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PREFACE.

IT is now ten years since the appearance of the Graphical
Statics of Culmann,* during which time the method has been

greatly extended in its applications, and has met with such

acceptance that there is now scarcely a Polyteclinikum in Ger-

many where it is not a prominent feature in the regular course

of instruction.

This rapid spread of a new discipline is the more remarkable

when we consider the obstacles which it encountered. Cul-

manu, with a boldness which we might almost term rash, based

his development npon the modern geometry of Yon Staudt, and

assumed in his readers a familiarity with this very terse presen-
tation of a subject then, as indeed now, but little known, and

which, therefore, but few possessed. To practical engineers,

therefore, to whom his methods specially recommended them-

selves, his presentation of those methods was almost unintelli-

gible.

At a time when the students of the Zurich Polytechnic were

already overburdened, the new discipline was introduced
; while,

owing to want of familiarity with the fundamental principles

premised, they were unable to understand his lectures or read

his work. Yet such was the intrinsic value of the new method

that, notwithstanding these obstacles, even in spite of them, it

made rapid headway ;
found friends everywhere ; crept into

other departments of the Polytechnic ;
and finally the aim of

Culmann was completely attained when the modern geometry
was itself introduced, and a special lecturer in that branch ap-

pointed. Thus, as a direct result of the Graphical Statics of

Culmann, appeared the first and, till now, only complete text-

book upon the modern geometry, viz., Reyds
" Geometrie der

Lage" Hannover, 1868. Since then, hand in hand and with

remarkable rapidity, these two studies have made their way,

* Die Graphische Statik. Culmann. Zurich, 1866. Second Edition, 1st

vol., 1875.
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until, as already remarked, they now form a notable feature in

the course of every technical institution in the land.

The acceptance which the method has found in France, and

the attention which it has there excited, is sufficiently indicated

by the work of Levy (La Statique Graphique et ses Applica-

tions, Paris, 1874), which contains a very clear and elegant

presentation of the principles, though the applications are of

the simplest character, while, as was perhaps not unnatural in.

the author, the German origin of the system is very imper-

fectly indicated, and the special methods of Culmann but little

more than hinted at.

In Italy also the method has found an ardent expounder in

the distinguished mathematician Cremona (Le figure recip-

roche nelle statica grafica, Milan, 1872), and to his efforts and

labors its introduction and acceptance is due.

In England, Prof. Clerk Maxwell, in the Trans, of the Royal

Society of Edinburgh, 1869-70, has contributed a paper upon
"
Reciprocal Figures, Frames and Diagrams of Forces/' and,

among others, Jenkin, Kanken, Bow, and Ucwin have contrib-

uted to the popularity and spread of " Maxwell's Method."

Maxwell and his followers-give, however, only the very simplest

applications, based upon the resolution and composition of

forces, such as will be found in our first chapter. The entire

system developed by Culmann, the properties of the "
equilib-

rium polygon," upon which the fruitfulness and value of the

graphical statics wholly depend, are unnoticed both by our

English and French authors.

The author feels, therefore, that no apologies are needed for

the present work. "Whatever its shortcomings and defects, he

claims at least the honor of making the first attempt to intro-

duce among American Colleges and American Engineers a

knowledge of a subject of approved interest and practical value

to both, whether regarded as a geometrical discipline or as a

most efficient aid in investigations of stability. Nor is he with-

out hope that the next ten years may find the method as uni-

versally accepted at home as now abroad.

The same difficulties certainly have not here to be encoun-
tered. The subject as here presented requires only a knowl-

edge of the elements of geometry as universally taught, and
can thus be readily introduced into our schools as well as read

by those practical engineers for whose benefit the method
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seems so especially designed. A subject of such importance,
which has already endured successfully so severe a test, and

made headway against such obstacles, we cannot certainly af-

ford any longer to ignore, and it is hoped that the present
work may serve to excite a more general interest in the method.

For the practical engineer, the importance of graphical
methods needs, indeed, to-day no demonstration. Such methods

are everywhere in use. But a simple and general system
which shall include all special solutions the development of

the few principles upon which all such solutions are based, and

from which they all flow is at least in this country unknown.

Even in English literature there is to be found little more than

the very elementary deductions of our first chapter, so that it

may justly be said that the entire method owes its- existence

and development to the labors of German scholars and the en-

lightened appreciation of German engineers. How thorough
have been these labors, how widespread this appreciation, and

how various are the applications of the method itself, the reader

may gather from the Introduction to this work, and from the

appended list ofliterature upon the subject. A glance at this

list will also show that the selection of what was of most value,

and the omission of those applications of minor importance,

necessary to bring the present work within reasonable limits,

and at the same time preserve the logical unity and complete-
ness of the whole, was not the least difficult portion of our

task. It would, indeed, have been easy to have given the work

twice its present dimensions, though without a corresponding
increase in value sufficient to justify the additional cost. As
it is, no application of real and practical value to the engineer

strictly deducible from the graphical statics has been over-

looked, and discrimination has been chiefty exercised in those

departments where graphical and analytical processes are still

of necessity combined. Here we have selected only those cases

where such union shows itself most advantageous, and the

graphical constructions most simplify, illustrate, or interpret

the purely analytical process, and where such cases, moreover,

presented a useful, practical, and not merely theoretical value.

As to the plan of the work, a word of explanation is neces-

sary. We have endeavored to keep always in view the re-

quirements of both students and practitioners, of technical

schools and practical engineers, and thus to combine a text-
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book for school instruction, and a book of reference and manual

for practice as well. The attempt is a difficult, if not a dan-

gerous one, and one which, in other departments, has met with

more failure than success. If we venture to indulge a hope that

in this case at least partial success has been attained, and that

the attempt to occupy the two stools at once has not been dis-

astrous, our belief is due to the nature of the subject itself,

and not to any overweening estimate of our own abilities to

succeed where so many have failed. The subject seems, indeed,

especially suited to such a method of treatment. In fact, no

other would appear at this period to properly meet the necessi-

ties of the case. Its geometrical principles are simple, its ap-

plications eminently practical. To present the principles alone

would be to deprive the study of its chief interest and attrac-

tion. To rest content with a few practical applications would

be to sacrifice, in a great measure, system and clearness of pre-

sentation. In the accomplishment of our double task we are

fortunate to have had at our disposal such works as those of

Bauschinger in the one, and Culmann in the other direction.

Our obligations to both authors are great, and are fully indi-

cated in the text. The same acknowledgment is due, in greater

or less degree, to Mohr andWinkier
,
Hitter and Reuleaux. In

every case where such assistance has been received, due ac-

knowledgment has been made.

For the historical and critical Introduction, we are indebted,

with few alterations, to the pen of Weyrauch* It will, we are

sure, prove of value to the student, and serve to awaken an in-

terest in those highly important developments which geometry
has within the last decade undergone.

Thus collecting in a connected form the scattered results and

researches of various authors, it has been a pleasurable duty to

recognize the labors of those men who have chiefly contributed

to this new branch of geometrical statics, and to whom our own

obligations are so great. While thus crediting fully that which

others have done, we have felt the more justified in calling at-

tention to any deviations of our own. We have especially

sought to extend the application of the method ly resolution of
forces (known best, perhaps, as Maxwell's Method

)
a method

* Ueber die graphische Statik zur Orientirung. Yon Dr. phil. Jacob J.

Weyrauch, Privat decent an der polytechniachen schule zu Stuttgart. Leipzig,

1874.
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which bids fair to obtain widespread recognition, in direc-

tions in which it has hitherto been supposed of little service.

This often, indeed, by the aid of analytical results, we have

been enabled to do, and not, as we conceive, without a degree
of success. The formulae used are always simple and of ready

application, and this union of analytical results and graphical

processes the practical engineer will, we think, find of value.

Thus, in the braced arch (Chap. XIY.) and continuous girder

(Chap. XII.) new constructions will be found, and both these

important and difficult cases may thus be solved with an ease,

completeness and accuracy far superior to that of the pure

graphical method itself. Those acquainted with the analytical

investigations of the " braced arch" as contained in Copt. Eadt?

Report to the III. and St. Louis Bridge Co., May, 1868 (App.),

will not, we feel sure, be slow to recognize the advantages of

the present method. The subject in its present state is thus

fairly brought within the reach of the practical Engineer and

Constructor.

To simple girders, contrary to usually received opinions, by
the means of apex loads, the above method applies directly, and

without the aid of analytical results a fact which has been too

generally passed over without sufficient notice by writers upon
the subject.

We have devoted considerable space to the subject of the

continuous girder, but not, we feel sure, more than its impor-
tance demands. The subject deserves more attention at the

hands of the practical engineer and constructor than it has

hitherto received. That the present indifference upon the sub-

ject is due chiefly to lack of information can hardly be doubted,

\vhen the opinion is current, and is even endorsed by those who

are considered as authorities, that the complete solution of the

.problem is
"
probably impossible by reason of its complexity,"

and " too complex for mathematical investigation."
*

Opin-

ions like these are best met by the complete solutions of par-

ticular examples, and in Chapter XII. will be found the com-

plete calculation and tabulation of the strains in every piece

due to every apex load, for the central span of seven continu-

ous successive spans, and, as far as any inherent difficulties are

concerned, we might as well have taken 50 or 100 spans.

*
Graphical Methodfor the Analysis of Bridge Trusses. Greene.
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When engineers shall have become convinced of the fact that

there is in the continuous girder a saving of material amount-

ing usually to from 25 to 30 per cent, per truss, and in the ex-

treme case even reaching as high as 50 per cent., as compared
with the si'n-ole girder ;

and that the only objection which can

be urged viz., the influence of small variations in level of the

supports has, when properly considered, no force whatever,
we shall probably hear less often of designs contemplating many
successive and independent spans of considerable length such

as, for instance, for a bridge over the Hudson at Poughkeep-

sie, consisting of five separate spans of 525 ft. each. Such a

design would find little favor in France or Germany, where

continuous girders are more favorably considered, possibly be-

cause the ability to calculate them is less rare, and reflects in

this respect little credit upon the American profession. About
the facts in the case there can now be no dispute ;

the subject
has been too thoroughly investigated to admit of it, and we
refer the reader to the Appendix for the results. The mathe-

matician and theoretical engineer have done their part ;
it

remains for the practical engineer and constructor to do theirs.

Thepresent work contains the only complete graphical and

analyticalpresentation of this subject in English professional

literature, and should it succeed in causing a change of view

in the above respect alone, will not have been in vain. In this

connection the list of literature upon the continuous girder

appended to Chap. XIII. may also be of service.

We notice with pleasure in this direction the admirable little

treatise of Clemens Rerschel, C.E., upon draw spans.* This

subject is at least of admitted practical value, and we have
treated it with a fullness which, in our opinion, leaves little to

be desired. We have borrowed from the above work the con-

ception of the "
Tipper? or draw with secondary span, which

is both new and, as it would seem, most adequately represents
the true state of the case, and alluded to the idea, also original
with Mr. Herschel, of weighing off the reactions at the supports
of a continuous girder, instead of measuring the differences of
level. In this case, as in that of the continuous girder gene-
rally, we have clearly brought out the method of calculation ly

*
Continuous, Revolving Drawbridges. Little, Brown and Company, Bos-

ton, 1875.



PREFACE. IX

apex weights, and here, indeed, lies the whole secret of thorough

practical solution. In fact, from this point of view, the com-

plete solution of a continuous girder for any number of spans,

equal or unequal, offers no more essential difficulty than the

calculation of so many separate simple girders. That this is

not exaggeration, but accurate statement of fact, a perusal of

Chaps. XII. and XIII. will suffice to prove.
"We cannot leave this part of the subject without acknowledg-

ing our indebtedness to Mansfield Merriman, C.E., Assistant in

Engineering in the Sheffield Scientific School of Yale College,
for the formulae of the latter chapter. Mr. Merriman has

done for the practical solution of the continuous girder what

Wcyrauch has for its theoretical discussion. We refer the

student to the Supplement to Chap. XIII. for a specimen of

his method of discussion.

By the proper use of " indeterminate multipliers," the whole

analytical discussion is most remarkably simplified. The only
one of the many writers upon the subject known to us who
seems to have hit upon this treatment is Winkler (Die Lehre

von der Elasticitdt und Festiglceit). In Art. 144 of the above

work he gives formulae similar to Mr. Merriman's for the

moments at the supports of a continuous girder for all spans

equal only. He seems, however, to have failed to realize the

true significance of the method, or the important part played

by the Clapeyronian numbers. Independently of Winkler,
Mr. Merriman has reproduced these formulae in their true

light, and applied the method to any lengths and number of

spans, with any differences of level and any method of loading.

His formulae are simple, entirely free, even in general form,
from integrals, and are given in just the shape required in

practice. This compactness renders it possible for the engineer
to enter upon a couple of pages of his note-book all the for-

mulae required for the thorough calculation of a continuous

girder of any number of spans, equal or unequal ;
and this cal-

culation in any particular case proceeds in a manner precisely

similar to that of the simple girder, directly and without refer-

ence to authorities, tables, points of inflection, elastic line,

methods of loading, or any of the " other paraphernalia with

which the subject is usually encumbered."

It will be observed that here and throughout we have no-

where left out of sight analytical processes or methods. The
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reader who considers the present work as an attempt to super-

cede, or even subordinate analytical investigation, misjudges

entirely our aim. So far from this, we indulge the hope that

its perusal cannot fail to render familiar the use of loth

methods, to bring out their points of difference and relative

advantages, to illustrate the one by the other, to enable the

reader to check the results of the one by the other, and in any
case apply one or both, or a judicious combination of both, as

may in such case be most advantageous or desirable. This will

be especially noticed in the discussion of the simple and con-

tinuous girder and of the braced arch. (Chaps. XII., XIII.,

XIY. and XYL, and Appendix.)
As to the use of the work, the practical engineer will find in

Chap. I., and that portion of the Appendix relating to this

chapter, an easy and simple method of solution applicable to

any framed structure having simple reactions, and including
thus all varieties of bridge and roof trusses of single span. In

the Appendix he will find detailed examples calculated to illus-

trate every practical point of importance, and also a full expo-
sition of Bitter's "method of moments." The principles of

this chapter alone will enable him to solve readily, both by cal-

culation and diagram, every case usually arising in practice.

In problems involving the moment of inertia of areas, in the

case of the continuous girder, the braced arch and stone arch,

aS also the suspension system, he will find Chaps. VI., XII.,

XIII., XIV. and XVI. of value, and in the perusal of any or

all of these he will, it is hoped, find no trouble by reason of

logical connection with preceding principles. They are in this

respect, as far as possible, complete in themselves. We may
also call his attention to Chap. XV., upon the stone arch,

though it is to be regretted that the practical importance of the

subject, in the present age of iron, renders the ease with which
it is graphically treated of less importance than formerly. For
his benefit also frequent practical examples are given in detail,

so that in all important applications he can easily select a

parallel case, and follow it out, step by step, in the case in

hand, without studying up the whole process of development
in order to place himself in a condition to make use of the

methods employed. We would also refer him to THE NEW
METHOD OF GRAPHICAL STATICS (Van Nostrand, 1875) a reprint
of a series of articles contributed by the author to Van Kos-
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trand's Engineering Magazine during the present year, where

lie will find such a condensed presentation of the more essen-

tial principles of the subject as will enable him to follow the

practical examples in the present work without the perusal of

the more lengthy preparatory portion here given.
For the student much of the practical applications may well

be at first omitted. Notably Chaps. VII.-XIL, inclusive.

Chaps. I.-IY. and XIII.-XVI. will put him in complete pos-

session of the method, and, moreover, enable him to solve with

ease any structure, including the continuous girder, braced

arch, suspension system, and stone arch, as well as all the more

ordinary forms of bridge and roof trusses, cranes, etc. Indeed,
if the first-named structures, which are of comparatively rare

occurrence, are at first omitted, Chaps. I.-IV. alone will con-

stitute a complete course upon framed structures so far as

usually taught in our schools at the present day. Afterwards,
in practice, and in the solution of the particular problems
treated of, he will, in common with the practical engineer, find

in the other portions of the work and in the Appendix just

such assistance as he needs. We would also call the attention

of the mathematician more especially to the investigation in

Chap. V., Arts. 4-7-51, of the effects of a given recurring system

of moving loads, the analytical treatment of which would be

almost impracticable by reason of the complexity of the for-

mulae obtained, and in this respect certainly worthless, even if

possible, but the geometrical treatment of which gives rise to

some of the most elegant constructions of the graphical statics
;

also to the Supplements to Chaps. XIII. and X1Y., in which

the analytical treatment of the continuous girder and braced

arch is given.

Finally, if our purpose in writing these pages is accom-

plished, the principles and methods here set forth will be found

easily acquired, accurate in their results, and amply sufficient

for the ready determination of the strains in the various pieces
of any framed structure which the civil engineer can legiti-

mately be called upon to design.

With this much of introduction and explanation, we present
our work to the engineering profession in America and to

American technical colleges, in the hope that the spirit which

has led to its production, if not the method of its execution,

may win for it a favorable reception.
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In this spirit and in this hope we may, we trust, be allowed

to appropriate the closing lines of Culmanrts preface
" Und

nunfahre hin gern hdtte ich dich zwn Fundament einer auf
'wissenschaftlicherer J3asis gegrundeten Ingenieurkunde ge-

macht, allein kaum darf ich die Hoffnung hegen, so viel Kraft
in mir zu finden, um das Game dieses umfangreichen fitches

umzuarbeiten : das ist ein WerJc, das mir vor Augen schwebt,

wie einer jener alien mittelalterlichen Dome sich vor dem
Kunstler erhob, der ihn entwarf und der der Hoffnung sich

nicht hingeben Jconnte, ihnje in seiner Vollendung zu schauen.
" Dock es mogen dich Andere benutzen und weiter baueri"

und was ich nicht kann, werden meine Nachganger voll-

bringen.

NEW HAVEN, April nth, 1875.'
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INTRODUCTION.

HISTORICAL AND CRITICAL.

THE subject of Graphical Statics has, since the appearance of Culmann's

work (Die graphische Statik, Zurich, Meyer and Zeller, 1866), excited

considerable attention, but an accurate and just estimate of its methods

and practical value is still wanting. Thus there are some who oppose it;

others willingly accept it as an efficient and valuable aid in practical inves-

tigations of stability ;
still others even profess to see in it a future rival of

Analytical Statics. This last somewhat remarkable claim seems apparently

justified by a passage in Culmann's preface, where it is asserted "that the

Graphical Statics will and must extend, as graphical methods find ever

wider acceptance but in such case, however, its treatment will soon escape

the hands of the practitioner, and it will then be built up by the geometer
and mechanic to a symmetrical whole, which shall hold the same relation

to the new geometry that analytical mechanics does to the higher analysis."

These various and conflicting opinions find their supporters in technical

schools and among engineers throughout Germany.
In the consideration of the subject, we shall endeavor especially to give

an objective presentation, but shall also feel at liberty to present our own

opinions as well, and generally to venture such reflections as seem suited

to throw light upon the matter. For both reasons it will sometimes be

necessary to make apparent deviations, in order to point out the various

fields in which these new investigations take root, to define their limits, and

to decide in what directions and to what extent impulse and sustenance

for further development may exist. In such a manner only can we satis-

factorily ascertain how far the graphical statics may safely count upon
more than a passing recognition and brief existence.

We have therefore to ask of the reader who wishes to obtain a just and

accurate estimate of this new and, as we venture to think, highly important

subject, patience for the following general considerations.

* Ueber die graphische Statik zur Orientirung. By J. I. Weyrauch. Leip-

zig, 1874.
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UPON MATHEMATICAL INVESTIGATIONS IN GENERAL.

Mathematical truths may be attained in two essentially different methods

by synthesis or by analysis, by composition or b}' resolution. In synthe-

sis, we ascend from particular cases to general ones
;
in analysis, we descend

from general cases to particulars. By synthesis we pass from the simplest

or admitted truths, by combination and comparison, to more complicated

phenomena. Analysis seeks to refer back such phenomena to their fun-

damental relations, or to deduce special properties from the general con-

ditions.

The analysis of a phenomena presupposes, then, an accurate comprehen-

sion of all its elements. So far as these last stand in relations of cause

and effect to the whole and its parts, or so far as such relations exist be-

tween the parts themselves, they may be expressed by equations. Thus

the operations which are necessary in analysis become independent of con-

crete phenomena, and are governed only by the laws of abstract quantities

as included by algebra in the widest sense of the word. Algebra, then, is

not analysis itself, but only its instrument, "instrument prccieux et neces-

saire sans doute, parce qu'il assure et fadlite noire marche, mais qui n'a par
lui metne aucune vertu propre ; qui ne dirige point Vesprit, mais que Vesprit

doit dirigeT comme tout autre instrument" (Poinsot, Theorie nouvelle de In

rotation, pre"s a" T Acad., 1834). Ordinarily the higher branches of algebra,

with which numberless really analytical investigations are connected, are

designated as analysis. More properly, all investigations which rest upon

equations of condition may be termed analytical investigations.

Synthetic investigation rests mainly upon geometrical conceptions, and

attains to the knowledge of phenomena through concrete conditions, which

latter may be designated as space relations and processes. Hence the usual

division into analytical and geometrical methods, even in applied mathe-

matics. We have thus with equal appropriateness an analytical geometry
as also a geometrical analysis. When pure geometry (in distinction from

analytical) makes use of the symbols and operations of algebra, it is only
to express with corresponding generality and more concisely than in words
truths attained to by abstraction, and independent of the dimensions of the

auxiliary figure ;
or so to formulate such truths that they may be applied

in analytical investigation. Accordingly, such use of algebraic formulae

has as little effect upon the synthetic process as from the above it would
seem essential to the analytic treatment. In either case, algebra is but the

instrument, the method lies back of and directs it.

If analytical formulae and operations are entirely excluded from the

more complicated geometrical investigations, we are at once restricted to

general laws of metrical relation. There remains only the faculty of
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abstraction and graphical construction. The power of abstraction alone

suffices, indeed, to comprehend in full generality metrical relations in ele-

mentary geometry and its simplest applications, but fails when the relations

sought must be attained step by step by the application of a number of

principles, or in the auxiliary figure by a number of constructions. If,

indeed, we take the relation sought directly from the auxiliary figure

itself, and even if it were possible to take out the required distances with

absolute accuracy, still this result obtained would stand to the general law

desired only in the same relation that the result of a particular numerical

computation does to the more general algebraic formula.

Investigations by the aid of graphical figures can, however, make known

general relations ofform and position, and have in this respect their special

advantage. So far also as by them metrical relations are sought, then, by
the exclusion of algebraic formulae, only the process of deduction the

routine of construction remains of general significance. Sciences, then,

which proceed in this manner, furnish indeed, with respect to metrical

relations, no general laws, but for the deduction of these relations do give

general methods. Ill this category we may place descriptive geometry and

the more recent graphical statics.

IL

ANALYTICAL AND GEOMETRICAL MECHANICS.

It is hardly necessary in these days to call attention to the advantages

<pf a geometrical treatment of mechanical problems. This, however, was

not always the case, and the most important developments of geometrical
mechanics belong to the present century. It is to Poinsot, Chasles, Mobius,

etc., that these developments are due.

By the Calculus of Newton and Leibnitz (1646-1714), and its subsequent

development, analysis became such a powerful instrument that the activity

of mathematicians was for a long time solely directed towards analytical

investigations. The power of analysis was in mechanics carried to its

highest point by Lagrange (1736-1813), in his Mechanique analytique. He
undertook the problem of reducing mechanics to a series of analytical

operations :
" On ne trouvera point de figures dans cet ouvrage. Les

methodes que fy expose ne demandent ni constructions ni raisonnement geo-

metrique ou mecanique, mais seulement des operations algebriques assujeties

a une marche reguliere et uniforme" (Mechanique analytique. Paris, 1788.)

The principle of virtual velocities formed his point of departure. A
number of text-books upon theoretical mechanics still follow the method

of Lagrange.
The revival of pure geometrical investigations by Monge (1746-1818),

the creator of descriptive geometry, and his followers, could not well have

been without its influence upon mechanics. In the year 1804 appeared

the Elements de Stutiqne, by Poinsot, in which, in contrast to Lagrange,
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we find: "
que tons les tlieorernes de la Statique rationelle ne sont plus au

fond que des theoremes de Geometrie." This work was the beginning of a

series of treatises in which the advantages of the synthetic development

and geometrical treatment of mechanics were defended and, by most

important results, strikingly demonstrated.

At this time the views as to the best method of treating mathematical

problems were sharply opposed. Carnot (1753-1823), to whom, however,

the modern geometry itself owes no slight impulse, gives the preference

to analysis. For synthesis
"
est restreinte par la nature de ces procedes ;

elle ne pent jamais perdre de vue son objet, ilfaut que cet objet s'offre tou-

jours a Tesprit, reel et net, aimi que tous les rapprochements el combinaisons

qtfon enfait"
1

(Geometrie deposition. Paris, 1803.) That which here Car-

uot considers as a defect in the synthetic and geometrical method, Poinsot

claims as its special advantage :

" On pent Men par ces calculs plus ou mains

longs et compliques parvenir a determiner le lieu ou se trouvera le corps au

~bout (Kun temps donne, mats ou le perd entierement de vue, tandis qu'on vou-

drait I"observer et le suivre, pour ainsi dire, des yeux dans tout le cours de sa

rotation" (Theorle nouv. d. I. rot. d. corps).

The example of Poinsot found numerous followers. In Germany, Mo-

lius followed with his " Lehrbuch der Statik." Mechanics as well as

geometry thus received enrichment. Mobius gives the preference always

to the synthetic method, and also endeavors to interpret geometrically,

analytically deduced formulae " because in investigations concerning

bodies in space the geometrical method is a treatment of the subject itself,

and is therefore the most natural, while by the analytical method the sub-

ject is concealed and more or less lost sight of under extraneous signs
"

(Lehrl). d. Statik. Leipzig, 1837.)

Even in analytical operations, geometrical considerations came more and|.

more in the foreground. On all sides the development of Kinematics, the

theory of motion without reference to its cause, was prosecuted. But.

neglecting the cause of motion, there remains only its path ;
that is, geo-

metry proper (Kinematical geometry, or the geometry of motion). The in-

vestigations of Chasles, Mobius, Rodrigues, Jouquiere. and others, may yet

be still further pursued ;
and when by the aid of geometry a certain com-

pleteness has been given to the theory of the motion of invariable systems,

the geometrical theory of regular variable systems (to which the flexible

and elastic belong) will be possible. For the discussion of such branches

of mathematics, the synthetic geometry is necessary ;
for their foundation

lies in a theory of the relationship of systems.

The advantage of the synthetic method in mechanics is denied by no

one. Wherever it is possible, we obtain more comprehensive conclusions

as to the nature of the phenomena, while all the properties of the same fol-

low directly from the simple and known truths premised. In analytical

investigations it is necessary, even when definite equations are obtained, to

deduce the actual laws singly and in a supplementary manner, although

they are indeed all contained in the equations themselves.

It is not, however, always possible to preserve the synthetic process

throughout. From the first truth the ways diverge in all directions, and
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a special ingenuity is often needed to reach the goal. Just here analysis

comes to our aid with its rich treasures of developed methods, and here it

is most certainly not for geometry to " undervalue the advantage afforded

by a well-established routine, that in a certain degree may even outrun the

thought itself
"

(F. Klein : Vergleichende Betrachtungen uber neuere geome-

trische Forschungen. Erlangen, 1872, p. 41). Algebraic operations are

thus, however, not the chief thing, but only the instrument a most excel-

lent instrument indeed, which can be almost universally applied, and

which, by reason of its connection with an extensive and independent

mechanism, often needs only to be set in action in order to work of itself.

Geometrical mechanics, moreover, can never entirely free itself from

analytical formulae and operations. For though it may be both interesting

and useful to follow, with Poinsot, the body during its entire rotation, yet

practically this is of minor interest, and the chief problem remains still,
" d determiner le lieu ou se trouvera le corps au "bout (Pun temps donne."

In the present day all those familiar with both methods of treatment

hold fast the good in each
; they supplement each other. Often in the

course of the same investigation we must interrupt the general analytical

process with synthetic deductions, and inversely. Thus we may well close

these considerations with the sentence with which Schell begins his
"

TJieo-

rie der Bewegung und der Krafte
" both methods, the analytic and the

synthetic, can only, when united, give to mechanics that sharpness and

clearness which at the present day ought to characterize all the mathemati-

cal sciences.

in.

GEOMETRICAL STATICS.

Statics is a special case of dynamics, though earlier treated as indepen-
dent of the latter. The principle of d'Alembert furnishes the means of

passing from one to the other. In technical mechanics the distinction is

still preserved, and indeed, in view of the distinct branches in which the

applications on either side are found, not without propriety.

After the mechanics of the ancients, as comprised in the mathematical

collections of Pappus, the first great step towards our present geometrical
statics was made by Simon Stevinus (1548-1603), when he represented the

intensity and direction of forces by straight lines. Stevinus himself gave
a proof of the importance of his method, in the principle deduced from it,

that three forces acting upon a point are in equilibrium when they are pro-

portional and parallel to the three sides of a right-angled triangle.

A main discovery was the parallelogram of forces by Newton (1642-

1727). The composition of two velocities in special cases was long famil-

iar. Galileo made use of it for two velocities at right angles, and exam-

ples also occur in Descartes, Roberval, Mersenw, and Wallis, but the funda-

mental principle was first established when Newton replaced the theories
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of special by that of universal causation (Philosophic naturalis princijna

mathematica. London, 1687).

Varignon in his "Projet d'unenouvelle mecanique,'
1
'
1 in the same year (1687),

and independently of Newton, applied for the first time the general princi-

ple of the composition of motions. From this he passes, in the Nouvelle

mecanique ou statique, dont le projet fut donne en 1687 (published after

his death, Paris, 1725), by means of the axiom that "
les effets sont toujours

proportionnels d leurs causes ou forces productricss
" to the composition of

forces also.

The Statique of Varignon is purely geometrical. He postulates nothing

beyond books 1-6 and 11 of Euclid, and even explains the significance of

+ and signs. In this work, the first founded upon the parallelogram of

motion and of forces, we find also the force and equilibrium polygons

(Fimiculaire, Section II.), to the application and development of which

almost the whole of Graphical Statics is to be attributed. Varignon recog-

nized the value of the equilibrium polygon, and gave it as the seventh of

the simple machines.

After the great Interim of Geometry, Monge wrote a Traite elemental

de Statique (Paris, 1786). The work claims to contain for the first time

everything in statics which can be synthetically deduced. In a later edi-

tion we learn that synthetical statics must be taken up as preliminary to

analytical, just as elementary geometry before analytical geometry. Thus

the work of Monge contains the necessary preparation for Poisson 's "Traite

de mecanique
"

(Paris, 1811).

The greatest influence upon the development of gepmetrical statics was

exercised by Poinsot. By the introduction of force pairs, he solved in the

most elegant manner the fundamental problem of any number of forces

acting upon a body (Elements de Statique, Paris, 1804, and Memoire sur

la composition des moments et des aires dans la mecanique}.

Chasles completed the solution by the proof that the contents of the

tetrahedron, which is determined by the resultant forces, is constant, how-

jever the forces may be composed.
In the hands of Mobius, geometry and geometrical statics were most com-

pletely developed.

Of the greatest importance, for later applications, was the introduction

of the rule of signs.

The germ of this had existed already in the preceding century.* Nobius

recognized its significance, extended it to the expression of the contents of

triangles, polygons, and three-sided pyramids, and applied it systemati-

cally (Barycentrischer Calcul. Leipzig, 1827).

A new impulse, extended field of action, and numerous additions were

given to geometrical statics by the Graphical Statics of Cidmann.

* Mobius alludes to this, and we find, for example, in Kastner (Geometrische

Abhandlungen, I. Saml., 1790, p. 464), the equation AT~B + B~A" = o.
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IV.

THE GRAPHICAL CALCULUS.

The most extended applications of statics are in the field of engineering.

Here, not only general properties of form and position are required, but in

a large number of cases numerical relations are also necessary. General

results of the latter character can, as we have seen, only be embraced by

algebraic formulae (I). The pure graphical theory of construction is there-

fore in this respect lacking in completeness, as it is unable to furnish gen-

eral metrical relations.

The practical engineer has almost always, however, to do with special

problems ;
dimensions and acting forces are numerically given. Geometry

in such cases could give no general relations, because the results desired

are the consequences of the special proportions of the figure. In any de-

terminate case, however, we may obtain a result holding goodfor that case,

and it only remains to show how generally to obtain such a result. The

graphical calculus treats of such methods, and so, although not exclusively,

does graphical statics. As soon now as practical use is made of the actual

proportion^ of the figure, everything depends upon the exactness of the

drawing. One condition for the application of the graphical method is,

therefore, skill in geometrical drawing a requisition, indeed, which the

practical engineer can most readily meet.

The idea at bottom of the graphical calculus is simple. The modifica-

tions of numbers in numerical calculations correspond always to similar

modifications of the quantities represented by these numbers. The measure

of a quantity can be as well given by a line as a number, by putting in

place of the numerical the linear unit. In order for a graphical calculus,

then, the modifications of lines answering to corresponding numerical

operations are necessary, and these are furnished by geometry. They con-

sist of graphical constructions, and rest upon the known properties of

geometrical figures. The scale furnishes the means of converting directly

any numerical quantity into its corresponding linear representation, and

inversely any graphically obtained result can be at once transformed into

numbers.

The graphical determination of desired or computable numbers is natu-

rally nothing new. From the " Traite de Gnomonique" of de la Hire

(1682) to the " ffeometrie descriptive" of Monge (1788), many examples
are to be found. The graphical calculus, however, goes further than this.

It aims to found a method, a routine, which shall not only apply to bodies

in space, but which shall also, like the arithmetical or algebraic calculus,

be independent of concrete relations and of general application. It seeks

further to obtain its results (products and powers) in the shape of lines

convertible by scale into numbers. (Hence the important part which area
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transformation plays in the graphical calculus.) Such was the problem

which Cousinery proposed, and whose solution he attempted in his " Calcul

par le trait,"
1 '

(Ses Elements et ses applications. Paris, 1839).

Cousinery applied the graphical calculus to powers, roots, proportion

and progression; to the measure of lines, surfaces, cubes, graphic inter-

polation, and the strength of retaining walls. The presentation is nat-

urally by no means complete, and labors also under a prolixity and

minuteness of 'detail to which the results obtained are by no means com-

mensurate. It sounds somewhat comic when Cousinery, in his " Calcul par

le trait," claims the then already-existing graphical solutions of Poncelet

(" Memoire sur la stabilite den revetements, in Memorial de Toff du genie ")

as an elegant example of the application of his graphical calculus.

While Cousinery thus sought- to apply geometry in a direction where

until then analysis had held sway, he acted in entire accordance with the

spirit of his age, though without making use of those means for aid which

lay at his disposal.
" Without effect upon him," says Culmann, " were

the researches of Steiner, already published in 1832, as well as those of

his predecessor; and instead of simply premising the elementary prin-

ciples of the modern geometry, he laboriously sought to deduce them in-

dependently by the aid of perspective." The works, at least, of the French

predecessors of Steiner were, at any rate, well known to Cousinery. In his

preface we read: "Peut-gtre mSine nos efforts eussent-ils 6t6 complete-

ment iufructueux, sans les ressources que nous ont procurers et les annales

de M. Gergonne et les travaux de M. Brianchon, et ceux plus rScents de

M. Poncelet. Nous avons envers M. Chasles une obligation encore plus

droite, car outre les pr6cieux documents que renferme son ' Histoire des

methodes en geometric? nous avons a lui faire agre"er un tgmoignage par-

ticulier de reconnaissance pour la maniere dont il a bien voulu mentionner

nos premiers essais sur le systeme de projection polaire."

Why Cousinery made use of perspective and not of the modern geome-

try, is easily understood. The development of geometry at that time, as to-

day, proceeded in various almost independent directions, and Cousinery
himself had the pleasure of seeing his

" Geometrie perspective
"

(Paris,

1828) designated by the reporters for the Academy, Fresnd and MattMeit,,

as new and ingenious, as well as favorably noticed by Chasten.* He

sought, therefore, naturally to develop and render fruitful his own method,
so much the more as the true significance and value of the various growing
branches of geometry could not then, as now, be correctly estimated. Ac-

cordingly, the Ing6n5eur-en-chef. B. E. Cousinery, wrote avowedly for his

colleagues, and did not feel justified in directly premising a knowledge of

the newest investigations, more especially of his own.

i We have noticed the above somewhat in detail, because it bears directly

* Its newness, at least, is not without doubt. According to Fiedler, the

principles are completely given in Lambert's celebrated work,
" Die freie

Perspcctire" (Ziirich, 1759). Poncelet also takes issue with the estimation of

the " Geometrie perspective'
1

by Chasles (" Traite des propr. prqj." II.
, ed.

1865, p. 412).
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upon a point of our discussion
;

for the introduction of the modern

geometry in the graphical method by Culmann, is still, thirty years after

Cousinery, a chief hindrance to its rapid spread.*

After Cousinery, no one occupied himself with the graphical calculus

till Culmann gave it a place in his Graphische Statik, The presenta-

tion is here far better, and especially shorter. The rule of signs, which

was unknown to Cousinery, is at once brought out. Instead of such

long and tedious applications as the graphical interpolation, a few

examples from engineering practice are given, among which we may
especially notice earth-work calculations. In the extensive earth works of

roads, canals, and railways, the method shows not only most plainly the

. extent and best arrangement of transport, but also allows, with the aid of

the planiinctre, the cost of transport to be determined.

As to the rest, it would appear as if the graphical calculus should play
an important part in engineering practice. This circumstance, as well as

the interesting problems which present themselves in connection, has

gained for the Arithmography many friends. Several publications

have since sought to win for it a wider recognition without furnishing

anything essentially new. [ff. Eggers :
"
Grundziige einer graphischen

Arithmetic," Schaffhausen, 1865. J. Schlesinger :
" Ueber Potenzcurven,"

Zeitschr. d. osterr. Arch. u. Ing. Ver., 1866. E. Jdger :
" Das graphischen

Rechnen," Speier, 1867. K. von Ott :
"
Grundziige des graphischen Rech-

'nens und der graphischen Statik," Prag, 1871.]

Recently the method of the graphical calculus has been applied to Dif-

ferentiation and Integration. A treatise by Solin shows the first exact, so

far as possible in a construction, the last approximate only (" Ueber graph.

Integr. ein Beitrag z. Arithmographie, Abhand. d. konigl. bohm. Gesellsch.

d. Wissenbach." VI. Folge, 5 Bd. Separate reprint by Rivnac, Prag,

1871). It is to be remarked also that examples of double integration and

differentiation were given by Mohr in 1868. The graphical construction

of the elastic line, and the determination of the moments at the supports

of a continuous girder, are essentially examples in point (Mohr: "Bei-

trag zur Theorie der Holz und Eisenconstructionen," Zaitschr. d. Hannov.

Ing. und Arch. Ver., 1869; or W. Hitter: "Die elastische Lime," Zurich,

1871.)

As to the importance of the graphical calculus as an independent study
or discipline, it is, as we believe, often exaggerated. The theoretical value is

but little, and for graphical constructions, as given by the graphical calculus,

offer in no respect anything new. That which pertains to practical applica-

tions may be easily based directly upon geometry, and is noAvhere found

as a consequence of the method itself. If it is considered advisable to call

special attention to a few general points before making such applications,

all that can be desired can be easily presented in ten or a dozen pages
octavo.

* See Preface
;
also Chapa VII. and VIII. of this Introduction.
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V.

GRAPHICAL REPRESENTATION.

Graphical representation, in the widest sense of the word, includes every

visible result of writing or drawing. The written sentence is the graphi-

cal representation of a thought the drawn line the graphical indication of

an idea. In such generality we naturally do not here regard graphical

representation. In a narrower sense we understand the graphical represen-

tation of the diversity or dependence of numerical quantities. In this

sense we cannot speak of the graphical represention of pure geometry.

This last was introduced into analysis by Vieta (1540-1603). Here the

figure merely aids the conception, while the equation embraces the charac-

teristics of the phenomena (I.), and ensures the independent character of

the drawn lines. Thus the clearness of geometry is combined with the

fruitfulness of analysis.

If the graphical representation is constructed from a number of suitably

chosen and calculated values, the intermediate values can be directly meas-

ured and. by means of the scale, reconverted into numbers. The graphical

representation, then, replaces numerical tables. Illustrative examples often

occur in practice. 'We instance, for example, the graphical representation

of maximum moments and shearing forces in the continuous girder. If

the several values are calculated from a formula, their graphical union gives
a simultaneous view a picture of the law which the formula represents.

If these values are merely known observed, for example their graphical
combination may enable us to deduce the law which connects them. Thus
the graphical representation is of assistance in the deduction of empirical

formula?, and indirectly in the discovery of exact relations. Illustrations

of such application occur frequently in applied mathematics, especially in

astronomy and meteorology.
In this connection we may also remark that graphical representation

plays also an important part in statistics. By its aid a comprehensive view
is obtained of a series of separate results. Or it may be applied to still

higher problems for example, from comparison of simultaneous but differ-

ent series of observations to determine an inner connection.

In engineering practice, graphical representations have in recent times

notably multiplied. All graphical constructions, so far as they do not de-

pend upon analytical formulae, and therefore are not directly given by
geometrical laws, are nothing more than consequences of graphical repre-
sentation.
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VI.

GRAPHICAL STATICS.

The few text-books upon graphical statics and the more numerous works

upon its applications, afford us no definition, and can afford none, because

neither the method nor scope of this new study are anywhere sufficiently

indicated.

If, following Culmann, we speak of it in contradistinction to the appli-

cations of a pure graphical statics, we may define it somewhat as follows :

Graphical Statics comprises the theory of those geometrical constructions which

occur in the graphical solution of statical engineering problems; it treats

further of the general relations deducible from such constructions. This

limitation, so far as it does not follow from the preceding, we shall seek

in the course of these remarks still further to establish.

Graphical representations of analytically obtained results have, as has

been already noticed, long been used in engineering practice. They served

also the purposes noticed in the preceding chapter. Often also certain

values, whose analytical determination is somewhat complicated, have

been sought by graphical constructions. Examples of this may be found

in many text-books upon the theory of structures, and we notice only, as

one of the most notable of recent date, the construction of lever arms and

limits of loading in A. Hitter's "Theorie und Berechnung eiserner Dach
und Briickenconstructionen "

(Hannover, 1862). Poncelet applied analy-
sis in general to practical investigations, but sought in several complicated
ca?es to elucidate the deductions of formulae by geometrical constructions,

and to deduce graphical solutions from analytical relations. This pro-

cedure found considerable acceptance, and the investigations of Poncelet

were afterwards resumed upon more general assumptions by Saint Quil-

hem (Memoire sur la poussse des terres avec on sans surcharge, ann. des

ponts et chams., 1858, sem. 1, p. 319).

The first, however, to give pure geometrical determinations of stability

in structures was Cousinery. He gave a number of examples as applica-

tions of his graphical calculus, but his ideas appear to have found Jn

France little acceptance. On the other hand, the graphical construction of

the curve of pressure in the arch by Mery (Memoire sur VequilUiredesvoiites
en bfirceau ann. d. ponts et chauss., 1840, sem. 1, p. 50) was extensively

used, and has since been extended by Durand- Claye to iron arches also

(Ann. d. ponts et chauss., 1867, sem. 1, p. 63, and 1868, sem. 1, p. 109).

Special prominence was given to graphical investigations of stability by
Culmann's "

Graphischc Statik "
(first part, Zurich, 1864, entire work,

1866
;
second edition, 1st part, 1875.)

This work of Culmann must be considered as original in all those parts

relating to structures. Poncelet and Cousinery, beyond the general idea,

furnished only unessential contributions. Culmann recognized the fruit-
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fulness of the relations between the force and equilibrium polygon, upon

which most of the practical solutions depend. He developed these rela-

tions, applied them in the theory of moments by the introduction of the

closing line (Schluss Linie), and, accepting the rule of signs, obtained gen-

eral points of view for the discussion of the most diverse figures which

could arise in the same problem. In this and in many other respects. even

geometrical statics can profit from Culmann's work, as, for instance, in the

investisation of the protective relations between the force and equilibrium

polygon.
The fundamental importance of the force and equilibrium polygon was

also recognized by those who, after Culmann, occupied themselves with

the graphical method. Here we may notice two works of special influence

upon the development of the graphical statics those of Mdhr and Cre-

mona. The idea of Mohr, that the elastic line is an equilibrium polygon or

curve (" Beitrag zur Theorie der Holz und Eisenconstructionen." Zeitschr.

d. Hannov. Ing. und Arch. Ver., 1868) is of special significance for graphi.

cal statics.

That from it Mohr obtained the graphical determination of the moments

at the supports of a continuous girder, is an example both useful as well

as interesting. Already it has been endeavored to utilize the same idea in

other cases (Frarikel :
" zur Theorie der Elastischen Bogentrager,

1 '

Zeitschr.

d. Hannov. Ing. u. Arch. Ver., 1869, p. 115), and by it an impulse has been

given to similar investigations.

Cremona has kept more especially in view the geometrical side of graphi

cal statics. Starting from the theory of reciprocal polyhedrons, he gave
the reciprocal relations between the force and equilibrium polygon with a

generality and elegance to be expected from this distinguished Italian

mathematician (Le figure reciproche nelle statica graficu. Milan, La'nger,

1872). By this investigation the theoretical development of the graphical

statics is essentially anticipated.

It was under the most unfavorable circumstances that Culmann intro-

duced his graphical statics in the engineering department of the Zurich

Polytechnic in the year 1860. It was finally, indeed, admitted as a regular

study, but not the geometry of position which he premised. It was not

till 1864 that this last was given in a series of lectures by Reye, and then

the time at disposition for both courses was insufficient. Meanwhile the

method spread, crept into the construction department of the engineering

school, and wherever it came, even in the other departments of the Poly-

technic, gained friends. Finally, at the present time, it is to be found, to-

gether with the modern geometry of position, upon which it was based, in

every Polytechnic throughout Germany.

According to the above given definition of graphical statics, the methods

of the graphical calculus, as far as applied in statical investigations, may
also be regarded as belonging to graphical statics, and justly so : for

these methods follow directly from geometrical principles, and can be ap-

plied by any one acquainted with geometry, without being collected under

the special name of the "
graphical calculus." Thus, for instance, Bausch-

inger, in his " Elemente der graphischen Statik" (Munchen, 1871), disre-
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gavds entirely the graphical calculus, and also cuts loose from the modern

geometry ;
he develops the elementary principles of the subject in a logi-

cal and easily comprehended, if not purely geometrical manner, and thus

brings the subject \vithin the reach of those, persons for whom it seems so

especially designed. The work is remarkable for clear presentation, but

expressly avoids all special investigations and practical applications, for

which it is merely intended to prepare the way. In the present work, also,

a similar plan is pursued, but all such applications as are of most value to

the engineer or mechanic find likewise a place. Thus, combining the

method of presentation of Bauschinyer and the practical applications of

Culmann, it bas been endeavored to make it a practical manual, as well as

a text-book of elementary principles to serve the wants of the practical

engineer, and also meet the requirements of the engineering student. How
far this twofold design has been realized, the judgment of the reader -

must decide.

VII.

THE METHODS AND LIMITS OF THE GRAPHICAL STATICS.

The most^ perfect method of the graphical statics is the synthetic or geo-

metric, since in geometrical statics the solution must always, when possi-

ble, rest upon pure mechanical or geometrical reasoning. Culmann pre-

sents his graphical statics to practitioners ." as an attempt to solve by the

aid of the modern geometry such problems pertaining to engineering prac-

tice as are susceptible of geometrical treatment."

The graphical statics, however, is not in and of itself the product of

endeavors to make the modern geometry of service in applied mechanics
;

graphical solutions merely were required. How to obtain these, was
another question. Thus it is that Poncelet's solutions consist almost en-

tirely of graphical representations of analytical relations
;
that Cousinery

avoided all use of formulae; that Culmann made use of the new geometry
wherever it was possible ; that Bauschinger and others make use only of

the ancient geometry ;
and that the latest graphical solutions in a certain

degree, those of Mohr also entirely in the spirit of Poncelet's, rest again

upon analysis. The pure geometric solution is, indeed, desirable, but is not

always attainable.

If now we review all the cases in which direct and exclusively geomet-
rical solutions are not possible, we see at once that this occurs when it is

required to make use of the physical properties of bodies, as elasticity, co-

hesion, etc. Why ? The actual condition of a body after equilibrium is

attained, is a consequence of the motion of a variable system of points.

The theory of the motion of variable systems has, however, by no means, as

yet, been brought to practical efficiency (II.). We are therefore obliged to

start from an hypothetical condition or state of the body (in the theory of

flexure, for instance, we rest upon the assumption that all plane cross-sec-

ticns made before the action of the outer forces remain plane after their
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action). To deduce now from this general condition the special relations

necessary for solution, demands an essentially analytical process (I)

Hence the dependence of the graphical solutions in such cases upon ana-

lytical relations relations which, when the body is assumed to be rigid,

as in the arch, in frame work, or the simple girder, no longer exist.

The sphere of action of an independent graphical statics is. then, con-

fined to those problems which, under the assumption of inflexibility, are

determined by a sufficient number of conditions. Beyond this point we

have chiefly graphical interpretations only.

It has been already noticed that graphical statics, without the application

Of algebraic operations, can furnish no general laws (IV.). From relatively

simple figures, indeed, here and there, general formulae of metrical relations

have been derived, as is, in fact, not theoretically impossible (I.), but such

'formulae were always previously known. Such a result holds, in general,

immediately good only for that form of figure which has been discussed,

or, according to the terminology of Carnot, only for the existing
"
primi-

tive figure," and must be proved or transformed for all
"
correlative

figures
" which can occur hi accordance with the conditions of the prob-

lem. When the graphical investigation is guided by analytical opera-

tions, it is these last which render possible the deduction of general metri-

cal relations.

Thus, in the theory of structures, there remains subject to pure graphical

treatment only the general relations of form and position. Here we have

the elegant deductions upon unfavorable loading, and here the graphical
method often attains its end in a more elegant manner than the analytical.

A complete exploration and development of such form and place relations,

without a geometry ofposition, would evidently be impossible (IX.). The
scientific future of the graphical statics, therefore, rests essentially upon
the influence of the modern geometry. To endeavor to separate the higher

geometry from the graphical method would be as unwise and fruitless as

the attempt to exclude the higher analysis from analytical investigations.

As, however, for certain purposes an elementary presentation of analytical
theories relating to engineering practice will ever be acceptable, so also an

elementary development of graphical methods is not without justification,

the more so as long as the modern geometry itself is not sufficiently well

known.

Culmann says of the graphical statics :
"
It includes, thus far, only the

general part which we need in the investigation of problems in construc-

tion, but it must and will extend, as graphical methods find ever wider

acceptance. Then, however, it will escape the hands of the practitioner,
and must be built up by the geometer and mechanic to a symmetrical
whole, which shall bear the same relation to the new geometry that analyti-
cal mechanics does to the higher analysis." Such an estimation does not

appear to be entirely correct. It is geometrical statics (or mechanics) for
which the above relation may subsist, and to this, indeed, Culmann's valu-
able work has itself' greatly contributed. It was, moreover, developed
quite independently of and much earlier than graphical statics (III.). In
this respect, therefore, the spread of graphical methods is of less impor-
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tance than that of geometrical views and knowledge; for when practical

calculations are disregarded, and the deduction of general truths alone

occupies us, then, first of all, we must exclude from the drawn figure all

*!> <-i<il relations that is, strike out of graphical statics the essentially

graphical part. A truth comprehended only in the abstract holds good
for all figures which can be drawn in accordance with the given condi-

tions.

We place, then, in one line geometry and geometrical statics (mechanics).

From geometry we obtain a method of construction, or descriptive geome-

try, which finds its practical applications ifl architecture and machine

drawing. From geometrical statics we obtain also a construction method

or routine viz., graphical statics which finds its practical applications in

the graphical calculation of structures and machines. Both descriptive

geometry and graphical statics have still, with reference to these practical

ends, to develop and make use of the general relations which subsist be-

tween the geometrical constructions to which they give rise, and thus each,

according to its means, contribute to the discovery and spread of geo-

metrical and mechanical truths.

From this co-ordination of descriptive geometry and graphical statics

we must not, however, infer an equal importance ; for, while in geometri-
cal drawing we have always to represent an ideal image, and the graphical

method is therefore directly suggested, we have for statical calculations

the analytical process also at our disposal, and everything depends then

upon the relative advantages and disadvantages of the graphical and ana-

lytical methods. We have thus noticed all the most important points

which occur in a theoretical consideration, and there only remains to make
a comparison from a practical standpoint (X.).

VIII.

THE MODERN GEOMETRY.

Geometry treats of figures or constructions in space. These figures and

their properties are not always regarded and treated in equal extent and

generality.

Geometrical knowledge found its origin in practical needs, and the

ancients confined themselves almost exclusively to special investigations

of individual figures and bodies of definite form, such as presented them-

selves to the eye. In the phorisms of Euclid (-285), according to Pappus

(end of the fourth century), the mutual relations of the circle and straight

lines were, indeed, given with a certain degree of completeness, but these

have not come down to ns.

Properties thus determined had naturally only a limited significance,

and could neither count upon permanence nor give satisfactory conclu-

sions. Investigators sought, therefore, assistance where it was best afforded,

in analysis. This was, in the sixteenth century, by the algebra of Vieta

(1540-1603), notably enriched.
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From this period geometry, for a long time, served merely as an aid to

analysis, interpreting graphically its results (V.). From this union the

greatest advantages were derived, .as analysis led to the infinitesimal cal-

culus of Newton and Leibnitz, and geometry to the analytical geometry of

Descartes (1596-1650).

But the extension and generality which geometrical truths received by

this great creation of Descartes was essentially due to analysis. Desargucs

(1593-1662) and Pascal (1623-1662) extended pure geometrical considera-

tions, and made the first step towards the modern geometry when they

regarded the conic sections is projections of the circle, and deduced the

properties of the first from those of the last. Then De la Hire (1640-1718),

Le Poiore (1704) and Haygens (1629-1695) occupied themselves with geo-

metrical investigations. While the two first developed the methods of

Desargues and Pascal, Huygens and, later, Newton (1642-1727) applied

pure geometry in optics and mechanics. Soon, however, the Calculus of

Newton and Leibnitz (1684 and 1687) showed itself so wonderfully fertile

in analytical geometry, that geometry proper was put in the background.

Only a few, as Lambert (1728-1777), still regarded it with favor.

Then appeared Monge (1728-1777), and gave the impulse to a complete

revolution in geometrical views, and to the reconstruction of the science

upon a new basis. In his Lemons de Geometric descriptive (Paris, 1788), all

those problems previously treated in a special and uncertain manner in

stereotomy, perspective, gnomonics, etc., were referred back to a few gen-

eral principles, and, without the aid of analysis, the most important prop -

erties of lines and surfaces were deduced. "While descriptive geometry

taught theTelations between bodies in space and drawn figures, it strength-

ened the power of abstraction ; introducing into geometry the transforma-

tion of figures, it gave to its deductions an advantage till then possessed

only by analysis; and while, finally, it owed its comprehensive results to

the application of projections, it pointed the way for the further develop-

ment of geometry itself.

Meanwhile, in the fiald of analytical geometry, the conclusion had been

reached that the desired truths admitted of a still more general compre-
hension. All properties had been obtained only with respect to and by
means of a determinate co-ordinate system. But already Godin (1704-

1760) had announced "
que l"art de decouvrir les propr ietes des courbss est

d proprement parler, Tart de changer le systems de co-ordonnees" (Traite dcx

proprietes communes d toutes les courbes). This idea Carnot seized upon
(1753-1823), and in the sixth chapter of his Geometric deposition (Paris,

1803) he sought to obtain a more general comprehension of figures by

analysis, and to avoid the indeterminancy of this last by the introduction

of the idea of position, and by many solutions after the method already

pointed out by Liebnitz and d'Alembert.

Now began a veritable race in the condensation and promulgation of

geometrical truths, in which the pure geometrical method obtained the

palm. The scholars of Monge Brianchon, Servoi*, Chasles, Poncelet, Ger-

gonne working with him and in his spirit, filled the Aimales dcs mathe-

matiques and the Correspondence sur Fecole poll/technique with new re-
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suits the two last named discovering the general law of reciprocity or du-

ality.

The foundation proper of the modern geometry was laid by Poncelet in

his Traite des proprietes projectivesdes figures (Paris, 1828): "Aggrandir les

resources de la simple Geometrie, en generaliser les conceptions et le langage or-

dinairement assez restreints, les rapprocher de ceux de la, Geometrie analytique,

et surtout offrir des moyens generaux, propres d demontrer et dfaire decouvrir,

d'une manierefacile, cette clause de. proprietes dont jouissent lesfigures quand
on les considere d'une maniere purement abstraite et independamment d'au-

cune grandeur absolue et determinee, tel est Vobjet qu'on s'est specialement

propose dans cet ouvrage."

The new ideas found in Germany especially fruitful soil. Mdbius,

PlilcJcer, Steiner, Grossman, and many others, proceeding in part from

entirely different points of view, opened out an abundance of new direc-

tions which have not yet been thoroughly explored, and which, in union

with other investigations, have caused a thorough change in our concep-

tions of space relations, whose latest phases are indicated by the names of

Riemami, Helmholtz and Lie-klein.

In this development period, also, still existed the two parties in analyti-

cal and synthetic, or pure geometry. Plucker held the analytical relations

as the most general, and which were with advantage to be illustrated and

interpreted geometrically ;
while Steiner recognized in the space figure

itself the true object and most efficient aid of investigation. Both direc-

tions the modern analytic and synthetic lead naturally to the same results.

"With reference to the methods, however, they diverge the nearer the ideas

and transformations of geometry approach the generality and ease of the

algebraic method, thus rendering possible an abandonment of this last.

Thus, while analytical geometry, through the theory of determinants of

Hesse, came into ever closer connection with analysis a direction in which

English and Italian investigators as Salmon, Cayley, Cremona brilliantly

assisted, the Erlangen Professor von Staudt cut loose from algebraic formu-

lae and metrical relations, and gave us the geometry of position (Narnberg,

1847, Beitr. z. Geom. d. Lage).

After von Staudt, the strict geometry of position remained a long time

disregarded, while the synthetic geometry of Steiner has enjoyed, without

intermission till the present day, a special preference on the part of mathe-

maticians. One reason may indeed be that mathematicians take little in-

terest in an independence of geometry, to which analysis can lay no claim
;

but another, still more potent, is the extremely condensed, almost schematic

presentation of von Staudt, which has not exactly an encouraging effect

upon every one.

Culmann gave the impulse to a change in this respect. In his graphic*]

statics he rests directly upon the work of von Staudt, and, with something

more than boldness, assumes a knowledge of the geometry of position

among all practical men. Such a course was not indispensable for the

foundation of his method, and impeded the spread of the graphical stat-

ics
;
but by it the geometry of position gained. This last had next, of

necessity, to be introduced into the Zurich Polytechnic, and thus arose the
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first, until now, only complete text-book upon the subject, the " Geometric

der Lage," by Reye (Hannover, 1868), as the direct result of the graphical

statics of Culmann.

Since then, the modern geometry has been introduced into all technical

institutions throughout Germany, and thus placed at the disposal of the

arts and sciences.

As, according to its founder, Poncelet, it reaches the highest range of

speculation, so also in the most practical relations it acts to simplify and

condense :
" Pen a pen, les connaissances algebriques deviendront mains in-

dispensables, et la science, reduite a ce qu'elle doit etre, a, ce qa'elle devrait etre

dejd, sera ainsi mise a la portee de cette classe d'hommes, qui n'a que des mo-

meatsfort rares a y consacrer"

[For illustrations of the method of the modern geometry, the reader may
consult the Appendix to this chapter.]

IX.

THE MODERN GEOMETRY IN ENGINEERING PRACTICE.

One who should infer that a science created thus from its very inception

with reference to the needs of practice* must have found access, above all,

in technical circles, would be much mistaken. As Culmann sent out his

graphical statics, deep silence prevailed, and if the modern geometry ap-

peared here and there in the lecture plan of one and another polytechnic, it

was, without doubt, due to the zeal of some enthusiastic privat decent who
had undertaken the thankless task of holding forth to empty benches.

Whence came this indifference to a discipline proceeding from the Ecole

polyteclinique? It is hard, indeed, to find a sufficient reason. We often

hear it said that by reason of the colossal extension which engineering
sciences have experienced, students are already overburdened. Most true !

and it is just here that the modern geometry comes to our assistance. It

is precisaly to this that the learned critic of Monge, Dupin, alludes : "II
semfiie que dans Vetat actuel des sciences mathematiques U seul moyen d'em-

pecher que leur domaine ne devicnne trop taste pour notre intelligence, c'est

de generaluer de plus en plus les theories que ces sciences embrassent, afin

qu'tfn petit nombre des verites generates et fecondes soit dans la tete des

fiommes T1

expression abregee de la plus grande variete desfaits particuliers."

The modern geometry in its present form starts with a small number of

elementary constructions whose properties are first set forth, and then, pro-

ceeding from these by combination and comparison, it covers the entire

department of space. The engineer, during and after his preparation, has

to do with space problems, with geometrical principles and constructions
;

* Poncelet himself set upon the title-page of his work :

"
Outrage utile d

ceux qui s'occupent des applications de la Geometrie descriptive et cFoperations

geometriques sur le terrain."
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"how many superfluous definitions and demonstrations could not be

spared, if they were already completely comprehended and recognized by
the scholar as parts of a higher whole" (Cuimann "Die Graphische

Statik"). At no very distant day it will no' longer be possible to read a

scientific work upon applied mathematics without familiarity with- the

principles of the modern geometry.* Permitting pure graphical applica-

tions, without the aid of analytic symbols, it forms the common point of

view for descriptive geometry, practical geometry, and graphical statics.

Descriptive geometry existed before the modern, and this last has sprung
from it. Now, reversely, the geometry of position comes to the aid of

descriptive geometry, and offers in return its most fruitful principles and

efficient aid. Thus in descriptive geometry we may refer to the works of

Pohlke, Schlesiiiyer, and Fiedler. The effect of the geometry of position in

this direction to simplify and condense may be seen from the work of

Staudigl (" Ueber die Identita't von Constructionen in perspective, schiefer

und orthogonaler Projection "), where it is proved that "
all problems of

the descriptive geometry, in which neither linear nor angular measure are

considered therefore all problems which belong to the geometry of posi-

tion can in similar manner and by precisely similar constructions be solved

as well in perspective as in oblique and orthagoual projection." In shades

and shadows and in geometrical drawing, Burmeister and Paulus owe to

the modern geometry the simplicity of their constructions.

In the department of practical geometry also, in geodesy, perspective,

surveying, we mark the influence of the modern geometry in the works of

Mailer and Spangeriberg, of Franke and Baur.

In mechanics and physics, we see it again in the works of Lindemann,
Burnieiater and Zech.

PRACTICAL SIGNIFICANCE OF THE GRAPHICAL STATICS.

We have already remarked (VII.) that the importance of graphical

statics is in great part dependent upon its advantages as compared with

the analytical method, and have reserved for this place a comparison from

a practical point of view.

Here, first of all, we have to notice the independence of the graphical

construction of the regularity or irregularity of the given relations.

Whether the forces are equal or not, whether they act at equal or varying

distances, even their relative position, are matters of indifference. Centre

of gravity, central ellipse, kernel for all, even the most irregular figures,

are found in similar manner, with equal ease, even when exact analytical

solutions are hardly conceivable. Thus a process, a routine almost

mechanical is rendered possible in many investigations of stability, with-

out losing sight of interior relations
;
for in the repeated and independent

compositions of the forces we always perceive the origin, connection and

* Well illustrated in Gillespie'a Land Surveying. New York, 1870.
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reason of the result obtained, which, in the substitution of numbers in a

formula, is not always the case.

With this advantage goes hand in hand a disadvantage. This very

regularity of the process is a consequence of its special, we might almost

say numerical, character (I.). In a numerical analytical example greater or

less regularity has also but little effect. This numerical character has also

for consequence that we can never attain to general laws and relations

(IV., VII).

The practical engineer becomes with time ever more familiar with the

dividers and rule, while facility in analytical operations gradually disap-

pears. A graphical construction once completed is not easily forgotten, or

a single glance at a similar figure suffices to recall the whole process. It is

indeed easy in clearly given formulae to substitute special numerical values ;

but formulae unfortunately are not always clearly given, in some cases can-

not be so given, without presuming upon the thorough familiarity of the

reader with the processes involved; these and the very many and various

systems of notation in use leave to the constant, easily acquired and

remembered graphical solution many advantages.

But here we may remark that graphical solutions can only be easily

acquired, retained or quickly recovered when the constructions are based

upon methods purely geometric, and not when they are simply the interpre-

tation of previously obtained analytical results. In the latter case we
must recall the process of development of the formula as well as the

graphical construction, and the method is thus too often confusing instead

of simple.

Often it is desired to make visible the results of an investigation, as in

the case of the arch, where the graphical method is especially advan-

tageous, and has in France been long used (VII.).

Errors relating to the mutual relation of strains are more easily discov-

ered in graphical solutions than in analytical, as a certain law of regularity

is always visible, which breaks abruptly for an error in construction. By
calculation, on the other hand, we can more easily select any one place in

the structure, and determine the strain there independently of the others.

As to which of the two methods demands the least time is a matter of

minor importance. In a construction costing from thousands to millions,

it matters little whether the calculations require one or several days, more
or less, if only the results are clear and correct. It is a question also

which can hardly be decided in favor of one or the other, dependent as it

is upon elements other than those pertaining to the methods themselves

such as varying individual skill and capacity in either direction. The
declaration which is already sometimes encountered, that the numerical

calculation of a continuous girder requires about three times as much time

as the graphical solution, sounds questionable. Why not at once furnish

the statement with decimal places ? In general, for ordinary cases, the ana-

lytical solution requires less time
;
for irregular and more complicated cases,

the graphical.

The exactness of the graphical solution is sufficient, but it, too, depends
upon the care and skill of the draughtsman. The greater the forces and
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dimensions with which one works, the better the results obtained. The

scales should not, then, be taken too small.

It is hoped that these considerations, now drawing to u close, will suffice

to give the reader clear ideas upon the nature and origin, advantages and

disadvantages, of the graphical statics. The determination whether he will

enter more fully into the subject it may be, even take part in its develop-
ment (there is abundance of room for workers), and in this case the choice

of direction may thus be facilitated.

The graphical statics is certainly suited, especially in extended applica-

tions of the geometry of position, to furnish many new points of view, and

in a practical respect it can often greatly simplify. Whoever has really

studied the new methods must admit this.

On the other hand, the importance of the graphical statics is sometimes

exaggerated. It appears out of place when in works designed for practice

graphical solutions are given of problems which any reasoning being can

almost solve in his head.

Such solutions may find a place in special text-books iipon the subject,

where they may, indeed, be desirable for completeness.

If it is desired to make two independent investigations of stability, as

for large and important constructions is always desirable, it will be found

of advantage, if a suitable graphical solution exists, to make the first deter-

mination graphically. Nothing more ensures a conviction of the correct-

ness of an investigation than a correspondence of the graphical and cal-

culated results.

XI.

LITERATURE UPON GRAPHICAL STATICS.

We have already referred in VI. to the most important contributions in

the branch of graphical statics, and now annex a list of the literature upon
the subject so far as known to us.

Where several works treat of the same subject, we have allowed ourselves

a brief critical notice. Opportunity is thus given to those who would take

part in the development of graphical statics to make themselves acquainted

with all existing works, and at the same time the practical man is enabled

in any case that may come up to inform himself as to where assistance

may best be sought. A short remark to specify the contents may in this

respect often help in the right direction. The succession is in each division

chronologically arranged

Although the literature of the subject would seem from the following

tolerably extensive, still the number of pure geometrical solutions in

which no analytical formulae appear is much less. Publications upon the

subject would, moreover, beyond doubt, be still more numerous were it

not for the difficulty and cost of production of lithograph plates.
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I. TEXT-BOOKS UPON GRAPHICAL STATICS.

Culmann, E." Die graphische StatJk." With Atlas of 36 Plates. Zurich,

Meyer and Zeller, 1866. [I. Part, 1864: Elements and Graphical

Investigations of Structures. Also, second edition, first volume,

1875, with 17 Plates. General Principles, second volume, to .follow

shortly.]

Bauschinger
" Elemente der graphischen Sratik." With Atlas of 20

Plates. Miinchen, 1871. [Without ths aid of modern geometry, and

without practical applications. Admirable exposition of the Princi-

ples.]

Reuleaux. An outline of the graphical statics is to be found in " Der Con-

structeur," by Reuleaux, third ed. Braunschweig, 1872.

Levy
" La Statique Graphique et ses Applications." Paris, 1874. With

Atlas of 24 Plates. [Principles and several applications ;
clear and

elegant exposition of the subject.]

H. PAPERS UPON THE GRAPHICAL STATICS.

Most " Ueber eine allgemeine Methode, geometrisch den Schwerpunkt

beliebiger Polygone und Polyeder zu bestinimen." Archiv d. Math,

und Phys., IL. (1869), p. 355. [Also applicable to curve areas, with-

out equilibrium polygon.]

Culmann, IL <; Ueber das Parallelogram und uber die Zusammensetzung
der Krafte." Vierteljahrsschr. d. Naturforsch. Ges. zu Zurich, 1870.

[Correspondence of the graphical statics with the Statics of Pliicker.]

Afohr "
Baitrag zur Theorie der Holz- und Eisenconstructionen." Zeitschr.

d. Hannov. Arch. u. Ing. Ver., 1870, p. 41. [Relation between the

neutral axis and centre of strains.]

Gn/nert, J. A. " Ueber eine Graphische Methode zur Bestimmung des

Schwerpunktes eines beliebigen Vierecks." Arch. d. Math. u. Phys.,

LII. (1871), p. 494. [Simple and brief. Compare also L., p. 212.]

Cremona, R " Le figure reciproche nolle statica grafica." With 5 Plates.

Milan, 1872. German translation in Zeitschr. d. Ost. Arch. u. Ing.

Ver., 1873, p. 230. [Force and equilibrium polygon as reciprocal

figures.]

Du Bois, A. J." The New Method of Graphical Statics." Van Nostrand's

"Engineering Magazine," Vol. XIL, Nos. 74, 75, 76, 77, 78. [General

properties of force and equilibrium polygons, with practical applica-
tions to bending moments, and several important mechanical problems.

Also, Maxwell's Method applied to bridges, roof trusses, etc.] Sepa-
rate reprint, 1875. Van Nostrand, New York.
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HI. APPLICATION TO THE SIMPLE GIRDER.

Culmann, K. "Der Balken." Third chap, of d. graph. Statik, 1866.

[Contains also the construction of the inner forces.]

Vojdcck
"
Graphische Bestimmung cler Biegungsmomente an kurzen

Triigern." Zeitschr. d. Vereins Deutsch. Ing., 1868, p. 503. [Graphi-

cal interpretation of analytical relations.]

Cotterill, J. H. "On the Graphic Construction of Bending Moments/'

"Engineering," 18G9 (VII.), p. 32. [Equilibrium polygon for the sim-

ple truss, with references to Reuleaux and Culmann.]

Winl-Ur, E. "Einfache Tra'ger,"
" Theorie der Brucken,"

" Aeussere

Kra'fte gerade Tra'ger." Wicn, 1872. [Simultaneous presentation of

analytical and graphical methods.]

Ott, K. von "Wirkung parallcler Kra'fte auf einfache Tra'ger mit Gerade

La'ngenachse." In die Grundziige d. graph. Rechnens u. d. graph.

Statik. Prag, 1872. p. 28. [The most elementary principles pertain-

ing to composition of forces in a plane are prefaced.]

IV. APPLICATION TO THE CONTINUOUS GIRDER.

Culmann, K. "Der continuirliche Balken." Fourth chap, of the Graph.

Statik, 1866. [With examples the moments at the supports are

analytically determined.]
Mohr "

Beitrag zur Theorie der Holz- und Eisenconstructionen." Zeitschr.

d. hannov. Arch. u. Ing. Ver., 1868, p. 19. [Completion of Culmann's

method the moments at the supports are graphically determined.]

Lippich
" Theorie des continuirlichen Tragers Constanten Querschnitts."

Wicn, 1871. Separate reprint from Forster's Bauzeit., 1871, p. 103.

[Graphical method, together with elementary analytical.]

Itittar, W.
" Die elastische Linie und ihre Anwendung auf den continuir-

lichen Balken." Zurich, 1871. [Mohr's method given as a supple-
ment to the Graph. Statik of Culmann.]

Winkler, E. " Continuirliehe Tra'ger. Theorie der Brucken aeussere

Knifte gerade TrSger." Wien, 1872. [The Mohr-Culmanu method,

together with analytical. ]

Solin, J,
" Geometrische Theorie der continuirlichen Trager." Mitth. d.

Arch. u. Ing. Ver. in Bohmen, 1873.

Greene, Chas. E.' 1

Graphical method for the analysis of Bridge Trusses;

extended to Continuous Girders and Draw Spans." New York, 1875.

[Moments at supports found by successive approximation, or balancing
of moment areas.]

V. APPLICATION TO FRAME WORK.

Culmann, K." Das Fachwerk." Fifth chap. Graph. Statik, 1866. [Most

general form of parallel truss, suspension truss, Pauli's truss, roof

trusses.]
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Keck, W. " Ueber die Ermittelung der Spannungen in Fachwerk tragern

mit Hulfe der graphischen Statik." Zeitschr. d. hannov. Arch. u. Ing.

Ver., 1870, p. 153. Separate reprint, Hannover, 1872. [Presentation

of the method with reference to practice.]

Jenkin " On the Practical Application of Eeciprocal Figures to the Cal-

culation of Strains in Frame-work. Transact, of the R. Soc. of Edin-

burgh, 1870, (XXV.) p. 441.

Maxwell, Prof. Clerk "
Reciprocal Figures, Frames, and Diagrams of

Forces." Trans, of R. Soc. of Edinburgh, 1869-70.

JJhwin " Iron Bridges and Roofs." London, 1869. [Application to roof

trusses, wind force, etc.]

Ranken, F. A. "The Strains in Trusses." New York, Appleton, 1872.

[Examples of simple trusses drawn to scale.]

Bow, Robert H. "Economics of Construction in Relation to Framed Struc-

tures." London, 1873. [Application of Maxwell's Method only to

roof trusses, etc.]

Ott, K. ton " Das Fachwerk." In Grundziige d. graph. Rechnens u. d.

graph. Statik. Prag, 1872. [Roof trusses, truss fixed at one end and

free at the other, bridge trusses.]

Reuleaux " Hilfslehren aus der Grapho statik." Second chap, of the Con-

structeur, third ed., 1872. [Compound truss, roof trusses, etc.]

Schaffer "Graphische Ermittelung der Ordinaten des Schwedler'schen

Tragers." Zeitschr. fur Bauwesen, 1873, p. 237. [Proceeding from

the equation for the same.]

Heuser "Graphische Ermittelung der Ordinaten des Schwedler'schen

Tragers." Zeitschr. f. Bauwesen, 1873, p. 523. [Preceding method

simplified another by means of equilibrium polygon.]

VI. APPLICATION TO THE IRON ARCH.

Culmann, K. " Der Bogen." Sixth chap, der graph. Statik, 1866. [Con-
tains also the inverted or suspended arch. The arch as a rigid body.]

Durand-Claye, A. " Sur la verification de la stability des arcs metalliques

et sur 1'emploi des courbes de pression." Ann. d. ponts et chauss.,

1868, sem. 1, p. 109. [Mery-Durand pressure curves, but with refer-

ence to the absolute resistance of the material.]

Frankel, W.
" Zur Theorie der elastischen Bogentrager." Zeitschr. d. han-

nov. Arch. u. Ing. Ver., 1869, p. 115. [Following out Mohr's idea of

the equilibrium polygon as elastic line.]

MoJir "
Beitrag zur Theorie der elastischen Bogentrager." Zeitschr. d.

hannov. Arch. u. Ing. Ver., 1870, p. 389. [Criticism of the preceding

method, and giving another.]

Vala
"
Beitrage zur graphischen Berechnung elastischer Bogentrager mit

Kampfergelenken." Mitth. d. Arch. u. Ing. Ver., in Bohmen, 1873.
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VH. APPLICATION TO THE ARCH.

Cousinery, E. B. "
Application des proce'de's du calcul"graphique ji divers

problemes de stabilite"." Fourth chap, of Calcul par le Trait. Paris,

1839. [With especial reference to the strength of abutments pure

graphical treatment.]

Mery
" Me"moire sur l'e"quilibre des voutes en berceau." Ann. d. ponts

et chauss., 1840, sem. 1, p. 50. [Geometrical determination of every

possible pressure curve.]

Culmann, K. " Der Bogen." Sixth chap, of Graph. Statik, 1866. [Con-

taining also arch centerings ;
exact discrimination of support and

pressure line.]

Durand-Claye, A. "Sur la verification de la stabilite" des voutes en

ma9onnerie et sur 1'emploi des courbes de pression." Ann. d. ponts
et chauss., 1867, sem. 1, p. 63. [Reference to relative resistance of

material. ]

Harlacher, A. R. "Die Stiitzlinie im Gewolbe." Tech. Blatter, 1870, p
49. [Practical method by inscription of support line, according to

Culmann.]
Heuser " Zur Stabilitatsuntersuchung der Gewolbe." Deutsche Bauzeit.

1872, p. 365. [Also methods for unsymmetrical form and load.]

VIII. APPLICATION TO RETAINING WALLS.

Poncelet, J. V.
" Me"moire sur la stabilitu des revgtements et' leur fonda-

tion." Mem. de 1'off. du G6nie, 1838 (XIII.) ; separate reprint,

Paris, 1840. [First analytical graphical theorie.]

CousineryfE. B. "Application des proce'de's du calcul graphique a" divers

problemes de stability." Fourth chap, of "Calcul par le Trait," 1839.

[Pure graphical, without formulae.]

Saint- Guilftem " M6moire sur la pousse"e des terres avec ou sans sur-

charge." Ann. d. ponts et chauss., 1858, sem. 1, p. 319. [Further

development and generalization of Poncelet's Theory.]

Rankine "Manual of Civil Engineering." London, fourth ed., 1865.

[Containing graphical construction of pressure parallel to earth sur-

face upon vertical wall.]

Culmann, K. " Theorie der Stiitz- und Futter-Mauern." Eighth chap, of

Graph. Statik, 1806. [With use of equilibrium polygon, pressure

upon tunnel arches.]

IlokJiey, E. "
Beitrage zur Theorie des Erddrucks und graphische Bestim-

mung der Starke von Futter-Mauern." Mitth. iiber Gegenst. d. Artill.

und Geniewesens
; separate reprint, with two plates, Wien, 1871.

[Point of application of earth pressure for complicated contour.]

MoTir "Beitrage zur Theorie des Erddrucks." Zeitschr. des hannov.

Arch. u. Ing. Ver., 1871, p. 344. [Point of application of earth pres-

sure and new analytical theory.]
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Wirikler, E. " Neue Theorie des Erddrucks." Wien, 1872. [Containing

graphical methods according to the old theory.]

Hdseler, 0.
"
Beitrage zur Theorie cler Futter- und Stutz-Mauem." Zeit-

schr. d. hanfldv. Arch. u. Ing. Ver., 1873, p. 36. [Graphical deter-

f mination of earth pressure according to Culmann.]

MISCELLANEOUS APPLICATIONS.

BeuUaux " Die graphische Statik der Axen und Wellen." Published by

polytech. Ver. in Zurich, 1863. [Autograph copy of lectures.]

Culmann, K. " Der Werth der Constructionen." Seventh chap, of Graph.

Statik, 1866. [Best and cheapest systems under given conditions,

especially for bridges.]

Beuleaux "
Graphostatische Berechnung verschiedener Axen, Kranpfosten,

Kurbeln," in the Constructeur, third ed., 1872.

Scattering graphostatical constructions are to be met with in many text-

books upon construction, especially since the appearance of Culmann's

work, a second edition of which is in course of preparation, and expected
soon to appear.

xm
GRAPHICAL DYNAMICS.

The scientific or practical value of graphical solutions once recognized,

there remains no reason for limiting them to statical problems only, and

endeavors in the above direction are already forthcoming. We limit our-

selves to a passing notice.

First, we have an attempt to employ graphical constructions in the

theory of the overshot and breast-wheel (Seeberger,
"
Arbeitung der Theo-

rie der oberschlachtigen Wasserrader auf graphischen Wege." Civil Ing.

1869, p. 398, and 1870, p. 339). We cannot here notice the value of the

solutions given, but the very sparing applications of geometry hardly jus-

tify the title of the work.

A short article, which gives the graphical determination of the force at

every position of a moving point, may also be noticed. (fiapp,
" Zur

graphischen Phoronomie," in Zeitsch. f. Math. u. Phys., 1872, p. 19.)

The genuine foundation of a graphical dynamics has been first attempted

by Proll (" Begriindung graphischer Methoden zur Losung dynamische

Probleme," in Civil Ingenieur, 1873). From the fact that the effects of

forces in dynamics are measured by the changes of velocity of any point or

points of a machine system, Proll concluded that it must be possible to

represent these force effects by geometrical relations, such as* kinematic

geometry teaches.

His investigations, since published in independent form ("Versuch
einer graphischen Dynamic," with 10 plates, 1874), fall into three parts.

The first part treats of the action of the "
outer forces " in machines whose
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motion is in a plane, the outer forces being also in this plane. In the sec-

ond part he subjects to graphical treatment the action of outer forces upon
u free movable material point. The third part, finally, considers the motion

of rigid invariable systems acted upon by given forces"

In the course of the development extended use is made of analytical

formulae. The work is but the beginning of the future structure, but this

beginning will be thankfully received by all those with whom graphical
methods have found acceptance.





PART I.

GENERAL PRINCIPLES.

CHAPTEE I.

FORCES IN THE SAME PLANE COMMON POINT OF APPLICATION.

1. Notation, etc. In order that a force may be "
given

"
or

completely determined in its relations to other forces, we must

know not only its intensity, but also its direction, and the posi-

tion of its point of application. These three being known, the

geometrical expression of our knowledge is very simple. We
have only to assume a certain length as the unit of force, and

then any force is at once given by the length, direction, and

position of a straight line. This method of force representa-

tion is so obvious, that it is in fact used in mechanics, even

where the treatment itself is essentially analytical.

Unless expressly stated, all the forces with which we have to

do, will be considered as lying and acting in the same plane.

Graphically then, any force is completely determined by a

straight line, the beginning of which represents the point of

application, and the length and direction of which give the in-

tensity and direction of the force.

We shall indicate a force in general by the letter P, its point
of application by A. When we have several forces we repre-

sent the points of application by Al5
A2 ,

A3 , etc., and the ends

of the corresponding lines by P1? P2 ,
P8 ,

etc. The direction in

which a force is supposed to act is thus unmistakably indi-

cated.

When, however, lines representing several forces are laid off

one after another, the beginning of each at the end of the pre-

ceding, it will be sufficient to put at the beginning of the

first, and 1, 2, 3, etc., at the end of each. No confusion can

arise, as each force acts and reaches from the point indicated

by the figure which is one less than its index, to the point indi-

cated by that index.

When, finally, we designate a force by the two letters or fig-

ures which stand at the beginning and end, we shall always
indicate by the order in which the letters or figures are written,
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the direction of action of the force, first naming the point of

application, and then the end.

A force due to the composition of several forces, as P1;
P2 ,

P3 ,

we denote by Pw or R^. Thus R^ denotes the resultant of

the forces P1;
P2 ,

and P3 .

2. Parallelogram of Forces. If two forces, Pj and P2 ,

given in direction and intensity by the lines OPX
OP

2 [Fig. 1,

PL 1], have a common point of application O, the resultant

Ri.2 is found by the well known principle of the "
parallelo-

gram of forces," by completing the parallelogram as indicated

by the dotted lines, and drawing the diagonal. OR then gives

the resultant of the forces Pa and P^ If this resultant acts in

the direction from O to R, as indicated by the arrow, it replaces

P! and P2 ;
that is, it produces the same effect as both forces

acting together. If it were taken as acting in the opposite

direction i.e., from O outwards, away from R it would hold

the forces Pi and P2 in equilibrium.

