : CONCURRENT
; NON-CONCURRENT, NON-PARALLEL.

13. Definitions. The magnitude and direction of a force

(Art. i) may be represented by the length and inclination, re-

spectively, of a straight line. Thus, if

it be desired to represent a force of 150

pounds acting at an angle of 60 with the

horizontal, and if the scale be 100 pounds
to the inch, the line OA, Fig. 20, having

a length of 1.5 inches and the given angle,

is drawn, the arrowhead being added to

indicate that the force acts from O to A.

Similarly, the line of action of the force and its point of appli-

cation to the body may be represented,

as in Fig. 21, by a line oa, drawn in

the given direction from the point of

application, o.

In graphic statics, the forces consid-

ered are complanar; i.e., all of their lines

of action lie in the same plane. Non-com-

planarforces may be treated by project-

FIG. 21. ing them on the plane of the diagram.

Concurrent forces, as oa, ob, oc, Fig. 21, ,

are those whose lines of action intersect in

the same point, as o, of a given body. With

non-concurrent forces, the points of applica-

tion have different locations and their lines

of action, if prolonged, do not meet at one

point, as with ab, cd, and ef, Fig. 22.

Parallelforces are non-concurrent forces

23

FIG. 22.
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having their lines of action parallel, as ab, cd, ef, Fig. 23. A
couple consists of two parallel forces, equal in magnitude but

opposite in direction, as ab and cd,

Fig. 24. The arm of a couple is the

perpendicular distance, as ae, between

the lines of action of its forces. The

effect of a couple, acting on a free,

rigid body (Art. i), is to produce rota-

tion at uniform velocity about an axis FIG. 23.

J passing through the centre of gravity

of the body. When a body is at rest

or in uniform motion and hence in

equilibrium, the application of a

couple tends to cause change in its

state of rest or motion and therefore

FlG - 24> to produce non-equilibrium. When,

however, the body, under the action of a couple, is in B
uniform motion, it is in static equilibrium (Art. i).

14. Parallelogram of Forces
; Composition and Resolu-

tion of Forces. A

The experimental

demonstration of

the principles of

the parallelogram

of forces is illus-

trated by the dia-

gram, Fig. 25.

As shown, three

cords are tied together as at O
;

two of them are led over friction-

less supports, as at A and B, re-

spectively; to the ends of the

cords are attached the weights

W, W^ and W^ so proportioned
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that the sum of any two of them is greater than the third.

Each of the weights will produce a corresponding tension in its

cord, and when, under the action of gravity, the system assumes

equilibrium, as shown in the figure, there will be three concur-

rent forces, W, Wlt
and W

2 , acting from the common point of

application O in the lines of action OA, OB, and O W, respec-

tively. There is then laid off, on the scale adopted, Oa = W
and Ob = W^, and the parallelogram Oacb is completed. The

diagonal Oc, which is a prolongation of the line of action OW, will

be found to be equal, on the same scale as above, to the weight W.

It is evident that the force W, acting vertically downward,

balances the forces W
1
and W2 , acting on the lines OA and OB,

respectively ; further, it is clear that the force W would also

balance exactly the equal force Oc = R, acting vertically up-

ward from O. Hence, the force R is the resultant or equivalent

of the two forces shown in magnitude and direction by the lines

Oa and Ob. It follows, therefore, that the components of the

force R, when resolved along the lines OA and OB, are Oa and

Ob, respectively. The diagram thus illustrates the composition

of forces, in the combination of the forces Oa and Ob into the

single force R
;
and the resolution offorces, along given lines, in

the determination of the components Oa and Ob of the force

R, resolved along the lines OA and OB, respectively.

The relation of the resultant to its components may also be

found analytically. Thus, Fig. 25, let 6 be the angle between

the forces Oa and Ob
;
from c drop the perpendicular cd on the

line OB\ then the angle cbd=0 and the side bcOa=^ Wv

From the right-angled triangle Ocd we have :

a*;
= Ot> + 2 Ob x M+ ~bd*+~cli

L

= fa? _]_ 'off _f_ 2 Ob x be cos :

= W\ + W\ +2W1
W2

cos 6.
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15. The Force Triangle. Inspection of Fig. 25 shows that,

assuming the side Ob of the parallelogram to be replaced by its

equivalent ac, the force R is the resultant of two forces, Oa and

ac, which form with it the triangle Oac, and which have direc-

tions opposed to that of R in passing around the sides of the

triangle from and to any one of its vertices.

As is shown by Fig. 26, either of the forces Oa and ac may
also form the diagonal of a parallelogram of forces whose sides

are the equivalents of R and the other of the two

[^ forces, and is, hence, the resultant of R and the

I \ latter force, providing the directions of the three
A

\ forces be such that that of the resultant opposes

those of the other two in passing around the tri-

angle. Thus, the force Oa is the resultant of the

forces, ea = R and Oe = ac, if the direction of the

latter be reversed. Similarly, the force ac is the re-

sultant of the force af R and of fc = Oa,

reversed.

In general, then, in any triangle whose sides rep-

resent forces, any one of the sides is the resultant

of the other two, the directions of the three forces

being such that that of the resultant is the reverse

of those of the other two forces in passing around

the triangle. Further, if the forces are in equilib-

rium, the resultant will be replaced by an equal and

opposite force, and the directions of the three forces,

in passing around the triangle, will be the same.

In the Force Triangle thus formed, there are, for concurrent

forces acting from a given point, but two particulars as to each

force to be determined its magnitude and its direction. If,

of the six elements thus required to draw the triangle, any four

are known, the remaining two may be determined by various

geometrical constructions. With non-concurrent forces, the

lines of action must also be found, by methods to be given later.

FIG. 26.
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16. The Force (Vector) Polygon. In the force polygon, the

methods employed in the construction of the force triangle are

extended to cover systems comprising more than three forces.

It is evident that such a polygon may be divided by diagonals

into triangles and the diagonal forming the resultant of each

triangle be combined with the succeeding force to obtain a new

resultant, until the final resultant or its reverse, the force neces-

sary to maintain equilibrium, is determined.

Thus, Fig. 27, let i, 2, j, 4, and 5 represent in magnitude and

direction concurrent

forces acting from the

point o
;
in Fig. 27*2, lay

off each side, as ab, par-

allel and equal to its cor-

responding force, as 01,

thus forming the Force

Polygon, abcdef; draw

the diagonals ac, ad, and ae. Then, the diagonal ac represents

a force 6 which is the resultant of forces / and 2
; similarly, ad,

or 7, is the resultant of forces j

and 6
;
and finally the force af,

or R, is the resultant of forces

5 and 8, and therefore of the

entire system, while the equal

but reversed force,/#, or p, is the

force which must be applied at

the point o to secure equilibrium.

With regard to the force polygon, it will be observed that :

(a) For equilibrium, tJie polygon must close; i.e., the final side

representing a force must termi-

nate at the starting point, as a,

Fig. 27 a, of the polygon. If the

polygon does not close, as with ^ R

abcdef, there is a resultant force, FIG. 27 .
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as of, which will tend to produce non-equilibrium and a motion

of translation. Conversely, with concurrent forces, if the force

polygon closes, equilibrium exists. With non-concurrent forces,

as will be shown, the closure of the polygon does not fulfil all

of the conditions for equilibrium.

(b) Since the final side of the polygon represents, in magni-

tude and direction, the resultant of all the forces of the polygon,

if its direction be the reverse of those of these forces in passing

around the polygon, it is evident that, by starting at a different

vertex, any side may become the final side, and hence any side

of the force polygon represents the resultant of all the other forces

forming the polygon, the direction of this resultant being as

stated above.

(c) As with the force triangle, the elements needed to con-

struct the complete polygon are the magnitude and direction

of each force. If all but two of these elements are known, the

remainder can be determined geometrically and the polygon

laid out. Thus, if there are n forces, the total number of ele-

ments required will be 2 n, and the number which must be

known is 2n 2.

17. The Force Polygon is Essentially the Graphic Addition of

Forces. As forces are represented by lines, as lines can be

added or subtracted by the methods of graphic arithmetic, and

as the chief purpose of the force polygon is to obtain the result-

ant of the forces comprising the system, it follows that the force

polygon is, in effect, a method of obtaining the algebraic sum

of the forces when projected upon coordinate axes, the sums of

these components of the forces giving the similar components
of the resultant.

Thus, Fig. 28, let abc be a force triangle and a' b'
,

b'c*
',
and

d'b"',
bncn be the projections of the forces upon the axes OX

and O Y, respectively. Then, taking the distances on the axes

and proceeding from the origin as positive, and the similar
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distances proceeding toward the origin as negative, we have,

as the algebraic sum of the components of the forces :

a'b' -b'c' =a'c',
Y

a

1
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Prolonging the lines of action of forces / and 2 until they inter-

sect at b', we have two concurrent forces, ib' and 2b', to which

the principle of the force triangle may be applied. Therefore,

Fig. 29 a, draw the triangle abc, and ca or force 5 will be the

resultant of the two forces in magnitude and direction, which

resultant may be assumed to act at any point in the line b'$

drawn from b' and parallel to ca. Proceeding thus, we have

next the lines of action of the forces j and 5 intersecting at c',

giving the force triangle acd, the resultant da, and the line of

action c'6. Similarly, the lines of action of the forces 4 and 6

intersect at d\ giving the line of action d'j, at any point of

which, within the body, the force 7, which is the resultant ea of

the four forces, may be assumed to act. From the construction

as above, it is evident that the methods of the force polygon,

as abcde, Fig. 29 a, may be applied, in precisely the same way as

with concurrent forces, to a system of non-concurrent forces, as

i, 2, j, 4, Fig. 29, and the resultant ea determined in magnitude
and direction.

The force polygon alone is, however, insufficient for the full

solution of problems relating to non-concurrent forces, since :

(a) It gives only, as in Fig. 29 a, tJie

magnitude and direction of the resultant

ea, but not its line of action d 1

?, Fig. 29,

which must be found either as in the latter

figure or by the use of the equilibrium

polygon, to be described shortly. The

't methods of Fig. 29 are cumbrous, and,

further, if the lines of action of the forces

approach parallelism, their points of inter-

section, as b', c', d', will lie beyond the

limits of the drawing.

(^) Again, with concurrent forces, if tJie

FIG. 30. forcepolygon closes, equilibrium exists ; with

non-concurrent forces, this is not always the case. Thus, Fig. 30,
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FIG. 30 a.

let i, 2, j, be three concurrent forces in equilibrium ;
draw the

force triangle, abc, Fig. 30 a, which closes, since equilibrium

exists. Now, remove the force i to a new line of
fl

action, O'l, to .the right of, but parallel to, Oi, the

system thus becoming non-concurrent so far as the

force O f
i is concerned. The force triangle still closes,

but equilibrium does not exist, since the forces O'i and

3 have a resultant a'2', equal in magnitude and oppo-

site in direction to the force 2 and having a different

point of application ; i.e., this resultant forms a couple

with the force 2, which couple tends, to produce a

motion of rotation and, hence, non-equilibrium. In

general, as in this case, when tJie force polygon closes but equilib-

rium does not exist, there is a resultant couple.

19. Jointed Frame in Equilibrium under the Action of External

Forces. Let Fig: 31 represent a polygonal frame composed of

straight bars united

to each other by

joints A"
x Kfr

the bars being

.sufficiently rigid

to withstand the

tensile or com-

pressive stresses

resulting from the

external forces

P
l
-" P

6 , applied

at the joints.

Assume the frame to be in equilibrium under the action of

this system of external forces. Then, at each joint, as Kv the

external force P
1
must be in equilibrium with the internal

forces or stresses S
1
and 5'

5 , produced in the bars K^K^ and

K^KV respectively, the resultant of these stresses being a force,
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P\ y equal and opposed to P
l
and assumed to act at the joint

K^ Similarly, the force P% will be held in equilibrium by the

forces S\ and S2 , 5'j being for equilibrium along the line

K^K^ equal and opposed to Sv The conditions are similar

at the remaining joints, K& K, and K
b

.

Each system of three forces in equilibrium, as P
lt
Sv and

S r

6 ,
combines to form a force triangle, as oab, Fig. 3 1 a. The

next system forms the

triangle obc, the side ob

being common to the

two triangles, since the

internal forces S r and

S'i are equal in magni-

tude and have the same

line of action K^K^
parallel to ob. This

condition as to a com-

mon side holds for each

pair of consecutive tri-

angles. Hence, the five

triangles can be combined to form the closed force polygon,

abcdc, and the lines, oa oe, representing the stresses in the

bars, will intersect at one point o.

The character of the stresses is shown by their direction with

regard to the joint at which they act. Thus, at K^ the direc-

tion of P
l
is from a to b

y Fig. 31 a, and hence that of S
l

is from

b to o
t
or away from K. Therefore, the stress is tensile. Had

S
1
acted toward Kv the stress in the bar would have been com-

pressive. The tensile stress existing in the bar K^K^ forms,

with regard to the joints K and K2 ,
the internal forces S

1
and

S'
lt respectively.

20. The Equilibrium (Funicular or Cord) Polygon. The poly-

gon KI K5 , Fig. 31, is called the Equilibrium or Funicular
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{Cord) Polygon, although the latter term is only strictly applicable

when the stresses in the sides of the polygon are tensile through-
out. If, as in Fig. 31, a system of external forces P

1
- - - P

& act

on a rigid body, the equilibrium polygon may be assumed to be

substituted for the body, since (Art. 18) a force may be consid-

ered as applied at any point in its line of action.

Under these conditions, the equilibrium polygon is assumed

to consist of a system of rigid rectilinear bars or sides, K^K^ -

K^K^, the adjacent ends of each pair of consecutive sides inter-

secting at any point in the line of action of one of the external

forces. The vertices K
l

- - K, thus formed at these intersec-

tions, are called Joints or Nodes. The sides of the polygon are

parallel, respectively, to the Rays, as oa -

oe, Fig. 31 a, drawn

from the Pole o.

Each joint is thus the point of application of three concurrent

forces in equilibrium one an external force, the other two the

internal forces or stresses produced by the external force in the

two sides intersecting at this joint. Since each end of each

side intersects the line of action of an external force, each side,

as K^Ky forms the line of action of two internal forces, as S
1

and S\, equal in magnitude but opposite in direction, acting,

respectively, from the joints Kl
and Kz ;

the magnitude of each

of these stresses is given by the length of the corresponding

ray, as ob, Fig. 31 a.

It should be borne in mind that the equilibrium polygon does

not form, for the internal forces, a force polygon, as described

in Art. 16; since its sides represent simply the lines of action

of these forces, they do not give the magnitude of the latter,

and each side is the line of action of two equal and opposite

forces.

With regard to the equilibrium polygon, it will be observed

that:

(a) For any system of complanarforces, tJie number of equilib-

rium polygons whicJi can be drawn is infinite, since the essential
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requirements are only that the sides of the polygon shall be

parallel to their corresponding rays and that consecutive sides

shall intersect on the line of action of an external force. Hence,

with a fixed location of the pole as in Fig. 3 1 a, the polygon

may be begun at any point of one of such lines of action, and

other polygons starting at different points of the same line will

be, in general form, very different from the first polygon, although

the corresponding sides of all will be parallel.

Again, the polygon will fulfil the essential requirements as

above, whether the pole o be located at any point within or

without the force polygon, Fig. 3 1 a. Therefore, the location

of the pole may be selected at pleasure and the rays drawn
;

and, for each of such locations, any number of equilibrium poly-

gons may be constructed.

(b) For the equilibrium of a system of complanar, non-concur-

rent forces, both the force and equilibrium polygons must close.

It has been shown (Art. 18) that the methods of the force

polygon may be applied to a system of non-concurrent forces
;

hence (Art. 160), for equilibrium, the force polygon must close.

This requirement exists also for the equilibrium polygon, as

may be seen by considering a system of external forces in non-

equilibrium. Thus, in Fig. 31, let the external force P be

removed to the right to a parallel line of action d' e'
,
which

removal will destroy the equilibrium of the system and, as shown

in Art. 18^, will produce a resultant couple, although the force

polygon abcde will still close. The equilibrium polygon, how-

ever, will not close, since the sides K^d
1 and K

b
e'

,
when drawn

as before parallel to the rays od and oe, respectively, will inter-

sect the new line of action at different points d' and e'
; hence,

as the polygon does not close, the equal and opposite internal

forces Sz and Sr

s,
which for equilibrium should neutralize each

other, will have different lines of action, and non-equilibrium

will exist.

That the closure of the polygon is essential for equilibrium
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is clear also from a consideration of the conditions governing

its construction. Each of the external forces, as P
lt

is main-

tained in equilibrium by the resultant internal forces, as S-^ and

S'
& ;

each side of the polygon is in equilibrium because it is the

line of action of two equal and opposite internal forces, as S
1

and S'-L. Assuming the first four sides of the polygon to be

thus held in equilibrium, there remain the internal forces 56

and S'
5 , which, as given by the ray oa, are equal in magnitude

and opposite in direction. Hence, in order that these forces

shall neutralize each other and equilibrium shall exist in the

system, they must have the same line of action K
bK^ and the

polygon must close.

(c) With regard to the number of known elements necessary

for the construction of the equilibrium polygon, it is evident,

since the sides of the polygon are parallel to the rays and since

the rays intersect at the pole, that if the external forces are

known and in equilibrium, and if the directions of two consecu-

tive sides of the polygon be assumed, the directions of the

remaining sides and the magnitudes of the stresses which they

represent can be found.

Again, if the lines of action of external forces in equilibrium

and the magnitude of one force are given, and if the form of the

equilibrium polygon be assumed, the magnitudes of the remain-

ing external forces can be determined.

21. Resultant of Complanar, Non-concurrent Forces. The

properties of the equilibrium polygon make it possible to deter-

mine fully the resultant of a number of consecutive forces form-

ing part of a system of complanar, non-concurrent forces in

equilibrium. Thus, let P
l

- - P
Q , Fig. 32, be the lines of action

of the system. Construct the force polygon, Fig. 32 #, locate

the pole o, draw the rays, lay out the equilibrium polygon

KI - - - K, and determine the character of the stresses in its

sides.
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Now, assume the polygon to be cut into two sections, one to

the left, the other to the right, of the line FG, which intersects

R,

FIG. 32.

the sides K^K^ and KK
b

. It is evident that, if there were no

stresses in these sides, forces equal in magnitude and the same

in directions and lines of action as the internal forces S and

S 1

4 would be required to maintain in equilibrium the left-hand

section of the polygon, and that

a similar requirement holds as

to the right-hand section and

the internal forces S 1

\ and S4
.

Hence, the internal forces S
l

and S' 4 hold in equilibrium the

external forces, Plt
P

b ,
and P

6 ,

in the left-hand section, and

similarly the internal forces S\
and 54 hold the forces P2 and

P
3
and P4 in equilibrium. This

is evident, further, from the

force polygon, since the diagonal be represents the resultant of

the forces S
l
and S' 4, and is equal in magnitude and opposite in
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direction to the diagonal eb which is the resultant of the forces

P
5 , Pp and /Y Similarly, eb represents the resultant of S\

and S4 and is equal in magnitude and opposite in direction to

be, the resultant of P
2 ,
P

3 ,
and P

4 .

Since the intersection of the lines of action of two forces is a

point in the line of action of their resultant, the line of action of

the resultant of the internal forces S
1
and S'4 can be determined

by prolonging the sides .S^A^ and S' 4AT5 ,
until they meet at the

point H. Through ff, and parallel to be, draw HR, the line of

action of the force R, the resultant of S
l
and 5' 4 ,

whose magni-
tude is given by the length of the line be

;
the resultant of the

external forces P
19
P

5 ,
and P

Q
is Jt

lt
identical with R except

that it is opposite in direction. Since the system Pl
- - P

Q
is

in equilibrium, the resultant of the forces P2 ,
P

3t
and />

4 is equal

in magnitude but opposite in direction to R
lt
and has the same

line of action.

The internal forces S
1
and S\ constitute a single tensile

stress (Art. 19) in the side K
VK^ which stress is equivalent to

two equal and opposite forces having the same line of action,

when considered with regard to its effect upon the joints K^
and K<i ; similarly, the internal forces S4 and S\ represent a

tensile stress in the side K^K^. It will be seen, then, that at

any section, as FG, the external forces are held in equilibrium

by the stresses at that section a principle which is of funda-

mental importance in the analysis of the stresses in beams.

22. Equilibrium of Complanar Forces. The principles estab-

lished in the foregoing articles for the equilibrium of a system

of complanar forces are :

(a) For concurrent forces, the force polygon must close. Con-

versely, if the force polygon closes, the system is in equilibrium.

(b) For non-concurrent forces, both the force and equilibrium

polygons must close. Conversely, if the force polygon and any

equilibrium polygon close, the system is in equilibrium.
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PROBLEMS

31. A rope 14 feet long supports a weight of 100 pounds fastened at a

point 8 feet from one extremity. If the supports are 10 feet apart and at the

same level, what is the tension in each portion of the rope ?

32. Two forces of 8 and 10 units act at an angle of 30 with each other.

Find the magnitude and direction of their resultant.

33. Three forces, 15, 20, and 25 pounds, act on a particle at angles 30, 60,

and 120, respectively, with the axis of abscissas. Find a simpler equivalent

set of two forces, acting at o and 135 with the same axis.

34. A flag weighing 3 pounds is blown horizontally by the wind with a

force of 4 pounds. What is the tension in the halliards ?

35. Forces of 9, 12, 15, 18, 21, and 24 pounds act along the radii of a

regular hexagon from the centre. Find the magnitude and direction of their

resultant.

36. Find the forces acting on the rafters and tie rod of a simple triangular

roof truss of 24 feet span and 4 feet depth, if it supports a load of 5 tons at

the apex.

37. A rectangular box containing a ball weighing 160 pounds is tilted

about one of its lower edges through an angle of 40. Find the pressure be-

tween the ball and the box.

38. What is the resistance which a stone 4 inches high offers to a wheel

4 feet in diameter passing over it if the wheel with its load weighs 4 tons ?

39. What is the pressure on the crosshead guides of an engine, if the

piston pressure is 25,000 pounds and the maximum angle made by the con-

necting rod with the line of action of the piston is 15?

40. A ladder 30 feet long weighing 120 pounds leans against a smooth

vertical wall, and makes an angle of 60 with the ground. A man of 180 pounds

weight stands on a rung halfway up the ladder. What is the horizontal thrust

on the ground ?

41. A weight of 600 pounds is supported by a rope 12 feet long. What

force, acting horizontally, is necessary to carry the weight 4 feet out of its

perpendicular ?

42. The length of the string of a conical pendulum, whose mass is 2 pounds,
is 3 feet and the angle of inclination to the vertical is 45. What is the

tension ?
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43. A pair of shear legs is 45 feet high when upright, each leg being 60

feet long. The back leg is 90 feet. The plane of the legs makes an angle of

30 with the vertical. What is the stress in the legs when a weight of 50 tons

is supported ?

44. The jib of a derrick is inclined at 30 to the vertical, and the topping
lift is attached to a point vertically over the foot of the jib at a height equal to

its length. Find the tension in the lift and the thrust in the jib when lifting

6 tons.

45. Let the forces /, 2, j, 4, 5 act on a rigid body along the sides of a

regular pentagon, taken in order. Find the magnitude and direction of their

resultant.

46. Take the jointed frame, Fig. 31, assuming Pl
and P% known in direc-

tion and magnitude. Determine the magnitude and direction of PS9 Pv Py
that the frame may be in equilibrium.
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23. Force Polygon for Parallel Forces. The force polygon

for a system of parallel forces is a straight line. Thus, Fig. 33,

let P
1

-

Pf> represent the lines

of action of a system of corn-

planar parallel forces in equilib-

rium, the magnitude of the

forces being known. In Fig.

33 a lay off the three consecutive

downward forces Pv P2 ,
P

s ,
on

the straight line ad, making
ab = the magnitude of Pv be

that of P2 ,
and cd that of Py

Draw the equilibrium polygon
ABCDE and the ray Oe parallel to the closing side AE. Then

de = P and ea = Pb .

Since the system is in equilibrium, the

sum of the magnitudes of the downward

forces must be equal to the similar sum of

the upward forces. Hence, ad=da\ the

forces, as set off, start from, and return to,

the same point a
;
and the line ad da

represents a closed force polygon for the

system, the points a, b, c, d, e

corresponding with the ver-
BIG. 33 a.

. tices of the force polygon for non-parallel forces.

If, as in Fig. 33 b, the force P2
be replaced by a

force P
Q acting upward, then a' b' =P^ b'f= PQ ,

fa" = PB , d'g = P, ga' = PS, and the equilibrium

40

FIG. 33 b.
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polygon is A'B'CD'E'. In either case, the location of the pole

O may be selected at pleasure and the rays Oa, Ob, etc., drawn

as described previously for non-parallel forces. Preferably, the

pole should be located, as in Fig. 33 a, opposite the middle point

of the force line ad and at a pole-distance dh = ad/2, the rays

Oa and Od being thus at right angles to each other. For

clearness, the forces are shown, in magnitude and direction, at

the right of Figs. 33 # and 33 , although this construction

forms no part of the polygons.

24. Equilibrium of Parallel Forces. Consider :

(a) Three forces in equilibrium, as P
1

P
B in Fig. 34, the

lines of action and directions of all of the forces and the magni-

tude of one, as P
lt

being known. It is

required to determine

the magnitudes of P2

and P3
. Evidently : I /

x \

D
rv
I

I

and, taking moments

(Art. 35) about the

point C:

i

P* Bl

11

\

\

L

I

\ I

\

\

/&\

r

Such a problem
may be solved graphi-

cally in various ways :

r
1

"''

\
\

FlG - 34-

by graphic arithmetic, by the resolution of forces, or by the

force and equilibrium polygons.

Thus, in the first case, inspection of the last equation shows

that it is necessary only (Art. 6 a) to construct two similar tri-

angles of such form that their sides 7>
2 ,
Pv AC, and BC shall

give the proportion :
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Hence, from B, the point of application of P2 ,
draw BD par-

allel and equal to P
lt
and from D draw the line CD joining the

latter point with the point of application of Py Then, the

triangles A CF and BCD are similar and :

AF\BD\\AC\BC, or

AF= P
l
x AC/BC = PV and

p,

For the second solution, join E with B and C and resolve

(Art. 14) the force P
1
on the lines ED and EC, giving thus the

forces EG and EK, respectively. Resolve each: of the forces

into components parallel to the line BC and to the lines of

action of the forces P2 and P3 . If we consider the forces EG
and EK as applied at the points B and C, respectively, their

horizontal components, 77 and EL
y
will neutralize each other

and the vertical components, HG and LK, will be equal in

magnitude but opposite in direction to

P2 and PB , respectively.

To solve by the force and equilib-

rium polygons, lay off Ba= P
lt

locate

the pole O, and draw the rays OB and

Oa. From any point, as B, on the line

of action of P2 draw the side BM of the

equilibrium polygon meeting the line of

action of P
l
at M\ from J/draw MN

parallel to Oa and cutting the line of action of

Ps at N\ from N draw NB
t completing the

polygon. Then, draw the ray Ob parallel to

NB, and bB = P
2
and ab = PB .

In this example, the forces have been as-

sumed, for convenience, as vertical. They may
be inclined at any angle, the only requirement

being that they shall be parallel. By similar methods for a

similar system, the magnitude of the force P
1
can be determined

FIG. 3S .
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when the magnitudes of P
2 and P3 and the lines of action of the

three forces are known.

(b) Fourforces in equilibrium and unequal in magnitude. As
a further example, consider the system shown in Fig. 35, in

which the lines of action and directions of the forces P
1 I\

and the magnitudes of the forces P
1
and P

2 are known.

On the line ac parallel to the lines of action of the forces, lay
off the force polygon, making ab = P

1
and be = P

2 \ locate the

pole and draw Oa, Ob, and Oc. From any point, as A, on the

line of action of P4 ,
draw the side AB of the equilibrium polygon

parallel to the ray Oa ;
make BC parallel to Ob and CD parallel

to Oc, and draw the closing side AD. Then, draw the ray Od

parallel to the side AD, and cd= P
3 and da = P^ since, as the

system is in equilibrium, ac P
1 + P2

= ca = P
3 + />

4,
is a closed

polygon.

25. Composition and Resolution of Parallel Forces. The com-

position and resolution of complanar parallel forces may be

effected by methods similar to those already described. In the

composition of a system of forces, the object is either the deter-

mination of an equivalent system having a smaller number of

forces than the given system or of a single force which is the

resultant of the latter system. In the resolution of forces, a

system of two or more forces is found which is the equivalent

of the single force given, the latter being thus the resultant of

the system to be determined.

(a) Composition of parallel forces. In Fig. 36, let P
1

P
be a system of complanar parallel forces whose magnitudes,

directions, and lines of action are known, and let it be required

to replace this system by two forces, P5
and P

6 ,
which are to be

parallel to those of the given system, whose lines of action

shall pass through the points G and H, respectively, and whose

magnitudes are to be determined.

Construct the force polygon ab = P
1

- de = P4 ;
draw the
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rays Oa

FIG. 36.

the forces P
1

Oe\ lay out the equilibrium polygon, making AB
parallel to Oa, BC to

Ob, etc.
;
draw the ray

Of parallel to the side

FA. If the six forces

formed a system in

equilibrium, they
would be represented

by the closed equi-

librium polygon
ABCDEF and by a

closed force polygon,

ad-da, the distance

from e to /and from

/to a being equal to

the upward forces, /6

and/6
. Since the two

latter forces would

thus hold the system
P

l
- P in equilib-

rium, it is evident that the forces P6

and P
Q , equal in magnitude but

opposite in direction to /5
and /6 ,

are equivalent to the system P
l

The magnitude of the resultant

of the system P1
P is given

by the distance ea in the force poly-

gon, i.e., the magnitude of the

force r which is necessary to hold

the four forces in equilibrium.

Considering the equilibrium and

force polygons as now limited to

4 and r, the former polygon is begun at any
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point B on the line of action of P
l
and is drawn as before to the

point E ; then, from B and E, the sides BK and AT are drawn

intersecting at K and parallel respectively to the rays Oa and

Oe\ the complete polygon is now BCDEK. The intersection

K is a point on the line of action of the force r and therefore of

the resultant R, the latter being equal in magnitude but opposite

in direction to the force.

(b) Resolution ofparallel forces. The

decomposition of a force into two or

more parallel components is the reverse

of the operation just described. Thus,

Figs. 37 and 370, let ABC and Oab

represent respectively the equilibrium,

and force polygons of a system of

forces Pv P2 ,
and P

3 ,
in equilibrium

and let it be required to replace the

force P
1 by the equivalent system P

and whose lines of action pass

the points D and E, respec-

tively, one on each side of

the force Pv In Fig. 37,

prolong the lines of action

of P4 and P
5

until they in-

tersect the equilibrium polygon at F and G, respec-

tively; connect F and G, the complete polygon

becoming AFGCA. In Fig. 37 b, draw the ray Od pa

parallel to the side FG. Then, ad= P# db = P
6,

and ad+ db=P + P5
= Pv

If both of the required components are on the

same side of the force P
lt

the method is similar.

Thus, Fig. 37, let it be required to resolve P
l
into

the two parallel forces PQ and P
7 ,
whose lines of action pass

through the points K and L, respectively. Prolong the line of

action of P
Q until it intersects the side AB of the equilibrium
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FIG. 37*.

polygon at the point M\ similarly, let the line of action of P
7

meet the side CB produced at the point N;
connect 3/,and N, the complete polygon be-

coming AMNC. In Fig. 37 c, draw the ray Oe

parallel to the side MN. Then, ae = P
Q ,

eb = P
7 ,

and eb ae = P
7

P
Q
= Pv the direction of the

force 'P
Q being upward and that of P

7
downward.

26. Parallel Forces Equal in Magnitude and

with Lines of Action at Equal Distances Apart.

In Fig. 38, let the forces i -

7 be parallel, equal

in magnitude, with lines of action at equal dis-

tances apart,

and be held in

equilibrium by <

the two equal
A

forces, 9 and

zo, whose lines

of action are

parallel to

those of forces

i -

7, the dis-

tance between

forces 7 and p

or i and 10 being one-half that between

forces i and 2, or 2 and j, etc.

Draw the force polygon Oaf and the

equilibrium polygon ABCDEFGHK. Then,

in the former polygon, the force o = 7, 8,

force 10 = 8, a, and the resultant, R a, 7 ;

the lines AL and KL, drawn parallel to the

rays Oa and O? t respectively, intersect at L,

a point in the line of action of the resultant.

Draw the line bEh parallel to the closing
FIG. 38.
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side AMK. The lines of action of the forces meet bEh at the

points b, c, d h. It will be found that :

i.e., that the points C, D, and E lie on a parabola, since it is a

property of that curve that its abscissae are as the squares of

their ordinates. This relation exists also for all other points in

the line A - - E - K. If therefore, as in the case of a beam'

uniformly loaded, the system i 7 be replaced by an infinite

number of equal and parallel forces infinitely close together,

the broken line A > - E > > K will become a parabola, whose

vertex lies at E, the middle and lowest point of the curve.

Since the vertex of a parabola bisects all subtangents, EM=
LM/2. If the pole O of the force polygon be moved vertically

so that the closing line or chord AK is inclined to the hori-

zontal, the corresponding curve A - E - K will still be a

parabola, but its vertex will lie to the right or left, as the case

may be, of the line of action of the resultant, which line will

still be ML.

27. Couples. A couple (Art. 13) consists of two parallel

forces which are equal in magnitude and opposite in direction.

The arm of a couple is the perpendicular distance between the

lines of action of the forces. The moment of a couple is the

product of one of the equal forces by the arm. The tendency

of a couple is to produce rotation. Two like couples i.e., tend-

ing to cause rotation in the same direction of equal moment

in the same plane produce equal effects. Two unlike complanar

couples of equal moment balance each other and equilibrium

exists. The moment (Art. 35) of a force with respect to a point

is the product of the force by the perpendicular distance from

its line of action to .the point. Consider :

(a) Two complanar couples in equilibrium. In Fig. 39, the

couple P-fi is given in magnitude, direction, and lines of
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action, and it is required to find a complanar couple which will

produce equilibrium. As there are an infinite number of unlike

couples which will satisfy the conditions of equilibrium, i.e.,

having a moment equal to that of the given couple, assume the

force P3 in magnitude, direction, and line of action. From

these conditions, there must be determined the line of action of

a force, P4 , equal in magnitude and opposite in direction to P3 ,

the arm of the couple

P%P being such that

its moment shall be

equal to that of the

couple P\P^ To se-

cure equilibrium, both

the force and equilib-

rium polygons must

close.

Lay out the force

polygon, making
ac = P3 ,

and ca = P
;

draw the rays Oa, Ob, and Oc, selecting

any location for the pole O. Begin the

equilibrium polygon at any point, as A, on

the line of action of Pv making the side

FIG. 39 . AB parallel to Ob, BC to Oa, CD to Oc,

and AD to Oa. The sides AD and CD intersect in a point D on

the line of action of the force P4 ,
as that force is, in the force

polygon, held in equilibrium by the forces Oc and Oa. Since

thus both the force and equilibrium polygons close and the

couples are unlike, equilibrium exists and hence :

Force P
1
X arm EF=force P3 x arm EG,

as can be shown analytically or by graphic arithmetic.

(b) Three complanar couples in equilibrium. In this case,

Fig. 40, there are given, in magnitude,, direction, and lines of
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action, two like couples /
>

1
/>

8 and P<f^ and one opposing couple

P
&P& the magnitude of whose forces, to secure equilibrium, is

to be determined.

Construct the force polygon abcd\ although this polygon

closes, it is incomplete, as it lacks the forces P
b
and /*

6 ,
which are

required for equilibrium. Draw the rays Oa - Od\ starting at

any point, as A, j>

on the line of // "s

action of P
lt lay

out the equilib-
A/

rium polygon,

making the side

AB parallel to

Ob, BC to Oc\

CD to Od, and P4
~~

DE to Oa
;
draw

AF parallel to

Oa, since Oa

aids in maintain-
*

ing the equilibrium of P
1
at the joint

A. Connect the intersections E and

F
t
on the lines of action of P6

and Pe ,

by the closing side FE. Finally, draw

the ray Oe parallel to the side EF
and intersecting at e the line ae drawn FlG - 4.

parallel to the lines of action of Pb
and PQ

. Then, ae represents

the magnitude of those forces, and the complete polygon is

abcdaea. As both the force and equilibrium polygons close,

equilibrium exists. Hence :

Force P
5 x arm GH=force Pl

x arm KL +force P2 x arm GM,

since, for equilibrium, the moment of the opposing couple

must be equal to the sum of the moments of the two like

couples.
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28. Centroid; Centre of Gravity. The centre of gravity is

virtually the centroid or centre of a system of parallel forces.

Consider :

(a) Centroid of two

parallel forces. In

Fig. 41, let P
1
and

P
2 be two parallel

forces acting from

the points of appli-

cation A and B, re-

spectively. Draw the

force polygon 6Wand
the equilibrium poly-

gon ADE\ the re-

sultant R = P
l+P2

acts on the line GD,
the point G dividing

the line AB into seg-

ments, AG and BG,

which are inversely

as the forces applied

at A and B respec-

tively.

Now, revolve the forces P
l
and P

2 about their points of

application, forming the system of parallel forces P^ and P2
f

,

whose force and equilibrium polygons are O'a'c' and A' D-
'E 1

',
re-

spectively. The resultant R' acts on the line GD' which inter-

sects AB at G. With the same relative locations of the poles O
and O 1

,
the construction of the force polygon O'a'c' is unneces

sary, since the sides of the equilibrium polygon A'D'E' are at

the same angle with the corresponding sides of the polygon

ADE as that through which the forces were revolved.

It is evident that, at whatever angle the forces be inclined, if

they remain parallel, the line of action of their resultant will

FIG. 41.
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pass through the point G, which is hence the point of applica-

tion of that resultant. This point is called the centre ofparallel

forces or the centroid.

In Fig. 41 the forces have the same direction. If they act

in opposite directions and are still unequal in magnitude, their

resultant will be equal to the algebraic sum P,

of the forces and will act on a line parallel
A

I
B O

to their lines of action, meeting AB pro-

duced at a point G, as in Fig. 41 a, where B
R = P

2
- P

lt
and :

AG:^G::P2 :Pr
|

FlG . Ja .

If the forces are equal in magnitude and opposite in direction,

they form a couple whose centroid is infinitely distant from the

points of application of the forces and on a line drawn through
those points.

(b) Centroid of complanar parallel forces whose points of ap-

plication are complanar with all of the forces, but are not in a

straight line. It is evident that, so long as the points of appli-

cation of parallel forces lie in the same straight line, the cen-

troid of the system will be at the intersection of the resultant

with that line, whatever may be the number or relative direc-

tions of the forces. When, however, the points of application,

although in the same plane, do not lie in the same straight line,

the method shown in Fig. 41, i.e., the intersection of the lines

of action of resultants, may be used for complanar forces in

determining the centroid of the system.

Thus, Fig. 42, let P
l

- P be a system of parallel forces

having the points of application, A, B, C, D, respectively, these

points and the lines of action being in the same plane. Draw

the force and equilibrium polygons Oae and EBFKLH, respec-

tively ;
the resultant R acts on the line RHK. Revolve the

forces about their points of application, keeping the lines of

action still in their original plane. The system /Y ^V *s
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thus formed, having the equilibrium polygon E'B'F'L 1H' .

The line of action of the resultant R 1 of this system
intersects the line of action of the resultant R, at the

point G, which

point is the

centroid of the

system.

(c) Centre of

gravity. A
body consists

of an infinite

number of in-

finitely small

particles. Ter-

restrial gravi-

tation acts on

each particle

with a force

proportional to

the mass of the

particle. These

forces con-

verge at a point which is located approxi-

mately at the geometrical centre of the

earth. Since any two adjacent forces are

thus vertical sides, each about 4000 miles

long, of a triangle whose base is the in-

finitely small distance between two ad-

jacent particles, the forces of gravity

acting on a body are virtually parallel.

The resultant of this system of parallel

forces is the weight of the body. The
centre ofgravity or mass-centre is the centroid of this system ;

it

is the point through which, with any inclination of the body, the
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resultant passes, and hence on which, if supported, a rigid body
will balance in any position. If any straight line pass through

the centre of gravity, the sum of the moments of the forces of

gravity, acting on the particles on one side of this line, will be

equal to that of those on the other.

The use of the term 'centre of gravity,' as applied to lines or

areas which have no mass, is based on the arbitrary assumptions

noted below.

29. Centre of Gravity of a Line. It is assumed that the force

of gravity acting on the line is proportional to the length of the

latter, i.e., that there is an equal force applied at the centre of

each unit of length, as if the line were a thin wire.

(a) Straight line. The centre of gravity is at the middle of

its length.

(b) Broken line, as in Fig. 43. The methods of Art. 28 b can

be used to determine the centroid,

since parallel forces proportional to

the lengths of the segments AB, BC,

and CD are assumed as applied at

the respective centres E, F, and G
of these segments. This process may
be applied also to closed polygons.

(c) Circular arc. If a regular polygon be assumed to have

an infinite number of sides, it becomes a circle. Hence, on

this assumption, the centre of gravity of a portion of the perim-

eter of a regular polygon may be determined in such a way as

to make the method applicable to the corresponding arc of the

inscribed circle, and to circular arcs in general.

Thus, Fig. 44, let abcde be a portion of the perimeter of a

regular polygon ; r, the radius of the inscribed circle
; AB, a

diameter of this circle drawn perpendicular to the radius Oc

bisecting abcde
; s, the length of. one side of the polygon ; 5, the

total length of these sides
;

/
x

/4 , the projections of the sides
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upon AB\ L, the total length of these projections; y l j/4,

the distances of the centres of gravity or middle points of the

sides from AB
; F, the similar distance of the centre of gravity

of the polygonal circuit abcde.

It is assumed that a gravitational force proportional to the

length s and perpendicular to the plane of the circuit abcde

S

/
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of the polygonal circuit, the point G, thus found, being located

on the radius Oc, since this radius is the axis of symmetry of

the figure.

When the number of sides becomes infinite, abode is an arc

of the inscribed circle, of which arc L and 5 are, respectively,

the chord and the length. Thus, for a semicircle, L 2r,

S irr, and Y= 2 r/ir.

\

30. Centre of Gravity of Polygonal Areas. It is assumed

that the force of gravity acting on the area is proportional to

the magnitude of the latter, i.e., that there is an equal force

applied to the centre of each unit of area, as if the figure were a

thin plate.

(a) Triangle. The centre of gravity is at the intersection of

the lines drawn from the vertices to the middle points of the

opposite sides. Thus, Fig. 45, in the triangle ABC, the line

AD drawn from the ver-

tex A to the middle D of

the opposite side BC di-

vides the triangular area

ABC into two equal parts

and also bisects all lines,

as aa( within the area

and parallel to the base BC. Hence, for every element of area,

as b, there must be a corresponding element b* equally distant

from AD on a line parallel to BC. The centroid of this pair of

elements lies on AD. The entire area consists of an infinite

number of such pairs of elements
; therefore, the centre of grav-

ity of the entire area lies on the line AD. Similarly, it lies on

BF or CE, and is hence at the intersection G of these three

median lines. Since EB = AB/2 and BD = BC/2, the triangles

ABC and EBD are similar and DE = AC/2. For the same

reasons, the triangles GAC and GED are similar, and therefore,

as DE = AC/2, DG = AG/2 = AD/$.
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(b) Parallelograms. For similar reasons, the centre of gravity

of a parallelogram lies at the intersection of a line joining the

middle points of one pair of opposite sides and a similar line

connecting the other pair. The point thus determined is also

the intersection of the two diagonals of the parallelogram.

(c) Any polygonal area, regular or irregular, can be divided

into triangles and the centres of gravity of the latter located as

above
;

then the centre of gravity of the whole area may be

found either as shown in Art. 28 b, or by geometrical con-

structions.

The latter method is followed in Fig. 46 for the quadrilateral

area ABCD. Draw the

diagonal BC, thus dividing

the quadrilateral into two

triangular areas, ABC and

DBC; connect A and D with

the middle point E of BC,

and on the median lines, AE
and DE, lay off EG

l ^\AE
and G

2 =\ED. The points

G
1
and

K

G will then be the

centres of gravity of the tri-

angular areasABC and DBC,

respectively, and the centre

of gravity of the quadrilateral will lie at the point G on the

line G^G^
To locate the point G\ draw the diagonal AD intersecting

BC at F
t
KFL perpendicular to BC, and AK and DL parallel

thereto. The triangles ABC and DBC have the common base

BC, and their areas are therefore proportional to their altitudes.

Hence :

area ABC : area DBC ::FK: FL ::FA: FD.

Since the line divides the sides EA and ED of the triangle
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BAD into proportional parts, it is parallel to the side AD.
Hence (Art. 27 a) :

GG
2 : GG

l
::FA: FD.

Lay off DH= FA and draw EH intersecting G^G^ at the

point G, which is the centre of gravity of the area ABCD.

31. Centre of Gravity of Curvilinear Areas, (a) Circular

sector. Let it be required

to find the centre of gravity

of the circular sector

OABC, Fig. 47. The sec-

tor is composed of a num-

ber of elementary sectors,

ttOab. If this number be

assumed as indefinitely

large, the distance ab be-

comes indefinitely small

and Oab is virtually a triangle whose centre of gravity g lies on

the median line Oc at a distance Og = f Oc from O. Through

g draw the arc A' C' on which are located the centres of gravity

of all of the elementary sectors. The

centre of gravity G of the entire sector

therefore coincides with that of the arc

A fC r

,
which point lies on the axis of

symmetry OB of the figure at a distance

OG from the centre O, which distance

can be determined by the methods of

Art. 29 c.

(b) Circular segment. The area of the

circular segment ABC, Fig. 48, is the

difference between the area of the sector

OABC and that of the triangle OAC.

