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PREFACE.

Ir is now ten vears since the appearance of the Graphical
Statics of Cnlmann,* during which time the method has been
greatly extended in its applications, and has met with such
‘acceptance that there is now scarcely a Polytechnikum in Ger-
many where it is not a prominent feature in the regular eourse
of instruction.

This rapid spread of a new discipline is the more remarkable
when we consider the obstacles which it encountered. Cul-
mann, with a boldness which we might almost term rash, based
his development upon the modern geometry of Von Staudt, and
assumed in his readers a familiarity with this very terse presen-
tation of a subject then, as indeed now, but little known, and
which, therefore, but few possessed. To practical engineers,
therefore, to whom his methods speeially recommended thei-
selves, his presentation of those methods was almost unintelli-
gible.

At a time when the students of the Ziirich Polytechnic were
already overburdened, the new discipline was introdnced ; while,
owing to want of familiarity with the fundamental principles
premised, they were unable to understand his lectures or read
his work. Yet such was the intrinsic value of the new method
that, notwithstanding these obstacles, even in spite of them, it
made rapid headway ; found friends everywhere; crept into
other departments of the Polytechnic; and finally the aim of
Culmann was completely attained when the modern geometry
was itself introdnced, and a speeial lecturer in that branch ap-
pointed. Thus, as a direct result of the Graphical Staties of
Culmann, appeared the first and, till now, only complete text-
book upon the modern geometry, viz., R2eye's ¢ Geometrie der
Lage,” Hannover, 1868. Since then, hand in hand and with
remarkable rapidity, these two studies have made their way,

* Die Graphische Statik. Culmann, Zirich, 1866. Second Edition, st
vol., 1875.
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until, as already remarked, they now form a notable feature in
the course of every technical institution in the land.

The acceptance which the method has found in France, and
the attention which it has there excited, is sufficiently indicated
by the work of Zevy (La Statique Graphigue et ses Applica-
tions, Paris, 1874), which contains a very clear and elegant
presentation of the principles, though the applications are of
the simplest character, while, as was perhaps not unnatural in
the author, the German origin of the system is very imper-

fectly indicated, and the special methods of Culmann but little

more than hinted at.

In Italy also the method has found an ardent expounder in
the distinguished mathematician Cremona (Le figure recip-
roche nelle statica grafica, Milan, 1872), and to his efforts and
labors its introduction and acceptance is due.

In England, Prof. Clerk Maxwell, in the Zrans. of the Royal
Society of Edinburgh, 1869-70, has contributed a paper upon
¢ Reciprocal Figures, Frames and Diagrams of Forces,” and,
among others, Jenkin, Ranken, Bow, and Urwin have contrib-
uted to the popularity and spread of ¢ Maxwell’s Method.”
Maxwell and his followers-give, however, only the very simplest
applications, based upon the resolution and eomposition of
forces, such as will be found in our first chapter. The entire
system developed by Culmann, the properties of the “equilib-
rium polygon,” upon which the frnitfulness and value of the
graphical statics wholly depend, are unnoticed both by our
English and French authors.

The author feels, therefore, that no apologies are needed for
the present work. Whatever its shortcomings and defects, he
claims at least the honor of making the first attempt to intro-
duce among American Colleges and American Engineers a
knowledge of a subject of approved interest and practical value
to both, whether regarded as a geometrical discipline or as a
most efficient aid in investigations of stability. Nor is he with-
out hope that the mext ten years may find the method as uni-
versally accepted at home as now abroad.

The same difliculties certainly have not here to be encoun-
tered. The subject as here presented requires only a knowl-
edge of the elements of geometry as univ ersally taught, and
can thus be readily introduced into our schools as well as read
by those practical engineers for whose benefit the method
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seems so especially designed. A subject of such importance,
which has already endured successfully so severe a test, and
made headway against such obstacles, we cannot certainly af-
ford any longer to ignore, and it is hoped that the present
work may serve to excite a more general interest in the method.

For the practical engineer, the importance of graphical
methods needs, indeed, to-day no demonstration. Such methods
are everywhere in use. But a simple and general system
which shall include all special solutions—the development of
the few principles upon which all such solutions are based, and
from which they all flow—is at least in this country unknown.
Even in English literature there is to be found little more than
the very elementary deductions of our first chapter, so that it
may justly be said that the entire method owes its existence
and development to the labors of German scholars and the en-
lightened appreciation of German engineers. IIow thorough
have Leen these labors, how widespread this appreciation, and
how various are the applications of the method itself, the reader
may gather from the Introduction to this work, and from the
appended lis¢ of literature upon the subject. A glance at this
list will also show that the selection of what was of most value,
and the omission of those applications of minor importance,
necessary to bring the present work within reasonable limits,
and at the same time preserve the logical unity and complete-
ness of the whole, was not the least diffieult portion of our
task. It wonld,indeed, have been easy to have given the work
twice its present dimensions, thongh without a corresponding
increase in value suflicient to justify the additional cost. As
it is, no application of real and practical value to the engineer
strictly deducible from the graphical statics has been over-
looked, and discrimination has been chiefly exercised in those
departments where graphical and analytical processes are still
of necessity combined. Ilere we have selected only those cases
where such union shows itself most advantageouns, and the
graphical constructions most simplify, illustrate, or interpret
the purely analytical process, and where such cases, moreover,
presented a useful, practical, and not merely theoretical value.

As to the plan of the work, a word of explanation is neces-
sary. We have endeavored to keep always in view the re-
quirements of both students and practitioners, of technical
schools and practical engineers, and thus.to combine a text-



vi PREFACE.

book for school instruction, and a book of reference and manual
for practice as well. The attempt is a diffienlt, if not a dan-
gerous one, and one which, in other departments, has met with
more failure than snccess. If we venture to indulge a hope that
in this case at least partial success has been attained, and that
the attempt to occupy the two stools at once has not been dis-
astrous, our belief is due to tlic nature of the subject itself,
and not to any overweening estimate of our own abilities to
succeed where so many have failed. The subject seems, indeed,
especially suited to such a method of treatment. In fact, no
other would appear at this period to properly meet the necessi-
ties of the case. Tts geometrical prineiples are simple, its ap-
plications eminently practical. To present the principles alone
would be to deprive the study of its chief interest and attrac-
tion. To rest content with a few practical applications would
be to sacrifice, in a great measure, system and clearness of pre-
sentation. In the accomplishment of our double task we are
fortunate to have had at our disposal such works as those of
Bauschinger in the one, and Culmann in the other direction.
Our obligations to both authors are great, and are fully indi-
cated in the text. Thesame acknowledgment is due, in greater
or less degree, to Mokr and Winkler, Ritter and Reuleaux. In
every case where such assistance has been received, due ac-
knowledgment has been made.

For the historical and critical Introduction, we are indebted,
with few alterations, to the pen of Weyrauck.* It will, we are
sure, prove of value to the student, and serve to awaken an in-
terest in those highly important developments which geometry
has within the last decade undergone.

Thus collecting in a connected form the scattered results and
researches of various authors, it has been a pleasurable duty to
recognize the labors of those men who have chiefly contributed
to this new branch of geometrical statics, and to whom our own
obligations are so great. While thus crediting fully that which
others have done, we have felt the more justified in ecalling at-
tention to any deviations of our own. We have especially
sought to extend the application of the method by resolution of
Jorces (known best, perhaps, as Maxwell’s Method )—a method

* Ueber die graphische Statik—eur Orientirung. Von Dr. phil, Jacob J.
‘Weyrauch, Privat docent an der polytechnischen schule zu Stuttgart. Leipzig,
1874.
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which bids fair to obtain widespread recognition, in direc-
tions in which it has hitherto been supposed of little service.
This often, indeed, by the aid of analytical results, we have
been enabled to do, and not, as we conceive, without a degree
of success. The formule nsed are always simple and of ready
application, and this union of analytical results and graphical
processes the practical engineer will, we think, find of value.
Thus, in the braced arch (Chap. X1V.) and continuous girder
(Chap. XII.) new constructions will be found, and both these
important and difficult cases may thus be solved with an ease,
completeness and accuracy far superior to that of the pure
graphical method itself. Those acquainted with the analytical
investigations of the “braced arch,” as contained in Capt. Fuds
Report tothe Ill. and St. Louis Bridge Co., May, 1868 (App.),
will not, we feel sure, be slow to recognize the advantages of
the present method. The subject in its present state is thus
fairly brought within the reach of the practical Engineer and
Constructor.

To simple girders, contrary to usually received opinions, by
the means of apex loads, the above method applies directly, and
without the aid of analytical results—a fact which has been too
generally passed over without sufficient notice by writers upon
the subject.

‘We have devoted considerable space to the subject of the
continuous girder, but not, we feel sure, more than its impor-
tance demands. The subject deserves more attention at the
hands of the practical engineer and constructor than it has
hitherto received. That the present indifference upon the sub-
ject is due chiefly to lack of information can hardly be doubted,
when the opinion is current, and is even endorsed by those who
are considered as authorities, that the complete solution of the
jproblem is “probably impossible by reason of its complexity,”
and “too complex for mathematical investigation.” * Opin-
ions like these are best met by the complete solutions of par-
ticular examples, and in Chapter XIL will be found the com-
plete calculation and tabulation of the strains in every piece
due to every apex load, for the central span of seven continu-
ous successive spans, and, as far as any inherent difficulties are
concerned, we might as well have taken 50 or 100 spans.

* Graphical Method for the Analysis of Bridge Trusses. Greene.
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‘When engineers shall have become convinced of the fact that
there is in the continuouns girder a saving of material amount-
ing usually to from 25 to 80 per cent. per truss, and in the ex-
treme case even reaching as high as 50 per cent., as compared
with the simmle girder ; and that the only objection which can
be urged—rviz., the influence of small variations in level of the
supports—has, when properly considered, no force whatever,
we shall probably hear less often of designs contemplating many
successive and independent spans of considerable length—such
as, for instance, for a bridge over the ITudson at Poughkeep-
sie, consisting of five separate spans of 525 ft. each. Such a
design wonld find little favor in France or Germany, where
continuous girders are more favorably considered, possibly be-
cause the ability to calculate them is less rare, and reflects in
this respect little credit npon the American profession. Abont
the facts in the case there can now be no dispute ; the subject
has been too thoroughly investigated to admit of it, and we
refer the reader to the Appendix for the results. The athe-
matician and theoretical engineer have dome their part; it
remains for the practical engineer and constructor to do theirs.

The present work contains the only complete graphical and
analytical presentation of this subject in English professional
literature, and should it succeed in causing a change of view
in the above respect aloue, will not have been in vain. In this
connection the list of literature upon the continuons girder
appended to Chap. XIII. may also be of service.

‘We notice with pleasure in this direction the admirable little
treatise of Clemens Herschel, C.E., upon draw spans.* This
snbject is at least of admitted practical value, and we have
treated it with a fullness which, in onr opinion, leaves little to
be desired. We have borrowed from the above work the con-
ception of the « Zipper,” or draw with secondary span, which
is both new and, as it would seem, most adequately represents
the true state of the case, and allnded to the idea, also original
with Mr. Herschel, of weighing off the reactions at the supports
of a continuous girder, instead of measuring the differences of
level. In this case, as in that of the continuous girder gene-
rally, we have clearly brought out the method of caleulation by

* Continuous, Revolving Drawbridges. Little, Brown and Company, Bos-
ton, 1875,
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apex weights, and here, indeed, lies the whole sceret of thorough
practical solution. In faet, from this point of view, the com-
plete solution of a continuous girder for any number of spans,
equal or unequal, offers no more essential difticulty than the
calculation of so many separate simple girders. That this is
not exaggeration, but accurate statement of fact,a pernsal of
Chaps. XII and XTIII. will suflice to prove.

We cannot leave this part of the subject without acknowledg-
ing our indebtedness to Mansfield Merriman, C.E., Assistant in
Engineering in the Sheflield Scientific School of Yale College,
for the formul®e of the latter chapter. Mr. Merriman has
doue for the practical solution of the continuous girder what
Weyrauch has for its theoretical discussion. We refer the
student to the Supplement to Chap. XIIL for a specimen of
his method of discussion.

By the proper use of “ indeterminate multipliers,” the whole
analytical discussion is most remarkably simplifiel. The only
one of the many writers upon the subject known to us who
seems to have hit upon this treatment is Winkler (Die Lekre
von der Elasticitit und Frstighkeit). In Art. 144 of the above
work he gives formule similar to Mr. Merriman’s for the
moments at the supports of a conutinuons girder for all spans
equal only. Ie seems, however, to have failed to realize the
true significance of the method, or the important part played
by the Clapeyronian numbers. Independently of Winklet,
Mr. Merriman has reproduced these formule in their true
light, and applied the method to any lengths and number of
spans, with any differences of level and any method of loading.
His formulse are simple, entirely free, even in general form,
from integrals, and are given in just the shape required in
practice. This compactness renders it possible for the engineer
to enter upon a couple of pages of his note-book al/ the for-
mulee required for the thorough caleulation of a continuous
girder of any number of spans, equal or unequal ; and this cal-
culation in any particular case proceeds in a manner precisely
similar to that of the simple girder, directly and without refer-
ence to authorities, tables, points of infleetion, elastic line,
methods of loading, or any of the “other paraphernalia with
which the subject is usually encumbered.”

It will be observed that here and throughout we have no-
where left out of sight analytical proccsses or methods. The
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reader who considers the present work as an attempt to super-
cede, or even subordinate analytical investigation, misjudges
entirely our aim. So far from this, we indulge the hope that
its perusal camnct fail to render familiar the use of dotk
methods, to bring out their points of difference and relative
advantages, to illustrate the one by the other, to enable the
reader to check the results of the one by the other, and in any
case apply one or both, or a judicious combination of both, as
may in such case be most advantageous or desirable. This will
be especially noticed in the discussion of the simple and con-
tinnous girder and of the braced arch. (Chaps. XTI, XTIIL.,
XIV. and XVI, and Appendix.)

As to the use of the work, the practical engineer will find in
Chap. I, and that portion of the Appendix relating to this
chapter, an easy and simple method of solution applicable to
any framed structure having simple reactions, and including
thus all varieties of bridge and roof trusses of single span. In
the Appendix he will find detailed examples calculated to illns-
trate every practical point of importance, and also a full expo-
sition of Ritter’s “inethod of moments.” The principles of
this chapter alone will enable him to solve readily, both by cal-
cnlation and diagram, every case usually arising in practice.
In problems involving the moment of inertia of areas, in the
case of the continuons girder, the braced arch and stone arch,
a$ also the suspension system, he will find Chaps. VI., XIL,
XIIL., XIV. and XVI. of value, and in the perusal of any or
all of these he will, it is hoped, find no trouble by reason of
logical connection with preceding principles. They are in this
respect, as far as possible, complete in themselves. We may
also call his attention to Chap. XV., npon the stone arch,
though it is to be regretted that the practical importance of the
subject, in the present age of iron, renders the ease with which
it is graphically treated of less importance than formerly. For
his benefit also frequent practical examples are given in detail,
so- that in all important applications he can easily select a
* parallel case, and follow it out, step by step, in the case in
hand, withont studying up the whole process of development
in order to place himself in a condition to make use of the
methods employed. We would also refer him to Tur New
Merrop oF GraPHICAL STATICS (Van Nostrand, 1875)—a reprint
of a series of articles contributed by the author to Van Nos-
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trand’s Engineering Magazine during the present year, where
he will find such a condensed presentation of the more essen-
tial principles of the subject as will enable him to follow the
practical examples in the present work without the perusal of
the more lengthy preparatory portion here given.

For the student much of the practical applications may well
be at first omitted. Notably Chaps. VIL-XII., inclusive.
Chaps. L-1V. and XIIL-XVTI. will put him in complete pos-
session of the method, and, moreover, enable him to solve with
ease eny structure, including the continnous girder, braced
arch, suspension system, and stone arch, as well as all the more
ordinary forms of bridge and roof trusses, cranes, ete. Indeed,
if the first-named structures, which are of comparatively rare
occurrence, are at first omitted, Chaps. I.-IV. alone will con-
stitute a complete course upon framed structures so far as
usually taught in our schools at the present day. Afterwards,
in practice, and in the solution of the particular problems
treated of, he will, in common with the practical engineer, find
in the other portions of the work and in the Appendix just
such assistance as he needs. We would also call the attention
of the mathematician more especially to the investigation in
Chap. V., Arts. 47-51, of the effects of a given recurring system
of moving loads, the analytical treatment of which would be
almost impracticable by reason of the complexity of the for-
mule obtained, and in this respect certainly worthless, even if
possible, but the geometrical treatment of which gives rise to
some of the most elegant constructions of the graphical statics;
also to the Supplements to Chaps. XIIIL. and X1V., in which
the analytical treatment of the continunous girder and braced
arch is given.

Finally, if our purpose in writing these pages is accom-
plished, the principles and methods here set forth will be found
easily acquired, accurate in their results, and amply sufficient
for the ready determination of the strains in the various pieces
of any framed structure which the civil engineer can legiti-
mately be called npon to design.

With this much of introduction and explanation, we present
our work to the engineering profession in America and to
American technical colleges, in the hope that the spirit which
has led to its production, if not the method of its execution,
may win for it a favorable reception.
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In this spirit and in this hope we may, we trust, be allowed
to appropriate the closing lines of Culmann’s preface— Und
nun _fahre kin—gern hitte ich dich zum Fundament einer auf’
wissenschaftlicherer Basis gegrindeten Ingenieurkunde ge-
macht, allein kawm darf ich die Hoffnung hegen, so viel Kraft
n mir zu finden, wm das Gonze dieses umfangreichen Fuches
umzuarbeiten : das ist ein Werk, das mir vor Augen schwebt,
wie einer jener alten mittelaltorlichen Dome sich wvor dem
Kiinstler erhob, der ihn entwarf und der der Hoffnung sich
nicht kingeben konnite, thn je in seiner Vollendung zw schauen.

“ Doch es mdgen dich Andere benutzen und weiter bauen,”
und was ich nicht kann, werden meine Nachginger voll-
bringen.

New HAVEN, Apri 17th, 1875,
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INTRODUCTION.

HISTORICAL AND CRITICAL.*®

THE subject of Graphical Statics has, since the appearance of Culmann’s
work (Die graphische Statik, Zirich, Meyer and Zeller, 1866), excited
considerable attention, but an accurate and just estimate of its methods
and practical value is still wanting. Thus there are some who oppose it;
others willingly accept it as an cfficient and valuable aid in practical inves-
tigations of stability; still others even profess to see in it a future rival of
Analytical Statics. This last somewhat remarkable claim seems apparently
justified by a passage in Culmann’s preface, where it is asserted ** that the
Graphical Statics will and must extend, as graphical methods find ever
wider acceptance—but in such case, however, its treatment will soon escape
the hands of the practitioner, and it will then be built up by the geometer
and mechanic to a symmetrical whole, which shall hold the same relation
to the new geometry that analytical mechanics does to the higher analysis.”
These various and conflicting opinions find their supporters in technical
schiools and among engineers throughout Germany.

In the consideration of the subject, we shall endeavor especially to give
an objective presentation, but shall also feel at liberty to present our own
opinions as well, and generally to venture such reflections as seem suited
to throw light upon the matter. For both recasons it will sometimes be
necessary to make apparent deviations, in order to point out the various
fields in which these new investigations take root, to define their limits, and
to decide in what directions and to what extent impulse and sustenance
for further development may exist. In such a manner only can we satis-
factorily ascertain how far the graphical statics may safely count upon
more than a passing recognition and brief existence.

We have therefore to ask of the rcader who wishes to obtain a just and
accurate estimate of this new and, as we venture to think, highly important
subject, patience for the following general considerations.

* Ueber die graphische Statik—zur Orientirung. By J. I. Weyrauch. Leip-
g, 1874,
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L
TPON MATHEMATICAL INVESTIGATIONS IN GENERAL.

Mathematical truths may be attained in two essentially different methods
—Dby synthesis or by analysis, by composition or by resolution. In synthe-
sis, we ascend from particular cases to general ones; in analysis, we descend
from general cases to particulars. By synthesis we pass from the simplest
or admitted truths, by combination and comparison, to more complicated
phenomena. Analysis seeks to refer back such phenomena to their fun-
damental relations, or to deduce special properties from the general con-
ditions.

The analysis of a phenomena presupposes, then, an accurate comprehen-
sion of all its elements. So far as these last stand in relations of cause
and effect to the whole and its parts, or so far as such relations exist be-
tween the parts themselves, they may be expressed by equations. Thus
the operations which are necessary in analysis become independent of con-
crete phenomena, and are governed only by the laws of abstract quantities
as included by algebra in the widest sense of the word. Algebra, then. is
not analysis itself, but only its instrument, *instrument précievx et néces-
suire sans doute, parce qu'il assure et facilite notre marche, mais qui n'a par
lui méme aucune vertu propre ; qui ne dirige point Uesprit, mais que Uesprit
doit diriger comme tout autre instrument” (Poinsot, Théorie nouvelle de la
rotation, prés 4 I' Acad., 1834). Ordinarily the higher branches of algebra,
with which numberless really analytical investigations are connected, are
designated as analysis. More properly, all investigations which rest upon
equations of condition may be termed analytical investigations.

Synthetic investigation rests mainly upon geometrical conceptions, and
attains to the knowledge of phenomena through concrete conditions, which
latter may be designated as space relations and processes. Hence the usual
division into analytical and geometrical methods, even in applied mathe-
matics, We have thus with equal appropriateness an analytical geometry
as also a geometrical analysis. When pure geometry (in distinction from
analytical) makes use of the symbols and operations of algebra, it is only
to express with corresponding generality and more concisely than in words
truths atfained to by abstraction, and independent of the dimensions of the
auxiliary figure; or so to formulate such truths that they may be applied
in analytical investigation. Accordingly, such use of algebraic formule
has ag little effect upon the synthetic process as from the above it would
seem essential to the analytic treatment. In either case, algebra is but the
instrument, the method lies back of and directs it.

If analytical formul® and operations are entirely excluded from the
more complicated geometrical investigations, we are at once restricted to
general laws of metrical relation. There remains only the faculty of
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abstraction and graphical construction, The power of abstraction alone
suffices, indeed, to comprehend in full generality metrical relations in ele-
mentary geometry and its simplest applications, but fails when the relations
sought must be attained step by step by the application of a number of
principles, or in the auxiliary figure by a number of constructions. If,
indced, we take the relation sought directly from the auxiliary figure
itself, and even if it were possible to take out the required distances with
absolute accuracy, still this result obtained would stand to the general law
desired only in the same relation that the result of a particular numerical
computation does to the more general algebraic formula.

Investigations by the aid of graphical figures can, however, make known
general relations of form and position, and have in this respect their special
advantage. So far also as by them metrical relations are sought, then, by
the exclusion of algebraic formul®, only the process of deduction—the
routine of construction—remains of general significance. Sciences, then,
which proceed in this manner, furnish indeed, with respect to metrical
relations, no general laws, but for the deduction of these relations do give
gencral methods. In this category we may place descriptive geometry and
the more recent graphical statics.

IL

5 ANALYTICAL AND GEOMETRICAL MECHANICS,

It is hardly necessary in these days to call attention to the advantages
f a geometrical treatment of mechanical problems. This, however, was
not always the case, and the most important developments of geometrical
mechanics belong to the present century. It is to Poinsot, Chasles, Mobius,
etc., that these developments are due.

By the Calculus of Newton and Leibnitz (1646-1714), and its subsequent
development, analysis became such a powerful instrument that the activity
of mathematicians was for a long time solely directed towards analytical
investigations. The power of analysis was in mechanics carried to its
highest point by Lagrange (1736-18183), in his Méckanique analytique. He
undertook the problem of reducing mechanics to a series of analytical
operations: “ On ne trouvera point de figures dans cet ouvrage. Les
méthodes que jy expose ne d dent ni constructions ni rai ¢ géo-
métrique ou mécanique, mais seulement des opérations alyébriques assujéties
@ wune marche réguliére et uniforme” (Méchanique analytique. Paris, 1788.)
The principle of virtual velocities formed his point of departure. A
number of text-books upon theoretical mechanics still follow the method
of Lagrange. g

The revival of pure geometrical investigations by Monge (1746-1818),
the creator of descriptive geometry, and his followers, could not well have
been without its influence upon mechanics. In the year 1804 appeared
the Eléments de Statigue, by Poinsot, in which, in contrast to Lagrange,
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we find: “ que tous les théorémes de la Statique rationelle ne sont plus au
fond que des théorémes de Géométrie.” 'This work was the beginning of a
series of treatises in which the advantages of the synthetic development
and geometrical treatment of mechanics were defended and, by most
important results, strikingly demonstrated.

At this time the views as to the best method of treating mathematical
problems were sharply opposed. Carnot (1758-1823), to whom, however,
the modern geometry itself owes no slight impulse, gives the preference
to analysis. For synthesis “est restreinte par lo nature de ces procédés ;
elle ne peut jamais perdre de vue son objet, il faut que cet objet s'offre tou-
jours @ Vesprit, réel et net, ainsi que tous les rapproch
guon en fait” (Qéométrie de position. Paris, 1803.) That which here Car-
not considers as a defect in the synthetic and geometrical method, Poinsot
claims as its special advantage: * On peut bien par ces calculs plus ou moing
longs et compliqués parvenir & déterminer le liew ou se trowvera le corps au
bout d'un temps donné, mais ou le perd entiérement de vue, tandis qu'on vou-
drait Uobserver et le suivre, pour ainsi dire, des yeux dans tout le cours de sa
rotation” (Théorie nouv. d. 1. rot. d. corps).

The example of Poinsot found numerous followers. In Germany, Mo-
bius followed with his “ Lehrbuch der Statik.” Mechanies as well as
geometry thus reeeived enrichment. Mobius gives the preference always
to the synthetie method, and also endeavors to interpret geometrically,
analytically deduced formule—‘ because in investigations concerning
bodies in space the geometrical method is a treatment of the subjeet itself,
and is therefore the most natural, while by the analytieal method the sub-
ject is coneealed and more or less lost sight of under extraneous signs
(Lehrd. d. Statik. Leipzig, 1837.)

Even in analytical operations, geometrical considerations came more andg
more in the foreground. On all sides the development of Kinematics, the
theory of motion without referenee to its eause, was prosecuted. But,
negleeting the cause of motion, there remains only its path; that is, geo-
metry proper (Ki tical g try, or the g try of motion). The in-
vestigations of Chasles, Mobius, Rodrigues, Jouquiére, and others, may yet
be still further pursued ; and when by the aid of geometry a certain com-
pleteness has been given to the theory of the motion of invariable systems,
the geometrical theory of regular variable systems (to which the flexible
and elastic belong) will be possible.  For the discussion of such branches
of mathematics, the synthetie geometry is necessary ; for their foundation
lies in a theory of the relationship of systems.

The advantage of the synthetic method in mechanics is denied by no
one. Wherever it is possible, we obtain more comprehensive conclusions
as to the nature of the phenomena, while all the properties of the same fol-
low direetly from the simple and known truths premised. In analytieal
investigations it is necessary, even when definite equations are obtained, to
deduce the aetual laws singly and in a supplementary manner, although
they are indeed all contained in the equations themselves,

It is not, however, always possible to preserve the synthetic process
throughout. From the first truth the ways diverge i all direections, and

ts el binaisons
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a special ingennity is often needed to reach the goal. Just licre anslysis
comes to our aid with its rich treasures of developed methods, and lere it
is most certainly not for geometry to  undervalue the advantage afforded
by a well-established routine, that in a certain degree may even outrun the
thought itself ” (¥. Klein : Vergleichende Betrachtungen iber neuere geome-
trische Forschungen. Erlangen, 1872, p. 41). Algebraic operations are
thus, however, not the chief thing, but only the instrument—a most excel-
lent instrument indeed, which can be almost universally applied, and
which, by reason of its conncction with an cxtensive and independent
mechanism, often needs only to be set in action in order to work of itself.

Geometrical mechanics, moreover, can never entirely free itself from
analytical formula and operations, For though it may be both interesting
and useful to follow, with Poinsot, the body during its entire rotation, yet
practically this is of minor interest, and the chief problem remains still,
“a déterminer le licu ou se trouvera le corps au bout d'un temps donné.”

In the present day all those familiar with both methods of treatment
hold fast the good in each; they supplement each other. Often in the
course of the same investigation we must interrupt the gencral analytical
process with synthetic deductions, and inversely. Thus we may well close
these considerations with the sentence with which Schell begins his ¢ Theo-
rie der Bewegung und der Krdfte”—both methods, the analytic and the
synthetic, can only, when united, give to mechanics that sharpness and
clearness which at the present day ought to characterize all the mathemati-
cal sciences.

L.
GEOMETRICAL STATICS.

Statics is a special case of dynamics, though earlier treated as indepen-
dent of the latter. The principle of & Alembert furnishes the means of
passing from one to the other. In fechnical nrechanics the distinction is
still preserved, and indeed, in view of the distinct branches in which the
applications on either side are found, not without propriety.

After the mechanics of the ancients, as comprised in the mathematical
collections of Pappus, the first great step towards our present geometrical
statics was made by Simon Stevinus (1548-1603), when he represented the
intensity and direction of forces by straight lines. Stevinus himsclf gave
a proof of the importance of his method, in the principle deduced from it,
that three forces acting upon a point are in equilibrium when they are pro-
portional and parallel to the three sides of a right-angled triangle.

A main discovery was the parallelogram of forces by Newton (1642-
1727). The composition of two velocities in special cases was long famil-
iar. Goalileo made use of it for two velocities at right angles, and exam-
ples also occur in Descartes, Roberval, Mersenne, and Wallis, but the funda-
mental principle was first established when Newton replaced the theories
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of special by that of universal causation (Philosophie naturalis principia
mathematica. Londen, 1687).

Varignoninhis “Projet d'une nouvelle mécanigue,” in the same year (1687),
and independently of Newton, applied for the first time the general princi-
ple of the composition of motions. From this he passes, in the Nouvelle
mécanique ou statique, dont le projet fut donné en 1687 (published after
his death, Paris, 1725), by means of the axiom that « les effets sont toujours
proportionnels & leurs causes ou forees productriczs™ to the composition of
forces also.

The Statique of Varignon is purely geometrical. He postulates nothing
beyond baoks 1-6 and 11 of Euclid, and even explains the significance of
+ and — signs. In this work, the first founded upon the parallelogram of
motion and of forces, we find also the force and equilibrium polygons
(Funiculaire, Section IL), to the application and development of which
almost the whole of Graphical Statics is to be attributed.  Varignon recog-
nized the value of the equilibrium polygon, and gave it as the seventh of
the simple machines.

After the great Interim of Geometry, Monge wrote a Traité élémentaire
de Statique (Paris, 1786). The work claims to contain for the first time
everything in statics which can be synthetically deduced. In .a later edi-
tion we learn that synthetical statics must be taken up as preliminary to
analytical, just as elementary geometry before analytical geometry. Thus
the work of Monge contains the necessary preparation for Poisson’s ¢ Traité
de mécanique™ (Paris, 1811).

The greatest influence upon the development of gepmetrical statics was
excrcised by Poinsot. By the introduction of force pairs, he solved in the
most elegant manner the fundamental problem of any number of forces
acting upon a body (Eléments de Statique, Paris, 1804, and Mémoire sur
la composition des moments et des aires dans la mécanique).

Chasles completed the solution by the proof that the contents of the
tetrahedron, which is determined by the resultant forces, is constant, how-
ever the forces may be composed.

In the hands of Mobius, geometry and geometrical statics were most com-
pletely developerl.

Of the greatest importance, for later applications, was the introduction
of the rule of signs.

The germ of this had existed already in the preceding century.* Mabius
recognized its significance, extended it to the expression of the contents of
triangles, polygons, and three-sided pyramids, and applied it systemati-
cally (Barycentrischer Caleul. Leipzig, 1827).

A new impulse, extended field of action, and numerous additions were
given to geometrical statics by the Graphical Statics of Culmann.

* Mobius alludes to this, and we find, for example, in Kistner (Qeometrische
Abdhandiungen, L. Saml., 1790, p. 464), the equation A B + B A = o.

o~
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1Iv.

THE GRAPHICAL CALCULUS.

.

The most extended applications of statics are in the ticld of engineering.
1lere, not only general properties of form and position are required, but in
a large number of cases numerical relations are also necessary. General
results of the latter character can, as we have seen, only be embraced by
algebraic formulee (L). The pure graphical theory of construction is there-
fore in this respect lacking in completeness, as it is unable to furnish gen-
eral metrical relations,

The practical engineer has almost always, however, to do with special
problems; dimensions and acting forces are numerically given. Geometry
in such cases could give no general relations, because the results desired
are the consequences of the special proportions of the figure. In any de-
terminate case, however, we may obtain a result kolding good for that case,
and it only remains to show how generally to obtain such a result. The
graphical calculus treats of such methods, and so, although not exclusively,
does graphical statics.  As soon now as practical useis made of the actual
proportions of the figure, everything depends upon the exactness of the
drawing. One condition for thie application of the graphical method is,
therefore, skill in geometrical drawing—a requisition, indeed, which the
practical engineer can most readily meet.

The idea at bottom of the graphical calculus is simple. The modifica-
tions of numbers in numerical calculations correspond always to similar
modifications of the quantities represented by these numbers. The measure
of a quantity can be as well given by a line as a number, by putting in
place of the numerical the linear unit. In order for a graphical calculus,
then, the modifications of lines answering to corresponding numerical
operations are necessary, and these are furnished by geometry. They con-
sist of graphical constructions, and rest upon the known properties of
geometrical figures. The scale furnishes the means of converting directly
any numerical quantity into its corresponding lincar representation, and
inversely any graphically obtained result can be at once transformed into
numbers, :

The graphical determination of desired or computable numbers is natu-
rally nothing new. From the “ Traité de Gnomonique® of de la Iire
(10682) to the ““ Géométrie descriptive” of Monge (1788), many examples
are to be found. The graphical calculus, however, goes further than this.
It aims to found a method, a routine, which shall not only apply to bodics
in space, but which shall also, like the arithmetical or algebraic calculus,
be independent of concrete relations and of general application. It seeks
further to obtain its results (products and powers) in the shape of lines
convertible by scale into numbers, (Henee the important part which area
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transformation plays in the graphical calculus.) Such was the problem
which Cousinery proposed, and whose solution he attempted in his Caleul
par le trait” (Ses Eléments et ses applications. Paris, 1839).

Cousinery applied the graphical calculus to powers, roots, proportion
and progression; to the measure of lines, surfaces, cubes, graphic inter-
polation, and the strength of retaining walls. The presentation is nat-
urally by no means complete, and labors also under a prolixity and
minuteness of *detail to which the results obtained are by no means com-
mensurate. It sounds somewhat comic when Cousinery, iu his * Calcul par
le trait,” claims the then already-existing graphical solutions of Foncelet
(¢ Mémoire sur la stabilité des revétements, in Mémorial de Dol du génie™)
as an elegant example of the application of his graphical calculus.

While Cousinery thus sought.to apply geometry in a direction where
until. then analysis had held sway, he acted in entire accordance with the
spirit of his age, though without making use of those means for aid which
lay at his disposal. “ Without effect upon him,” says Culmann, *‘were
the researches of Steiner, already published in 1882, as well as those of
his predecessor; and instead of simply premising the elementary prin-
ciples of the modern geometry, he laboriously sought to deduce them in-
dependently by the aid of perspective.” The works, at least, of the French
predecessors of Steiner were, at any rate, well known to Cousinery. In his
preface we read: “Peut-gtre méme nos efforts eussent-ils été complate-
ment infructucus, sans les ressources que nous ont procurées et les annales
de M. Gergonne et les travaux de M. Brianchon, et ceux plus récents de
M. Poncelet. Nous avons envers M. Chasles une obligation epcore plus
droite, car outre les précieux documents que renferme son ¢ Histoire des
méthodes en géométrie, nous avons i lui faire agréer un témoignage par-
ticulier de reconnaissance pour la manidre dont il a bien voulu mentionner
nos premiers cssais sur le systtme de projection polaire.”

‘Why Cousinery made use of perspective and not of the modern geome-
try, is easily understood. The development of geometry at that time, as to-
day, proceeded in various almost independent directions, and Cousinery
himself had the pleasure of seeing his * Géométrie perspective™ (Paris,
1828) designated by the reporters for the Academy, Fresnel and Matthien,
as new and ingenious, as well as favorably noticed by Chasles.* He
sought, therefore, naturally to develop and render fruitful his own method,
so much the more as the true significance and value of the various growing
branclies of geometry could not then, as now, be correctly estimated. Ac-
cordingly, the Ingénieur-en-chef, B. E. Cousinery, wrote avowedly for his
colleagues, and did not feel justified in directly premising a knowledge of
the newest investigations, more especially of his own.

1 We have noticed the above somewhat in detail, because it bears directly

* Its newness, at least, is not without doubt. According to Fiedler, the
principles are completely given in Lambert's celebrated work,  Die freie
Perspective” (Ziirich, 1759), Poncelet also takes issue with the estimation of
the ‘¢ Géométrie perspective” by Chasles (‘¢ Traité des propr. proj.,” IL, éd.
1865, p. 412).
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upon a point of our discussion; for the introduction of the modern
geometry in the graphical method by Culmann, is still, thirty years after
Cousinery, a chief hindrance to its rapid spread.*

After Cousinery, no one occupied himself with the graphical calculus
till Culmann gave it a place in his Graphische Statik. The presenta-
tion is here far better, and especially shorter. The rule of signs, which
was unknown to Cousinery, is at once brought out. Instead of such
long and tedious applications as the graphical interpolation, a few
examples’ from engineering practice are given, among which we may
especially notice earth-work calculations. In the extensive earth works of
roads, canals, and railways, the méthod shows not only most plainly the

. extent and best arrangement of transport, but also allows, with the aid of
the planimetre, the cost of transport to be determined.

As to the rest, it would appear as if the graphical calculus should play
an important part in engineering practice. This circumstance, as well as
the interesting problems which present themselves in connectign, has
gained for the Arithmography many friends. Several publications
have since sought to win for it a wider recognition without furnishing
anything essentially new. [H. Hggers: ‘Grundzige ciner graphischen
Arithmetic,” Schaffhausen, 1863. J. Scklesinger : ¢ Ueber Potenzcurven,”
Zeitschr. d. dsterr. Arch. u. Ing. Ver., 1866. E. Jager : * Das graphischen
Rechnen,” Speier, 1867. K. von Ott : “ Grundziige des graphischen Rech-

! nens und der graphischen Statik,” Prag, 1871.]