Now, we eee at once that it is unnecessary to complete the

parallelogram. It is sufficient to draw from the end of the

force P2 the line P2 R in the same direction that P! acts in, and

make it equal and parallel to Px . The point R thus found is

the end of the resultant R, or is a point upon the direction of

the resultant prolonged through O.

As to the direction of action of the resultant if we follow

round the triangle from O to P2 and from P2 to R and R to O

i.e., if we follow round in the direction of the forces the

direction for the resultant from R to O thus obtained is, as we
have already seen, the direction necessary for equilibrium.

3. If, instead of two forces, we have three or more, as P
l5
P2 ,

P3 ,
P4 [Fig. 2] we still have the same construction. Thus com-

pleting the parallelogram for Pl and P2 we find R^. Complet-

ing the parallelogram for R^ and P3 ,
we find R^, and again,

with this and P4 we obtain R14. Again, we see it is unneces-

sary to complete all the parallelograms. We have only to draw
lines P! Ri.a, Rt 2 R^, R^ R^, parallel to the forces P2 P8 and

P4 respectively, and equal in length to the intensities of these

forces, and then, no matter what may be the number of forces,

the line drawn from the point of beginning to the end of the

last line laid off will give the intensity and position of the

resultant. As to direction, the same holds good as before.

If the end of the last line laid off as above, should coincide
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with the point of beginning, there is, of course, no resultant,

and the forces themselves are in equilibrium.
4. The polygon formed by the successive laying off of the

lines parallel and equal to the forces, we call the "force poly-

gon" Hence we have the following principles established :

If any number offorces having a common point of appli-

cation and lying in the same plane, are in equilibrium, the
"
force polygon" is closed.

If the "force polygon
"

is not closed, the forces themselves

are not in equilibrium, and the line necessary to close it gives

the resultant in intensity and direction.

This resultant, if considered as acting in the direction ob-

tained byfollowing round the
"
force polygon" with the forces,

will produce equilibrium acting in the opposite direction, it

replaces the forces.

The resultant thus found in intensity arid direction can be

inserted in theforce diagram at the common point of applica-

tion.

5. Thus, required the position, intensity, and direction of the

resultant of the forces P
l5
P2 ,

P3 ,
P4 ,

P5.

These forces are given in position, direction, and intensity

by the force diagram, Fig. 3 (a). The resultant of all these

forces must have of course the same point of application A as

the forces themselves it remains to find then its relative posi-

tion and the direction of its action, so that we may properly
insert it in theforce diagram.
We have simply to draw the force polygon, Fig. 3, (b) by lay-

ing off successively O P
1} P! P2 , etc., equal, parallel, and in the

same direction as the forces Pl5 P2 , etc., as given by Fig. 3 (a).

Then the line P5 O necessary to close the force polygon gives

the intensity of the resultant, and in order to replace P^ it

must act in the direction from O to P5 ; i.e., contrary to the

order of the forces. If then in Fig. 3 (a) we draw A K.^ equal
and parallel to O P5 ,

we have the resultant applied at the com-

mon point of application A, and given in position, intensity

and direction.

Moreover, it is evident that any diagonal of the force poly-

gon as R3.4 [Fig. 3
(b)~\

is the resultant of P3^, and acting in the

direction from P4 to P2 ,
it holds P^ in equilibrium. But it is

also the resultant of Ph P2 ,
P5 ,

and R^, and acting in the same

direction as before, it replaces these forces. The force polygon
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thus shows that the force which replaces P^ P2,
P5 ,

and Rw ,
at

the same time holds P3 and P4 in equilibrium, just as it should

do.

If, on the other hand, we had originally only Pl5
P2 , R^, P5 ,

and R^g forming a system of forces in equilibrium, we could

decompose Rg^ into two components by simply assuming any

point as P3 [Fig. 3 (&)] and drawing P3 P4 ,
P3 P2 . Then follow-

,

ing round this new polygon in the direction of the forces, or,

what amounts to the same thing, taking the direction of the

components P3 P4 , opposed to the direction of R^ for equilibri-

um, we obtain the direction of action of P8 and P4 as shown by
the arrows in Fig. 3 (b). These forces inserted in Fig. 3 (a\ in

the place of Rg^ and in these directions, will not disturb the

equilibrium.

Hence, any diagonal in the force polygon, is the resultant

of the forces on either side, holding in equilibrium those on

one side and replacing those on the other, according to the

direction in which it is conceived to act.

Also, anyforce or number offorces may be decomposed into

two others in any desired direction, by choosing a suitable

point in the plane of the force polygon and drawing lines

from this point to the beginning and end of theforce orforce

polygon.

6. It matters not in what Order we lay off the Forces in

the Construction of the force Polygon. Thus, in Fig. 1,

whether we draw from the end of P2 the line P2 R^ equal and

parallel to P! or from the end of Pl the line Px R: .2 equal and

parallel to P? , in either case we obtain the same resultant and

the same direction for the resultant. But by a similar change
of two and two, we can obtain any order we please. For exam-

ple, we lay off in Fig. 3 (c) the same forces in the order P3 P2

PX, P5 P4 ,
and obtain precisely the same resultant, in the same

direction as before. For, the resultant of P
3 and P2 must be

the same as that of P2 and P3 in the first case. The resultant

of R^ and Pt must then be the same in both polygons, and so

on.

Generally, then, no matter what the order in which the

forces are laid off, the line necessary to close the force polygon
is the resultant of the forces, and the diagonals of the force

polygon give us the resultants of the forces on either side.

By assuming a point at pleasure, and drawing lines from this
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point to the beginning and end of any side of the force poly-

gon, and taking the direction of these lines opposed to the

direction of that side, we can decompose any force in the force

polygon into its components. Thus the force polygon gives us

complete information as to the action of the forces.

7. If i IK* Forces act in toe same straight Line, the force

polygon of course becomes a straight line also, and the result-

ant is the sum or difference (algebraic sum) of the forces.

Thus, if we have Pt, P2 ,
P3 ,

all acting at the point A, as

shown by the force diagram Fig. 4 (a), we form the force poly-

gon by laying off from 0, Fig. 4 (5), the intensity of P
1?
from

the end of this line Pl P3 equal to A P2 and from P2,
P2 P3

equal to A P3 . Then the line necessary to close the polygon is

evidently P3
= Pt -f- P2 P3 . A single force acting then at A

in the direction of and having the intensity represented by the

line P3 would replace Pl5
P2 ,

and P3 . If acting from P3 to 0,

it will' produce equilibrium.
If we again choose an arbitrary point as C [we shall hereaf-

ter call this point the "pole" of the force polygon], and draw

lines S S3 from this pole to the beginning and end of the force

polygon, we can decompose the resultant into two forces in any

required direction. If the resultant is supposed to act down,
then the arrows show the direction in which these components
must act in order to replace the resultant. If then at A we
draw lines parallel and equal, we have these components in posi-

tion, direction, and applied at the common point of application.

. Practical Applications. Simple and even self-evident

as all the preceding may seem, we have already acquired all

the principles requisite for a rapid, accurate, and very elegant
method of finding by diagram the strains in the various mem-
bers of all kinds of framed structures, such as roof trusses,

bridge girders, cranes, etc., no matter how complicated the

structure, or what special assumptions are made as to the load-

ing, provided only, that all the exterior forces are known. A
complicated or unsymmetrical arrangement of parts increases

greatly the labor of calculation, but has no effect upon the ease

or accuracy of the graphical method. The method moreover

checks its own accuracy, does not accumulate errors, and shows

in one view the relation of the strains to each other, and the

variations which would be caused by a change in the manner

of load distribution, or in the form of construction.
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As this method is not as well known as it deserves to be, it

will perhaps be of advantage to pause for a moment in the

development of our subject, and make this direct application of

the principles already established.

BRACED SEMI-AECH.

9. Stoney, in his Theory of Strains," Vol. L, page 123,

gives the following example of a " braced semi-arch," repre-

sented by Fig. 5, PL 1. The dimensions are as follows: pro-

jecting portion, 40 ft. long, 10 ft. deep at wall. Lower flange,

circular, with a horizontal tangent 2 ft. below the extremity of

girder. Radius of lower flange, 104 ft. Load uniform and

equal to one ton per running foot supposed to be collected into

weights of 10 tons at each upper apex, except the end one,

which has only 5 tons.

Fig. 5 shows the arch drawn to a scale of 10 ft. to an inch.

This scale is too small in this case to ensure good results
;
in

general the larger the scale to which theframe can be drawn,
the better; but for the purpose of illustration it will answer

well enough. With a large scale for the ffame diagram, a

scale of 10 tons to an inch will in general be found to answer

well. Fig. 5 (a) gives the strains in the various members to a

scale of 10 tons to an inch and Fig. 5 (b) 20 tons to an inch ;

the first for the load at the extremity alone, the second for a

uniform load.

Fig. 5 (a) is thus obtained. We first lay off the weight, 5

tons, to scale, in the direction in which it acts
; i.e., down-

wards. Now this weight and the strains in diagonal 1, and

flange A, are in equilibrium,; therefore by article (4) the force

polygon must close. Drawing lines therefore from the ends of

the line representing the weight of 5 tons, parallel to these

pieces and prolonging them to their intersection, we obtain

the strains in A and 1. Commencing with the beginning of

the weight line and following down around the triangle thus

formed, we find that A acts from right to left, as shown by the

arrow. A acts then away from the apex / it is therefore in

tension. Diagonal 1 acts towards the apex and is hence com-

We pass now to apex a, of the frame. Here we have the

strains in E and diagonals 1 and 2, and these three strains hold

each other in equilibrium. The strain in 1 we have already,



CHAP. I.] COMMON JPOINT OF APPLICATION. 7

and know it to be comprcssive. We have then simply to draw

lines from and b parallel to E and 2, and follow round the

triangle, to obtain the intensity and quality of the strains in E
and 2. We must remember that as 1 is in compression, and

we are now considering apex a. we must follow round from o

to b in Fig. 5 (a), and so round. We thus find 2 acting away
from apex a and therefore in tension^ and E acting towards

this apex, and hence compressed.
Pass now to apex c. We have the strains in A and 2 in

equilibrium with B and 3. [No weights are supposed to act

except the one at the end.] But A and 2 we already have.

We draw 3 and B. Diagonal 2 has been found to be in ten-

sion. With reference to apex c it must therefore act away
from c

; i.e., from d to b in the force polygon. This is suffi-

cient to give us the hint how to follow round. We pass from

d to b for 2, from b to e for A, then from e to B and from B to

d for B and 3. B is therefore tension and 3 compression.
And so we proceed. For the next apex g, we have E and 3 in.

equilibrium with F and 4. We draw parallels to F and 4 so

as to close the polygon of which we have already two sides, E
and 3, given, and remembering that as 3 is in compression, it

must therefore act towards g, we follow round the completed

polygon with this to guide us, and find 4 tension and F com-

pression. Thus we go through the figure, and when all is

ready we can scale off the strains. The strains in the lower

flanges it will be observed all radiate from o. The upper

flanges are all measured off on the horizontal e C, and the dia-

gonals are the traverses between. We see at once that however

irregular the structure, we can always easily and readily deter-

mine the strains at any apex, provided no more than -two un-

known strains are to befound. If more than two pieces, the

strains in which are unknown, meet at an apex, we can evi-

dently form an indefinite number of closed polygons. The

problem is indeterminate, and the structure has unnecessary
or superfluous pieces.

Fig. 5 (b) gives the strains for a uniform load, taken, for con-

venience of size, to a scale of 20 tons to an inch. Here until

we arrived at apex c of the frame the strains are evidently the

same as before. Observe the influence of the weight at c.

Here we have the strains in A and 2 given in the diagram, in

equilibrium with B, 3 and the known, weight acting at c; viz.,
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I'O tons. We lay off therefore 10 tons downward from e, Fig.

5 (), and follow down from e around the polygon. We thus

find B tension and 3 compression. Then 4 and F are found as

before for apex g, 4 tension and F compression ;
and then we

come to the next apex and the next weight. This is laid off

downwards from the end of the preceding, and then we follow

round, finding C tension and 5 compression ;
and so on.

1C. As another example, let us take the

ROOF TRUSS,

given in Fig. 6, PI. 2. This truss is given by Stoney, Vol. I.,

page 128. Dimensions : span, 80 ft. : rise of top and bottom

flanges, 16 and 10 ft. respectively. Radii, 58 and 85 ft. The

figure shows two different kinds of bracing. In the left-hand

part the extreme bay of the lower flange is half as long again
as the others. The upper flange is divided into 4 equal bays.

In the right-hand section, both flanges are divided into 4 equal

bays, and every alternate brace is therefore nearly radial. Each

upper apex in both cases is supposed to sustain a weight of

one ton.

The strains in the various pieces are given in Fig. 6 (a).

We form the force polygon by laying off the weights from

to 7 and then laying off the reactions 3.5 apiece, upwards, we
come back to 0, and the force polygon is closed as it should be,

since the sum of the reactions must be equal and opposite to

the sum of the weights. Starting then with the reaction at the

left support A, we go through from apex to apex in a mariner

precisely similar to the previous case. The operation is so

simple that it is hardly necessary to detail it again, but we
recommend the reader to go over it with the aid of Fig. 6 (a),

lettering the figure as he proceeds. The dotted part gives the

strains for the right-hand half.

DIAGRAM FOR WIND FORCE.

11. It is of considerable importance to investigate the influ-

ence of a partial load, such as that caused by the wind blowing
on one side of the roof, and this by the aid of our method we
can easily do.

From the experimental formulae of Hutton,*

* Iron Bridges and Roofs. Unwin. p. 120.
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Pn=Psin. i

Ph=P sin. i
1 -a4cos- i

Pv=Pcot. isin. i
1-51008- 1

where P is the intensity of the wind pressure in Ibs. per sq. ft.

upon a surface perpendicular to its direction, i is the inclination

of any plane surface to this direction
;
Pn is the normal pres-

sure, Ph the horizontal component of this normal pressure, and

Pv its vertical component.
That is, if the wind blows horizontally, Ph is the horizontal

and Pv the vertical component of the pressure on the roof. If

we take P=40 Ibs., which probably allows sufficient margin
for the heaviest gales, we have the following values of the nor-

mal pressure and its components for various inclinations of

roof surface :

J[OQf
Lbs. per square foot of surface.

Pn Pv Ph
5 5.0 .4.9 0.4

10 9.7 9.6 1.7

20" 18.1 17.0 6.2

30 26.4 22.8 13.2

40 33.3 25.5 21.4

50 38.1 24.5 29.2

60" 40.0 20.0 34.0

70
41.0... 14.0 38.5

80 40.4." 7.0 39.8

90 40.0 0.0 40.0

The load at each joint may be taken as equal to the pressure
of the wind striking a surface whose area is equal to that por-
tion of the roof supported by one bay of the rafter, and inclined

at the same angle as the tangent to the rib at the joint. Thus
we can calculate P1} P2 ,

P8 ,
P4, (Fig. 6), resolve these forces into

their horizontal and vertical components, and find the reactions

at the supports as well as the horizontal force at the left abut-

ment, which in our construction is supposed to be fixed. Should

the wind be supposed to blow from the right side, the strains

would be entirely different, and it would be necessary to form

a second diagram. Each piece must be proportioned to resist

the strains arising in either case. The forces PM and their

horizontal and vertical components, as also the reactions, being

known, we can now form the force polygon.
Thus in Fig. 6

(ft), we lay off the forces P^, make a c equal
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to the vertical reaction at A, a b = the sum of the horizontal

components, or the horizontal force at A, and o b the vertical

reaction at the right support. This last line should close the

force polygon and bring us back to o.

Now starting at the left support, we have the vertical reac-

tion a c
t
the horizontal force a b, and the wind force P

l5
in

equilibrium with A and E. Closing the polygon by lines par-

allel to A and E, we obtain the strains in these pieces, E ten-

sion and A compression. At the next apex we have A and P3

in equilibrium with 1 and B. Completing the parallelogram,

we find I compression and B compression. At the next apex
1 and E are in equilibrium with 2 and F, and we find F and 2

tension and so on. The upper flanges are in compression and

start from the ends of the forces pl5
P2 ,

etc. The lower flanges

radiate from b. If we were to carry out the construction for

the rest of the frame, the upper flanges after D would radiate

from o.

A comparison of Fig. 6 (a) and (b) shows that whereas under

uniform load the strain in 1 is tension, for wind force the same

brace is in compression. In fact in the first case all the braces

are in tension, while in the second 1, 3, and 5 are compressed,
and 3 and 5 quite severely. The strains in the bracing gener-

ally are much greater in the second case.

Were we to consider the wind as blowing from the other

side, or what is the same thing, suppose the right end fixed and
the left supported on rollers, then the horizontal reaction a b

will be applied at the right abutment. In this case the lower

flanges will radiate from a instead of b, and the first upper

flange will start from o. Supposing the first two lines of this

new diagram drawn, as indicated by the dotted lines, and fol-

lowing round from b to o, and so round to a and back to b, it

may easily happen that the last upper flange is in tension and

the last lower flange in compression; that is, a complete reversal

of the ordinary condition of strain.

For an excellent presentation of the above method, we refer

the reader to Iron Bridges and Roofs, by W. C. Unwin, pp.
128-140. The above method is there referred to as "Prof.
Clerk Maxwell's Method" and as such is known and used in

England.*
* Phil. Mag. , April, 1864, and a Paper read before the British Association for

the Advancement of Science, by Prof. Maxwell, in 1874.
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BRIDGES.

12. For bridges the strains due to a uniform load are of

course easily found. In most cases a rolling load can be man-

aged also, without making a separate diagram for each position

of the load. Thus, if we diagram -the strains for the load at

the first and last apex, the strains due to intermediate loads

will be multiples or submultiples of these. A calculation for a

simple Warren girder of small span, and a consideration of the

reaction for each position of the load, will at once illustrate

what is meant. [Compare Stoney, Theory of Strains. Pp.

99-111, Yol. I.]

Thus Stoney, in his Theory of Strains, Vol. I., p. 99, gives
the girder represented in Fig. 7, PL 2, span 80 ft., depth of

truss, 5 ft., 8 equal panels in upper flange, 7 in lower.

For the first weight of 10 tons, P1? the strains are given by

Fig. 7 (a) to a scale of 10 tons to an inch. We form first the

force polygon by laying off from 0, 10 tons, to Px . From the

end of this line we lay off upwards the reaction at right abut-

ment = % of 10 tons, or 1.25 tons
;
and then the reaction at the

left abutment = $ of 10 tons, back to 0, thus closing the force

polygon. [Note. In any structure which holds in equilibrium
outer forces, the force polygon must close. If it does not, there

is no equilibrium, and motion ensues (see Art. 20).] Com-
mence now with the reaction at a in the frame diagram, Fig. 7,

because here we have a known reaction, a o (force polygon),
and only two unknown strains to be determined. Drawing
lines parallel to A and 1, we obtain the strains in A and 1.

Then pass on to apex b. With the now known strain in 1, we
can determine 2 and E.

Passing now to the next apex, we have A and 2 known, and

also the weight f\. Join therefore P! and E [Fig. 7 (a)] by
lines parallel to B and 3. B and 3 are both in compression.
We find diagonal 2 also in compression, and 1 in tension. That

is, both the diagonals under the weight are compressed, as evi-

dently should be the case. From 4 on we have tension and

compression alternately.

Fig. 7 (b) gives the strains due to the last position of the load

P7 . The strains in the diagonals are evidently all equal, and

alternately tension and compression.
Now it is not necessary to construct more than these two dia-

grams. From thesfi two alone we can determine the strains for



12 FORCES IN THE SAME PLANE. [CHAP. I.

any intermediate weight. Thus scaling off the strains in Fig.

7 (a) and (), we can tabulate them under Px and P7, as shown

by the table.

JSTow the reaction at the left abutment due to P6 is twice

as great as that due to P7 . Hence the values in the column

for P6 will be twice as great; in the column for P5 three times

as great, and so on. For similar reasons the strain in 5 for

P2 will be twice that for P. In column P2 , then, from 5

down we multiply the strains in PL by 2. In P8 from 7 down

by 3. Thus we fill out the table of strains completely, and find

the maximum tension and compression. A similar procedure
will give the flanges.*

APPLICATION TO AN AKCH.

13. For a " braced arch "
(Stoney, p. 136) as represented in

Fig. 5 (c) PI. 2, the strains in every piece due to any load are

in similar manner easily found by first finding the components
of the load acting at the abutments, and then proceeding as

above. Thus for a load P2 , the left half of the arch is in equi-
librium with the forces acting upon it

; viz., a horizontal and a

downward force at a, and a horizontal and an upward force at

A. The resultant of the forces at a must then pass through

* The reader not familiar with the above method of tabulation will find it

further illustrated in Art. 7 of the Appendix. He cannot do better than to

refer to it here and now.
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a and A, and be equal and opposite to the resultant at A. The
resultant at the right abutment must pass through that abutment,
and also through the intersection of P2 with A a. So for any
other force, as P6 ,

we have simply to draw B a to intersection

with P6 ,
and then P,j A. We can now decompose P6 or P2 along

the resultants through the abutments thus found. Thus resolv-

ing P2 along A a and P2 B, Fig. 5 (e), we find the force acting at

apex a. This force resolved into A and 1 gives the strains on

these pieces both compressive. Passing then to the next apex,

we obtain the strains in 2 and E. Then to the next, and we

get 3 and B, compression and tension respectively, and so on,

as shown by diagram, Fig. 5 (e\ which, it will be seen at once,

is similar to Fig. 5 (), already obtained for the "
semi-arch,"

except that the strain in A is less than for the semi-arch and

compressive, while B C and D are in tension. The reason is

obvious. At a [Fig. 5 (c]\ the resultant lies between A and 1,

and therefore causes compression in both, while it passes out-

side of the arch entirely, to the right of the apex for diagonals

3 and 4, and hence causes tension in B C and D. Fig. 5 (d}

gives the strains due to P6 . Here the resultant or reaction at

A is first found and resolved into 9 and H, and then we go

through the frame as before. We see that 4 and 5 under the

load are both comp'ressed, that E and F are in tension and G
and H, as also the entire upper chord, in compression. The

work checks from the fact that the line closing the polygon
formed by E and 2 should be exactly parallel to and give the

strain m diagonal 1, or A and 1 should be in equilibrium with

the resultant through a [see Fig. 5
(d)~\.

In every case of the kind we first, then, have to draw the

frame diagram. Then lay off the force polygon which should

close. Finally we construct the strain diagram. The frame

diagram should be taken to as large a scale as possible consist-

ent with reasonable size, and the scale for the force and strain

diagrams as small as possible, consistent with scaling off the

strains to the requisite degree of accuracy. A small frame

diagram does not give with the proper accuracy the relative

positions and inclinations of the various pieces, so as to ensure

the proper direction for the lines of the strain diagram. A
slight deviation from parallelism causes sometimes considerable

variation. Nevertheless with practice, care, and proper instru-

ments the accuracy of the method is surprising ;
even in com-
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plicated structures, the variation resulting from performing
the operation twice being inappreciable. Every symmetrical
frame gives also a symmetrical strain diagram, and the accu-

racy of the work is tested at every point by 'this double sym-

metry, and finally by the end or last point of the second half,

exactly coinciding with the last point of the first half. Thus

in Fig. 6 (a), if we had but one system of triangulation carried

through the frame, the strain diagram for the right half would

be precisely similar and symmetrical to that already found for

the first, and the end of the last line would fall, or should fall,

precisely upon the point 5 of the first. If it does not, and the

error is too great to be disregarded, then by checking corre-

sponding points in each half, we can find the point where the

error was committed. In any case errors do not accumulate.

Thus, armed with straight edge, scale, triangle, and dividers,

we can attack and solve the most intricate problems, without

calculation or' tables, with ease, accuracy, and great saving of

time.

METHOD OF SECTIONS.

14. The results obtained by the above method are best

checked in general by Hitter's " method of sections," or the

use of moments.* This consists in supposing the structure

divided by a section cutting only three pieces. We can then

take the intersection of two of these pieces as a centre of mo-

ments, and the sum (algebraic) of the moments of all the

exterior forces, such as reaction, loads, etc., upon one of the

portions into which the structure is divided by the section, with

reference to this centre of moments, must be balanced by the

moment of the strain in the third piece, with reference to this

same point. Thus in Fig. 6, PI. 2, required the strain in D.

Take a section through D, 7 and H (right half of Fig.), and let

a be the centre of moments. The moments of the strains in 7

and H are then, of course, zero, since these pieces pass through a.

The moment of the strain in D with reference to a must then

be balanced by the sum of the moments of all the outer forces

acting upon the portion to the left (or right) of the section.

Thus, strain in D multiplied by its lever arm with respect to

#, is equal to moment of reaction at A, minus sum of the mo-
ments of loads between A and

,
all with reference to a. If

* Dach- und Brucken- Constructions. Hitter. Hannover, 1873.
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we take the direction of rotation of the forces on the left of the

section when in the direction of the hands of a watch as posi-

tive, and find the moment of strain in D negative, it showsi

negative rotation about a, and the strain in D to resist this rota-

tion must act away from
>,
or be tensile. If the resultant

rotation of the outer forces is on the other hand positive, the

strain in D must act toward b, and D is therefore compressed.

This method of calculation, it will be observed, is both sim-

ple and general. It can be applied to any structure, when the

outer forces are completely known, and only three pieces are

cut by the ideal section.

15. It is unnecessary to give here further applications of our

graphical method. The reader can easily apply it for himself

to the "
bowstring girder," bent crane, etc., and satisfy himself

as to its accuracy, and the ease with which the desired results

are obtained.

Enough has been said to indicate the many important appli-

cations which even at the very commencement of our develop-

ment of the graphical method we are enabled to make, and

here we shall close our discussion of forces lying in the same

plane and having a common point of application. As we pass

on to forces having different points of application, we shall

have occasion to develop new principles and relations not less

fruitful and useful in their practical results.*

* We refer the reader here to the Appendix to this chapter for farther

illustrations of the application of the above principles, as well as for informa-

tion upon several points of considerable practical importance. We would also

remind him here once for all, that the Appendix to this work was NOT in-

tended to be disregarded, but has been thought desirable in order to avoid

encumbering the general principles with too much of detail in the text. We
earnestly request him to neglect no reference to it which may be made in the

text.

He will do well in the present case, after first making himself familiar with

the above points, to solve for himself with scale and dividers a number of

similar problems, checking his results always by the method of moments.

He will thus in a very short time master the method, and be able to solve

readily and accurately every problem of usual occurrence in practice.

Though the method is very simple, actual practice with the drawing board is

here indispensable.
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CHAPTER II.

FORCES IN THE SAME PLANE DIFFERENT POINTS OF APPLICATION.

16. Resultant of Two Forces in a Plane Different

Points of Application. Heretofore we have considered

forces having a common point of application, and have seen

that in any case the direction and intensity of the resultant is

easily found by closing theforce polygon.
But suppose we have two forces Pt P2 having different

points of application At A2 ; required the position and direc-

tion of the resultant [PI. 3, Fig. 8].

Any force acting in a plane may be considered as acting at

anypoint in its line of direction.'

P! and P2 may then be supposed to act at their common

point of intersection #, and through thi* point the resultant

should pass. The case reduces therefore to a common point
of application. The resultant is given in intensity and direc-

tion as before by the force polygon (&), and its position is deter-

mined by the point of intersection a. At this point, or at any
point in the line through a, parallel to 2, the resultant may
be supposed to act.

But the direction of the forces may not intersect within

reasonable limits, or the forces may be supposed parallel to

each other, so tiiat they may not intersect at all. In any case

the force polygon will still give the intensity and direction of

action of the resultant, but its position in the plane of the

forces remains yet to be determined. Now we have se.en [Art.

5] that we can decompose a force into two components in any
desired directions, by choosing a "

pole" and drawing lines to

the beginning and end of the force in the force polygon. Let

us choose then a pole C [Fig. 8 (5)] and decompose the result-

ant thus into two forces given in intensity by the lines C
and 2 C. The forces P! P2 being supposed to act at the

points A! A2 in the common plane, at what point in the plane
and in what direction must the resultant 2 be applied to keep
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this plane and hold the forces in equilibrium? The direction

of action of the resultant is given at once from the force poly-

gon [Art. 5 (5)]. It must act in a direction from 2 to 0, and

must be equal to 2 0, taken to the scale of force. Now at any

point in the line of direction of P
l5

as for instance 1, let us

suppose the component given by C to act. What is then the

resultant of Pt and CO? A glance at the force polygon gives

us 1C, because this line closes the polygon made by C 0,01
and 1C. At I then, the three forces S (parallel and equal to

C 0) St (parallel and equal to 1 C) and Px are in equilibrium,
and there is no tendency of the point 1 to move. But 1 C or

S t may be considered as acting in the plane at any point in its

line of direction
;
therefore at 2 its intersection with P2 pro-

longed. Suppose at 2, S2 or 2 C to act. We see at once from

the force polygon that 2 C, C 1 and P2 are in equilibrium.
There is therefore no tendency of the point 2 to move, and the

two forces P! P2 are then in equilibrium with C 0, 1 C, C 1

and 2 C. J3ut since the resultant of C and 2 C or of S and

2 is also the resultant of the forces, and since it must there-

fore act through the point of intersection of SQ and S2 : we
have only to prolong these lines to intersection b. Through
this point the resultants R^ must pass and acting downwards

(from to 2) as indicated in the Fig., it replaces Pt P2 . Act-

ing upwards it would hold them in equilibrium. We thus

easily find the point 2 in the plane at which 2 C or S2 must

be applied, when C or S acts at 1, and S ?2 are thus found

in proper relative position. The position, intensity, and direc-

tion of the resultant are thus completely determined.

Had we taken any other point than 1, as the point of applica-
tion of C 0, we should have found a different corresponding

point for application of 2 C, but in any case the prolongations
of 2 C and C would intersect upon the line a b, prolonged if

necessary. The same holds true for any position of the "pole
"

C. This construction is evidently general whatever the posi-

tion or whatever the number of the forces. We may thus

obtain any number of points along the line a b
;
that is, the

resultant also, may act at any point in its line of direction.

[NOTE. That b is a point in the resultant of PI andP2 can

beproved in a method purely geometrical. In the two " com-

plete quadrilaterals
"

1 2 C and 1 b 2 a, the five pairs of

'ing sides 1 and a 1, 1 2 and a 2, 2 C and b 2, C
9
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and b 1, C 1 and I 2, are parallel each to each, therefore the

sixth pair 2 and a b must also be parallel ; b is therefore a

point of the resultantpassing through a, parallel to 2.]

17. The above Construction hold good equally well for

Parallel Forces. By means of it we find in PI. 3, Fig. 9 (a)

and (b) and Fig. 10 (a) and (>), the resultant of a pair of paral-

lel forces, in the first case, both acting in the same direction
;

in the second, in opposite directions.

In both cases we have simply to choose a pole C, and draw

S Si and S2 . Then taking any point c in the line of direc-

tion of P1?
as a point of application for S

,
draw through this

point S
1?
thus finding d, the point of application for S2. S

and 83 prolonged, intersect upon the resultant, whose intensity,

direction, and position thus become fully known.

18. Property of the Point b. It is plain that thus a point
of intersection b, through which the resultant must pass, can

always be found, provided S and S2 do not fall together in

the force polygon, or intersect without the limits of the draw-

ing. By properly choosing the position of the pole C, this can

always be avoided if the points 2 and in the force polygon do

not themselves coincide, i.e., if the force polygon does not close.

The point b, Figs. 8, 9, and 10, which by reason of the arbi-

trary position of tine pole may lie anywhere upon the resultant,

has a remarkable property. If we draw a line m n through
this point parallel to Sl5 and let fall from it perpendiculars px

and p2 upon Pt and P2,
then in all three cases, and therefore

generally, the triangle c m b is similar to C 1, and d b n is

similar to 1 C 2. Hence we have the proportions

OlilC '.'. emimb, and

1 C : 12 : : n b : n d.

From these proportions we find

1 : 1 2 1 1 c m xnb: mbxnd.
Now the triangles c m b and d n b have the same height

above the base m n
;
the bases m b and b n are therefore pro-

portional to their areas. But their areas are equal to half their

sides cm and n d multiplied byj^i and j92 respectively. Hence
we have from the above proportion, since cm = nd,

1- : 1 2
; ; n d x p% : n d x p^ or

01:12::^:^.
That is, the perpendiculars let fall from anypoint of the
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resultant upon the components, are to each other inversely as

the components. Regarding any point of the resultant as a

centre of moments, the moments of the forces then are equal,

and of course the forces themselves are inversely as their lever

arms.

19. Equilibrium Polygon. If we consider the forces Pt

P2 , Figs. 8, 9, and 10, held in equilibrium by their components
C 0, 1 C, and 2 C, C 1, which act parallel to the lines S Sx

and S2 ;
then regarding the line S, or c d as part of the mate-

rial plane in which the forces act, C 1 and 1 C balance one

another, and cause either tension or compression in c d. Sup-

pose the resultant R is to act so as to cause equilibrium, or

prevent the motion of the plane due to Pt and P2 . Then R
must act upwards in Figs. 8 and 9, and downwards from 2 to

in Fig. 10. In Figs. 8 and 9 then, S and S2 act away from

c and d (Art. 4), and in Fig. 10 towards c and d. Following
round the force polygon, we find in the first two cases c d in

tension, in the last c d in compression.
In the first two cases, the points of application c and d of S

Pt and S2 P2 if connected b}
7 a string stretched between c

and d will be perfectly fixed and motionless
;
while in the lat-

ter case, the string must be replaced by a strut. In case of

three or more forces the polygon or broken line which we thus

obtain, by choosing a pole, drawing lines to the beginning and

end of the forces in the force polygon, and then parallels to

these lines intersecting the lines of direction of the forces in the

force diagram, we call the "
string

"
or "funicular polygon"

or the " strut polygon" according as the forces act to cause

tension or compression along these lines. We can apply to

both cases the general designation of polygon of equilibrium or
"
equilibriumpolygon" The perpendicular let fall from the

pole C upon the direction of the resultant in the force polygon,
we call the "pole distance" and shall always designate it by
H. The straight line joining the points c and d, or the begin-

ning and end of the equilibrium polygon, we call the "strut"

or "
tie line

"
or generally the "

closing line
" and designate it

by Ii. The convenience and application of these terms and

conceptions will soon appear. In the present case of only two

forces, the equilibrium polygon becomes a straight line and

coincides with L, or c d.

[XoTE. We repeat that in order to determine the quality of
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the strain in c d, we have only to follow round the force'poly-

gon in the direction of the forces, and then refer to the force

diagram. Thus Fig. 9, at c, P! S and B! act, and are in equi-

librium. The corresponding closed figure is given in the force

polygon (a). S acts away from c, Pt acts downwards from 1.

Continuing this direction we find B! acting from 1 towards C.

Reversing this direction (Art. 4), we find that the resultant

which replaces S and Px acts from C to 1. Keferring now to

the force diagram (b), and transferring this direction to the

point c, we find this resultant acts to pull c away from d or

contrary to the direction of the force 1 C which replaces S2 and

P2. The strain in c d is therefore tension.

A much better way of arriving at the same result is to con-

sider the triangle c b d as a jointedframe which holds in equi-

librium the forces P! P2 and R^. Then the strains in any two

pieces c d, c b, meeting at a point, are in equilibrium with the

force orforces acting at that point.

We have then the force P! acting at apex c, decomposed into

strains along c b and c d (Art. 5) represented by C and 1 C in

the force polygon. All three are in equilibrium. P! acts

down. Follow down then from to 1 from 1 to C and C to 0.

Refer back now to apex c of the frame and transfer these

directions. The strain in c d acts away from the apex c and is

therefore in tension, while the piece c b would be in compres-

sion, since the direction of C is towards apex c.

See also
"
practical applications

" of the preceding chapter
for illustrations of this. In the same way follow round 1 C

Fig. 10 (a) and refer to (b) and S is in compression.']

2O. Cae of a Couple. In Article 18 we remarked that the

pole can always be chosen in such a position as to give S and

83 intersecting within desired limits, provided that S and S2 or

the point and 2 do not coincide. This case however actually

happens, with a pair of equal and opposite forces that is, with

a couple.

Thus in Fig. 11, PI. 3, we have two equal and opposite forces

Pi, P*
The force polygon closes : therefore the resultant is zero.

So and 83 are parallel, hence their point of intersection in the

equilibrium polygon is infinitely distant. By changing the

position of the pole, we see that S and S2 may take any posi-
tions in the plane.
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Two forces therefore which form a couple cannot be replaced

by a single force. Their resultant is an indefinitely small force

situated in any position in the plane of the forces, at an infinite

distance.

Conditions of Equilibrium. If then, similarly to Art. 4,

any number of forces lying in the same plane and having differ-

ent points of application, are in equilibrium, the force polygon

always closes.

For this reason, as already repeatedly seen in the practical

applications of our last chapter, the force polygon formed by
the exterior forces must always close.

But inversely, if the force polygon closes, it does not follow
that theforces are in equilibrium a couple may result.

To determine whether this is the case inspect the "
equilibri-

um polygon." If this also closes [i.e., if S and Sn intersect]

the forces are in equilibrium. If this does not close [i.e.,
if S

and Sn are parallel] there is no single resultant, but the

forces can be replaced by a couple, and this couple, as we have

seen, may have any position in the plane.

21. Thus if we suppose in Fig. 11, PI. 3, P! and P2 decom-

posed into their components S
0j
Sb and S

l5
S2 ,

the compressive
strains in S

t at c and d are equal and opposite [see (<z)].
We

have then S and S2 remaining, which again form a couple
which must have the same action as the first.

Hence we see that one couple can be replaced by another with-

out changing the action of the forces.

It is easy to determine a simple relation between any two

couples.

If from c we lay off c a equal to o 1, and c o equal to Co, we
have o a parallel to C 1 or S

1?
and therefore to c d. Join a d and

o d. The triangles c d a and c d o having a common base c d
and their vertices o and a in a line parallel to c d, are equal in

area. The side c a of. one is known, and the opposite apex lies

in the line of the force P2. Its area is then c P
x multiplied

by half of the perpendicular distance of P! from P2 ,
and is

therefore completely determined. So also for the other trian-

gle, one side of which o c is one force of the new couple, and

the opposite apex of which lies in the other force S2 .

Hence a couple can be turned at will in its plane of action.,

and the intensity and direction of its forces can be changed at

will if the area of the triangle the base of which is one of the-
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new forces, and whose opposite apex lies in the otherforce, is

constant; or wlien the product of the intensity of the forces

into their perpendicular distance remains the same. The di-

rection of rotation, of course, must also remain the same.

We shall see further on the significance of this area, or of

this product so much is clear, that a couple (or infinitely small,

infinitely distant force) is completely determined in its plane
when the direction of rotation is given, and the area of the tri-

angle or value of the product to which it is proportional, is

known. The couple itself can be replaced by any two parallel

equal and opposite forces whatever, if only the triangle having
one force as base, and the opposite apex in the other, has a given
constant area.*

22. Force and Equilibrium Polygons for any Number
of Force in a Plane.

In PL 3, Fig. 12 (b) we have the forces P^ acting in various

directions and at different points of application. P
2 and P3

form a couple / that is, are equal, parallel, and opposite in di-

rection. Required the position, intensity and direction of action

of the resultant.

First, form the force polygon, Fig. 12 (#), by laying off the

forces to scale one after the other in proper direction. Thus

we have 1, 1 2, 2 3, 3 4, 4 5 in Fig. 12 (a) parallel respec-

tively to P! P2 P3 , etc., in Fig. 12 (b). The line necessary to

close the polygon, 5, is the resultant in intensity and direc-

tion. In intensity because the length of 5 taken to the scale

of force, gives the intensity of the resultant
;

in direction

because acting from 5 to it produces equilibrium, while act-

ing in the opposite direction, fr<3m to 5, it replaces the forces.

We have, therefore, only to find the position of the resultant

in the plane of the given forces in Fig. 12 (b). Hence :

Second, choose anywhere a "pole
"

as C, and draw the lines

or rays, or "
strings

" S Si S2 S3 S4 ,
etc. S and S5 are evi-

dently components of the resultant, since they form with it a

closed figure in the force polygon.

Third, form the equilibriumpolygon abcdeo', Fig. 12 (5),

as follows :

Draw a line parallel to S intersecting Pt (produced if neces-

sary) at any point as a. From this point draw a line parallel
* Elmente der GrapMschen Statik. Bauschinger. MOnchen. 1871. Pp.

11, 12.
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to Si to intersection with P
2 (also produced if necessary) at b.

From b parallel to 83 to c, then parallel to S3 to d, and finally

parallel to S4 ,
to intersection e with P5. Through this last point

draw a line parallel to the last ray S5 . Now S and S5 are com-

ponents of the resultant 5 [Fig. 12 (#)] and are found in

proper relative position. Produce them, therefore, to intersec-

tion o'. Through this point the resultant must pass. Drawing
then through o', a line parallel to 5, we have the resultant in

proper position, and acting in the direction indicated in the fig-

ure, it produces equilibrium.

Any. other point than a, upon the direction of P
1}
assumed as

a starting point, would have given a different point o' so also

for any other assumed position of the pole C. But in every
case we shall obtain a point upon the line of direction of R^
already found. The reader may easily convince himself of this

by making the construction for different poles, and points of

beginning.
Now the polygon or broken line, a b c d e, we call the equi-

librium polygon that is, it is the position which a system of

strings or struts, S Sn Sa , etc., would assume under the action

of the given forces at the assumedpoints of application.
Thus P! acting at a, is held in equilibrium by the forces along

S and S^ P2 acting at b, by St and S2 and so on. If we join

any two points in the line of direction of S
,
and S5 ,

as m n by
a line, we have then a jointed frame, which acted upon at the

apices a. . .e by the forces Pt . . .P5 ,
and at m and n by S and

S5 is in equilibrium.
For S acting at m, we see from the force polygon may be

replaced by a force a parallel and opposed to the resultant R
and a force C a acting along the line L. In like manner S5 may
be replaced by a C and 5 a parallel and opposed to the result-

ant. The two forces a C and C a being equal and opposed
balance each other through m n, while the sum of a and 5 a

is equal and opposed to the resultant 5. There is, therefore,

equilibrium, and m and n may be considered as the points of
support of the frame acted upon by the forces Pt . . .P5 at the

apices a. . .e, a and 5 a being the upward reactions at the

points of support.

As to the quality of the strains in the different pieces ;
as

before the reaction at m, viz., a 0, is in equilibrium with the

strain in m n and m a. Following round, then, in the force
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polygon from a to 0, to C and C to a, and referring back to

the frame, we find strain in m n acting towards apex m, there-

fore compressive / strain in m a acting away from m, therefore

tensile. In like manner B! S2 S3 are in tension, while S4 or d e

and S5 or e n are compressed.

Hence we inay^/w? any two points of the equilibrium polygon

by joining them by a line. The forces acting at these points

are at once found by drawing from C in the force polygon a

parallel to this line to intersection with resultant. Thus a C

(since we have taken m n parallel to S^ is the force in m n and

a 0, 5 a, are the forces opposed to the resultant at m and n.

23. Influence of a Couple. Among the forces in Fig. 12

there are two, P2 and P3 which are equal, parallel and opposite,

the direction of rotation being as indicated by the arrow. Ex-

amining the equilibrium polygon, we see that the influence of

the couple is to shift St through a certain distance parallel, to

itself, to S3. Now suppose the forces composing the couple
were not given, but the value of the couple known, from the

direction of rotation and the area of the triangle A2 Pa P3 ,

which has its base equal to one of the forces and a height equal
to their perpendicular distance. In this case the lines 1 2, and

S2 in the force polygon, would disappear, but we can none the

less find the point d, and from this point continue the polygon

by drawing S4 and S5,
and thus find the same points e and o' as

before. To do this we have simply to apply the principle
deduced in Art. 21, that one couple can be replaced by another

provided the area of the triangle is constant.

In the present case we must replace the given couple by
another whose forces are Sx and S3, having the same direction

of rotation.

Lay off then from a, a i equal by scale to B! as given in the

force polygon. Describe upon Si the triangle a g h equal to

the given area A2 P2 P3 . Draw g i, and then through h, h k

parallel to g i. The point k is upon the line of direction of

S8,
or in other words the area of the triangle i k a is equal to

a g h. The proof is easy. The two triangles i g h and i g k
are equal, since they have the same base i g, and height. But

if from the triangle a i g we subtract i g h, we obtain a g h.

If from the same triangle aigwe subtract i g k, which is equal
to * g h, we obtain i k a. Equals subtracted from equals leave

equals. Hence i k a is equal to a g h.
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If then through k we draw a line parallel to S3 and produce
it to d, we have the same point as before, and thus from d, can

continue the polygon.

\Note that the direction of rotation shows the side ofS upon
which the point k must fall. St acts away from a [from 1 to

C in (a)] hence for rotation as shown by the arrow, g must fall

above S
1?
and S

t is shifted upwards.
24. Order of Forces Immaterial. As in the case of a com-

mon point of application, so also here, the order in which the

forces are laid off is immaterial. To prove this for two forces

is sufficient, as by continued interchange of two and two, we
can obtain any desired order.

Let the two forces be P4 and P5 (Fig. 13, PL 3) existing either

alone, or in combination with others preceding and following.

Taking the forces first in the order P4 P5, we have the equi-

librium polygon S3 S4 S5 , () giving the point a in the result-

ant. Taking them now in reverse order, P5 P4, we have the

polygon S3 S'5 S'4 giving the same point a in the resultant. The
resultant in the force polygon (a), viz., 5, is of course un-

changed in intensity and direction in either case. It is required
to prove that in the second case the last string S'4 is not only

parallel to S5 in the first, but coincides with it.

This is easy. The resultant of P4 P5 goes through ,
the in-

tersection of 83 and S5 . The same resultant in the second case

must also pass through the intersection of S3 and S'4 . But S3 is

the same in position and direction in both cases. If the second

point of intersection does not coincide with #, still it must lie

somewhere upon Ss. Hence as the resultant must pass through
both points, it must coincide with this last line

; viz., S3 . But
this is not possible, as the resultant must also pass through d,

the point of intersection of the forces, or when these do not

intersect must be parallel to them. As therefore S'4 must be

parallel to S5 (shown by the force polygon), the intersections in

each case must coincide, as also the lines S'4 ,
S5 themselves, and

the polygon from e on has the same course in either case.

25. Pole taken upon closing line. We have seen (Art.

20) that when any number of forces are in equilibrium both

the force and equilibrium polygon must close. There is one

exception to this statement. Since the pole may be taken any-

where, suppose it taken somewhere upon the line closing the

force polygon. This line, as we know, is the resultant, and
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holds the other forces in equilibrium. But now the equilibrium

polygon evidently will not close. On the contrary the first and

last strings will be parallel. This position of the pole should

then be avoided. For any other position of the pole our rule

holds good ; viz.,

If theforce polygon closes as also the equilibrium polygon,

the forces are in equilibrium. If the equilibrium polygon
however does not close, theforces cannot be replaced by a single

force but only by a couple. The forces of this couple act in

the parallel end lines of the equilibrium polygon, and are given

in intensity and direction of action by the line from the pole
to the beginning of theforcepolygon [beginning and end coin-

ciding].
26. Relation between two equilibrium polygons with

different poles. We may deduce an interesting relation be-

tween the two equilibrium polygons formed by choosing differ-

ent poles, with the same forces and force polygon.
Thus with the forces P! P2 P8 ?4, we construct the force

polygon Fig. 14 (a), PI. 4. Then choose a pole C and draw 804,

and thus obtain the corresponding equilibrium polygon Seabed
S4 Fig. 14 (b). Choose now a second pole C'. Draw S' ^ and

construct the corresponding polygon S' a' b' c' d' S'4. [In our

figure c and c' fall accidentally nearly together.]

Join the two poles by a line C C'. Then any two corre-

sponding strings of these two polygons intersect upon the same

straight line M N parallel to C C'. Thus S and S' intersect

at g, S'i and S x at k, S'2 and S2 at I, S'3 and S
3 at n, S'4 and S4 at

in and all these points g, k, I, n and in, lie in the same

straight line M N parallel to the line C C' connecting the

poles.

The proof is as follows.* If we decompose Pt into the com-

ponents S Si and S' S'
l5 these components are given in inten-

sity and direction by the corresponding lines in the force poly-

gon. If we take the two first as acting in opposite directions

from the two last, they hold these last in equilibrium. The
resultant therefore of any two as S and S' must be equal and

opposed to that of the remaining two, Si and S'j, and both re-

sultants must lie in the same straight line. This straight line

must evidently be the line yk joining the intersections of S S'

* Ekmente der Graphischen Statik. BauscMnger. Miinchen, 1871. Pp.
18-19.
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and Sx S\. But from the force polygon we see at once that the

resultant of S and S' is given in direction and intensity by
C C', and this is also the resultant of St and S^. The line join-

ing g and It must therefore be parallel to C C'. For the second

force P2 we can show similarly that the line joining k and I is

parallel to C C'. But k is a common point of both lines hence

g If, and I lie in the same straight line parallel to C C'.

[NoTE. Thepure geometric proof is as follows : The two

complete quadrilaterals 1 C' C and g k a' a have five pairs of

corresponding sides parallel, viz., 1 and a a', a a' 1 C' and

a' k> C and a g, o G' and a g, 1 O' and a k ; hence the sixth

pair are also parallel, viz., CO' and g k. In like manner for
1 2 C C' and I k b' b and so on.']

We can make use of this principle in order from one given

equilibrium polygon S a b G d S4 and pole, to construct another,

the direction of C C' being known. For this purpose, having
assumed the position of the first string S' we draw through its

intersection g with S a line M N parallel to C C'. The next

string must therefore pass through the intersection a' of S' and

P! and through the point k, of intersection of the second string

of the first polygon and the line M N. It is therefore deter-

mined. The next side must pass through b' and I, and

so on.

\Note. Observe that the intersections r and r' of the first and

last lines of both polygons must lie in a straight line parallel to

4, the direction of the resultant.]

27. mean polygon of equilibrium. Since the pole may
have any position, let us suppose it situated in one of the angles
of the force polygon. It is evident that the first line of the

corresponding equilibrium polygon, then coincides with thefirst

force. If now the pole be taken at the beginning of the first

force in the force polygon, then the first side of the correspond-

ing equilibrium polygon will coincide with the first force, and

the last line will be the resultant itself inproper position.
Take for instance, the pole at o in the force polygon, Fig. 15

(a), PI. 4. The first side S reduces to zero. The next Si coin-

cides with 1. In (b) therefore Pt is tlie first side of the equi-

librium polygon. The next side S2 corresponds with S2 in (a).

Thus we obtain* the polygon a b c d e, the last side of which 87,

is the resultant itself. That is, S2 is the resultant of Pt and P2,

S
;,
of Pw ,

S4 of PM and so on. Every line in the polygon then
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is the resultant of the forces preceding, and we call such a

polygon the meanpolygon of equilibrium.
If we wish to find the mean polygon for Pg.7 we have only to

take the new pole C' at 2 in the force polygon (a). According
to the preceding Art,, each side of the new polygon must pass

through the intersection of the corresponding side of the first

with the line S2 which passes through a and is parallel to C C'.

Thus S'4 must pass through b' and o. S'5 through G' and ?i,
and

so on. S'7 is the resultant of PS7,
and since S2 is the resultant

of P^; S7 ,
the resultant of P^, must pass through the intersec-

tion in of S'7 and 82-

We observe here again the influence of the couple P5 and P6.

S4 and S'4 are simply shifted through certain distances, without

change of direction, to S6 and S'6 ;
and as we have seen above,

knowing the direction of rotation, and the moment of the couple,

we might have omitted it in the force polygon and still obtained

87 and S'7 as before.

2. Line of pressures in an arch. The practical applica-

tion of the above will be at once seen in the consideration of

an arch. Thus with the given horizontal thrust applied at a

given point of the arch, and the forces P^g, we construct the

force polygon C o 5, and then the line of pressures abed.
[Fig. '16, PL 4.]

Required with another thrust H' = o C' acting at another

point, and the same forces Pw,
to construct the corresponding

line of pressures. To do this we have only to lay off o C' equal
to the new horizontal thrust, then choose a point of the force

line, as 3, as a pole and draw the corresponding polygon,
k opk ; the point of intersection, &, is a point upon the line

m n parallel to o C, and upon this line will be found the inter-

section of corresponding sides of the two polygons. Thus from
the intersection of the side ap of the first polygon with m n,

draw a line to o and we have a. From the intersection b of

the second line of the first polygon draw a line to a', and we
have b' #', and so on.

9. The preceding articles comprise all the most important

principles of the Graphical Method which can be deduced in-

dependently of its practical applications. Future principles
will be best demonstrated, and at the same time illustrated, by
considering the various special applications of the method, and

to these applications we shall therefore now proceed.
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CHAPTER III.

CENTRE OF GRAVITY.

30. General method. One of the most obvious applica-

tions of the new method as thus far developed, is to the deter-

mination of the centre of gravity of areas and solids. We
shall confine ourselves to areas only, merely observing that all

the principles hitherto developed apply equally well to forces

in space. The forces being given by their orthographic pro-

jections upon two planes after the manner of descriptive geo-

metry, the projections upon each plane may be dealt with as

forces lying in that plane, and thus the projections cf the force

and equilibrium polygons, the resultant, etc., determined.

A body under the action of gravity may be considered as a

body acted upon by parallel forces. The resultant of these

forces being found for one position of the body [or the body

being considered as fixed, for one common direction of the

forces] may have its point of application anywhere in its line

of direction.

Fqr a new position of the body [or another direction of the

forces] there is another position for the resultant. Among all

the points which may be considered as points of application of

these two resultants there is one which remains unchanged in

position, whatever the change in direction of the parallel forces.

This point must evidently lie upon all the resultants, and is

therefore given by the intersection of any two.

It is hardly necessary to give illustrations of the method of

procedure.

Generally, we divide up the given area into triangles, trapez-

oids, rectangles, etc., and reduce the area of each of these fig-

ures to a rectangle of assumed base. The heights of these

reduced rectangles will then be proportional to the areas, and

hence to the force of gravity acting upon them
; i.e., to their

weights. Consider then these heights as forces acting at the

centres of gravity of the partial areas. Construct the force
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polygon by laying them off one after the other. Choose a pole

and draw lines from it to the beginning and end of each force.

These lines will give the sides of the funicular or equilibrium

polygon. Anywhere in the plane of the figure, draw a line

parallel to the first of these pole lines (S ).
Produce it to inter-

section with the first force (P^, prolonged if necessary. From
this intersection draw a parallel to the second pole line (S^, and

produce to intersection with second force (P2).
So on to last

pole line, which produce to intersection with first pole line.

Through this point the resultant must pass, and of course it

must be parallel to the forces.

Now suppose the parallel forces all revolved say 90, the

points of application remaining the same. Evidently the new
force polygon will be at right angles to the first, as also the

new pole lines, each to each. It is unnecessary then to form

the new force polygon. The directions of the new pole lines

are given by the old, and this is all that is needed.

Anywhere then in the plane of the figure, draw a line (S' )

perpendicular to the first pole line (S ) previously drawn, and

prolong to intersection with new direction of first force (P/).

Through this point draw a perpendicular (S/) to second pole

line, to intersection with new direction of second force (P2 ')

and so on. We thus find a point for new resultant, parallel to

new force direction. Prolong this resultant to intersection

with first and the centre of gravity is determined.

[NOTE. If the area given has an axis of symmetry, that can

of course be taken as one resultant, and it is then only necessary
to make one construction in order to find the other.]

The given area of irregular outline must, as remarked above,
be divided by parallel sections into areas so small that the out-

lines of these areas may be considered as practically straight
lines. The forces are then taken as acting at the centres of

gravity of these areas. This division will give us generally a

number of triangles and trapezoids.

It is therefore desirable to reduce graphically to a comnlon

base the area of these triangles and trapezoids, and for this pur-

pose thp following principles will prove of service :

32. Reduction of Triangle to equivalent Rectangle of

given Base. Let b be the base and h the height. Then area

Take a as the given reduction base, and let x represent
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the height of the equivalent rectangle. Then.

Ill h x
ax = or = T.

2, a %b

Now a, b, and h being given, it is required to find x graphi-

cally.

Let A B C be the triangle, and D the middle of the base.

[Fig. 17, PI. 5.] Lay off A E = h and A P = a. Draw F D,
and parallel to P D draw E x. Then A a? is the required

height.

-r, A x AE x h

As to the centre of gravity of the triangle, %
it is evidently at

the intersection of the lines from each apex to the centre of

the opposite side
;
since these lines are axes of symmetry.

33. Reduction of Trapezoid to equivalent Rectangle.
In the trapezoid A B C D, Fig. 18, PI. 5, draw through the

middle points of A D and B C perpendiculars to D C, and pro-

duce to intersections E and F with A B produced.
Then lay off F g a the given reduction base, and draw

g E intersecting D C in x. Then H a? is the required height.

. EF Ha; EF x
OT F

= HE r =HB ;

hence aa3 = EFxHE = area.

To find the centre of gravity, draw a line through the mid-

dle points of the parallel sides A B and D C. This line is an

axis of symmetry. Prolong A B and C D and make C a =
A B and A b = C D and join a and b. Then the intersection

of a b with the axis of symmetry gives the centre of gravity.
The construction for the reduction of a, parallelogram is pre-

cisely similar. [Fig. 18 (5).]

The points F and E here coincide with A and B, and we
have

Ax AB
-v = =

,
or ax = h xAB = area.

h B g

The same construction also holds good, of course, for a rect-

angle or square. The centre of gravity in each case is at the

intersection of two diameters, since these are axes of symmetry.
31. Reduction of Quadrilaterals Generally. In general
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any quadrilateral may be divided into two triangles which may
be reduced separately, or into a triangle and trapezoid.

It is also easy to reduce any quadrilateral to an equivalent

triangle, which may then be reduced by Art. 32 to an equiva-

lent rectangle of given base.

Thus we reduce the quadrilateral A B C D [Fig. 18 (c)]

to an equivalent triangle by drawing C C^ parallel to D B to

intersection Ci with A B, and joining C^ and D. The triangle

D B Ci is then equal to D B C, and hence the area A D G! is

equal to A B C D. The triangle A D C^ can now be reduced

to an equivalent rectangle of given base by Art. 82.

The centre of gravity of the quadrilateral may be found as

follows :

Draw the diagqnals A C and B D and mark the intersection

E. Make A Ex
= C E and B E2

= D E, also find the centres

Oj and O2 of the diagonals A C and B D. Join O2 Ex and Ot

Eg ;
the intersection S of these two lines is the centre of gravi-

ty required.

The above is sufficient to enable us to find the centre of gravity
of any given area of regular or irregular outline. The method

may be applied to finding the centre of gravity of a loaded

water-wheel (as given in Der Constructeur, Reuleaux, Art. 47),

and many similar problems. The reader will have no difficul-

ty, following the general method indicated in Art. 30, in mak-

ing such applications for himself. The method itself is so sim-

ple that it is unnecessary to give here any practical examples
in illustration. We shall, moreover, have occasion to return to

the subject in the consideration of moment of inertia of areas.

We pass on therefore to the moment of rotation offorces in

aplane.
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CHAPTEE IV.

MOMENT OF ROTATION OF FORCES IN THE SAME PLANE.

35. The "Moment" of a Force about any Point is the

product of the force into the perpendicular distance from that

point to the line of direction of the force. The importance
and application of the " moment "

in the determination of the

strains in the various pieces of any structure will be evident by

referring to Art. 14, where Hitter's " method of sections
"

is

alluded to. In general, when the moments of all the exterior

forces acting upon a framed structure are known, the interior

forces, or the strains in the various pieces, can be easily ascer-

tained.

As we shall immediately see, these moments are given

directly in any case by the "
equilibriumpolygon"

36. < illinium'* Principle. If a force P be resolved into

two components in any directions as b C, b Ct (Fig. 19, PI. 5),

and these components be prolonged, it is evident that the

moment of P with reference to any point as a situated any-
where in the line 8d parallel to P, is P x b a. But if from C
we draw the perpendicular H to P, then by similar triangles,

P : H : ; G d : b a ;

Pxb a =
That is, the moment qfP with respect to anypoint a is equal

to a certain constant H multiplied by the ordinate c d, paral-
lel to P and limited by the components prolonged. The con-

stant H we call the "pole distance"

This holds good for any point whatever, and we have only to

remember that if we assume the ordinates to the right of P as

positive, those to the left are negative.
We can choose the pole C where we please, and thus obtain

various values for H, but for any one value the corresponding
ordinates are proportional to tlie moments.
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The above principle is due to Oulmann, and will be referred

to hereafter as Culmann^s principle.
37. Application of the above to Equilibrium Polygon.
Let PM be a number of forces given in position as repre-

sented in Fig. 19 (a) PI. 5. By forming \heforce polygon Fig.

19 (b), choosing a pole C, and drawing S Sx ,
S2, etc., we form

the equilibriumpolygon a b c d e
tf, Fig. 19 (a).

The resultant of the forces Pw acts in the position and direc-

tion given in the Fig. Kow, as we have seen in Art. 22,

regarding the broken line a b c d e as a system of strings, we

may produce equilibrium by joining any two points as a and/"

by a line, and applying at a andf the forces S and S4 . Let us

suppose this line a, f perpendicular to the direction of the

resultant. Since we can suppose the broken line or polygon
fastened at any two points we please, this is allowable, and

does not aft'ect the generality of our conclusion.

Then the compression in the line a, f is given by H, the

"pole distance," or the distance of the pole C from the result-

ant in the force polygon. We have therefore at a the force

H and Vx
= H acting as indicated by the arrows. At a then

Y! acting up, H and S acting away from a, are in equilibrium,

or Vj is decomposed into H and S
,
as shown by the force

polygon.

According to Culmanrts principle then, the moment of Vt

with reference to any point, as m or o, is equal to H x o m.

Therefore H being known, the ordinates between a f and S

are proportional to the moment of Vt at any point. Vj acting

upwards gives positive rotation (left to right) with respect
to m.

At the point b, Pt may be replaced by a force K parallel to

R and a force K 1 along S
t [see force polygon]. This we see

at once from the force polygon where K and K 1 make a

closed polygon with P
t ,
and taken as acting from to K and

K to 1, replace Pt . But these two forces are in equilibrium
with Sx and S

,
or 1 C and C [see force polygon], and since

K 1 and 1 K balance each other, all the forces acting at b may
be replaced by S

,
K and K C. We have then at b the force

K resolved into components in the directions S and Si-

By Culmanrfs principle, therefore, the moment of O K
about any point as m, is proportional to the ordinate n m, and

since K acts downward this moment is negative. Hence the
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resultant moment at m or o of the components at a and b par-
allel to R, is proportional to the ordinate o n.

So for &T\J point, the ordinate included by the polygon a b c

d ef, and the closing line af, to the scale of length multiplied

by the "pole distance " H to the scale offorce, gives the mo-

ment at that point of the components parallel to the resultant.

The practical importance and application of this principle
will appear more clearly in the consideration of parallel forces

in the next Chapter.
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CHAPTER V.

MOMENT OF RUPTURE OF PARALLEL FORCES.

3. Equilibrium Polygon. Since the forces acting upon
structures are generally due to the action of gravity, these

forces may be considered as parallel and vertical, and in all

practical cases therefore, we have to do with a system of paral-

lel forces.

Given any number of parallel forces P^, PL 6, Fig. 20
;

required to find the direction, intensity and position of the

resultant, and the moment of rotation at any point.

1st. Draw the force polygon. In this case it is, of course, a

straight lino.

2d. Choose &pole C, and draw the lines S . Sl5 S2,
etc.

3d. Draw the string or equilibrium polygon a, b c d e f.

Considering this polygon as a system of strings, the forces will

be held in equilibrium if we join any two points, as a and g,

by a strut or compression piece, and apply at a and g the up-
ward forces Y! and V2.

4th. Prolong a ~b and fg to their intersection o. Through
this point the resultant must pass. It is of course parallel and

equal to the sum of the forces.

Now, if a g is assumed horizontal, the perpendicular H to

the force line, or the "pole distance" divides the resultant 5

into the two reactions Vj and V2 (Art. 22).

All the forces in the equilibrium polygon have the same

horizontal projection H, in the force polygon.
Let a g represent a beam- resting upon supports at a and g.

We have then at once the vertical reactions V\ and V2 or k

and 5 &, which, in order to cause equilibrium, must act up-

For the moment at any point, as 0, due to V
l5
we have, by

Culmann's principle,m o multiplied by H. The triangle formed

by a 5, a g, and P
1} gives then the moment of rupture at any

point of the beam as far as Pv For a point o, beyond P^ the
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moment due to Vi, must be diminished by that due to P
l5 since

these forces act in opposite directions, and rotation from left

to right upon the left of any point is considered positive. We
see at once from the force polygon that Pt is resolved into S

and S
t or into a b and b c. Hence the moment at o due to P!

is m n multiplied by H. The total moment at o is then mo
m n = n o, multiplied by H.

Hence we see that the ordinates to the equilibrium polygon

from the closing line a g, are proportional to the total 'mo-

ments / while the ordinate at any point between any two adja-
cent sides of this polygon, prolonged, represents the moment at

thatpoint of aforce acting in the vertical through the inter-

section of these two sides.

[The reader should make the construction, changing the order in which

the weights are taken, and thus satisfy himself that the order is a matter

of indifference. As to the direction of the reactions Vi, Va, it must be

remembered that a & is to be replaced by Vi and H, hence Vi must be op-

posed to O 0, the direction obtained by following round in the force poly-

gon the triangle 1 O. Force aud distance scales should also be assumed.

Thus the ordinates to the equilibrium polygon scaled off say in inches, and

multiplied by the number of tons to one inch, and then by the "pole dis-

tance " taken to the assumed scale of distance, will give the moments of

any point.]

The resultant of any two or more forces must pass through
the intersection of the outer sides of the equilibrium polygon
for those forces (Art. 16). Thus, the resultant of Px and P8

must pass through the intersection of a b and c d. Of Vt and
Pb through the intersection of a g and be; of Pt P2 and P3,

through intersection of a b and d e, and so on. In every case

the intensity and direction of action of the resultant is given

directly by simple inspection of the force polygon.
Thus from the force polygon we see that the resultants k 2

and Jc 3 of Vx P! P2 and Vx P! P2P3 ,
act in different directions.

Their points of application are at the intersection of cd and d e

respectively with a g, or upon either side of d in the equilibrium

polygon. At d the ordinate and hence the moment is greatest,
and at this point the tangent to the polygon is parallel to a g.

If we had a continuous succession of forces
;

if a g, for in-

stance, were continuously or uniformly loaded
;
the equilibri-

um polygon would become a curve, and the tangent at d would
then coincide with the very short polygon side at that point
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The points of application of the resultants of all the forces

right and left of d are then at the intersection of this tangent

with a g, or at an infinite distance.

At d then we have a couple, the resultant of which is as we

have seen (Art. 20), an indefinitely small force acting at an

indefinitely great distance. That is, with reference to d, the

forces acting right and left cannot be replaced by a single

force.

Hence generally : at the point of maximum moment (" cross

section of rupture"), the resultant of the outer forces on either

side reduces to an indefinitely small and distant force, the

direction of which is reversed at this point, and the point of

application of which changes from one side to the other of the

equilibrium polygon.*
The "cross section of rupture

"
then, is thatpoint where the

weight of thatportion of the girder between it and the end is

to the reaction at that end, or where the resultant changes

The value of the moment at this point, is therefore equal to

theproduct of the reaction at one end into its distance from
thepoint of application of the equal resultant of all the loads

between that end and the point.
Thus for a beam uniformly loaded with w per unit of length,

the reaction at each end is ~- m From the above, the cross sec-
2i

tion of rupture is then at the middle. The point of application
of the resultant of the forces acting between one end and the

.... . I .
. wl I wt>

middle is at -r, hence the maximum moment is-jr X-T = -5-.
4: & 4: o

39. Beam wit li Two Equal and Opposite Forces beyond
the Supports. The ordinates to the equilibrium polygon thus

give, as it were, a picture or simultaneous view of the change
and relative amount of the moments at any point. The point

where the moment is greatest, i.e., where the beam is most

strained, is at once determined by simple inspection.

Let us take as an example a beam with two equal and oppo-
site forces beyond the supports. Thus, Fig. 21, PI. 6, suppose
the beam has supports at A and B, the forces being taken in

the order as represented by PX P2. We first construct the force

* Die GrapkiscJie Statik. Culmann, p. 127.
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polygon from to 1, and 1 to 2 or 0. Next choose a pole C,

and draw S Si and S
2 . Draw then a parallel to S till intersec-

tion with first .force, Pl5 then parallel with Si to second force,
P2 ,

then parallel to S2 or S to intersection with vertical through

support B, and finally draw the closing line L. A line through

C, parallel to L, gives as before the vertical reactions. Follow-

ing round the force polygon, we find at A the reaction down-

wards, since S acts from C to and is to be replaced (Art, 4)

by L and V^ ;
at B reaction upwards, since P2 acts up, and fol-

lowing round, S2 acts from to C. Both reactions are equal to

a 0. At A then the support must be above, and at B below the

beam. The shaded area gives the moments to pole distance H.

Had we taken the pole in the perpendicular through o,' S would

have been parallel with the beam itself. This is, however, a

matter of indifference. The moment area may lie at any in-

clination to the beam. We also see here again the effect of a

couple (Art. 23). S is simply shifted through a certain distance

to S2 , parallel to S
,
and therefore the moment at any point be-

tween P2 and B is constant. This is generally true of any

couple, as we have already seen, Article 21, and may be proved

analytically as follows :

Let the distance between the forces be a = A B, Fig. 22.

Then for any point o, we have P x (a+'B o)P xBo=P[a+Bo
B 0] = P a. For o' between A and B, P xA o'+P x o' B=

P [A0'+.0'B] =P a.

So also for any point to the left, the same holds true.

Graphically the proof is as follows :

Decompose both forces into parallel components, Fig. 23.

Then for any point, as o, we have the momentM = H x m n

Hxraj? or M = H x np. But n p is the constant ordinate

between the parallel components A n and A p.
We see, therefore, by simple inspection, that the distance of

P! and P2 from the support B, Fig. 21, has no influence what-

ever upon the moment or strain in' A B, provided the distance

between the points of application remains the same, and that

the moment at all points between P2 and the support B is con-,

stant and a maximum. From B and P2 the moments decrease

left and right, and become zero at A and Px.

10. Beam with T\vo Equal and Opposite Forces be-

tween the Two Supports. Let the beam A B, Fig. 24, PI. 6,

be acted upon by the two equal and opposite forces PI P2 .
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Construct the force polygon 012. Choose a pole C and draw

C 0, C 1, C 2. Parallel to C 0, draw the first side of the equi-

librium polygon to intersection with firstforce P^ then paral-

lel to C 1 to secondforce P2 ;
then parallel to C 2 to d. Join d

and 0. Parallel to this draw C a in force polygon. Then a

is the vertical reaction at A, which acts upwards, since it must

with C a replace C ;
and C 0, when we follow round from o to

1 and 1 to C, acts from C to 0.

We have the same vertical reaction at B, but here, since we

must follow from 1 to 2 and 2 to C, C 2 acts from 2 to C, hence

following round, the reaction at B is downward. The shaded

area gives the moments to pole distance H, as before.

We see at once that at a certain point e the moment is zero.

Left and right of this point the moment is positive and nega-

tive. At the point itself we have a point of inflection, and

here, since the moment is zero, there is no longitudinal strain.

At b and c the moments are greatest ;
here the beam is most

strained, and at these points, therefore, are the " cross sections

of rupture." Here again, if we had taken the pole C in the

perpendicular through a, the closing line of the polygon o d
would have been horizontal. It is, however, indifferent at

what inclination a d may lie, but we may if we wish make it

horizontal now, and then lay off from its new intersections with

P
t and P2 along the directions of these forces, the ordinates

already found at b and c, and join the points thus obtained with

the ends of o d (i.e., with its intersections with the verticals

through the supports). The ordinates of the new polygon
thus found will be for any point the same as before, and will

also be perpendicular to the beam.

[NOTE. Had we taken the forces precisely as above but in reverse order,

the force line would be reversed, and we should have and 2 in place of 1,

and 1 in place of and 2
;
that is, in place of O 1 we should have C and

O 2. Constructing then the equilibrium polygon by drawing a line paral-

lel to new O to intersection with new Pi, then parallel to new O 1 to in-

tersection with new P 2 ,
then parallel with new O 2 to intersection with

vertical through B, and finally joining this last point with intersection of

the first line drawn (O 0) with vertical through A, we have at first sight a

very different equilibrium polygon. This new polygon will consist of two

parts. If the ordinates in one of these parts are considered positive, those

in the other must be negative. The difference of the ordinates in these two

portions for any point, will give the same result as above. This, by mak-

ing the above construction, the reader can easily prove.]
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41. Many other problems will readily occur, which may in a

similar manner be solved. The weights may have any position,

number and intensities desired
;
in any and every case we have

only to construct with assumed pole distance the corresponding

equilibrium polygon, and we obtain at once the moments at

every point. By the use of convenient scales, numerical results

maybe obtained which maybe checked by calculation, and

the practical value and accuracy of the method thus demon-

strated.

The above principles will be sufficient for the solution of any
such problem which may arise, and we shall therefore content

ourselves with the above general indication of the method of

procedure, and pass on to the consideration of a few cases

where the above needs slight modification, and which, from

their practical importance, and the ease with which they may
be treated graphically, seem worthy of special notice.

l8T. BEAM OR AXLE LOAD INCLINED TO AXIS.* [Fig. 25, PI. 6.]

We have here simply to draw the "
closing line"AC paral-

lel to the beam or axle. From d draw d B parallel to the force

P, then draw A B in any direction at pleasure, and join B C.

We have thus the equilibrium polygon ABC, the ordinates to

which, as d B, parallel to the force P, will give the moments,

provided we know the corresponding pole distance.

But this can easily be found. As we have already seen, the

force polygon being given, the equilibrium polygon may be

easily constructed. Inversely, the equilibrium polygon being

given, the force polygon may be constructed. Thus from A
draw A c equal -and parallel to P, and then draw c Ct parallel

to B C. A a and 5 c are the vertical reactions Px and P2 ;
a 1>

is the horizontal component of the force which must be resisted

at one or both of the ends
;
and the moments at any point are

given by the ordinates parallel to P multiplied by the perpen-
dicular distance from d to A c. If we suppose the force P, as

in the Fig., as causing two opposite vertical forces, instead of

acting directly upon the axis, we have only to prolong A B to

B! and join Bx Ba, and then the ordinates of A B! B2 C parallel

to P or A c, multiplied by H (perpendicular distance from Ct

to A c) will give the moments.

* See Der Constructeur ,
Reuleaux.
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2D. FORCE PARALLEL TO AXIS. {Fig. 26, PL 6.]

We have an example of this case in the "
bayonet slide

" of

the locomotive engine.
We have here two pairs of forces, the reactions Vt and V2

and the forces over ~B{ and B2 . The points of application of

these last change of course periodically, but for any assumed

position the moments are easily found. Thus draw A Bt at

pleasure, and C Rj parallel to it, and join B! B% and A C, and

we have at once the equilibrium polygon. To find the corre-

sponding force polygon, suppose Px applied at J, and join b with

the other support. Make be equal to P then c d V2. Lay
off then A a = c d = V2 and draw a Cl5

which is the pole dis-

tance. Draw d e parallel to BX B2. Then A e and e A are the

forces acting over Bj, and B^ and A a is the reaction V,. The

case is, indeed, precisely similar to that in Art. 40.

[NOTE. The moment area should properly be turned over upon A C as

an axis, so that A a should be laid off and e fall below A. This can, how-

ever, cause no confusion.]

The application of the method to car axles,* crane standards,

and a large number of similar practical cases in Mechanics is

obvious. The formulae for many of these cases are too com-

plex for practical use
;
in some, no attempt at investigation of

strain is ever made, the proportions being regulated simply by
"
Engineering precedent

"
or rules of thumb. Those familiar

with the analytical discussion of such cases will readily recog-

nize the great practical advantages of the Graphical Method.

3D. BEAM OR AXLE ACTED UPON BY FORCES LYING IN DIFFERENT

PLANES.

The analytical calculation in such a case for instance is of

considerable intricacy, but by the graphical method, on the

contrary, the difficulty of investigation is scarcely greater than

before.

Thus, let Fig. 27, PI. 7, represent a beam acted upon by two

forces P! and P2 not in the same plane.

First, we draw the force polygonsA Ot M and D O2 2 for the

forces P! and P2 , having both the same pole distance G Ol
=

O2 H, the pole O2 being so taken that the closing lines of the

* Der Constructed, Beuleaux, pp. 215-222.
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corresponding polygons A V D and A c" D coincide. This is

easily done, as if the closing line of the second polygon for any
assumed position of O2 (O2 H being equal to G Ox) does not co-

incide with A D, the ordinate at G" can be laid off from C and

A c" D thus found in proper position, and then the pole O2 can

be located. It will evidently be at the intersection of the ver-

tical O2 O'2 withV' D.

The two force polygons being thus formed, we construct the

polygon A C" D by drawing lines B B", E E", C G", etc., so

that their angles with the vertical shall be equal to the angle

between the planes of the forces, and making them equal to

the ordinates B b", E e", C c", etc., respectively. Join V B",

e' E", /' F", G' C", etc., and lay off the ordinates B b,
E

e, Ff,
C c, etc., respectively equal. The ordinates to the polygon
thus obtained, viz.: A b efc D multiplied by the pole distance

Q! G or O2 H, give the moments at any point. A b and G D
are straight lines, b efc is a curve (hyperbola). If we drop
verticals through Ox and O2, and draw the perpendiculars O/ M,
O'2K ;

A M is the reaction R
1? and D K the reaction R2,

both

measured to the scale of the force polygon. Their directions

are found by the composition of A G and H 2 and D H and

G M respectively, under the angle of the forces.

4TH. COMBINED TWISTING AND BENDING MOMENTS.

In many constructions pieces occur which are subjected at

the same time to both bending and twisting moments. Both

can be represented and given by moment areas. Thus, Fig.

28, Fl. 7, represents an axle turning upon supports at A and B
and having at C a wheel upon which the force P acts tangenti-

ally. We have then a moment of torsion Mt
= P R and reac-

tions P! = P - and P2
= P

;
s being the distance of P

from B, and a of P from A.

Let the bending moments be represented by the ordinates to

the polygon a C b
;
then laying off a o equal to P and drawing

o O parallel to b c, we find the corresponding pole distance

O &, and the reactions P! and P2 equal to k a and o k respec-

tively.
*

Now, in the force polygon O a o thus found, at a distance

from O equal to R, draw a line m n parallel to P. This line

m n evidently gives for the same pole distance the moment of
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torsion P x R. Laying off C'Ct = b b',= m n, we have the

torsion rectangle d &' b C'.

Now the combined moment" of torsion Mt and bending Mb is

f Mb +fVMf+Mf*. We make then C' C equal to f C' Ct
="

f m n and C C2 equal to f C C' - Mb ,
and draw C2 b. Then

any segment of any ordinate, as// is f offf- Revolve now

C' C with C' as a centre, round to C' and join C' C2 . Then

C2 C' is equal to VMb +Mt> and therefore with C2 as centre

revolving C2 C' to C3,
we find the point C3 ,

C Cs being equal to

Mb+ \/M + M?. In the same way we find any other

point as/g, by laying off/'/' equal to// , joining/ and/' and

making / / equal to / fQ. The line C8 / b thus found is a

hyperbola, and the ordinates between it and b C give the com-

bined moments [for pole distance O k~\ at any point.

[NOTE. We suppose the axle to turn freely at A, and the working point

or resistance beyond B ;
hence the moments left of the wheel are given by

the ordinates to a O.]

5TH. APPLICATION TO CRANK AND AXLE.

The above finds special and important application in the case

of the crank and axle.

Thus in PI. 8, Fig. 29, let E D C B be the centre line of crank

and shaft. Lay off a P equal to the force P acting at A, choose

a pole o and draw o a oP and the parallels o a and a E. Join

E and d and draw o Px parallel to E d. Then P P
x is the

downward force at E and Px a the upward reaction at D. The

ordinates to E d a to pole distance o P, give the bending mo-

ments for the shaft. Make a F equal to the lever arm R, then

F G is the moment P R, and we unite this as above with the

bending moments and thus find the curves c' d' e' the ordinates

to which give the combined moments at every point of the

shaft [see 4th].

For the arm B C, make the angle a B C equal to D a d,

and then the horizontal ordinates to a B give the bending mo-

ments for the arm. Make C c equal to C c and we have the

torsion rectangle C c b B, and as in the previous case we unite

the two and thus find the curve b h F, the horizontal ordinates

to which from B C give the required combined moments, to

* Der Constructeur, Reuleaux, p. 52, Art. 18.
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pole distance o P. Thus h'h^ = -f
H k

0)
H i =

-|
B J

,
and

H h = k h' + ti i = f Mb + | |/Mg + M*.

The application of the method when the crank is not at right

angles to the shaft, as also when the crank is double, and gener-

ally in the most complicated cases, is equally simple and satis-

factory. Our space forbids any more extended notice of these

applications, and we must refer the reader to 2)er Constructeur,

by F. Reuleaux, Braunschweig, 1872, for further illustrations

and applications of the method to the solution of various practi-

cal mechanical problems.

42. Continuous Loading Load Area. Thus far we have

considered only concentrated loads. But whatever may be the

law of load distribution, if this law is known, we can represent

it graphically by laying off ordinates at every point, equal by
ecale to the load at that point. We thus obtain an area bounded

by a broken line, or for continuous loading, by a curve, the

ordinates to which give the load at any point. This load area

we can divide into portions so small that the entire area may
be considered as composed of the small trapezoids thus formed.

If, for instance, we divide the load area into a number of trape-

zoids of equal width, as one foot one yard, etc., as the case may
be, then the load upon each foot or yard will be given by the

area of each of these trapezoids. If the trapezoids are suffi-

ciently numerous, we may consider each as a rectangle whose

base is one foot or one yard, etc., as the case may be, and whose

height is the mean or centre height. The wr

eight therefore for

each trapezoid acts along its centre line. We thus obtain a

system of parallel forces, each force being proportional to the

area of its corresponding trapezoid, and equal by scale to the

mean height or some convenient aliquot part of this height.
We can then form the force polygon ; choose a pole ;

draw

lines from the pole to the forces
;
and then parallels to these

lines, thus forming the string or equilibrium polygon; and so

obtain the graphical representation of the moments at every

point.

Since, however, the polygon in this case approximates to a

curve, that is, is composed of a great number of short lines, the

above method is subject to. considerable inaccuracy, as errors

multiply in going along the polygon.
This difficulty can, however, be easily overcome.

Thus we may divide the load area into two portions only, and
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then draw the force and equilibrium polygon, considering each

portion to act at its centre of gravity, and so obtain an equili-

brium polygon composed of three lines only. These lines will

be tangents to the equilibrium curve. (Art. 76.) We thus have

three points of the curve, and its direction at these points.

In this manner we may determine as many points as may be

necessary, without having the sides of the polygon so short or

so numerous as to give rise to inaccuracy.

43. The above will appear more plainly by consideration

of a

BEAM UNIFORMLY LOADED.

The curve of load distribution becomes in this case a straight

line. The load area is then a rectangle, and hence the load per
unit of length is constant. Let us now divide this load area

[Fig. 30, PI. 8], intofour equal parts, and considering each por-

tion as acting at its centre of gravity, assume a scale of force,

and draw the force polygon. Since in this case the reactions at

the supports must be equal, we take the pole C, in a perpendi-
cular to the force polygon at the middle point. This causes the

closing line of the equilibrium polygon to be parallel to the

beam itself, which is often convenient. We now draw C 0, C 1,

etc., and then form the polygon a c e g h. The lines a, a c,

c e, etc., of this polygon, are tangent to the moment curve at

the points b,d,f,Q and A, where the lines of division prolonged
meet the sides. The curve can now be easily constructed, as

will appear from the next Art.

44. Moment Curve a Parabola. Suppose we had divided

the load area into only two parts, of the length x and I x [Fig.

30, PI. 8]. Then the moment polygon would be o a Jc h, and

the horizontal projection of the tangent a Jc would be x + %

(l-x) = %l.

That is, the horizontal projection of any tangent to the mo-

ment curve is constant. But this is a property of the parabola.
The moment curvefor a uniform load is therefore a parabola,

symmetrical with respect to the vertical through the centre of
the beam.

If, then, we divide o C and C h into equal parts, and join cor-

responding divisions above and below, we can construct any
number of tangents in any position.