The centres of gravity of the three areas

all lie on the axis of symmetry OB. Let G
1
and G2 be those of
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the areas of the triangle and sector, respectively, and, at these

points, let there be applied parallel forces /\ and P2 , respec-

tively proportional to the areas. If P2 be assumed to act down-

ward, then P
l
must have the opposite direction, since the area of

the segment is the difference between those of the sector and

triangle. The problem is then to find the line of action of the

resultant, R = P
2

Pv which will intersect OB at the point G,

the required centre of gravity of the segment. By Art. 26 a :

: G
2
G :: : P

from which the point G can be located.

32. Centre of Gravity of Compound Areas. When an area can

be divided into simple geometrical figures, its centre of gravity

is found by assuming a force proportional to the area of

each part as applied at the

centre of gravity of that

part, and then determining

the centroid of the system

of parallel forces thus

formed, which centroid is

the centre of gravity of the

combined areas. If the total

figure is symmetrical about

any axis, the centre of

gravity will lie on that axis,

and but one determination

by the force and equilibrium
FIG. 40. i

polygons is necessary.

(a) Symmetrical areas. Thus, the T-shaped section, Fig. 49,

is symmetrical about the axis XX\ on which, therefore, its centre

of gravity must lie. Its area can be divided into the rectangles,

ab, cd, and ef. Applying the parallel forces P
lt
P2 ,

and P3 , pro-

portional to these rectangular areas, at the centres of gravity of

the latter g^ g^ and g^ respectively, and drawing the force
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and equilibrium polygons, the resultant

to intersect the axis XX' at the point

G
y
which is the centre of gravity of

the section.

Similarly, the channel-shaped sec-

tion, Fig. 50, is symmetrical about

the axis YY' and can be divided into

three rectangular areas whose centres

of gravity are glt g^ and g^ as shown.

Since the point g2 lies on the axis of

symmetry of the entire figure, the sys-

tem P
l

P3 must be assumed at

an angle to that axis. Proceeding as

in the previous case, the resultant R
is found to intersect YY' at the point

67, which is the required centre of

gravity, although lying beyond the

limits of the figure.

of the forces is found

U ! *

4
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/y, the sides of whose equilibrium polygon A'fi'C are at

right angles to the corresponding sides of the polygon ABC.

The line of action of the new resultant R' intersects that of R
at the point G, which is the centre of gravity of the section.

With the unsymmetrical areas, therefore, the centre of gravity

is determined by the intersection of the lines of action of two

resultants.

33. Centre of Gravity of Partial Areas. The area of a per-

forated plate is the total area, less the combined areas of the

perforation. The location of the centre of gravity of the par-

tial area remaining after these deductions can be found by the

methods of Art. 28 b.

Thus, Fig. 52, let it be required to determine the centre of

gravity of the partial area, ABCDEF, which area is equal to

that of the rectangle

ADEF, less those of the

triangle ABC and the circle

g^K. At the centres of

gravity g^ g^ and g^ of

T--|\ ^ 1 M \\p;i V^E these three figures app!y

FIG. 52.

parallel forces Pv P2 ,
and

P
8 , respectively propor-

tional to the areas, the

forces corresponding with

the two areas deducted

being assumed to act in

the opposite direction from

P
ly

which represents the area of the rectangle. Draw the

force polygon and the equilibrium polygons LMNS and

L'M'N'S' for two directions of the system of forces. The
resultants R and R' intersect at the point G, which is the

centroid of the system and the centre of gravity of the partial

area ABCDEF.
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34. Centre of Gravity of Irregular Areas. The centre of

gravity of an irregular area, as shown in Fig. 53, may be found,

in close approximation, by draw-

ing a series of vertical lines,

closely and uniformly spaced,

which divide the area into strips

so narrow that the centre line of

each space may be regarded as

the length of the strip. At the

centre of gravity of each strip,

i.e., the middle point of its cen-

tre line, apply a vertical force
FIG ' 53>

proportional to the area of the strip. Proceeding as in Art. 28 b,

find the centroid of this system of parallel forces, which cen-

troid is the centre of gravity of the area.

PROBLEMS

47. A vertical force of 10 pounds at one end of a 1 2-foot lever balances a

vertical force of 16 pounds at the other end. Find, by the equilibrium and

foice polygons, the position of the fulcrum and its reaction.

48. Given a simple beam of 1 2-foot span upon which are concentrated

loads of 300, 400 and 500 pounds, at distances of 2, 6 and 8 feet, respectively,

from the left support. Determine the reactions at the supports.

49. Forces of 300, 500 and 400 pounds act vertically downward at points

2, 4, and 8 feet from the left extremity of a rod, while forces of 600 and 800

pounds act vertically upward at points 3 and 7 feet from the same end. Find

the magnitude of the resultant and its point of application.

50. Replace the resultant of Problem 47 by two parallel components, one

of which shall act at 5 feet and the other at 6 feet from the left extremity.

51. Find the equilibrium polygon for a complanar, parallel set of eight

equal forces at equal distances apart.

52. The effective length of each arm of a die-stock is 24 inches. De-

termine the resistance which an iron pipe 1-1/2 inches outside diameter

offers to each of the two pairs of thread-cutters, if a man exerts a force of

50 pounds at each end of the die-stock.
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53. Find the centroid of the parallel forces 8 and 10 acting at the distance

of 12 units apart.

54. Find the centre of gravity of a wire bent into three parts, whose

lengths are as 2 : 3 : 4, the adjacent parts being perpendicular to each other.

55. Find the centre of gravity of a circular arc whose length is equal to its

radius.

56. Find the centre of gravity of three equal weights placed at the vertices

of a triangle whose sides are 6, 8, 10 feet, respectively.

57. Find the centre of gravity of a quadrilateral whose sides are 6, 8, 10,

and 12, respectively.

58. Determine the centre of gravity of a circular sector which is one-sixth

of the circle.

59. A bridge member has two web plates 18 by f inches, top plate 21

by f, top angles 3 by 3 and f inches thick, bottom angles 4 by 3 and | inch

thick. Find the distance from the centre of gravity to the middle of the

section.



CHAPTER V

MOMENTS

GRAPHIC STATICS considers, in general, only the moments of

forces with respect to a point and of forces and areas with

respect to an axis. Since an area has no mass, the computation
of its moment is based on the assumption (Art. 30) that the

mass of each element of area is proportional to the area of

the element. The moments which are treated herein are: the

first moment, or simply the moment, which is the product of

force-units or area-units by length-units, i.e., the distance of the

force- or area-units from the point or axis about which moments

are taken
;
and the second moment, or moment of inertia, which

is the product of force-units or area-units by the square of the

length-units, as denned above. Article 48 gives, further, the

method of obtaining higher moment surfaces.

35. Moment of a Force with Respect to a Point. The moment

of a force about a given point is the product of the magnitude

of the force by the perpen-

dicular distance or arm be-

tween its line of action and

the given point. The mo-

ment is thus a compound

quantity. If the force be

measured in pounds and

its arm in feet, the magni-
tude of the moment will be

expressed in pound-feet ;
or

FIG. 54.

if kilograms and meters be the units, in kilogram-meters.

In Fig. 54, let the line AB represent a force P in magnitude,

63



64 GRAPHIC STATICS

direction, and line of action, and let M be any point and

MA 2 / be perpendicular to AB. Then, the moment of the

force P with respect to the point M is :

AB x MA = P x 2 /,

or, geometrically,

= 2 x area of triangle MAB.

Similarly, the moment of the force P
1
= 2 P having the arm /

CDx MC=P
1 x/=2Pt,

= 2 x area MCD.

The magnitude of the moment is hence the same for both

forces, since P
l
has twice the magnitude of P with an arm one-

half as long. The two moments differ, however, in the tendency

of their respective forces to produce rotation. Thus, if M, AB,
and CD lie in the same plane of a rigid body, and ifM be a fixed

centre about which the body may rotate in that plane, then the

force P will have a positive moment, since it tends to produce

clockwise rotation of the body about the point M, and similarly

the force /\, as it tends to produce contra-clockwise rotation,

will have a negative moment. This distinction is arbitrary ;
rota-

tion in either direction may be considered as positive, if the

same assumption be made throughout any investigation.

If the rigid body be free to revolve about any centre and the

force P or P
1
be applied to it, the tendency of either force would

be both to rotate the body about its centre of gravity and to

produce a motion of translation in the direction of the force, so

that, to prevent translation and produce rotation only, there

would be required an additional force, the same in magnitude,

parallel, and opposite in direction to the first, and so applied as

to form a couple. With regard to a fixed centre M, as the

origin of moments, however, the magnitude of the moment of a

force measures the tendency of the force to produce rotation

about that point. Hence, as the magnitudes of the moments of
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the forces P and P
1 are equal, their tendencies to produce rota-

tion are equal in amount but opposite in direction.

36. Moments of Complanar, Non-parallel Forces with Respect
to a Point. In

complanar, non-v

parallel forces,

and let it be re-

quired to find the

moments of the

several forces

about any com-

planar point as

M. Draw the

force polygon a

. . .e with pole O\

the magnitude
and direction of

the resultant R
are given by the

line ae. In the

corresponding

equilibrium poly-

gon ABCDE,
the line of action

of the resultant

Fig. 55, let P
l

be a system of

FIG. 55.

passes through the point E, the intersection of the sides AE
and DE, which are parallel to the rays Oa and Oe, respectively.

The required moment of any fprce, as Pv is equal to the

magnitude of Pv i.e., ab, multiplied by the arm or perpendicular

distance /
x
between the point M and the line of action of Pv

Through Mdraw the line MG parallel to the line of action of P
1 ;

from A, the point of intersection of two sides of the equilibrium

polygon on the line of action of Pv prolong the sides BA and



66 GRAPHIC STATICS

EA until they meet MG at the points G and F, respectively.

Let HI be the pole-distance of Pl
in the force polygon, i.e., the

perpendicular distance between the pole O and that force. The

triangles Oab and AFG are similar. Hence :

ab \FG\\HI\ /
lf

ab x
/L
= ^(7 x //j,

moment = intercept FG x pole-distance.

Similarly, the moment of the force P% = cd x /
3
= intercept

A"Z, x pole-distance //
3 . This principle applies to the moment

of any force about any point. In general, then :

The moment of a force about a given point is equal to the

product of the pole-distance of that force by the intercept

which is cut from the line, drawn through the given point and

parallel to the line of action of the force, through the prolonga-

tion of the two sides of the equilibrium polygon which intersect

on the line of action of the force.

The positive or negative character of the moment is evident

from the direction of the force with regard to the point M, the

moments of P
1
and P

B being thus both positive. In each case,

the magnitude of the moment is obtained by measuring the

intercept, as FG, by the moment-scale. The graduation of the

latter depends, for all forces of the system, first, upon the linear

scale used in spacing the forces, and, second, upon ft\& force-

scale employed in laying out the force polygon ;
for each force it

depends also upon the pole-distance corresponding with that

force.

For example, in Fig. 55, the linear scale was 5 feet to an inch,

and the force-scale was 800 pounds to an inch. For the force

Pv the pole-distance used for H
l
was if inches= if x 800 =

1400 pounds. Then, the moment-scale by which to measure

the actual length of the intercept FG is :

linear scale x pole-distance

=
5 X 1400 = 7000 pound-feet to an inch.
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U-
V
'I, -I.

In constructing the diagram, Pl
was 1200 pounds and ^ was

1 1 inches = if x 5
=

8| feet on the linear scale. The mo-

ment of P
l

about the point M is, therefore, 1200 x 8|
=

10,500 pound-feet, and the actual length of the intercept FG was

i|-
inches = 1

1-
X 7000 = 10,500 pound-feet on the moment-

scale, or the same as the computed moment. It will be observed

that, with non-parallel forces, the pole-distance differs for each

force, giving thus a different moment-scale in each case.

37. Moments of Complanar, Parallel Forces with Respect to a

Point. In Fig. 56, let P
1

. . . P4 represent a system of corn-

planar, parallel forces,

and let it be required

to find the moments of

the several forces

about any point, as M.

Draw the force poly-

gon a . . . e with pole

O\ the magnitude
and direction of the

resultant R are given

by the line ae. In the

corresponding equi-

librium polygon,
ABCDE, the line of

action of this result-

ant passes through

the point E, the inter-

section of the sides

AE and DE, which

are parallel to the rays

Oa and Oe, respectively.

Through M draw the line MN parallel to the lines of action

of the forces and to that of their resultant. Since the forces

FIG. 56.
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are parallel, the pole-distance H is the same for all of the forces,

and, therefore, the same moment-scale applies throughout. By
Art. 36, the moment of any force is equal to the intercept cut

from the line MN by the sides produced, if necessary of

the equilibrium polygon which intersect on the line of action of

that force. Hence, the moments of the system about the point

M are represented by the intercepts :

FG for force Pv
FK for force P2 ,

KL for force P#
LN for force P,
GN for resultant^?,

which intercepts, measured by the common moment-scale com-

puted as described previously, will give the magnitude of the

several moments, the latter being

all positive except that of Pv

38. Moment of a Couple with

Respect to Any Point in its Plane.

If, as in Fig. 57, the point M,
about which moments are taken,

lies between the lines of action

of the two equal forces which

form the couple, both moments

are positive, and :

moment of right-hand force = P/
lt

moment of left-hand force = /Y
2 ,

algebraic sum of moments = P(/x + /2)
= PL

Again, if the origin of moments lies outside of the lines of

action, as at M', one moment will be positive, the other nega-

tive, and :

moment of right-hand force = + />(/ -f- /3 ),

moment of left-hand force = /Y3 ,

algebraic sum of moments = Pl
t

M

FIG. 57.
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or the same magnitude as before. Hence, the moment of a

couple about any point in its plane is a constant, and is equal to

the product of either of the forces composing the couple, by the

perpendicular distance between their lines of action.

39. Moment of the Resultant of Any System of Complanar

Forces. The moment of the resultant is found by the same

method as that given for the individual forces of a system.

Thus, in Fig. 56, the line ae in the force polygon gives the mag-

nitude and direction of the resultant R
;
the sides AE and DE

of the equilibrium polygon, which are parallel to the rays Oa and

Oe, respectively, intersect at E, a point on the line of action ER
of the resultant

; through the origin of moments M, the line MN
is drawn parallel to ER

;
and the sides AE and DE, which inter-

sect at E, cut the intercept GN from this line. The triangles

EGN and Oae are similar. Hence :

ae : GN : : H : /

ae x /,.
= GN x H. i.e.,

moment of R = intercept GN x pole-distance H.

Again, as the forces of the system are parallel, the intercept

in each case is multiplied by the same pole-distance H, in order to

obtain the corresponding moment. All moments are positive

except that of Pv Hence, the algebraic sum of the moments

about the point M is :

H(FK+ KL + LN-FG)=tfx GN-

i.e., the algebraic sum of the moments of the forces is equal to

the moment of their resultant, which principle is general.

By similar methods, the moment of the resultant of a system

of complanar, non-parallel forces is found, as in Fig. 55. In

this case, the pole-distance differs for each force, and that the

algebraic sum of the moments is equal to the moment of the re-

sultant must be demonstrated by computation or by the geomet-

rical methods given in works on elementary mechanics.
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40. Conditions of Equilibrium. If a system of complanar
forces is in equilibrium, there will be neither a resultant force

nor couple produced by their composition. Hence, the alge-

braic sum of the moments will be zero, which is the condition

for equilibrium for moments about any point in the plane of the

forces. Conversely, if the algebraic sum of the moments of the

forces about any point in their plane be zero, the system will be

in* equilibrium.

41. Bending Moment. In the examination of the tensile and

compressive stresses in beams, the term Bending Moment is

used to denote the algebraic sum of the moments of the external

forces acting on the left of the section of the beam to be investi-

gated, these moments being taken about a point in this section.

Since, up to the point of rupture, the system is in equilibrium,

the forces to the right have, with respect to the given section,

a bending moment of equal magnitude but of opposite sign. In

each case, the bending moment simply measures the tendency
of the corresponding external forces to produce rotation about a

point in the section considered. The bending moment is a com-

pound quantity which may be expressed in pound-inches, pound-

feet, ton-feet, etc.

Thus, Fig. 58, consider a 'simple beam,' i.e., one resting

upon two supports, one at each end, as AB, carrying the loads

/V * ' P, and supported by the reactions R
l
and Ry Construct

the force and equilibrium polygons abode and CDEFGH, respec-

tively ;
draw the ray Of parallel to the closing side HC, thus de-

termining the magnitude of the reactions R
1
and R2 . Now, let

it be required to find the bending moment at a point M in the

section of the beam cut by the line MNQ, which line is parallel

to the lines of action of the forces.

This moment is, by definition and by Art. 39, the moment of

the resultant r of the forces to the left of M\ i.e., of the forces

P
l
and Rr The magnitude and direction of the resultant r are
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given by the line/ in the force polygon; by Art. 21, the sides

CH and DE, which are cut by the line MNQ, intersect, when

prolonged, at a point L in the line of action of r. From L

drop the perpendicular of length / on the line MNQ. Then,

FIG. 58.

the bending moment at the point M is equal to r x /, and, by
Art. 37, it is also equal to the intercept NQ x the pole-distance

//", since the sides LH and LE of the new equilibrium polygon

LEFGH, formed by the composition of P
l
and R

1
into their

resultant r, intersect on the line of action of r and also cut the

intercept NQ from the line MNQ. This principle is general

when the lines of action of the forces and reactions are parallel.
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Under these conditions :

The bending moment in any section parallel to the lines of

action of the forces is directly proportional to the correspond-

ing ordinate of the equilibrium polygon, and is equal to the

product of that ordinate by the pole-distance in the force poly-

gon. If the pole-distance is made equal to the unit of force,

the ordinate of the equilibrium polygon represents the magni-

tude of the bending moment.

By similar methods, it can be shown that the bending moment

of the external forces to the right of the section at M is also

equal in magnitude to the intercept NQ X the pole-distance,

or, disregarding the resultant of the forces in both cases, we

have, for the moments about M of :

R1== + NS x H
/>!=

- QS xH
Algebraic sum of moments to left ofM = + NQ x H

P2
= + QT x H

P
8
= + TUxH

/>
4
= + UVx H

R = - NV x H
Algebraic sum of moments to right ofM = NQ x H

i.e., the bending moment at the right of the section at M is

equal in magnitude to that on the left, but with contrary sign.

The bending-moment scale, by which to measure the ordinates

of the equlibrium polygon, is computed by the methods of Art. 36.

42. Combined Bending Moments. Since the bending moment,

or any statical moment, may thus be represented, like a simple

force, by a line, these moments may be combined or resolved by
the same methods as in the case of forces.

(a) Moments in the same plane. In Fig. 59 let there be two

equal and parallel forces P
lt
P2 applied to a simple beam. The

upper equilibrium polygon or bending-moment diagram con-

siders the left-hand force P
1 oaly; the second diagram, the
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right-hand force only; and the final diagram includes both forces.

The three force polygons are constructed with the same pole-

FIG. 59.

distance. Any ordinate, as^, in the lower diagram is the arith-

metical sum of the corresponding ordinates y and
jj>2

in the two

upper diagrams. In this case, bending moments in the same

plane have been treated like forces having the same line of

action, and added to find the resultant moment. The principle

is general for all bending-moment diagrams under these condi-

tions. In Fig. 59 both forces have the same direction
;

if one
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had acted upward and the other downward in the same plane,

the two moments would have had different signs and the re-

sultant moment would have been their algebraic sum.

(b) Moments in planes inclined to each other. In Fig. 60

assume the force P and the weight W to be acting normally to

the neutral axis (Art. 61) of the beam, the line of action of the

force being inclined at an angle with the vertical. Revolve the

force into a vertical plane as the force P ]

;
draw the force polygons

FIG. 60.

ab and cd with the same pole-distance; and construct the corre-

sponding equilibrium polygons AC'B and AD^B, which, for clear-

ness, will be located, one above and one below the neutral axisAB.

By Art. 41 the ordinates EE1 and EE
lt corresponding with

any point E in the beam, are proportional to the bending mo-

ments at that point due to the force P' and the weight W,

respectively. The bending moment caused by P' is the same in

magnitude as that due to P, although acting at a different angle.

Treating the moments as if they were forces, it is necessary only

to find the resultant of the two moments of any given point, in

order to determine the ordinate at that point of the diagram for

the combined moments.
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Therefore, revolve the ordinate EE 1

through the angle 6 to Ee,

and eE
l
will then represent the resultant of eE and EEV From

E lay off downward EE" = eEv thus obtaining the point E" in

the diagram for the combined moments
;
other points are plotted

in a similar way, the complete diagram being AC"D"B. The

portions of the original polygons to the left of the line 7' Care

triangles having the common altitude AF. Hence, any cor-

responding ordinates, as GG', GGV are proportional to the

respective bases of these triangles, GGr/GG1
= a constant, and

AC", and similarly BD", are straight lines. Between C'Cand

D'D, the portions of the polygons are trapezoids, making the

side C"E"D" a curve.

43. Moment of a Force with Respect to an Axis. The moment

of a force about an axis is the product of the magnitude of the

force by the common perpendicular between the axis and the line

of action of the force. Thus, Fig. 61, if B
the line of action AB of the force P lie

in the plane of the paper, and if, at C, an

axis pass through that plane perpendicu-

lar to the latter, then CD, which lies in D
| ~? C

the plane and is the common perpendic-

ular to the line of action and the axis,

is the arm of the force with respect to

the axis. The moment of the force =P
x CD = 2 x area ABC. With respect

to a given axis, this moment depends FIG. 61.

upon both the direction and the point of application of the force.

44. Moment of an Area with Respect to an Axis in its Plane ;

Centre of Gravity. The first moment of an area about an axis

in its plane is equal to the magnitude of the area, multiplied by

the perpendicular distance of its centre of gravity from the axis,

since the centre of gravity (Art. 28) is the point at which the
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mass of a body is assumed to be concentrated. This moment may
be found, and the centre of gravity determined, by the principle

of moments, as follows :

(a) By computation.

Taking the simplest case,

let it be required to deter-

mine the moment of the

irregular area, Fig. 62,

about an axis OY in the

plane of the area and tan-

gent to its periphery. Di-

vide the area into any num-

ber of strips, parallel to

6>Fand of an equal breadth

b, so narrow that the length

of the centre-line, as fiv of
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moment of this resultant, divided by its magnitude, will give its

arm, or distance, from the axis O Y. Hence, the perpendicular
distance of the centre of gravity, G, of the entire area from

OY, is:

5 i+7*4+9AR) = Xu
Moment of area_ b (h^ + 3

Area 2//

The centre of gravity is thus found to be on the line AB,

parallel to, and at a distance x from, the axis O Y. To determine

the position of G on this line, draw the axis OX, divide the area

into strips parallel to it, and find the distance y which is equal

to the moment of the total area about OX divided by that area.

This shows G to be on the line CD, parallel to, and at a distance

y from, the axis OX, or at the intersection of the lines AB and

CD.

If the axis O Y were moved the distance a to the left, as at

0' Y', the moments of the strips would become bh^(a^-\b}t

bh^ (a + | b\
etc.. and the dis-

tance x would

be greater by
the amount a.

Again, if the axis

pass through the

area,asat<9"F",

the moments of

the strips to the

left of it would

be negative;
those to the right,

positive; and

their algebraic

sum would give the moment of G about O fl Y".

(b) By graphic methods. The determination of the centres

FIG. 63.



78 GRAPHIC STATICS

of gravity of various areas has been discussed in Arts. 30 to 34,

inclusive
;
the moment of any area about an axis in its plane

(except one passing through the centre of gravity, about which

the moment is zero) may be found by the application of the

methods of Art. 39 to those described in these articles.

Thus, Fig. 63, let it be required to find the moment of the

area of the T-section about the axis M'm'. Construct the equi-

librium polygon, as in Art. 32 a, with the lines of action of the

forces parallel to M'm'
; by Art. 39, the product of the intercept

KL, cut from M'm' by the sides AD and CD prolonged, and the

pole-distance H is the magnitude of the required moment. This

follows, since the resultant R, acting through the centre of

gravity G, represents the entire area, and KL xH is the moment

of that resultant about any point in the axis M'm', and therefore

about that axis.

45. Moment of Inertia; Radius of Gyration, (a) Moment of

inertia. If a particle of mass m be rotating, with an angular

velocity v, in a plane about a point lying in the plane and at a

distance r from the particle, the angular momentum of the par-

ticle will be mvr2
*,
and that of all the particles composing the

body will be v^mr2
*. The expression ^mr2 = / is the sum of

the second moments or moments of inertia of the particles, as

defined at the beginning of this chapter, m being the quotient of

W, the weight, divided by g, the acceleration of gravity. The

term 'moment of inertia' was used primarily with regard to the

rotation of rigid bodies. Since, in the mechanics of engineer-

ing, force is taken as the product of mass by acceleration, this

term may be used to describe the second moment of a force or

system of forces about an axis
;
as an area, however, is not a

material body, the term is strictly applicable to it only on the

assumption that each element of area has a mass proportional to

its area, as if the given figure were a thin plate.

In the expression for /, as given above, the radius r evidently



MOMENTS 79

differs for each particle considered. Hence, the moment of

inertia of a body is the summation of the products of the masses

of the elements of the body by the squares of their respective

distances from the axis of inertia about which the body is

assumed to rotate. Similarly, the moment of inertia of a force

about such an axis is the product of the squares of the distance

between the point of application of the force and the axis, by the

magnitude of the force
;
and the moment of inertia of a system of

parallel forces is the sum of these products. The moment of

inertia of an area is, in the same way, the summation of the

products of each elementary area, considered as a mass, by the

square of its distance from the axis of inertia.

(b) Radius of gyration. The radius of gyration is the per-

pendicular distance from the axis of inertia to the centre of

gyration. For a body, the centre of gyration is the point at

which, if the entire mass of the body were concentrated in a

single particle, the effect of the forces acting on the body

would be unchanged and the moment of inertia of the body

would remain the same.

The distinction between the centre of gyration and the centre

of gravity should be noted. The centre of gravity of a body is

the mass-centre
;

its position in the body is invariable
;

its dis-

tance from a given plane is equal to the mean distance of all of the

particles of the body from that plane ;
its distance from an axis

is equal to the first moment of the body about that axis, divided

by the mass of the body. The centre of gyration of a body, on

the contrary, has not an unchangeable location. Its position may
be taken as that of any point in the body which, under the con-

ditions then existing, is at a distance from the axis equal to the

radius of gyration ;
with any variation in the virtual centre about

which the body revolves, that radius changes also and with it the

location of the centre of gyration.

If we assume the entire mass of the body to be concentrated

at the centre of gyration, at a distance k = the radius of gyra-
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tion from the axis, then the moment of inertia of the body about

that axis is : 7=
Hence :

i.e., the square of the radius of gyration is equal to the moment

of inertia of the body divided by its mass. Similarly, the square

of the radius of gyration of a system of parallel forces is equal

to the moment of inertia of the system, divided by the magni-

tude of the resultant R of the forces, i.e., & = I/R. For an area

A, by similar reasoning, /

2 = I/A.

(c) Parallel axes of inertia, one passing through the centre of

gravity. Since the moment of inertia of an area is the sum of

the second moments, about the axis of inertia, of all of the elemen-

tary areas, its moment of inertia about an axis passing through

its centre of gravity is the sum of the second moments about that

axis of the two sections into which the axis divides the area.

This reasoning applies also to the moments of inertia of a body
or of a system of parallel forces about such an axis.

The moment of inertia of a system of parallel forces, about an

M ' M axis passing through the centroid of the sys-

tem, can be determined graphically with ac-

curacy, since such a system consists

of a relatively small number of ele-

ments. The graphic determination

of the moment of inertia of an area

or of a body, about an axis passing

through the centre of gravity, is,

however, except under certain con-

P ditions to be given later, but ap-j> I>

FlG - 64-

proximate, since the area or the body
consists of an infinite number of

elementary areas or elementary masses, the summation of whose

second moments is required. Such operations can only be per-

formed with full accuracy by the methods of the calculus.
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When, however, the moment of inertia of an area, about an

axis passing through its centre of gravity, is known, its moment
of inertia about any parallel axis of inertia can be readily found,

since there are definite relations between the two moments.

Thus, Fig. 64, let P
1

. . . P3 be a system of parallel forces, the

line of action of whose resultant R forms an axis Mm passing

through the centroid of the system. Let /
x

. . . /8 be the

respective distances of the lines of action of the forces from the

axis Mm\ let M'm 1 be any axis parallel to Mm, at the distance

L therefrom
;
and let / be the moment of inertia of the system

about the axis Mm, and /' that about M'm' . Then:

/' = P,(L - IJ + P2 (L- /
2)2 + P3 (L + /

3)
2

,

+ 2Z(/y3 -/y2 -/y1 ).

In the last equation, the first term = /; the second term = RL 2
\

and, in the third term, P^ . . . P
3
/3 are the first moments of the

forces about an axis passing through the centroid, the algebraic

sum of which moments is zero (Art. 40), since the forces on one

side of the resultant balance those on the other. Hence, the

third term vanishes and :

/'=/ + RL*.

By similar reasoning, for a body and an area, respectively :

/' = / +
r = i +

in which M and A are the total mass and the total area, respec-

tively. Hence :

The moment of inertia of a body, an area, or a system of

parallel forces about any given axis is equal to the moment of

inertia of the body, area, or system, respectively, about a parallel

axis passing through the centre of gravity or centroid, plus the

moment of inertia of the mass of the body, of the area, or of the

resultant of the forces, respectively, about the given axis, the mass

or area being considered as applied at their respective centres of

gravity, and the resultant as acting from the centroid of the system.
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M'

As an example, consider the rectangular area, Fig. 65, of

base B and height //", and let the axes of inertia be Mm, passing

N through the cen-

tre of gravity,

and Mfm' at the

left-hand ex-

tremity of the

area. Let db
**~ t ""*"*"

"I" be the width of

an indefinitely

small element of the area and b its distance from M'm 1
. Then,

the moment of inertia of the entire area about the axis M'm' is:

P.-
- L -->
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46. Moment of Inertia of a System of Complanar, Parallel

Forces, (a) By the method of intercepts. Let P
l

P
3, Fig.

66, be a system of complanar, parallel forces, acting from the

points of application, A, B, and C, respectively, and let it be

required to find the moment of inertia of the system about the

parallel and complanar axis M'm' .

To find the first moment, draw the force polygon a - d with

pole-distance H, and the corresponding; equilibrium polygon,

DEFG ; the resultant R = ad and its line of action passes

through the point G. The intercept on the axis M'm 1
of the

sides DE and DG, which intersect on the line of action of

Pv is a'b', and the first moment of this force about this axis

is therefore a 1
'

b
1 x h. Similarly, the first moment of P2 is

b'c' x H, and that of P3 is c'd' x H. The moment of P
1

is

negative, while those of P2 and P3 are positive. Hence, the

first moment of the resultant R is (b'c' + c'd 1

a'b')H
= a'd' x H.

To determine the moment of inertia, assume that the first

moments, as found above, are a system of forces, each moment

acting on the line of action of its original force in the system,

P
l

- - P
3

. Since the magnitude of each of the first moments

is equal to the product of its intercept on the axis M'm' by the

pole-distance H, these intercepts may be taken as proportional

to, and representing, the new system of forces, in magnitude and

direction. Therefore, draw the force polygon b' d\ with

pole-distance //', for the forces represented by the intercepts,

a' b', b'c'
,
and c'd f

,
and construct the corresponding equilibrium

polygon D'E'F'G' ; the resultant of this assumed system is

R f = a'd' and its line of action passes through the point G' .

The intercepts of the new forces a' b'
,
b'c'

,
and c'd' on the axis

M'm' are, respectively, a"
'

b"
', b"c", and c"d" . All of the

moments represented by these intercepts are positive, since the

assumed force a' b' acts in a direction opposite to that of Pv

As the first moment of any system of forces is equal to the
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first moment of the resultant of the system, the first moment of

the resultant R' is the first moment of the assumed system, a' b',

b'c', etc., and, hence, is also the second moment of the original

system, /\ . . . P3 . The latter moment, which is the moment
of inertia required, is hence :

a"d" x H' x H.

The geometrical proof of this method is as follows :

Let /jbe the perpendicular distance between the line of action

of the force P
1
and the axis M'm'. Then, the second moment

of P
1

is P
l
x

/!
2 = ab x /j

2
. The triangles Oab and Da' b' are

similar. Hence:
ab:a'b'::H: /v

abxl
l
= a'b' x H.

The triangles O'a'b' and D'a"b" are similar.. Hence:

a'b' : a"b" ::ff':/
l

a'b' = a"b" x H'/lv
Substituting,

ab x /
x

2 = a"b" x H x H'.

Similarly, the second moments of the forces P% and PB are

found to be the intercepts, b"c" and c"d"
, respectively, each

multiplied by the two pole-distances. The sum of the three

second moments is the moment of inertia of the system ; i.e.,

a"d" x H x H'.

The methods of Art. 36 may be applied for the construction

of a second-moment scale, by which the moments of inertia may
be read directly from the intercepts a"b"

, b"c", etc. Thus, let

the linear scale, by which the forces are spaced, be 5 feet to an

inch
;
the force-scale, by which the polygon a ... d is laid out,

be 800 pounds to an inch
;
and let the actual length of H be

1 1 inches, or I \ x 800 = goo pounds. Then, the first-moment

scale = linear scale x H =
5 x 900 = 4500 pound-feet. To find

the second-moment scale, the units in which the moment is

obtained should be noted. Thus, P1
is given in pounds and

/j
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in feet; the second-moment, P
1
x /

x

2
, will, therefore, be in

pound-feet
2 units. Again, the intercepts a 1

'

b\ b'c*
', etc., since

they were derived from an equilibrium polygon, or space-diagram,

are really distances and not forces, although they were assumed

to be the latter in constructing the polygon O
fb'd' . Hence, //',

whose actual length was i| inches, should be measured by the

linear scale, and becomes ij- x 5 = 7j feet. Therefore, the

second-moment scale = first-moment scale x H 1

=4500 x 7.5

= 33,750 pound-feet
2

. Thus, Pl
= 450 pounds and /

x
= 6.9 feet;

the second moment will therefore be 21,425 pound-feet
2
, and,

since

33,750:21,425 :: i: 0.63,

the actual length of the intercept a"b" was, in the original figure,

0.63 inch.

The square of the radius of gyration is equal to the magnitude

of the intercept and", measured by the second-moment scale,

divided by the resultant R = ad, in pounds. The square root of

this quotient is the value of k in feet.

(fr) From the area of the equilibrium polygon. To find the

moment of inertia of the system of parallel forces, Fig. 66, from

the area of the equilibrium polygon, consider first the moment

about the axis Mm, which is the line of action of the resultant

R and hence passes through the centroid of the system. For

any of the forces, the sides of the polygon which intersect on its

line of action and the intercept of these sides on the axis form

a triangle, as FGN for the force P3 ,
to which there is a similar

triangle, as Ocd, in the force polygon. Let /3 be the distance

between the line of action of P
z and the axis Mm. Then :

cd:GN::H:ly
Since cd = P3 ,

P3
/
3
= H x GN.

Multiplying by /8 : P
zl* = 2H(GN x 4/2).

P3
/
3
2

is the moment of inertia / for the force P3
about the
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central axis Mm, and Gn x /g/2 is the area of the triangle FGN.

By similar reasoning :

2 H x area of triangle /^Q = / for P
lf

2 H x area of triangle -ETV^g = ^ for ^V
The triangular areas :

DGQ + 7V2 + FGN= polygonal area DEFG.

Let the area of the equilibrium polygon = A r
. Then :

A' x 2 77= /for (/\ + P2 + 7*3)
= /for ^,

and for the system. If H = R/2 :

I=A'R,
and the square of the radius of gyration is:

&**A'.

In Fig. 66, the forces P
l

. . . P% have all the same direction.

If one of them, as P2 ,
had a direction opposite to that of the

other two forces, its moment and the corresponding triangular

area would have the opposite sign, and the area A r of the

equilibrium polygon, would then be equal to the algebraic sum

of the three triangular areas.

Consider now the moment of inertia of the system with re-

spect to the parallel axis Mfm r

. The triangles Da'b* and Oab

are similar. Hence:
ab:aWi:H:l

lt

P
l
x /!

= H x a'tf,

PJ? = 2 ff(aW x /j/2).

Hence, the moment of inertia /' for the force Pl
is equal to

2 H x area of triangle Da'b 1

. Similarly :

/' for P2
= 2 H x triangular area Eb l

c\

I 1 for P
z
= 2 H x triangular area Fc'd' .

Let the area of the triangle Ga'd' = A fl
. Then the moment

of inertia of the system is :

/' = 2 H x polygonal area DEFGd'a!
= 2 If(A

1 + A").
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Iiff= R/2, r = R (A' + A"),

and the square of the radius of gyration is

JP = A r +A".

Hence, for an axis passing through the centroid, the mo-

ment of inertia is equal to the product of the resultant by the

area of the equilibrium polygon, if the pole-distance H be made

equal in magnitude to one-half of that resultant. For a parallel

axis, the magnitude of this moment is increased by the product

of the resultant by the triangular area formed by the sides inter-

secting on the line of action of the resultant and the intercept of

these sides on the given axis.

This relation between the two moments of inertia may also be

established by the principles of Art. 45 c, from which we have :

F^I+Rlft
in which lr is the distance from the line of action of R to the

axis M'm*. The triangles Ga'd' and Oad are similar. Hence:

ad : a'd' ::H: lr ,

Rlr
= H x a'd' = R/2 x a'd',

Rl? = R (a'd' x /r/2) = A"R,

which is the increase in the moment of inertia as found by the

first method.

47. Moment of Inertia of an Area. The determination, with

absolute accuracy, of the moment of inertia of a plane area by
either of the methods of Art. 46 is impossible, since such an

area consists of an indefinitely large number of elements of area,

and the corresponding system of parallel forces would therefore

be composed of an indefinitely large number of forces, thus

making graphic methods unavailable, although the general

principles of the latter, as demonstrated for parallel forces in

Art. 46, are fully applicable to areas.

(a) Approximate determination. A working approximation,
which will serve in most cases in practice, may be made by first
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determining the centre of gravity of the given area; then divid-

ing the latter into a number of narrow strips parallel to a corn-

planar axis passing through the centre of gravity; and finally

applying at the centre of gravity of each strip a force propor-
tional to its area, the whole forming a system of complanar,

parallel forces which may be treated by the methods of Art. 46.

The greater the number of these strips and hence the less their

width, the nearer the approximation approaches accuracy.

Thus, Fig. 66, if the forces represented elements of area and

there were an infinite number of these forces, the width of each

elementary area would be the infinitely small differential of the

distance of the forces from the axis, as dlz for the force P3 ,
and

the moment of inertia of each element of area would be that of

the corresponding force, as PJg for the force P8 , about the

axis Mm. With an infinite number of such forces, it is evident

that the upper sides DEF of the equilibrium polygon would be

replaced by a curve tangent to the lower sides DG and FG. In

practice, if the given area be divided into a reasonably large

number of strips as explained, this curve may be drawn with

sufficient accuracy, and the area A 1
of the equilibrium polygon

can then be measured by any of the usual methods.

If A be the given area whose moment of inertia is required,

and if H =
\ A, the moment of inertia about an axis passing

through the centre of gravity is:

/= AA',

and about a parallel axis is :

I' = A (A'+A"),
in which A n

is the area of the triangle Ga'd', as shown in Art.

46 b. Since the moments of inertia thus obtained are the prod-

ucts of an area by an area, both usually in square inches, the

result is given in inches4 .

If the method of intercepts be employed as in Art. 46 a, the

force- scale of pounds to the linear inch, used originally in con-
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structing the force polygon abed will be replaced by an area-

scale of square inches to the linear inch, by which scale the

distances ab, be, etc., are laid out. The first-moment scale will

then be, as before :

linear scale x pole-distance H;

but H, measured from the polygon Oad, will be given in square

inches. The second-moment scale will be, as before, the product

of the first-moment scale by the pole-distance H', the latter be-

ing measured by the linear scale. The second-moment scale

will then give the number of inches4
corresponding with the

actual length in linear inches of the intercepts a" b"
,
etc.

(b} Accurate determination. Both of the methods of Art. 46

are applicable, with entire accuracy, to the determination of the

moment of inertia of an area, when the latter can be divided into

sections, the area of each of which, and its moment of inertia

with respect to an axis passing through its centre of gravity, are

known. In this case, the force representing the area of the

section is applied, not at the centre of gravity of the latter, but

at a distance from the axis of inertia which is equal to the radius

of gyration of the area of the section about that axis. Thus, let

a be the area of the section, k its radius of gyration about the

axis Mm passing through the centre of gravity, k^ its radius of

gyration about the given axis of inertia M f

m', and L the dis-

tance between the two axes. Then, by Art. 45 b:

= a

The required radius of gyration k is therefore the hypothe-

nuse of a right-angled triangle whose sides are k and L, the

magnitudes of which are known. The force corresponding with

the sectional area a is then assumed to act at a distance /
x
from

the axis of inertia and to be parallel to that axis. If the total

area can thus be divided into geometrical figures to which this
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principle can be applied, either the method of intercepts or that

of the area of the equilibrium polygon can be used, with entire

accuracy, for the determination of the moment of inertia of a

plane area.

48. Higher Moment Surfaces : the nth Moment of an Area.

If an area be divided into very small parts or elements,

and each of these elementary areas be multiplied by its dis-

tance from any given line or axis, the algebraic sum of these

products is known as the first moment, or simply the mo-

ment (Art. 44) of the area about the given axis. Again, if

each of the elementary areas be multiplied by the square of its

distance from the given axis, the sum of the products thus

obtained is called the second moment, or moment of inertia (Art.

47) of the area. In general, the nih moment of the area about

the given axis would be the sum of the products found by multi-

plying each elementary area by the nth

power of its distance

from the axis.

Thus, Fig. 67, let it be required to find the successive moments

of the area enclosed by the square BEFG about an axis NA,

passing through its centre of gravity and parallel to the side BG.

Assume the area to be divided into elementary strips, as CD,

parallel to the axis NA. Project C and D to E and F on the

side EF, and connect the points E and F with the centre O of

the axis NA, forming the triangle EOF.

The moment of any strip, as CD, about the axis NA varies as

the distance of that strip from the axis. From the similar tri-

angles OEF and OHL we have :

EF\HL\\AF\ AD,
HL x AF= EF x AD = CD x AD.

But AFis the moment-arm of EF (which is equal to CD), and

AD is the moment-arm of HL. Therefore, the moment of CD
about NA is equivalent to the moment of HL about NA, if HL
be at the distance FA from NA.
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Similarly, it may be shown that the moment of any elementary

strip similar to CD, but located in a different part of the area

FIG. 67.

NEFA about the axis NA is equal to the moment about NA
of that portion of the strip which is intercepted by the lines EO
and FO, if that portion be at the distance FA from NA.

Hence, the product of the triangular area OEF by the dis-

tance AF of its most remote element EF from the axis NA is

the first moment of the rectangular area NEFA about the axis

NA. Similarly, the first moment of the rectangular area

BNAG about the axis NA is equal to the product of the area of

the triangle BOG by the distance AG, but, as this triangle is

below the axis NA, the moment will be negative. The algebraic

sum of the moments obtained from the triangles OEF and OBG
is the moment of the square BEFG about the axis NA

t
and is

equal to zero, since the axis passes through the centre of gravity

of the square. The areas OEF and OBG are known as the

first-moment areas.
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The second moment is the moment of the first moment.

Hence, to obtain the second-moment area, the first-moment area

is treated as if it were a simple area and its first moment found.

Thus, let the triangle OFF be divided into elementary strips, as

IIL. Project H and L to // and /, respectively, on the most

remote element EF\ draw Oh and O/, and the points H' and L f

,

where these lines intersect the element HL, will be points in the

boundary of the second-moment area. Proceeding thus, we
obtain the second-moment areas OH'EFL' and OH"BGLU

,

whose sum, multiplied by the square of AF, the distance of EF
or BG from NA, gives the second moment, or moment of

inertia, of the square BEFG about the axis NA.
For the third moment, the second-moment area is treated as

a simple area, and its first moment is found. The operation is

then repeated until the wth moment is determined.

49. Twisting Moment
;
Polar Moment of Inertia, (a) T^v^st-

ing moment. If a shaft be subjected, as by a crank, to a force

of magnitude P applied normally to a radius of the cross-

section at a distance p from the centre, the product Pp is called

the twisting moment. The tendency of this moment is to

twist the shaft around its axis and hence to shear it in a direction

transverse to the axis. In works on mechanics of materials, it

is shown that the twisting moment is equal to the product of the

unit shearing stress, at a unit's distance from the axis, by the

polar moment of inertia, i.e. :

Pp = S.J/c,

in which c is the distance of the most remote fibre of the cross-

section of the shaft from the centre of gravity of that cross-

section, Ss is the unit shearing stress at the distance c, and J is

the polar moment of inertia.

() The polar moment of inertia, Ip (or J) of a body or a

plane surface is the moment of inertia of the body, or the area of

the surface, when revolved about an axis which is perpendicular



94 GRAPHIC STATICS

to the plane of rotation of the body or the area. For plane

figures, this axis of inertia or pole is perpendicular to the plane

of the figure. For a shaft, it is perpendicular to the plane of the

transverse section and coincides with the axis of the shaft.