Recently the method of the graphical calculus has been applied to Dif-
ferentiation and Integration. A treatise by Solin shows the first exact, so
far as possible in a construction, the last approximate only (* Ueber graph.
Integr. ein Beitrag z. Arithmographie, Abhand. d. konigl. béhm. Gesellsch.
d. Wissenbach.” VI. Folge, 5 Bd. Separate reprint by Rivnic, Prag,
1871). It is to be remarked also that examples of double integration and-
differentiation were given by Mokr in 1868. The graphical construction
of the elastic line, and the determination of the moments at the supports
of a continuous girder, are essentially examples in point (Mokr: “Bei-
trag zur Theorie der Holz und Eisenconstructionen,” Zeitschr. d. Hanndv.
Ing. und Arch. Ver., 1869; or W. Ritter : “ Dic elastische Linie,” Ziirich,
1871.)

As to the importance of the graphical calculus as an independent study
or discipline, it is, as we believe, often exaggerated, The theoretical value is
but little, and for graphical constructions, as given by the graphical calculus,
offer in no respect anything new. That which pertains to practical applica-
tions may be easily based directly upon geometry, and is nowhere found
as a consequence of the method itself. If it is considered advisable to call
special attention to a few general points before making such applications,
all that can be desired can be easily presented in ten or a dozen pages
octavo.

* See Preface ; also Chaps. VIL and VIIL of this Introduction.
[
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V.
GRAPHICAL REPRESENTATION.

Graphical representation, in the widest sense of the word, includes every
visible result of writing or drawing. The written sentence is the graphi-
cal representation of a thought—the drawn line the graphical indication of
an idea. In such generality we naturally do not here regard graphical
representation. In a narrower sense we understand the graphical represen-
tation of the diversity or dependence of numerical quantities. In this
sense we cannot speak of the graphical represention of pure geometry.
This last was introduced into analysis by Vieta (1540-1603). Here the
figure merely aids the conception, while the equation embraces the charac-
teristics of the phenomena (I.), and ensures the independent character of
the drawn lines. Thus the clearness of geometry is combined with the
fruitfulness of analysis.

If the graphical representation is constructed frcm a number of suitably
chosen and calculated values, the intermediate values can be directly meas-
ured and, by means of the scale, reconverted into numbers. The graphical
representation, then, replaces numerical tables. Illustrative examples often
occur in practice. *We instance, for example, the graphical representation
of maximum moments and shearing forces in the continuous girder. If
the several values are calculated from a formula, their graphical union gives
a simultaneous view—a picture—of the law which the formula represents.
If these values are merely known—observed, for example their graphical
combination may enable us to deduce the law which connects them. Thus
the graphical rcpresentation is of assistance in the deduction of empirical
formulw, and indirectly in the discovery of exact relations. Illustrations
of such application occur frequently in applicd mathematies, especially in
astrenomy and meteorology.

In this connection we may also remark that graphical representation
plays also an important part in statistics. By its aid a comprehensive view
is obtained of a series of separate results. Or it may be applied to still
higher problems—for example, from comparison of simultaneous but differ-
ent seties of observations to determine an inner connection.

In enginecring practice, graphical representations have in recent times
notably multiplied. All graphical constructions, so far as they do not de-
pend upon analytical formuls, and therefore are not directly given by
geometrical laws, are nothing more than consequences of graphical repre-
sentation.
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VI
GRAPHICAL STATICS.

The few text-books upon graphical statics and fhe more numerous works
upon its applieations, afford us no definition, and can afford none, becaunse
neither the method nor scope of this new study are anywhere sufficiently
indicated.

If, following Culmann, we speak of it in contradistinction to the appli-
cations of a pure graphical statics, we may define it somewhat as follows:
Graphical Statics comprises the theory of those geometrical constructions which
occur in the graphical solution of statical engincering problems; it treats
further of the general relations dedueible from sueh eonstructions. This
limitation, so far as it does not follow from the preceding, we shall seek
in the course of these remarks still further to establish.

Graphical representations of analytically obtained results have, as has
been already noticed, long been used in engineering practice. They served
also the purposes noticed in the preceding chapter. Often also certain
values, whose analytical determination is somewhat complicated, have
heen sought by graphical construetions. Examples of this may he found
in many text-books upon the theory of structures, and we notice only, as
one of the most notable of recent date, the construetion of lever arms and
limits of loading in A. Ritter’s *Theorie und Berechnung eiserner Dach ..
und Briickenconstructionen” (Hannover, 1862). Poncelet applied analy-
sis in general to practical investigations, but sought in several complicated
cases to elucidate the deductions of formulz by geometrical constructions,
and to deduce graphical solutions from analytical relations. This pro-
cedure found considerable acceptance, and the investigations of Poncelet
were afterwards resumed upon more general assumptions by Saint Guil-
hem (Mémoire sur la poussie des terres awec on sans surcharge, ann. des
ponts et chauss., 1858, sem. 1, p. 319).

The first, however, to give pure geometrical determinations of stability
in structures was Oousinery. He gave a number of cxamples as applica-
tions of his graphical calculus, but his ideas appear to have found.in
France little acceptanee. On the other hand, the graphical construetion of
the curve of pressure in the arch by Mery (Mémoire sur Déquilibre des voiltes
en berceau—ann. d. ponts et chauss., 1840, sem. 1, p. 50) was extensively
used, and has since been extended by Durand-Claye to iron arches also
(Ann. d. ponts et chauss., 1867, sem. 1, p. 63, and 1868, sem. 1, p. 109).
Special prominence was given to graphical investigations of stability by
Culmann’s “ Graphisehe Statik ” (first part, Ziirich, 1864, entire work,
1866 ; second cdition, 1st part, 1875.)

This work of Culmann must be considered as original in all those parts
relating to struetures. Poncelet and Cousinery, beyond the general idea,
furnished only unessential contributions. Culmann recognized the fruit-
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fulness of the relations between the force and equilibrium polygon, upon
which most of the practical solutions depend. He developed these rela-
tions, applied them in the theory of moments by the introduction of the
closing line (Schluss Linie), and, accepting the rule of signs, obtained gen-
eral points of view for the discussion of the most diverse figures which
could arise in the same problem. In this and in many other respects.even
geometrical statics can profit from Culmann’s work, as, for instance, in the
investigation of the projective relations between the force and equilibrium
polygon.

The fundamental importance of the force and cquilibrium polygon was
also recognized by those who, after Culmann, occupied themselves with
the graphical method. Here we may notice two works of special influence
upon the development of the graphical statics—those of Aokr and Cre-
mona. The idea of Mohr, that the clastic line is an equilibrium polygon or
curve (* Beitrag zur Theorie der Holz und Eisenconstructionen.”  Zeitschr.
d. Hannov. Ing. und Arch. Ver., 1868) is of special significance for graphi.
cal statics.

That from it Mohr obtained the graphical determination of the moments
at the supports of a continuous girder, is an example both useful as well
as intercsting. Already it has been endeavored to utilize the same idea in
other cases (Frankel : “ zur Theorie der Elastischen Bogentriger,” Zeitschr.
d. Hannov. Ing. u. Arch. Ver., 1869, p. 115), and by it an impulse has been
given to similar investigations.

Cremona has kept more especially in view the geometrical side of graphi-
cal statics. Starting from the theory of reciprocal polyhedrons, he gave
the reciprocal relations between the force and equilibrium polygon with a
generality and elegance to be expected from this distinguished Italian
mathematician (Le figure reciproche nelle statica grafic. Milan, Linger,
1872). By this investigation the theoretical development of the graphical
statics is essentially anticipated.

It was under the most unfavorable circumstances that Culmann intro-
duced his graphical statics in the engineering department of the Zirich
Polytechnic in the year 1860. It was finally, indeed, admitted as a regular
study, but not the geometry of position which he premised. It was not
till 1864 that this last was given in a series of lectures by Reye, and then
the time at disposition for both courses was insufficient. Meanwhile the
method spread, crept into the construction department of the engineering
school, and wherever it came, even in the other departments of the Poly-
technic, gained friends. Finally, at the present time, it is to be found, to-
gether with the modern geometry of position, upon which it was based, in
every Polytechnic throughout Germany.

According to the above given definition of graphical statics, the methods
of the graphical calculus, as far as applied in statical investigations, may .
also be regarded as belonging to graphical statics, and justly so; for
these methods follow directly from geometrical principles, and can be ap-
plied by any one acquainted with geometry, without being collected under
the special name of the * graphical calculus.” Thus; for instance, Bausch-
inger, in his * Elemente der graphischen Statik” (Miinchen, 1871), disre-
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gards entirely the graphical calculus, and alse cuts loose from the modern
geometry ; he develops the elementary principles of the subject in a logi-
cal and easily comprehended, if not purely geometrical manner, and thus
brings the subject within the reach of those. persons for whom it scems so
especially designed. The work is remarkable for clear presentation, but
expressly avoids all special investigations and practical applications, for
which it is merely intended to prepare the way. In the present work, also,
a similar plan is pursued, but all such applications as are of most value to
the engineer or mechanic find likewisc a place. Thus, combining the
method of presentation of Bauschinger and the practical applications of
Culmann, it has been endeavored to make it a practical manual, as well as
a text-book of elementary principles—to serve the wants of the practical
engineer, and also meet the requirements of the engineering student. How
far this twofold design has been realized, the judgment of the reader
must decide.

VIL
THE METHODS AND LIMITS OF TIIE GRAPHICAL STATICS.

The most, perfect method of the graphical statics is the synthetic or geo-
metric, since in geometrical statics the solution must always, when possi-
ble, rest upon pure mechanical or geometrical reasoning. Culmann pre-
sents his graphical statics to practitioners *‘as an attempt to solve by the
aid of the modern geometry such problems pertaining to engineering prac-
tice as are susceptible of geometrical treatment.”

The graphical statics, however, is not in and of itself the product of
endeavors to make the modern geometry of service in applied mechanics ;
graphical solutions merely were required. How to obtain these, was
another question. Thus it is that Poncelet’s solutions consist almost en-
tirely of graphical representations of analytical relations ; that Cousinery
avoided all use of formule; that Culmann made use of the new geometry
wherever it was possible; that Bauschinger and others make use only of
the ancient geometry; and that the latest graphical solutions—in a certain
degree, those of Mohr also—entirely in the spirit of Poncelet’s, rest again
upon analysis. The pure geometric solution is, indeed, desirable, but is not
always attainable.

If now we review all the cases in which direct and exclusively geomet-
rical solutions are not possible, we see at once that this occurs when it is
required to make use of the physical properties of bodies, as elasticity, co-
hesion, etc. Why? The actual condition of a body after equilibrium is
attained, is a consequence of the motion of a variable system of points.
The theory of the motion of variable systems has, however, by no means, as
yet, been brought to practical efficiency (IL). We are therefore obliged to
start from an hypothetical condition or state of the body (in the theory of
flexure, for instance, we rest upon the assumption that all plane cross-sec-
uons made before the action of the outer forces remain plane after their
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action). To deduce now from this general condition the special relations
necessary for solution, demands an essentially analytical process (I)
Hence the dependence of the graphical solutions in such cases upon ana-
Iytical relations—relations which, when the body is assumed to be rigid,
ds in the arch, in frame work, or the simple girder, no longer exist.

The sphere of action of an independent graphical statics is, then, con-
fined to those problems which, under the assumption of inflexibility, are
determined by a sufficient number of conditions. Beyond this point we
have chiefly graphical interpretations only.

It has been already noticed that graphical statics, without the application
of algebraic operations, can furnish no general laws (IV.). From relatively
simple figures, indeed, here and there, general formule of metrical relations
have been derived, as is, in fact, not theoretically impossible (L), but such
~formule were always previously known. Such a result holds, in general,
immediately good only for that form of figure which has been discussed,
or, according to the terminology of Carnot, only for the existing ‘ primi-
tive figure,” and must be proved or transformed for all * correlative
figures ” which can occur in accordance with the conditions of the prob-
lem. When the graphical investigation is guided by analytical opera-
tions, it is these last which render possible the deduction of general metri-
cal relations,

Thus, in the theory of structures, there remains subject to pure graphical
treatment only the general relations of form and position. Here we have
the elegant deductions upon unfavorable loading, and here the graphical
méthod often attains its end in a more elegant manner than the analytical.
A complete exploration and development of such form and place relations,
without a geometry of position, would evidently be impossible (IX.). The
scientific future of the graphical statics, therefore, rests essentially upon
the influence of the modern geometry. To endeavor to separate the higher
geometry from the graphical method would be as unwise and fruitless as
the attempt to exclude the higher analysis from analytical investigations.
As, however, for certain purposes an elementary presentation of analytical
theories relating to engineering practice will ever be acceptable, so also an
elementary development of graphical methods is not without justification,
the more 0 as long as the modern geometry itself is not sufficiently well
known.

Culmarin says of the graphical statics: “It includes, thus far, only the
general part which we need in the investigation of problems in construc-
tion, but it must and will extend, as graphical methods find ever wider
acceptance. 'Then, however, it will escape the hands of the practitioner,
and must be built up by the geometer and mechanic to a symmetrical
whole, which shall bear the same relation to the new geometry that analyti-
cal mechanics does to the higher analysis.” Such an estimation does not
appear to be entirely correct. It is geometrical statics (or mechanics) for
which the above relation may subsist, and to this, indeed, Culmann’s valu-
able work has itself greatly contributed. It was; moreover, developed
quite independently of and much earlier than graphical staties (IIL). In
this respect, therefore, the spread of graphical methods is of less impor-
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tance than that of geometrical views and knowledge; for when practical
calculations are disregarded, and the deduction of general truths alone
occupies us, then, first of all, we must exclude from the drawn figure all
special relations—that is, strike out of graphical statics the essentially
graphical part. A truth comprehended only in the abstract holds good
for all figures which can be drawn in accordance with the given condi-
tions. ;

‘We place, then, in one line geometry and geometrical statics (mechanics).
From geometry we obtain a method of construction, or descriptive geome-
try, which finds its practical applications il architecture and machine
drawing. From geometrical statics we obtain also a construction method
or routine—viz., graphical statics—which finds its practical applications in
the graphical calculation of structures and machines. Both descriptive
geometry and graphical statics have still, with reference to these practical
ends, to develop and make use of the general relations which subsist be-
tween the geometrical constructions to which they give rise, and thus each,
according to its means, contribute to the discovery and spread of geo-
metrical and mechanical truths.

From this co-ordination of descriptive geometry and graphical statics
we must not, however, infer an equal importance; for, while in geometri-
cal drawing we have always to represent an ideal image, and the graphical
method is therefore directly snggested, we have for statical calculations
the analytical process also at our disposal, and everything depends then
upon the relative advantages and disadvantages of the graphical and ana-
Iytical methods. We have thus noticed all the most important points
which occur in a theoretical consideration, and there only remaims to make
a comparison from a practical standpoint (X.).

VIIL
THE MODERN GEOMETRY.

Geometry treats of figures or constructions in space. These figures and
their properties are not always regarded and treated in equal extent and
generality.

Geometrical knowledge found its origin in practical needs, and the
ancients confined themselves almost exclusively to special investigations
of individual figures and bodies of definite form, such as presented them-
selves to the eye. In the phorisms of Euclid (~285), according to Pappus
(end of the fourth century), the mutual relations of the circle and straight
lines were, indeed, given with a certain degree of completeness, but these
have not come down to us.

Properties thus determined had naturally only a limited significance,
and could neither count upon permanence nor give satisfactory conclu-
sions. Investigatorssought, therefore, assistance where it was best afforded,
in analysis, This was, in the sixteenth century, by the algebra of Vieta
(1540-1603), notably enriched.
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From this period geometry, for a long time, served merely as an aid to
analysis, interpreting graphically its results (V.). From this union the
greatest advantages were derived, as analysis led to the infinitesimal cal-
culus of Newton and Leibnitz, and geometry to the analytical geometry of
Descartes (1596-1650).

But the extension and generality which geometrical truths received by
this great creation of Descartes was essentially due to analysis. Desargues
(1593-1662) and Puscal (1623-1662) extended pure geometrical considera-
tions, and made the first step towards the modern geometry when they
regarded the conic sections s projections of the circle, and deduced the
propertics of the first from those of the last. Then De la Hire (1640-1718),
Le Poivre (1704) and Huygens (1620-1695) occupied themselves with geo-
metrical investigations. While the two first developed the methods of
Desargues and Pascal, Huygens and, later, Newton (1642-1727) applied
pure geometry in optics and mechanics. Soon, however, the Calculus of
Newton and Leibnitz (1684 and 1687) showed itself so wonderfully fertile
‘in analytical geometry, that geometry proper was put in the background.
Only a few, as Lambert (1728-1777), still regarded it with favor.

Then appeared Monge (1728-1777), and gave the impulse to a complete
revolution in geometrical views, and to the reconstruction of thescience
upon a new basis. In his Legons de Géométrie descriptive (Paris, 1788), all
those problems previously treated in a special and uncertain manner in
stereotomy, perspective, gnomonics, etc., were referred back to a few gen-
eral principles, and, without the aid of analysis, the most important prop-
erties of lines and surfaces were deduced. While descriptive geometry
taught therelations between bodies in space and drawn figures, it strength-
ened the power of abstraction ; introducing into geometry the transforma-
tion of figures, it gave to its deductions an advantage till then possessed
only by analysis; and while, finally, it owed its comprehensive results to
the application of projections, it pointed the way for the further develop-
ment of geometry itself.

Meanwhile, in the field of analytical geometry, the conclusion had been
reached that the desired truths admitted of a still more general compre-
hension. All properties had been obtained only with respect to and by
means of a determinate co-ordinate system. But already Godin (1704-
1760) had announced “ que lart de découvrir les propriétés des courbes est
@ proprement parler, Dart de changer le systéme de co-ordonnées (Traité des
propriétés communes & toutes les courbes). This idea Carnot seized upon
(1758-1823), and in the sixth chapter of his Qéométrie de position (Paris,

-1803) he sought to obtain a more general comprehension of figures by
analysis, and to avoid the indeterminancy of this last by the introduetion
of the idea of position, and by many solutions after the method already
pointed out by Liebnitz and d’Alembert.

Now began a veritable race in the condensation and promulgation of
geometrical truths, in which the pure geometrical method obtained the
palm. The scholars of Monge—Brianchon, Servois, Chasles, Poncelet, Ger-
gonne—working with him and in his spirit, filled the Annales des mathé-
matiques and the Correspondance sur Uécole polytechnique with new re-
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sults—the two last named discovering the general law of reciprocity or du-
ality.

The foundation proper of the modern geometry was laid by Poncelet in
his T'raité des propriétés projectives des figures (Paris, 1828): “Aggrandir les
resources de la simple Géométrie, en généraliser les conceptions et le langage or-
dinairement assez restreints, les rapprocher de ceux de la Qéométrie analytique,
et surtout off rir des moyens générauz, propres d démontrer et d faire décowvrir,
d'une maniére facile, cette classe de propriétés dont jouissent les figures quand
on les considére d'une maniére purement abstraite et indépendamment d'an-
cune grandenr absolue et déterminée, tel est Dobjet qu'on 8'est spécialement
proposé dans cet ouvrage.”

The new ideas found in Germany especially fruitful soil.  Mobius,
Pliicker, Steiner, Grassman, and many others, proceeding in part from
entirely different points of view, opened out an abundance of new direc-
tions which have not yet been thoroughly explored, and which, in union
with other investigations, have caused a thorough change in our concep-
tions of space relations, whose latest phases are indicated by the names of
Riemann, Helmholtz and Lie-klein.

In this development period, also, still existed the two parties in analyti-
cal and synthetic, or pure geometry. Plicker held the analytical relations
as the most general, and which were with advantage to be illustrated and
interpreted geometrically ; while Steiner recognized in the space figure
itself the true object and most efficient aid of investigation. Both direc-
tions—the modern analytic and synthetic—lead naturally to the same results.
‘With reference to the methods, however, they diverge the nearer the ideas
and transformations of geometry approach the generality and edsv of the
alzzbraic method, thus rendering possible an abandonment of this last.
Thus, while analytical geometry, through the theory of determinants of
Hesse, came into ever closer connection with analysis—a direction in which
English and Italian investigators—as Salmon, Cayley, Cremona—brilliantly
assisted, the Erlangen Professor von Staudt cut loose from algebraic formu-
lee and metrical relations, and gave us the geometry of position (Nirnberg,
1847, Beitr, z. Geom. d. Lage).

After von Staudt, the strict geometry of position remained a long time
disregarded, while the synthetic geometry of Steiner has enjoyed, without
intermission till the present day, a special preference on the part of mathe-
maticians. One reason may indeed be that mathematicians take little in-
terest in an independence of geometry.to which analysis can lay no claim;
but another, still more potent, is the extremely condensed, almost schematic
presentation of von Staudt, which has not exactly an encouraging effect
upon every one.

Culmann gave the impulse to a change in this respect. In his graphical
statics he rests directly upon the work of von Standt, and, with something
more than boldness, assumes a knowledge of the geometry of position
among all practical men. Such a course was not indispensable for the
foundation of his method, and impeded the spread of the graphical stat-
ics; but by it the geometry of position gained. Thislast had next, of
necessity, to be introduced into the Ziirich Polytechnic, and thus arose the
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first, until now, only complete text-book upon the subject, the « Geometrie
der Lage,” by Reye (Hannover, 1868), as the direct result of the graphical
statics of Culmann.

Since then, the modern geometry has been introduced into all technical
institutions throughout Germany, and thus placed at the disposal of the
arts and sciences.

As, according to its founder, Poncelet, it reaches the highest range of
speculation, 8o also in the most practical relations it acts to simplify and
condense: “ Peu d peu les connaissances algébriques déviendront moins in-
dispensables, et la science, reduite & ce quelle dott étre, @ ce qu'elle devrait étre
déja, sera ainsi mise & la portée de cette classe d'hommes, qui w'a que des mo-
ments fort rares & y consacrer.”

[For illustrations of the method of the modern geometry, the reader may
consult the Appendix to this chapter.]}

x.
THE MODERN GEOMETRY IN ENGINEERING PRACTICE.

One who should infer that a science created thus from its very inception
with reference to the needs of practice* must have found access, above all,
in technical circles, would be much mistaken. As Culmann sent out his
graphical statics, deep silence prevailed, and if the modern geometry ap-
pearod here and there in the lecture plan of one and another polytechnic, it
was, without doubt, due to the zeal of some enthusiastic privat docent who
had undertaken the thankless task of holding forth to empty benches.

Whence came this indifference to a discipline proceeding from the Ecole
polytechnique? Tt is hard, indeed, to find a sufficient reason. We often
hear it said that by reason of the colossal extension which enginecring
sciences have experienced, students are already overburdened. Most true!
and it is just here that the modern geometry comes to our assistance. It
is precisely to this that the learned critic of Monge, Dupin, alludes: 11
semble que dans Uétat actuel des sciences mathématiques le seul moyen dem-
pécher que leur domaine ne devienne trop vaste pour notre intelligence, c'est
de généraliser de plus en plus les théories que ces sciences embrassent, afin
qu'un petit nombre des verités générales et fécondes soit dans la téte des
hommes Uexpression abrégée de la plus grande variété des faits particuliers.”

The modern geometry in its present form starts with a small number of
elementary constructions whose properties are first set forth, and then, pro-
ceeding from these by combination and comparison, it covers the entire
department of space. The engineer, during and after his preparation, has
to do with space problems, with geometrical principles and constructions;

* Poncelet himself set upon the title-page of his work: “ Querage utile @
ceuz qui 8 ocoupent des applications de la Géométrie descriptive et dopérations
géométriques sur le terrain.”
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“how many superfluous definitions and demonstrations could not be
spared, if they were already completely comprehended and recognized by
the echolar as parts of a higher whole” (Culmann—* Die Graphische
Statik ). At no very distant day it will né longer be possible to read a
scientific work upon applied mathematics without familiarity with- the-
principles of the modern geometry.* Permitting pure graphical applica-
tions, without the aid of analytic symbols, it forms the common point of
view for descriptive geometry, practical geometry, and graphical statics.

Descriptive geometry existed before the modern, and this last has sprung
from it. Now, reversely, the geometry of position comes to the aid of
descriptive geometry, and offers in return its most fruitful principles and
efficient aid. Thus in descriptive geometry we may refer to the works of
Pohlke, Schlesinger, and Ficdler. The effect of the geometry of position in
this direction to simplify and condense may be scen from the work of
Staudigl (“ Ueber die Identitit von Constructionen in perspeetive, schiefer
und orthogonaler Projection™), where it is proved that “all problems of
the descriptive geometry, in which neither lincar nor angular measure are
considered—therefore all problems which belong to the geometry of posi-
tion—can in similar manner and by precisely similar constructions be solved
as well in perspective as in oblique and orthagonal projection.” In shades
and shadows and in geometrical drawing, Burmeister and Paulus owe to
the modern geometry the simplicity of their constructions.

In the department of practicul geometry also, in geodesy, perspective,
surveying, we mark the influence of the modern geometry in the works of
Maller and Spangenberg, of Franke and Baur.

In mechanics and physics, we see it again in the works of Lindemann,
Burmeister and Zech.

X,
PRACTICAL SIGNIFICANCE OF THE GRAPHICAL STATICS.

We have already remarked (VIL) that the importance of graphical
statics is in great part dependent upon its advantages as compared with
the analytical method, and have reserved for this place a comparison from
a practical point of view.

Here, first of all, we have to notice the independence of the graphical
construction of the regularity or irregularity of the given relations.
‘Whether the forces are equal or not, whether they act at equal or varying
distances, even their relative position, are matters of indifference. Centre
of gravity, central ellipse, kernel—for all, even the most irregular figures,
are found in similar manner, with equal ease, even when exact analytical
solutions are hardly conceivable. Thus a process, a routine almost
mechanical is rendered possible in many investigations of stability, with-
out losing sight of interior relations; for in the repeated and independent
compositions of the forces we always perceive the origin, connection and

* Well illustrated in Gillespie’s Land Surveying. New York, 1870.
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reason of the result obtained, which, in the substitution of numbers in a
formula, is not always the case.

With this advantage goes hand in hand a disadvantage. This very
regularity of the process is a consequence of its special, we might almost
say numerical, character (). In a numerical analytical example greater or
less regularity has also but little effect. This numerical character has also
for conscquence that we can never attain to general laws and relations
@v., VIL).

The practical engineer becomes with time ever more familiar with the
dividers and rule, while facility in analytical operations gradually disap-
pears. A graphical construction once completed is not easily forgotten, or
a single glance at a similar figure suffices to recall the whole process. Itis
indeed easy in clearly given formule to substitute special numerical values;
but formulz unfortunately are not always clearly given, in some cases can-
not be so given, without presuming upon the thorough familiarity of the
reader with the processes involved; these and the very many and various
eystems of notation in use leave to the constant, easily acquired and
remembered graphical solution many advantages.

But here we may remark that graphical solutions can only be easily
acquired, retained or quickly recovered when the constructions are based
upon methods purely geometric, aud not when they are simply the interpre-
tation of previously obtained analytical results. In the latter case we
must recall the process of development of the formula as well as the
graphical construction, and the method is thus too often confusing instead
of simple.

Often it is desired to make visible the results of an investigation, as in
the case of the arch, where the graphical method is especially advan-
tageous, and has in France been long used (VIL).

Errors relating to the mutual relation of strains are more easily discov-
ered in graphical solutions than in analytical, as a certain law of regularity
is always visible, which breaks abruptly for an error in construction. By
calculation, on the other hand, we can more easily select any one place in
the structure, and determine the strain there independently of the others.

As to which of the two methods demands the least time is a matter of
miner importance. In a construction costing from thousands to ‘millions,
it matters little whether the calculations require one or scveral days, more
or less, if only the results are clear and correct. It is a question also
which can hardly be decided in favor of one or the other, dependent as it
is upon clements other than those pertaining to the methods themselves—
such as varying individual skill and capacity in either direction. The
declaration which is already sometimes encountered, that the numerical
calculation of a continuous girder requires about three times as much time
as the graphical solution, sounds questionable, Why not at once furnish
the statement with decimal places? In general, for ordinary cases, the ana-
lytical solution requires less time; for irregular and more complicated cases,
the graphical.

The exactness of the graphical solution is sufficient, but it, too, depends
upon the care and skill of the draughtsman. The greatcr the forces and
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dimensions with which one works, the better the results obtained. The
scales should not, then, be taken too small.

It is hoped that these considerations, now drawing to a close, will suffice
to give the reader clear ideas upon the nature and origin, advantages and
disadvantages, of the graphical statics. The determination whether he will
enter more fully into the subject—it may be, even take part in its develop-
ment (there is abundance of room for workers), and in this case the choice
of direction may thus be facilitated.

The graphieal statics is certainly suited, especially in extended applica-
tions of the geometry of position, to furnish many new points of view, and
in a practical respect it can often greatly simplify. Whoever has really
studied the new methods must admit this.

On the other hand, the importance of the graphical statics is sometimes
exaggerated. It appears out of place when in works designed for practice
graphical solutions are given of problems which any reasoning being can
almost solve in his head.

Such solutions may find a place in special text-books upon the subject,
where they may, indeed, be desirable for completeness.

If it is desired to make two independent investigations of stability, as
for large and important constructions is always desirable, it will be found
of advantage, if a suitable graphical solution exists, to make the first deter-
mination graphically. Nothing more ensures a conviction of the correct-
ness of an investigation than a correspondence of the graphical and cal-
culated results.

XL
LITERATURE UPON GRAPHIOAL STATICS.

We have already referred in VL to the most important contributions in
the branch of graphical statics, and now annex a list of the literature upon
the subject so far as known to us.

Where several works treat of the same subject, we have allowed ourselves
a brief eritical notice. Opportunity is thus given to those who would take
part in the development of graphical statics to make themselves acquainted
with all existing works, and at the same time the practical man is enabled
in any case that may come up to inform himself as to where assistance
may Dest be sought. A short remark to speeify the contents may in this
respect often help in the right direction. The succession is in each division
chronologically arranged

Although the literature of the subject would seem from the following
tolerably extensive, still the number of pure geometrical solutions in
which no analytical formule appear is much less. Publications upon the
subjeét would, moreover, beyond doubt, be still more numerous were it
not for the difficulty and cost of production of lithograph plates.
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1. TEXT-BOOKS UPON GRAPHICAL STATICS.

Culmann, K.—* Die graphische Statik.” With Atlas of 86 Plates. Ziirich,
Meyer and Zeller, 1866. [L Part, 1864: Elements and Graphical
Investigations of Structures. Also, second edition, first volume,
1873, with 17 Plates. General Principles, second volume, to follow
shortly.]

Bauschinger—* Elemente der graphischen Statik.” With Atlas of 20
Plates. Miinchen, 1871. [Without the aid of modern geometry, and
without practical applications. Admirable exposition of the Princi-
ples.]

Reuleauz.—An outline of the graphical statics is to be found in “ Der Con-
structeur,” by Reuleaux, third ed. Braunschweig, 1872.

Levy—* La Statique Graphique et ses Applications.” Paris, 1874. With
Atlas of 24 Plates. [Principles and several applications; clear and
elegant exposition of the subject.]

II. PAPERS UPON THE GRAPHICAL STATICS.

Most—* Ueber eine allgemeine Methode, geometrisch den Schwerpunkt
beliebiger Polygone und Polyeder zu bestimmen.” Archiv d. Math.
und Phys., IL. (1869), p. 355. [Also applicable to curve areas, with-
ont equilibrinm polygon.]

Culmann, K.~—* Ueber das Parallelogram und iber die Zusammensetzung
der Krifte.” Vierteljahrsschr., d. Naturforsch. Ges. zu Ziirich, 1870.
[Correspondence of the graphical statics with the Statics of Pliicker. ]

Mohr—*¢ Beitrag zur Theorie der Holz- und Eisenconstructionen,” Zeitschr.
d. Hanngv., Arch. m. Ing. Ver., 1870, p. 41. [Relation between the
neutral axis and centre of strains.] v

Grunert, J. A.—* Ueber eine Graphische Mcthode zur Bestimmung des
Schwerpunktes eines belicbigen Vierecks.” Arch. d. Math. u. Phys.,
LIL (1871), p. 494. [Simple and brief. Compare also L., p. 212.]

Cremona, B.—** Le figure reciproche nelle statica grafica.” With 5 Plates,
Milan, 1872. German translation in Zeitschr. d. Ost. Arch. u. Ing.
Ver., 1878, p. 280. [Force and equilibrium polygon as reciprocal
figures. ]

Du Bois, A. J.—* The New Method of Graphical Statics.” Van Nostrand's
‘“Engineering Magazine,” Vol. XII., Nos. 74, 75, 76, 77, 78. [General
properties of force and equilibrium polygons, with practical applica-
tions to bending moments, and several important mechanical problems.
Also, Maxwell’'s Method applied to bridges, roof trusses, etc.] Sepa-
rate reprint, 1875. Van Nostrand, New York.
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III. APPLICATION TO THE SIMPLE GIRDER.

Culmann, K.—*Der Balken,” Third chap. of @. graph. Statik, 1866.
[Contains also the construetion of the inner forces.]

Vojdeck—* Graphische Bestimmung der Biegungsmomente an kurzen
Triigern.” Zeitschr. d. Vereins Deutsch. Ing., 1868, p. 503. [Graphi-
cal interpretation of analytical relations. ]

Cotterill, J. H—**On the Graphic Construction of Bending Moments."”
‘Engineering,” 1869 (VIL), p. 32. [Equilibrium polygon for the sim-
ple truss, with references to Reuleaux and Culmann.]

Winkler, E.—*Einfache Triiger,” ‘ Theorie der Brucken,” * Aeussere
Kriifte gerade Triiger.”” Wien, 1872. [Simultaneous prescntation of
analytical and graphical methods.]

ott, K. von—* Wirkung paralleler Kriifte auf einfache Triger mit Gerade
Lingenachse.” In die Grundzige d. graph. Rechnens u. d. graph.
Statik. Prag, 1872, p. 28. [The most elementary principles pertain-
ing to composition of forces in a plane are prefaced.]

IV. APPLICATION TO THE CONTINUOUS GIRDER.

Culmann, K.—* Der continuirliche Balken.” Fourth chap. of the Graph.
Statik, 1866. [With examples—the moments at the supports are
analytically determined.]

Mohr—*¢ Beitrag zur Theorie der Holz- und Eisenconstructionen.” Zeitschr,
d. hanndv. Arch. u. Ing. Ver., 1868, p. 19. [Completion of Culmann’s
method—the moments at the supports are graphically determined.]

Lippich—*‘ Theorie des continuirlichen Triigers Constanten Querschnitts,”
Wien, 1871. Separate reprint from Forster’s Bauzeit,, 1871, p. 103.
[Graphical method, together with elementary analytical.]

Ritter, W.—* Die elastische Linie und ihre Anwendung anf den continuir-
lichen Balken.” Zirich, 1871. [Mohr's method—given as a supple-
ment to the Graph. Statik of Culmann.]

Winkler, E.—* Continuirliehe Tréger. Theorie der Briicken—aeussere
Kriifte gerade Triiger.” Wien, 1872. [The Mohr-Culmann method,
together with analytical.)

Solin, J.—* Geometrische Theorie der continuirlichen Tréiger.” Mitth. d.
Areh. u. Ing. Ver. in Béhmen, 1873.

Greene, Chas. B.—* Graphical method for the analysis of Bridge Trusses;
extended to Continnous Girders and Draw Spans.” New York, 1875.
[Moments at supports found by successive approximation, or bulancing
of moment areas.]

V. APPLICATION TO FRAME WORK.

Culmann, K.—* Das Fachwerk.” Fifth chap. Graph. Statik, 1866. [Most
general form of parallel truss, suspension truss, Pauli’s truss, roof
trusses. |
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Keck, W.—* Ueber die Ermittelung der Spannungen in Fachwerk triigern
mit Hiilfe der graphischen Statik.” Zeitschr. d. hanngv. Arch. u. Ing.
Ver., 1870, p. 153. Separate reprint, Hunnover, 1872. [Presentation
of the method with reference to practice.]

Jenkin—* On the Practical Application of Reciprocal Figures to the Cal-
culation of Strains in Frame-work. Transact. of the R. Soc. of Edin-
burgh, 1870, (XXV.) p. 441. i

Mazwell, Prof. Clerk—* Reciprocal Figures, Frames, and Diagrams of
Forces.” Trans. of R. Soc. of Edinburgh, 1869-70.

Unwin—* Iron Bridges and Roofs.” London, 1869. [Application to roof
trusses, wind force, etc.]

Ranken, F. A.—*The Strains in Trusses.” New York, Appleton, 1872.
{Examples of simple trusses drawn to scale.]

Bow, Robert H.—* Economics of Construction in Relation to Framed Struc-
tures.” London, 1873. [Application of Maxwell's Method only to
roof trusses, etc.]

Ott, K. von—*Das Fachwerk.” In Grundzige d. graph. Rechnens u. d.
graph. Statik. Prag, 1872. [Roof trusses, truss fixed at one end and
free at the other, bridge trusses.]

Reuleauz—** Hilfslehren aus der Grapho statik.” Second chap. of the Con-
structeur, third ed., 1872. [Compound truss, roof trusses, etc.]

Schaffer—* Graphische Ermittelung der Ordinaten des Schwedler'schen
Tréigers.” Zeitschr. fir Bauwesen, 1873, p. 237. [Proceeding from
the equation for the same.]

Heuser—* Graphische Ermittelung der Ordinaten des Schwedler’schen
Triigers.” Zeitschr. f. Bauwesen, 1873, p. 523. [Preceding method
simplified—another by means of equilibrium polygon.]

VI. APPLICATION TO THE IRON ARCH.

Culmann, KE.—* Der Bogen.” Sixth chap. der graph. Statik, 1866. [Con-
tains also the inverted or suspended arch. The arch as a rigid body.]

Durand- Claye, A.— Sur la vérification de la stabilité des arcs métalliques
et sur I'emploi des courbes de pression.” Ann. d. ponts et chauss.,
1868, sem. 1, p. 109. [Mery-Durand pressure curves, but with refer-
ence to the absolute resistance of the material.}

Frankel, W.—* Zur Theorie der elastischen Bogentriiger.” Zeitschr. d. han-
ngv. Arch. u. Ing. Ver,, 1869, p. 115. [Following out Mohr’s idea of
the equilibrium polygon as elastic line.]

Mohr—* Beitrag zur Theorie der elastischen Bogentréiger.” Zeitschr. d.
hanngv. Arch. u. Ing. Ver., 1870, p. 389. [Criticism of the preceding
method, and giving another.]

Vila—* Beitriige zur graphischen Berechnung elastischer Bogentriger mit
Kimpfergelenken,” Mitth. d. Arch. u. Ing. Ver., in Bohmen, 1873.