[NOTE.
We may prove analytically that the moment curve is a parabola,
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and hence that the line a Tc must 'be a tangent. Thus the moment at any

point is

p being the load per unit of length, I the length, and the reaction at sup-

port therefore ^-.
Hence y = ^- (Ix x 1

} for origin 0.

When the origin is at d, representing horizontal distances byy' and ver-

tical by *', we have x = -
y', and y = h x', h being the ordinate at

middle =f|.
Hence by substitution

*-'-&&-"'-T, + i
'-''']

or reducing
-3H

,'-y
which is the equation of a parabola having its vertex at

d.~^

"We may of course take the pole anywhere, and hence H may
have any value. It is in general advantageous in such cases

P I

(i.e.}
for uniform load) to take H =

^-* We have then

f = lx,

and for y
-^

,
or for the middle ordinate. we have as = -r'

To draw the moment curve we have then simply to lay off

the middle ordinate equal to th the span. The curve can then

be constructed in the customary way for a parabola. Any

ordmate to this curve multiplied by H = -~- will then give the

moment at that point.

Enough has probably now been said to illustrate the applica-
tion of our method to the determination of the moment of rota-

tion, bending moment, or moment of rupture. The reader

will have no difficulty in applying the above principles to any

practical case that may occur.

It will be observed that the customary curve of moments in

the graphic methods at present in general use, comes out as

a particular case of the equilibrium polygon for uniform

load.

This polygon has other interesting properties, which we shall

notice hereafter. For instance, just as its ordinates [Fig. 30]

are proportional to the bending moments or moment of rotation,
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so also its area is proportional to the moments of the moments,
or the moment of inertia of the load area.

As to the shearing force at any point of a beam submitted

to the action of parallel forces, the reactions at the ends being

easily found as above by a line parallel to the closing line^
in

the force polygon, we have only to remember that the shear at

any point is equal to the reaction at one end, minus all the

weights between that end and thepoint in question.

Thus for a uniformly distributed load we have simply to lay
off the reactions which are equal to one-half the load, above

'and below the ends, and draw a straight line, which thus passes

through the centre of the span. The ordinates to this line are

evidently then the shearing forces. If we have a series of con-

centrated loads, we have a broken line similar to A\ 1' 1" 2',

etc., Fig. 32, PI 7, where each successive weight as we arrive at

it, is subtracted from the preceding shear.

44. Beam continuously Loaded and also Subjected to

the Action of Concentrated Loads. In practice we have

to consider not only a continuously distributed load, such as the

weight of the truss or beam itself, but also concentrated forces,

such as the weight of cars, locomotives, etc., standing upon or

passing over the truss.

In PI. 8, Fig. 31, we have a continuous loading represented

by the load area A a b B, and in addition four forces P'w .

Xow, since the total moment about any point is equal to the

sum of the several moments, we can treat each method of load-

ing separately and then combine the results. Thus with the

force polygon (b) we obtain the equilibrium polygon A' 1 2 3

B' for the continuous loading, and with the force polygon

(a) the equilibrium polygon A' 1" 2" 3" B" for the con-

centrated loads. If now in (b) we draw C L parallel to the

closing line A' B', and in (a) C" I/ parallel to the closing line

A' B", we obtain at once the reactions at the supports for each

case.

Thus for continuous loading we have L for reaction at A,
and 10 L for reaction at B; for the concentrated loads, I/ 0'

at A and 4' I/ at B. These reactions hold the beam in equi-

librium.

For any cross-section y, the shear to the right is composed of

the two components L 7 and I/ 3' (i.e., is equal to the reactions

minus the forces between cross-section and support). The mo-



CHAP. V.] MOMENT OF RUPTUKE OF PARALLEL FORCES. 49

inent of L T is given by the ordinate o y to the corresponding

polygon, and we may consider L 7 as acting at the point of:

intersection a of the side 7 8 with A' B' (Art. 38). In the same

way L' 3' acts at b. We may unite both these reactions and

find the point of application of their resultant c, by laying off

in force polygon (b} 7 b equal to I/ 3', and then constructing

the corresponding equilibrium polygon e a d c. The resultant

R passes through c. This construction remains the same evi-

dently, even when the points a and b fall at different ends of

the beam, as may indeed happen. The components will then

have opposite directions, and must be subtracted in order to

obtain the resultant.

The total moment of rotation at y is proportional to the sum
of m n and o y. The greatest strain is where this sum is a

maximum. In order to perform this summation and ascertain

this point of maximum moment it is advantageous to construct

another polygon instead of A' 1" 2", etc., whose closing line

shall coincide with A' B'. This is easy to do, by drawing in

force polygon (#), I/ C' parallel to A' B', and taking a new pole
C' the same distance out as before, that is, keeping H constant,

and then constructing the corresponding polygon A' 1' 2' 3', etc.

Thus the ordinatep y gives the total moment at y. "We can

make use here also of the principle that the corresponding sides

of the two polygons must intersect upon the vertical through
A' (Art. 26). We have thus the total moment at any point, and

can easily determine the point of maximum moment, or cross-

section of rupture. This point must necessarily lie between

the points of maximum moments for the two cases, or coincide

with one of them. In the Fig. this point coincides with the

point of application of P'2.

45. Case of Uniform Load. If the continuous load is uni-

formly distributed we can obtain the above result without

being obliged to draw the curve. As in this case we have a

very short construction for the determination of the point of

greatest moment, it may be well here briefly to notice it.

If we erect ordinates along the length of the beam as an axis

of abscissas, equal to the sum of the forces acting beyond any

cross-section, the line joining the end points of these ordinates

has a greater or less inclination to the axis according as the

uniform load is greater or smaller. At the points of applica-

tion of the concentrated loads this line is evidently shifted
4:
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parallel to itself. Since at the point of maximum strain the

sum of the forces either side is zero, this point is given by the

intersection of the broken line thus found with the axis.

Thus in PL 7, Fig. 32, let A B be the beam sustaining a uni-

form load, and also the concentrated loads Pi P2 P3 P4. The

reaction of the uniform load at the supports is equal to half

that load. To find the reactions for the concentrated loads we
draw the force polygon 01234, choose a pole C, then con-

struct the equilibrium polygon A' 1 2 3 4 B', and parallel to

A' B' draw C L. L and L 4 are the reactions at A and B.

Now through L draw A L horizontal, make it equal to the

'length of the beam, and take it as axis of abscissas. [It is of

course advantageous here to lay off the forces along the verti-

cal through B, as done in the Fig. Then A falls in the vertical

through A and 1 2 3 4 are directly under the forces them-

selves.]

The ordinate to be laid off at A is equal to L + half the

uniform load. Between A and 1 the line A\ V is inclined to

the axis at an angle depending upon the uniform load. Lay off

L U equal to this load and draw A U. A\ 1' must be parallel

to this line. At 1' the line A\ 1' is shifted to 1", so that 1 I"

is the load P].. Then 1" 2' is parallel as before to A U, and

2' 2" is the load P2, and so on. The intersection 2 with A L
gives the point of maximum moment or cross-section of rup-
ture. The force P2 at this point in our Fig. is divided, as shown

by L in the force polygon, into two portions, one of which is to

be added to the forces left, the other to the forces right. The

ordinate ?/ y' at any point gives the shear or sum of the forces

acting at that point. This force acts up or down according as

the ordinate is above or below the axis.

Moreover, the area between the broken line and axis A L.

limited by this ordinate, gives the moment of rotation of the

forces beyond the sectio*n y, areas below the axis being nega-

tive. For a section at z, therefore, we have area A A\ 1' 1"

2' 2
,
minus 2 2" 3' 3" z' s

,
or what is the same thing, the area

z z' 4' 4" B'j L, since the sum of the moments of all the forces

is zero.

46. Influence of a Concentrated Load, pasiiig over the

Beam. If in addition to the already existing uniform and

concentrated loads, a new force operates, we have by (44) simply

to construct for this new force its force and equilibrium poly-
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gon, and unite the forces and moments thus found with those

already existing.

In PI. 7, Fig. 32, we have assumed a new force P\ near the

left support. The force polygon is 0' 1' C', the pole distance

being taken the same as before. For any one position of this

force we have then the equilibrium polygon A' 1' B", and

drawing a parallel C' I/ to A' B" we obtain the reactions 0' I/

and L' 1', which must be added to the reactions already ob-

tained.

If now we take a section y between P\ and the point of max-

imum moment 2 before found, the sum of the forces either

side of this section undergoes the following changes : Upon
the side where P\ lies, and the point 2 does not lie, where

therefore the sum was originally an upward force, we have the

downward force I/ 1' (equal to algebraic sum I/ 0' + 0' 1').

The sum of the forces at the section, or the shearing force, is

therefore diminished.

The total rotation moment is, however, increased by the

amount indicated by m n. Both changes, that of the sum of

the forces and the moment of rotation, increase as P\ ap-

proaches y, and are therefore greatest when P\ reaches y.

If P\ passes y, this point is in the same condition as z with

reference to the former position of P\ ;
that is, the force and

point 2 are now both on the same side of the section. For 2,

then, the original downward force to the left is increased by the

force L' 1'. To the right the upward force is increased by V L'.

In like manner the moment of the forces beyond z is increased

by the amount indicated by o p. This change is greatest when

P\ reaches z.

Therefore when a load passes over the beam the sum of the

shearing forces is diminished in all sections between it and the

original point of greatest moment, and increased in sections be-

yond this point, while the moment of rotation, or bending

moment, for all cross-sections is increased. These changes
moreover increase for any section as the load approaches that

section. The shear at any point is therefore least, and the mo-

ment greatest, when the load reaches that point. As soon, how-

ever, as the load passes this point, the shear passes suddenly
from its smallest to its greatest opposite value, and then dimin-

ishes as the load recedes, together with t'he moment of rotation.

On the other side of the point 2 of original greatest moment,
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the shear and moment increase as the load approaches, and

become greatest for any point when the load reaches that point.

At the moment of passing, these greatest values pass to their

smallest values, and increase afterwards as the load recedes.

Since by the introduction of the load the shear for points

upon one side of 2 is diminished (between 2 and the load), and

on the other side increased, and the greatest moment is at the

point where the shear is zero, it follows that the point of greatest

moment moves in general towards the load. At a certain point,

then, both, meet. As the load then advances this point accom-

panies it, passes with it the original position, and follows it up
to the point where it would have met the same load coming on

from the other side. From this point, as the load continues to

recede, it returns, and finally reaches its original position as the

load arrives at the further end.

It is evidently of interest to learn the position of these two

points, where the load meets and leaves the point of greatest

moment, or cross-section of rupture, and this in Fig. 32 we can

easily do.

When P\ arrives at 1', we have* evidently the reactions by

laying off L E equal to P'j, drawing A E, and through its

intersection with the vertical through the weight, drawing the

horizontal A' B' . L B' is then the increase of reaction at B due

to P\. The entire reaction is B' B'
l5
and the broken line A't

1' 1", etc., holds good still, if we merely change the axis from

AO L .

to A' B' . The point of greatest moment, which is still

the intersection of the broken line with the new axis, in the

present case is not changed by reason of the overpowering in-

fluence of P2 . It does not move to meet the load, but awaits it

until it reaches P2 ,
and until, therefore, the new axis takes the

position A" B" .

If, however, the force P\ comes on from the right, we have

the reactions for any position as s
} by laying off A E' equal to

P'1} drawing L E', and then the horizontal A'" B'" through the

intersection of L E', with the vertical through z. Then A A'"

is the reaction at A, due to this position of the load. The in-

tersection #', corresponding to
,
shows the point to which the

point of greatest moment 2 moves to meet the load. As the

load passes towards the left, this point moves towards the right,

and both come together evidently at the point Vl5 correspond-

ing to the new axis A lv B iv
. The point of greatest moments
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passes theii from 2 to V
,
and beyond these two limits it can

never pass.

Our construction, then, is simply to layoff the load in oppo-
site directions perpendicularly from each end of the axisAo L,

and join the end points AO E and L E'. The intersections of

these lines with the diagram of shear give the pints 2 and

V required.

47. Load Systems.* Concentrated loads occur in general
in practice in a certain succession, as for instance the forces

acting at the points of contact of the wheels of a train of cars

passing over the beam, and it is necessary then to investigate

the influence of different positions of the train. It evidently

amounts to the same thing whether we suppose the weights to

move over the beam, or suppose the weights stationary and the

beam to move. In either case we obtain every possible posi-

tion of every weight relatively to the ends of the beam.

The severest load to which we can subject a railway truss, for

example, is when the span is tilled with locomotives. If we

suppose, for illustration, in round numbers, the distance between

the three axles of the locomotive 3 ft. 6 in., between the

axles of the tender 5 ft. 6 in., between the foremost tender

ancl the back locomotive axle 4 ft., and the entire length of

locomotive and tender 34 ft. 6 in., and then suppose the weight

upon each locomotive axle 13 tons, and upon each tender axle

8 tons, we have a system of weights in fixed order and at fixed

distances, and the truss should be investigated for a series of

these systems, as many as can be placed upon the span, passing
over it from one end to the other.

In PI. 9, Fig. 32 (#), we assume two such locomotives as

shown by PI_IO ,
and construct the force and equilibrium poly-

gons. The forces are symmetrically arranged with respect to

a central point, and the pole in the force polygon is therefore

taken perpendicular from the middle of the force line.

Kow the system of forces being as represented, suppose the

span to shift. Thus suppose the span of a given length repre-
sented by Si Sx in the Fig. Then 6 is the line closing the

polygon for this position of the span, and a parallel to 6 in

the force polygon, viz., C L gives the reactions at the ends.

Let now the span move from Sx St to 0, ss ;
we have a new po-

* Ekmente der Graphiachen Stutik, Bauschinger.
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sition for the line closing the polygon and new reactions. As

the span continues to shift to the right, the lines closing the

polygon revolve, and as their projections are always constant,

viz., equal to the span, they are all tangent to a, parabola, which

they therefore envelop.

48. Properties of this Parabola. This parabola has sev-

eral important properties which will aid us in the investigation

of the case above proposed.* In PI. 9, Fig. 32 (d), let XX be

the line along which the span is shifted
;
a M and a N the

outer sides of the polygon, intersecting at a, along which the

closing lines slide as they revolve. For a given position s s of

the span, <r a- is the corresponding line. * SQ is the position of

the span, for which the centre, c
,
lies in the vertical through a.

In this position <TO <TO is tangent to the parabola at o>
,
its middle

point, and upon this line lie the centres of all the other lines

(taken of course as reaching from a N to a M). Now the

point of tangency, /3, of any other line, as <r a, with the parabola,
is asfarfrom the centre of that line, 7, as the centre of that

line is itselffrom c . We have then only to make c b equal to

c G
,
and drop a perpendicular through b to find /3. Thus for

the position ^ ^ and the line ^ <rt ,
to find the point of tangency

!, make ^ d^ equal to ^ C
,
and draw d ^ perpendicular to

intersection with <T
Y o^.

Inversely we may find that position for the span s s, for which

the vertical through a given point, b, shall pass through the

point of tangency.
We have only to m'ove the span so that its middle point c

shall be as far from c as it is already from the given point, or

make c c equal to c b. (See Art. 75.)

If we shift now the span s s, and at the same time the point
b through an equal distance, the intersections of the vertical

through b, with the corresponding closing lines of the polygon,
will all lie upon the same line <r <7.

If therefore b\ is such an intersection, b has been moved from

5 to b\, and hence the span from s s to ^ sx .

49. Different Cases to be Investigated. We are now

ready to investigate the effect of a live load such as represented
in PI. 9, Fig. 32 (a). For the determination of the proportions

of the truss the following points are specially important :

*
See Elements der Grapkischcn Statik, Bauschinger, pp. 108-114. Also,

Die Omphische Statlk, Calmaun, pp. 136-141.
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1. When a certain number of wheels pass over the truss, but

without any passing off, or new ones coining on
;
what position

of the system gives the maximum moment at any given cross-

section not covered by the system, and how great is this

moment?
2. Under the same supposition as above, what position of the

load gives the greatest moment for a given point covered by one

of the load systems ?

3. Among all the various points of the span, at which is found

the greatest maximum moment, for what position of the load

does it occur, and how great is it ?

4. If the number of wheels is indeterminate, how many must

pass on, and what position must they have to give at any point

the greatest maximum moment; where is the corresponding

cross-section, what position must the load have, and how great

is this maximum moment ?

The three first questions are easily solved by the aid of the

above properties of the parabola, enveloped by the closing lines

of the equilibrium polygon, corresponding to different positions

of the span.

Thus, as regards the first question, let the given cross-section

be b, PI. 9, Fig. 32 (d), and suppose the span s s in the position

where the vertical through b intersects a- a- at the point of tan-

gency /9. When now the span shifts, the intersection of the

ordinate through J, with the corresponding tie line, will always
lie upon a a: But this ordinate gives the reduced moments for

b (reduced to pole distance H.) The greatest of these moments

will then be simply the greatest of the ordinates between a- a-

and the polygon, and will always be found at an angle of the

same. When found, we have at once the position of b, and of

course of the span with reference to the given loads. This is

always such that a wheel stands over the given section.

Thus in Fig. 32 (), supposing the four wheels P6 to P9 to

pass over the span t\ tt ,
we seek the position of the load to give

the greatest moment at a point ^ of the span from the left,

therefore Tth from the middle.

We lay off the span in such a position, tv t^ that its centre is

distant from the intersection a of the outer lines of the poly-

gon by J-th of the span.

The ordinate through the given point now passes through the

point of tangency of the tie line and parabola. We draw this
.
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tie line ^ 9, and seek the greatest ordinate between it and the

polygon. This we find at 7, and directly above 7 the given

point must lie, and hence we have the position of the span, viz.,

1 1. If the scale of tons is ten tons to an inch, of distance 5 ft.

to an inch, and the pole distance H is assumed 12-| ft. = 2^

inches, the scale of moments will be 10 x 2.5 x 5, := 125 ft. tons

to an inch.

As to the second question ;
the position of the span required,

is that where the vertical through the given point of the system
S Fig. 32 (a), intersects the corresponding tie line at its point
of tangency with the parabola ;

all other tie lines intersect this

vertical in a point between the tangent point and the polygon.
The middle of the span must then lie midway between the in-

tersection a of the outer polygon sides and the point s, where

the vertical through S meets the line X X. Thus the span has

the position #2 t^.

The third question, finally, is easily solved if the parabola en-

veloped by the tie lines is drawn. The greatest ordinate be-

tween this parabola and the polygon gives the greatest moment,
and the point and the position of span required, since the

middle of the span must be half-way between the point given

by this ordinate and a.

The greatest moment is always found upon an ordinate

through an angle of the polygon.

If, however, the parabola is not drawn, we find by trial at

several angles, drawing the tie lines and comparing the corre-

sponding ordinates, the ordinate required. Here the following
considerations may aid :

When the load is uniformly distributed, the maximum mo-

ment is in the middle of the span, and at the same time in the

vertical through the intersection a of the outer polygon sides.

The polygon itself becomes a parabola. The less uniform the

load is. the more this point approaches the heaviest loaded side,

as also the intersection a, though not in the same degree. For

loads not exceedingly unsymmetrical the point may be sought

for, then, in the neighborhood of a, i.e., near the resultant of the

forces acting upon the truss. Thus in our example we are jus-

tified in selecting the corner 7 of the polygon, nearest the point
of intersection a.

5O. Host unfavorable Position of Load upon a Beam of

given Span. The fourth question above requires a somewhat
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more extended consideration. The most unfavorable position
of a system of given concentrated forces is when it causes the

greatest moment at the cross-section of rupture. This position

is from the preceding, given by taking the centre of the beam

midway between the vertical through the point of intersection

of the outer sides of the equilibrium polygon and the nearest

angle of the same. If with this centre we increase the span,

the maximum moment increases until the span has the greatest

length possible without more wheels coming on.

Thus for the two wheels P4 and P5 ,
PI. 9, Fig. 32 (a), a is

the intersection of the outer polygon sides, and 4 the nearest

polygon angle. The almost equally near angle 5 gives at any
rate no greater moment. In order then that these two weights

may cause the greatest maximum moment, the middle of the

beam must lie half-way between a^ and 4
;

' and as the span
increases in length this moment increases, and is then greatest

when the span reaches to s or P3 .

If now the span still increases so as to also include P8 ,
the

point of intersection of the outer polygon sides recedes to 03,

where in our Fig. it coincides almost exactly with the polygon

angle 4. Here then, approximately at 4, we must locate the

centre of the beam. If we take the same length of span as

before, that is, make the half span a% s% equal to the distance

from sx to the point midway between ax and 4, we see by draw-

ing the closing lines for these two positions of the span, that

the maximum moments measured upon the vertical through 4

are almost exactly equal in each case. For a smaller length of

span including the three weights, the maximum moment de-

creases, and is less therefore than the maximum moment already

caused by the two wheels. The span sl st may then be regarded
as the greatest for which the two wheels P4 P5 give the greatest

possible maximum moment. As the space s2 #>> upon which we
have now three wheels, increases, the moment increases, and is

greatest when the span, its centre always remaining now at a.
t

reaches to s'2 or to P2 .

If now it still increases so as to also include P2 , the intersec-

tion of the outer polygon sides retreats to 03. The nearest

polygon angle is still 4, and midway then between 03 and 4 we
must now locate the middle of the beam. If from this centre

we lay off the half span equal to 03
'

a ,
to ,<?3,

and draw the clos-

ing line for this position of the span, we see as before that the



5S MOMENT OF RUPTURE. [CHAP. V.

moment given by the ordinate at 4 is for either case almost

exactly the same. Any less span including the four weights

would give a less moment
; less, therefore, than the moment

already caused by the three weights. The span s'% s'z then

precisely as before, is the extreme limit upon which the

three wheels P3 to P5 cause the greatest possible maximum
moment.

In a precisely similar manner we find that the span s's s'3

with a centre midway between 0% and 4 is the limiting span for

the four wheels P2 to P5 .

If now the span still increases so that Px comes on, the inter-

section of the outer polygon sides falls in our Fig. nearly at s
ly

and since this point also happens to correspond almost exactly

with the angle 3, we take the centre of the beam at s^ The"

greater the span now becomes, the greater the maximum
moment. The greatest length, however, which the span can

have without including P6 ,
is twice ,\ 6, or twice the distance

between ^ and P6. If P6 also comes on, the intersection of the

polygon sides is found at 0%, and the nearest polygon angle is 4.

Midway then between a5 and 4 is the new centre of the beam,
while before P6 came on, it was nearly at st . But for centre

81 the half span was st 6, while now it is somewhat less than

4 6
;
therefore considerably smaller. Since, however, we wish

to follow the span as it continues increasing, we must compare
those two spans which are equal before and after the coming
on of P6. The right-hand ends of these spans, viz., s'4 and s5

must evidently be distant each side of 6, by the half distance

of their centres ^ and 4, or a? (more accurately the point half-

way between <% and 4, but Og and 4 lie in our Fig. so nearly to-

gether that the centre cannot be indicated more exactly). We
make then st s\ = o^-Sj = M: 0, provided that ML is taken half-

way between the centre 81 and 0%.

An exact construction shows that the maximum moments for

these two spans, the one given by the ordinate through 3, the

other by the ordinate through 4, are almost exactly equal, and

moreover, that the maximum moment for the span Si Si of equal

length whose centre is at Mt
is also almost exactly equal, when

measured upon the vertical through M^ We can therefore

take Si St as the limit of those spans for which the five wheels

P! to P5 cause the greatest maximum moment.

Taking on now the seventh wheel, the intersection of the
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outer polygon sides is at a6 and the nearest polygon angle is 5.

Half-way between 0$ and 5 we must then take the centre, while

before it lay at a,z (nearly). If we take then M2 half-way be-

tween 03 and this new centre, we find precisely as before the

span S2 S2 with centre M2 ,
and right end at P7, as the limiting

span for the six wheels Px to P6. The same holds good for the

span S3 S3 with centre M3,
for the seven wheels Px to P7 ,

and

so on. If, according to supposition, P3 P4 P5 are 3 ft. in.

apart, P2 and P3 4 ft., and Pl and P2 5 ft. 6 in. apart ;
then for

spans up to st sx = say 8 ft., the two wheels P4 P5 will give the

greatest maximum moment, and their place upon the beam is

given by the position of the centre (half-way between a^ and 4).

From about 8 ft. to 15 ft. span, or s2 #a the three wheels P3 to P5

give the greatest maximum moment, and the centre of the span
is located at 0%. For spans from 1 5 ft. to 19 ft. span, or s's s't,

the four wheels P2 to P5 give the maximum moment, and the

centre is at s^ ;
and so on. Thus for a span of any given length

we have at once the weights and their position, in order to

cause the greatest maximum moment, as also the place of this

moment, viz., the point vertically over that angle of the equi-

librium polygon nearest the centre of the span. The ordinate

through this point included by the equilibrium polygon, and

the closing line for the given span, taken to the moment scale

gives this moment at once
;
or this ordinate taken to the scale

of force must be multiplied by the previously assumed pole
distance.

51. Greatest Moment of Rupture caused toy a System of

Moving Loads at a given Cross-Section of a Beam ofgiven

Span. For beams or trusses of long span, which are as a rule

caused to vary in cross-section, it is not sufficient merely to find

the greatest maximum moment which a given system of con-

centrated forces can cause
;
we must also know for a number

of individual cross-sections, the maximum moments which can

ever occur.

For this purpose the force and equilibrium polygons being
first constructed, we shift as above the. given span along a

horizontal line, and draw for each successive position of the

span the corresponding closing line in the equilibrium polygon,

marking the point where each closing line is intersected by a

vertical through the given cross-section, which of course moves

with the span, keeping always the same position with reference
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to the ends. The points thus obtained form a curve, and the

greatest ordinate between this curve and the polygon gives the

greatest moment which can act at the given cross-section.

This greatest ordinate will always be found at an angle of the

polygon, and hence a weight must always rest upon the cross-

section. Since the cross-section itself must lie upon this ordi-

nate, we have directly the position of the span with reference

to the given forces. The closing line for this position being
then drawn, a parallel to it in the force polygon gives the reac-

tions for this position.

The reader will do well to make the construction indicated

for an assumed span and system of weights, to convenient scales,

checking the results by computation.*
The above method applies more particularly to solid or

"plate
"
girders, beams, or trusses. It may of course be applied

toframed structures also, such as those illustrated in chapter
first. Thus the moment at any point, divided by the depth of

truss at that point, gives the strain in flanges. The more pre-

ferable, as perhaps also the simplest method of determining the

strains in such cases, however, is to find the reactions due to

each individual weight. Each reaction can then be followed

through the structure, as explained in that chapter, and the

strains in every member for every weight in every position can

thus be obtained and tabulated. An inspection of the table

will then give at once the strains due to the united action of

any desired number of these weights.
"We have thus two methods for the solution of such cases

;

first, by the composition and resolution of forces, and, second,

by the equilibrium polygon and moments of rupture, and may,
if we choose, check the results obtained by one method by the

other. In most practical cases involving framed structures,

however, the first method is preferable as being simpler, quicker
of application, and of superior accuracy.

For solid-built beams or "plate girders," etc., the second

method comes more especially into play. The determination

of the strains in a structure of this kind from the known mo-

ment of rupture at any point, requires a knowledge of the

moment of inertia of the cross-section at that point, and this

may also be found by the Graphical method.

* This construction is given in Art. 15, Fig. VIII., of the Appendix.
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CHAPTER VI.

MOMENT OF INERTIA OF PARALLEL FORCES.

52. THUS far we have seen that by the graphic method we
can in any practical case determine the moment of the exterior

forces acting upon a piece at any cross-section of that piece.

But the exterior forces give rise to and are resisted by molecu-

lar or interior forces. Now the moment of the exterior forces

being found, the cross-section of the piece at any point being

known, and one of the dimensions of this cross-section being

assumed, it is required to find the other dimension, so that the

strain per unit of area of cross-section shall be less than the

recognized safe strain of the material as found by experiment.

The moment of the exterior forces at any cross-section we
call the moment of rupture ;

and designate it by M. Let d =
the depth of cross-section.*

y = the variable distance of any fibre above or below the

neutral axis.

/3 = the breadth of the section at the distance y from the

neutral axis, and consequently a variable, except in the case of

rectangular sections.

s = the horizontal unit strain exerted by fibres in the cross-

section at a given distance c from the neutral axis.

Then since the fibres exert forces which are proportional to

their distance from the neutral axis or to their change of length,

the unit strain in any fibre at a distance y from the neutral

axis will be --. Let the depth of this fibre be d y, then, since

the breadth of section is /9, the total horizontal force exerted

by the fibres in the breadth /3, will be -fiydy. The moment
C

of this force about the neutral axis will be- ft if d y, and the

*
Thewy of Strains, Stone^ p. 43, Art. 07.
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integral of this quantity will be the sum of the moments of all

the horizontal elastic forces in the cross-section round the neu-

tral axis, that is, equal to the moment ofrupture of the section

in question. We have therefore

For a rectangular cross-section, for instance, y3 is constant

and equal to the breadth I. Representing the depth by d we

have M = -~ or ^ we make c the distance of the extreme
>

fibres =

TVT

from which M being known, as also *, if we assume b we can

find d or the reverse.

The integral //? if dy is the moment of inertia of the cross-

section, and may be defined as the sum of the products obtained

by multiplying the mass of each elementary particle by the

square of its distancefrom the axis. [See Supplement to Chap-
ter VII., Art, 10.]

From the above, we see its importance in determining the

strain at any distance from the neutral axis, or in proportioning
the cross-section, so that the resulting strain shall be less than

a given quantity at any point. "We see also that for a rectan-

gular cross -section the moment of inertia is
-y~-,

where b is the

breadth and d the depth.
53. Graphical Determination. "VVe have already seen

that the moment of a force, as Pt (PL 6, Fig. 20) with reference

to any point, as 0, is given by the ordinate n m multiplied by
the constant H (Art. 38). The ordinate n m then represents
the product of Px multiplied by the horizontal distance of b

from n. But the area of the triangle bnm\s>mnx^ b n =

PI x 3- b n*, that is, the area of the triangle b n m represents

one-half the moment of inertia ofP^ with respect to o. Just

as the exterior ordinates of the equilibrium polygon have been

shown to have a certain significance, and to represent the mo-
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ments of the forces, so the exterior areas of the equilibrium

polygon represent the moments of the moments, or the moments
of inertia. Thus in PI. 8, Fig. 30, the exterior parabolic area

o C h should be one-half the moment of inertia of the rectangle
or load area op r li.

Let us see if this is so. The area of the triangle o h C is

o h x the ordinate S C. This ordinate S C gives, as we have

seen, the moment, with respect to S, of the reaction. We can

therefore find its value. Thus ifp is the load per unit of length,

and I is the length,^ is the reaction, and~ this moment.

The area of the triangle o c li is therefore -^ x r = 5.
2i 4: o

The parabolic area odh is f of the circumscribing rectan-

gle. This rectangle is I x S d. The ordinate S d is equal to

SO dC. We have already found SO and dC is the sum of the

moments of Px and P2,
or" - x -.= *-%-. Hence S d = -^~

A 4 o c
x.

T> P f) Z
2

jr~
= ^ . The area of the circumscribing rectangle is then

"D 1? Si?/3
2? Z

8

*Jp,
Two-thirds of this is -ST~, which subtracted from 4w-

gives for half the moment of inertia
-^-. p Z

8
. Hence the

moment of inertia is p Z
3
,
as should be.

54. We see therefore the significance of the area of the equi-
librium polygon.

If, when a number of forces are given, we form the force

polygon, and then the equilibrium polygon, the ordinates to

this last give the moments to the assumed pole distance. If

now we take these moments themselves as forces applied at the

same points, form a new force polygon with new pole distance,

and new equilibrium polygon, the ordinates to this new polygon
to the new pole distance will give the moments of the moments
or the moments of inertia of the forces. The same method is

applicable to moments of a higher order, but in practice we
have only to do with those of the second order alone.

55. Radius of Gyration. The moment of inertia of a

system of parallel forces Px P2 etc., in a plane, with reference
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to an axis from which the points of application are distant q q^

etc., is then 2 P q
2

. This is the product of three quantities,

one of which is measured by the scale of force, and the other

two by the scale of length. "We can therefore regard it as the

product of the square of a certain length by the sum of the

given forces, or P q
2 = P 2 P. We call k the radius of

gyration.
In order to find the moment of inertia of a system of parallel

forces then, we must by the preceding Art. construct two force

and equilibrium polygons. If the pole distances are H and H',

and the segments into which the axis is divided by the produced
sides of the polygons are P\ P'2 and P'\ P"2 etc., respectively,

then

2 P <f
= H H' P"

and the radius of gyration is given by

HH'ZP' = I* "P

This expression is easy to construct. Thus for example in

PI. 11, Fig 33, let o n C be the first force polygon, o n the force

line, containing the forces P
;
C the pole, and H the pole dis-

tance. Make o 5 equal to the second pole distance H,' and draw

b c parallel to n c and c t parallel to H. Then

. HH'

whence P

If, therefore, in Fig. 33 (b), m"
' m"a is the segment of the

axis cut off by the outer sides of the second equilibrium poly-

gon, that is, if m" m"n = 2 P", we have only to prolong m"
m"n to L, making m" L = A, and describe a semicircle upon
m"Q L, and erect the perpendicular m" k, which will be equal
to k. Iii general, the pole distance H and H' can be taken ar-

bitrarily, but it is often advantageous to take H (sometimes H'

also) equal to S P. Then
'

We should then have in Fig. 33 simply to increase m" m,'\

by the second pole distance H', and then proceed as above to

find k.
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It is to be remembered that ^ 2, etc., the distances of the

points of application of the forces from the axis, jnay be meas-

ured in any direction, and H is parallel to this direction, and

is not therefore necessarily perpendicular to o n.

The above will be rendered plain by reference to Fig. 34-,

PI. 10. We suppose four forces applied at the points At A., A 3

A4 respectively, and acting parallel toXX. Eequired the mo-

ment of inertia of these forces and the radius of gyration, the

distances q qz, etc., being measured parallel to Y Y. First we
form the force polygon by laying off along X X, 1, 1 2, 2 3,

3 4, parallel, and in the direction of action of the forces, choos-

ing a pole C, and drawing C 0, C 1, C 2, etc. "We now construct

the corresponding equilibrium polygon, C I, in, II III, HE IV,
etc. The segments 01', 1'2', 2' 3', etc., represent the statical

moments of the forces with reference to X X. That is, these

segments to the scale of force multiplied by the pole distance C y

parallel to YY to the scale of distance, give the statical moments

of the forces. Now we take these segments themselves as forces,

and suppose them acting at the former points of application.

With the same pole as before we draw CO, C 1', C 2', etc., and

form the corresponding equilibrium polygon CI, III', miT, etc.

The sum of the segments of XX cut off by the outer lines of this

polygon, or oy, to the scale of force multiplied by HH' or Cy
5

gives the moment of inertia of the forces with respect to XX.
This moment then is M = y x C y*

where Oy = 2"P" and~C/ = HH'.
The radius of gyration k is, as we have seen, given by

k A/
HH'"^ P/

, 2P being equal to 04 in the Fig. Hence

o

If, then, we lay off d '= 4, and make c = C y, and make
the angle dee a right angle, we shall find a point e to the right

and Oe will be equal to -^ =
~VT>- Upon ey now describe

a semi-circle, the point of intersection V with the perpendicular

through will give (Art. 55)

/Oy xOy
1

/HH'^P"* ~ V 04.
= V ^p = # = radius of gyration.

The square of this line, then, multiplied by 2 P or 4, will give



66 MOMENT OF INEETIA. [ciIAP. VI.

at once the moment of inertia of the given four forces with

reference to X X and Y Y as axes. If we were to suppose the

same forces with the same points of application to act parallel

to Y Y instead of X X, the distances q qa being measured par-

allel to X X instead of Y Y, we should have the force polygon

Ci O li 2X 3 t 4t instead of C 1 2 3 4, and a precisely similar

construction would give us o x multiplied by pole distance for

the moment of inertia, and a' for the radius of gyration. We
recommend the reader to follow through the construction as

shown by Fig. 34.

56. Curve of Inertia Ellipse and Hyperbola of Inertia.

If having found the radius of gyration as above, we lay it off

from the axis on either side, in a direction parallel to the direc-

tions in which ^ q%, etc., are supposed measured, and through
the points thus determined draw two parallels to the axis M'
and M" on either side, and then suppose the axis to revolve in

the plane of the forces about any point as O situated in the

axis
;
the lines M' and M" also revolve and enclose a curve of

the second degree, whose centre coincides with O. Thus, if in

PI. 10, Fig. 34, we lay off O b along Y Y on both sides of XX
equal to o V = Jc already found, and then let X X revolve

about O, K J and J K will also revolve, and enclose either an

ellipse or hyperbola.
In order to prove this, take O as an origin of co-ordinates.

Let the co-ordinates of the points of application of the forces A,
A

2 , etc., be
, y^ x

y y^ etc. From each of these points A draw

parallels to the axis of y, intersecting the axis of x in the points
C. Then O C = x, A C = y. Now pass through the point O
an axis of moments M in any direction, and project for each

point OCA parallel to this axis upon the line q, which meas-

ures the distance of each point from the axis of moment (not

necessarily perpendicular distance). This projection is evi-

dently equal to q. Denote by a and /3 the ratios by which dis-

tances along X and Y must be multiplied, in order to obtain

their projections upon q, by lines parallel to M. Then

q= ax+ fry
for each point of application, and hence

or since for one and the same axis M, and direction q, a and /3

are constant,
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In this expression a and $ will vary with the position of M
and the direction of q, but 2 P ar

5

, 2 P y* remain unchanged.
These last expressions are, however, nothing more than the mo-

ments of the second order (moments of inertia) of the given
force system with reference to the co-ordinate axis, the distances

of the points of application being measured in the direction of

the axis. They are known if the force system is given and the

co-ordinate system assumed.

If we putip a? = a?2P,2P y> =tf 2P.2P xy =f*2P,
J) and #, etc., are the radii of gyration of the moments of inertia

with reference to x and y, and the above equation becomes

.2P f = 2 P [a
2 a2 + P V + 2 a /S/

2
]

If we conceive for the assumed position of M, the radius of

gyration k to be found, and M' and M" drawn on either side

at a distance &, measured parallel to q, and indicate the dis-

tances cut off by these lines from the co-ordinate axes by xe

2/e,
and then project these distances parallel to M upon the

direction of q or &, we have k = a xe
= /3 yv whence

K K
a = p

e i/e

and these values substituted in the above equation give

where 1& is essentially positive in the second term.

Hence,

If we suppose the axis M to change its position revolving about

O, the segments o?e ye cut off from the axes of x and y by
M' and M'' alone will change in this equation. It is therefore

the equation of the curve enclosed by M' M". If this curve is

known for a given force system, then the moment of inertia for

any axis passing through its centre is easily found. "We have

only to draw parallel to the axis two tangents to this curve, one

on either side, and measure their distance from M, in the direc-

tion in which the distances q of the points of application from

the axis are taken. This distance is the radius of gyration,
and the moment of inertia is simply the product of its square

by the algebraic sum of the forces.
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We call the curve represented by the above equation there-

fore, the curve of inertia. If we refer the curve to co-ordinate

axes which coincide with the conjugate diameters, the equation

becomes
1

+*='
r

i9 T^ 9
- -I- *

a? f
where x and y are the new ordinates, and A, B, the conjugate

semi-axes of the curve. A and B are therefore the radii of

gyration of the force system, measured in the direction of the

co-ordinate axes, and hence

where x and y are the co-ordinates of the points of application
of the given forces.

Since 2 P <? Z? 2 P if the sign of 2P <? is the same as

.ZP, T& is positive. When, on the other hand, these signs are

different, #* is negative. That is, when all the forces act in

the same direction J& is positive, and we have

A2 B2

1-
9 + 9

= 1
x z

y*

which is the equation of an ellipse.

If, however, the parallel forces act in different directions, ^
may be positive or negative. For cases where #> is negative,

either A2 or B2 will be negative, and we shall have

A* B*

1?-?
=1

or,

_A!+_B1=T1n T^ o - T^ J-.

ar
2 ^

Both cases coincide. The double curve consists of two hyper-
bolas with common assymptotes, common centre, and equal
semi-axes. For every axisM passing through the common centre

O, we have a pair of parallel tangents either to one or the

other hyperbola. The corresponding ^ is positive for the one,

negative for the other.

If, then, in the method of construction to which we shall

presently refer, the square of the semi-axis B, which lies in the

axis of Y, is negative, that hyperbola whose imaginary axis lies

in Y gives #* positive, the other gives P negative, and reversely
for the other case. If the axis of moments M coincides with
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one of the common assymptotes, the radius of gyration and

moment of inertia with respect to it of the given force system
is zero.

57. Construction of the Curve of Inertia. The curve of

inertia for a given system of parallel forces and given centre

O, is determined by the direction of any two conjugate diame-

ters, since as we have seen in Art. 55, PI. 10, Fig. 3-i, these

directions being assumed we can find the radii of gyration with

respect to XX and Y Y, and can thus determine O a and O 5,

tjie semi-diameters. We have then to develop a principle by
means of which these directions may be determined.

If we denote the distances of the points of application of the

forces from the axis of M measured in any direction by y, then

the statical moments of the forces, P y, are indeed dependent

upon the direction in which y is measured, but their relative

values remain the same. If then being found for any direction

of y, these statical forces are considered as being themselves

parallel forces acting at the points of application, and their

centre of action is found (for gravity centre of gravity) for

some other value of y, this centre of action remains unchanged.
For any axis passing through this centre of action the sum of

the moments of the forces is zero. If therefore we take a point
O in the axis M as origin of a system of co-ordinates, whose

axis OX may lie at will in the plane of the forces, while O Y
passes through the centre of action

;
the sum of the moments

of the statical moments P y, considered as forces acting at the

points of application, with reference to O Y, will be zero.

These moments however, provided that the distances of the

points of application are measured along the co-ordinate axes,

are the moments of inertia, viz., 2 P y x. If these are zero we
see that the general equation of the curve of inertia (1) Art. 56,

becomes that of a hyperbola referred to its conjugate diameters

as axes. "With the centre O therefore, the line joining O with

the centre of action, gives the direction of the conjugate di-

ameter of the curve.

This is the principle required. By means of it we can find

the conjugate diameters of the inertia curve, for a given centre

O, and thus construct it.

58. Construction of the Curve of Inertia for four paral-
lel forces in a Plane. Example. As an example let us

lake the four parallel forces in PI. 10, Fig. 34, supposed
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to act in different directions, parallel to X X at the points

A! Aj, etc.

As before we have the force polygon C 1 2 3 4 for an arbi-

trary axis as X X, and from the corresponding equilibrium

polygon, we determine the statical moments with reference to

X X, 01' 1'2', etc., to the basis C 0. These moments we again

consider as parallel forces acting at A t A^, etc., for which we
have C 1' 2' 3' 4' and corresponding equilibrium polygon
C I IT HI', etc. "We then determine the centre of action S, by
a second polygon 0" I IE" m", etc., the sides of which aije

respectively perpendicular to the first, according to the process
for finding the centre of gravity, Art. 30. The line joining O
with S gives the direction ofY Y, the diameter of the curve

conjugate to X X. To find the length of the semi-diameters

O b and O #, we must find the moments of inertia of the forces

with reference to X X and Y Y, taking the distances of the

points of application as measured parallel to these lines.

Therefore instead of C 0, we must take C y as basis or pole

distance, and then find the radii of gyration as already indi-

cated in Art. 55, viz., O b' and O a'. These distances laid off

along Y Y and X X give the semi-conjugate diameters of the

curve of inertia.

From the Fig. we see that the force Pt whose direction from

left to right we shall always consider positive, and 2 P = 4

have the same sign. On the other hand the total moment of

inertia y and the moment of inertia of P
l5 viz., 01" have dif-

ferent signs. The square of radius of gyration T& = y p
is therefore negative, the radius itself or the semi-diameter O b

is imaginary.
In similar manner, we see that O a the radius of gyration for

YY is real, since the total moment of inertia O x and S P = 4
1?

have the same signs. The curve is then a double hyperbola
with the conjugate semi-diameters O a and O b.

It is then easy to find the assymptotes K K and J J, and by

bisecting the angle which they make, the principal axes A A
and B B. In order to find the length of these axes, we have

the well-known principle that for any point as a, the product
of a k and k O (a Jc being parallel to the assymptote J J) is equal

1 /A2 -fB
a
\

to j the sum of the squares of the semi-axes ( r
j.

If then
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we find Jc
I,

the mean proportional of O k and k a, and lay it off

twice from O to D along the assymptote O K, O D is the diag-
onal of a rectangle whose sides are the principal axes. We
thus find the vertices A, A, B, B.

We can thus construct the curves. Then for any position
of the axis X X as it revolves about O, we can find the cor-

responding radius of gyration and consequently the moment of

inertia, by simply drawing tangents to the curve above and

below the new position of X X and parallel to it. The radius

of gyration thus obtained measured- to the scale of length and

multiplied by the algebraic sum of the forces, or 4 to the

scale of force, will give the moment of inertia required for the

assumed position of the axis.

59. Central Curve. Central Ellipse. If the point O about

which the axis turns coincides with the centre of action (or

gravity) of the forces, we call the curve enclosed by the paral-
lels M' M" at the distance k on either side, the central curve.

When the parallel forces all act in the same direction this curve

is always an ellipse.

For the central curve the principle proved in Art. 57 and

the method of construction given in Art. 58, are no longer

applicable, for the algebraic sum of the statical moments of

the given forces is zero for every axis through the centre of

gravity. We cannot therefore find the centre of gravity of the

moments of the forces, when considered as forces themselves

and applied at the given points of application.
If we divide, however, these moments considered as forces

into two portions or groups, and find the centre of gravity of

each group, the linejoining these two points has an important

property, viz., that for every moment axis parallel to it, the

algebraic sum, of the moments of the statical moments consid-

ered as forces, that is, the algebraic sum of the moments of

inertia of the forces, is zero. In other words, 2 P e e' is zero,

e being the distances of the points of application from the first

axis, which passes through the centre of gravity of the forces,

and e' the distances from the axis parallel to the line joining
the two centres of gravity of the two groups of statical moments

considered as forces. If we draw then through the centre of

gravity of the forces themselves the moment axis X X, and

take it as the axis of abscissas of a co-ordinate system whose Y
axis passes also through the centre of gravity of the forces and
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is parallel to the line joining the two centres of gravity of the

statical moments considered as forces, then the moments of

inertia 2 P y x are zero, and hence as in the preceding Art.

this axis o/Y is conjugate to X X.

This holds good not only for the central curve, but also for

every inertia curve, whose centre O instead of coinciding with

the centre of gravity of the forces, lies in the axis passing

through that centre. In this case also the axis through the

centre O parallel to the line of union above, is a conjugate to

X X. Still more, the half length of this conjugate diameter is

in both cases the radius of gyration of the force system for the

axis X X and the direction of Y.

Hence in every inertia curve of a system of parallelforces,

whose centre lies in an axispassing through the centre of grav-

ity of theforces^
the diameters conjugate to this axis are paral-

lel and equal. All these inertia curves are therefore touched

by two lines parallel to this axis and equally distant on either

side. This distance is the radius of gyration for this axis.

For any such inertia curve, whose centre O is distant i from

the centre of gravity S of the forces, we call E and G the par-
allel conjugate axes to S O for this curve, and the central curve

respectively ; q and q the distances from them of any point of

application, these distances measured parallel to S O, and con-

sidered positive when the point of application lies on the same

side of E or (5 respectively as the centre of gravity S from E.

Then i, the distance apart of E and (S is essentially positive,

and if we indicate by a and a the lengths of the semi-conjugate
diameters for the inertia and central curve respectively, we
have

where q and q stand in the simple relation

q
Hence

Since G passes through the centre of gravity 2Pq = o, and

therefore

Hence
a2 = a"+t,

an equation which gives the relation between the lengths of

the semi-conjugate diameters of the central and any inertia
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curve, whose centre lies upon an axis through the centre of

gravity of the forces, at a distance * from this centre.

Any two curves at equal distances either side of the centre of

gravity are therefore equal. If the semi-diameter of the central

curve a is real, and therefore a2

positive, a2
is also poskive and

greater than a2
. All the inertia curves are therefore of the

same kind as the central curve, and enclose the centre of grav-

ity. If, however, a2
is negative, and the central curve there-

fore an hyperbola; all those inertia curves whose centres are

distant from the centre of gravity by a distance i less than a

are hyperbolas also. For a distance i equal to a, the curves re-

duce to straight lines equal and parallel to the conjugate diame-

ter of the central curve. For i greater than a, the curves be-

come ellipses.

6O. Centre of Action of the Statical moments of the

Forces.* "We again suppose, through the centre of gravity of

the forces S [Fig. 35, PI. 11] a line NN drawn which cuts the

central curve at A and A'. Two such points we have in every

case, except when the curve is an hyperbola, andN N coincides

with an assymptote.
Let (5 be the conjugate axis to NN in the central curve, E a

parallel to it through any point o distant i from S, and also

conjugate to NN in the inertia curve whose centre is <?. Then

since the statical moments of the forces with reference to N N
is zero, the centre of gravity of the statical moments with re-

spect to E, considered as forces acting at the points of applica-

tion, will be somewhere upon N N. It is required to find

where.

We call q the distance of any point of application from E,
measured parallel to N N, and positive when upon the same

side of E as S, then i is essentially positive.

As before, q is the distance of the points of application from

(S, also measured parallel to N N, and positive in the same

direction as q.

Then we have always

q = q+i.
and for the moments of inertia of the forces with respect to E

or when a is the semi-diameter of the central curve, SA= S A'

and

* See Supplement to Chap. VII., Art. 10, latter part.
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Let now m be the distance of the centre of gravity or action,

of the moments of the forces with respect to E, from E, and in

its distance from. (, positive the same as q and q. Then

ni = m+i
and since the sum of the moments is equal to the moment of

the resultant :

But the sum of the moments P q of the forces with reference

to E, is equal to the product of the sum of the forces into the

distance i of the centre of gravity of the forces from E. Hence

and therefore

mi2P = Pq? = (a
2 + f) 2P,

or, m i
~ a3 + *

3
-

Introducing the value for m
(m + i) i = a? -f &

or m i = a2
.

If now a2
is positive, which is always the case for an ellipse

as central curve, m is also positive, and is therefore to be laid

off from S along NN on the opposite side of (S from o. If

then we conceive an axis E' drawn parallel to E, and symmet-
rical with reference to S, which axis we shall call for conven-

ience the symmetrical axis to E, we see from the above relation

that M is thepole of this axis in the central curve.

If, however, a2
is negative, therefore a imaginary, m is nega-

tive, and must be laid off from S towards o, and the point M
thus found is therefore the pole of the axis E itself, or in the

case of an hyperbola is the pole of E' in that hyperbola which

is not cut by N N, and for which therefore A A' is imaginary.
Hence we have the principle

Ifwe consider the statical moments of theforces with refer-
ence to any axis as E as themselvesforces acting at the given

points of application, the centre of gravity of these mom,ent

forces does not coincide with the centre of gravity of the origi-

nalforces, but is the pole
* in the central curve of an axis E'

parallel and symmetrical to E.

In those cases where the central curve becomes an hyper-

* POLAR LINE OP A POINT, in the plane of a conic section, is a line such,

that if from any point of it two straight lines be drawn tangent to the conic

section, the straight line joining the points of contact will pass through the

given point, which is called &pole.
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bola, we must observe whether the diameter conjugate to the

moment axis is real or imaginary. In either case the centre of

gravity is the pole of the line symmetrical to the moment axis

in that hyperbola for which that diameter is real or imaginary.
The construction is given in PI. 11, Fig. 35.

Upon S o
1 = S o we describe a semi-circle. With S as cen-

tre, and S A' = a = semi-diameter of the central curve, describe

an arc, and from the intersection with the semi-circle drop a

perpendicular upon S o'. The point M thus found is the centre

of gravity of the moments. For : a2 = aM* + m3 and aM2

= m (ini) hence a2 = m2+m i m3 = m i. The central curve

being known as also the distance i, the point M can be readily
found.

61. Cases where the Direetioii of the Conjugate Axis of
the Inertia Curve can be at once Determined. There are

certain special and practical cases in which the conjugate direc-

tions or axis of the inertia curve-can be at sight determined, so

that only the length of the semi-diameters remains to be found.

The most important of such cases are as follows :

(1.) When in a system of parallel forces, these forces can be

so grouped in pairs, that the lines joining the points of appli-

cation of each pair are all parallel, and the centres of gravity
of each pair all lie in the same straight line. Then for the

central curve and all inertia curves whose centres lie upon this

straight line, the direction of the axis conjugate to this line is

the same as that of the lines joining the points of application

of each pair.

This is easy to prove. For, for each pair, the sum of the

moments with respect to the line joining their centres of gravity,

is zero. These moments regarded as forces and applied at the

points of application, give therefore for each pair two parallel

opposite and equal forces, the sum of the moments of which

for any line parallel to the line joining the points of applica-

tion, is zero. This is the case for all the pairs, and therefore

the direction of the lines joining the points of application is

that of the axis conjugate to the line joining the centres of

gravity, for the central curve as also all inertia curves whose

centres lie upon this last line.

(2.) When the forces can be so grouped that the points of ap-

plication of each group lie in parallel lines, and the centres of

gravity of the groups lie in the same straight line. Then this
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straight line gives the direction for the central curve and every
inertia curve whose centre lies upon it, of the diameter conju-

gate to an axis passing through the centre and pai-allel to the

lines joining the points of application.

For if we take any such axis, the points of application of the

forces in each group are equally distant. The statical moments

for each group are then proportional to these distances. If,

therefore, they are considered as forces, their centre of gravity
coincides with that of the forces themselves, and lies therefore

in the line joining the centres of gravity of the groups. The
centre of gravity of the whole force system lies then in this

line, which is therefore the direction of the axis conjugate to

the line parallel to the lines joining the points of application,

in the central curve, and also all curves whose centres lie upon
this line.

(3.) When the forces can be so grouped that the centres of the

central curves of e'ach group lie in the same straight line, and

the diameters in each curve conjugate to this line, are parallel.

Then in the central curve of the entire system, the diameter

conjugate to this line is also parallel to these diameters. For,
for any axis parallel to these diameters, the centres of gravity
of the moments of the forces in each group lie upon the line

joining the centres of the curves. The centre of gravity of the

moments for the entire system lies then also upon this line,

which is therefore the direction of the axis conjugate to an axis

parallel to the diameters of the curves, for any inertia curve

whose centre lies upon this line.

In all these cases, if the directions thus found are perpendicu-

lar, we have to do with the principal axes.

62. Practical Applications. We can now apply the above

principles to practical cases, and as in the determination of the

moment of inertia of irregular figures, we have to deal with

triangles, parallelograms and trapezoids, we have first to con-

sider these three cases.

1st. The Parallelogram. PI. 11, Fig. 36.

The moment of inertia of a parallelogram is, as is well known,

M =
12

a ^** a keing tne breadth and 5 the depth.



CHAP. VI.] MOMENT OF INERTIA. 77

Hence K* = 52 = radius of gyration, or k = \/-& x -b.

That is, the radius of gyration is a mean proportional between

1 , . 1 _

-0 and -ft.

The centre of gravity of the parallelogram is at O the inter-

section of the diagonals, and this is therefore the centre of the

central curve.

If we suppose the parallelogram divided into laminae parallel

to D C, and suppose each lamina divided by G H parallel to

B C, the centres of gravity of each will lie upon G H. Right
and left of G H we then have a group of forces whose points of

application lie in lines parallel to G H, and the lines joining

any pair, one on each side of G H, are parallel. By (1) of the

preceding Art., therefore, GH and E F are conjugate axes of

the central curve-. For the lengths of the half diameters, we

find the mean proportional between -5 J and -~ &, -5 a and
^ ,

respectively, by the half circles B F and BH. We thus find k

and k\ and can then construct the central ellipse directly, or

find the principal axes, and then construct it. The centre of

gravity of the moments of the parallelogram, with reference to

any axis parallel to A B, is as we have seen, Art. 60, the pole of

a line parallel and equally distant from Oon the other side. If

we draw this line then, as D C, then from G draw two tangents
to the central ellipse, and unite the points of tangency by a

line
;
the intersection of this line with OG is the centre of

gravity of the moments of the forces themselves considered as

forces, or area of the parallelogram, with reference to A B.

2d. Triangle. PI. 11, Fig. 37.

The moment of inertia of a triangle for the* axis BC is

-r~ a A3 * whence ^ = -* A2
,
and for an axis E F distant i =

g A, which passes through fhe centre of gravity,

a8 = #-^ = i A8
. (Art. 59.)

T, * 1

a? d x = ^ a h\ h being the line A D, a = B O.
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The conjugate axes of. the central curve are by principle 1 or

2 of the preceding Art. E F and A D.

The above value of a is then the length of the semi- diameter

along A D, or a = Y
-^
h x -~ h. That is, a is a mean propor-

tional between -^ h and -^ Ti. This is found by the semi-circle
o o

ODFig. 37.

The moment of inertia of the triangle with respect to A D is

6
h
(n

aY The radius of gyration then is *f Q*)
2 =

r
~9 \~o

a
)
x

Q\"9 a )
or a mean proportional between -~ and

of|orDC.

This is given by the semi-circle on D G-
^
D C, and we

thus have the four points 1 2 3 4 of the central ellipse, and the

semi-diameters 1 and 3, and can therefore construct it.

From the central ellipse as before, we can find the centre of

gravity of the moments considered as forces for any axis par-

allel to B C or A D, as also in either case, the radius of gyration
and therefore moment of inertia, for any axis passing through O.

3d. Trapezoid. PI. 11, Fig. 38.

Here the lines E F joining the centres of the parallel sides,

and G-H parallel to these sides, and passing through the centre

of gravity 0, are the conjugate axes of the central ellipse.

For the axis A B and direction E F, the moment of inertia is

a and 5 being A B and C D, and A = E F. The square of

radius of gyration is then

:

*f [
a-(a -V^\ x* dx =

T2 (a
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For the radius of gyration for G H, at a distance i = -- h

j- we have
a+b

This radius a is half the diameter along E F.

To construct it, put (3 of = -k* + 2 h\

Describe a semi-circle upon E F, and at the centre X ,
and

at the intersection of the diagonals &, erect perpendiculars

<?! J and K L. Then FJ2 = 1 A2 and KL2 =
-7^ &,

E K = y A and K F = ^7 . If therefore we lay off
a + b a +b

K L equal to JM from J, we have

and hence the half diameter sought is one-third F M. "We

thus find 1 and 2.

To find the other semi-diameter we have the moment of in-

ertia for E F and direction G H, j^- (a? + d* b+a

hence the square of the radius of gyration is

\(a+b}h
This last expression is easily constructed. In the right-angled

triangle F B N, the hypothenuse F N =
\J (

^ j
2 +

(-5 *)

3>

B N being made equal to E. If we describe then a semi-

2

L /
*
hy* dy+ I
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circle upon F U = ^
F N, and make FW

=-g
F N, F V is the

semi-diameter sought. We thus find 3 and 4, and can now
construct the central ellipse. This being constructed we can

find the centre of gravity of the moments with reference to any
axis parallel to A B or E F, according to Art. 60, or the moment
of inertia for any axis through 0, by drawing a parallel tangent
to the ellipse. The distance from to the point of tangency

gives then the radius of gyration for that axis.

4th. Segment of Parabola. PL 11, Fig. 39.

Let the segment be limited by B C = 2 A, and A D == I.

Then it is evident that these two axes are conjugate (Art. 61),

and the centre of the central curve is 0, the ratio of A to

OD being as 3 to 2. Hence AD and E'F', parallel to CD
through 0, are conjugate axes of the central curve. To find the

length of the semi-diameters along these axes we find first the

moment of inertia of the segment with reference to an axis YY
parallel to E' F' and tangent to the parabola at A. We have

then for this moment of inertia

4

rJo
wherep is the parameter of the parabola, and I = A D. Since

4.

the area of the segment is
^
h I, we have for the square of the

radius of gyration

The square of the radius of gyration then for E' F' whose
o

distance from A is i = I is
5

0? P 3
72

9
72 _ 12

72

-~7
f ~25 f

-176*'
a being the semi-diameter along A D. It is easier here to com-

pute a, viz., a = 0.26186
I, and lay it off from O, thus finding

3 and 4.

For the other semi-diameter we find the moment of inertia

for A D and the direction E' F'. Thus
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The radius of gyration squared is, therefore,

and hence the radius of gyration is ft = 0.44721 h. Laying
this off from 0, we obtain 1 and 2, and can therefore now draw
the central ellipse.

63. Compound or Irregular Cross-Sections. Every cross-

section may be divided up into trapezoids, triangles, parallelo-

grams and parabolic segments, and the above cases will aid us,

therefore, in the application of the graphic method to compound
or irregular cross-sections. The engineer is often called upon
to determine the moment of inertia of such sections as the T,
double T, or different combinations of these in proportioning
the different pieces of bridges, such as chords, struts, floor-beams,

etc., as also in many other constructions. The calculation for

such cross-sections is sometimes very laborious. As an example
'of the application of the graphical method best illustrating the

above principles, we take the cross-section shown in Fig. 40,

PL 12.

First we divide the cross-section into a series of trapezoids.

The first segment, bounded by a curve, we may consider a para-
bolic area. These trapezoids we reduce to equivalent rectangles
of common base a [Art. 32], and take the corresponding heights
as forces. These forces we lay off in the force polygon and
choose a pole C at distance H from force line, drawing C 0, C 1,

C 2, etc. Parallel to these lines we have the first equilibrium

polygon I II m . . . . VIII, the intersection of the two outer

sides of which gives the point of application of the resultant.

The intersection S of the resultant witli the axis of symmetry
gives the centre of gravity of the cross-section [Art. 30]. The

segments o I', 1'2', 2'3', etc., cut off from o S, give the statical

moments of the forces with reference to o S to the basis H.

We now choose another pole C' at distance H', and form another

force polygon, considering these moments as forces, and applied
at the centres of action of the moments of the separate areas

into which the whole cross-section has been divided. These

centres of action can be determined by forming the central

curve for each area according to Art. 62, and then applying the
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principle of Art. 60. A little consideration will show that these

centres of gravity will coincide approximately with the centres

of gravity of the areas themselves, except for areas (3) (4) (5)

and (6). Finding then for these areas, the centres of action of

the moments considered as forces, we construct the equilibrium

polygon O' I' II' VIII'. The distance 0" 8" cut off by the

first and last sides of this polygon gives the moment of inertia

to the pole distances H and H' and the reduction base a. Thus

0" 8" measured to scale of force and multiplied by a H H' is

the moment of inertia of the cross-section with reference to a S.

fV'Q"
The radius of gvration is then k =V '* ** "

: .

a08

The division willpbe performed if we take H' = 0~8 = 2 P.

This we can easily do now without drawing a new polygon,
since what is required is the intersection of the outer sides only.

Thus take a new pole C\' distant from o S, H' = 8. Now we
know that each side of the new polygon for this pole distance

will intersect the corresponding side of the first in a line paral-

lel to o (V [Art. 27]. Since the new polygon may start from

any point, we may take -the first side to coincide with O VIII'.

Then the line of intersection of any two sides is O VHt' 8".

Produce any side as IV'V to intersection e with this line
;
from

e draw e a/ parallel to Cx

'

4'.

Through a' the intersection of o' I' and V IV, the resultant

of (1) (2) (3) and (4), must pass. The change of pole cannot

affect this resultant, which must therefore pass through a/, the

intersection of e a/ with the vertical through a' parallel to o S.

Hence 0/ a/ is the direction of the last side of the new poly-

gon, and 8"(V is the moment of inertia for the new pole dis-

tance C/ 8. The radius of gyration then is Jc = t/H O/'S".

In other words, k is a mean proportional between H and 0/'8".

The construction of Jc is given by the semi-circle described upon
(V'8" + H. The ordinate to this semi-circle through O/' per-

pendicular to 08 gives L We thus find the semi-diameter

S a = S a! of the central ellipse.

In order to find the other semi-diameter S 5 = S
J', we might

divide the cross-section into areas by lines parallel to S X, and

then proceed as above. This is, however, unnecessary. With
the same areas as before, we can find the central curve for that

area on each side of XX, and then the centre of application of
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the moment of each of these areas with respect to X X itself,

considered as a force. The method of procedure is then pre-

cisely as before. We draw a polygon the sides of which are

respectively perpendicular to those of the first polygon, and
thus find the statical moments 0"' 1'" V" 2'", etc., to basis H.

Choosing then a pole C'" at distance H'" and drawing the

corresponding polygon, we have 8 1V for the moment of in-

ertia. The radius of gyration is then Jc = |AHH'"08
IV

a. 08

We have taken H'" = 1
08, hence * =

\/|H 08*. Hence

1_
is a mean proportional between ^ 8 1V

a^d H. The construc-

1
tion is given in the Fig. by a semi-circle upon H+ 9 8 Iv

. We

thus find the semi-axis S 5' = S b, and can now construct the

central ellipse. We have thus found graphically not only the

moments of inertia of the cross-section with respect toXX and

Y Y, but, by means of the central ellipse, for any other axis in

the plane of the Fig. passing through S.

64. The above method of procedure holds good generally
for any cross-section, except that, when there is no axis of sym-

metry, the centre of gravity must be found by a second equili-

brium polygon whose sides are respectively perpendicular to

those of the first. When the moment of inertia with reference

to a single axis only is required, the above method becomes

quite short and simple, as well as accurate. In our Fig. the

scale used as also the number of divisions taken make the pro-
cess appear more complicated than it really is.

With this we shall close our discussion of moment of inertia,

merely observing, that all the principles deduced in this chap-
ter for forces acting in a plane hold equally good for forces in

space. The central curve then becomes an area, we have a mo-

ment plane instead of moment axis M, and the ellipse and hyper-
bola of inertia become ellipsoid and hyperboloid respectively.

For a much fuller discussion of the subject than is possible

here, we refer the reader to Culmann's Graphische Statik, pp.

160-206
;
also Bauschinger's Elemente der Graphischen Statik,

pp. 116-168. To the latter we are largely indebted in the

preparation of the present chapter ;
Plates 10 and 12 are, with

slight alteration, reproduced from that work.
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PART II.

APPLICATION TO BRIDGES.

65. Under the head of Parallel Forces we have already

given the general application of the graphical method to the

determination of the moments and shearing forces in beams

resting upon two supports only. "We shall now take the sub-

ject up more in detail, and show the methods of deteVmining
the maximum strains for all the possible conditions of loading
which may occur in Bridge Girders. In the following we shall

adhere closely to the development of the subject as given by
Winkler. {^DerBruckeribau, Wien, 1872.]

66. Forces which act upon a Bridge. The forces which

act upon a bridge may be enumerated as follows :

\st. The weight of the bridge itself. This, previous to the

calculation of the strains, is unknown, since it depends upon the

intensity of the strains themselves. It is customary to assume

the weight to begin with, by comparison with existing struc-

tures of similar character, and then to find the resulting strains.

The weight answering to these strains can then be easily ascer-

tained
;
the strength of the materials used being known, and

compared with the assumed weight. According as it is less or

greater, the weight was then assumed too great or the reverse.

A second approximation to the true weight may then be made,
and the strains proportionally diminished or increased. As
rules for estimating the weight of bridge girders under 200 feet

span, we have, for weight of girder G,

where W = the assumed approximate total distributed load in

tons, including the weight of girder ;

I = length in feet
;

d = depth in feet
;
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f= the working strain in tons per sq. foot of cross-section.

(See Stoney, Theory of Strains, vol. ii., p. 441.)

"We have also the rule :

"
Multiply the distributed load in

tons by 4
;
the product is the weight of the main girders, end-

pillars and cross-bracing in pounds per running foot." Iron is

taken at 5 tons per sq. inch tension, and 4 tons per sq. inch

compression.
2d. The moving or live load / which is determined by the

purpose of the bridge. This load can take various positions

upon the bridge, and may even be divided into several por-
tions. It is therefore an important problem to determine that

distribution which shall cause the maximum strains.

The live load is, as the term implies, in motion, so that, in

combination with the deflection, there is a centrifugal force,

or increase of pressure. This is, however, in practice disre-

garded, while such a coefficient of safety is chosen in propor-

tioning the parts, that the increase of strain due to this cause is

fully covered.

3d. Horizontal forces, caused by the wind and the passage
of loads.

Uh. Pressures at the supports. The known forces cause re-

actions at the supports, which evidently must also be considered

as forces acting upon the bridge girder. For straight girders,

these reactions are vertical, while in suspension and arch sys-

tems they are inclined.

67. Bridge Loading. The heaviest load to which a railway

bridge can be subjected is when it is covered from end to end

with locomotives. " The standard locomotive is assumed to be

24 feet long, and to have six wheels with a 12-foot base
;
to

have half its weight resting on the middle wheels, and one-

fourth on the leading and trailing pairs respectively, which are

supposed to be at equal distances on either side of the middle

wheels." (See Stoney, vol. ii., p. 405.) The standard engine
is assumed to weigh 24 tons. 30 tons and 32 tons, according to

the construction. This makes the standard load 1 ton, 1J ton, or

1 ton per foot of single line. Short bridges of less than 40

feet span must be considered as subject to concentrated loads

from single engines.
The maximum load for public bridges is recommended by

Stoney at 100 Ibs. per sq. ft.

68. In the Straight Truss all the Outer Force act in a
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Vertical Direction. The strain in any cross-section depends

upon, first, the resultant of all the outer forces acting either

side of the cross-section
;

and second, the statical moment of

these forces with reference to the cross-section. The first, or

the algebraic sum of all the forces acting between the cross-

section and either end, we call the shearingforce for this cross-

section, and indicate it by S. It is also designated as vertical

force, or transverse force. The moment of the resultant, or

the algebraic sum of the moments of all the exterior forces,

with reference to any cross-section, we call the moment for this

cross-section, and indicate it by M. It is also called lending

moment, or moment of rupture. For example, in a lattice

girder with horizontal flanges the strains in the web are pro-

portional to the shearing forces, those in the flanges to the

bending moments.

The shearing force is considered positive when it acts on the

left side upwards, or on the right side downwards. The mo-

ment M is positive, when on the left side the tendency of rota-

tion is to the left, on the right side to the right, or when it tends

to make the girder convex upwards^ that is, causes compression
in the lower fibre or flange.
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CHAPTER VII.

SIMPLE GIEDEES.

69. Action of Concentrated Loads Invariable in Posi-

tion. By "simple girder" we understand a girder resting

upon two supports only, in opposition to a continuous girder
which rests upon more than two.

Suppose a number of forces Pt . . . PB acting at various points.

[Fig. 41, PI. 13.] We form the force polygon by laying off the

forces to scale one after another
;
then choose a pole O, and

draw O 0, 1, 2, etc., to the points of division. Parallel to these

lines we draw the lines of the equilibrium polygon between the

corresponding force lines prolonged. If now we close the poly-

gon thus formed by the line A B, and draw through O the

parallel O L to A B, the segments L and L 5 of the force

line give the reactions V: and V2 . Further, the shearing force

between A and P
x is Sx

= Vx
== L

;
between P! and P2 ,

S2 =
Vx PI ;

at P8 ,
S3
= Y! P! P2 ,

etc. That is, the shearingforces
are the distances of the points of theforcepolygonfrom L. It

is easy, then, to construct them, as shown in the lower shaded*
area of the Fig. (See also Art. 46.)

If in the equilibrium polygon we let fall at any point a ver-

tical as I K, and from K draw K L perpendicular to A B, and

indicate by H the horizontal pull, by L the strain in A B, and

byM the sum of the moments of all forces left of I K, then,

for equilibrium about K, we have M^LxKL^LxIK cos

I K L, or, since the angle I K L = L O H in force polygon,

LxcosIKIi = H, and hence M = H x I K, or representing
the variable ordinate I K by y :

M = Hy.
But H is the distance of the pole O. from the force line

;

the moment at any point is thereforeproportional to the verti-

cal height of the equilibrium polygon. (See also Art. 38.) If

we take H equal to the unit of force, we have
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so that in this case the moment at any point is directly given

by the ordinate of the polygon at that point. It is this impor-
tant property of the equilibrium polygon which renders it espe-

cially serviceable in the graphical solution of this and similar

problems.

70. Concentrated Load Variable Position Shearing
Force. -If the load lies to the right of any given cross-section,

then the shearing force at this cross-section will be S^V^ or,

since we regard a force to the left acting up as positive, S is

positive. As the load P moves towards the left, Y! or S in-

creases. When the load is to the left of the cross-section, the

shearing force at the cross-section is S Vt P, and since P
is always greater than V

l5
S is negative. The nearer P ap-

proaches the cross-section, the smaller is S.

Hence : a concentrated load causes a positive or negative

shear, according as it is to the right or left of the cross-section

considered^ and the shearingforce is greater the nearer the load

is to the cross-section.

Moments. If the load lies to the right of the cross-section,

the moment is M = Vt x, x being the distance of the cross-

section from the left support. M is therefore negative and in-

creases with Y! ;
that is, as the load approaches the cross-sec-

tion. If the load is on the left of the cross-section, M = V2

(I a?),
V2 being the reaction at the right support. Here also

M is negative and increases with V2 ;
that is, as the load ap-

*proaches the cross-section.

Hence : a concentrated load wherever it lies causes in every

cross-section a negative moment, which for any cross-section is

a maximum, when the load is applied at that cross-section.

71. Position of a given System of Concentrated Loads

causing Maximum Shearing Force. If P
t is the sum of all

the loads to the left of any cross-section, the shear at that cross-

section is S = V, Px . As the system moves to the left with-

out any load passing off the girder or any load passing the cross-

section, Y! and therefore S increases as long as S is positive, or

as long as Vv > P^ If a load passes off the girder, then for the

remaining loads S increases anew as the system moves to the

left, until a load of the system passes the cross-section in ques-

tion. The same holds good for a system moving to the right,

where S is negative.

Hence : the shearing force is a maximum for any point,
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when there is a load of the system at that point, and the maxi-

mum is positive or negative, according as the load lies just to

the right or left of the point.
Since for a single load (Art. 70) S is positive or negative, ac-

cording as the load is to the right or left, S will be in general
a positive or negative maximum when all the loads lie to the

right or left, and the heaviest nearest the cross-section. Only
in cases where a small load precedes, can S be greatest when
the second load lies upon the point in question.

If P is the resultant of all the loads and ft its distance from

the right support,

Vi = P
,
and therefore S = P ^

- Px.

L (/

Now the position of the loads of the system or ft remaining

unchanged, P! will vary as the first power of x, the distance of

the cross-section from the left support. Therefore, between any
two cross-sections for which the load on the girder remains the

same, the shear S is represented l>y the ordinates to a straight

line.

72. Construction of the Maximum Shearing Forces.

Construct the force polygon with the given loads
;
choose a

pole O [PI. 13, Fig. 42 (a)] and draw the corresponding equi-

librium polygon. It is required to determine the shear S at a

cross-section distant x from the left support, under the suppo-
sition that the first load Pt of the system, moving towards the

left, acts at this cross-section.

Determine upon the outer side P: A of the polygon passing

through the point P1?
a point A distant from P! by the distance

sc,
and then find the point B upon the polygon distant from A

by I,
the length of span, and draw A B. Parallel to A B draw

O ! in the force polygon, then A L = Vt
= S, the shear at P!.

Drop a vertical through B intersecting Pt
A produced, in M

;

then the triangles O A L and Px M B are similar, and there-

fore S = A Li = B M
,
when a is the pole distance. If we

choose a
I,
then S = B M.

Hence : the maximum shearing forces are proportional to

the vertical segments between the equilibrium polygon and the

prolongation of the outer side taken at the end of the system,
or are equal to these segments if the pole distance is taken equal
to the span provided that the last load is at the cross-section.
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We have, therefore, the simple construction given in PI. 13,

Fig. 42
(I). The broken lines are parallel to the various posi-

tions of A B for corresponding positions of Pt . The positive

and negative values of S equally distant from the right and left

. supports are equal, so that it is only necessary to construct S

for one value.

If the second load is to be at the cross-section, and if e is the

distance between the first and second, we draw first a line

whose equation is y P!
e
"T

x
t
and construct, as above, a

polygon, for which the second load lies on the right support B,

and whose second side (between second and third loads) coin-

cides with the above line. The ordiuates to this line above the

axis of abscissas will give maximum of + S.

73. Maximum Momenta Since, according to Art. 70, a

concentrated load causes a negative moment at any point,

wherever it may lie, we must have evidently loads upon both

sides of any point, in order that the moment may be a maxi-

mum. Since a single load causes a greater moment at any

point the nearer it lies to that point, the greatest load must lie

nearest the cross-section in question. The method of loading,

causing maximum moments, can be best determined for a dis-

tributed load (not necessarily uniform). In this case the equi-

librium polygon becomes a curve [PI. 13, Fig. 43]. If in this

curve we draw A B, and take C so that A C : C B \\x : I x,

then C D = M for x. Suppose A B to take the position A' B',

the horizontal protection of C C' being indefinitely small,

then C' D' M + d M. In order now that M may be a

maximum, C' D' must be equal to C D or C C' parallel to D D'.

If in the force polygon O At is parallel to A A', O ^ to B E',

and O D! to D D', then A.
t Dx and "D

v
B

x are the loads upon
A C and B C.

Draw through C a vertical, and through A, A', B, B', paral-

lels to C C' or D D' intersecting this vertical in E, E', F, F'..

Then CE:OP::AC:BO::a?:Z-aj,
C E' : C F'

; ;
A' C' : B' C' : ; x : I -

;

therefore

C E : C F ; : C E' : C F', or C E' : C E ; : C F' : C F
;

also CE'-CE:CF'-CF::CE:CF,
that is,

E E' : F F'
| : x : I x.

If now we draw through A' and B' parallels to C C', or D D' to
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intersections H and I, we have A H = E E', I B' = F F'. Since

the triangle A A' H is similar to O At
D

t and B B' I to O Bl
D

t,

and since A' H B I, we have

A
t
D

x : B! D: ; ; A H : B' I : : E E' : F F' : : x : l-x.

Since Ax
D

t equals the load Px on A C, and B! Dx the load P2

on B C, we have P! : P2 ! : x : lx.
The same will, hold true approximately for concentrated

loads. Hence, in order that the moment at anypoint may be

a maximum, the system, of loads must have such a position

that the loads either side of this point are to each other as the

portions into which the span is divided.

In PI. 13, Fig. 44, let C D give the moment at C. If the line

A"B moves so that the horizontal projections of A C and B C
remain equal to x and I x, then as long as the ends A and B
move on the same straight lines, the point C will also move in a

straight line. The point C describes, therefore, a broken line.

The verticals between this line and the polygon correspond to

the moments for various positions of the load and a given value

of x. Evidently the greatest ordinate will be over an angle of

the equilibrium polygon which is not under an angle of the

line described by C that is, for M maximum a load must lie

upon the cross-section.

For any cross-section, then, the moment is a maximum when

a load is applied at this cross-section. Which of the loads

must be so applied is determined by the preceding rule.

74. Construction of Maximum moments. After the

equilibrium polygon has been constructed, in order to find M
for a point C (PL 13, Fig. 45), we determine two points F and

G upon the polygon which are distant horizontally from the

load on the given cross-section corresponding to the angle E by
distances A C, B C. Then draw F G, and the vertical K E is

equal toM when the pole distance is unity. We make C I = E K.

In this way we can construct the moments for different loads

of the load system at the given cross-section, and thus determine

that position of the load which gives the maximum moment at

the cross-section.

Generally when K E = y, and the pole distance is a, we have

M = ay. The pole distance a is measured to the scale of

force, and then y is given by the scale of length. The unit for

M,in order that M'may be equal to y, is evidently -th part of
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the unit of length (when the pole distance is a force units), or,

what is the same thing, one unit of length is equal to a moment

units. The same equilibrium polygon can be used for any
number of girders of various spans, hence the method is of very

rapid application.

75. Absolute maximum of Moments. Since for any cross-

section M is a maximum when a load lies at that section, a load

must also lie upon the cross-section for which M is an absolute

maximum.
If the line A B slides upon the equilibrium polygon, altering

its length so that its horizontal projection is constant and equal
to

I,
it will envelop a portion of a parabola so long as its ends

move in the same sides of the polygon. [PL 13, Fig. 46.] Tfte

curve thus produced is therefore composed of portions of a

parabola. Let the ordinate D C correspond to the moment at

the point of application of the load P. D C will be evidently

greatest when A B is tangent to the curve at C, so that the

maximum of the moments occurring at D is given by the dis-

tance C D between thepolygon and curve enveloped by A B.

Let the prolongation of the sides upon which A B slides meet

in E, and F G be the tangent to the parabola at the point H in

the vertical through E, so that F H = H G, and let I be the in-

tersection of A B and F G. Draw through A a parallel to E B,

intersecting F G in K. Then the ^horizontal projections of A F
and A K are equal, since those of E F and E G are equal.

Since, however, the projections of F G and A B as also of

A F and G B are equal, A K must be equal to G B. Hence
A I = B I. In a parabola the distances of the three diameters

passing through two points and the point of intersection of the

corresponding tangents are equal, hence the projections of H I

and C I are equal.

The middle point I of the tangent A B lies, then, half way
between the angle D vertically below the point of tangency and
the intersection E of the sides upon which it slides.

Since the projection of A B is I, its construction is easy.

The construction must, of course, be repeated for each angle, in

order to determine that for which M is an absolute maximum.
The above principle may, then, be thus expressed : The 'mo-

ment at any load is a maximum, when this load and the result-

ant of all the loads are equally distant from the centre of the

girder. (See also Art. 48.)
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76. In Arts. 46 to 50 the above principles have been already
deduced so far as relates to the moments alone, and a reference

to Art. 49 will show their application to the investigation of the

effect of a system of loads moving over the girder. "We pass

on, therefore, to

CONTINUOUSLY DISTRIBUTED LOADING.

Suppose the load p per unit of length laid off as ordinate.

The area thus obtained we call the load area. PI. 13, Fig.

46 (I).

The equilibrium polygon becomes here a curve, for which

the same law holds good. If we draw tangents to the curve at

the points D' and E' corresponding to D and E, intersecting in

C', then the resultant of the load upon D E passes vertically

through C', or C' is vertically under the centre of gravity of the

area D D" E" E.

If we consider the load area divided into a number of parts,

the resultant for each will pass through the intersection of the

tangents at the points vertically under the lines of division.

Since these tangents are parallel to the lin.es in the force poly-

gon corresponding to these lines of division, they form the

equilibrium polygon for the concentrated loads, or resultants of

the portions into which the load area is divided.

Hence : ifwe divide the load area into portions, and replace

each l>y a single force, the sides of the corresponding polygon
are tangent to the equilibrium curve at the points correspond-

ing to the lines of division. (Art. 42.)

77. Total Uniform L<oad. In this case the reactions at the

supports are V^ = V2
= -~ p I. Hence, for any cross-section dis-

tant x from the left support, the shearing force is

S = Vl-px = -^p(l-^x).

For x=
-g

Z
;
S = 0. Sis greatest for x= and for x = I

;

that is, maximum S = -f p Z, and S = -^p I.

The moment at any cross-section is

M = - V a + \ p x1 = -\p x (l-x).

M will be greatest for x = -~ Z,
and



94 SIMPLE GIKDERS. [CHAP. VII.

Max. = --^
The shearing forces are, then, given by a straight line inter-

secting the span in the middle, the ordinate at either end being

\pl [PI. 14, Fig. 47.]

The moments, as we have already seen [Art. 44, Fig. 30J,
are

given by a parabola whose vertex is in the centre of the span

and whose middle ordinate is
j:p

P. Since we have seen [Art.

70] that a load at any point causes at every point a negative

moment, the maximum moment at any point will be when the

whole span is loaded.

7. Method of Loading causing Maximum Shearing
Force. We have seen [Art. 70] that a single load causes at

any point a positive or negative shear, according as it lies upon
the right or left side of the cross-section at that point. Hence,
for a uniform load,

The shearing force will be a positive or negative maximum

according as the load reachesfrom the right or left support to

the cross-section in question. For the positive maximum we

have Vt
=p (l-x) fc) =4p 2=^. Therefore, max. + S =

2 I

For the graphical determination we can apply the method

given in Art. 72, Fig. 42, by which we have for max. + S and

max. S two parabolas whose vertices are at the ends of the

span, and whose ordinates at these points are
-f^-

and 2.