There is a definite relation between the polar moment of inertia

and the rectangular mo-

ments of inertia which have

been discussed. Thus, let

Fig. 68 represent a plane

circular area with compla-

nar axes XX and YY, and

let a be an element of the

area which is distant r from

the centre O, through which

centre the pole passes in a

direction perpendicular to

the plane of the area. Let

FIG. 68. Ix and Iy be the rectangular

moments of inertia of the element a about the axes XX and YY,

respectively. Then, if y and x be the distances of a from the

axes XX and YY, respectively :

since ay* and ax* are the rectangular moments of inertia of the

element a about the axes XX and YY, respectively, and ar* is

the polar moment of inertia of a about the point O. This prin-

ciple applies to every element and hence to the entire area. In

general :

The polar moment of a plane area about any given point in

its plane is the sum of the rectangular moments of inertia of

the area about any two complanar axes which pass through the

given point and are at right angles to each other.
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50. Twisting and Bending Moments Combined. A crank

shaft is subjected to torsional stress between the crank and the

point where the power is delivered. Similarly, a shaft carrying

a driving and a driven pulley is under torsional stress between

the two pulleys. Furthermore, the weights of the shaft, crank,

and pulleys and the tension of the belts produce bending mo-

ments in the shafts.

In practical computations, these twisting and bending moments

may be combined to form either a twisting moment equivalent

to both of the original moments of torsion and bending, or simi-

larly an equivalent bending moment. Rankine,* in combining

the greatest direct stress due to the bending load and the great-

est shearing stress due to the moment of torsion in a shaft, gives

the intensity of the greatest resultant stress in the form :

^=1S+1VS2 + 4SS
2

,
. . . . (i)

in which 5 is the maximum flexural unit-stress and Ss is the

greatest shearing unit-stress due to torsion.

Let Mb be the bending moment, Mt
the twisting moment, and

EMb and EM
t
the equivalent bending and twisting moments,

respectively, each assumed to be equivalent in effect to both Mb

and M
t
. By the fundamental formulae for pure bending and

pure torsion :

5 = Mbc/I and Ss
= M^/J%

in which c is as defined in Art. 49.

For circular sections of diameter d\

I = TT <^
4
/64 and J = IT a*/32,

hence: J=2l
For the equivalent bending moment, / = EMbc/l'. Substituting

in (0: EMb
= 1/2 (Mb + -VMf^Mf). ... (2)

For the equivalent twisting moment, / = EM
t c/2L Substitut-

ing in (i): EMt=M, + ^/Mf + M? (3)

*"
Applied Mechanics," London, 1869, p. 358.
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From (2) and (3): EMb =i/2 EMt, ....... (4)

i.e., in converting a twisting moment into an equivalent bending

moment the latter, on the same scale, is equal to one-half the

twisting moment.

Grashof deduces equation (i) in the form:

2 m 2m , (5)

in which the value of m is usually taken as 4. Using that value,

we have by the method as above :

EMb
= \Mb + | VM? t MJ

which is the form used by Reuleaux in The Constructor. Under

these conditions, the equivalent bending moment is equal to five-

eighths of the twisting moment.

It should be observed, as to the equivalent twisting moment

(3), as deduced from (i), that the greatest resultant stress t, as

given by Rankine, is not a shearing, but a direct stress. Merri-

man,* in discussing combined flexure and torsion, finds the

resultant maximum tensile or compressive unit-stress /as in (i),

but deduces the greatest resultant shearing unit stress as :

4.S. ...... (6)

from which, by the preceding methods :

EM
t
=

From (2) and (6) :

EMb =ii + b EM
t

, (8)2

The equations given above apply in their present form only to

bodies of circular cross-section, as a shaft. They are applicable

to those of other sections under similar stresses, when the

proper values of c
y 7, andJ are employed.

* " Mechanics of Materials," New York, 1909, p. 266.
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The graphic method for combining bending and torsional

stresses is shown in Fig. 69, as applied to a counter-shaft sup-

J V

S b"

FIG. 69.

ported in bearings at A and B, and carrying a driving and a

driven pulley at C and D, respectively. Such a shaft is sub-

jected to bending stresses due to its weight, that of the pulleys

and belts, and the tension of the latter. For simplicity, neglect

the weight of the shaft and consider the loads P
l
and P2 ,

due to
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the weight of the pulleys and the pull of the belts, as acting in

the same vertical plane. Draw the force polygon abc with pole O,

and the corresponding equilibrium polygon KLMN. By Art.

41 the bending moment Mb at any section of the shaft, as b, is

directly proportional to the corresponding ordinate, as be, of the

equilibrium polygon.

The shaft is also under torsional stress in the section CD
between the driving and the driven pulleys. If/ be the radius

of the former pulley and P be the force exerted by the belt,

the twisting moment Mt throughout the section CD will be Pp.

Compute the bending-moment scale by Art. 36, and on the same

scale construct the twisting-moment diagram EFGH, any ordi-

nate of which is equal to M
t

.

Using equation (3) to find the equivalent twisting moment,
draw any ordinate, as abc, to the combined diagrams. With the

centre b, revolve be to be', and with the centre c
f

, revolve c' b to

c'b
1 on ac' produced. Then, ab 1 = ac' + c'b' is the equivalent

twisting moment for the section b of the shaft, since ab = M
t,

be = Mb,
ac 1 = VJ/6

2 + M?9
and c'b' = Mb . Lay off a"b" =

ab' in the lower diagram in line with ac, thus determining

the points a" and b". In a similar way all other points are

found and the diagram QRSTUV, representing the equivalent

twisting moment, is drawn. In the sections KL and FN, Mt

o, and by (3), EMb
= 2 Mb . Since by (4), EMb

=
J-
EM

t,
the

diagram Qrstn V for the equivalent bending moment is con-

structed by making each of its ordinates equal to one-half the

length of the corresponding ordinate in the equivalent twisting-

moment diagram.

PROBLEMS
60. A force of 12 pounds acts at right angles to the extremity of the diag-

onal of a square whose side is 10 inches. Find the moment of the force about

the centre of the square.

61. Find the moment of a force of 15 pounds, exerted by a man upon the

steering wheel of an automobile, about the axis of the wheel, the effective

diameter of which is 18 inches.
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62. In Fig. 55, assuming the forces Pv P2,
P3, P4 to be to each other as

3:4:5:6, find the moments of the several forces about the point R.

63. Using the forces as given in Fig. 56, find the moments of the several

forces about any point midway between the lines of direction of the forces

P3 and /Y

64. A brakeman sets up a brake on a car by pulling 40 pounds with one

hand and pushing 40 pounds with the other. If his forces act tangentially to

the brake wheel of 20 inches effective diameter, find the moment of the couple.

65. If the forces P
lf

/*2, P& and Pv in Fig. 58, be 200, 400, 600, and 800

pounds respectively, find the bending moment atM in the section of the beam

cut by the line MNQ.
66. A straight rod AE, 8 feet long, weight neglected, divided in the points

B, C, D so that AB : BC: CD : DE : : I : 3 : 5 : 7, supports weights of P, 2 P,

3 /*, 4 P at the points B, C, D, E, respectively, and is in turn supported at G,

the centre of gravity of the system of weights. Find the bending moment at

a pointM in the section midway between G and the point of application of the

nearest force.

67. In Fig. 60, if 9 be 45 and P equals one-half W, find the combined

bending moments of P and W, the length of AB being taken as 12 feet.

68. Find the maximum moment of a force of 100 pounds acting upon the

rim of a wheel, effective diameter 5 feet, about the axis of the wheel.

69. Find the moment of the area of the T-section, given in Fig. 63, about

the line AL.

70. Find the moment of inertia of a triangular area about one side as an

axis.

71. Compare the moment of inertia of a square about one side as an axis

and that about one of its diagonals as an axis.

72. Find, by the method given in Art. 48, the second moment of a tri-

angular area about an axis coinciding with one side of the triangle.

73. Find the third moment of a square area about an axis lying outside the

square but parallel to one of its sides.



CHAPTER VI

THE FUNDAMENTAL THEORY OF BEAMS

THE determination of the character and magnitude of the

internal stresses produced in the. comprehensive class of bodies

known as beams by the application of external loads or forces,

presents a wide variety of problems which are capable of solu-

tion by graphic methods. For simplicity in the discussion of

the latter, a brief review of the fundamental theory of beams is

given below.*

51. Definitions. A beam may be generally defined as a rigid

bar set, as a rule, horizontally, and supported at one or more

points. If it has but two supports, one at each end, it is called

a simple beam. If it be supported only in the middle or the por-

tion considered be that projecting beyond a support, it is known

as a cantilever beam. A continuous beam is a bar having more

than two supports. The definitions, as above, refer only to the

cases in which the beam rests freely on its supports. On the

other hand, a beam is said to be fixed or restrained at a support,

when, at that support, it is so constrained that the tangent to

the elastic curve is horizontal there, as in the case of the built-in

cantilever, Figs. 72 and 76. A beam having two supports may
thus be simply supported as a simple beam, or one end may be

supported and the other fixed, or both ends may be fixed.

When a beam is deflected by its own weight and that of the

loads upon it, its neutral axis (Art. 61) bends in a curve known

as the elastic curve (Art. 63). It is evident that the amount of

the deflection thus produced is comparatively small and varies

with different materials. The deflection may be due to either

uniform or concentrated loads, or to the two combined.

* The notation and general methods of this chapter are those employed in

Merriman's " Mechanics of Materials."

100
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A beam is said to carry a uniform load when the latter is uni-

formly distributed over the beam and when the weight of the lat-

ter forms a part of this uniform load. Such loads are usually

stated in pounds per lineal foot of the beam, the latter having the

same cross-section throughout its length. Thus, let w be the

weight of the uniform load per unit of length ; then, for x

units, the weight will be wx, and, for a span / units in length,

wl or W would represent the total uniform load. A concen-

trated load P is one which is applied at one point only of the

beam.

The external forces acting on a body and tending to change
its shape are opposed by internal forces known as stresses ; the

stress thus produced may be tensile, tending to stretch or rupture

the body ; compressive, acting to cause failure by crushing ;
or

shearing, in which the tendency is to sever the body by transverse

cutting. The unit stress is the amount of the stress per unit of

area of cross-section. The effect of any stress is a change in the

form of the body ;
the amount of the change thus produced pri-

marily by an external force or forces is called the deformation.

Thus, a body under tension is elongated and one under com-

pression is shortened, while shearing tends to produce detrusion

or thrusting outward of the particles ;
as familiar examples,

a rope used to hoist a weight is lengthened, a column supporting

a load is compressed and shortened.

52. Fundamental Laws of Tension and Compression. These

laws are :

(a} For small stresses, the materials used in engineering con-

structions may be considered as perfectly elastic, i.e., they will

regain their original form on the cessation of the stress.

(b) The deformations produced by small stresses are nearly

proportional to the forces which cause them and also nearly pro-

portional to the length of the body.

(c) When the stress is sufficiently great, the body fails to
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return to its original form after the removal of stress, and a part

of the deformation remains as 'permanent set.'

(d) Under a still greater stress, the deformation no longer

increases in proportion to the stress, but grows more rapidly,

and the body is finally ruptured.

53. Elasticity. The property, which most materials possess,

whereby they tend to regain their original form after the re-

moval of stress is known as elasticity.

If the stress to which a body is subjected be gradually in-

creased, that point in the magnitude of the stress beyond which

the body is incapable, after a removal of stress, of a return to its

original form is called the elastic limit. Theoretically, this limit

occurs at a definite point, but experimentally it is considered as

at that point where the '

set
'

becomes well marked, as the

stresses are increased, and after sufficient time has been given

for the body to regain its original form.

The Modulus of Elasticity, also known as the Coefficient of

Elasticity and designated by E, is -the ratio of the unit stress in

a material to the corresponding unit deformation. As the defor-

mation within the elastic limit varies directly as the stress, it is

clear that, for the same material, E is constant, as is shown very

approximately by experiment.

54. Reactions at the Supports. When a beam, under the

action of applied loads, is in equilibrium, it is evident that at

the points of support there must be upward reactions equal to

the downward pressures exerted at those points by the loads and

the weight of the beam. To determine these reactions, the

weight of the beam and the magnitudes and location of the loads

must be known. Since the loads and reactions represent, in

general, a system of vertical forces, the magnitudes of the

reactions may be found by applying one or both of the following
laws : < ^ ^ ^

(a) 2, all vertical forces = o
;

(b) moments of all forces = o.
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In the case of the cantilever, a beam with but one support, it

is evident from the first law that the reaction must be equal to

the sum of the weights of the beam and the loads.

When the beam has two supports, it is necessary to apply
the second law in order to determine the reactions. In this

case, the centre of moments may
be taken most conveniently at one

of the supports. i i

Thus, let Fig. 70 represent a
j*

s-----*H-----?-----*\

simple beam of 12 feet span with R
i

a concentrated load P, 5 feet from

the left support. Designating the reactions at the left and

right supports by Rl
and R

2 , respectively, and taking moments,
first about the right, and then about the left support, we have,

by the second law :

12 R /> = o 12^- /> = o

Again, let Fig. 71 represent a simple beam, 12 feet long,

weighing 20 pounds per linear foot, and having concentrated

loads of 300, 200, and 400 pounds
300 200 400

applied, respectively, at 3, 5, and

i

] I I
i 8 feet from the left support. The

L__ 3 4^2-4* 3 4s 4
-j weight of the beam may be con-

1

Fir x

Ra sidered as a concentrated load ap-

plied at the middle. Taking mo-

ments about the left support :

12 R2
= 240 x 6 4- 300 x 3 4- 200 x 5 4- 400 x 8.

Taking moments about the right support :

12 R
l
= 240 x 6 4- 300 x 9 4- 200 x 7 4- 400 x 4.

Hence, Rl
= 595 pounds and R2

= 545 pounds, the sum of
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which is 1 140 pounds, or the weight of the beam and its

loads.

With a simple beam uniformly loaded, the reaction at each

support is equal to half the weight of the beam, plus half the

load. With a continuous beam, i.e., one having more than two

supports, the magnitude of the reactions cannot be determined

by the application of laws (a) and (), but must be found by the

use of the properties of the elastic curve (Art. 63), as deduced

for the given material and conditions of loading.

55. The Vertical Shear. A beam may fail by shearing in a

vertical section. In Fig. 72, representing a cantilever, take

any section, as ab, dis-

tant x units from the

left extremity. If w
be the weight per unit

of length of the beam

and P be the concen-

trated load at the left

of the section con-

sidered, it is evident

that a force equal to

P 4- wx acts downward on the left of the section ab, and that

an equal force acts upward at the right of that section.

Again, in the simple beam, Fig. 73, take any section, as ab,

distant x units from

the left support. In

this case, there is a

force R^ - (P + wx)

acting upward on the

left of the section and

an equal force acting

downward on the right

of the section. We have thus forces equal in magnitude but oppo-

r
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site in direction acting on the two sides of the section. It is custom-

ary to call upward forces, positive, and downward forces, negative.

From the foregoing, it will be seen that :

the vertical shear V,

at any vertical section of any beam, loaded in any manner, is

the algebraic sum of all of the vertical forces on the left of the

section; or F= reaction on the left of the section considered,

minus all loads to the left of that section.

From this definition it is apparent that Fmay be positive or

negative, according as the left reaction is greater or less than

the sum of the loads to the left of the section. The direction in

which the portion of the beam on the left of the section tends

to move with respect to the portion on the right, is shown by the

character of V. If V be positive, the left-hand portion is

pressed upward ;
if negative, downward.

Expressed in terms of R
l9 P, and w, the general equation for

the vertical shear becomes :

in which x is the distance in units between the left extremity of

the beam and the section considered and ^R
1
and 2P are the

sums of the reactions and loads, respectively, on the left of that

section.

As numerical examples : in Fig. 72, let the beam be 12 feet

long and weighing 20 pounds per linear foot, P be 150 pounds,

and x, 6 feet. For the section ab, the left reaction is zero, and

therefore, F= o 150 120 or V= 270 pounds, being thus

negative. Again, in Fig. 73, let the beam be 12 feet long

and weighing 20 pounds per linear foot, P to be 180 pounds

applied at one foot from R^ and x to be 2 feet. Then, V
285 1 80 40, or V= 65 pounds. From the positions of

the load P and the weight of the beam, it will be seen that,

for all sections between the left support and a point five

and one-quarter feet to right of it, the vertical shear will
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be positive; for sections beyond this point, the shear would

be negative.

56. Shear Diagrams. The general equation for the vertical

shear, as given above, makes it possible to draw a shear dia-

gram for any section of a simple or cantilever beam, when the

position and magnitudes of the loads and the weight of the

beams are known.

Thus, Fig. 74, consider a simple beam / feet long and weigh-

a ing w pounds per linear foot. As

the load is uniform, each reaction

is \ wl. Taking any section dis-

tant x from the left support, and

remembering that ^R
1
= and

FIG. 74 .

= o, we have V= - wx
t

which shows that V has its maximum value when x is a mini-

mum, i.e., V is greatest and equal to at the support, and
"2

also that V is zero when x = . As this equation is of the
2

first degree in the variables V and x, the locus or curve repre-

sented by it will be a straight line
;

if the values of x be taken

as abscissae, those of V will be ordinates. If the base line AB
be drawn and at A, taken as the origin of coordinates, an ordi-

nate be erected equal to on the scale employed, and from

the upper extremity of this ordinate a line be drawn, passing

through the mid-point of AB and prolonged until it intersects

the ordinate let fall from B, the area included between this line

and the base line will be the diagram of shears for this case.

The length of any ordinate in this diagram, measured in terms

of the first ordinate, will give the vertical shear at the section

of the beam directly above the ordinate. Ordinates above
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the base line indicate positive shear; those below it, negative

shear.

Thus, Fig. 74, let the span be 12 feet and the weight of beam

per linear foot, 20 pounds. Each reaction, -
,

will be 120

pounds. Taking any convenient scale and assigning to x con-

secutive values from zero to 12 and erecting the corresponding

ordinates, the shear diagram is drawn as in the figure. The

shear at the left end is + 120; at the right end, 120; and at

the middle, is zero.

Again, Fig. 75, take a simple beam with concentrated loads

i I \

(a)

(b)

FIG. 75.

P
l

. . . P4 ,
and as in (a), neglect the weight of the beam. Draw

the base line AB, and at its left extremity erect an ordinate

equal to R
lt
whose value can be found by methods previously

given. From the upper end of this ordinate, draw a line parallel
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to the base line and meeting the ordinate corresponding to the

sections of the beam where the load P
l

is applied ;
then drop a

distance equal to this load, measured in terms of R
lt
and again

draw a line, parallel to the base line and meeting the ordinate

corresponding with the next load; continue this process until

the diagram is complete, as shown in figure.

If, as in (b), the weight of the beam had been considered, the

shear diagram would differ from that of (a) in that the reactions

would have greater values, and that succeeding ordinates between

the left support and the first load, and between consecutive

loads, would decrease uniformly in value above the base line

and increase below that line. This action is indicated also by
the general equation for vertical shear.

For example, let the beam, Fig. 75, be 12 feet span, having
loads of 300, 600, 400, and 500 pounds applied at 2, 4, 6, and 9

feet, respectively, from the left support. J^
1

will then be 825

pounds and R2 975 pounds. Then V = 825 3.P. In (a),

the shear for any section between the left support and the first

load will be + 825 pounds; between the first and second loads,

+ 525 pounds; between the second and third, 75 pounds;
between the third and fourth, 475 pounds; and, between the

fourth load and the right support, 975 pounds.

Taking the weight of the beam as 20 pounds per linear foot,

p pz

we have, as in (b\

a I

| I

i

^i = + 945 pounds,
1

I

'

I and then, between the

left support and the

first load of 300 pounds,

a gradual decrease in

the ordinates, so that,

just to the left of that

load, Fis-f 905 pounds,

and just to the right of

it, is 605 pounds. Continuing this process, the shear just to the

FIG. 76.
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left of the right support will be found to be 1095 pounds.

The inclined lines, bounding the top and bottom of the shear

diagram, are parallel.

Let Fig. 76 represent a cantilever beam with its left ex-

tremity free, the right fixed, and carrying the concentrated

loads P
1
and P

2 ,
in addition to its own weight. The diagram

may be drawn as before, using the general equation, -V= 2/?
- 2/> wx, and bearing in mind that ULR, for any section ab,

to the left of the fixed end, is zero, i.e., that there is no left

reaction. It should be noted that the ordinates in this dia-

gram are all negative, since the shear at any section is ob-

tained by subtracting a positive quantity from zero. Had the

left end of the beam been fixed and the right end free, the

value of *LR, or the left reaction,

would have been equal to the weight
of the beam plus the loads, and the

shears would all have been positive,

as shown in Fig. 77.
IG * 77'

As a numerical example, let the beam, Fig. 76, be 8 feet

long, weigh 20 pounds per linear foot, and have loads P
l
of

100 pounds at the free end and P2 of 200 pounds at the middle.

As J?!
= o, V= o ^P wx

y
and giving to x various values,

the vertical shear is found to be, at the free end, 100 pounds;

just to the left of the middle section,
-- 180 pounds; at the

right of that section, 380 pounds ; and, at the wall, 460

pounds.

57. The Bending foment. In order to determine the stresses

in a beam, it is necessary to find the' bending moment (Art. 41),

as well as the shearing force, at any section of the beam. A
beam fails generally by transverse rupture. Thus, in Fig. 76,

the force P
1
and the weight of the portion of the beam to the

left of the section ab tend to produce rotation of that part of

the beam about any point in the section, while the effect of
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P
2 ,

of the weight of the portion of the beam to the right of

ab, and of the reaction at the support is to produce rotation

in an opposite direction of that part of the beam, about the

same point in the section ab. The measure of the tendency

to rotation would be, in either case, the moment of the re-

sultant of the forces considered above, with reference to the

point in the section.

Since the beam is in equilibrium, the moment of the re-

sultant of the forces to the right of a section, as ab, must

be equal to that of the resultant of the forces to the left.

Hence :

the bending moment M at

any section of a beam is the algebraic sum of the moments

of all the external forces acting on the portion of the beam

to the left of the section, with reference to a point in that

section
; or, M = moment of reaction, minus the moment of

loads.

The bending moment is positive or negative, according as

a the portion of the beam to the

left of the section considered,
___^j

tends to rotate in a clockwise or
. . ,.

contra-clockwise direction.

Let Fig. 78 represent a beam

of length /, carrying a uniformly

distributed load weighing w pounds per unit of length. Each

reaction is then . For any section distant^ units from the
2

left support, the bending moment is :

T^_

?i

in which expression M=o when x = o and also when x = /.

Hence, the bending moment is zero at the supports. Again,
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*n /

M is a maximum and equal to ^- when x = -
. From

o 2

the form of the equation, it will be seen that the curve of

bending moments is a parabola. The diagram of bending

moments is laid out by drawing a base line AB
y giving x

various values, and plotting, as ordinates, to any convenient

scale, the values of M obtained from the equation. Any
ordinate therefore expresses, on the scale adopted, the value

of the bending moment for the corresponding section of the

beam.

Thus, in Fig. 78, let /= 12 feet, and w = 50 pounds. Sub-

stituting in the equation for M, we find that, when x = o

and when x= 12, M = o\ when x = 6, M 900 pound-

feet
;
when x = 3 feet or 9 feet, M = 675 pound-feet. Any

other values may be found simi-

larly.

Again, Fig. 79, consider a sim-

ple beam carrying the concen-

trated loads P
lt
P

2 ,
P

s ; neglect

the weight of the beam. In this

case, the general equation for the

bending moment at any section

distant x units from the left support is :

1' I"

FIG. 79.

in which R is the left reaction, P is any concentrated load

to the left of the section considered, and / is the distance

of that load from the left support. Thus, for any section

between the left support and the load P
lt
M = Rx\ and,

for any section between P
l
and P

2 ,
M = R^x P^(x /x ),

in which /x
is the distance of P

l
from the left support. As

before, M = o when x = o and when x = /. As the expres-

sion for M for each of the several loads is the equation of
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a straight line, the curve of bending moments becomes a broken

line, as shown in the figure.

Considering the weight of the beam, the general equation for

the bending moment becomes :

M wx*

from which it will be seen that the portion of the moment curve

between the left support and the first load, or between any two

consecutive loads, is parabolic in form. For a simple beam, all

the bending moments are positive.

For example, in Fig. 79, let the beam be of 12 feet span and

the loads Pv P2 ,
and P3 be 50, 30, and 70 pounds, respectively,

acting at 3, 6, and 9 feet from the left support. J^
1

will then

be 80 pounds. At the supports, M is zero
;
under Pv it is 240

pound-feet; under P2 , 330; and under Pa , 330 pound-feet.

The bending moments of a cantilever beam will be posi-

tive or negative, as the support is at the left or right end

of the beam. Fig.

80 shows a beam of

the latter type. The

bending moment at a

section x units from the

left is:

... wx2-M
FIG. 80. 2

-Px.

58. Relation between Bending Moment and Vertical Shear.

The bending moment at any section of a beam is equal to the

area of the diagram for vertical shears included between the

section and the left support, the area being measured in terms

of the load and linear scales employed.
For example, let Fig. 81 represent a simple beam carrying the

concentrated loads P
l

. . . P. Construct the shear diagram on
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the base line AB. For any section distant x units from the left

support, the bending moment is :

in which x^ and x< are the distances of P
l
and P2 , respectively,

from the section considered. The expression R^x is the area

of the rectangle whose altitude is Aa = R
lt

measured in load

units, and whose base is x, measured in length units; Pxl
and

LJ r t

FIG. 81.

P%x2 are the areas, respectively, of the similar rectangles having

P
1
and P2 as their altitudes and x^ and x^ as their bases. The

sum of the areas of the two latter rectangles, deducted from

the first rectangle R^x, leaves the area of the shear diagram to

the left of the section considered, as stated above, this area

being measured in terms of the load and length units employed

and being equivalent to M. The principle is established, there-

fore, for a system of concentrated loads.

It is evident that this principle holds also for a uniformly

loaded beam, since, in this case, the loads P
lt
P

2 ,
P

3 , etc.,
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would be equal and their distance apart would be infinitesimal
;

the broken line abcdef, Fig. 81, would then be replaced by a

straight line, as in Fig. 74.

59. Maximum Bending Moment. Since the bending moment

at any section is equal to the area of the portion of the shear

diagram extending from the left support to the section, it is

evident that M will be a maximum when this partial area is a

maximum, i.e., at that section beyond which the area of the

shear diagram ceases to increase with an increase in the value

of x. Such a section occurs in Fig. 81 when the broken line

abcdef crosses the base-line AB. Hence, the bending moment

is a maximum when the vertical shear is zero.

60. Internal Stresses and External Forces. When a beam,

loaded in any manner, is in equilibrium, internal stresses are

produced within it

-, which oppose the ex-

El I ternal forces and aid

' in maintaining equilib-

rium. In any given

b
case, there must be a

1 1

J

1
M definite relation be-

tween these stresses
FIG. 82.

and forces. Thus, con-

sider the cantilever, Fig. 82, having the load P acting at the free

end. At any section, as ab, the tendency of the force P and of

the weight of the portion of the beam to the left of the section, is

to produce rotation about ab and to shear at that section. This

tendency is opposed, and the beam to the left of the section is

kept in equilibrium, by the resisting and counterbalancing

stresses set up at the section ab. Assume a plane to be passed

through the section ab, as in Fig. 83, dividing the beam into two

parts, and let forces, X, Y, and Z, equal in magnitude to, and of
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like direction as, the stresses, be applied to the severed parts.

It is evident that the equilibrium of each portion of the beam
will still be maintained.

Hence :
P

X X a

l
Y v-

r~z z

the external forces

on each side of any
cross-section of any
beam are held in equi-

librium by the internal FIG. 83.

stresses at that section.

Since the system of forces is in equilibrium, the following

condition of statics must obtain for the forces :

2 all horizontal components = o,

2 all vertical components = o,

2 moments of all forces = o.

The external forces will produce at the cross-section stresses

of different character tensile, compressive, and shearing.

These stresses may all, however, be resolved into horizontal and

vertical components. It follows, from the first condition, that

some of the horizontal components must act in one direction and

some in another, i.e.
t
that some must be tensile and some com-

pressive, and that the sum of the former must be equal to that

of the latter.

Similarly, from the second condition, the sum of the vertical

components must be equal to the algebraic sum of the vertical

forces to the left of the section, which sum has already been

expressed by V, equal in magnitude but opposite in direction.

The algebraic sum of the internal vertical stresses is called the

resisting shear; the relation between it and the vertical shear is:

Resisting Shear = Vertical Shear.

From the third condition, it follows that the algebraic sum of

the moments of the external forces about any point in the section

considered, i.e., the bending moment, must be equal to the
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algebraic sum of the moments of the internal horizontal stresses

about the same point, the latter sum being known as the resist-

ing moment. Hence :

Resisting Moment = Bending Moment.

The principles established in this investigation apply to any

beam, loaded in any manner.

61. Neutral Surface and Neutral Axis. The fundamental

laws cited in the preceding article are of primary importance

in the investigation of the stresses in beams;

Y"l \

'

^e stucty ^ tnese stresses will be aided ma-

terially by a further investigation of the prop-

N-* *-A erties of the neutral surface and the neutral

1 I . axis of beams under applied loads.

If a simple beam be loaded, it will un-

dergo more or less 'deflection,' i.e., the upper
side will become concave and the lower side convex. The

upper fibres of the beam are thus subjected, in being short-

ened, to horizontal compressive stresses, while the fibres of

the lower portion are elongated by tension. From the upper
surface of the beam the stress in the fibres passes through

gradually decreasing compression, and then changes to ten-

sion which stress gradually increases and is greatest at the

lower surface of the beam. Hence, in every vertical ele-

ment of the vertical section of a beam, there must be a

point where the fibres are under neither compression nor ten-

sion, and the stress is zero. The locus of these points is a

surface called the neutral surface ; the intersection of this

surface with the plane of the vertical cross-section is known
as the neutral axis. The amount of elongation or compres-
sion of any fibre is directly proportional to its distance from

the neutral axis.
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The neutral surface passes through the centre of gravity of

the cross-section. Thus, let Fig. 84 represent the cross-section

of an I beam, the line NA the neutral axis, and z the distance

of any fibre from that axis. If 5 be the unit stress on the hori-

zontal fibre at the greatest distance c from the neutral surface,

then the stress on any fibre at unit distance from that surface

will be equal to
,
and at any distance z, the unit stress will

be S-.
c

For any elementary area a, at the distance z, the horizontal

stress will be Sa -, and, for the entire section, the total horizontal
c

stress will be 2Sa-. But:
c

z S
2S<2

~ = ^az = 2 all horizontal stresses.
c c

In the preceding article, it was shown that the algebraic sum
c

of all horizontal stresses was zero. Therefore, ^az o. As
5

c

- must have a definite value, ^az must equal zero. From the

definition of the centre of gravity of an area (Art. 28), it is

known that this condition exists only when the line of reference

passes through the centre of gravity, through which point there-

fore the neutral surface must pass.

62. Shearing Force and Bending Moment. In determining

the strength of a* given beam, it is necessary to ascertain the maxi-

mum shearing force and bending moment which may occur in

any beam at any point. The following relations have been

shown to exist for any section of any beam, loaded in any
manner :

Resisting Shear = Vertical Shear
;

Resisting Moment = Bending Moment.
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If A denote the area of any vertical cross-section and 5S be

the unit shearing stress, then, by definition :

Resisting Shear = ASS .

Calling Fthe vertical shear for the same section, we have,

since the vertical shear equals the resisting moment :

jrASs
= V, or 55

=
.

A

Thus, the section of the beam being known and also the

positions and magnitudes of the loads, the maximum shearing

force may be readily determined.

Again, that the beam may be in equilibrium, the bending

moment at the given section must be counterbalanced by the

moment of the internal horizontal stresses about a point in the

section. Letting 5 represent the horizontal unit stress, whether

tensile or compressive, upon the fibre most remote from the

neutral axis and at a distance c from that axis, and letting z

be the distance of any elementary area a from the axis, as in

Fig. 84, it follows that :

= unit stress at distance unity,

S- = unit stress at distance z
t

c

aS - = stress on elementary area a.

To obtain the resisting moment for all the internal horizontal

stresses, with respect to the neutral axis, the stress on each

elementary area must be multiplied by the distance of that area

from the neutral axis
;
or :

Resisting Moment of horizontal stresses = 2az2.

But, the expression, ILaz* is the moment of inertia of the

section with respect to its neutral axis and may be represented
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by 7. Substituting this and remembering that the resisting

moment is equal to the bending moment M\

SI n , c Me- = M, or 5 = ,

c I

from which the maximum tensile or compressive stress may be

found when the cross-section of the beam and the positions and

magnitudes of its loads are given.

The expression -, known as the modulus of the section or the

section factor, is thus the quotient of the moment of inertia of

the section divided by the distance of its most remote fibre from

its neutral axis. The determination of the moments of inertia

of various sections has been treated in Art. 47 ;
the value of c

may be found when the position of the centre of gravity (Arts.

28, 30, 44) of the section has been determined.

63. The Elastic Curve. When a beam is deflected by applied

loads, the curve assumed by its neutral axis is known as the

elastic curve. The

equation of this curve

will now be deduced.

From the assump-
tion that the fibres

above or below the

neutral surface of any
beam are elongated

or contracted by an

amount proportional to

their distance from the

neutral surface, it follows that any vertical line, drawn upon the

side of a beam before the latter is deflected, will still be a

straight line after the beam becomes curved.

Let Fig. 85 represent a short portion of a beam under flexure,

in which na is the curve assumed by the neutral axis, and mm*
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and //' are two normal sections passing through n and a and

meeting, when produced, in a, the centre of curvature. Through

n, pass tt' parallel to//'. As mm' and //' were parallel before

the beam was deflected, it is evident that // has been elongated

by an amount equal to mt, and that p' t' has been shortened by

the amount m' t'
,
the elongation and shortening being propor-

tional to the distances of the fibres concerned from the neutral

surface.

From the similar triangles /#;;/ and mnt, we have

om : nm : : mp : mt
y

and, replacing om by its equivalent R, the radius of curvature,

nm by c, the distance of the most remote fibre from the neutral

surface, mp by dl, an indefinitely small part of /, the length of

the beam, and mt by X, the amount of elongation dl, the propor-

tion becomes :

R :c: : dl : X. . , . . ; . . (a)

Assuming that the elongation X is produced by the unit stress

6" (from the principle that the unit elongation bears the same

ratio to the unit length as the unit stress to the coefficient of

elasticity ),
it follows that :

Substituting this value of X in equation (a), we have

.

But, from Art. 62, = -L Therefore :

o M

an equation giving the radius of curvature of any section of the

beam in terms of the bending moment and moment of inertia of

the section and of the coefficient of elasticity of the material.
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By the aid of the calculus, it may be shown that the radius of

curvature for any point (x, y) of a curve of length / is :

Substituting this value of R in equation (//),

dl* El
dx-d^y M'

a general differential equation of the elastic curve.

In investigating the stresses in beams, the axis of abscissas is

taken as parallel to the neutral axis of the beam before flexure

and the axis of ordinates as perpendicular to the neutral axis.

It will be seen, therefore, that dl is virtually the same as dx, the

projection of dl upon the axis of X. Replacing dl in equation

(f) by dx and simplifying, we have :

El , r

As a beam is considered to be homogeneous throughout its

length and also of the same cross-section, E and / are constants

for all parts of the curve, M being the only variable.

By inspection of equation (g), it will be seen that the char-

acter of M depends upon -^ the second differential coefficient

of the equation of the curve, as both E and / are always posi-

tive. Again, as El in equation (d) equals MR, it will be seen

thatM and R are simultaneously positive or negative, i.e., when
Mis positive, the upper side of the beam is concave or under com-

pression, and R is directed upward and positive ;
and that, when

M is negative, the lower side of the beam is concave and under

compression, and R is directed downward and is negative as is

the case in Fig. 85.

As an application of the general formula (g), consider a simple
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beam, as in Fig. 86, having a load P at the middle. R
l
is

-|
P

and the bending moment at any section between P and the left

support is .

Integrating once, we have :

EI& = \Px* + C.
dx

Now, -=, i.e., the slope of the curve, is zero directly under P,

where x = \ /. Therefore, C ^ P/2
,
and substituting this

value, the equation becomes :

Integrating again and finding the value of the constant from

the fact that y = o when x = o, the equation of the elastic curve

for the portion of the beam to the left of P becomes :

The deflection of the beam at any section is the value of y for

that section, which value may be obtained by substituting the

value of x for that section in the equation, and solving for y.

Thus, the deflection for a section midway between the left sup-

port and the load is found by making x = |
I in the equation and

obtaining the corresponding value of yt
which value is equal to

ii P/3--
^o 77 / kut the minus sign is neglected since the value of y
7Oo jC Y
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is measured downward from the axis of abscissas, as shown

in the figure.

The maximum deflection, represented by A, will be at the

Pfi
middle and is equal to -

48 hi



CHAPTER VII

FUNDAMENTAL THEORY OF BEAMS (CONTINUED)

64. Relation of Curves of Load, Shear, and Bending Moment.*

A definite relation exists between the curves representing the

loads, vertical shear, and bending moments for any given beam.

Thus if, for a simple beam, a load-curve be drawn representing

the amount of the load per running foot, and a derived curve

be constructed from this by graphic summation, the ordinates

of the latter curve will show the total load on the left of any
section. If then, from the area between the derived curve and

the "base-line, the area representing the left reaction be deducted,

the ordinate at any section will then give the vertical shear

to the left of that section. The shear curve is thus the summa-

tion of the load-curve, less the area corresponding with the left

reaction. Similarly, as shown in Art. 58, the ordinate or inter-

cept at any point in the bending-moment diagram is equal

to the summation of the portion of the shear diagram included

between that point and the beginning of the diagram at the

left support. The principles, as above, are general. Hence,

the load, shear, and moment curves form a continuous series,

in which each is the integral of the one preceding it.

65. Relation of Curves of Bending Moment, Slope, and Deflec-

tion. Similar relations exist between the curves of bending

moment, slope, and deflection. The deftectiott (Art. 63) of a

beam at any section is the value, for that section, of the ordi-

nate y of the elastic curve, or the curve in which the neutral

surface of the beam is bent by the applied loads
;
the deflection

* For further discussion, with examples, of the subjects of Arts. 64 and 65, the student is

referred to Lineham's "Mechanical Engineering," Goodman's "Mechanics Applied to

Engineering," and Cotterill's "Applied Mechanics."

I24
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1

curve is the elastic curve plotted, for convenience in measure-

ment, to a greater vertical scale, the horizontal scale being the

same or greater ;
the slope at any point is, in general, the angle

which the tangent to the elastic curve makes with the horizontal,

or with the neutral axis of the unstrained beam
;
the amount of

the slope between any two points of the elastic curve is equal

to the angle between their respective tangents to the curve;

the ordinates to the slope curve give the slope of the elastic

curve at all points.

Figure 87 represents a cantilever of uniform section throughout,

whose neutral axis is bent from its original position OX into the

curve OX' by applied

loads. Let lm be the

distance from the free

end to the centre of

gravity of a portion

m, n of the beam, the

point m being indefi-

nitely close to O and

m and n being very

near together, so that

the radius of curvature

R may be taken as the

same for both points.

From m and n, draw

the tangents mX and

na to the elastic curve.

Then, as a tangent is

normal to its radius,

the angle 6 between

the radii of curvature

to m and n is equal

to the angle between the two tangents, and also, by defini-

tion, to the amount of the slope between m and n.

Deflection (A)Diagram.

FIG. 87.
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Bending Moment and Deflection. As the angle is very

small and is taken in circular measure, tan 6=6, and :

6 = slope between m and n = mnjR.

But, from Art. 63 d, R = EIjM, in which M is the mean

bending moment between m and n. Therefore :

/i M x mn
~EJ--

In the bending-moment diagram bmc, the area Am M x mn
is the portion of the diagram corresponding with the part

mn of the beam. Hence :

Let 6 be the total deflection of the beam at the free end,

and -$m the portion of this deflection which is due to the bending

moment between the points m and n. Then, as 6 is very small :

m

(a)

and, since the total deflection is the sum of the deflections due

to all such portions as mn :

*=~~> ....... (*)

in which A is the total area of the bending-moment diagram
to the section where S occurs, and / is the distance of the

centre of gravity of that area from the free end of the beam.

Hence, to find the value of the deflection at any section of the

beam, divide by El the moment, about the free end, of the

corresponding portion of the bending-moment diagram.

BendingMoment and Slope. By Art. 62,M= SI/c and T/c = Zt

in which 5 is the stress in the most remote fibre at the distance c

from the axis, and Z is the modulus of the section. Hence :
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an equation by which the intensity of the stress at any point

can be found from the corresponding ordinate of the bending-

moment diagram.

Let X =/^ be the total deformation due to the bending of the

portion mn. As 6 is very small, X = cQ. The unit-deformation

is \jrnn, and, by Art. 53 :

\/mn = S/E = c6/mn,

and 5 x mn = 6 x EC .

But, 5 = M/Z is a ratio which is constant, in this case, for all

values of M, as given by the bending-moment diagram, since

the beam is of uniform section throughout. Hence, the pro-

portion between the product, 5 x mn, and the area, Am,
is

constant for all similar stresses and areas derived from the

bending-moment diagram ; and, with due regard to the scale

adopted, the latter may be considered as transformed to a stress

diagram, whose ordinate at any point gives the stress 5 at

the corresponding point of the beam. Hence, considering

bmc as a stress diagram, we may write :

Am = Ecx6
= EC x amount of slope between m and n,

a relation which holds for all partial areas, as Am,
and for their

sum, i.e., the total area A of the stress or transformed bending-

moment diagram. The ordinate of the slope curve is the

value of 6. These ordinates at the points corresponding with

n and X 1 are then :

nn' = Am xi/Ec=0 ....... (c)

xx' = A x i/Ec,

a relation which holds for all similar ordinates.

Slope and Deflection. As m and n are very near together

tan 00 may be taken as the average slope, or slope at all

points between them. Let & be the deflection at the point n,
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and let mdX" be the deflection (elastic) curve, whose ordinate

nn" corresponds with the point n in the beam. Then :

tan 6 = 6 = 8n/mn,
Sn = nn" = mn x 0,

= mn x average slope between m and n,

= length of portion of beam x its average slope,

=
partial area A-m

'

of slope curve, . ... . . (d]

a relation which holds for all portions of the beam and for their

sum. The deflection curve mdX" can therefore be drawn by

taking for its ordinates the summation of the slope-curve area.

This curve is in Fig. 87 identical with the elastic curve, OX\

Summary. For the portion mn and the point n in the beam,

we have :

ordinate of stress curve, .S = ordinate of M curve x \/ Z\
ordinate of slope curve, = nn' = Am x i/E

= sum 5 curve x i/E ;

ordinate of deflection curve, A = nn" = A,n
' = sum curve.

These relations hold for all portions of the beam and for their

sum. It will be seen that the load, shear, moment, slope, and

deflection curves form a continuous series, each being the sum-

mation of the one preceding it.

66. Stress Curves. The ordinates of the stress curve give,

for any point of the beam, the value of the stress 5 (Art. 61) in

the most remote fibre at the distance c from the neutral axis.

As shown in Art. 65, the ordinates of the stress curve are derived

from those of the bending-moment curve by dividing the latter

ordinates by I/c = Z, the modulus of the section. When, as in

Fig. 87, the section is assumed to be uniform throughout, the

value of Z will be constant, and therefore the M curve may be

used as an 5" curve, if due regard be had to the scale. When,

however, the beam is not of uniform section, Z will vary with

each change, and a separate stress curve must be plotted.

67. Deflection Curves for Simple Beams. The formulae of
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Art. 65 were deduced for cantilever beams. The same methods

are applicable to simple beams. Thus, if the cantilever, Fig. 87,

be inverted, it will represent a portion of a simple beam from

one support at X* to the section at O, where the tangent to the

elastic curve is horizontal. Hence, the deflection at any point

between X' and O can be found from formula (#), Art. 65 :

Ax/
El '

where A is the area of the bending-moment diagram from the

section of horizontal tangency at O to the given section and / is

the distance of the centre of gravity of that area from the sup-

port X 1

. For the remaining portion of the beam, from O to the

other support opposite X ',
the process is the same, except that

the moment of the area is taken about the other support.

68. Graphic Method of Constructing the Deflection Curve.

Equation (b\ Art. 65, for ascertaining the deflection at any

given point in a beam, is cumbrous in application, since the

area of a part or all of the bending-moment diagram must be

found, and then the centre of gravity of that area must be

located. The methods used for these two operations are nec-

essarily approximate, although a close approach to accuracy

may be attained for the first by employing graphic summation.

A further objection to this equation is that its results apply to

one point only, and to locate the point having a given deflection,

maximum or otherwise, requires several trial solutions.

The whole of the deflection curve can be drawn at one opera-

tion by applying the method of the force and equilibrium poly-

gon. The use of this method is warranted by the consideration

that the ordinates of the bending-moment diagram and those of

the deflection diagram are both proportional to moments the

former to the moments of forces, the latter to those of partial

areas. Hence, the same general principles apply to both dia-

grams. Each ordinate of the deflection curve is the moment of
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a moment (Art. 46), and, therefore, the curve may be constructed,

like the M curve, as an equilibrium polygon, if we treat as forces

the partial bending-moment areas to which the ordinates are

directly proportional, as equation (b), Art. 65, shows.

Let Fig. 88 represent a simple beam AB, carrying three

concentrated loads. Draw the force polygon Oab, with pole-

distance //", and

the bending-mo-

ment diagram
CDE (Art. 41).

Divide this dia-

gram into any
number of ver-

tical strips of uni-

form width x,

and draw the mid-

dle ordinate of

each strip. The

area of the latter

is then, approxi-

mately, the length

of the middle or-

dinate, as y, mul-

tiplied by the constant width x. The series of areas into which

the diagram is thus divided is the new system of parallel and

vertical forces for which the deflection diagram is the equilib-

rium polygon ;
each of these forces is assumed to act on the

centre-line of its strip.

With any convenient scale, draw the new force polygon
O fa fb f

,
with pole-distance H f

,
and the corresponding equilib-

rium polygon ~C fD'E' for this system of forces. A curve

drawn tangent to the sides of this polygon will be the deflec-

tion curve, and will represent the elastic curve of the beam to

an exaggerated vertical scale. Hence, the actual deflection of
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the beam at any point will be equal to the length of its corre-

sponding intercept, asy, in the polygon C'D'E', when measured

on the proper scale and divided by El, as required by equation

(b\ Art. 65.