LITERATURE UPON GRAPHICAL STATICS. xlix

VIL. APPLICATION TO THE ARCH.

Cousinery, E. B—* Application des procédés du calcul ‘graphique & divers
problemes de stabilité.” Fourth chap. of Calcul par le Trait., Paris,
1839. [With especial reference to the strength of abutments—pure
graphical treatment.]

Mery—* Mémoire sur 1'équilibre des voutes en bercean.,” Ann. d. ponts
et chauss., 1840, sem. 1, p. 50. [Geometrical determination of every
possible pressure curve.]

Oulmann, K.—* Der Bogen.” Sixth chap. of Graph. Statik, 1866. [Con-
taining also arch centerings; exact discrimination of support and
pressure line.]

Durand- Claye, A.—*Sur la vérification de la stabilité des vofites en
magonnerie et sur 'emploi des courbes de pression.” Ann. d. ponts
et chauss,, 1867, sem. 1, p. 63. [Reference to relative resistance of
material. ] ¥

Hurlacher, A. R.— Die Stiitzlinie im Gewolbe.” Tech. Blitter, 1870, p
49, [Practical method by inscription of support line, according to
Culmann,]

Heuser—< Zur Stabilititsuntersuchung der Gewdlbe.” Deutsche Bauzeit.
1872, p. 365. [Also methods for unsymmetrical form and load.]

VIIL. APPLICATION TO RETAINING WALLS.

Poncelet, J. V.—* Mémoire sur la stabilit¢ des revétements et’ leur fonda-
tion.” Mem. de Doff. du Génie, 1838 (XIIL); separate reprint,
Paris, 1840. [First analytical graphical theorie.]

Cousinerys E. B.—‘ Application des procédés du calcul graphique & divers
problemes de stabilité.” Fourth chap. of “Calcul par le Trait,” 1839.
[Pure graphical, without formulee.]

Saint- Guilhem—* Mémoire sur la poussée des terres avec ou sang sur-
charge.” Ann. d. ponts et chauss.,, 1838, sem. 1, p. 319. [Further
development and generalization of Poncelet’s Theory.]

Rankine—* Manual of Civil Engincering.” London, fourth ed., 1865.
[€Containing graphical construction of pressure parallel to earth sur-
face upon vertical wall.}

Culmann, I.—* Theorie der Stiitz- und Futter-Mauern.” Eighth chap. of
Graph, Statik, 1866. [With use of equilibrium polygon, pressure
upon tunnel arches.]

Holzhey, E—* Beitriige zur Theorie des Erddrucks und graphische Bestim-
mung der Stirke von Futter-Mauern.” Mitth. tiber Gegenst. d. Artill
und Geniewesens; separate reprint, with two plates, Wien, 1871
[Point of application of earth pressure for complicated contour.]

Mohr—* Beitriige zur Theorie des Erddrucks.” Zeitschr. des hannév,
Arch. u. Ing. Ver., 1871, p. 844. [Point of application of earth pres-

sure and new analytical theory.] 2
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Winkler, E.—* Neue Theorie des Erddrucks.” Wien, 1872. [Containing
graphical methods according to the old theory.]

Hiiseler, C.—* Beitriige zur Theorie der Futter- und Stitz-Mauern.” Zeit-
schr. d. hanAsv. Arch. u. Ing. Ver., 1873, p. 36. [Graphical deter-

* mination of earth pressure according to Culmann.]

MISCELLANEOUS APPLICATIONS.

Reuleauz—* Die graphische Statik der Axen und Wellen.” Published by
polytech. Ver. in Zirich, 1863. [Autograph copy of lectures.]

Culmann, K.—** Der Werth der Constructionen.” Seventh chap. of Graph.
Statik, 1866. [Best and cheapest systems under given conditions,
especially for bridges.]

Reuleauz—*‘ Graphostatische Berechnung verschiedener Axen, Kranpfosten,
Kurbeln,” in the Constructeur, third ed., 1872.

Scattering graphostatical constructions are to be met with in many text-
books upon construction, especially since the appearance of Culmann’s
work, a second edition of which is in course of preparation, and expected
soon to appear.

XIL
GRAPHICAL DYNAMICS.

The scientific or practical value of graphical solutions once recognized,
there remains no reason for limiting them to statical problems only, and
endeavors in the above direction are already forthcoming, We limit our-
selves to a passing notice.

First, we have an attempt to employ graphical constructigns in the
theory of the overshot and breast-wheel (Secberger, ¢ Arbeitung der Theo-
rie der oberschléichtigen Wasserrider auf graphischen Wege.” Civil Ing.
1869, p. 398, and, 1870, p. 339). We cannot here notice the value of the
solutions given, but the very sparing applications of geometry hardly jus-
tify the title of the work.

A short article, which gives the graphical determination of the force at
every position of a moving point, may also be noticed. (Rapp, *“ Zur
graphischen Phoronomie,” in Zeitsch. f. Math. u. Phys., 1872, p. 19.)

The genuine foundation of a graphical dynamics has been first attempted
by Proll (“ Begrilndung graphischer Methoden zur Lésung dynamische
Probleme,” in Civil Ingenieur, 1878). From the fact that the effects of
forces in dynamies are measured by the changes of velocity of any point or
points of a machine system, Proll concluded that it must be possible to
represent these force effects by geometrical relations, such as kinematic
geometry teaches.

His investigations, since published in independent form (* Versuch
einer graphischen Dynamic,” with 10 plates, 1874), fall into three parts.
The first part treats of the action of the “ outer forces” in machines whose
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PaRT 1.
GENERAL PRINCIPLES.

CHAPTER 1.

FORCES IN THE SAME PLANE—COMMON POINT OF APPLICATION.

1. Notation, etec.—In order that a force may be “ given” or
completely determined in its relations to other forces, we must
know not only its infensity, but also its direction, and the posi-
tion of its point of application. These three being known, the
geometrical expression of our knowledge is very simple. We
have only to assume a certain length as the unit of force, and
then any force is at once given by the length, direction, and
position of a straight line. This method of force representa-
tion is so obvious, that it is in fact used in mechanics, even
where the treatment itself is essentially analytical.

Unless expressly stated, all the forces with which we have to
do, will be considered as lying and acting in the same plane.
Graphically then, any force is completely determined by a
straight line, the beginning of avhich represents the point of
application, and the length and direction of which give the in-
tensity and direction of the force.

We shall indicate a force in general by the letter P, its point
of application by A. When we have several forces we repre-
sent the points of application by A,, A, A, ete., and the ends
of the corresponding lines by Py, P,, Py, etc. The direction in
which a force is supposed to act is thus unmistakably indi-
cated.

‘When, however, lines representing several forces are laid off
one after another, the beginning of each at the end of the pre-
ceding, it will be sufficient to put 0 at the beginning of the
first, and 1, 2, 8, ete., at the end of each. No confusion can
arise, as each force acts and reaches from the point indicated
by the figure which is one less than its index, to the point indi-
cated by that index.

When, finally, we designate a force by the two letters or fig-
ures which stand at the beginning and end, we shall always
indicate by ;he order in which the letters or figures are written,
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the direction of action of the force, first naming the point of
application, and then the end.

A force due to the composition of several forces, as P;, Py, P;,
we denote by Pygor Ry;. Thus Ry denotes the resultant of
the forces Py, P, and P;.

2, Paralielogram of Forces.—If two forces, P, and P,,
given in direction and intensity by the lines OP, OP, [Fig. 1,
Pl 1], have a common point of application O, the resnltant
R,,is found by the well known principle of the “ parallelo-
gram of forces,” by completing the parallelogram as indicated
by the dotted lines, and drawing the diagonal. OR then gives:
the resultant of the forces P, and P,. If this resultant acts in
the direction from O to R, as indicated by the arrow, it replaces
P, and P,; that is, it produces the same effect as both forces
acting together. If it were taken as acting in the opposite
direction —.e., from O outwards, away from R—it would hold
the forces P; and P, in equilébrium.

Now, we see at once that it is wnnecessary to complete the
parallelogram. It is sufficient to draw from the end of the
force P, the line Py R in the same direction that P, acts in, and
make it equal and parallel to P,. The point R thus found is
the end of the resultant R, or_is a point upon the direction of
the resultant prolonged through O.

As to the direction of action of the resultant—if we follow
round the triangle from O to P, and from P, to R and R to O
—i.e., if we follow round ¢n the direction of the jforces—the
direction for the resultant from R to O thus obtained is, as we
have already seen, the direction necessary for equilibrium.

3. If, instead of two forces, we have three or more, as P, P,,
Py, P, [Fig. 2] we still have the same construction. Thus com-
pleting the parallelogram for P, and P, we find R,,. Complet-
ing the parallelogram for Ry, and Py, we find R4, and again,
with this and P, we obtain R,,. Again, we see it is unneces-
sary to complete all the parallelograms. We have only to draw
lines P; Ry, Riz Ry, Rig Ryy, parallel to the forees P, Py and
P, respectively, and equal in length to the intensities of these
forces, and then, no matter what may be the number of forces,
the line drawn from the point of beginning to the end of the
last line laid off will give the intensity and position of the
resultant. As to direction, the same holds good as before.

If the end of the last line laid off as above, should coincide
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with the point of beginning, there is, of course, no resultant,
and the forces themselves are in equilibrinm.

4. The polygon formed by the successive laying off of the
lines parallel and equal to the forces, we call the  force poly-
gon.” Hence we have the following principles established :

If any number of forces having a common point of apple-
scation and lying in the same plane, are in equilibrivm, the
“ foree polygon” is closed.

If the « force polygon” is not closed, the forces themselves
are not in equilibrium, and the line necessary to close it gives
the resultant in intensity and direction.

This resultant, if considered as acting in the direction ob-
tained by following round the  force polygon” with the forces,
will produce equilibriwm—acting in the opposite direction, it
replaces the forces.

The resultant thus found in intensity and direction can be
inserted in the force diagram at the common point of applica-
tion.

5. Thus, required the position, intensity, and direction of the
resultant of the forces Py, Py, Py, Py, Py,

These forces are given in position, direction, and intensity
by the force diagram, Fig. 3 (). The resultant of all these
forces must have of course the same point of application A as
the forces themselves—it remains to find then its relative posi-
tion and the direction of its action, so that we may properly
insert it in the force diagram.

‘We have simply to draw the force polygon, Fig. 8, (b) by lay-
ing off successively O P, P; P, etc., equal, parallel, and in the
same direction as the forces Py, P,, ete., as given by Fig. 3 (a).
Then the line Py O necessary to close the force polygon gives
the intensity of the resultant, and in order to replace Py it
must act in the direction from O to Ps; i.e., contrary to the
order of the forces. If then in Fig. 8 (#) we draw A R,; equal
and parallel to O P;, we have the resultant applied at the com-
mon point of application A, and given in position, intensity
and direction.

Moreover, it is evident that eny diagonal of the force poly-
gon as Ry, [Fig. 3 (8)] is the resultant of Pyy, and acting in the
direction from P, to P, it holds Py, in equélébrium. Dut it is
also the resultant of Py, P,, P;, aud Ry, and acting in the same
direction as before, it replaces these forces. The force polygon
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thus shows that the force which replaces Py, Py, Pj, and Ry, at
the same time holds P; and P, in eguilibriuim, just as it shonld
do. ;

If, on the other hand, we had originally only P, P, Ry,, P,
and R,; forming a system of forces in equilibrium, we could
decompose Rgy into two components by simply assuming any
point as P; [Fig. 3 (5)] and drawing P; P, P; P,.  Then follow-,
ing ronnd this new polygon in the direction of the forces, or,
what amounts to the same thing, taking the direction of the
components Py P, opposed to the direction of Ry, for equilibri-
um, we obtain the direction of action of Py and P, as shown by
the arrows in Fig. 3 (). These forces inserted in Fig. 8 (), in
the place of Ry, and in these directions, will not disturb the
equilibrium.

Hence, any diagonal in the force polygon, is the resultant
of the forces on either side, holding in equilibrium those on
one side and replacing those on the other, according to the
direction in which it is concetved to act.

Also, any force or number of forces may be decomposed into
two others in any desired direction, by choosing a suitable
point in the plane of the force polygon and drawing lines
Jrom this point to the beginning and end of the force or force
polygon.

6. It matters not in what Order we lay off the Forces in
the Construction of the force Polygon.—Thus, in Fig. 1,
whether we draw from the end of P, the line P, R;, equal and
parallel to P, or from the end of P, the line P; Ry, equal and
parallel to P,, in either case we obtain the same resnltant and
the same direction for the resultant. But by a similar change
of two and two, we can obtain any order we please. For exam-
ple, we lay off in Fig. 8 (¢) the same forces in the order Py P,
Py, P; P,, and obtain precisely the same resultant, in the same
direction as before. For, the resnltant of Py and P, must be
the same as that of P, and P; in the first case. The resultant
of Rsyand P; must then be the same in both polygons, and so
on.

Generally, then, no matter what the order in which the
forces are laid off, the line necessary to close the force polygon
is the resultant of the forces, and the diagonals of the foree
polygon give us the resultants of the forces on either side.

By assuming a point at pleasure,and drawing lines from this
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point to the beginning and end of any side of the force poly-
gon, and taking the direction of these lines opposed to the
direction of that sidé, we can decompose any force in the force
polygon into its components. Thus the force polygon gives us
complete information as to the action of the forces.

7. If the Forces act in the same straight Line, the force
polygon of course becomes a straight line also, and the result-
ant is the sum or difference (algebraic sum) of the forces.

Thus, if we have Py, P, Py, all acting at the point A, as
shown by the force diagram Fig. 4 (@), we form the force poly-
gon by laying off from 0, Fig. 4 (), the intensity of P;, from
the end of this line P; P, equal to A P, and from Py, P, P,
equal to A P;.  Then the line necessary to close the polygon is
evidently 0 P; = P; + P,—P;. A single force acting then at A
in the direction of and having the intensity represented by the
line 0 P; would replace Py, Py, and P;.  If acting from Pg to 0,
it will'produce equilibrinm.

If we again choose an arbitrary point as C [we shall hereaf-
tor call this point the “ pole” of the force polygon], and draw
lines S, S; from this pole to the beginning and end of the force
polygon, we can decompose the resultant into two forces in any
required direction. If the resultant is supposed to act down,
then the arrows show the direction in which these components
must act in order to replace the resultant. If then at A we
draw lines parallel and equal, we have these components in posi-
tion, direction, and applied at the common point of application.

8. Practical Applications.—Simple and even self-evident
as all the preceding may seem, we have already acquired all
the principles requisite for a rapid, accurate, and very elegant
method of finding by diagram the strains in the various mem-
bers of all kinds of framed structures, such as roof trusses,
bridge girders, cranes, etc., no matter how complicated the
structure, or what special assumptions are made as to the load-
ing, provided only, that all the exterior forces are known. A
complicated or unsymmetrical arrangement of parts increases
greatly the labor of ealculation, but has no effect upon the ease
or accuracy of the graphical method. The method moreaver
checks its own accuracy, does not accumalate errors, and shows
in one view the relation of the strains to each other, and the
variations which would be caused by a change in the manner
of load distribution, or in the form of construction.
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As this method is not as well known as it deserves to be, it
will perhaps be of advantage to pause for a mowment in the
development of our subject, and make thig direct application of
the principles already established.

BRACED SEMI-ARCH,

9, Stoney, in his “Theory of Strains,” Vol. L, page 123,
gives the following example of a “braced semi-arch,” repre-
sented by Fig. 5, PL. 1. The dimensions are as follows: pro-
jecting portion, 40 ft. long, 10 ft. deep at wall. Lower flange,
circular, with a horizontal tangent 2 ft. below the extremity of
girder. Radius of lower flange, 104 ft. TLoad uniform and
equal to one ton per running foot supposed to be collected into
weights of 10 tons at each upper apex, except the end one,
which has only 5 tons.

Fig. 5 shows the arch drawn to a seale of 10 ft. to an inch.

This scale is too small in this case to ensure good results ; in
general the larger the scale to which the frame can be drawn,
the better; but for the purpose of illustration it will answer
well enough. With a large scale for the frame diagram, a
scale of 10 tons to an inch will in general be found to answer
well. Fig. 5 (2) gives the strains in the various members to a
scale of 10 tons to an inch and Fig. 5 (§) 20 tons to an inch;
the first for the load at the extremity alone, the second for a
uniform load.

Fig. 5 (@) is thus obtained. We first lay off the weight, 5
tons, to scale, in the direction in which it acts; <.e., down-
wards. Now this weight and the strains in diagonal 1, and
flange A, are in equilibrium ; therefore by article (4) the foree
polygon must close. Drawing lines therefore from the ends of
the line representing the weight of 5 tons, parallel to these
pieces and: prolonging them to their intersection, we obtain
the strains in A and 1. Commencing with the beginuing of
the weight line and following down around the triangle thus
formed, we find that A aets from right to left, as shown by the
arrow. A acts then away from the apex; it is therefore in
tension. Diagonal 1 acts towards the apex and is hence com-
pressed.

We pass now to apex @, of the frame. IIere we have the
strains in B and diagonals 1 and 2, and these three strains hold
each other in equilibrium. The strain in 1 we have already,
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and know it to be compressive. We have then simply to draw
lines from 0 and & parallel to E and 2, and follow round the
triangle, to obtain the intensity and quality of the strains in K
and 2. We must remember that as 1 is in compression, and
we are now considering apex @, we must follow round from o
to & in Fig. 5 (a), and so round. We thus find 2 acting cway
from apex a and therefore in Zension, and E acting towards
this apex, and hence compressed.

Pass now to apex ¢. We have the strains in A and 2 in
equilibrium with B and 8. [No weights are supposed to act
except the one at the end.] DBut A and 2 we already have.
We draw 3 and B. Diagonal 2 has been found to be in ten-
sion. With reference to apex ¢ it must therefore act away
from ¢; 7., from d to b in the force polygon. This is suffi-
cient to give us the hint how to follow round. We pass from
d to b for 2, from b to e for A, then from e to B and from B to
d for B and 3. B is therefore tension and 8 compression.
And so we proceed. TFor the next apex g, we have E and 3 in
equilibrinm with F and 4. We draw parallels to F and 4 so
as to close the polygon of which we have already two sides, B
and 3, given, and remeinbering that as 3 is in compression, it
must therefore act fowards g, we follow round the completed
polygon with this to guide us, and find 4 fension and F com-
pression. Thus we go through the figure, and when all is
ready we can scale off the strains. The strains in the lower
flanges it will be observed all radiate from o. The upper
flariges are all measured off on the horizontal ¢ C, and the dia-
gonals are the traverses between. We see at once that however
irregular the structure, we can always easily and readily deter-
mine the strains at any apex, provided no more than two un-
known strains are to be found. If more than two pieces, the
strains in which are unknown, meet at an apex, we can evi-
dently form an indefinite number of closed polygons. The
problem is indeterminate, and the structure has unnecessary
or superflnous pieces.

Fig. 5 (8) gives the strains for a uniform load, taken, for con-
venience of size, to a scale of 20 tons to an inch. Iere until
we arrived at apex ¢ of the frame the strains are evidently the
same as before. Observe the inflnence of the weight at c.
Iere we have the strains in A and 2 given in the diagram, in
equilibrium with B, 3 and the known weight acting at ¢; viz.,
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10 tons. We lay off therefore 10 tons downward from e, Fig.
5 (3), and follow down from e around the polygon. We thus
find B tension and 8 compression. Then 4 and F are found as
before for apex g, 4 tension and F compression; and then we
come to the next apex and the newt weight. This is laid off
downwards from the end of the preeedmtr and then we follow
round, finding C tension and 5 compression ; and so on.
10. As another example, let us take the

ROOF TRUSS, -

given in Fig. 6, PL. 2. This truss is given by Stoney, Vol. L,
page 128. Dimensions: span, 80 ft.: rise of top and bottom
flanges, 16 and 10 ft. respectively. Radii, 58 and 85 ft. The
figure shows two different kinds of bracing. In the left-hand
part the extreme bay of the lower flange is half as long again
as the others. The upper flange is divided into 4 equal bays.
In the right-hand section, both flanges are divided into 4 equal
bays, and every alternate brace is therefore nearly radial. Each
upper apex in both cases is supposed to sustain a weight of
one ton.

The strains in the various pieces are given in Fig. 6 ().

‘We form the force polygon by laying off the weights from 0
to 7 and then laying off the reactions 3.5 apiece, upwards, we
come back to 0, and the force polygon is closed as it should be,
since the sum of the reactions must be equal and opposite to
the sum of the weights. Starting then with the reaction at the
left support A, we go through from apex to apex in a manner
precisely similar to the previous case. The operation is so
gimple that it is hardly necessary to detail it again, but we
recommend the reader to go over it with the aid of Fig. 6 (@),
lettering the figure as he proceeds. The dotted part gives the
strains for the right-hand half.

DIAGRAM FOR WIND FORCE.

11. It is of considerable importance to investigate the influ-
ence of a partial load, such as that caused by the wind blowing
on one side of the roof and this by the aid of our method we
can easily do.

From the experimental formule of Hutton,*

* Iron Bridges and Roofs. Unwin. p. 120.
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P,=P sin, j 18 eoait
P =P sin, i.18400!
PY=P. cot. i sin;ij 1hoost

where P is the intensity of the wind pressure in Ibs. per sq. ft.
upon a surface perpendicular to its direction, ¢ is the inclination
of any plane surface to this direction; P, is the normal pres-
sure, P, the horizontal component of this normal pressure, and
P, its vertical component.

That is, if the wind blows horizontally, P, is the horizontal
and P, the vertical component of the pressure on the roof. If
we take P=40 lbs., which probably allows snfficient margin
for the heaviest gales, we have the following values of the nor-
mal pressure and its components for various inclinations of
roof surface:

Angle of Lbs. per square foot of surface.

The load at each joint may be taken as equal to the pressure
of the wind striking a surface whose area is equal to that por-
tion of the roof supported by one bay of the rafter, and inclined
at the same angle as the tangent to the rib at the joint. Thus
we can calculate Py, P, Py, P,, (Fig. 6), resolve thesc forces into
their horizontal and vertical components, and find the reactions
at the supports as well as the horizontal force at the left abut-
ment, which in our construetion is supposed to be fixed. Should
the wind be supposed to blow from the right side, the strains
would be entirely different, and it would be necessary to form
a second diagram. Each piece must be proportioned to resist
the strains arising in either case. The forces Py, and their
horizontal and vertical components, as also the reactions, being
known, we can now form the force polygon.

Thus in Fig. 6 (9), we lay off the forces P,;, make a ¢ equal
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to the vertical reaction at A, @ & = the sum of -the horizontal
components, or the horizontal force at A, and o 4 the vertical
reaction at the right support. This last line should close the
force polygon and bring us back to o.

Now starting at the left support, we have the vertical reac-
tion @ ¢, the horizontal force a &, and the wind force Py, in
equilibrium with A and B. Closing the polygon by lines par-
allel to A and B, we obtain the strains in these pieces, B ten-
sion and A compression. At the next apex we have A and P,
in equilibrium with 1 and B. Completing the parallelogram,
we find 1 compression and B compression. At the next apex
1 and E are in equilibrium with 2 and F, and we find F and 2
tension and so on. The upper flanges are in compression and
start from the ends of the forces Py, P,, ete. The lower flanges
radiate from 6. If we were to carry out the coustruction for
the rest of the frame, the upper flanges after D would radiate
from o.

A comparison of Fig. 6 («) and (J) shows that whereas under
uniform load the strain in 1 is ension, for wind force the same
brace is in compression. = In fact in the first case @il the braces
are in tension, while in the second 1, 8, and 5 are compressed,
and 3 and 5 quite severely. The strains in the bracing gener-
ally are much greater in the second case.

Were we to consider the wind as blowing from the other
side, or what is the same thing, suppose the right end fixed and
the left supported on rollers, then the horizontal reaction @ &
will be applied at the right abutment. In this case the lower
flanges will radiate from @ instead of &, and the first upper
flange will start from v. Supposing the first two lines of this
new diagram drawn, as indicated by the dotted lines, and fol-
lowing round from & to o, and so round to @ and back to b, it
may easily happen that the last upper flange is in fenséion and
the last lower flange in compression ; that is, a complete reversal
of the ordinary condition of strain.

For an excellent presentation of the above method, we refer
the reader to Zron Bridges and Roofs, by W. C. Unwin, pp.
128-140. The above method is there referred to as “Prof.
Clerke Maxwell's Method,” and as such is known and used in
Englaud.*

* Phil. Mag., April, 1864, and a Paper read before the British Association for
the Advancement of Science, by Prof. Maxwell, in 1874.
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BRIDGES.

12. For bridges the strains due to a uniform load are of
course easily found. In most cases a rolling load can be man-
aged also, without making a separate diagram for each position
of the load. Thus, if we diagram -the strains for the load at
the first and last apex, the strains dne to intermediate loads
will be multiples or submultiples of these. A calculation for a
simple Warren girder of small span, and a consideration of the
reaction for each position of the load, will at once illustrate
what is meant. [Compare Stoney, Theory of Strains. Pp.
99-111, Vol. 1]

Thus Stoney, in his T%eory of Strains, Vol. 1., p. 99, gives
the girder represented in Fig. 7, Pl 2, span 80 ft., depth of
truss, 5 ft., 8 equal panels in upper flange, 7 in lower.

For the first weight of 10 tons, P;, the strains are given by
Fig. 7 (a) to a scale of 10 tons to an inch. We form first the
Jorce polygon by laying off from o, 10 tons, to P,.  From the
end of this line we lay off upwards the reaction at right abnt-
ment = of 10 tons, or 1.25 tons; and then the reaction at the
left abutment = ¥ of 10 tons, back to o, thus closing the force
polygon. [Note.—In any structure which holds in equilibrium
outer forces, the force polygon must close. If it does not, there
is no eqnilibrium, and motion ensues (see Art. 20).] Com-
mence now with the reaction at @ in the frame diagram, Fig. 7,
because here we have a known reaction, @ o (force polygon),
and only fwo unknown strains to be determined. Drawing
lines parallel to A and 1, we obtain the strains in A and 1.
Then pass on to apex . With the now known strain in 1, we
can determine 2 and E.

Passing now to the next apex, we have A and 2 known, and
also the weight P, Join therefore Py and B [Fig. 7 (a)] by
lines parallel to Band 8. Band 3 are both in compression.
We find diagonal 2 also in compression, and 1 in tension. That
is, both the diagonals wnder the weight are compressed, as evi-
dently should be the case. From 4 on we have tension and
(,ompressmn altemately

Fig. 7 () glves the strains due to the last position of the load
P, The strains in the diagonals are evidently all equal, and
alternately tension and compression.

Now it is not necessary to construct more than these two dia-
grams. From these two alove we can determine the strains for
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any intermediate weight. Thus scaling off the strains in Fig.
7 (@) and (3), we can tabulate them under P, and P;, as shown
by the table.

DiaGoNALs, | P, P, P, P, P, P, P, f T

R A —12.4/—10.6/— 8.9‘— 7.1} 5.8|z= 8.6| =<l 8). st —49.6
& SsdSiontids +12.4/+10.6/+ 8.9;+ 7.1+ 5.8+ 8.5(+ 1.8!+49.6 ......
T i + 1.8/—10.6/— 8.9— 7.11— 5.3 — 8.5— 1.8i+ 1.8/—37.2
ubdeiit o — 1.8/+10.6/+ 8.9+ 7.1{+ 5.8+ 8.5(+ 1.8 +87.2— 1.8
i A1 + 1.8+ 8.5/— 8. 9‘- 7.1}~ 5.3/~ 3.5— 1.s‘+ 5.3‘—26.6
Gt — 1.8— 8.5+ 89I+ 7.1+ 5.8/+ 8.5+ 1.8:4,26.6_5.3
e . + 1.8/+ 8.5/+ 5. 3’— 7.1}— 5.8 — 8.5— 1.8/ +10.6(—17.7
BRI 4 = 1.3_35_53:+ 7.1}+ 5.3/+ 8.5/+ 1.8{+17.7—10.6

Now the reaction at the left abutment due to Pgis #fwice
as great as that due to P,. Ilence the values in the column
for Pg will be twice as great; in the column for Py three times
as great, and so on. For similar reasons the strain in 5 for
P, will be twice that for P,. In column P, then, from 5
down we multiply the strains in P; by 2. In P; from 7 down
by 8. Thus we fill out the table of strains completely, and find
the maximum tension and compression. A similar procedure
will give the flanges.*

APPLICATION TO AN ARCH.

13. For a “braced arch” (Stoney, p. 136) as represented in
Fig. 5 (¢) Pl 2, the strains in every piece due to any load are
in similar manner easily found by first finding the components
of the load acting at the abutments, and then proceeding as
above. Thus for a load Py, the left half of the arch is in equi-
librinm with the forces acting upon it; viz., a horizontal and a
downward force at @, and a horizontal and an upward force at
A. The resultant of the forces at ¢ must then pass through

* The reader not familiar with the above method of tabulation will find it
further illustrated in Art. 7 of the Appendix. He cannot do better than to
refer to it here and now.
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@ and A, and be equal and opposite to the resnltant at A. The
resultant at the right abutment must pass throngh that abutment,
and also through the intersection of P, with A @. So for any
other force, as Pg, we have simply to draw B « to intersection
with Py, and then P; A. We can now decompose Pgor P, along
the resnltants through the abutments thus found. Thus resolv-
ing P, along A ¢ and P, B, Fig. 5 (¢), we find the force acting at
apex a. This force resolved into A and 1 gives the strains on
these pieces both compressive. Passing then to the next apex,
we obtain the strains in 2 and E. Then to the next, and we
get 3 and B, compression and fension respectively, and so on,
as shown by diagram, Fig. 5 (¢), which, it will be seen at once,
is similar to Fig. 5 (a), already obtained for the “semi-arch,”
except that the strain in A is less than for the semi-arch and
compressive, while B C and D are in tension. The reason is
obvions. At @ [Fig. 5 (¢)] the resultant lies befween A and 1,
and therefore causes compression in both, while it passes out-
side of the arch entirely, to the right of the apex for diagonals
3 and 4, and hence canses tension in B Cand D. Fig. 5 (4)
gives the strains due to Ps. Ilere the resnltant or reaction at
A is first found and resolved into 9 and H, and then we go
through the frame as before. We see that 4 and 5 under the
load are both compressed, that & and ¥ are in tension and G
and H, as also the entire upper chord, in compression. The
work checks from the fact that the line closing the polygon
formed by B and 2 should be exactly parallel to and give the
strain in diagonal 1, or A and 1 should be in equilibrium with
the resultant through o [see Fig. 5 (d)].

In every case of the kind we first, then, have to draw the
Jrame diagram. Then lay off the force polygon which should
elose. Tinally we construct the strain diagram. The frame
diagram should be taken to as large a scale as possible consist-
ent with reasonable size, and the scale for the force and strain
diagrams as small as possible, consistent with scaling off the
strains to the requisite degree of accuracy. A small frame
diagram does not give with the proper accuracy the relative
positions and inclinations of the various pieces, so as to ensure
the proper direction for the lines of the strain diagram. A
slight deviation from parallelism eanses sometimes considerable
variation. Nevertheless with practice, care, and proper instru-
ments the accuracy of the method is surprising ; even in eom-



14 FORCES IN THE SAME PLANE. [cmae. 1,

plicated structures, the variation resulting from performing
the operation fwice being inappreciable. Every symmetrical
frame gives also a symmetrical strain diagram, and the accu-
racy of the work is tested at every point by 'this double sym-
metry, and finally by the end or last point of the second half,
exactly coinciding with the last point of the first half. Thus
in Fig. 6 (a), if we had but one system of triangulation carried
through the frame, the strain diagram for the right half wounld
be precisely similar and symmetrical to that already found for
the first, and the end of the last line would fall, or should fall,
_precisely upon the point b of the first. If it does not, and the
error is too great to be disregarded, then by checking corre-
sponding points in each half, we can find the point where the
error was committed. In any case errors do not accumulate.
Thus, armed with straight edge, scale, triangle, and dividers,
we can attack and solve the most intricate problems, without
calculation or tables, with ease, accuracy, and great saving of
time.

METHOD OF SECTIONS.

14. The results obtained by the above method are best
checked in general by Ritter’s “method of sections,” or the
use of moments.* This consists in supposing the structure
divided by a section cutting only ¢kree pieces. We can then
take the intersection of #wo of these pieces as a centre of mo-
ments, and the sum (algebraic) of the moments of all the
exterior forces, such as reaction, loads, etc., upon one of the
portions into which the structure is divided by the section, with
reference to this centre of moments, must be balanced by the
moment of the strain in the third piece, with reference to this
same point. Thus in Fig. 6, Pl. 2, required the strain in D.
Take a section throngh D, 7 and H (right half of Fig.), and let
@ be the centre of moments. The moments of the strains in 7
and H are then, of course, zero, since these pieces pass through a.
The moment of the strain in D with reference to ¢ must then
be balanced by the sum of the moments of all the outer forces
acting upon the portion to the left (or right) of the section.

Thus, strain in D multiplied by its lever arm with respect to
a, is equal to moment of reaction at A, minus sum of the mo-
ments of loads between A and o, all with reference to a@. 1f

* Dach- und Bricken- Constructionen. Ritter. Hannover, 1873.
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we take the direction of rotation of the forces on the left of the
section when in the direction of the hands of a watch as posi-
tive, and find the moment of strain in D regative, it shows
negative rotation about @, and the strain in D to resist this rota-
tion must act awaey from &, or be tensile. If the resultant
rotation of the outer forces is on the other hand positive, the
strain in D must act foward b, and D is therefore compressed.

This method of ealculation, it will be observed, is both sim-
ple and general. It can be applied to any structure, when the
outer forces are eompletely known, and only three pieces are
cut by the ideal section.

15. It is unnecessary to give here further applications of our
graphical method. The reader can easily apply it for himself
to the “ bowstring girder,” bent crane, ete., and satisfy himself
as to its'accura.cy, and the ease with which the desired results
are obtained.

Enongh has been said to indicate the many important appli-
cations which even at the very commencement of our develop-
ment of the graphical method we are enabled to make, and
here we shall close our discussion of forces lying in the same
plane and having a common point of application. As we pass
on to forees having diferent points of application, we shall
have occasion to develop new principles and relations not less
fruitfol and useful in their practical results.®

* We refer the reader here to the Appendiz to this chapter for further
illustrations of the application of the above principles, as well as for informa-
tion upon several points of considerable practical importance. We would also
remind him here once for all, that the Appendiz to this work was NoT in-
tended to be disregarded, but has been thought desirable in order to avoid
encumbering the general principles with too much of detail in the text. We
earnestly request him to neglect no reference to it which may be made in the
text.

He will do well in the present case, after first making himself familiar with
the above points, to solve for himself with scale and dividers a number of
similar problems, checking his results always by the method of moments,
He will thus in a very short time master the method, and be able to solve
readily and accurately every problem of usmal occurrence in practice.
Thongh the method is very simple, actual practice with the drawing board is
here indispensabdle.
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CHAPTER II.

FORCES IN THE BAME PLANE—DIFFERENT POINTS OF APPLICATION.

16. Resultant of Two Forces in a Plane—Different
Points of Application.—Heretofore we have considered
forces having a common point of application, and have seen
that in any case the direction and intensity of the resultant is
easily found by closing the force polygon.

But snppose we have two forces P, P, having d@ﬁ'erent
points of application A; A,; required the position and direc-
tion of the resultant [Pl 3, Fig. 8].

Any force acting in a plane may be considered as acting at
any point in its line of direction.

P; and P, may then be supposed to act at their common
point of intersection @, and through ¢4és point the resultant
should pass. The case reduces therefore to a common point
of application. The resultant is given in intensity and diree-
tion as before by the force polygon (), and its position is deter-
mined by the point of intersection @. At this point, or at any
point in the line through @, parallel to 0 2, the resultant may
be supposed to act.

But the direction of the forces may not intersect within
reasonable limits, or the forces may be supposed parallel to
each other, so that they may not intersect at all. In any case
the force polygon will still give the intensity and direction of
action of the resultant, but its position in the plane of the
forces remains yet to be determined. Now we have seen [Art.
5] that we can decompose a force into two components in any
desired directions, by choosing a “ pole” and drawing lines to
the beginning and end of the force in the force polygon. Let
us choose then a pole C [Fig. 8 (8)] and decompose the result-
ant thus into two forces given in intensity by the lines 0 C
and 2 C. The forces P, P, being supposed to act at the
points A; A, in the common plane, at what point in the plane
and in what direction must the resultant 0 2 be applied to keep

.
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this plane and hold the forces in equilibrium? The direction
of action of the resultant is given at once from the force poly-
gon [Art. 5 (§)]. It must act in a direction from 2 to 0, and
must be equal to 2 0, taken to the scale of force. Now at any
point in the line of direction of Py, as for instance 1, let us
suppose the component given by C 0 to act. What is then the
resultant of Py and C 0? A glance at the force polygon gives
us 1 C, becanse this line closes the polygon made by C 0, 01
and 1 C. At 1 then, the three forces §, (parallel and equal to
C 0) S, (parallel and equal to 1 C) and P, are in equilibrium,
and there is no tendency of the point 1 to move. But 1 Cor
€, may be considered as acting in the plane at any point in its
line of direction; therefore at 2 its intersection with P, pro-
longed. Suppose at 2, S,0r 2C to act. We see at once from
the force polygon that 2 C, C 1 and P, are in equilibrinam.
There is therefore no tendency of the point 2 to move, and the
two forces P, P, are then in equilibrinm with C 0,1 C,C 1
and 2C. But since the resnltant of C 0 and 2 C or of S, and
£, is also the resultant of the forces, and since it must there-
fore act through the point of intersection of §; and &,; we
have only to prolony these lines to intersection b. Through
this point the resultants R, must pass and acting downwards
(from 0 to 2) as indicated in the Fig., it replaces Py P, Act-
ing upwards it would hold them in equilibrium. We thus
easily find the point 2 in the plane at which 2 C or S, must
be applied, when € 0 or § acts at 1, and 8, §, are thus found
in proper relative position. The position, intensity, and direc-
tion of the resultant are thus completely determined.

ITad we taken any other point than 1, as the point of applica-
tion of C 0, we should have found a different corresponding
point for application of 2 G, but in any case the prolongations
of 2 C and C 0 would intersect upon the line a b, prolonged if
necessary. The same holds trne for any position of the “pole”
C. This construction is evidently general whatever the posi-
tion or whatever the number of the forces. We may thus
obtain any number of points along the line @ b; that is, the
resultant also, may act at any point in its line of direction.