Since, however, each point is found thus from the preceding,
the construction is not very exact. We may deduce a better

construction as follows. [PI. 14, Fig. 48.] Through any point
F of the curve drop a vertical intersecting A B in C and the

line B K parallel to the tangent at F in G. Let the tangent

at F intersect AB in H. Then CH BH
; hence, CF - C G-.

2

We have, then, AE = lAD=-l^Z. Since C F = - C G,2.2 2

we have also AI =- AK
; therefore, AI:AE:;AK:AD.
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Hence the following construction :

Make A E = ?lp Z.

I

Divide A E and A B into an equal number of equal parts, and

draw lines from B to the points of division of A E, and verticals

through the points of division of A B. The curve passes

through the points of intersection of corresponding lines.

79. L,ive and Dead Loads. Let p be the load per unit of

length for dead, and m for live load. The maximum moment
for any point will be as before.

M= Ap+in) x (lx)' that is, will be
a

given by a parabola whose middle ordinate is -
(jy+ m) P.

8

For the shearing force, we have

Max.+S = *p (Z-2 x) +
l-m 2=^;

1 1 a?
Max. S =- p (12 x)-m .

A 2i L

Indicate A C [Fig. 49, PI. 14] by x
l}
for which max. S = 0.

then

or

hence

I m mr m
For the point D for which max. +S = 0, B D = a^. The

shearing force within A C is positive, within B D negative,

while within C D it is both positive and negative.

that is,
C D diminishes with increasing span.

O. Recapitulation. For girders of a length of about 100

feet or more, then, we may consider the live load as distributed

per unit of length. The maximum shearing force can then be
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easily found according to the preceding Art., while the maxi-

mum moments will be given by the ordinates to the parabola
for full live and dead load [Fig. 30, Art. 44]. For a framed
structure, we have simply to multiply the shear at any point

by the secant of the angle which the brace at that point
makes with the vertical, in order to find the strain in that

brace. The moment, divided by the depth of truss at the point
in question, gives the strain in the flanges: For a, plate girder,

the moment being found as above, and one dimension as the

depth given, we can, from Art. 52, so proportion the other di-

mension as that the strain in the outer fibre shall not exceed

the amount allowable in practice. The ^receding Art. as also

Arts. 78 and 44 and 52 are all that we need to refer to for all

practical cases of parallel flange girders of large span.

The preceding will complete our discussion of the simple

girder. We have only to remark here that the strains due to

rolling load will, in general, be most satisfactorily found by the

method of resolution of forces, as illustrated in Art. 12. By
this method we first find the reactions at the supports for a sin-

gle apex load, either graphically or by a simple calculation

,
and then follow this reaction through the

girder, arid find the resulting strains. "We can thus find and

tabulate the strains in every piece due to a weight at eacli and

every apex. The maximum strains can, then, be easily taken

from the table thus formed. When the live load is supposed
thus concentrated at each apex, it is, as we have seen in Art. 12,

unnecessary to follow through every reaction. The reactions

due to the first and last weights are sufficient to fill out the

table. For solid-built beams or plate girders, the principles of

the present Chap., therefore, come more especially into play.

(See also remarks at close of Chap. Y.)
The preceding principles will, it is hoped, be found sufficient

to enable the reader to find the maximum moments and shear

at each and every cross-section of a beam of given span rest-

ing simply upon two supports, and acted upon by any given
forces or system of forces in any given position. The reader

will do well to take examples of simple trusses, and check the

results obtained by the method given in Chap. I. by the above

principles. The method of tabulation of single apex loads
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upon which we lay -so much stress is fully given by Stoney

[" Theory of Strains," vol. i.], and the examples there given will

be found of service.

Finally, then, the strains in upper and lower chords are great-

estfor full load over whole span. "We have, therefore, only to

erect upon the given span a parabola whose centre ordinate is

-
,
wherep is the load per unit of length for dead, and

o

m for live load [Art. 44]. The ordinates to this parabola at

any point give at once the maximum moment at that point.

The depth of truss at this point, if a framed structure, or the

moment of inertia of the cross-section at this point, if it is a

solid beam [Art. 52], being known, the strain in the flanges or

outer fibres may be easily determined. The strain in the web is

given by the maximum shear. For dead load alone this is

given by the ordinates to a straight line passing through the

centre of span, whose extreme ordinates are-^- [Art. 77]. The
a

maximum shear due to live load alone (m T)
will be given by

the ordinates to two semi-parabolas, convex to the span, having

their vertices at each end, and the extreme ordinates -
[Art.

2

78]. At any point, the greatest of the two ordinates to these para-

bolas is to be taken. For live and dead loads together, Art. 79

may also be useful. The shear being known, the strain in any

diagonal is equal to the shear multiplied by the secant of the

angle made by the diagonal with the vertical [Art. 10 of Ap-
pendix] for parallelflanges. For flanges not parallel, we must

find the resultant shear as given in Art. 16 (4) of Appendix,

or, better still, the flanges once known, the diagonals can be

diagrammed according to the principles of Chap. I.

For the investigation of load systems, the principles of

Arts. 70-75 will be found sufficient, and the application of

these principles we have already sufficiently illustrated in Arts.

49-51.

7
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SUPPLEMENT TO CHAPTER VII.

CHAPTER 1.

METHODS OF CALCULATION.

1. In Chapter I. of the text we have already obtained a method of dia-

gram which will be found both simple and general, and by which we can

readily determine the strains for any given loading in any framed struc-

ture, no matter how irregular in its shape or dimensions, provided only that

all the outerforces are Tcnown.

In Chap. VII. we have also been put in possession of another method of

diagram, by which we may for any structure of the above class, framed or

not, determine the moment at any point, and can then properly proportion
the cross-section.

Thus far, indeed, we are unable to apply these methods to the continuous

girder or braced arch, as in these cases there are not only upward reactions

but also end moments, and in the latter case a thrust also, which must first

be determined. The determination of these requires that the elasticity of

the material and cross-section of the structure be taken into account. But

with these exceptions, and they are of rare occurrence in practice, we can

already solve any case which may present itself.

In the Appendix, if he has attended to our numerous references to it,

the reader will have already become familiar with two corresponding meth-

ods of calculation, viz., that by resolution of forces and that by moments.

It is, however, in many cases desirable to know not only the strains in

every piece of a structure, but also the deflection of the structure, and this

also requires a knowledge of the theory of flexure or of elasticity. For the

sake of completeness, therefore, aiming as we do to put the reader in pos-

session of methods of calculation as well as of graphic determination, we
shall devote a few pages here to a brief notice of these two above-men-

tioned methods of calculation, and then pass on to the theory of elasticity

itself. This latter has been too generally considered by those unacquainted
with the methods of the calculus as difficult and abstruse. It is true that

the calculus must be called into requisition ;
but so simple are the processes

for beams of single span and it is with these only we have at present to

do that we indulge the hope that by going back to first principles we may
enable even those at present unacquainted with the calculus to follow our
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demonstrations intelligently, and to comprehend perfectly and even apply

readily the method for themselves.

We cannot, indeed, make the reader familiar with all the principles of

the calculus, but all these principles are by no means needed. Its funda-

mental idea, a few of its terms and applications, are all that he need be

familiar with in order to perform the simple integrations we shall encoun-
+

r, as readily as the most skilled mathematician. This portion of the

present Supplement may, perhaps, be considered by many as unnecessary and

superfluous. We are, indeed, justified in assuming such knowledge. But

as we believe our plan practicable, we cannot resist the desire of making
our development intelligible to all, and thus rendering our treatment of the

simple girder at least complete.

The practical man as well as the mathematician may thus have at his

disposal the powerful 'aid of the calculus, so far at least as his purposes

require it, and be able to deduce for himself the formulae which hitherto

he has accepted
"
upon faith." It may also not be improbable that here

and there one may be found who, pleased with the simplicity of the prin-

ciples and the fruitfulness of their application, may be led to further prose-

cute the study for his own satisfaction.

We shall first, then, notice briefly the two methods of calculation above

referred to
;
then devote a few pages to the development of those prin-

ciples and rules of the calculus of which we shall make use, and finally

apply these principles to the discussion of the curve of deflection of loaded

beams.

2. Ritter's Method. This method is referred to in Art. 14. It

rests simply upon the principle of the lever, or the law of statical moments ;

requires no previous knowledge, and converts the most difficult cases of

strain determination into the most elementary problems of mechanics.

Hitter, in his " Theorie eiserner Dach- und Briicken-Constructionen," has

applied this simple principle in such detail and fullness, and so clearly set

forth its elegance and simplicity, that it very generally, and justly, goes by
his name.

"
Its results are clear and sharp as the results of Geometry, and of direct

practical application. There is hardly another branch of engineering

mechanics which, for such a small amount of previous study, offers such

satisfactory results, and which is so suited to engage the interest of the

beginner."

We have given in the Appendix to Chap. I. (Arts. 6, 9, 10) detailed ex-

amples of its application. Throughout this work similar illustrations of

its use will be met with, so that it is only necessary here to state more fully

than in the text its general principle.

If any structure holds in equilibrium outer forces, it. does so by virtue of

the strains or inner forces which these outer forces produce. Now the

outer forces being always given, we wish to find the interior forces or

strains. If, then, the structure is framed, and we conceive it cut entirely

through, the strains in the pieces thus cut must hold in equilibrium all the

outer forces acting between the section and either end. Thus, in Fig. 0,

PI. 2, a section cutting D, 7 and H completely severs the truss. Then the
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strains in these three pieces must hold in equilibrium the reaction at A and

all the forces between A and the section.

Now the principle of statical moments is simply that, when any number

of forces in a plane are in equilibrium, the algebraic sum of their moments

with respect to any point in that plane must be zero.

The application of this principle is simply so to choose this point of

moments as to get rid of all the unknown strains in the pieces cut, except on'e

only ; and then the other forces being known in intensity, position, and

direction of action, we can easily find this one
; since, when multiplied by

its known lever arm, it must be equal and opposite to the sum of the

moments of the known forces.

In a properly constructed frame it will, in general, always be possible to

pass a section cutting only three pieces. Then, by taking as a centre of

moments the intersection of any two, we can easily find the strain in the

third.

Even if any number of pieces are thus cut, if all but one meet at a com-

mon point, the strain in this one can be determined.

Thus, in Fig. IV., PI. 1 of the Appendix, a section may be made cutting

2 3, d h, he and c Y. But all these pieces, except the last, meet in 2, and

the strain in this last piece may, therefore, be easily determined.

The above is all that is necessary to be said as to this method. The ex-

amples already referred to will make all points of application and detail

plain as we proceed. We see no reason why the reader who has mastered

Chapter I. and diligently followed out the examples as given in the Appen-

dix, should not now be able to both calculate and diagram the strains in

any framed structure all of whose outer forces are known.

3. JUethod by Resolution of Forces. We have also yet another

method of calculation, based upon the principle that, if any number of

forces in a plane are in equilibrium, the sum of their vertical and hori-

zontal components are respectively zero. In structures all the forces acting

upon which are vertical, and such are all bridge and roof trasses, etc., of

single span, we have only to regard the vertical components.
Ill this connection we have to call attention to the following terms and

considerations. The shear or shearing force at any point is the algebraic

sum of all the outer forces acting between that point and one end. These

outer forces are the weights and reactions at the ends. At any apex of a

framed structure, where several pieces meet, the horizontal components of

the strains in these pieces must balance, or the structure would move
;
and

for the same reason, the algebraic sum of the vertical components must be

equal and opposite to the shear. The shear being known, if the strains in

all the pieces but one are also known, that one can be easily found. Thus

the algebraic sum of all the vertical components of the strains in the other

pieces being found, and added or subtracted from the shear, as the case

may be, the resultant shear, multiplied by the secant of the angle made by
the piece in question with the vertical, gives at once its strain.

This method is also fully explained in the Appendix, Art. 16 (4), and a

practical rule is there given for properly adding the vertical components
and determining whether the result is to be added to or subtracted from
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the shear. This rule we owe to Huniber.* We have thus two methods of

calculation, which, for the sake of convenience, we may speak of as Hitter's

and numbers. Corresponding to Humber's method we have also a graphic

solution, based upon the same principles precisely. This we have set forth

in Chapter L, and may call Prof. MaxweWs method. In Chapter II. and

the following we have also become acquainted with the graphic solution

corresponding to Hitter's method, or the method of moments, which we

may speak of as Culmami's. It is to this method, based upon the proper-
ties of the equilibrium polygon, that the graphical statics properly owes its

value and fruitfulness, and to it is due "whatever pretensions it can claim

as a system. It will be seen hereafter that it alone can furnish a general

method applicable to all structures, whether framed or not
;
whether all

the outer forces are known or not. By the same general method we are

enabled to find the centre of gravity and moment of ineilia of areas, and

to solve thus a great variety of practical problems through which, how-

ever different, runs one universal method, one simple routine of construc-

tion.

* Strains in Girders, calculated by Formulas and Diagrams.
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CHAPTER II.

PMNCIPLK8 OP THE CAXCULUS NEEDED IN OUR DISCUSSION.

4. Differentiation and Integration. We need but a very few

simple ideas and conclusions in order to have at our disposal the whole

theory of flexure for beams of single span. Those to whom these ideas are

not familiar already may find them indeed new, but will not find them

difficult or even abstruse, and with attention to the following will, we
venture to think, make a valuable acquisition.

The sign / is called the "
sign of integration," and integration means

simply summation. It arises merely from the lengthening of the original

letter S, first used by Leibnitz for the purpose. The letter d is called the

"
sign of differentiation

;

" in combination with a letter, as d x, it reads
"
differential of ," and signifies simply the increment which has been

given to the variable x. So much for terms.

Now suppose we have the equation

y = 5tf, (1)

in which * and y, although varying in value, must always vary in such a

way that the above equation holds always true. This being the case, let

us give to y an increment that is, supposing it to have some definite value

for which, of course, x is also definite in value, increase this value by d y.

Then * will be increased by its corresponding amount d x, and as the

above relation must always hold true, we have

y +dy = 5(x+ dx)* (2)

or y +dy = 5 (x*+2 x d x+d a?).

Inserting in this the value of y from (1), we have

dy = 5(2xdx+ dx*), (3)

which is the value of the increment of y or d y, in terms of x and the in-

crement of x or d x. That is, the increments are not connected by the same

law as the variables. The variable y is always 5 times the square of the

variable x, but the increment of y is greater than 5 times the square of the

increment of x by an amount indicated by 5 x 2 * d x. From (3) we
have

dv
^=5(2x + dx) (4)

which gives the value of the ratio of the two increments. Now, if we
assume a certain value for x, we find easily from (1) the corresponding
value of y. If we increase this value of a; by a certain assumed increment,

d x, we find easily from (3) the corresponding increment of y, or d y. Then

(4) would give us the ratio of these two increments.
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Now we see at once from (4) that the smaller we consider d x to be, the

nearer this ratio approaches the limiting value 5 x 2 x. We may suppose
d x as small as we please, and then this ratio will differ as little as we

please from 5x2*. This value, 5x2*, forms, then, the limit towards which

the value of the ratio -= -

approaches as d x diminishes, but which limit evi-
(/ X

dently it can never actually reach or exactly equal. Because, in order that

this should bo the case, d x must be zero. But if d x is zero, that is, if a: is

not increased, y also is not increased; d y is, therefore, zero, and there is no

ratio at all.

Now, just here comes in what we may regard as the central principle of

the calculus.

If two varying quantities are always equal and always approaching certain

limits, then those limits must themselves be equal.

The principle is too obvious to need demonstration. " Two quantities

always equal present but one value, and it seems useless to demonstrate

that one variable value cannot tend at the same time towards two constant

quantities different from one another. Let us suppose, indeed, that two

variables always equal have different limits, A and B
;
A being, for ex-

ample, the greatest, and surpassing B by a determinate quantity A .

The first variable having A for a limit will end by remaining constantly

comprised between two values, one greater, the other less than A, and hav-

ing as little difference fromA as you please; let us suppose this difference,

for instance, less than A . Likewise the second variable will end by re-

maining at a distance from B less than A. Now it is evident that, then,

the two values could no longer be equal, which they ought to be according
to the data of the question. These data are then incompatible with the

existence of any difference whatever between the limits of the variables.

Then these limits are equal."
*

Now let us apply this principle to equation (4). In this equation
~

ia

a variable always equal to 5 (2 x+d x). But 5 (2 x+d x), as we diminish

dy
d x, approaches constantly the limit 5 x 2

a;; and as
j*-

is always equal to

5 (2 x + d x), it also constantly approaches the same limit. These limits,

then, are equal, and the limit of -= = 5 x 2 x.

Now, if we conceive, and such a conception is certainly possible, d x to

be the difference between x and its consecutive or very next value, such that

between these two values there ia no intermediate value of d x ; then d y
will be the difference between two consecutive values of y ;

and regarding,

then, d x and d y in this light,
-~ will be the limit of the ratio of the in-

* The Philosophy of Mathematics. Bledsoe.
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crements, since the increments are then limiting increments, and can be no

smaller without disappearing.

We have thus

which is an exact relation between the increments upon this supposition.

From this we have d y 5x2 x d x.

If now we sum up all the increments d y, then by virtue of the supposi-

tion we have made, / d y must equal y. We thus suppose y to flow, as it

were, unbrokenly along by the consecutive increments d y, just as the side

of a triangle moving always parallel to itself, and limited always by the

sides, describes the area of that triangle, while the change d y of its length

is the difference between two immediately contiguous positions. Upon
d v

this supposition, we repeat,
~- is the limit of the ratio of the increments,

which limit is, as we see from (4), equal exactly to 5 x 2 x. We do not re-

ject or throw away d x from the right of that equation
" because of its

small size with reference to 2*," but simply pass to the limit, and then, ac-

cording to our fundamental principle above, equate those limits them-

selves. But if id y y, then the integral of5*2xdx, or / 5x2xdx=y

=5 x*. By
"
differentiating," as we say, equation (1) we get (5), and by

"
integrating

"
(5) we obtain (1).

Hence we see the appropriateness of the term ''fluent'
1
'
1

given by New-

ton to the quantity d y or 2 x d x. So also we see the appropriateness of

the term " ultimate ratio " * for itself.
d x

* Liebnitz undoubtedly discovered the calculus independently of Newton,
but he considered d x as a quanity so ' '

infinitely
" small that in comparison

with a finite quantity it could be disregarded
" as a grain of sand in compari-

son with the sea." We see, indeed, from eq. (4) that if d x upon one side be

zero, we get the same value for - as before. But if d x is zero on one side,ay
it should be zero on the other side also. No matter how small we suppose d x

to be, we have no right to get rid of it by disregarding it. That Liebnitz rec-

ognized this cannot be doubted, and he was therefore inclined to consider his

method as approximate only. But to his surprise he found his results exact,

differing from the true by not even so much as a "
grain of sand." There was

to him ever in his method this mystery, nor could he conceive what these

quantities could be which, though disregarded, gave true results. Bishop

Berkeley challenged the logic of the method, and adduced it as an evidence of

"how error may bring forth truth, though it cannot bring forth science."

Strange to say, even the disciples of Newton were unable to answer Berkeley
without taking refuge in the undoubted truth of their results. And yet New-

ton in his Prindpia lays it down as the corner-stone of his method, that
' '

quantities which during any finite time constantly a.pproach each other, and
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The* whole of the calculus is but the deduction of rules'for finding from

given equations as (1) their " differential equations
" as (5), or inversely

of finding from the differential equation by "integration," or summation,
the equation between the variables themselves.

Such of these rules as we needfor our purpose we can now deduce.

5. DifTcrentiatioa and integration of powers of a single

variable. We have already seen that the / dy = y and / 2 xd x = x9
,

hence d (z
2

)
= 2 x d x.

If we should take y a?, we should have, in like manner, as before,

y + d y (x + dx)* = ar
1 + 3 x9 d x 4- 3 x d x* + d x*,

or dy = 3x*dx + Sxdx 2 + dx3
,

and passing to the limits, as before,

dy-- = 3 x 2
,
or d y=S x 2 d x. Hence the differential of x3 or d (x

3
)=3 x 2

dx,

and reversely, the integral of3x*dxorl3x*dx = x3
. In similar man-

ner, we might find

d (x
6
)
= 5 x*d x and A x4 d x = x s

.

Comparing these expressions, we may easily deduce general rules which

will enable us at once upon sight to "
differentiate," that is, find the rela-

tion connecting the increments
;
and "

integrate
" or sum up the successive

consecutive values of the variable; for any expression containing the

power of a single variable.

These rules are as follows:

To differentiate :

" Diminish the exponent of thepower of the variable by unity, and then

multiply by the primitive exponent and by the increment of the variable.'''
1

Thus, d (x*) = 2xdx, d (x*) = 3x*dx,d (x
7
)
= 7x*dx,d (set)

=
^x*dx,

d(x") =n as"-
1 d x, etc.

To integrate :

"Multiply the variable with its primitive exponent increased by unity, by

r, if there is any, and divide the result by the new exponent.'
1
'
1

before the end of tliat time approach nearer than any given difference, are egual.
"

There can be little doubt that Newton saw clearly that although the quantities

might never be able to actually reach their limits, yet that those limits them-

selves were equal, and hence the increment could be left out in the equation,

but not because by any means it was of insignificant size. His terms "ultimate

ratio
" and '

'fluent
" are alone sufficient to indicate that he understood the

true logic of the method he discovered
;
while Liebnitz seems to have stood

gazing with wonder at the workings of the machine he had found, but whose

mechanism he did not understand. [See Philosophy of Mathematics. Bledsoe.

Lippincott & Co., 1868.]
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/2 2-s
/

2 * dx = - = a? / 3

/t
-t 2 * /

a: a a;= Z =
g-fc

/

3 ya
3 & d x = = as*

= = xn. etc.
71

It is of this latter rule that we shall make especial use in what follows,

6. Other Principle* Integration between limit, etc.

We may observe from (1) and (4) that a constant factor may le put out-

tide the sign of integration. Thus / 5x2 * d x = 5 I2xdx = 5x*.

It is also evident without demonstration that the integral of the sum of

any number of differential expressions is equal to the sum of the several

integrals.

Thus /
psda-hs'd

z + y* dy + x* d x\

is the same as I x d x + I z*d z+ I y* d y, etc.

If in (1) we had

y = 5 x*+a,

where a is a constant, we should have

y + d y = 5 (x + d x)* + a = 5 (x
1 + 2 x d x+d x'

1

) + a,

or d y = 5 (2 x d x + d *"), or ? = 5 (2 x + d *) :

d x
whence

d y- = 5x2 x. ordy = 5x2xdx, or
d x

just the same as before.

The integral of this will then be y = 5 x* as before, whereas it should be

y = 5 z* + a.

If two differential equations, then, are equal, it does not necessarilyfollow
that the quantitiesfrom which they were derived are equal.

We should, then, never forget when we integrate to annex a constant. The
value of this constant will in any given case be determined by the limits

between which the integration is to be performed.

We indicate these limits by placing them above and below the integral

sign. Thus the integral ofx*dx between the limits of * = + h and x h is

/+
h

r x*
x3 d x. If we integrate Xs d at, we have, then, / a;

2 d x = + C,

where O is a constant whose value must be determined by the conditions

of the special case considered. If we introduce the value of x = h for one

limit, we have - h O. For x = 2 h for another limit, we have + O.
o o

We have, then, two equations, viz. :

when a: = A, / x1 dx = + O,
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f
X=2h

Qhz

and when x = 2h I a?dx = + C
;

and by subtracting one from the other, we have for the integral between

r h
7

the limits x = 2 h and x = h, I x- d x = A3
,
and O thus disappears.

Jh

We have, then, only to substitute in succession the values of the variable

which indicate the limits, and subtract the results.

If also there is but one limit, we could determine O if there were also a

condition, such, for instance, as that / *5 d x should equal h when x = 2 h.

The ratio -^ is called the "first differential coefficient
;

" if it were to
da

be differentiated again, the next ratio, viz., that of the differential of the

differential of y to differential of *", or ^, is the " second differential co-

efficient," and so on.

Thus, y = xs
;
d y = d (x

s
) = 5 x*d x, or - = 5 x*

; differentiating again,

= 20 a? d x, or - = 20 x3
,
and so on to third differential coefficient, etc.:

ax. dor

7. Example. As an example of the application of our principles, let

it be required to determine the area of a triangle. Let the base be b and

the height h. Take the base as an axis, and at a distance of * above the

base draw a line parallel to b, and at a very small distance d x above this

line draw another, thus cutting out a very small strip. (Let the reader draw

the Fig.) Now for the base y of this strip we have the proportion h x : y

:: h : b, or y = I --, hence the area of the strip is I dx - . But
fl fi

the area of this rectangular slip is not equal to the area of that portion of

it comprised within the triangle. It projects over at each end, and is,

therefore, somewhat greater. Thus for the small trapezoid actually within

the triangle we have for the upper side y', h(x+d x) : y' :: h : &, or y' =

b (x+d x). Hence y y'
=

,
and the area of the projecting portionh h

of the rectangle, that is, its excess over the trapezoid, is then (yy') d a;, or

tdx* bxdx b d x* , da b x bdx .

5. Therefore, bdx - = = da,or = b -
,where

h h h d x h h

d a is the area of the small trapezoid itself. Now these latter two quanti-

ties are always equal for any value of d x. But as d x decreases, one side

of the equation approaches the limit b ~, and
, therefore, approaches

this same limit. The rectangle itself is, then, the limit of the ratio of the

area of the small trapezoid to its height, and we can then equate the limits

remembering that in this case d a is the area passed over by the
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side y in passing from one position to the consecutive or very next. We

have, then, da = b dx ----
, and if we integrate this expression, that is,

sum up all the d a's, we have the area of the triangle. Therefore,

bxdx la?
x --r- = 6a.___ H. 0)

where O is the constant of integration, which we must never forget to annex.

Now, in the present case we wish to sum up all the areas d a, or "
integrate,"

between the limits x= o and x = h. But for x o, A must be zero, and

hence we have O = o for the condition that x starts from the base. If in

addition to this condition we make x = h, we have the sum of all the areas

between x = o aoid x = h.

A = ft h -^1= ,
as should be.

4 2

The above reasoning is somewhat prolix.

If we thoroughly appreciate that d x is the difference between two con-

secutive values of x, we see at once that we obtain the limiting value of the

rectangle directly by multiplying its base by d x. The sum of all these

must be the area. This conception of d x enables us to curtail much of our

reasoning.

Let us take the same problem again, but this time take the axis through
the centre of gravity of the triangle ;

that is, at %h above the base. Then

for the base y at any distance x above this axis, we have

2 , 2 , & *-h-x :y::7i:l,ory = -& .

o on
Multiply this by d x upon the above conception of d x, and we have at

once not for the rectangle upon y, but for its limiting value, that is, for the

area of that portion of the rectangle included within the triangle,

, , 2,, & x d x
d a = y d x = -o dx -^ - .

3 ft

Integrating this, then, we have

where O is a constant to.be determined by the limits as before. For one

limit, x = 7t, and hence we have

O

For the other limit, x = +- h, and hence we have

A " = r
If we subtract the first from the second, O disappears, and we have A =

A"- A' = %- I h = 1 1 h, as before,
lo 2

o
We might also have integrated first between the limits x = and x h.
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For x = 0, O = 0, and the area above the axis is then b Ti. For x = and
18

a? = h, we have for the area "below the axis b h. This area has a dif-
3 18

ferent sign because below. If we give it the same sign as the other, and

then add it, we have the total area. If it also had been above, the total

area would have been the difference. Generally, then, we subtract accord-

ing to our rule.

. Significance of the first differential coefficient. Any
equation between two variables of the first degree is the equation of a

straight line. If of the second degree, it represents one of the conic sec-

tions, an ellipse, circle, parabola, or hyperbola. Of a higher degree, a

curve generally. If, then, we take the axis of x horizontal and y vertical,

and if d y and d x are the consecutive increments of y and a;, that is, the dif-

ference between any value and the very next, the ratift - is evidently the

tangent of the angle which a tangent to the curve at any point makes with the

horizontal.

If, then, we make - = 0, and find the value of the variable x corre-
dx

spending to this condition, we find evidently the value of * for which the

tangent to the curve is horizontal. If now the curve is concave towards the

axis, this value of x, substituted in the original equation, will give the maxi-

mum or greatest value of the ordinate y ;
because for the point just one

side of this the tangent slopes one way, and for the point just the other

side it slopes the other. The point where the tangent is horizontal must

then be the highest.

If the curve is, on the other hand, convex to the axis, the value of x, which

makes - =
0, substituted in the original equation, will give y a minimum

value for similar reasons. By setting the first differential coefficient, then,

equal to zero, we may find that value of x which corresponds to the maxi-

mum or minimum value of the ordinate, as the case may be. In the case

of the deflection of simple beams upon two supports, the curve is always
concave to the axis, and hence we obtain by this process always the maxi-

mum deflection.

The above comprises all the principles of which we shall make use in the

discussion of the theory of flexure. With a little study, we believe that

any one familiar with analytical operations, even although he may never

have studied the differential or integral calculus, can follow us intelligently

in what follows. Whatever points may still be a little obscure will clear

up as he sees more plainly than now their application.
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CHAPTER III.

THEORY OF FLEXURE.

9. Coefficient of Elasticity. Let us now take up the theory of

flexure, and see if it is not possible so to present the subject that, in the

light of the preceding principles, we may be able to solve all such prob-

lems as present themselves.

If a weight P acts^upon a piece of area of cross-section A, and elongates

or compressss it by a small amount Z, we know from experiment that,

within certain limits, twice, three times, or four times that weight will

produce a displacement of 2 Z, 3 Z, 4 Z, etc. These limits are the limits of

elasticity. Within them practically, then, the displacement is directly as

the force. If we assume this law as strictly true for all values of the dis-

placement, and if we denote the original length by L, then, since the

force per unit of area is .-, and since this unit force causes a displacement

Z, in order to cause a displacement L equal to the original length, this

L PL
unit force must be

-j
time* as great, or equal to

-j- -j.
This force we call

the modulus or coefficient of elasticity. It is always denoted by E. Hence

The coefficient of elasticity, then, is the unit force which would elongate a

perfectly elastic lody BY ITS OWN LENGTH. It is a theoretical force then
;

but as the law upon which its value is based is true practically within cer-

tain limits, by experiments made within those limits, knowing P, A, and

L, and measuring Z, we can find what the force would have to 'be if the law

were always true. Such experiments have been made, and the values of E
for different materials are to be found in any text-book upon the strength

of materials.

Prom (6) we have for the unit force of displacement

These expressions will be found useful as enabling us to replace often

expressions containing an unknown displacement by a definite or experi-

mentally known value.

1O. Moment of Inertia. This is also a convenient abbreviation,

and enables us to replace unknown expressions by a, in any given case,

perfectly determinate value.

The moment of inertia, with respect to any axis, is the algebraic sum of the



CHAP. III.] SUPPLEMENT TO CHAP. VII. Ill

products obtained by multiplying the mass of every element of a given cross-

section by the square of its distancefrom that axis.

If a parallelogram stand on end, and then its support be suddenly pulled

away from under it, it will fall over backwards. But to knock it over

thus requires force. The force which in this case overturns it is that of

inertia. At every point of the surface there is, then, a force acting, depend-

ing upon the mass of this point. But not alone upon the mass. A force

at the top acts evidently with more effect to turn the body over than one at

the bottom, which merely tends to make it slide. The moment of each ele-

ment of the area is. then, a measure of the force which at each point causes

rotation, and the mm of these moments is, then, the measure of the over-

turning action of the whole force of inertia upon the surface. The moment

of this latter force, or the sum of the moments of the moments, is, then, the

moment of inertia of the cross- section. Each element of the surface must

then be multiplied by the square of its lever arm. and the sum of all the

results thus obtained taken. In other words, the moment of each element

is itself considered as a force, and then its moment again taken. The sum
is denoted by I. For any given dimensions and axis it is a perfectly defi-

nite quantity, and may thus often replace expressions containing unknown

quantities.

The principles of the calculus just developed will enable us to deter-

mine it in some cases, at least, very readily. Its value for various forms of

cross-section, in terms of the given dimensions, is given in every text-book

upon the strength of materials.

Let us suppose a rectangular cross-section of breadth b and height A, and

take the bottom as axis. The area of any elementary strip is, then, bdx.

If its distance from the bottom is x, we have for its moment b xd
,
and for

its moment of inertia, then, b a? d x. Integrating this expression, we have

bo?

3
+ '

This integral is to be taken between the limits x = and x = h. For x = 0,

b 2* d x = 0, and hence O = 0. For x = h, then, we have -. If the axis
3

had been taken through the centre of gravity, we should have the above

integral between the limits-)- -and ForH we have (- O. For222 24

-, + O. Subtracting one from the other (Art. 6), we have

for the moment of inertia. For a triable of height h and base b, we have

for axis through centre of gravity, from Art. 7, for the area of the very

small strip at distance x, -bdx - x d x. Multiplying this by x\ we have
o h

for its moment of inertia bx'dx -Xs dx. The integral of this is
3 ft

For x = -h, this becomes r bh*
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For x -A, we have - J A3 + C.

97 1

Subtracting one from the other (Art. 6), we have & A3
,
or - 5 As

for
972 86

the moment of inertia. The moment of inertia of the rectangle I =

may be written = x Ax , or the moment of inertia of the half

parallelogram is equal to its area, into the distance of its centre of gravity

multiplied by ^ds. of its height. We see at once that when we consider,

then, the statical moments as themselves forces, the centre of action of tJiese

moment forces does not coincide with the centre of gravity of the area. This

principle we have already noticed in Chap. VI., Art. 60.

We can also put - = =
(

- A
)

. This value
4

= A is called the

radius of gyration. It is evidently the distance from the axis to that point

at which, if the mass were concentrated or sum of all the forces were con-

sidered as acting, their moment of inertia would be that of the cross-sec-

tion itself. The value of is, in general then, the square of the radius of

gyration. We have already shown in Cliap. VI. how to find it graphically
for various cross-sections.

We are now ready to take up the case of a deflected beam, and to find

the differential equation of its curve of deflection.

11. Change of Shape of the Axis. In the Fig. given in the

Supplement to Chap. XIV., we have represented a beam deflected from its

original straight line by outer forces. Let the two sections A O, B D be

consecutive sections, parallel before flexure, and remaining plane after. Let

the length of the axis m a be s, then n a = d s, and let d. $ be the very

small angle between the sections after flexure.

If the deflection is small, s will be approximately equal to x, and d s to

d x. The elongation of any fibre at a distance v from the centre is. then,

v d
(j>.

The unit force corresponding to this elongation is from (7) T=
E -=3. v. If da is the cross-section of anv fibre as d c, then the whole force

d x

of extension is

The moment of this force is, then. -= . The integral of this be-

tween the limits + -- and will give the entire moment of rupture. But
2 2

this is equal and opposite to the moment M of all the outer forces
;
hence

/
+

I
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But, as we have just seen, this integral is the moment of inertia I of the

cross-section with reference to the axis through the centre. Hence,

M =; -
. Since

<f>
is a very small angle, it may be taken equal to its

tangent, or equal to ^; hence
* ^ and M = E I *J..

dx dx da? da?

But v d
(f>

: v :: d x : r, where r is the radius of curvature
;

v d <b dx d <h 1
hence -- = or -=-*- = .

v r a x r >

Therefore, M = BlJ-=BI^=^ ..... (8)

and T = ........ (9)

Equation (8) is our fundamental equation.

In any given case we have only to write down the expression M for the

moment of the outer forces at any point, and equate it with E I
-r-^.

Integrating once we shall then have for I constant, of course, E I -- and,

integrating again, E I y in terms of x, or the equation of the deflection

curve itself. Making E I-^-
= 0, we can then find the point of maximum

deflection, and inserting in the value for Ely the value of x thus found,

can find the maximum deflection itself. The discussion of any case reduces

thus to a simple routine, and every case is ii\ many respects but a repetition

of the same processes.

12. Beam fixed at one end and loaded at the other-
Constant cross-section. We shall always consider a moment positive

when it causes compression in the lower fibre
; negative when it causes ten-

sion in that fibre. Distances to the right of the origin are always positive,

to the left negative. Hence on the left of any section an upward force is

negative, a downward force positive ;
while on the right of the section the

upward force is positive and the downward one negative. The reader

should always draw the Fig. for each case discussed, and in the beginning,

at least, review these conventions each time.

Now let a beam of length I have the weight P at the free end, and let it

be fixed horizontally or " walled in " at the right end. Then the moment
at any point distant x from the left or free end is M + P x.

(a) Change of shape.

From (8) we have now
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Integrating once (Art. 5) we have

EI^ = P^
dx 2

where O is the constant of integration to be determined (Art. 6) by the

given conditions. Now by the condition in this case, when x = I,

(
^-

# x

must be zero, because the end is fixed, and the tangent there must therefore

P Z
3

be horizontal (Art. 8). Hence C = -
,
and

E i^L = *J?-^.
dx 2 2

We have thus introduced the condition that * cannot be greater than I.

Integrating again (Art. 5)

Here again we have a constant to be determined, and here again we have

the condition that for x = I, y must be zero, since at the fixed end there can

be no deflection. Therefore, O = - - and

The deflection will evidently be greatest at the free end, and here, therefore,

for x = 0, we have

PI3

If the cross-section is rectangular, I = I h3
(Art. 10), and the maximum

4 P I
3

deflection A = '"*''
.''.

'

E 5 A3

(J) Breaking weight.

T I
We have also from equation (8) M =-

, where T is the tensile strain
v

in any fibre distant v from the centre. For =
,
T is the tensile strain in

2 T I Ji

the outer fibre, and M = . For v = we have the compressiveh 2
'

o C I
strain in the outer fibre upon the other side, or M = - . Theoretically

ti

the two should be equal. Practically they are not. In fact, if we put for

2 T IM its value, we have P x = -
,
or for a rectangular cross-section P a;

ft

' T J h*. This is greatest for x = l, hence the breaking weight P = = .

6 O l

ft T 7

From this we have T = -r--. Now experimenting with beams of various
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materials, known dimensions and given weights, we may find experimen-

tally T. It would seem that this value thus found should equal either the

tenacity or crushing strength of the material, but the results of experiment
show that it never equals either, but is always intermediate between T and

O. Calling this intermediate value R, we have

The formula is based upon the condition of perfect elasticity, while R is

determined by experiments made at the breaking point when the condition

of perfect elasticity is no longer fulfilled. In the following table the tabu-

lated values of R are correct for solid rectangular beams, and sufficiently

exact for those which do not depart largely from that form. If instead of

we use the values of T or O, whichever is the smaller, we shall always
~be on the safe side, since R is invariably intermediate between these.

In general we shall refer to the equation

when we have occasion to find the breaking strength. But it must be

always remembered that in any practical example we should replace T by
R for rectangular beams, or by T or C, whichever is the smaller, for others.

"We give also the values of the coefficient of elasticity E. (Wood's Resist.

of Materials.) TOR E
Cast-iron....................... 16.000 96,000 36,000 17,000,000

Wrought-iron.................. 58^200 30,000 33000 25,000,000

English Oak.................... 17,000 9.500 10,000 1,451,200

Ash............................ 17,000 9,000 10,000 1,645,000

Pine ........................... 7,800 5,400 9,000 1,700,000

All in pounds per square inch.

2. Beam of uniform strength.

Suppose the cross-section or I is not constant, but varies so that at every

point the strain T is constant. From (11) we have

2 T IM = P x =
'.

- for the outer fibre, whence
n

T = -. For a rectangular cross-section T = 'T
. Now suppose the

breadth and height at the fixed end are li and hi. Then at this end T =

--
. But this must be equal to T at any other point ;

hence

6Pa; 6PZ ft A* _ as

If we suppose the height constant, we have for the varying breadth at any

point b = li
X

. That is, the breadth must vary as the ordinates to a straight

line, and the plan of the beam is a triangle with the weight P at the apex.
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If the breadth is constant, h = hi . I _, or the elevation of the beam is a

parabola with the weight at apex. If the cross-section is always similar,

that is, if -i = -, we have I = -^ ,
and substituting in the equation above

fii h hi

, which is a paraboloid of revolution.

(a) Change of shape
From (8) we have

^1? =^= p s

d z*
~
E I E x -iV & A*

where b and h are variable. If we suppose the height h constant and

x

Talways equal to hi, then, as we have seen, & = 5i T ;
hence for rectangular

cross-section

d s
y _ 12 PI

d X*
~
E hi

3 h'

Integrating, since for x = I, -^- = 0. we have
d x

d_y_= laPZa; _ 12 P I*

d x
~
E ^ 6, BA7&I*

Integrating again, since for x = I, y = 0. we have

12PEa? 6 P V

For the maximum deflection x 0, and

The above value of y can be written

6PZ/ \ 6PZ

6 P P 3
but is , the deflection of a beam of constant cross-section &i

as already found. Calling this deflection A
, we have

for the deflection at any point, or A = A for the maximum deflec-

tion.

In a similar manner, for constant breadth, we have

84MF
, A =2 Ao = E bi h,

3 '



CHAP, in.] SUPPLEMENT TO CHAP. VH. 117

For similar cross-sections, we have

9 r 5 a; 3 1 /~\*~t 9 , 36 P P

If we call the volume of the beam of constant cross-section V, then in

1 2
the first case the volume V, = V

;
in the second,V3 = V

;
in the third,

V,=iv ;
or

V : V2 : V3 : V, = 30 : 20 : 18 : 15.

The maximum deflections, as we see above, are as

2 Ao, ?- Ao,
-

Ao, or as 20, 18, and 15.
<w

That is, the deflections at the ends for a beam of uniform strength in the

three cases are as the volumes.

13. Beam as before fixed at one end Uniform load
Constant cross-section. If p is the load per unit of length, we have

for the moment at any point distant x from the free end,

x p x* p x 2 d* yM=pxx _ = _,and hence ^j =
^~T-

pi
2

This moment is greatest for x = I, and hence Max. M = .

For the breaking weight, then, from (11)

pi 2 2TI 4TI
- = or

pl=-ij-,

or twice as great as for an equal weight at the end.

For the change of shape, we integrate twice, precisely as before, the ex-

pression -5 j = ,
and obtain thus

The maximum deflection, then, is

or only $ths as great as for an equal load at the end.

2. Constant strength.

We have, as before, from (11)M = ^- =
,
-whence T = -

;
or

for rectangular cross-section, I = J h3 and T = -A?. If li h L are the
MM o n*

breadth and heighth of the fixed end section, then, since T must be always
constant,

. xs

_ 3 p I* I h* _ x2

For height constant, & = 6 ,

(

X
-\
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For breadth constant, h =
hij.

For similar cross-sections, h = hi

The first is in plan a parabola ;
the second, in elevation a triangle ;

the

third, a paraboloid of revolution.

For the change of shape, we have, by proceeding in the same manner as in

Art. 12, A == 2 Ao, A = 4 Ao, and A = 3 Ao in the three cases, where A is the

deflection of a similar beam of constant cross-section &i h\.

14. Beam supported at both the ends Constant cross*

section Concentrated load. Let the weight P be distant from the

left end by a distance Zi and from the right end by Za. Let the distance of

any point from the left end be x. For the upward reaction at the left end,

Vi x Z = P Z3 or Vl = P
J-

The moment, then, at any point between the left end and F, for x less

than Zi, isM ~~i~~ For any point to the right of P, or a; greater

than Zj, M' = =- h P I x Zi I. Instead of this, however, we may

take the reaction at the other end, V-, = P
-,-; and then for x greater than Zi,

The moment is evidently greatest at the point of application of the load,

or for x = li Hence the maximum moment is r-A

(a) Breaking weight.

2 T I "P 7 7

From (11) M =
-^-

= ---
j-, or, for the breaking weight, P =

2TIZ 1 T & A ?
Z

T , , . For. rectangular cross-section, I -^ 5 h3 and P
fi

, ,

For a load in the middle, ^ = Z3 = Z and Max. M = j P I, and P =

8TI
fcj-,

or 4 times as great as for a beam of same length fixed at one end

and free at the other.

(V) Change of shape.

We have, then, from (8), for x less than Z,,

&y P Z2 x ,

d* ail
and

Integrating, we have

d y P Zo a;
2

, ,

d y' P Zj r7 ^ z
l"-** -- lx - + c '

For a; = Zi, these two values of -^-arc equal, and hence, since Z, = Z Z1( wedx
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have O' = O n =i-. We have then the two equations

dy Pk* 2

, , dy' P I, r
7

a:
2
-,

P , .--- -

containing both the same constant O.

Integrating these, we have

In the first of these, for x = 0, y = ;
hence d = 0.

p i
3

For a: = Zi, y =
'

;
and hence Ca =

o B I

For x = I, y' = ;
and hence, finally, O = ?A^ (2 I - Z,).

-

We have, therefore, by substitution of these constants,

'

Pl 2
!

2

For a; = Z,, we have the deflection at the load y = -g-g 7.

Inserting the value of O in the value for - above, and placing the
a x

value of - equal to 0, we have for the value of x, which makes y a maxi--
d x

mum
,
x =* / (2 I li) li, an expression holding good only for x less than

i. Inserting this in the value for y, we have for the maximum deflection

If the load is in the middle, we have for the curve of deflection

and for the deflection itself A = .

The greatest deflection is not, then, at the weight, except when the load is

in the middle. When this is the case, the deflection is only 6̂-th of the

deflection for the same length of beam fixed at one end and loaded at the

other free end.

15. Beam as before supported at the ends Filiform
load. For a load p per unit of length, the entire load is p I. The reac-

tions at each end are ?
, and the moment at any point is

M is evidently greatest at the centre, and hence

Max. M = ?J-.
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For the tweaking weight, then, from (8)

i* 2TI 16 T I

or 4 times as much as for a beam of same length loaded uniformly and

fixed at one end.

For the change of shape, we have

d*y _ px(l-x)
dx* 2 El

The constants of integration are determined by the conditions that, for

x = -, -2- =
;
x = 0, y = ;

and x = I, y = 0. Integrating, then, twice

under these conditions, we have

This is greatest at the centre, or for x =
;
hence the maximum deflection is

A = - -
,
or only ifgths of a beam of the same length fixed at one

end and uniformly loaded.

16. Beam supported at one end and fixed at the other
Constant cross-section Concentrated load. Let the left -

end be fixed horizontally so that the tangent to the deflected curve at that

point is always horizontal, and therefore = 0.
a x

Let the distance of the weight P from left be a, and the distance of any

point x.

Then, for x less than a, we have

M = V (l-x) + P (a-x) ;

for x greater than a,

where V is the reaction at the free end, and is so far unknown.

If we put M = -? and M' = ~, and integrate as usual, and remem-

ber that for x = 0, - = 0, and for x a,
- - = ~-. we have

ax ax ax

Integrating again and determining the constants by the conditions that,

for x = 0, y 0, and for x a, y = y', we have

y' = -
Q^J-J [V

*' (3 Z-aO-P (3 ar-a) a 2

J.
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Now, for x = I, y'
=

;
hence V = P

2 l~
If the load is "* the

middle, V = P.
16

V, or the reaction at the free end, is now known, and substituting it in

the value of y' above, we have the equation of the deflection curve between

the weight and the free end.

,_ _
P ra*(3Z-) (8J-*) ._ . .1

Substituting it also in the value of -~- above, and placing then equalax d x

to zero, we find for the value of x, which makes the deflection a maximum,

when * is greater than a, x = T- l\/ 1"
O v ~~~

Ct

Substituting this value of x in the value of y' above, we have for the

maximum deflection itself

P 1? 1
When the weight is at the middle, this becomes A = ln _ - x = ,

or
48 E I

4/5

only ^ ,
as much as for a beam of same length fixed at end and with

16
4/5

load at other end, and only
- as much as for same beam simply sup-

4/5

ported at ends.

Breaking weight.

Having now V, we know M and M'. Rupture will occur where the

moment is greatest, that is, either at the fixed end or at the weight. Now
the moment at P is V (I a) = Vl + Va. The moment at the fixed

end is V l +P a. Now, as V is always less than P, we see at once that

for any value of a less than I, the moment at the weight is greatest.

We have for the moment at the weight from (8)

M = - V (l-) = - P -r (I- a) = f
and hence-

4 T 1 1
3

for the breaking weight P =^ -

64 T I
If the weight is in the middle, P = -TV,

5 ft I

or f ths as much as for the same beam supported at the ends.

17. Beam as before fixed at one end and supported at

the other Uniform load. In this case the moment at any point is

M= V(Z-3!)-i--^(Z-z)
2 = EI \. Integrating twice and determin-

ing the constants by the conditions that, for x = 0, ^
= and y = 0, we

easily obtain
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4 v & l-*)-

q
For x = Z, y 0, and hence V = p I.

o

Substituting this value of V

iK _ V'^^

Putting this last equal to zero, we find x - I, or x = 0.5785 I,

for the value of x, which makes the deflection a maximum, and this in-

serted in the value of y gives for this maximum deflection itself,

For the "breaking weight, we have, since the greatest moment is at the fixed

end and equal to -p Z
2
,
M = l

-p V = 2-^ ;
hencep I = 16

,T
'

8 on hi

The strength is, then, $ times as great as for the same load in the middle,

but no greater than for a beam of same length and load supported at both

ends.

18. Beam fixed at both ends Constant cross-section

Concentrated load. Taking our notation as before (Art. 12), we
have in this case not only a reaction at the right end, but also a positive

moment there as well, both of which must be found. If Zi be the distance

from left end to weight, and Z2 from weight to right end, and if V a and
V 2 are reactions, Mi and M2 the moments at left and right ends respec-

tively, then for equilibrium we must have Vi + V2 = P, Mj + Vi li =
M2
- V2 1,.

d* v
For x less than Zj we have M = M! + ViX = EI - ?. Integrating

once, since the constant is zero, because, for x = 0,
-~ = 0, we have
a x

Integrating again, since, for x = 0, y = 0, and the constant is zero,

For the distance from the right end to the weight we may obtain similar

expressions, if we take that end as the origin, only we should have V3

and M2 in place of Vi and ML At the weight itself ~ and y must in

each case be equal, but =-=. of opposite sign. Therefore we have the equa-

tions (2 M! + V, li) It - -(2 M 2 V2 I,) Z2 ,

(3 M, + V: Z.) Z,' = (3 M 2~V2 Z2) Z2'.
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Prom these two equations, and the two equations above, viz., V! +Va = P
and Mj + V, li = M,~Va Z2 , we can determine Vi, Va, M t and M2 .

Thus from the last two we have

ViZ,+V, Z = M,-M, =V, Z, + PZ, + ViZ = Vi Z+FZa ,

or Y! Z = M,-M 1 -PZ2 .

So also Va Z =M3 -Mi +P li, and substituting these in the equations above,

we have

(M1+M i)Z = PZi I,,

M! I (2 Z^ZO-M, Z (2 k-z,) = p I, Ja (I,
-

Z,) ;

and from these we have, finally,

M -P*' Z'* B/P-P^.OLi-P
p,

M1 - f
-^- ,

and then from the values of Vi I and Va I above

v _ _ p Z^fSJi +M . _.Vi 2

"^
'

Change of shape.

Substituting these values, we can now find

2 Z Z

Hence w is a maxunum for x = U and the maximum deflection
d (i + (

itself is

2 P Z,
3

Z2
*

This expression will be itself a maximum for Zi = Za or l\ = I, that is,

the maximum deflection for a weight in the middle is at the weight and

equal to

_--
192 E I

'

This deflection is greater than the maximum deflection for any other

position of the weight, which in general is not found at the weight itself,

but at some other point between the weight and farthest end.

We see above that the deflection in this case for load in middle is only

one-fourth as much as for same beam and load when supported at the ends.

Breaking weight.

For the greatest moment, which we easily find to be at the end, we have

PZ, Z,
f_ PZ,(Z-ZO Z

I* p

This is a maximum for Zi = ^ Z. That is, the greatest moment at the end

occurs when tlie load is distant one-third of the length from that end. The
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4 4
value of this greatest moment is P 1. Hence we have from (11) P I

O ip T 0*7 p T O7= or P =
,
or as great as for the same beam supported at

/I a fl L 10

p 1

the ends only. If the weight is in the middle, however, we have
8

or P = -
,
or twice as much as the same beam supported at the

n ' h I

ends.

19. The above is sufficient to introduce the reader to the theory of

flexure. He can now discuss for himself the above case for uniform load,

and prove that the maximum deflection is at the centre and equal to

p I
2

1
. That the greatest moment is at the end and equal to p I"

2

,

O4. T' T
and that the breaking weight is^j Z = We may also observe that

both in the beam fixed at one end and supported at the other, and fixed at

both ends, the moment at the fixed end is positive. From this end it de-

creases towards the weight, and finally reaches a point where the moment
is zero. Past this point the moment becomes negative, and in the case of

the beam, free at the other end, increases gradually to a maximum and then

decreases to zero. In the beam fixed at both ends, it increases to a maxi-

mum, then decreases to zero, then changes sign and becomes positive and

increases to the other end. These points at which the moments are zero

are points of inflection, because here the curvature changes from convex to

concave, or the reverse.

They can be easily found from the equations for the moments by finding

the value of x necessary to make the moments zero.

Thus, for a beam fixed at one end and supported at the other, uniform

load, the inflection point is at a distance from the fixed end x = . For

both ends fixed, we make M = p \P 6 (I x) x] = 0, and find * =
12 .

L
(3 T V3) I = 0.21131 I and 0.7887 I. The reader will also do well to

b

discuss the curves of moments. He will find the moments represented by
the ordinates to parabolas, and limited by straight lines similarly to Figs.

73 and 75, PL 18.

We shall give in the Supplement to Chap. XIV. much more general

formula?, from which, for one or both ends fixed or free,' the moments and

reactions at the supports may be found, when any number of spans of vary-

ing length intervene, for single load anywhere upon any span, or uniformly

distributed over any span.
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CHAPTER VIII.

APPLICATION OF THE GRAPHICAL METHOD TO CONTINUOUS
GIRDKRS GENERAL PRINCIPLES.

O. Mohr's Principle. Thus far, in addition to the general

principles of the Graphical method, we have noticed more or

less in detail its application to the composition and resolu-

tion of forces, and the corresponding determination of the

strains in the various pieces of such framed structures as Bridge
Girders, Roof Trusses, etc. We have also illustrated the

graphical determination of the centre of gravity and moment

of inertia of areas, as also of the bending moments and shear-

ing forces for simple girders, including several important' cases

in practical mechanics. (See Art. 41.) Lastly, we have taken up
the subject of Bridge girders more in detail, and developed in

order the principles to be applied in the solution of any par-
ticular case. Although brief, it is hoped that this portion will

be found sufficient to illustrate fully the method of procedure
to be followed in practice.

As regards simple girders, the principles referred to are so

easy of application that the reader will find no difficulty in

diagraming the strains in any structure of the kind, as explained
in the "

practical applications
"
of Arts. 8. to 13

;
or he can find

the maximum moment at any cross-section for given load-

ing according to the last chapter. In the case of beams or

girders continuous over three or more supports, however, we
meet with difficulties which for some time were considered in-

superable.

Thus Culmann, in the work which we have so often quoted,

says :
* " The determination of the reactions at the supports for

a continuous beam, which depend upon the deflection, the law

of which is given by the theory of the elastic line, is impossi-
ble by the graphical method, at least so far as at present de-

veloped. The theory rests upon the principle that the radius of

*Gulmann'8 Graphische Statik, p. 278.
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curvature of the deflected beam, for any cross-section, is in-

versely proportional to the moment of the exterior forces.

Now the deflection at any point is so small, and the radius of

curvature so great, that its construction is impracticable, and

will so remain until Geometry furnishes us with simple rela-

tions between the corresponding radii of curvature of pro-

jected figures whose projection centre lies in the vertical to the

horizontal axis of the beam. If such relations were known, we
could by projection exaggerate the deflection of the beam
until the radius of curvature became measurable. Since we
are not yet able to do this, we must have recourse to calcula-

tion" He then enters into a somewhat abstruse analytic dis-

cussion of the continuous girder, and deduces formulae for the

reactions at the supports. These being thus known, the graph-
ical method is then applied.

Concerning this difficulty, Mohr * remarks that it has but

little weight, and may be easily overcome if the same simplifi-

cation of the graphical method is made which is considered

allowable in the analytical investigation, viz., when we take in-

stead of the exact value of the radius of curvative

da?

as given by the calculus, the approximate value

Thus, let PL 14, Fig. 50 represent a perfectly flexible cord

A B D loaded by arbitrary successive forces. The variation of

these forces per unit of horizontal projection dx we represent by

p. Take the origin of co-ordinates at the lowest point B. If

the cord is supposed cut at B and D, we have at B a horizontal

force H, and at D a strain S, which may be resolved into a

horizontal force Hj and a vertical force V. Since these forces

are in equilibrium with the external forces, the conditions of

equilibrium are

(1) ....... H - H,
and /

(2) ..... V= / pdx.

* Zettsch. des Tuinnov. Aroh.-u. Ing. Vereins.Bsmdi xiv., Heft 1.
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Now, had we formed a force polygon by laying off the forces.

then taken a pole at distance H and drawn lines from pole to

ends of forces, the corresponding equilibrium polygon would,
as we have seen, Art. 43, be tangent to the curve A B D at the

points midway between the forces. The greater the number
of forces taken, the shorter, therefore, the sides of the polygon ;

the nearer it will approach the curve A B D. This curve is

therefore the equilibrium curve, found according to the graph-
ical method. Its equation is given above by (4).

But the equation of the elastic line is, as is well known,

where E is the modulus of elasticity of the material, M the

moment of the exterior forces, and I the moment of inertia of

the cross-section.

Comparing now this equation with equation (4) above, we
see that the elastic line is an equilibrium curve whose horizon-

tal force H is E, and whose vertical loadper unit of lengthp

is represented by the variable quantity -~r-

This simple relation, first given by Mohr, renders possible

the graphical representation of the elastic line, and not only
solves graphically almost all problems connected with it, but in

many cases simplifies considerably the analytical discussion

also.

81. Elastic Curve If we choose the pole distance H at -th

E instead of E, the ordinates of the elastic line will be n

times too great. If the scale of the figure is, however,
- th the

*
Stoney Theory of Strains, p. 146. Wood Resistance of Materials, p. 98.

Also Supplement to Chap. VII , Art. 11.
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real size, then in the diagram the ordinates of the elastic line

will be given in true size.

Equation (5) may also be written

that is, the elastic curve is an equilibrium curve, or catenary,

whose horizontalforce H is E I or F, and whose corresponding

variable loadper unit of length is M or respectively.

If we divide, then, the moment area by verticals into a number

of smaller areas, and consider these areas as forces acting at

their centres of gravity, these forces determine, as we have seen

(Art. 43), an equilibrium polygon which is tangent to the elas-

tic curve at the verticals which separate the areas. Thus we
can construct any number of tangents to the elastic curve

;
areas,

which are positive or negative, must, of course, be laid off in the

force polygon in opposite directions.

If we divide the moment area by lines which are not vertical

[PI. 14, Fig. 51], the directions of the outer polygon sides are

the same as for vertical divisions, because the vertical height
between the corresponding outer sides in the force polygon is

in any case always equal to the tojal load.

The two outer polygon sides for any method of division are,

therefore, tangents to the elastic curve at the ends of the same.

Here also we can, of course, have negative areas.

2. Effect ofEnd moments. A beam or girder continuous

over three or more supports differs from a beam simply resting

upon its supports, in that, in addition to the outer forces, we
have acting at each intermediate support a moment or couple.

But, as we have seen, Art. 23, the effect of these moments or

couples will be simply to shift the closing line of the equilibrium

polygon through a certain distance. Thus [PL 14, Fig. 52 ()],
if the span ^ were uniformly loaded and simply supported at

the extremities A and B, the equilibrium curve, or curve of mo-

ments, would, as we know (Art. 44), be a parabola A D B. If,

however, the beam is continuous, we have at A and B moments

or couples acting, and the closing line A B is shifted to some

position as A' B'. If now we consider the moment area, we

see that by the shifting of the closing line the former moment

area, which we shall call t\\G positive area, is diminished, while

to the right and left we have negative areas A A' C and B.B' C.'
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It is evident that these areas have also a corresponding action

upon the elastic line. For a positive moment area this last is

concave .upwards, while for negative areas it is convex upwards.
At the points of transition C and C' we have the inflection

points. This follows easily if we only hold fast the manner in

which the elastic line is constructed, viz., by dividing the mo-

ment area into laminae and regarding the area of each as a

force. The forces thus obtained must plainly act, some upwards
and some downwards, and the corresponding equilibrium poly-

gon or elastic line must be in part convex upwards and in part

convex downwards, and hence at the points of transition we
must hsive points of inflection where the moment is zero.

83. Division of the moment Area. We shall assume the

cross-section of beam constant. Regarding the elastic line

simply as an equilibrium polygon, we can apply the principle

that the order in which the forces are taken is indifferent (Art.

6) when the resultant only is desired. Since in the considera-

tion of a single span only the first and last sides are of impor-

tance, we can, so long as we consider a single span only, take

then the laminae or divisions of the moment area in any order

we please. More than this, we can, as we have seen in Art. 81,

divide the moment area into laminae not vertical
;
for example,

we may in any span distinguish three parts, one positive and

two negative, and consider each as a force acting at the centre

of gravity of the corresponding area. [This holds good only
,for constant cross-section. For variable cross-section the hori-

zontal force E I is variable.] Still further, we can divide the

moment area for a single span into a positive area, which is pre-

cisely the same asfor a non-continuous beam, and into a nega-
tive area, which will be evidently a trapezoid.

This is of great importance. To understand it fully we refer

to PI. 14, Fig. 52. Here, in the second span, we see that the

real moment area consists of a positive part, viz., the parabola
C D C', and two negative parts A A' C and B B' C'. Instead of

these we may take the entire parabolic area A D B and the tra-

pezoid A A' B' B, or, finally, instead of this trapezoid, we may
take the two triangles A A' B' and B B' A'. The parabolic
area is positive, the triangular areas are negative.

If we assume the load as uniformly distributed, the first area

will be always parabolic, and we may, therefore, call it the

parabolic area.
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By this division of the moment area we have obtained a great

advantage. While the three areas C D C', A A' C and B B' C'

are all three dependent upon the moments at the supports A A'

and B B', we have by this
t
new division to do with three areas,

of which the first is entirely independent of the moments at the

supports, the second depends only upon that to the left, and the

third only upon that to the right.

84. Properties of the Equilibrium Polygon. Let us con-

sider now the case of a beam over four supports, that is, of

three spans 1
, \ and 4 the first and last being, as is usually the

case, equal, and the two first loaded with both live and dead

load, the last with dead load only. The parabolas for the ver-

tical loads [PL 14, Fig. 52] may be constructed by means of a

force polygon, or the ordinates at the centre calculated, and the

parabolas then drawn. The moments at the supports are A A'

and B B'. Although these are unknown, it is not necessary to

assume them at first. They may be directly constructed.

Thus, if we conceive the moment areas in each span divided

into positive parabolic areas and negative triangles, we have in

the first and last span one, in the middle two triangles. If we
consider these areas as forces acting at the corresponding centres

of gravity, we shall obtain an equilibrium polygon of the form
given in Fig. 52 (b). That is, this polygon must have eight

sides, and its angles must be somewhere on the verticals through
the centres of gravity of the parabolic and triangular areas.

The parabolic areas act downwards, the triangular areas up-v

wards. The problem is, to make these last so great that this

polygon shallpass through all thepoints of support.
One of the properties of the polygon we have, therefore, just

noticed, viz. : its angles must lie in the verticals through the

middle points of the spans and through the points distant from

A and B one-third of the spans on each side (i.e., the centres of

gravity of the triangles).

If we prolong the second and fourth sides of the polygon,

they intersect in a point M, the point of application of the

resultant of the two contiguous triangular area forces (Art. 4-i).

The areas of these two triangles are - A A' 1 and
^
A A' 4, that

is, the areas are as the spans 1 and ^.

Then by the principle of Art. 18 the resultant divides the

distance between the forces into two portions, which are to each
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other as Zt to 4> or inversely as the forces. Since the entire dis-

tance is
-

1 +
75 /u the distance of the resultant or of the pointO O t

of intersection M from L is
75 ^ ;

from N it is
75

1 . The point

M, therefore, must lie somewhere in the vertical at
75 ^ from L,o

the point of application of the triangular area force for the

span 4- The verticals through the centres of the parabolic

areas we call the parabolic or middle verticals / those through
the centres of gravity of the triangular areas, the third verti-

cals / those through a point as M, the point of application of

the resultant of two contiguous triangular area forces, the lim-

ited third verticals. Upon these verticals two sides must always
intersect.

85. Polygon for the Poitive moment Areas. It will be

found best to take as the reduction base for areas ^, i.e., half

the second span, and for pole distance ^. Reducing the
3

areas of the parabolas to this basis, and considering the heights

thus obtained as forces, we can form a force polygon with pole

distance - \. It is not necessary to draw this polygon ;
our ob-

3

ject is to find the corresponding equilibrium polygon. This

last, since we consider the entire parabolic area as a force act-

ing at its centre of gravity, consists of two lines which inter-

sect in the vertical through the middle of the span. We pro-

long each of these lines and obtain two lines as shown in PI. 14,

Fig. 52
(c). The segments cut off by these lines from the verti-

cals through the supports are the moments of the parabolic
areas with respect to the supports. These moments we can

easily find.

Thus, let the deflection of the parabola in the second span al

the centre be/, then its area is - /^. This reduced to the
o

basis ^ gives / as the force. The moment of this force

with reference to the supports is -/ x ^-^ = 2/x-^. This
o 2i 3

moment is equal to the segment sought multiplied by the pole
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distance. This last is - l:. The segment, therefore, is %f. We
3

do not need, therefore, to draw the force polygon, but have sim-

ply to take off with the dividers the middle ordinate of the para-

bola f ,
and lay it off twice on the verticals right and left

8

through the supports, and join the four points thus obtained by
lines crossing each other under the centre of the span. The

equilibrium polygon for the positive parabolic area is then

ready for the middle span. [We advise the reader to construct

it for himself.]

For the two side spans the construction is different. Here

the area of the parabola is -f 1
0)
the reduced area -f -, and

o 4

the moment -f j x - = %f ^ .

Dividing by -
l^ we have for the segment required

3

Therefore, in the end spans, or generally in any span not equal

to the standard span, or that which furnishes the constants - ^

and -
1,
we must multiply the middle ordinate of the parabola

o

by the square of the ratio of the " standard "
span to the span

in question, and then lay the product off twice upon the verti-

cals through the supports. This multiplication is easily per-

formed graphically. If from the middle of span 1 we lay off

I? horizontally and join the end with the end ofy, then lay off

IQ in same direction and draw a parallel to the first line, the

segment on/' will be/'-^. For we shall have

Since these cross-lines depend upon given quantities, they
can be constructed for every span, and thus we have Fig. 52, <?.

They give us not only the moments over the supports, but also

the moments for any point of the parabolic area forces. We
shall hereafter make use of them.

6. Construction of the Fixed Points, and of the Equi-
librium Polygon. We have thus all the given and known
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quantities, have deduced the general properties of the equili-

brium polygon, and will now endeavor by their aid to draw the

polygon itself. We shall then be able to find the actual mo-
ments A A' and B B' at the supports. It is impossible at first

to draw any single side of the polygon in true position, and we

must, therefore, endeavor to find certain points of the same suf-

ficient to determine it.

Lay off first the three spans, PI. 14, Fig. 52 (d). Suppose
the second side of the polygon prolonged till it intersects the

vertical through the end support a, in a point K, Fig. 52
(5).

This point is known. It is given by the moment of the para-
bolic area in the first span with respect to this end support.
This moment we have already by the cross-lines in Fig. 52 (c).

We have then simply to take it off in the dividers from (c) and

lay it off from d to K' in Fig. 52 (d). We have now in Fig. 52

(), two points of the polygon known, namely, the end support
and K, which last must be in the second side prolonged.
The triangle LM N is now of special importance. What-

ever may be the position of KM and M N, we have already
seen that the intersection M must always lie somewhere in the

limited third vertical. The first side KM must, however,

alwayspass through K, a known point. The second mustpass

through the support, also a known point. The points L and N
must, moreover, always lie in the third verticals, distant from

A,
g-
\ and

^
Z respectively.

If the line KM takes up various positions under these con-

ditions, the line M N will revolve about afixedpoint which is

given ~by the intersection of a line through K and the support
A with M N.

If, then [Fig. 52 (d)\, we draw a line in any arbitrary direction

through K', and note the intersections I/ and M' with the first

third vertical and the limited third, then through L' and the

support draw a line to intersection N' with second third verti-

cal, and join M' N', and finally through K' and the support
draw a line intersecting this last in I, the point I thus deter-

mined is &facedpoint, and remains the same for any position

ofSJ M'. It is therefore a point on the fourth side M N of

the polygon. For the triangle I/ M' N' may have any posi-

tion, yet so long as its angles lie in three parallel fixed lines,

;ind two of the sides pass through two fixed points, the other
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side must also pass through a fixed point.* Out of all possible

positions of the triangle, one of these positions must coincide

with the polygon sides, and hence this fixed point is a third

known point, since we have already K' and the end support.

Although, then, we are as yet unable to draw any of the sides

of the polygon in true position and direction, still from the

hitherto known properties we have deduced a new one. We
know now a point through which the fourth side must pass.

But this is not all. We proceed still further. The fourth and

fifth sides must intersect upon the vertical through the centre

of the second span. These sides, moreover, cut off upon any
vertical the moment of the parabolic area with respect to any

point in that vertical. We know this moment thus for the

point I just found. It is found by taking the segment cut off,

from the vertical through I, by the cross-lines for the parabolic
areas found above in Fig. 52

(c).

Laying this segment off from I, we thus find I', apoint in the

fifth side prolonged. From this point we proceed as before to

find the next fixed point I". We then lay off from I" the mo-

ment of the parabolic area for this point and find I'", a point

upon the eighth side. We can now draw the polygon itself.

Thus the eighth side passes, of course, through the last sup-

port and also I"'. It is therefore determined. Through the

intersection of this line with the vertical through the middle of

the span and the point I" the seventh side passes. The sev-

enth side is therefore determined. Through the intersection of

this with the third vertical and the support the sixth side

passes and continues till it intersects the third vertical on the

other side. Then from this point towards I' to intersection

with vertical through centre of middle span. From this last

point towards I to intersection with third vertical. From this

last point again through support to intersection with third verti-

cal on other side
;
then towards K' to intersection with vertical

through centre of end span ;
and lastly, from this last point of

intersection through the end support, and the polygon is com-

plete as given in Fig. 52 (J).

In this manner, however, inaccuracies may occur. To avoid

these we may start from the right end support and also find

four fixed points as above. It is unnecessary to make the con-

* This proposition the reader can easily prove geometrically or analytically.

See Art. 112.
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Btruetion. We see at once that we shall thus obtain in each end

span two points, in the middle span four points, which last, be-

ing joined by lines crossing each other, give in the middle span
two sides in proper position. It is also evident how the poly-

gon may then be completed.
87. Construction of the Moments at the Supports. Thus

we are able to construct the equilibrium polygon, or rather the

extreme tangents to the elastic line for each span. We have

now to determine the two moments over the supports. This is

very simple. The first moment to the left is cut off by the

fourth sidfc, the second by the fifth side of the polygon, ^/row*
the verticals through the supports. We have therefore only to

prolong these two sides, take off the segments in the dividers,

and lay them off in Fig. 52 (a) in A A' and B B'. We have,

then, in PL 14, Fig. 52 (a) the moments for the given case and

loading at any point, as shown by the shaded area.

The proof is simple. The two lines N M and N L [Fig. 52,

5] evidently cut off upon the vertical at the support the moment
of the force acting at N. This force is the area of the triangle

A A' B' equal to ~ A A' ^. This reduced to the basis ^ l gives

A A'. If we multiply this by the lever arm of the force, we
have its moment. This moment is, however, equal to the seg-

ment A A' multiplied by the pole distance, and since this pole

distance is itself = l^ the segment itself to the assumed pole

distance gives us the moment.

We see that it is not necessary to draw the line N L as it

passes through the support. We have simply to prolong the

side M N to intersection with the vertical through the support.

It is to be observed that the moments at the supports are cut off

at the supports only by those lines which pertain to the " stand-

ard "
span, or that span from which we take our reduction basis

and pole distance. For lines in the other spans the above does

not hold good without modification. It is, however, always

possible, at least for from two to five symmetrical spans, to

observe the above conditions. In those cases where this is not

possible, an easy graphical multiplication of the segments by
the square of the ratio of the spans will give the moments.

We see also the reason why, for four symmetrical spans, the

sL-.-.'/td and not the first must be taken as the standard span.
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If the construction of the moments over the supports is our

sole purpose, as is in practice the case, the polygon need not be

drawn. We have only to find our fixed points, and note the

intersection of the sides with the verticals through the supports,

without drawing the sides themselves. In the preceding Arts-

we have purposely considered only the particular case of uni-

form loading, and have taken only three spans, in order to

familiarize the reader with the nature of the problem and the

method of its solution. In order to attain a clear understand-

ing of the subject as thus far developed, he would do well to

take some particular case, as, for instance, that of a girder of

two or three or four spans of given length, the end spans being

equal, and intermediate spans equal and say one-fourth longer
than the ends, and work out by diagram the moments at the

supports for a uniform load over the whole length of girder.

For two spans the moment at the centre support should be

Qp P, I being the length of span,p the load per unit of length,o

For three spans the moment at the two inner supports is

1 + n?

4/0 i o \P ^j where n I = the length of end spans. Thus, if

qi
n = -, we have r ^p P. For four spans the moment at the

1 4- 2 ?i
8

second and fourth supports is j 5 r \P ^? and at the middle

support 4/Q ,

4. ^-p Z
2
. By these formulae the graphical

results may be checked.

When the reader has thus become thoroughly familiar with

the principles of the preceding Arts, and their practical appli-

cation, he will be ready to resume at this point the more gen-
eral development which follows.

88. The Second Equilibrium Polygon. We see, there-

fore, that the actualform of the elastic line is not required to

be known. Only the outer forces and their moments are sought,

and to determine these it is sufficient to know the position of

the tangents to the elastic line at the supports. Thus the first

line of the equilibrium polygon [Fig. 52, J] being given in

position, by the aid of the middle, third, and limited third

verticals and the known point K, all the other sides may be
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drawn, and the moments at the supports found. We conceive,

therefore, the 'moment area as the difference of the trapezoid
J A." B" B' [PL 15, Fig. 53] and the parabolic area A" C" B",

or equal to A" G" B" 'minus triang. A' A" B' minus triang.

B' B" A". The area A" G" B" we call the simple or parabolic
moment area.

If we indicate the moments at the supports A' A" and B' B"

by M' and M", then, for a given span I,

A' A". B' = \ M' I and

A" B' B" = M" I.

If we indicate further the height of a rectangle of base I and

area A" C" B", that is, the mean value of the moments of the

^responding simple girder by 9ft, we have

area A" C" B" = 3ft I.

The verticals through the centres of gravity of the triangles

divide the span into three equal parts. We call these the third

verticals. The load 9ft I acts at the centre of gravity of the

parabolic area A" B" G".

The four-sided equilibrium polygon AU S V B corresponding
to these forces we call the second equilibrium polygon. The

pole distance must be (Art. 81) -El. Instead of this, we take,

which amounts to the same thing, the forces G F - M' ,

and F E = 3ft
- and the pole distance 5 =
A.

EH = iM"-Z

E I

-, where \ is any assumed length. For X we may take the

arithmetical mean of all the spans, or, as we have seen, one of

the actual spans. If the outer spans are both equal to 1 and the

other spans equal to ^, we should naturally choose A. = 4> since

then the forces would be M',
- M" and 9ft.

If the position of the tangents at the supports were known
or found, the equilibrium polygon could be easily drawn as

follows : Upon the two verticals distant each side of the centre

S [Fig. 53] by the pole distance 5 = -
lay off the distance

n A,
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A =' 1-02 -, and join the points thus obtained by two lines cross-

ing each other. These cross-lines are the lines OF O E of the

force polygon. If now we make U U' and V V equal to the

ordinates of the cross-lines vertically under U and V, then the

sides of the equilibriumpolygon U S and V S prolonged, pass

through U' and V'. This will at once appear from an inspec-

tion of Fig. 53.

In this form the equilibrium polygon was first repre-

sented by Mohr. (Zeitschrift des' Arch, und Ing. Ver. zu

Hannover, 1868.)
89. Determination of the Moments over the Supports.
If we draw in the force polygon, lines parallel to the four

sides of the second equilibrium polygon, then the segments of

the force line between the lines parallel to A U, B V [PI. 15,

Fig. 53] and those parallel to S U, S V, are respectively F G =

- M' - and E H = - M" - If we prolong S U and S V to
2i A, 2i A,

intersections M and N with verticals through the supports, and

represent A M and B N by y' and y", we have from the simi-

larity of the triangles U AM and V BN with O G F and O H E

hence

The segments A M and B N are, therefore, proportional to

the moments at the supports M' and M".
These moments themselves can now be determined in vari-

ous ways.
1st. It is in general best to choose the second pole distance

b = ^\. We have then

If, then, at a distance from U and V either way equal to

J

= --A, we draw verticals, the segments Aj MI and

Bj N! cut off from these verticals will evidently be equal to

the moments required, viz., M' an,d M".
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2d. If we take X = I,
we have at once M' = y' and M" = y".

In the inner spans, therefore, we have directly, as we have al-

ready seen, for the special case (Art. 72), when X
Z, the mo-

ments at the supports.

3d. For a span adjoining a span whose length is X, we have

the moment for the intervening support directly from this last

span. If the inner spans have the same length I, and the two

outer the same length ^, we can accordingly, by making X = I,

obtain directly the moments at the supports.
9O. Comparison with Girder fixed horizontally at both

ends. If the ends are fixed horizontally, the lines in the force

polygon parallel to A U and B V coincide, i.e.,
H and G fall

together. Accordingly, if we designate the end moments now

by m fW we have (Fig. 53)

-(FG + GE)=ipEor-
2 .22

Therefore, in the first equilibrium polygon, the moment areas

on each side of the closing line are equal.

Indicating the points for this case by the index [Fig. 54,

PL 15], we have the triangle A U M equal to U V V'
,

and therefore A M = V V' = V V, as also, in like manner,

B N = UoU'o = U U', or/taking I = \ X,
o

Therefore, the ordinates between the cross-lines at the verti-

cals passing through U and V are, for girders fixed horizon.

tally, proportional to the end momentsW and W.

For X = I, I = -
I,

and these ordinates give the moments
D

directly.

If we draw through U' and V a straight line intersecting

the end verticals in Q and R, and prolong N U' and N V to

intersections S and T, then QM = 2 U U', Q S = V V, and

hence M S = 2 U U'+V V' = (2 3M'+2H")
(-V;

and in the

game way N T = (2 2

Therefore, the segments cut off upon the end verticals by the

cross-lines areproportional to%m'+W and 2 W" + 3JT.
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The quantities W andW being known, we can easily con-

struct the cross-lines.

If we draw a line through U and V to intersections O and P,

we have OM = V V, PN= U U'. Therefore, A O and B P

are equal to (3B'-M') (-V
and (3R"-M") (

l

}\ where M' and

M" are the moments at the supports for a continuous girder,

andWW those for a girder horizontally fixed at its ends.



CHAP. EX.] LOADED AND UNLOADED SPANS. 141

CHAPTER IX.

CONTINUOUS GIRDER LOADED AND UNLOADED SPANS.

91. Unloaded Span. If the span is unloaded, we have to

construct the second equilibrium polygon, only the two forces

- M' I and - M" I. If the position of the end tangents is known,

the polygon is completely determined. If we prolong the

middle side U V to intersections M and N with the end ver-

ticals [PI. 15, Fig. 55], then, by the preceding Art,, A M =

M'
(

l

\\ B N = M"
l-J ; therefore, A M : B N ; : M' : M".

If now we draw A B intersecting U V in I, the moment at this

point is zero. That is, the intersection I of the linejoining the

supports with the middle side of thepolygon i-s thepoint of in-

flection of the elastic line.

92. Two successive Unloaded Spans. Prolong the two

middle sides UV and Uj Vx [PL 15, Fig. 56] of the equilibrium

polygon for the two spans 1 and l^. The point of intersection

W is a point in the resultant of the forces at V and U^. Since

,
we have W V : W U : :these forces are - M! 1 and -

^ : 1 . But the horizontal projection of V U is -
(/ + li),

3

therefore that of V W is - 4 and of U W
,
- 1

;
while that of

3 3

B W is - (^4). The vertical through W we have called the

limited third vertical. Its position is, as we see, easily found,
and depends simply upon the length of the spans.

Let us now consider more closely the intersections I and L of

the middle sides with the straight line joining the supports.

We have
.

LU :LW ::U U
l
:W W.
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But we have also

UoU^VoV-BUoiBV,,:: l,:l^
hence

L U : L W : : I VoX^ : IW xl .

The ratio of the parts into which W U is divided by the

point L depends, therefore, for given spans only upon the ratio

of I V to I W
,
or upon the position of I alone.

If, therefore, we were to draw through the point I another

polygon, the point L would be unchanged, or still more gener-

ally, if the point I for different heights of the supports and

different polygons moves in the same vertical, the point L will

also move in a vertical.

If the supports are in the same straight line, the points I and

L are the points of inflection of the elastic line. We have

therefore the principle, that iffor different polygons the in-

flection point I remains the same, the inflection point L re-

mains also the same.

The point I being given, we can easily construct the point L.

"We have only to draw through I at will any line intersecting

the third vertical through V and the limited third at, say, V
and W. Through V and the support B draw a line to inter-

section Ui with third vertical through U . Join now U^ with

W. The line T^ W cuts the line through the supports A and

B in the point L. (See also Art. 86, Fig. 52, d.)

93. The " Fixed Points." Suppose that, starting from the

left support A [PL 15, Fig. 57], we have a number of unloaded

spans. The end A then is an inflection point, since the mo-

ment there is zero. Starting from this point, therefore, we can

construct, according to the preceding Art., the inflection point I2

for the next span. Then starting from this we may construct

the point I3 for the third span, and so on. Since these points,

under the assumption that the supports all lie in the same

straight line, do not change their position, whatever may be the

loading of the loaded spans, and whatever spans be loaded, we
(tall t\\em fixedpoints.
A second series of fixed points may be in similar manner

constructed, when a number of spans from the right are un-

loaded, so that there are two series offixed points. In the

end spans the end supports are fixed points.

It follows directly from the construction that thefixed points
are always within the outer third of the span.
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The construction of the fixed points is the first operation in

the graphical treatment of the continuous girder.
The above construction was first given by Mo/ir.

4. Shearing Force, Reactions at the Supports, and Mo-
ments in the Unloaded Spans. The moments in the unloaded

spans are given, then, by the ordinates to a broken line whose

angles lie in the support verticals, and which, for the case of

supports on a level, passes through the corresponding fixed

points. ^

It follows directly that the moments at the supports are

alternately positive and negative, and increase from the

end, so that any one is more than three times the preceding.

(See Art. 111.)

Since now this polygon has alternately angles down and up,

the reactions at the supports must be alternately positive and

negative. From the corresponding force polygon it follows

that they must increasefrom the end.

The shearing forces are, therefore, also alternately positive

and negative, and increase from the end on.

95. Loaded Span. Let now the span A B [PL 15, Fig. 58]

be arbitrarily loaded. It can be proved here also, as in Art.

92, that the prolongation of the sides U' V and S U, as also of

V" \3" and S V, intersect in the limited third verticals.

When the supports are in a straight line, then, by the con-

struction of Art. 92, the fixed points I and K are the intersec-

tions of S V and S U with A B. We can, therefore, at once

assert, that the sides S U and S V of the second equilibrium

polygon pass through the fixed points I and. K, when the sup-

ports are on a level.

For known position of the fixed points and for given load, it

is, therefore, easy to draw the second polygon by drawing ver-

ticals Hi and KKt equal to the corresponding ordinates of the

cross-lines. S U and S V pass, then, through I Kt and K It re-

spectively. Then, by Art. 89, the moments at the supports may
be determined.

Since A I < -I, U must lie to the right of I, and the angle
3

AUS is concave downwards. Accordingly, the force at U,

viz.,
- M'Z, acts upwards. The same holds good for V. Hence,
2
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the moments M' M" for the loaded span are always posi-
tive* If we draw the lines M N and U V cutting the middle

vertical inP and Q, then, for ~b = -I, P O = - (M' -(- M") and
3 "2

P Q = -
fa'

+ m"
).