The final scale fory is evidently the product of two individual

scales : the moment-scale for the polygon C'D'E' and an area-

scale representing the area, x xj/, in the polygon CDE. Let:

/= linear scale, inches per inch, both diagrams ;

w = force scale, pounds per inch, diagram Oab
;

H= pole-distance, inches, diagram Oab;

x measured width of strip, diagram CDE ;

y = measured length of intercept, diagram CDE.

Then (Art. 36) :

moment-scale, CDE diagram = / x w x H= pound-inches ;

moment at intercept y = M=y x lwH\

moment-area, measured from diagram = x x y ;

moment-area, actual x x M'

=xyfiwH.

Hence, the area-scale per inch of measured length of y is :

For the polygon CD'E' :

pole-distance, inches = H'
;

measured length of intercept =y ;

moment-scale = / x H 1

.

Hence, the final scale for the intercepty is:

area-scale x moment-scale = xl*wHHr

9

and the moment of the partial bending-moment area, x Xjj>, is:

y x xl*wHH ]
.

By Art. 65 b, the deflection at the point in the beam corre-

sponding with y and y' is then :

*

El



132 GRAPHIC STATICS

Let EI= aH*
, i.e., let a be any convenient ratio and make H 1

proportional to EL Then, the formula becomes :

8 is the deflection in inches
;
x and y

1 are distances in inches,

as measured from the drawing ;
H and H' are similar measure-

ments in inches from the drawing; the linear scale / applies to

both diagrams and represents the number of inches of actual

length per inch of measured length from the diagram ;
w is the

number of pounds per inch of measured length of the force

polygon Oab.

69. Deflection Curves for Overhanging and Restrained Beams.

Overhanging and restrained beams are similar in this, that, at

one or more sections called inflection points, the stresses which

have been tensile become compressive and vice versa, the bend-

ing moment is zero, and the curvature changes from convex to

concave.

(a) Overhanging Beams. Figure 89 represents a beam AC
overhanging the right support by the amount BC\ the bend-

ing-moment diagram

is adbca. The curva-

ture changes at the

section D, the inflec-

tion point. It will be

seen that the section
rIG. 89.

of length / is in the

condition of a simple beam, and that the sections of lengths

/!
and /

2 are in the condition of a cantilever. The reactions,

shears, and moments can be computed from the methods of

Arts. 54, 55, and 57, the reaction at the right support being
considered as an upward force for sections to the right of that

support. From Art. 63 g, the equation of the elastic curve

between the supports may be found and the deflection for any



FUNDAMENTAL THEORY OF BEAMS 133

given point determined, or the methods of Art. 68 may be

applied to the bending-moment diagram and the deflection

curve for the three divisions of the beam be thus constructed

graphically.

(b) Restrained Beams. Figure 90 represents a restrained

beam which is built in at both supports. The inflection points

are located at B and C. Following the same general reasoning,

the beam can be divided into a central simple beam of length /,

and two cantilevers of lengths /
x
and /

2
. If, in Fig. 89, the

length be such that the tangent to the elastic curve will be hori-

zontal at the right support, the conditions would be the same as

those for the beam in Fig. 90 at both supports. The general

methods, cited previously, are applicable for the construction

of the moment diagram in any particular case, and, 'from this

diagram, the deflection diagram can be drawn by the methods

of Art. 68, or the deflection can be computed for any section

from the general equation of the elastic curve as modified for

the conditions existing.

70. Stiffness. If two simple beams of the same length but

of different cross-section carry the same loads applied in the

same way, the maximum deflection of one beam will be less

than that of the other, that is, it will be the stiffer of the two.

Again, if the system of loading be the same in each case but

the amounts of the loads be such that both beams will have the

same deflection, the stiffer beam will carry the greater load.

Under these conditions, the load is a measure of the relative

stiffness. For cantilever and simple beams, in general :
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in which W is the load, / is the length of the beam, and m is a

quantity whose value depends on the kind of the beam and the

system of loading. From this equation, it will be seen that, as

the stiffness is proportional to W, it is also proportional directly

to E and /, and inversely to the cube of the length.

The load which a beam can carry is also a measure of its

strength. For cantilever and simple beams, in general :

W= nSI/lc,

in which 5 is the stress in the outermost fibre at the distance c

from the neutral axis and n is a quantity whose value depends

on the kind of the beam and the system of loading. Hence,

the strength of the beam is proportional directly to 5 and / and

inversely to / and c.

There is thus a marked difference between stiffness and

strength. A floor beam, for example, cannot be loaded to its

full capacity without exceeding the maximum deflection which

is permissible.

71. Influence Diagrams.* The shear and bending-moment dia-

grams which have been discussed (Arts. 56, 57) represent the

magnitudes of the shears or moments at all points in the beam

for stationary loads, uniform or concentrated. When a load

moves across a beam, its effect on the reactions at the supports

and on the moment, shear, and stress at any given point in the

span varies with each change in its position, and the influence

line or influence diagram is used in graphic statics to show the

variation in these functions at any given point in a beam, or, in

the case of a bridge truss, in any member of the latter, as the

load traverses the beam or truss. The influence diagram, there-

fore, shows the effects, at a fixed point, of a moving load or sys-

tem of loads, while the shear and moment diagrams represent,
* The student will find a full discussion of the use of influence lines, as applied to

stresses in truss members, in three papers contributed by Myron S. Falk to the

School ofMines Quarterly, Vol. XXIV.
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for stationary loads, the same functions for all points in the

beam.

With bridge trusses, the maximum moments, shears, and

stresses in the members are the important elements in design,

and the chief value of the influence line lies in the fact that,

through its use, the corresponding positions of the moving load

can be readily determined for any given member. The influence

diagram is usually drawn for the unit-load, expressed in pounds,

tons, or kilograms, and its ordinates are then multiplied by the

number of pounds, etc., in the given load, to obtain the corre-

sponding moment, shear, or stress.

72. Influence Diagram for Bending Moments due to a Single

Moving Load. Figure 91 represents a simple beam of length Z,

whose section at C
.

is distant / and /
x

* B

from the left and

right supports, re-

spectively. It is

required to find the

bending moment at

C for every position

of a moving load of

^Fpounds which
crosses the beam

from right to left.

Let w = unit-load

= one pound, and

assume w to be on the section /
x
at the point e, a distance x

l

from the right support. Taking moments about the latter, the

left reaction (Art. 54) is :

R
1
= wxJL,

and the bending moment (Art. 57) at C is the moment of this

reaction about C, or:
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M
l
= wx

ll/L=xJ/L ...... (a)

since w= I.

Now, assume w to be on the section /at the pointy, a distance

x from the left support. The left reaction will then be :

RI = w(L - x)/L t

and the bending moment at C will be the difference between the

moments of R
l
and w about C, or :

M=wx(L-l)/L=xll/L . ... . (t)

since w= I.

From its form, (#) is seen to be the equation of a straight line,

inclined to the horizontal by an angle whose tangent is l/L.

Further, if x^ = o, M^ = o, and this line passes through the

point b, corresponding with the right support. From a, let

fall the line ag = / and draw bg. Then, the bending moment

at C, for any value of x
lt

will be represented by the correspond-

ing ordinate, as eh, of the partial diagram bdc, for :

l\L \\eh\x

In a similar way, it can be shown that equation (b) represents

the line an passing through the point a and making an angle

with the horizontal whose tangent is l-JL. Hence, bn lv

As before, the ordinate fk represents the bending moment at

C when the load w is at/, and, for any position of the load

between C and A, the moment will be shown by the corre-

sponding ordinate of the partial diagram adc. The lines an

and bg must cut the vertical dc at the same point c, since w
is, in both cases, then at C. This may be shown also by mak-

ing x and x equal to / and /
x , respectively, in (a) and (b\ when :

The triangle abc and the line acb are, therefore, the influence

diagram and the influence line, respectively, for the bending
moments at the section C, due to the passage of the unit-load
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w across the beam. The moment produced by the total load

Wis W times the corresponding ordinate for the unit-load.

73. Influence Diagram for Bending Moments due to a Uniform

Moving Load. With uniform unit-loads spaced at unit length

over the entire beam or truss, there is a unit-load at every point

on the line ab. Hence, the moment at C, Fig. 91, is equal to

the area of the triangle abc, or :

M'

(ab x cd)/2,

and, by Art. 57, the ordinate under the point C is a maximum
when /= /

lf
the value of the moment for the total load on the

beam being then :

in which the total load W'= wL, w being the load per linear

foot.

When the uniform load covers a part only of the truss, its

moment at C is evidently equal to the area of the partial dia-

gram included between the ordinates at the beginning and end

of the load, multiplied by the load per lineal foot.

74. Influence Diagram for Bending Moments due to a Series of

Concentrated Loads. The bending moment at any section in

a beam carrying a Wi jw,
, i i

- A 1 c i B
series ot loads is

the sum of the

several bending mo-

ments of the indi-

vidual loads. The

moment of each load

may be found from

the influence dia-

gram, Fig. 91, for the unit-load. In Fig. 92, let the beam AB
carry a series of concentrated moving loads, like the wheel-

loads of an engine and tender crossing a bridge. It is required

to find the maximum moment at any section of the beam, as C.

FlG< 92<
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As in Fig. 91, construct the diagram abc for a unit load, and

let 2 W, at the distance x from the left support, and 2 Wv at the

distance x
l
from the right support, represent, respectively, the

summations of the concentrated loads to the left and right of C.

The moment of each summation will then be equal to the aggre-

gate moments of the individual loads composing it, since the

summation represents the resultant load concentrated at the

centre of gravity of the system.

The bending moment at C, due to a unit-load at f, is the ordi-

nate yt
and that of 2 W, in the same position, is hence 2(^5/

);

similarly, the moment of 'S.W
1

is 2(fF1-^1).
The moment of

the series is then :

By similar triangles (Fig. 91),

y =70 *ll and y\ =

Substituting in (a),

If the series of loads move the distance dx toward A, x arid

x^ become x dx and x^ + dx, respectively. The corresponding

difference in the moment is then :

For a maximum

dM 2 W _
dx I /

and

whence

2 JT=(2fr+21^i)-
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which is the criterion for the position of the loads which will

produce the maximum moment at any section, as C, of a beam.

There may be more than one position which will satisfy these

conditions. Usually, one of the loads must be located at the

section, as C, so that it may be divided, as desired, between the

portions, / and fv of the span, and thus fulfil the requirements

of (c) that the mean load on the section / to the left of C shall

be equal to the average load on the entire span.

75. Influence Diagram for Shears due to a Single Moving

Load. The vertical shear F(Art. 55) is equal to the left reaction

R
l
minus the sum of all loads to the left of the section con-

sidered. Figure 93 represents a simple beam AB over which a

\u>F H

FIG. 93.

load of W pounds moves from right to left. It is required to

find the influence line showing the variation of she$r at a section

C of the beam, distant / from the left support.

As with bending moments, the diagram is to be constructed

for the unit-load = one pound, in this case. Let x be the dis-

tance of W from the right support at any instant Then
R

l
= Wx/L, and, while Wis to the right of C, F= R l

= x/L for

the unit-load, which is the equation of a straight line making an

angle with the horizontal whose tangent is i/L. When^r = o,

F= o; and some point, as b, vertically below the right support,
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must be the origin of coordinates. From b, draw the horizontal

line bd = L, and, from d, the vertical da = unity ;
connect a and

b. Then, be is the influence line for the shears at the section

C, so long as the load is to the right of that section. Thus, for

the ordinate gh, immediately below the load, we have, by, similar

triangles :

g/i-.i \\x\L

gh=xlL = V.

Therefore, the ordinate below the load and included in the

partial diagram kcb gives the shear at C, for any position of the

load between 3 and C.

As soon as the load W passes to the left of C, V= R
l W,

the conditions being the same as before, except that there is a

constant deduction, W, from the previous value of V, which de-

duction becomes unity for the unit-load diagram. Therefore,

from c, let fall ce
y and, from a, let fall ad, each equal to unity,

and draw ed. By the same reasoning as before, it can be shown

that, for any position of the load between C and A, the ordi-

nate below the load and included in the partial diagram dke gives

the shear at C for that position. The influence diagram for the

unit-load and the section at C is then dekcbd. The shears for

the load W are obtained by multiplying the corresponding

ordinates from the unit-load diagram by W.

76. Influence Diagram for Shears due to a Uniform Moving
Load. When there is a uniform unit:load, spaced at unit dis-

tance, passing over

the beam, the shear

at any section, as C
y

Fig. 94, is equal to

the algebraic sum of

the positive and nega-

tive sections of the

influence diagram
Thus, when the head of the load

FIG. 94.

which lie below the load.
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reaches the point D, the shear at C is positive and equal to the

area of the triangle bmn
;
when the load covers the section EB

t

the shear at C is equal to the area bck area ekpq.

It will be seen that the maximum shear (positive) occurs when
the load extends over the section between C and the right sup-

port ;
and that the maximum shear, numerically, exists when the

load covers the greater section of the span, whether that section

be CA or CB in the particular case considered. The minimum,
or greatest negative shear, is produced when the load lies only
on {he section CA.

77. Influence Diagram for Shears due to a Series of Concen-

trated Loads. For a series of concentrated loads, the shear at

any section* of a beam, as C, Fig. 94, is the algebraic sum of the

ordinates of the unit-load diagram which are below the loads,

each ordinate being multiplied by its corresponding load. The
maximum shear at a given section, when there are two or more

.loads on the beam, can thus be found by giving the system of

loads different positions and comparing the algebraic summations

for these positions. Usually, the number of possible positions

for maximum shear is limited, and the operation is relatively

simple.

The influence line for such a series of loads may also be

found directly, without the aid of the unit-load diagram, by the

method of the force and equilibrium polygon. Thus, Fig. 95

represents a simple beam AB of span Z, over which passes,

from right to left, a series of three loads, Wv W^ and W& at

fixed distances, (t and b, apart. Let x and x be the distances

of Wz and W^, respectively, from the right and left supports.

For convenience in using the influence diagram, the intercept

representing the magnitude of the left reaction R
l
should come

under the leading load Wr Hence, in constructing the poly-

gons, the beam AB is reversed, i.e., swung through 180 on the

right support as a pivot, as shown by A'B' below. This change
does not alter the relative order or magnitude of the loads and
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reactions, and R
1

is still the left reaction of the original beam,

although it is now assumed to act at the right-hand end of the

reversed beam.

From the intersection, B\ of the line of action of W^ with the

horizontal line, B'A' = L, lay off to the right the distances x, b,

FIG. 95.

a, and x
lt

in the order named, and draw the lines of action of

the loads and reactions. On the load-line cd plot the loads

from c downward, to any convenient scale
;
from c set off hori-

zontally the pole-distance, cO = L
;
from O draw the rays to

the extremities of the lines representing the loads
;
and con-

struct the corresponding equilibrium polygon, CDEFG, with

closing line GC. Draw the ray Oe parallel to GC. Then, ec =
J^

1
and de R2 .

Prolong the first side CD of the equilibrium polygon to its
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intersection at G' with the vertical from G. Then, the intercept

GG' between the last side and this first side produced is equal

to the left reaction for this position of the loads, since, when

multiplied by the pole-distance L, the product represents, by
Art. 41, the moment of R

l
about the right support of the beam,

or :

GG' x L = R! x Z,

GG = R!.

This may also be shown by similar triangles. Thus, the tri-

angles Oce and CG'G are equal in all respects. Hence,

The form of the polygon CDEFG and the value of the inter-

cept GG' apply only to the position of the loads shown in the

diagram. With any change in that position, the length of the

intercept alters. Thus, if the distance x be increased or les-

sened by any amount, the new value of x is laid off in the lower

diagram, and, from its left end, an ordinate is erected to inter-

sect the side FG, produced if necessary. The intercept between

this intersection and CG', produced if necessary, is the value

of R
l
for these conditions. In any case, R 1

is equal to the inter-

cept under the leading load Wv

The partial polygon DEFG can be modified to serve as an

influence line for the shear V at any given section, as H, of the

beam. Thus, project H to H" on the polygon and to H' on

the line CG 1

'. Then, while the loads are approaching from the

right, the shear at H will be equal to R
lt
and the magnitude of

the latter, at any instant, is given by the intercept under Wv

When W
1
reaches H, R l

= H'H", and the shear influence line

to this point is DEFH". After W
1 passes H, V= R

l
- W

lt
a

value which changes constantly as W^ advances. When W^ is

at H, W
1
has reached K, and R

l
= GG 1

. From G, lay off

GG" = Wv Then G'G" = R
l
-W

l
is the shear at H for this

position, and DEFH"G" is the shear influence line for the sec-
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tion at H, during the passage of the loads from the right sup-

port B to the section K of the beam. This method is applicable

to any section and to any number of loads.

78. Influence Diagrams for the Left Reaction, (a) Single Mov-

ing- Load. Figure 96 represents a simple beam AB of span
L over which a load of W
pounds passes from right

to left. It is required to

construct the unit-load in-

fluence diagram, showing
the changes in the value

of the left reaction R
1
as

the load advances from the right support.

Let x be the distance of W from the right support at any
instant. Then, R

l
= Wxj

'L = x/L for the unit-load of one

pound. This expression is the equation of a straight line mak-

ing an angle with the horizontal whose tangent is i/Z. When
x o, R^ o, and some point, as b, vertically below the right

support, is the origin. From b, draw the horizontal line bd= L,

and, from d, the vertical da = unity. Connect a and b, and

draw the ordinate ce under the load. Then, the tangent of the

angle abd= i/L and ab is the required influence line, for the

triangles abd and cbe are similar, and :

ce : ad \\x\L
ce = x/L = Rv

The influence diagram is, therefore, the triangle abd, and, for

any given position of the load, the corresponding value of R^
will be the ordinate between ab and the base-line db. In all

cases, the ordinate from the unit-load diagram must be multi-

plied by W to obtain the reaction due to the total load.

(b) Uniform Load. Let the section of length x, Fig. 96, be

covered by a uniform unit-load, spaced at unit-distance. Then,
when the head of the load is at any section, as C> the left reac-
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tion will be equal to the area of the triangle cbe or ce x x/2 =
x2

/2 L. The unit-load influence line and diagram are therefore

ab and abd, respectively, as before.

(c) Series of Loads. If, in Fig. 95, the side FG be prolonged

to its intersection at G
l
with the vertical from the left support,

the line DEFG^ will be, for the reasons given in Art. 77, the in-

fluence line for the left reaction, during the passage of the lead-

ing load of the series from the right to the left support. The

intercept below this leading load and between the line DEFG
l

and the horizontal line CG\ produced if necessary, is the value

of R
l
for that position of the series of loads.



CHAPTER VIII

FRAMED STRUCTURES: ROOF TRUSSES; BRACED
CANTILEVERS

THE graphical analysis of the stresses in a jointed frame, sub-

jected to the action of external forces, has been discussed in

Art. 19. The principles of the method given therein are appli-

cable to various framed structures, notably to the important class

known as trusses, which, in the limited range of the stresses to

which their principal members are subjected, resemble the jointed

frame so closely as to permit the treatment of the truss virtually

as such a frame in calculations for its design. The scope of

this book does not admit detailed investigation of this extensive

subject. The general principles of its more important branches,

however, will be discussed briefly.

79. Assumptions in the Analysis of Framed Structures.

The general assumptions made in the analysis of the jointed

frame are applied also in the investigation of framed structures.

They are :

(a) The external loads are held in equilibrium by the internal

forces or stresses produced by these loads in the members of the

structure.

(b) The loads, whether uniform or concentrated, are assumed

to be divided proportionately and as acting only at the joints of

the structure. Such division and application of the loads would

produce only longitudinal tensile or compressive stresses in the

members of the structure, and not the transverse stresses due to

bending, as in a solid beam.

(c) The joints of the structure are assumed to permit rotation,

as if the members were hinged. This is practically true of pin-

146



ROOF TRUSSES 147

connections, although not of riveted or other more or less rigid

joints.

(d) The axial lines of the members, passing through the

centres of gravity of the cross-sections of the latter, are all as-

sumed to lie in the same plane. This assumption is sufficiently

accurate, so far as the stresses in the principal members are

concerned. In the joints, however, bending stresses are pro-

duced in the connections, as for example, by eye bars which lie

in parallel planes.

80. Definitions. Trusses, in general, consist of an upper

chord, a lower chord, and the web members. The upper chord

is the upper line straight, broken, or forming an approximate

curve spanning the distance between the supports ;
the lower

chord is the similar lower line of members ;
the web members con-

nect the upper and lower chords, and may be either vertical,

radial, or diagonal ;
the span is the distance from the centre of

one support to that of the other, and hence between the ex-

treme joints of the structure. A member subjected to tensile

stress only is called a tie ; one under compression only, a strut ;

one fitted for both stresses, a tie-strut. When a member, under

a symmetrical dead load for example, is subjected to tension only,

it may, under unsymmetrical loads, undergo a reversal of stress

and be in compression. To limit its stress to tension only, a

counter-brace can be fitted to receive the stress, which, while

compressive on the main member, will be tensile on the counter.

When the main member is acting to sustain the load, the

counter-brace is unstrained, and vice versa. A redundant mem-

ber is one which does not act directly to sustain the load, but

may serve an auxiliary purpose, as in aiding another member to

resist buckling. Counter-braces, when unstrained, are, strictly

speaking, redundant. Redundant members are hence, in gen-

eral, those which are not required to prevent distortion of the

structure under the given system of loading, and in which, as
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shown by the force polygon or stress diagram, no stresses exist.

As contrasted with a structure containing redundant members,

an incomplete structure is one the number of whose members is

insufficient to prevent distortion of the structure under all forms

of loading.

81. Notation. As shown in Fig. 97, the members divide the

truss diagram, A . . . M, into sectional areas, each of the latter

and the spaces outside of the chords being marked by a capital

letter. In the stress diagram or force polygon, a . . . m, the

same letters, but not in capitals, are placed at the corre-

sponding vertices to designate the magnitude and direction of

a load or stress whose line of action in the truss diagram is

named by the letters on each side of it. Thus, CD and cd, in

the truss and stress diagrams, respectively, designate the load

at the peak ;
GH and gh, the stress in the left-hand web mem-

ber; etc. In drawing the stress polygon for a joint, the mem-

bers intersecting at the latter are taken in regular order, clock-

wise or the reverse, and, in this order, the sides of the polygon

follow. Since the sequence of these sides must be known to

determine the character of the stresses in the members, the

order in which the latter are taken may be conveniently marked

by a circle with arrow-heads, as in Fig 97. Thus, in the latter,

the loads and stresses are taken in clockwise rotation
;
at the

peak, the order is then : HC, CD, DK, KH ; and the corre-

sponding stress polygon is hcdkh.

The character of the stresses in the members is, as in Art. 19,

shown by their direction with regard to the two joints in the

truss diagram between which each stress exists, a stress acting

from these joints being tensile or positive, and one toward them,

compressive or negative. The directions of the stresses are deter-

mined from the stress polygon for the joint in question, since,

in traversing the perimeter of this polygon, the direction of the

stresses is the same from the starting point to the return thereto.
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FIG. 97.
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This follows, since the stresses and loads at any joint form a

system of forces in equilibrium. Thus, at the peak, Fig. 97, the

directions of the stresses are: h c, c d, d k, and k h ;

the stress h c acts upward toward the joint, and is hence a

compressive stress
;
on the other hand, k h acts from the

joint and is tensile. The character of the stresses in the mem-

bers may be indicated in the truss diagram by arrow-heads or

by using double or heavy lines for struts.

82. Methods of Determining Stresses. The stresses existing

in the members of a framed structure may be determined by :

(a) Reciprocal Diagrams. Inspection of the truss diagram,

Fig. 97, shows that the members intersect to form triangles and

that each of these triangles is virtually an equilibrium polygon,

since the loads at the joints are held in equilibrium by the

stresses in the sides. Hence, for each triangle, a force polygon

may be constructed (Art. 16), and these polygons, when com-

bined, form the stress diagram for the entire truss. Each equi-

librium polygon and its corresponding force polygon constitute

reciprocal diagrams, whose property, as defined by Clerk Max-

well,* is :

"
If forces represented in magnitude by the lines of a figure

{force polygon or stress diagram) be made to act between the

extremities of the corresponding lines of the reciprocal figure

(equilibrium polygon or truss diagram), then the points (joints)

of the reciprocal figure will all be in equilibrium under the

action of these forces."

Again, in either of the two diagrams, any point of intersec-

tion of the lines indicating loads or stresses may be considered

broadly as a pole, parallel to whose rays a corresponding closed

polygon exists in the other diagram. Thus, Fig. 97, the peak
of the truss diagram is the intersection of the load CD and the

stresses DK
y KH, and HC\ in the stress diagram, these loads

*
Philosophical Magazine, April, 1864.
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and stresses are represented by the respectively parallel lines,

cd, dk, kh, and he, forming the closed polygon cdkhc. Similarly,

in the stress diagram, the stresses bg, gh, and mg intersect at

the point gt
and these stresses are represented in the truss

diagram by the closed polygon G. The two diagrams are there-

fore fundamentally reciprocal.

The principles governing the construction of the stress dia-

gram are those discussed previously (Art. 20) with regard to

the equilibrium and force polygons. The process is, however,

reversed in this case, since the stress diagram is derived from

the equilibrium polygon.

In general, the method to be followed is to draw first the

force polygon for the loads
; then, starting at a joint on the line

of action of a load, preferably at the left support, construct the

force or stress polygon for the load, the reaction, and the stresses

acting at that joint, taking the loads and stresses usually in clock-

wise order. This polygon will determine the magnitude of a

stress acting between the first joint and the next in clockwise

order
;
this stress is then combined with the known load at the

second joint, and, from their resultant and the other stresses

acting at that joint, the second force polygon is constructed. In

this way the magnitude of all the stresses is found, the essential

condition being, as with the force and equilibrium polygons, that

the stress diagram shall close and that its final side shall be

paralled to the last member considered in the truss diagram.

When there are more than two unknown stresses at a joint, the

stress polygon for that joint cannot be drawn (Art. i6c). In

some cases, the method of substitution (Art. 88) can then be

employed ;
in others, the stress diagram can be continued from

the right support, in the reverse order.

Thus, let Fig. 97 represent a triangular roof truss, fixed at the

ends, having a load Wat the peak and at each of the two adja-

cent joints, and a load of W/2 at each of the ends. The total

load will then be 4 W. Letting s = length of span and taking
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moments at the right support, the left reaction, R 1
is found thus :

R!* = s( W/2 + 3 W/4 + W/2 + W/j),

Rj-*W.\
and the right reaction,

R^ = 4 JF-^ = 2 JT.

With any convenient load-scale of pounds or tons to the linear

inch, lay off the force polygon for the loads and reactions, using

the same letters to designate them as are employed in the truss

diagram, and, in this case, taking the loads and reactions in

regular clockwise order, as shown by the circle and arrow-heads.

Thus, ab indicates the load AB = W/2, ma the reaction R
1
= 2 W,

etc. The closed force polygon for the loads and reactions will

then be the line a to/ and/ to a.

The joint at the left support is the intersection of the reaction

MA, the load AB, and the stresses, BG and GM. Beginning at

the point m in the stress diagram, ma = MA and ab = AB, their

resultant being mb
;
from b lay off bg and from m drawn gm,

parallel respectively to BG and GM, thus closing the stress

polygon, mabgm, for that joint. The magnitudes of the stresses

in BG and GM will then be given by the lengths, on the load-

scale, of the lines, bg and gm, respectively. To find the charac-

ter of these stresses, the perimeter of the polygon is followed.

Thus, as R^ is known to act from m to a and the load W/2 from

a to b, the stress in BG will act in the direction b to gt
and that

in GM from g to m. Since the former stress is toward the

joint, BG is a strut, and, as the latter is from the joint, GM is

a tie.

At the next joint, GB, BC, CH, and HG intersect
; gb and be

are known and their resultant is gc ; from c lay off ch and from

g draw kg, parallel respectively to CH and HG, and completing
the polygon bchgb, which determines the stresses in CH and HG.
At the peak, HC, CD, DK, and KH intersect

;
he and cd are

known and their resultant is hd; from d lay off dk and from h
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draw hk, parallel respectively to DK and KH, completing the

polygon cdkhc, which determines the stresses in DK and KH.
At the next joint and at the right support, the method is

similar, the stress polygons being delkd and efmle, respectively.

The stresses acting at the mid-span joint will then all have been

determined. Their force polygon is mghklm. The closing line

of the stress diagram is ml, which is parallel to the final mem-
ber ML.

Since the truss is symmetrical and each half is loaded in the

same way, the line mg or ml is an axis of symmetry, and hence

it is necessary to construct but one-half of the stress diagram.

The methods described for this truss are general, and have

therefore been given in detail. Familiarity with the principles

involved will suggest to the student ways of shortening the

work in some respects.

(b) Method of Sections. The stresses in the members of a

framed structure may also be determined analytically by
Rankine's method of sections.* While this method is, in gen-

eral, complex, as compared with graphic processes, solutions by
it are, in some difficult cases, simpler than those by graphics.

Fundamentally, this method is based on the conditions of equi-

librium for a system of complanar forces. If each of the latter

be resolved into two components, parallel respectively to axes

XX and YY at right angles to each other, then, for equilibrium,

the algebraic sum of all of the components in either direction,

XX or YY, must be zero
; and, further, the algebraic sum of

the moments of the forces, about any axis perpendicular to the

plane of the latter, must also be zero.

Thus, Fig. 97, let it be required to find the stresses in the

members, CH, HG, and GM. Assume the truss to be cut into

two sections by a plane passing through the line qt. Then, as

shown in the lower diagram, there must be applied at the ex-

tremities of the severed members, the forces (Art. 21) S1
= ch,

*
"Applied Mechanics," London, 1869, p. 150.
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S^ hg^ and Sz gm y
in order to maintain equilibrium in this

section of the truss. The resultant of the forces at the left

support is R^ W/2 = 3/2 W, and the system of external

forces now acting on this section of the truss is : 3/2 W, Wt

Sv S2 , and S3
. Assume, for simplicity, that the upper chord is

inclined at 45 to the lower chord, and that the web members

are at right angles with the upper chord. Let x and y be the

horizontal and vertical distances, respectively, from the left sup-

port to the point of application of the load W, z the correspond-

ing diagonal distance, and v the distance between the lines of

action of S
l
and 52 ,

and the point 3 the intersection of the span

and the line of action of W.

Take moments about the left support. The lines of action of

the forces, 3/2 W, S
lf
and SB , pass through this point, and their

moments are therefore zero. The moment of W is positive,

and that of S2 is negative. For equilibrium, the algebraic sum

of the moments must be zero. Hence :

S2 x z = W x x,

S2
= W* - = H^ sin 45.

g

Similarly, taking moments about the point 2, where the load

Wis applied:

Finally, taking moments about the point 3 :

= S
1
x v 4- S2 x 2;,

83. Roof Trusses : Definitions
;
Loads. Roof trusses are framed

structures which support the roof of a building ; they are set

parallel, in vertical planes, and rest on the walls. Both ends of
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the truss may be fixed, or one end may be free to move horizon-

tally, in order to provide for the variation in length due to expan-
sion and contraction from change in temperature. The upper

chord, as in a triangular truss, may be composed of two straight

main rafters; or this chord may be hipped, having- a double

slope; or the joints of both chords may be located in arcs of

circles, as in the crescent truss. The lower chord is called the

tie-rod ; the rise is the height of the highest point of the truss,

measured from the span. The web members, which connect

the upper and lower chords, may be either struts or ties depend-

ing on their location and the manner of loading.

As shown in Fig. 97, the truss members are so connected as

to form a series of triangles. This is essential in order to pre-

vent deformation of the truss, as a triangle, loaded at one or all

of its vertices, will not change its shape so long as the lengths of

its sides remain constant, which is not the case with polygons
of a greater number of sides connected by pivotal joints.

The loads which a roof truss is designed to sustain are : the

dead load, i.e. the weight of truss and roof, the snow load, and

the load due to wind pressure. The dead and snow loads pro-

duce a definite stress, tensile or compressive and unchang-

ing in character, in each member. Since the wind may come

from either side, the stresses arising from its pressure are varia-

ble in kind. Separate stress diagrams are constructed for the

two cases, and the maximum stress, for all conditions of loading,

is found for each member. When, under dead load, a member

is subjected to tension, and, under wind loads, to compression,

the stress, under the combined loads, is the resultant found hy

taking the algebraic sum of the two, tension being considered

as positive and compression as negative.

The weight of the truss must be estimated from those of simi-

lar trusses whose weights are known. Owing to this, the first

design of a complex truss may necessarily be tentative, since the

size and weight of the members depend on their respective loads,
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of which the truss weight forms a part. For preliminary esti-

mates, Trautwine * states that
" the weights of steel trusses, in

pounds per square foot of building space covered, may be taken

at (0.05 to 0.08) x span in feet, according to design and loading.

Those of wooden trusses, with wooden, iron, or steel tension

members, may be taken at from one-tenth to one-fifth less."

The approximate weight of the roof covering, per square foot

of roof surface, may be estimated from the following table :

Shingles . . . . . . . . . 2 pounds

Slates . . . . .' . . . . 9 pounds

Tin . . . . . . ... i pound

Corrugated iron . . . ... i to 3.75 pounds

Tiles 7 to 30 pounds

Felt and gravel . . .- . . 8 to 10 pounds

Sheathing, i inch thick . . . . 2 to 5 pounds

Purlins, wood . .., . . . i to 3 pounds

Purlins, iron * . . . . 2 to 4 pounds

Rafters, jack . . . - . . . 1.5103 pounds

Division of dead load. The purlins are beams, supported

usually on the corresponding joints of the upper chords or

main rafters of consecutive trusses being thus above and trans-

verse to the latter. On the purlins, rest the jack rafters, par-

allel to the main rafters, and carrying the sheathing, shingles,

etc. The purlins, therefore, transfer the weights of the roof

covering and the snow to the joints of the upper chord, thus

avoiding bending stresses in the latter.

The joints (apexes or panel-points} of the upper chord divide

the roof into panels, and at each apex there is assumed to be

concentrated one-half of the load on each of the panels adjacent
to it. The weight of the truss is also assumed, without mate-

rial error, to be divided among the apexes in proportion to the

lengths of their adjacent panels. If, for example, there are

four panels of equal length, as in Fig. 97, one-fourth of the

* "Civil Engineer's Pocketbook," New York, 1907, p. 713.
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truss weight is applied at the peak, one-fourth at each of the

adjacent apexes, and one-eighth at the joint at each support.

The dead load at an apex consists thus of its proportion of the

truss weight and of the weight of the roof covering on a rec-

tangular strip of roof, whose limits are the median lines between

the given apex and those adjacent to it on the four sides.

When there is a ceiling or a line of shafting carried by the

lower chords of the trusses, the weights in either case are con-

sidered as a dead load on the lower joints.

The snow load, depending on the latitude, varies from 10 to

30 pounds per square foot of horizontal projection of the roof

surface
;

it is about 20 pounds in the latitude of New York City.

This load is not considered for roofs at an angle with the hori-

zontal of 60 or above. The apex loads due to wind pressure

are discussed in Arts. 85 and 86.

84. Determination of Dead- and Snow-load Stresses. From

the preceding article, it will be seen that, in the determination

of the stresses in a roof truss due to dead loads, there are con-

sidered, in general, only the series of parallel, vertical loads

assumed to be applied at the apexes of the upper chord, the

sum of these loads being equal to that of the weights of the

truss and the roof covering. When the panels have all the same

inclination to the horizontal, as in Fig. 97, their horizontal pro-

jections, and therefore their snow loads, will be the same and

will bear a constant relation to the dead load. The snow loads

may^therefore, be omitted from the diagram and the stresses

due to them computed from the dead-load stresses. When, how-

ever, as in Fig. 100, the panels, although equal in length, have

different inclinations, their horizontal projections will differ and

a separate stress diagram should be drawn for the snow loads.

(a) Symmetrical truss, symmetrically loaded. Figure 97

shows a triangular roof truss of this type under dead load. The

apexes are the joints, A, B, C, etc.
; the panels of the upper
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chord extend from A to B, B to C, C to D, etc.
;
the dead load

at apex A is one-eighth of the truss weight plus one-half of the

weight of the roof covering on panel AB ;
the load at apex B

is one-fourth of the truss weight plus one-half the weight of the

covering on panels AB and BC; the reaction at apex A
reaction at apex B = R

l
= 2 W = R^ ;

the net or effective

reaction at joint A = net reaction at joint B = R
l
minus the load

= 2 W- 1/2 W= 3/2 W.

(ft) Unsymmetrical truss, unsymmetrically loaded. Figure

98 gives the diagrams for a form of truss suitable for the " saw-

tooth
"

roofs used in

factories for obtaining

overhead light, with-

out direct sunlight,

the windows of the

saw-tooth usually fac-

ing the north.

The truss weight is

divided among the

panels, AB, BC, and

CD, in proportion to

the lengths of the

latter; there is no

snow load on panel

AB
;
the load at apex

B is one-half of those

on panels^4j5 and BC;
at apex C, one-half

those on panels BC and CD; at joints D and A, one-half those

on panels CD and AB, respectively.

The general method of determining the stresses is that given
in Art. S2a and Fig. 97, except that the operation is not begun
at the left support but at the first apex to the right of it, since,

at the former apex, there are three unknown stresses. The

FIG. 98.



ROOF TRUSSES 159

reactions, JK
1
and R2 ,

are first determined either analytically or

by drawing the force polygon a e with pole O and the corre-

sponding equilibrium polygon L P, the closing line, PL, of

which gives the direction of the ray Oh and hence the magnitude

of the reactions. The data as to the method and results are :
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effective reactions, so that no loads are shown at the supports ;

the loads, PQ and QS, are equal, the additional load W, shown

by dotted lines, being disregarded for the present. In con-

structing the stress diagram (a), the upper-chord loads, AB to

F, are first laid out on the load-line af\ then, the total reaction

at the left support corresponds with the distance fs measured

upward ;
the lower apex loads,' SQ and QP, are designated by sq

and qd, acting downward on the load line
; and, finally, pa, acting

upward, represents the total reaction at the right support. From

the points thus determined on the load line, the stress diagram

is laid out as described previously for dead loads, except that,

in this case, the loads on the lower chord are included. For

example, the stress polygon for the upper apex nearest to the

left support is abhga ;
that for the similar apex on the lower

chord is ghklqpg.

Again, the lower chord may have a concentrated load at one

apex, such as that of shafting in a machine shop. In this case,

the simplest way is to draw a diagram for the truss when carry-

ing only this concentrated load, and to add algebraically the

stresses thus determined for each member to the similar stresses

found from the diagram for dead loads. Thus, let the truss,

Fig. 99, be considered as carrying only the load W at the lower

apex nearest to the left supports, the weight of the truss and

that of the roof covering being disregarded. The reactions,

RI and R2
r

,
are first determined, either analytically or by the

force and equilibrium polygons. The distance pa on the load

line of the stress diagram (b) represents^/; since there are

no loads on the upper chord, the point a is also the location of

the points, b, c, d, e, and // fs then corresponds with the right

reaction R2
f

,
and as s and q lie at the same point, qp designates

the load W. The stress diagram is now constructed by the

usual method. It will be found that there is no stress in any

diagonal except KL t since the load W produces only tension in

this diagonal and in the lower chord and compression in the
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rafters, which stresses are the same in character as those aris-

ing from the dead load of the weights of the truss and roof

covering.

85. Wind Pressure on Roofs. But little is known definitely

with regard to the general direction, and the intensity of wind

pressure upon inclined surfaces such as roofs. The usual prac-

tice, in determining the stresses in roof trusses, assumes a

horizontal direction of the wind with a pressure of 30 to 40

pounds per square foot on a surface normal to that direction.

On this basis, the normal pressure on the roof panel is then

computed by either of the following formulae, in which 6 is the

inclination of the panel to the horizontal, pn is the normal press-

ure per square foot on the roof surface, and ph is the similar

pressure on a vertical plane by a wind moving horizontally :

(a) Duchemiris formula ;

2 sin 6
Pn-Ph

i +sin20
'

() Huttoris formula, deduced by him from extended experi-

ments :

Taking ph
= 40, the latter formula gives :
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are very close
;
below that angle, Duchemin's formula gives con-

siderably higher values.

86. Determination of Wind-load Stresses. The stresses aris-

ing from wind pressure are determined independently, without

FIG. ioo.

regard to those due to dead and snow loads. The loads on the

windward side of the truss are assumed to be normal to the roof

surface
;
the lee side is unloaded. With this modification, the
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general method of Art. 82 a is applicable, except as to the deter-

mination of the reactions. Two cases as to this are presented :

short trusses whose ends are fixed in the walls, and, secondly,

iron or steel trusses of long span which have one end free to

provide for expansion or contraction and the consequent move-

ment caused by changes in temperature.

Since the wind loads and the reactions form a system of exter-

nal forces in equilibrium, the sum of the components of the

reactions, in the direction of the wind loads, must be equal to

the sum of the latter. Hence, with a truss having both ends

fixed, the reactions are assumed to be parallel to the wind loads,

or to the resultant of those loads. When but one end is fixed,

the free end is frequently supported upon rollers, in which case

the reaction at that end is vertical. Knowing this and the point

of application of the other reaction, the direction of the latter

and the magnitude of both can be found from the force and

equilibrium polygons for the loads and reactions.

(a) Fixed Ends. Figure 100 gives the diagrams for a hipped
truss having both ends fixed in the supporting walls. The pan-

els have each a length of 14 feet
;
the trusses are spaced 12 feet

apart ;
the inclination to the horizontal is 45 for the lower, and

15 for the upper, panels, giving from the table, Art. 85-
values of pn of 36 and 14.2 pounds, respectively. Taking the

left as the windward side, the wind loads, normal to the roof,

will be :

panel AB : 14 x 12 x 36 = 6048 pounds

applied at A, 3024 pounds

applied at B, 3024 pounds

panel BC: 14 x 12 x 14.2 = 2386 poimds

applied at B
y 1193 pounds

applied at C, 1 193 pounds

The two loads at apex B are combined into a single resultant

load, BC, by the parallelogram of forces
;
the latter load, those
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acting at A and C, and the two reactions form the system of

external forces acting on the truss, so far as wind pressure alone

is concerned.

To determine the reactions, draw, to any convenient scale of

loads, the force polygon a . . . d with pole O and the correspond-

ing equilibrium polygon LMNPQ. The magnitude and direc-

tion of the two reactions are shown by the dotted line ad\ the

ray Ok, drawn parallel to the closing side QL, intersects ad at

k, giving the magnitude of R2 as dk and that of R
l
as ka.

The construction of the stress diagram is begun by drawing

again the polygon abcdka, preferably on a larger scale. Then,

starting at the left support, the loads and stresses acting are

KA, AB, BE, and EK, of which KA and AB are known and are

given in the stress diagram by ka and ab, whose resultant is kb.

Lay off be and ke parallel, respectively, to BE and EK. The

stress polygon for the apex A is then kabek and the stresses de-

termined are be and ek, the former compressive, the latter ten-

sile. The stresses and loads, if any, at each apex are treated

similarly and the stress diagram is thus completed. The stress

polygons for the apexes A . . . E are : kabek, ebcfe,fcdgf,gdhg, hdkh.

Since the truss is symmetrical, it is evident that, if the right

became the windward side, the stresses found for the wind on

the left would be transferred to the corresponding members in

the other half of the truss.

(b) One Free End, Fig. 101, represents a triangular roof truss,

having the left end fixed and the right end free to move and

supported on rollers
;
the upper panels are of equal length.

Assume the wind to be on the left side. There are two ways
of determining the reactions at the supports. First Method :

the right reaction R
2 is vertical owing to the rollers, and, since

the panels B and C are uniformly loaded, the resultant of their

apex loads due to the wind passes through the middle apex 2 and

is normal to the roof. This resultant is held in equilibrium by
the two reactions. Therefore, prolong the lines of action of R^
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rvi

Winci on
FlG. 101.
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and the load-resultant, 2M, until they meet at the point M, and

from M draw the line Mi through the point of application of Rr

The lines Mi and Mi' are then the lines of action of R
l
and R^

respectively. On M2, lay off the loads, ab, be, cc'
;
from a draw

ag parallel to Mi and from c' draw c'g parallel to Mi' . Then,

since ac' = total wind load, ga = R l
and c'g

=
R^.

Second Method : assume at first that the reactions are parallel

to the loads ;
draw the force polygon ac' with pole O for the

loads and reactions and the corresponding equilibrium polygon

(not shown) ;
the closing side of the latter determines the

direction of the ray Oh, which gives R 1
= ha, and R2

= c'h, on

the assumption as above. R^ is, however, vertical and must there-

fore be equal to the vertical component of c'h, i.e. c'g; from g
draw ga Rv

The stress diagram is constructed by the general method used

for Fig. 100, except that the joints are not taken in clockwise

rotation throughout, since there would then be three unknown

forces at the peak joint j. The order followed is : /, 2, i
1

',
2'

, j,

and finally 4, to determine the stress in the last member FG. It

will be observed that there is no stress in the member D'E' .

The stress polygons, in the order named, are : gabdg, dbced,

a'gd'b'a', b'a'e'c'b', ecc'e'fe, gdefg.