[Nore.—Z%at b is @ point in the resultant of P, and P, can
be proved in a method purely geometrical. fn the two ©com-
plete quadrilaterals” 012 C and 1 b 2 a, the five pairs of
correspondigg stdes 01l and a 1,12 and @ 2,2 C and b 2,C0
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and b1,C1 and 1 2, are parallel cack to each, therefore the
sixth pair 0 2 and a b must also be parallel ; b is therefore a
point of the resultant passing through a, parallel to 0 2.]

17. The above Construetion holds good equally well for
Parallel Forces.—By means of it we find in P1. 3, Fig. 9 (&)
and (b) and Fig. 10 (@) and (), the resultant of a pair of paral-
lel forces, in the first case, both acting in the same direction ;
in the second, in apposite directions.

In both cases we have simply to choose a pole C, and draw
S) S; and S, Then taking any point ¢ in the line of direc-
tion of Py, as a point of application for S, draw through this
point S,, thus finding d, the point of application for S, S,
and S, prolonged, intersect upon the resultant, whose intensity,
direction, and position thus become fully known.

18. Property of the Point b.—It is plain that thus a point
of intersection , through which the resultant must pass, can
always be found, provided S, and S, do not fall together in
the force polygon, or intersect without the limits of the draw-
ing. By properly choosing the position of the pole C, this can
always be avoided if the points 2 and 0 in the force polygon do
not themselves coincide, i.c., if the force polygon does not close.

The point b, Figs. 8, 9, and 10, which by reason of the arbi-
trary position of the pole may lie anywhere upon the resultant,
has a remarkable property. If we draw a line m n through
this point parallel to S,, and let fall from it perpendiculars p,
and p; upon P; and P, then in all three cases, and therefore
generally, the triangle ¢ 7 b is similar to 0C 1, and € b n is
similar fo 1 C 2. Hence we have the proportions—

01:1C::¢m:mb, and
"1C:12::nb:nd.

From these proportions we find

01:12::cmXxndb:mbdbxnd.

Now the triangles ¢ m & and d n & have the same height
above the base m n; the bases m & and & n are therefore pro-
portional to their areas. But their areas are equal to half their
sides ¢ and n & multiplied by p, and p, respectively. Hence
we have from the above proportion, since ¢m = nd,

01:12::nd xp,:nd X p,or
01:12::p,:p,.
‘That is, the perpendiculars let fall from any point of the
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resultant wpon the components, are to each other inversely as
the components. Regarding any point of the resultant as a
centre of mements, the moments of the forces then are equal,
and of course the forces themselves are inversely as their lever
arms.

19. Equilibrium Polygon.—If we consider the forces P,
P,, Figs. 8, 9, and 10, held in equilibrium by their components
C0,10C,and 2 C, C1, which act parallel to the lines 8§, S,
and S,; then regarding the line 8, or ¢ & as part of the mate-
rial plane in which the forces act, C1and 1 C balance one
another, and cause either tension or compression in ¢ d. Sup-
pose the resultant R is to act so as to cause equilibrium, or
prevent the motion of the plane due to P, and P,, Then R
must act upwards in Figs. 8 and 9, and downwards from 2 to
0 in Fig. 10. In Figs. 8 and 9 then, S, and &, act away from
¢ and d (Art. 4), and in Fig. 10 fowards ¢ and d. Following
round the force polygon, we find in the first two cases ¢ @ in
tension, in the last ¢ & in compression.

In the first two cases, the points of application ¢ and d of §,
P, and S, P, if connected by a string stretched between ¢
and & will be perfectly fixed and motionless ; while in the lat-
ter case, the string must be replaced by a struz. In case of
three or more forces the polygon or broken line which we thus
obtain, by choosing a pole, drawing lines to the beginning and
end of the forces in the force polygon, and then parallels to
these lines intersecting the lines of direction of the forces in the
Jorce diagram, we call the “ s¢ring” or “ funicular polygon,”
or the “strut polygon,” according as the forces act to cause
tension or compression along these lines. We can apply to
both cases the general designation of polygon of equilibrium or
“equilibrium polygon.” The perpendicular let fall from the
pole C upon the direction of the resultant in the force polygon,
we call the “ pole distance” and shall always designate it by
H. The straight line joining the points ¢ and d, or the begin-
ning and end of the equilibrium polygon, we call the “strut”
or “tie line” or generally the “ closing line” and designate it
by L. The convenience and application of these terms and
conceptions will soon appear. In the present case of only fwo
forces, the equilibrium polygon becomes a straight line and
coincides with I, or ¢ d.

[Nore.—We repeat that in order to determine the quality of
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the strain in ¢ &, we have only to follow round the force*poly-
gon in the direction of the forces, and then refer to the force
diagram. Thus Fig. 9, at ¢, P, 8, and S, act, and are in equi-
librium. The corresponding closed figure is given in the force
polygon (@). S, acts away from ¢, P; acts downwards from 0 1.
Continuing this direction we find S, acting from 1 towards C.
Reversing this direction (Art. 4), we find that the resultant
which replaces S, and P, acts from C to 1. Referring now to
the force diagram (3), and transferring this direction to the
point ¢, we find this resultant acts to pull ¢ away from & or
contrary to the direction of the force 1 C which replaces S, and
P, The strain in ¢ d is therefore tension.

A much better way of arriving at the same result is to con-
sider the triangle ¢ b 4 as a jointed frame which holds in equi-
librium the forces P; P, and Ry, Then the strains in any two
pieces ¢ d, ¢ b, meeting at a point, are in equilibrium with the
Joree or forces acting at that point.

We have then the force P, acting at apex ¢, decomposed into
strains along ¢ b and ¢ & (Art. 5) represented by C 0 and 1 C in
the force polygon. All three are in equilibrium. P, acts
down. Follow down then from 0 to 1 from 1 to C and C to 0.
Refer back now to apex ¢ of the frame and transfer these
directions. The strain in ¢  acts away from the apex ¢ and is
therefore in tension, while the piece ¢ & would be in compres-
sion, since the direction of C 0 is fowards apex c.

See also “practical applications” of the preceding chapter
for illustrations of this. In the same way follow round 0 1 C
Fig. 10 («) and refer to (5) and S, is in compression.]

20. Case of a Couple.—In Article 18 we remarked that the
pole can always be chosen in such a position as to give S, and
8, intersecting within desired limits, provided that S, and 8, or
the point 0 and 2 do not coincide. This case however actually
happens, with a pair of equal and opposite forces—that is, with
a couple.

Thus in Fig. 11, Pl. 8, we have two equal and opposite forces
P, P,

The force polygon closes: therefore the resultant is zero.
8, and 8, are parallel, hence their point of intersection in the
equilibrinm polygon is énfinitely distant. By changing the
position of the pole, we see that S, and S, may take any posi-
tions in the plane. .
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Two forces therefore which form a couple cannot be replaced
by a single force. 'Their resultant is an indefinitely small force
situated in any position in the plane of the forces, at an infinite
distance.

Conditions of Equilibrimm.—If then, similarly to Art. 4,
any number of forces lying in the same plane and having differ-
ent points of application, are in equélébrium, the force polygon
always closes.

For this reason, as already repeatedly seen in the practical
applications of our last chapter, the force polygon formed by
the exterior forces must always close.

But inversely, if the force polygon closes, ¢¢ does not follow
that the forces are in equilibrium—a couple may result.

To determine whether this is the case inspect the * equilibri-
um polygon.” If this also closes [i.e., if §)and S, intersect]
the forces are in equilibrium. If this does not close [Z.e., if S,
and S, are parallel] there is no single resultant, but the
forces can be replaced by a couple, and this couple, as we have
seen, may have any position in the plane.

21. Thus if we suppose in Fig. 11, P1. 3, P, and P, decom-
posed into their components S, S;, and 8,, §,, the compressive
strains in 8, at ¢ and & are equal and opposite [see (@)]. We
have then S; and 8, remaining, which again form a couple
which must have the same action as the first.

Hence we see that one couple can be replaced by another with-
out changing the action of the forces.

It is easy to determine a simple relation between any two
couples. :

If from ¢ we lay off ¢ @ equal to o 1, and ¢ o equal to Co, we
have o @ parallel to C1 or S;, and therefore to¢d. Joina dand
od. The triangles ¢ d ¢ and ¢ d 0 having a common base ¢ d
and their vertices 0 and ¢ in a line parallel to ¢ &, are equal in
arca. The side ¢ @ of one is known, and the opposite apex lies
in the line of the force P,. Itsarea is then ¢ ¢ = Py multiplied
by half of the perpendicular distance of Py from P, and is
therefore completely determined. So also for the other trian-
gle, one side of which o ¢ is one force of the new couple, and
the opposite apex of which lies in the other force S,.

Ience—a couple can be turned at will in its plane of action,
and the intensity and direction of its jforces can be changed at
will if the area of the triangle the base of which is one of the:
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new jforces, and whose opposite apex lies in the other force, is
constant ; or when the product of the intensity of the forces
into thetr perpendicular distance remains the same, The di-
rection of rotation, of course, must also remain the same.

‘We shall see further on the significance of this area, or of
this product—so mnuch is clear, that a couple (or infinitely small,
infinitely distant force) is completely determined in its plane
when the direction of rotation is given, and the area of the tri-
angle or value of the product to which it is proportional, is
known. The couple itself can be replaced by any two parallel
cqual and opposite forces whatever, if only the triangle having
one force as base, and the opposite apex in the other, has a given
constant area.*

22, Force and Equilibrinm Polygons for any Number
of Forces in a Plane,

In Pl 3, Fig. 12 (0) we have the forces Py; acting in various
directions and at different points of application. P, and P
form a couple; that is, are equal, parallel, and opposite in di-
rection. Required the position, intensity and direction of action
of the resultant.

First, form the jforce polygon, Fig. 12 (a), by laying off the
forces to scale one after the other in proper direction. Thus
we have 01,12,23, 84,45 in Fig. 12 (a) parallel respec-
tively to P, P, Py, etc., in Fig. 12 (4). The line necessary to
close the polygon, 0 5, is the resultant in intensity and direc-
tion. 1In intensity because the length of 0 5 taken to the scale
of force, gives the intensity of the resultant; in direction
because acting from 5 to 0 it produces equilibrinm, while act-
ing in the opposite direction, frém 0 to 5, it replaces the forces.

‘We have, therefore, only to find the posizion of the resultant
in the plane of the given forces in Fig. 12 (3). Hence:

Second, choose anywhere a “pole” as C, and draw the lines
or rays, or “strings” S, 8, S, S; S, ete. S, and S; are evi-
dently components of the resultant, since they form with it a
closed figure in the force polygon.

Third, form the equilibrium polygon a b ¢ d e o'y Fig. 12 (B),
as follows:

Draw a line parallel to S, intersecting P; (produced if neces-
sary) at any point as @. From this point draw a line parallel

* Elemente der Graphischen Statik. Bauschinger. Miinchen. 1871. Pp.
11, 12,
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to S; to intersection with P, (also produced if necessary) at &.
From & parallel to S, to ¢, then parallel to S; to &, and finally
parallel to S,, to intersection ¢ with P;. Through this last point
draw a line parallel to the last ray ;. Now S, and S; are com-
ponents of the resultant 0 5 [Fig. 12 («)] and are found in
proper relative position. Produce them, therefore, to intersec-
tion o”. Through this point the resultant must pass. Drawing
then through o’, a line pamllel to 0 5, we have the resultant in
proper position, and acting in the direction mdlcated in the fig-
ure, it produces quhbmum

Any. other point than @, upon the direction of P;, assumed as
a starting point, would have given a different point 0'; so also
for any other assumed position of the pole C. But in every
case we shall obtain a point upon the line of direction of Ry
already found. The reader may easily convince himself of this
by making the construction for different poles, and points of
beginning.

Now the polygon or broken line, @ & ¢ & ¢, we call the equi-
librium polygon—that is, it is the position which a system of
strings or struts, Sy S, S, etc., would asswme under the action
of the given forees at the aasumed points of application.

Thus P; acting at ¢, is held in equilibrium by the forces along
S, and S,, P, acting at b, by S; and 8, and so on. If we join
any two points in the line of direction of S, and S;, as m n by
a line, we have then a jointed frame, which acted upon at the
apices a. . .¢ by the forces P, ..P; and at m and n by S, and
S; is in equilibrium.

For 8, acting at m, we see from the force polygon may be
replaced by a force @ 0 parallel and opposed to the resultant R
and a force C g acting along the line L. In like manner S; may
be replaced by a C and 5 @ parallel and opposed to the result-
ant. The two forces ¢ C and C a being equal and opposed
balance each other through m n, while the sum of 0 ¢ and 5 @
is equal and opposed to the resultant 0 5. There is, therefore,
equilibrium, and 7 and » may be considered as the points of
support of the frame acted upon by the forces P,. . .Ps at the
apices @. . ., @ 0 and 5 @ heing the upward reactions at the
points of support.

As to the guality of the strains in the different pieces; as
before the reaction at m, viz., @ 0,is in equilibrium with the
strain in m » and m a. Following round, then, in the force
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polygon from @ to 0,0 to C and C to a, and referring back to
the frame, we find strain in m n acting towards apex m, there-
fore compressive ; strain in m @ acting away from m, therefore
tensile. In like manner S; S, S; are in tension, while S, or d ¢
and S; or ¢ n are compressed.

Hence we may fix any two points of the equilibrium polygon
by joining them by a line. The forces acting at these points
are at once found by drawing from C in the force polygon a
parallel to this line to intersection with resultant. Thns e C
(since we have taken m n parallel to S,)is the force in m n and
@ 0, 5 a, are the forces opposed to the resultant at m and n.

23. Influence of a Couple.—Among the forces in Fig. 12
there are two, P, and P; which are equal, parallel and opposite,
the direction of rotation being as indicated by the arrow. Ex-
amining the equilibrium polygon, we see that the influence of
the couple is to skift S, through a certwin distance parallel to
dtgelf, to S;. Now snppose the forces composing the couple
were not given, but the value of the couple known, from the
direction of rotation and the area of the triangle A, P, P,
which has its base equal to one of the forces and a height equal
to their perpendicnlar distance. In this case the lines 1 2, and
8, in the force polygon, would disappear, but we can none the
less find the point d, and from this point continue the polygon
by drawing S, and S,, and thus find the same points ¢ and o’ as
before. To do this we have simply to apply the principle
deduced in Art. 21, that one couple can be replaced by another
provided the area of the triangle is constant.

In the present case we must replace the given couple by
another whose forces are S, and 8;, having the same direction
of rotation.

Lay off then from ¢, @ ¢ equal by scale to S, as given in the
Jorce polygon. Describe upon S, the triangle @ g A equal to
the given area A, P, P;, Draw g %, and then throngh A, A %
parallel to g4, The point % is upon the line of direction of
S,, or in other words the area of the triangle ¢ % @ is equal to
@ g h. The proof is easy. The two trianglesig A and i gk
are equal, since they have the same base ¢ ¢, and height. But
if from the triangle @ ¢ g we subtract ¢ g A, we obtain a g A.
If from the same triangle a ¢ g we subtract ¢ g %, which is equal
to ¢ g h, we obtain ¢ £ @. Equals subtracted from equals leave
equals. Hence i £ @ is equal to @ ¢ A.
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If then through % we draw a line parallel to S; and produce
it to d, we have the same point as before, and thus from d, can
continue the polygon.

[NVote that the direction of rotation shows the side of S, upon
which the point k must fall. 8, acts away from ¢ [from 1 to
C in ()] hence for rotation as shown by the arrow, ¢ must fall
above Sy, and S, is shifted upwards.

24. Order of Forces Immaterial.—As in the case of & com-
mon point of application, so also here, the order in whick the
Jorces are laid off is immaterial. To prove this for two forces
is sufficient, as by continued interchange of two and two, we
can obtain any desired order.

Let the two forces be P, and P; (Fig. 18, L. 3) existing either
alone, or in combination with others preceding and following.

Taking the forces first in the order P, P;, we have the equt-
Tibriwm polygon Sy 8, 8;, (b) giving the point ¢ in the result-
ant. Taking them now in reverse order, Py P, we have the
polygon S; §'58’; giving the same point @ in the resultant. The
resultant in the force polygon (), viz.,, 0 5,is of course un-
changed in intensity and direction in either case. Itis required
to prove that in the second case the last string §’, is not only
parallel to Sy in the first, but coincides with it.

This is easy. The resultant of P, Py goes through e, the in-
tersection of S; and S;. The same resultant in the second case
must also pass through the intersection of S; and §’,. DBut S; is
the same in position and direction in both cases. If the second
point of intersection does not coincide with @, still it must lie
somewhere upon S;. Ifence as the resultant must pass through
both points, it must coincide with this last line; viz., S, But
this is not possible, as the resultant must also pass throngh d,
the point of intersection of the forces, or when these do not
intersect must be parallel to them. As therefore 8/, must be
parallel to S5 (shown by the force polygon), the intersections in
each case must coincide, as also the lines S';, S; themselves, and
the polygon from e on has the same course in either case.

25. Pole taken upon closing line.—We have seen (Art.
20) that when any number of forces are in equilibrinm otk
the force and equilibrinm polygon must close. There is one
exception to this statement. Since the pole may be taken any-
where, suppose it taken somewhere wupon the line closing the
JSorce polygon. This line, as we know, is the resultant, and
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holds the other forces in equilibriuin. But now the equilibrium
polygon evidently will not close. On the contrary the first and
last strings will be parallel. This position of the pole should
then be avoided. For any other position of the pole our rule
holds good ; viz.,

1f the force polygon closes as also the equilibrium polygon,
the forces are in equilibrium. If the equilibrium polygon
however does not close, the forces cannot be repluced by a single
Jorce but only by o couple.  The forces of this couple act in
the parallel end lines of the equilibrivm polygon, and are given
in entensity and direction of action by the line from the pole
to the beginning of the force polygon [beginning and end coin-
ciding].

26. Relation between two equilibrium polygons with
different poles,—We may deduce an interesting relation be-
tween the two equilibrimm polygons formed by choosing differ-
ent poles, with the same forces and force polygon.

Thus with the forces P; P, Py P, we construct the force
polygon Tig. 14 (), P1. 4. Then choose a pole C and draw Sy,
and thus obtain the corresponding equilibrinm polygon8,a b ¢ d
S, Iig. 14 (). Choose now a second pole C’. Draw 8’y and
construct the corresponding polygon 8y o’ 8’ ¢’ d' 8’y [In our
figure ¢ and ¢ fall accidentally nearly together.]

Join the two poles by a line C C'. Then—any two corre-
sponding strings of these two polygons tntersect upon the same
straight line M N parallel to C C'. Thus S, and 8/, intersect
at g, 8'; and €, at %, S, and §, at /, 8’5 and S; at 2, S, and S, at
m—and all these points g, &, /, n and s, lie in the same
straight line M N parallel to the line C C’ connecting the
poles.

The proof is as follows.* If we decompose P, into the com-
ponents S, S, and 8’ 8y, these components are given in inten-
sity and direction by the eorresponding lines in the foree poly-
gon. If we take the two first as acting in opposite directions
from the two last, they hold these last in equilibrium. The
resultant therefore of any two as S, and 8’y must be equal and
opposed to that of the remaining two, S, and S’;, and both re-
sultants must lie in the same straight line. This straight line
must evidently be the line ¢ Z joining the intersections of S, S',

* Blemente der Graphischen Statik. Bauschinger. Minchen, 1871, Pp.
18-19.
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and 8, S'. But from the force polygon we see at once that the
resultant of S, and S’ is given in direction and intensity by
C C/, and this is also the resultant of §, and 8. The line join-
ing g and % must therefore be parallel to C C'. For the second
force P, we can show similarly that the line joining Z and  is
parallel to CC’. DBut % is a common point of otk lines—hence
g % and 7 lie in the same straight line parallel to C C'.

[Note— The pure geometric proof is as follows: The two
complete quadrilaterals 01 C' Cand g k a' a have five pairs of
corresponding sides parallel, viz., 0 Land a &'ya ¢’ 1 C and
@' k,COandag,oC and a' g,1C and o k; hence the sixth
pair are also parallel, viz., CC' and g k. In like manner for
12CC andl kb band so on.]

We can make use of this principle in order from one given
equilibrinm polygon S, a & ¢ & 8, and pole, to constrnet another,
the direction of C C’ being known. For this purpose, having
assumed the position of the first string 8’y we draw through its
intersection ¢ with S) a line M N parallel to C C’. The next
string must therefore pass through the intersection @’ of 8y and
P, and throngh the point %, of intersection of the second string
of the first polygon and the line M N. It is therefore deter-
mined. The next side must pass through 4’ and /, and
50 on. Y

[Vote. Observe that the intersections # and #” of the first and
last lines of both polygons must lie in a straight line parallel to
0 4, the direction of the resultant.]

27. Mean polygon of equilibrium.—Since the pole may
have any position, let us suppose it situated in one of the angles
of the force polygon. It is evident that the first line of the
corresponding equilibrium polygon, then coincides with the first
Jorce. If now the pole be taken at the beginning of the first
Jorce in the force polygon, then the first side of the correspond-
ing equilibrium polygon will coincide with the first force, and
the last line will be the resultant itself in proper position.

Take for instance, the pole at o in the force polygon, Fig. 15
(@), PL. 4. The first side S, reduces to zero. The next S, coin-
cides with 0 1. In () therefore P, is the first side of the equi-
librium polygon. The next side S, corresponds with S, in (a).
Thus we obtain-the polygon @ b ¢ d ¢, the last side of which S,
i the resultant itself. That is, S, is the resultant of P;and Py
S, of Pig, S, of P, and so on. Every line in the polygon then
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is the resultant of the forces preceding, and we call such a
polygon the mean polygon of equilibrium.

If we wish to find the mean polygon for Py; we have only to
take the new pole C' at 2 in the force polygon (@). According
to the preceding Art., each side of the new polygon must pass
through the intersection of the corresponding side of the first
with the line S, which passes through @ and is parallel to C C'.
Thus 8, must pass through " and o. 8’ through ¢’ and #, and
soon. S’ is the resultant of Py, and since S, is the resultant
of Pyy; S, the resultant of P,;, must pass through the intersec-
tion 7 of 8'; and S,.

‘We observe here again the influence of the couple Ps and P
S, and §'; are simply skifted through certain distances, without
change of direction, to Sg and S's; and as we have seen above,
knowing the direction of rotation, and the moment of the couple,
we might have omitted it in the force polygon and still obtained
S; and S/; as before.

28. Line of pressures in an arch.—The practical applica-
tion of the above will be at once seen in the consideration of
an arch. Thus with the given horizontal thrust applied at a
given point of the arch, and the forces Py; we construct the
force polygon C o 5, and then the line of pressures a & ¢ d.
[Fig.<16, P1. 4.]

Required with another thrust H' = o C acting at another
point, and the same forces Py, to construct the corresponding
line of pressures. To do this we have only to lay off 0 C' equal
to the new horizontal thrust, then choose a point of the force
line, as 3, as a pole and draw the corresponding polygon,
% opk; the point of intersection, %, is a point upon the line
m n parallel to o C, and upon this line will be found the inter-
section ofcorresponding sides of the two polygons. Thus from
the intersection of the side @ p of the first polygon with m =,
draw a line to 0 and we have ¢’. From the intersection & of
the second line of the first polygon draw a line to &/, and we
have &’ @', and so on.

29.—The preceding articles comprise all the most important
principles of the Graphical Method which can be deduced in-
dependently of its practical applications. Future principles
will be best demonstrated, and at the same time illustrated, by
considering the various special applications of the method, and
to these applications we shall therefore now proceed.
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CHAPTER III.
CENTRE OF GRAVITY.

20. General Method.—One of the most obvious applica-
tions of the new method as thus far developed, is to the deter-
mination of the centre of gravity of areas and solids. We
shall confine ourselves to areas only, merely observing that all
the principles hitherto developed apply equally well to forces
in space. The forces being given by their orthographic pro-
jections npon two planes after the manner of descriptive geo-
metry, the projections upon each plane may be dealt with as
forces lying in that plane, and thus the projections of the force
and equilibrium polygons, the resultant, etc., determined.

A body under the action of gravity may be considered as a
body acted upon by parallel forces. The resultant of these
forces being found for one position of the body [or the body
being considered as fixed, for one common direction of the
forces] may have its point of application anywhere in its line
of direction.

For a new position of the body [or another direction of the
forces] there is another position for the resultant. Among all
the points which may be considered as points of application of
these two resultants there is one which remains unchanged in
position, whatever the change in direction of the parallel forces.
This point must evidently lie upon @l the resultants, and is
therefore given by the intersection of any two.

It is hardly necessary to give illustrations of the method of
procedure.

Generally, we divide up the given area into triangles, trapez-
oids, rectangles, ete., and reduce the area of each of these fig-
ures to a rectangle of assumed base. The heights of these
reduced rectangles will then be proportional to the areas, and
hence to the force of gravity acting upon them; 4.e., to their
weights. Consider then these heights as forces acting at the
centres of gravity of the partial areas. Construet the force
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polygon by laying them off one after the other. Choose a pole
and draw lines from it to the beginning and end of each force.
These lines will give the sides of the funicular or equilibrivm
polygon. Anywhere in the plane of the figure, draw a line
parallel to the first of these pole lines (S,). Produce it to inter-
section with the first force (P,), prolonged if necessary. From
this intersection draw a parallel to the second pole line (8;), and
produce to intersection with second force (P). So on to last
pole line, which produce to intersection with first pole line.
Through this point the resultant must pass, and of course it
must be parallel to the forces.

Now suppose the parallel forces all revolved say 90° the
points of application remaining the same. Evidently the new
force polygon will'be at right angles to the first, as also the
new pole lines, each to each. It is unnecessary then to form
the new force polygon. The directions of the new pole lines
are given by the old, and this is all that is needed.

Anywhere then in the plane of the figure, draw a line (S')
perpendicular to the first pole line (S;) previously drawn, and
prolong to intersection with new direction of first force (Py").
Through this point draw a perpendicular (S,’) to second pole
line, to intersection with new direction of second force (P,)
and so on. We thus find a point for new resultant, parallel to
new force direction. Prolong this resultant to intersection
with first and the centre of gravity is determined.

[Nore.—If the area given has an axis of symmetry, that can
of conrse be taken as one resultant, and it is then only necessary
to make one construction in order to find the other.]

The given area of irregular outline must, as remarked above,
be divided by parallel sections into areas so small that the ont-
lines of these areas may be considered as practically straight
lines. The forces are then taken as acting at the centres of
gravity of these areas. This division will give us generally a
number of triangles and trapezoids.

It is therefore desirable to reduce graphically to a common
base the area of these triangles and trapezoids, and for this pur-
pose the following principles will prove of service :

32. Reduction of Triangle to equivalent Rectangle of
given Base.—Let b be the base and 4 the height. Then area

= 6-2-}'-' Take @ as the given reduction base, and let # represent
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the height of the eqnivalent rectangle. Then.

ol bh & h_ @
i AT T
Now a, b, and % being given, it is required to find z graphi-

cally.

Let A B C be the triangle, and D the middle of the base.
{Fig. 17, PL.5.] Layof AE=Aand AF=a. DrawF D,
and parallel to F D draw E 2. Then A 2 is the required
height.

For: =

Az _ AE @ h
AD AFY i1 T 3

As to the centre of gravity of the triangle, it is evidently at
the intersection of the lines from each apéx to the centre of
the opposite side ; since these lines are axes of symmetry.

33. Reduction of Trapezoid to equivalent Rectangle.
—In the trapezoid A B C D, Fig. 18, PL 5, draw throngh the
middle points of A D and B C perpendiculars to D C, and pro-
dnce to intersections E and F' with A B produced.

Then lay off F g = @ = the given reduction base, and draw
¢ E intersecting D C in . Then H z is the required height.

TorEF Ly EF_—_ £lp
Fg HE 7 Sty HE’
hence a # = EF x HE = area.

To find the centre of gravity, draw a line throngh the mid-
dle points of the parallel sides A B and D C. This line is an
axis of symmetry. Prolong A B and C D and make C ¢ =
ABand Ab = CD and join ¢ and 5. Then the intersection
of @ b with the axis of symmetry gives the centre of gravity.

The construction for the reduction of a parallelogram is pre-
cisely similar. [I'ig. 18 (3).]

The points F and E here coincide with A and B and we
have

!_179:_1}_38, orax=~h x A B=area.
h B g

The same construction also holds good, of eourse, for a rect-
angle or square. The centre of gravity in each case is at the
intersection of two diameters, since these are axes of symmetry.

24. Rednction of Quadrilaterals Generally.—In general
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any quadrilateral may be divided into two triangles which may
Dbe reduced separately, or into a triangle and trapezoid.

It is also easy to reduce any guadrilateral to an equivalent
triangle, which may then be reduced by Axrt. 32 to an equiva-
lent rectangle of given base.

Thus we reduce the quadrilateral A B C D [Fig. 18 (¢)]
to an equivalent triangle by drawing C C, parallel to D B to
intersection C; with A B, and joining C; and D. The triangle
D B C, is then equal to D B C, and hence the area A D C, is
equal to A B CD. The triangle A D C, can now be reduced
to an equivalent rectangle of given base by Art. 82.

The centre of gravity of the quadrilateral may be found as
follows :

Draw the diagenals A C and B D and mark the intersection
E. Make AE, =CEand BE,=D E, also find the centres
O, and O, of the diagonals A C and BD. Join O, E, and O,
E, ; the intersection S of these two lines is the centre of gravi-
ty required.

The above is suflicient to enable us to find the centre of gravity
of any given area of regular or irregular outline. The method
may be applied to finding the centre of gravity of a loaded
water-wheel (as given in Der Constructeur, Renleaux, Art. 47),
and many similar problems. The reader will have no difficul-
ty, following the general method indicated in Art. 80, in mak-
ing such applications for himself. The method itself is so sim-
ple that it is unnecessary to give here any Ppractical examples
in illustration. We shall, moreover, have occasion to return to
the subject in the consideration of moment of inertia of areus.

‘We pass on therefore to the moment of rotation of forces in
a plane.
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CHAPTER IV.
MOMENT OF ROTATION OF FORCES IN THE SAME PLANE.

35. The “Moment” of a Force about any Point is the
product of the force into the perpendicular distance from that
point to the line of direction of the force. The importance
and application of the “moment” in the determination of the
strains in the various pieces of any structure will be evident by
referring to Art. 14, where Ritter’s “ method of sections” is
alluded to. In general, when the moments of all the exterior
forces acting upon a framed structure are known, the interior
forces, or the strains in the various pieces, can be easily ascer-
tained.

As we shall immediately see, these moments are given
directly in any case by the “equilibrium polygon.”

86. Culmann’s Principie.—If a force P be resolved into
two components in any directions as & C, b C, (Fig. 19, Pl 5),
and these components be prolonged, it is evident that the
moment of P with reference to any point as @ sitnated any-
where in the line &d parallel to P,is P x 4 a. But if from C
we draw the perpendicular H to P, then by similar triangles,

P:H:..cd:bay

Pxba=Hxcd.

That is, the moment of P with respect to any point a is equal
to a certain constant H multiplied by the ordinate ¢ d, paral-
lel to P and limited by the components prolonged. The con-
stant H we call the pole distance.”

This holds good forany point whatever, and we have only to
remember that if we assume the ordinates to the right of P as
positive, those to the left are negative.

We can choose the pole C where we please, and thus obtain
various values for H, but for any one value the corrésponding
ordinates are proportional to the moments.
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The above principle is due to Culmann, and will be referred
to hereafter as Culmann’s principle.

37. Application of the above to Equilibrium Polygon.
—Let Py, be a number of forces given in position as repre-
sented in Fig. 19 (¢) P1. 5. By forming the force polygon Fig.
19 (3), choosing a pole C, and drawing S, S, S,, etc., we form
the equilibrium polygon a b ¢ d ¢ f, Fig. 19 ().

The resnltant of the forces P, acts in the position and direc-
tion given in the Fig. Now, as we have seen in Art. 22,
regarding the broken line @ & ¢ d e as a system of strings, we
may produce equilibrium by joining any two points as @ and f
by a line, and applying at @ and f the forces S, and S,. Let us
suppose this line @ f perpendicular to the direction of the
resultant. Since we can suppose the broken line or polygon
fastened at any two points we please, this is allowable, and
does not aftect the generality of our conclusion.

Then the compression in the line @ f is given by H, the
“ pole distance,” or the distance of the pole C from the result-
ant in the force polygon. We have therefore at & the force
H and V,; = H 0 acting as indicated by the arrows. At @ then
V, acting up, H and S, acting away from &, are in equilibrinm,
or Vy is decomposed into H and S,, as shown by the force
polygon.

According to Culmann’s principle then, the moment of V;
with reference to any point, as m or o, is equal to Hx o m.
Therefore H being known, the ordinates between @ f and §,
are proportional to the moment of V; at any point. 'V, acting
upwards gives positive rotation (left to right) with respect
to m.

At the point b, P; may be replaced by a force 0 K parallel to
R and a force K 1 along S, [see force polygon]. This we see
at once from the force polygon where 0 K and K 1 make a
closed polygon with P;, and taken as acting from O to K and
K to 1, replace P.. But these two forces are in equilibrium
with 8; and §,, or 1 C and C 0 [see force polygon], and since
K 1 and 1 K balance each other, all the forces acting at  may
be replaced by S;, 0 K and K C. We have then at b the force
0 X resolved into components in the directions S, and S,.

By Culmanw’s principle, therefore, the moment of O K
abont any point as m, is proportional to the ordinate n m, and
since 0 X acts downward this moment is negative. Hence the
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CHAPTER V.

MOMENT OF RUPTURE OF PARALLEL FORCES.

88, Equilibrium Polygon,—Since the forces acting npon
structures are generally due to the action of gravity, these
forces may be considered as parallel and vertical, and in all
practical cases therefore, we have to do with a system of paral-
lel forces.

Given any number of parallel forces P,; Pl 6, Fig. 20;
required to find the direction, intensity and position of the
resultant, and the moment of rotation at any point.

1st. Draw the force polygon. In this case it is, of course, a
straight line.

2d. Choose a pole C, and draw the lines S, S;, S,, ete.

3d. Draw the string or equilibrium polygon @b ¢ @ ¢ f.
Considering this polygon as a system of strings, the forces will
be held in equilibrium if we join any two points, as @ and g,
by a strut or compression piece, and apply at @ and ¢ the up-
ward forces V, and V,.

4th. Prolong @ b and f'¢ to their intersection 0. Throngh
this point the resnltant must pass. It is of course parallel and
equal to the smn of the forces.

Now, if @ ¢ is assumed horizontal, the perpendicular H to
the force line, or the “ pole distance,” divides the resultant 0 5
into the two reactions V, and V, (Art. 22).

All the forces in the equilibrium polygon have the same
horizontal projection H, in the force polygon.

Let @ g represent a heam: resting upon supports at @ and ¢.
‘We have then at once the vertical reactions V, and V, or £ 0
and 5 %, which, in order to cause equilibrinin, must act up-
wards. ¢

For the moment at any point, as o, due to V;, we have, by
Culmann’s principle, m 0 multiplied by H. The triangle formed .
by a b, @ g, and P, gives then the moment of rupture at any
point of the beam as far as P, For a point o, beyond Py, the

.
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moment due to V,, must be diminisked by that due to Py, since
these forces act in opposite directions, and rotation from left
to right upon the lef% of any point is considered positive. We
see at once from the force polygon that P, is resolved into S,
and S, or into @ b and b¢. Hence the moment at o due to Py
is m n multiplied by H. The total moment at o is then mo —
mn = n o, multiplied by H.

Hence we see that the ordinates to the equilibrium polygon
Jrom the closing line a g, are proportional to the total mo-
ments ; while the ordinate at any point between any two adja-
cent sides of this polygon, prolonged, represents the moment af
that point of a force acting in the vertical through the inter-
section of these two sides.

[The reader should make the construction, changing the order in which
the weights are taken, and thus satisfy himself that the order is a matter
of indifference. As to the direction of the reactions Vi, Vs, it must be
remembered that @ b is to be replaced by V, and H, hence V, must be op-
posed to C 0, the direction obtained by following round in the force poly-
gon the triangle 0 1 C. Force and distance scules should also be assumed.
Thus the ordinates to the equilibrium polygon scaled off say in inches, and
multiplied by the number of tons to one inch, and then by the “pole dis-
tance " taken to the assumed scale of distance, will give the moments of
any point.]

The resultant of any two or more forces must pass through
the intersection of the outer sides of the equilibrium polygon
for those forces (Art. 16). Thus, the resultant of P, and P,
must pass through the intersection of ¢ 4 and ¢ d. Of V; and
Py, through the intersection of ¢ g and b ¢; of P, P, and P,
through intersection of @ 6 and d ¢, and so on. In every case
the intensity and direction of action of the resultant is given
directly by simple inspection of the force polygon.

Thus from the force polygon we see that the resultants % 2
and k£ 3 of V, P, P, and V, P; P, P;, act in different directions.
Their points of application are at tlte intersection of ¢ d and d e
respectively with a g, or upon either side of & in the equilibrium
polygon. At d the ordinate and hence the moment is greatest,
and at this point the tangent to the polygon is parallel to @ ¢.
If we had a continuous succession of forces; if @ g, for in-
stance, were continuously or uniformly loaded ; the equilibri-
um polygon would become a curve, and the tangent at & would
then coincide with the very short polygon side at that point.
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The points of application of the resultants of all the forces
right and left of & are then at the intersection of this tangent
with & g, or af an infinite distance.

At d then we have a couple, the resultant of which is as we
have seen (Art. 20), an indefinitely small force acting at an
indefinitely great distance. That is, with reference to d, the
forces acting right and left cannot be replaced by a single
force.

Hence generally : at the point of maximum moment (“ cross
section of rupture”), the resultant of the outer forces on either
side reduces to an indefinitely small and distant force, the
direction of which is reversed at this point, and the point of
application of which changes from one side to the other of the
equilibrium polygon.*

T"e “ cross section of rupture ” then, is that point where the
weight of that portion of the girder between it and the end is
equal to the reaction at that end, or where the resultant changes
sign.

The value of the moment at this point, is therefore equal to
the product of the reaction at one end into its distance from
the point of application of the equal resultant of all the loads
between that end and the point.

Thus for a beam uniformly loaded with % per unit of length,
the reaction at each end is %E From the above, the cross see-
tion of rupture is then at the middle. The point of application
of the resultant of the forces acting between one end and the
wl I wl
ek Sate

39. Beam with Two Equal and Opposite Forces beyond
the Supports.—The ordinates to the equilibrinm polygon thus
give, as it were, a _picture or simultaneous view of the change
and relative amount of the moments at any point. The point
where the moment is greatest, 7.e., where the beam is most
strained, is at once determined by simple inspection.