(See Arts. 89, 90.) Since now the points

U and V must lie under A B,

P O < P Q' or M' + M" < 2R'+ 2K".

If the supports are not upon a level, it follows from this Art.

and Art. 92, that the intersections of S U and S Vprolonged,
with the prolongations of the lines A A' B B', joining the sup-

ports of two adjacent spans, lie in the VERTICALS THROUGH THE

FIXED POINTS.

96. Two successive Loaded Spans. PI. 15, Fig. 59.

1. Here also, as in Art. 92, we canprove that the prolonga-
tions qfSV and Sx U^ intersect in the limited third vertical.

2. Draw through B a line which intersects S V and Si U^ in

I' and I\, and the verticals through V, W and Ut in V
,
W

and U .

Then

U Ut : V V ; : U B : V B ; ; Z : I,

v v : w w
; :
r v : r w .

Hence by composition

u ut : w, w ; ; r v x 1 . r w x i, ;

or since U Ux : W W : ! U 1\ : W 1\

Uoi'^WoV :: rv X / :i'w X i,.

If, then, the point I' moves in a vertical, the ratio I' V to

I' W does not change, therefore the ratio of U 1/ toW 1/ also

remains unchanged, and accordingly I\ must also move in a

vertical. If I' coincides with I, it follows from the construction

of Art. 93 that the point I\ becomes the fixed point I: . Hence,

the intersections I' and I\ of verticals through, the fixed points
I and It with the sides S V and Si Ui, or with the middle

sides of the two polygons adjacent to the support, lie always
in a straight line through that support, for any heights of

supports.

* A positive moment always indicates compression in lower flange.
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This property of the second equilibrium polygon was first

made known by Oulmann.

97. Arbitrary. Loading. According to the above properties

of the second equilibrium polygon, the general course of pro-

cedure for any given case of loading is then as follows [Fig. 60,

PI. 16] :

1. Construct all the fixed points A I , I --- KxK2, etc. (Art.

93), and draw verticals through them.

2. Construct the cross-lines for every span, Art. 88.

3. Make A C equal to Ox Qt as given by the cross-lines, and

draw a line through C and Ax to intersection D2 ,
with vertical

through I2. Then make D2 C2 equal to O2 Q2 ,
and draw a line

through C2 and A2 to D3 ,
and so on. Precisely the same con-

struction holds for the other way from the right end. Thus

A4 E4 is equal to R4 P4 ,
etc.

4. In this way we obtain for each of the middle sides of the

second equilibrium polygon two points, C and F
l5
C2 and F2 ,

etc.
;
A and Ex,

D2 and E2 ,
and so on

;
so that now we can ac-

tually draw these middle sides.

The intersections of these lines with the support verticals

give, according to Art. 88, the moments at the supports. For

spans whose length is \ these moments are given directly; for

other spans the construction of Art. 74 must be applied. The

following simple construction may also be applied. Let

I K be the intersections of the verticals through the fixed

points, with the line A B joining the supports [Fig. 61, PL 16].

Make I D' = I D
()*,

K F' = KF
()',

C' D' - O Q
^',

E'F' = R P
,
and draw C' F' and E' D'. These lines cut

the support verticals in M' and N', so that A M' and B N' are

the moments.

By the construction errors accumulate from one span to the

next, so that the diagram must be made with care. We have

also several checks, viz. : 1. The intersection of the middle sides

must lie in the vertical through the intersection of the cross-

lines. 2. The prolongation of the middle sides must intersect

in the limited third vertical. 3. The corresponding intersec-

tions of the middle sides with the third verticals must lie in a

straight line through the support.
10



146 CONTINUOUS GIKDEE. [CHAP. IX.

If any span is unloaded, the cross-lines coincide. The above

method of construction holds good when the supports are not

upon a level. If the difference of height of the supports is

represented th of the real amount, the unit for the momentm

scale is
,
as is easily seen by reference to Arts. 81

and 88.

The above method of construction of the moments at sup-

ports was first given by Culmann.
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CHAPTEK X.

CONTINUOUS GIRDER SPECIAL CASES OF LOADING.

98. Total uniform Load. If a span is loaded with a uni-

formly distributed load of p pounds per unit of length, the

simple moment area is a parabolic segment whose vertical axis

passes through the centre of the span. [PI. 16, Fig. 62.]

The ordinate D C" is p P, and hence the area

= = .

It will be advantageous here to take p \2 as the unit of the

moment scale
;
and therefore

The vertical height of the cross-lines at the pole distance b

from the middle is 9Ji -. If. then, we take b -
\, we have

A, 6

and therefore

2. Moments.

If the moments A' A" and B' B" are known, we can find

the end tangents of the first equilibrium polygon by drawing
A" B", dropping a vertical through the middle D, and laying

off D E = 2 x > Z
2 =

.2?
Z
2 = ^ A-

2 V. The lines A" E

and B" E are, then, these end tangents. With the help of

these we may easily construct the parabola.

3. Shearingforce.
If we draw in the first force polygon, lines parallel to the
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end tangents and the closing line A' B', the distances on the

force line are the reactions at the ends of the span. Instead

of this we may lay off from A and B, A G and B H equal to

the first pole distance a, and through G and H draw parallels

to the end tangents, intersecting the verticals through A and B
in A' and B!. "We thus obtain the reactions A A

1}
B B

1 . The

ordinates to At
B

l then give the shearing force at any point.

If the line p X2
representing the moment units is equal to m,

and that representing the force units p\ = n, then the first

pole distance must be a = 2 A. = \.

p\2 m
Accordingly, it is now easy, from the general construction

given in Art. 97, to construct the shearing force and moments

for uniform or dead load of girder in any case. Let us pass

on to an example illustrating more fully the above principles.

99. Example. As an example of the application of the

above principles, we take a girder of four spans, as given in

PI. 17, Fig. 63. The two interior spans are each 96 ft., the

exterior spans 80 ft. each
;

that is, ^ili'.S'.G. Choose any
scale of length convenient, as, for instance, 50 ft. to an inch,

lay off the spans and construct first the fixed points. For this

purpose we draw the third and limited third verticals. These

last are easily found from the principle already deduced, that

they must divide the distance between the third verticals into

segments inversely as the corresponding spans [Art. 92]. Lay-

ing off, then, from the third vertical in the first span, I to the

right, or from the third vertical in the second span ^ ^ to the

left, we have the first limited third vertical. The same at the

other end gives the other. For the centre support, of course,

the limited third, since the adjacent spans are equal, passes

through the support itself. We can, therefore, now construct

the fixedpoints according to Art. 93.

Let the load per unit of length p be ^ ton per ft. Then

taking X [Art. 88] equal to Z, we have n=p\=_pl=4:S tons

and in =p\z = j)P = 4608 ft. tons [Art. 98 (3)]. It remains

to assume a scale of force. Let this be 20 tons per inch, then

our moment scale is 20 x 50 = 1000 ft. tons per inch. The

values of which we shall need to make use are, then, to scale

^ 1.6 inches, X = I = 1.92 inches,

j)

8

= 0.6944 inches, (^ = 1.44 inches, (|)*
= 0.4823 inches.
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These values are repeated upon the PI. for convenience of

reference. Also, p I = 48 tons = 2.4 in. = n, p 7? = 4608 ft.

tons = 4.608 in. = m. For the first pole distance [Art. 98 (3)]

we have a = \ = .

'

I
j^

I .= 1 in. Second pole dis-

tance [Art. 98] o = X = 0.32 in.

According to Art. 98, we have now, for the cross lines,

O P = Q R = p X2 /Y and O' P' = Q' P' =

Laying off these distances under the supports, we have thus the

cross-lines.

We have next to construct the second equilibrium, polygon.

This, by the aid of the cross-lines and fixed points already con-

structed, we can easily do, as detailed in Art. 97 (3). Then

the moments at the supports are given directly to moment
scale in the interior spans, or we can find them from the end

spans by laying off ^ j I [Art. 89].
k

Finally,, the moments thus found and laid off at the sup-

ports, we can construct the moment curve by making D' E' =

and DE =
*-2>7l2 CArt - 98 (

2)1> and thus draw-

ing the end tangents and corresponding parabolas.

According to Art. 98 (3), we can then find the shearing

forces by laying off a = \ and drawing parallels to the end

tangents to intersection with verticals through supports, as

shown in Fig.
We thus have both moments and shearing forces for uniform

load. By careful attention to the above, the reader will have

no difficulty in solving any case. We recommend him earn-

estly to perform the entire construction for himself, referring

to the proper Arts, at every step. [For convenience of size,

we have not observed our scales strictly in the Figs. T.he

reader should therefore not attempt to check results with the

dividers.']

10O. Partial uniform Load. 1. When the girder is only

partially loaded, as, for instance, a certain portion of the span

p' I from B, the simple moment area consists of a triangle ABC
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and a parabolic segment C E B. [PL 16, Fig. 64.] If in the

first force polygon B' D' is the total load upon the span, the

line O A' parallel to the end tangent A G divides B' D' in the

same ratio as the end of the load divides the span, or denoting
the length B C by /3 1.

B'A' :B'D'::J:Z.
The intersection G of the end tangents lies in the vertical

G H, which halves B F. Since the triangle B C T is similar to

O A' B', we have

BT: B'A' ;:/?: ;

or since B' D' =
<p I,

B' A' =p j3 =p I f\
I

It is therefore easy to construct B T as in Fig. 64, where

8
B! D! =p I, A! Bt

= B' A' =p I
y,

and pole distance = % & ;

then B2 D2
= B T.

If B T is thus found, we can easily, when A and B are given,

construct the end tangents, and then construct the first equili-

brium curve itself.

2. Make G K = J G I, then the triangle C K B is equal to

the parabolic area C E B. If, then, through K we draw a

parallel to C B, intersecting C G in L, and through L the ver-

tical L M, the triangle A L B is equal to the entire simple
moment area. Tliis last is therefore proportional to L M, or

m I = % I x LM
;
hence 2ft = L M. It is easily proved

also that FM = $ F B. Thus, as G K is $ of G I, G L is

of G C
;
hence MH is | of F H, and therefore FM is f of

F H, or f of $ F B = $ F B. LM can therefore be easily

drawn.

3. Let N be the middle of A B. Make N O equal to $ F N.

Then the centre of gravity of the triangle A C B is in the ver-

tical through O, while the centre of gravity of the parabola is

in H G. If through L we draw a parallel to A B, intersecting

the vertical through C in P, the two areas are to each other

as F C to C P. If in the vertical through O we make O Q =
i CP, then, since IH = CF, we have

IH: OQ::FC: CP.
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The intersection R of the line Q I with AB lies, then, in the

vertical through the centre of gravity of the simple moment
area.

Thus the construction of the cross-lines is now easy.

4. It is most convenient in the application of the above to

construct or calculate the distances of the cross-lines under the

supports once for all, for load over various parts of the span.

The necessary formulae can be directly deduced. Thus the

Triangle BAT=BT x = X

Triangle BCT = BT x
\ 0l=^ x

\ 01

Triangle B L T = B Tx /3 Z = x # L
o & Cb O

The entire area is equal to the triangle ALB.

But A L B = B A T-B L T =^ (\ l-\ A
2i CL \2 3 I

The triangle A C B = B A T B C T
;
hence

The parabolic area is equal to the entire area minus A C B,

or parabolic area = "^ x ~ ft I-

F is distant from B T by a distance /S Z,
N by a distance =

-
Z,
NO is - of N F

;
hence O is distant from B I1

Therefore, the moment of the triangular area, with reference

to the right support B, is

The moment of the parabolic area is

The total moment, with reference tO' the right support, is,

therefore,
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In a similar manner we find for the left support

When ft = 1 the span is completely covered, and we have,

then, right and left

.

24 a

If we compare this value with those for partial loading, we
see that they differ only by certain coefficients, and that these

coefficients depend only upon the length of the loaded portion.

If, then, we have the distance between the cross-lines for total

load, we have only to multiply by certain factors to obtain the

distances for partial loading. For uniform or total load over

the whole span, this distance is given by -p X2

[

-
I (Art. 98).

4: \A/

If we divide this"distance in certain proportions we have at

once the distances for partial loading. These proportions are

given by (2 /S
2

) fP for the right support, and (2 /3)
2
fi for the

left, under the supposition that the load comes on from the

right. The reverse is the case for load coming on from left.

113 *
'

/

If we take ft = -> -,
- of the span, we can calculate these pro-

portions once for all. We thus have the following table :

Support under load Support for ^reloaded end

(2-02
) P. (8-P) ft.

1
span loaded ..... |L = 0.1211 . . . .

J|-
= 0.1914,

1 span loaded ..... -1 = 0.4375 _____ -^~ = 0.5625.
2 16 16

? span loaded ..... ^j- = 0.8086. . . .-|f|-
= 0.8789.

4 Zoo .256

The division of the distance between the cross-lines for uni-

form load over the whole span into these proportions is easily

accomplished graphically. Thus, from the end of the line to

be divided, draw a line in any direction, and lay off upon it the

six numbers above, to any convenient scale. Join the end of

the last division with the end of the line to be divided, and

then draw parallels through the other points.

It is important to observe some definite system of numera-

tion, otherwise, especially in the first attempt at construction,

confusion is apt to arise.
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We can thus find the cross-lines for any position of the load,

and for each position can, if we wish, draw the equilibrium

polygon and determine the moments according to the general

method of Art. 97.

1OI. Concentrated Load. The simple moment area is in

this case a triangle [PI. 16, Fig. 65] whose area is - I h, h be-

ing the height C D. Therefore

If from the centre of the span E we lay off E F = - E D, D
o

being the point of application, a vertical through F passes

through the centre of gravity.

As the height C D is proportional to 9ft, we may take C D as

second force polygon. Since h = 2 9ft, the distance of the pole

N must be 2 x - I = -
I,
when X = I (Art. 89). Draw N P

6 3

parallel to A B, then is N P = - A B.
3

Parallel to N C and N D we may draw the cross-lines. A
simple construction may be given for them when they are made
to pass through A and B. Let AM and BL be the cross-lines.

Then the triangle S B M is similar to N C D, and

B M : C D : : B F : N P. But

B F=B E + ED=:AB+(A B-A D) = (2AB-A D)

and N P =
-|
A B; therefore,

B M : C D : ; (2 A B-A D) : A B.

Make D G = A B, then B G = 2 A B A D.

The point M is accordingly found by drawing a straight line

through G and C, D G being equal to A B. In the same way
make D H = A B, and draw a line through H and C. We
thus obtain L.

The prolongations ofNL C andli C, therefore, intersect A B

prolonged in thepoints G and H, distantfrom, D by A B.

If, then, we have to investigate a concentrated load in various

positions, we draw the first equilibrium polygon C X and C Y
'

[PI. 16, Fig. 66], and lay off in the same the closing lines (for
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the simple moment area) for the different positions of the load.

The distances cut off on the vertical through C by these lines

give, then, the various values of h or 2 Wl. If we draw from

these intersections lines to the pole N, at the distance - Z from
o

D C, the cross-lines are parallel to these lines. It will be best

to keep for each pair the common line P Q parallel to N C.

When the point of application of the load divides the span into

two equal parts, the point of intersection of the cross-lines di-

vides the middle third of P Q into equal parts.

The centre of gravity of the simple moment area cannot pass

beyond the middle third of the span. Since any load can be

considered as made up of a number of concentrated loads, it

follows generally thatfor any method of loading the centre of

gravity of the simple moment area lies between the third verti-

cals.
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CHAPTEE XI.

METHODS OF LOADING CAUSING MAXIMUM STRAINS.

1O2. maximum Shearing Force Uniformly distributed

moving Loud. Suppose, first, the span in question loaded

with a concentrated weight. The simple moment area is

A' C' B'. [PI. 18, Fig. 67.]

In the force polygon let O Al5
O Bx and O C

: be respectively

parallel to C' A', C' B' and A' B'. Then C
x Ax and C^ Bl are

the reactions at A and B. Since, according to Art. 80, the mo-

ments A A' and B B' are always positive, and the middle sides

A' S, B' S pass through the fixed points I and K, it follows

from the construction of the preceding Art. that the intersec-

tions O and P of the sides A' C' and B' C' of the first equili-

brium polygon with the closing line A B must always lie within

A I and B K. That is, thepoints of inflection O and K are al-

ways between the fixedpoints and the ends. Therefore A', B'

and the point C' must lie on opposite sides of the closing line

A B, and consequently C^ in the force polygon must lie between

A! and B^

Accordingly the shear A! C: at A is positive, and the shear

G! Bx at B is negative.

Let the distance of the load from the left support be ft, from

the right support A. The load itself is P, and the moment
A A' at the left support M', B B' at the right M". Eequired,
the shearing force S at a point distant x from the left support.

The partial reaction at the left is R'. Then

R' Z = M' - M" + P A,
M'-M" PAorR= - + ~T-

M' and Off." are always positive. If, therefore, M' > M",R'
is positive ;

if M'< M", then M" M'< M" + M', or, since

by Arts. 75 and 80, M' + M"< 2JT + W, M" - M' < gfl'+SffT.

Now it can be easily proved analytically that for a girder hori-

zontally fixed,* 3tt' = -^p- and 3"=
-^r^,

hence 2ft' + 2ft"

*
Supplement to Chap. VII., Art. 18.
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since + fa = 1. Therefore M" - M' <
o i>

Since, however, < I, we have also M" M' < P fa. Hence, if

M' is < M", we have also R' positive. R' is therefore always

positive whatever may be the position of the load. In the same

way it may be shown that R" is always negative.

If now the load is to the right of the point distant x from

the left support, then for this point the shearing force S' = R',

and is therefore positive. If the load is to the left of this

point, the shearing force S = R' P = R", and is therefore

negative. S for any point is therefore positive or negative,

according as the load lies right or left of this point. Hence

for a uniform load we deduce directly

The shearing force at any point is a positive or negative

maximum when the load extends from this point to the right

or left support respectively.

The same principle holds good for the simple girder.

2. Thus far we have considered the load in the span itself.

Suppose now the load is in some other span, and the span in

question is unloaded, then

M- - M- M"-M'"K ; K =
I

As we pass away from the loaded span the moments at the

supports are alternately positive and negative, and each is

greater than the one following (Art. 94). Since the moments

M' and M" are alternately positive and negative, R' will have

the same sign as M', and R" as M", and generally Rm as Mm .

Adopting, then, the notation shown in PI. 18, Fig. 68, we
have for the span m-i

where Rm has the same sign as Mm .

In the same way

_Mm -Mm+1
Rm +l- -

,

and therefore

. _Mm+1

Bm+l _ -^m ^m-1

Rm
~~ Mm_! lm~
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But
j^*

1
- is negative and greater than 2 (Art. 94). There-

fore in the preceding expression the numerator is positive and

Mm-l 1
> 3. Further, -jr^

is negative and less than -, hence the de-

o

nominator of the above expression is negative and < -. There-
. 2

T> 7

fore
-p

+1
is negative and > 2 -y^, that is, the shearingforces"m f'm

at the supports are alternately positive and negative, and in-

crease (when 2 lm_^ is not less than lm)
towards the loaded span.

We have then

For any span, then, the shear at the left, support R' will be

positive when the left adjacent span is loaded, the right adja-

cent span unloaded, and all the other spans each way alternately

loaded. The shear R' will be negative when the remaining

spans are loaded. Hence :

The shearing force is a maximum (positive] at anypoint
when the load extendsfrom this point to the right support, and

the other spans are alternately loaded, the adjacent span to the

right being unloaded, that to the left, loaded. The negative

maximum, on the contrary, occurs when the load extendsfrom,
the point to the left support, when the right adjacent span is

loaded and the left unloaded; the other spans alternately

loaded.

PI. 18, Fig. 69, gives these two cases.

In practice such a loading can never occur. If we suppose
the rolling load divided into two portions only, the above rule

reads as follows :

The shearingforce at anypoint will he a positive maximum
when the load reachesfrom the right support to this point, and
when the left adjacent span is covered. The negative maximum
occurs when the load reaches from left support to the point,
and the right adjacent span is covered.

1O3. Maxlmum Horncnts. 1st. Loaded Span. Let a weight

act at the point D, PI. 18, Fig. 67. Then A U S V B is the

second, A' C' B' the first equilibrium polygon, and A A', B B'
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are the moments at the supports. "We have already seen that

the inflection points O and P (for which the moment is zero)

lie outside of the fixed points. We can therefore assert that

WITHIN the fixedpoints the moments are negative wherever the

weight may be placed. From the Fig. we see at once that the

inflection points O and P move to the right or left as the weight
moves to the right or left. Accordingly when for the weight
at D the moment at O is zero, the moment at this point will be

positive when the load moves to the right of D, negative when
it moves to the left of D.

Hence for the maximum moment we have at once the follow-

ing principle :

for anypoint O outside thefixedpoints the moment will he

a positive or negative maximum when the load reaches from
thepoint D, where a load must Replaced to cause the moment
at O to he zero, to the right or left support respectively. For

the negative maximum, therefore, the load reachesfrom A. to D;
for the positive,from D to B.

If the point O is given, it is indeed possible to determine by
construction the point D to which the load must reach. It is,

however, simpler to assume D and then construct O.

If we choose for the different positions of D an arbitrary

length for C' D' (Fig. 67), so that the point C' falls in a parallel

Q R to A' B' (Fig. 70), and, moreover, take D at equal intervals,

then the points L and M will be at equal distances (Fig. 67),

and hence the points I and K (Fig. 70), in which the verticals

through the fixed points are intersected by the lines A' M and
B' L (Fig. 67), will be at equal distances. We have, then, the

following simple construction [Fig. 70, PI. 18] :

Between the verticals through the supports draw two parallel

lines A B and Q R at any convenient distance apart, and divide

Q R into a number of equal parts ;
four or five are sufficient.

Draw lines from A to R and the middle S intersecting the ver-

tical through the fixed point I in \ and I2. In the same way find

Kt and K2. Divide Ix I2 and Kt Kg into the same number of

equal parts as Q R has been divided into, and join these points
in reverse order by lines. The intersection of these lines with

the lines drawn from A and B to the points upon Q R give the

points O, for which the moment is a maximum when the load

is limited by the corresponding point upon Q R.

This construction was first given by Mohr.
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10 I. Determination of the maximum Shearing Forces.

According to the general method of construction given in

Art. 97, we can now determine by reference to Arts. 98 and 99,

which treat of total and partial distributed loading, the shear-

ing forces corresponding to the methods of loading which cause

maximum strains.

As a review of the preceding principles, we take the same

example as before, as given in PL 19, Fig. 71. Here again the

reader should construct the Figs, for himself. The scales are

as before, Art. 99.

Fig. a shows the method of loading for positive maximum
shear in first span ;

and the second Fig. below, the same for

the second span. [Art. 102.]

We first find, precisely as in Fig. 63, the shearing forces in

the third and fourth spans for the total loads over those spans,
and lay off the shear thus obtained in the first and second spans,

as indicated by the broken lines in Fig. b in those spans. Thus

having first found the fixed points, which we may here take

directly from Fig. 63, we construct as in that Fig. also the cross-

lines for total load in third and fourth spans. Thus laying off

54 equal to Ox Px ,
and drawing a line through 4 and support to

intersection with vertical through fixed point in second span

[Fig. 60], we determine D', and then from the cross-lines find

at once D". In like manner, supposing for the moment the

load on the other two spans, we have e a, a D, D a and a F',

and then at once F". F" D' cuts off then the moment at the

right support, and joining 1, 2 and 5, we find, according to Art.

98 (2), precisely as in Fig. 63, the end tangents ;
and then from

these, with the first pole distance a, find the shear. This is

given by the broken lines in third and fourth spans. Lay off

these lines in first and second spans, remembering, since the

shears at the supports alternate, that the positive shear at left

of fourth span must be laid off as negative (down) at right end

of first, etc. [See Fig. 63.]

Now for the positive shears in first and second spans for the

different methods of loading, we have only to determine the

direction of the tangents through end of load [Fig. 64, Art

100]. The lengths of the segments cut off upon the verticals

through the supports by these tangents are given for first and

second spans by Figs, /'and e, for each position of load. [Art.

100 (1).]
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We have first, then, to construct the cross-lines [Art. 100
(-i)]

as shown in Fig. d.

Take first the second span. For this span, as shown in Fig.

a, the first span is fully loaded, as also the last. Make, there-

fore, e a Q! Pl5
draw a D, and we thus find the point D, com-

mon to all the middle sides of the second equilibrium polygon
for different positions of load. So also make on right 54

Q! P! and draw 4 D', and then, since third span is empty, D' F,
and we thus have P. Now from D and F lay off the cross-

line distances, as "D a, D 5,
D c, equal to e a, e b, e c, etc. Draw

lines through these points and D and F respectively, and note

their points of intersection abed with the verticals through
the supports. [Nom Be careful to preserve an orderly nota-

tion^ These points give the 'moments for each position of

load in second span. Take the length a a from Fig. e and lay

it off from a on the right support vertical, and join the end

with a on left. This is the tangent for full load in second

span. A parallel to it at distance a from left gives the shear

in Fig. b. Then lay off b b taken from Fig. e on right, and join

with b on left. This is tangent for load over three-fourths

second span from right. A parallel to it at distance a from

foot of perpendicular one-fourth of span from left cuts off

shear for this position of load. So for tangents c c, d d. We
thus obtain the curve for positive shears in second span. The

negative shears are obtained by subtracting these from the

shear already found for full load. We thus have the lower

curve, and the shear diagram for second span is complete.
For first span, only the third is loaded. We lay off, then,

78 equal to the distance between cross-lines corresponding,
draw 8 Fl5 and thus find Ft . Lay off now at left end e d, e c,

e 5, draw lines from these points through second support, and

note intersections with vertical through D. Through each of

these intersections draw a line through F
t ,~
and produce to

intersections abed with vertical through second support. It

is from these last points that the distances aa,bb, etc., taken

from Fig.,/ must be laid off respectively in order to find the

tangents e a, e 5, e- c, e d, e e.

Parallels to these tangents above in Fig. b give, as before,

the positive shear for each position of load. The negative

shear is, as before, found by subtracting the positive from total

load shear. Thus shear diagram for first span is complete.
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Of course, the same circumstances can hold good for third

and fourth spans as for first and second, except that positive

shears on one side of centre support are the corresponding

negative shears upon the other, and vice versa.

Following carefully the above with the aid of the Fig., the

reader cannot fail to grasp the method. An independent con-

struction for a similar ca.se will make both principles and de-

tails familiar. Once thoroughly understood, the method is

rapid, accurate, simple, and of general application.

1O5. Determination of the Maximum moments. In

like manner, it is easy, according to the general construction

given in Art. 97, and referring to Arts. 98 and 99, to determine

the maximum moments. In Fig. 72, PI. 20, we have the same

example as before, concerning which we have but little addi-

tional to remark. Fig. 64, Art. 100, shows that the end tan-

gents give the moments within the unloaded portion of the

girder. These tangents are constructed precisely as before in

the several spans, except it will be noticed that in the first

span we have made use of the construction given in Art. 97,

Fig. 61. Thus the point F' is determined so that KF' =

(A

2

r
j ,

and thus the moments are measured directly at the

end vertical. Also upon the left support vertical we have laid

off the distances between the cross-lines in the second span

multiplied by (7)

The only thing new in the PI. is Fig. c, which, as we have

seen in Art. 103, Fig. 70, gives the points at which the positive

moment is a maximum for each position of load. The positive

moments can then be taken directly off upon the verticals

through these points, and are limited by the horizontal through
the supports and the tangents, as above.

Thus, at second support the vertical distance to a, for first

span, gives the moment at the support. Lay it off in Fig. a

from the support line. For a load over span, we see at once

the point for which the positive moment is a maximum from

Fig. c. Follow up the vertical through this point. The dis-

tance on this vertical in Fig. J, between the support line and

tangent b b^ gives the moment to be laid off in Fig. a upon
this vertical. So, for load over span, we have next vertical

and tangent cci, and so on. We thus obtain the curve for

11
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positive moments at the right end of first span, abcde. From
e draw a line to left support. At the other supports, in like

manner, we determine the positive moments, and join the

points e e in second and third spans, and e and right support
in fourth.

We have already seen (Art. 103) that within the fixed points
the moments are negative wherever a load may be placed.

The maximum, therefore, occurs for full load. We have,'there-

fore, found for 3d and 4th spans the parabola for full load,

precisely as in Fig. 63. These parabolas are given in broken

lines in the Fig. a. By subtraction of the positive moments

outside the fixed points from the positive moments at the same

points for total load given by these parabolas, we obtain directly

the lower curves as far as the points e in each span.

The second parabola (partly full, partly broken) is all that is

needed to complete our Fig. To obtain this we have simply,
in 2d and 3d spans, to make the vertical through centre of

line e e equal to its length already laid off for total load, viz.
;

/l\
z

J^?X
2

(

-J ,
Art. 98 (2), produce ee to intersections with sup-

port verticals, and join these intersections with the extremities

of the first verticals above. We can then construct the para-

bola, which completes our diagram, and gives us Fig. a.

1O6. Practical simplifications. In practice, the construc-

tions given in Figs. 63, 71 and 72, admit of many simplifica

tions, which, in order to avoid confusion at first, have been dis-

regarded. The whole solution, given for the sake of clearness

in three separate Plates, can be performed upon a single sheet,

since the Fig. for the second equilibrium polygon in Figs. 63,

71 and 72 may be combined in one. Indeed, the lines neces-

sary for the construction of the maximum shearing forces can

be applied directly to the determination of the maximum
moments. It is therefore unnecessary to divide the construc-

tion into separate sheets.

2. The cross-lines in the end spans can be omitted, since

all that is required are the distances to be laid off upon the

end verticals, and these when found can be laid off at once.

3. We can apply the second equilibrium polygon directly

in order to find the moments for the dead and moving load.

Thus the transferring of ordinates from one Fig. to another is

avoided.



CHAP. XI.] CAUSING MAXIMUM STRAINS. 163

4. It is evidently unnecessary to actually draw all the vari-

ous lines. We need only to mark the different points of inter-

section.

5. The construction for dead and live loads can be per-

formed at once, thus avoiding the necessity of a subsequent
addition.

1O7. Approximate Practical Contractions. If the suc-

cessive steps of the preceding development are carefully fol-

lowed, the method will be found simple and easy of appli-

cation. Indeed, the complete and accurate solution of the

difficult problem of the continuous girder by a method purely

graphical, is the most important extension of the system since

the date of Culmann's treatise, and well illustrates the power
and practical value of the Graphical Method.

Humber gives the following constructions,
" which may be

relied upon for safety without extravagance."
* As rapid

means of obtaining approximate results, they may not be with-

out value to the practical engineer, and we therefore append
them here. It must be remembered that the constructions

hold good ONLY for end spans three-fourths the length of the

others.

I. Beam of Uniform Strength, continuous over one
Pier, forming two equal Spans, subject to a fixed Load
uniformly distributed, and also to a moving Load.
Maximum Moments.* PI. 18, Pig. 73.

The greatest moment at the pier (positive) will be when both

spans are fully loaded.

The greatest negative moment will obtain in the loaded span
when the other span bears only the fixed load.

(A moment is positive when the upper fibres or flanges are

extended, negative when the upper flange is com/pressed.)

Construction. Let A B C be the beam. On A B draw the

?
parabola whose centre ordinate D E is (p + m) ,

and on

pPB C the parabola whose centre ordinate G F is *BH,

At the pier B erect the perpendicular B H =
^ ,

and make B L = ?&j^p* -. Join AH, A L, and L C.

* "Strains in Girders, calculated by Formulas and Diagrams." Humber.

New.York : D. Van Nostrand, publisher.
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Then the vertical distances between the parabolic arc A E B
and the lines A H and A L, the greatest being taken, will give

the maximum moments -positive in the first case and negative
in the last. The points of inflection approach as near the pier

as K and recede as far as M.

If ^- is less than
,
the beam must be latched

down at the abutments. The load comes on from the left;

p and m are the loads per unit of length of the permanent or

fixed and the moving or live loads.

Shearing Forces (PI. 18, Fig. 74). The maximum shearing
force at either abutment will obtain when its span only sus-

tains the moving load. The maximum shear at the centrepier
will obtain when both spans are fully loaded.

Construction. Lay off A C = ^ (4p + 5 m) and AD

-
(p + m}. At B lay off B F = twice A D. Take a point

M distant $ I from A, and join D and F to M. Draw C N
parallel to D M. Sketch in a curve similar to that dotted in

the figure, giving an additional depth to the ordinates at the

point of minimum shear of m
^.

Then the vertical ordinates

between AB and COPF may be considered to give the

maximum shearing force for either span.
II. Beam as above continuous over three or more

Piers, li = end spans. I = the other spans.

Moments.

The maximum moment (positive) will obtain when only the

two adjacent spans, and every alternate span from them, are

simultaneously loaded with the total load the remaining spans

sustaining only the fixed load.

The maximum moment at the centre of any span will obtain

when it and the alternate spans from it are fully loaded the

remaining spans sustaining only the fixed load.

Construction (PI. 18, Fig. 75). Let A B C be part of the

beam. On B C draw the parabola whose centre ordinate E F

and on A B the parabola whose centre ordi-

nate C D = \P + W
t At B and C make B H = C L =
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Join A H and L- Make B Q = c s =

Join A G and S. The maximum vertical ordinates between
the two parabolas and the lines A H, A G-, H L, and G- S, as

shown in the figure, give the maximum moments.
The points I,

K and O, P or M,N show the limits of devia-

tion of the points of inflection.

If
*gr

is less than- -
,
the beam will require to be

held down at the abutments.

If the beam be continuous for three spans only, I in the

expression for B H = (

-y-
+ \ must have a value given to

_l_+
2

'

Shearing Forces.

The maximum shear at any pier (B or C) will obtain simul-

taneously with the maximum moment over that pier.

Construction. PL 18, Fig. 76.

Let A B C be part of the beam. First, for any inner span as

I. At B and C erect BG = CH = + - MakeBD
\ 2 of

and C E each = - (p+m). Join D and E to midspan F, and

draw G K and H K parallel to D F and F E respectively.

Second, for either end span as 4 At B erect a perpen-

27 3
dicular= - (p+m), which, if \ = -

I,
will coincide with B D.

AtA makeAL = - B D. Join D and L toM distant - ^ from A.

Make A O =| (p +m)- and draw ON parallel toLM.
2

Sketch in curves as shown by the dotted curves in the figure,

giving additional depth to the ordinates there of - and -
O O

respectively. Then the vertical distances between O a b D and

A B give the maximum shearing forces for either end span, and

those between G c d H and B C, the shearing forces for the re-

maining spans.
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If the beam be continuous for three spans only, B G- and C H

must be made equal to (13 * + 16 ^ l+~
7 (*-j-+^\ where

'
~

7

--
3 1 \ 7 2

I* = ~. Further, the value given to B D for the inner span

1O. method by Resolution of Force Draw Spans.
The most usual cases of continuous girders which occur in prac-
tice are draw orpivot spans, which when shut must be consid-

ered as continuous girders of two spans. The graphical method

becomes for such cases short and easy of application. In the

case offramed structures of this character, it may, however, be

more satisfactory to first find the maximum shearing forces

(Art. 104), and then follow the reactions thus obtained through
the structure from end to end by the method of Arts. 8-13^

As a check upon the accuracy of the work, we may apply the

"method of sections" referred to in Art. 14. In either case

we must, of course, start from an end support where only two

pieces intersect and the moment is zero.

Still again, we may find the reactions by calculation, and

then apply the method of Arts. 8-13. In the case of two spans

only, the formulae for the reactions are sufficiently simple, and

the ready and accurate determination of the strains offers, there-

fore, no difficulty.

We shall give here, therefore, the analytical formulae requi-

site for our purpose, referring the reader to treatises upon the

subject for their demonstration.*

Formulae for Reactions. Continuous Girder of two un-

equal /Spans, I and n I. 1st. Concentrated weight P, in first

span I, distant /3 from left end support. Reaction at left end

support :

Reaction at middle support :

* Bresse La Flexion et la Resistance, and Cours de Mecanique Appliquee.

Weyrauch Theorieder Trager. CoUignon Theorie Elementaire des Poutres

Draites, etc. Also Supplement to Chap. XIII.
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Keaction at right support :

Vid. Uniformly distributed load extending to a distance

from left support. Load per unit of length =p.

- -pfl

For two equal spans we have only to make n = 1 in the

above equations. For a uniform load over whole span /3 = I.

From the above formulas we can find the reactions for any

case, and then proceed as indicated above.

109. By means of the graphical method, as we have now

seen, we are enabled to solve completely the problem of the

continuous girder, and that too without the aid of analytical

formulae, tables, or tedious computation. The method can also

be applied to continuous girders of variable cross-section, or of

uniform strength. We shall not, however, proceed further

with the development of the method in this direction. The

preceding will, we think, be found to contain all that is practi-

cally serviceable. For the application of the metho'd to girders

of variable cross-section, we refer the reader to WinJder " Der

Bruckenbau? Wien, 1873 where will be found a thorough

presentation of the subject, both analytically and graphically,

to which we are greatly indebted in the preparation of the

preceding pages. Plates 17, 19 and 20, are, with but few alter-

ations, reproduced from that work.

* These formulas are demonstrated in Van Nostrantfs Eng. Mag., July,

1875.
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CHAPTEK XII.

CONTINUOUS GIRDER (CONTINUED) COMBINATION OF GRAPHICAL

AND ANALYTICAL METHODS.

1 1O. In the present chapter we shall develop a method for

the solution of continuous girders not purely graphical, but

based upon the method of resolution of forces illustrated in

Arts. 8-13, together with well-known analytical results, which

method for accuracy, simplicity, and ease of application will,

we think, be found superior to any hitherto proposed. The
method is, of course, applicable only to framed structures, but

for such cases is the most satisfactory of any with which we are

acquainted.
111. The Inflection Points being known, the Shearing

Forces and Moment* at the Support* can, by a simple

construction, be easily determined. \st. Loaded Span

Fig. 77, PI. 21. Thus in the span B C =
,
let the distance of

the weight P from the left support be a, and let i and *' be the

distances of the inflection points from B and C respectively.

Then if through any point P of the weight we draw lines, as

P D, P E, through i and i', intersecting the verticals at B and C
in the points D and E, the vertical ordinates between these lines

and B C will beproportional to the moments. For, as we see

from the force polygon, the equilibrium polygon must consist

of two lines as D P, P E, parallel to O and O 1, and because

of the moments at the ends, the closing line D E is shifted to

B C (Art. 23). Since the moments at the points of inflection

are zero^ the ordinates to P D and P E to pole distance H will

give the moments. Now the points of inflection being known,
and P D and P E drawn, we can easily find the pole distance

H and the shearing forces L and 1 L by laying off P verti-

cally, and drawing from its extremities lines parallel to P D
and P E intersecting in O. A perpendicular through O upon

1 gives H and the reactions L and 1 L. In other words,

we have simply to decompose P along P D and P E.
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The construction, then, is simply as follows : Take any point
on the direction of P, and draw P D, P E through the points
of inflection. Lay off P to the scale of force as A P, and draw
A O parallel to P E or P D. We have thus the pole distance

H, and the shearing forces P H and H A at B and C.

B D or C E to the scale of distance, multiplied by H to the

scale of force, give the moments at B and C. That is, D and
E may be regarded as the points of application for H. The
forces along P D and P E considered as acting at these points
are held in equilibrium by the reactions P H and H A = L
and 1 L and H. Since H, acting as indicated in the figure
with the lever arm B D or C E, causes tension in the upper
fibres, the moments at B and C are positive.

2d. Unloaded Span Fig. 78, PI. 21.

As we have already seen in Art. 93, the inflection points in

the unloaded spans are independent of the load, and are found

by the simple construction there given for the "fixed points."
Since each fixed point lies within the outer third of the span,
we have in fig. 78 the broken line a be, referred to in Art. 94,

where the moments are alternately positive and negative, and

increase from the end, so that any one is more than twice the

preceding. Lines drawn parallel to these lines in the force

polygon, cut off from the force line the reactions at the sup-

ports. Thus, in Fig. 78, c b in the force polygon gives the

reaction at D, a b the reaction at C, and if B were an end sup-

port that is, if b a went through B a H would be the re

action at B. For the resultant shear at D, we should then have

a H ab)-cb = Hc. So for any number of spans ;
the in-

flection points in the loaded span being known, we can easily

find infixed or inflection points in the other spans, which are

independent of the load, and depend only on the length of

these spans. Then draw the broken line a b c P d. Then find

the pole distance H by laying off c P = P to scale, and draw-

ing c O parallel to c P, and through the point O thus deter-

mined drawing H O. Then find the reactions at the other

supports, or the shear at any support, by lines in the force

polygon parallel to a b, b c, etc. Thus the shear at B >s the

distance Ha cut off by H and Oa parallel to a b. Since the

shear at D is plus and alternates from D, we have at B the

shear -f H a. The shear at C is H b
;

at D, + H c, etc. O c

being parallel to PC; O a, to b a
;
O b, to c b, etc.
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112. Inflection Verticals, Draw a line from P through
the support D, and through its intersection with cb draw a

vertical 3 (Fig. 78). This vertical we call the inflection ver-

tical.

The equation of the line c b is

where m-^ = D C, n I C D, i = C i'. The origin being at D.

For the line C,

where i = D it.

If in this last equation we make x = a, we have for the or-

dinate at P,

m\ (h a)

% '

and hence for the line P D,

w1 (*, a)
'

y =-;
- x.

For the intersection of P D with b c then

?fti (%
-

a)

i^a

Hence
^^4-^= -V. .

- _
i/ / \ / i *\ V J- )

(% a) (w I i) i^a

We see at once that the value of x is independent of m^ or

D C, hence the intersection of P D and c b lies always in the

same vertical, whatever be the position ofP C. In other words,
if the three sides of a triangle pass always through three fixed

points (a
1

, D, i^ and two of the angles (P and c) be always in

the same verticals, the third angle must also always lie in the

same vertical.

For the distance of the inflection vertical on the other side

of the loaded span (beyond E), we have similarly

a)
-

where I is the loaded span and % the distance of the inflection

point to the right of E.

Equations (1) and (2) give the distances of the inHection ver-

ticals from the supports D and E.
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113. Beam fixed horizontally at both ends Supports
on level. Consider the span D E (Fig. 78) asfixed at the sup-

ports so that the tangent to the deflection curves at D and E is

always horizontal. Conceive the span prolonged right and left

beyond the supports a distance equal to the span I. It is re-

quired to find the position of the inflection verticals.

From equation (1) of the preceding Art. we have, since

a I

(% a) I- % a?

and from equation (2), since % = I,

i^l(l-a)

Now for a beam fixed at the ends the distances of the points
of inflection are

a I I (I a)
i> 7 ,

and ^z = ^-7 ?r~^.
I + 2 a 31 2 a

Substituting these values in the equations above, we have

x = r and a? = + 5. That is, th'e position of the inflection
o o

verticals is in this case independent of the load, and always

equal to
^ from the supports.*

This remarkable property of the beam fixed at both ends

enables us to find the inflection points by a construction similar

to that for the fixed points in the unloaded spans, as given in

Art. 86.

Thus we have simply to draw from C distant I from A (PI.

21, Fig. 79) a line in any convenient direction, as C 5 intersect-

ing the inflection vertical I, which is distant from A, ^ I,
at a.

Through a and the fixed end support A draw a line to inter-

section with the weight P. Then draw P b. The intersection

i]_ of this last line with A B is the inflection point. A similar

construction gives ij.

We can now find the reactions and moments. Thus H O to

* This important result, which renders possible a complete graphical solution

of this case, has, so far as we are aware, never before been published.
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the scale of force, multiplied by A 5 to the scale of distance,

gives the moment at A, while H G is the reaction at A (Fig. 79).

114. Beam fixed at both ends Example. Since when
the points of inflection are once determined, we may draw P b

or P c at any inclination (Fig. 79), provided we afterwards find

the corresponding pole distance HO; if A b or B c be made

equal to the height of the truss, H O will be the strain in the

upper or lowerflange at the wall (the flange in question being

always that for which there is no diagonal at its union with the

wall). Thus in PL 21, Fig.- 80, we lay off D E = I, draw the

vertical I at
^

I from D, and for the given position of the load

P find the inflection point i^ by the preceding Art. A similar

construction on the other side gives i-^ Now laying off P M
equal by scale to the weight P, and decomposing it along P D
and P C, we find O H the pole distance which to the scale of

force will give directly the strain in the lower flange B m at

the wall, provided P D is made to pass through the intersection

of the upper flange with the wall. If the triangulation were

reversed, O H would be the strain in the upper flange at the

wall. In any case it is the strain in that flange at whose junc-
tion with the wall there is no diagonal.
The reaction at D is also H M, at C it is P H. Lay off then

B B' in Fig. 80 (a) equal to P M, and make B A = H M and

A B' P H. Now draw m B parallel to O H and m A paral-

lel to O M, and produce both lines to intersection at m. Then
m B to scale of force is evidently the strain in the lower end

flange at the wall. We assume the following notation.*

Let A represent all the space above the girder, B all the space

below, and abed, etc., the spaces within the girder included

by the flanges and diagonals. Then, for instance, A b is the first

upper flange at the left, B a the first below
;
a b the first diag-

onal at the left, and so on.

Now draw in Fig. 80 (a), m I and A I parallel to the corre-

sponding lines in the frame, and we have at once the strains in

these pieces to scale. Following round the triangle according
to our rule (Arts. 8-13) from m to A, A to I and I to m, we

* See an excellent little treatise on ' ' Economies of Construction in -

to Framed Structures," by R. H. Sow, to whom this method of notation

due.
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find A I tension and I m tension. [The strains in the upper

flanges must always be tension, since the moments at the sup-

ports for loaded span are always positive.] Moreover, the Fig.

thus far shows that A I, I m and m B are in equilibrium witli

the shear B A = H M, as evidently should be the case
;
hence

the strain in B m is compressive.

We have thus the strains in the three pieces at the right, and

can proceed from these to find all the others. Thus the strains

in B k and k I are in equilibrium with in I and B in. Lines

parallel to B k and k I, therefore, which close the polygon com-

menced by B m and m
I, give us the strains in B k and k I.

Observe that the line I k crosses A B, thereby making B k op-

posite in direction, consequently in strain from B m. This may
also be seen by following round the triangle mlkB, remem-

bering that, as m I is always found to be in tension, it must act

away from the new apex, that is, from m to I. We thus find

k I in compression, and k B acting aicay from this apex, or in

tension, therefore of opposite strain from the preceding flange
B m, which, as we have seen, is in compression. The reason is

obvious. The inflection point iz falls in the flange B k. If the

beam were solid, the strain at i% would be zero
;
to the right of

iz we should have compression, to the left, tension. In the

framed structure the strains can only change at the vertices.

The crossing of A B by Ik indicates such change, and B k gives

its amount by scale.

Now taking the upper apex, we have here A I and I k in

equilibrium with k h and A h. As we already know, k I is in

compression. We must, therefore, now take it acting from k to

I,
and following round the triangle wo find A h compression,

and h k tension. From h on, the traverses between A h and

B k produced towards the right [Fig. 80 (a)] will give the di-

agonals, while the upper and lower flanges will be given by the

distances to them from A and B respectively, until we arrive

at the weight P. Observe the influence of the weight. We
have k h and B k in equilibrium with h g and g B, and also the

weight P = B' B. We must take, therefore, A B' = P H, and

then draw h g and B' g. Distances to the right of B' along
B' g are compressive lower flanges, to the left, tensile

;
while to

the right of A we have compressive upper, and to the left of A
tensile upper flanges. The two diagonals at the weight k h and

h g are in tension. From h g on, the diagonals are alternately
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tension and compression. Moreover, the diagonal e d passes

through A, that is A d is zero. The weight P causes no strain

in A d, and for thia one position of P, A d might be omitted

from the structure. The reason is again obvious. The point
of inflection ^ coincides with the apex under A d. Since at

i]_ the moment of rupture is zero, if the flange A. d were cut

there would be no tendency to motion. We have at ^ the

shearing force only, A B' giving the strains in the diagonal
e d and d c. The upper flange A &', we see again, is in tension^

which is also shown by its lying to the left of A.

Thus we have the strains in every piece by a very simple
construction for any position of P, without any calculation what-

ever. The method in this case is purely graphical. "We have

only to find the points of inflection and then proceed as above.

Fig. 80 (b) gives the strains for the same girder and position

of weight P, merely supported at the ends. For this case P J
in Fig. 80 not only passes through D, but P O also passes through
the upper left-hand corner at C. Hence A B will be less than

H M, and A B' greater than P H. Moreover, the end lower

flanges B a and B m no longer act, and must be removed.

Starting now with the reaction B' A [Fig. 80 ()], we go along
to the weight, from which point at h k we go back towards the

force line, and the reactions are such that the last diagonal
must pass exactly through B, just as in Fig. (a) e d passed

through A, because the points of inflection or zero moments are

now at the ends C and D. A careful comparison and study of

the two cases and their points of difference will be advanta-

geous to the reader.

115. Counterbracing. The objection may arise that the

above method applies only to a system of bracing such as rep-

resented in the Fig., where the diagonals take both compres-
sive and tensile strains. In case, as in the Howe or Pratt Truss,

for instance, we had vertical pieces as also two diagonals in

each panel, then the strain in any diagonal as m I and flange as

B m, even if found, are apparently in equilibrium with three

pieces, viz., It,
I,
B & and a vertical strut or tie at the intersec-

tion of these pieces. Hence, having only two known strains

and three to be determined, the method would seem to fail, as

any number of polygons may be constructed with sides par-

allel to the forces, and hence the problem is indeterminate

(Art. 9).
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Now in any framed structure of the above kind, the counter

ties are inserted to prevent the deforming action of the rolling

load only. For the dead load but one system of triangulation
is required, and the strains in every piece due to this dead load

can therefore easily be determined.

We have then only to determine the strains in the same pieces
due to the rolling load also. If now in any diagonal the strain

due to this rolling load exceeds the constant strain due to the

dead load, and is of opposite character, and if the diagonal is

to be so constructed as to take but one kind of strain, then a

counter diagonal must be inserted in that panel, and propor-

tioned to this excess of strain only. For instance, if a diagonal
takes only the compressive strain (a condition which is easily

secured in practice) due to the dead load, and the live load

would cause in that diagonal a tensile strain, then the excess of

this tensile strain over the constant compressive strain due to

the dead load must be resisted by a counter diagonal, which

also takes compressive strain only. The method is precisely

the same as by calculation (see Stoney and other authors on

the subject), and we only notice the point here, as in all our

examples we have taken a single system of triangulation only

a system which, we may here remark in passing, has many ad-

vantages, and is worthy of more general attention * than it has

hitherto obtained.

[See also on this point Art. 10 of Appendix.]
116. Beam fixed horizontally at one end, supported at

the other Supports on L<evel. In this case, equation (1),

Art. 112, becomes for left end fixed, since n = 1, ?2 = 0, i = 0,

But for this case the distance of the point of inflection from

the fixed end is

. _ (2 I a) la ,

* See " A Treatise on Bracing." By R. H. Bow. D. Van Nostrand, pub-
lislier.

f The values of the distance of the inflection points which we assume above

as known, may easily be deduced by the theory of elasticity. See Supplement
to Chap. Vn., Arts. 16 and 19. See Wood, Strength of Materials ; Bresse,

Mecanique Appliquce ; or other treatises on the subject.
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Inserting this value of i: in the value for x above, we have

a.
_ _ l (

2 l~a
\

for the distance of the inflection vertical to the left of the left-

hand support, which is supposed fixed.

Now this is the equation of an hyperbola, as shown in PL 21,

Fig. 81, whose vertex is at/, the distance A/being 2
,
whose

assymptotes are respectively parallel and perpendicular to the

span, the perpendicular distance of E above the span A B be-

ing .1
,
and which intersects A B at - I from A. The ordinate

2 5

d e, A. d being equal to I,
is - 1. The diameter passes through

E and / and E / is, therefore, the semi-transverse axis. The

hyperbola can, therefore, be easily constructed. We need only
to construct that portion between A B and the point e.

The construction for the point of inflection ^ is, therefore,

simply as follows :

Lay off A h vertically upwards and equal to the distance of

the weight P from A, and draw the horizontal h b to intersection

5 with the curve. Now make A a = I and draw a b to inter-

section c. Draw 5 A to intersection P with weight, and then

P c intersects A B at the point of inflection i^ Decomposing
P along P B and P c, as in Art. 114, we have at once the re-

actions at A and B. Here also we see that, by a construction

purely graphic and abundantly exact, we can find the inflection

point and the reactions.

The method detailed in Art. 114 can then be applied to de-

termine the various strains in the different pieces. It is un-

necessary to give an example, as the process is precisely similar.

We have simply in this case to start with the reaction at the

free end B and follow it through. Observe only that, as tin's

reaction must be less than for a girder with free ends for the

same position of P, the point h will lie nearer the force line

B' A B (Fig. SO, 5), hence. I m, will not pass exactly through B,

but will lie to the right of it, giving thus a reversal of strain in

the flanges, as by reason of the inflection point should be the

case.

Instead of constructing tho hyperbola, we may calculate its

ordinates from the equation for x above, for different values

of a.



CHAP. XII.] METHODS COMBINED. 177

Thus, for

=0 a=l a=%l a=$l a=l
x=-0.38Sl x=-0.375l x=-0.357l x=-0.333l

This will be sufficient to construct the curve in any given
case. The inflection vertical moves, therefore, between the

narrow lim;ts of x = f I and * = \ Z,
or within T̂ th of the span,

as the load passes from A to B.

Inasmuch as all that. is needed for the determination of the

strains in the various pieces are the reactions at the supports,
and (for girder fixed at both ends) the moments at the supports

also, and as the formulae for the two cases above are very sim-

ple, we may determine these quantities at once by interpolation

of the given distance of the weight P in the formulae, and then

apply the graphical method for the strains, as illustrated in

Art. 114.

Thus, for a horizontal beamfixed at loth ends, we have for

the moment at the left support A,

At the right support B,

For the reaction at the left,

RA = ?(

For the reaction at the right,

In the case of a horizontal beam fixed at left end and merely

-esting upon the right support, we have

a being always the distance of the weight P from the left.

These formulas are simple, and easily applied to any case.

We may also observe that in Figs. 79 and 81 the ordi nates to

the lines P 5, P c, and P
<?,
P B, from A B, are proportional to

the moments (Art. 110). These ordinates to the scale of dis-
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tance, multiplied by the pole distance to scale of force, give the

moments at any point. Our construction, therefore, gives the

moments also at every point, and we may thus check the re-

sults obtained by Art. 114 by the results obtained by the

method of moments.

117. Approximate Construction. It will be readily seen

that the portion of the hyperbola in Fig. 81, PL 21, needed for

our construction, is nearly straight. In most cases it will be

practically exact enough to lay off f I to the left of A, and \ I

also to the left of A at a vertical distance equal to
I,
and join

the two points thus obtained by a straight line. This line can

be taken instead of the curve, and the construction is then the

same as above. The error due to thus considering the curve

as a straight line is greatest for a weight in the middle of the

span, where it does not exceed Toifth of the span for the posi-

tion of the inflection vertical, and diminishes from the centre

both ways.

118. Girder continuous over three Level Supports-
Draw Spans. This case is perhaps of the most frequent

practical occurrence, and an accurate and simple method of

solution is therefore very desirable.

In the first place, the formula) for the reactions are very

simple and easy of application. Thus, for left end support A,
the load being in the second span, or to the right of the middle

support B,

for the reaction at middle support,

for reaction at right end C,

pRc = ^ (2 a V + 3 a* I - a3

) ;

where a is always the distance of the weight P from the mid-
dle support.* We are therefore already in a position to solve

completely the case under consideration. We have only to

* As already remarked, the development of the formula assumed in this

chapter must be sought for in special treatises on the subject. We assume
them as known, and then apply them graphically as above.

See also Supplement to Chap. XIII.
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find the reactions and follow them through by the method of

Art. 114.

From the above reactions we can, however, easily determine

the distance of the inflection point. This will, of course, be

found only in the loaded span, at a distance from the middle

support.

-

"We can find the values of x corresponding to different values

of
,
and thus plot the curve for the inflection points. Thus,

for

a = a = l a = I a = %l a = l

This curve being drawn for any particular case, we can

easily find the position of the inflection point for any given
value of a, and hence the reaction*, and then find the strains in

the various pieces.

Thus, in PI. 21, Fig. 82, the curve B e d being drawn, we
can at once find the inflection point i for any position a of

the weight P. We have simply to make B 5 = a and draw b e.

I e is the distance of the point of inflection from B. We can

now, as explained above, draw any line as P i, and then P C
and A h. The ordinates to the broken line A A P C from A C,

to the scale of distance, multiplied by the pole distance H to

scale of force, will give the moments at any point. Moreover,
H E is the shear at B. E a is the reaction at B, H a the re-

action at A, and H P the reaction at C. The reactions at B
and C are, of course, positive or upwards, that at A negative
or downwards. Hence E # H # + H P = P, as should be.

The value of x for the inflection vertical is by Art. 112

* a I
~~

(i a) I i a

or, substituting the value of i above,

a I (2 I - a)

Since, therefore, in this case the value of x is no simpler than

that for i given above, it will be preferable to plot the first

curve directly as represented in Fig. 82.

119. Approximate Construction. In practice it will be



180 GRAPHIC AND ANALYTIC [CHAP. XII.

found abundantly accurate to assume the curve for i between

the required limits, as a parabola whose equation is i = x =

a (^ I a)
^ rj^ greatest error for a= - will then be about

5 i 4:

- of the span, and decreases both ways to a = o and a = -.

From a - to a I the parabola coincides closely with the
2

3 1
true curve. The difference for a = -I is only Z,

and we

have, therefore, a very simple practical construction for both

reactions and moments. We have only (Fig. 82) to erect a

vertical at the centre support B and make it equal to I,
and

then construct a parabola passing through B whose ordinate

od -l. The horizontal ordinates to this parabola for any
5

vertical value of #, give the distance out from B of the inflection

points. For the load in first span A B, of course this parabola

lies on the other side of B c, and b e is laid off to the left. The

remainder of the construction is as in Art. 118 for the reactions

and moments. When great accuracy is required, we can find

the reactions from the eq'uations of Art. 118. In any case, the

reactions being given, we can follow them through the structure

by the method of Art. 114, and thus determine the strains in

every piece due to every position of each apex load. A tabu-

lation of these strains will then give by inspection the maximum
strain in any piece due to the live load. All the weights taken

as acting simultaneously will then give the strains due to uni-

form total live load. The strains due to dead load will be

multiples or sub-multiples of these. Thus if total live load

causes, say, 100 tons compression in a certain piece, and if the

O q
dead load is - of the live load, then we shall have - of 100 =

150 tons compression in the same piece due to the dead load

alone. If now the live load causes a maximum tension in the

same piece of 200 tons, then the piece must be made to resist

both tensile strain of 200 150 = 50 tons and compressive
strain of 150 + 100 = 250 tons. If a diagonal, the counter tic

is strained 50 tons, while the maximum strain on the diagonal
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is 250 tons compression. It is only necessary, therefore, to find

the strains due to each weight of the live load. From the

tabulation we can, then, by means of the ratio of the dead to

live load, find the strains due to dead load alone, and then by
a comparison of the two find the maximum cornpressive and
tensile strains. If the maximum strains due to live load are of

opposite kind, but less than the constant strains due to dead

load, we shall need no counterbracing. The resultant strains

will then always be of the character given by the dead load.

If greater, we must counterbrace accordingly. The process is

the same as by the methods of calculation, and the reader may
refer to Stoney Theory of Strains for illustrations.

120. Tlie "
Tipper," or Pivot Draw, with secondary cen-

tral Span. We have said that a pivot draw may be considered

as a beam continuous over three supports. In 'practical con

struction this statement needs some modifications which deserve

special notice. Thus practically that portion of the beam over

the central support forms a short secondary span D D [Fig. 83,

PI. 22] the reactions at the supports D and D being always

equal and of the same character. If a weight acts, say, on the

first span A B, and the beam itself is considered without weight,
the end C must be held down, that is, the reaction there is neg-

ative.
' Now as the weight P deflects the span A B (Fig. 83), it

causes one secondary support D to sink, and the other to rise

an equal amount. In practice D and D may be the extremities

of the turn-table, and the reactions are then evidently different

from those given by the formulae of Art. 118.

If in this case we take a as the distance of the weight P from

the left support A, the reaction for load in A B .will be given

by the following formulae :

Where the ratio = &, a being the distance of the weight P

from the left support A (for load in the span A D), I = span,

A D = D C, and n I = span D D, and where the constant

(4 + 8 n + 3 w2

) is put for convenience = H, then

RA = JLj
2 H - (10 + 15 n + 3 n*} + (2 + n) t?\*

See Supplement to Chap. XIII., Art. 6.
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Rc =
2^1"

(2 + n) V -
(2 + 3 n + 3 /i

2

) k \

These reactions, it will be observed, when added together
RA + 2 Rj, + Rc are equal to P, as should be the case.

By the application of these formulae, which are for any par-
ticular case by no means intricate, we can find the reactions at

A and C as also at D or D
;
and then starting, say, from A, can

follow the reaction there through the frame by the method of

Art. 114. A negative reaction indicates that the support tends

to rise, and unless more than counterbalanced by the positive

reaction due to uniform load, the end where this negative reac-

tion occurs must be latched down.
121. Supports in Pivot Span are not on a level Reac-

tions for live load, however, are the same as for'level sup-

ports. The three supports of a pivot span should not be on a

level. It is evident that if this were the case, the first time the

draw is opened the two cantilevers deflect and it would be diffi-

cult to shut it again. The centre support should therefore be

raised until the reactions at the end supports are zero, that is,

until they just bear. The centre support is then raised by an

amount equal to the deflection of the beam when, open, due to

the dead load. Even when shut, then, there are no reactions at

the end supports except when the moving load comes on. Now
this being the condition of things, it may seem strange to assert

that these reactions axe precisely the same as for three level sup-

ports, and yet such is the fact. If the beam, originally straight

were held down at the lower ends by negative reactions, then

the reactions would have to be investigated for supports out of

level, and a load would diminish these negative reactions, or

might even cause them to become positive. But such is not

the state of things. The end reactions are in the beginning

zero, and any load gives, therefore, at once positive reaction at

its end support. This positive reaction is just what it ivoula

befor the same beam over three level supports.
An analytical discussion of the case would be out of place

here, but assuming the expression to which such a discussion

would lead us, we may show that this is so.

Thus, for a beam over three supports A, B, and C, not on a

level, <?! being the distance of A below B, and c% the distance

of C below B, the modulus of elasticity being E and the ino-
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merit of inertia I, we have for the moment at the centre sup-

port B due to any number of weights in both spans,

1

I

a being always measured from the left support.

Now in this expression the last two terms are precisely the

same as for supports on a level
;
the influence of the different

levels is contained in the. first term on the right only. Now by
the supposition, ct

and c2 must be taken equal to the deflection

due to the dead load, and the value of this term will therefore

be entirely independent of the live load, which enters only in

the last two terms.

A particular case may perhaps render this plainer. If a

girder of two equal spans over three level supports is uni-

formly loaded, the reaction at an end support is, as is well

known, |ths of the load on one span.
Now let us take the girder over three supports not on a level,

and from our formula above find the reaction at one end due

to uniform load when ^ and c2 have the proper values given
to them. First the dead load p I over each span causes a de-

v I*

flection at each end of the two cantilevers = \ ^1'^ This,

then, is the value for GI and cz in the formula. Now let us

take an additional moving load of ra I over the whole beam,
and with this value of c

l5
c2 find the reaction. We have from

our formula

or MB = %p T? | ra Z
2

.

Now we have by moments,

?RA X l-(p + m)-= +Mn ;

hence, inserting the value of MB above,

RA = | in I.

* Theorie der Trager : Weyrauch. Also Supplement to Chap. XIII., Art. 3.

f Supplement to Chap. VII., Art. 13.
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That is, the reaction at A is due to the moving load alone,
as evidently should be the case, and is, moreover, just what it

should befor a girder with level supports; viz., f ml. (See
also Appendix, Art. 18, Ex. 5.)

The raising of the centre support, then, will not affect our

construction for the reactions as given in Figs. 81 and 82, pro-
vided there are only three supports.
We have deemed it well' thus to call special attention to the

considerations of the last two articles, both on account of their

practical importance and because they are not brought out

clearly, nor indeed, so far as we are aware, ever alluded to in

any treatise upon the subject.*

122. Beam continuous over four level Supports. We
thus sec that a draw or pivot span is more properly considered

as a beam of three spans instead of two, of which the centre

span is very small compared to the end spans ;
it may be only

two or three panels long. Moreover, we must often in practice

consider the beam as a "
tipper," and therefore apply the formulae

for reactions of Art. 120. If, however, by reason of the method

of construction, as often happens, for instance, by the under

portion of the beam coming in contact with the frame below,

this tipping of D D (Fig. 83) is confined between certain limits,

beyond which the supports must be considered fixed, it will be

necessary to find the reactions as for a beam over four fixed

supports, and determine the corresponding strains in this case

also.

Comparing, then, the strains obtained each way, we take only
the maximum strains from each.

The formulae for the reactions at t\\efixed supports A B C D
are as follows (PI. 22, Fig. 84) :

1st. Load P in left end span A B at a distance a from left

support A, the end spans being n I and the centre span B C=l.

We put k = and H = 3 + 8 n + 4 n\ Then
91s if

R--I~H-H ' 2n2 '2* -1-2** #1

* Clemens Herschel, in his treatise upon
"
Continuous, Kevolving Draw-

bridges
"

(Little, Brown & Co., Boston, 1875), notices this fact for the first

time.
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RB=H| (3 + 107i+9^
2+2w3

)^-(2w+ 5^2 +27i8
)/fe

s
I

Rc=g| -(n+3n*+ 2n*)&+(n+ Zn*+2n*)JP I

RD
=JJ|

nk-nZ? I

These reactions add up, as they should, equal to P.

In practical cases of pivot spans, we have only to consider the

the outer spans ;
as a load in the middle span B C = I rests

directly upon the turn-table. The above formulae are then all

we need. For a load in the right end span the same formulae

hold good, only remembering to put now RD in place of R^
Rc in place of RB ,

RB in place of Rc ,
and RA in place of RD .

If, however, neglecting the particular case of pivot spans, we

suppose the middle span B C = I loaded, we have a being

now the distance of P from B, and k being now -; instead
I

of
j,

as above, H remaining the same.
TL if

2d. Load in B C.

RA=Jj I -(3+4n) +6 (fi + 1) #-(3 + 2rc) 1$ I

RB=^ I riH.+ (3+4^-6^2-4n*) -(6 + 15 n + Qn*)tf+B. 1$ I

RC=^| (2tt+6w
8 +4/i8

) &+(3 + Qn+Qri>) #-H &3
I

RD=
WH|

~2w ^~ 3 ^+(3 + 2^) & I

These reactions should also add up to P, as is the case. The
number n may be taken at pleasure, so that the end spans may
be as much larger or less than the centre spans as is desired.

H, P and the quantities in the parentheses, it will be observed,

are for any given case, constants which may be determined and

inserted once for all.

We have, then, only to insert the values of J& for different

positions of the load P. Thus the equations for any particular
'use are very simple and easy of application.
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123. Construction. We may, if desired, apply our method

of construction to the determination of the reactions. Thus

from the above reactions we may easily determine general ex-

pressions for the inflection points. For the case of a load in

C D = n I (PI. 22, Fig. 85), we have, when i is the distance of

the inflection point from C,

whence ^ = =-~ .

P RD

For the inflection point distant i from B in the unloaded

span,

hence

For the second case of load in B G =
I, we have for the in-

flection point between B and P

For the point between P and C

RD (n l+i)+"Rf. i=0, or

RD nl

The insertion of the proper values of the reactions for each

case, as given above, will easily give general expressions for the

inflection points, which the reader may, if desired, deduce for

himself.

Our construction is, then, as follows [PI. 22, Fig. 84] :

\st Case. Load in C D.

Having found %, draw aline at any inclination, as c^ d through

1} intersecting P at d, and the vertical through C at c^. Then

lay off B i and draw d D, c^ b and b A.

Make d c P by scale, and G D drawn parallel to GI d then

gives the pole distance H. The ordinates, then, to the broken

line A 5 ^ d D taken to scale of distance, multiplied by H to

scale of force, give the moments at every point. Moreover, H d
is. the reaction at D. Draw D b parallel to c 5, then c b is the

reaction at C. In like manner a b is the reaction at B, and H a,

the reaction at A. The moment at C, and reactions at C and
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D, are positive. Reaction and moment at B negative / reaction

at A positive ;
as a little consideration of what the curve of the

deflected beam must be, will show. The shear at C is, there-

fore, +H a ab + b c = + H c. The shear at B is H b or

+ H a a b, and so on. The shear being always given by the

segment between H and lines parallel to A b, b c
it c d and d B.

2d Case. PI. 22, Fig. 85. Load in B C.

Having found the distance B i from the equation for this dis-

tance of the point of inflection above, we lay off B d = B il

and thus draw cx
E at an angle of 45. Finding then the value

of C 4 from its equation above, we can draw E <% and then

c2 D and c A. The construction is then the same as before.

Thus H is the pole distance, H c the negative reaction at D,
H b the negative reaction at A, and <?x b, c E the positive re-

actions at B and C. The shear at B is H c
1}
etc. Thus the outer

forces are completely known for a weight at any point. It will,

however, in general, in practice, be found more satisfactory to

use the formulae for the reactions which we have given than to

find these reactions by the above construction.

We shall now illustrate the preceding principles by an exam-

ple taken from actual practice.

1544. Draw Span Example. In PI. 22, Fig. 86, we have

given to a scale of 20 ft. to an inch the elevation of one of the

trusses of the pivot draw over the Quinnipiac River at Fair

Haven, Conn.*

Length of span A B = 89.88 ft. B C = 21.666 ft, divided

into seven panels of 12.84 ft. and two of 10.833 ft. respectively.

Height at B and C, 16 ft.
;
at A and D, 12.1 ft. Diagonal

bracing as shown in Fig. Line load 9 tons per panel.

In this case n = -- or n 0.24106, hence the equations
89.88

of Art. 120 become

= P
(l-1.

1298
^+0.1836 |

B = C = P
(0.6S36 ^-0.1836

*
Designed and erected by Clemens Herschel, C.E., and probably the only

structure of the kind in this country for which the strains have been accu-

rately and thoroughly determined. For the above data I am indebted to M.

llerriman, assistant engineer in charge. ,



188 GRAPHIC AND ANALYTIC [CHAP. XH.

-P
^0.

2374 - -0.1836

Now ~ is -, -, -, =ths, etc., according to the position of the
I 7777

weight at 1st, 2d, 3d apex from end. So also ~ is
, ^ 34^

etc. The above equations for the reactions, then, may be

written A = P (1-0.1614 1 + 0.000535 J
3

),

B = C = P (0.09766 -0.000535 J3
),

D = -P (0.03391 5-0.000535 3

),

where 5 has the values 1, 2, 3, 4, etc., for Pt ,
Pa ,

P3 ,
P4 .

Thus, if we wish the reactions due to a weight P4 of 9 tons at

the fourth apex, as shown in Fig., we have only to make P 9

and b = 4, and we find at once A = 3.498 tons, B = C =
3.207 tons, D = -0.912 tons. The sum of all these reactions

exactly equals P, as should be.

The middle supports are supposed raised by an amount equal
to the end deflections of the open draw, therefore the strains

due to dead load are easily found, as in the " braced semi-arch,"

Art. 9.

The reactions due to live load, according to Art. 121, will not

be affected by this raising of the supports.

To find the strains due to P4 ,
we draw the force line F2 F

[Fig. 86 (a)] by laying off P4 = 9 tons down from F to F
l5
then

F! E2 downwards equal to the negative reaction at 1
, viz.,

0.912 tons. Then from E2 lay off upwards E2 Et
= topositive

reaction at C +3.207 tons. Then E:
E = reaction at B =

+ 3.207 tons, and finally E F equal to reaction at A = +3.498

tons, which should bring us back exactly to point of beginning

F, since the reactions and the weight P must be in equilibrium.

[Note. When we wish to begin at the left end of the frame,
it is best,' as in this case, to lay off the reactions in order, com-

mencing at the right.'} We have taken the scale of force 4

tons per inch.

The weight P4 acts upon the triangulation drawn full in the

figure. Using now the notation of Art. 114, and representing

all the space above, the truss by E, all lelow by F, we have at

A the reaction E F [Fig. 86 ()] in equilibrium with E 1 and

F 1, and drawing parallels to these lines from E and F, we find

the strain in F 1 = 3.54 tons tension, and E 1 = 5.
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So we go through the truss and find the strains in every

piece. Heavy lines in the strain diagram denote compression.
We see at once that for this position of the weight, all the

upper flanges in span A B are compressed, the last lower flange
F 7 is also compressed, and all the other lower flanges are in

tension. At the point of application of the weight P4 , the two

diagonals 3 4 and 4 5 are in tension, and either side they alter-

nate in strain as far as C or diagonal 8 9. Diagonals 8 9 and 9 10

are both tension, and then the strains alternate to support D.

All the upper flanges of the right half are tension and increase

towards the middle. All the lower are compression and like-

wise increase towards the middle.

If we go through the whole truss fromA to D, the last diago-
nal 15,16 should evidently pass exactly through E3 ,

thus check-

ing the accuracy of the construction. The diagonal 6 7 crosses

the force line, thus causing the strain in the lower flange to

change from tension in Ft 5 to compression in Fl 7. The point
of inflection, therefore, falls to the right of diagonal 5 6.

The reaction at B diminishes greatly the strain which would

otherwise take effect in 7 8 and E 8
;
while the reaction at C

reverses the strain which would otherwise take effect in 9 10

and diminishes E 10. We recommend the reader to follow

through carefully the strain diagram, Fig. 86 (a).

A series of figures similar to Fig. 86 (a) (in the present case

seven separate figures) will give completely the strains due to

the rolling load. A table may then be drawn up containing
the strains due to dead load, and the maximum strains due to

live load in every piece, and the total maximum tension and

compression in every piece may then be found. [Com/pare
Art. 12, Fig. 7.]

For the supports fixed, instead of B and C tipping, the pro-
cess is precisely similar, except that we have to make use of

the formulae of Art. 1254. The reaction at A will then be

somewhat less than in the present case
;
the inflection point ia

therefore found further from the right support B ;
it may be

even to the left of diagonal 5 6, in which case (see Fig. 86, a)

we should have tension in upper flange E 6. The reaction at

B would then be still positive, but greater than E E
1?
while C

would be negative and no longer equal to B, and D would be

positive. We should thus have 7 8 tension and E 8 tension ;

F 7, as before, compression, 8 9 compression, and 9 10 com 1-
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pression, and E 10 compression ;
while F 9 would be tension.

From 9 10 to the right the diagonals would alternate in strain,

the compressed upper flanges, as also the tensile lower flanges,

svould diminish towards D, and the last diagonal should pass

exactly through new position of F2,
thus closing the strain

diagram and checking the work. The reader will do well to

construct the diagram.
The strains should be found for ~botli cases, and the maximum

strains taken from each, which, compared with the permanent
strains due to the dead load, will give the total maximum
strains.

We have taken for convenience of size too small a scale for

the frame to ensure good results. With a large and accurately
constructed frame diagram, dealing as we do with only single

weights, and consequently small strains, the above force scale

of 4 tons per inch would give very accurate results.

If the strains due to uniform load (no end reactions) are

found by addition of the strains for each apex load diagramed

separately, the same scale may be employed ;
but if all the

loads are taken as acting together (Fig. 5, J), a smaller scale

for strains will have to be adopted, as the force line will other-

wise be too long. [See Art. 16 of Appendix for the method of

calculation.]

125. Method of passing direct from one Span to next.

By inspection of Fig. 86 we see that we might find the strains

in the intermediate span B C without first going through the

whole of A B or CD. Thus, if we knew the momeitt at B,

this moment, divided by depth of truss at B, would give the

strain in flange F 7 for the system of triangulation indicated

by the full lines. Lf then we knew also the shear at B =
P A B = E! F! (Fig. 86, a\ we could at once lay off F

1 7

and- Et F^ (Fig. 86, a), and then proceed to find E 8 and 7 8,

just as before. In the same way the moment at C, divided by

height of truss at C, would give us strain in F 9, and with

shear at C = P A B C = E2 Ft
= D, we could find E 10

and 9 10, as before. As we know already, a load anywhere

upon a l)eam causes positive moments at a fixed end i.e.,

makes upper flange over support tension and lower flange com-

pression. But as we see from the last case, owing to the tri-

angulation, the last upper flange may also be compression (see

E 6 in Fig. 86) if the inflection point lies between diagonal 5 6
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and the support. The known moment gives, then, the charac-

ter of the strain onlyfor that flange which does not meet a

diagonal at the support. The moment at B, therefore, being

positive, gives us compression here in lower flange, because, for

the system of triangulation corresponding to the weight, that

flange does not meet a diagonal at B. For a weight upon the

other system of triangulation (dotted in Fig.), the same moment
would give us the tension in E 7. The construction assumes

equilibrium between F T, 7 8, and E 8, and the shear at B
;

that is, between the pieces cut by an ideal section to the right

of B through the truss and the shear at that section. That this

is so is shown by the strain diagram, since there we see that the

strains in these pieces form a closed polygon with the shear at

B = E! Ft . This must evidently be so if these are the only

pieces cut by such a section, since then the horizontal com-

ponents of the strains in these pieces must balance, and the

resultant vertical component must be equal and opposite to the

shear.

It is important to know which side of E! F! to lay off Fx 7,

since, if we had laid it off in this case to the right, we would

have obtained a very different value for E! 8. For this pur-

pose we have only to suppose the strain in the flange (either

upper or lower, as the case may be) to be applied at the point

of junction or apex of the other two pieces, and then lay it off

in the direction with reference to that apex corresponding to

the known character of its strain. The direction of the shear

is always known from the reactions.

Thus in our Fig. the shear between B and C acts down from

E
: to F

x ,
because P4 ,

which also acts down, is greater than the

sum of the upward reactions at A and B. The strain in F 7

is also known to be compressive, and therefore, in following

round the strain polygon commencing from Et to F1? it must

act towards apex at 7. We must, therefore, lay it off to the

left of E! FJ. In siinilar manner, for the other triangulation,

the strain in flange E 7 is, in span B C, in equilibrium with 7 8

(dotted diagonal) and F 8 and shear Et Fl5
and is, moreover,

known to be tension. Consider it acting then at B
;
and then,

since it is tension, we go round the polygon from E! to F
l5
and

then to the right of Ex
F

l5
or away from B, the point at which

it is supposed to act.

Now for the case of the "
tipper :

" the reaction at D, and
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therefore the moment at C, is also positive. The lower flange
F 9 is therefore compression, or for the dotted system of trian-

gulation E 9 is tension. The shear to the left of C, Ex F-^ acts

down, since P + A + B = E
t Ft . Consider F 9 acting at

apex 9, and then, since it is compression, it must act towards 9

(from right to left), and passing down then from Ej to F
15 we

must lay off F 9 to the left of Ex FJ. For similar reasons, for

the other system, E 9 must be laid off to the right.

For fixed supports B and C, the moments alternate from B,

and the moment at C is therefore negative that is, gives com-

pression above and tension below. Flange F 9, for the system
of triangulation of P, would then be tension instead of com-

pression, as above
;
P will, however, still be greater than A + B,

and hence the shear is to be laid off down, and F 9 must be

laid off to the right.

If, then, it were required to find the strains in the span B C,

preceded and followed, it may be, by many others, it is suffi-

cient to know the moment and shear at one support. We can

then commence and continue the strain diagram, without being

obliged to go off to a distant free end and trace all the strains

through till we arrive at the span in question.

126. Method of procedure for any number of Spans.
Let us take, then, any number of spans, say seven [PL 22, Fig.

87], and let it be required to find the maximum strains in the

span D E. It is not, as we have just seen, necessary to com-

mence at the extreme end A or H, and follow the reaction there

through, from span to span, till we arrive at D. As we have

seen from the preceding Art., we may start directly from D,

provided we know the moment and shear there. Now, since a

load in any span causes positive moments and reactions at the

two ends of that span, and since either way from these ends the

moments and shear at the other supports alternate in character

[Art. 102], any and all loads in A B cause positive moments
and reactions at D. So also for loads

4
in C D and in F G .

Loads in B C, E F and G H, on the other hand, cause negative
moments and reactions at D. [See Fig. 87.]

To find the maximum positive moment and shear at D due

to the other spans, we must then suppose the method of

loading shown in Fig. 87 (a). For the maximum negative
moment and shear at D, we have the system of loading shown

in Fig. 87 (5).
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Now these two moments and shears being once known, we
can find by diagram and tabulate the respective strains in every

piece of the span D E. Thus dividing the moment at D for

either case by the height of truss, we have at once the strain in

either upper or lower flange at D depending upon the system
of triangulation as explained in Art. 125. With this strain and

the shear at D properly laid off to scale, we can commence the

strain diagram precisely as though we had traced all the loads

through from the extreme end A or H to D or E.

We must next find and tabulate the strains in D E due

to each apex load in the span itself, and for this we must

know to begin with the moments and shears for each separate

load.

[Note. Distinguish carefully between shear and reaction at

a support. The shear at D, or at a point just to right of D, is

the algebraic sum of all the reactions and weights between that

point and A. See also Fig. 84 (Art. 123), where the reaction

at B is b 0, but the sJtear atB is b a + H a = H b.

So also the reaction at O is + b c, but the shear at C is

+ bc-ba + Ha = flC, etc.]

Conceiving now that we have found and tabulated the strains

due to the first and second systems of loading as shown in Fig.

87, and also the strains for each load P in D E, the sum of these

strains will give the strains due to live load o-ver the whole

length of girder, and taking the proper proportion of these, we
shall have the strains due to the dead load. Combining then

these strains with those first found, we can easily find the total

maximum strains which can ever occur in,D E.

127. Example. Let us take, as an illustration of the pre-

ceding, the girder shown in Fig. 87, of seven equal spans, and

seek the maximum strains which can ever occur in the middle

span D E. Let Fig. 88, PI. 23, represent the span D E length
80 feet, divided into 4 panels ;

and let the live load at each

apex be 40 tons,* the uniform load being half as much, or 20

tons per apex. Height of truss = 10 feet.

Now the quantities which for the present we must suppose
known or already found are as follows :

* A very great load : half the resulting strains would give more nearly the

strains in a single truss.

13
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Positive moment at D (1st system of loading),

as shown by Fig. 87 (a) ....= + 788.2 feet tons.

Corresponding shear at D = )- 14.63 tons.

Negative moment at D
(2d system of loading) = - 382.54.

Corresponding shear = 14.63.

Also for the loads in D E :

For the first load P
l5
moment = + 158.92, shear = + 36.17.

Pa
" = + 271.96 " = + 25.88.

P3
" = + 203.36 " = + 14.16.

P4
" = + 62.88 " = + 3.82.

In Fig. 88 we have found by diagram the strains due to P3 .

[For notation, see Art 114.]

We lay off to scale the shear 14.16 upwards, since it is posi-

tive^and then, since the moment 203.36 at D is positive, and

hence the strain in A a must be tension, we lay off A a =

*??P
= 20.3 tons to the right of B A (Art. 125). With B A

and A a thus given, we can rapidly and accurately find all the

other strains. Thus from our diagram we have, representing
tension by minus and compression by plus,

A a = - 20.3 A G =. + 8.0 A e = + 36.4 A g
- + 24.4

A k = - 27.2

B5=+6.0 Brf=-22 B/=-50.8 B h =+ 1.2 tons;

and for the diagonals :

J=+]9.6 bc= 19.6 erf- .+ 19.6 de=-19.6

ef=+ 19.6 fg=+ 36.4 gJi~ 36.4 h Jc = + 36.4 tons.

Heavy lines in the diagram represent compression.
In a manner precisely similar we can find the strains due to

the other weights, as also to the two systems of loading shown
in Fig. 87. Suppose all these strains thus found. Then the

method of tabulation is as follows :
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Having found and tabulated the strains due to each weight
as shown by the first five colums of the table, add all the ten-

sions and compressions for each piece and place the results in

columns 6 and 7.* We thus have the maximum strains of each

kind which can be caused by the weights in span D E alone.