Using the first method, as given above, to determine the re-

actions with the wind on the right, draw the vertical line i'M1

from the right support until it intersects at M' the line of action,

2'M', of the resultant of the wind loads
;
from M' draw M' i to

the point of application of RJ. On M'2' prolonged, lay off the

loads, a' b'
, b'c'

',
and c'c\ from a' drop the perpendicular a!g in-

tersecting atg the line ag drawn parallel to M'I. Then, ag=Rl ',

and^-tf'
= R

z
r

. The stress diagram is then constructed by the

same methods as before, except that the operation is reversed,

the order of the stresses being non-clockwise. As the line of

action of R^ coincides with the main rafter, there is no stress in

the members, DE, EF, FG, and GD.
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87. Maximum and Minimum Stresses. While the dead load

always acts on a truss, the loads due to snow and wind are

variable. Hence, each member will be subjected to changing

stresses, and, as it should be designed, not only for the maximum
stress endured, but also for the range of stress through which it

passes, it is necessary to know both the maximum and minimum

stresses in each case.

Therefore, after finding the stresses from the dead and snow

loads and from the wind on each side separately, the results

should be tabulated and the maximum and minimum stresses

ascertained for each member. The minimum stress is that pro-

duced by the dead load, except when a stress due to wind is of

the opposite character, and the algebraic sum of the two is less

than the dead-load stress. The maximum stress is the larger

of the two stresses, found by taking the algebraic sum of the

wind stress on the right or left, and the stresses due to dead and

snow loads. As stated previously, tensile stresses are taken as

positive, and compressive stresses as negative, in obtaining the

algebraic sum.

Thus, in Fig. 101, let the span

be 35 feet; the inclination of the

rafters, 30 to the horizontal; the

four panels be equal in length ;
and

the trusses be of steel and spaced

1 2.5 feet apart. Assume the weight

of the roof covering as 13.5 pounds

per square foot of roof surface, and

the snow load as 15 pounds per

square foot of horizontal projection

of the roof surface. Then, the length of a rafter will be 20.21

feet, and, for each truss :

Area of roof covering 55- 2 5 sq.ft.

Area of panel 126.31 sq.ft.

Area of horizontal projection of roof .... 4375 sq. ft.
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Weight of roof

Weight of truss (Art. 83) = .08 x 35 x 437.5 =

Dead load, total = 6821 + 1125 =

Dead load, apex = 7946/4 =

Dead load, reaction = 7946/2 =

Snow load, total = 437.5 x 15 =

Snow load, apex = 6562.5/4 =

Ratio of stresses, snow load to dead load = 1640.6/1986.5 =

Wind pressure, normal, per square foot (Art. 85)

Wind load, normal, total = 126.31 x 2 x 26.5 =

Wind load, normal, apex = 6694.4/2 = .

Ib.

Ib.

6821

1125

7946

1986.5

3973

6562.5

1640.6

0.826

26.5 Ib.

6694.4 Ib.

3347.2 Ib.

Ib.

Ib.

Ib.

Ib.

The dead-load diagram is shown in Fig. 101 a. Using
a scale of 1000 pounds to the inch, this, diagram and those

of Fig. 101 give the stresses in pounds in the members, as

follows :
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88. Method of Substitution. Let Fig. 102 represent a Fink

truss, symmetrical and symmetrically loaded. The stress diagram
can be constructed by the general method, excepting that part cor-

responding with apex j, where there are three unknown stresses,

to be determined.

Assume the

members LMand
MNto be replaced

temporarily by
the member PQ
shown by a dotted

line in the upper
semi- truss dia-

gram. From the

latter, draw the

stress polygons,

cdpkhc for apex j,

deqpd for apex 4,

and fkpqof for

apex 7, thus deter-

mining KP and

QO, which corre-

spond with KL
and NO, respec-

tively, in the origi-

nal diagram. Re-

turning to the latter, the unknown stresses at apex j are now DM
and ML, and the stress polygon cdmlkhc can be constructed.

The remainder of the stress diagram presents no difficulties.

There are other more or less complex solutions of this prob-

lem. The method of substitution is, however, both simple and

general, being applicable when the panels are unequal in length

and unsymmetrically loaded.

FIG. 102.



GRAPHIC STATICS

89. Braced Cantilevers. The following analyses by the

method of reciprocal diagrams show the stresses in typical

forms of framed or

braced cantilevers.

(a) In Fig. 103, the

cantilever consists of a

horizontal lower chord,

an upper chord partly

horizontal and partly

inclined, and diagonal

web members; the only

load considered is the

weight W at the end

of the cantilever.

The stress diagram

is begun at the apex

on the line of action of W.

abca
; apex 2, acda

;

apex 3, bedcb\ apex

4, adefa. At apex 3,

the known stresses

are DC and 67?;

their resultant is db.

From draw be and

from ^/ draw de,

parallel to BE and

ED, respectively. A
similar method is fol-

lowedatapex^. The

stress/^ corresponds

with the tensile stress

GA in the support.

(b) Figure 104

gives the diagrams

The stress polygons are: apex /,

tf
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for a cantilever truss such as would be used for an overhanging
roof. The panels are equal in length and the dead load only is

considered, being divided among the apexes as before. The

apex loads are laid off on the line a-e and the stress diagram is

constructed by the general method. For the apexes 7-7, the

stress polygons are : abgfa, bchgb, gJikfg, cdlkhc, fklmf, denmld,

fmnf.

Assuming a horizontal supporting tie, R 1
= en, at the upper

extremity of the truss, its line of action intersecting that of the

resultant of the loads at the point O, the line #7, drawn

through the point of application 7 of the reaction R^ is the

line of action of the latter, whose magnitude is given by the

line nf in the stress diagram.

(c) Figure 105 shows a V-shaped cantilever with lattice bracing.

Only the load applied at the end is considered, and the canti-

lever is assumed to be secured to the wall. The same numbers

are used to designate the members in both diagrams ;
the joints

are marked by capital letters
;
the lettering of the stress diagram

is arbitrary.

To construct the stress diagram, draw W= ab, and from a and

b lay off i and 2, meeting at e and parallel respectively to i and

2 in the truss diagram. The stress polygon abea determines the

stresses in the members i and 2. The stresses at apex C are /,

3, and 4, of which / is known
;
the corresponding stress polygon

is ebde, which determines j and 4. Stresses 5 and 6 are found

similarly for joint D. At joint E there are four stresses, 5,

3, 7, 8, of which 5 = ce and j = db are known. Transfer ce to

fd\ the resultant of fd and db is/#. From /draw kf=8 and

from k lay off bh = 7, thus determining stresses 7 and 8. The

four stresses at each of the joints F, G, and //, are treated

similarly, the two known stresses being combined and their re-

sultant used to form a stress triangle with the two remaining

stresses. Finally, at the joints K and Z, the two stresses acting

at each are known
;
their resultants are, respectively, nb and an

;
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and the equal and opposite forces required to support the canti-

lever are the tensile force M'= bn and the reaction N=na,

w

X X 1

w

FIG. 105.

respectively. Since the stress diagram is symmetrical about

the horizontal axis XX'
,

it is necessary to draw only one-

half of it, due regard being had to the character of the

stresses.
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90. Cranes. Framing finds frequent use in crane construction.

Figure 106 shows a crane boom

of this character, having a load

W at the peak. For clearness,

the dead load due to the weight of

the crane is disregarded.

The stress diagram can

be readily constructed

by the general method.

The stress polygons are :

joint A
f abca\ C, cbde;

D, acdea
; E, edbfe ; F,

aefga-, G, agka; H
y

Jigfbkh; K, kblk. The

upper chord and the di-

agonals are shown to be

in tension
;

the lower

chord, the radials, and

the strut /j, in compres-

sion. The load and the

thrust produced by its

leverage are sustained

by the reactions, R l
and

R
2 ,

at the supports, R2

being evidently equal to

*1 + W. FIG. 106.

91. Accuracy in Drawing; Check on Results. In construct-

ing stress diagrams for which, as with roof trusses, a usual scale

is five or six tons to the inch, it is evident that accurate drawing
is essential. The lines of the diagram 'should be as narrow as

possible, and the pencil used should be hard, finely pointed, and

held always at the same inclination to the paper. Especial care

should be exercised in drawing a line parallel with another.
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The fundamental check on the results is that the final line of

the stress diagram usually representing one of the members

at the peak of a roof truss shall be accurately parallel to its

corresponding member. In some cases, it may be well also to

find analytically the stress in one of the final members, as the

rafter at the peak, and compare the results with those deter-

mined graphically.

PROBLEMS

74. The rafters of a triangular roof truss (3 members) of span s are in-

clined at the angle to the horizontal. Let w be the weight per lineal foot

of the rafters and w 1 the similar weight of the uniformly distributed load of

roof covering which they sustain. Treating the rafter as a beam, find, by
force triangles, the compressive stress in the rafter at the middle of its length,

the tension in the chord (neglect weight of chord), and the vertical pressure

on each support.

75. Find the dead-load stresses in the members of a steel roof truss

similar to that shown by Fig. 102, except that the lower chord is horizontal.

Data: span, 40 feet; rise, 12 feet; trusses spaced 12 feet apart, c. to c.
;

weight of roof covering, 13.5 pounds per square foot of roof surface
; weight

of truss in pounds = 0.08 x span in feet x square feet of building space cov-

ered by roof supported by one truss.

76. In a crescent roof truss, the joints of both chords lie in arcs of circles

which meet at the supports ; corresponding joints of the upper and lower

chords are joined by braces radiating from the centre of the upper arc;

diagonal braces, inclined toward the peak, connect each upper joint with the

next outer one in the lower chord.

Find the dead-load stresses in a steel truss of this type. Data : radius of

arc of upper chord, 25 feet
;
of lower chord, 39 feet

; span, 47 feet
;
6 equal

panels in each chord; trusses spaced 16 feet, c. to c.
;
truss- and roof-cover-

ing weights as in Problem 2.

77. Deduce an expression for the pressure, /*, in pounds per square foot,

produced on a flat vertical surface by wind moving at a velocity of V miles

per hour, and an expression for the similar normal pressure, Pn,
on a roof

surface inclined at the angle 6 to the horizontal.

78. In Fig. 100, assume the left end of the truss to be free, and draw the

stress diagrams for the wind on the right.
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79. Find, by the method of sections, the stresses in the members of the

braced cantilever, Fig. 103. Scale, I inch = 10 feet; W'= 500 pounds.

80. In the braced cantilever, Fig. 105, assume an additional weight equal

to W as suspended at the intersection of members 8 and 9. Modify the stress

diagrams to suit these conditions.

81. Find the dead-load stresses in the cantilever roof truss, Fig. 104.

Scale, i inch = 10 feet; trusses spaced 10 feet, c. to c.
; weights as in Prob-

lem 2.

82. Determine the stresses in the members of the crane post, Fig. 106.

Scale, i inch = 10 feet; W'=5 tons.

83. Find the stresses in this crane with this load, if all of the members

between the diagonal GH and the apex A were replaced by a strut AG and

a tie AH.



CHAPTER IX

BRIDGE TRUSSES

THE discussion which follows relates only to the fundamental

principles governing the design of bridge trusses. The subject

is complex, and, for full treatment of the many points involved,

the student must consult special works covering it.

92. Bridge Trusses : Definitions. Bridge trusses are vertical

framed structures which carry the dead and live loads in high-

way or railroad bridges. In general, they may be classed as

simple beams resting upon two abutments, or as cantilevers, each

anchored at the outer end and supporting, by links at the other,

one extremity of a separate central truss, which joins the two

cantilevers and forms with them the vertical framing of the

completed bridge.

Each truss is composed of an upper chord, a lower chord, and

web members joining the two. The chords may be horizontal

and parallel, or one chord may be a broken line or have its

joints lying in the arc of a curve. The web members may be

either vertical or diagonal, the two systems being frequently

employed in combination. In order to limit the main web mem-
bers to a stress of but one character, counterbracing (counter-ties

or counter-braces) is frequently used, the diagonals crossing to

form lattice bracing. The joints of the web members with the

chords divide the latter into panels ; at these joints (apexes or

panel-points), the loads are assumed to be concentrated. The

span of a truss is the distance between the centres of the

supports ;
the depth is the distance between the centres of the

upper and lower chords.

176
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To provide for wind stresses and to add to the stability of the

structure, adjacent trusses are connected by lateral bracing, the

latter forming essentially a horizontal truss composed of the two

corresponding chords of consecutive vertical trusses and of hori-

zontal web members. Wind or sway braces are also used in the

form of vertical trusses between, and transverse to, the main

trusses.

Bridge trusses are built either as deck or through spans. In

the former, the roadway of the bridge rests on the upper chord

of 'the truss
;
in the latter, on the lower chord. The through

span gives more height in the clear below the bridge ;
the deck

span offers better facilities for sway bracing.

In either case, the upper chord is always in compression and

the lower chord in tension
;
the web members may be either

ties or struts. Tension members may be eye-bars flat bars

with circular holes at each end for pin-joints -which are suit-

able for tensile stress only, or they may be virtually rigid

built-up members. Compression members are always of the

latter type. The joints or panel-points are either pin-connec-

tions, which give the members freedom for motion about the

pin as a centre, or riveted joints, which are practically rigid.

Trusses either pin-spans or with riveted joints are frequently

called girders ; and, similarly, riveted trusses are sometimes

termed lattice girders, etc.

A bridge truss may be considered as a beam, and, as such, is

subjected to bending moments, vertical shear, and deflection in

a vertical plane. The bending moment at any section can be

found as for a beam
;
from this moment, the chord stresses at

the given section can be computed. In a truss with parallel

chords, the vertical component of the stress in a diagonal is

equal in magnitude to the vertical shear ; the horizontal compo-
nent of the same stress is the chord increment, i.e., the addition

to the chord stress due to this diagonal stress. Camber is the

slight curve upward, from the ends to the middle, given to the
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chords in order to compensate for their bending downward

under load, so that, in any case, they shall be horizontal or curv-

ing above it.

93. Loads on Bridge Trusses. The loads carried by bridge

trusses are : the dead load, the live load, and the loads due to

wind and snow. The stresses produced by these loads are

augmented by others resulting from the impact of the live load,

from the initial tension given counter-ties to prevent vibration

and increase stiffness, and from the various indeterminate

strains produced by a curved or uneven track, by the shock of

starting or stopping trains on the bridge, etc. The maximum
stress is, in general, that due to the dead and live loads and to

impact ;
the remainder are relatively of minor importance, and

will not be treated herein.

The dead load comprises the weights of the trusses, the lateral

and sway bracing, the floor beams, the longitudinal beams, and

the floor of a highway bridge, or that of the trusses, bracing,

floor-system, and tracks of a railroad bridge. General formulae

for the weight of railway bridges, including that of trusses or

plate girders and that of the floor-system, cannot be readily

constructed, except when the proposed bridge is of a type which

has been frequently built. This follows since the loads, unit

stresses, and the details of specifications differ in every case.

With highway bridges, the difficulty is still greater, as they vary

more widely in the service for which they are intended, and con-

sequently in design. As to approximate formulae, Merriman

and Jacoby state:*

" The total weight or dead load of a highway bridge with two

trusses may be expressed approximately by the following em-

pirical formula :

w = 140 + 12 b + 0.2 bl 0.4 /,

* " Roofs and Bridges," New York, 1898, Part II, p. 67. See also Part III under
"
Weight Estimates," and Trautwine,

" Civil Engineer's Pocketbook," New York,

'907, pp. 73 ! 738.
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in which w is the weight in pounds per lineal foot, b the width

of the bridge in feet (including sidewalks, if any), and / the

span in feet. . . . The total dead load of a railroad bridge

for a standard gauge track may be approximately found from

the following empirical formulas :

For single track, w = 560 + 5.6 /,

For double track, w = 1070 + 10.7 /.

For spans not exceeding 300 feet, these formulas give values

usually a little larger than the actual weights, but sufficiently

accurate for the determination of the stresses. For spans greater

than 300 feet, they should not be used."

The live load is the moving load which crosses the bridge

foot passengers, vehicles, or railway trains, as the case may
be. A uniform live load, per running foot of the entire bridge,

produces, with the dead load, when the latter is considered as

applied on the loaded chord only, a maximum load which is

equivalent, in the stresses developed, to the aggregate con-

sidered as a dead load. Hence, the stress diagrams for dead

loads and for uniform live loads are similar, and the stresses due

to the latter may be computed from those produced by the

former.

In practice, it is customary to make an allowance for impact.

The added stress resulting from impact and vibration, and due

to the live load, is indeterminate in some degree and varies with

the character of the bridge. For a plate girder bridge, Waddell

recommends for the coefficient of impact :

f=400/(L + 500),

in which / is the percentage of a given live-load stress to be

added and L is the length in feet of the segment of the span

which is covered by the live load when that stress is produced.

The maximum wind load is assumed to be that existing when

the wind is horizontal, transverse to the bridge, and has a press-

ure of 30 to 40 pounds per square foot. It produces a horizon-
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tal pressure on the exposed surfaces of one truss and of a train,

if the latter be crossing the bridge. As a result, stresses are

developed by direct pressure in the lateral bracing and trans-

mitted to the chords of the main trusses, and, as the wind also

tends to overturn both bridge and train, the stresses in these

trusses are not the same as under similar dead and live loads in

still air.

The snow load is negligible for open railroad bridges; for

highway bridges, it is, for various reasons, assumed to be much

less than for roofs.

As with roof trusses, all loads are assumed to be concentrated

at the joints or panel-points. The method of transmitting to the

joints all loads except the weights of the truss and bracing is

the same in principle as that employed for roof trusses : trans-

verse floor beams connect the corresponding joints of adjacent

trusses
;
on these, longitudinal beams are laid

; and, on the latter,

the floor or the sleepers which carry the tracks. Hence, the

load due to the floor and the live load resting on it can reach

the trusses only through the supports of the floor beams at the

joints. The weight of the truss may be relatively small as com-

pared with the aggregate load in which case, without material

error (Art. 94 b\ it also may be assumed to be divided propor-

tionately among the panels of the loaded chord, and to be con-

centrated at the joints of the latter, although, for accuracy, it

should be divided proportionately between the two chords. In

practice, the weight of the floor-system is frequently considered

as acting on the loaded chord only, and the remainder of the

dead load is divided equally among the joints of both chords.

94. Determination, by Stress Diagrams, of the Stresses due to

Dead Loads and to Uniform Live Loads, Panels not Counter-braced,

The trusses discussed below represent the various systems of

arrangement of the web members which are commonly used.

Counter-bracing which will be treated later is not consid-
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ered, as the character of the stress in any member is always the

same for both the dead load and a uniform live load. The re-

action shown at each support is the net or effective reaction, i.e.,

the total reaction less the load on the joint at that support.

(A) and (>) represent the truss diagrams for through and deck

spans, respectively ;
the corresponding stress diagrams are

marked (a) and (b). Since each truss is symmetrical and loaded

symmetrically, the stress diagrams are constructed only for the

lettered members of the truss diagram, extending from the left

support inward, or about one-half of the truss. The stresses

are taken in contra-clockwise order, the joints of the upper and

lower chords being followed alternately, beginning at the left

support. The loads may be considered either as dead loads,

uniform live loads, or the two combined. They are applied to

one chord only.

(a) Warren truss. Figure 107 shows the Warren triangular

truss, in which the web members are all diagonals inclined about

60 to the horizontal and forming isosceles or approximately

equilateral triangles with the panels of the chords.

The stress diagrams, (a) and (b\ are constructed, as in Art. 84,

by the general method. Thus, in (a), the distances, kl, lm, mn,

etc., representing the loads, are laid off on the load-line, ka ;
the

force polygon for the left half of the truss is then kak and the

effective reaction at the left support is ak. The forces and

stresses acting at that support are A K, KB, and BA
;
the cor-

responding stress polygon is akba
;
and kb and ba are, by in-

spection, tensile and compressive stresses, respectively. In this

way, the stress polygon is constructed for each panel-point,

taking the upper and lower panel-points alternately, until the

entire stress diagram, or the portion required, is completed.

In both the through and deck spans, the upper chord is in

compression and the lower in tension, as in the case of a simple

beam
;
this result is produced by any dead or live load applied

to a bridge truss. In both cases, the chord stresses increase
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from the supports toward the middle, and the stresses in the

web members, following the reverse order, increase from the

centre of the span to the supports. This condition exists in any
truss supported, as in this case, at the ends only, since, consid-

ering the truss as a simple beam uniformly loaded, the bending
moment is a maximum at the centre and the vertical shear to

resist which is the primary function of the web members is

greatest at the supports.

Thus, in (a), the compressive stress in the upper chord ih-

creases from ac to ag, and the tensile stress in the lower chord,

from bk to /;;z, while the alternately compressive and tensile

stresses in the web members decrease from ab to gf. Similar

results will be found for the deck span. The diagonals are, as

stated, alternately struts and ties, the order changing at the

middle, where, as in the six-panel trusses shown in Fig. 107, the

two central web members are under the same kind of stress.

() Howe truss. Figure 108 gives the diagrams for through

and deck spans of the Howe truss. It differs from the Warren

type in that there are vertical as well as diagonal web members,

and from the Pratt truss, Fig. 109, which has also both verti-

cals and diagonals, in that, with the latter, the verticals are

struts and the diagonals are ties, conditions which are the oppo-

site of those in the Howe truss. For economy in construction

and weight, the shorter web members of combined vertical and

diagonal systems should, in general, be struts. The diagonals

of the Howe truss are usually of wood, while the Pratt system
is better adapted for trusses built wholly of steel.

The stress diagrams (a) and (b), for the through and deck

spans, respectively, are drawn as with the Warren truss. In

both spans, the stresses in^he upper and lower chords, follow-

ing the general rule, increase from the supports to the centre,

while those in the web members grow larger in passing from

the centre to the supports. Thus, in (A) and (a), the com-

pressive stress in the chord increases from ac to ae and the
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(A)

(3)

(b)

(6)
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tensile stress from bk to fm, while the stress in the diagonals

decreases from ab to ef and that in the verticals from cb to gft

being equal in the latter to the load MN only. In the deck

span, the stress in the central vertical MN is zero, and that mem-
ber serves simply to keep the middle panels of the lower chord

from displacement or sagging. There are also in this span no

stresses, from the loads shown in the diagram, in the vertical at

the support and in the panel AF.

The effect produced on the stresses by a transfer of the loads

from one chord to the other may be readily seen from the

stress diagrams. Omitting the ineffective panel AFin (^), the

through and deck spans are identical in form and are fully com-

parable. Inspection of the stress lines for corresponding panels

gives :

W (/?)

f ac bh,
Upper chords J

[
ae = cl

Lower chords J

\dl = ke, etc.

Diagonals
("*=/&
\cd = hk, etc.

. . ( cb =gh + load at panel-point,

{ ed kl + load at panel-point, etc.

From these data it appears that, so far as the chords and

diagonals are concerned, it is immaterial with this truss whether

the loads be applied on the upper or lower chords
;
and that,

with regard to the verticals, the effect of loading the lower as

compared with the upper chord is to increase the tensile stress

in the vertical members by the amount of the load applied at

each lower joint. These conclusions apply also to the Pratt

truss discussed below, excepting that, as in it the verticals are

struts, the compressive stress in each is increased, when the load

is transferred to the upper chord, by the amount of the load

applied at each upper panel-point. It will be seen, therefore,
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that, in apportioning the dead load among the panel-points of

the loaded chord, the weight of the truss may be, in both cases,

as above, equally divided, if allowance be made for the change
in the stress of the verticals by a transfer of the load.

(c) Pratt truss. The diagrams for this truss are given in

Fig. 109. The increase in the chord and web stresses follows

the general rule previously given, except that, in (A), owing
to the diagonal direction of the end post AB, the stress in BK is

the same as that in CL, and the stress in CB is tensile and equal

to the load LK. There is no stress in GF. The dotted lines

in (A) and (B) show modifications sometimes made in the ends

of this truss, the members, BA in (A) and GF and FE in (B\

being omitted. Under these conditions, there is no stress in

the lower panel BK of (A), which may also be omitted if the

truss be supported at its upper extremity.

(d) Bowstring- truss. In this truss, Fig. no, one chord is a

broken line with its panel-points arranged in the arc of a circu-

lar or parabolic curve, the members being straight; the web

members may be either diagonals simply, as in the Warren truss,

or diagonals and verticals, as in the Howe and Pratt systems,

with corresponding variations in the character of the stresses

to which these members are subjected. The effects of this

virtual curvature of one chord, which thus forms an approximate

arch, are, first, to make the stresses nearly uniform .throughout

each chord, as ab
y ad, and afy

and bk
t cl, and em in (A)', and,

second, to reduce very materially the stresses in the web mem-

bers, the diagonals especially, as shown in (A) by the decrease

in ob, dc, etc., as compared with similar stresses in Fig. 109.

The equilibrium polygon for any system of forces requires

no transverse web members to maintain equilibrium. Hence,

the nearer the arc of the broken chord of this truss approaches,

in curvature and height, the contour of the equilibrium polygon
for the dead loads applied to the truss, the less, for these loads,

will be the stress in the web members
;

the less the need of
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their presence, except as a means of transferring the loads from

their points of application to the broken chord
;
the nearer the

stresses in the diagonals will approach zero
;
and the more uni-

form will be the stress in the unloaded chord. Theoretically,

these conditions are attained most closely when the truss is con-

sidered as a simple beam uniformly loaded, and the panel-points

of the broken chord lie in a parabolic curve, since, for such a

beam, the curve of bending moments is a parabola.

The bowstring truss finds frequent use for long spans in high-

way bridges. In an extension of this principle, both chords are

curved in opposite directions, as in the lenticular truss. Against
the economy in construction and weight of the bowstring type,

there must be considered the disadvantage that, in through

spans, lateral and sway bracing become impracticable as the

abutments are approached, owing to the curvature of the broken

chord.

95. Intersections
;
Lattice Girders. The trusses discussed in

the preceding article have each but one system of web members

consisting, as in the Warren type, of diagonals only, or, as in

the Howe and Pratt systems, of diagonals and verticals com-

bined. If, Fig. 107, the truss shown in (B) be superposed upon

(A), there would be obtained, as in (c\ the Warren double inter-

section or double system truss. If the loads shown in both (A)
and (>) were applied to (c\ the stress in each diagonal would

still be that given by (a) and ($), but that in each chord, upper
or lower, would be the sum of the original stresses in the two

chords which combine to form it.

If a double-intersection truss similar to (c) be superposed on the

latter with its joints intermediate with those of (V), the two form

the quadruple Warren truss or lattice girder. This principle

has been employed also with the Pratt system, the Whipple or

double-intersection Pratt truss being composed of two simple

Pratt trusses, combined with one pair of chords.
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For any multiple-system truss, either the dead- or live-load

stresses may be obtained by treating each system separately, as

in (a) and (), Fig. 107, and combining the stresses of the mem-

bers which coincide. In some cases, as in the double and

quadruple Warren trusses, a single stress diagram may be

drawn by the general method which will give the stresses due

to dead load in all of the web members
;
in the Whipple truss,

each system must be treated separately throughout.

96. Relation of Bending Moment and Chord Stress. In a

truss with horizontal chords, the stress in either of the latter

at any panel-point is equal to the bending

moment at that section, divided by the depth

of the truss.

Thus, let Fig. in represent a section of a

Howe truss, through span, of depth d, with a

part, NQST, of the equilibrium polygon drawn

for the loads and reactions. Assume the truss

to be cut on the vertical line ab to the right of,

but indefinitely near, the panel-points 2 and j,

so that the bending moments at the sections a-b

and 2-3 will be virtually the same.

The external forces acting on the part of the truss to the left

of the section a-b are the load P at joint j and the effective

reaction R
l

at the left support. To maintain equilibrium,

assume the forces, X, Y, and Z, the same in magnitude and

direction as their corresponding stresses, as applied at the

respective points of section of the severed members. For

equilibrium, the algebraic sum of the moments of these external

and applied forces, about an axis perpendicular to their plane

of action, must be zero.

Prolong the sides, QS and NT, of the equilibrium polygon
until they intersect in the point U, at a perpendicular distance

/ from the line of action of the force P at joint j. Then, by
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Art. 41, the line of action of r, the resultant of R
1
and P, must

pass through the point U, and the moment of r is equal to the

sum of the moments of its two components. Taking moments

about panel-point j, where the lines of action of the forces Y
and Z intersect,

X X d= r x /,

X=rl/d.

But, by Art. 41, rl is the bending moment at the section 2-3,

and this moment is virtually the same as that at the section

a-b
y
since the two are indefinitely near.

The principle thus established is general. If the upper chord

be broken (Art. 107) and the line of action of its applied force

X be inclined to the horizontal, the depth d should be replaced

by the perpendicular distance from the centre of moments-

as panel-point j to the line of action of X. Due regard

should be had to the system of units employed. Thus, if the

depth of the truss be taken in feet, the pole-distance of the

force polygon in tons, and the bending moment in tons-feet,

the chord stress will be given in tons.

It will be observed that (Art. 101 b\ in trusses with parallel

chords, the magnitude of the chord stress is the same for the

chord members joining the two upper and the two lower extremi-

ties of consecutive and parallel diagonals.

97. Relation of Vertical Shear, Web Stresses, and Chord Incre-

ment. As in a simple beam, the vertical shear V, immediately
to the left of any vertical section of a truss, is equal to the

effective reaction, R lt
at the left support, minus the sum of all

the loads to the left of the section considered. V is thus the

resultant of this reaction and these loads.

Under these conditions, for a dead load or a uniform live

load, the shear diagrams, (<:), Fig. 112, and "/";", etc.,

Fig. 113, show that V is a positive maximum at the left

support, decreases by steps at each panel-point, passes through
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zero at the middle of the truss, and reaches a negative maxi-

mum at the right support, positive shear indicating that Facts

upward, and negative shear the reverse. When the live load is

not uniform, these conditions do not prevail, and the vertical

shear in any panel is the algebraic sum of the shears due to

dead and live loads (Art. 102); the actual shear thus found

may be, as to sign, like or unlike the dead-load shear, depending

on the magnitude and location of the live load.

Each panel is thus subjected to the action of vertical shear,

and if, for trusses with parallel chords under any conditions of

loading, the magnitude and sign of Fare known, it is possible,

as the succeeding articles show, to determine analytically from

them the intensity and character of the stresses in the diagonals

and verticals and the magnitude of the chord increment. When
the upper chord is broken, as in Fig. in, this determination

becomes more complex, as the vertical components of the

stresses in both the diagonals and the inclined chord members

must be considered in finding the stresses which resist the

vertical shear.

98. Stresses in Diagonals. It is evident that, in trusses with

parallel chords, the vertical shear in any panel must be wholly

resisted by the stress in the diagonal which is strained, since

the latter member is the only one in the panel whose stress has

a vertical component. Hence, this component must be equal in

magnitude and opposite in direction to V, and, knowing V, the in-

tensity and character of the stress in the diagonal may be found.

Thus, Fig. 112, let (A) and (B) represent, respectively, semi-

trusses of the Howe and Pratt systems, under dead load or

uniform live load, and let (c) be the shear diagram, which is

the same for both (A) and (). CD is the line of zero shear.

Then, at the section de of (A), there is an upward shear whose

magnitude is given by (c). In the force triangle (a), lay off on

any scale the line 7-6 equal to V and draw the lines 6-5 and
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5-7 parallel, respectively, to the corresponding diagonal and

chord member in (A). The length of the line 6-5 then repre-

sents, on the given scale, the magnitude of the stress in the

diagonal ;
the character of the stresses, with regard to panel-

point 5, is shown by the arrows, 6$ being compressive and 5-7

tensile. The force triangle (b} gives similar results for the

section fg in (B). In this case, as the diagonal is inclined in

the other direction, the character of the stresses is reversed,

that in the diagonal being tensile and that in the chord, com-

pressive. The same reversal would occur in (a), if V were

ft) (B)
,

d , f

negative. The direction of the shear and stresses in passing

around the triangles (a) and (b} is determined by the fact that

the direction of V is known, and, as the three forces represent

a system in equilibrium, their direction will be, by Art. 15, the

same.

The reciprocal diagrams, Figs. 108 and 109, show graphically

the principle established above. That it is general is clear from

the diagrams for the Warren truss, Fig. 107, in which the

vertical component of the stress in either of the two diagonals

which intersect above or below the centre of a panel in the

loaded chord is found to be equal in magnitude and opposite in

direction to the vertical shear in that panel.

99. The Chord Increment. Each diagonal in a truss with

parallel chords receives from one chord and delivers to the
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other a horizontal stress whose intensity is equal to the hori-

zontal component of the stress in the diagonal. This horizontal

component is the chord increment, i.e., the difference between

the stresses in two consecutive members of the same chord, in

proceeding from the end of the truss to the middle. The chord

stress in any member of either chord is thus the sum of succes-

sive chord increments. For example, Fig. 108 (A), the stress

fm in the lower chord member FM is the sum of the horizontal

components of the stresses in the preceding diagonals, AB, CD,
and EF\ and the stress in the upper chord member EA is the

similar sum from the diagonals AB and CD. Hence, as the

stresses in the diagonals can be ascertained by the methods of

the preceding article, the magnitude of the corresponding chord

increment can be determined.

It will be observed further, as to the horizontal component
of a diagonal stress, that it is the difference between the stress

in any two chord members which it connects, or between which

it lies. Thus, Fig. 108 (A), the horizontal component of the

stress in CD is the difference between the stresses in BK and

LD, in AC and EA, and in BK and EA.

100. Stresses in Verticals. The stress in any vertical web
member of a truss with parallel chords and loaded on one chord

only is equal and opposed to the vertical component of the

stress in the diagonal which except in counter-braced panels
and in some end and all middle panels is the only web mem-
ber to meet the vertical at a panel-point in the unloaded chord.

This follows from the fact that, at such a panel-point, the only
vertical forces are the stress in the vertical and the vertical com-

ponent of the diagonal stress, and, for equilibrium, the two
must be equal. By Art. 98, the stress in the vertical is hence

equal in magnitude to the vertical shear in the panel in which
the diagonal is located. In finding the stress in a vertical form-

ing one side of a counter-braced panel (Arts. 105 b, 106), it is
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necessary to determine which of the two adjacent diagonals is

acting under the load.

Thus, Fig. 108 (A), the stress in the vertical BC which meets

the diagonal AB at panel-point 2, is equal in intensity to the

vertical component of the stress ab and hence to the vertical

shear in the panel to the left, or that in which the diagonal AB
is situated. Similarly, the stress in DE is equal to the vertical

shear in the second panel; and that in FG, which meets two

diagonals at panel-point 6, is the arithmetical sum of the shears

in the third and fourth panels, in which these diagonals lie, the

shears being added because the stresses in the two diagonals are

the same in character. For the deck span (B), the method is

the same, except that, as the panel-points in the lower chord are

now considered, the stress in the vertical is equal in magnitude
to the shear in the panel to the right.

For the Pratt truss, Fig. 109, the process and results are simi-

lar, with the exception that, at panel-point 2 in (A), two diago-

nals of opposite stress meet the vertical. The stress in the

latter is therefore equal to the difference between the vertical

components of the two diagonal stresses, or ak la = lk
y
which

is the difference between the vertical shears in the first and

second panels.

In finding the stresses in vertical members of trusses with

broken chords (Fig. no), the principle of equilibrium must be

applied to the vertical components of all members meeting the

vertical at the panel-point selected, and the magnitude and

direction of these components must be considered in determining

the stress in the vertical.

101. Determination of Dead-load Stresses by the Force and

Equilibrium Polygons. The stresses in a truss, due to dead load

or to uniform live load, can be determined, as to magnitude, by
the application of the force and equilibrium polygons to the

loads and effective reactions, owing to the relations which have
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been shown to exist between these stresses and the bending

moments and vertical shear. This method is given in Fig. 113

as applied to a Howe truss, through span, of depth d, and

under dead load.

A

4 /** 6 8 10

I

FIG. 113.

The loads and effective reactions, taken in contra-clockwise

order, are plotted to any convenient scale of tons to the inch on

the load-line kk'
, the reactions being ak and k'a and the closed

force polygon, kk'k. Then, the pole O is located horizontally
from a

y
at a pole-distance H equal to any desired number of

tons, the distance being measured on the load-line scale. The

rays Ok, O!, etc., are then drawn and the equilibrium polygon

N-R-U(A.r\.. 20) is constructed.

The diagram k"l"m", etc., for the vertical shears is drawn by
projection from the lower chord of the truss and from the load-

line. The median line Oa, produced, divides the diagram into
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positive and negative sections, respectively, above and below

this line.

(a) Bending Moments. By Art. 41, the bending moment at

any section of the truss is equal to the product of the ordinate

of the equilibrium polygon at that section by the pole-distance.

Thus, at section 4-5, the bending moment is qQ x H. The

length of the ordinate is found in feet and is measured by the

linear scale used in spacing the lines of action of the forces

which pass through the vertices of the polygon, and, hence, by
the scale of feet per inch employed in drawing the truss diagram.

The pole-distance is measured in tons by the scale of tons per

inch on which the load-line was laid out. The product, the

bending moment, is thus obtained in tons-feet.

(b} Chord Stresses. By Art. 96, the chord stress at any sec-

tion of a truss with parallel chords is equal to the bending
moment at that section, divided by the depth of the truss,

or B.M./d. If the bending moment B.M. be found in

tons-feet and d be taken in feet, the chord stress will be

given in tons. Thus, at section 4-5, the chord stress is

equal to qQy^H/d, which is the stress in the members, AE
and DL, as shown by Fig. 108 (a). Since the stress in

any chord member is the sum of the horizontal components
of the stresses in preceding diagonals, the magnitude of

the stress is the same for the chord members joining the two

upper and the two lower extremities of consecutive and parallel

diagonals.

(c) Stresses in Diagonals. By Art. 98, the vertical compo-
nent of the stress in any diagonal in a truss with parallel chords

is equal to the vertical shear in the panel in which the diagonal

is situated. Thus, m"a r

gives the magnitude of the vertical

component of the stress in the diagonal EF. Similarly, d"en is

equal to the vertical component of the stress in the diagonal CD,
and c"d"

,
drawn parallel to the latter, represents, on the load-

line scale, the stress in CD.
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(d) Stresses in Verticals. By Art. 100, the stress in a verti-

cal member of a truss with parallel chords is equal to the vertical

component of the stress in the diagonal which meets the vertical

at a panel-point in the unloaded chord, and hence is equal to the

vertical shear in the panel in which that diagonal is located.

Thus, the stresses in the verticals BC and DE are equal, respec-

tively, to the shears in the panels BK and DL. The stress in

FF' is equal to the sum of the shears in panels FM and F'M',

as explained in Art. 100.

(e) Character of the Stresses. The character of the stresses

in the various members of a truss cannot be determined from

the equilibrium polygon, but must be found by the other methods

given previously.

Thus a truss, like a simple beam, has, for any manner of

loading, its upper chord compressed and its lower chord in ten-

sion, which condition decides the character of all of the chord

stresses. Again, the nature of the stresses in the diagonals is

determined by the method of force triangles (Art. 98), these

stresses being compressive in all of the diagonals of this truss.

Finally, the stress in all of the verticals must be tensile, i.e., the

reverse of the vertical components of those in the diagonals

meeting them at the unloaded chord.

102. Live-load Shear; Maximum Shear. As shown in Arts.

98 and 100, the stress in web members is dependent, directly or

indirectly, on the vertical shear that of any diagonal on the

shear in the panel in which it is situated, and that of a vertical on

the stress in the diagonal whose vertical component it resists.

Thus far, only the vertical shear due to dead load has been

treated. The resultant shear at any section, produced by the

combination of the shears from dead and live loads, differs in

intensity and sometimes in sign from the dead-load shear.

Consider first, Fig. 114 (a), the effect of a single-moving load

P on the shear at any section, as mn, of a simple beam AB of
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(b)

(c)

span s. Let the load move first from the right support toward

the section. Then,

V- R - Px ,sV
-A.J JT^/3,

and the shear is positive and increases as the load approaches
the section. Again, let the load move to the right from the

left support, being thus

between the section mn
and that support. Then, 4, ....i K^^M?^^lR (a)

and the shear is negative,

but again increases

from the support

to the section. It

will be seen that,

in each case, the

shear at the section

increases with the

distance between it

and the support

from which the

load moves.

The maximum

shear produced at

any section by a

series of such equal

live loads, equally

spaced, is shown in

diagrams (b) and

(c). In (b), the series of loads moves from right to left; in

(c\ in the reverse direction. The shear diagrams for dead loads

are shown by dotted lines
;
those for live loads, by full lines.

The latter diagrams give, for any section, the shear due to equal

loads at all panel-points between that section and the abutment

(0
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from which the load is moving. These are the conditions for

any uniform live load covering a part of the span, as a train of

cars having a Constant weight per foot of length. Thus, in the

panel 3-4 in (<), the live-load shear is positive and equal to fg,

the loaded panel-points being 4-7 ;
in the similar panel in (c),

the similar shear is negative and equal to f'g
1

,
with loads on

panel-points i-j. Since the effects produced by such a series

of loads are, in general, the same as those arising from the

single load P in (a), it is evident that the live-load shear in

panel 3-4 passes, for these different methods of loading, from

the negative shear f'g through zero to the positive shear fg
which is its maximum value, since in () only the panel-points

in the larger segment of the span are loaded.

In (b\ the maximum live-load shear at any section is equal

to the effective reaction R^ at the left support ;
in (c), it is equal

to R
1
minus all loads to the left. Figure 1 14 (c)* gives a ready

means for obtaining graphically the value of Rr On the load-

line ab, plot the loads 2-6
;
locate the pole O at a horizontal dis-

tance from a equal to the span s, and draw the rays. From the

upper of the two lines indicating the truss and marked 1-7, lay

off the lines of action of the loads and construct the equilibrium

polygon 1-4-7', with the closing side fi\ From O draw the

ray Oc parallel to 7V. Then, ac = R^. Produce the horizontal

side 12' of the polygon until it meets the vertical //'. Then,

7
f

7" is also equal to Rv for the triangles Oac and i'ff are equal
in all respects. This principle holds for any vertical let fall

from a panel-point of the polygon
1

on the line 2'?". Thus,

^i = 5*5" when the span is moved two panels to the left, as

shown by the lower line. It will be observed that this process
consists simply in first drawing an equilibrium polygon for the

span when loaded at all of the panel-points ; then, with the lines

of action of the loads stationary, moving the span to the left

until the required number of panel-points is loaded, and modify-
* Merriman and Jacoby,

" Roofs and Bridges," Part II, p. 106, New York, 1898.
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ing the original equilibrium polygon, by new closing lines, to

suit these changed conditions.

Figure 1 1 5 shows the resultant shear produced by combining
the shears of the dead and live loads. The dead load is indi-

cated by full lines below the line AB representing the truss and

the live load by full lines above it, except in (a), where it is

shown by broken lines. The shear diagram is drawn beneath

the load-line in each of the three cases. In (a) there are two

such diagrams, that in full lines being for the dead load only,

while the broken section lines mark the resultant shear due to

this dead load combined with the uniform live load. Diagrams

(b) and (c) show the resultant shear when the larger and smaller

segments, respectively, of the span are loaded.

From (a), it will be seen that a uniform live load increases the

intensity, but does not change the sign, of the shear due to dead

load. Diagram (b) shows the maximum shear produced in the

third panel, which is next to the loaded and larger segment of

the span. This maximum shear is nearly twice the similar

shear due to dead and uniform live loads, as in (a). Diagram

(c) indicates that when a live load of this magnitude covers the

smaller segment of the span, the resultant shear passes in the

third panel from that shown in (b) through zero to its negative

and minimum value, or about one-third of the numerical value

given in (). This tendency to a change in the sign of the

resultant shear depends upon the manner of loading and upon
the relation of the live and dead loads on a panel. In these

diagrams, this ratio is 4 : I, which is higher than the average in

practice.

In summary, as to the live-load and resultant shears :

(a) A load to the right of any section of a truss produces

positive shear at that section
;
one to the left, negative shear.

The resultant shear at the section is the algebraic sum of the

shears generated by the loads to the right and left. The shear,

in each case, increases as the load approaches the section.
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(b) The farther the given section is from an abutment, the

greater will be the shear at that section produced by a uniform

live load between the section and this abutment. Hence, the

maximum absolute value of the shear at a section dividing the

span into unequal segments occurs when the live load covers

only the greater segment. Conversely, the minimum shear at

the section exists when the live load extends over only the

smaller segment of the span.

(c) The shear due to the dead load is positive for the left

half and negative for the right half of the truss. A live load

moving from the right abutment produces only positive shear

in passing over the truss. The absolute value of this shear

may exceed that of the negative dead-load shear before the live

load reaches the middle of the truss, in which case the resultant

shear will pass through zero at that point. Similarly, and with

similar possibilities as to change of sign, a live load moving
from the left produces negative shear, while the shear due to

dead load is positive in the left half of the truss. This ten-

dency to change of sign of the shear depends not only on the

manner of loading, but also on the ratio of the live to the dead

load on the panels so loaded.

103. Counter-bracing. The change of sign of the shear,

referred to in section (c) of the preceding article, occurs in

panels j and 4 of the Pratt truss shown in Fig. n^(d).

Hence, the main diagonals, .fiT^and GH, of these panels would

be subject to a reversal of stress. Since all diagonals in this

truss are fitted to withstand tension only, counter-braces, FF'

and GG1

,
are inserted. These counters are opposite in direc-

tion to the main diagonals, and, by Art. 98, a shear which

would cause compression in the latter produces tension in the

counters. When, therefore, the shear in a panel so changes as

to tend to compress the main diagonal, the latter ceases to act

and becomes a redundant member, while the load is taken, as
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tension, by the counter-brace. This action is reversed when the

shear again changes in sign, the counter becoming redundant.

Hence, in whatever manner the load be applied, stress can exist

in but one of these two crossed diagonals, and that stress is

always tension. The determination of stresses in trusses hav-

ing counter-braced panels is discussed in Art. 105.

104. Maximum Moments. By Art. 41, in any structure under

the action of parallel forces as a truss under dead or live

loads the bending moment at any section parallel to the lines

of action of the forces is equal to the product of the corre-

sponding ordinate y of the equilibrium polygon by the pole-

distance H in the force polygon.