Let us take as an example a beam with two equal and oppo-
site forces beyond the supports. Thus, Fig. 21, P1. 6, suppose
the beam has supports at A and B, the forces being taken in
the order as represented by P, P,. We first construct the force

R . ’ :
middle is at e hence the maximum moment is

* Die Graphische Statik.—Culmann, p. 127,
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polygon from 0 to 1,and 1 to 2 or 0. Next choose a pole C,
and draw §, S; and §,. Draw then a parallel to S, till intersee-
tion with firs¢ force, Py, then parallel with 8, to second force,
P,, then parallel to 8, or S; to intersection with vertical throngh
support B, and finally draw the closing line L. A line through

C, parallel to L, gives as before the vertical reactions. Follow-
ing round the force polygon, we find at A the reaction down-
wards, since S, acts from C to 0 and is to be replaced (Art. 4)
by L and V,; at B reaction wpwards, since P, acts up, and fol-
lowing round, S, acts from 0 to C. _Both reactions are equal to
@ 0. At A then the support must be above, and at B below the
beam. The shaded area gives the moments to pole distance H.
Iad we taken the pole in the perpendicular through o, 8, would
have been parallel with the beam itself. This is, however, a
matter of indifference. The moment area may lie at any in-
clination to the beam. We also see here again the effect of a
couple (Art. 23). S, is simply shifted through a certain distance
to S,, parallel to §), and therefore the moment at any point be-
tween P, and B is constant. This is generally true of any
couple, as we have already seen, Article 21, and nay be proved
analytically as follows:

Let the distance between the forces be a = A B, Fig. 22.
Then for any point 0, we have P x (¢+B 0)—PXBo=P [a+Bo
—Bo]=Pa. For o' between A and B,Px A ¢'+P x o' B=
P[A o +0' Bl =Pa.

So also for any point to the left, the same holds true.

Graphically the proof is as follows :

Decompose both forces into parallel eomponents, Fig. 23.
Then for any point, as o, we have the moment M = Hxm n—
Hxmp orM=—Hxnp. But np is the constant ordinate
between the parallel components A n and A p.

We see, therefore, by simple inspection, that the distance of
P, and P, from the support B, Fig. 21, has no influence what-
ever upon the moment or strain in' A B, provided the distance
between the points of application remains the same, and that
the moment at all points between P, and the support B is con-
stant and a2 maximum. From B and P, the moments decrease
left and right, and become zero at A and Py.

40. Beam with Two Equal and Opposite Forces be-
tween the Two Supports.—Let the beam A B, Fig. 24, P’L. 6,
be acted npon by the two equal and opposite forces P, P,.
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Construct the force polygon 01 2. Choose a pole C and draw
C0,C1,C2. Parallel to C 0, draw the first side of the equi-
librium polygon to intersection with firs¢ force Py ; then paral-
lel to C 1 to second force Py; then parallel to C 2to d. Join d
and 0. Parallel to this draw C ¢ in force polygon. Then 0 ¢
is the'vertical reaction at A, which acts upwards, since it must
with Ca replace C0; and C0, when we follow round from o to
1 and 1 to C, acts from C to 0.

We have the same vertical reaction at B, but here, since we
must follow from 1 to 2 and 2 to C, C 2 aets from 2 to C, hence
following round, the reaction at B is downward. The shaded
area gives the moments to pole distance H, as before.

We see at once that at a certain point ¢ the moment is zero.
Left and right of this point the moment is positive and nega-
tive. At the point itself we have a point of inflection, and
here, since the moment is zero, there is no longitudinal strain.
At & and ¢ the moments are greatest; here the beam is most
strained, and at these points, therefore, are the “cross sections
of rupture.” Here again, if we had taken the pole C in the
perpendicular through e, the closing line of the polygon o &
would have been horizontal. It is, however, indifferent at
what inclination & d may lie, but we may if we wish make it
horizontal now, and then lay off from its new intersections with
P, and P; along the directions of these forces, the ordinates
already found at 4 and ¢, and join the points thus obtained with
the ends of od (¢.e., with its intersections with the verticals
through the supports). The ordinates of the new polygon
thus found will be for any point the same as before, and will
also be perpendicular to the beam.

[Nore.—Had we taken the forces precisely as above but in reverse order,
the force line would be reversed, and we should have 0 and 2 in place of 1,
and 1 in place of 0 and 2; that is, in place of C 1 we should have C 0 and
C 2. Constructing then the equilibrium polygon by drawing a line paral-
lel to new C 0 to intersection with new P,, then parallel to new C 1 to in-
tersection with new P, then parallel with new C 2 to intersection with
vertical through B, and finally joining this last point with intersection of
the first line drawn (C 0) with vertical through A, we have at first sight a
very different equilibrium polygon. This new polygon will consist of ¢wo
parts. If the ordinates in one of these parts are considered positive, those
in the other must be negative. The difference of the ordinates in these two
portions for any point, will give the same result as above. This, by mak-
ing the above construction, the reader can easily prove.]
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41. Many other problems will readily occur, which may in a
similar manner be solved. The weights may have any position,
number and intensities desired ; in any and every case we have
only to construct with assumed pole distance the corresponding
equilibrium polygon, and we obtain at once the moments at
every point. By the use of convenicnt scales, numerical results

-may be obtained which may be checked by calculation, and
the practical value and accuracy of the method thus demon-
strated. :

The above principles will be sufficient for the solution of any
such problem which may arise, and we shall therefore content
ourselves with the above general indication of the method of
procedure, and pass on to the consideration of a few cases
where the above needs slight modification, and which, from
their practical importance, and the ease with which they may
be treated graphically, seem worthy of special notice.

1sT. BEAM OR AXLE—LOAD INCLINED 70 Axm.* [Fig.25,PL 6.]

‘We have here simply to draw the “closing line” A C paral-
lel to the beam or axle. From & draw & B parallel to the force
P, then draw A B in any direction at pleasure, and join B C.
We have thus the equilibrium polygon A B C, the ordinates to
which, as d B, parallel to the force P, will give the mowents,
provided we know the corresponding pole distance.

But this can easily be found. As we have already seen, the
force polygon being given, the equilibrium polygon may be
easily constructed. Inversely, the equilibrium polygon being
given, the force polygon may be constructed. Thus from A
draw A ¢ equal -and parallel to P, and then draw ¢ C; parallel
to BC. A a and b ¢ are the vertical reactions P; and P;; a b
is the horizontal component of the force which must be resisted
at one or both of the ends; and the moments at any point are
given by the ordinates parallel to P multiplied by the perpen-
dicular distance from C, to A ¢. If we suppose the force P, as
in the Fig., as causing two opposite vertical forces, instead of
acting directly upon the axis, we have only to prolong A B to
B, and join B; B, and then the ordinates of A B, B, C parallel
to P or A ¢, multiplied by H (perpendicular distance from C;
to A ¢) will give the moments.

* See Der Constructeur, Reuleaux.
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2D. FORCE PARALLEL 10 AX1s. {Fig. 26, Pl 6.]

‘We have an example of this case in the “ bayonet slide” of
the locomotive engine.

We have here two pairs of forces, the reactions V, and V,
and the forces over B, and B, - The points of application of
these last change of course periodically, but for any assumed
position the moments are easily found. Thus draw A B, at
pleasure, and C B, parallel to it, and join B, B, and A C, and
we have at once the equilibrium polygon. To find the corre-
sponding force polygon, suppose P, applied at b, and join & with
the other support. Make 4¢ equal to P then ¢d =V, Lay
off then A @ =¢d =V, and draw ¢ C,, which is the pole dis-
tance. Draw C, ¢ parallel to B; B,, Then A ¢ and ¢ A are the
forces acting over B; and By, and A « is the reaction V,. The
case is, indeed, precisely similar to that in Art. 40.

[Note.—The moment area should properly be turned over upon A © as
an axis, so that A a should be laid off and ¢ fall below A. This can, how-
ever, cause no confusion.}

The application of the method to car axles,* crane standards,
and a large number of similar practical cases in Mechanics is
obvious. The formulse for many of these cases are too com-
plex for practical use ; in some, no attempt at investigation of
strain is ever made, the proportions being regulated simply by
“Engineering precedent” or rules of thumb, Those familiar
with the analytical discussion of such cases will readily recog-
nize the great practical advantages of the Graphical Method.

3D. BEAM OR AXLE ACTED UPON BY FORCES LYING IN DIFFERENT
PLANES.

The analytical calculation in such a case for instance is of
considerable intricacy, but by the graphical method, on the
contrary, the difficulty of investigation is scarcely greater than
before.

Thus, let Fig. 27, P1. 7, represent a beam acted upon by two
forces P, and P, not in the same plane.

First, we draw the force polygons A O; M and D O, 2 for the
forces P; and Py, having both the same pole distance G O, =
O, H, the pole O, being so taken that the closing lines of the

* Der Constructeur, Reuleaux, pp. 215-222.
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corresponding polygons A 3’ D and A ¢” D coincide, This is
easily done, as if the closing line of the second polygon for any
assumed position of O, (O, H being equal to G Oy) does not co-
incide with A D, the ordinate at ¢”’ can be laid off from C and
A ¢ D thus found in proper position, and then the pole O, can
be located. It will evidently be at the intersection of the ver-
tical O, O’ with' ¢ D.

The two force polygons being thus formed, we construct the
polygon A C” D by drawing lines B B, B E", C C’, etc., so
that their angles with the vertical shall be equal to the angle
between the planes of the forces, and making them equal to
the ordinates B 4", E ¢”, C ¢”, etc., respectively. Join &' B”,
¢ B, f'F, ¢ C”, ete., and lay off the ordinates B b, B¢, Ff,
C ¢, etc., respectively equal. The ordinates to the polygon
thus obtained, viz.: A & ¢ f ¢ D multiplied by the pole distance
0, G or O; H, give the moments at any point. A b and ¢ D
are straight lines, b ¢ f'¢is a curve (hyperbola). If we drop
verticals through O; and O,, and draw the perpendiculars O, M,
O';K; A Mis the reaction Ry, and D XK the reaction R, both
measured to the scale of the force polygon. Their directions
are found by the composition of A G and H 2 and D H and
G M respectively, under the angle of the forces.

ATH, COMBINED TWISTING AND BENDING MOMENTS.

In many constructions pieces occur which are subjected at
the same time to both bending and ¢wisting moments. Both
can be represented and given by moment areas. Thus, Fig.
28, PL. 7, represents an axle turning upon supports at A and B
and having at C a wheel upon which the force P acts tangenti-
ally. We have then a moment of torsion M; = P R and reac-

tions Py = B and P, = j_s; & being the distance of P

from B, and & of P from A.

Let the bending moments be represented by the ordinates to
the polygon @ C b; then laying off @ 0 equal to P and drawing
0 O parallel to b¢, we find the corresponding pole distance
O %, and the reactions P, and P, equal to £ @ and o % respec-
tnely

Now, in the force po]ygon O ¢ 0 thus found, at a distance
from O equal to R, draw a line m n parallel to P. This line
m n evidently. gives for the same pole distance the moment of
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torsion PxR. Laying off C'C, =% &', =m n, we have the
torsion rectangle C; 0" 6 C'.

Now the combined moment of tursion M, and bending M, is
£ M, +3y/M;+MG*.  We make then C’ C; equal to § G’ G =
% m n and C G, equal to § C C' =M, and draw C, 6. Then
any segment of any ordinate, as ff; is § of f, j Revolve now
C’ C, with C’ as a centre, round to C’; and ]om C’y C,. Then
C, O, is equal to § v/ M + IV}, and therefore with C as centre
revolving C, C’; to Gy, we find the point Cy, C Cy being equal to
2 M,+4% /M + M. In the same way we find any other
point as f;, by laying off £/f", equal to 1%, joining f; and /o and
making 7 f; equal to f; fi. The line C; f; b, thus found is a
hyperbola, and the ordinates between it and & C give the com-
bined moments [for pole distance O %] at any point.

[NorE.—We suppose the axle to turn freely at A, and the working point
or resistance beyond B; hence the moments left of the wheel are given by
the ordinates to a C.]

5TH. APPLICATION TO CRANK AND AXLE.

The above finds special and important apphcatlon in the case
. of the crank and axle.

Thus in Pl 8, Fig. 29,1et ED C B be the centre line of crank
and shaft. Lay off @ P equal to the force P acting at A, choose
a pole 0 and draw o @ o P and the parallels 0o and ¢ E. Join
E and 4 and draw oP; parallel to Ed. Then PP, is the
downward force at & and P, ¢ the upward reaction at D. The
ordinates to E d @ to pole distance o P, give the bending mo-
ments for the shaft. Make o F equal to the lever arm R, then
F G is the moment P R, and we unite this as above with the
bending moments and thus find the curves ¢’ @ ¢ the ordinates
to which give the combined moments at every point of the
shaft [see 4th].

For the arm B C, make the angle @, B C equal to D a d,
and then the horlzontal ordinates to ¢, B give the bending mo-
ments for the arm. Make C ¢, equal to C ¢ and we have the
torsion rectangle C ¢, by B, and as in the previous case we unite
the two and thus find the curve &, A T, the horizontal ordinates
to which from B C give the reqlured combined moments, to

* Der Constructeur, Reuleaux, p. 52, Art. 18,
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pole distance o P. Thus Ahy=3HA, Hi=§Bb, and
Hh=lh +Fi=3§M,+ §yDM + M.

The application of the method when the crank is not at right
angles to the shaft, as also when the crank is double, and gener-
ally in the most complicated cases, is equally simple and satis-
factory. Our space forbids any more extended notice of these
applications, and we must refer the reader to Der Constructeur,
by F. Reuleaux, Braunschweig, 1872, for further illnstrations
and applications of the method to the solution of various praeti-
cal mechanical problems.

42, Continunous Loading—Load Area.,—Thus far we have
considered only concentrated loads. Bnt whatever may be the
law of lead distribution, if this law is known, we can represent
it graphically by laying off ordinates at every point, equal by
scale to the load at that point. We thus obtain an aree bounded
by a broken line, or for continuous loading, by a curve, the
ordinates to which give the load at any point. This load area
we can divide into portions so small that the entire area may
be considered as composed of the small trapezoids thus formed.
If, for instance, we divide the load area intoa number of trape-
zoids of equal width, as one foot one yard, etc., as the case may
be, then the load upon each foot or yard wﬂl be given by the
area of each of these trapezoids. If the trapezoids are sufli-
ciently numerous, we may consider each as a rectangle whose
hase is one foot or one yard, ete., as the case may be, and whose
height is the mean or centre height. The weight therefore for
each trapezoid acts along its centre line. We thus obtain a
system of parallel forces, each force being proportional to the
area of its corresponding trapezoid, and equal by seale to the
mean height or some convenient aliquot part of this height.
We can then form the jforce polygon ; choose a pole; draw
lines from the pole to the forces; and then parallels to these
lines, thus forming the string or equilibrium polygon; and so
obtain the graphieal representation of the moments at every
point.

Since, however, the polygon in this case approximates to a
curve, that is, is composed of a great number of short lines, the
above method is subject to.considerable inaccuracy, as errors
multiply in going along the polygon.

This difficulty can, however, be easily overcome.

Thus we may divide the load area into zwo portions only, and
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then draw the force and equilibrinm polygon, considering each
portion to act at its centre of gravity, and so obtain an equili-
brium polygon composed of three lines only. These lines wilZ
be tangents to the equilibriwm curve. (Art. 716.) We thus have
three points of the curve, and its direction at these points.
In this manner we may determine as many points as may be
necessary, without having the sides of the polygon so short or
80 numerons as to give rise to inaccuracy.

43.—The above will appear more plainly by consideration
of a

BEAM UNIFORMLY LOADED,

The curve of load distribution becomes in this case a straight
line. The load area is then a rectangle, and hence the load per
unit of length is constant. Let us now divide this load area
[Fig. 80, Pl. 8], into four equal parts, and considering each por-
tion as acting at its centre of gravity, assume a scale of force,
and draw the force polygon. Since in this case the reactions at
the supports must be equal, we take the pole C, in a perpendi-
cular to the force polygon a¢ the middle point. This canses the
closing line of the equilibrium polygon to be parallel to the
beam itself, which is often convenient. We now draw C0,C1,
etc., and then form the polygon O @ ¢ ¢ g A The lines 0 g, a ¢,
¢ e, ete., of this polygon, are fangent to the moment curve at
the points b, d, £, 0 and A, where the lines of division prolongea
meet the sides. The curve can now be easily constructed, as
will appear from the next Art.

44. Moment Curve a Parabola.—Suppose we had divided
the load area into only fwo parts, of the length # and —z [Fig.
30, PL. 8]. Then the moment polygon would be o a % 4, and
the horizontal projection of the tangent @ Z would be § @ +
l—a)y=1%1

That is, the horizontal projection of any tangent to the mo-
ment curve is constant. But this is a property of the parabola.
The moment curve for a uniform load is therefore a parabola,
symmetrical with respect to the wvertical through the centre of
the beam. ,

If, then, we divide 0 C and C 4 into equal parts, and join cor-
responding divisions above and below, we can construct any
number of tangents in any position.

[No'm.—We may prove analytically that the moment curve 7s a parabola,
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and hence that the line a % must be @ tangent. Thus the moment at any
point is
Hy=}plza—3p2®
p being the load per unit of length, 7 the length, and the reaction at sup-
port therefore %l— Hence y = BLH (z — 2% for origin 0.
When the origin is at d, representing horizontal distances by 3’ and ver-

tical by ¢, we have 2 = §l — y,and y = h — 2/, h being the ordinate at

q _pl
middle = SH
Hence by substitution
2 : 3 ;B . .
k-3 =2£H [g—ly —SnEY =g
or reducing
2H
=2z

. .p
which is the equation of a parabola having its vertex at d.]

‘We may of course take the pole anywhere, and hence H may
have any value. It is in general advantageous in such cases

(%.e., for uniform load) to take H = p?l ‘We have then
v =l
and for y = %, or for the middle ordinate, we have = —j—;
To draw the moment curve we have then simply to lay off

the middle ordinate equal to 1th the span. The eurve can then
be constructed in the customary way for a parabola. Any

ordimate to this curve multiplied by H = !;—Z will then give the
moment at that point.

Enough has probably now been said to illustrate the applica-
tion of our method to the determination of the moment of rota-
tion, bending moment, or moment of rupture. The reader
will have no difficulty in applying the above principles to any
practical case that may occur.

It will be observed that the customary curve of moments in
the graphic methods at present in general use, comes out as
a particular case of the equilibrium polygon for uniform
load.

This polygon has other interesting properties, which we shall
notice hereafter. For instance, just as its ordinates [Fig. 30]
are proportional to the bending moments or moment of rotation,
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80 also its area is proportional to the moments of the moments,
or the moment of inertia of the load area.

As to the shearing force at any point of a beam submitted
to the action of parallel forces, the reactions at the ends being
easily found as above by a line parallel to the closing line in
the force polygon, we have only to remember that the shear at
any point 48 egqual to the reaction at one end, minus all the
weights between that end and the point in question.

Thus for a uniformly distributed load we have simply to lay
off the reactions which are equal to one-half the load, above
‘and below the ends, and draw a straight line, which thus pasees
through the centre of the span. The ordinates to this line are
evidently then the shearing forces. If we have a series of con-
centrated loads, we have a broken line similar to A’; 1’1" 2/,
etc., Fig. 32, P1 7, where each successive weight as we arrive at
it, is subtracted from the preceding shear.

44, Beam countinuously Loaded and alse Subjected to
the Action of Concentrated Loads.—In practice we haye
to consider not only a continuously distributed load, such as the
weight of the truss or beam itself, but also concentrated forces,
such as the sveight of cars, locomotives, ete., standing upon or
passing over the truss.

In Pl 8, Fig. 31, we have a continuous loading represented
by the load area A ¢ & B,and in addition four forces P'y,.
Now, since the total moment about any point is equal to the
sum of the several moments, we can treat each method of load-
ing separately and then combine the results. Thus with the
force polygon (%) we obtain the equilibrinm polygon A’12 3
.... B’ for the continuous loading, and with the force polygon
(@) the equilibrium polygon A’ 17 2” 8”..... B"” for the con-
centrated loads. If now in () we draw C L parallel to the
closing line A’ B, and in (z) C” L’ parallel to the closing line
A’ B", we obtain at once the reactions at the supports for each
case.

Thus for continuous loading we have L 0 for reaction at A,
and 10 L for reaction at B; for the concentrated loads, L’ 0’
at A and 4’ L' at B. These reactions hold the beam in equi-
librium. :

For any cross-section y, the shear to the right is composed of
the twe components L 7 and L’ 8’ (z.e., is equal to the reactions
minus the forces between cross-section and support). The mo-
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ment of I 7 is given by the ordinate o ¥ to the corresponding
polygon, and we may consider L 7 as acting at the point of
intersection @ of the side 7 8 with A’ B’ (Art. 38). In the same
way L’ 3" acts at &. We may unite both these reactions and
find the point of application of their resultant ¢, by laying off
in force polygon (b) 7 & equal to I’ 3’, and then eonstructing
the corresponding equilibrium polygon ¢ @ @ ¢. The resultant
R passes through ¢. This construction remains the same evi-
dently, even when the points ¢ and & fall at different ends of
the beam, as may indeed happen. The components will then
have opposite directions, and must be subtracted in order to
obtain the resultant.

The tota? moment of rotation at y is proportional to the sum
of m nand 0 y. The greatest strain is where this sum is a
maximum. In order to perform this summation and ascertain
this point of maximum moment it is advantageous to construct
another polygon instead of A’ 1” 2", etc., whose closing line
shall coincide with A’ B’. This is easy to do, by drawing in
force polygon (), I C’ parallel to A’ B', and taking a new pole
C’ the same distance out as before, that is, keeping H constant,
and then constructing the corresponding polygon A’ 1" 2’ 8, ete.

Thus the ordinate p ¥ gives the total moment at 7. We can
make use here also of the principle that the corresponding sides
of the two polygons must intersect upon the vertical throngh
A’ (Art.26). We have thus the total moment at any point, and
can easily determine the point of maximum moment or cross-
section of rupture. This point mmst necessarily lie between
the points of maximum moments for the two cases, or coincide
with one of them. In the Fig. this point coincides with the
point of application of P’

45. Case of Uniform Load.—If the continuous load is uni-
Jormly distributed we can obtain the above result without
being obliged to draw the enrve. As in this case we have a
very short construction for the determination of the point of
greatest moment, it may be well here briefly to notice it.

If we erect ordinates along the length of the beam as an axis
of abscissas, equal to the sum of the forces acting beyond any
cross-section, the line joining the end points of these ordinates
has a greater or less inclination to the axis according as the
uniform load is greater or smaller. At the points of applica-
tion of the;oncentrated loads this line is evidently shAsfted
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parallel to itself. Since at the point of maximum strain the
sum of the forces either side is zero, this point is given by the
intersection of the broken line thus found with the axis.

Thus in P1. 7, Fig. 32, let A B be the beam sustaining a uni-
form load, and also the concentrated loads P, P, Py P,. The
reaction of the uniform load at the supports is equal to half
that load. To find the reactions for the concentrated loads we
draw the force polygon 0 1 2 8 4, choose a pole C, then con-
struct the equilibrium polygon A’1 2 3 4 B/, and parallel to
A'B' draw CL. L 0and L 4 arc the reactions at A and B.
Now through I draw A, L horizontal, make it equal to the
‘length of the beam, and take it as axis of abscissas. [Itis of
course advantageous here to lay off the forces along the verti-
cal through B, as done in the Fig. Then A, falls in the vertical
through A and 1, 2, 8, 4, are directly under the forces them-
selves.] g

The ordinate to be laid off at A, is equal to L 0 + half the
uniform load. Between A, and 1, the line A’, 1’ is inclined to
the axis at an angle depending upon the uniform load. Lay off
L U equal to this load and draw A, U. A'; 1’ must be parallel
to this line. At 1’ the line A’; 1’ is shifted to 17, so that 1 1"
is the load P,. Then 1" 2 is parallel as before to A, U, and
2’ 2" ig the load Py, and so on.  Zhe intersection 2, with Ay L
gives the point of maximum moment or cross-section of rup-
ture. 'The force Pyat this point in our Fig. is divided, as shown
by L in the force polygon, into two portions, one of which is to
be added to the forces left, the other to the forces right. The
ordinate 7, %’ at any point gives the skear or sum of the forces
acting at that point. This force acts up or down according as
the ordinate is above or below the axis. L

Moreover, the area between the broken line and axis Ay L,
limited by this ordinate, gives the moment of rotation of the
forces beyond the sectidn y, areas below the axis being nega-
tive. For a section at 2, therefore, we have area A, A’ 1’1"
2 2, minus 2, 2"’ 3’ 3" 2’ 2, or what is the sane thing, the area
2, 2- 4’ 4" B, L, since the sum of the moments of all the forces
is zero.

46, Influence of a Concentrated Load, passing over the
Beam,—If in addition to the already existing uniform and
concentrated loads, a new force operates, we have by (44) simply
to construet for this new force its force and equilibrium poly-
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gon, and urite the forces and moments thus found with those
already existing.

In PL. 7, Fig. 82, we have assumed a new force P’; near the
left support. The force polygon is 0" 1’ €', the pole distance
being taken the same as before. For any one position of this
force we have then the equilibrium polygon A’ 1’ B, and
drawing a parallel C' L’ to A" B” we obtain the reactions 0’ L’
and L’ 1', which must be added to the reactions already ob-
tained.

If now we take a section y detween P’y and the point of max-
imum moment 2, before found, the sum of the forces either
side of this section undergoes the following changes: Upon
the side where P’; lies, and the point 2, does not lie, where
therefore the sum was originally an upward force, we have the
downward force I’ 1’ (equal to algebraic sum L’/ 0'+ 0'1").
The sum of the forces at the section, or the shearing foree, is
therefore diminished.

The total rotation moment is, however, ¢ncreased by the
amount indicated by m n. Both changes, that of the sum of
the forces and the moment of rotation, sncrease as Py ap-
proaches y, and are therefore greatest when P’; reaches #.

If P/, passes g, this point is in the same condition as z with
reference to the former position of P’y; that is, the force and
point 2, are now both on the same side of the section. For z,
then, the original downward force to the left is increased by the’
force I’ 1", To the right the npward force is increased by 1’ L".
In like manner the moment of the forces beyond z is inereased
by the amount indicated by o p. This change is greatest when
P, reaches z.

Therefore when a load passes over the beam the sum of the
shearing forces is dimenished in all sections between it and the
original point of greatest moment, and increased in sections be-
yond this point, while the moment of rotation, or hending
moment, for all cross-sections is increased. These changes
moreover increase for any section as the load approaches that
section. The shear at any point is therefore least, and the mo-
ment greatest, when the load reaches that point. Assoon, how-
ever, as the load passes this point, the shear passes suddenly
from its smallest to its greatest opposite value, and then dimin-
ishes as the load recedes, together with the moment of rotation.
On the other side of the point 2, of original greatest moment,
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the shear and moment increase as the load appr(;aches, and
become greatest for any point when the load reaches that point.
At the moment of passing, these greatest values pass to their
smallest values, and increase afterwards as the load recedes.

Since by the introduction of the load the shear for points
upon oneside of 2, is diminished (between 2,and the load), and
on the other side increased, and the greatest moment is at the
point where the shear is zero, it follows that the point of greatest
moment moves in general towards the load. At a certain point,
then, both meet. As the load then advances this point accom-
Ppanies it, passes with it the original position, and follows it up
to the point where it would have met the same load coming on
from the other side. From this point, as the load continnes to
recede, it returns, and finally reaches its original position as the
load arrives at the further end.

It is evidently of interest to learn the position of these two
points, where the load meets and leaves the point of greatest
moment, or cross-section of rupture, and this in Fig. 32 we can
easily do.

When P, arrives at 1’, we havesevidently the reactions by
laying off L E equal to P, drawing A, E, and through its
intersection with the vertical through the weight drawing the
horizontal A’y B, L B’;is then the increase of reaction at B due
to P’y. The entire reaction is B, B, and the broken line A’
1"1", ete., holds good still, if we merély change the axis from
A, L to A'yB,. The point of greatest moment, which is still
the intersection of the broken line with the new axis, in the
present case is not changed by reason of the overpowering in-
fluence of P,.. It does not move to meet the load, but awaits it
until it reaches Py, and until, therefore, the new axis takes the
position A"y B"y.

1f, however, the force P’; comes on from the right, we have
the reactions for any position as z, by laying off Ay B’ equal to
P’;, drawing L E’, and then the horizontal A", B, through the
intersection of L K, with the vertical through z. Then A, A",
is the reaction at A, due to this position of the load. The in-
tersection 2', corresponding to @, shows the point to which the
point of greatest moment 2, moves to meet the load. As the
load passes towards the left, this point moves towards the right,
and both come together evidently at the point V;, correspond-
ing to the new axis Ag" B/". The point of greatest moments
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passes then from 2, to Vi, and beyond these two limits it can
never pass. .

Our constrnction, then, is simply to lay-off the load in oppo-
site directions perpendicularly from each end of the axis Ay L,
and join the end points Ag Band L B. The intersections of
these lines with the diagram of shear give the peints 2, and
V, required.

47, Load Systems,*—Concentrated loads occur in general
in practice in a certain successiou, as for instance the forces
aeting at the points of contact of the wheels of a train of cars
passing over the beam, and it is necessary then to investigate
the influence of different positions of the train. It evidently
amounts to the same thing whether we suppose the weights to
move over the beam, or suppose the weights stationary and the
beam to move. In either case we obtain every possible posi-
tion of every weight relatively to the ends of the beam.

The severest load to which we can subject a railway truss, for
example, is when the span is filled with locomotives. If we
suppose, for illustration, in round numbers, the distance between
the three axles of the loeomotive 3 ft. 6 in., between the
axles of the tender 5 ft. 6 in., between the foremost tender
and the back locomotive axle 4 ft., and the entire length of
locomotive and tender 34 ft. 6 in.,and then suppose the weight
upon each locomotive axle 18 tons, and upon each tender axle
8 tons, we have a system of weights in fixed order and at fixed
distances, and the truss should be investigated for a series of
these systems, as many as can be placed upon the span, passing
over it from one end to the other.

In PL 9, Fig. 32 (@), we assume two such locomotives as
shown by Py, and construct the force and equilibrinm poly-
gous. The forces are symmetrically arranged with respect to
a central point,and the pole in the force polygon is therefore -
taken perpendicular from the middle of the force line.

Now the system of forees being as represented, suppose the
span to shif?. Thus suppose the span of a given length repre-
sented by S, 8, in the Fig. Then 0 6 is the line closing the
polygon for this position of the span, and a parallel to 0 6 in
the foree polygon, viz., C L gives the reactions at the ends.
Let now the span move from S, S, to g & ; we have a new po-

* Elemente der Graphischen Stutik, Bauschinger.
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sition for the line closing the polygon and new reactions. As
the span continues to shift to the right, the lines closing the
polygon revolve, and as their projections are always constant,
viz., equal to the span, they are all tangent to a parabola, which
they therefore envelop.

48, Properties of this Parabola.—This parabola has sev-
eral important properties which will aid us in the investigation
of the case above proposed.* In Pl 9, Fig. 32 (d), let XX be
the line along which the span is shifted; a M and a N the
outer sides of the polygon, intersecting at a, along which the
elosing lines slide as they revolve. Tor a given position s ¢ of
the span, o o is the corresponding line. & s, is the position of
the span, for which the centre, ¢, lies in the vertical through a.
In this position @, o, is tangent to the parabola at e, its middle
point, and upon this line lie the centres of all the other lines
(taken of course as reaching from ¢ N to a M). Now the
point of tangency, B, of any other line, as ¢ o, with the parabola,
s as far from the centre of that line, v, as the centre of that
Uine is itself from ¢, 'We have then only to make ¢ b equal to
¢ ¢, and drop a perpendicular through b to find 8. Thus for
the position s; s, and the line ¢; oy, to find the point of tangency
8, make ¢, d; equal to ¢, ¢, and draw &, &, perpendicular to
intersection with oy a,.

Inversely we may find that position for the span ¢ s, for which
the vertical through a given point, b, shall pass through the
point of tangency.

We have only to move the span so that its middle point ¢
shall be as far from ¢, as it is already from the given point, or
make ¢ ¢ equal to ¢ b. (See Art. 75.)

If we shift now the span ss, and at the same time the point
b through an equal distance, the intersections of the vertical
through &, with the corresponding closing lines of the polygon, .
will all lie upon the same line ¢ 0.

If therefore &', is such an intersection, 4 has been moved from
b to 'y, and hence the span from s s to & s;.

49. Different Cases to be Investigated.—We are now
ready to investigate the effect of a live load such as represented
in Pl. 9, Fig. 32 (¢). For the determination of the proportions
of the truss the following points are specially important :

* See Elemente der Graphischen Statik, Bauschinger, pp. 108-114. Also,
Die Qraphische Statik, Calmann, pp. 136-141,
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1. When a certain number of wheels pass over the truss, but
without any passing off, or new ones coming on; what position
of the system gives the maximum moment at any given cross-
gection not covered by the system, and how great is this
moment ?

2. Under the same snpposition as above, what position of the
load gives the greatest moment for a given point covered by one
of the load systems ?

3. Among all the varions points of the span at whichis found
the greatest maximum moment, for what position of the load
does it oceur, and how great is it ?

4. If the number of wheels is indeterminate, how many must
pass on, and what position must they have to give at any point
the greatest maximum moment; where is the corresponding
cross-section, what position must the load have, and how great
is this maximum moment ¢

The three first questions are easily solved by the aid of the
above properties of the parabola, enveloped by the closing lines
of the equilibrium polygon, corresponding to different positions
of the span.

Thus, as regards the first question, let the given eross-section
be b, PL. 9, Fig. 82 (d),and suppose the span s s in the position
where the vertical thronugh b interseets o o at the point of tan-
gency 8. When now the span shifts, the intersection of the
ordinate throngh 4, with the corresponding tie line, will always
lie npon o 0.  But this ordinate gives the reduced moments for
b (reduced to pole distance H.) The greatest of these moments
will then be simply the greatest of the ordinates between @ o
and the polygon, and will always be found at an angle of the
same. When found, we have at once the position of &, and of
course of the span with reference to the given loads.  This is
always such that a wheel stands over the given section,

Thus in Fig. 82 (@), supposing the four wheels Pg to P, to
pass over the span ¢ 4, we seek.the position of the load to give
the greatest moment at a point § of the span from the left
therefore yth from the middle.

We lay off the span in such a position, # ¢, that its centre is
distant from the intersection a of the outer lines of the poly-
gon by }th of the span.

The ordinate throngh the given point now passes through the
point of tangeney of the tie line and parabola. We draw this .
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tie line ¢ 9, and seek the greatest ordinate between it and the
polygon. This we find at 7, and directly above 7 the given
point must lie, and henee we have the position of the span, viz.,
¢ ¢. If the scale of tons is ten tons to an inch, of distance 5 ft.
to an inch, and the pole distance H is assumed 124 ft. = 24
inches, the seale of moments will be 10 X 2.5 x 5, = 125 ft. tons
to an inch.

As to the second question; the position of the span required,
is that where the vertical through the given pointof the system
8 Fig. 32 (a), interseets the corresponding tie line at its point
of tangeney with the parabola; all other tie lines intersect this
vertical in a point between the tangent point and the polygon.
The middle of the span must then lie midway between the in-
tersection a of the outer polygon sides and the point s, where
the vertical through S meets the line X X. Thus the span has
the position ¢, %,

The third question, finally, is easily solved if the parahola en-
veloped by the tie lines is drawn. The greatest ordinate be-
tween this parabola and the polygon gives the greatest moment,
and the point and the position of span required, since the
middle of the span must be half-way between the point given
by this ordinate and a.

The greatest moment is always found npon an ordinate
through an angle of the polygon.

If, however, the parabola is not drawn, we find by trial at
several angles, drawing the tie lines and eomparing the corre-
sponding ordinates, the ordinate required. Here the following
consideratious may aid:

When the load is uniformly distributed, the maximum mo-
ment is in the middle of the span, and at the same time in the
vertical through the intersection @ of the outer polygon sides.
The polygon itself becomes a parabola. The less uniform the
load is, the more this point approaches the heaviest loaded side,
a3 also the interseetion a, though not in the same degree. I'or
loads not exceedingly unsymmetrical the point may be sought
for, then, in the neighborhood of a, {.c., near the resultant of the
forces acting upon the truss.  Thus in our example we are jus-
tified in selecting the corner 7 of the polygon, nearest the point
of intersection a.

50. Most unfavorable Position of Load nupon a Beam of
given Span.—The fourth question above requires a somewhat
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more extended consideration. The most unfavorable position
of a system of given concentrated forces is when it causes the
greatest moment at the eross-section of rupture. This position
is from the preceding, given by taking the centre of the beam
midway between the vertical through the point of intersection
of the outer sides of the equilibrium polygon and the nearest
angle of the same. If with this centre we increase the span,
the maximnm moment increases until the span has the greatest
length possible without more wheels coming on.

Thus for the two wheels P, and P;, PL 9, Fig. 82 (a), a is
the intersection of the ounter polygon sides, and 4 the nearest
polygon angle. The almost equally near angle 5 gives at any
rate no greater moment. In order then that these two weights
may cause the greatest maximum moment, the middle of the
beam must lie half-way between a; and 4; and as the span
increases in length this moment increases, and is then greatest
when the span reaches to s or Pg.

If now the span still increases so as to also include Py, the
point of intersection of the outer polygon sides recedes to ay,
where in our Iig. it coincides almost exactly with the polygon
angle 4, Here then, approximately at 4, we must locate the
centre of the beam. If we take the same length of span as
before, that is, make the half span a, s, equal to the distance
from ¢, to the point midway between a, and 4, we see by draw-
ing the closing lines for these two positions of the span, that
the maximum moments measured upon the vertical through 4
are almost exactly equal in each case. For a smaller length of
span including the three weights, the maximum moment de-
creases, and is less therefore than the maximum moment already
caused by the two wheels. The span s, s; may then be regarded
as the greatest for which the two wheels P, Py give the greatest
possible maximum moment. As the space 8, 8, upon which we
have now three wheels, increases, the moment increases, and is
greatest when the span, its centre always remaining now at a,
reaches to s’y or to P,.