In the next two columns, 8 and 9, place the strains due to the

two cases of loading of Fig. 87. Now if the uniform or dead

load is taken at one half the live, we have simply to take the

algebraic sum of the strains in columns 6, 7, 8, and 9 horizon-

tally, and divide by 2. "We thus find column 10. Finally,

from columns 6, 7, 8, 9 and 10, we can find the total maximum

* A more convenient form of table, perhaps, is obtained by putting the

weights Pi_ 4 in the vertical left-hand column, and the pieces A a, Ac,

etc., in the top horizontal line. The numbers are thus more conveniently

placed for add.tion.
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strains as given in the last two columns. Thus take the piece

A c. In this piece there is a constant compression due to dead

load of 4.7 tons. The second system of loading adds to this

for live load 8.9 tons, and the loading of D E itself causes 50

tons compression. Since all three cases may exist together, we

have 4.7+8.9 + 50 = 63.6 tons compression. Again the first

system of loading, which may act also alone, causes 49.5 tons

tension in A c. Diminishing this by the 4.7 tons compression
doe to dead load already existing, we have 49.5+4.7 =44.8
tons tension. These two strains are the greatest which can ever

occur in A c.

For A a we see that the greatest compression is due to the

second system of loading acting alone, but this compression =
38.2 tons, is less than the tension always existing in A a from

the dead load, which is 55.1 tons. Compression, then, can never

occur in A a. So also for A k. In like manner diagonals a b,

Ic, cd,fg, g A, and h k do not need counterbracing, as the

constant dead load strain overbalances any strain of opposite
character which can ever come upon them.

As we have in the present example taken a middle span,
observe that the strains of Pt and P4 ,

P8 and P2 are similar. Thus,
strain in A a due to P4 is the same as in A It due toP

1}
and so on .

128. .lletliod of Moment*. We can very easily check our

results by the method of moments of Ait. 14.

Thus, for the first system of loading, we have the moment at

D =+788.2 ft tons and the shear = 14.63. For any upper
flange, then, as A ^, since the positive moment causes tension

in upper flange, and positive shear causes compression, we have,

taking apex g as centre of moments, 788.2 + 14.63 x 60 =
- 788.2 + 877.8 = + 89.6. Dividing this by depth of truss

= 10 ft., we have 8.96 tons compression in A g.

For the strain in B/due to the weight P2 ,
since the moment

at D for this case is +271.96 and shear =+25.88, and

positive moment and shear cause compression and tension re-

spectively in lower flanges, while the weight P2 = 40 causes

compression in B /, we have, taking f as centre of moments,
+271.96-25.88x50+40x20 = -222.0-1, u;:d dividing this by
10, we obtain 22.2 tension in By, and so on.

For the diagonals, the shear at any apex, multiplied by the

secant of the angle with the vertical, gives at once the strain.

In this case the angle is 45; therefore the secant is 1.414.
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Hence, for strain in c d due to P2 ,
we have

25.88 x 1.414 = 4-30.6 tons.

The calculation, then, of the strains in any span of a continu-

ous girder, as also the diagraming of these strains, is simple and

easy, and offers no more difficulty than in the case of a simple

truss, provided we know or canfind the moments and shearing

forces at the supports for the various cases of loading. The
method of finding these necessary quantities will form the sub-

ject of the next chapter.

The reader will do well to compare the strains in the above

table with those for the same simple girder similarly loaded.*

It will be found that there is a saving of material in the

flanges of about eleven per cent, over the corresponding simple

girder. Some of the flanges are, to be sure, subjected to both

tensile and compressive strains, instead of being always of the

same character
;
but in wroaght-iron girders this is of little con-

sequence.
It .is worthy of remark that a slight relative difference oflevel

of the supports of a continuous girder may cause very great

changes in the strains, and hence, in structures of the kind, the

foundations must be secure from settling, and the pier sup-

ports accurately on level. Under these circumstances, where

long spans are desirable, the continuous girder is to be preferred
to a succession of single spans.

If the greatest negative reaction at any support, as E (Fig. 87),

is greater than the constant positive reaction at that point due

to the dead load, the girder will require to be latched or held

down at that support.

* See Appendix, Art. 16, where this comparison is made.
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CHAPTEK XIII.

ANALYTICAL FORMULA FOB THE SOLUTION OF CONTINOUS GIRDERS.

129. Introduction. As we have seen in the preceding

chapter, the complete and accurate determination of the strains

in the continuous girder, both for uniform and moving loads, ia

easy, provided we canfind the moments and shearingforces at

the supportsfor the various states of loading, andfor each c/jjex

load. Now this we are able to do with mathematical accuracy,
and without much labor. The formulae necessary for the pur-

pose, when put into proper shape for use, are neither difficult of

application nor more complicated than many which the practi-

cal engineer is often called upon to manipulate. Since the

publication of Clapeyroris paper
* in 1857, in which, for the

first time, his well-known method was developed, and his cele-

brated "theorem of three moments" made known, the subject
has engaged the attention of many mathematicians. In 1862

Winkler f first developed a general theory, and gave general
rules foi- the determination of the methods of loading causing

greatest strains, together with tables for the maximum values

of the moments, shearing forces, etc., for various numbers of

spans of varying length. In the same year Bresse $ followed

with a similar work. In 1867 Winkler gave a general ana-

lytical theory, and, finally, in 1873 Weyrauch \
has treated the

subject with a degree of completeness and thoroughness which

leaves but little to be desired. He discusses the subject in its

most general form, for any number of spans of varying length,

*
Clapeyron Calcul d'une poutre elastique reposant librement sur des ap-

puis inegalement especes. Compte rendus, 1857.

f Beitrage zur Theorie der continuirlichen Briickentrager Civil Inge/iieur,

1862.

J Brme Cours mechanique appliquee. Paris, 1862.

Winkler Die Lehre von der Elasticitat und Festigkeit. Prag. 1867.

{ Weyraucli Allgemeine Theorie und Berechnung der continuirlichen und

einfachen Trager. Leipzig, 1873.
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and for all kinds of regularly and irregularly distributed and

concentrated loads both for constant and varying cross-section

of girder. His formulae are mathematically exact, and for

given loading are free from integrals.

The above is but a very imperfect sketch, and we have named
but a few of the many writers who have been occupied with

the subject. Clapeyrorfs Theorem above alluded to, as origi-

nally given by him, applied only to uniform load over whole

length of girder, or over an entire span. But as early as Bressds

Treatise, it had been extended to include concentrated and

local loads as well, and Winkler has also given a very complete
and practical discussion of the subject.

Notwithstanding the labors of these and many other mathe-

maticians, there seems to be a wide-spread idea, even among
those who are supposed to have considerable familiarity with

mathematical literature, that the results deduced are unpracti-

cal. It is not uncommon to meet with even recent publica-

tions* in which it is stated that the authorities pass over such

problems with "judicious silence;" that the mathematical in-

vestigations are intricate, and the formulae deduced trouble-

some in application ;
that even a "

partial solution of the prob-

lem by mathematical calculation is attended with considerable

difficulty, and that a complete solution for the bending moment

and shearing force at every section, under moving partial and

irregular loads, taxes the powers of the best mathematicians,

and is well-nigh impossible, so far as any practical application

of them by the engineer is concerned." How far such ideas

are justified may be seen from the following pages. That the

authors and works above referred to can only be read by good
mathematicians is not to be denied. It may also be admitted

that the subject is an intricate one, and when treated mathe-

matically in its most general form the results are naturally in an

unpractical shape. But that these results are, therefore, worth-

less, or that the formulae, when applied to any particular case,

are " too intricate for practical use," by no means follows.

The desirability of formulae for the application of our graph-
ical method as developed in the preceding chapter ;

the erro-

neous ideas prevalent on the subject which we have just noticed
;

*
Graphical Method for the Analysis of Bridge Trusses : Greene. D. Van

Nostrand, publisher, New York. 1875.
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and the deplorable fact that the " authorities
" do but too often

treat the subject with "judicious silence," and that, therefore,

there exists in our engineering literature no collection of prac-
tical and useful formulae for this important class of bridges,

though such formulae are, and have been for years, free to all

for the asking, all these facts may serve as apology for the in-

troduction of the present chapter, in a work which professedly
treats only of Graphical methods. The apologies of those who

professedly treat the subject analytically, and have yet omitted

such formulas, are not so numerous.

We propose to give the analytical results necessary for com-

plete solution of a girder of uniform cross-section over any
number of level supports, with end spans any desired ratio of

intermediate; for uniform load over whole length from end to

end of girder, for uniform load over any single span, and for

concentrated load in any single span at any point of that span.

These three cases, as we have seen in the preceding chapter,

are sufficient for the complete solution of framed Bridge
Trusses.*

Many of these results are here given for the first time, at least

in their present shape, in any published treatise, though, as re-

marked, some of them in more or less practical form have

long been common property for all who may have desired to

make use of them.

The formulae only will be given, in such shape and with

such illustrations of their application that, we trust, they will

be found free from complexity, and of considerable practical

importance. In the Supplement to this chapter a demonstra-

tion of the formulae is presented.
13O. Notation. The notation which we shall adopt is as fol-

lows [see Fig. 89, PL 23] :

* The formulae for concentrated loads are alone all that is really necessary.

Their addition gives, as we have seen in our tabulation, Art. 127, the strains

for uniform load also. In fact, for strict accuracy, only single isolated loads

should be considered, as the results given by the formula3 for uniform load are

not perfectly accurate. This may be seen from the well-known fact that, for

a girder fixed at one end, and supported at the other, the reaction at the fret;

5
end for a load in the middle is 77, of the load, while if the same load were uni-

3 6

formly distributed, the reaction is
^ths,

or
YQ

of the load. The difference,

however, for any practical case, where there are a number of panels, is very

Blight.
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Whole number of spans is indicated by *
;

Hence, whole number of supports is s + 1 numbered from

left to right.

Number of any support in general, always from left is ra.

The supports adjacent to a loaded span left and right are

indicated by r and r+l.
When extreme end spans vary in length from the interme-

diate, they are always denoted by n
I, where n is a given fraction

or' ratio for any particular case. Thus, if intermediate spans
are all 70 feet and end spans 50 feet, I = 70, nl = 50, and n

*ths.

When spans next to ends also vary, they are similarly denoted

All other spans are of equal length and denoted by I.

The length of the span in which the load is supposed to be

is in general ln where the value of r for any particular case in-

dicates the number of the loaded span from left.

A concentrated load is indicated by P.

Its distance from nearest left-hand support, by a.

The ratio of a to length of loaded span 1T,
is k = .

IT

Moment at any support in general is Mm) where m may be

1, 2, 3, r, r 4-1, s, etc., indicating in every case the moment at

corresponding support from left.

In same way reaction at any support is Rjn, shear Sm .

At supports adjacent to loaded span, then, we have Mr,
Mr+1 ,

Rr,
Rr+1,

S
r,
Sr+1 ,

for the moments, reactions, and shears at those

supports.

A dead uniform load is u per unit of length.

A uniform live load, w per unit of length.

w m, then, indicates a uniform live load over any span.
These comprise all the symbols we shall have occasion to use-

By reference to Fig. 89, the reader can familiarize himself with

their signification, and will then find no difficulty in under-

standing and using the following formulae. Certain symbols
which we shall use for expressions of frequent occurrence, will

be best explained as we have occasion to introduce them.

131. "Theorem of Three Moments/' This remarkable

Theorem, due to Clapeyron, expresses a relation between tho

moments at any three consecutive supports, both for uniform
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load over whole-length of girder from end to end, and for uni-

form load over the whole of any single span. It may be writ-

ten as follows :

M 2Mm+1 (k+ Zm+1) + M^, lm+l =
W
-^ [4

If we suppose only one of the two adjacent spans as lm to

contain the full live load w, while all the spans are of course

covered with the dead load u, the above equation becomes

JH^ lm + 2Mm+1 [C + Zm+1 ] + Mm+2 lm+l =^^ 4 +
| 4+i-

If both spans bear the same uniform load u alone,

If the spans are equal, the above two equations become re-

spectively

and

Now in every continuous beam, whose extreme ends are not

fixed, two moments are always known, viz., those at the ex-

treme supports, which are always zero. Hence, by the applica-

tion of this theorem, we can form in any given case as many
equations as there are unknown moments, and then, by solving
these equations, can determine the moments themselves.

132. Example Total uniform Load all Spun* equal.
Thus let it be required to find the moments at the supports for

a beam of seven equal spans, uniformly loaded over its whole

length. The moments at the end supports Mt and M^ are zero.

We have then, by the application of the last equation above, the

following equations :

For the first three supports 1, 2 and 3, m 1, and

4 1VL, I + M3 I =
,
or 4 M, + M3

=
A

For supports 2, 3 and 4, m = 2, and

M2 + 4 M3 + M4
-

.



CHAP. Xm.] ANALYTICAL FORMULAE. 203

For supports 3, 4 and 5,.w = 3, and

or since in this case the moments equally distant each way
from the middle are equal, this last equation becomes

M8 + 4 M4 + M4
= ?tf .

a

We have therefore three equations between three unknown

moments, M2 ,
M3 and M4 ,

and by elimination and substitution

can easily find

If, as in our example of Art. 127 in the preceding chapter,

we take u \ ton per ft., I = SO ft., then u Z
2 = 6400, and the

moment at the fourth support becomes 540.8. If the height of

truss is ten feet, this gives [Fig. 88] 54.1 tons strain in the

upper flange A a. By reference to our tabulation, Art. 127,

we see that this agrees closely with strain in A 1 due to uni-

form load, found in a manner entirely different, viz., by sum-

mation of the strains due to first case of loading, and the several

loads in the span itself, and serves therefore as a check upon
our results.

133. Triangle of moments. For the benefit of the practi-

cal engineer, who may object to the algebraic work involved in

elimination of the unknown moments from the equations above,

when the number of spans is great, we offer the following tabu-

lation, from which he may easily and directly determine the

moments at the supports for any desired number of spans
withoutformulae or calculation.

Thus, if we were in the above manner to find the moments

for a number of spans, and tabulate our results as given in the

annexed table, an inspection of the table will show us that we

can produce it to any extent desired without further calcula-

tion.
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MOMENTS AT SUPPORTS TOTAL UNIFORM LOAD ALL SPANS EQUAL.

Coefficients of u I
1
given in triangle.

The Roman numerals along the sides of the triangle indicate

the number of spans, and the horizontal line to which they be-

long give the moments. Thus, for our example of seven spans

just worked out, we have the extreme moments Mj andM8 0,

M
2 and M7

= - u P, etc.

Now, a simple inspection of this table will show us that for

any even number of spans, as VIII., for example, the numbers in

the horizontal line are obtained by multiplying the fraction

above in any diagonal column, both numerator and denomina-

tor, by 2, and adding the numerator and denominator of the

fraction preceding that.

Th
15 x2 + Ji _ il .

n x2 + JL - _?2. - 15 x2
'142x2 + 104

~
388' 142 x 2 + 104

~
388 "142x2

in the other diagonal column
; ^| +

-^
=
|| or

=
142 2 -f 104

^n ^e ^er diagonal column
;
and so on.

For any odd number of spans, as IX., we have simply to add
numerator to numerator and denominator to denominator, the

two preceding fractions in the same diagonal column.
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Thus
** + I5- = *1 J? + 11 30 + 15 _ 45

'

388 + 142 530'
.
388 + 142' 388 +- 142

~
530'

and so on.

We can, therefore, independently of the theorem and analyt-
ical method by which the above results were deduced, produce
the table to any required number of spans.*

134. Total uniform Load all Spans equal Reactions.
The moments being known, the reactions at 'the supports can

be very easily found.

Thus, the reaction at the first or last support is

_ ul M2 _ ul Ms

RI== T~T' RS+I =T"T ;

at any other support

Thus, in our example in Art. 127, we find

56 . _ 161 . _ 137 , . 143* =m vl
> *=U2 UI

> R3== 142^' **=1
VL

Hence, the shear at the fourth support is

56
,
161 137

,

143 71.

142
Ul +

142
Ul+

142
Ul +

142
ul ~ 3 ul =

142
"*>

71
or when u I = 80 tons, r-^r

u I = 40 tons.

Multiplying this shear by 1.414 (the secant of the angle with

vertical), we find for the strain in diagonal a b (Fig. 88) due to

uniform load + 56.5 tons, the same nearly as already found in

our tabulation.

135. Triangle for Reactions. The reactions for a number

of spans being found, and tabulated, as above, in the case of the

moments, we shall have a triangular table precisely similar to

the one above, in which the same rule holds good for odd and

even numbers of spans.

* The above relations between the moments can be shown analytically to

be a result of the properties of the well-known "
Clapeyronian numbers"

For the table above, as also the others which follow, we are indebted to the

kindness of Mr. Mansfield Merriman, Instructor in Civil Engineering in the

Sheffield Sci. School of Yale College. They are given, so far as we are aware,

in no treatise upon the subject yet published.
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REACTIONS AT SUPPORTS TOTAL UNIFORM LOAD ALL SPANS

EQUAL.

Coefficients of u I given in triangle.

VII. VII.

We are thus able to find both moments and reactions at the

supports for any number of spans, so far as uniform loading is

considered, and may then either diagram the strains in the

various pieces or calculate them as explained in Arts. 127 and

128. No formulae are required. Any one who understands

the method of moments as applied to simple girders can, by
the aid of the two tables above, find accurately the strains in

every piece of a girder, continuous over as many equal spans as

is desired, and uniformly loaded over its entire length, all sup-

ports being on the same straight line.

As we have seen. Art. 127, this is one of the cases which

must be considered in order to find the maximum strains in

any span,* and the results above given for its solution will, we

trust, be found by the practical engineer to be neither " com-

plex
" nor "

difficult of application."

136. Clapeyroiiian Numbers. In the analytical discussion

of continuous girders, certain numbers having many remarka-

ble properties play a very important role.

We have seen that the theorem of three moments furnishes

us with as many equations between the moments as there are

moments to be determined. For a small number of supports,

* See note to Art. 129.

VIII.
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these equations can be solved by the ordinary rules of algebra ;

but for a great number, or in the general analytic discussion of

any number, we must have recourse to a special artifice. Thus

we multiply our equations, beginning with the last, by numbers

indicated by c
1} <%, Cg, . . . . c^, and then choose these num-

bers such that, by the addition of all the equations, all the M's,
with the exception of M1? disappear. We thus easily determine

M! without the tedious process of substituting from one equa-
tion to the other, through the entire list.

The following relations must then evidently hold between

these numbers, as is evident from the theorem of three mo-

ments of Art. 131 :

2 d (4-i +l.)+* k-i = 0.

* 4_, + 2 c, (4_2 + 4~i) + c* 4-2
= o.

<*-s 4 + 2 cs_ 2 (4 + 4) + <v.i 4 = o.

If the first number is chosen at will, say 1, the other num-

bers can be found from these equations.

Now in the present case of all spans equal, we have between

any three of these numbers the relation:

Cm-l + * Cm + (!m + 1
= 0.

If we take the first, 6\ = 0, and the next, Cy = 1, we have

for the others the following values :

d = c4 = + 15
flj
= 780 CM = + 40545

^=+1 c5
- 56 Cg

= + 29tl cu = 151310

c-3
= - 4 c6 = + 209 c9 = - 10864 <fc

= + 564719

These are the so-called Clapeyronian numbers. They alter

nate, as we see, in sign, and each is numerically 4 times the

preceding minus the onepreceding that. We shall always indi-

cate these numbers by the letter c, the index denoting the par-

ticular one. Thus, c7 is the seventh number, counting and

1 as the two first.

No table of these numbers is needed. The index being

given, any one can write down the series for himself, till he

arrives at the desired number.
137. Uniform Live Load over any single Span Moments

at Supports of Loaded Span. These numbers being pre-

mised, we can now give the following formulae for the moments

at the supports r and r + 1 of the uniformly loaded span :
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For tl:e left support,

For the right support,

1 "l

J
These formulae, it will be seen, are very Dimple and easy of

application.

Thus, for seven spans, load over the fourth from left, we

have s = 7, r = 4, and hence

M4
= MS = -w

Both moments are equal, as should be the case for a middle

span. Inserting now the proper values for the Clapeyronian

numbers from the preceding Art., we have

[l5x-56

+ 152

"[ _
2911

615 r
UMA

So for any desired number of spans, the values of r and s

being known, the corresponding Clapeyronian numbers can be

easily found, and, inserted in our formulae, give us at once the

moments at the supports.

Turning again to our example, Art. 127. and making w = 2

tons, and I = 80 ft., we have w& = 12800, and therefore M4
=

676, and dividing by depth of truss 10 ft., we find the strain

in A a (Fig. 88) 67.6 tons, nearly what we have found by the

summation of the strains due to the loads P1-4 in our tabulation.

13. Triangle ofmoments Uniform Live Load over any
{single Span. If from the above formulae we find the moments
at supports for a number of spans, and tabulate as before, we
shall have a triangle of moments similar to those already given,
which may be produced to include any desired number of

spans. We have only to observe that the numerator or de-

nominator of any fraction in the table follows the law of the

Clapeyronian numbers that is, is four times the preceding in

the same diagonal column minus the one preceding that.
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MOMENTS AT SUPPORTS OF LOADED SPAN. UND70RM LIVE LOAD
OVER ANY SINGLE SPAN.

Coefficients of w P given in triangle.

mu , 153 x 4 41 571
Thns for seven spans, __ =_

, and so on.

The triangle above gives the moments for uniform load over any

span, both right and left. For left supports we have simply
to count the span from right to left. Thus for seven spans for

load in the sixth span from left, we have moment at left-hand

A0*7

support =~ rrwP, counting the spans from left to right in

triangle. For the moment at right support of same loaded

span, we count six the other way from right to left, and find

139. Hom< iti at Supports of Unloaded Spans. The

triangle and formulae above give the moments at the supports
of the k>aded span only, both positive that is, always tending
to cause tension in upper flange and compression in lower.

If m represents the number of any support counting from

the left, the moments at any support generally may be found

by the following formulas :

When m<r+l, Mm = \ w 1?
gs-r+2 + m '-g + t

-

|.J

When m>r, M., = w
4

If we make in these formulae m = r in the first, and m
14
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r + 1 in the second, we obtain the formulae of Art. 137. For

any other support left of r, or right of r + 1, we have only to

give the proper values to m, s and r for any given case, an$
find the corresponding Clapeyronian numbers.

14O. Practical Rule, and Table. The moments at the

supports of the loaded span having been found by the formulas

of Art. 137, or the triangle of moments of Art. 138, instead of

using the above formulae, we may find the moments at the

other supports as follows :

For all supports left of the loaded span: Commencing at

the left end support, place over each support the Clapeyronian
numbers

1 4 15 56 209 780, etc.

Take the last number thus obtained, before reaching the left

support of the loaded span, as a common denominator. Then
the moment at the left end is of course zero. At the second

support 1, at the third 4, at the fourth 15, at the fifth 56, etc.,

all divided by this common denominator, will express the frac-

tional part of the moment at the left support of the loaded

span, which the moment at the support in question is. For the

moments at the supports right of the loaded span, proceed simi-

larly, only count from the right end.

Thus, for a girder of ten spans, sixth span from left loaded :

The moments Mc and M; due to load being found, suppose we
wish the moments left of M6. Commencing at left end, num-
ber the supports 1, 4, 15, 56, 209. (Let the reader draw a figure

representing the case.) The number 209 is the last before

reaching the sixth support. We take this, therefore, for a com-

mon denominator. Then we have Mt
= M2 M6

^uy

^=4^ M' =
2T9
M and ^ =

2l M -

So for supports to the right of support 7, we have

Remembering that M6 and M7 are both positive, and that

the moments alternate either way from these supports, we find

easily the proper signs for the moments right and left.

We can now, therefore, find the moments at D and E due to

the first and second cases of loading of Fig. 87 (Art. 126).
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Let us take the first case. For load on A B, we have from

7fiO
our triangle or formulae the moment at B = w P. At D,

then, we have x

For load on C D, we have at once from triangle the moment

Finally, for load on F G, we have for moment at F, from

triangle = nil w *> and therefore at D
> Jl x nii w * =

45 n
1185

"*
All these moments at D are positive ;

we have therefore, for

717
the first case of loading, the total moment at D = + w P

If we make I = 80 ft. and w = 2 tons, we find the moment
at D = 788, and dividing by 10 we obtain 78.8 tons as the

strain in A a, Fig. 88, corresponding with our tabulation, Art.

127.

Tablefor all the Moments.

All the moments may be found from a simple table similar

to the following, which will be found perhaps preferable to the

triangle of Art. 138.

TABLE FOK MOMENTS. UNIFORM LOAD IN SINGLE SPAN.

Support counted from Left. Denominator A.
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This table, it will be observed, can be produced to include

any number of supports desired. The law of the Clapeyronian

numbers runs both horizontally and vertically. The smaller

table gives the denominator, the larger the numerator of the

coefficient of w P for any case. Thus, for seven spans we have

four times 2911 11644 for the common denominator. For

load on second span from right, moment at sixth support from

627
left, we have then directly w P

;
for fourth support from

45
left, w P, the same as above.

For load in fifth span from right, the table gives us at once

1 P\Q A1 9

'~ 11644^ and +
11644

W ^ f r suPP rts *' 2 and 3 "

For the other supports, since if now we were to continue count-

ing from left we should have to pass a loaded support, we
must count the loaded span from left, and count the supports
in reverse order. For fifth support from right, then, the num-

ber required is at intersection of III. (instead of Y.) and 5, or

jTfi44-
w ^' as ^oun(^ above. Thus the tables above cover all

cases, giving supports at loaded span itself, as also right and

left of this span. We have only to remember to count sup-

ports from left, and loaded span from right, for all supports

left of load, and inversely for all supports right of load. [The
reader should always, when using Table, make a sketch of the

given number of spans, indicate the loaded span, and number
the supports.']

141. Reactions at Supports Live Load over single Span.
For the reactions at ends of loaded span, we have

1^ =6^ + 1^ R^^eMpi+i^j.
For reactions at extreme ends, when end spans are loaded, or

when r = ' ~

When any other spans are loaded, or

when r >1 and <s R = -
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For all other reactions,

Thus for load covering the first span of seven spans, we find

from the known moment, given in preceding Art, for the fourth

support,

6 x 56 336

For load over third span from left,

x 616 1 6607

For load on sixth span,

45 270

Hence, total reaction at fourth support for first case of loading

. 7213

11644
w I. In the same way we can find the reactions at the

first, second, and third supports, for the second case of loading,
as shown in Fig. 87, and then can easily find the shear at any

support, as D, by taking the algebraic sum of all the reactions

and loads between that support and the end.

We can now, therefore, find the shear and moment at D, and

thus determine the strains in the span D E for both cases of

loading, as given in our tabulation, Art. 127.

142. Triangle for Reactions Single Span loaded. If

we calculate from our formulae the reactions at supports of

loaded span, for a number of spans, we can tabulate the results,

as on next page, in a triangle, where each number is four

times the preceding minus the one preceding that, all in the

same diagonal column.
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REACTIONS AT SUPPOETS LIVE LOAD OVER SINGLE SPAN.

Coefficients of w I given in triangle.

This triangle, similar to the preceding one for moments,

gives the moments at the left support of the loaded span, when

we count from left to right. Counting the other way, we have

the reactions at the right support of the loaded span.

Thus for six spans, fourth span from left loaded, we count

1770
four from left in horizontal line for VI., and find w I for

6LZO

reaction at left support. For reaction at right, we count four

1764
also from right end, and find w I.

143. Reactions in unloaded Spans Load over one Span
only Table. The formulae of Art. 141 for the reaction at

any unloaded support are sufficiently simple and easy to apply ;

still we may, if thought preferable, also draw up tables for

these, to be used in connection with the triangle of the pre-

ceding Art. The following tables give the coefficients of wl
for the reactions not adjacent to the loaded span. The denomi-

nator of the fraction is to be taken from the triangle above; the

tables referred to give only the numerators.
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REACTIONS AT UNLOADED SPANS.

Supports counted from left. Supports counted from right.

Tables give the numerators of the coefficients of w I. Denominators from

triangle on page opposite.

These tables may be carried out to any desired extent by the

law of the Clapeyronian numbers in the vertical columns.

As an example of their use, take seven spans load in fifth

from left, that is, in third from right. (Make sketch.) From
the triangle we take the common denominator 11644. Then

from first table in the horizontal column of III.' we have for

left end

11
W

I, Rg ==
66 264 990

"11644

For supports right of loaded span, we must take the second

table, and look in horizontal column for V. We thus obtain

153 918
wl,11644 11644

wl.

We can now, therefore, either by our tables or formulae, or

both, find the moments, reactions, and shearing force at any

support for both cases of loading given in Fig. 87. The reader

will do well to take the example of Art. 127, and find the mo-

ment and shear at D for both cases, and thus check our results

as gi^en in Art. 127, viz., + 788.2 ft. tons and - 382.5 ft. tons

for the moments, and 14.63 tons for shear.
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144. Concentrated Load in any Span Moments at Sup-

ports. It only remains to consider a concentrated load at any

point. If the formulae for this case do not prove to be too com-

plex or intricate for practice, we may consider the case, so far

as equal spans are concerned, as fully solved.

We have seen that the " theorem of three moments,'" so far

as uniform loads are concerned, enables us to solve the case

thoroughly. It is more especially as regards concentrated or

partial loads that the opinion widely prevails as to the impossi-

bility of obtaining practically useful formulae
;
and this, not-

withstanding that it has been shown by Bresse, WinJder, Wey-

rauch, and many others, that the theorem of three moments

can be extended to include concentrated loads also.

The Theorem as thus extended is as follows:

Mm_ x lm_, + 2 M,, [k_t + Zm
]
+ Mm+1 Zm =

^'(4-i - 4
)
+^ (s 4

- s ^ +4
*in-l \ / &m \ /

where, by our notation (Fig. 89, Art. 130), a' and a are the dis-

tances of Pm_!, Pm ,
from the nearest left supports.*

By the aid of this theorem, we are able to deduce the follow-

ing formulae :

For moments left of r, and including support r, that is

when m < r + 1, 1^ = - ^ ACs~r+2 + A '

c
-'+i.

<Wi

For moments right of r + 1, including support r + 1, or

, A. c, -f- A' c, . iwhen m > r, M^ = cs_m+2
cs+l

In these formulas, c represents, as above, the Clapeyronian

number, and A A' stand for the following expressions :

A = Pl(2k-.3tf + P) A.' = Pl(k-tf),

k being the fraction
^,

or the ratio of the distance of the weight

P from the left support, to the length of span.
145. Illustration of Application of above Formulae.

These formulas are by no means difficult of application. Let

* For demonstration of this Theorem, see Supplement to this chapter.
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us take the example of Art. 127 (Fig. 88), where P = 40 tons,
I = 80 ft., and a becomes 10, 30, 50 and 70 ft. respectively.

First, as regards the expressions A A' :

These become in the present case 3200 (2 ~k 3 Z? + yfc
8

) and
3200 (k F) respectively, where & has the values $, f, ,

and f
successively. Now as the denominator is in each term always
the same, in the first 8, in the second 64, in the third 512, and

only the numerators of the values of Jc vary for the different

positions of P, we may put these values of A and A' in the

forms

or

A = 800 A 150 A2 + 6.2305 A8
,

A' = 400 h - 6.2305 A3
,

where h has successively the values 1, 3, 5 and 7, for P
1?
P2,

P8 and P4 respectively. These are then the practical formulae

for substitution in the present case.

We can now apply the formulae for M above. Thus, sup-

pose for seven spans we have P8 in the fourth, as shown by

Fig. 88, and wish the moment due to P3 at the fourth support
D. Then s = 7, r = 4, and m =

4, and we have

or, referring to Art. 136 for the Clapeyronian numbers,

-56A+ 15 A' 840 A -225 A'M4
= - 15

2911 2911

Now for P3 we have Jc = -, or h = 5, and therefore
o *

A = 1028.81 A' = 1221.2.

Hence

5894 = 202.4 ft. ton,

This divided by 10 = height of truss gives tension in A a =
20.2 tons, nearly what we have already found in our tabulation,

Art. 127.

In like manner we may easily find the moment at D due to
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every weight, or by giving the proper value to m in our for-

mulae, we may find the moment at any support we please.

The moments at the supports of the loaded span being found,

the moments at the other supports may be obtained according

to the rule given in Art. 140 for uniform live load over single

span.

146. Triangle of Moments. The reader may also by the

aid of the formulae above form a triangle similar to those al-

ready given, containing the coefficients of P I for the moments

at the supports of the loaded span.

Thus for two spans, for moment at left support, we should

obtain and \ [2 k 3 #* + 1P\ P I, and this last value will

run down the right diagonal column without change, except in

its coefficient ^, which will become successively T\, ^f, -/$,

for three, four and five spans respectively. For three spans
we shall have, 0, -^ [7 k - 12 # + 5 #] P

I, and, as above,

T
4
? [2 k 3 T& + ^] P L The second of these will run down

the second diagonal column from the right without change,

except in its coefficient, which will be -fa, -$, etc., for five

and six spans.

So, for four spans we have

, -fa [26 k - 45 & + 19 #] PI, ^ [7>fe
- 12 # + 5 #] P

I,

for moments at left, for load in 1st, 2d, 3d and 4th span re.

spectively. The second of these runs down the third diagonal
column from the right, changing coefficient as above.

If the triangle be now drawn, and these expressions properly

inserted, we shall observe that along the diagonal columns

sloping down and to the left, the values of k in the parenthesis,
as also the denominators of the outside fractions, follow the law

of the Clapeyronian numbers.
'

The numerators of these out-

side fractions in these columns remain unchanged. The outer

left column is of course always zero.

-Another triangle must be found for moments to the right of

load, and then the moments at the unloaded supports may be

found by the rule of Art. 140.

All the moments may also be found from a couple of tables

formed similarly to those of that Art. It is unnecessary to

give such tables here. From the above the reader can form
them for himself, if desired. The formal SB for moments given
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above are so simple, and with a little practice so readily worked,
that tables are scarcely needed.

147. Reactions at Supports for concentrated Load in

single Span. For the reactions we have the following formulas :

1st. Abutment reactions.

When the end span contains the load, that is, when r = 1 or

r = s,

When the load is not in the end spans, i.e., when r > 1 and

r<s,

Ri= _M? R i= _*^
I

'

I

2d. Reactions at supports of the loaded span itself (not end

span),

3d. for all other reactions,

The above formulae, in view of what has been said in Art.

145, are sufficiently simple to need no illustration.

For load in fourth span of seven spans we find easily for the

reaction at left support,

R4 = 2^j [2911
-3k- 6387 & + 3479

#].

This can be put in working order as explained in Art. 145,

and the reader can check the results which we have given in

the example of Art. 127 for himself.

A triangle and two subsidiary tables for the reactions at the

supports of loaded spans may be formed similarly to the tri-

angle and tables of Arts. 142 and 143. We leave this for the

reader to accomplish for himself, if thought desirable.

14. Shear at Supports of loaded Span. We are now in

possession of all the formulae necessary for the complete solution
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of a girder over any number of supports, all spans equal. For

any desired span, we can find the maximum positive and nega-
tive moments by the cases of Fig. 80, as also the moments due

to various positions of the weight P. We can also find the re-

actions at all the supports due to these cases. From the reac-

tions and known forces, we can then easily find the algebraic

sum, or shear, at any support. The moment and shear at any

support due to any case of loading are, as we have seen, the

quantities required for calculation.

Now it is not necessary to find all the reactions in order to

obtain the shear. The moments at the supports being known
}

we can find the shear directly.

Thus, for concentrated load in a span lt (Fig. 89) we have for

any point x

M, - Sr x + P (4
-

a)
- m =

0,

where Sr is the shear at the left of .the loaded span, and m is

the moment at any point. We see at once that, to determine

this moment, it is the shear that we wish, and not the reaction.

For a uniform load we have similarly,

If in both these equations we make x^^m becomes M
and we have

where q = P (1 Jc)
for a concentrated load, and

q>
= - for

uniform load.

In an unloaded span at the left support, or when m < r,

<] disappears, and we have

whenm<r, Sm =

For the shear at the right support of the loaded span we have

simply Sr P or Sr w
I, and hence
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where q'
= P k for concentrated load, and q

r = W T
for uni-

form load. For any other span at the right support

Thus, Sm and S'm are the shears at any support just to right and
left of that support respectively. The reaction at any support
is then Rm = Sm + S'm.

The moments, then, at two successive supports being known,
we can readily find the shear at any support, and these two,
moment and shear, we repeat, are the quantities required for

calculation. The reactions, and the tables for the reactions

above, are only useful as enabling us to find the shear. It is

this last, together with the moment at the support, which gives
us the moment m at any point of the span in question, as is

evident from the above equations. It is only in the case of the

simple girder that the reactions at the ends are the same as the

shears. In the continuous girder only the latter should be

used, except for ends of end spans, where the two are identical.

We have only to remember, then, that the shear at any support
is the algebraic sum of all the reactions and loads from that

support to the nearest extreme end, and then, knowing these

reactions and loads, the determination of the shear is easy.

We might give tables for shears directly, as above, for reac-

tions; but this is unnecessary. Having taken the reactions

from our tables already given, and found the moments either by
our formulae or tables, we can then find the shears both by means

of the reactions and also directly from the moments them-

selves, and thus check at once the accuracy of our determina-

tion of both. From what has already been given, the reader

can easily construct tables of shears similar to those already

given for reactions for himself, if desired.

149. Recapitulation of Formulae Continuous Girder
over any Number of Level Supports, all Spans equal.*
For notation, see Art. 130, Fig. 89.

* These formulae are given in similar form in Winkler's ' ' Der Lehre von

der Elasticitaet und Festigkeit," Art. 144, p. 122. They were also indepen-

dently deduced by Mr. Merriman, to whose kindness we are indebted for much

of this chapter. The above methods of tabulation were communicated by

him, and are given in no treatise upon the subject.
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1st. Moments at supports.

A <?_-}- A' c, .1

when m > r, M^ = - c^^ -
-^5

in which Tc ~, and A = P I (2&
- 3#+#), A' = P J (jfe- #)

for concentrated loads, and A = A' = \ w 1? for a uniform

load over any one span.

2d. Shear at the supports.
In the loaded span, to the right of the left support,

8, =

To tie left of the right support,

ID the -wwloaded spans, to the right of the left support,

_Mm -Mm+1

5
To the left of the right support,

g, _ Mm Mm_1~~
For the reaction at any support, E^ = S'm -f Sm.

3d. Reactions.

(a) Abutment reactions :

when r = 1, 1^=-^ + ^; when r = *,
R8+1

= - + $';

when r > 1 and < *, Rx
= ?^ Rg+1 = _ 8

.

^ Z

(5) Reactions at supports adjacent to loaded span (when this

span is not an end span) :
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(c) All other reactions :

^=6^.
'

;:

Where for concentrated load,

A = PZ(2&-3#5 + #3

) A.' -pl(Jc-.^)

2 = P(l-&) q'
= P&.

For uniform load in single span,

A = A' = ^ 10 Z
2
, q = q'

= %wl, Jc being always ,
and

Cl = c, = 15 GI
= - 780 do = 40545

c2 = 1 c5 = - 56 cs = 2911 <?n
= - 151316

Cg = - 4 c6 = 209 c9 = - 10864 c^ = 564719, etc.

"We give also, for sake of completeness, although not needed

for calculation, the formulae

FOK UNIFORM LOAD OVER ENTIRE LENGTH OF GIRDER.*

Moment at any support,

Reactions at abutments,

^ = H, = ? ,-%T i
s+2 o,

Reactions at other supports,

where, as before, A = J^^, q ^wl,

and the numbers indicated by b are as follows :

h = 54 = - 3 58 = - 41 l>a = - 571

Ja = 1 J5 = - 4 J9 = - 56 5tt = - 780

58 = 1 56 = + 11 5io = + 153 etc.

57
= + 15 bu = + 209

* The above equations were first given by Mr. Merriman, in the Jour.

Franklin Institute, April, 1875.
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These numbers change signs by pairs alternately, and every
other one follows the law of the Clapeyronian numbers. In

fact those with the odd indices are those numbers, and the even

ones, commencing with 0, 1, 3, follow the same law.

The above comprises all the formulae thus far given, in a

shape very convenient for reference. The reader who has fol-

lowed attentively our explanation of their use, needs nothing
more to solve the case of equal spans completely. The expres-

sions, however, for the reactions are unnecessary. As we have

seen from Art. 148, we need only the moments and shears at

any support in practical calculations. The practical formulae

necessary and sufficient for any case will be found in the next

Art.

15O. Girder continuous over any Number of Level Sup-
ports ; Symmetrical with respect to the Centre, and with
two variable end Spans n I and p I on each side. [Fig.

89.]*
Moments at Supports :

when i <+!, IV^ = -%
A q-' + ' +

.

A '

C*-r+1

l. Gs m4-2 A CT + A' C, . 1

when m > r, Mm = 8~m+2-*-=?- r+1
.

I p cB_i + 2 (n + p) ca

Shear at Supports loaded span,

g/m =
Mm -

M,,.^

For uniform load,

A = A'= J w tt ; q q'
=

-| w lt.

* Jour. Franklin Institute, March and April, 1875.
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For concentrated load,

A = P (2 k - 3 # + If), A' = P (#-

and q = P(l k\ q' P k, k being

The quantities denoted by c are also as follows

d = 0, <% = 1,

p (14 + 12 j?)
- n (14 + 16 ff)

~7~
_ p (52 + 45 p) + K, (52 + 60 j?)

~T~
_ -^ (194 + 168j>)-tt (194 + 224 p)

_ j> (724 + 617 j>) + 7i (724 + 836^)
c8 , etc.,

following the law of the Clapeyronian numbers.

151. Application of the above Formulae. The for-

mulse of the preceding Art. comprise in a most compact form all

the formulae hitherto given, and are all that is. necessary for the

complete solution of any practical case.

Thus, by making p unity and retaining only n
t
we have

the case of a girder with variable end spans n
I, of different

length from the others, which latter are all equal and repre-

sented by 1. The reader will find no difficulty in using the

above. For any particular case, when w or P and
I, k, n and

p are given, A, A', q and q' can be easily found, and the prob-

lem is solved. If n andp be both unity, we have the formula

for all spans equal. The expressions for 3^ will then reduce

to those already given in Art. 144. Thus, in Art. 145 we have

already found for seven equal spans, I 80 ft., load P = 40

distant 50 ft. from left
;
the moment M4

= 202.4. Now, from

our formulae above, we find for MCg making m = 5, 8 = 7,

r = 4; Ms = 272.8.

Then by our formulae for shear, S4 = + 14.12, or nearly*

15
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what we have assumed in Art. 145. We may also find the

same shear by finding the algebraic sum of the reactions at

ABC and D from the formulae of Art. 147. This is more

tedious, and, as we see, unnecessary. The moments can be

easily found, and then the shear obtained directly from these.

We must bear in mind that lt always denotes the span the

load is upon, whether nl,pl, or
I, while lm is any span in gen-

eral, according to the value of m.

152. Continuous Girder with fixed ends. It is worthy of

remark that if n be made zero in the formulae of Art. 149, we
have a girder with fastened ends and variable end spans p I.

If in addition^? is unity, then all the spans become equal. We
must, however, remember that when we thus make n 0, the

number of spans is s 2 instead of s, as before, and the end

spans are p I
;
the end supports are also 2 and s instead of 1

and s + 1.

153. Examples. As illustrations of the use of the formulae

of Art. 150, we give a few examples.
Ex. 1. A ~beam of one span is fixed horizontally at the ends.

What are the end moments and reactions for a concentrated

weight distant k \from the left end?

Here the two outer spans of three spans are supposed zero.

Therefore, 5 2 = 1, and s = 3. The left end is 2 instead of

1, and the right end 3. Hence, r = 2,p = 0, and n = 1 in the

formulas of Art. 150. We have, then,

d = 0, c2 = l, GS = 2, c4 4, and. hence,

for m = 8, M
3
= *

c2 + 2

or, inserting the values of c above,

For a concentrated load, A = P Z
2
(2 k 3 P + W),

and A! = PV(k-tf}. Hence, M.J = Pl (k
- 2t? + #),

and M8
= P I (tf

-
IP).

For the reaction at the left end, which is in this case the

same as the shear, we have
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52 = M2 ~ Ms + P (1
-

fy or S2
= P (1

- 3 Jf + 2 If),

53
=^"^ + P Jk or S3 = P (3 A? - 2 If).

i

For a load anywhere, we have simply to give the proper value

to &, and we have at once the reactions and moments. Thus,
for a load at \ the span from the left, If, =

,
and

S2
= ff p,

ss
= A p

;
M2

= ^PZ}
M

3
=

For a load in centre, Jc =
,
and

[Compare Supplement to Chap. VIL, Arts. 16 and 17.]

Ex. 2. For a uniform load over the same beam, what are the

end moments and reactions f

We have simply to introduce .the proper values of A and A'

for this case, and we have at once

IVL, = ^ w V Mg and S2
= S3

= |wZ.

Ex. 3. A girder of three equal spans is
" walled in "

at the

ends, and has a concentrated load in thefirst span. What ar-e

the moments, shears, and reactions at the ends and intermediate

supports f

In this case, s 2 = 3, and hence * = 5, r = 2, n = 0,

p = 1, and therefore

TVT - 2 A 5 + A'ct

4 ,.
I c, + 2 c5

'
J c4 + 2 c5

'

also, ^ = , Q,
=

1, <^ = 2, c4 = 7, c5 = 26, etc.

Inserting these values and the values of A and A' for con-

centrated load, we have

33^), MS = PZ (# - #*),

,
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Observe that the moments are positive at each end of the

loaded span and alternate in sign from that span, varying as

the numbers 1, 2, 7, or as the numbers c [Art. 140]. A positive

moment always denotes compression in lower fibre. For the

shears we have, then, from Art. 150,

S, ^ JL
(45

- 99 # + 54 #% S'3 = ^ (99 # - 54 #).

53 =
JL (27 ^ - 27 #), S'4 = ^ (- 27 # + 27 #),

54
= ^ (- 9 # + 9 #), S'5 = ^ (9

" - 9 V).

For the reactions, then,

R, = S2, R, = S', + S3
= L (126 # - 81 #),

Observe that the reactions as also the shears are positive at

the supports of the loaded span, and alternate in sign from

those supports. A positive shear or reaction acts always up-
wards. Disregarding, then, for the present, the weight of the

beam itself, it would have to be held down at first pier from

right end.

If the weight is in the centre of first span from left, k = ,
and

^ =m p^^ =m p ^ M^-m p ^ M^m PL

K _, _216 171 36 9

'^-360' R3=::
360

P
' R4 =~360

P
' RS = 360*

The reactions add up to P, as they should.

If P - 100 tons, and I = 15 ft., we have

M2
= 237.5 ft. tons, M3

= 87.5, M4 = 50, M5
= 25 ft. tons.

R2
= 60 tons R

8
= 47.5, R4

= -
10, Rg = 2.5 tons

;

S2
= 60 tons, S'3 = 40, S3

= 7.5, S'4 = -
7.5,

S4 =-2.5, S'B = 2.5.

Ex. 4. A beam ofJive spans, free at ends ; centre and adja-
cent spans 100 ft., end spans each 75 ft., has a uniform load

extending over the whole of the second span from left. What
are the moments at the ends and supports f
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Here * = 5, n \,p \^ r = 2; therefore, from Art, 150,

and d = 0, <fe
= 1, <% = -

J, c4 = 13, c5 = - 48.5.

Since, then, A = A' = for uniform load, we have

Z
2
,
M

4
= -

,
M

6
= 0.

If the load is two tons per ft, w 1? 20,000, and

M! = 0, lYL, = 414.7, M3 = 1036.6, M4
= - 279.5, M5

= 79.7.

Find the shears and reactions at each support.
Ex. 5. A beam offour equal spans, has the second spanfrom

left covered withfull load. What is the moment and shear at

left of load f

Ans. M2
=

s-VV w l*> sa
= Hi w l-

What at right of load ?

Ans. M3
=^ w

I, S's = if| ^ ;.

What are the formulae for concentrated load ?

Ans. M2
= ^ [26 A - 45 # + 19 *] P

I,

S2
= [56

- 58 * + 3 -
P],

S',= [58 -3 #2 + F]^-

Examples might be multiplied indefinitely.

The above is sufficient to show the comprehensiveness of our

formulae, and the ease with which results may be obtained,

which, by the usual methods, would require long and intricate

mathematical discussions. The points of inflection and the

deflection may also in any case be easily determined, and gen-
eral equations similar to the above deduced, but, as we have

seen, the above are sufficient for full and complete calculation.

154. Tables for moments. From the formulas of Art. 150

we can easily find the moments for both uniform and concen-

trated load in a single span for various numbers of spans. If

these results are tabulated we, shall obtain tables from which
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the moments may be at once taken. The formulae for the

shears are so easy when for any case the moments are known,
that it is unnecessary to give tables for these.

The reader will do well to make himself perfectly familiar

with the formulae by calculating the moments for various cases,

and comparing with the following tables. We give the prac-

tical case of variable end spans n I and equal intermediate

spans I.

TABLE FOB MOMENTS UNIFORM LOAD OVEK ANY SINGLE SPAN.

Coefficients ofwVfrom table. End spans n 1.

Supports counted from left.

The above table can be easily extended to include any num-
ber of spans. It is precisely the same as the table of Art. 140,

and, in fact, includes that table. "We have only to make n = 1

and we have at once the table for equal spans. Suppose we
take five spans, load in second from right. From the smaller

table we have at once for the denominator of the coefficient

of w 1?,
4 (45 + 104 n + 60 n2

). Then from the other table

we have at support 1 from left Mx
=

0,

at support 2, Ma
=

4 (45 + 104 n + 60 ?i
2

)'
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at support 3, M8
= (1 4- 2 n) (2 + 2

ri) w P

4(45 + 104 n + 60 rc,
2

)'

If the load were in second span from
left, and supports to

right of load were required, we have simply to count the sup-

ports the other way in the table.

Thus, M, = 0, M5
=

in first case, etc.

sa,no as

TABLE FOE MOMENTS CONCENTRATED LOAD IN ANY SPAN, = j-
IT

End spans n 1. Coefficients of P lrfrom table.

The above tables give only the moments at the supports of

the loaded span. The Roman numerals L, II., III., etc., denote

the number of this span from left, and I'., II'., III'., the num-

ber of the loaded span from right. The expression for the

moment at left support is

M =
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For the right support,

M'ssPZ, fyjfe.

where the expressions for 0, 0', A, 7, 7', ft, ft', a, a', are to be

taken from the tables and inserted.

Thus, for five spans load in second span from right, or third

from left, we have at once A = 46 + 104 n + 60 n\ For the

moment at the left support, to find 0, we must take horizontal

line for III., and thus find (2 + 2 n). For 7', ft' and a' we
must take IF., and find, therefore, 3+4 n, 2 + 272. and 3 + 2 n.

Hence, moment at left support is

46+ln+60

For moment at right support, we must take line II'. for 0' and
line 111. for 7, ft and a, and hence

"-45+104 n+QOn

Since the span in question is not an end span, 1T
= I and

*=.
For a load in an end span, use the formulae of Art. 150.

For a load in middle span of five spans, i.e., third span from

each end, we have

M=M'= i5+lM^60n.O+" ) *-8 <7+8 "> *'+ <9+1 > **}

M'=M-= (3+"' *+s (2+3t>) 4'- (9+1 *> 4>

When ^ = -, both these moments become, as they should, equal
2i

for any assumed value of n, as the reader may readily prove by
insertion.

For the other moments not adjacent to the loaded span, the

rule of Art. 140 holds good.

Thus, M1
= 0, M^i M,, IVl^^M,,

M4
=
|
Mr, etc,
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and similarly on the other side, ,

M8
= 0, M^ = *

M, +1 ,
M

g_2
= M,^, etc.

We must remember always to give the proper signs to the

moments, viz., positive for extremities of loaded span, and

alternating each way from these for the others. From the

formulae of Art. 140 we can then easily find the shear at any

support.
155. Continuous Girder Level Supports Spans all dif-

ferentGeneral Formulae.* The preceding formulae com-

prise the case of one or, at most, two variable end spans. We
give below the general formulae for all spans different. These

formulae include all the others as special cases. Thus, if we
make all spans equal, we have the formulae of Art. 149. If end

spans li and la are made zero, and we take the number of spans

equal to s 2, and first support 2, we have the continuous gir-

der with fixed ends, in which the intermediate spans may or

may not be equal, as we choose. If we make \ or la =
alone, and s 1 = Ifo. of spans, we have a continuous girder

fixed at one end only. In short, the formulae comprise the

entire case of level supports. They are as follows :

Let s = number of spans, Z^length of loaded span, k =
,

a being distance of load from left support ; ^, ^, 4 4-u ^
the lengths of the various spans counting from left.

Then, when m < r + 1,

M = G
A

'm + 2 ft + 4)
when m > r,

A gr + B <?r+1

For the shear at supports of loaded span,

r

For unloaded spans,

* These formulae were first given by Mr. Merriman, and may be found in

the London Phil. Magazine, Sept., 1875.
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For the reaction at any support, J^ = S'm + Sm. In which

we have always k =
j , q = P (1 &), < = P k.

IT

A = P 4
2

(2 k - 3 ff + F) and B = P Zr
2

(A
- #) for concen-

trated load
;
and q = q'

= w 1
T)
and A = B = J ^ 4

2 for uni-

form load entirely covering any one span.
Also for c and d we have the following values :

Ci =0,

or, generally,

or, generally,

As an illustration of the use of the above formulae, let us
take three unequal spans, load in the.first. Then s = 3, r = 1,

* = T- F r moment at second support, m = 2, or m > r
;
henc

ivr ^
A Cl + B Q>
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But Ct = 0, 4j = 1,

hence, since B.= P I? (k
-

&),

If in this we make l = 4, we have the extreme spans eyual,
and then

If we make in this, again, ^ = 4, we have for a spans equal

4P^-^)
~T5
--

'

just what we should have from Art. 149.

For the reaction at the end support, we have

or, since Mx
=

0,

For all spans equal, or ^ = 4 = 4 ^ this reduces to

Si =^ (15
- 19 k + 4 #),lo

as we should have found from Art. 149.

Ex. 1. A beam of one span is fixed horizontally at the

right end / what are the reactions and the moments for concen-

trated load ?

Here s 1=1 or s = 2, r = l, 1^
= 0, and from the for-

mulae of Art. 155, G! = 0, 2
=

1, and d^ = 0, d^ = 1, d^ = 2,

A GI + B B&i

or

= - + P (1-*) = (2
-
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Ex. 2. A learn of three spam of 25, 50 and 40 feet respec-

tively is fixed horizontally at the right end, and has a concen-

trated load of 10 tons at 12 feet from the third supportfrom
left.

What are the moments at the supports f

Here \ = 25, 4 = 50, 4 = 40, I,
= 0, P = 10, * ^ = 12,

k = 0.3, * - 1 = 3. s = 4, Z4
= and r = 3. Also, d = 0,

c.2
= 1, G,

= - 3, <?4
= 12.25 and 4 =

0, 4=1, 4 =
2,

^ = 6.4, 4 = - 32.4.

When, then, m < 4,

Inserting k = 0.3 and the values of c,

form = 1, Mi = ;
m =

2,M2
=- 8.20

;
m = 3,M3

= 24.62
;

for n = 4,

M4
=A (_ 3 A + 12.25 B) = ?J(6.25

* + 9#- 15.25 #),

or M4
= 42.29 ft. tons.

Find the shears. Also moments and shears for uniform load

over third span.

Ex. 3. A learn offour spans \ = 80, 12
= 100, 13 = 50,

14 = 40 ft., free at the ends, has a load of 10 tons in the sec-

ond span at 40 ft.from left. What are the moments ?

Here =
4, ^ = 0, AJ

=
1, %= 3.6, c4 = 19.6, c5 = -83.7,

4 = 0, 4 =
1, 4 = -

3.6, 4 =
10.3, 4 = -

41.85, / = 2.

For m<3, M,, = -

Hence, M! =" 0,

= 88.56

Find the shears. Also find the moments and shear for nni

form load over second span.
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156. Thus we see that, as in Art. 150, a few short and sim-

ple formulae, which may be written on a piece of paper the size

of one's hand, are all that we need for the complete solution of

any case of level supports whether the spans be all equal or

the end ones only different, or all different
;
whether the girder

merely rest on the end supports or be fastened horizontally at

one or both ends. We have only to remember that a positive
moment causes tension in upper flange at support, arid there-

fore compression in lower; inversely for negative moment.

Also, that a positive shear acts upwards, and a negative shear

downwards. Also, that both moment and shear are positive at

supports of loaded span, and alternate in sign both ways. This

is all that we need to form properly the equation of moments

at any apex, and determine the quality of the strains in flanges

and diagonals. We can thus solve any practical case of framed

continuous girder which can ever occur with little more diffi-

culty than in the case of a simple girder.

Thus, for the span DE (Fig. 87) we have only to find the

moments at D and E due to every position of P in the span
D E, and the corresponding shears at D. These once known,

and, as we have seen, they can be easily obtained from our

formulae, we can find and tabulate the strains in every piece
due to each weight, as shown in Art. 127. An addition of these

strains gives, then, the maxima of each kind due to interior

loading.

We have, then, to find, in like manner, the strains due to the

two cases of exterior loading as represented in Fig. 87. From
the four columns thus obtained, we can deduce the dead load

strains, and then finally the total maximum strains of each kind

for every piece. [See, for illustration of the above, Art. 127.]

Thus, the whole subject is solved with the aid of but four

simple formulae, and for a problem generally considered impos-

sible by reason of its
"
complexity," our results will, we trust,

be found sufficiently simple and practical.

In view of the fact that the necessary formulae for practical

computations have been often given in the later works of

French and German authors, although perhaps never before

in so compact and available a shape as above, it is indeed sur-

prising that they should have been so completely ignored by

English and American writers.

The tables and formulae which we have given will, we trust,
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bring the subject fairly within the reach of the practical engi-

neer, and should they be the means of calling more general at-

tention to this important class of structures, will not, we hope,
be considered as out of place in the present treatise.

For the influence of difference of level of the supports, as well

as for variable cross-section and the relative economy of the

continuous girder, see Arts. 17 and 18 of the Appendix.



ART. 1.] SUPPLEMENT TO CHAP.

SUPPLEMENT TO CHAPTER XIII.

DEMONSTRATION OP ANALYTICAL FORMULAE GIVEN IN TEXT.

IN the following we shall give the complete development of the general
formulae of Art. 155. As these formulas include, as we have seen, all the

others as special cases, it is sufficient to show how they are obtained in

order to enable the reader to deduce all the others.

1. Conditions of Equilibrium. In the rth span of a continuous

girder, whose length is ^ (see Fig.), take a point o vertically above the rth

support as the origin of co-ordinates, and the horizontal line o I as the axis

of abscissas. At a distance x from the left support pass a vertical section,

and between the support and this section let there be a single load Pr

whose distance from the support is a.

Now all the exterior forces which act on the girder to the left of the

support r we consider as replaced, without disturbing the equilibrium, by
a resultant moment Mr and a resultant vertical shearing force ST. This

moment is equal and opposite to the moment of the internal forces at the

section through the support r
;
while the vertical force is equal and oppo-

site to the shear.

Not only over the support, but also at every section, the interior forces

must hold the exterior ones in equilibrium, and therefore we have the con-

ditions :

1st. The sum (algebraic) of all the horizontal forces must be zero.

2d. The sum (algebraic) of all the vertical forces must be zero.

%d. The sum (algebraic) of the moments of all the forces must be zero.

Thus, for the section x, we have from the third condition

2 M = Mr
- Sr x + Pr (x

- a)
- m = . . . . (1)

where m is the moment at the section. From this we have

m = Mr-Sr a! + Pr (a; a) (2)

If in this we make x=lr,m becomes Mr +i, and we thus have for the shear

just to the right of the left support of the loaded span
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For an unloaded span the weight P disappears, and

Mm Mm i

For the shear just to the left of the right support of loaded span,

For unloaded span, the weight P disappears, and

S' = Mm Mm_i

S'm is then the shear to the left of any support m, and Sm that to the

right. The reaction at any support is therefore

Km == S m. "4* Sm

These are the formulae already given in Art. 148.

2. Equation of the Elastic L,ine. We can now easily make

out the equation of the elastic line for the continuous girder of constant

cross-section, or constant moment of inertia.

The differential equation of the elastic line is,*

(3)

where E is the coefficient of elasticity, and I the moment of inertia.

If now we insert in (3) the value of m, as given in (2), we have

tfy _ Mr 8r x + Pr (x a)

da?~ El

Integrating f this between the limits x = and x, and upon the condition

that x cannot be less than a, the constant of integration
-~ = t, = the tan-

gent of the angle, which the tangent to the deflected curve makes with the

horizontal at r and we have, since we must take the IP, (x a) simul-

taneously between the limits x = a and a; for x = and x

If we take the origin at a distance ht (see Fig.) above the support r,

then integrating again, the constant is h
t ,
and we have

,

-">' ... (4)

which is the general equation of the elastic curve. If in this we make

* See Supplement to Chapter VII., Art. 12.

f Notice that when x 0, a 0, and hence (x a) = also.
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x It, y becomes hi+i- If als we put - = k, or a = kl[, and insert also
*r

for ST its value as given in (2 a), we find for tr

We see, then, that the equation of the curve is completely determined,

when we know Mr and Mr+1 ,
the moments at the supports. These, as wo

shall see in the next Art., are readily found by the remarkable "theorem

of three moments," already alluded to in Art. 144.

3. Theorem- of Three Moments.

In the Fig. we have represented a portion of a continuous girder, the

spans being l\ h . . . ?r, etc., and the supports 1,2 ... r, etc. Upon the

spans l[_\ and 1T are the loads Pr_i and Pr, whose distances from the near-

est left-hand supports are k lr_\ and k 1T ;
k being any fraction expressing

the ratio of the distance to the length of span.

The equation of the elastic line between Pr and the r + 1 th support is

given by (4), and the tangent of the angle which the curve makes with the

axis of abscissas is given by (3 a). If in (3 a) we substitute for Sr its

value from (2 a), and for tT its value from (5), and make at the same time

x = 1T, then becomes tr+ \, the tangent at r + 1, and we have
a x

_
i [Mr

Mr+1 zr
- pr

Remove now the origin from to n, and we may derive an expression

for tr by simply diminishing each of the indices above by unity ;
therefore

tt
= r_! Zr-l + 2 Mr ^-Pr.t Zr'_i (*-

Now, comparing these two equations, we may eliminate the tangents,

and thus obtain

2Mr (^_!

6 E I

Mr+l Z, =

V (2 *-

which is the most general form of the theorem of three momenta for a

girder of constant cross-section.

When the ends of the girder are merely supported, the end moments are,

of course, zero. Then, for each of the piers, we may write an equation of

the above form, and thus have as many equations as there are unknown

moments.
16
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4. Determination of the Moments Supports all on
level. When all the supports are in the same horizontal, the ordinates

A,, h-,, Jir, etc., are equal; and hence the term involving E I disappears,

and we have simply

Mr_i Zr_i + 2 Mr &_! + lr) + M^! Zr =
Pr_i V_i (*

- #) +Pr Zr
2
(2 k - 3 # + *),

as already given in Art. 144.

Now let s = number of spans, and let a single load P be placed on the

rth span. [PL 23, Fig. 89.]

From the above theorem, since Mi and Ma+ i are zero, we may write the

following equations :

2 M 2 (Zi + It) + M 3 Z2 = ;

+ 2M8 (Z.- + Z3) + M4 Zs = 0.

Mr_i _! + 2 Mr (Zr_l + Zr)

P Zr
2
(2

-

Mr Zr

J^r+1 ?r =
= A;

+ Mr

Ms_2 Zs_2 + _i (Zs_2 + Zs_0 + Ms Za_! = ;

Zs)
- 0.

TUT 7 i O TV/T /Mg_! zg_i + 2 ms (

The solution of these equations can be best effected by the method of

indeterminate coefficients, as referred to in Art. 136.

Thus we multiply the first equation by a number c2 , whose value we
shall hereafter determine, so as to satisfy desired conditions. The second

we multiply by c3 ,
the third by c4 ,

the rth by CT + I, etc., the index of c cor-

responding always to that of M in the middle term. Having performed
these multiplications, add the

equations,
and arrange according to the co-

efficients of M 2 ,
M3 ,

etc. We thus have the equation

[2 ca (Z, + Z,) + c, Z,] M2 + [c, Za + 2 ca (Z, + Z3) + c4 Z,] M 3 +

+ [C8_2 4-2 + 2 Cs_i (Zg^ + Zg_0 + C3 Zs-l] Ms_x

+ [C^_i Z8_! + 2 C8 (Zs_! + Zs)] Ms
= A Cr + B Cr + 1 .

Now suppose we wish to determine Mg . We have only to require that

such relations shall exist among the multipliers c that all the terms in the

first member of the above equation, except the last, shall disappear. We
have then evidently, for the conditions which these multipliers must

satisfy,

2 c3 (Z3 +Z3) + c4 Z3

Cr_l Zr_i + 2 d (7r_i + Zr) + =
;

-2 + 2 ca_! 0;



ART. 4.] SUPPLEMENT TO CHAP. XTO. 243

while for MB we have at once,

M = _ _ Ac,-
+ 2 's (la_:

If, in like manner, we should multiply the last of equations (6) by the

number di, the last but one by d3 ,
the rth by t^-r+i, etc.

; then add, and
make all terms, except that containing M3 , equal to zero

; we should have
the conditions:

2d3 (Z8_! + 4_g) + d< Z8_2 = ;

+ 2 <?8_i (It + I*)

while for the moment we have

<^s_l + 2 ds (Za + Zi) <^s+l ^i

The -values of M and M8 are thus given in terms of the quantities

A and B and c and d.

A and B depend simply upon the load and its position in the rth span.

Thus A=PZr

a(2*-3F + P), B = P lt\Tc
- k3

).

As for the multipliers c and d, they depend only upon the lengths of the

spans, and need only satisfy the conditions above. Hence, assuming
d = 0, <Ja = 1, and d l

= 0, dt = 1, we can deduce the proper values for

all the others. Thus,

Ci = 0, di = 0, .

c* = -2.

4

ft-i*L*-*r!
i* it

etc., etc. etc., etc.

Now from equations (6) we see at once that M3 = cs M2 ,
M 4 = c4 M2 ,

etc., or, universally, when n < r + 1,

(7)

Also taking the same equations in reverse order, Mg_i = d M8, Ms_2 =
, MR, etc., or, universally, when n > r,

... (8)
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Equations (7) and (8) are the general equations given in Art. 155, which,

as we have seen, include the whole case of level supports.

5. Uniform Load. For uniform load the same equations hold

good. We have only to give a different value to A and B.

Thus, for several concentrated loads we should have

A = 2 F I? (2
- 3 F + P).

For a uniform load over the whole span I r, let w be the load per unit

of length, then
ri ri

2P = I wd a
;
or since a ~k Zr,

2 P = I wlr d~k.

*s o Jo

Inserting this in place of S P above, and integrating, we have

A = B = \ w I*.

Thus the equations of Art. 155 hold good for concentrated and uniform

load in any span, for any number and any lengths of spans.

The above formulae were first published in an article on the Flexure of
Continuous Girders, by Mansfield Merriman, C.E., in the London Phil,

Magazine, Sept., 1875.

6. Formulae for the Tipper. The expressions for the reactions

in this case, already given in Art. 120, may be easily deduced. The solu-

tion is tedious by reason of lengthy reductions, but the process of deduc-

tion is simple.

The construction in this case is indicated in Fig. 83, PI. 22. We sup-

pose, as shown there, a weight upon the first span only. Under the action

of this weight the beam deflects, and one centre support falls and the

other rises an equal amount. Thus, if we take the level line as reference,

Jit = As. Moreover, the reactions at these, two supports must always be

equal.

We have, then, as representing this state of things, A a
= h3 ,

and calling

the supports 1, 2, 3 and 4, we have from Art. 1, since M! = M4 = 0, and

Z, = Z,

+ P (1
-

jfc),

R '
_i_ a ^ 3

~ ^2
,

^ 3

3 = O 3 + 83 = ; + -5,

These reactions will evidently be known, if we can determine the mo-
ments.

Let Tr = 6 E I F^ 7
Ar~ 1 + ^

~
7

^+1
"|. Then the gen-

L *r-i k J
eral equation of three moments of Art. 3 becomes, when we neglect Pr,

that

is, suppose only the first span loaded :

Mr_t Zr_i + 2 Mr (*,_! + Z,) + Mr+1 Zr = - Yr 4 Pr_i ZT'-I (*
- V).

This expresses a relation between the moments at three consecutive
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supports for load between the first two. Let r 1=1, orr=2. Then,
since Mj = M = 0, we have

2 Ma (I, + Z8) + M3 It = - Y2 + P I*
(jfc
_ A3

)
= R . . (10)

where R stands for convenience equal to the expression on right.
Let r 1 = 2, or r = 3. Then the weighj disappears, and since lt

=
I,,

M2 Z2 + 2M3 (Za + Z,)
= -Y3 ...... (11)

From (11) we have

.

But since R2 must always equal R 3 , we have from (9)

Substituting (12) in (10), we have

M 3 =

Substituting (12) in (13),

- R I* 2 Y3 (Z. + M
a

-*,(*. + 2 Z.)

From (14) and (15), we have then

- T3
- R = Z, Z2 P Tc.

Insert in this the value of R from (10), and

Ts
- Y3 = P ?,* (jfc

- F) +P I, I, Tc = P (IS k - l^ V+L I, *).

Now in the present case hi = 0, ht = 0, and h a - A3 , and since also

=
J,,

and T3 = 6Eir + l That is, Ya = - Y3 .

Hence, from our equation above,

Substituting these values of ya and y3 in (11) and (13), we can obtain at

once M a and M 3 ,
which finally substituted in eq. (9), will give us the re-

actions as already given in Art. 120, when we put n I in place of I,.

7. In similar manner we can solve other problems. Thus what are the

reactionsfor a girder continuous over three supports, the two rig?it-hand ones

resting upon an inflexible body iphich is pivoted at the centre ?

This is the case of the tipper when raised at the centre so that the ends

just touch, and then subjected to a load at any point of first span the

other end not being latched down, so that it rises freely, as though without

weight of its own.
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In this case we have from (9), since now M8 = 0,

By the conditions Ra must equal R3 ,
hence

. . . .'. (16)

From the equation of three moments above, we have, making r 1 = 2,

or r = 3, since then P disappears,

Mz Z3 = - Y3 . ....... (17)

=-

Substituting this value of Mz in (16), we find

and therefore, at once,

Putting n I in place of Z2 , we have

R! + 2 Rs, it will be observed, equals P, as should be.

The conception of a beam tipping, as in the last two Arts., is due to Clem-

ens Herschel (Continuous, Revolving Drawbridges, Boston, 1875), and the

above formulae were first deduced by him in the above work.
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LITERATURE UPON THE CONTINUOUS GIRDER.

We give below, for the benefit of students and those interested in the

subject, a list, chronologically arranged, of works upon the continuous

girder. A glance at this list will convince the reader as to the thorough-
ness with which the problem has been treated.

1. REBHANN. "Theorie der Holz-und Eisenconstructionen." Wien,
1856. [Treats the continuous girder of constant cross-section and equal

spans according to the old method; first determining the reactions at

the supports. A load in any single span only is considered, either total

uniformly distributed, or concentrated and acting at the centre.]

2. KOPKE. " Ueber die Dimensionen von Balkenlagen, besonders in

Lagerhausern." Zeitschr. des Hannov. Arch. u. Ing. Ver., 1856. [The

simple and continuous girder. Attention is here first called to the advan-

tage gained from sinking the supports. ]

3. SCHEFFLER. " Theorie der Gewolbe, Futtermaucrn und Eisernen

Bracken." Braunschweig, 1857. [Continuous girder with total uniformly
distributed load, and invariable concentrated loading. Advantage of

sinking the supports.]

4. CLAPEYRON. Calcul d'une poutre e"lastique reposant librement sur

des appuis inegalement especes." Comptes rendus, 1857. [Here, for the

first time, the well-known Clapeyronian method is developed, by which a

series of equations between the moments at the supports is first obtained.

Application to total distributed loads, but varying in different spans.]

5. MOLLINOS ET PRONIER. " Traite the*oretique et practique de la con-

struction des ponts me'talliques." Paris, 1857. [Treatment of the con-

tinuous girder of constant cross-section, according to Clapeyron.]

6. GRASHOF. " Ueber die relative Festigkeit mit Riicksicht auf deren

moglichste Vergrosserung durch angemessene Unterstiitzung und Einmau-

erung der Tra'ger bei constantem Querschnitte." Zeitschr. des Deutsch.

Irig. Ver., 1857, 1858, 1859.

7. MOHR. "Beitrag zur Theorie der Holz-und Eisenconstructionen."

Zeitschr. des Hannov. Arch. u. Ing. Ver., 1860. [Theory of continuous

girder, with reference to relative height of supports. Application to gird-

ers of two and three spans. Best sinking of supports for constant cross-

section. Disadvantage of accidental changes of height of supports. In-

fluence of breadth of piers.]

8. H. " Continuirliche Briickentrager." Bornemann's Civil-Ingenieur,

1860. [Continuous girder of constant cross-section of three spans. Best

ratio of spans, and sinking of supports.]

9. WINKLER. "Beitrage zur Theorie der continuirlichen Briicken-

trager." Civil-Ingenieur, 1S62. [General Theory. Determination of

methods of loading causing maximum strains; and, for the first time,

yeu-ral rules for the same given. Best ratio of end spans.]
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10. BRESSE. "Cours mecanique appliquee professe S 1'ecole imperials

des ponts et chaussees." Seconde Partie. Paris, 1862. [Analytical treat-

ment of the continuous girder of constant cross-section. The transverse

forces are not considered. The exact determination of the most dangerous
methods of loading, with reference to the moments in the neighborhood of

the supports, is also wanting.]

11. ALBARET* " Etude des ponts metalliques a poutres droits reposant

sur plus de deux appuis." Ann. des ponts et chaussees, 1866. [Continu-

ous girder of constant cross-section, treated after Clapeyron.]

12. RENATJDOT. "Memoire sur le calcul et le controle de la resistance

des poutres droites a" plusiers travels." Ann. des ponts et chausse*es, 1866.

[Continuous girder, treated according to Clapeyron.]

13. CULMANN. " Die Graphische Statik." Zurich, 1866. [Graphical

treatment of simple and continuous girder of constant and variable cross-

section. Moments at the supports are determined analytically.]

14. H. SCHMIDT." Ueber die Bestimmung der ausseren auf ein Brack -

ensystem wirkendeu Krafte." Forster's Bauz., 1866. [Data for the amount

of live load for Railroad and Way Bridges. Determination of the equiva-

lent uniformly distributed load. Data for dead weight and wind pres-

sure.
\

15. GRASHOF. "Die Festigkeits Lehre." 1866. [General analytical

treatment of the girder without special reference to bridges. Continuous

girder of uniform strength.]

1 6. WINKLER. " Die Lehre von der Elasticitaet uud Festigkeit." Prag. ,

1867. [General analytical theory of the continuous girder of constant and

variable cross-section. Application to total uniformly distributed loading.

Influence of difference of height of supports.]

17. FRANKEL. "Ueber die ungiinstigste Stellung eines Systems von

Einzellasten auf Tragern uber eine und iiber zwei Oeffnuugen, speciell auf

Tragern von Drehscheiben." Bornemann's Civil-Ingenieur, 1868.

18. MOHR. "
Beitrag zur Theorie der Holz- und Eisenconstructionen."

Zeitschr. des Hannov. Arch. u. Ing. Ver., 1868. [Here, for the first time,

the elastic line is regarded as an equilibrium curve, and the graphical
treatment of the continuous girder founded.]

19. H. SCHMIDT. "
Betrachtungen uber Briickentrager, welche auf zwei

und mehr Stiitzpunkte frei aufliegen, sowie iiber den Eiufluss der unglei-
chen Hohenlage der Stutzpunkte." Forster's Bauz., 1868.

20. COLLIGNON. " Conrs de mficanique applique"e aux constructions."

Paris, 1869. [Continuous girder of constant cross-section and uniform

load.]

21. LAISSLE and SCHUBLER. "Der Bau der Bruckeutrager uiit beson-

derer Riicksicht auf Eisenconstructionen." m. Aufl., I. Theil. Stutt-

gart, 1869. [Treatment of the continuous girder, according to Clapeyron.]
22. LEYGUE. " Etude sur les surcharges a" consid6rer dans les calculs

des tabliers metallique d'apprgs les conditions ge*n6rales d'exploitation
des chemins de fer." Paris, 1871.

23. LIPPICH. " Theorie des continuirlichen Tragers constanten Quer-
schnittes. Elementare Darstellung der von Clapeyron und Mohr begriiu-
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deten Analytischen und Graphiachen Methoden und ihres Zusammen-

hanges." Forster's Bauz., 1871, also separate reprint. [The geometrical
constructions are deduced from the analytical formulae.]

2-i. SEEFEHLNER, G. "A tobbnyngpoutfi vasracstarto'kro'l A magyar
nigrrok 6s gpitesz egylet kozlonye," 1871 [Hungarian].

25. RITTEK, "W.
" Die elastische Linie und ihre Anvvendung auf den

continuirlichen Balken. Ein Beitrag zur graphischen Statik." Zurich,

1871. [This and the preceding work treat the continuous girder after the

Culmann-Mohr method.]

26. OTT. "
Vortrage iiber Baumechanik," II. Theil. Prag, 1872.

[Analytical determination of the shearing forces and moments for the sim-

ple and continuous girder of constant cross-section and level supports.]

27. WETRATJCH, J. I.
"
Allgemeine Theorie und Bereclmung der con-

tinuirlichen und einfachen Tra'ger." Leipzig, 1873. [A work well deserv-

ing to close the list. Gives the general theory for constant and variable

cross-section for any number of spans from 1 to oo, and for all kinds of

regular or irregularly distributed and concentrated loads. The formulae

are general, and for given loading free frorn. integrals. Difference of level

of supports; most unfavorable position of load
;
exact theory of the fixed

and movable inflexion and influence points, etc. Examples illustrating

use of formulae, and complete calculations of girders.]

This last work leaves but little to be desired in thoroughness and com-

prehensiveness.

It will be observed that England and America have contributed but lit-

tle to the literature of the subject. Indeed the standard works of both

countries show scarcely a trace of the influence of the labors "of French and

German mathematicians in this field. The only works which, so far as we

are aware, can be mentioned in this connection are as follows :

RANKINE, W. J. M. " Civil Engineering." 1870. [Very brief and in-

complete.]

HUMBER. " Strains in Girders." American Ed. New York: Van

Nostrand. 1870. [Graphical constructions, holding good only under the

supposition that the end spans are so proportioned that the girder may be

considered as fixed at the intermediate supports, for full load.]

STONEY, B. "Theory of Strains." London, 1873. [Very brief notice

of the subject. Points of inflection are found for full load, and the flanges

then cut at these points.]

HEPPEL, J. M. Phil. Mag. (London), Vol. 40, p. 446.

Also Minutes of the Proceed, of the Inst. Civ. Eiig. [Excellent papers,

which might well have been followed up.]

In the latter publication also :

BELL, W. Vol. 32, p. 171.

STONEY, E. W. Vol. 29, p. 382.

BARTON, JAMES. Vol. 14, p. 443.

In American literature :

FRIZELL. "Theory of Continuous Beams." Jour. Frank. Inst, 1872.

[Divelopment of the subject according to Scheffler. See 3.]
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GREENE, CHAS. E. "Graphical Method for the Analysis of Bridge
Trusses." Van Nostrand. 1875. [Force and equilibrium polygons are

used, but the moments at the supports are found by an original method of

approximation, or balancing of moment areas."]

HERSCHEL, CLEMENS. "
Continuous, Revolving Drawbridges." Boston,

1875. [The formulae of Weyranch are made use of. The case of " second-

ary central span
"

is for the first time investigated, and the appropriate

formulae given. The fact that the live load reactions for supports out of

level are unchanged, provided the dead load reactions are zero, is also for

the first time clearly stated. The draw span is thoroughly treated, and the

idea of weighing off the reactions at the piers of a continuous girder sug-

gested.]

MERRIMAN, MANSFIELD." Upon the Moments and Reactions of the

Continuous Girder " Journal of the Franklin Inst. for March and April,

1875; Van Nostrand's Eng. Mag., July, 1875; also the London Phil.

Mag., Sept., 1875, as well as the formulae contained in Chapter XII. of this

work. [By the aid of the properties of the Clapeyronian numbers, Mr.

Merriman has deduced new and general formulae eminently suited for

practical use. Also relations are deduced from which tables for moments
and reactions may be drawn up to any desired extent by simple additions

and subtractions, independently of the general formulae. (See Chap. XII.)
The simple girder appears as a special case of the continuous girder. The

formulae are, in respect to simplicity and ease of application, superior to

any heretofore given.]
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PART III.

APPLICATION OF THE GRAPHICAL METHOD TO THE ARCH.

CHAPTER XIV.

THE BRACED ARCH.

157. Different kinds of Braced Arche. Just as in gird-

ers, we may distinguish between the solid beam, or "
plate gird-

er," and the open work, or framed girder ; so, regarding the arch

as a bent beam, we may distinguish the braced arch and the

solid arch, or arch proper. The strains in the various pieces

composing the braced arch may be easily found by the method

of Arts. 8-15, or by calculation by the method of moments of

Art. 14 for any loading, if only all the outer forces acting

upon the arch are known : that is, so soon as, in addition to the

load, we know also the reactions at the abutments, or the hori-

zontal thrust and vertical reactions at the points of support, and

the moments, if any, which exist at these points.

We may distinguish three classes of braced arches : viz., 1st.

Arch hinged at both crown and springing ;
2d. Arch hinged

at spring line only continuous at crown
;
3d. Arch continu-

ous at crown and fixed at abutments.

158. Areh hinged at both Crown and Abutments. This

form of construction [PI. 23, Fig. 90], owing to the hinges at

crown and abutments, affords for live load but little of the

advantage of a true arch. It is, in fact, an arch only in form,

but in principle is more nearly analogous to a simple triangular

truss of two rafters, these rafters being curved and braced ; the

thrust being taken by the abutments, instead of Resisted by a

tie line A B.

The case presents no especial difficulty, and may be easily

calculated or diagramed, provided that not more than two

pieces, the strains in which are unknown, meet at any apex.

Thus, in PL 23, Fig. 90, the resultant at the abutment due to

any weight P being known, it may be directly resolved into the
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two pieces which meet there. The strains in these two pieces

being thus found, those in two others in equilibrium with each

of them may be obtained. In Art. 13 we have already illus-

trated the method of procedure for such a case, as also the

method of finding graphically the resultant at crown and abut-

ments due to any position of the weight.
Thus the resultant at the crown for the unloaded half must,

for equilibrium, pass through the hinge at B also. Its direc-

tion is thus constant for all positions of P upon the other half.

The resultant for the other half must then pass through a and

the hinge at A (Fig. 90).

We have then simply to draw a B, prolong P to intersection

a, and draw a A. A a and B a are the directions of the resul-

tant at A and B, and by resolving P along these lines, we may
find the vertical reaction V = a 1) and the horizontal thrust

H = cJ.

We can thus easily find the reactions at the abutments in

intensity and direction, and following these reactions through
the structure, as illustrated in Arts. 8-13, Chap. I., can deter-

mine the strains upon all the pieces for any position of the

weight. A tabulation of the strains for each weight will then

give us the strains for uniform load as well as live load, as al-

ready explained in the preceding chapter, Art. 156.

There must be only two pieces meeting at the abutments.

Thus the pieces in Fig. 90, represented by broken lines, can

serve only to support a superstructure, or transmit load to the

arch, and have no influence upon the strains in the other pieces.
If the span A B = 2

,
the rise of the arch is h, and the dis-

tance of the weight P from the crown is #, positive to the left
;

then taking moments about the end B, we have

2 Va = P
( + *), or ?=*-<+*).

A Cb

Similarly, taking moments about the crown,

The same formulae apply for a weight upon the other half, for

V and H at the other end.

The values of V and H can easily be found from these for-

mulas, and the strains then calculated by moments, thus check-

ing the diagrams. If these reactions are found for the given
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dimensions of the centre line, we may, if we choose, suppose
the depth of the arch to vary above and below the centre line

equally, from the crown to ends. The lever arms of the pieces,
and hence their strains, will be different, but V and H are the

same as before. Thus, whatever the shape of the arch, we can

easily find the strains both by diagram and calculation. If we
draw a line through A and the hinge at crown, we may easily

prove that the greatest vertical ordinate between this line and
the arch is

where r is the radius.