From Fig. 113, it will be seen, with regard to the length of

the ordinate y at any section, that, for uniform live loads, any
load applied to the right or left of the section increases this

length. Hence, with uniform live loads, the maximum bending

moment at every section occurs when the whole span is loaded,

and depends upon this condition only.

When the truss is subjected to the action of a system of un-

equal loads not uniformly spaced, as locomotive wheel loads,

one other condition requires consideration. The bending

moment at any section is, in any case, equal to the moment of

the left reaction, minus the moments of all loads to the left of

that section To increase the left reaction, and hence the mo-

ment at the section, the span should be fully loaded
;
but the

distribution of the loads may be such that, in loading the entire

span, one or more of the heaviest loads may be located so far

to the left of the given section that, when their moments are

deducted from that of the left reaction, the remainder may not

represent the maximum moment possible at the given section

with the given system of loads. Hence, generally :

With unequal live loads, unequally spaced, the maximum mo-

ment at any given section occurs when the span is, so far as is
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possible, fully loaded, and one of the greatest loads is at or near

the section.

Thus, Fig. 116, let it be required to find the maximum mo-

J

ment at the middle C of a plate girder bridge AB of 70 feet

span for a single-track railway, when a 125-ton locomotive passes

ovet the bridge. One-half of this weight will be borne by each

of the two girders. In the figure, the wheel loads are given

in tons (2000 pounds), and the locomotive is placed symmet-

rically on the span, there being a distance of I i feet between

each extreme axle and the adjacent support. The linear scale

of the original drawing was 10 feet to the inch, and the load-

scale was 20 tons to the inch.

The loads are laid off on the load-line ab, the pole-distance

H is taken as 45 tons, the rays Oa-Ob are drawn, and the cor-

responding equilibrium polygon D-L-R is constructed. The
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ordinate j under C measured 1.55 inches, which, multiplied by
the linear scale, is equal to 15.5 feet; this product, multiplied by
the pole-distance, gives 697.5 tons-feet as the bending moment

for this position of the locomotive.

In any equilibrium polygon, the ordinate representing the

maximum moment always passes through one of the vertices
;

that is, it corresponds with the line of action of one of the

loads. One of the greatest loads, 9 tons, is 2.5 feet to the left

of the section C. Therefore, keeping the lines of action of

the loads stationary, assume the span to be moved that dis-

tance to the left, as shown by A'B', thus bringing this load

vertically over C. Prolong the side ED until it meets at D 1 a

vertical from A'
; similarly, project B l

vertically to R' on the

side QR. The equilibrium polygon for the new conditions is

then D'E-L-R', with the closing side R'D'. The ordinate

y above the centre of the span A 'B* measured 1.62 inches,

which corresponds with a bending moment of 729 tons-feet,

which is the required maximum moment at the middle of the

girder.

In this way, the maximum moments for any required num-
ber of sections from the centre of the span to the left can be

ascertained by trial, and a curve of maximum moments plotted
for the given system of loads. This curve will be symmetrical
about the centre of the span. In designing a girder or truss

for a railway bridge, the specified load consists of one or two
locomotives followed by a train whose weight per lineal foot is

given. In such cases, a section of the train should be included

among the loads of sufficient length to give an original equilib-
rium polygon for a system of loads usually about 20 per cent

longer than the span, so that the latter, when moved to ascer-

tain the maximum moment at any section, shall not pass beyond
the limits of the polygon. The section of train is considered as

a uniform load, and the corresponding part of the equilibrium

polygon is a parabolic curve.
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The maximum bending moment produced at any section of

a girder or truss by locomotive wheel loads, or by live loads in

general, can be most readily ascertained by plotting a stress-

curve for the moments as the load passes over the given section.

The method of laying out this curve is described in Art. 106.

105. Determination of Live-load Stresses in Web Members by
Stress Diagrams. The stresses in web members produced by
a uniformly distributed live load covering the whole or a part

of the span can be analyzed and, in part, determined by stress

diagrams. The general method consists in drawing the stress

diagram for a single live load, equal to that on one panel,

applied at one of the outer panel-points in the loaded chord, as

that next the left support ; and, from the stresses thus found,

computing those produced by a similar single load applied suc-

cessively at each of the other panel-points. By this computa-

tion, the construction of a separate stress diagram for a load at

each panel-point is avoided.

In Arts. 98 and 100, it was shown that the stresses in web

members depend directly on the vertical shear
;
when but one

load is applied to the truss, the vertical shear to the left of the

load is equal to the left reaction and that to the right has the

same magnitude as the right reaction
; finally, if the load be

moved from one panel-point to another, the new left reaction

will be a multiple of the former one, and similarly with the

right reaction although its multiple will differ. On these prin-

ciples, the method of computation is based.

Since the final stress produced in a given member by the

aggregate load at a number of panel-points is the algebraic sum

of the stresses due to the individual loads, the total tensile and

total compressive stresses and the stress due to a uniform live

load can be found by the method as above
;
and the two former

total stresses, when combined with the dead-load stress, give

the range of stress in the member.
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(a) Warren truss. Figure 1 17 gives the diagrams for a six-

panel deck Warren truss, 96 feet span and 11.5 feet deep.

The dead load per panel is 10.5 tons, one-third of which is con-

FIG. 117.

sidered as applied on the lower chord. The live load is 1800

pounds per lineal foot or 14.4 tons per panel. The diagrams

represent a single live load at panel-point i.

The stresses produced by this load and as measured from the

diagram are given in tons in the second column of the follow-

ing table :

WARREN TRUSS
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Those tabulated for loads at apexes 2, j, 4, and ^ are

computed from these stresses. Thus, when the load is at

panel-point i, R^ = | W and R% = J W\ when W is moved to

panel-point 2, ^=
1 J^and R2

= J W. Therefore, in the latter

case, the left reaction, the vertical shear to the left of the load,

and the stresses in the diagonals to the left, are | of those in

the former case, while, on the right of the load, the multiple

is 2. Hence, with Wat panel-point 2, the stress in either HE,

EC, CD, or DE is of that which existed in HB or EC when

the load was at panel-point i
; similarly, the stress in any

diagonal to the right of panel-point 2 is twice that which was

present in any diagonal to the right of panel-point i when W
was at the latter panel-point. With the load at panel-point j,

the multiples to left and right are f and 3, respectively ;
simi-

lar changes take place in the multiples as the load is trans-

ferred to each succeeding panel-point.

The stress diagram is constructed for only the members in

the left half of the span, as the corresponding members in the

right half will have the same stresses. The stress is compres-

sive in the two diagonals which meet at the loaded panel-point,

and is alternately tensile and compressive in succeeding diago-

nals to the left and right. In any member, the stress which is

produced by a uniform live load is the algebraic sum of the

stresses tabulated for live loads at all of the panel-points from

i to 5. The range of stress in any member is found by adding

algebraically the dead-load stress to the total tensile and total

compressive stresses.

The stresses due to dead load were obtained from a diagram
similar to Fig. 107 (), except that, as both chords are loaded

in this case, the load-line overlaps as in Fig. 1 18 (c). Since the

maximum chord stresses from the live load occur when the span
is fully loaded, these stresses are found conveniently from a

diagram for uniform live load similar to that for the dead load,

except that the loads are applied on one chord only.
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(fr)
Pratt truss. Figure 1 1 8 gives the diagrams for a five-

panel through Pratt truss for a single-track railway bridge of

125 feet span and

5 7 65 a depth of 26 feet.

The weights of the

track, floor-system,

and truss, forming
the dead load, give

a dead panel-load of

10.85 tons, one-third

of which is con-

sidered as applied

on the upper chord.

The live load is

taken as a uniform

train load of 2000

pounds per lineal

foot of truss, or 25

tons per panel.

One or more of

the panels at or ad-

jacent to the middle

of this truss are

usually counter-

braced, this bracing

being required when

there is a reversal of

stress in a main di-

agonal (Art. 103).

As such reversal

cannot be shown to

exist until the char-

(0

U)
FIG. 118.

acter of the live-load stresses is ascertained, the usual method
is, as in Fig. 118, to determine the stresses with all of the
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diagonals inclined in one direction
;
that is, with one-half of the

truss having main diagonals only and the other half counter-

ties. The substitution of the latter for a main diagonal of

opposite inclination does not change the magnitude of the

diagonal stress in a given panel; it simply alters its character

from compressive to tensile.

In Fig. 1 1 8, the truss diagram and stress diagram (a) show

the magnitude and character of the stresses produced by a

single live load at panel-point i
; diagram () gives the stresses

due to a single load at panel-point 4. The stresses from loads

at the succeeding panel-points, as computed by the method of

multiples employed with the Warren truss, are given in tons in

the first of the two tables which follow. This computation
could be made wholly from diagram (a), with one exception.

As shown by diagram (a) and by Fig. 109, the stress in the end

PRATT TRUSS: ALL DIAGONALS INCLINED IN THE SAME DIRECTION
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vertical BC is equal to the load at panel-point i
;

if there be no

load at that panel-point, as in (b), the live-load stress in this

member is always zero. This is due to the fact that, when the

only loads are at or to the right of panel-point 2, the vertical

shears in the first and second panels are the same, and, as the

diagonal CD and the end post AB have stresses opposite in

character, the vertical components of these stresses neutralize

each other at panel-point 8, so that there can be no stress in BC.

It will be seen that (Arts. 98, 100, 102) the stress due to any

single live load is tensile in the diagonals to the left of the load

and compressive in those to the right, while, on the contrary,

compression is produced in verticals to the left and tension in

those at, and to the right of, the loaded panel-point.

Diagram (c) gives the dead-load stresses
;
this diagram is also

constructed on the assumption that all diagonals are inclined in

the same way. There is no dead-load stress in the member EF,

since the vertical shear is zero in the middle panel. The

stresses due to a uniform live load and the range of stresses are

found as before.

The first table is of service only in analyzing the stresses in

the members when the diagonals are arranged as in the upper
truss diagram, Fig. 118. This analysis makes it possible, how-

ever, to deduce the stresses which will exist when the members

are assembled as in diagram (d\ so that no diagonal, main or

counter, shall be in compression under dead load or combined

dead and live loads, the diagonals of this truss being built to

withstand tension only. These final stresses are given in the

table on p. 213, the dead-load stresses being those which conform

with diagram (d).

Referring to the first table, it will be seen that it gives the

final stresses in the end posts and also in the main diagonal CD,
since the range of the latter should lie wholly in tension and

that of the end posts in compression. The counter GH, how-

ever, in the panel corresponding with CD, is in compression
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and must be replaced by the main tie GH', whose stresses will

be the same as those in CD but will occur in inverse order. In

PRATT TRUSS: FINAL STRESSES
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the diagonals, main or counter, which transmitted them shall be

working also when the final stresses are produced. This con-

dition holds for the vertical I>C, whose stresses are governed

by the position of the load and by the members AB and CD
which remain unchanged. The stresses given for the corre-

sponding vertical HK, finally H'K, are, however, affected by the

fact that the counter GH has been replaced by the main tie

GH', the true stresses of which, as given in the final table, are

evidently those of BC in reverse order.

The insertion of the tie EE1

in the middle panel affects the

tentative stresses given for the vertical DE with a load at panel-

point I or 2, since EE1
is then working in place of EF\ with a

load at panel-point j or 4, EFis in action as originally, and the

stresses tabulated are final. The true stress in DE for a load at

panel-point i or 2 may be determined from the principle that,

when a main tie, as CDy
is working on one side of the vertical and

a counter-tie, as EE\ is acting on the other, the live-load stress

in the vertical is zero. Thus, the live load per panel is, in this

case, 25 tons. With this load at panel-point i, the vertical shear

in the second and third panels is 5 tons, which is the vertical com-

ponent of the stress in CD and also of that in EE1

. The stress

in the latter is tensile and in the former compressive. Hence,
at panel-point 2, where the lines of action of these stresses

meet, these two components neutralize each other, and the

stress in DE is zero. Similarly, with a load at panel-point 2, the

shear in the second panel is 15 tons and that in the third is 10

tons, and the stresses in CD and EE' are both tensile. There

are then vertical upward components of 10 and 15 tons and

a downward load of 25 tons acting at panel-point 2. Hence,

again, the stress in DE is zero.

As to the vertical FG, it will be seen that the stresses tabu-

lated for it will not serve for the changed conditions produced

by the insertion of the tie EE' and the substitution of the main

diagonal GH' for the counter GH. The true stresses are mani-
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festly those of DE in inverse order. In both of the verticals

DE and FG, the stress due to uniform live load is zero and not

the algebraic sum of the individual stresses tabulated. This

may be shown analytically by the method employed in comput-

ing the stresses in DE.

As with the Warren truss, the maximum chord stresses due to

live load are found from the stress diagram for a uniform live load.

106. Determination of Live-load Stresses due to Locomotive

Wheel Loads. The graphic analysis of the live-load stresses

FIG. 119.
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resulting from a series of unequal and unequally spaced con-

centrated loads, such as are applied when a locomotive crosses

a bridge, can only be made by the use of the force and

equilibrium polygons.

Thus, Fig. 119, consider the Pratt truss, through span, for a

single-track railway bridge. The length of the truss, from

centre to centre of end pins, is 125 feet; number of panels,

five
; depth, from centre to centre of chords, 26 feet. The

assumed live load for the bridge is two 125-ton locomotives,

coupled, followed by a train weighing 4000 pounds per lineal

foot. One-half of this load is carried by each of the two

trusses forming the sides of the bridge. The amounts and

spacing of the wheel loads aggregating 62.5 tons, or half of the

weight of each locomotive, are as given in Art. 104 and Fig.

1 16
;
the train weight is one ton per lineal foot of truss. The

linear scale used for the truss diagram and the equilibrium

polygon should not be over 10 feet to an inch and the force

scale for the force polygon, 20 tons (2000 pounds) per inch.

For convenience, the pole-distance should be a multiple of the

depth of the truss; in the polygon Okm, it is 52 feet, or twice

this depth.

(a) Chord Stresses. Draw the truss diagram A-L with its

diagonals all inclined one way, and the force polygon Okm for

the weights of the two locomotives and a length, say 60 feet, of

train. On the horizontal line MN, lay off the same loads with

the line of action of that on the first driver coinciding with the

first vertical BC prolonged. Construct the equilibrium poly-

gon n-d'-h 1

,
the portion corresponding with the train weight

being a parabola tangent to the side b'p prolonged and

to the line h'q drawn parallel to the ray Om of the force poly-

gon. The two tangents meet at the point q on the median line

qq
l
of the train load.

Draw the horizontal line all and drop verticals through it

from the panel-points with additional verticals at the mid-
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point of each panel, in order to obtain a sufficient number of

intersections to plot the stress curves. At the intersections

of the verticals with the line ah, lay off a-a, b-b, etc., each

equal to the span ; prolong the side d'n to a' and the tan-

gent qh' to //. Vertically below aa, bb, etc., draw the corre-

sponding closing lines a'a', b 1

b'
,
etc. Then (Art. 104), the equi-

librium polygon a' h'a' corresponds with the position aa of the

span, as if the latter had been moved to the left by the distance

of half a panel, the loads remaining stationary. The series of

such polygons, from a'h'a 1

to h'ph' , therefore, represents, for

half-panel intervals, the effect of the loads as they pass over

the bridge from right to left.

To determine the chord stresses, the maximum bending
moment must be found at panel-points /, 2, and j, or from the

left extremity of the truss to and through the middle panel.

The intersection with a closing line of the second vertical to

the right of the left end of that line will be vertically under the

panel-point / for that position of the span, and the ordinate

included between this intersection and the lower boundary of

the equilibrium polygon will be the measure of the bending

moment at that panel-point for that position of the span.

Hence, if these intersections, for all of the closing lines, be

connected by a free stress curve, as i
f

-i' for panel-point i, this

curve will form the upper boundary of all of the bending-

moment ordinates under panel-point i, during the passage of the

loads through the distance covered by the series of equilibrium

polygons. The maximum ordinate is found by measurement

between the curve and the lower boundary of the polygon ;
it

will lie on the line of action of one of the loads, being, for

panel-point i, on that of the second driver of the second loco-

motive; i.e., when this driver passes over panel-point i, the

maximum bending moment at that point occurs. Similarly, the

intersections with the closing lines of the fourth vertical to

the right of the left end of each line give the stress curve
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2^-2' for panel-point 2
;
and those of the sixth vertical, the

curve j j' for panel-point j. The maximum ordinates in the

two cases are, respectively, on the lines of action of the third

and second drivers of the second locomotive.

The actual length in inches of the maximum ordinate, multi-

plied by the linear scale, gives the length of the ordinate in

feet
;
and the product of this length by the pole-distance (meas-

ured in tons by the force-scale) is the bending moment in tons-

feet. The quotient resulting from the division of this moment by
the depth of the truss in feet (Art. 96) is the required chord stress.

It will be observed that the chord stress found from the bending

moment at panel-point i is the stress in the members BL and

CL, as was shown previously in Fig. 109; that the chord stress

determined from the moment at point 2 is that in members AD
and EL (Art. 101

); and, similarly, that the stress in AF and

GL is due to the moment at panel-point j.

(b) Stresses in Diagonals. Using the method given in Art.

1 02, draw a new force polygon with the pole O' at the height

of the beginning of the load-line and at a horizontal distance

O'k equal, on the linear scale, to the span. Construct the cor-

responding equilibrium polygon rst with ru produced to u.

Then (Art. 102), if the span be so located on the line ru that it

shall include a part or all of the loads, beginning with the first

load to the left, the ordinate included between ru and the poly-

gon rst above the panel-point 5 will be equal to the left reaction,

when measured by the force-scale.

Thus, placing panel-point / at w on the line of action of the

first driver, panel-point 5 falls at 5 a and the ordinate s 5 a

is equal to the left reaction, and therefore to the vertical shear

in the first panel. The length of the diagonal sx drawn at the

same angle as AB then represents, on the force-scale, the stress

in the end post AB, since the vertical component of the stress in

a diagonal member is equal to the vertical shear in the panel in

which that diagonal is located.
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While the load on the first pilot falls at r between panel-point

i and the left support, the shear in the first panel is still equal

to the left reaction since this load is transferred by the stringers

of the floor-system partly to the left support and partly to panel-

point i, and it does not act at r, but at these points. As every

panel-point from / to the right abutment is loaded, the shear in the

first panel and the stress in AB are maxima for this series of loads.

The stresses in the remaining diagonals are determined simi-

larly, with one exception. If panel-point 2 be placed at w,

panel-point 5 will be located at 5 b, and the left reaction will

be equal to the ordinate above 5 b
;
but the load at r on the first

pilot now lies in the second panel, and the shear in that panel

will be equal to the left reaction, minus the portion of this load

which is transferred by the stringers to panel-point /. The

load is 17 feet from this point, and the panel is 25 feet long;

therefore, point / supports ^ f tne 3- 5-ton l ad on the pilot.

Deducting this amount, or 1.12 tons, from the ordinate, the

remaining vertical y 5 b then represents the shear in the sec-

ond panel. The same deduction must be made when panel-

points 3 and 4 are located at w.

The shears found from the polygon rst are those produced
when the segment of the span to the right of the given panel

is loaded. The shears due to a load on the left may be found

from the principle that in two corresponding panels, as the second

and fourth, the shear caused in one panel, when the segment to

the right is loaded, is equal in intensity but opposite in sign to

that in the other, when the load covers the segment to the left of it.

(c) Stresses in Verticals. The stresses in the vertical members

are, in general, equal to the vertical shear in the panel to the

right as given by the polygon fy/, since (Art. 100) in that panel

the diagonal is located which meets the vertical at the unloaded

chord. This applies to all verticals except BC which, as ex-

plained previously (Art. 94^), has always a stress equal to the

load at panel-point /.
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The maximum stress in BC will be produced when the first

and second panels carry the greatest possible load. This load

is evidently the half-weight, 62.5 tons, of one locomotive, since

that weight covers only a distance of 48 feet, while the train

weight would be one ton per foot, or but 50 tons for the two

panels. If the locomotive be located in the first and second

panels, its weight will be divided by the floor stringers between

panel-points o, i, and 2, thus constituting a system of parallel

forces consisting of the nine loads and the three reactions. To

find the maximum reaction at panel-point /, construct force and

equilibrium polygons for the loads and determine the centre of

gravity (Art. 28) of the latter
;
locate panel-point / at this centre

of gravity and ascertain the reaction at that point ; finally, deter-

mine this reaction when the span is so moved as to bring the

drivers successively under the panel-point, modifying the equi-

librium polygon to suit these conditions. The greatest of these

reactions will be the maximum possible stress in BC.

(d) Results. The results, as determined by the foregoing

methods, are given in the two tables which follow, the dead-

load stresses being those ascertained previously in Art. 105 b.

In practice, the total stresses as tabulated would be increased

for impact by an amount averaging about 75 per cent of that

found for live load. It will be seen that, as was shown in Art

105, the middle panel of this truss should be counter-braced,

since a reversal of stress occurs in the diagonal.

CHORDS AND VERTICALS
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DIAGONALS

MEMBER
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nal forces acting on the left segment of the truss will be the

shear V in the second panel and the applied forces S, S
lt
and

S2 . If there were no loads to the left of the section ab
y V would

correspond with a force equal to the left reaction, R^ and acting

at the left support. In this case, as the maximum chord stress

(c)

FIG. 120.

is desired, the span is fully loaded and V corresponds with the

resultant r, Fig. 58, acting at the distance / from the section

MN in that figure.

In Fig. 120 (a\ let /2 be the distance of the line of action of V
from panel-point 2, 4 be the depth of the truss at that point,

s the perpendicular distance from that point to the member 5-6,
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and 6 the angle included between s and d^. Taking moments

about the point 2 :

Fx /
2

S
l
x s = o,

S
1
= Vljs = F/2/4 cos 0.

But as shown above, F/
2 corresponds with rl in Fig. 58, and

hence is equal to the bending moment M^ at panel-point 2.

Therefore :

Assume now that the section ab is taken at a point indefinitely

near and to the right of the vertical 1-6, where the depth of the

truss is dv V will then have the same magnitude, but will act

at the distance /r Taking moments about the point 6 :

V x /
x

vS2 x d= o,

S^=VlJd^MJdv
in which M-^ is the bending moment at panel-point i.

(b) Stresses in Diagonals. In Fig. 120 (b\ take the section

ab at the middle of the second panel, and apply the external

forces S, Sv and S2 ,
as before. The maximum stress in the

diagonal 2-6 will occur when the load covers only the right and

larger segment of the span. Hence, Fwill correspond with R
l

acting at the left support. Prolong the chord members 1-2 and

5-6 until they intersect at the centre of moments C. Let x be

the perpendicular distance from C to the diagonal 2-6 prolonged.

Taking moments about C:

S xx Kx /=o,
5 = VIIx.

(r) Stresses in Verticals. In Fig. 1 20 (c\ let the conditions

as to the loads and as to V and C be the same as in (b\ Take

the diagonal section ce cutting the vertical 2-5 and the upper
and lower chords, and apply the external forces S

lt
S2 ,

and .S3 .

Taking moments about C:

5
3 x/3

- Fx/=o,
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(d) Application of Force Polygon. In diagram (b\ the segment

of the truss is in equilibrium under the action of the forces V,

S, Sv and S2 . The lines of action of Fand S
1
intersect at the

point 7 ; similarly, the lines of action of 5 and S2 meet at point 2.

In the force polygon (d\ resolve Fon the lines fk and^, paral-

lel to S
1
and 7-2, respectively ;

and from g and k, lay off gh,

parallel to S2 ,
and kh parallel to 5. The polygon is then fghkf,

and, from it, the magnitudes and character of the stresses in the

members can be determined.

108. Plate Girders. The plate girder, as shown in vertical

transverse section in Fig. 121, consists essentially of a vertical

web plate, w, to the top and bottom of which

horizontal angles, a, are riveted in pairs, the

web and angles extending the full length of the

girder. To these may be added, at top and

bottom, a cover-plate, c, of partial or full length,

and, if required, one or more additional plates,

c
f

, covering the section in which the magnitude
6
*

of the bending moment makes necessary the

greater flange-area. These plates are all of the

same width, which is that of the girder. The parts are joined

by rivets passing through web and angles, and through angles

and cover-plates when the latter are used. Vertical angles,

riveted to the ends of the girder, transfer the load to the sup-

ports, and, to prevent buckling, additional vertical angles, or
"
stiffeners," are attached to the web at intervals. The effective

depth of the girder may be taken as that of the web-plate. To
avoid excessive deflection, this depth should be at least one-

twentieth to one-sixteenth of the span.

The external forces acting on the girder are the loads and the

reactions at the supports. These are transmitted directly to the

web by the vertical angles riveted to the latter at the supports
and under concentrated loads (if stationary), and by the rivets
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of the upper or compression flange. The vertical shear pro-

duced in the web by the loads acts upon the rivets of both

flanges with a leverage equal to the pitch of the rivets, and thus

develops bending stress in the flanges. Since the parts are so

bound together that the girder bends as a whole, bending stress,

in addition to shear, acts in the web. Two methods of design

are used : either (a\ to assume that the web is subjected to

vertical shear only and to proportion the flanges for the full

bending stress
; or, ($), to allow for the resistance to bending of

the web, and design the flange-area for the remainder of the load.

(a) Let A be the sectional area of the angles and cover-plates

forming one flange at any given point in the girder, 5 the mean

unit working stress over that area, and h the depth of the web.

Then, A x 5 is the total load or horizontal bending stress on

the flange, and AS x h/2 is the resisting moment of this stress

about the neutral axis of the girder. Assuming A and 5 as the

same for both flanges and neglecting the bending stress in the

web, the external bending moment at the given point is equal

to the resisting moment of the girder at that point, or :

M=2(A-S k/2) = ASh.

Flange-stress = AS = M/k.

Flange-area = A = M/kS.

(b) The web section is that of a rectangular beam of depth h,

and breadth equal to the thickness t. Hence, its resistance to

bending is 5 tk2>

/6. To allow for the reduced section due to

vertical rows of rivet-holes, the 6 is replaced by 8. Then, con-

sidering the resistance of the web to bending stress :

Flange-stress
= AS = M/k - Sth/8.

Flange-area = A = M/S/i - tA/&.

The flange-area, as found above, serves for the compression

flange which is assumed as not weakened by the rivet-holes,

since the rivets should about fill the latter. The resistance of
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plates and angles in the tension flange is that of their net sec-

tion, after deduction for rivet-holes. The larger gross area

required in this flange is obtained by thickening one of the

cover-plates, or by calculating for the tension flange and making
the gross areas of both flanges the same. The maximum bend-

ing moment at any given point of the girder should be equal to

the sum of the resisting moments of the angles and cover-plates.

Under stationary loads, uniform or concentrated, the girder

may be treated as a simple beam in finding the shears and

moments. When used in a bridge, the girders lie longitudinally

and are equal in length to the span ; they are connected by
transverse cross-frames and diagonal lateral bracing. The

analysis of the stresses in a plate girder bridge, under locomo-

tive wheel loads, follows the same general method as that given

for the Pratt truss in Art. 106, equidistant verticals being drawn

which, for purposes of analysis, divide the left half of the girder

into panels like those of the truss. From a similar series of

equilibrium polygons, the stress curves are constructed, giving

the maximum moments at these assumed panel-points ; and, as

with the truss, the vertical shear at the various sections is found

from the polygon for maximum live-load shear. The flange

stresses, as determined from the moments, are laid off as ordi-

nates above an axis, equal in length to the girder and divided

similarly, and the curve of live-load flange stress is drawn through
the points thus plotted ;

a similar curve for the stresses due to

dead load is laid out below the axis. The length of the ordinate

included between the two curves at any point gives the total

flange stress at that section.

PROBLEMS
84. A combination (wood and iron) Howe truss, through span, single

track, railway bridge is of 77 feet span ;
number of panels, 7 ; depth, 25 feet

;

weight of bridge, 130,300 pounds; train-load, 4000 pounds per lineal foot.

Find the maximum stresses in the members, considering the dead load as

applied wholly on the loaded chord.
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85. Let the double-intersection, deck Warren truss, Fig. 107 (C), have a

span of 72 feet and a depth of 10 feet. The dead load per truss is 450 pounds

per lineal foot and the uniform live load is 2000 pounds per lineal foot.

Find the maximum stresses in the members, considering the dead load as

applied wholly on the loaded chord.

86. Let Fig. no (A) represent the bowstring truss of a highway bridge

of 45 feet span, 20 feet width in the clear, and 6 feet deep in the middle.

Find dead load by approximate formula, and consider it as applied wholly
on the loaded chord. Assume a maximum live load of 100 pounds per square

foot of floor surface. Determine the maximum stresses in the members.

87. A single-track, deck, plate girder bridge is of 70 feet span; effective

depth, 6.5 feet. A 1 25-ton locomotive, followed by a train weighing 4000

pounds per lineal foot, passes over the bridge. The locomotive wheel loads

are those given in Art. 106. Neglecting dead load, find the maximum flange

stresses and vertical shears at sections 5 feet apart from the middle to the

left support.

88. Show that, as a uniform live load crosses a bridge, the curve of shears

for the head of the load is a parabola.

89. In Fig. 113, assume a concentrated load as moving to the left from

panel-point 5 to panel-point 3. Find the position of the load which will

cause the maximum stress in the diagonal CD.

90. Show that the live load will produce the maximum shear in a given

panel when :

P = W/n,

in which P is the live load on the panel, W is the total live load on the truss,

and n is the number of panels.

91. Show that the live load will produce the maximum moment at any

given section of the truss when :

p f = ivr/i,

in which W is the total load on the truss, P' is the load to the left of the

section, / is the span, and /' is the distance from the section to the left

support.

92. Let w= dead load per panel and it/ = 5 w = uniform live load per

panel on a 7-panel truss. Which panel or panels require counter-bracing ?

93. What is the minimum stress in a vertical forming one side of a

counter-braced panel in a Howe truss ? In a Pratt truss ? What position

of the live load produces this minimum stress in a vertical not thus adjacent

to a counter-braced panel in these trusses ?



CHAPTER X

THE GRAPHICS OF FRICTION

IN any machine, the force applied to the first or driving

member acts through the transfer of motion from one mem-

ber to another of the train of mechanism either wholly in

overcoming the internal resistance of the machine and that met

by the final or driven member in doing useful work, or partly

in this and partly in storing energy in an intervening member,
as a fly-wheel. Since energy thus absorbed in acceleration will

be fully restored in retardation, this action may be disregarded

and uniform motion assumed.

Under the latter assumption, the total work of any machine,

in a given time, is that done by the driving force in the distance

through which it acts
;
the useful work is that expended in over-

coming the resistance met by the final or driven member in the

space through which it moves during this period; and the

difference between the two is the lost work, or that which is

required to overcome the resistance to motion of the mechanism

itself.

This loss of work is due to three causes : the resistance of

the medium, as the air, in which the machine operates ;
the

friction from the relative motion of surfaces of the mechanism

in contact and under pressure ; and, in machines not properly

constructed, the work absorbed in the permanent distortion of

their parts, owing to the lack of strength or elasticity of the

latter. The first of these losses is negligible and the last is

never present in well-designed machines, so that friction may
be considered as virtually the sole cause of lost work in mechan-

228
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ism. In the articles which follow, its action in reducing the

efficiency of machine elements will be investigated.

109. Efficiency of Mechanism. The efficiency of a machine is

the ratio between its useful and total work. Thus, if P be the

driving force and s the space through which it acts in a given

time, the total work will be P x s. If, during this period, /be

the resistance of the final or driven member in doing useful

work and s' be the distance through which this resistance is

overcome, the useful work, under the assumption of uniform

motion as above, will be U x s'. Then, the efficiency :

a ratio which is always less than unity, while, if the mechanism

were frictionless, U - s' would be equal to P s and E would be

unity. This ratio, being expressed in quantities of work, gives

the average efficiency during the period considered.

Again, the efficiency may be expressed as the ratio between

the magnitudes of the useful and the total amounts of effort

exerted at a given instant, and for the relative positions of the

parts at that instant. Thus, if P represent the total force as

before, and PQ be the force, acting through the same space as

P, which would be required to do the useful work, then :

which is the efficiency at the given instant.

In determining the efficiency of a machine which is composed,

as is usual, of a number of elementary mechanisms, the princi-

ple to be observed is that the force required to overcome the

resistance of the final elementary mechanism constitutes the

resistance of the elementary mechanism immediately preceding,

so that the efficiency of the whole machine is the product of the

efficiencies of all its elementary mechanisms.

The counter-efficiency, as used by Rankine, is the reciprocal of



23O GRAPHIC STATICS

the efficiency, and hence, as the relation between the total and

the useful work or effort, gives the ratio in which the former

must exceed the latter.

110. Friction. The sliding friction of solids is the resistance

to relative motion when their surfaces are in contact and under

pressure. If the parts thus in contact were perfectly smooth

and hard, friction would not exist, since it is caused by the inter-

locking of surfaces which, although they may appear to be

smooth, are in reality minutely rough and uneven. Hence, to

secure motion, these projections must be disengaged and over-

ridden, an operation requiring the expenditure of mechanical

work. The investigation of friction is complicated by other

factors which may enter into the total resistance to motion,

such as adhesion at low pressures and with lubricated surfaces,

the viscosity of the lubricant, and abrasion at unduly high

pressures in machinery. The total resistance, when any of these

factors enter, is not purely frictional.

Sliding friction is the friction of plane surfaces; the friction

of screw-threads and journals is a modified form of this action.

Rolling friction (Art. 125) is the friction of a curved body, as

a sphere or cylinder, when rolled on a plane surface or one of

different curvature. The force of friction, in this case, acts

along the common tangent of the two surfaces. Theoretically,

contact occurs only on a point or a line; practically, as the

materials used in engineering constructions are all more or less

elastic, there is a surface of contact. Hence, rolling friction is

identical in cause with sliding friction, but the resistance due to

it is so small that it is usually negligible in machine design.

Friction has been further differentiated as the friction of rest

and the friction of motion. The former of these is evidently

the greater of the two, since, while at rest, the harder body has

opportunity to indent the softer and embed itself therein. As
the slightest jar will nullify this action, and as, in machinery,
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the resistances of surfaces often moving at high velocity con-

stitute virtually all of the problems in friction requiring investi-

gation, only the friction of motion will be considered herein,

except with regard to belt-gearing.

111. Laws of Sliding Friction. These laws are far from

being well established. The force of friction which opposes the

relative motion of two surfaces acts along their common tangent,

and if the normal pressure and the velocity be low and the sur-

faces be dry or but slightly lubricated, the force of friction is, in

general, taken as :

F-fN,

in which N is the total pressure normal to the surfaces in con-

tact and f is the coefficient offriction which is assumed to have

a constant value for the same materials and conditions of the

surfaces. This assumption implies that the force of friction is

independent of the velocity of the surfaces, the area of contact,

and the pressure per square inch.

Except under the limitations noted, these assumptions repre-

sent in no sense the conditions of practice. Kennedy
*
says :

"Engineers, however, have seldom to do with unlubricated rubbing sur-

faces, and they have to deal with surfaces moving often with very high ve-

locities and under very great and frequently varying pressures. Under these

conditions, the ' laws '

of friction, as they have just been stated, not only do

not hold exactly true, but fail even to represent approximately the more com-

plex phenomena with which engineers have to deal. At many speeds and

loads which are of daily occurrence in machinery, velocity and intensity of

pressure (pressure per unit of surface) have an enormous effect on the friction,

and not only these but the temperature of the surfaces and the nature of the

lubricant. The nature of the rubbing contact also, whether continuously in

one sense, or continually reversed, whether the surfaces be flat as in a guide,

or cylindrical as in a bearing, whether contact exists throughout a surface or

only along a line, greatly affect the friction. The actual materials of which

the surfaces consist forms only one out of an immense number of conditions

* "Mechanics of Machinery," London, 1898, p. 569.
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which determine friction under a given load. . . . We may. therefore, write

F/N=f, the friction-factor (or coefficient of friction), so that we still have :

but with the condition that f is a quantity whose value has to be separately

considered for each set of conditions."

112. Coefficient of Friction. While the value of the coefficient

of friction /requires independent determination for every alter-

ation in the conditions governing the friction of surfaces in

contact and moving relatively, it still may be taken as a factor

by which the total normal pressure N on the contact-surfaces

must be multiplied to obtain the force of friction F.

In Fig. 122, let AB and AC represent planes hinged at A and

supporting a body D of weight W. Keeping A C horizontal, let

B be raised until the limiting condition for

equilibrium of the body D is attained, i.e.,

until, with any further elevation of B, the

body will slide downward. Let the angle

BAC=$. Resolve W into components
DE and EG, perpendicular and parallel,

respectively, to the surface AB. The
FIG. 122. force of friction F is produced by the

former of these components which is the total normal pressure

N on the contact-surfaces, and is equal in magnitude and op-

posed in direction to the latter. Hence:

F=fWcQ$ (j>
= Wsin

<t> and/= tan $.

The angle $ is known as the friction angle or angle of repose;

as has been stated, its size differs with every change in the con-

ditions governing the friction of the surfaces under considera-

tion. General, but arbitrary values of the coefficient ft
which

may be assumed in graphical problems are : for sliding friction

of moderately lubricated surfaces, 0.16; for screw- and tooth-

friction, o.i; for chain-friction, 0.2.
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113. Friction of Horizontal Plane Surfaces; Cone of Resistance.

Let Fig. 123 represent a body of weight Cresting on a hori-

zontal plane AB. While no force acts
R=N

but that of gravity, the body wilt be held

in equilibrium by the weight W, acting p=r

from the centre of gravity O, and by the

reaction R = N ot the plane AB. This
A "

reaction is equal to and opposed to Wr

has the same line of action, is normal to
v ,

the contact-surfaces, and is the resultant of FlG - I23-

the infinite number of infinitely small reactions from that surface.

Assume now a force P = F as applied. The magnitude of

this force is such that, with any increase, it will cause motion

to the left, the limiting condition of equilibrium having been

reached; it therefore is opposed by the full force of friction F.

The body is now in equilibrium under the action of the forces,

W, R, P, and F. The resultant of R and F is the virtual reac-

tion, R' = CO, making the angle of friction, <, with the line of

action of R. Since equilibrium prevails, W, R 1

, and P meet at

a common point O. For motion to the right, similar but re-

versed conditions exist, as shown by dotted lines. In either

case, the supporting plane AB, the normal reaction R, and the

force of friction F may be replaced by the virtual reaction R'
,

making the angle of friction with the normal to the contact-

surfaces, and in such a direction that its component parallel to

those surfaces will oppose their relative motion.

It will be seen that the limiting condition for equilibrium,

with regard to motion in any direction, is that the virtual reac-

tion shall lie on the surface of the cone described by the revolu-

tion of the triangle OCD about the normal OD. This is the

cone of resistance or the friction-cone. When the force P is less

than F, R' falls within the surface of the cone and there will be

no motion
;
when P is greater than Ft R' lies beyond the cone,

and motion ensues.
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P'

114. Wedge Friction. With a wedge, the load is supported

on a plane slightly inclined to the horizontal. Taking the sim-

plest case, let Fig. 124 rep-

resent a block A of weight W
as raised in the guide-way B by
the key C, resting on the hori-

zontal support D, and driven

to the right by the force P.

If the mechanism were fric-

tionless, the block, when just

about to move, would be

acted on by the weight W,

the reaction R normal to the

surface of the key, and the reaction R-^ normal to the contact-

surface of the guide. Considering friction, these reactions be-

come, respectively, R' and R, inclined from the normals by
the angle of friction in such a direction that the force of friction

shall oppose the upward movement of the block on the key and

in the guide. As to the forces, W, R 1

,
and RJ, the magnitude

and direction of the first are known and the directions of the

two latter. Their points of application are not known, but this

is immaterial in this case, the only requirement being that, as

the block is in equilib-

rium, the lines of action

of the three forces shall

meet at a common point.

In the figure, this point

is assumed to be G. In

the force polygon, Fig.

124^, the vertical line ab

is made equal to Won the

given scale, and be and

ca, drawn parallel to R 1

and RI, respectively,
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represent the magnitudes of these reactions. Similarly, be' and

c'a show these magnitudes, when friction is disregarded.

The key, when on the point of moving to the right, is in

equilibrium under the action of the force P, the reaction R'

equal to and opposed to R 1

',
and the reaction R2

r

, inclined by
the angle of friction to the normal, R2 ,

to the contact-surface

of the support D. The point of application of the reaction

R'2 is determined by the consideration that its line of action

must pass through the intersection O of the lines of action of

P and R 1

. In the force polygon, bd and dc, drawn parallel to

P and jR2 ', respectively, represent the magnitudes of this force

and reaction, while bd' P
Q and d'c 1

give these magnitudes
when friction is neglected. The efficiency of the key is then :

E = P
Q/P = bd'/bd.

Now, assume the force P to be removed and an opposite

force P' applied, of such magnitude that the key will be just

on the point of backing out. The block A will then be acted

on by the weight W, the reaction R8 ', making the angle of fric-

tion with R and inclined in the opposite direction from R'
,
and

by the reaction RJ acting from some point on the contact-

surface of the left-hand side of the guide B. Similarly, the key
will be in equilibrium under the action of the force P', the reac-

tion RB
f

,
and the reaction R of the support D, the lines of

action of these three forces meeting at the point O'. The cor-

responding sides of the force polygon are drawn parallel to the

lines of action of the forces, as before, and be = R^', ea = RJ,

fe = RJ, and bf= P'. Since P 1 and W both act to back out

the key, the efficiency is negative and is :

in which, as the figure shows, the frictionless force PQ has the

same value as before.

If, in the force polygon, the horizontal side ac' be prolonged
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until it intersects the side be, and the side c"d" be drawn

parallel to cd, the friction of the block A on the guide B will

be disregarded and P bd"
,
which is the horizontal force

required to bring the block of weight W to the point of start-

ing up the incline of the key or wedge. Analytically,' if 6 be

the angle of taper of the key, this force bd" is :

P = Ftan < + 0+ tan <,

and the corresponding backing force is :

P' = j^tan <
- + tan

If the key be double, i.e., the top and bottom having the

same angle of taper :

which equations, as before, neglect the friction of the guide B.

115. Friction of Screw-threads. The threads of a bolt and nut

are, in their frictional action, essentially the same as the block

and the single-tapered key which were discussed in Art. 114,

when the friction of the guide B and of the support for the nut

are excluded. The load W is borne by the bolt, whose thread

thus corresponds with the contact surface of the block A,

Fig. 124; and the nut-thread, like the similar surface of the key

C, raises the bolt-thread with its load, the nut being supported

by a bearing surface similar to that of D.

The pressure on these threads is assumed as concentrated on

the mean helix (Art. 117) or the circumference of the mean

thread-diameter d, of pitch-angle a, as in Fig. 125. Each

element of the thread-surface is regarded as sustaining an equal

elementary portion of the total axial load or stress W, on the

bolt, and each element has, therefore, a frictional resistance of

the same magnitude. Since the conditions for all elements are

thus identical, the total thread-resistance, the axial load, and the
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external turning forces on the nut may be assumed to be each

equally divided and concentrated at two points, 180 apart, on

the circumference of diameter d. The forces P, for lifting the

load, thus form a couple whose arm is d\ and, similarly, the

N //*

FIG. 125.

forces P 1 for lowering have the same arm and points of applica-

tion. In Fig. 125, these points are //"and K.

Square Threads. In Fig. 125, taking the nut as the turning

member, let ABC be the inclined plane formed by developing
one convolution of the nut-thread of the mean diameter; AB is

the contact-surface of that thread and EG represents a portion

of the bolt-thread. The base of the plane is Trd, its height is

the pitch/, and the pitch-angle is BAG. Consider the forces

P or P 1 as applied to the nut in a plane normal to the axis and

as tangent to the mean thread-circumference.

When the nut-thread is on the point of moving to the left to
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raise the load, its front half, whose centre of pressure is at //, is

in equilibrium under the action of one of the forces P, the re-

action R f

making the friction-angle with the reaction R which

is normal to the contact-surface, and the reaction R
l
= W/2 of

the nut-support, which reaction is vertical as the friction of the

support is neglected. The force and the two reactions are all in

the same vertical plane, which is distant d/2 from the axis.

In the force polygon, lay off ab = Rv and draw be, be', and ca

parallel, respectively, to the lines of action of R\ R, and P.

Then:

P = ca= W tan
((/> 4- ),

and, for frictionless motion :

P
Q
= ac' = W tan a.

When the nut-thread is about to lower the load under the

action of the force P', the reaction at the contact-surface be-

comes R
2

r

, making the friction-angle with the normal reaction.

Equilibrium then exists under the action of the force P' and the

reactions R
l
and R2

r
. Drawing bd parallel to the latter :

p' = da=W tan (<-<*).

The efficiency of the screw threads in raising the load is :

E = P
Q/P = ac 1

lea = tan a/tan (0 + a),

which is low, as
<j>

is relatively large as compared with a. With

ordinary square threads, dry or but slightly lubricated, the

coefficient of friction f usually ranges between o.i and 0.2, giv-

ing values of
<f>

of about 5 45' and 1 1 30', respectively. In the

standard system of square threads used by William Sellers and

Company, the angle a is for ^-inch screws and 4-inch screws

about 8 45' and 3 15', respectively. These values are for

power screws whose pitch is twice that of the United States

Standard.

With regard to the equations and the graphic methods given

above, it will be understood that, in order to eliminate all fric-
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tion but that of the screw-thread, the section EG of the bolt-

thread is assumed to have no lateral motion, so that it and the

weight W rise or are lowered vertically, as would be the case

with a bolt. Further, the force P is sufficient to raise but one-

half of W, since it forms one force of the couple whose arm is

d; the lowering force P' is part of a similar couple.

Triangular Threads. In Fig. 125 a, let N and N 1 be the

normal pressures on square and triangular threads, respectively.

Then, N' = N sec /3, in which (B is the base-angle of the triang-

ular thread. If F and F' be the forces of friction for the two

threads, we have, since F=fN:
F' =fN' =//V sec@=F sec 0.