If now it still increases so as to also include P, the intersec-
tion of the outer polygon sides retreats to @z The nearest
polygon angle is still 4, and midway then between a; and 4 we
must now locate the middle of the beam, If from this centre
we lay off the half span equal to a, ¢5, to 8, and draw the clos-
ing line for this position of the span, we seec as before that the
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moment given by the ordinate at 4 is for either case almost
exactly the same. Any less span including the four weights
would give a less moment; less, therefore, than the moment
already caused by the three weights. The span &, s’y then
precisely as before, is the extreme limit upon which the
three wheels P; to P; cause the greatest possible maximnim
moment. =

In a precisely similar manner we find that the span s '
with a centre midway between a; and 4 is the limiting span for
the four wheels P, to Pj. y

1f now the span still increases so that P; comes on, the inter-
section of the outer polygon sides falls in our Fig. nearly at s,
and since this point also happens to correspond almost exactly
with the angle 3, we take the centre of the beam at s,. The’
greater the span now becomes, the greater the maximum
moment. The greatest length, however, which the span can
have without including Py, is twice s, 6, or twice the distance
between s and Pg.  1f Pg also comes on, the intersection of the
polygon sides is found at ay, and the nearest polygon angle is 4.
Midway then between a; and 4 is the new centre of the beam,
while before P, came on, it was nearly at 8. But for centre
8 the half span was s 6, while now it is somewhat less than
4 6; therefore considerably smaller. Since, however, we wish
to follow the span as it continues increasing, we must compare
those two spans which are equal before and after the coming
on of P;. The right-hand ends of these spans, viz., s’y and s
must evidently be distant each side of 6, by the half distance
" of their centres 8 and 4, or a, (more accurately the point half-
way between a; and 4, but a5 and 4 lie in our Fig. so nearly to-
gether that the centre cannot be indicated more exactly). We
make then s &', = a,8;= M, 6, provided that M_is taken half-
way between the centre & and a,.

An exact construction shows that the maximnm moments for
these two spans, the one given by the ordinate through 8, the
other by the ordinate through 4, are almost exactly equal, and
moreover, that the maximum moment for the span §; 8, of equal
length whose centre is at M is also almost exactly equal, when
measured upon the vertical throngh M;. We can therefore.
take S; S, as the limit of those spans for which the five wheels
P, to P; cause the greatest maximum moment,

Taking on now the seventh wheel, the intersection of the
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outer polygon sides is at a; and the nearest polygon angle is 5.
Half-way between a; and 5 we must then take the centre, while
before it lay at a, (nearly). If we take then M, half-way be-
tween a, and this new centre, we find precisely as before the
span §, §, with centre M, and right end at Py, as the limiting
span for the six wheels P; to P;. The same holds good for the
span S; S with centre My, for the seven wheels P, to P;, and
so on. If, according to supposition, Py Py P; are 3 ft. 6 in.
apart, P, and P; 4 ft., and P, and P, 5 ft. 6 in. apart; then for
spans up to s, § = say 8 ft., the two wheels P, P; will give the
greatest maximnum moment, and their place upon the beam is
given by the position of the centre (half-way between a, and 4).
From about 8 ft. to 15 ft. span, or s, s, the three wheels Pgto Py
give the greatest maximum moment, and the centre of the span
is located at @,. For spans from 15 ft. to 19 ft. span, or &5 8,
the four wheels P, to P; give the maximum moment, and the
eentre is at 8 ; and so on. Thus fora span of any given length
we have at once the weights and their position, in order to
cause the greatest maximum moment, as also the place of this
moment, viz., the point vertically over that angle of the equi-
librinm polygon nearest the centre of the span. The ordinate
through this point included by the equilibrium polygon, and
the closing line for the given span, taken to the moment scale
gives this monient at once ; or this ordinate taken to the scale
of force must be multiplied by the previously assumed pole
distance.

51. Greatest Moment of Rupture eaused by a System of
Moving Loads at a given Cross-Section of 2 Beam of given
span.—Ior beams or trusses of long span, which are as a rule
caused to vary in cross-section, it is not sufficient merely to find
the greatest maximum moment which a given system of con-
centrated forces can cause; we must also know for a number
of individual cross-sections, the maximum moments which can
ever ocenr.

For this purpose the force and equilibrium polygons being
first constructed, we shift as above thg given span along a
horizontal line, and draw for each successive position of the
span the corresponding closing line in the equilibrinm polygon,
marking the point where each closing line is intersected by a
vertieal through the given cross-section, which of course moves
with the span, keeping always the same position with reference
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to the ends. The points thus obtained form a curve, and the
greatest ordinate between this curve and the polygon gives the
greatest moment which can act at the given cross-section.
This greatest ordinate will always be found at an angle of the
polygon, and hence a weight must always rest upon the cross-
section. Since the cross-section itself must lie upon this ordi-
nate, we have directly the position of the span with reference
to the given forces. The closing line for this position being
then drawn, a parallel to it in the force polygon gives the reac-
tions for this position.

The reader will do well to make the construction indicated
for an assumed span and system of weights, to convenient scales,
checking the results by computation.*

The above method applies more particularly to solid or
“ plate” girders, beams, or trusses. It may of course be applied
to framed structures also, such as those illustrated in chapter
first. Thus the moment at any point, divided by the depth of
truss at that point, gives the stiain in flanges. The more pre-
ferable, as perhaps also the simplest method of determining the
strains in such cases, however, is to find the reactions due to
each individual weight. Each reaction can then be followed
through the structure, as explained in that chapter, and the
strains in every member for every weight in every position can
thus be obtained and tabulated. An inspection of the table
will then give at once the strains due to the united action of
any desired number of these weights.

We have thus fwo methods for the solution of such cases;
first, by the composition and resolution of forces, and, second,
by the equilibrinm polygon and moments of rupture, and may,
if we choose, check the results obtained by one method by the
other. In most practical cases involving framed structures,
however, the first method is preferable as being simpler, quicker
of application, and of superior accuracy.

For solid-built beams or “plate girders,” ete., the second
method comes more especially into play. The determination
of the strains in a structure of this kind from the known mo-
ment of rupture at any point, requires a knowledge of the
moment of inertia of the cross-section at that point, and this
may also be found by the Graphical method. ;

* This construction is given in Art. 15, Fig. VIIL., of the Appendix.
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CHAPTER VI.
MOMENT OF INERTIA OF PARALLEL FORCES.

52. Tuus far we have seen that by the graphic method we
can in any practical case determine the moment of the exterior
forces acting upon a piece at any eross-section of that piece.
But the exterior forces give rise to and are resisted by molecu-
lar or snterior forces. Now the moment of the exterior forces
being found, the cross-section of the piece at any point being
known, and one of the dimensions of this cross-section being
assumed, it is required to find the other dimension, so that the
strain per unit of area of cross-section shall be less than the
recognized safe strain of the material as found by experiment.

The moment of the exterior forces at any cross-section we
call the moment of rupture ; and designate it by M. Let d =
the depth of cross-section.*

y = the variable distance of any fibre above. or below the
neutral axis.

B =the breadth of the section at the distance y from the
nentral axis, and consequently a variable, except in the case of
rectangnlar seetions.

¢ = the horizontal unit strain exerted by fibres in the cross-
section at a given distance ¢ from the neuntral axis.

Then since the fibres exert forces which are proportional to
their distance from the neutral axis or to their change of length,
the unit strain in any fibre at a distance  from the neutral

axis will be 8—}. Let the depth of this fibre be @ y, then, since
the breadth of section is 8, the total horizontal force exerted

by the fibres in the breadth B8, will be Z—ﬂy dy. The moment

of this force about the neutral axis will be% B ' d y, and the

* Theory of Strains, Stoney, p. 43, Art. 67.



62 MOMENT OF INERTIA, [cmap. vi

integral of this quantity will be the sum of the moments of all
the horizontal elastic forces in the cross-section round the neu-
tral axis, that is, equal to the moment of rupture of the section
in question. We have therefore

M:%fsgfdy.

For a rectangular cross-section, for instance, 8 is constant
and equal to the breadth 5. Representing the depth by  we

3
have M = I;;Z 68, or if we make ¢ the distance of the extreme
fibres.= %
sbd?
M= 6

from which M being known, as also s, if we assume & we can
find & or the reverse.

The integral f B 1 d y is the moment of inertia of the cross-

section, and may be defined as the sum aof the products obtained
by multiplying the mass of each elementary particle by the
square of its distance from the avis. [See Supplement to Chap-
ter VII., Art. 10.]

From the above, we see its importance in determining the
strain at any distance from the neutral axis, or in proportioning
the cross-section, so that the resulting strain shall be less than
a given quantity at any point. We see also that for a rectan-

O] :
gular cross-section the moment of inertia is —-, where 4 is the

12°
breadth and & the depth.

53. Graphical Determination.—We have alrecady seen
that the moment of a force, as P, (Pl. 6, Fig. 20) with reference
to any point, as o, is given by the ordinate # m multiplied by
the constant H (Art. 38). The ordinate n m then represents
the product of P, multiplied by the horizontal distance of &

9 d 1
from 7. But the area of the triangle b n m is m nXg bn=

1 N g
Pixy b n*, that is, the area of the triangle b n m represents

one-half the moment of inertia of Py with respect to o. Just
as the exterior ordinates of the equilibrinm polygon have been
shown to have a certain significance, and to represent the mo-
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ments of the forces, so the exterior areas of the equilibrium

polygon represent the moments of the moments, or the moments

of inertia. Thus in Pl 8, Fig. 80, the exterior parabolie area

0 C % should be one-half the moment of inertia of the rectangle
or load area o p 7 A.

3 Al

Let us see if this is so. The area of the triangle 0 % C is 3

o h x the ordinate 8 C. This ordinate S C gives, as we have

seen, the moment, with respect to 8, of the reaction. We can

therefore find its value. Thus if pis the load per unit of length,
l2
and 7 is the length, ‘%l is the reaction, and p_ this moment.

c 7 72 3
The area of the triangle o ¢ 4 is therefore gx ])—4— = %—l—

The parabolic area od % is & of the eircumscribing rectan-
gle.  This rectangle is I x Sd. The ordinate Sd is equal to

8C—dC. Wehave already found SC and & C is the sum of the
moments of P, and Py, orpT)Ex —l: —’ia Henee Sd = ﬂ—

4 8
pZ_pl : e S,
= The area of the circnmscribing rectangle is then
o
TZB. Two-thirds of this is H—i—l-s, which subtracted from £§Z_3

gives for half the moment of inertial4 p P. Ilence the

moment of inertia is vl p % as should be.

54, Wesee therefore the signifieanee of the area of the equi-
librivm polyyon.

If, when a number of forees are given, we form the force
polygon, and then the equilibrium polygon, the ordinates to
this last give the moments to the assumed pole distance. If
now we fake these moments themselves as jforces applied at the
same points, form a new force polygon with new pole distance,
and new equilibrium polygon, the ordinates to this new polygon
to the new pole distance will give the moments of the moments
or the moments of inertia of the forces. The same method is
applicable to moments of a higher order, but in practice we
have only to do with those of the second order alone.

55. Radius of Gyration.—The moment of inertia of a
gystem of parallel forces P; P, ete., in a plane, with reference
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to an axis from which the points of application are distant ¢, ¢,,
ete., is then 3 P g%  This is the product of three quantities,
one of which is measured by the scale of force, and the other
two by the scale of length. We can therefore regard it as the
product of the square of a certain length by the sum of the
given forces,or 2 P @# =723 P. Wecall %z the radius of
gyration.

In order to find the moment of inertia of a system of parallel
forces then, we must by the preceding Art. construct ¢wo force
and equilibrium polygons. If the pole distances are H and H',
and the segments into which the axis is divided by the produced
sides of the polygons are P'; P’, and P, P’ ete., respectively,
then ,

SPP=HH ZP"
and the radius of gyration is given by

HH SP' =3P
piasp/ B R AR
. 2P

This expression is easy to construct. Thus for example in
PL 11, Fig 83, let 0 2 C be the first force polygon, o n the force
line, containing the forces P; C the pole, and H the pole dis-
tance. Make 0 & equal to the second pole distance H,' and draw
b ¢ parallel to n ¢ and ¢ ¢ parallel to H. Then
HH

or,

Ch=lh =

220 5
whence %= \//L 3P’

If, therefore, in Tig. 83 (3),m”, m", is the scgment of the
axis cut off by the outer sides of the second equilibrium poly-
gon, that is, if m", m", = ¥ P, we have only to prolong m",
m'"y to L, making m” L = %, and describe a semicircle upon
m"'y L, and erect the perpendicular m’’ %, which will be eqnal
to & In general, the pole distance H and H’ can be taken ar-
bitrarily, but it is often advantageous to take H (sometimes H’
also) equal to 3 P. Then

by EEF

We should then have in Fig. 33 gimply to increase m™/, m',
by the second pole distance H', and then proceed as above to
find Z.
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It is to be remembered that ¢, ¢, ete., the distances of the
points of application of the forces from the axis, may be meas-
wred in any direction, and H is parallel to this direction, and
is not therefore necessarily perpendicular to o n.

The above will be rendered plain by reference to Fig. 34,
P1. 10. We suppose four forces applied at the points A, A, A,
A, respectively, and acting parallel toXX. Required the mo-
ment of inertia of these forces and the radius of gyration, the
distances ¢, ¢, etc., being measured parallel to ¥ ¥. Tirst we
form the force polygon by laying off along X X, 01,1 2,2 3,
3 4, parallel, and in the direction of action of the forces, choos-
ing a pole C, and drawing C0, C1, C2, etc. 'We now construct
the corresponding equilibrium polygon, CI, 111, 1IN, IO IV,
etc. The segments 01’, 1'2’, 2'3’, ete., represent the statical
moments of the forces with reference to XX. That is, these
segments to the scale of force mnltiplied by the pole distance Cy
parallel to Y'Y to the scale of distance, give the statical moments
of the forces. Now we take these segments themselves as forces,
and suppose them acting at the former points of application.
With the same pole as before we draw C0O, C1’, C2, etc., and
form the corresponding equilibrium polygon CI, ITI, IITIY etc.
The sum of the segments of XX cut off by the outer lines of this
polygon, or oy, to the scale of force multiplied by HH’ or Gy’
gives the moment of inertia of the forces with respect to X X.

This moment then is M =0y x Cy’
where 0y = SP” and Cy’ = HH..

The radius of gyration % is, as we have seen, given by

HE'SP” 5P bheing equal to 04 in the Fig. Hence
sP g eq

Y TEXT]
04

If, then, we lay off 0 &= 0 4, and make 0 ¢ = Cy, and make
the angle d¢¢ a right angle, we shall find a point ¢ to the right
HH : .
P Upon ey now describe

k=

and 0¢ will be equal to %‘t{- =

a semi-circle, the point of intersecfion &’ with the perpendicular

through 0 will give (Art. 55)

op = /W X0y _ [HH P
04 P

The square (5)f this line, then, multiplied by = P or 0 4, will give

= % = radius of gyration.
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at once the moment of inertia of the given four forces with
reference to X X and ¥ ¥ as'axes. If we were to suppose the
same forces with the same points of application to act parallel
to ¥ Y instead of X X, the distances ¢, q, being measured par-
allel to X X instead of ¥ 'V, we should have the force polygon
C, 01,2 8 4, instead of C012 34, and a precisely similar
construction would give us 0  multiplied by pole distance for
‘the moment of inertia, and 0 &' for the radius of gyration. We
recommend the reader to follow throngh the construction as
shown by Fig. 34. }

56. Curve of Inertia—EIllipse and Hyperbola of Inertia.
—If having found the radins of gyration as above, we lay it off
from the axis on either side, in a direction parallel to the direc-
tions in which ¢ ¢, etec., are snpposed measured, and through
the points thus determined draw two parallels to the axis M’
and M" on either side, and then suppose the axis to revolve in
the plane of the forces about any point as O situated in the
axis; the lines M’ and M” also revolve and enclose a curve of
the second degree, whose centre coincides with O. Thus, if in
PL 10, Fig. 34, we lay off O & along ¥ Y on both sides of X X
equal to 0 &' =% already found, and then let X X revolve
about O, K J and J K will also revolve, and enclose either an
ellipse or hyperbola. 1

In order to prove this, take O as an origin of co-ordinates.
Let the co-ordinates of the points of application of the forces A,
A, ete., be 2, y,, @, 9,, ete. From each of these points A draw
parallels to the axis of ¥, intersecting the axis of # in the points
C. Then O C=2, AC=y. Now pass through the point O
an axis of moments M in any direction, and project for each
point O C A parallel to this axis upon the line ¢, which meas-
ures the distance of each point from the axis of moment (not
necessarily perpendicular distance). This projection is evi-
dently equal to ¢. Denote by a and B the ratios by which dis-
tances along X and Y must be multiplied,in order to obtain
their projections upon ¢, by lines parallel to M. Then

g=az +8By
for each point of application, and hence
SPF=3P (az+By)
or since for one and the same axis M, and direction ¢, « and 8
are constant,
SPP=d PP+ 3ZP¥+2a83Pay.
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In this expression @ and B will vary with the position of M
and the direction of ¢, but TP a?, Z P 3* remain unchanged.
These last expressions are, however, nothing more than the mo-
ments of the second order (moments of inertia) of the given
force system withreferenceto the co-ordinate axis, the distances
of the points of application being measured in the direction of
the axis. They are known if the force system is given and the
co-ordinate system assumed.

Ifweput ISP =*IP,SP ¥ =03IP,SPay=f*3P,
b and a, ete., are the radii of gyration of the moments of inertia
with reference to # and y, and the above equation becomes

SPF=3P[ad+ BV +2aBf?

If we conceive for the assumed position of M, the radius of
gyration % to be found, and M’ and M” drawn on either side
at a distance 4 %, measured parallel to ¢, and indicate the dis-
tances cut off by these lines from the co-ordinate axes by + z,
= ¥., and then project these distances parallel to M upon the
direction of ¢ or %, we have £ = a «, = B v., whence

b o

Ze Ye
and these values substituted in the above equation give

2 2 2
SPF=ERZP [‘i+ﬁ +2—Ji]= +B 3P
w@ ye we yﬂ
where £ is essentially positive in the second term.
IIence,

27 _
o —+ 82 + B A R i % 1)

If we suppose the axis M to change its position revolving about
O, the segments «, y, cut off from the axes of @ and y by
M’ and M" alone will change in this equation. It is therefore
the equation of the curve enclosed by M’ M”. If this enrve is
known for a given force system, then the moment of inertia for
any axis passing throngh its centre is easily found. We have
only to draw parallel to the axis two tangents to this curve, one
on either side, and measure their distance from M, in the direc-
tion in which the distances ¢ of the points of application from
the axis are taken. This distance is the radius of gyration,
and the moment of inertia is simply the produet of its square
by the algebraic sum of the forces.
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We call the curve represented by the above equation there-
fore, the curve of inertia. If werefer the curve to co-ordinate
axes which coincide with the conjugate diameters, the equation
becomes

A* B

where z and y are the new ordinates, and A, B, the conjugate
semi-axes of the curve. A and B are therefore the radii of
gyration of the force system, measured in the direction of the
co-ordinate axes, and hence
pX zPY*

SRl S e
where z and ¥ are the co-ordinates of the points of application
of the given forces.

Since I P ¢* = &* 2 P if the sign of ISP ¢*is the same as
2P, /? is positive. When, on the other hand, these signs are
different, /* is negative. That is, when all the forces act in
the same direction 4* is positive, and we have

2 2
which is the equation of an ellipse.

If, however, the parallel forces act in different directions, %,
may be positive or negative. For cases where Z*is negative,
either A? or B?® will be negative, and we shall have

AL

A? B
FopoEl
or,
2
. _A_+P_= F1

Both cases coincide. The double curve consists of two hyper-
bolas with common assymptotes, common centre, and equal
semi-axes. For every axis M passing through the common centre
O, we have a pair of parallel tangents edther to one or the
other hyperbola. The corresponding 4* is positive for the one,
negative for the other.

If, then, in the method of construction to which we shall
presently refer, the square of the semi-axis B, which lies in the
axis of ¥,is negative, that hyperbola whose imaginary axis lies
in Y gives &* positive, the other gives 42 negative, and reversely
for the other case. If the axis of moments M coincides with
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one of the common assymptotes, the radius of gyration and
moment of inertia with respect to it of the given force system
is zero.

57. Construction of the Curve of Inertin.—The eurve of
inertia for a given system of parallel forces and given centre
0O, is determined by the direction of any two conjngate diame-
ters, since as we have seen in Art. 55, Pl 10, Fig. 34, these
directions being assnmed we can find the radii of gyration with
respect to XX and Y Y, and can thus determine O ¢ and O 5,
the semi-diameters. We have then to develop a principle by
means of which these directions may be determined.

If we denote the distances of the points of application of the
forees from the axis of M measured in any direction by ¥, then
the statical moments of the forces, P y, are indeed dependent
upon the direction in which y is measured, but their relative
values remain the same, If then being found for any direction
of y, these statical forces are considered as being themselves
parallel forces acting at the points of application, and their
centre of action is found (for gravity—centre of gravity) for
some other value of ¥, this centre of action remains unchanged.
For any axis passing through this centre of action the sum of
the moments of the forces is zero. If therefore we take a point
O in the axis M as origin of a system of co-ordinates, whose
axis O X may lie at will in the plane of the forces, while O ¥
passes throngh the centre of action ; the sum of the moments
of the statical moments P y, considered as forces acting at the
points of application, with reference to O ¥, will be zero.
These moments however, provided that the distances of the
points of application are measured along the co-ordinate axes,
are the moments of inertia, viz.,, S P y @ If these are zero we
see that the general equation of the curve of inertia (1) Art. 56,
becomes that of a hyperbola referred to its eonjugate diameters
as axes. With the centre O therefore, ¢the line joining O with
the centre of action, gives the direction of the conjugate di-
ameter of the curve.

This is the prineiple required. By means of it we can find
the conjugate diameters of the inertia curve, for a given centre
0, and thus construet it.

58, Counstruction of the Curve of Inertia for four paral-
Icl forces in a Plane. Example,—As an example let us
take the four parallel forces in PL 10, Fig. 34, supposed
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to act in different directions, parallel to X X at the points
A, A, ete. L

As before we have the force polygon C0 1 2 3 4 for an arbi-
trary axis a8 X X, and from the corresponding equilibrium
polygon, we determine the statical moments with reference to
X X 01' 1’2, ete., o the basis C 0. These moments we again
consider as parallel forces acting at A, A, etc., for which we
have C0 1’ 2’ 8’ 4’ and corresponding equilibrium polygon
CII I, etc. We then determine the centre of action S, by
a second polygon 0" I X" IO, etc., the sides of which are

. respectively perpendicular to the first, according to the process
for finding the centre of gravity, Art. 80. Zhe line joining O
with 8 gives the direction of Y Y, the diameter of the eurve
conjugate to X X. To find the length of the semi-diameters
0% and O ¢, we must find the moments of inertia of the forces
with reference to X X and Y Y, taking the distances of the
points of application as measured parallel to these lines.

Therefore instead of C 0, we must take C y as basis or pole
distance, and then find the radii of gyration as already indi-
cated in Art. 55, viz.,, O & and O @/. These distances laid off

" along Y ¥ and X X give the semi-conjugate diameters of the
curve of inertia.

From the Fig. we see. that the force P; whose direction from
left to right we shall always consider positive,and S P =0 4
have the same sign. On the other hand the total moment of
inertia 0 y and the moment of inertia of Py, viz., 0 1” have dif-

2
ferent signs. The square of radius of gyration /22 = Cy x0y
is therefore negative, the radius itself or the semi-diameter O &
is imaginary.

In similar manner, we see that O & the radius of gyration for
Y Y is real, since the total moment of inertia O w and 3P = 0 4,
have the same signs. The curve is then a double hyperbola
with the conjugate semi-diameters O @ and O 8.

It is then easy to find the assymptotes K K and J J, and by
bisecting the angle which they make, the principal axes A A
and BB. In order to find the length of these axes, we have
the well-known principle that for any point as @, the produet
of a & and % O (@ & being parallel to the assymptote J J) is equal

; B
). 1f then

A2
to % the sum of the squares of the semi-axes ( I
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we find %7, the mean proportional of O % and % @, and lay it off
twice from O to D along the assymptote O K, O D is the diag-
onal of a rectangle whose sides are the principal axes. We
thus find the vertices A, A, B, B,

We can thus construct the curves. Then for any position
of the axis X X as it revolves about O, we can find the cor-
responding radivs of gyration and consequently the moment of
inertia, by simply drawing tangents to the curve above and
below the new position of X X and parallel to it. The radius
of gyration thus obtained measured.to the scale of length and
multiplied by the algebraic sum of the forces, or 0 4 to the
scale of force, will give the moment of inertia required for the
assumed position of the axis.

59, Central Curve. Central Ellipse.—If the point O about
which the axis turns coincides with the centre of action (or
gravity) of the forces, we call the curve enclosed by the paral-
lels M’ M" at the distance % on either side, the central curve.
When the parallel forces all act in the same direction this eurve
is always an ellipse.

For the central curve the pl‘lnClple prmed in Art, 57 and
the method of construction given in Art. 58, are no longer
applicable for the algebraic sum of the statical moments of
the given forces is zero for every axis through the centre of
gravity. We cannot therefore find thé centre of gravity of the
moments of the forces, when considered as forces themnselves
and applied at the given points of application.

If we divide, however, these moments considered as forces
into two portions or groups, and find the centre of gravity of
each group, the line joining these two points has an important
property, viz., that for every moment axis parallel to it, #he
algebraic sum of the moments of the statical moments consid-
ered as forces, that is, the algebraic sum of the moments of
inertia of the forces, is zero. In other words, X P ¢ ¢ is zero,
¢ being the distances of the points of application from the first
axis, which passes through the centre of gravity of the forces,
and ¢’ the distances from the axis parallel to the line joining
the two centres of gravity of the two groups of statical moments
considered as forces. If we draw then through the centre of
gravity of the forces themselves the moment axis X X, and
take it as the axis of abscissas of a co-ordinate system whose ¥
axis passes also through the centre of gravity of the forces and
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is parallel to the line joining the two centres of gravity of the
statical moments considered as forces, then the moments of
inertia X P y @ are zero, and hence as in the preceding Art.
this axis of Y s conjugate to X X.

This holds good not only for the central curve, but also for
every inertia curve, whose centre O instead of coinciding with
the centre of gravity of the forces, lies in the axis passing
through that centre. In this case also the axis through the
centre O parallel to the line of union above, is a conjugate to
X X. Still more, the half length of this conjugate diameter is
in both cases the radius of gyration of the force system for the
axis X X and the direction of ¥.

Hence in every inertia curve of a system of parallel forces,
whose centre lies in an axis passing through the centre of grav-
ity of the forces, the diameters conjugate to this axis are paral-
lel and equal.  All these inertia curves are therefore touched
by two lines parallel to this axis and equally distant on either
side. This distance is the radius of gyration for this axis.

For any such inertia.curve, whose centre O is distant ¢ from
the centre of gravity S of the forces, we call B and G the par-
allel conjugate axes to S O for this curve, and the central curve
respectively; q and ¢ the distances from them of any point of
application, these distances measured parallel to 8 O, and con-
sidered positive when the point of application lies on the same
side of E or € respectively as the centre of gravity S from E.
Then ¢, the distance ‘apart of E and € is essentially positive,
and if we indicate by @ and a the lengths of the semi-conjugate
diameters for the inertia and central curve respectively, we
have

a’EP:E’quand FSIP=3Pg
where q and ¢ stand in the simple relation
Hence
SP?=3P(¢+i)* =3P @+2i3ZPg+#3P.
Since € passes through the centre of gravity SP ¢ =o, and
therefore <
SPE=3P@+#SP=a*3P.
Hence
& =a+7,
an equation which gives the relation between the lengths of
the semi-conjugate diameters of the central and any inertia
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curve, whose centre lies upon an axis through the centre of
gravity of the forces, at a distance ¢ from this centre.

Any two curves at equal distances either side of the centre of
gravity are therefore equal.  If the semi-diameter of the central
curve ais real, and therefore a® positive, a? is also positive and
greater than a®. All the inertia curves are therefore of the
same kind as the central curve, and enclose the centre of grav-
ity. If, however, a® is negative, and the central curve there-
fore an hyperbola; all those inertia ¢urves whose centres are
distant from the centre of gravity by a distance ¢ less than a
are hyperbolas also. For a distance ¢ equal to a, the curves re-
duce to straight lines equal and parallel to the conjngate diame-
ter of the central curve. TFor ¢ greater than a, the curves be-
come ellipses.

60, Centre of Action of the Statical Moments of the
Forees.*—We again suppose, through the centre of gravity of
the forces S [Fig. 85, Pl. 11] a line NI drawn which cuts the
central curve at A and A’. Two such points we have in every
case, except when the curve is an hyperbola, andN' N coincides
with an assymptote.

Let € be the conjugate axis to N N in the central curve, E a
parallel to it through any point o distant ¢ from S, and also
con]ugatc to NN in the inertia curve whose centre is 0. Then
since the statical moments of the forces with reference to N I
is zero, the centre of gravity of the statical moments with re-
spect to B, considered as forces acting at the points of applica-
tion, will be somewhere upon N' N, Tt is required to find
where.

We call q the distance of any point of application from B,
measured parallel to N'N, and positive when upon the same
side of B as S, then ¢ is essentially positive.

As before, ¢ is the distance of the points of application from
G, also measured parallel to N N, and positive in the same
direction as q.

Then we have always

=g+e.
and for the moments of mertm of the forces with respect to B
and € SPE =3P (qg+0)*=3P@+# 3P
or when a is the semi-diameter of the central curve,SA =S A’
and ZPqQ = (a®+7) 2P

* See Supplement to Chap. VII., Art. 10, latter part.
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Let now m be the distance of the eentre of gravity or action,
of the mements of the forces with respect to B, from E, and m
its distance from G, positive the same as q and ¢g. Then

m = m+7
and singe the sum of the moments is equal to the moment of
the resultant:
SP@Pr=mIPq.

But the sum of the moments P q of the forces with reference
to B, is equal to the product of the sum of the forces into the
distance ¢ of the centre of gravity of the forees from E. Ience

SPq=1i3P,
and therefore
mtEP=3Pq’= (a ) P,
or, mi=a + 7

Introdueing the value for m

m+i)i=a+¢
or me =ad

If now o is positive, which is always the case for an ellipse
as central curve, m is also positive, and is therefore to be laid
off from S along NN on the opposite side of G from . If
then we conceive an axis B drawn parallel to B, and symmet-
rical with referenee to S, which axis we shall call for conven-
ience the symmetrical awis to B, we see from the above relation
that M 4s the pole of this axis in the central curve.

If, however, 4® is negative, therefore @ imaginary, m is nega-
tive, and must be-laid off from S towards o, and the point M
thus found is therefore the pole of the axis E itself, or in the
case of an hyperbola is the pole of E’ in that hyperbola which
is not cut by N N, and for which therefore A A’ is imaginary.

Hence we have the principle-—

Lf we consider the statical moments of the forces with refer-
ence to any axis as B as themselves forces acting at the given
points of epplication, the centre of growity of these moment
Jorces does not coincide with the centre of gravity of the origi-
nal forces, but is the pole * in the central curve of an axis B
porallel and symmetrical to B.

In those cases where the central c curve becomes an hyper-

* POLAR LINE OF A POINT, in the plane of a conic section, is a line such,
that if from any point of it two straight lines be drawn tangent to the conic
section, the straight line joining the points of contact will pass through the
given point, which is called a pole.
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bola, we must observe whether the diameter conjugate to the
moment axis is real or imaginary. In either case the centre of
gravity is the pole of the line symmetrical to the moment axis
in that hyperbola for which that diaineter is real or imaginary.

The construction is given in Pl 11, Fig. 35.

Upon 8o’ =8 o we describe a semi-circle.  With § as cen-
tre, and S A’ = a = semi-diameter of the central curve, describe
an arc, and from the intersection with the semi-circle drop a
perpendicular upon S¢'. The point M thus found is the centre
of gravity of the moments. For: a®=¢ D + 1i? and ¢ M?
=m (¢—mu) hence @’ =m*+m¢—m? = m<. The central curve
being known as also the distance ¢, the point M can be readily
found.

61. Cases where the Direction of the Conjugate Axis of
the Inertia Curve ean be at once Determined.—-There are
certain special and practical cases in which the eonjugate direc-
tions or axis of the inertia curve-can be at sight determined, so
that only the length of the semi-diameters remains to be found.
The most important of such cases are as follows :

(1.) When in a system of parallel forces, these forces can be
so grouped in pairs, that the lines joining the points of appli-
cation of each pair are all parallel, and the centres of gravity
of each pair all lie in the same straight line. - Then for the
eentral curve and all inertia curves whose centres lie upon this
straight line, the direction of the axis conjugate to this line is
the same as that of the lines joining the points of application
of each pair.

This is easy to prove. For, for each pair, the sum of the
moments with respect to the line joining their centres of gravity,
is zero. These moments regarded as forces and applied at the
points of application, give therefore for each pair two parallel
opposite and equal forces, the sum of the moments of which
for any line parallel to the line joining the points of applica-
tion, is zero. This is the case for all the pairs, and therefore
the direction of the lines joining the points of application is
that of the axis conjugate to the line joining the centres of
gravity, for the central curve as also all inertia curves whose
centres lie upon this last line.

(2.) When the forces can be so grouped that the points of ap-
plication of each group lie in parallel lines, and the centres of
gravity of the groups lie in the same straight line. Then this
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straight line gives the direction for the central curve and every
inertia curve whose centre lies upon it, of the diameter conju-
gate to an axis passing through the centre and patallel to the
lines joining the points of application.

For if we take any such axis, the points of application of the
forces in each group are equally distant. The statical moments
for each group are then proportional to these distances. If,
therefore, they are considered as forces, their centre of gravity
coincides with that of the forces themselves, and lies therefore
in the line joining the centres of gravity of the groups. The
centre of gravity of the whole force system lies then in this
line, which is therefore the direction of the axis conjugate to
the line parallel to the lines joining the points of application,
in the central curve, and also all curves whose centres lie upon
this line.

(8.) When the forces can be so grouped that the centres of the
central curves of each group lie in the same straight line, and
the diameters in each curve conjugate to this line, are parallel.
Then in the central curve of the entire system, the diameter
conjugate to this line is also parallel to these diameters. For,
for any axis parallel to these diameters, the centres of gravity
of the moments of the forces in each gronp lie upon the line
joining the centres of the curves. The centre of gravity of the
moments for the entire system lies then also upon this line,
which is therefore the direction of the axis conjugate to an axis
parallel to the diameters of the curves, for any inertia curve
whose centre lies upon this line.

In all these cases, if the directions thus found are perpendicu-
lar, we have to do with the principal axes.

62. Practical Applications,—We can now apply the above
principles to practical cases, and as in the determination of the
moment of inertia of irregular figures, we have to deal with
triangles, parallelograms and trapezoids, we have first to con-
sider these three cases.

1st. The Parallelogram. Pl 11, Fig. 36.

The moment of inertia of a parallelogram is, as is well known,

M= ——a b,* @ being the breadth and  the depth.

* =4

o+

(z:c’dz:—1 ab?
12
—=b,

1=
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Hence 2= — b2 =radius of gyration, or k= \/1 b x5 =b.
That is, the radms of gyration is a mean proportional between .
1 1
gb and G—b.

The centre of gravity of the parallelogram is at O the inter-
section of the diagonals, and this is therefore the centre of the
central curve.

If we suppose the parallelogram divided into laminse parallel
to D C, and suppose each lamina divided by G H parallel to
BC, the centres of gravity of each will lie upon G H. Right
and left of G H we then have a group of forces whose points of
application lie in lines parallel to G H, and the lines joining
any pair, one on each side of G H, are parallel. By (1) of the
preceding Art., therefore, GH and EF are conjugate axes of
the central curve. For the lengths of the half diameters, we

1 1
find the mean proportional betwcen% band %— b, 3@ and 7%

respectively, by the half circles BF and BH. We thus find £
and £’, and can then construct the central ellipse directly, or
find the principal axes, and then construct it. The centre of
gravity of the moments of the parallelogram, with reference to
any axis parallel to A B, is as we have seen, Art. 60, the pole of
a line parallel and equally distant from O on the otherside. If
we draw this line then, as D C, then from G draw two tangents
to the central ellipse, and unite the points of tangency by a
line; the intersection of this line with OG is the centre of
gravity of the moments of the forces themselves considered as
forces, or area of the parallelogram, with reference to A B,

2d. Triangle. Pl 11, Fig. 37.

The moment of iner tla. of a triangle for the'axis BC is

1
i al® * whence * = 5 ﬂ”, and for an axis E F distant ¢ =

il
3 h, which passes through the centre of gravity,

== _11—8 2 (Art. 59.)

* rh
h—z el 3 : . —BO
oaTx’dz—ﬁah,hbemgthelmeAD,a_B 3
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The conjugate axes of.the eentral curve are by principle 1 or
2 of the preceding Art. EF and A D.
The above value of a is then the length of the semi-diameter

along AD,or a =¥ 5 ﬁ, X5 /L That is, @ is a mean propor-

tional between s hand 3 k. This is found by the semi-circle
OD Fig. 37.
The moment of inertia of the triangle with respect to A D is

" St
i h (% a)"‘. The radius of gyration then is 1/ é— (% a)2 =

1/1 1/1 ’ i
1/ 3 ('Q a) X 3 (§ a) or a mean proportional between 3 and

I
§0f§ or DC.

This is given by the semi-cirele on D G = %D C, and we

thus have the four points 12 8 4 6f the central ellipse, and the
semi-diameters 0 1 and 0 3, and can therefore construct it.
From the central ellipse as before, we can find the centre of
gravity of the moments considered as forces for-any axis par-
allel to B Cor A D, as also in either case, the radins of gyration
and therefore moment of inertia, for any axis passing through O.

3d. Trapezoid. P 11, Fig. 88.

Here the lines EF joining the centres of the parallel sides,
and G H parallel to these sides, and passing through the centre
of gravity 0, are the conjugate axes of the central ellipse.

For the axis A B and direction EF, the moment of inertia is

1 3 ¥*
E (d+3 b) A )
@ and b being A B and C D, and A =EF. The square of

radius of gyratlon is then

(a+3b) A 1048 b
—_— A

5 6 ath
2 (tb) wol

h
4 @ 1
—(e—=05 | Pde=— 80) &
/; [a (@ )h]_z e=15 (¢ +3d)
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For the radius of gyration for G H, at a distance ¢ = iﬁ

3
"a+20b
a+b

a2=k2_1?_la+3b P }—h (a+2()) [l N 1

we have

6 atbd a+b 18 " 9

I
(a+0y
This radius a is half the diameter along E F.
ab
To construct it, put (3 a)® = ia + NS b)” 72

Describe a semi-circle upon E F, and at the centre o,, and
at the intersection of the diagonals k, erect perpendiculars

- = 1 —
— 2 D G
0, and K L, ThenFJ?._2lL and K Ls _( b)zk , since

b a
EK= Vs hand KF =73 k. If therefore we lay off
K L equal to J M from J, we have

FM= \/2}& (+b)2ﬁ_3a,

and hence the half diameter sought is one-third F M. We
thus find 0 1 and 0 2.