Now if the depth d of the arch is made greater than this or-

dinate, it may be shown that both flanges will always be in

compression. This condition serves, then, to determine the

proper depth of circular arch, which should not be less than

08 + hz - r.

It is unnecessary to give here an example.* The method is

BO simple that the reader will find no difficulty in applying the

principles above to any case. He will do well to calculate or

diagram the strains in an arch similar to that shown in the Fig.
for comparison with the two cases which follow.

159. Arcli hinged at Abutments continuous at Crown.
If we suppose the hinge at the crown removed those at the

abutments being, however, retained then, for any position of

the weight, the resultant at each end must for equilibrium

pass, as before, through the end hinges. In the preceding

case, a, for load on left half, was always to be found at intersec-

tion of weight with the line through B and hinge at crown, and

was therefore fully determined. Now, however, a, the com-

mon intersection of weight and resultant abutment pressures,

has a different position, and hence the resultants and horizon-

tal and vertical reactions are different.

If we can find or know the locus or curve in which this point

a must always lie, we can easily find, as before, the resultants

or reactions by simply prolonging the line of direction of the

weight till it meets this locus, and then drawing from the point

* See Note to this Chap, in Appendix.
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of intersection lines to A and B, and resolving P in these direc-

tions.

The equation of this locus can be found analytically without

much difficulty.

1st. PARABOLIC ARC. Thus, for a parabolic arc, we have *

32 a2 A
y ~ 5 (5 a

2 -
a?}'

Where [PI. 23, Fig. 91] a is the half span, and h the rise of

the arc
;
x the distance of the weight from the crown, and y

the ordinate N 6? of the locus cdeik.
For a given arc, then that is, a and h given we have only to

substitute different values for
a?,

as x = 0, 0.1, 0.2, etc., of the

span, and we can easily find the corresponding ordinates y, and

thus construct the locus cdeik. It is then easy to find the

reactions at A and B for any position of P, as above indicated.

The vertical reaction at the abutment may also be easily

found by moments thus,

Vi x 2 a = P (a + x), or Vx
= (a + x).

& Cb

The horizontal thrust is

_ 5 p (6 o- a?) (<*-?)
Hl -6i p *ir

These values, though not needed for the construction above,

may be of use, and are therefore given. In the following
tables we give the values of H and y for different values of x :

1 For the demonstration of the analytical results made use of in thi chap-

ter, we refer the reader to Die Lehre wn der Elasticitat und Festigkeit, by E.

Winkler. Prag, 1867. See also the Supplement to this chapter.
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From the table, a and h and P being known, H and y can be

found for the successive positions of P at 0.1, 0.2, etc., of a, or

the half span, by multiplying P by the tabular number for

H, and h by the tabular number for y.

Id. CIRCULAR ARC. For a circular arc we have for the equa-

tion of the locus cdeik [Fig. 91],

where K =
"jT^i

* being the moment of inertia of the constant

cross-section, A its area, and r the radius of the circle : also

where

__(sin
2 a sin

2
ff) (a 3 sin a cos a + 2 a cos 8

a)_
y"~r

sin a [sin
2 a sin

2
/3 + 2 cos a (cos cos a) 2 cos a (a sin a /3 sin )]'

a being the angle subtended at centre by the half span, and .

____2 cos a (a sin a $ sin /9)~~
sin2 a sin2 /3 + 2 cos a (cos /3 cos a a sin a + ft sin yS)'

2 a cos2 a
r> =

2 (a 3 sin a cos a + 2 a cos2

a)'

or, approximately,

24 6A =

15 _ 15 a4

~
Ta>

~
64 A4 '

where is the angle from crown to weight.

the square of the radius of gyration, or, approximately,

the square of the half depth, hence K =^ approximately.
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For the exact values of A and B, we have the following table :

For the values of y we have the following table :

It will be seen that for the semi-circle the locus is a straight

line, for which y = | irr =1.5708 r. Thus, for any given case

that is, I, A and r given we can easily calculate K. Then
from our tables, for given value of a, we can find A, B and y for

values of jB of 0, -j^-ths, T\ths, etc., of a. These values inserted

in the equation for y. above, will enable us to plot the curve or

locus cdeik, which being once known, the rest is easy. We
have thus by a union of analytical results with our graphical
method a very easy and practical solution of this important
case. We may, if we choose, only use our method to determine
the horizontal thrust and vertical reaction as shown by the Fig.
91, and then calculate the strains by the method of moments.
The availability and ease of the method here given, as com-

pared with calculation, will be seen from a consideration of the
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analytical formulae for the horizontal thrust and vertical reac-

tion at A. Thus, for the vertical reaction, we have, as before,

simply

v;= *-( + ).

For the horizontal thrust, however, we have the following

very clumsy formula :

_ sin* a sin 2
ff + 2 C03 (cos ;9 cos ) 2 (1+ K) cos a (a, sin ct p sin ft)

2 [a 3 sin a cos a +- 2 (1 + K) a cos 2

a]

For the semi-circle, this reduces to

/c being, as before, = _
^ ;

where A is the area and I the

moment of inertia of the cross -section, r the radius of the arch,

and the angles a and y9, as represented in Fig. 91, viz., the

angle of the half span, and the angle to the load, subtended by
x. The first of the above formulae is sufficiently simple, and

by it we may check the accuracy of our construction. Thus

having plotted the curve cdeik by the aid of our expression

for y and the tables above for any position of P required, we
draw dA d B, and resolve P along these lines, thus finding V

'

and H [Fig. 91]. We can then calculate V from the formulae

p
above, viz., V = (a + x). If this calculated value agrees

2 ct>

with that found by diagram, we may have confidence that the

curve is properly plotted, and hence that the value of H is also

correct. Thus, with very little calculation and great ease,

rapidity and accuracy, we can find the reactions at the end A
for any given position of P in any given case. These reactions

once known, we can easily find the strains either by diagram,
as illustrated in Chap. 1., or by calculation by the method of

moments of Art. 14.

16O. Arch flxed at Abutments continuous at Crown..

This is by far the most important case of braced arch, as by the

continuity of the crown and fixity of ends we obtain all the

advantage possible due to the combined strength and elasticity

of the arch. It is also the most difficult case of solution, as the

formulas obtained by a mathematical investigation are complex,
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and give rise to tedious and laborious computations in practice.

A method combining simple analytical results with graphical

construction similar to the preceding, will, however, obviate

these difficulties, and bring the subject fairly within the reach

of the practical engineer.

In the present case, as before, the common intersection of the

weight and the reactions lies in a curve, the equation of which

may be found, and the curve itself thus plotted for any given
case.

But this curve, or locus, ILK [PI. 24, Fig. 92] being con-

structed, in order to find the directions of the reactions which

now no longer pass through the ends of the arc A and B, it is

necessary to find and construct also the curve enveloped by these

reactions for every position of P
;
that is, the curve to which

these reactions are tangent. If, then, these two curves are con-

structed, we have only to draw through L [Fig. 92] lines tan-

gent to this enveloped curve, and we have at once the reactions

in proper direction, and by resolving P along these lines, can

easily find their intensities, and therefore V and H, as before.

\8t. PARABOLIC ARC.

For a parabolic arc we have for the locus ILK, y = % h
;

that is, the locus is a straight line at %th the rise of the arch

above the crown since we now take y as the ordinate to the

locus measured above the horizontal tangent at the crown. The

origin is, therefore, at the crown instead of at the centre of the

half span, as in the previous case.

For the second curve, or curve enveloped by the reactions, we

have,* taking v as the abscissa and w as the ordinate of any

point [Fig. 92], = 2a*

= PS^ + aOaa+Sa^30 + a;' I5(a + x)(3a+ x)
'

where, as before, a is the half span, h the rise, and x the dis-

tance of the weight from crown. For x = 0, v = f a, and
w 11 &. For x = a, v = $ a, and w = f h.

'

For x = a
y

v = a, and w = oo. Eliminating x from both equations, we

have

Hence the curve enveloped by the reactions is on each side an

* For the proof of all the expressions assumed, see the Supplement to thi

chapter.
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hyperbola, which has for asymptotes the vertical through the

abutment and a straight line which cnts the axis of symmetry
of the arch at the point b [PL 24, Fig. 93], | h under the crown,
the tangent at the crown at f a from the crown, and the chord

of the arc at 6 a from the centre. The centre of the hyper-
bola is at

<?, ^5- A below the horizontal through the crown. The
two hyperbolas osculate at the point -g-

a vertically below the

crown. . [See Fig. 93.]

As an aid to the construction of these hyperbolas, we give the

following table :

From the table it is easy to construct the hyperbola for any

given case. We have, of course, a perfectly similar hyperbola

for the other half, its centre e being similarly situated with

respect to the crown, to the right of c. We have then simply

to draw a line through the intersection m of the weight P

[Fig. 93] with the line i It, at | h above c, tangent to the hyper-

bola, and we have at once the direction of the resultant. This

tangent may be drawn by eye, or geometrically constructed if
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desired.* A similar tangent to the hyperbola on the other side

determines the direction of the other reaction. "We can then

resolve P in these two directions, and find at once V and H.

The problem, then, so far as a parabolic arc is concerned, is

sufficiently simple and easy of solution. We have only to draw

a straight line and two easily constructed curves. The formulae

for V and H and moment at crown M are for this case also

simple, and may be used for checking our results. They are :

where, as before, a is the half span, h the rise, and x the dis-

tance of weight P from crown. A negative moment always
indicates tension in lower or inner flange.

2d. CIRCULAR ARC.

In this case we have for the locus ILK [Fig. 92], for small

central angles a, the equation :

-

a, h, and x being as above, and / =
-j = the square of radius

of gyration ;
A being the area and I the moment of inertia of

cross- section.

\_N~ote. In all the cases hitherto considered, or which we
shall consider hereafter, the cross-section is assumed constant.']

According to the exact formula, which is too complicated to

make it desirable to be given here, we have the following

* For the construction of a tangent to a conic section, see Appendix, Fig. 4.
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TABLE, FOR VALUE OF y.

261

Instead of determining the curves enveloped by the reac-

tions, the expressions for which are in this case somewhat com-

plicated, it will be found preferable to find the distances GI (%

of the intersections
(f>
and ty of the reactions [see Fig. 92] with

the verticals through the centres of gravity of the end cross-

sections. For small central angles a, we have

48= -

15 (a + x)

2A
15 (a + x)

a o x i T o-

45

A[

[45ina+5X ~
A^J

where a, h, A and x, have the same signification as above.

Since I divided by A. equals the square of the radius of gyra-

tion = ^, we have

2A
a

'

For braced arches when the material is nearly all in the

flanges, the material in the bracing being very small, we may
call the radius of gyration half the depth of the arch measured

upon the radius from centre to centre of flanges ;
or represent-

ing this depth by d,
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2A
Ci=

[A negative result indicates that the distance is to be laid off

below the centre of cross-section.] These formulae are easy of

application, and sufficiently exact for arches whose rise is small

compared to the span ;
when is, say, not greater than

-j^.
2 a>

All the above formulae are for constant cross-sections. Exact

formulas for variable cross-section give results but little less,

and are much more complicated. The effect of using the above

formulae is therefore, merely, to increase slightly the coefficient

of safety.

161. We are now able to determine readily and accurately

the strains in the various pieces of braced arches hinged at

crown and abutments, and hinged at abutments only. We
have only to construct in each case the reactions at the abut-

ments, as explained in Arts. 158 and 159, Figs. 90 and 91, and

then, by the method already detailed in Arts. 8-13, we can fol-

low these reactions through the structure, and thus find the

strains in each piece due to every position of the load. We
may also, having found the reactions for given position of

weight, calculate the strain in each piece by moments.

For the case of the arch continuous at the crown and fixed at

the abutments, we must remember that we have also a moment
at each end tending to cause either tension or compression in

the inner flanges according as it is negative or positive. The
case is precisely analogous to the continuous girder, or girder
fixed at ends. As in that case [see Fig. 77, Art. Ill] the

moment at one end, as B, was the product of H into the vertical

distance B D, so here the moment at A (Figs. 92 and 93) is the

product of H into cl5 found by the formulae above. This

moment can, then, be easily found when cx and H are known.
We can then lay it off, according to the directions of Art 125,
for "

passing from one span to another of a continuous girder,"
and thus commence our diagram of strains; or we can cal-

culate the strains by the method of moments.

162. IIlutration of method of Solution. As an illustra-
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tion, take a portion of a braced arch, as represented in PI. 24,

Fig. 94. We have first to plot the upper curve or locus of m,

for the given dimensions of the centre line of the arch. This
curve once plotted, then, for any position of the weight, we have

only to prolong P to m, and draw a line from m to the end of

centre line if the arch is hinged at ends, or to at a distance

Ci, above or below the end of centre line if the arch is fixed at

ends
; ^ being easily found from our formulae above. In sim-

ilar manner, we draw a line from m, to the other end, or c%.

Now these two lines are the resultants of the outer forces P,
and by simply resolving P in these directions, we have at once

V and H, while the moment at the end Mt
= H c

l5 positive
if it tends to cause compression in lower flange, or since <?t is

negative down, if it acts below the end.

We can now easily find the strain in any flange, as D,
whether the arch vary in depth or not, provided only it is sym-
metrical with respect to its centre line. Thus for D, take the

opposite apex a as the centre of moments. The moment of H
with reference to #, as shown in the fig., tends to cause tension,

in D, while that of V causes compression. We have then,

representing tension by minus,

. . _ _ moment of V moment of H
lever arm of D

all with reference to a. If the result is minus, it indicates thus

tension, if plus, compression ;
if it is zero, the two moments are

equal, and at
, therefore, no moment exists

;
hence a must be

a point of inflection. Note that H and V must be taken as act-

ing at 0, Fig. 94. We can also evidently take them as acting
at the centre of the end cross-section, if we take into account

the moment H cx .

In similar manner, for C we take b as centre of moments, and

then, since H now causes compression in C and V tension, we

have for V and H, acting at 0,

moment of H moment of V
strain in C = = -,-= .

lever arm of C

For V and H, considered as acting at the end of centre line, we

moment of H 4- H c, moment of V
have C = ^ ,

lever arm or

taking ct without regard to its sign, but simply to the kind of
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strain it tends to cause in the piece in question. Properly,

since when H is below ^ is negative, we should have H cx

for moment causing compression in C.

Thus we may proceed till we pass P, and then the moment
of P, with its proper sign, as producing tension or compression
in the piece in question, must also be taken into account, or we

may instead take the moments of V and H at the other end,

that is, the same side of the weight as the piece itself.

The diagonals may be similarly found by moments. It will,

however, be best to determine them by diagram, one of the

flanges being first calculated (in this case the first upper flange),

as explained in Art. 125. They may also be calculated from

the resultant shear at any apex. Thus, for diagonal 3 find the

vertical components of the previously determined strains in D
and C. These vertical components, together with the vertical

component of the strain in 3, must for equilibrium be equal and

opposite to the total shear at 5.

Calling this shear F, and a, /3 and 7 the inclinations of D
and 3, we have for the strain in 3,

S3
= (F S

x sin a S2 sin /S) cos 7.

If either of the vertical components of the strains in D or C
acts opposite to the shear F, it must, of course, be subtracted ;

if

in the same direction, added to F. For the ready determina-

tion of the proper signs, see Appendix, Art. 16 (4).

The moment H ^ is the moment at the fixed end, and is con-

stant throughout the arch for any one position of the load. It

causes tension in outer and compression in inner flanges, pro-
vided, as in the Fig., <j>

fall below the centre of the end section.

This moment is increased (or diminished if < is above) by the

varying moment of H for each apex.
The above method of determining the strains in the braced

arch, though not strictly graphical, but rather a combination of

analytical and graphical methods, offers such a ready solution

of this important and difficult case, that we have not thought it

out of place to notice it somewhat in detail. We consider it by
far the simplest and easiest method which has yet appeared.

163. Analytical Formulae for V and H. A comparison
of our method with the long and involved analytical expres-
sions to which the theory of flexure conducts us, will render its

advantages still more apparent.
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Thus, for a load of w per unit of horizontal length, reaching
from left end to a point whose angle from vertical through
crown is ft (Fig. 92), a being the angle subtended by the half

span, we have *

H =^
R
[X

sin /3 -&2 fji + &3 + sin 8

#],

where R is radius of arch, and

7 . . 2 sin a 7 sin a cos a
,
sin2 a

k = a + sin a cos a
, ^ =--h ^ ,

sin a 7 sin a r -i= . #3 = I a sin a cos a . and
4 a 4 a L

//,
= + 2 /3 sin

2
/3 + 3 sin cos .

For V we have

V^Rf C08a8in^__ 8in^ g
!

3co8a-cosa
L2 (a sin a COS a) 2 a sin a COS a 6 (a sin a COS a)

where K= cc

1

For a concentrated load P for any point [Fig. 92], we havef

or, more correctly,

v _ a ft sin a cos a sin ft cos ft + 2 cos a sin ff

2 (a sin a cos a)

For the semi-circle, this becomes

_ p TT 2 )g 2 sin y3 cos /3

27T

For H we have

p
2 sin a [cos

- cos a + (1 + *) g sin 0]
-

(1 + K) a (sin' a + sin* )

2 [(1 + K) <i (a + sin a COS a) 2 sin 4
a]

* Taken from Capt. Bads' Report to the llUnois and St. Louis Bridge (70.,

May, 1868.

f Die Lehre von der Elasticitat und Festigkeit. Winkler. Prag. 1867.
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where K = -^ ;
I being the moment of inertia, and A area of

the cross-section, and r the radius of circle.

These formulae, it will be observed, involve much labor in

any particular case. Where the number of weights is large,

the computation is tedious in the extreme. A method which

shall give accurate results and avoid such formulae as the above

is certainly very desirable, and such we believe to be the

method which we have given.

For the analytical investigation of arches, and the demon-

stration of the formulae for the curves of which we have made

use, the reader may consult Die Lehre von der Elasticitaet und

Festigkeit, by Dr. E. Winkler, to which we have already re-

ferred, and which contains a thorough discussion of the whole

subject. The tables which we have given, as well as the for-

mulae for yf Gi and c2 , will, it is hoped, give the method here

presented a practical value, and render the solution of any par-
ticular case easy and rapid.

164. For a solid or plate girder arch of given cross-section,

we may also determine the proper proportions by finding, as

above, the moment M of the exterior forces at any point.

T I
Then M =-

,

where T is the strain per unit of area in any fibre distant t

from the axis, and I the moment of inertia of the cross-section.

Thus, for a rectangular cross-section I = ^ b d3
,
where b is the

breadth and d the depth.

Hence M = *- T b d2

,

if we take t = -.
2

The strain, then, per unit of outer fibre will be

6M

The safe working strain should not exceed for iron 5 tons

per sq. inch for tension and 4 tons for compression, and there-

fore d being assumed, we can easily proportion b so as to sat-

isfy this condition.

As examples of braced arches, such as we have considered,

viz., continuous at crown and fixed at abutments, we may men-
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tion the Bridge over the Mississippi River at St. Louis, by
Capt. Eads ; one over the Elbe near Hamburg on the Pans-
Hamburg R. R., in which, however, the outward thrust of the

arch is balanced by a precisely similar inverted braced arch,
or suspension system. Thus the piers have to support a verti-

cal reaction only, and the necessity of large and expensive abut-

ments of masonry for resisting the horizontal thrust is obviated.

The strains in the inverted arch of this character are found
in a precisely similar manner. The only difference is that the

reactions, and therefore the vertical and horizontal components,
act now in a direction opposite to the direction for the upright

arch, and the strains, though the same in amount, are of re-

verse character in each piece.

The bridge over the Rhine at Coblenz is an illustration of

the braced arch pivoted at the abutments only.

Examples of the solid or cast-iron arch of all kinds are

common.

165. Strains due to Temperature. In the first class of

braced arches, viz., pivoted at both abutments and crown, there

are evidently no strains due to changes of temperature. The
arch can accommodate itself to any change of length by rising

at the crown and turning at the abutments, and no strains are

induced.

We represent by e the coefficient of linear expansion for one

degree [about 0.000012 for iron,for every degree centigrade],

and by t, the temperature above or below the mean tempera-
ture t

,
for which no strain exists.

Then for arch pivoted at abutments only, we have for the in-

crease of thrust,*

2 E I t sin a~
T*
2
(a 3 sin a cos a + 2 a cosa

a) + 2 K r* a cos" a,

where E is modulus of elasticity,
I moment of inertia of cross-

section, and K = j ;
A being area of cross-section, r radius of

arch, a the angle of half span, or, approximately,

_ 15EIe 15 ElA el~
7*(2a*+I5ic)

~
8 A # + 151'

where h is the rise of arch.

"Lehre von der Elasticitdt. Winkler. Also Supplement fef this chapter,

Art. 26.
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For the moment at any point, then, due to change of temper-

ature, we have

M = H r (cos /3 cos a),

yS being the angle from vertical to that point.

This moment, if positive, causes tension in outer and com-

pression in inner flanges, and we can, as before, easily find the

corresponding strains either by diagram or calculation.

For an arch fixed at ends and continuous at crown, we have

_~~ _
r2

[(1 + K) (a
2 + a sin a cos a) 2 sin 2

a]'

or, approximately,

45 E I e rf 45 E I A e

But this thrust does not act at the abutment, since, if it did,

there would be no moment there. It must be considered as

acting at a distance for rise of temperature, below the crown of

a + K) a sin a
/ m

(!+*)

or, at a distance above the end abutment of h e .

Approximately, we have

a2 + 6 K (A <z
2 + 6 I) h

e = r = ^ ,

a being the half span.

This thrust and its point of application being known, we can

easily find the moment, and hence the strains at any point.

"VVe see that the horizontal thrust is about six times as great as

for the case of an arch pivoted at both ends.

The constant moment acting at the abutment, which may be
considered as acting at every point, is

/sin a \ __MA = I cos a ) H r
;

*

it acts to cause compression in outer and tension in inner

flanges at abutment. If we find this moment, we can then con-

sider H as acting at the end, and then we have for the moment
at any point

*
Capt. Bads' Report to the Illinois and St. Louis Bridge Co., May, 1868.
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a positive result, giving tension, a negative, compression in the

outer flanges.

166. Effects of Temperature. We are now able to solve

accurately and thoroughly any class of braced arch, both for

variable loading and changes of temperature, and here the fol-

lowing remarks upon the latter subject may not be without

interest. We quote from Culmann Die Grapliische Statik,

p. 487 :

" The question arises whether the fears which the additional

strains, due to variations of temperature, have given rise to, are

well founded. Before the construction of the Arcole Bridge
in Paris the Engineer Oudry made various experiments with

a rib of about the same span as the bridge itself, of which the

following seems decisive as regards the present question. By
driving in the wedges upon which the rib rested above and be-

low, he could raise and lower the crown much more than the

distance due to variation of temperature without diminishing
its supporting capacity Oudry. having thus assured

himself of the harmlessness of temperature variations, decided

upon broad and firm bearing surfaces.
"
Interesting observations have also been made upon the

changes of form of the cast-iron arch of 60 metres span over

the Rhone at Tarascon, published in the Annales des Fonts et

Chemins, 1854, from which, however, it only appeared that the

changes of form followed slowly the temperature ;
that they

were less than the received coefficients would have led us to

expect, and were nowhere found to be prejudicial.
"
Since, then, this question appears to have been settled more

than ten years ago, may we not fear that those who still wish to

pivot iron may some day seize upon the idea of pivoting stone

arches also !

"
Stone, as is well known, expands not much less than iron

for equal changes of temperature, and, moreover, its modulus of

elasticity is much less. The expanded stone arch cannot accom-

modate itself to the given span, therefore, as easily as the iron

arch, and it would then be clearly more advantageous to pivot

the stone arch ! As, however, such a clumsy contrivance would

give no great impression of stability',
we feel justified in recom-

mending a broad and solid bearing surface for all arches."

As the opinion of an eminent engineer, the above may not be

without interest. We would only add that, according to the
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accepted formulae for temperature strains already given, the

results are of more importance than the above remarks would

indicate. As will be seen in the Appendix, the temperature
strains in the braced arch, fixed at ends and continuous at

crown, are very considerable, and, if the formulae are accepted
as correct, can by no means be disregarded. By comparison of

our numerical results for the three cases of braced arch there

given, it appears that the one hinged at crown, and springing,
is by far the best form of construction, but it must be remem-

bered that a different proportion of span to height and depth

may considerably affect this conclusion. Upon this point we
refer the reader to Art. 28 of the Appendix.
With the above, we conclude our discussion of braced arches,

or arches whose weight is not so great that the effect of the live

load can be disregarded, and pass on to the stone arch, or arch

* See Appendix, Art. 17, for a practical application of the principles of this

chapter.
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SUPPLEMENT TO CHAPTER XIY.

DEMONSTRATION OF ANALYTICAL FORMULAE GIVEN IN TEXT.

In order to complete our discussion of the braced arch, we shall now

give the analytical development of the formulae of which we have made
use in the preceding chapter. -We do this the more readily, as in no book

of easy access to the student are these formulae made out. In the work of

Wintrier, already referred to in the text, will be found a very thorough
discussion of the subject. We shall confine ourselves at present to the

case of a single concentrated load.

CHAPTER I.

GENERAL CONSIDERATIONS AND FORMULA FOR FLEXTJRE.

1. Fundamental Equations. The resultant of all the forces act-

ing upon a curved piece in a common plane may be decomposed into a

force normal to the piece N, and into a compressive or tensile force in the

direction of the axis or of the tangent to the axis G ;
and this latter force,

if taking effect above or below the axis, acts to bend the piece, and gives

rise to a moment as well as to a compressive or tensile force Q. These

forces cause corresponding strains. Thus, if P is the tangential strain per

unit of area d a, then

(1)

while, if v is the distance of any fibre from the axis,

M (2)

(a) Coefficient of elasticity.

Let the length of a piece be *, its area of cross-section A, and, as above,

the force acting npon this area O. Then ^ will be the force per unit of

area. Let the displacement [elongation or compression] produced by this

force be A*; the sign A indicating and reading "elongation." Now
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experiment shows that within narrow limits, i.e., within the elastic limits,

the elongation or compression is directly as the force of extension or com-

pression. Supposing that this held true always for all values of A s, then,

since a force produces a displacement A s, the force necessary to produce

a displacement s, will be times as great. Calling this force E, we have

Gs~
A A 9

The force E, then, is the force which would le necessary to produce a dis-

placement B equal to the original length, if the law of proportionality of the

displacement to the force always held good for all values of A s. This

value (3)..... .

A A s

we call the coefficient of elasticity.

Prom (3) we easily obtain fos the force in the direction of the tangent
to the axis

and for the relative displacement

A_s
8

(4)

(5)

(&) Fibre strain P, and moment M.
As seen in eq. (1), the longitudinal strain upon an element of cross-sec-

tion da is called P. In a curved piece conceive two cross-sections, as
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shown in the Fig., as A C B D perpendicular to the axis of the piece m n.

Let these sections be infinitely near
; then, the distance ~b a upon the axis is

d s. Let d sv be the length of any fibre, as d c, before the change of form.

Then, after deformation, its length is = d v + A d sv . Bat if d $ is the

small angle between the normals, dsv = d8 + vd(f>, where is the distance

ac of any fibre from the centre of gravity of the cross-section. After

deformation, d s becomes d s + A d s, and d
<fr

becomes d + A d $, and

d sv becomes d sv + A d v. Hence the length of any fibre after deforma-

tion is dsv + &dsv =:ds + Ads + v (d(f> +

Subtracting this from the eq. for d y above, we have

Therefore the ratio of the change of length to the original length of fibre

Ads -t-t> Ad<f>

If r is the radius of curvature, then rd(f> = ds, -j^
=

5
hence

as r

A^v _ rAjZ* ,
Ad<f>-i r .

~J~~~ ds ds r + r>

'

Q.
From eq. (1) we have the strain on a fibre P =

^.

From eq. (4), Q = E A . Hence P = B . In the present case

is given by (6) ;
therefore

"Ids "

Since now from (1) Q= /Pda,
we have from (7)

O Ads r da, Ad<f) f*v d a

Since from (2) M = /F vda, we have again from (7)

M Ads i*vda Ad<^> rtf da
B =r

~dTj 7^ + 1"T8~J r + V

But /*!LL f
js> when is very smaU compared to r, equal to

r
f

<Z a, which is the moment of inertia of the cross-section I. Also,

da r. r*d"

18

da
r^ =
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I Tv s da I

/dârv =

e is measured from the centre of gravity, / v d a = 0.

fvda r , rv*da I

Again, rJ^rV
=
J
vda -J 7T^ =

Therefore the insertion of these values of the integrals in the equations

for _ and ?? above gives
I! E

G A d s M
Inserting the second in the first of the above equations, ^r

=
5

A =
,

and hence

*ds_ G
.

M

Inserting this in the second equation above,

M M G

(c) Change of length and position of axis.

From (8) we have at once for the elongation of axis,

or, when t> is very small compared to r,

Prom (9) we have for the change of direction of the tangent to the axis

M GV '

1 /*/M
A( =

EJ (T

constant, that is, for a circle,

When e is very small compared to r, we have
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If the piece had been originally straight, d A $ would be equal to d
(f>,

and

= -; hence from (13) we have M El
T- = T-T
(t S 7* (Jb (p T

From the calculus we have the radius of curvature

-, or, approximately, r = -^;

dl?

d*v
hence M = E I~ ....... (13 6)

This is the equation assumed in the Supplement to Chap. XIII., Art. 1.

2. Displacement of any point. We indicate the horizontal dis-

placement of any point of the axis along the axis of a; by A x, along y by
A y. The corresponding changes of d x, d y, and d s are A d x, A d y, A d *.

The total horizontal displacement is then dx + Adx=(d8 + &ds) cos

(<P + A 0) . The total vertical displacement is d y+ A d y = (d a + A d #) sin

(</>
+ A <). Hence, since Adx=d&z, Ady = dAy,

d&x = (ds+&ds) cos
(<

+ A
(f>) dx,

d A y = (d s + A d *) sin (<p + A $) d y.

By Trigonometry, cos (0 + A 0) = cos
(f>

cos A
</>

sin sin A
<f>,

sin
(</> + A 0) = sin $ cos A

<f> + cos < sin A 0, or if cos A
<j>
= 1,

dx d y
sin A ^ = A 0, cos ^ = ^, sin < =

j-^.

dx d y

Substituting these in the equations above,

or, removing the parentheses, and neglecting quantities of the second order

A d s
with respect to A $ and~-

d&.x=
. . . . (U)

A rf s
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When the radius of curvature is yery great with reference to the thick-

ness of the beam, and the relative change of length -= is disregarded,

\ve have simply

dAy = &<f>dx.

Kids Ada

/Kids
Ada

E j
-i
--

;

/MdtE t , hence, for e very small with

reference to r,

We shaU have frequent occasion to refer to formulae (8), (12), (13), (14)

and (15) in the following discussion.
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CHAPTER II.

HINGED ARCH IN GENERAL.

3. Notation The outer forces in general. We suppose the

ends of the arch to be hinged at the abutments at the centre of gravity of
the end cross-sections. Then the end reactions must pass through these

points. These end reactions and the loads constitute, then, the outer forces.

For equilibrium, then, the horizontal components of these reactions must
be equal. Each of these components we call the Jtorizontal thrust.

We use the following notation [PI. 23, Fig. 91] :

R and R', the reactions at ends A and B.

V and V, their vertical components.

H, their horizontal component, or the thrust.

a, the half span.

h, the rise of arch.

a, the half central angle, if arch is circular.

The origin of co-ordinates we take at crown, x horizontal, y vertical The

angle of radius of curvature at any point with y, or of tangent to curve at

any point with x, we call <.

THE OUTER FORCES IN GENERAL.

Suppose a single load P to act at any point B. Let its horizontal dis-

tance from crown be e, the corresponding central angle E O C be /3.

Then the conditions of equilibrium are :

V + V = P,

V-V'o-Ps =

From these last, we have

For a circular arc, since a = r sin a, z = r sin /9,

p p sin a -sin ft

2sino Ssina

We distinguish three segments in the arch [Fig. 91], viz., A B, or from end

to the load
;
E O, or from load to crown

;
O B, or from crown to right

end. Quantities referring to the second we indicate by primes, to the

third by double primes. Thus for the tangential component of the result-

ant at any point within A E, we put G ;
for the normal component, N.

In E O, then, we have G' and N'
;
in C B, G" and N'. We have then
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G = H cos
<f>

V sin $, G' = H cos $ + V sin $ ) ,., ,

N=-Hsin$ + Vcos<, N' = - Hsin $ -V cos$ i

'

M = H (h
-

y)
- V (a

-
x), M' = U(h - y)

- V' ( + *). . (19)

In the case of a circular arc, a = r sin a, h = r (1 cos a), * = r sin <p,

y = r(\ cos $), and hence

M = Hr (cos$ cos a) Vr (sin a sin<) ) ,-,

M' = Hr (cos0
- cos a)

- Vr (sin a + sin 0) )

'

4. Intersection L,iiie. We call the locus of d [PL 23, Fig. 91], or

the curve cdeik, the intersection line.

If now there are three hinges, one at crown and one at each abutment,

then the resultant for each half must pass through the crown O. If, there-

fore, for the crown (#=0, y=0), we make in (19) M'=0, we have H=V'-,

or inserting the value of V from (16),

If the load lies to the left of O, then only the resultant R' acts upon the

right half, and must pass, as above, through the crown O. The point d

lies then always upon B O or A O prolonged. Hence, the intersection lines

are two straight lines, which pass through the crown and ends.

5. Parabolic Arc concentrated Load. For a parabola we

have y = -

t
x 2

; hence, d y = x d x, and, approximately, d s =d x.

(a) Change of direction of tangents.

Inserting this value of y in equations (18) for M and M', we have from

equation (13), Art. 1, since rd<j> = ds = dx for the change of direction of

the tangent at any point before and after flexure,

B I d A =
|~H

h (l - ~\ - V (a
-

x)~\d x.

Integrating this, we have for the three segments A E, E C and C B,

. . (22)

where A, A', A" are constants of integration, to be determined by the as-

signment of the proper limits. Thus, if we make x = e, the two first of

equations (22) are equal; hence,
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and accordingly A - A' = (V - V) a z - \ (V + V) . SinceV + V = P,

and from (16) V - V = P -, we have,
a,

(I.)

Inserting the value of dy for the parabola, viz., ay = xdx, and the

value of M from (19), and inserting in this last the value of y, viz.,

y = * z
,
we have from equation (15), Art. 2,

Integrating this, we have for the three divisions of the arch, as before,

For the point B, or a; = 2, we have from the two first of these equations,

B - B' = J (V - V) a z
3 - i (V + V) z* - J (A - A') ,

that is,

B-B' = -&Ps ....... (II.)

For the crown, a; = 0, and the second and third equations are equal,

hence

B' = B* ........ (Ill-)

For the left end, that is, for x = a, since the end of the arch must not slip,

we must have x x = 0. So also for the right end, for * = a. There-

fore, from the first and third equations, putting B' for B", we have

AHa'A-^rVa4 + iAa* + B = 0,

-
-fr H a 3 h + AV a* + i A' a2 + B' = 0.

By the addition and subtraction of these equations, we have, since

V + V = P, and (V - V') a = Pz,

)a
z -(B + B') = .... (TV.)

+ z
4
) + i(A-A')o=0 . . (V.)

We might, in a precisely similar manner, form three equations similar to

(23) for the vertical displacement A
y. This would introduce three more

constants and four more equations of condition between them. By the

nine equations I. to IX. thus obtained, these constants may be then deter-

mined in terms of the known quantities H, h, P, a and z, and thus the

change of shape at any point may be fully determined.

The complete discussion, as indicated, is unnecessary for the purpose we
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have in view, and we shall not, therefore, pursue it further. We have

already all the general formulae of which we shall need to make use in the

discussion of the parabolic arch.

6. Circular Arc concentrated Load. In a perfectly similar

manner we may make out analogous formulae for the circular arch. Thus,

referring to equation (8), Art. 1, and inserting for G and M their values as

given in (18) and (19), Art. 3, we have for the force in the direction of

the axis (see eq. 4),

. Arf 1B A- = H cos a v sin a

. - . OH)

EA^- = -Hcosa-V'sina
da

Putting for H, VandV their values from (21), Art. 4, and (17), Art. 3, we

have,

Ad 8 _ _ sina + sin/3 2co8asinj3
~|

da 2(1 -cosa)

_ Ad*'_ p sina-sin/3-
2(1 -cos a)

(a) Change of direction of tangents.

Referring to equation (1 2), Art. 1, we have, since rdt^ ds and r
<f>
= s,

/M
A da

Ei rd
<t> + -dT

The value of M is given in (20), of
^

- in (24). Inserting these values,

we have

A * = EI/ [
H (cos $ r cos *)

~v (sin
- sin

<)]

JJT^ (H cos a + V sin a) <f>.

Performing the integration,* and putting, fpr brevity, it = -1^ we have for

the three segments of the arc, as before,

oc$)-Kr(Hcosa + VsiDa)<J> + A "

cosa)-V'(*Bina-co8*)-r(Hcoso+ V'8ina)*+A" J

For the point E, = g, and the first and second equations become simul-
taneous. Hence, after reduction,

A - A' = (V - V) r* /3 sina + (V + V) r* cos/3 + * (V-V) r* ySsui a.

= P,andfrom(6)V-V'=P?
i

5-^, hence

* See Art. 7, fallowing.
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(b) Horizontal displacement.

According to eq. (14), Art. 2, since x = r sin 0, y = r (1
- CO8 0),

dx = r cos (j)d(f), dy =r sin d 0, we have

E I A x r I FH r* (sin cos a) V ?* (0 sin a 4- cos 0),

Kr"(Hcosa + Vsina)0 + AJ sin0<Z0,

K r2 / (H cos a 4- V sin a) cos d 0.

The integration gives us the three equations,

E I A x = r3

[H ( ^ sin cos cos a sin 04-0 cos a cos 0)

V (sin a sin $ sin a cos + sins
0)

|

K r
3

(H cos u 4- V" sin a) cos A r (1 cos 0) + B.

E I A x' r3

|^H (| | sin cos cos a sin -i- cos a cos 0)

V (sin a sin sin a cos sin" 0) 1

^(Hoosa + V sin a) cos A' r (1 cos0) + B'.

E I A** = r3
1 H ( | sin cos cos a sin + cos a cos 0)

V (sin a sin
<f> (f>

sin a cos i sin" 0) I

K r3 (H cos a 4- V sin a) </>
cos A" r (1 cos 0) + B'.

For =
/3, that is at the load, A a; must equal A x'.

Hence, after reduction,

B-B' = -|Pr'(2 + sin
!1

/3-2cos/3 2sin/3) + KPr^sm/S . . (H.)

For the crown =
0, and A x' = A x"

;
hence

B' = B" ......... (HL)

For the left end, = a and A x =
;

for the right end, = a and

A*" = 0; that is,

H r* (a 3 sin a cos a + 2 a cos* a) -4- ^V r3 (3 sin
a a 2 a sin a COS a)

<er'(Hcosa + V sin a) a COS a Ar(l COS a) + B = 0, and

+ iH r8 (a 3 sin a cos a + 2 a cos*>a) iV r
3

(3 sin* a 2a sina COS a)

4- K 1* (H COS a + V sin a) a COS a A* r (1 COS a) + B" = 0.

The subtraction and addition of these equation gives, after reduction,

Hr* (a 3 sin a COS a 4- 2 a COS* a)

iPr2
(3 sin* a - 2 a sina cos a - 2 - sin* ft + 2 cos + 2/3 sin /3)

+ K r* I 2H a cos* a + P (a sin a cos a /3 sin /3) I

+ (A-A")(l-cosa) = ...... (IV.)

and ^Pr3

sinj3(3sina 2ncosi)
- (A + A") r (1

- cos a)
- K Fr'a cosa sin# 4- B + B' = . . (V.)
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Here, as before, we shall leave the discussion, as we have already all the

equations of which we shall make use.

7. Integrals used in tbe above Discussion. For convenience

of reference, we here group together the known integrals employed in the

preceding discussion.

/ sin x d x cos x, I cos xdx = sin x.

I sin* xdx = ix i sin* cos a;,
/ cos 2 xdx= \x + ^sinxcosx.

I smxcosxdx = ism* x.

I sw3 xdx = cos a: (2 + sin 2
x), / cos3 x d x = $&inx(2 + cos 2

*).

/ sin 2 x cos x d x = J sin 3
x, I sin x cos* x d x = J cos3

*.

/ xs\nxdx = siiix xcosx, I xcosxdx = cosx + xsinz.

I x sin 2 xdx = x* + J sin 2 x -J x sin x cos *.

/ x cos 2 x d x = J 'x* i sin
z x + -J x sin x cos x.

I *sinajcosa;<Za! = i(2a!sin
!! x x + sin a; cos*).
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CHAPTER IIL

ARCH HINGED AT ABUTMENTS ONLY- CONTINUOUS AT CROWN.

A. PARABOLIC ARC CONSTANT CROSS-SECTION CONCENTRATED LOAD.

. Horizontal Tlirut. We can apply here directly the results of

Art 5. Thus, in equations (22) for x = 0, A 0' = 0, and A 0" = 0, hence

A' = A". If then in eq. (V.) of that Art. we put A' for A", and then for

A A' its value from (I.), we have at once

.. (27)

This is the formula which we have given in Art. 159 of the text, without

demonstration. The thrust is greatest when the load is at the crown. "We

have then s = and H = f P
|.

The value of V is given in Art. 3.

9. Intersection Curve. Denote the ordinate of the curve cdeik

(PI. 23, Fig. 91), taken above the line A B by y. Then we see from the

V
Fig. that y = A N tang. <Z A N = (a a) . The value of H is given

above, that of V has already been found in Art. 3, eq. (16). viz.,

V = P . Hence we have, after reduction,
2 a

(28)

which is the equation already given in Art. 159, and from (18) and (19)

the values of the table in that Art. have been calculated.

The above values of H and V are simple and of easy application, not in-

volving much calculation in any special case. Hence we can readily com-

pute H and V, and thus check the accuracy of our method of construction

given in Chap. XTV.

B. CIRCULAR ARC CONSTANT CROSS-SECTION CONCENTRATED LOAD.

1O. Horizontal Thrust. Here we can apply directly the results of

Art. 6. Thus, inserting in eq. (IV.) of that Art. A - A' for A - A', and

taking the value of A A' from (I.), we have an equation for the deter-

mination of H. This, after reduction, becomes

_ sin" q Bin-' ft + 2 cog a (COB ft COB a) 2(1 +) cog a (a rin a ft fin <3)

2 [a S sin a oog a + 2 (1 + ) a co<H a]

which is the equation given in Art. 159 (2) of the text

For the semi-circle, a = 90, sin a = 1, and cos a = 0, and this becomes
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If we put

Ai = sin
2 a sin2

ft + 2 cos a (cos /3 cos a a sin a + sin ),

Ao = 2 COS a (a sin a (3 sin /3),

B! = 2 (a 3 sin a cos a + 2 a cos" a),

B 2 = 2 a COS8
a,

we have

or, if we put A = _-
a

,
B = ^, and H = P ^, we have

H="-fTK ........ (29)

But Ho = P
jj-

1

is the value of H from the formula above, when the terms

containing ~k are disregarded.

We have also, by series (see Art. 20, following),

A t = -,V (a
2- 2

) [ (5 a2 -
/3')
- & (49 a4 + 34 a 2 - 11 0) H- . . .]

A, = 2 (
2 -

/3
2
) [1

- i (4 a2 + 2
) + . . .]

Bx = A a
5

(1
- A a' + . . .) Bg = 2 a (1

- a* + . . .)

Approximately, therefore, since for h small with respect to a, the tan-

ra

24 6 a 1 15 15 a*

gent may be taken for the arc, and hence ,
or a = -

,
we have

n 2 n

Hence, when rise is small compared with span, we have the approximate

expression

6 a 2

FlfT

By means of a table calculated for H
,
for various values of a and ft

= 0,

0.2, 0.4, etc., of a, the thrust can be readily found in any case from the

above formula.

We give in the following Tables the values of H,, A and B, calculated

from the exact formulae. The formula for H above is thus made of easy

practical application, without tedious calculation, and the results given by
the method of Chap. XIV. may easily be checked.

The value of V is given in Art. 3.
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TABLE FOR H .

285

Thus, for /3
= 0, -&, -fV, etc., of a, the numbers in the table give the co-

efficients of P
^- for a = 0, 10, 20, etc.
n

For the values of A and B, we have the following

TABLE FOB A AND B.

Thus, for various values of -, we have the coefficients of ^-, which give
a n

A for a = 10, 20, etc., and for the values of a have the coefficients of

|j,
which give B.

11. Intersection Curve. Indicating, as before, by y the ordinate
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Nd of the curve cdeik [Fig. 91], we have, as before. y=AN tang.

d A N = (a
-

z) ^, or since a = r sin a, z = r sin ft, V = P 8m a + 8m P
. & sin a

from eq. (17),

_ sin" a sin" ft P
2 sin a

.

H n

Inserting the value of H above, we have

sin" a sin
2
/3 p + B K~\ B^

2rin^ Ll - AJ A?

(sin

2
a sin

5
/3\B t-

2~sin

-
/A~ '

tliat is> *f y *s tlie va^ue of y when Tc is

neglected,

which is the value of y given in Art. 159 (2) of the text. In that Art. we
have already tabulated the values of A and B, as also of y<> for various

values of a and 0.

For /3 a, that is, for the end ordinate, our expression for y reduces to

In this case, by differentiating numerator and denominator, we have

a 3 sin a COS a + 2 (1 + K) a COS2
a~

sin a a cos a K (sin a 4- a cos a)'

For the semi-circle, a = 90 = -
,

sin a = 1, cos a = 0, and hence

y = % irr = 1.5708 r. Hence, for the semi-circle the intersection curve be-

comes a horizontal straight line at 0.5708 r above the crown. In all cases

for small central angle ,
x may be disregarded.

The above results are sufficient to enable us to either diagram or calcu-

late the strains in every piece for any given position of load.
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CHAPTER IV.

ARCH FIXED. AT ENDS.

12. Introduction. In the previous case, the end reactions pass

always through the ends. If, however, the ends are " walled in," so that

the end cross-sections remain unchanged in position, and cannot turn, these

reactions pass then no longer through the centres of the end cross-sections.

In the first case, the moments at the ends are zero
; now, however, we have

end moments to be determined, viz., M, and M2 , left and right. For their

determination we have the condition that the tangents to the curve at the

ends must always remain invariable in direction, or for the ends, A = 0.

In the arch above with hinges at ends, we have always considered a por-

tion lying between the end and any point. In the present case, however,

we shall consider the portion between the crown and any point. Both

methods lead, of course, to the same results, but the latter, in the present

case, is somewhat simpler.

Accordingly, we conceive the arch cut through at the crown [PL 24,

Fig. 93]. The total resultant force exerted upon the one-half by the other,

we decompose into a vertical force V at the crown, and a horizontal force

H. The distance c Tc of this last from the centre of gravity of the section

at crown is <?
, and hence the moment at crown is M = H .

13. Concentrated Load General Formulae. Let a weight
P act at any point; then representing, as before, by primes, quantities

relating to the portion between the load and right end, we have, as in (18),

G = H cos (P V) sin <, O' = H cos $ + V sin
</> }

N = - H sin + (P - V) cos $, N' = - H sin <
- V sin

}

"

Also, M = - H
( + y)

- Vx + P (x
-

z), M' = - H
(a. -I- y)

- V x,

or, since H e = M = moment at crown,

M = M, -Sy-Vx + P(x-e), M' = M - Hy - V x . . (32)

(a) Intersection curve.

The two reactions, R and R', intersect, as before, in a point L (Fig. 92),

which must lie upon P prolonged, as otherwise R, R' andP could not be

in equilibrium. The locus of the point L we call, as before, the intersection

curve. The equation of this curve can be easily found when V, H and M
are known.

The force acting upon the portion B E (Fig. 92) is the resultant of V
and H. The component H acts at the point of intersection o of this

resultant L ty with the vertical through O. 'The vertical distance of this

point o from c is, as above, e<, ;
its horizontal distance from P is z. Then

e cot L ^ k is the vertical distance of this point from L, and e<> + z cot
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= e + a = y> where, as in the Fig., e is negative. In any case, e

TVI

is given by e =
; hence, for the intersection curve,

,33)

(b) Direction curves and segments.

The direction of the resultants R and R' can be determined in two ways

First, by the points of intersection $ and ^ with the verticals through the

centres of the end cross-sections
; second, by means of the curves enveloped

by these resultants for every position of P. We call the first distances

A =
Ci, T3\ff

= c?, the direction segments, and the enveloped curves the

direction curves.

Taking Ci and d as positive when laid off upwards "above the ends, we
have Mi = H Ci M2 = H c3 therefore

*=-- *=- (34)

We may also easily determine the equation of the direction curves. Let

the co-ordinates with reference to the crown of any point be v and w (Fig.

92). If the load P is now moved through an indefinitely small distance,

the new resultant cuts the former in a point of the curve required. These

two resultants intersect the vertical through O in two points. Let the dis-

tances of these points from O be c and c + d c, and let y and y + d y be

the angles of the resultants with the vertical. Then v = (w + c) tan y,

v = (w + c + d c) tan (y + d y).

Eliminating ,

(c + d c) tan (y + d y) c tan y _ d (c tan y)

tan (y + d y)
~ tan y d tan y

From the first of the equations above we have then

dc
-tan*v.

dt&ny

V'

VH) /HV H<ZM O -M O <ZH^

But tan y = ?, c = - ~, ctany=- ,
hence

/H\w
V d MQ - MQ d V
VdH-HdV

(35)

Thus we see that in any case we have only to determine H, V andM
,
and

we can then from (83) and (34) or (35) determine at once the intersection
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curve, and the direction segments or curves. These are all we need for our

method of construction as given in Chap. XIV. ; once given, we can then

easily construct H, V and M e or M! for any position of weight

A. PAKABOLIC ARC CONSTANT CROSS-SECTION CONCENTRATED LOAD.

14. Determination of H, V and M . We put y = h
^,

d y = 2 -^d x, d s = d x, as before. Then from the values of M given in
a

(32) we have, according to equation (13), Art. 1, after inserting the values

of y and ds above, and integrating,

and

For x = z, A 4>
= A 0', hence | P (z

-
2z) z + A = A, or

A-A' = |P2J ....... (X)

For x = a, A $ = 0, and for x = a, A <' = 0, hence

A',

and by addition and subtraction,

A + A' = Va*-$P(a-2z)a .... (H.)

2M a-fHaA-!-iP(a-3)' = . . . (TIL)

From I. and II. we have

For the horizontal and vertical displacement of any point, we have from

('.5),
Art. 2, after integration,

15 a

and

19
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For * = s, Ax = Ax', and Ay Ay', hence

B - B' = A P z* - i (A - A') 3
s
,

and C - C' = F s
3 -

(A - A') 2, or

B - B' = - /4 P s
4

(IV.)

0-0' = -iP3s

(V.)

For x = a, A % = 0, A y = 0, and for x = a, A x' = 0, A y' = 0.

hence,
= + iMoa3 - -j^HAa3 - iVa1 + sVPa3

(3
-

8s) + i Aa2 + B,

= - iM a3 + -rVHAa - i V a4 + i A' a" + B',

= + iMoaa - AHAaa -(V-P)as -i? F3aa + Aa + C,

= + i Mo a2 -
iVH A a2 + i V a3 - A' a + O'.

The addition and subtraction of the two first and two last of these equa-
tions gives, when we put for A 4-A', A A', B B', O O', their

values above :

B + B' = -iV 4 + -

2\ Pa3

(3a-43) . . . . (VI.)

2M as fHAa8 + |P(3a4 8a*z + 6aV s
4
)
= . . (VII.)

O + a = - Moffl* + iHfca' - Pa(a - 3a3 + 332
j . . (VIII.)

f Va'-iP(2as -3a2
s-f-s

8
)
= (IX)

Equations in. and VII. contain only H and M unknown. Their solu-

tion gives

= i*p
(a'-3')'

M = -AP :

From IX. we find directly

. . . (36)

. . . (37)

= F (38)

These are the equations given in Art. 160. From them we have the fol-

lowing table :
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From (34) and (35) we can now find the intersection and direction curves.

The preceding table gives us sufficient data for complete calculation by
moments according to Art. 162. The intersection and direction curves

will, as already explained, enable us to find the above quantities graphi-

cally.

15. Intersection Curve. From (33) we have y =
Vz~M

", or in-

serting the values of H, V and M above, and reducing,

hence y = $h.

For the parabolic arch with fixed ends, then, the intersection curve becomes

a straight horizontal line, i h above the crown.

16. Direction Curve. From (36), (37) and (38) we have

dH ISPfo'-gQg dV 3P(a j -za
)

dz
~

8a'h
'

dz 4V
d Mo _ P (a

-
z) (4ffl

a - 5 az - 5ga
)

~fo~
=

80*

Inserting these in (35), as also the values of H, V and M themselves, and

reducing, we have

For z = 0, v = | a, w = f h. For z = a, v = $a, w =
For z= a, v = a, w = oo . Eliminating z, we have

15a(a-v)

This is the equation of an hyperbola. Hence, for the parabolic arc with

fixed ends, the direction curve is upon each side of the crown an hyperbola.

This hyperbola is described in Art. 160 of the text, (Fig. 93), and a table

to facilitate its construction is there given.

B. CIRCULAR ARC CONSTANT CROSS-SECTION CONCENTRATED LOAD.

17. Fundamental Equation*. From eq. (82) we have, since

x = r sin 0, y = r (1 cos
</>),

z = r sin /3,

M = M -Hr(l -cos0) + (P-V)r8in<-Frsin)
M' =M -Hr(l-cos<)- Vrsin< f"

The expressions for O-, Art. 13, eq. (12), apply here directly.

Therefore, from eq. (8), Art. 1, we have
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Hence from (12), Art. 1, since ds = rd(f>t

^ A -
J_j~Mo

_H ? (1 cos ^>) + (P-V) r sin 0- Pr sin jsl 5 +^
? <? 9,

-cos <)-Vr sin d^ +^- <.

Substituting the values of
*

above, integrating, and putting, as bo-
ds

fore, for brevity, < = -^, we have

E I A
<f>
= r JMo $

- H r
(cf>

sin <) (P V) r cos P r sin J
+ K r (M Hr Gr sin /3) < + A.

E I A 0' = r |MO H r
((f>

sin <) + Vr cos 01 + K r (M H r) 0+A'.

For $ = ,
A <p

= A 4>', and we obtain

A-A' =
Pr'[cos/3

+ (1 + K)/3sin0]
. . . (I.)

For 4>
= a, A $ = 0, and for </>

= a, A $>'
= 0. Adding and subtracting

the equations thus obtained, and eliminating A A', we have

A + A' = Pr" Tcos a + (l + K) a sin
0]

- 2Vrs cos a . . (H.)

2M a - 2Hr(a sin a) P r I cos a cos /3 + (a ) sin
/3J

+ [2Moa-2Hra-Pr(a-^)sin/3] =0 . . (III.)

From eq. (14), Art. 2, we have, as before, after integrating, for the hori-

zontal displacement,

El A 2 Mo r2
(sin<p $ cos </>)+ Hr" (2 sin

<j>
2 4> cos <^ <p + sin ^ cos<?>)

iV^ sin'
J

<;> + iPr3

(sin
2
^ + 2 sin ^ sin <^ 2<f> sin ^ cos <^)

+ c T-
3

(Mo Hr P r sin /3) ^> cos ^ + A r cos <p + B.

E I A '= Mo ;
>a

(sin $> (f>
cos <?>)+iHr3

(2 sin <f>
2 ^ cos

<j> ^>+ sin
<J>
cos

<f>)

iVr3 sin2
</> + K?-2 (M Hr)^ cos^> 4- A' r cos<J> + B'.

For * = /3,
A a; = A x, hence

B - B' = - iPr (2 + sin* /3) . . . . (IV.)

Further, for ^>
=

a, A a? = 0, and for
<?>
= a, A x' = 0. Hence, by add-

ing and subtracting,

B + B' = V r (2 - sin
2

a)
- iP r (2

- sin 2 a + 2 sin a sin /S) . . (V.)

2 Mo (sin a a COS a) Hr (2 sin a 2 a COS a a + sin a COS a)

+ iPr I 2 sin2 a + sin 2
ft 2 cos (a /3) + 2 (a /3) cos a sin

J

<c I 2(M Hr a cos a Pr(a 0) cos a sin
/3J

= 0. .(VI.)
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Multiplying HI. by cos a, and adding to VI., we have

2 Mo sin a Hr (2 sin a sin a cos a a) + |Pr (sin a sin ,3)
2 = 0.

In similar manner, we have from eq. (14), Art. 2, for the vertical dis-

placement

=M r 2
(cos <p + <t> sin <p)

-
i H r3

(2 cos <t> + 2
$> sin <p

- sin 2
0)

-
$Pr*(<t> + sin<j>cos<j>+2 sin;3 cos$> + 2<*>smsin>)

+ icr
2
(Mo Hr F r sin 0) <f> sin <f> + Arsin<f> + O.

' = M r2
(cos <(> + <t>

sin
<f>)
- l

f Ur3
(2 cos<*> + 2 <p sin <f>

- sin'
<*>)

+ * Vr*(<t> + sin <t> cos <p) + <r> (M H r) <f> sin<^ + A'r sin <p + C.

For <p
= P, Ay = Ay', hence

C - C' = i Pr3

(^ + sin /3 cos /3) . . . . (VIE.)

Finally, for (/>=:, A y = 0. For
<j>
= a, Ay' = 0, and hence

C + O' = 2M a r'
2

(cos a + a sin a) + Hr3

(2 cos n + 2 a sin a sin 2
a)

+ iPr3

[a
+ sin a cos a - 2 sin (a --

0) + 2 (a- 0) sin a sin /si

-2Hr z (M -Hr)asina-i-KPr
3

(a-/3)sinasin/3 . . .(IX.)

Vr(a sin a cos a)= i FT- (a /3 sin a cos n sin/3cos/3+2cosa sin/3). .(X.)

1. Determination of H, V and M .

() Vertical Reaction.

The vertical force V is given directly by eq. X. Thus

_ _ a /3 sin a cos a sin /3 cos j8 + 2 cos a sin /3

2 (a sin a COS a)

an expression independent of K.

Transforming by means of series, we have, approximately,

For the semi-circle

V = P 7T-2/3- 2 sing cos

27T

(44)

(45)

From the exact formula (43) we have the following table :
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(S) Horizontal thrust.

Eliminating M from in. and VI. we obtain, after reduction,

2 sin a Poos ft cos a + (1 + <c) ft sin
0~]

(1 + ) a(sin a + sins |3)

2 F(l + K) a (a + sin a cos o) 2 sin5 a I

If we put A, = 2 sin a (cos
- cos a + /3 sin /3)

- a (sin* a + sin* /3),

A3 = a (sin* a + sin* #)
- 2 /3 sin a sin ft

Bi = 2 a (a + sin a cos a) 4 sin* a,

B 2 = 2 a (a + sin a cos a),

and let A = rr1
,
B = =A and H =^ P, we have

H H 1 ~ A *

where H is the value of H from the above formula, when terms containing

K are disregarded.

Transforming by series, we have

From the exact formula (46) above, we have the following tables :

TABLE FOR H .
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For the values of the quantities A and B we have the following table :

VALUES OF A AND B.

From the above tables it is easy to find the thrust for any given position of

load, and any given span and rise. The preceding table gives the reac-

tion
;

it only remains to determine the moment M at crown.

(c) Moment at crown.

From VII. we have

Sin a/ sm a

Substituting the value of H, already given, eq. (46), we obtain

2 Mo
f"(l

+ K) a (a + sin a COS a) 2 sin 2

a~j

= Pr Fsina-sina cos (a-/3)+2 sina (cos#-cosa)-sina (sin a
-sin /3) sin ,8

- a (cos ft cos a)
-

(l + K){a(sin
2 a + 8in

2
/3)- 2/3 sin a sin 0}

+ (1 + *) (a
-

) (a + sin a cos a) sin
/3j.

In similar manner, as before, for H we have

where M00 is the value of M when terms containing k are disregarded,

and B has the same value as above. By series we have

Mo, = - & P r a* - 10a/3 - 3

+ A (3 a4 + 6 a
;' + 45 a 2 2 + 308 a 3

4- 164 4

and

a 2
(3a*-10a/3-5/3*)
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From the exact formula above we have the following tables.

VALUE OF M00 .

VALUES OF B AND C.

Here, as always, a negative moment denotes tension in lower or inner

flange. We see at once from the table that the maximum compression in

this flange at crown does not occur for full load, but for load extending
from both ends towards the crown as far as about gths of the span or ^ths

of the half span. Within the middle half of the arch, then, a load any-

where causes tension in lower flange at crown outside of this middle half

a load anywhere causes compression in the lower flange at crown. For

large central angles, K may be disregarded, and we have simply M = M o.
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19. Intersection Curve. From Art. 13 we have

V r sin fl
- Mo

H

Hence, by substitution of the values of V, H and M
,

120(a
2 -2ai9-_

(47)

10 a4
(a

'"I/ (a+z)* AT*.

which is the equation given in the text, for which a table is there given.
2O. Direction Segments. It win in the present case be found

most convenient to determine the directions of the resultants by d and ca

equation (34).

M, M,
Thus, d= -

-jj-,
et = ~.

But Mi = Mo - H h + (P
- V) a - P z, M2 = M - H h + V a.

We have, by series, then the approximate formulas,

where positive values of d and ca are laid off upward above, negative
values downward below, the centres of gravity of the end cross- sections.

From the preceding tables we can calculate easily in any case H and V
and MO, and thus check the results obtained by the method of Chap. XIV.

The formulae above for c, and ca do not admit of tables, nor, in fact, are

such needed, They are sufficiently simple for ready insertion.

Thus, by the aid of our tables, having computed V and H, and, if neces

sary, M and ea, we can by the method of moments, as explained in Chap.

XIV., Art. 162, readily calculate the strains in the braced arch, whether

continuous at crown and fixed or hinged at the ends, or hinged at both ends

and crown.

2O (6). Transformation Series. We have in the preceding repeat-

edly made use of series in the transformation of angular functions, such as

sin, cos, etc., into functions of the arc itself. We group here, for conve-

nience of reference, the series thus used :

sin x = x (1 x*

cos x = 1 -J x

z *=l- a;
2 + ia?- -

4W
a;(l-5aj

2
-i-A 4

-7fj:
8 + win* -Trim*" + )
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cos' as = 1 - f x
2 + | & - /A- *" + T&Jrr *8 - -nW,ni *' + ...

tan x = x (1 + i z
2 + -ft- + aft z6 + Trtlr

6 + rHIk a;
1 + ...)

1 x
cot as = -

g (1 + iV a;
2 + *h as* + y/ry *6 + arf 7r a;

8 + ...)

sin a siny - xy [1-4 (
2

+ 7 a;
2
y

4
+2/

6

)4-rTi4oo (5 of+60 x y

cos a; cos y=l-i (ai*

+15 asV+y
a
)

sin a; cos &r=a: [1-^ (a;
2 +3 2/

2
)+iiT7 (*

4+10a; 2

+35 a;
2
y*+7yO +yvfas (a;

8+36 a;
6
y* +126 a?*y+84
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CHAPTER V.

INFLUENCE OF TEMPERATURE.

91. General considerations. When the temperature of a per-

fectly free body, which possesses in every direction the same coefficient of

elasticity and expansion, changes equally at all points, there can be no
strains in the body. For were there such strains, then, as there are no
outer forces, there could be no equilibrium.

If, however, the change of temperature is not the same at all points ;
or

if the body is not free, so that it is possible for outer forces to act, there

are strains.

In the following we assume the change of temperature to be everywhere
the same, but that the body is not free.

We assume that at a certain temperature ta no strain exists in the body,
and call this the mean temperature. The deviation above or below the

mean temperature we call -f- 1 or t, and denote the coefficient of expan-
sion for one degree by e.

The determination of the strain in a straight beam held at both ends, is

very simple. If the length is I, its relative change of length is t t. Since,

however, it cannot expand, the strain S per unit of area is precisely as great

as the force which would be required to produce this relative elongation,

or from eq. (4) * = + B 1 1 (48)

If the area of cross-section is A, then the strain at each end is

S = s A = E A ( t.

In equation (48) it is assumed that a compressive strain, due to +' t, is

positive, a tensile strain, due to t, is then negative.

22. Influence of Temperature on tbe Arch. Since by a

change of temperature the length of the arch varies, while the span remains

always the same, the shape or curvature must change, which naturally must

give rise to strains and outer forces. In the following we have only to

determine these outer forces, since, as shown in Chap. XIV., these are all we

need to determine the strains themselves.

1 / M\ .

The relative change of length is from eq. (8), Art. I., g-^ 1Q +
j.

This change is caused by the outer forces. The relative change of length

due to temperature alone is . Hence the total relative change of length is

Or + M
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Hence the change of length of the axis is

C*= J_ / Gr +
"Brjo A~ (50)

The change of the angle between two infinitely near cross-sections, and the

actual turning of a cross-section is from (9) and (12), Art. 1. given by

M Gr+M
+

Finally, from (14) we have

//Ad*&<j>dy + I
-jj-

d x.

/r^dsA <Z + /
-jfi-

d y.

Substitute in these last two equations for A A and- their values from
dl

(49) and (52). The double integral thus arising can be resolved by par-
tial integration.

Thus

Applying this, we obtain

/* /* A fl ft "^

+ lydA+ I -- ^a;
' J"

\
. . . .

We shall assume in tlie following the axis always circular.

23. Fundamental Equations General. Upon this assump-
tion of a circular axis we have generally

G = H cos <p, N = H sin <f>

(54)

Hence, from the preceding Art.,

Hr + Mo
EA

Mo r r . H T-
2

/
A^,=

r z /

A = - r A (1
- cos 4) 4- / M (1

- cos <p) <Z</>EI/
r + Mo /

EA J
d t>- rf ts<l>+B ..... (57)
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24. Arch with three Hinges. If there are three hinges, the mo
ment M at the crown must be zero, and therefore M = H r (1 cos

<f>).

But for = a, M must also be zero, hence H r (1 cos a) = 0, and therefore

H is zero. Then for any point G = 0, and M = 0, and N = 0. That is,

for the arch with three hinges there arefor a change of temperature no outer

forces, and hence no strains.
,

25. Arch hinged at Ends. Here, since for = a, M = 0, we
have from (54)

M = -Hr(l -cos a)
jM = - H r (cos

- cos a) I (58)

G/- + M=+Hrcosa )

From (56), since for 9 = 0, A
<p
= 0,

/'V, /* ,

A 9 = - ~ I (cos
- cos a) d <>> + Hc 8a

/ d<p . . (59)

Jo Jo
From (57), since for <p

= 0, A x = 0,

Hr'F P C* 1Aa)=ET| (1-0080) / (cos0-cosa)d0- I (l-cos0) (cos^-cosa)d I
J L t/0 ,/e> J

H r cos a cos /
^

I/O

For a, this becomes zero, and we have for the horizontal thrust

_ E! t sin a

-= I cos ^ (cos cos a) d 6 / (cos^ cos a)d<f>-i ^ I d<!>

Jo Jo Jo
.... (60)

Performing the integrations indicated (Art. 7), and putting, for brevity,

K = , we have
JLf*

2E 1 1 1 sin a
,gj.~

r* (a 3 sin a cos a + 2 a cos* a) + 2 *r* a cos z a

By series (Art. 20), we obtain the approximate formula

H =

Tlie above are the expressions given in Art. 165 without proof. The less

h, the greater for equal dimensions is H. For h = 0, we have

H = E A ( t, as we should have for a straight beam.

26. Arch without Hinges. In this case we have the general equa-

tions (54) and (55), which apply directly without change.

From (56), since for = 0, A $ = 0, we have
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From (57), since for
<?>
= 0, A x = 0, we have, inserting the value of A 0,

above,

ivr *P C* C* ~\

^L\ cos^ / dt- I cosQdt I

EI L J J J

-^1 1 (1
- cos 9) I (l cosfidf I (1

- cos
</>)

2
<Z o I

E *
|_ / J J

+ Hr + Mo
cos i d<t>-rttsin<!>.BA .70

Tor = a, A = 0, hence from the first of these expressions

rl I (l-cQ*f)d4 +
^ 13*^

If the distance at which the horizontal thrust H acts from the crown is

o, we have M = H ea , whence we see at once that ea is the fraction in

(63) multiplied by r. For <f> = 0, A a; must also be zero, and we thus

obtain another relation between Mo and H which does not contain A. If

we multiply the expression thus obtained by r cos a, and then subtract the

result from that previously obtained for =
0, A = 0, we have

M r ra Hr'f f" C"
/

(cos0)^+-jrj|
/ (l-cos&dQ- I (l-

M
(cos0)^+-jrj (l-cos&dQ- I (-costfO* d<j,

=-

.... (64)

Performing the integrations indicated in (63), we have (Art. 7)

M. = -H^1+;)-
8i ..... (65)

(1 + K) a

where, as before, K = -.

From (64) we obtain

MO r sin a iH r 2
(a 2 sin a + sin a cos a) = E I f t sin a.

Inserting the value of M above, we have

and hence

H f Ka gma
^

r 2
[(1 + K) (a

2 + a sin a cos a) 2 sin 2
a]

M 2EIftsma[(l+K)a sin a]

r [(1 + K) (a
2 + a sin a cos a) 2 sin 2

a]

Prom these two we obtain for the point of application of H

* = - = +2-t=-% .... (68,
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By series, we have (Art. 20)

=i+f, = <*-ia* ---- (69,
3 Aa z

without reference to *, <?o = 3 h.

For small central angles, then, for which * may be disregarded, the

thrust given above by (66) acts at i h below the crown for a rise of tem-

perature of t degrees above the mean. For a decrease of temperature be-

low the mean it acts above, M is negative, and the strain in the lower

flange tensile.

Further, we have, by series, the approximate formulae

_ 45 E I f t 45EIA f g~

2r(a
4

These are the expressions given in Art. 165 without proof.

+451

+6Q _15EIf t(Aa
t
+QT)h



304 SUPPLEMENT TO CHAP. XIV. [CHAP. VI.

CHAPTER VI.

PARTIAL UNIFORM LOADING.

27. Notation. In the preceding discussion of the -arch we have con-

sidered the influence of a single concentrated load only, and this, as we
have repeatedly seen in the case of the simple and continuous girder, etc.,

is sufficient for full and accurate solution. When once we are able to find

and tabulate the strains in every piece due to a single load in any position,

the thorough solution becomes simply a question of time.

It may often happen, however, that we may wish to determine the strains

for a full load only, or for a uniformly distributed load extending from

one end to some given point. In such case it would be unnecessarily tedi-

ous to obtain our result by the successive determination and addition of all

the intermediate apex loads. We may easily deduce from the preceding
the general formulae for partial loading also.

As before, we shall let a = the half span, h the rise, I the moment of

inertia, and A the area of the cross-section. But we shall represent by p
the load per unit of length of horizontal projection, and by z the distance

of the end of the load extending from the left, from the crown. This dis-

tance z, from the crown to the end of load, is then positive towards the

left. In the circular arch the angle subtended by this distance z we call /3.

The angle /3 is then positive to the left of the vertical. The angle sub-

tended by the half span is, as before, a. For /3 = o, then, or 'for z = a,

there is no load upon the span. For /3
= 0, or z = 0, the load extends

from the left to the centre. For /3
= a, or z = a, the load covers the

whole span. Pis. 23 and 24, Figs. 91 and 92, still hold good, therefore, for

our notation. We have only to conceive, instead of the concentrated load

P, a uniformly distributed load, per horizontal unit, extending from left end

as far as the position of P. This much being premised as to notation, we
shall treat, as before, the three cases of arch hinged at crown and ends,

hinged at ends only, and without hinges.

A. ARCH HINGED AT CROWN AND ENDS.

28. Reaction. This case is too simple to demand any extended

notice, in view of what has already been said. We have from eq. (16), Art.

3, for the reaction at the left or loaded end, for concentrated load,

v __ p a + z

2a
'

If now we put P = p d z, and integrate, we have

2az + z

where O is the constant of integration. By taking the proper limits, we
can eliminate this constant, and thus obtain the reaction for load covering
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any desired portion of the span. As we shall in every case suppose the
load to extend from the left end up to any point, we shall take the limits
of z = a and 2, and therefore obtain

......
For z = a, this is zero, as it should be, since then the lead has not come

on. For = a, the load extends over the whole span, and V=pa, or
half the whole load, as it should. We might have obtained this result at
once by moments. Thus,

but have preferred the above method as showing how uniform loading is

deduced directly from concentrated by inserting pdz for P and inte-

grating.

29. Horizontal Thrust. In precisely similar manner we have

from (21), Art. 4, for the thrust due to concentrated load P, H = P ^ffi
~

*\
2h

Put P = p d z and integrate between the limits z = a, and
, and we have

*_,*=%.=*
For z = a, this is zero, as should be. For z = a, or for full load over

whole span, H = -~-v-. We may also deduce the above equation directly

by moments.

The above formulae (71) and (72) are all that we need either for calcula-

tion or diagram. They apply evidently equally well, whether the arch be

circular or parabolic, or, in general, whatever its shape may be. The form

has no influence upon either the thrust or the reaction.

For the moment aC any point whatever, whose distance horizontally

from crown is x and vertically below crown y, we have at once

M = H (h
-

y)
- V (a- *) + | (a

-
x)*.

If this point is an apex, then the moment divided by depth of arch at

this point is the strain in flange opposite that apex. A positive moment

throughout this work always indicates compression in the inner or lower

flange.

B. ARCH HINGED AT ENDS ONLY.

30. Reaction. The vertical reaction at the end is precisely the same

as before for three hinges, and is given by equation (71). This reaction is

evidently independent of the shape of the arch, and the above formulae

holds good generally.

31. Horizontal Thrust Parabolic Arch. We must here

distinguish the shape of the arch, and treat first the parabola. We have

already from eq. (27), Chapter IIL, Art. 8, for a tangle load,

5 5 a4 - 6 a* z' + *
-84 ~~a*h~
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We have, as before, simply to make P=pds, and then integrate between

the limits z a and z indeterminate.

We thus find at once

h L*
"

J

For z = a, this reduces to zero, as it should. For z = a, the load covers

the whole span, and we haveH = -
. For z=o, the load reaches from

2 h

the left as far as the crown, and H=^. The formulae is simple, and re-
4 A

quires no table. Numerical values may be easily inserted.

32. Horizontal Thrust Circular Arch. As already noticed,

the vertical end reaction for this case has been given in eq. (71). It re-

mains to determine the thrust. We have, as before, simply to insert pdx =
p r cos ft d ft in place of P in the expression for the thrust for concentrated

load of Art. 1 0, and then integrate between the limits ft
= a and ft inde-

terminate.

We have thus similarly to that Art.

where H is the value of H when terms containing K are neglected, or

.=; =
12 B,

'

A,' B,

The quantities Ai, Bi, A., and B2 are as follows :

A, = 7 sin 3 a + 3 a cos a 3 sin a 6 a cos a sin* a 6 sin* a sin ft

+ 2 sin3 ft 3 ft cos a 9 cos a sin ft cos ft + 12 cos 2 a sin ft

+ 12 a cos a sin a sin 6 ft cos a sin* ft.

A2 = 3 [2 a cos a sin* a + a COS a sin a COS* a 4 a COS a sin a sin ft

+ 2 ft cos a sin* ft ft cos a + cos a sm ft cos ft].

B, = a 3 sin a cos a + 2 a cos 2
a. B3 = 2 a COS2 a.

These expressions can be tabulated as in Art. 10, or developed into

series as in that Art., and the formula thus made practically available.

For ft = a, we have H zero, as should be. For ft
= a, we have the

load covering the entire span.
For this case we have

H _^l r
sinS a - 3 (12 sin2 a) (sin a - a CO6 a) - 3 K CQ8 a (a + 2 a sln a sin a OOB a)

6 'a + 2 a cos* a 3 em a cos a + 2 K a cos* a

For the SEMI-CIRCLE, this reduces simply to

H = pr = 0.424 pr.
3 n

In any case where exact results are desired, eq. (74) must be used, and a

table calculated for the central angle n. We have approximately by
series also, more especially for small central angles, or for a large in respect

to h, for total load over whole span :

H _j>a* 8AA* =P a* 8 ft' ,
g

2 h 15 I + 8 A A 2 2 h 15 g* + 8 A2
'
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where A is the area and I the moment of inertia of cross-section, and g
the radius of gyration. In framed arches this may be taken as approxi-

mately equal to the half depth from centre to centre of flanges.

C. ARCH WITHOUT HINGES FIXED AT ENDS, CONTINUOUS AT CROWN.

33. Parabolic Arch Formulae for V, II and Itt. In this

case the reactions no longer follow the law of the lever, and eq. (71), there-

fore, no longer holds good.

(a) Vertical reaction at unloaded end.

We have from eq. (28), Art. 14, for the reaction at the right end for a

single load,

v = 1 r (a
~

g)
*
(a a*+ g)

4 3

Making P=pdz, and integrating between the limits z = a and
, we

find the reaction for a load coming on from left,

V = - [3 a4 - 8 a :J z + 6 a* 2 -
ef\ . . . (76)

16 a L J

for a full load z = a and V =pa, as should be.

(5) Horizontal thrust.

In like manner we have for the horizontal .thrust at end from (36), Art.

14,

15 a4 - 2 a2
z* + *

H =
33
P

a*h

Replacing P by p d z, and integrating as before, we obtain directly

H = P Ps a6 - 15 a' 2 + 10 a8 s8 - 3 /I . . (77)
32 a8 h L J

p a-
2

for a full load z a, and H = -.

(c) Moment at unloaded end.

In precisely similar manner we have from (37), Art. 14,

Putting P = p d z, and integrating, we have for the moment, always at

the right end, or for load not extending past the centre, at crown

- * . . (78)
32 d* L

For z a, this is zero, as should be. For z = 0, or for load extending as

far as crown, it is also zero. For z = a, the moment at the end is .

A negative moment, as always, denotes tension in lower flange.

Just as for concentrated load, as shown in Art. 14, as the load conies on,

the moment at crown is positive, and increases with increasing load up to

a certain point, beyond which any load causes a negative moment, and be-

yond which the moment at crown, therefore, decreases, until, when the load
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reaches the crown, it becomes zero. This point, which gives M , the mo-

ment at crown, a positive maximum, is at a distance z a + a Vf =
0.264911 a, or nearly \ a from the crown.

The values of V,, H and M 2 (M 2 and V? being always the moment and

reaction at unloaded end), for various values of z, are given in the following
table:

It will be seen that the moment at the unloaded end, which, as long as

the load is left of crown, is the moment at crown also
;

increases as the

load passes on, is positive and increases up to about z .25 a. Then it

diminishes, becomes zero when the load reaches the crown, changes to

negative as the load passes the crown, and this negative value increases up
to full load when it is \ p a*. For full load, then, the lower end flanges
are in tension. At the crown the moment is zero, and the compression
there in both flanges is due to H only.

34. Circular Arch Formulae for V. H and M.
(a) Vertical Reaction.

Here we have r sin ft
= x, r cos ftdft = dx, and P =p dx = pr cos ft d ft.

Inserting this in place of P in eq. (43), Art. 18, and integrating between
the limits ft = a and ft indeterminate, we have for the reaction at unloaded

end, or for reaction at crown when load does not extend past the crown,

_ pr Fcos 3 a
v = _ _ . cos a - a sm ft + cos ft + ft sin ft

A (a Sin a COS a) L 3

+ sin a cos a sin ft
^

cos o sin 2
ft I (79)

3 J
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For ft = a, this is zero, as should be, since then the load is not upon the

span. For 3 =
'

, V=pr sin a, as should be, for full load over whole

span. For the semi-circle, a = 90 = 1, sin a = 1, cos a = 0, and

- - sin j8 + cos/3 + sin - CO8 * ^

If the semi-circle is uniformly loaded over whole span, = - a = 90

=
1-

sin = -
1, cos 0-0, and V =. p r, as should be. The for-

mula (79) above is precisely the same as that given by Capt. Eads in his

Report to the Illinois and St. Louis Bridge Co., May, 1868.

(ft)
Horizontal Thrust.

In similar manner, from eq. (46), Art. 18, by inserting pdx=prcoB&d&
in place of P, and integrating between = a and 0. we have similarly to

Art. 32

H=H
-^-B-; <

8 >

A!=S a 3 sin a cos a 2 a sin 2 a 3 9 sin cos +12 cos a sin /3

-6 3 sin 2 +6 a sin a sin 8+2 a
8^J?
sin a

A2=3a 3 sinacosa+2a sin 2 a+60sin* 3/3+3 sin cos /3

6 a sin a sin02 a
S1

/
sin a

Bi=a (a+sin a COS a) 2 sin 2
a, Ba=a (a+sin a COS a).

Formula (80) agrees exactly with that given by Capt. Eads in the Report

above quoted, if terms containing K are neglected. Since K =-
j,
where I

is the moment of inertia and A is the area of cross-section
;
r being the

radius; for small central angle r is very large in proportion to
,
or the

square of the half depth. In such case, then, K may be neglected. For

j3
= a , we have H =

0, as should be. For /3
= o, we have load over

entire span, and

_, . 3 a 2 n sin' 8 sin a cos a it (8 a+2 a sin* a 3 sin a COS a)
*P ri

(1+*) a (a+8in a COS a) -2 sin* a

Approximately we have, by series, forfull load, from (80) :

_^pa*
4

}
2A 45I + 4AA* 2A450*+4A*
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For a = 90, or for semi-circle, we have from (80)

H = H_
^3

7T-6 0+18 sin ft cos ft-12ft sin 2
ft+Q irsiaft

S-l
+K (-3 jr-12 sin 2

ft+Q ft-6 sin cos ft+6 rr sin /3+2 n sin
3

|8
J.

For ft= 90, or forfull load upon semi-circle.

pr r_
_

1

(c)
Moment at unloaded end.

From Art. 18 (c) we have, for concentrated load,

(sin a sin/3)
2

The value of H we have already given in (80).

Inserting in the second term p d x = p r cos ft d ft for P, and then inte-

grating, we have

M =AH-B ....... (82)

where A = *r /2 - cos a - -^\ = ? (2
- cos a - -A-

y
sin a/ 2 sin a y sin a.

and B = -/-? (sin
a - sin \ .

12 sin
3 a y f

For a uniform load over whole span, 'ft
=

a, and

We have from (83), by series, the approximate formula for moment at

crown

/QA\ ~

where A is the area and I the moment of inertia of cross-section, g the

radius of gyration, or, approximately, the half depth for framed arch as

always a negative moment indicates tension in lower or inner flange.

Equations (79), (80) and (82) may, if desired, be tabulated as in Art. 18.

For small central angles, or for h small with respect to a, K may be disre-

garded, and the results already given for parabola (Art 33) may be taken

as sufficiently exact.
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CHAPTEK XV.

THE STONE ARCH.

167. Definitions, etc. In the stone arch we have a system
of bodies in contact with each other, and so supported between
certain fixed points, that they are not only in equilibrium

among themselves, but also with the exterior forces. The stir-

faces of contact we call the- bed-joints ; the fixed points are

the abutments; the central or highest arch stone is called the

key-stone, and those resting upon the abutments, the imposts.
The inner and outer limiting surfaces of the arch, generally

curved, are designated as the intrados and extrados, and the

arch stones generally are called voussoirs.

16. Line of Pressures in Arch. We have already indi-

cated (Art. 28, Fig. 16) the manner in which a number of suc-

cessive forces are resisted by an arch. We see from the force

polygon in that Fig. that the horizontal pressure is the same at

every point, and that the vertical pressure is equal to the sum
of the weights between the crown and any point. The pres-

sure line is then an equilibrium polygon formed by laying off

the weights of the arch stones, choosing a pole, and drawing
lines from this pole, etc., as described in our second chapter.

If the weights are very small, and their number very great,

the equilibrium polygon becomes a curve. This curve for

equilibrium should never pass outside the limits of the arch.

169. Sliding; of the Arcn Joints. The arch is properly,

then, nothing but a curved wall. Upon a vertical wall, which

may also support loads, but which has no horizontal thrust, only

vertical forces act, and the resultant is known in position and

direction. We may, then, investigate the stability of an ordi-

nary wall, and apply the results directly to the arch.