Hence, as compared with the square thread of the same pitch-

angle, the friction F' of the triangular thread is sec times

greater.

To determine the force P in Fig. 125 for these conditions,

prolong the lines of action of R and R' and, at any point, draw

the line ^/"perpendicular to R. This line is proportional to the

force F. From e draw eg making the angle y8 with ef\ from/

drop the perpendicular fg on eg, thus determining the line eg

which is proportional to the force F' . Revolve eg to eh on ef

prolonged, and draw Hh which is then the virtual reaction R"
of the triangular thread. In the force polygon, lay off be"

parallel to the line of action of R"
,
and the force P will then

be ac".

In the Sellers system, the angle /3 = 30 and sec =1.15.

The increased friction of the triangular thread reduces the effi-

ciency of the screw, adds to the torsional stress in the body of

the bolt produced by the component of the total load which is

normal to the axis, and the inclination of the normal reaction

develops a bursting action on the nut, which action, disregard-

ing friction, does not exist with the square thread.

116. Pivot Friction. When the lower end of a vertical shaft,
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FIG. 126.

subjected to end-thrust, is supported and guided by a step-bear-

ing, the end of the shaft forms a pivot journal ; the latter may
be plane, conical, globular, etc.

Plane Pivots. As shown in Fig. 126, the pivot rests on a

brass or steel disk, set in a casing bushed with brass
;
the disk

is usually slightly cup-

f
*

shaped. If the disk is not

Ft/Yj fixed, but can revolve and is

well lubricated, it will have

relative motion with regard

to the shaft, so that, owing
to the reduced velocity of

the disk and bearing sur-

faces, the friction between

shaft and disk and disk and

bearing will be less than if

the disk were fixed, with a consequent reduction in wear. Several

such disks, one above the other, are often fitted in pivot bearings.

Let the total axial load on the shaft be W, and, as with the

screw-thread, assume it to be equally divided and one half con-

centrated at each of the two points, A and A', diametrally apart,

on the circle of radius r described on the disk of radius rv The
total normal pressure on the bearing is W\ the average press-

ure per square inch is W/irr-^. The total force of friction is

F=fW, and assuming a uniform pressure over the disk, the

frictional resistance per unit of area isfW/irrf. It is required

to determine the relation between the radii 1\ and r, the latter

being the distance from the centre to either of the points -of

application, A and A 1

.

Consider the circumference 2 nrr to be an elementary ring of

width dr and of area 2 jrrdr. The total normal load or pressure
on this ring is :

w 2 irrdr x W/
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Multiplying w by the coefficient of friction f gives the fric-

tional resistance of the elementary ring, and this product, multi-

plied by the radius r, is the moment m of this elementary resistance

or force of friction :

2fW
-^-Mr.

The integral of this expression, between the limits r^ and zero,

gives the moment of the total frictional load or force F
t which is :

Dividing the moment by its force, FfW, we have the mean

radius at which the total force F acts, or :

= 2/3 ^ = r.

In the diagram, BB is the plane of the disk, CD = 1/2 W, and

DE and DG are the virtual reactions at the points A and A',

respectively.

Conical Pivots. In this form, the end of the shaft is cone-

shaped, and is supported by a bearing of similar inclination, as

shown in Fig. 127.

Let be the half-angle of the cone,

r the radius of the upper end of the

journal, and W the total axial load.

As in Fig. 126, consider one-half of

W as concentrated at each of two

points, 1 80 apart, on an elementary

strip of the conical surface of radius

r and width dr. Resolve W in the

directions of the two normals NN to

the contact-surface at these points.

Then, N= W/2 sin #, and the total force of friction,

F=

By using the same method as with the plane pivot, the mean
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radius at which the total force of friction F acts will be found

again to be 2/3 rv Hence, a diagram similar to that in Fig. 126

will show the forces graphically, the differences between the

two cases being that the circular area of radius r^ now repre-

sents the projected area of the conical bearing, and that each of

the forces F/2 is now equal tofW/2 sin 0, and not to fW'/2 as

before. Under these conditions, the work expended in friction

would be the same for this projected area as for the contact-

surface of the bearing.

Mean Radius of Friction. For the two cases discussed, it has

been shown that, theoretically, this radius is 2/3 r
lt
where r^ is

the greatest radius of the bearing ;
this is true also of all pivot

bearings whose projected area is circular and not annular. The

difference between the amounts of frictional work of the various

forms of pivots lies thus, not in their radii of friction, but in the

magnitudes of the respective forces of friction F.

The theoretical value of the mean radius, as above, assumes

a uniform pressure per square inch and a constant value of the

coefficient/for the whole surface of the bearing. Experiment

shows, however, a dependence of the friction on the velocity of

rubbing, and, further, as in any pivot this velocity increases

directly as the distance of the surface considered from the

centre, the augmented friction and wear thus produced on the

outer portion of the bearing surface reduce its pressure per

square inch and increase that on the inner portion. In view of

these considerations, a mean radius of friction equal to one-

half the greatest radius of the bearing surface of the pivot is,

for types having a projected area of bearing surface of circular

form, generally taken as more nearly correct than the two-thirds

value deduced as above. For the plane pivot, F would then be

equal to fW\ the moment of this force would be fW x r^2 ;

and the work of friction at n revolutions per minute would be
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117. Collar Friction. The collar bearing is shown in Fig. 128.

It has two advantages as compared with the plane pivot : as the

collar is narrow radially, the velocity is

more nearly uniform over its surface
;

and, by using a number of collars, as

in the marine thrust-bearing, a much

greater axial load can be carried by the

shaft than the pivot bearing, with its

restricted dimensions, will permit.

Let W be the total axial load on the

shaft, and assume it to be equally divided

and one-half concentrated at each of the

two points, A and A'. The external

radius of the bearing is r^ ;
its internal

radius is r2 ;
and the mean radius of fric-

tion is r. The value of the latter, in

relation to those of r
v
and rz ,

is to be

deduced.

The total force of friction is F=fW, and, assuming a uni-

form pressure over the whole surface of the bearing, the fric-

tional resistance per unit of area is W/ir(r^ r2
2
).

The area

of an elementary ring of radius r is 2 irrdr. The total load on

this ring is :

w = 2 irrdr X

FIG - I28 -

The frictional resistance of this load is fw and the moment

m of this resistance is :

fw xr=m=frX2 irrdr X ^ f2
2
).

The integral of this expression, between the limits r^ and r
2 ,

gives the moment of the total frictional load or force Ft
which

moment is :

M=
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Dividing this moment by the force F=fW, the mean radius

of friction is :

r = 2 r r<2 .

If the internal diameter of the bearing be 10 inches and its

width 2 inches, r is 7", r2 , 5", and, from the last formula, r will

be found to be 6 inches, or the mean of i\ and r.
2

. This is the

justification for considering the total load on a bolt as concen-

trated on the mean helix, in computing the friction of screw

threads (Art. 115), since, if the pitch-angle be made equal to

zero, the square thread becomes a collar.

118. Journal Friction. A shaft-journal fits its bearing more

or less loosely for two reasons : the bearing is bored a little

larger in order to make a working fit
; and, to prevent

"
seizing

"

when hot, the sides near the joint with the cap are made free,

so that, in each semicircle, there is an arc of contact which is

considerably less than 180. The wear in service increases this

looseness, and the journal eventually rotates in a bearing of

different and greater curvature.

When the shaft is at rest, the journal lies at the bottom of

the bearing, the only forces then acting on it being the weight
of the shaft and the equal and opposite reaction of the bearing,

which have the same line of action. It would remain in this

position when the shaft revolves, if the contact-surfaces were

without friction
;
but the latter causes the journal to roll up the

side of the bearing in a direction opposite to that of rotation.

This action is similar to that of a car-wheel moving up an in-

clined section of track, except that, in this case, the path is

curved, so that the angle of inclination changes continually.

The journal thus ascends the bearing until, owing to the

opposing action of the weight, it begins to slide backward. At

any instant, its condition is hence one of momentary equilibrium
under the action of the turning force, the weight, the reaction
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(a)

from the bearing, and the friction. This position will be main-

tained so long as the coefficient of friction remains unchanged ;

but, when the latter alters, through variations in shaft-velocity

or in the character of the contact-surfaces, the journal rises or

falls, as the case may be.

The conditions are thus complex, and the resistance to rota-

tion cf a shaft in a fairly free bearing cannot be considered as

purely frictional. The lat-

ter action is much more

nearly reached in the

bearings of small axles

and of the pins in link

connections, where closer

fits are permissible. The

graphical analysis em-

ployed in such cases is

shown in Fig. 129. The

principles of this method

were first established by

Rankine,* and later devel-

oped by Hermann and

others.

Let A be a cylindrical

journal at rest in the bear-

ing B\ the forces acting are the weight or other vertical press-

ure W = CD, and an equal and opposite reaction from the

bearing at the point G. Now, let there be applied a turning

force P, normal to a radius, and of such magnitude that the

limiting condition of equilibrium is reached, the frictional re-

sistance is overcome, and the journal is on the point of begin-

ning clockwise rotation. The forces acting are then W, P, and

the reaction R f from the bearing, whose line of action is yet to

be determined.

*
"Applied Mechanics," London, 1869, p. 614.
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Prolong the lines of action of W and P until they meet at C\

lay off CD = W, and DE equal to P, and parallel to the latter's

line of action. Then, CE, the resultant of W and P, is equal

in magnitude, opposed in direction, and has the same line of

action as the virtual reaction R' from the bearing, since W, P,

and R' are in equilibrium, and their lines of action must meet

at a common point. Draw CEH, and, from the centre of press-

ure K, lay off KH= R''. This reaction is simply the resultant

of the infinite number of small reactions from the bearing.

Draw the line of action OL of the normal reaction R through

the point K\ resolve R' normally and tangentially. Then,

R LK is the total normal pressure on the journal, and the

force of friction F= HL == KL x coefficient of friction /.

Since the virtual and normal reactions are, by definition,

inclined from each other by the angle of friction, the angle

HKL = OKE = c.

119. Friction Circle. In Fig. 129, drop the perpendicular

OM from the centre O on the line of action of the reaction R'.

Then, if r be the radius of the journal, OM
' = rsin <. If now

the radial arm ON and its force P be revolved through all

positions about the centre O, it will be found that, while the

location of the point of intersection C will be changed, the per-

pendicular distance of the line of action of R' from the centre

will be equal, in every case, to r sin^. Hence, the locus of such

points of intersection as M is a circle described from O and of

radius r sin
<f>.

This is the friction circle.

The principle is general, applying to all forms of loading of a

journal and bearing, either of which has motion relatively to the

other. Thus, the dotted lines in the figure show the effect of

anti-clockwise rotation, the force P having the new line of

action CN', but the other conditions remaining the same. It

will be seen that, while the line of action of R' now assumes the

similar but reversed position CQ, it is still tangent to the fric-

tion circle.
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Thus far, the journal has been considered as the rotating

member of the turning pair. If it be assumed that the journal

is fixed and that the bearing revolves, carrying the downward

load W, like a connecting rod pulling a crank pin, the

magnitude and lines of action of R' will remain the same for

clockwise rotation and the reverse, but the centres of pressure

will be changed from K and Q to K' and Q' t respectively, since

the virtual reaction now acts upward from the journal through
these points as virtual supports of the bearing.

Again, assume that the pressure acts upward instead of

downward, as at (a), Fig. 129, and that the rotation is clock-

wise, the force P acting from N' to C. First, let the bearing

be the moving member, as if the journal were the pin of a

crank pressing upward against a link revolving on it. The cen-

tre of pressure will then be Q', at which point R' will act down-

ward on the journal. If, on the contrary, the journal be the

moving member, the load will act upward and R' downward at

the point Q. This case would be that of a connecting rod

pushing a crank pin.

It will be seen that the friction circle and a tangent to it,

which is the line of action of the virtual reaction R', wholly

replace either the journal or the bearing in the graphical inves-

tigation of their friction with any form of loading. The general

law of sliding friction may be applied to determine on which of

these tangents R f
acts in any given case. Thus, either of the

two members may be considered as having relative motion with

regard to the other, and, hence, the virtual reaction of the sta-

tionary member is inclined from the normal reaction by the

angle <, in such a direction that its tangential component

resists the motion of the other member.

120. Friction of Link Connections. In the preceding article,

the effect of friction on the action of a single journal and its

bearing was considered. A link is a straight machine memSer,
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provided with two such bearings and used to connect the pins

of two rotating cranks or levers or, like a connecting rod, those

of a crank and a sliding member, as a cross head. If there were

no friction, the radius of the friction circle would be zero and

the force would be transmitted from one of the connected mem-

bers to the other along the line joining the centres of the two

journals, which line is the geometrical axis of the link. When
friction is considered, the resultant of the transmitted force and

the force of friction acts along the friction-axis, which is a line

tangent to the friction circles of the two journals.

There are four fundamental cases of this action, two of which

are represented in Figs. 130 and 131 and the others deduced

therefrom. In each of these mechanisms, A is a link and B and

C are hinged levers, P is a force acting upward on the lower or

driving lever, and the dotted lines show the path in ascending.

In analyzing the effect of friction on the force transmitted

through the links of such mechanisms, there should be

observed :

(a) The link may be assumed to be in equilibrium in any

given position of the mechanism, but its efficiency, as thus de-

termined, applies to that position only, and the direction of the

friction-axis depends on which of the connected levers is

the driver, and hence on whether the link is in tension or

compression.

(b) A force and its reaction may be regarded simply as two

equal and opposite forces, having the same line of action. Since

the link is in equilibrium, the friction-axis is the line of action of

a force acting from one journal and an opposing reaction from

the other.

(c) The link-bearings move on the journals which engage
them, the latter being thus relatively stationary. The direction

of this motion is determined by that of the mechanism.

(d) Since the link is in equilibrium, the force of friction at

either journal must so act as to oppose the relative motion of the
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bearing. This consideration determines the direction of the fric-

tion-axis. If the direction of rotation is the same with both

bearings, the axis will lie diagonally, being tangent to one friction

circle on one side, and to the other, on the opposite side. If the

bearings rotate in opposite directions, the friction-axis will be

parallel to the geometric axis.

In Fig. 130, the lower lever, actuated by the force P
t
is the

driver. Hence, disregarding friction, the force on the lower

journal is concentrated at the point

a on the geometric axis, acting there

on the lower bearing of the link.

This puts the latter in compression
and its force acts on the lower side

of the upper journal at the corre-

sponding point b. From the path of

the mechanism, the motion of both of

the bearings is seen to be anti-clock-
d
\

wise. At the lower bearing, the

tangential force of friction, F=de,
acts from left to right, and there-

fore on the left side of the friction

circle, where it and the normal pressure line cd combine to form

the resultant pressure line ce. Hence, the friction-axis is here

tangent to the left side of the friction circle.

At the upper journal, /''must act from right to left, combin-

ing with the reaction from the journal to form the virtual reac-

tion, which, acting along the line ec, must be tangent to

the right side of the friction circle. If, on the other hand, the

upper lever be the driver in lifting the connected parts, the

direction of motion of the bearings will be the same, but the link

will be in tension and the friction-axis will be tangent to the

other side of each friction circle.

In Fig. 131, the lower lever is the driver and the link is

again in compression, but the direction of rotation of the two
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bearings is not the same. Hence, the forces of friction act

on the same sides of the two friction circles and the

friction-axis is parallel to

the geometric axis. If,

again, the upper lever be

the driver in lifting the

connected parts, the direc-

tions of motion of the

bearings will not be

changed, but the link will

be in tension and the fric-

tion-axis, while still

parallel to the geomet-

ric axis, will be tangent

to the other sides of the

friction circles.

121. Chain Friction. The friction of a chain in passing over

a chain drum or sprocket wheel is, in effect, a modified form of

journal friction. Thus, let

Fig. 132 represent a chain

pulley whose effective radius

is R and which is revolving
in a clockwise direction. The
load on the advancing or left

side of the chain is W; the

driving force on the right,

or receding, side is P. Let

r be the radius of the pins

joining the links and i\ that

of the wheel journal.

Relative motion of the links of the chain occurs only when
the latter bends at the joints on reaching and leaving the hori-

zontal diameter EF of the wheel. At this time, the advancing
link A turns in an anti-clockwise direction on the link B, the

FIG. 132.
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latter serving as a bearing ; and, similarly, the link C is rotated

in the same direction with regard to the link D. From Art. 120,

it will be seen that the effect of these actions is to remove

the lines of action of the load W and the driving force P from the

vertical line passing through the centres of the link-pins to the

left by the distance r sin
</>, i.e., the friction of the joints of

the chain increases the leverage of the load and decreases that of

the driving force by this amount.

Similarly, the line of action of R', the vertical reaction of the

wheel-bearing, is removed to the right through the distance

r sin $. R' is the resultant of P and W. Hence,

R (r + r^) sin $

122. Ropes: their Internal Friction and Resistance in Bend-

ing. The resistance of a rope in passing on and off a sheave

or grooved pulley has an effect, similar to that of chain friction,

on the lines of action of the load and driving force, i.e., the

lever-arm of the load is increased, and that of the driving force

decreased, by the same amount in both cases. This effect is

not due, however, to the same causes as with the chain. In

the rope, it is produced, when the latter is bent, by the relative

motion and consequent friction of the strands, by the compres-

sion of the inner, and the stretching of the outer, fibres in wind-

ing on, and by the reversal of these actions when the rope leaves

the pulley.

Thus, if we assume the rope to be wound on a pulley, like

the chain in Fig. 132, it will be bent in advancing when it passes

at E above the horizontal diameter EF, and will be straightened

again when it descends below F at the right. In the first of

these operations, the normal forces acting on the horizontal

cross-section of the rope at E are the tension at the centre due

to the load, the tension on the outer half from the stretching

of those fibres, and the opposing compressive force on the inner
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half. The resultant of these three forces is a tension which

acts at a distance s outward from the centre of the rope, so that,

neglecting the friction of the pulley-journal, the lever-arm of the

weight Wis R + s, R being the distance from the centre of the

pulley to that of the rope.

When the rope straightens at F, the same forces act, but

those of tension and compression from bending change places,

occurring, respectively, on the inner and outer halves of the

cross-section. Hence, the resultant tensile force acts between

the pulley- and rope-centres, at a distance s from the latter, so

that, neglecting journal-friction, the lever-arm of the driving

force P is R s. It will be seen that the distance s thus cor-

responds with the radius of the friction-circle for chain friction
;

and, as with the latter, considering journal-friction, we may
write :

R + r sin + s
.R i\ sin

(f>
s

in which rjsin $ is the radius of the friction-circle for the journal

of the pulley.

The value of s can only be expressed by empirical formulae,

the constants of which are derived from experiment. This fol-

lows, since the resistance of a rope to bending varies directly

as the tensile stress in it due to the load or the driving force
;

directly as some power of its diameter, since the smaller the

rope, the greater its pliability ;
and inversely as the radius of

the pulley, since the greater this radius, the less the required

bending. Evidently, it depends also upon the material of which

the rope is composed, its length of service, etc.

Eytelwein's formula, as employed by Reuleaux and Weis-

bach,* gives, for the total resistance 5 to bending of a hemp
rope in both winding on, and unwinding from, a pulley :

5 = 0.472 Wdt/r
* "Mechanics of Engineering and of Machinery," New York, 1896, Vol. I, 197.
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in which W is the load and d and r are, respectively, the diam-

eter of the rope and the radius of the pulley, both in inches.

The resistance to either winding or unwinding is then,

But

Hence,

5/2 = 0.236 Wd*/r.

Sr/2 = Ws.

S = 0.236 d? inches.

This formula, while approximate, is sufficiently accurate for

hemp rope under heavy stress. For rope of other materials,

the constant requires modification. The subject is treated more

or less extensively in the works of Reuleaux, Weisbach, Her-

mann, and Thurston.

123. Friction of Spur-gear Teeth. In the transmission of

power by gear wheels, a part of the lost work is expended in

overcoming the frictional re-

sistance of the teeth. This is

due to the fact that a pair of

teeth, while engaged, move one

upon the other, the line of bear-

ing changing continually on both

contact-surfaces and the relative

motion of the latter being a com-

bination of rolling and sliding.

Figure 133 (a) represents the

positions, at the beginning and

end of engagement, of the same

pair of involute teeth on the

spur gears A and B, the wheel

A being the driver and rotating

in a clockwise direction. The

two pitch circles are tangent at
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the point/ on the line joining the centres of the wheels. The

arcs bp and cp are the arcs of approach; pb' and pc' are the arcs

of recess. The line aa' is the line of action, which is the path

of the points of contact of the teeth during engagement. This

line is normal to the contact surfaces, in properly formed teeth

it always passes through the point /, and makes an angle with

the horizontal, called the angle of obliquity of action.

In approach, the points b and c gradually draw nearer until

they meet at /. Since the arc ab is shorter than the arc ac, it

follows that the flank of the driving tooth rolls through a dis-

tance equal to ab on the face of the driven tooth, and slides for

a distance equal to ac ab. In recess, this process is reversed,

the face of the driver rolling on the flank of the driven tooth

through a distance equal to c'a
1 and sliding through the distance

b'a' - c'a'.

Figure 133 (b) shows the engaged portions of the two gear

wheels A and B. In this figure, it is assumed that the lengths

of the arcs of action, bpb' and cpc' in (a), are such that two pairs

of teeth are simultaneously engaged, and that the normal press-

ure is the same between the teeth of each pair. The line of

action is aa' as before.

If there were no friction, the reaction due to the load on the

driven teeth 3 and 4 would act on the drivers I and 2 along the

line a 1a from right to left, and this reaction would be exactly

equal to the force P, exerted by the driving wheel and acting

in the direction aa 1 and on that line. From the enlarged force

polygon (c\ it will be seen that, considering friction, the reac-

tion from tooth 3 takes the direction da, and that from tooth 4,

the direction a'd, both reactions being inclined to the normal

by the angle < and intersecting the line of centres at the point
d. If these virtual reactions be resolved vertically and parallel

to aa', the vertical components will neutralize each other and

the true line of action of the force and the resultant reactions

will become aja^ parallel to a'a, and at a perpendicular dis-
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tance therefrom of tan $ x aa'/2, which, assuming aa 1

to be

equal to the circular pitch, becomes tan
</>
x pitch/2.

The friction of spur-gear teeth is then, in its effect, similar

to chain friction. With frictionless motion, both the force and

resistance, would act along the normal aa'
;

with friction, the

line of action is shifted to the parallel line a^a^. This change
increases the distance from the centre of gear A at which the

load from gear B acts on A, and decreases the distance from

the center of gear B at which the driving force from gear A
acts on B. Hence, in general, the leverage of the power is

lessened and that of the load is increased by the distance as

found above, tan
<f>

x pitch/2.

With cycloidal teeth, the line of action is not a straight line,

as aa', Fig. 133, but is an arc of the circle with which the pro-

files of the teeth are described. The loss from tooth-friction is

less than with any other form, and the wear in service has, in

consequence, less effect on the shape of the teeth.

124. Belt Friction. The friction of a belt on a pulley, in

power transmission, is the friction of rest and not that of motion,

in which respect it differs radically from the friction of mechan-

isms previously examined. Friction is, in this case, not the

cause of lost work, but the means by which useful work is done,

in preventing relative motion of the working parts; and the

greater, within practical limits, it becomes, the better. With

regard to the friction of motion of belt gearing, however, the

reverse is true, the efficiency of such mechanisms being much

less than that of toothed gearing, since, with the former, the

power transmitted is directly proportional to the difference

between the tensions of the tight and slack sides of the belt,

while the aggregate thrust on the bearing which produces

journal friction is due to the pull of both of these tensions.

The lost work of belt gearing is due to several causes :

(a) The stiffness of the belt and its consequent resistance to
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bending in passing on and off the pulley ;
this is relatively so

small as to be negligible.

($) The driving and driven pulleys have, as is shown by

Cotterill,* the circumferential speeds of the tight and slack

sides, respectively, of the belt. The speed of the latter, at any

given point, depends on its tension at that point. Hence, there

is a loss of work from the creeping of the belt over the p.ulleys,

which, in ordinary cases, may reach 2 per cent.

(c) Theoretically, a belt should not slip on the pulley, except

under overload
; practically, every belt slips to an extent which

may be inappreciable, or, on the other hand, may reach 20 per

cent, of its speed while it still drives and transmits power. The

coefficient of friction increases with the slip, thus augmenting
the work lost in moving the belt uselessly over the face of the

pulley.

(d) Finally, the work lost in journal friction is, as explained

above, relatively large.

The general theory of belting neglects "slip" and "creep,"

and assumes that the belt is perfectly elastic, i.e., that its elonga-

tion is proportional to its tensile stress, an assumption which is

not fully warranted for a material like leather whose initial stiff-

ness increases with its stress. The theory serves, however, to

show clearly the general principles governing the action of belt-

ing under the ordinary conditions of service.

Figure 136 represents a pulley A driving through belting a

pulley B, the rotation being anti-clockwise. Let the initial

tension of the belt, i.e., that while at rest, be T
Q ,

and the

tensions of the driving and slack sides during motion, T2 and

7\, respectively. If the belt were perfectly elastic, the sum of

these two tensions would be equal to 2 7* . Assume the pulley
A as acted on by a driving force P whose arm is Z, and the

resistance of the driven pulley to be equivalent to a load W of

arm /. When the pulley A begins to revolve, the right side of

the belt is stretched and the left side slackened until the differ-
* "

Applied Mechanics," London, 1895, P- 253-
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ence, T
2 7\, between their tensions, is sufficient to overcome

the resistance of the driven pulley, at which time

in which r is the radius of the driven pulley. If the mechanism

be started under full load, the driving pulley will first slip under

its belt, stretching the latter gradually on the driving side and

thus increasing the tension T2 until the moment of the differ-

ence of tensions is sufficient to overcome the moment of the

resistance W.

This difference is constant with a uniform resistance, what-

ever the actual tensions of the two sides of the belt may be. If

the magnitude of T
Q ,
and hence those of T

2
and Tv be increased

by shortening the belt, or, with the same length, by separating

further the shafts A and B, it is evident that, for equal mo-

ments of force and resistance on the driven shaft, the equation,

as above, must still hold. Again, if the resistance be increased

so that its moment is greater than the possible difference of

tensions of a given belt, then the latter will slip, while, if the

resistance be suddenly decreased with the same tension-differ-

ence, it will tend to creep.

The force of friction between a pulley and belt at any given

point depends on the normal pressure between the two at that

point and on the coefficient of

friction. This normal pressure is

proportional directly to the belt-

tension at the given point. Thus,

let Fig. 134 represent a pulley and

belt at rest under the initial ten-

sion T, the arc of contact being

1 80. Assume the mechanism to

be frictionless, so that the tension

of the belt is throughout equal to T. FIG. 134.

Let the angle BOC=0 and bOc be an elementary angle dO,
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the length of the arc be being RdO, as R is the radius of the

pulley. For convenience, take the width and thickness of the

belt each as unity. N is the normal pressure acting at all points

of the contact-surface. Then, the total radial pressure acting

on the elementary strip of length RdO and area RdO x I will

be RdO x N. Resolving N parallel and perpendicular to the

diameter AB, we have T=Nsin6, so that the element of ten-

sion, due to the strip RdO and perpendicular to AB, is RdO x

TVsin 0, and the sum of these elements for the two sides of the

belt is :

2 T= NR f sin OdO = 2 NR,
/7T

whence, N= T/R.

This principle is general, but, owing to the action of friction,

the tension in the belt, and hence the normal pressure, increase

from the slack side to the driving side of the belt and through

the arc of contact, in proportion to the

lengths of the radii vectores of a loga-

rithmic spiral. Thus, in Fig. 135, let the

angle of contact be AOB=0, and let

aOb be an elementary angle dO. The

tension at a is T and that at b is T+ dT.

The increment of tension, dT, in passing

through the elementary angle dO, must

be due to the force of friction on the strip ab, which force is the

product of the area of the strip by the normal pressure TV= T/R
and the coefficient of friction. Hence :

T= Rd x

CT* f*o

JT *T/T.-f d9,

Hyp. logTj/r^yS,

in which e is the base of the Napierian system of logarithms and
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is given in circular measure. With the common system of

logarithms and 6 expressed in degrees :

Common log T^/T^ = 0.007$ 7%ft-

In Fig. 135, the belt is assumed to be fully loaded, so that the

tension-difference and the tension-ratio, as computed, are each a

maximum value which cannot be exceeded without slip of the

belt. The normal pressure at the contact-surface is reduced to

some extent by centrifugal action on the belt, which should be

considered at high speeds, since it not only increases the tendency
to slip but also adds materially to the tension of the straight length

of the belt on the driving side. In practice T^/T^ ranges between

2 and 3, and the coefficient of friction, roughly, from 0.2 to 0.4.

The graphics of belt gearing present no problems which have

not been examined in previous mechanisms. Each pulley may
be considered as in equilibrium

under the action of a driving

force or a resistance, the two ten-

sions, the normal reaction of the

bearing, and the journal friction,

the latter being relatively large.

Thus, in Fig. 136, the angle of

contact, 0, can be found by con-

struction, and, from the formula,

TJTi = efe
> the ratio between the

two tensions can be determined.

Prolong the lines of action of the

latter until they intersect at 0,

and from O lay off OC and OD
of such dimensions that OC/OD
is equal to the tension-ratio just

found. Their resultant OE gives

the line of action of the resultant

T of Tz and T
lt
which line inter-

~

FIG. 136.
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sects the lines of action of the resistance W and the driving

force P at the points F and G, respectively. From the latter

points and tangent to the friction circles, draw the lines of action

of R
1
a.ndR2 ,

the virtual reactions of the bearings.

The driven pulley B is in equilibrium under the action of the

resistance W, the resultant T of the tensions, and the virtual

reaction R^ the magnitude of W and the lines of action of all

the forces being known. In the lowest force triangle, lay off

be W, and draw ba and ca parallel, respectively, to the lines

of action of T and R^ thus determining the magnitudes of the

two latter. To find the magnitude of P, consider the driving

pulley as similarly in equilibrium and lay off, in the second tri-

angle, ab = T
t
and draw ad and ab parallel to the lines of action

of P and Rfr respectively. The magnitude of the tensions is

determined in the upper force triangle by resolving the resultant

T of the tensions parallel to the lines of action of its components

7*! and T
2

. The effect of journal friction can be shown by re-

placing R l
and R2 by reactions passing through the centres of

the respective journals, and drawing the corresponding sides of

the force triangles parallel thereto, which will give the values,

excluding journal friction, of P, T, Tv and T
2 ,

for the same

resistance W.

125. Rolling Friction. As compared with sliding friction,

rolling friction is immaterial in magnitude. The principles

which govern its action are not clearly understood. It differs

from sliding friction in this, that the coefficient of friction of the

latter may be assumed to be dependent only on the nature of

the materials in contact, while, with rolling friction, there is an

added factor in the diameter of the rolling cylinder. The latter,

in very soft materials, makes an indentation or rut, so that the

resistance to movement is due to both the weight on the roller

and the work necessary to displace material in indentation.

With all other bearing materials, elasticity acts in greater or
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less degree, tending to produce surface friction where the ma-

terial closes in at the front and rear of the indentation. Since

the greater the radius, the flatter the arc of a wheel, it is evident

that the depth of the rut made by the latter is affected by its radius.

These considerations lead to the general formula :

P = eW/r,

whose results must be considered as very approximate. In this

formula P is the force necessary to draw the roller, r is the

radius of the latter in inches, W is the weight on the axle, and

the coefficient e ranges from 0.02 for smooth, hard subtances to

0.09 for those of opposite character.

When sufficient force is applied to a roller resting on a plane

surface to bring it to the limiting condition of equilibrium, i.e.,

when with any increase of force it will begin to roll, the cylinder

is under the action of the force P applied as draught at its axis,

the weight W, the latter's equal and opposite normal reaction

R, and a force of friction F acting transversely to the line of con-

tact of the roller and plane. The direction of the resultant of

P and Ogives the line of action of the virtual reaction R', as

in sliding friction. The horizontal component of this reaction

represents the magnitude of the force F. The graphical analy-

sis is, therefore, similar to that of sliding friction.

126. Examples. The following examples are given to illus-

trate or extend the graphic methods given in the preceding

articles.

Figure 137 rep-

resents in diagram-

matic form the

ordinary station-

ary steam engine.

Only centre lines

and the friction

circles are shown,
FlG * I37 '
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A being the bearing of the crosshead pin, and B and C, those

of the crank-pin and shaft, respectively. The arrows at the

friction circles show, for this position of the revolving parts,

the direction of motion of the rotating member of each turning

pair, i.e., the two bearings of the connecting rod and the shaft

in its bearing. Let the crank have clockwise rotation and its

motion be opposed by a known resistance W of lever-arm L.

It is required to determine the net force P excluding the

friction of piston rod and piston exerted in the cylinder at

this point in the forward stroke.

From Art. 120, it will be seen that the line of action of the

thrust T of the connecting rod is tangent to the lower sides of

the friction circles at A and B. The crosshead is in equilibrium

under the action of P, T, and the virtual reaction RJ from its

slipper bearing. This reaction makes the angle of friction with

the normal to the bearing, and the location of RJ is determined

by the fact that it must pass

through the intersection D
of the lines of action of P
and T. Similarly, the crank

is in equilibrium under the

action of 7", W, and the

reaction R% from the shaft

bearing C, which reaction

is tangent to the upper side

of the friction circle and

passes through the point E
where W cuts T. In the

force polygon, lay off ab
= W, and draw ac and be parallel to T and R

2 ', respectively.

Similarly, lay off ad and cd parallel, respectively, to P and

RI'. Then, ad represents the magnitude of the required force

P, on the scale adopted.

Figure 138 represents the upper part of an ordinary screw

6 H K

FIG. 138.
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jack. The screw A engages the nut B
y fixed in the sup-

porting frame C; the load W rests on the swivel- plate D,

journalled on the screw-head E, the latter being bored for

the bar by which power is applied to turn the screw and lift the

load.

Let the circle of radius r^ be the horizontal projection of the

mean helix (Art. 115) of pitch-angle a, on which the two halves

of the load W may be assumed to be concentrated at two

points diametrically apart. Lay off the vertical line OG =

IV/2, draw GK horizontally, and make GOH equal to the angle

of friction and HOK equal to the pitch-angle. Then, GK rep-

resents the magnitude of the force of friction, F, acting at each

of the points of application of the load W/2 on the mean

helix.

Again, let r2 represent the mean radius of friction of the

collar bearing (Art. 117) between the swivel-plate and head,

and assume, as before, that the load W is divided and concen-

trated at two diametrically opposite points on a circle of this

radius. Then, GH represents the magnitude of the force of

friction, F 1

', acting at each of these two points. These two

couples, when combined, form a resultant couple of force F"

and arm d, which couple measures the resistance of the screw-

thread and the collar-bearing at the swivel-plate.

Since it is impossible to make the load W absolutely central,

there will also be journal friction on the pin Z, on which the

plate is centred. The amount of this resistance will depend

on the eccentricity of the load and the resulting normal pressure

on the pin. If this pressure be known, the frictional resistance

can be determined by the methods of Art. 118.

Professor Hermann *
gives the method shown in Fig. 139 for

finding the relation of load and power, and the tensions in the

various portions of a chain or rope passing over the sheaves of

the pair of blocks of a tackle, friction being considered.

*
"Graphical Statics of Mechanism," Hermann-Smith, New York, 1904, p. 88.
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In Fig. 139, the blocks are three-sheaved; the load W is

suspended from the lower or movable block A, and the frame

C of the upper or fixed

block B is supported from

above. The rotation of

the sheaves in raising the

weight is clockwise, the

rope winding on at D and

E, and off at .Fand G. If

the upper or fixed end be

secured to the hanger C,

as at T
lt

there will then be

M seven portions of the rope

whose tensions, 7^ to T
7 ,

are to be determined, thet\ last, or that of the hauling
7 N end, being equal to the lift-
j

ing force P.

FIG. 139.
For any two consecutive

sections of these seven one on each side of a sheave of either

block the tension in the rope on one side constitutes the load,

and that on the other, the power for the pair. If R be the ef-

fective radius of the sheave, 1\ that of the block-journal, and /

be equal to r sin $ as in Art. 121, or to s as in Art. 122, then,

from these articles, the relation between the power/ and the

load w on these two portions, for either a rope or chain, will be :

R + sin <ft + /

R i\ sin
<f>

t

At the journal of the lower block, the load W acts on the

vertical tangent to the left (Art. 120) of the friction circle; at

the upper journal the reaction of the support C acts on the

similar tangent to the right. Again, from the figure, it will be
seen that the unwinding or power side is the left on the lower
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block and the right on the upper, the tensile forces in the sec-

tions of rope or chain acting,, in each case, at a distance R t

from the centre, as shown by the full lines ab and cd\ similarly,

on the respectively opposite, or load, sides of the blocks, the ten-

sile forces act at a distance R + / from the centre. Hence, as

the lower block is free, it will, when ascending, swing to the

left for a distance 2
/*,

as shown in the figure, so that the tensile

forces shall act vertically. When motion ceases, the block

swings backward until it is again vertically below the upper

block; when the load is lowered, this process is reversed.

In passing from the fixed end of the rope or chain at the

upper block to the free or hauling end, its tension is increased,

whenever it passes over a sheave, in the ratio given by the re-

ciprocal of the fraction in the preceding equation. Hence,

starting at the fixed end, the general expression for the ratio

between the tensions in two consecutive sections is

Tn+l R -h;-! sin
</> +

In the left-hand figure, draw the horizontal line HK, cutting

the lines of action of the rope tensions ab and cd at K and //,

respectively, and those of the load Ji^and the reaction from the

upper bearing at 0% and o
lt respectively. Then, HK= 2 R, and

the distances :

Ho^ = Ko^ R r^ sin < /,

o^p^
= 2 r^ sin < 4- 2 /,

Ho<i
= Ho

l + o^o^
= Ko

l
= R + t\ sin < + /.

Assume that the tension 7\ in the first section from the fixed

end is known and is equal to H, i on the line cd. From i draw

through o
l
the line /, 2, cutting the line ab at 2. Then K, 2 is

equal to the tension T2 in the next succeeding section, for the

triangles H, i, o
l
and K, 2, c

1
are similar, and

, 2 Ko
l

R + r-i
sin

</> +
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Continuing in the right-hand diagram, draw from the point 2

through <?
2 the line 2, j, and, by similar reasoning, H, 3 is the

tension 7"3 in the third section. In the same way, K,4= 7"
4 ,

H, 5 = 7*5, K, 6 = T
6 ,

and H,j T
7
= P are found. The sum

of the tensions, 7\ to 7
6 , inclusive, which is the line LM, is

equal to the load W, while the force P is on the same scale

equal to MN.
Since the distances Ho^, Ho^ Ko

lt
and Ko^ are constant for

any system of sheaves, such as is shown in the figure, it is evi-

dent that the ratio MN/LM is constant, and that any value of

7\ may be assumed in finding the ratio. When the latter is

determined, the value of P, for any value of W, is given by the

expression,
P= W- MN/LM.

Figure 140 represents the pitch cir-

cles of a train of spur gears, A, B,

and C, with involute teeth. The power

applied to the driving gear A is equiv-

alent to a force P of arm L
;
the re-

sistance acting on the gear C is equal

to a force W of. arm L'. Assuming
friction at the wheel journals and

between the engaged teeth, it is re-

quired to determine the magnitude of

the force P for a known resistance W .

The driving gear A is in equilibrium

under the action of the force P, the

reaction 7\ from the teeth of gear B,

and the virtual reaction R
l
from the

bearing. By Art. 123, the reaction 7^ is

parallel to the line aa! passing through
the point of tangency of the pitch cir-

cles, the distance of 7\ from the centre

of A being greater than that of aa' by
FIG. 140.
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the amount given in the article cited. The lines of action of

P and 7\ intersect at c, and the reaction R
l
drawn from c is,

by Art. 120, tangent to the lower side of the friction circle.

The intermediate gear B is in equilibrium under the action of

the force Tv the reaction T2 from the teeth of gear C, and the

vertical reaction R2 from the bearing. Since the gear B is the

driver for gear C and its motion is opposite to that of gear A,

the reaction T
2 has, by Art. 123, the direction and location

shown in the figure, being parallel to the line bb* passing through
the point of tangency of the pitch circles. The lines of action

of 7\ and T
2 intersect at d, from which point the reaction R2 is

drawn tangent to the lower side of the friction circle.

The driven gear C is in equilibrium under the action of the

resistance W, the force Tz and the reaction R3 from the bearing.

The lines of action of T2 and J^meet at e, from which point the

reaction R
3

is drawn tangent to the upper side of the friction

circle.

The directions of all the forces acting on the train and the mag-
nitude of one, the resistance W

y
are known. Starting with the

latter, the force polygon is constructed in the customary way.

NOTE. Within the limits of a single chapter, it has been possible to give

only a brief review of the general principles of this subject. For the full analyti-

cal treatment of friction in mechanisms and machines, the student is referred to

Kennedy's
" Mechanics of Machinery

" and to Thurston's " Friction and Lost

Work in Machinery and Mill Work. 1 ' Professor Gustav Hermann was the

pioneer in the application of graphical methods to mechanism, and his admir-

able work,
" The Graphical Statics of Mechanism," presents these methods in

detail, with numerous examples. A summary is also given in Weisbach's
" Mechanics of Engineering and of Machinery," Vol. Ill, Parti, Section II,

Appendix.

PROBLEMS

94. A bell crank has two arms at an angle of 90. When at rest, one arm

is horizontal, the other vertical. The horizontal arm has a weight IV sus-

pended from it by a link journalled on a crank-pin fitted at its outer end
;
the

power P is applied in a horizontal line at the upper extremity of the vertical
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arm, the latter being twice the length of the horizontal arm. Find the mag-

nitude of P for a given value of W, when the bell crank has rotated through

45, considering the friction at the bearing of the bell crank and that at the

link-bearing.

95. Find the relation between the power P and the resistance W in a turn-

buckle with right- and left-handed screws, considering friction as occurring

only between the screw-threads and their nuts.

96. Draw the force polygons for four positions, 90 apart, of the crank of the

ordinary beam engine with vertical cylinder, such as is used in marine service,

considering friction throughout except that of the piston and piston-rod.

97. Draw the force polygon for an eccentric whose rod is directly connected

with a valve-rod. Consider all friction.

98. Find graphically the efficiency of worm-gearing.

99. Draw the force polygon for a Prony friction-brake.

100. Considering friction, find graphically the forces which must be applied

during forward and backward movement of a differential pulley carrying a

known weight IV.

101. Considering friction, draw the force polygon for a horizontal shaft

resting in a ball-bearing.



CHAPTER XI

MOMENT DIAGRAMS FOR SHAFTING

THE stresses to which shafting is subjected are those due to

bending or twisting, or to both of these actions. Thus, in a

marine engine, the pressure on each crank-pin and the corre-

sponding reaction from the adjacent shaft-bearing form a couple

which can be resolved into a second couple tending to bend the

shaft, and a third which acts to twist it. The torsional moment

thus produced by one or more cranks is transmitted through the

crank-shaft, is resolved into cross-shear at the coupling bolts,

and again transformed into a twisting moment in the line-shaft,

where, neglecting the weight, no action but torsion exists. The

thrust- and propeller-shafts, revolved by torsion, are, in addition,

subjected to bending, the former by the unbalanced thrust of the
" horseshoe" bearing, the latter by the weight of the propeller

and the oblique forces from its blades.

Similar conditions exist in stationary engines and mill work.

The shaft rests in bearings or hangers, which correspond with

the supports of a beam. The loads upon it are its own weight,

and, between two or more bearings, those of pulleys or a fly-

wheel with their belt-tensions, or the thrust of the connecting-

rod on the crank-pin. These loads tend to bend the shaft, pre-

cisely as with a beam, except that, since the shaft revolves, there

is a reversal of bending stress in each fibre during each revolu-

tion, and, further, the action of the belts may cause a swaying of

the shaft, with a similar, but momentary, reversal of stress.

Finally, the ordinary shaft is twisted between the driving mem-

269
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her, as a crank or pulley, and the driven member, a pulley, gear,

or fly-wheel, and this twisting produces a torsional shearing stress.

These two actions, bending and torsion, must, in any event, be

examined separately. In finding the required diameter of a

section of shafting for given conditions, the character and

locations of the loads determine as to which of the two stresses,

or both, are of importance. Thus if, in mill work, there are no

pulley or other loads between adjacent hangers and if the

diameter is relatively small and the shaft is not deflected other-

wise than by its own weight, the latter may be disregarded and

the torsional stress alone considered, the diameter being made

large enough, however, to prevent the twist of the shaft exceed-

ing i in an axial length of about 20 diameters.

If, on the other hand, pulleys with heavy belt-tensions are

located on the section at such a distance from the nearest hanger
as to make the bending effect of their loads marked, the stress

due to torsion may be immaterial as compared with that from

flexure. The shaft may, therefore, be either designed for bend-

ing only, with a limitation in deflection under load to at least

T^Vfi f tne ^ngth between bearings, or, for greater accuracy,
the combined effect of bending and twisting may be determined

by the formulas of Rankine or Grashof (Art. 50), and the diam-

eter of the shaft found for the resultant stress.

In any event and for all classes of shafting, the limit of safe

working stress should be fixed by the character of the strains to

which the shaft is subjected from bending, twisting, and
the frequency of stress-reversal.

127. Shear and its Resultant Stresses. As stated previously,
the twisting of a shaft develops shearing stress on planes
normal to the axis. The magnitude and effect of the vertical

shear in beams has been discussed (Arts. 55, 56). It will now
be shown that shearing force cannot exist alone, but that,
for equilibrium, there must be resultant stresses produced by it.
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(a) Horizontal Shear. Let abed, Fig. 141, represent one face

of a cube of unit length, subjected on the sides ab and cd to the

vertical shear V> which is assumed to

be of equal intensity on both of these

sides. The two forces Fform a couple

whose arm is unity and which acts to

cause clockwise rotation of the cube.