To find the other semi-diameter we have the moment of in-
ertia. for E F and direction G H, = (P +a*b+a B*+I5*,

hence the square of the radius of gyration is

TP . (“2"'52) E [(% af + (-; g )2]
P

This last expression is easily constructed. In the right-angled

3
I @+abta R+

triangle F' B N, the hypothenuse F N = .\/ (% a)’-!- (%4 b)”

B N being made equal to C E. If we describe then a semi-

¥ 4 T
a—2
2[ rydy+ A a_,,”;v'dy]
0 b
T
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3
semi-diameter sought. We thus find 0 8 and 0 4, and can now j
construct the central ellipse. This being constructed we can
find the centre of gravity of the moments with reference to any
axis parallel to A B or E F, according to Art. 60, or the moment
of inertia for any axis through 0, by drawing a parallel tangent
to the ellipse. The distance from 0 to the point of tangency
gives then the radius of gyration for that axis,

4th. Segment of Parabola. Pl 11, Fig. 89.

Let the segment be limited by BC=2%, and AD=1/
Then it is evident that these two axes are conjugate (Art. 61),
and the centre of the central curve is 0, the ratio of A0 to
0D being as 3 to 2. Hence AD and E'F, parallel to CD
through 0, are conjugate axes of the central curve. To find the
length of the semi-diameters along these axes we find first the
moment of inertia of the segment with reference to an axis ¥ ¥
parallel to B’ F' and tangent to the parabola at A. We have
then for this moment of inertia

’ 4
f2V2pwxm3dw=7Fk
0

where p is the parameter of the parabola, and /= A D, Since

. 1 0
circle upon F U = % F N, and make FW =4 F N, FV is the

the area of the segment is /z {, we have for the square of the
radius of gyration
3
Vo =% 128
The square of the radius of gyration then for B’ F” whose
distance from A is ¢ = —? lis

i _ 8 12
a being the semi-diameter along A D. It is easier here to com-
pute @, viz, a = 0.26186 7, and lay it off from O, thus finding
3 and 4.
For the other semi-diameter we find the moment of mert]a
for A D and the direction B F'. Thus

/_h (l—w)y*dy=f t-L) pay=gum
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The radius of gyration squared is, therefore,

4

ﬁlﬁs 1 A
SR
3—lh

and hence the radius of gyration is 8= 0.44721 . Laying
this off from 0, we obtain 1 and 2, and can therefore now draw
the central ellipse.

63. Compound or Irrcgular Cross-Scclions.——Every Cross-
section may be divided up into trapezoids, triangles, parallelo-
grams and parabolic segments, and the above cases will aid us,
therefore, in the application of the graphic method to componnd
or irregular ‘cross-sections. The engineer is often called upon
to determine the moment of inertia of such sections as the T,
double T, or different combinations of these in proportioning
the different pieces of bridges, such as chords, struts, floor-beams,
etc., as also in many other constructions. The ealenlation for
snch cross-sections is sometimes very laborious. As an example

‘of the application of the graphical method best illustrating the
above principles, we take the cross-section shown in Fig. 40,
Pl 12.

First we divide the crosssection into a series of trapezoids.
The first segment, bounded by a curve, we may consider a para-
bolic area. These trapezoids we reduce to equivalent rectangles
of commnon base @ [Art. 82], and take the corresponding heights
as forces. These forces we lay off in the force polygon and
choose a pole C at distance H from force line, drawing C0, C 1,
G2, ete. Parallel to these lines we have the first equilibrinm
polygon I II II....VIII, the intersection of the two outer
sides of which gives the point of application of the resnltant.
The intersection S of the resultant with the axis of symmetry
gives the centre of gravity of the cross-section [Art. 30]. The
segments 0 1/, 1'2', 2'8’, etc., cut off from 0 8, give the statical
moments of the foreces with reference to o S to the basis H.
We now choose another pole C’ at distance H', and form another
force polygon, considering these moments as forces, and applied
at the centres of action of the moments of the separate areas
into which the whole eross-section has been divided. These
centres of action ean be determined by forming the central

curve for each area according to Art. 62, and then applying the
6
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principle of Art. 60. A little consideration will show that these
centres of gravity will coincide approximately with the centres
of gravity of the areas themselves, except for areas (3) (4) (5)
and (6). Finding then for these areas the centres of action of
the moments considered as forces, we constrnet the equilibrium
polygon O’ I' I'. .. . VIII’. The distance 0" 8" cut off by the
first and last sides of this polygon gives the moment of inertia
to the pole distances H and H' and the reduction base . Thus
0" 8" measnured to scale of force and multiplied by « H H' is
the moment of inertia of the cross-section with reference to 0 S.

3 t 0RT
The radius of gyration is then % z\/M

208

The division will®be performed if we take H' =08 =3 P.
This we can easily do now without drawing a new polygon,
since what is required is the intersection of the outer sides only.
Thus take a new pole Cy distant from 0 8, H' =0 8. Now we
know that each side of the new polygon for this pole distance
will intersect the corresponding side of the first in a line paral-
lel to o C,’ [Art. 27]. Since the new polygon may start from
any point, we may take 'the first side to coincide with O VIII'.
Then the line of intersection of any two sides is O VIIT' 8",
Prodnce any side as IV’ V" to intersection ¢ with this line ; from
¢ draw ¢ a,’ parallel to C," 4.

Through a’ the intersection of o’ I’ and V' IV', the resultant
of (1) (2) (3) and (4), must pass. The change of pole cannot
affect this resultant, which must therefore pass through a,’, the
intersection of ¢ )’ with the vertical throngh a’ parallel to o S.
Hence o, a," is the direction of the last side of the new poly-
gon, and 8”0," is the moment of inertia for the new pole dis-
tance 0 G, = 0 8. Theradius of gyration thenis b= ¥ H 0,78
In other words, % is a mean proportional between H and 0,”/8".
The construction of % is given by the semi-circle deseribed upon
0,”8” + H, The ordinate to this semi-circle through 0, per-
pendicular to 0S gives £ 'We thus find the semi-diameter
Sa =8 a’ of the central ellipse.

In order to find the other semi-diameter 8 5 = S ¥, we might
divide the cross-section into areas by lines parallel to S X, and
then proceed as above. This is, however, unnecessary. With
the same areas as before, we can find the central curve for that
area on each side of XX, and then the centre of application of
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the moment of each of these areas with respect to X X itself,
considered as a force. The method of procedure is then pre-
cisely as before. We draw a polygon the sides of which are
respectively perpendicular to those of the first polygon, and
thus find the statical moments 0" 1" 1’ 2" ete., to basis H.
Choosing then a pole C"’ at distance H”' and drawing the
corresponding polygon, we have 0 8V for the moment of in-

ertia. The radius of gyration is then 76:1/ ﬂ%ﬁ
. a.

" Y} > p— l Ao
We have taken H'' =5 08, hence & = \/g H08™. Hence k

2O| =

1__
is a mean proportional between 5081V apd H. The construe-

Ie -
tion is given in the Fig. by a semi-circle upon H+508™. We

thus find the semi-axis S& = S5, and can now construct the
central ellipse. We have thus found graphically not only the
moments of inertia of the cross-section with respect to X X and
Y Y, but, by means of the central ellipse, for any other axis in
the plane of the Fig. passing through 8.

64.—The above method of procedure holds good generally
for any cross-section, except that, when there is no axis of sym-
metry, the centre of gravity must be found by a second equili-
brium polygon whose sides are respectively perpendicular to
those of the first. When the moment of inertia with reference
to a single axis only is required, the above method becomes
quite short and simple, as well as accurate. In our Fig. the
scale used as also the number of divisions taken make the pro-
cess appear more complicated than it really is.

With this we shall c¢lose our discussion of moment of inertia,
merely observing, that all the principles deduced in this chap-
ter for forces acting in a plane hold equally good for forces in -
space. The central curve then becomes an area, we have a mo-
ment plane instead of moment axis M, and the ellipse and hyper-
bola of inertia become ellipsoid and hyperboloid respectively.

For a much fuller discussion of the subject than is possible
here, we refer the reader to Culmann’s Graphische Statik, pp.
160-206 ; also Bauschinger’s Elemente der Graphischen Statik,
pp. 116-168, To the latter we are largely indebted in the
preparation of the present chapter ; Plates 10 and 12 are, with
slight alteration, reproduced from that work.
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PART1I.

APPLICATION TO BRIDGES.

65.—Under the head of Parallel Forces we have already
given the general application of the graphical method to the
determination of thé moments and shearing forces in beams
resting upon two supports only. We shall now take the sub-
ject up more in detail, and show the methods of detérmining
the maximum strains for all the possible conditions of loading
which may occur in Bridge Girders. In the following we shall
adhere closely to the development of the subject as given by
Winkler. [DerBrickenbav, Wien, 1872.]

66. Forces which act upon a Bridge.—The forces which
act upon a bridge may be enumerated as follows :

1st. The weight of the bridge itself—This, previous to the
calculation of the strains, is unknown, since it depends upon the
intensity of the strains themselves. It is customary to assume
the weight to begin with, by comparison with existing struc-
tures of similar character, and then to find the resulting strains.
The weight answering to these strains can then be easily ascer-
tained ; the strength of the materials used being known, and
compared with the assumed weight. According as it is less or
greater, the weight was then assumed too great or the reverse.
A second approximation to the true weight may then be made,
and the strains proportionally diminished or increased. As
rules for estimating the weight of bridge girders under 200 feet
span, we have, for weight of girder G,

W2
127d’
where W = the assumed approximate total distributed load in
tons, including the weight of girder;
7 = length in feet;
d = depth in feet;

G=
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J'= the working strain in tons per sg. foot of cross-section.
(See Stoney, Theory of Strains, vol. ii., p. 441.)

We have also the rule: “ Multiply the distributed load in
tons by 4; the product is the weight of the main girders, end-
pillars and cross-bracing in pounds per running foot.” Iron is
taken at 5 tons per sq. inch tension, and 4 tons per sq. inch
compression.

2d. The moving or live load ; which is determined by the
purpose of the bridge. This Joad can take various positions
upon the bridge, and may even be divided into several por-
tions. It is therefore an important problem to determine that
distribution which shall cause the maximum strains.

The live load is, as the term implies, in motion, so that,in
combination with the deflection, there is a centrifugal force,
or increase of pressure. This is, however, in practice disre-
garded, while such a coefficient of safety is chosen in propor-
tioning the parts, that the increase of strain due to this cause is
fully covered.

3d. Horizontal forces, cansed by the wiud and the pagsage
of loads.

4th. Pressures at the supports. The known forces canse re-
actions at the supports, which evidently must also be considered
as forces acting upon the bridge girder. For straight girders,
these reactions are vertical, while in suspension and arch sys-
tems they are inclined.

67. Bridge Loading.—The heaviest load to which a railway
bridge can be subjected is when it is' covered from end to end
with locomotives. “The standard locomotive is assumed to be
24 feet long, and to have six wheels with a 12-foot base ; to
have half its weight resting on the middle wheels, and one-
fourth on the leading and trailing pairs respectively, which are
supposed to be at equal distances on either side of the middle
wheels.” (See Stoney, vol. ii., p. 405.) The standard engine
is assumed to weigh 24 tons, 30 tons and 32 tons, according to
the construction. This makes the standard load 1 ton, 1% ton, or
1% ton per foot of single line. Short bridges of less than 40
feet span must be considered as subject to concentrated loads
from single engines.

The maximum load for public bndo'es is recommended by
Stoney at 100 1bs. per sq. ft.

68, In the Straight Truss all the Outer Forces act ina
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Vertical Direction,—The strain in any cross-section depends
upon, first, the resultant of all the outer forces acting either
side of the cross-section; and second, the statical moment of
these forces with reference to the cross-section. The first, or
the algebraic sum of all the forces acting between the cross-
section and either end, we call the shearing force for this cross-
section, and indicate it by S. It is also designated as vertical
Jorce, or transverse force. The moment of the resultant, or
the algebraic sum of the moments of all the exterior forces,
with reference to any cross-section, we call the moment for this
cross-section, and indicate it by M. Tt is also called bending
moment, or moment of rupture. TFor example, in a lattice
girder with horizontal flanges the strains in the web are pro-
portional to the shearing forces, those in the flanges to the
bending moments.

The shearing force is considered positive when it acts on the
left side upwards, or on the right side downwards. The mo-
ment M is positive, when on the left side the tendency of rota-
tion i to the left, on the right side to the right, or when it tends
to make the girder conver upwards, that is, causes compression
in the lower fibre or flange.
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CHAPTER VII.

.

SIMPLE GIRDERS.

69. Action of Con¢entrated Loads—Invariable in Posi-
tion.—By “simple girder” we understand a girder resting
upon two supports only, in opposition to a continuous girder
which rests upon more than two.

Suppose a number of forces P; . . . Pyacting at various points.
{Fig. 41,P1.138.] We form the force polygon by laying off the
forces to scale one after another; then choose a pole O, and
draw 00,01, 02, etc., to the points of division. Parallel to these
lines we draw the lines of the equilibrium polygon between the
corresponding force lines prolonged. If now we ¢lose the poly-
gon thus formed by the line A B, and draw through O the
parallel O L to A B, the segments 0 I and L 5 of the force
line give the reactions V; and V,. Further, the shearing force
between A and P, is S, =V; =L 0; between P, and P, S, =
V,—Py; at Py, & = V,—P,—P,, ete. Thatis, the shearing forces
are the distances of the points of the force polygon from L. 1t
is easy, then, to construct them, as shown in the lower shaded,
area of the Fig. (See also Axrt. 46.)

If in the equilibrium polygon we let fall at any point a ver-
tical as I K, and from X draw K L perpendicular to A B, and
indicate by H the horizontal pull, by L the strain in A B, and
by M the sum of the moments of all forces left of I K, then,
for equilibrium about K, we have M = L x K L = L xI K cos
IK L, or, since the angle IK L =L O H in force polygon,
Lxcos I KL =H, and hence M =HxIK, or representing
the variable ordinate IX by ¥ :

M = H Y.

But H is the distance of the pole O.from the force line ;
the moment at any point is therefore proportional to the verti-
cal height of the equilibrium polygon. (See also Art. 38.) Tf
we take H equal to the unit of force, we have

M=y, -
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so that in this case the moment at any point is directly given
by the ordinate of the polygon at that point. It is this impor-
tant property of the equilibrium polygon which renders it espe-
cially serviceable in the graphical solution of this and similar
problems

70. Concentrated Load— Variable Position—Shearing
Force.—If the load lies to the right of any given cross-section,
then the shearing force at this crossseetion will be S=V,, or,
since we regard a force to the left acting up as positive, S is
positive. As the load P moves towards the left, V, or S in-
creases. When the load is to the left of the cross-section, the
shearing force at the crosssection is 8 =V, — P, and since P
is always greater than V,, 8 is negative. The nearer P ap-
proaches the cross-section, the smaller is S,

Hence: a concentrated load causes a positive or negative
shear, according as it is to the right or left of the cross-section
considered, and the shearing force is greater the nearer the load
is to the cross-section.

Moments—If the load lies to the right of the cross-section,
the moment is M = — V, &, @ being the distance of the cross-
section from the left support. M is therefore negative and in-
creases with V, ; that is, as the load approaches the crosssec-
tion. If the load is on the left of the cross-section, M = — V,
(¢ — =), V, being the reaction at the right support. Here also
M is negative and increases with Vj; that is, as the load ap-
proaches the cross-section.

Hence: @ concentrated load wherever it lies causes in every
cross-section a negative moment, which for any cross-section is
@ maximwm, when the load is applied at that cross-section.

71. Position of a given System of Concentrated Loads
causing Maximum Shearing Force.—If P, is the sum of all
the loads to the left of any cross-section, the shear at that cross-
section is S =V, — P;.  As the system moves to the left with-
out any load passing off the girder or any load passing the cross-
section, V; and therefore S increases as long as S is positive, or
as long as V; > P, If a load passes off the girder, then for the
remaining loads S increases anew as the system moves to the
left, until a load of the system passes the cross-section in ques-
tion. The same holds good for a system moving to the right,
where S is negative.

Hence: the shearing force is a mawimum jfor any point,
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when there is o load of the system at that point, and the maxi-
mum 8 _positive or negative, according as the load lies just to
the right or left of the point.

Since for a single load (Art. 70) S is positive or negative, ac-
cording as the load is to the right or left, S will be in general
a positive or negative maximum when all the Joads lie to the
right or left, and the heaviest nearest the cross-section. Only
in cases where a small load precedes, ean S be greatest when
the second load lies upon the point in question.

If P is the resultant of all the loads and B its distanece from
the right support,

v,=P [;, and therefore S =P éj — P,

Now the position of the loads of the system or B8 remaining
unchanged, P; will vary as the first power of , the distance of
the cross-section from the left support.  Zherefore, between any
two cross-sections for which the load on the girder remains the
same, the shear S is represented by the ordinates to a straight
line.

72. Construction of the Maximum Shearing Forces.—
Construct the force polygon with the given loads; choose a
pole O [Pl 13, Fig. 42 ()] and draw the corresponding equi-
libriwin polygon. It is required to determine the shear S at a
cross-section distant 2 from the left support, under the suppo-
sition that the first load P, of the system, moving towards the
left, acts at this cross-section. D

Determine npon the outer side P; A of the polygon passing
through the point P;, a point A distant from Py by the distance
2, and then find the point B upon the polygon distant from A
by 7, the length of span, and draw A B. Parallel to AB draw
O L in the force polygon, then A L = V; = S, the shear at P,.
Drop a vertical through B intersecting P; A produced, in M;
then the triangles O A L and P; M B are similar, and there-

fore S=AL=BM ‘lt-, Whel.l @ is the pole distance. If we

choose @ =/, then S =B M.

Hence: the maximum shearing forces are proportional to
the vertical segments between the equilibrium polygon and the
prolongation of the outer side taken ot the end of the system,
or are equal to these seqments if the pole distance is taken equal
to the span ; provided that the last load is at the cross-section.



90 SIMPLE GIRDERS. [crarp. vin

We have, therefore, the simple construction given in Pl 13,
Fig. 42 (§). The broken lines are parallel to the various posi-
tious of A B for corresponding positions of P;. The positive
and negative values of S equally distant from the right and left

.supports are equal, so that it is only necessary to construct S
for one value.

If the second load is to be at the cross-section, and if e is the
distance between the first and second, we draw first a line

e~

l
polygon, for which the second load lies on the right support B,
and whose second side (between second and third loads) coin-
cides with the above line. The ordinates to this line above the
axis of abscissas will give maximum of + S,

73. Maximum Moments.—Since, according to Art. 70, a
concentrated load causes a negative moment at any point,
wherever it may lie, we must have evidently loads upon both
sides of any point, in order that the moment may be a maxi-
mum. Since a single load causes a greater moment at any
point the nearer it lies to that point, the greatest load must lie
nearest the cross-section in question. The method of loading,
cansing maximum moments, can be best determined for a dis-
tributed load (not necessarily uniform). In this case the equi-
librium polygon becomes a curve [Pl 13, Fig. 483]. If in this
curve we draw A B, and take Csothat AC:CB  2w:l— @,
then C D = M for . Suppose A B to take the position A’ B/,
the horizontal protection of C C’ being indefinitely small,
then ¢’ D'=M +d M. In order now that M may be a
maximum, C’ D’ must be equal to C D or C C’ parallel to D D".
If in the force polygon O A, is parallel to A A’, O B, to B E/,
and OD, to D I, then A D, and D, B, are the loads upon
A Cand BC.

Draw through C a vertical, and through A, A’, B,B’, paral-
lels to C C’ or D IV intersecting this vertical in E, E/, F, F"..

Then - CE:CF::AC:BC::z:l—u,

CE:CF :.:A'C:BC: . z:l—u;

whose equation is y =P, , and construct, as above, a

therefore

CE:CF..CE:CF,orCE' :CE;:CF/:CF;
also CE—CE:CF —-CF..CE:CPF,
that is, EE :FF . z:l—a

If now we draw through A’and B’ parallels to CC’,or DD’ to
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intersections H and I, we have A H=EE IB' =F F'. Since
the triangle A A’ H is similar to O A; D, and BB'I to OB, D,,
and since A’ H = B1I, we have

AD :BD::AH : BI..EE :F¥F . z:l—a

Since A, D, equals the load P; on A C, and B, D, the load P,
on BC, we have P, : P, . 2 : l—a.

The same will hold true approximately for concentrated
loads. Hence, in order that the moment at any point may be
a maximum, the system of loads must have such a position
that the loads either side of this point are to each other as the
portions into which the span is divided.

In Pl 13, Fig. 44, let C D give the moment at C. If the line
A"B moves 8o that the horizontal projections of A C and BC
remain equal to # and /—, then as long as the ends A and B
move on the same straight lines, the point C will also move ina
straight line. The point C describes, therefore, a broken line.
The verticals between this line and the polygon correspond to
the moments for various positions of the load and a given value
of . Evidently the greatest ordinate will be over an angle of
the equilibrium polygon which is not under an angle of the
line deseribed by C—that is, for M maximum 2 load must lie
upon the cross-section. .

For any cross-section, then, the moment ©s & muawimum when
a load is applied at this cross-section. Which of the loads
must be so applied is determined by the preceding rule.

74. Construction of Maximum Moments. — After the
equilibrium polygon has been constructed, in order to find M
for a point C (P1. 13, Fig. 45), we determine two points ¥ and
G upon the polygon which are distant horizontally from the
load on the given cross-section corresponding to the angle E by
distances A C, BC. Then draw F G, and the vertical K E is
equal to M when the pole distance is unity. We make CI=EK.
In this way we can construct the moments for different loads
of the load system at the given cross-section, and thus determine
that position of the load which gives the maximum moment at
the cross-section.

Generally when K E = y, and the pole distance is o, we have
M=gay. The pole distance & is measured to the scale of
foree, and then y is given by the seale of length. The unit for

M, in order that M 'may be equal to ¥, is evidently Elth part of
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the unit of length (when the pole distance is & force units), or,
what is the same thing, one unit of length is equal to @ moment
units. The same equilibrium polygon can be used for any
number of girders of various spans, hence the method is of very
rapid application.

75. Absolute Maximum of Moments.—Since for any cross-
section M is a maximum when a load lies at that section, a load
must also lie upon the cross-section for which M is an absolute
maximum.

If the line A B slides upon the equilibrium polygon, altering
its length so that its horizontal projection is constant and equal
to Z, it will envelop a portion of a parabola so long as its ends
move in the same sides of the polygon. [Pl 13, Fig.46.] The
curve thus produced is therefore composed of portions of a
parabola. Let the ordinate D C correspond to the moment at
the point of application of the load P. ' D C will be evidently
greatest when A B is tangent to the curve at C, so that the
maximum of the moments occurring at D is given by the dis-
tance CD between the polygon and curve enveloped by A B.

Let the prolongation of the sides upon which A B slides meet
in E; and F' G be the tangent to the parabola at the point H in
the vertical through K, so that 'l = H G, and let I be the in-
tersection of A B and F G. Draw through A a parallel to EB,
intersecting F' G in K. Then the horizontal projections of A F
and A K are equal, since those of E ¥ and E G are equal.

Since, however, the projections of F G and A B as also of
A F and G B are equal, A K must be equal to G B. Hence
AI=BL In a parabola the distances of the three diameters
passing through two points and the point of intersection of the
corresponding tangents are equal, hence the projections of HI
and C I are equal.

The middle point X of the tangent A B lies, then, half way
between the angle D vertically below the point of tangency and
the intersection B of the sides upon which it slides.

Since the projection of A B is /, its construction is easy.
The construction must, of course, be repeated for each angle, in
order to determine that for which M is an absolute maximum.

The above principle may, then, be thus expressed : Z%e mo-
ment at any load is a maximum, when this load and the result-
ant of all the loads are equally distant from the centre of the
girder. (See also Art. 48.)
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76.—In Arts. 46 to 50 the above principles have been already
deduced so far as relates to the moments alone, and a reference
to Art. 49 will show their application to the investigation of the
effect of a system of loads moving over the girder. We pass
on, therefore, to

i CONTINUOUSLY DISTRIBUTED LOADING.

Suppose the load p per unit of length laid off as ordinate.
The area thus obtained we call the load area. Pl 13, Fig.
46 (0).

The equilibrium polygon becomes here a curve, for which
the same law holds good. If we draw tangents to the curve at
the points D’ and B’ corresponding to D and E, intersecting in
C’, then the resultant of the load upon D E passes vertically
through €', or C’ is vertically under the centre of gravity of the
area DD”"E"E,

If we consider the load area divided into a number of parts,
the resultant for each will pass through the intersection of the
tangents at the points vertically under the lines of division.
Since these tangents are parallel to the lines in the force poly-
gon corresponding to these lines of division, they form the
equilibrium polygon for the concentrated loads, or resultants of
the portions into which the load area is divided.

Hence : ¢f we divide the load area into portions, and replace
each by a single force, the sides of the corresponding polygon
are tangent to the equilibrium curve at the points correspond-
ing to the lines of division. (Art. 42.)

77. Total Uniform Load.—In this case the reactions at the

supports are V; = V, = % p I. Hence, for any cross-section dis-
tant @ from the left support, the shearing force is
S=Vi—pao=3p (@—2 ).

Form:%l; S=0. S isgreatest for s=0and for x=17;

1 1
that is, maximum S = 4+ 52 l,and S = —3P A
The moment at any eross-section is

M=—Vw+%pzﬂ=—%pw(l-—w).

‘M will be greatest for » = % Z, and
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Max. -——p'l’

The shearing forces are, then, given by a straight line inter-
secting the span in the middle, the ordinate at either end being

% pl [Pl 14, Fig. 47.]

The moments, as we have already seen [Art. 44, Fig. 3Q], are
given by a parabola whose verte‘( is in the centre of the span

and whose middle ordinate is - p 2. Since we have seen [Art,

70] that a load at any point canses at every point a negative
moment, the mazimum moment at any point will be 'wlzen the
whole span is loaded.

78, Method of Loading causing Maximum Sllearlug
Foree.—We have seen [Art. 70] that a single load causes at
any point a positive or negative shear, according as it lies upon
the right or left side of the cross-section at that point. Hence,
for a uniform load, g

The shearing jforce will be a positive or negative marimum
according as the load reaches from the right or left support to
the cross-section in question. For the positive maximum we

2
have V, = p (I—=) (l_——a_v) ---%;p (l—lw)
1 (l—a)?

s g

For the graphical determination we can apply the method
given in Art. 72, Fig. 42, by which we have for max.+8 and
max.—S two parabolas whose vertices are at the ends of the

. Therefore, max.+ 8 =

span, and whose ordinates at these points are +%l and —Jizg-

Since, however, each point is found thus from the preceding,
the canstruction is not very exact. We may deduce a better
construction as follows. [Pl 14, Fig. 48.] Through any point
F of the curve drop a vertical intersecting A B in C and the
line B X parallel to the tangent at Fin G. Let the tangent

at F' intersect AB in H. Then CH = BH; hence, CF = %- CG.

We have, then,AE__;-AD__—pl Since CF:% C G,

we have also AI=—% AK; therefore, AI: AE: . AK: AD.

.
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Hence the following eonstruction :

MakeAE..—pl

- Divide A E and A Binto an equal number of equal parts, and
draw lines from B to the points of division of A E, and verticals
through the points of division of A B, The curve passes
through the points of intersection of, corresponding lines.

79. Live and Dead Loads.—Let p be the load per unit of
length for dead, and 7 for live load. The maximum moment
for any point will be as before.

M.z_;_( p+m) @ (I—a); that is, will be

given by a parabola whose middle ordinate is — % (p+m) 2
For the shearing force, we have
Max.+8 _.—p (—2 w)+ —m (l—a:) B

Max.—8 ~—p @— 29&)——m-a;f

Indicate A C [Fig. 49, Pl 14] by @, for which max.—8 = 0.
then

0=p1(0—2x)—m
or @2+ 9L wl—g-Z’:O;
m m

=Py, P
m+1/m2+m

For the point D for which max.+8 =0,BD =, The
shearing force within A C is positive, within B D negative,
while within C D it is both positive and negative.

For 7=5, 10, 20, 50, 75, 100, 150.

'ﬁ: 012 019 031 064 105 155 3.12

AC=BD=024 029 033 - 038 042 044 046/
CD=052 042 0.34 024 016 012 0.08/;
that is, C D diminishes with increasing span.
80. Recapituiation.—For girders of a length of about 100
feet or more, then, we may consider the live Joad as distribnted
per unit of length. The maximum shearing force can then be

hence
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easily fonnd according to the preceding Art., while the maxi-
" mum moments will be given by the ordinates to the parabola
for full live and dead load [Fig. 30, Art. 44]. For a framed
structure, we have simply to mnltiply the shear at any point
by the secant of the angle which the brace at that point
makes with the vertical, in order to find the strain in that
brace. The moment, divided by the depth of truss at the point
in question, gives the strain in the flanges: For a plate girder,
the moment being found as above, and one dimension as the
depth given, we can, from Art. 52, so proportion the other di-
mension as that the strain in the outer fibre shall not exceed
the amount allowable in practice. The preceding Art. as also
Arts. 78 and 44 and 52 are all that we need to refer to for all
practical cases of parallel flange girders of large span.

The preceding will complete our discussion of the simple
girder. We have only to remark here that the strains due to
rolling load will, in general, be most satisfactorily found by the
method of resolution of forces, as illustrated in Art. 12. By
this method we first find the reactions at the supports for a sin-
gle apex load, either graphically or by a simple calculation

[Vlz P—(ll:—?—)], and then follow this reaction throngh the

girder, and find the resulting strains. We can thns find and
tabulate the strains in every piece due to a weight at each and
every apex. The maximum strains can, then, be easily taken
from the table thus formed. When the live load is supposed
thus concentrated at each apex, it is, as we have seen in Art. 12,
unnecessary to follow through every reaction. The reactions
due to the first and last weights are suflicient to fill out the
table. For solid-built beams or plate girders, the priuciples of
the present Chap., therefore, come more especially into play.
(See also remarks at close of Chap. V.)

The preceding principles will, it is hoped, be found sufficient
to enable the reader to find the maximum moments and shear
at each and every cross-section of a beam of given span rest-
ing simply upon two supports, and acted upon by any given
forces or system of forces in any given position. The reader
will do well to take examples of simple trusses, and check the
results obtained by the method given in Chap. I. by the above
principles. The method of tabulation of single apex loads
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.

upont which we lay 80 much stress is folly given by Stoney
[ Theory of Strains,” vol. i.], and the examples there given will
be found of service.

Finally, then, the strains in upper and lower chords are great-
est for full load over whole span. 'We have, therefore, only to
erect upon the given span a parabola whose centre ordinate is
e it of length for »

g Where p is the load per unit of length for dead, and
m for live load [Art. 44]. The ordinates to this parabola at
any point give at once the maximum moment at that point.
The depth of truss at this point, if a framed structure, or the
moment of inertia of the cross-section at this point, if it is a
solid beam [Art. 52], being known, the strain in the flanges or
outer fibres may be easily determined. The strain in the web is
given by the maximum shear. For dead load alone this is
given by the ordinates to a straight line passing through the

centre of span, whose extreme ordinates are‘?—z—Z [Art. 77]. The

maximum shear due to live load alone (m 7) will be given by
the ordinates to two semi-parabolas, convex to the span, having

their vertices at each end, and the extreme ordinates %—-Z [Art.

78]. At any point, the greatest of the two ordinates to these para-
bolas is to be taken. For live and dead loads together, Art. 79
may also be useful. The shear being known, the strain in any
diagonal is equal to the shear multiplied by the secant of the
angle made by the diagonal with the vertical [Art. 10 of Ap-
pendix] for parallel flanges. TFor flanges not parallel, we must
find the resultant shear as given in Art. 16 (4) of Appendix,
or, better still, the flanges once known, the diagonals can be
diagrammed according to the principles of Chap. L.

For the investigation of load systems, the principles of
Arts. 70-75 will be found sufficient, and the application of
these principles we have already sufficiently illustrated in Arte.
49-51.

(f
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SUPPLEMENT TO CHAPTER VIIL

CHAPTER 17
METHODS OF CALCULATION.

1,—In Chapter L of the text we have already obtained a method of dia-
‘gram which will be found both simple and general, and by which we can
readily determine the strains for any given loading in any framed struc-
ture, no matter how irregular in its shape or dimensions, provided only that
all the outer forces are known.

In Chap. VIL we have also been put in possession of another method of
diagram, by which we may for any structure of the above class, framed or
not, determine the moment at any point, and can then properly proportion
the cross-section.

Thus far, indeed, we are unable to apply these methods to the continuous
girder or braced arch, as in these cases there are not only upward reactions
but also end moments, and in the latter case a thrust also, which must first
be determined. The determination of these requires that the elasticity of
the material and cross-section of the structure be taken into account. But
with these exceptions, and they are of rare occurrence in practice, we can
already solve any case which may present itself,

In the Appendix, if he has attended to our numerous references to it,
the reader will have already become familiar with two corresponding meth-
ods of calculation, viz., that by resolution of forces and that by moments.

It is, however, in many cases desirable to know not only the strains in
every piece of a structure, but also the deflection of the structure, and this
also requires a knowledge of the theory of flexure or of elasticity. For the
sake of completeness, therefore, aiming as we do to put the reader in pos-
session of methods of calculation as well as ‘of graphic determination, we
shall devote a few pages here to a brief notice of these two above-men-
tioned methods of calcnlation, and then pass on to the theory of elasticity
itself. This latter has been too generally considered by those unacquainted
with the methods of the calculus as difficult and abstruse. It is true that
the calculus must be called into requisition ; but so simple are the processes
for beams of single span—and it is with these only we have at present to
do—that we indulge the hope that by going back to first principles we may
enable even those at present unacquainted with the calculus to follow our
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demonstrations intelligently, and to comprehend perfectly and even apply
readily the method for themselves,

‘We cannot, indeed, make the reader familiar with all the principles of
the calculus, but all these principles are by no means needed. Its funda-
mental idea, a few of its terms and applications, are all that he need be
familiar with in order to perform the simple integrations we shall encoun-
*er, as readily as the most skilled mathematician. This portion of the
present Supplement may, perhaps, be considered by many as unnecessary and
superfluous. We are, indeed, justified in assuming such knowledge. PBut
as we believe our plan practicable, we cannot resist the desire of making
our development intelligible to @/, and thus rendering our treatment of the
simple girder at least complete.

The practical man as well as the mathematician may thus have at his
disposal the powerful‘aid of the calculus, so far at least as his purposes
require it, and be able to deduce for himself the formula which hitherto
he has accepted ‘‘ upon faith.” It may also not be improbable that here
and there one may be found who, pleased with the simplicity of the prin-
ciples and the fruitfulness of their application, may be led to further prose-
cute the study for his own satisfaction.

‘We shall first, then, notice briefly the two methods of calculation above
referred to; then devote a few pages to the development of those prin-
ciples and rules of the calculus of which we shall make use, and finally
apply these principles to the discussion of the curve of deflection of loaded
beams.

2. Ritter’s Method,—This method is referred to in Art. 14. It
rests simply upon the principle of the lever, or the law of statical moments ;
requires no previous knowledge, and converts the most difficult cases of
strain determination into the most elementary problems of mechanics.
Ritter, in his “Theorie eiserner Dach- und Briicken-Constructionen,” has
applied this simple principle in such detail and fullness, and so clearly set
forth its elegance and simplicity, that it very generally, and justly, goes by
his name.

“Tts results are clear and sharp as the results of Geometry, and of direct
practical application. There is hardly another branch of engineering
mechanics which, for such a small amount of previous study, offers such
satisfactory results, and which is so suited to engage the interest of the
beginner.”

‘We have given in the Appendix to Chap. I (Arts. 6, 9, 10) detailed ex-
amples of its application. Throughout this work similar illustrations of
its use will be met with, so that it is only necessary here to state more fully
than in the text its general principle.

If any structure holds in equilibrium outer forces, it.does so by virtue of
the strains or inner forces which these outer forces produce. Now the
outer forces being always given, we wish to find the interior forces or
strains. If, then, the structure is framed, and we conceive it cut entirely
through, the strains in the pieces thus cut must hold in equilibrium all the
outer forces acting between the section and either end. Thus, in Fig. 6,
Pl 2, a section cutting D, 7 and H completely severs the truss. Then the
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strains in these three pieces must hold in equilibrium the reaction at A and
all the forces between A and the section.

Now the principle of statical moments is simply that, when any number
of forces in a plane are in equilibrium, the algebraic sum of their moments
with respect to any point in that plane must be zero.

The application of this principle is simply so to choose this point of
moments as to get rid of all the unknown strains in the pieces cut, except on'e
only ; and then the other forces being known in intensity, position, and
direction of action, we can easily find this one; since, when multiplied by
its known lever arm, it must be equal and opposite to the sum of the
moments of the known forces.

In a properly constructed frame it will, in general, always be possible to.
pass a section cutting only three pieces. Then, by taking as a centre of
moments the intersection of any fwo, we can easily find the strain in the
third.

Even if any number of pieces are thus cut, if all but one meet at a com-
mon point, the strain in this one can be determined.

Thus, in Fig. IV., PL 1 of the Appendix, a section may be made cutting
28,dh heand cY. But all these pieces, except the last, meet in 2, and
the strain in this last piece may, therefore, be easily determined.

The above is all that is necessary to be said as to this method. The ex-
amples already referred to will make all points of application and detail
plain as we proceed. We see no rcison why the reader who has mastered
Chapter L and diligently followed out the examples as given in the Appen-
dix, should not now be able to hoth calculate and diagram the strains in
any framed structure all of whose outer forces are known.

3. Method by Resolution of Forces,—We have also yet another
method of calculation, based upon the principle that, if any number of
forces in a plane are in equilibrium, the sum of their vertical and hori-
zontal components are respectively zero. In structures all the forces acting
upon which are vertical, and such are all bridge and roof trusses, etc., of
single span, we have only to regard the vertical componcnts.

In this connection we have to call attention to the following terms and
considerations, The skear or shearing force at any point is the algebraic
sum of all the outer forces acting between that point and cne end. These
outer forces are the weights and reactions at the ends. At any apex of a
framed structure, where several pieces meet, the horizontal components of
the strains in these pieces must balance, or the structure would move; and
for the same reason, the algebraic sum of the vertical components must be
equal and opposite to the shear. The shear being known, if the strains in
all the pieces but one are also known, that one can be easily found. Thus
the algebraic sum of all the vertical components of the strains in the other
pieces being found, and added or subtracted from the shear, as the case
may be, the resultant shear, multiplied by the secant of the angle made by
the piece in question with the vertical, gives at once its strain.