For equilibrium, an opposing couple

must exist whose forces V have the fv
same magnitude as Vy

since the arm is FIG. 141.

of the same length in both cases. The principle that the verti-

cal shear always produces thus a horizontal shear is general.

If the sections ab and cd be considered as indefinitely near each

other, the effect of the weight of the material between them

may be disregarded, and the two forces V will be equal to each

other and to V1
.

(b) Tension and Compression Due to Shear. The resultant of

the forces Fand V at a and d is a tensile force acting to part

the cube on the diagonal plane be. Similarly, the resultant of

these forces at b and c is a compressive force normal to the

plane ad. The magnitude of these resultant forces depends on

the angle 6 of the diagonals ;
it is a maximum when 6 = 45.

Its intensity, i.e., the tensile or compressive unit-stress, is equal

to the corresponding resultant force, divided by the area of the

diagonal plane whose trace is ad or be.

(c) Coefficient of Elasticity for Shearing. There is a definite

relation between this coefficient (Art. 53) and those for tension

and compression, the value of the former being about two-fifths

of those for either of the two latter stresses. For cast iron,

wrought iron, and steel, E, for shearing, is 6, 10, and 1 1 millions,

respectively.

128. Torsion. Figure 142 represents a counter-shaft, supported

by hangers at A and B, carrying driving and driven pulleys, C
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and D, respectively, and rotating in a clockwise direction when

viewed from the right. Each pulley is placed against its adja-

cent bearing, so that, for the length / between pulley-centres,

FIG. 142.

the shaft is virtually subjected to torsion only, if its weight be

disregarded. 'This section is shown below to an exaggerated

vertical scale. The shaft is solid and cylindrical. The effect

of the driving pulley is equivalent to that of a force P with

lever-arm/; the driving and twisting moment is hence

Let be be a line scribed parallel to the axis when the shaft is

at rest. When motion begins, the load on the belt of pulley D
holds the left end back, the belt-tension on C pulls the right

end forward, and the shaft is twisted, so that, when uniform

motion is attained, the line be assumes the spiral form shown

approximately by the dotted line be. The consequent radial

displacement is represented on the elevation to the right, an

elementary area a, originally on the radius of, moving, through
the angle <, to a' with radius of. Within the elastic limit, the

angles ebc and < increase with the moment Pp ;
if the length /

be extended, <f>
will grow proportionately for the same twist,
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while cbc remains constant. The angle <f>
is the angle of torsion

of the section at ec
t
with regard to that at b.

Assume that the section of length /, instead of being a solid

cylinder, is composed of a number of thin circular plates strung

on the axis, and let the line be be scribed as before. Then,

shift the plates until the points thus marked form the spiral be.

It is evident that each plate must move, with regard to the

next one to the left, by the amount of increase of the angle of

torsion for that section. If now the plates be considered as

indefinitely thin, the transverse motion and distortion which are

thus required will reduce torsion, in effect, to shearing force

applied normally to the radii of the shaft. Since the latter is

uniform in cross-section throughout, and since that cross-section

is circular, it is evident that the relations of shearing stress and

deformation are the same for all cross-sections and for all ele-

mentary areas of the same radius in the same cross-section.

(a) Unit Shearing Stress. Consider any section as EE, dis-

tant x from the left-hand end, and an adjacent section distant

dx to the right of it. Let r\ be the external radius of the shaft.

In twisting, the section to the right will rotate with regard to

the other section, through the angle d$, or the arc r^, which is

the total deformation at the radius r
x
and through the axial dis-

tance dx. Hence :

unit-deformation s at radius r\
= r

i-^-
= r

\-^>

in which
<f>

is taken in circular measure.

Let Ss be the unit shearing stress at the radius r
t
and E be

the coefficient of elasticity for shearing. Then, by the definition

of ^( Art. 53):

The stress is hence directly proportional to the radius. The

stress Ss
' at the radius r is then :
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(b) Moment of Resistance. Assume a concentric annulus in

the cross-section EE, of width dr and radius r. Then :

Area of annulus = 2 irr x dr,

Stress on annulus= 2 irrdr x 5/ =
^ *

; Vr,
fl

Moment of stress about axis= ^ r^drx r
^ s

- r*dr.
r
\

r
\

The moment of resistance to shearing of the entire cross-

section at EE is the summation of the moments of the series of

concentric rings of width dr, extending from the centre outward

Hence :

Internal resisting moment = ^-^ f*Wr =
*

in which/is the polar moment of inertia (Art. 49) of a circular

section, and c=r1 is, as in beams, the distance of the most remote

fibre of the cross-section of the shaft from the centre of gravity

of that cross-section.

(c) Relative Resistance to Bending and Shearing. From the

above and by Art. 62 we have :

Moment of resistance to torsion = S,J/ct

Moment of resistance to bending = SI/c,

in which 7 is the rectangular moment of inertia of the cross-

section. For a circular section, /= 2 7. Hence, if 5S
= 5, the

resistance of the shaft to torsion is twice that to bending. This

is true also for hollow shafts.

(d) Hollow Shafts. The formula deduced above for the re-

sisting moment to torsion is general, if the proper values of /
and c be substituted in it. For :
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Hollow cylindrical shaft, external diameter, dl ; internal, d ;

j=?-W

Solid cylindrical shaft of diameter dv J = d.

The distribution of the material of a solid shaft is uneconomi-

cal with regard to torsion, since the resisting stress is a maxi-

mum at the outer surface and falls to zero at the centre. The

core removed from a hollow shaft is, therefore, virtually ineffec-

tive in resistance, and such shafts are stronger than solid shafts

of the same sectional area. From the values of Jt
as given

above, it will be seen that the angle of torsion of the hollow

shaft is the difference between those of two solid shafts of diam-

eters d and d, respectively.

(e) Angle of Torsion. For the section at ecy distant / from

that at b, we have :

M
t
= S8 and Ss

=
,

in which c = r
x
and

<f>
is in circular measure. Substituting and

solving :

/J/,

For a section distant x from /, the corresponding value of the

angle of torsion in circular measure will be found by substitut-

ing x for /. In angular measure, this expression becomes for :

Solid shaft, <f>=
r,a^

e

Hollow shaft, <f)
=

129. Torsion and Bending Combined. If, Fig. 143, a tensile

force P be applied to the bar ab, this force can be resolved into



276 GRAPHIC STATICS

^

tensile forces normal to, and shearing forces along, any plane,

as cd, not normal to, nor coinciding with, the line of action

of P. Similarly, if P were com-

pressive, there would be compres-

l sive forces normal to, and shearing

forces along, the plane cd. Hence,

when a tensile or compressive force,

FIG. 143. as P, is applied to a body, a shear-

ing force V
l

exists on any plane, as cd, inclined to the line of

action of the force at an angle less than 90. This result is

the converse of, and follows from, the principles established

in Art. 127.

Again, assume, as in Fig. 144, that the bar is a parallelo-

pipedal element, subjected to both a tensile force P and

a vertical shear V. By
Art. 127(0), there will exist

also a horizontal shear V .
v "*~

These three forces can be p-<-

resolved normal and parallel

to the diagonal plane ab, y

giving a tensile force 7~and

a shearing force Vv along the
FlG' 144'

diagonal, each of the two latter forces reaching a maximum
with a certain value of <, the angle of inclination of the

diagonal. Equations (i) and (6), Art. 50, give the maximum
resultant tensile and shearing unit-stresses, respectively, as

deduced from these considerations; and equations (7) and (2),

the equivalent twisting and bending moments for bodies of

circular cross-section, as a shaft.

When a shaft is subjected to torsion only, the maximum
tensile stress acts, as in Fig. 141, on the diagonal at an angle
of 45 with the axis. If, in addition, the shaft be bent by ap-

plied loads which produce axial tensile and compressive stresses,

the angle of maximum tension becomes greater than 45; and, if

V'
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the shaft yield, the fracture, while still spiral, will be more nearly

transverse to the axis than a similar fracture from pure torsion.

When, as is usual, it is necessary to consider both stresses in

determining the diameter of a shaft, the resultant or equivalent

moment, either for twisting or bending, can be found by the

methods of Art. 50. The diameter is then made large enough
to keep the corresponding stress within safe working limits.

130. Axles. The term 'axle' is somewhat elastic in general

application. In the examples which follow, it will be restricted

to short lengths of revolving or oscillating shafting, which do

not transmit power by torsion and which, therefore, are sub-

jected to bending only from the loads carried. Under these

conditions, the axle is essentially a beam, except that, when

rotating, there is a reversal of stress in every fibre during a

complete revolution. There are three cases : the load may act

normal to, inclined to, or parallel with the axis.

(a) Load Normal and between Journals. Fig. 145 represents

an axle with journals at A and B and carrying a vertical load

P at C, the centre of
p

the hub-seat. The re-

sultants, RI and R<Z, of

the upward pressures

on the journals are as-

sumed to act at the

respective centres of

the latter. From a, on

the line of action of R
lt

lay off ae = P, and to FIG. 145.

b, where the horizontal line ab meets the line of action of R%,

draw eb intersecting the line of action of P at O. Project O to

/on ae. Then,y# = Rv since, taking moments about B :

p x BC=R 1
x AB,

whence, P \R^\ \ae\cO\af.
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Similarly, ef= R2
. Taking O as the pole, draw the rays Oa and

Oe of the force polygon, and the corresponding equilibrium

polygon aOb is the bending moment diagram (Art. 41). The

product of any ordinate, as y, of this diagram, by the pole-dis-

tance Of, is the bending moment at the corresponding section

of the axle.

Since the bending moment is a maximum under the load, the

necessary diameter of the shank of the axle decreases from the

hub-seat to the journal. Let d be the diameter of the shank at

the distance x from the line of action of Rv Then (Arts. 57,

62), the bending moment at x is :

M= = SIjc =

and, considering the stress 5 as constant throughout, x varies as

dz
. Hence, for uniform strength with a circular cross-section,

the form of the shank should be that of the cubic parabola

shown by dotted lines.

(b) Load Normal and Outside the Journals. Fig. 146 repre-

sents an axle journalled at A and B, and carrying a vertical load

P on a hub-seat C
to the right of the

right-hand journal.

It is evident that the

reaction R
l

will be

downward, and that

R
2 at B will act

upward. Draw the

horizontal line abf

through the lines of

action of the forces
;

from a, lay offae=P,
and through b

y draw eb intersecting the line of action of P at c.

Project c to d on ea prolonged. Then, da = R
lt for, taking

moments about B:

FIG -
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P X BC=R X AB,

whence, P : R
1

: : AB : BC\ : ae : cf\ ad.

From any pole O on cd, draw the rays Od, Oa, and Oe of the

force polygon, and construct the corresponding equilbrium poly-

gon and bending moment diagram, DEF. As shown in (a), the

diameter of the axle at any given point can be found from the

ordinates of this diagram, if a proper value of the working stress

S be assumed.

(c) Load between Journals and Inclined to Axis. Fig. 147

represents an axle having the hub-seat between the journals,

FIG. 147.

A and B, and the line of action of the load P inclined to the

axis by the angle 0.

Resolve the force P into vertical and horizontal components,

P
l
and P2 , respectively. The former acts to bend the shaft

;
the
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latter to produce horizontal thrust on the bearing A and on the

collar at C. On the lines of action of R
lt
Pv and R

2 ,
draw any

triangle, as EFG. This triangle is the equilibrium polygon for

these forces. From any pole O, draw the rays Oa, Ob, and Oc
9

parallel respectively to the sides EF, FG, and GE. Then,

ab = Pv ca = Rv and be = R2 .

The inclined force P produces a downward thrust PB on the

left end C of the hub-seat and an upward thrust P4 at the other

end D. The true vertical forces acting on the axle are then R
lt

Rz ,
P

B,
and P^ The force P

l
is evidently the difference between

the forces P3
and P4 ,

and the three forces are in equilibrium.'

Hence, construct the equilibrium polygon, O'a'tf, on the lines of

action of Pv P3 ,
and P^ with O'a r and O'b' parallel, respectively,
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to Oa and Ob
; and, from (9, draw Oa" parallel to a'b'. Then,

aan = P3 and anb = P4 . Prolong EFto H on the line of action

of P3 , and, from //, draw HK parallel to a' b 1

. The equilibrium

polygon and bending moment diagram for the forces PB and P
and the reactions R

l
and R2 is then EHKG.

(a). Load between Journals and Parallel to Axis. Figure 148

represents an axle driven by friction gearing, which produces a

horizontal thrust P at the distance a from the axis. The driven

wheel C is keyed on a boss of length b, between the journals A
and B, the latter being distant / from centre to centre.

The force P develops an equal and opposite reaction P
l
from

the bearing of the journal A, the two constituting a couple

(Art. 27) of arm a. Similarly, the pressure of the axle is down-

ward at the left end and upward at the right. Hence, the reac-

tions, R 1
and R2 , are, respectively, upward and downward forces,

are equal, and form a couple of arm /. The axle is in equilibrium

under the action of these opposing couples. Therefore

R
l
x 1= P x a.

To determine the magnitude of R
1
= R2 , lay off cda and

ce = /, and draw de. From d, set offdf=P parallel to ce and

draw^ parallel to cd. Then, the triangles cde 2J\&fgd are simi-

lar, and fg = R 1
= R%, since :

fg\fd\\cd\ce,

or Ri\P\\ *:/,

and R
1
x /= P X a.

The force P also produces, and is equivalent to, a downward

thrust P2 at the left end, and an upward thrust P% at the right

end, of the hub-seat. These two forces form a couple of arm b.

The axle is in equilibrium under the action of the two opposing
vertical couples, R lt

R
2 and P2 ,

P
3 . Hence :

R
1
x !=P2 X b.

To determine the magnitude of P
2
= P

9 , lay off ch = b and
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ck = J?v Draw he and km parallel thereto. Then the triangles

che and ckm are similar, and cm P
2

P
3 .

On the load-line pq, lay off np = R^ and nq = P2 . Then,

fn RI and qn = Pz
. From any pole O, draw the rays On, Op,

and Oq, and construct the corresponding equilibrium polygon

and bending moment diagram, DEFG. The side DG is parallel

to the ray On, DE and FG to Op, and EF to Oq.

(e) Load Overhung. When, as in Fig. 149, the line of action

of the load P does not pass through the centre of gravity of the

-**-- b

FIG. 149.

bearing area, the leverage of the load causes an upward thrust

at one end of the hub-seat and a downward thrust at the other,

with also, if the moment be sufficient, reactions which are re-

versed similarly.

In Fig. 149, draw any triangle, as EFG, with vertices on the

lines of action of Rv R2 ,
and P. This triangle is the equilibrium

polygon for these three forces. On the load-line, lay off ab = P;
from a and b, draw aO and bO, parallel to EG and FG, respec-

tively, and intersecting at the pole O of the force polygon ;
from

O, draw Oc parallel to Ef. Then, ca = R
1
and be = R2 . The

force P has thus been resolved into two parallel forces (Art. 25)

on the same side of P, one with, the other against it.
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The force P is also the resultant of the upward thrust P
l
and

the downward thrust P2 at the ends of the hub-seat. The mag-
nitude of these two components of P can be determined by the

same method as that just given for R
1
and R2 . Prolong the

line of action of P
l
until it intersects the side EG at H\ simi-

larly, let the line of action of P2 intersect GF prolonged at L.

Connect //and L. Then, the bending moment diagram for the

forces R
lt
R

2 ,
P

lt
and P2 and the axle is EHLF. From O,

draw Od parallel to HL. Then, ad= Pl
and db = P

2 , their dif-

ference being P = ab.

(/) Multiple-loaded Axles. If an axle carries two or more

loads whose lines of action lie in the same plane, the bending
moment diagram for flexure in that plane can be drawn by the

methods of Art. 42 (a). When the lines of action are in planes

inclined to each other, the moment diagram for bending in any

given plane can be constructed as described in Art. 42 (b).

Thus, Fig. 60 shows a vertical force W and a force P, inclined

by the angle to the vertical, the lines of action of both forces

being normal to the axis AB of the axle. With regard to the

final reactions, R l
and R%, at the bearings A and B, it should

be noted that the partial reaction, due to W at either bearing

and as given by the force polygon, lies in a vertical plane, while

that due to P is inclined by the angle 0. The final reaction is

hence, in magnitude and direction, the resultant of the two par-

tial reactions corresponding with it, when they are inclined to

each other by this angle. If the line of action of a force is not

perpendicular to the axis, its component normal to the latter

should be used in constructing the force and equilibrium

polygons.

131. Shafts for Power Transmission. As has been stated, a

power shaft is subjected to torsion and also to bending from its

own weight, from those of any pulleys, gears, etc., which it may

carry, and from the pull of belt-tensions. Each of several such
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loads may act to produce bending in a different plane from those

of the others.

FIG. 150.

Thus, Fig. 150 represents a shaft supported in bearings at

A and B, driven by the pulley C to the right of B, and driving

the pulleys D and E between the journals. The latter pulleys
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are assumed to be belted to others vertically beneath them,

while the axis of the driver for C is parallel to, and in the same

horizontal plane as, the shaft AB. Therefore, as shown by (A),

the shaft is acted on by the vertical bending forces, Pv P2 ,
and

W, which are, respectively, the weights and belt-tensions of

pulleys D and E and the weight W of the pulley C and of one-

half of its belt
;
the corresponding vertical reactions are Rv

' and

Rv ". In a horizontal plane, as shown by (B\ the bending force

is the resultant P of the belt-tensions of pulley C, the corre-

sponding horizontal reactions being Rh
' and Rh

' f
. The resultants,

R
l
and R^ of these two sets of reactions are obtained as shown

by (C) for Bv
The two force polygons are drawn to the same load-scale and

with the same pole-distance. The equilibrium polygons Fand
H are, respectively, the bending-moment diagrams for the ver-

tical and horizontal forces, while polygon R is the combined

bending-moment diagram, or the resultant of Fand H. To ob-

tain any ordinate, as r, of diagram R, lay off horizontally from,

the similar ordinate y of V, the corresponding ordinate x of H ;

r is then the resultant of x and y.

The shaft is also subjected to torsion from C to D\ from C
to E

y
the twisting moment is that required to drive both of the

pulleys E and D
;
between the two latter, the moment is equal

to the driving moment for D only. This twisting moment is

represented by the diagram defghk, the scale being the same as

that of the bending moment.

Diagram E gives the equivalent bending moments at all sec-

tions of the shaft, i.e., at each section, the bending moment

which is equivalent in stress to the aggregate of the three other

moments. The method of constructing this diagram is based

on equation (2), Art. 50. With any point m on the axis kd as

a centre, revolve the torsion semi-ordinate mn to the horizontal

at mp; and from q, the middle point of the corresponding

bending ordinate, draw qp. Then, pq + qs = n's
1

,
the resultant
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ordinate for diagram E. The maximum ordinate of the latter

diagram determines the diameter of the shaft, a suitable value

being fixed for the working stress.

132. Shaft with Single Overhung Crank. Fig. 1 5 1 represents

a crank shaft, journalled at A and B, and having an overhang-

FiG. 151.

ing crank whose arm or web BC is perpendicular to the axis of

the shaft. For simplicity, no load is shown, the power trans-

mitted through the shaft being assumed to be delivered as a

twisting moment at the left-hand end.

The bending force of the thrust or pull P of the connecting

rod acts on the shaft in a plane passing through the axis of the

latter and parallel to the rod. The torsional moment in the
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shaft, as drawn, is uniform throughout and is equal to P x /, in

which / is the effective radius of the crank. The latter is

a cantilever, and, as the load P is applied eccentrically, the

tendency is not only to bend the crank but to twist it about the

neutral axis be, when the engine is not on either 'dead centre.'

The crank pin is also a cantilever, loaded at the middle of its

length with P.

The maximum effects in bending and twisting combined are

produced when the force P is at right angles with the crank,

which is the position shown by full lines in Fig. 152, where Q
is the total pressure on the piston, P is the thrust on the crank

pin, and R, the resultant ,p

of the reactions from the

shaft bearings, is equal

and parallel to P and op-

posed to it in direction.

To simplify the diagrams /

of Fig. 1 5 1
,
the forces P FlG> I52 '

and R, with regard to their bending action on the crank pin

and the shaft, are assumed to be revolved through 90, as

shown by dotted lines in Fig. 152, and to act in the plane of

the crank, this change evidently having no effect on the flexure

of these two members. In the bending and twisting of the

crank and in the torsion of the shaft, however, P is considered

in its original direction.

(a) Shaft. Lay off the line abed representing the neutral

axes of the shaft, crank, and crank pin. The forces acting to

bend this composite beam are P applied at the centre of the

crank pin, and, in the same plane as /*, the reactions R
l
and R2

from the shaft bearings ;
the magnitude of P is known and

those of the reactions are given by the force polygon. The

bending moment diagram is aef\ the ordinates of this diagram

from /to ware proportional to the moments on the crank pin, the

remaining ordinates, from w to a, to the moments on the shaft.
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The twisting moment acting on the shaft from b to a is equal

to P x /. In the partial force polygon for P, the abscissa /
has the ordinate T which, on the same scale as that of the

bending-moment diagram, is equal to Pp t since, in the force

polygon :

T-iPiifiH
TxH=Pp,

i.e., as T and any ordinate of the bending-moment diagram must

each be multiplied by the pole-distance H to obtain the numeri-

cal value of the moment, the two ordinates are drawn to the

same scale. The rectangle akmb of height T therefore repre-

sents the twisting moments on the shaft. The diagram for the

equivalent bending moments on the shaft is ane'qb ;
it is drawn

by the methods given in Art. 131.

(b) Crank Pin. The pressure of the connecting rod on the

crank pin is assumed to be uniform throughout the length of

the pin, and may therefore be considered as concentrated in the

force P at the middle. The corresponding bending moments

are shown proportionately by the ordinates from / to g in the

bending moment diagram. In addition to this bending, there

is a cross (vertical) shear at the inner end of the pin, and, when

the engine is on either
' dead centre/ flexure of the crank in the

plane of the line of action of P.

(c) Crank. As has been stated, the force P, with regard to

the crank, is considered to be at right angles with the latter, as

shown in full lines in Fig. 152. The bending moment on the

crank is then zero at the outer extremity c and is equal to P x /
at the inner end b. The diagram of bending moments is there-

fore cbr, in which, on the same scale as that of the previous

diagrams, br Pp= T. The bending moment at any section of

the crank is equal to the product of the pole-distance H by the

length of a line drawn at the given section, parallel to br and

extending from cb to cr.
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The force P, when at right angles to the crank, also acts to

twist the latter on its neutral axis be with a lever-arm / equal to

the distance between the line of action of the force and this

neutral axis. The twisting moment is then P x /, which, by the

reasoning given previously, is seen to be equal to the ordinate t

in the force polygon. This torsional moment is uniform through-
out the length of the crank and is represented by the rectangle
bcsv of height /. The twisting moment at any section of the

crank is therefore the product of H by the length of a line

drawn at the section, parallel to cs and between be and sv. The

diagram for the equivalent bending moments on the crank is

cbxy ;
it is constructed as described previously.

133. Shaft with Single Crank, Overhung and Offset. The
crank shaft shown in Fig. 153 is, with one exception, the same

as that of Fig. 151. The bearings of the two shafts are the

same distance apart and the cranks have the same effective

radius / ; but, in this case, the crank is not perpendicular to the

shaft, being offset so that its neutral axis makes an angle of 60

with that of the shaft. As before, in examining the bending
moments for the shaft and crank pin, the line of action of the

load P on the pin is assumed to lie in the plane of the crank,

while, with regard to the bending of the crank and the twisting

of the latter and of the shaft, P is taken as perpendicular to the

crank, as shown by full lines in Fig. 152.

(a) Shaft and Crank Pin. The bending-moment diagram for

the forces P, R^ and jR
2 , acting on the shaft and pin, is aef.

The portionfgw gives the moments on the crank pin; the part

abhe shows the moments on the shaft from a to b
;
and the

remainder, from bh to gw, the bending of the crank when the

force P is in the plane of the latter. The twisting moment
on the shaft is Pp = T, as before. The diagram of twisting

moments is akmb, and that for the equivalent bending moments

on the shaft is ne'qb.
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(b) Crank. When the force P is, as drawn, in the plane of

the crank, the bending moment on the crank at the inner end

of the crank pin is represented by the ordinate wg, and that at

the inner end of the crank by bh bh'. From the following, it

will be seen that, when the line of action of P is perpendicular

FIG. 153.

to the crank, the bending effect on the crank is materially

greater.

Thus, from the centre d of the crank pin, draw the perpen-
dicular dA = / to the neutral axis be of the crank. The moment
of P with regard to that axis is then P x /, and this moment
can be resolved into a twisting couple acting on the crank and
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a force tending to bend it As in (A), apply at the point A the

forces P' and P", parallel and equal to P and opposed in direc-

tion to each other. Then, P' and P form a couple of arm /

which twists the crank on its neutral axis, and P" = P is a force

acting at A to bend the crank.

The bending moment on the crank is zero at A and at b is

P x Ab = B, whose length is found from the force polygon by
the method used for T. From b, lay off brB perpendicular

to be, and draw rA
;
from c, erect the perpendicular co to be

meeting rA at o. Then, the diagram of bending moments for

the crank is broc. Laying off / in the force polygon, we have

the twisting moment /, which is uniform throughout the length

of the crank. Hence, the diagram of twisting moments is the

rectangle bcsv of height t. The ordinates representing the

bending and twisting moments are parallel to vr. The diagram
for the equivalent bending moments is bxyc.

134. Centre-crank Shaft. Figure 154 represents a centre-

crank shaft with the crank arms perpendicular to the shaft.

No load is shown, the power transmitted through the shaft

being assumed to be delivered as a torsional moment at the left-

hand end. The friction of the bearings and the weight of the

crank shaft are disregarded. As in Art. 132, the force P on

the crank pin is treated as lying in the plane of the drawing, so

far as the bending of the shaft and crank pin is concerned, and

as perpendicular to that plane and to the cranks, with regard to

the bending of the latter and the torsion on the shaft, cranks,

and pin. The line abcdef represents the neutral axes of these

members.

(a) Shaft. The bending-moment diagram for the forces P,

Rv and R2 is afh. The section ef of the shaft acts, through

the crank de, simply as a support for the right-hand end of the

crank pin, and is therefore not subjected to torsion, but only to

the bending whose moments are given by the portion /<? of the
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diagram. Both bending and twisting occur in the section ab.

The moments for the former are shown by the triangle abg\

the twisting moment is P x/ = 7^(Art. 132), and its diagram is

abmn. This torsional moment extends also from a to the centre

of the hub-seat at the left, but this part of the shaft will not be

R 2



MOMENT DIAGRAMS FOR SHAFTING 293

to Rfr no change in the conditions of equilibrium will occur.

One of these forces, R2', will form with R
2
a couple of arm ef

which will twist the crank
;
the other, R2", will bend the crank

and twist the crank pin with the lever-arm /. The twisting

moment is R2 xp = t, the value of t being given by the force

polygon. The twisting-moment diagram is the rectangle bgce

of height /. The diagram for the equivalent bending moments

is bgtik'e.

In this torsion of the crank pin, the moment / acts against

the moment of the forces to the left of it, which may be con-

ceived as momentarily holding the pin stationary while the

twisting takes place. Hence, these latter forces should not be

considered as producing a similar, but contrary, twisting of the pin.

(c) Right-hand Crank. The force R2 , acting at e, twists the

crank pin through the medium of the crank ed as a cantilever

fixed at d. Hence, this crank is subjected to bending, the

moment at e being zero and that at d being R2 x/ = t. The

bending-moment diagram is edq.

The crank is also twisted on its neutral axis de by the force

R2 acting at/with the lever-arm ef. The twisting moment is

R^ x ef= t
1 = ek, and the moment diagram is the rectangle edsv

of height /'. The diagram for the equivalent bending moments

on the crank is eds'v*.

(d) Left-hand Crank. This crank is a cantilever, fixed at b

and bent by the force P acting at c. The bending moment is

zero at c and P x / = T^\.b. The corresponding diagram is cbw.

The crank is twisted on its neutral axis be by the force R
v

acting at a with a lever-arm ab. The twisting moment is

R
l
x ab = t" = bgj and the moment diagram is the rectangle

bxyc of height /'. The diagram for the equivalent bending

moments on the crank is bx*y'c.

135. Centre-cranks, Offset. The conditions for the crank shaft

shown in Fig. 155 are the same throughout as those for the
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shaft examined in Art. 134, except that the cranks are offset,

making an angle of 60 with the horizontal, and the shaft bear-

ings are farther apart in consequence. The pressure P on the

crank pin is applied as described in Art. 132 and the power

l< -- dw >J

FIG. 155.

transmitted is assumed to be delivered as a torsional moment at

the left end of the shaft. The line abcdef represents the neutral

axes of the shaft, cranks, and crank pin. The bending-moment

diagram for the forces P, R^ and jR2 is ajk.

(a) Shaft. The section fe is subjected to bending only.
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The moment diagram is efm. The section ab is under bending
stress as shown by the moment diagram abg\ it is twisted also

by the force P with the lever arm /. The twisting moment is

P x / = T, the value of T being given by the force polygon

(Art. 132). The twisting-moment diagram is the rectangle abqr
of height T. The diagram for the equivalent bending moments

is abq'r
1

. The twisting moment T also extends through the

shaft from a to the centre of the hub-seat on the left, but this

section of the shaft will not be considered.

(b) Crank Pin. The crank pin is subjected to bending stress

from the force P, as shown by the moment diagram nolkh.

For the reasons given in Art. 134 (b\ it is also twisted by the

force R2 ,
taken as acting at the point o with a lever-arm p.

The twisting moment is R% x / = /, the value of / being given

by the force polygon. The twisting-moment diagram is the

rectangle nosv of height /. The diagram for the equivalent

bending moments is nos 1
k'v'.

(c) Right-hand Crank. Prolong the neutral axis de until it

cuts at w the normal to it from the bearing /. Assume, as in

(A), two opposite forces, R< and R2", each parallel and equal to

R2 ,
as applied at w. Then the forces R2 and R%' form a

couple of arm/k/ which twists the crank on its neutral axis, and

the force Rz
f

, acting at w, bends the crank, as if the latter were

a cantilever of length dw, fixed at d.

The bending moment is zero at w, and at d is R2 x dw t
1

,

as given by the force polygon. At d draw the perpendicular

dx t' and connect x and w. The bending-moment diagram
is edry. The twisting-moment is R2 xfw= t" in the force

polygon ;
the corresponding diagram is edd'e 1

'. The diagram
for the equivalent bending moments is eddy

1
.

(d) Left-hand Crank. Prolong the neutral axis be of the

crank until it intersects at c
1 and c" the perpendiculars drawn

from A and/, the points of application of the forces P and 7?
2 ,

respectively. Then, applying the principle shown in (A), we
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have, at the point c', a force P acting to drive the crank forward,

and, at the point c", a force R2
which resists this motion. Also,

by the principle illustrated in (A), the force P, with lever-arm

Ac', tends to bend the crank on its neutral axis in one direction,

while the force R2 ,
with the lever-arm/*;", produces torsion in

the reverse direction.

Since P and R2 act to bend the crank in opposite ways, the

resultant bending moment is evidently the difference of the

moments of these two forces. The moment of P is zero at c',

and at b is equal to P X be' = b' in the force polygon. The

moment of R2
is zero at c", and at b is equal to R2 x be" . As

be" is equal to dwt
the moment of R2 is equal to t

1

',
as found

previously in the force polygon. Constructing, as in (B\ the

two bending-moment diagrams, and subtracting the ordinates

below the axis be" from those above it, we have the diagram

bccfii for the bending moments on the crank.

Similarly, the twisting moment on the crank is the difference

of the moments of Rz and P. The moment of the former force

is R2 xfe".. From/ lay o8.f#fc" t
and the perpendicular

S31 = t
l
on fk produced, is the moment of R%. The moment of

P is P x Ac' = t
2 ,

as given by the force polygon. The twisting

moment on the crank is, therefore, t
l t^ bb^, and the

moment diagram is bcc^. The diagram for the equivalent

bending moments is bcc
zb%.

136. Double-crank Shaft. Fig. 157 gives the front elevation

of a double-crank shaft, the cranks being at right angles and

the power being delivered as a twisting moment at the left-hand

end of the shaft. The

greatest stresses are de-

veloped in such a shaft

when the cranks are in

the position shown in

Fig. 156, i.e., the right-
hand crank AC the one farthest from the delivering end of
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the shaft at right angles with its connecting rod, and the left-

hand crank nearly horizontal. If P be the total piston pressure,

the thrust P
l
on the crank AC is in which is the angle

cos 6

of the connecting rod. It will be seen that, when AC becomes

vertical, there is but little change in the angle 0. Hence, for

simplicity, the cranks will be assumed to be in the positions,

AB' and AC1

,
one horizontal, the other vertical. The direction

of the corresponding thrusts, P2
and Pv will then be from right

to left, the latter in the inclined plane of its connecting rod, the

former horizontal. Each of these thrusts acts, in its plane, to

bend the crank shaft as a composite beam, and to each there

are corresponding reactions in that plane and from the shaft

bearings. In Fig. 157 the resultants of these reactions are

designated Rd and R h .

(a) Bending-moment Diagrams. These diagrams are super-

posed in Fig. 157. ADL gives the bending moments in the

diagonal plane D due to the force P
l ;
AHL is the similar dia-

gram for the force P2 which acts in the horizontal plane ;
and

AMNL is the diagram of combined bending moments, whose

ordinates are the resultants of those in D and H. The method

of constructing the latter diagram is shown at (A). For any
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point, as the middle of the crank pin C, the ordinate h from H is

laid off horizontally, the similar ordinate d from D follows at

the angle 0, and the resultant r of the two is the corresponding

ordinate of diagram R, since both force polygons have the same

pole distance H. The moments are thus treated as if they

were forces. The surface of diagram R does not lie in one

plane, but varies in inclination with the relative magnitudes of

the corresponding ordinates from D and H. The reaction R^ is

the resultant of RJ and Rh
f

;
R2

is a similar resultant.

(b) Right-hand Section of Shaft. The section Lk of the

(D)

FIG. 158.

shaft is subjected only to the bending shown by the partial

bending-moment diagram Lkk\ Fig. 157.

(c) Crank I. The line efgmkL, Fig. 158, represents the neu-

tral axes of the right-hand crank pin, cranks, and the adjacent

sections of the shaft. The plane of these axes is vertical.

The right-hand crank, Fig. 154, is subjected to bending and

twisting from the action of a single force P. In this case, there

are two such forces, P
l
and P

2 ,
and their combined effect is

not only to produce the same bending and twisting in Crank I,

but also an additional bending stress in the plane of the crank.

The analysis of the stresses in a multiple-crank shaft is a

complex operation. Either of two methods may be followed:

the assumption of pairs of equal and opposite forces at any

given point, as in Fig. 1 54 (B) ;
or the treatment of the crank
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shaft simply as a beam, in which case there must be considered

not only the bending moment at any given point, but also as

acting there the algebraic sum of the forces to right or left of it,

i.e., a resultant equal to the '

vertical shears
'

in the plane of the

neutral axes of the shaft or in the plane normal to those axes.

It should be remembered as to this that, under certain conditions,

a bending moment may cause torsion, since fundamentally it is

the result of two equal and opposite couples acting at any section

to rotate in opposite directions the two parts into which that

section divides the beam.

In (B\ Fig. 158, lay off the bending-moment ordinates h and

d from the polygons H and D, respectively, for the point k, the

inner end of Crank I. The resultant bending moment r has

horizontal and vertical components h and v
lt respectively. The

bending moment h tends to cause rotation of the point k in a

horizontal plane, and therefore to twist the crank on its neutral

axis km. The twisting-moment diagram is the rectangle of base

km and height h^. The bending moment v^ is simply the mo-

ment at the section km for bending in a vertical plane of a beam

of span AL and depth km at the given section
;

this moment is

uniform at all points in that depth, and the moment diagram is

the rectangle of base km and height vr

Regarding the crank as a vertical cantilever fixed at m, it is

also subjected to bending in a plane normal to the axis of the

shaft by the force equal to the shear acting horizontally at the

point k in that plane ;
this shear is the horizontal component of

the reaction R^ or x
l
as found in ( C). The bending moment

due to this force is zero at k, and at m is equal to the product

of x
l by / = km. In (D\ lay off x

l
with the pole-distance H,

and complete the polygon. Then, the ordinate b\ distant/ from

the pole, is the bending moment at m. The moment diagram

is the triangle of base equal to km and of altitude b'. The two

bending moments are perpendicular to each other, and are com-

bined for any given point by using the hypothenuse of the right
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triangle which they form as the resultant moment. The diagram

of combined bending moments is thus kmm^kv Combining (Art.

1 31) this with the twisting-moment diagram, we have kmrn^k^ as

the diagram for the equivalent bending moments on the crank.

(d) Crank Pin C. This crank pin is subjected to bending, as

shown by diagram R, Fig. 157. The partial diagram giving its

moments is transferred to Fig. 158 as gf'nk'm. The pin is also

subjected to torsion by the force equal to x
l acting at k with the

lever-arm /, the moment, as found previously, being b' . The

twisting-moment diagram is therefore the rectangle of base gm
and height b\ The diagram for the equivalent bending moments

isgf'nWm.

(e) Crank II. The method of analysis is the same as with

Crank I. The ordinate polygon (E) gives the horizontal and

vertical components, //
2
and z;2 , respectively, of the bending mo-

ment at the inner end/ of the crank, as shown by diagrams H,

D, and R, Fig. 157. The horizontal moment //
2 twists the crank

on its neutral axis/f; the moment diagram is the rectangle of

base/f and height h^ The moment ^2 is the bending moment
on the crank in a vertical plane, the diagram being the rectangle

of basefg and height z/
2

. The crank is a vertical cantilever held

at/ by the resultant there of the forces acting on the axis, and

having the force P
l applied at g. This force acts in the plane

of the connecting rod at the angle with the horizontal. From

Fig. 1 56, the twisting moment on the shaft, and hence the bend-

ing moment at the point/ is :

Mt=Pl xpl
= (/Ycos 0) (p cos 0)

= Pp,

in which P is the pressure on the piston and/:
is the normal

from A to the line of action of Pv Therefore, in the upper
force polygon, Fig. 157, lay off p^ and the corresponding ordi-

nate, d" = P
l
x /! = //. At the point g, the moment is zero.

The bending-moment diagram is the triangle of base equal to

fg and of altitude &". Combining the two perpendicular bend-
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ing moments, we have the final bending-moment diagram fgg^f^.

This combined with the twisting-moment diagram gives the

diagram fgg^ for the equivalent bending moments on the

crank.

(/) Middle Section of Shaft. This is subjected to bending,

as shown by the partial diagram eff'e'. Fig. 157. Its twisting

moment is that produced by Crank II, or P
1 x/1

= ^". The

diagram of twisting moments is therefore a rectangle of base ef

and height b" . The two diagrams, when combined (Art. 131),

give the equivalent bending moments on this section of the

shaft.

() Crank III. The line Abcdee^ Fig. 159, represents the

neutral axes of the crank pin B and the adjacent cranks and

shaft sections, all in the horizontal plane. The ordinate poly-

(F)

FIG. 159.

gon (F) gives, as before, the horizontal and vertical components

of the bending moment at e, the inner end of Crank III. The

polygon (G) shows the resultant of R2 and Pv the forces acting

to the right of the point e. The vertical component, jj/3, of this

resultant is a bending force at e. Crank III is subject to :

Twisting by the vertical component, vs,
of the bending

moment at e which tends to rotate the section at e in a vertical

plane, and therefore to twist the crank on its neutral axis ed.

The moment diagram is the rectangle of base de and height z>8.
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Vertical Bending from two causes : First, the twisting moment,

Pp = b" on the middle section ef of the shaft, is transferred,

unchanged in value, to a twisting moment on the crank pin cd.

There are thus moments of equal value at the points e and d,

and the twisting moment b" acts, in passing through the crank,

as a uniform vertical bending moment on the latter. The

moment diagram is the rectangle of base de and height b" .

Second, the vertical component, j3 ,
of the forces P

1
and R^ to

the right of the point e, acts at that point as a vertical bending

force on the crank considered as a cantilever fixed at d. The

moment of yz is zero at e, and at d is equal to j/3 x / =y3 ',

whose value is found by the method used in (D\ Fig. 158.

The direction of the vertical force y% at e is upward. Hence,

that of its reaction at d is downward, i.e., tending to reverse the

engine. As the twisting moment Pp b" acts to drive the

shaft forward, the uniform vertical bending moment which it

produces on the crank must have the opposite sign to that

developed by the force yz . Hence, the resultant bending
moment is the difference of the two, and the area of the

triangle of base equal to de and altitude y% is deducted from

that of the rectangle of the same base and the height b"
,
the

remainder being the diagram for the vertical bending moments.

Horizontal Bending. The horizontal component //
8 of the

bending moment at e causes bending in a horizontal plane, as

if the shaft were a beam of span AL and of depth de at e.

The moment is therefore uniform throughout de, and its

diagram is the rectangle of base de and height //
3

.

Combined Diagrams. The diagrams for horizontal and ver-

tical bending give, when combined, the final bending-moment
diagram, dee^. Combining this with the twisting-moment

diagram, we have the diagram dee^ for the equivalent bending
moments on the crank.

(/z) Crank Pin B. The bending moments on this crank pin
are represented by the diagram cb'"me'

t
transferred from dia-
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gram R, Fig. 157. The pin is twisted in the direction for

forward motion by the twisting moment Pp = b"
, transmitted

from the middle section of the shaft; torsion in the reverse

direction is produced by the moment y at d on the crank de,

due to the forces to the right of e, as explained previously.

The twisting-moment diagram is therefore the rectangle of base

cd and height b" y%. The diagram for the equivalent bend-

ing moments is cc'm'e"d.

(i) Crank IV. The ordinate polygon (/) gives the horizontal

and vertical components, //4 and v^ respectively, of the bending
moment at b, the inner end of the crank. From polygon (K),
there is found the vertical component, jj/4 ,

of the forces acting

to the right of the point b.

The analysis of the stresses is the same as that for Crank III,

except that the forces and moments are now considered at the

point b. The twisting moment on the crank is the vertical com-

ponent, Vy of the bending moment at b\ the horizontal com-

ponent, h^ of this moment bends the crank in a horizontal plane

with a uniform moment throughout; there are, as before, two

opposite bending moments in the vertical plane, Pp = b" (uni-

form) in one direction and y at C, this being the moment of j4

which is assumed as acting at b. The diagram of combined

bending moments is
bb-^c^c, and that of the equivalent bending

moments, bb^c^c.

(/) Left-hand Section of Shaft. The bending moments act-

ing on the section Ab of the shaft are shown by the partial

diagram Abb'", Fig. 157. The twisting moment is that pro-

duced by the crank C, or Pp b" . From these data, the equiv-

alent bending moments can be found.

(/) Maximum Stresses. The position of the cranks which is

assumed in Figs. 1 56 to 1 59, inclusive, is that which will produce

the maximum bending moments in the entire shaft and the

greatest twisting moment on the middle section ef. Maximum
torsion occurs in the section ab or power-delivering end when
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each crank makes an angle of 45 with the centre-line of the

engine. From Figs. 158 and 159, it will be seen that the equiva-

lent bending stress in the four cranks is the greatest in Crank

II at the inner or shaft end, and in Crank III at the outer end.

When a crank shaft of this type is of moderate or large size,

it is necessary to have a bearing between the two pairs of

cranks, in order to reduce the bending stresses In such cases,

the shaft should be treated as a continuous beam, having three

supports, all on one level. The method of analysis is the same

as that which has been followed herein, except that there is an

additional force, in a third reaction from the middle bearing, to

be considered.

PROBLEMS

102. A shaft is driven by two-to-one bevel gears located between the

bearings ; it carries a driven pulley at one end, outside the bearing. Find

the bending and twisting stresses.

103. A shaft, carrying a fly-wheel between the bearings, is driven by two

overhanging cranks, one at each end and at right angles to each other. Find

the stresses.

104. Find the stresses in the Return Crank.'

105. Find the stresses in the driving axle of a locomotive (outside

"Cylinders) .

106. Find the bending stresses in the crank shaft, Fig. 157, when there

is a middle bearing between the two cranks.

107. Find the stresses in a triple-crank shaft, cranks at 120.

108. Find graphically a method of counterbalancing the centrifugal forces

of a crank shaft having two cranks at right angles with each other.
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Slope, curves of 1 24
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Snow load 157, 180

Span 147

Spiral, equiangular n
logarithmic 12

polygon 8

Spur-gear teeth, friction of 253

Square threads, friction of 237
Statics i

graphic .. 2

Stiffness 133
Stress curves 128

Stress diagrams 150

Stresses, internal 101, 114

Substitution, method of 169

Subtraction, graphic 3

Surface, neutral 116

Surfaces, moment . . 91
Strut 147

Sway bracing . , 177

Tension, laws of 101

Through span 177

Thurston 267
Tie ;

147

rod . r . 155
Torsion 93, 271

and bending combined 95, 275
Total work ". 228

Trautwine 156, 178

Triangle, centre of gravity 55

force 26-29

Triangular threads, friction of 239

Trusses, bridge 176
roof 146

Twisting and bending combined 95, 275

moment 93

Uniform live load 179
stresses 180

Useful work 228

Vector polygon 27

Vertical shear 104,106,112,191,198
and bending moment 112, 117, 124

Verticals, stresses in 191, 194, 198, 211, 213, 219, 223

Von Ott 8

Waddell 179

Warren truss 181, 208

Web members 147

stresses - 191, 207
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Wedge, friction of 234

Weights, bridge trusses 178
roof trusses 156

Weisbach 252, 267

Whipple truss 189
Wind load 161, 179

stresses 162-164

pressure 161

Work useful, lost, total 228
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