This method is also fully explained in the Appendix, Art. 16 (4), and a
practical rule is there given for properly adding the vertical components
and determining whether the result is to be added to or subtracted from
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the shear. This rule we owe to Humber.* We have thus two methods of
culculation, which, for the sake of convenience, we may speak of as Ritter's
and Jfumber's. Corresponding to Humber’s method we have also a graphic
solution, based upon the same principles precisely. This we have sct forth
in Chapter L, and may call Prof. Mazwell’s method. In Chapter II and
the following we have also become acquainted with the graphic solution
corresponding to Ritter's method, or the method of moments, which we
may speak of as Culmann’s. 1t is to this method, based upon thé proper-
ties of the equilibrium polygon, that the graphical statics properly owes its
value and fruitfulness, and to it is due‘whatever pretensions it can claim
as a system. It will be seen hereafter that it alone can furnish a general
method applicable to all structures, whether framed or not; whether all
the outer forces are known or not. By the same general method we are
enabled to find the centre of gravity and moment of inertia of areas, and
to solve thus a great variety of practical problems—through which, how-
ever different, runs one universal method, one simple routine of construc-
tion.

* Strains in Girders, calewlated by Formulas and Diagrams.
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CHAPTER II.
PRINCIPLES OF THE CALCULUS NEEDED IN OUR DISCUSSION.

4. Differentiation and Integration.—We need but a very few
simple ideas and conclusions in order to have at our disposal the whole
theory of flexure for beams of single span. Those to whom these ideas are
not familiar already may find them indeed new, but will not find them
difficult or even abstruse, and with attention to the following will, we
venture to think, make a valuable acquisition.

The sign [ is called the “sign of integration,” and integration means

simply summation. It arises merely from the lengthening of the original
letter 8, first used by Leibnitz for the purpose. The letter d is called the
“gign of differentiation;” in combination with a letter, as d z, it reads
* differential of 2,” and signifies simply the increment which has been
given to the variable z. So much for terms.

Now suppose we have the equation

TR GJ A onTe o Mo 1o je dio. o (€D

in which # and ¥, although varying in value, must always vary in such a
way that the above equation holds always true. This being the case, let
us give to ¥ an increment—that is, supposing it to have some definite value
for which, of course, z is also definite in value, increase this value by d .

Then # will be increased by its corresponding amount d z, and as the
above relation must always hold true, we have

y+tdy=56@+d=2)® . . . . . . . (®
or y+dy=5@+2zda+d ).
Inserting in this the value of y from (1), we have
dy=5QRezdz+da’), . . . . . .(3)

which is the value of the increment of ¥ or d y, in terms of z and the in-
crement of zor ¢ z. That is, the increments are not connected by the same
law as the variables. The variable y is always 5 times the square of the
variable z, but the increment of y is greater than 5 times the square of the
increment of # by an amount indicated by 5 x 22 d 2. From (3) we
have

%:5(2z+dz), ol dhin ettt it it S
which gives the value of the ratio of the two increments. Now, if we
assume a certain value for z, we find easily from (1) the corresponding
value of . If we increase this value of 2 by a certain assumed increment,
d z, we find easily from (8) the eorresponding increment of y,or d y. Then
(4) would give us the ratio of these two increments.
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Now we see at once from (4) that the smaller we consider d « to be, the
nearer this ratio approaches the limiting value 5x2 2. We may suppose
d z as small as we please, and then this ratio will differ as little as we
please from 5 x 2 z. This value, 5 x 2 @, forms, then, the limit towards which

the value of the ratio Z—‘Z approaches as d @ diminishes, but which limit evi-

dently it can never actually reach or exactly equal. Because, in order that
this should be the case, d « must be zero. But if @ @ is zero, that is, if 2 is
not increased, y also is not increased ; d y is, therefore, zero, and there is no
ratio at all.

Now, just here comes in what we may regard as the central principle of
the calculus.

If two varying quantities are always equal and always approaching certain
limits, then those limits must themselves be equal.

The principle is too obvious to need demonstration. “Two guantities
always equal present but one value, and it seems useless to demonstrate
that one variable value cannot tend at the same time towards two constant
quantities different from one another. Let us suppose, indeed, that two
variables always equal have different limits, A and B; A being, for ex-
ample, the greatest, and surpassing B by a determinate quantity A.

The first variable having A for a limit will end by remaining constantly
comprised between two values, one greater, the other less than A, and hav-
ing as little difference from A as you please; let us suppose this difference,

1
for instance, less than Py Likewise the second variable will end by re-

1
maining at a distance from B less than 7 A. Now it is evident that, then,

the two values could no longer be equal, which they ought to be according
to the data of the question. These data are then incompatible with the
existence of any difference whatever between the limits of the variables.
Then these limits are equal.” *

d
Now let us apply this prineiple to equation (4). In this equation d_Z is
a variable always equal to 5 (2 2+d #). But 5 (2 2+d z), as we diminish
a
d , approaches constantly the limit 5 x 2 z; and as d—i is always equal to

5 (2 z+d ), it also constantly approaches the same limit. These limits,

d
then, are equal, and the limit of E% =bx2a
Now, if we conceive, and such a conception is certainly possible, & = to
De the difference between @ and its consccutive or very next value, such that
between these two values there s no intermediate value of dz; thendy
will be the difference between two consecutive values of y; and regarding,

then, 4 @ and d y in this light, Z—Z will be the limiz of the ratio of the in-

* The Philosophy of Mathematics. Bledsoe.
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crements, since the increments are then limiting increments, and can be no
smaller without disappearing.

‘We have thus

d
d_yi =5xRa,
which is an ezact relation between the increments upon this supposition.
From this we have dy =6x2a d «.

If now we sum up all the increments d y, then by virtue of the supposi-
tion we have made, f d y must equal y. We thus suppose y to flow, as it

were, unbrokenly along by the consecutive increments d y, just as the side
of a triangle moving always parallel to itself, and limifed always by the
sides, describes the area of that triangle, while the change d y of its length
is the difference between two immediately contiguous positions. Upon

a
this supposition, we repeat, tl—?:: is the limit of the ratio of the increments,

which limit is, as we see from (4), equal exactly to 5x2 2. We do not re-
ject or throw away d @ from the right of that equation ‘ because of its
small size with reference to 22,” but simply pass to the limit, and then, ac-
cording to our fundamental principle above, equate those limits them-

selves. But iffdy = y, then the integral of 5x22dz, orf5 x2zda=y
=54" By “differentiating,” as we say, equation (1) we get (5), and by
“integrating ” (5) we obtain (1).

Hence we see the appropriatencss of the term ¢ fluent” given by New-
ton to the quantity d y or 22 d 2. So also we see the appropriateness of

the term “wlitimate ratio™* for % itself.

* Liebnitz undoubtedly discovered the calculus independently of Newton,
but he considered d # as a quanity so *‘infinitely” small that in comparison
with a finite quantity it conld be disregarded ¢ as a grain of sand in compari-
son with the sea.”” We see, indeed, from eq. (4) that if d x upon one side be
zero, we get the same value for g—;as before. But if 4 « is zero on one side,
it should be zero on the other side also. No matter how small we suppose d 2
to be, we have no right to get rid of it by disregarding it. That Liebnitz rec-
ognized this cannot be doubted, and he was therefore inclined to consider his
method as approximate only. Butto his surprise he found his results ezact,
differing from the true by not even so much as a ‘“ grain of sand.” There was
to him ever in his method this mystery, nor could he conceive what these
quantities could be which, though disregarded, gave true results. Bishop
Berkeley challenged the logic of the method, and adduced it as an evidence of
*‘ how error may bring forth truth, though it canunot bring forth science.”
Strange to say, even the disciples of Newton were unable to answer Berkeley
without taking refuge in the undoubted truth of their results. And yet New-
ton in his Principia lays it down as the corner-stone of his method, that
s quantities which during any finile time constantly approach each other, and
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The whole of the calculus is but the deduction of rules'for finding from
given equations as (1) their “ differential equations” as (5), or inversely
of finding from the differential equation by *integration,” or summation,
the equation between the variables themselves.

Such of these rules as we need for our purpose we can now deduce.

5. Differentiation and integration of powers of a single

vni‘iable.—We have already seen that thefd y=y andfz zdz =2,

hence d (+*) =2 zd 2.
If we should take y = 2°, we should have, in like manner, as before,
y+dy=@+d2)’=2"+82°dz+8xda®+da°,

or d‘y=3x‘dz+3:cdw’+d:c’,
a
or -1=3w’+3wdz+d:c*,
dz
and passing to the limits, as before,
d
Z—Z =82a% ordy=32*dz. Hence the differential of 2® or d (z*)=3 2% d =,

and reversely, the integral of 3 2* d 2 01'/3 2* d o =2 In similar man-
ner, we might find
d@®)=5b2'dz and/5 rde=2°,

Comparing these expressions, we may easily deduce general rules which
will enable us at once upon sight to ¢ differentiate,” that is, find the rela-
tion connecting the increments; and “integrate” or sum up the successive
consecutive values of the variable; for any expression containing the
power of a single variable.

These rules are as follows:

To differentiate :

“ Diminish the exponent of the power of the variable by unity, and then

multiply by the primitive exponent and by the increment of the variable.”

Thus, 4 (2*) =22zd 2, d(¢*)=82'da, d(2") =T2%dz, d(z?)zgzédx,

d (2") =n a>! duz, ete.
To integmte‘:
+¢ Multiply the variable with its primitive exponent increased by unity, by
the constant factor, if there is any, and divide the result by the new exponent.”

before the end of that time approach nearer than any given difference, are egual.”
There can be little doubt that Newton saw clearly that although the quantities
might never be able to actually reach their limits, yet that those limits them-
selves were equal, and %ence the increment could be left out in the equation,
but 70t because by any means it was of insignificant size. His terms *‘ ultimate
ratio” and *‘ fluent” are alone suflicient to indicate that he understood the
true logic of the method he discovered; while Liebnitz seems to have stood
gazing with wonder at the workings of the machine he had found, but whose
mechanism he did not understand. [See LPhdosophy of Mathematics. Bledsoe.
Lippincott & Co., 1868.]




106 SUPPLEMENT TO CHAP, VIL [cEAP. 1.
'3 o g7
Thusfzzdz=?—1—z- 3a:’dz————a:= f"dz:’—

7
3 3
fztiz:% =32—a:2 /‘nzn-ld:c=n—$-=zn, ete.

It is of this latter rule that we shall make especial use in what follows.
6. Other Prineiples—Integration between limits, ete,.—
We may observe from (1) and (4) that a constant factor may be put out-

side the sign of integration. Thusf5x2a:d:c=5f2xdm=51’.

It is also evident without demonstration that the integral of the sum of
any number of differential expressions is equal to the sum of the several
integrals.

Thus f[zdz+z’d e+y'dy+:v‘dz]
is the same as fxdz+fe'de+fy‘dg/,etc.
If in (1) we had
y =235 a'+a,

where a is a constant, we should have
y+dy=>5 (z+dz)+a=0 (@@ +22da+d ") +a,
or dy:ﬁ(2zdz+dz’),org-%=5(2w+dz);

whence
dy_
da
just the same as before.

The integral of this will then be y = § & as before, whereas it should be
y=52"+a.

If two differential equations, then, are equal, it does not necessarily follow
that the quantities from which they were derived are equal.

We should, then, never forget when we integrate to annez a constant. The
value of this constant will in any given case be determined by the limits
between which the integration is to be performed.

We indicate these limits by placing them above and below the integral
sign. Thus the integral of 2* d # between the limitsof # = + hand a=—% is

=5x2a,0ordy=6x22da,or

+h
f 2*d z. If we integrate 2°® dz, we have, then, f atda = g + C,

—h
where O is a constant whose value must be determined by the conditions
of the special case considered. If we introduce the value of z = & for one

3 \ % kl
limit, we have % + C. For z=2 % for another limit, we have 8—5— +C.

We have, then, two equations, viz. o

3
when o = &, /z’dz:’i+0,
zx=h 3
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z=2h
_8m
and whenz =2 % z’dz=T+C;

and by subtracting one from the other, we have for the integral between
2 h 7
thelimits s =2k and 2 =h, [ @*da= g-h‘, and C thus disappears.
A

‘We have, then, only to substitute in succession the values of the variable
which indicate the limits, and subtract the resuits.
If also there is but one limit, we could determine C if there were also a

condition, such, for instance, as that f 2* d @ should equal 4 when =2 A.

The mtioj—%is called the “sirst differential coefficient;” if it were to

be differcntiated again, the next ratio, viz., that of the differential of the
12

differential of y to differential of 27, or g—:g, is the *second differential co-

efficient,” and so on.

Thus, y=2°; dy =4 (z°) =5z'dx, or ay_ 5z*; differentiating again,

dz~

&y ay C . . .
T 2023 d z, or T 20 22, and 50 on to third differential coefficient, etc.:
s

7. Example,—As an example of the application of our principles, let
1t be required to determine the area of a triangle. Let the base be b and
the height 4. Take the base as an axis, and at a distance of z above the
base draw a line parallel to , and at a very small distance d & above this
line draw another, thus cutting out a very smallstrip. (Let the reader draw
the Fig.) Now for the base y of this strip we have the proportion 2 — 2 : y
shed, ory=> —I-)hi, hence the area of the strip is bdz __b_zhd_z But
the area of this rectangular slip is not equal to the area of that portion of
it comprised within the triangle. It projects over at each end, and is,
therefore, somewhat greater. Thus for the small trapezoid actually within
the triangle we have for the upper side ¢, A—(z+d @) : ¥’k : b, ory' =
da
13
of the rectangle, that is, its ezcess over the trapezoid, is then (y—y') d z, or
bda bedz dda? da bz bdx

i Therefore, b d 2 — e =da, ora—z_b——h—-——’;—,where
d a is the area of the small trapezoid itself. Now these latter two quanti-
ties are always equal for any value of & z. But as d = decreases, one side
of the equation approaches the limit b—-%, and g—% therefore, approaches

, and the area of the projecting portion

b—% (z+d ). Hence y—y' = Z

this same limit. The rectangle itself is, then, the limit of the ratio of the
area of the small trapezoid to its height, and we can then eguats the limits .
themselves, remembering that in this case d a is the area passed over by the
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side y in passing from one position to the consecutive or very next. We

have, then,da=5bdz —?—zhd z’ and if we integrate this expression, that is,

sum up all the d a’s, we have the area of the triangle. Therefore,
v

A=fbdz—bmhdw=bz—b—£+c,

2h
where C is the constant of integration, which we must never forget to annex.
Now, in the present case we wish to sum up all the areas d a, or * integrate,”
between the limits #=0 and 2 = A But for 2 = o, A must be zero, and
hence we have C = o for the condition that z starts from the base. Ifin
addition to this condition we make 2 = &, we have the sum of all the areas
between 2 = o and 2= k.
A=bh —%: b—zli, as should be.

The above reasoning’ is somewhat prolix.

If we thoroughly appreciate that d « is the difference between two con-
secutive values of o, we see at once that we obtain the limiting value of the
rectangle directly by multiplying its base by d 2. The sum of all these
must be the area. This conception of d 2 enables us to curtail much of our
reasoning.

Let us take the same problem again, but this time take the axis through
the centre of gravity of the triangle; thatis, at % above the base. Then
for the base y at any distance 2 above this axis, we have
bz
-+
Multiply this by d @ upon the above conception of d 2, and we have at
once not for the rectangle upon y, but for its limiting value, that is, for the
ares of that portion of the rectangle included within the triangle,
bada

A

.

z—h—-x synhid, oryzg—b—

da:y_dw:ébdm—.

Integrating this, then, we have
A=f§bdz—b“d“=§bz—z-’f+o,

k 2h
where O is a constant to.be determined by the limits as before. For one

limit, 2 =—% h, and hence we have
ol g
A= T bh+C.
For the other limit, 2 = +§~h, and hence we have
4
A= — A
is bA+C

If we subtract the first from the second, C disappears, and we have A =
f Hednl el
A'— A' = 1Sb h_gbh,asbefore.

‘We might also have integrated first between thelimits 2 =) and 2 = ;h.
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For # =0, C = 0, and the area above the axis is then ;E bk For z=0and

T = —15 1, we have for the area below the axis — % b k. This area has a dif-

ferent sign because below. If we give it the same. sign as the other, and
then add it, we have the total area. If it also had been above, the total
area would have been the difference. Generally, then, we subtract accord-
ing to our rule.

8, Significanee of the first differential cocflicient,—Any
equation between two variables of the first degree is the equation of a
straight line. If of the second degree, it represents one of the conic see-
tions, an ellipse, ecirele, parabola, or hyperbola. Of a higher degree, a
ourve generally. If, then, we take the axis of 2 horizontal and y vertical,
and if d y and d  are the consecutive increments of y and 2, that is, the dif-
ference between any value and the very next, the ratio Z—Z is evidently the
tangent of the angle which a tangent to the curve at any point makes with the
horizontal.

If, then, Wemake% =0, and find the value of the variable 2z ecorre-

sponding to this condition, we find evidently the value of « for which the
tangent to the curve is horizontal. If now the curve is concave towards the
axis, this value of #, substituted in the original equation, will give the maxi-
mum or greatest value of the ordinate y; because for the point just one
side of this the tangent slopes one way, and for the point just the other
side it slopes the other. The point where the tangent is horizontal must
then be the highest.

Ifthe curve is, on the other hand, convex to the axis, the value of @, which
makes 5—% = 0, substituted in the original equation, will give y a minimum
value for similar reasons. By setting the first differential coefficient, then,
equal to zero, we may find that value of  which corresponds to the maxi-
mum or minimum value of the ordinate, as the case may be. In the case
of the defleetion of simple beams upon two supports, the curve is always
concave to the axis, and henee we obtain by this process always the maxi-
mum deflection.

The above comprises all the principles of which we shall make use in the
discussion of the theory of flexure. With a little study, we believe that
any one familiar with analytical operations, even although he may never
have studied the differential or integral calculus, can follow us intelligently
in what follows. Whatever points may still be a little obscure will clear
up as he sees more plainly than now their application.
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CHAPTER III.
THEORY OF FLEXURE.

9. Coeflicient of Elasticity.—Let us now take up the theory of
flexure, and see if it is not possible so to present the subject that, in the
light of the preceding principles, we may be able to solve all such prob-
lems as present themselves.

If a weight P acts upon a piece of area of cross-section A, and elongates
or compresses it by a small amount 7, we know from experiment that,
within certain limits, twice, three times, or four times that weight will
produce a displacement of 217, 87, 47, etc. These limits are the limits of
elasticity. Within them practically, then, the displacement is directly as
the force. If we assume this law as strictly true for all values of the dis-
placement, and if we denote the original length by L, then, since the

q % % : 3 g 3
force per unit of area is a and since this unit force causes a displacement

I, in order to cause a displacement L equal to the original length, this
P
unit force must be ? times as great, or equal to a % This force we call

the modulus or coefficient of elasticity. It is always denoted by E. Hence
PL

E:Tl-.........(ﬁ)

The coefficient of elasticity, then, is the unit force which would elongate a
perfectly elastic body BY ITS OWN LENGTH. It is a theoretical force then ;
but as the law upon which its value is based is true practically within cer-
tain limits, by experiments made within those limits, knowing P, A, and
L, and measuring 7, we can find what the force would have fo be if the law
were always true. Such experiments have been made, and the values of B
for different materials are to be found in any text-book upon the strength
of materials.
From (6) we have for the unit force of displacement
P Bl

P R R g 8

These expressions will be found useful as emabling us to replace often
expressions containing an unknown displacement by a definite or experi-
mentally known valne. E

10. Moment of Inertia.—This is also a convenient abbreviation,
and enables us to replace unknown expressions by a, in any given case,
perfectly determinate value.

The moment of inertia, with respect to any axis, is the algebraic sum of the
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products obtained by multiplying the mass of every element q}“ a given cross-
section by the square of its distance from that axis.

If a parallelogram stand on end, and then its support be suddenly pulled
away from under it, it will fall over backwards. But to knock it over
thus requires force, The force which in this case overturns it is that of
inertia. At every point of the surface thereis, then, a force acting, depend-
ing upon the mass of this point. But not alone upon the mass. A force
at the top acts evidently with more effect to turn the body over than one at
the bottom, which merely tends to make it slide. The moment of each ele-
ment of the area is, then, a measure of the force which at each point causes
rotation, and the sum of these moments is, then, the measure of the over-
turning action of the whole force of inertia upon the surface. The moment
of this latter force, or thesum of the moments ¢f the moments, is, then, the
moment of inertia of the cross-section. Each element of the surface must
then be multiplied by the square of its lever arm, and the sum of all the
results thus obtained taken. In other words, the moment of each element
is itself considered as a force, and then i¢s moment again taken. The sum
is denoted by I. For any given dimensions and axis it is a perfectly defi-
nite quantity, and may thus often replace expressions containing unknown
quantities.

The principles of the calculus just developed will enable us to deter-
mine it insome cases, at least, very readily. Its value for various forms of
cross-section, in terms of the given dimensions, is given in every text-book
upon the strength of materials.

Let us suppose a rectangular cross-section of breadth b and height 4, and
take the bottom as axis. The area of any elementary strip is, then, b d 2.
If its distance from the bottom is z, we have for its moment b « d &, and for
its moment of inertia, then, b 2* d . Integrating this expression, we have

bad
f batdzr= 3 +C
This integral is to be taken between thelimits # =0 andz =h. For2z=0,
. 3
ba*d z =0, and hence © =0. For 2z = &, then, we have b—g’i If the axis

had been taken through the centre of gravity, we should have the above

N Mg h h [

integral hetween the limits + 5 and—E. For+ g we have Sdid C.  For
h A : [

S T + C. Subtracting one from the other (Art. 6), we have 1]

for the moment of inertia. For a triangle of height & and base b, we have
for axis through centre of gravity, from Art. 7, for the area of the very

small strip at distance =, S bda = « d @. Multiplying this by * we have
3 plying ./

k
for its moment of inertia ; bdx — % 2*da.  The integral of this is
2 b2t
5 bat — ot C.

2 3 4
by == — bR +C,
'or 2 gh this bgcomes — bk +0C.
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For z =—1—h we have — 9—1}— bP+C.

Subtracting one from the other (Art. 6), we have —. b 7, or— b A’ for

972
the moment of inertia. The moment of inertia of the rectangle I = 1—;’
may be written I~__ %1",( 14 hx2 h, or the moment of inertia of the half

parallelogram is equal to its area, into the distance of its centre of gravity
multiplied by %ds. of its height. We see at once that when we consider,
then, the statical moments as themselves forces, the centre of action of these
moment forces does not coincide with the centre of gravity of the area. This
principle we have already noticed in Chap. VL, Art. 60.

‘We can also put Ll = (1——_ h)ﬂ. This value 1—_ } is called the

12 2¢3 23

radius of gyration. It is evidently the distance from the axis to that point
at which, if the mass were concentrated or sum of all the forces were con-
sidered as acting, their moment of inertia would be that of the cross-sec-

tion itself. The value of — 1s, in general then, the square of the radius of

gyration. 'We have already shown in Chap. VI. how to find it graphically
for various cross-sections,

‘We are now ready to take up the case of a deflected beam, and to find
the differential equation of its curve of deflection.

11. Change of Shape of the Axis.—In the Fig. given in the
Supplement to Chap. XIV., we have represented a beam deflected from its
original straight line by outer forces. ILet the two sections A C, B D be
consecutive sections, parallel before flexure, and remaining plane after, Let
the length of the axis m @ be 3, then n @ =d s, and let d ¢ be the very
small angle between the sections after flexure.

If the deflection is small, s will be approximately equal to 2, and d s to
dz. The elongation of any fibre at a distance » from the centre is, then,
od ¢. The unit force corresponding to this elongation is from (7) T =

a¢
Bee?
d

o If da is the cross-section of any fibre as d ¢, then the whole force
of extension is
Bodad q&

de

The moment of this force is, then, F_';dc%a_d_qb_ The integral of this be-

tween the limits + g and — g— will give the entire moment of rupture. But

this is equal and opposite to the moment M of all the outer forces; hence

: +7L
Bd ®
M= dz¢ ;:’da
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But, as we have just seen, this integral is the moment of inertia I of the
cross-section with referenece to the axis through the centre. Henee,

=E:z[l‘:lu¢' Sinee ¢ is a very small angle, it may be taken equal to its
dy i¢ Ty Ty
o ; M=e12Y
gent, or equal to FPE hence ie a7 and iz
Butod¢: ot da:r, where r is the radius of eurvature;
hence vdd)=id—fi or é—i):1—
) r 2" r ’
1 @y TI
=BI-=BI —S="< | , . . .
Therefore, M - F = ®)
and b e )
&

Equation (8) is our fundamental equation.
In any given case we have only to write down the expression M for the
) . &y’
moment of the outer forees at any point, and equate it with B I‘-i——z—y .

Integrating once we shall then have for I constant, of course, B I % and,

integrating again, B I y in terms of «, or the equation of the defleetion

eurve itself. Making B I% =0, we can then find the point of maximum

deflection, and inserting in the value for E I y the value of # thus found,
ean find the maximum deflection itself. The discussion of any case reduces
thus to a simple routine, and every case is in, many respects but a repetition
of the same processes.

12. Beam fixed at one end and loaded at the other—
Constant cross-section.—We shall always consider a moment positive
when it eauses compression in the lower fibre; negative when it causes ten-
sion in that fibre. Distances to the right of the origin are always positive,
to the left negative. Hence on the Zft of any section an upward foree is
negative, a downward foree positive; while on the right of the seetion the
upward force is positive and the downward one negative, The reader
should always draw the Fig. for each case diseussed, and in the beginning,
at least, review these eonventions each time,

Now let a beam of length- have the weight P at the free end, and let it
be fixed horizontally or * walled in" at the right end. Then the moment
at any point distant z from the left or free end is M = + P 2.

(@) Change of shape.

From (8) we have now
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Integrating once (Art. 5) we have
dy_
dz 2

where © is the constant of integration to be determined (Art. 6) by the

BI

given conditions. Now by the condition in this case, when z =1, E—y
must be zero, because the end is fixed, and the tangent there must therefore

be horizontal (Art. 8). Hence C = — %—li, and

. g1 %y _EBa_P¥
adx 2 N

‘We have thus introduced the condition that z cannot be greater than I
Integrating again (Art. 5) -
Pa* Pliz

6 2

Here again we have a constant to be determined, and here again we have
the condition that for @ = I, ¥ must be zero, since at the fixed end there can

be no deflection. Therefore, C = %lj and

+ O,

Ely=

i EIy=§(213—3l“z+z') =§(2i+z)(l—z)’.

The deflection will evidently be greatest at the free end, and here, therefore,
for 2 = 0, we have
PP,
8 B I

If the cross-section is rectangular, I= 1_2 b A% (Art. 10), and the maximum

4PD,
EbA
) Breaking weight.

‘We have also from equation (8) M =~—T;I—, where T is the tensile strain

deflection A =

in any fibre distant » from the centre. Foro = g, T is the tensile strain in

the outer fibre, and M = hLI Foro = ———;i we have the compressive
strain in the outer fibre upon the other side, or M = 2% Theoretically

the two should be equal. Practically they are not. In fact, if we put for
M its value, we have P2 = %—;‘—I, or for a rectangular cross-section P z =

%— T b h*. This is greatest forz =1, hence the breaking weight P = —b-h—

61l
From this we have T = (;—l;,l Now experimenting with beams of various
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materials, known dimensions and given weights, we may find experimen-
tally T. It would seem that this value thus found should equal either the
tenacity or crushing strength of the material, but the results of experiment
show that it never equals either, but is always mtermedmte between T and
C. Calling this intermediate value R, we have

P="om o0

The formula is based upon the condition of perfect elasticity, while R is
determined by experiments made at the breaking point when the condition
of perfect elasticity is no longer fulfilled. In the following table the tabu-
lated values of R are correct for solid rectangular beams, and sufficiéntly
exact for those which do not depart largely from that form. If instead of

we use the values of T or C, whichever is the smaller, we shall always
be on the safe side, since R is invariably intermediate between these.

In general we shall refer to the equation

2TI
M=— ., . . . . ...
: an

when we have occasion to find the breaking strength. But it must be
always remembered that in any practical example we should replace T by
R for rectangular beams, or by T or C, whichever is the smaller, for others.
We give also the values of the cocflicient of elasticity B. (Wood’s Resist.
of Materials.)
Y C R B

Cast-iron.....o..e... pol0odS .... 16,000 96,000 36,000 17,000,000
Wrought-iren. ..... 58,200 30,000 33.000 25,000,000
. 17,000 9.500 10,000 1,451,200
. 17,000 9,000 10,000 1,645,000
ceeeeas 1,800 5,400 9,000 1,700,000

All in pounds per square inch.

2. Beam of uniform strength:
Suppose the cross-section or I is 7ot constant, but varies so that at every

point the strain T is constant. From (11) we have

M=Pz= 2—1‘ ! for the outer fibre, whence

Pha i 6Pz
T= 3T For a rectangular cross-section T = b
breadth and height at the fized end are b, and Ai. Then at thisend T =
6P

b1 ha-

Now suppose the

. But this must be equal to T at any other point; hence
6Pz _ 6PI bRt _ =z

DY Y T W TE
If we suppose the height constant, we have for the varying breadth at any
point b =, :; That is, the breadth must vary as the ordinates to a straight
line, and the plan of the beam is a triangle with the weight P at the apex.
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If the breadth is constant, & =h., / il, or the elevation of the beam is a

parabola with the weight at apex. If the cross-section is always similar,

that is, if% = %, we have b = %ﬁ, and substituting in the equation above
1 1

h=h s\/l?, which is a paraboloid of revolution,

(@) Change of shape
From (8) we have
d*y Pz Py

da* EBI Bxubi'
where b and % are variable. If we suppose the height & constant and
always equal to A:, then, as we have seen, b = b %; hence for rectangular

cross-section

&y _ 12P1
da® Bhdb
dy

Integrating, since for z =/, =0, we have

i r

dy_12Plz 12P1*

dz” Bi’b, Bh'b

Integrating again, since for 2 =1, y = 0, we have
6P I2* 12P 1%z ePR
VUERTS T EAss, T BAG

For the maximum deflection z = 0, and

6P
A'_Eh,'bl'
The above value of y can be written
6P 6P 6P z\"*
. o Padago bt FYFF NS O B U
-'/_I:b.hﬁ(p 21“”’)‘32;,1»,'(’ ’”)*za,w(l z)'
-6PP | 3

but , the deflection of a beam of constant cross-section b, A,

Hoae 2
as already found. Calling this deflection A,, we have

3 z\?
y—-z—'An (1——l—)

for the deflection at any pohft, or A =2— Ao for the maximum deflec-

tion.
In a similar manner, for constant breadth, we have

5 £ pETr Il GH AR KT 8. P
y—zm[l 31+2J(7)],A—2A0—Eb‘h‘p
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For similar cross-sections, we have

— 2 i STl 0, o0 JBE
Y=g % ‘21“2\](r) AT T T b A

If we call the volums of the beam of constant cross-section V, then in

2
the first case the volume V, = ;— V; in the second, Vs = 3 V; in the third,

3
Va=5—V; or
V:Vy:V,:V,=30:20:18:15.

The maximum deflections, as we see above, are as

2 Ao, *;_A,,, Z_A.,, or as 20, 18, and 15.

That is, the deflections at the ends for a beam of uniform strength in the
three cases are as the volumes.

13. IBcam as before fixed at one end—Uniform load—
Constant cross-section.—If p is the load per unit of length, we have
for the moment at any point distant « from the free end,

- EEIEe SR
M_pa:x—_ 5 , and hencezEI e
pl?

This moment is greatest for 2 =, and hence Max, M = R
For the breaking weight, then, from (11)

Pl _3TI 4TI
Ykt 4 L T

or twice as great as for an equal weight at the end.
For the change of shape, we integrate twice, precisely as before, the ex-
. d'y pa? .
pression ——5 = "o and obtain thus

y_%{”ﬂ!(sz* 4l’z+w‘).
The maximum deflection, then, is
. 2l
= gBT

or only {ths as great as for an equal load at the end.
2. Constant strength,

2
‘We have, as before, from (11) M = Z—’i e - ; ,whence T = P:f ; or
for rectangular cross-section, I = 112 bR and T = 35 ’f, If b, i are the

breadth and heighth of the fixed end section, then, since T must be always
constant,
3pat 3pl’ bA* a2t

bA . Bkt TR I

For height constant, % =85, ( :;)
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7
X A 3 z \*
For similar cross-sections, % =&, \/ ( 3 )

For breadth constant, A= h;f

[

The first is in plan a parabola; the second, in elevation a triangle; the
third, a paraboloid of revolution.

For the change of shape, we have, by proceeding in the same manner asin
Art. 12, A=2 Ay, A=4A,and A =3 A, in the three cases, where A, is the
deflection of a similar beam of constant cross-section b, Ai.

14. Beam supported at both the ends—Constant cross-
seetion—Coneentrated load.—Let the weight P be distant from the
left end by a distance #; and from the right end by l.. Let the distance of
any point from the left end be 2. For the upward reaction at the left end,

Vixl=Plh or V.= l;
The moment, then, at any point between the left end and F, for  less
Pl
than 7, isM = — —f ¥, For any point to the right of P, or « greater
Pla '
than 7, M' = — —;——+ P (z - l.) Instead of this, however, we may
take the reaction at the other end, V; = P %; and then for 2 greaterthanl,,
e s

M=-V.(l—2)=— Eﬂl__").

The moment is evidently greatest at the point of application of the load,
2
or forz =7, Hence the maximum moment is — P—ZZ’—’

(@) Breaking weight, v

2TI PLl

From (11) M= S e for the breaking weight, P =

2TI! { 1 TbhA®l
Fih For. rectangular cross-section, I = —1—2bh’ and P = AR

For a load in the middle, 7, =Z,=—;~l and Max.M:—i— Pl,and P=

8TI
77 OF 4 times as great as for a beam of same length fixed at one end

and free at the other.
(@) Change of shape.
‘We have, then, from (8), for « less than 7,,

'y Phea @y _ PL(-2)
R - 1 el 7 S A for z greater than 7,.

Integrating, we have

dy . PlLa® dy L

LA AR K it e BT =0 ) e
0. Fr=-mmil* ]+

dy

For = 1., these two values of 7o e equal, and hence, since I, =1 — 1, we
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have ©' = c+2Pé‘I We have then the two equations
dy _ Pha’ R 2 m" Pll'
i Tild ”“1_‘ zuz[l 1 Y7

containing both the same constant C.
Integrating these, we have
Pl ) Pl la® a® P*
=—gmni 9% v=-g1i[5 ¢ +TET O+
In the first of these, for 2 =0, ¥ = 0; hence G, =0.
P 113
6ET

Forz=1U,y=1y'; and hence Oy = —

. Pl
For z =1, ¥y = 0; and hence, finally, C = (S_EITZ Ri-1n).
We have, therefore, by substitution of these constants,
Plha Pl

6EI] 6EI

y= RIL-U2—2%) ¢y = (—2) (—L2+2 1 2—2%),

2 2
For z = l;, we have the deflection at the load y = 22} Il,l A

Inserting the value of C in the value for g—% above, and placing the

value of Z—Z equal to 0, we have for the value of =, which makes ¥ a maxi-

mum, =\/ ;_(2 1—1,) 1,, an expression holding good only for = less than

;. Inserting this in the value for %, we have for the maximum deflection
itself

1PLL e—
A=ggpr @0 \/31. @ 1—1).

If the load is in the middle, we have for the curve of deflection

- 1 2 2
y= & I:c (81 —-427),
and for the deflection itself A= i
St . T 48ET

The greatest deflection is not, then, at the weight, except when the load is
in the middle. When this is the case, the deflection is only Ysth of the
deflection for the same length of beam fixed at one end and loaded at the
other free end.

15, Beam as before supported at the ends—Uniform
load.—For a load p per unit of length, the entire load is p Z. The reac-

tions at each end are p—;—, and the moment at any point is
l 2
M is evidently greatest at the centre, and hence

2
Max. M = —1%
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For the dreaking weight, then, from (8)

pl! _2TI . 16TI
O STt e SR B
or 4 times as much as for 2 beam of same length loaded uniformly and
fixed at one end. .

For the change of 8Mpe, we have
2y _ pa(—2)

. dz 2EI
The constants of integration are determined by the conditions that, for
-] —2—1, :il Y = =0; 2=0,y=0; and2 =1,y =0. Integrating, then, twice

under these conditions, we have

y= B—-21a%+2%) 2.

24 E I
This is greatest at the centre, or for 2 = é hence the maximum deflection is
=10 pitt
S 35 5T " only 1fsths of a beam of the same length fixed at one

end and uniformly loaded.

16. Beam supported at one end and fixed at the other
—Constant cross-section—Coneentrated load.—Let the left -
end be fixed horizontally so that the tangent to the deflected curve at that
point is always horizontal, and therefore Z—z =0.

Ret the distance of the weight P from left be o, and the distance of any
point 2. !

Then, for @ less than a, we have

=~V (—2) + P (a—2);
for z greater than q,
M =—V (I—2),
where V is the reaction at the free end, and is so far unknown.

ay aty ;
IfweputM="_" and M' = , and integrate as usual, and remem-

d =z ; d ot
ber that for z =0, d——D a.ndforz:a,il—y_ M, we have
'dz de dez
dy _
= —rui [v 21-2)—P (2 a-—-w)]

d?/__# e v P
= 2EI[V:¢:(2Z ) Pa].

Integrating again and determining the constants by the conditions that,
forz =0, y=0, and for z=a, y=1y, we have

=5y [v (8 l—2)—P (3 a—:v)]

¥ = _e—m [v 2* (81—2)—P (32—a) a ]
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a*(81—a)

YA If the load is in the

Now, forz=1,y =0; hence V="P
L) 5

ddle, V= — P.
middle, 16

'V, or the reaction at the free end, is now known, and substituting it in

. the value of 3 above, we have the equation of the deflection curve between

the weight and the free end.

P Ta*@l—a) Bl—2a)a® ,]
Y=—gmEil— ep — —Gr-ad]
Substituting it also in the value of (;—Z above, and placing then (diz equal

z

to zero, we find for the value of @, which makes the deflection a maximum,
l—a
8l—a
Substituting this value of # in the value of ' above, we have for the _
maximum deflection itself

when @ is greater than a, 2 =1—1

—I 31—
PP 1
BSET 5
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