We as&ume the wall divided by plane bed-joints extending

through its entire breadth, whose distances apart depend upon
the dimensions of the stones. These joints are the weak places

of the wall, since separation here is not resisted by the greatest

strength of the stone. Neglecting the influence of tho mortar,
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we assume that any section along a bed-joint resists only a per-

pendicular pressure due to the parts above, and a force paral-

lel to the joint which must not exceed the resistance to sliding

due to friction. If this parallel force is greater than the resist-

ance of friction, the upper part will slide upon the joint.

If we represent the greatest angle of repose by <, then the

resultant of the vertical forces, acting upon the joint in ques-

tion, must make an angle with the normal to the joint less than

the angle <j>.
Thus at the joint A (PL 24:, Fig. 95), this angle is

greater than <, and the upper part will slide along this joint.

At B this angle is less than
</>,

and no sliding can take place.

The ratio of the force of friction due to the component of P
normal to the joint, to the component of P parallel to the joint,

we call the coefficient of safety against sliding. It is evidently

equal to , or to the distance G-N divided by PN.
tan PN '

Since we can dispose the bed-joints at pleasure, we may
always make them perpendicular to the direction of the pres-

sure, for instance in Fig. 95 horizontal
;
or at least so place

them that their normals vary from the direction of the resultant

of the outer forces, at most by an allowable angle P N.

The sliding of thejoints can then always beprevented l>y the

position of the bed-joints.

17O. Forces acting upon a Cros-section Neutral Axi.
Let us consider what happens when the resultant of the outer

forces acting upon a joint, instead of acting at the centre of

gravity, approaches the edge of a joint, under the assumption
that sliding cannot take place, or that the direction of this re-

sultant is perpendicular to the joint. There is no reason for

assuming the distribution of pressure upon the joint surface

any different from the case of a beam. The stone, as well as

the mortar, is elastic, though in a less degree than wood or iron,

and accordingly the pressure at any portion of the joint is pro-

portional to the approach of the limiting surfaces of the upper
and lower portions of the wall. If, then, we assume that these

surfaces are plane before and after loading, if the resultant

pressure does not act at the centre of gravity, but near to one

edge, the pressure at different points will vary, and there will

be a neutral axis, or line of no pressure, either within or wholly
without the joint surface.

Every cross-section is therefore acted upon ~by a system of
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parallelforces whose intensities are directly as their distances

from a certain axis.

Now, neglecting the influence of the mortar, the wall can

resist compression only. No tension can exist at any point of

the joint surface.

Clearly, then, the neutral axis should lie wholly without the

cross-section, or at most only touch it. It should never be

found within the cross-section, as in that case all the material

on the other side is useless, and might be removed entirely
without affecting the pressure upon the actual bearing surface.

The neutral axis, then, should always lie without the cross-

section of the joint.

171. System of Parallel Forces whose Intensities are
proportional to tbeir Distances from a certain Axis The
Kernel of a Cross-section. If in a system of equal and paral-

lel forces we find the moment of each of these forces with

reference to a certain axis, and then consider these moments as

themselves forces, we shall have a system of the kind referred

to, since each moment force will be directly proportional to its

distance from a given axis.

Now, as we have seen in Art. 60, Chapter VI., the centre of

action of such a system of moment forces does not coincide

with the centre of gravity of the original simple forces, but for

any given axis is found from the central curve of the cross-sec-

tion. In PI. 11, Fig. 35, we have already given the construc-

tion for finding this centre of action, the semi-diameter of the

central curve being known, for any given axis.

Suppose now this axis to envelop in all its different posi-

tions the outline of the given cross-section, and find the corre-

sponding positions of the centre of action of the moment forces.

These different points lie in a closed figure which we may call

the kernel of the cross-section. Then, in order that we may

always have compression in every part of the joint surface of

our wall, the resultant of the forces acting upon it should

always act within the kernel.

In Plates 11 and 12, Figs. 36, 37, 38 and 40, we have con-

structed the kernels of the various cross-sections represented.

Thus in Fig. 36, according to the construction of Art. 62, for

an axis at A, we describe upon O C a semi-circle. Then with O

as a centre and radius equal to semi-diameter of the central

ellipse on A C, describe an arc intersecting the semi-circle in a.
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From a drop a perpendicular upon A C, and we obtain the

centre of action for axis at A. A similar construction for other

axes, as A B, B C, etc., give us other points, and we thus find

the small central parallelogram, which is the kernel or locus

of the centres of action of the moment forces for all positions

of the axis enveloping the parallelogram A B, C D. A similar

construction gives us the kernel for the other figures.

We have from Art. 60

where m = the distance of the resultant P of the forces acting

upon the cross-section from the centre of gravity, and a = the

semi-diameter of the central curve, and i = the distance of the

neutral axis from the parallel diameter of the central curve.

If we call G the distance of an outer fibre from this diameter

measured on the side of P, its distance from the neutral axis

is i + c. If the strain in this fibre is S, we have

where A is the area of the cross-section. Hence

c

If P acts at the centre of gravity of the cross-section, i oo

p
(Art. 60), the neutral axis is infinitely distant, and S = . If

P moves away from the centre of gravity, the neutral axis

approaches, and is always parallel to the conjugate diameter

in the central ellipse. When P reaches the perimeter of the

kernel, the neutral axis touches the perimeter of the cross-

section, and at least, then, in one point of this perimeter, the

pressure is zero. If P passes beyond the kernel, the neutral

axis enters the cross-section, and tensile strains enter on one

side to balance the compressive strains on the other. The ker-

nel thenforms a limit beyond which the resultant P must not

act.

1T2. Poition of Kernel for different Cros-sections.
If the cross-section is symmetrical with reference to the cen-

G P
tre of gravity, we have -. = 1, and therefore S = 2 -

;
that is,
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when the neutral axis touches the cross-section, or P acts in

the kernel, the strain S is twice as great as when P passes

through the centre of gravity of the joint surface and is uni-

formly distributed.

As P passes beyond the kernel, the neutral axis, as we have

seen, enters the joint area, and on the side away from P occa-

sions, or would occasion in a beam, tensile strains. But as the

assumption is that the joint (neglecting mortar) cannot resist

tensile strains, we may remove all that portion on the opposite
side of the neutral axis without increasing the pressure on the

other side.

In this case, then, the central ellipse is not that for the whole

joint area, but only for that portion on the same side as P, and

P is upon the kernel for thatportion.
This portion can be determined directly for a certain posi-

tion of P only in a few individual cases
; generally, it must be

found by trial. We must first find for the central ellipse of

the entire joint area the neutral axis corresponding to given

position of P, and then draw a parallel cutting off somewhat

more of the area. Then determine the central ellipse of the

( cut-off portion, and see if the pole lies symmetrically to the

pole of the cutting line.

The parallelogram is one of the areas in which we can de-

termine directly the amount cut off when P acts at a point

upon the line joining the centres of two opposite sides. For if

we cut off by a parallel to these sides a portion so that P is at

d of the line joining the centres of the opposite sides of the

new parallelogram, then P lies upon the kernel for this new

area. The proof is easy. The moment of inertia of the

parallelogram is -fa b A3

,
with reference to the diameter b. The

square of the radius of gyration a* is then -fa h\ The distance

of the point of application of P from one of the sides is

a'
i + m = ^ + . Hence

The half height of the kernel is, then, |th the height of tho

parallelogram, or the kernel occupies the inner third. (See Fig.

36
;
also Woodbury : Theory of the Arch, p. 328, Art. 3.)

For any given position of P, then, three times its distance
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from the nearest side on a line parallel to the other two, gives

the position of the fourth side of the parallelogram for which

P is upon the kernel.

173. The resultant pressure should therefore act

within the middle third of the joint area. As this prin-

ciple is most important, and the demonstrations of Chapter VI.,

upon which the above result is based, may appear to some too

purely mathematical, we give here the demonstration of the

same principle as given by Woodbury, in the work above

cited.

"
Suppose the pressure to be nothing at the intrados a, and

to increase uniformly from that point to the extrados b (PL

24, Fig. 96). It is plain that the pressure at any point along a b

will be represented by the ordinate of a certain triangle. The
whole pressure will be represented by the surface of that tri-

angle ;
and the point of application of the resultant of all the

pressures will be at c opposite the centre of gravity of that

triangle. We have then c b = ^ a b. Vice versa, if the point
of application be at c, c b = % a b, we know that the pressure
is nothing at a.

" If the point of application be at c, c b being less than a b,

c being still opposite the centre of gravity of the triangle

whose ordinates represent the pressure, we know that the ver-

tex of that triangle and point of no pressure are at e, b e = 3

X be.
" In this case, the joint ab will open at a as far as <?; the

adjacent joints will also open until we come to one where the

curve of pressure passes within the prescribed limit.

"This reasoning is, of course, applicable to all the joints;

and we readily conclude that the curves of pressure should lie

entirely between two other curves which divide the joint into

three equal parts."

Thus, in PI. 24, Fig. 97, suppose the resultant P of the

upper part of the wall to have the position as represented, so

that it intersects the joint B D in C outside of the middle third

of the cross-section. The entire pressure is distributed over

3 C B = A B, and the area D A does ifot act at all. Moreover,
the pressure at B is twice as great as when P passes through
the centre of gravity and is uniformly distributed over A B, or

is -|ds of the uniformly distributed pressure of P upon C B.

Beyond A the pressure is zero, and the conditions of load
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and equilibrium would not be changed if the stone beyond A
were removed.

If C approaches still nearer B, so that the pressure is distrib-

uted upon an ever-decreasing area, the resistance of the mortar
will be finally overcome

;
it will be forced out, and stone will

come in contact with stone, and there will be rotation about the

edge at B. This rotation can never occur if the pressure P is

distributed over the whole joint area. If, then, we consider
rotation to commence at the moment when P is no longer dis-

tributed over the entire area when, therefore, the neutral axis

just enters the joint then, in order that no rotation may occur,
P must pierce the joint area inside the kernel.

174. L,ine of Pressures in the Arcli. When the dimen-
sions and form of a wall are given, we can determine directly
the resultant P of the outer forces acting upon a joint, and then

by the two preceding Arts, can determine the condition of sta-

bility of the wall. In the arch, however, we cannot determine

P directly for a given cross-section, but must first make certain

assumptions.
In the first place, it is clear that an arch is stable when it i8

possible in two joints to take two reactions P, and P
2 (PL 24,

Fig. 98) such that, with the weight of the intervening portion
of the arch and its load, the resulting line of pressure shall lie

so far in the interior of the arch that rotation about a joint edge
cannot take place. If the arch is so feeble and the resistance

of the material so slight that only one such assumption of P, and

P
2
can be made, and only one such pressure line drawn, this is

plainly the true pressure line for stability, and, by it P, and P
a ,

as also the pressure at every joint, are determined.

If, however, the arch is so deep and the resistance of the

material so great that by variation of P, and P
a
several such

pressure lines may be drawn, none of which causes rotation

about a joint edge, which of all these possible pressure lines is

the true pressure line of the arch ?

\Ve assert : That in the true pressure line which approaches

nearest the axis, so that the pressure in the most compressed

joint edge is a minimum.
If we assume the material so sift that the pressure line ap-

proaches the axis so near that only one assumption of P, and

P, is possible, then this would evidently be the true pressure

line. If now the material hardens without altering any of its
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other properties, such as its specific weight or modulus of elas-

ticity, then the position of the pressure line is not altered. As
there is no reason for supposing the pressure line different in

an arch built of hard material from that in one originally soft

which has afterwards gradually hardened, it follows that the

pressure line in all arches of same form and loading has the

same position which it would have had if the arch had been

originally of the softest material
;
that is, that position which

makes the pressure in the most compressed joint edge a mini-

mum.
In order to draw the pressure line in an arch, we may then

seek by means of the formula

s =l
this pressure in the joint, where the pressure line approaches
nearest the edge, and ascertain whether it can be still further

diminished by change of position of the pressure line. This is,

however, not necessary. "We have only to ascertain whether it

is possible to draw a pressure line whose sides cut the corre-

sponding joint area, within the kernel, for then, since we know
that there can be a still more favorable position, there is no

danger of rotation.

175. The Line of Support. The curve formed by joining
the intersections of the sides of the pressure line with the joint

areas we call the support line, or line of support.
If the joints of an arch answer to the condition of Art. 169,

so that sliding of the joints cannot occur, we see at once from

the position of the support line on what side and where rota-

tion will take place. If at any point this line passes beyond
the kernel, we have theoretical beginning of rotation

;
if it

passes outside of the arch, there is actual rotation, and if it lies

within the kernel, there is no rotation.

The manner of determining from the position of the support
line all the possible motions of an arch is illustrated in the fol-

lowing Figs.

In PI. 24, Fig. 99, we have a possible support line touching
the extrados at crown and springing, and the intrados between
these points. We have accordingly rotation at crown, and at

the points between crown and springing, so that the joints at

these points open on the sides of the arch opposite the support
line. The crown will sink, and as at the crown and flanks the
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support line is approximately parallel to the extrados and intra-

dos, there will be several joints in the same condition, and
several will open, as indicated in the Fig.

In PI. 25, Fig. 100, we have the condition of stability of a

pointed arch, not loaded at the crown. The support line is

horizontal at crown, and there is no angle there, as in the arch

itself. The rotation at various points is indicated in the Fig.
We shall soon see that the support line deviates but very little

from the pressure line. From the direction of the tangent to

the support line at any point, therefore, we may conclude as to

the conditions of sliding.

From Fig. 101 we may conclude that the arch will slide out-

wards upon the right abutment. The rotation at various points
is given by the Fig. It is sufficient, as we see, to make the

abutment surface more nearly perpendicular to the support

line, as shown in the left abutment, to prevent this sliding, and

at the same time a more favorable support line can be drawn.

Since, as we have seen in Art. 100, sliding can and must in

this manner be always prevented, we shall give no more exam-

ples of arches unstable in this particular.

The arches of Figs. 99 and 100 can be made stable by suffi-

ciently increasing their thickness, or conforming their shape
more nearly to that of the support line.

176. Deviation of the Support from the Presure Line.

This deviation is not great. In order to make it apparent, we

must draw a pressure line for slight pressure in the lower part

of an arch with very long and inclined voussoirs [PL ^5, Fig.

102]. Thus, if we combine the weights of the voussoirs 1, 2, 3,

4, etc., acting at their centres of gravity, with the pressure Q in

the first joint, we have the pressure line shown by the broken

line 1, 2, 3, 4, 5, 6, 7, 8, whose sides 1 2, 2 3, 3 4, etc., give the

direction of the pressure in the corresponding joints between

the voussoirs 1 and 2, 2 and 3, etc. Thus 5 6 is the direction

of the pressure upon the joint between voubsoirs 5 and 6. This

direction cuts the joint at 5', which is therefpre the point of

application of the pressure, or a point upon the line of support.

Thus we find 3', 4', 5', 6', and the line joining these points is

the support line. In general, then, the support and pressure

lines coincide when the vertical through the centre of gravity

of any very small element coincides with the joint, and they

deviate when this vertical does not coincide with the joint
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In the ordinary form of joint, as shown in Fig. 103, the sup-

port line varies from the pressure line, since the vertical through
the centre of gravity S does not coincide with the joint under

S. If, however, we should conceive the arch divided into ver-

tical laminae, then the support and pressure lines fall together.

This is precisely the assumption always made in the analytical

discussion of the theory of the arch.

Thus we take the area A = / y dx, and this expression sup-

poses the arch divided into vertical laminae.

The first to make clearly this distinction between the lines of

pressure and support, was Mosely (Civil Eng.\ Other authors

have after him adopted this distinction, and then proved that

the two lines always coincide, without remarking that this coin-

cidence is only because of the adoption of the above integral.

The'same assumption simplifies greatly the graphical construc-

tion also (the analytical treatment is without it well-nigh im-

possible). We shall therefore assume vertical laminae where

it is at all permissible. This is always permissible at the crown

of arches with horizontal tangent, because there the joints are

vertical, and over all, when the pressure line lies below the

axis of the arch
;

for the support line lies always above the

pressure line* and therefore, in this case, the conditions of sta-

bility are more favorable for it than for the pressure line itself,

when considered as the line of support.

Moreover, it is easy at any point of the pressure line con-

structed with vertical laminae to pass to that line for another

form of joint, and to the corresponding support line. Thus, if

for the point A (PL 25, Fig. 104) we have found the pressure

Q, and if now we wish to pass to the joint ABC, we prolong

Q till it meets ?, the weight, of the voussoir A B C D, and re-

solve P and Q at this point into Q'. Then Q' is a side of the

new pressure line, and it cuts A B in a point of the support
line.

In this way w,e can easily determine whether the error com-

mitted when we substitute the pressure line for vertical laminae

for that for the actual joints, which is given by the segment of

the joint A B between Qt and the pressure line, can be disre-

garded.

177. Dimensions of the Arch. The object of the con-

struction of the pressure or support line in the arch is to deter-
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mine the stability and the joints of the abutments. When the

live load of the arch can be neglected with respect to its own

weight, and when the material of the arch possesses the usual

strength, and the pressure line lies within the inner third, then

the lower point of rupture lies so low that the back masonry
reaching from this point beyond the pressure line completely
encloses it.

There is, therefore, nothing arbitrary, when the form of the

arch is given, except the depth. Since in an arch of less depth
than is allowable in practice a support line can still be in-

.scribed, the graphical method is unable to determine the

proper depth. We must then leave to theory the development
of formulae by which this can be determined, and assume that

not only the form of the arch is given, but also its proper

depth and the lower joint of rupture. It is required to deter-

mine the stability of the abutments.

The stability of the abutments can be regarded from two

points of view. We may consider it as a continuation of the

arch, as in many English and French bridges, in which the

arch is continued as such, clear to the foundation
;
or we may

regard it as a wall whose moment about the joint of rupture

resists the rotation about this joint due to the thnist. Both

views are identical, *as the entire theory of the support line rests

upon the investigation of the rotation. They differ only in the

method of expressing the safety of the abutment.

If the arch is continued to the foundation, and the space be-

tween it and the road line filled up by spandrels ;
or if the

thicknesK of the abutment increases from above as the support

line requires ; or, as is often the case in England, the abutment

consists of walls parallel to the crown, separated by hollow

spaces; still, in every case the abutment is not to be distin-

guished from the arch proper it is stable when the support

line lies in the interior. If the prolonged arch is separated

entirely from the adjacent masonry, there is no reason for not

giving the axis of the prolongation the form of the support

line itself.

If, on the other hand, there is no separation of the arch and

abutment, as in the English hollow abutments, it is sufficient

that the support line lie in the inner third, and the abutment

will be certainly stable.

The supposition that the resistance of the mortar is suffi-

21
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ciently great to unite the whole abutment as a single block

which turns about its under edge, gives too small dimensions.

To ensure safety it is assumed that equilibrium exists with

reference to rotation about the lower edge, when the thrust of

the arch is 1.5 greater than the actual. Investigations of

French engineers have shown that this coefficient of safety for

very light arches is not less than 1.4. The old tables of Petit

give 1.9. We assume it, therefore, = 2.

If, therefore, the double thrust of the arch at the lower point
of rupture is united with the weight of the abutment, the re-

sultant should still fall within the base. Since it is indifferent

in what order the elements of the abutment are resolved, it is

best to divide it into vertical laminae, and unite these with the

double thrust. The equilibrium polygon thus obtained should

cut the foundation base within the edge of the abutment.

When the thickness of the abutment is thus determined, we
must construct the actual pressure line for the simple thrust

in order to determine the joints. In drawing this second pres-

sure line, we should properly take the divisions of the arch by
the joints themselves. If, however, we take the division in

vertical laminae, the deviation, as we have seen, is insignificant.

The normals to the actual joints must, then, not deviate from

the sides of this pressure line by more than the angle of

repose.

178. Construction of the Pressure Line. In PI. 25, Fig.

105, we give the method of construction of the proper width of

abutment for an arch. We first divide the arch into vertical

laminae, and determine their weight. If the surcharge has

vacant spaces, or is generally of different specific weight from

the material of the arch itself, it must first be reduced. Thus,
if the surcharge (spandrel filling, etc.) weighs, for instance, only

fds as much as an equal area of masonry in the arch, we have

simply to diminish the vertical height above the arch by ^d.
We thus obtain the dotted line given in the Fig., which forms

the limit of the reduced laminae, and we can treat the areas

bounded by this line the vertical lines of division and the

intrados as homogeneous. We have then only to determine

the centres of gravity of the various laminae according to the

construction for finding the centre of gravity of a trapezoid

(Art. 33), and suppose at these points the weights, which are

proportional to the reduced areas of the trapezoids to act.
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Laying off these weights in their order, we have the force

line (Fig. to left). The weights of the abutment lamina 9, 10
and 11 are laid off to same scale one-half oi their proper in-

tensities. The reason will soon appear.
1st. To determine the thrust H, and also the joint of rup-

ture.

We first inscribe a pressure line by eye, and assume the

point of the intrados to which this line most nearly approaches
as the edge of the joint of rupture. Draw next from the cor-

responding point of the force line a line parallel to the assumed

pressure line at this point. This line will cut off from the

horizontal through the beginning of the force line our first

approximate value of H.

Thus, suppose we have inscribed by eye the pressure line 1,

2, 3, 4, etc.', which gives us the point a for the position of the

edge of the joint of rupture. Then a line drawn from 5 on

the force line, parallel to the side 45 of the pressure line, gives

us our first value for H.

Now assuming this value of H, we erase the first assumed

pressure line, and proceed to construct the pressure line cor-

responding to this value of H, and the force line divisions 1, 2,

3, 4, etc. If this pressure line lies always within the middle

third of the arch, it may be taken as the proper pressure line,

and H as the true thrust. In general, however, this will not

be the case. The pressure line thus determined may even pass

without the arch entirely. We then determine the new point

of rupture, as given by the point of exit of this pressure line,

and produce the side at this point bacJ^ to intersection with H
prolonged. From this point of intersection draw a line which

does lie within the middle third of the arch at the lamina of

rupture, and then in the force polygon from the corresponding

point of the force line draw a parallel to this line, thus cutting

off a new value for H. Erasing now the preceding pressure

line, we construct a third with this new value of H, which will

in general give us a pressure line lying even-where within the

middle third of the arch. If not, another approximation may
be made. We thus find by successive approximation the true

joint of rupture and the corresponding thrust.

2d Width of abutment. Since we have laid off the arch

weights to scale in their true value, the pressure line thus ob-

tained is the true pressure line for the arch. But we have laid
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off the abutment laminae 9, 10 and 11, one-half tlieir true value,

and the pressure line thus obtained with the same thrust and

pole O is the same as if we had taken their true value and twice

H. Its intersection with the foundation gives us, then, the

proper width of the abutment for stability, according to our

assumption of 2 for the coefficient of stability (Art. ITT).

179. Thus we can easily determine for any given case of

arch and surcharge the horizontal thrust and the proper width

of abutment, and then from the pressure line can easily so dis-

pose the joints as to prevent sliding. If the dimensions of the

arch as given are not such as to be stable, it will be found im-

possible to inscribe, as above, a pressure line which shall lie

within the middle third, and the curve of extrados or intrados

will have to be altered so that this shall be the case. The pres-

sure line thus obtained, it is true, does not exactly correspond

with the true one, as it is still possible to inscribe another which

shall deviate still less from the true line. We have also taken

the double thrust for the abutment laminse alone, instead of

for all laminae from the joint of rupture of the arch. Both

deviations are made on account of the far greater ease and

rapidity of construction. It would be found very tedious to

take first the force polygon up to somewhere about the section

of rupture, then b_y long trial find the innermost support line,

and finally, after the section of rupture is by this line deter-

mined, to lay off the remainder of the force polygon, and pro-

long the pressure line through the abutments.

It is far simpler to proceed, as above, by assuming the point

of application of the horizontal thrust, as also temporarily the

section of rupture. We obtain thus a somewhat smaller value

for the width of abutment, but, on the other hand, we have

taken the coefficient of stability at 2 instead of 1.9, as assumed

in Petifs tables.

Moreover, the widths of abutment thus obtained are greater
than those obtained by these tables, as it is assumed in them

that the point of application of the horizontal thrust is at the

upper edge of the abutment. Thus in every respect the con-

struction gives results reliable and even more accurate than the

tables, as we take the arch as it really is in any given case,

while in the tables suppositions are made with reference to

spandrel filling, etc., which do not hold good for every case.

1O. Proper Thickness of Arch at Crown. The proper
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depth of the arch at the key depends not only upon the rise

and span, but also upon the load. The pressure at the extrados
at the key, which, is in general, the most exposed part of joint,
should not, according to the best authorities, exceed ^th the

ultimate resisting power of the material. If P is the pressure

per unit of surface, H the thrust, and d the depth of key-stone
9 H

joint, then

since, on the assumption that the curve of pressure does not pass
outside the kernel, the maximum pressure is twice the mean

TJ

pressure -j.
This mean pressure, then, should not exceed ^th

the ultimate resistance of the material. In the best works of

Rennie and Stevenson the thickness at key varies from ^th to

^d the span, and from ^-th to ^Vtn tne radius of the intrados.

The augmentation of thickness at the springing line is made by
the Stevenson's from 20 to 4:0" per cent., by the Rennie's at

about 100 per cent.

Perronet gives for the depth at crown the empirical formula

d = 0.0694 r + 0.325 meters,

in which r is the greatest length in meters of the radius of cur-

vature of the intrados.

For arches with radius exceeding 15 meters, this gives too

great a thickness. According to Rankine,

d = 0.346 Vr
for circular arches, and

d = 0.412 V7,

where r is the radius of curvature of the intrados at the crown

in feet.

" The London Bridge is in its plan and workmanship per-

haps the most perfect work of its kind. The intrados is an

ellipse, the span 152 ft, the rise |th as much, the depth of key

7Vth the span. The crown settled only two inches upon remov-

al of centres.
1 '

[ Woodbury : Theory of the Arch.}

In general, we must first assume the depth at key in view of

the strength of the material, the character of the workmanship,

the load, etc. Then the thrust being found, we find the mean

pressure per unit of area as above. If this mean pressure

exceeds ^th the ultimate resisting power of the material, make
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a uew supposition, increase the thickness, find the thrust and

pressure anew, and so on, till the results are satisfactory.

The ultimate resisting power of granite may be taken at

6,000 Ibs., brick 1,200, sandstone 4,000, limestone 5,000 Ibs.

per square foot. These values are, of course, very general,

and subject to considerable variations, according to the kind

and quality of the stone. The strength of the material to be

used must, for any particular case, be determined by actual

experiment.
The weight of a cubic foot of stone may, in general, be as-

sumed at 160 Ibs., brick masonry at 125 Ibs.

11. Increase of thicknes due to change of form.

Having obtained a thickness which satisfies all the conditions,

we must, if the arch be very light, make some further provi-

sion for the change of form which is sure to take place after

the removal of the centres. By this change of form the pres-

sure line is altered, and the thickness may need to be increased.

In general, we need only to increase the depth from the key to

the springing. This increase need not exceed fifty per cent, at

the joint of rupture and weakest intermediate joint. [ Wood-

1)ury : Theory of the Arch.']

182. Thus, by a simple and rapid construction, we can de-

termine, for any particular case, the thrust, joint of rupture,
and proper thickness of the abutments, without the use of

tables or the intricate formulae usually employed. There is no

difficulty in laying down on paper and verifying all the ele-

ments of the most complex case. The method is entirely in-

dependent of all particular assumptions, and is therefore

especially valuable when irregularities of outline or construc-

tion place the arch almost beyond the reach of calculation. It

is general, and may be applied with equal ease to loaded and

unloaded, full circle, segmental, or elliptical arches with any
form of surcharge.
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CHAPTEK XVI.

THE INVERTED ARCH SUSPENSION SYSTEM.

183. The inverted arch forms the supporting member of

chain or cable suspension bridges. Whether the cable be com-

posed of chains, links, or wires, we suppose them so flexible

that they can perfectly assume the curve of equilibrium. As,

therefore, disregarding the dead weight, any partial load would
cause a change of shape, the cables must be stiffened in order

to prevent the motion which would otherwise take place.
We may stiffen the chains, as shown in PI. 26, Fig. 106, by trian-

gular bracing, thus making a rigid system ;
or we may have two

parallel chains and brace them to each other, as shown by Fig.
90 inverted

;
or we may introduce an auxiliary truss, the office

of which is not to add in any degree to the supporting power
of the combination, but simply to distribute a partial load over

the whole span, so as to cause it to take effect as a distributed

load, and thus prevent change of shape.
As in the first and last cases the structure is commonly

hinged at the centre in order to eliminate the effects of tem-

perature, the method of resolution gf forces explained in Arts.

8-13 will, in general, be applicable for the determination of

the strains.

In the second case, we can apply the principles of Arts. 158-

161.

The rear chains, anchorages, and stiffening truss deserve,

however, special notice.

184. Rear Chains and Anchorages. The greatest ten-

sion in the main chains occurs, of course, for full load. To

find the tension at top of tower, as also the horizontal pull, we

have simply to lay off half the whole load vertically from o to

d [PI. 26, Fig. 106J, and then draw O o horizontal and O d

parallel to the last side at tower. Then O d is the tension in

that side, and o O the horizontal pull. This pull is neutralized

by the opposite and equal pull of the rear chain leading to the

anchorage ; provided, as should always be the case, it makes an
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equal angle with the vertical. We have thus acting upon the

tower simply the half load
;
and the tension in the rear chain

is equal to that in the last link, O d.

If from O we draw parallels to the other links, we have at

once the strains in these links, O c, O J, O #; etc.

Now, if the anchorage is a solid block of masonry, its con-

dition of stability is, of course, very easily determined. The

moment of the tension in the rear cable, with reference to the

edge of rotation, must be more than balanced by the moment
of the weight of the block acting at its centre of gravity, with

reference to this edge. The case is too simple to need further

notice.

It is, however, more economical to make the anchorage hol-

low that is, in the form of an arch. The preceding method

for determining the stability of the arch has then here direct

application.

Thus, laying off along the vertical through the centre of the

tower the weights of segments of the arch, we form with these

segment weights and the double tension in the chain an equi-

librium polygon. For this we have the pole O A O, being
double the tension Qd already found. We then draw O,l, ^2,

0,3, etc., and then from A parallels to these to the segment
verticals, 1, 2, 3, etc. We thus have the polygon A 1, 2, 3, 4, 5.

[Note. We take the double tension, as before, for the arch, we
took 2 H instead of H, in order to ensure stability.]

The last line of this polygon 4 5 prolonged must, for sta-

bility, pass within the pier abutment, and its resultant, when it

is combined with the weight of the pier and pier abutment,
must pass within the abutment foundation. Through its inter-

section with the vertical line through the axis of the tower the

curve of pressure for the arch must pass.

Drawing now O
2
4 parallel to the rear chain, and making it

also equal to the double tension, or twice O d, we find the pole
O

s ,
and from it draw O

3 1, Oa 2, Os 3, etc., and then construct

the pressure line for the arch. It must, for stability, lie within

the middle third.

To ensure stability when the tension in the rear chain dimin-

ishes, or when the bridge is unloaded, the arch must be stable

by ifself. We must, therefore, construct the curve of pressure
f< the arch alone, neglecting the tension of the rear chains,
as explained in the preceding chapter.
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If this also passes within the middle third of the arch, as

represented by the dotted line, the arch is, under all circum-

stances, stable, and can fully resist the tension of the rear

chains.

We can now, finally, so dispose the joints as to prevent

sliding.

15. Stiffened Suspension System. We have already 're-

ferred to the methods of stiffening the cable or chain so as to

prevent the changes of shape due to partial loading. Of these

methods, it only remains to notice particularly the last, viz., by
means of an auxiliary truss. The office of this truss is to dis-

tribute a partial load over the whole length. We have now to

investigate the forces which act upon the truss.

In PI. 27, Fig. 107, let the chain be acted upon by the truss

represented by A B, which is called into action only by a par-
tial load, and not at all by a total uniform load. We can neg-
lect then the weight of the truss itself, as this is borne by the

cable. At the apices 3, 4, 5, 6, 7 let us suppose partial loads

indicated by the small arrows pointing down. Then, at every

point of connection with the chain, we have the reactions 1', 2',

3', etc., acting upwards. Now the truss must prevent deforma-

tion, and hence these forces are dependent upon the form of

the cable itself. Indeed, if we take any point, as O, as a pole,

and draw lines parallel to the respective sides of the cable,

these lines will cut off upon a vertical P' these forces. The

absolute value of these forces will, it is true, vary according to

the position of the pole assumed, but their relative proportions

remain always the same. The resultant P' of all these forces

passes then through the intersection of the two outer sides of

the catenary.

Since the truss distributes its load P upon the cable, the reac-

tion B at the right support is here zero. The reaction, however,

at A cannot be zero unless P and P' coincide, as is the case for

total uniform load. These, then, are all the forces which are

kept in equilibrium by the truss. If P is given, P' and the re-

action at A can be easily found, and if we then divide P', ac-

cording to the form of the chain, into the portions 1', 2', 3',

etc., we have the forces at each apex.

Thus we lay off to scale the given forces 3, 4, 5, 0, 7 = P, and

with a pole distance any convenient multiple of the height of

truss draw lines to these points of division, and then construct
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the corresponding equilibrium polygon A 3, 4, 5, 6, 7, B. Pro-

long then the outer side B 7 to intersection with P', and draw

the closing line A P'. A parallel through O to this line cuts

off from the force line P the reaction at A and the cable reac-

tion P'.

Now P' being thus found and the form of cable given, we
have only to lay off P' vertically, draw from its extremities

lines parallel to the two outer sides of the given cable arc, and

from the pole thus determined, lines parallel to the other sides

will give us the forces 1', 2', 3', etc. These when thus found

we lay off on our force line for the pole O, as shown in the

Fig., and then construct the corresponding equilibrium poly-

gon A 1', 2' 9', 10', B.

Thus the vertical ordinates between A P', P' B and this

polygon give us the moment at any point for a truss acted

upon by the forces I/, 2', 3', etc., alone. The ordinates between

A P', P' B and the polygon A 3, 4, 5, 6, 7, give, in like manner,
the moments for a truss acted upon by the forces 3, 4, 5, 6, 7,

whose reactions are A and P'. The ordinates, then, included

between both polygons give us the moment at any point of the

stiffening truss. Thus the ordinate y, multiplied by the pole

distance, gives us the moment in the truss at the point o. If

we had taken the pole distance O equal to the height of the

truss, then these ordinates would give us at once the strain in

the flanges. We can thus easily find the strains in the stiffen-

ing truss for any weight or system of weights in any position.

186. Most unfavorable method of Loading. Let us in-

vestigate the action of a single weight P at any point. In PL

27, Fig. 109, we have a single weight P acting between A and

P'.

The Fig. is nothing more than a repetition of Fig. 108, only
we have a single load P instead of a system of four loads, and

therefore the polygon for P consists only of two straight lines

instead of having as many angles 3, 4, 5, etc., as there are apex
loads in the first case. All lines have the same position as in

Fig. 108, and hence the construction needs no further explana-
tion.

"We see at once from the Fig. that any load between A and
P' increases the moment at every point of the span A B, and

therefore at the point of rupture or of maximum moment also.

So also for the shearing force. AVhen, therefore, the moment
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at any point, and the sum of the forces between that point and

A, is a maximum, at least the entire distance from A to P'

must be covered with the load.

In Fig. 110 we have the weight P on the other side of the but
centre P'. The construction is identical with Figs. 109 and 108,
the position and the direction of action of the forces is now
different. Since the resultants A and P' now lie on the same
side of P, A and P' act in opposite directions, and since P'

must still act upwards, A must act downwards. In the neigh-
borhood of 5' the moment is zero. Between this point and B
the moments have the same signification as in Fig. 109

;
on

the other side the moments have then a different sio-n. InO

order, then, that the moment at 5' shall be a maximum, the load

must cover the length from A to P, this last point being the

point at which a load causes no moment in 5'
;

for if any

point between A and P were not loaded, as we have seen, a

load at that point would increase the moment at 5'. A load

beyond P, however, would diminish the moment at 5'.

The above holds good for every point between A and P', and

therefore for the point of rupture or of maximum moment it-

self. In order that this maximum moment can be no more

increased, the load must extend from A beyond the centre to

that point at which a load being placed causes no moment at

the cross-section of rupture.

As for the shearing force, at the end A it will evidently be

greatest for load from A to P', or over the half span, since

every load on the other side of P' diminishes this reaction.

Hence we have the following principles established :

The moment at any cross-section of the stiffening truss is a

maximum, when the load reachesfrom the nearest end beyond

the centre to apointfor which the moment at this cross-section

is zero.

The above condition holds good, therefore, for the. maximum

of all the maximum moments, or for the cross-section of rup-

ture itself.

The maximum shearing force is at one end of. ttie truss

when the adjacent half span is loaded.

If the arc is unsymmetrical, we must understand by
"
half

span
" the distance between the end and vertical through the

intersection of the outer arc ends produced.

17. Example. As an illustration of the above principles,
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let us take the structure represented in PL 28, Fig. 111. Span,
60 ft.

; depth of truss and panel length, 5 ft. Scale, 10 ft. to an

inch. We suppose the live load to be 2 tons per ft, giving
thus 10 tons for each lower apex, and take the scale of force 50

tons per inch.

On the left we have laid off the force lines for the loads 2, 3,

4, 5, 6 and 7 to 11, and have taken the poles for each, so that

the first lines are all parallel to each other and to the first link

of the cable
;
the common pole distance being 2 times the

height of truss, or 1.5 inches. The moment scale is then

1.5 x 10 x 50 = 750 ft. tons per inch. Since the full load is

entirely supported by the cable, we have only to investigate the

effect of the live load upon the truss.

Precisely as in Fig. 108, we construct the polygons for forces

2-11, 3-11, 4-11, etc., and draw the closing lines as indicated

by the broken lines radiating from the centre O. Parallels to

these from the poles cut off from the force lines the end and

chain reactions. The upper portions are the chain reactions,

the lower the reactions at the right end for the loads 2-11,

3-11, etc.

Now we have to divide these chain reactions into as many
parts as there are load apices by lines parallel to the sides of

the chain. This we have done by drawing two lines parallel to

the two chain ends, inserting the chain reactions between these

lines, and then drawing parallels to the chain sides. If, as in

this case, the curve of the chain is a parabola, these reactions

are divided into 11 equal parts. If the chain has any other

form, the parallels to the chain sides determine the relative

lengths of these portions.

It will only be found necessary to construct the moment

polygons for 4, 5 and 6-11
;
the other polygons already drawn

are necessary for the determination of the shearing forces only.

Thus, on the force line for loads 4 to 11 we can now lay off

the 11 equal parts just found, into which the chain reaction is

divided. So for 5-11 and 6-11. These portions we have indi-

cated by Roman numerals. "We can now draw the correspond-

ing polygons precisely as in Fig. 108, which are indicated also

by Roman numerals.

It is then easy with the dividers to pick out the maximum
moment at any apex. These moments, laid off as below, give
the curve of moments for the truss, which being scaled off and
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divided by the depth of trns?, give at once the strains in the

flanges. Since the moment scale is 750 tons per inch and the

depth of truss 5 ft., the moment ordinates scaled off at 150 tons

per inch will give at once the strains in the flanges, without
division.

For the shearing forces, we know from the preceding that

the maximum reaction at right end is for loads 6-11.

"
This

reaction we have already found in the corresponding force line

by means of the closing line already drawn. We lay it off then

right and left, half-way between the ends and first apex, that

being the effective length of load, the two half-end panels rest-

ing directly upon the abutments.

The maximum shear at any point is evidently when the load

reaches from right support to that point, and is equal to the

sum of the chain reactions at the unloaded apices. Thus, max-
imum shear at 3 is equal to the interval I II for the line

3-11; at 4, I III for line 4-11; at 5, I IV. for line 5-11;
and at 6, I Y for line 6-11. Laying off the shear at 6, we
can draw the line 6-11, as indicated in the diagram, and thus

determine the shear at 2. This we cannot find, as above, for 3,

4, etc., as for the load 2-11
; owing to the shape of the chain

as represented, there is no upward reaction at 1, as there is no

.angle of the chain at 6.

The shear diagram is, of course, symmetrical on each side of

the centre. We can therefore construct it as represented, and

then the determination of the strain in the diagonals is easy.

We have only to multiply the shear at any apex by the secant

of the angle which the diagonals make with the vertical. This

we may do by properly changing the scale at once, and thus

scale off the strains directly.

18. Analytical Determination of the Forces acting

upon the stiffening Trus. Assuming that the truss distrib-

utes the partial loading uniformly over the whole arc, we may
deduce very simple formulae for the forces acting upon the

truss. As we have already seen, for a maximum moment at

any point, the load must always extend out from one end.

Let us represent, then, the ratio of the loaded part from left

to the whole span by k.

Let the entire span be 2
1,
then the loaded portion is 2 k L

Let m be the load per unit of length ;
then the whole load

[Fig. 108].
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The distance of P from the left is then half the loaded por-

tion, or Tc 1. Its distance from P', which acts at the centre of

the span, is I (1 &).

Hence we have for the left reaction A
or =

Also P'l = P x Tel or P' =

The chain reaction per unit of length is then

*==**

Now let a; be the distance to the point of maximum moment.

Now since at this point the shear must be zero, the weight
of the portion a? must be equal to A (Art. 38).

We have then

Aaj - = P (kl - aj)
= Zklm(k I - x),2

whence, by substituting the value of A,

Bat the maximum moment is A. as -- -
,
and there-

fore, substituting the value of x above,

1 + k

This becomes a maximum for 1 k k3 =
0, or for

k = $ \/5-% = 0.618034.

Therefore, the greatest moment occurs when 0.62 of the span
is covered with the load.

We have then the

Length of the loaded portion, = 2 k I = 0.61803 x 2 .1.

Reaction, A = 2klm(l )
=

(
V5 2)2?m 0.23607.!

Chain reaction, P' = %lfflm = (f i t/5)2Zm = 0.33196.:

Load par unit in loaded portion, or the difference between

the load m and the chain reaction m k* per unit of length
= m (1

- k1

}
= i (

Vb 1) m = 0.61803 m.

The distance of the point of maximum moment is

%lfl A
x = - =

(f
- i V$) 2 1 = 0.38196 . 2 I = .
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The maximum moment itself is

For a simple girder uniformly loaded, the maximum moment'
is %p P. The maximum moment is then reduced from to

0.18, or to about d, or is ^ths the maximum moment for a
simple girder ofsame span and load*

If we represent the dead load byj?, then, since the stiffening
truss sustains only the moving load, we have

0.18 mP ra__
i (p + m) P p + m~ %(p + m)P

That is, the maximum moment in the stiffening truss is the

same asfor a simple girder of^ths the span, loaded only with
the moving load.

189. Summary The reaction at the end abutment and the
chain reaction at each apex having been found, as above, for

any given load, we might have found the strains in every
piece by the method of Arts. 8-13. This would, however, in

this case have proved long and tedious. The construction of

the curve of maximum moments and shear is preferable.
We can therefore readily determine the strains in such a

combination as that represented in Fig. 111. We have already,
Arts. 90-94, given* practical and simple methods for the deter-

mination of the strains in braced arches of the usual forms of

construction.

It will be observed that it is by no means necessary that the

arrangement of bracing and flanges should be the same as that

shown.in Figs. 90 and 94.

Thus we may treat the arch represented in Fig. 5
(c) accord-

ing to Art. 158. as hinged at both abutments and crown, or,

making the lower flange continuous at the crown, we may find

the resultant pressures at the abutments by Art. 159, and then

follow these pressures through precisely as shown in the Fig.

The combination of Fig. Ill being of considerable impor-

tance, as the more usual form of construction of suspension

bridges, and not falling under our classification of u braced

arches," we have considered it desirable to discuss it somewhat

* Ranking gives &ihs for a girder whose ends are fixed, the greatest mo-

ment occurring for a load over *ds the span,
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fully. A better form of construction is that shown in Fig.

106, which is perfectly rigid, and the strains in which are

easily found by Art; 158 or 159, according as we hinge it in

the centre or not.

Eeviewing now the preceding, we see that the graphical

method, as here developed, furnishes us with a simple, accurate

and practical solution of nearly every class of structure occur-

ring in the practice of the engineer or builder. In our first

chapter we have a method by the resolution of forces applica-

ble to any framed structure, however irregular or unsym metri-

cal, provided only there are no moments at the ends to be

determined.

In Art. 125 we have explained fully the application of the

method for this case also, when these moments are known, and

in Chaps. VIII. to XIV. inclusive we have given practical con-

structions for the determination of these moments for all the

important classes of structures in which this condition occurs,

such as the continuous girder, braced arches, etc.

When the structure is not framed, or composed of pieces the

strains in which can be definitely determined, we have the

method of moments of Chap. V., which, as we have seen, may
be extended so as to completely solve the difficult case of the

continuous girder, and which may, of course, be applied to

framed structures also, as illustrated in Fig. Ill (Art. 187) in

the case just discussed. Thus we have two distinct graphical
methods by. which our results may be checked. The first

method includes a great variety of the most important and

usual structures, such as bridge girders, roof trusses, cranes,

etc., and in view of its ease and accuracy will undoubtedly be

found of great service by the engineer and architect. The
second method has important mechanical applications, as no-

ticed in Art. 41
;
and aside from these, and its application to

structures having end moments, such as the continuous girder,

etc., furnishes us with ready determinations of the centre of

gravity of areas (Chap. III.), the moment of inertia of areas

(Chap. VI.), and also gives us a very complete solution of the

stone arch (Chap. XV.).
We have also the analogous methods of calculation, viz.,
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both by resolution of forces and by moments (Arts. 9 and 16
of Appendix). The latter being so general and simple in its

application, we have not felt justified in leaving it entirely out

of sight, and in those cases where it seemed of especial service,
or assisted the graphical solution, we have illustrated it more or

less fully (Chap. XII.). In this latter chap, we have also given
constructions as well as formulae, and developed principle's

which, it is believed, render possible*, for the first time, the com-

plete and accurate solution of the important case of the " draw

xpan." (Arts. 118-121.)
The formulae of Chap. XIII. in connection with the method

of calculation by moments, render the calculation of the con-

tinuous girder generally as simple, and but little more tedious

than for the simple girder itself. Whatever may be thought
of the advantages or disadvantages of this class of structures

by engineers generally, it is at least time that such structures

as draws or pivot spans should be calculated under suppositions

which approach somewhat more nearly the actual case than is

at present the practice. As to the relative economy of con-

tinuous girders, we have endeavored to enforce the fact that

the saving over the simple girder is from 15 to 20 and even 50

per cent. We give in the Appendix a tabular comparison of a

few cases sufficient to show the point beyond dispute, and any
one may easily add to the list, or verify the calculations.

The "
graphical arithmetic," as it might be called, such as

graphical addition, subtraction, multiplication, division, extrac-

tion of roots, determination and transformation of areas, etc.,

we have entirely omitted in the present work, judging it of but

little practical value, except in rare cases, when we have ex-

plained the necessary constructions as they occur, and unneces-

sary for the development of the graphical method proper. [See

Chap. IV. of Introduction.]

22
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APPENDIX.

NOTE TO CHAPTER Vm. OF THE INTRODUCTION UPON THE
MODERN GEOMETRY.*

IT is to be regretted that, notwithstanding its beauty of form,

simplicity, and many happy applications in the technical and
natural sciences, the Modern Geometry is yet hardly known,
scarcely by name even, in our schools and colleges.
The work of Gillespie upon Land Surveying, already cited in

the Introduction, and a treatise on Elementary Geometry by
William Chauvenet (Phil., 1871), are the only ones which
occur to us in this connection.

It has already been stated that the modern orpure geometry
of space differs essentially from the ancient, and from analytical

geometry, in that it makes no use of the idea of measure or of

metrical relations. We find in it no mention of the bisection

of lines, of right angles and perpendiculars, of areas, etc., any
more than of trigonometrical quantities, or of the analytical

equations of lines. We have nothing to do with right-angled,

equilateral, or equiangular triangles, with the rectangle, regular

polygon, or circle, except in a supplementary manner. So also

for the centre, axes, and foci of the so-called curves of the second

order, or the conic sections.

On the contrary, we obtain much more general and compre-

hensive properties of these curves than those to which most

text-books upon analytical geometry are limited.

A new path is thus opened to the conic sections^withont the

aid of the circular cone, after the manner of the ancients, or of

the equations of analytical geometry.
As a direct consequence, the principles and problems of the

modern geometry are of great generality and comprehensive-

* The following remarks and illustrations are taken from the Geometric da-

Lage, by Reye. Hannover, 1866.
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ness. Thus the most important of those properties of the conic

sections which are proved in text-books of analytical geometry
are but special cases of its principles. A few particular ex-

amples taken from the Geometrie der Lage, by Reye, which

could not well have been inserted in the Introduction to this

work, will best explain and illustrate our general remarks the

more so as these examples are of special interest and value to

the engineer.

It is a problem of frequent occurrence in surveying to pass a

line through the inaccessible and invisible point of intersection

of two given lines. The Geometry of Measure, or ancient

geometry, gives us any required number of points upon this line

by the aid of the principle, that the distances cut off from par-

allel lines by any three lines meeting in a common point are

proportional. The Geometry of Position furnishes us with a

simpler solution.

FIG. l.

T
Thus the two lines

,
5 being given [Fig. 1.], we have sim-

ply to choose any point we please, as P. From this point draw

any number of lines desired, in any direction intersecting the

given lines. Now, in any quadrilateral which any two of these

lines form with the two given lines a and
,
we have simply to

draw the diagonals. The intersections of all these diagonals
lie in the same straight line passing through the intersection A
of the two* given lines, and therefore determine the line re-

quired. Observe that the construction is entirely independent
of all metrical relations, and depends solely upon the relative

position of the two given lines.

Again : If we take upon any straight line three points, A, B
and C [Fig. 2.], and construct any quadrilateral, two opposite
sides of which pass through A, one diagonal through B, and the
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other two opposite sides through C, then will the other diagonal
intersect the line in a point D, which for the same three points,

FIG. 2.

A, B and C, is always the same for every possible construction.

Moreover, these four points, A, B, C and D, are always harmonic

points, so that D is harmonically separated from B by the

points A and C. Thus, AB:BC:;AD:CD. This construc-

tion may also be applied in surveying, as in passing around an

obstruction, as a wood, etc., into the same line again.

Again : We may notice the following principle concerning
the triangle [Fig. 3] :

FIG. 3.

.-*"""

If two triangles, A B C and A: Bt Cl5
are so situated that the

lines joining corresponding angles, as A A l5
B Bt ,

C GI, meet in

a common point S, then will the intersections of corresponding

sides, as A C and Al
C

1?
A B and At

B1?
B C and Bt

C
t ,
meet in a

common line, as u u. The inverse also, of course, holds good:

that if the sides intersect on a line, the lines through the angles

intersect in a point.

Another series of principles
are connected with the curves of

the second order, or conic sections. From analytical geometry,
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as is well known, a curve of the second order is completely de-

termined by five points or five tangents. But the length of the

calculation or construction of a curve thus determined is also

well known. The geometry of position, however, proves two

very important principles, which render it easy to construct to

the five given points or tangents any number of new points or

tangents, and thus quickly draw the curve itself. The reader

already acquainted with these principles will also probably re-

member how much auxiliary demonstration their proof in the

analytical geometry requires. The first of these, due to Pascal,

is, that the three pairs of opposite sides of a hexagon inscribed

within a conic section intersect upon a straight line. The

second, due to .Brianchon, is, that the three principal diagonals

of the circumscribing hexagon, which unite every pair of oppo-

site angles, intersect in one and the same point. Both prin-

ciples are easily deduced from the circle. It will be observed

that they are independent of the relative dimensions, centre,

axes, and foci of the curves. For this very reason they are of

the greatest generality and significance, so that an entire theory

of the conic sections can be based upon them. Thus Pascal's

principle solves the important problem of tangent construction

from a given point, even when the curve is given by five points

only, without completely constructing it.

This problem of tangent construction to curves of the second

order^can in many cases be solved by the aid of a principle

which expresses one of the most important properties of the

conic sections, but which, nevertheless, is seldom found in text-

books upon analytical geometry, because its analytical proof is

somewhat complicated, and little suited to set forth the property
in its proper light.

For example : If through a point A [Fig. 4] in the plane of

but not lying upon a curve of the second order, we draw se-

cants, every two secants determine four points, as K, L, M, N,

upon the curve. Any two lines joining these four points, as

LM and KN or KM and IjJM, intersect in a point of a

straight line a a, which is the polar of the given point A ;
that

is, which intersects the curve in the two points of tangency
G- G. Thus the lines through A and the intersections of a a

with the curve are the tangents to the curve through A. If

the point A were within the curve, this line a a would not in-

tersect it. This construction can be used in order to draw
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through a given point tangents to a conic section by the sim-

ple application of straight lines. Upon every secant through

A, moreover, there are four remarkable points, viz. : the point
A itself, the first intersection B with the curve, the intersection

with the polar, and, finally, the second intersection D with

the curve. These four points are harmonic points, and the

polar a a contains, then, every point which is harmonically

separated from A by the two curve points. The important

principles relating to the centre and conjugate diameter of

conic sections are merely special cases of the above important

principles. These last can be easily extended to surfaces of

the second order, as the intersection of these by a plane is, in

general, a curve of the second order.

From these few examples, which might be indefinitely multi-

plied, it may easily bo seen how very different, but not less im-

portant than those of analytical geometry, are the theorems of the

geometry of position. Thus the latter are generally proved by
aid of the angle which the tangents make with the line through

the focus, or by the distances cut off from the axes that is, by
metrical relations. We refer, of course, to the elements of

analytical geometry as contained in most text-books, and not to

those most fruitful and later methods whose existence arc

chiefly due to the sagacity of Plucker (Introduction, VIII.).
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NOTE TO CHAPTEK I.

1. The method by the resolution of forces developed in

Chapter I. is so simple and easy of application, and its principles

are so few and self-evident, that we have not considered it ad-

visable to tax the patience of the reader by any great variety

of practical applications. A large number of such applica-

tions are to be found in a most excellent little treatise by
Robert H. Bow, entitled The Economics of Construction in

Relation to Framed Structures. There are, however, a few

important practical points of detail, and a few general consid-

erations, which we think it well to notice here, and to which,

in illustration of the remarks in Chap. I., the reader will do

well to attend.

2. In PI. 1, Fig. I. (Appendix), we have represented the

''Bent Crane "
given by Stoney in his Theory of Strains, p.

121, Art. 200.

"We assume the following method of notation. Let all that

space above the Fig. be indicated by X, and all that space
below by Y, and the triangular spaces enclosed by the flanges

and diagonals by the numbers 1, 2, 3, 4, etc. The first upper

flange is then denoted by X 2, the second by X 4, and so on.

So also the first lower flange is Y 1, the next Y 3, etc. The

first diagonal is then X 1, the next 1 2, the next 2 3, etc.*

The flanges are equidistant, forming quadrants of two cir-

cles whose radii are respectively 20 and 24 feet. The inner

flange is divided into four equal bays, on which stand isosceles

triangles, and a weight of 10 tons is suspended from the peak.
The scale for this and all the Figs, of PI. I. is 20 tons to an inch

and 10 feet to an inch. Laying off, then, the weight XY = 10

tons, we form, according to the method of Chapter I., the strain

diagram. It will be seen at once that all the lower flanges, Y 1,

Y 3, etc., radiate from Y, all the upper flanges, X 2, X 4, etc.,

from X, and everywhere the letters in the one diagram indi-

cate the corresponding pieces in the other.

* For this very elegant method of notation, we are indebted to the work of

R. H. Bow, above alluded to.
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We can now at once take off the strains to scale in the vari-

ous pieces.

A comparison of our method with that given by Stoney for

the same case will be instructive, as illustrating the compara-
tive merits of the two.

3. Character of the Strains in the Pieces. One of the

most important points of our method is the ease and certainty
with which the character of the strains in the pieces may be

determined. We have only, as detailed at length in Chapter 1.,

to follow round any closed polygon in the direction of the

forces, and then refer back to that apex of the frame where for

the moment we may happen to be.

Thus for the peak, since we know that the weight acts down,
we follow down from X to Y, and then from Y to 1, and 1

back to X. Referring back now to the frame, and remember-

ing that a force acting away from the apex means tension, and

towards, compression, we have at once Y 1 compression and

X 1 tension.

Now for apex a, sinceX 1 is tension, with respect to this new

apex, it must act away. We go round then from X to 1, 1 to

2, and 2 back to X, and then, referring these directions to the

corresponding pieces meeting at a, we have 1 2 compression

and X 2 tension.

We find thus all the outer flanges in tension, as evidently

should by simple inspection be the case. Also all the inner

flanges compression. As for the diagonals, they alternate, the

first being tension, the next compression, until we arrive at 4 5,

which we find to be also compression.

A glance at the strain diagram shows how this comes about.

The line X 4 crosses Y 5, and thus gives us a reverse direction

for 45.

In such a simple structure as the present, the character of the

strains would present no especial difficulty in any case
;
but in

more complicated ones, the aid of such a simple and sure crite-

rion as the above is indispensable, and we have been thus even

prolix upon this point, the more so as it is not BO much as

alluded to, as far as we are aware, in those few works which

notice the above method at all.

4. There are other points which we may here illustrate by

our Fig.

According to our first principle (Art. 3, Chapter L), when
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any number of forces are in equilibrium, the force polygon is

closed. Inversely, then, a closed force polygon indicates forces

which, if applied at a common point, would hold each other in

equilibrium.

Thus Y 3, 34, X 4, and the weight are, or would be, if all

applied at a common point, in equilibrium. This we see

directly from the Fig. Thus we know that when any num-

ber of forces are in equilibrium, the algebraic sums of their

vertical and horizontal components must be zero, otherwise

there must, of course, be motion. Now the vertical component
of Y 3 plus that of 3 4 minus that of X 4 is exactly equal and

opposed to the weight, while the horizontal component of Y 3

plus that of 3 4 is equal and opposed to that of X 4, and there

is then equilibrium.

Again, according to the principle of Art. 5, Chap. L, any

line, as the one joining 2 and 6 (broken line in Fig.), is the

resultant of X 2 and X 6, as also of 2 3, 3 4, 4 5 and 5 6.

The Fig. also well illustrates the points to be avoided in

making a strain diagram, already alluded to in Art. 13, Chap.
I. The scale to which the frame is taken is here altogether

out of proportion to the scale of force. The first should be

increased or the second diminished, or both. The present

length of the diagonals and flanges is inadequate to give
with sufficient accuracy the directions of strain lines of such

length.

Nevertheless we have experienced no difficulty in checking
to tenths of a ton the results given by Stoney for this structure.

5. In PI. 1, Fig. II., we have represented a roof truss, span

30ft, rise 8 ft, camber 1 ft.
;
and the strain diagram illustrates

in its two symmetrical halves (one full, the other dotted) the

remarks of Art. 13, Chap. I., upon the check which in such cases

our method furnishes of its accuracy.
We lay off the weights 1, 2, 3, 4, 5, and then the reactions at

A and B, which should bring us back to the point of beginning,
and thus complete the force polygon. The strains are then easily

found, and the two halves should be perfectly symmetrical, and

give the same results.

In Fig. III. we have given another form of truss with strain

diagram, the other half of which the reader can complete and

letter for himself.

6. In Fig. IY. we have a form called the French roof truss
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and two strain diagrams the larger for vertical reactions, the
smaller for inclined reactions.

This last brings out the force polygon in perhaps a clearer

shape than before. The weights 1 to 7 being laid off down-
wards, the two reactions must always bring us back to the

starting-point, and thus close the polygon in this case a trian-

gle, in the preceding case a straight line, and in the case of Fig.
6, Art. 10., Chap. I., a true polygon. Both strain diagrams
illustrate the check we have upon the accuracy of the work.
The second half should be perfectly symmetrical with the first,
and the lines Y k and points k in each should coincide.

We have here also to notice a point which in roof trusses is

of frequent occurrence, and may, if not noticed, cause diffi-

culty.

We have already observed in Art. 9, Chap. I., that we can

always find the strains in the pieces Vhicli meet at an apex,

provided only two are unknown. Now in the strain diagram
to Fig. IY., we readily determine the strains in X#, Y #, Xb,
a b, Y c and I c successively, and arrive finally at apex 2, where
we have the two known strains in X b and b c, and wish to find

the strains in three pieces, viz., Xd, dh and ch. At first sight
this seems impossible. If, however, we assume that the pieces
of the frame can take only strains of a certain kind, as, for

instance, h d only tension, and not compression, the problem is

perfectly determinate. This assumption is easily realized in

practice. Thus if h d is a rod of small diameter, it cannot

act as a compression member at all. Moreover, the strain

of tension in hd must evidently be precisely equal to that in

b c, already found. We have then to form a closed polygon
with the weight at 2 and the known strains in X b and b c, whose

other three sides shall be parallel to Xd, hd and ch respec-

tively, and in which, moreover, the strain in hd shall be eqwd
to that in b c, and where both these strains must be, when the

polygon is followed round according to rule, tensile. We have

evidently, then, in accordance with these conditions, only tho

polygon 2 X d h c b X, thus finding the point d, from which

we can now proceed to find e, etc. The points a, b, d and e are

evidently in the same straight line parallel to c h. This point

is one of importance, and the reader should carefully follow

the above remarks with the aid of the Fig.

The strain diagram thus constructed shows us many facts
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about the system not otherwise apparent. Thus be, ch and h d
are in equilibrium with the load at 2. Again, a b and b c are

in equilibrium with Y a minus Y c, as also are h d and de with

ke minus Jch. Also kh, h c, Y c and Y k are in equilibrium,

and Y c, c b and X b are in equilibrium with the reaction minus

the weight at 1, or with the shear to the right of 1. This last

principle is general. When a section can be made entirely

through a structure, the strains in the pieces cut are in equi-

librium with the shear at the section. If only three pieces are

cut, then, by taking as a centre of moments the point of inter-

section of any two, we can easily find, knowing the moment of

the shear, the strain in the third.

Thus we have the general and easy method of calculation

given in Art. 14, Chap. I. The moment of the shear is, of

course, the sum of the moments of all the exterior forces be-

tween the section and one end.

We have then two methods, one graphic and one by calcula-

tion, by which we can find the strains in every kind of simple
truss which can ever occur in practice. By

"
simple

" we mean

merely resting at the supports, or not acted upon at the ends by
a couple or moment, as is the case, for instance, in the continuous

girder.

When the structure is unsymmetrical, or complex, the deter-

mination of the different lever arms is often very tedious, involv-

ing a good deal of trigonometrical computation. On the other

hand, the frame can always from its known proportions be

easily and accurately drawn to scale, and then the exterior

forces, whatever their relative intensity or directions, can be

laid off, and the strains at once determined. Here we see, then,

one of the great advantages of our graphical method. An
unsymmetrical frame and different directions of the forces

requires no more time or labor than a more simple case.

7. Application to Bridges Bow-string Girder. In Art.

12, Chap. I., we have alluded to this application, and shown
how by two strain diagrams only we can completely calculate a

bridge of any length. As this application is so important, and

as the method is stated by several authors to be inapplicable to

bridges,* or, at best, to be unsatisfactory, we will here call more

* Iron Bridges and Roofs Unwin p. 143. Economics of Construction

Bow- p. 61.
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special attention to the points to be observed in the tabulation

of the strains. There is, indeed, no more satisfactory, complete
and rapid method for the solution of bridge girders generally
than that afforded by the graphic method.

As an example, let us take the Bow-string Girder given by
Stoney, p. 131. Span, 80 ft., divided into 8 panels ;

rise of

bow, 10 ft. Load, 10 tons at each lower apex.

We construct the two strain diagrams* given in Fig. V.,
PI. 2, viz., one for the load P

7
at the first apex, and one for the

load at the last apex, P,. Referring, if necessary, to Art. 12,

Chap. L, the reader can easily follow out these diagrams. We
then scale off the strains, and obtain, for the strains in the

diagonals

Now from the strains thus obtained for these two weights

we can easily obtain all the others.

Thus, as the end reactions are inversely as the distances of

the weight from the ends, the reaction at the left end due to

P
2
will be twice that due to P,. For P, three times that due

to P,. The strains will therefore be twice and three times

those due to P,, until we arrive at the weights P, and P, re-

spectively. So also for P, the reaction at the right is twice

that due to P
7 ,
and the strains are therefore double up to the

weight P
8
. To the right, then, of P. the strains are twice

those due to P7,
and to the left of P6 they are six times those

due to P!. Take, for instance, P5 . The right reaction is f ths

of the apex load, and the right reaction of P7 is th of that

load. For P5 , then, the strains in all pieces to the right of that

weight are 3 times those due to P7. Again, the left reaction

is for P5 fths the apex load. But the left reaction for P
x

is th the same load. The strains then in all the pieces to the

left of P5 are 5 times those due to Pt
. So for any other load.

We can therefore form at once the following table :

* Strain diagrams in Fig. V., and also in Fig. VL, are, for obvious

drawn to different scales.
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In the columns for Pj and P
7 we put the strains already

found by diagram. The strains for P2 on the entire left half

will be double those for P! ;
for P3 three times, and for P4 four

times those for P
t
. We have therefore at once the columns

for PU P2 ,
P3 and P

4 . Now for P5 we see from the Fig. that

the strains in diagonals ef and fg must both be tension.

From the left end, then, as far as ef, the strains are 4. times

those due to Pl5 and from the right, asfar asfg, 3 times those

due to P7 . We thus obtain the column for P5 . In the same

way for P6 ,
all above or to left of cd are 6 times P

l5
all below

or to right of de twice P
; . Thus we fill out the whole table.

Adding now all the tensions and compressions in each piece, we
obtain the maximum strains of each kind due to the live load,

as given in the last two columns but one. Suppose now the

dead load or weight of the girder itself to be fths of the roll-

ing or live load. We have only to take, then, fths the sum of

these last two columns and we have the strains due to uniform

or dead load, as given in the fourth column from the right.

We can now easily obtain the total strains. Thus the ten-

sion in a I due to the live load only is 11 tons. The tension

due to the dead load is 8.25 tons. Total greatest strain which

can ever come upon a
ft, then, is 19.25 tons tension. No com-

pression can ever come on this piece ;
it does not need, there-

fore, to be counterbraced. On the other hand, all the other

diagonals, except perhaps cd, must be counterbraced, as the

maximum compression due to the live load overbalances the

constant tension of the dead. Had the dead load been taken

much greater than the live, the diagonals might always have

been in tension. Hence the appropriateness of this class of

girder for long spans.
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We see also from the table just what weights, and where
placed, give the greatest strain of each kind in any piece.

. Strains in the Flanges. The method is precisely simi-
lar for the flanges. Thus we scale off from our diagrams

Tabulating these, we obtain the following table :

This table is obtained precisely as before. Thus for P6 the

strains in Xa and X b are multiples of P
1?
while those in the

other flanges are multiples of P7. So also for Y c and Y e. We
see at once that the greatest strains are for full load, since for

all loads the upper flanges are always compressed and the

lower extended.* The above is sufficient to illustrate fully the

application of our method to bridges. It is evidently appli-

* A more convenient form of tabulation is to put the weights in the left

vertical column and the pieces in the top horizontal line. The numbers can

then be more easily added.

23
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cable to any structure where the reactions are inversely as the

distances from the end. The strains due. to the first and last

weights are all that we need in order to thoroughly solve any
case of the kind. It is advisable, however, to construct a

third diagram for an intermediate weight, in order to serve as

a check upon the others.*

9. Method of Calculation by moments. We may illus-

trate here the method of calculation by moments referred to in

Art. 14, Chap. I., a little more fully. Thus in the example

above, Fig. V., suppose we wish the strains due to Px . Reac-

tion at left end is evidently th of 10 tons = 1.25 tons. Con-

ceive the lower flange Y a cut. Rotation would evidently take

place about apex a, and we have, therefore, strain in Y a x its

lever arm from apex a = 1.25 x 5. The depth of truss, or

lever arm of Ya, from apex ,
is 2.58 feet. Hence we have

-^
- = strain in Y a 2.42 tons.

Aoo

This strain is evidently, by reason of the direction in which

the two portions of the truss would rotate about
,
tension. In

like manner, for upper flange X b, if we know the lever arm of

this flange from the opposite apex, we can easily find the strain
;

for the diagram shows that Xb,bc and Y c are in equilibrium
with the reaction, and hence, if we take the point of moments

at the intersection of the two pieces b c and Y c, the moments

of these pieces are zero, and we have remaining only the mo-

ment of the strain in X b balanced by the moment of the reac-

tion.

Again, if X 5 and Yc are thus found, and if these two strains,

together with the reaction, are in equilibrium with the diago-
nal b c, we can find the strain in this diagonal by taking the

apex c? as a centre of moments. The moment of Y a then is

* It may also be well to notice here that the practice of deducing in the

tabulation the dead load from the live load strains is not strictly accurate, as

the live load acts at the lower apices only [or at the upper apices only, if the

bridge is under grade] ,
while the dead load is distributed along both flanges,

and acts at both upper and lower apices.

In every case, however, the greater portion of the dead load, say, for in-

stance, ^ds of the whole, owing to the track, platform, cross-girders, etc.,

acts at the same apices as the live load itself
;
and the error is in any case

very slight, and practically of no account.
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zero, and we have the moment of the strain in I c balanced

by the moment of the reaction and the moment of X I
;
the

first causing compression, the second tension, and the difference
then giving the resultant moment strain, which, divided by the
lever arm of 5 c, gives the strain itself.

The method is easy of application, but, as we have already
remarked, the determination of the lever arms for each case is

frequently tedious. These may, however, be scaled off from
the frame diagram with sufficient accuracy in practice.
As before, we need only the strains due to the first and last

weight, and can then form our tabulation as above. This
tabulation we can also check by finding the strains due to uni-

form load independently, and seeing whether it agrees with

the sum of the separate apex weight strains.

Thus, for all the weights acting, suppose we wish the strain

in Y g. The lever arm of Y g is 9.85 feet. We have then re-

action 35 tons, multiplied by 35 feet = 1225. This must be

diminished by P7 x 25 = 250, P6 x 15 = 150, and P5 x 5 =
50. We have then 1225 - 450 = 775, which, divided by 9.85,

gives 78.7 tons tension in Y g, agreeing with our tabulation

above.

For the method of calculation by resolution of forces, see

Art. 16 of this Appendix.
1O. Girder with Straight Flanges. In such a case, as the

lever arms are at once known and are constant, the above

method is of very easy application. In this case the strains in

the diagonals are best found by multiplying the shear by the

secant of the inclination of the diagonal with the vertical.*

Thus, if this angle is 45, we have simply to multiply the shear

at any point by 1.4142, and we have at once the strain in the

* This is but a particular result of the general method of moments. Thus,

for any diagonal, as ab (Fig. VII.), according to our rule, we take the centre of

moments at the intersection of the two other sides cut by a section through

the truss, viz.
,
the flanges. But these two sides are here parallel, hence their

intersection is at an infinite distance. The lever arm of a b is then oo x coa yi,

being the angle with the vertical. If the weight P, acts, we have then,

calling the reaction R, R x oo P oo = 8 cos
<p

x oo, where 8 is the strain hi

a 6. This can be put (R P) oo = S cos
<j>
x oo, hence 8 =

OO)J x w . Bat

R - P is the s?iear at 5, CO8

" =^^ = see
;
hence we have only to

multiply the shear by the secant.
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diagonal at this point. The shear is always in such cases the

reaction at the end minus the weights between that end and

the apex in question.

The flanges are easily obtained by moments, as above.

The following points need attention, however. First, if

there are two or more systems of diagonals, as represented in

PL 2, Fig. VII., by the full and dotted diagonals (omitting the

upright lines), we must find the strains for each system sepa-

rately, and then add them together. Thus, if the strains found

in a G and c 0, etc., for one system, are 50 and 60 tons, and

those in df and fg, for the other, are 40 and 70 tons, we have,
when the two systems are combined, do = a c + df= 50 + 40
= 90, cf= df+ce = 4:0 + 60 = 100, fe = ce +fg =
60 + 70 = 130, and so on. This holds true, of course, whether

the strains are obtained by calculation or diagram. Thus, for

a lattice girder, we- calculate or diagram each system by itself,

and then the strain in any flange, when the two are combined,
is equal to the sum of the strains on that flange due to each

system of triaugulation which includes it.

There is another point to be observed in connection with

the system known as the Howe or Pratt Truss. Inserting the

dotted verticals into our Fig., we have this system of square pan-

elling. Let us suppose that the diagonals take tension only,

and the verticals compression only.

Xow for a weight at apex 9 of 10 tons, we have a right re-

action of 1 ton, which, running through the system, causes strain

in the diagonal ofyP4 . For the flange D, then, our point of mo-

ments is at/, and if the height of truss is equal to panel length,

viz., 10 feet, we have the strain in D = = 5 tons, for

P9. In the same way for P8, we have for D 10 tons
;
for P7,

15

tons
;
for P

6 ,
20 tons

;
for P

5,
25 tons. For P4,

on the other

hand, we have a left reaction of 4 tons, which causes strain in

diagonal e Jc, and for this weight and all succeeding weights
our point of moments for D is then at e. We have then P4

4 x 60 = 24 tons
;
for P3, 18 tons

;
for P2,

12 tons
;
and for

PI, 6 tons.

For all these weights, then, acting together, we have 135 tons

strain in D.
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But for all the weights acting together, it is evident that

only all the braces sloping each way from the centre are

strained. Hence e k is not strained, and our point of moments
is for D always at./! Thus for total load we have strain in

45 x 50 - 10 x 40 - 10 x 30 - 10 x 20 - 10 x 10

10
~~ = 125 tons

>

whereas we found by addition of the several weights 135 tons.

There is thus an ambiguity in this class of bracing as to the

way in which the strains may go. Two symmetrical weights,
as 9 and 1, may either go left and right directly to the abut-

ments or a portion of each go towards the centre. The inter-

mediate diagonals may be either all strained or not strained at

all. The strains may go partly in one way or partly in the

other. We should then not rely on our summation of the sepa-

rate weights, but always check them by calculation or diagram
for the total load also, and take the greatest strain. Practi-

cally, for long spans, it is very rare that the difference is of any

importance.
In diagraming by our method such a system of bracing as

the above, we should consider but one series of braces, viz.,

those strained by the uniform load alone. Thus, for our Fig.

and loads on the lower apices, we should take only the diago-

nals parallel to fh on the left of centre, and /P4 on the right.

If, on the other hand, the verticals are ties and the diagonals

struts, we should retain only those parallel to c k on the left,

and those parallel to k e on the right of centre. The others

are to be omitted. Then, the tabulation being formed, if in

any diagonal a strain may occur of reverse character to that

which it is intended to resist, a counterbrace must be inserted

in this panel to take this reverse strain.

As in our examples we have taken always a triangular system

of bracing, it is important that the reader clearly understand

the method to be pursued in other forms. For the rectangular

system of bracing generally, thepoint where for uniform load

the shear is zero is the point from which the braces must slope

both ways. The other diagonals, or the counterbrace*, are then

omitted in both calculation and diagram, and replaced from the

tabulation when necessary to replace a straiiv of the reverse

character to that which the braces are intended to sustain.

Attention to the above points will enable us to both calculate
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and diagram with ease and accuracy any form of truss which

occurs in engineering practice.
11. In the bow-string girder represented ir Fig, Y. it is

evident that the bottom flange serves merely to resist the thrust

of the bow and keep it from spreading. It adds nothing to the

supporting power of the combination. We might remove it

entirely and replace it by abutments which would equally well

sustain this thrust, and if we then introduced a horizontal flange
at crown, and inserted diagonals between for stiffness, we should

have the form of braced arch given in Chap. I., Fig. 5
(c). If,

however, we should resist the thrust of the bow by an inverted

arc, it would answer the same purpose as the bottom flange,

and we should, in addition, double the supporting power.
We have illustrated this in Fig. YI.

The span is the same as before. The lower apices only are

supposed to be loaded, for comparison. [Properly, we should

have distributed the load over both upper and lower apices.]

The rise of each arc is one-half as great as before, or 5 ft. only,

thus making the total depth the same as in the preceding
case.

By means of two strain diagrams, we find the strains due to

P! andP7 .' Thus:

Then, precisely as in the preceding Art., we can fill out our

table of strains. This the reader can now easily do for himself.

We thus find, for a uniform dead load fths the live load, the

total maximum strains below.

Comparing these with the corresponding strains for the bow-



APPENDIX.] NOTE TO CHAP. I. 359

string, we find that they are very much less in every .piece. In

fact, there is a total gain of over 10 per cent., and that, too, not-

withstanding that the rise of each arc is only half that in the
first case. Had we taken a double depth, the saving would
have been very great, and as in this case also, for a long span
and relatively large dead load, the diagonals would always be in

tension, the increased length of these last would be no dis-

advantage.
12. The above construction is worthy of the careful consid-

eration of the bridge builder. It peculiarly recommends itself

for long spans, and has several important advantages possessed

by no other form of truss. For long spans the strains in the

flanges are nearly uniform. The diagonals are less strained

than in any other system, and are always in tension. Every
member acts to support, as well as to strengthen. The height
is everywhere proportional to the maximum moment of the ex-

terior forces. The load is distributed along the neutral axis,

thus securing the maximum of rigidity ;
while the neutral axis

itselfpasses through the points of support.
This construction is known in Germany, from the name of its

inventor, as PauWs Truss. Upon this system are the double

track bridge over the Isar at Grossheselohe, 2 spans of 170.6

ft.
;
a large number of smaller bridges, such as one over the

Rodach, 109 ft. span ;
over the Main in Schweinfurt, 116.4ft.

span ;
and especially one over the Rhine at Mayence, of 32

spans, 4 of 345 ft., 6 of 116 ft., 20 of 50 ft, and 2 of 82 ft.
;
all

upon the same system.

In England, we might notice the famous bridge over the

Tamar at Saltash, near Plymouth, whose two principal spans

are 455 ft., which is also constructed upon this system.

Finally, we may mention the bridge over the Elbe, near

Hamburg, the three principal spans of which are 325 ft. each.

In this latter structure both the upper and lower members

are braced or ribbed arches, of a constant depth of about 10 ft.,

a combination which, for long spans, seems most excellent. A

single arch alone, similar, for example, to the steel arch over the

Mississippi, by Capt. Eads, would have required heavy abut-

ments.

The same arch inverted would have required equally heavy

anchorages. The combination does away with both. The
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thrust of fehe upright arch is opposed by the pull of the inverted

one, all the advantages of Pauli's system are obtained, and

there are no temperature strains such as occur in the single

arch, while the bracing is reduced to a minimum. At the same

time all the rigidity due to the arch is obtained.*

13. In the construction of the diagrams, care should be exer-

cised in the selection of the scales, that the frame diagram may
be large enough to secure the desired accuracy. Lines should

be drawn very fine with a hard, sharp-pointed pencil, so as to be

scarcely discernable, and their intersections accurately marked

by needle point.

With an accurate scale and good instruments, strains can be

taken off in nearly every practical case to hundredths of a ton

*
Compare Long and Short Span Railway Bridges, by John A. Roebling, C.E.

In this work, Mr. Roebling proposes a system, in principle essentially the

same as the above, to which he gives the name of " Parabolic Truss." He,

however, constructs the arch of channel irons bolted to the sides of a straight

truss, the sole office of which is to give rigidity to the system. Also, claiming
that iron in the shape of wire will safely sustain three times as much as in the

shape of bars or rods, he introduces a wire cable in place of the inverted

braced arch.

It will thus be seen that for rigidity the system is wholly dependent upon
extraneous members, such as the auxiliary truss and the tower stays, which are

liberally introduced. By dividing the material composing the upright arch

into two portions, bracing between them, and thus forming a braced arch sim-

ilar to Capt. Eads, the stays and stiffening truss might be entirely dispensed

with, the construction greatly simplified in the number of its members, and

the bracing reduced to a minimum. If, alBO, as claimed by Capt. Ends, the

conditions for cast steel are just the reverse of iron, and it is most advantageous
to use it in compression, then it seems that such a modification of Mr. Roeb-

ling' s design with wire cable and a cast-steel braced arcfi would better sustain

the thesis with which his work, above quoted, opens, viz. : that " the greatest

economy in bridging is only to be obtained by a judicious application of the Para-

bolic Truss."

Such a combination of the suspension and upright arch would seem to avoid

the principal objections urged against each separately. The anchorages and

abutments are dispensed with, the greatest rigidity is secured with the mini-

mum of bracing, and the material is used in the most advantageous way. In

addition to the advantages of Pauti's system being secured, we have the ease

of erection of the suspension system combined with the rigidity of the arch.

The system is self-balancing, and practically unaffected by changes of temper-
ature.

For the practical details of construction of such a system, the reader can

with profit consult Mr. Roebling' s work, above quoted. They will be found

to be neither expensive nor difficult of execution.
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with perfect accuracy. The use of parallel rulers h not to be

recommended. The T square, triangle and drawing-board are

far preferable. It should be remembered, finally, that careful

habits of manipulation, while they give constantly increaRed

skill and more accurate results, affect in no degree the rapidity

and ease with which those results are obtained.
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NOTE TO CHAPTER II.

14. The reader will observe that in Chapter I. we had given
forces acting at certain points of a given frame, and we found

by simple.resolution of forces the strains in the pieces of that

frame. In Chapter II. we have given forces acting in certain

directions, and having assumed the strains, we find the equi-

librium polygon or frame, which, having its angles on these

force directions, and having these strains, will hold the given
forces in equilibrium. Thus in Figs. 12 (b] and (c), PI. III., of

the text, by choosing a pole and drawing lines to the forces in

the force polygon (a), we virtually assume the strains which

are to act upon our frame. Then lines parallel to these strains

in (#), forming a polygon whose angles are upon the forces,

must give us the frame which holds these forces in equilibrium,

provided we close the polygon by a line and apply at the ends

forces which balance each other horizontally, and whose com-

ponents parallel to the resultant of the forces balance the

forces.

Thus the polygon maT) cdenm is a frame along whose

sides the forces S S
15 etc., act, and whose reactions at the sup-

ports m and n must then be a o and 5
,
as given in (a).

Thisframe keeping the same pole, that is, the same strains

we may put anywhere in the plane, its angles being always on

the forces, and its sides always respectively parallel, though

varying in length according to the position assumed.

We might also have assumed different strains, that is, taken

a different pole, and constructed a different frame
;
but evi-

dently the end reactions will not be altered, and will be always

equal to a and 5 #, as given in (a).

The peculiarities of the frame thus obtained are, as we see

further on, that its end sides always intersect upon the result-

ant of the forces
;

its depth is always proportional (for paral-

lel forces) to the moment at any point ;
its area to the moment
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of inertia of the forces
; while, finally, in a loaded beam the de-

flection curve itself is but a polygon or frame of this character,

when the curve of loading follows the law of the moments in

the beam.

It is upon this polygon and itg properties that the entire

system of Graphical Statics is based.
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NOTE TO CHAPTER V., AET. 51.

15. In Fig. VIII. (Appendix) we have given the construction

referred to in Art. 51 of the text for a system of loads of given
intensities. The span s s is supposed to shift to st 8tJ

s2 <%, etc.,

and a certain cross-section & to shift with it to ^, 7%, etc. The
intersections of the respective closing lines with verticals

through &
, &!, #2, etc., gives us a curve between which and the

polygon the greatest ordinate gives the maximum moment for

the assumed cross-section. The place of this ordinate is the

position of the cross-section from which we determine the ends

of the span, and thus have its position with reference to the

loading when the moment in Jc is the greatest possible.

Thus if this greatest ordinate is- at the angle VIII. in the Fig.,

the weight P8 must rest upon the cross-section. The distance

then from P8 to the left end of span s, is the distance from s

to # on left, and to right end of span s, is the distance from
& to s on right.

The ends s and s being thus found, perpendiculars through
them determine the closing line L, and the parallel to this in

the force polygon gives the end reactions L arid 20 L for the

position of span wljich makes moment at k a maximum.
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NOTE TO CHAPTER XII., ART. 124.

16- In Arts. 120 and 121 we have given the formulae and

principles necessary for the complete solution of the pivot span.
We propose here to illustrate more fully their application by a

simple example.

Fig. IX. represents such a structure. The two outer spans
A B = CD = 40 ft. The central or turn-table span, BC =
20 ft. Centre height at B and C = 10 ft. End height = 6 ft

Panel length, 10 ft.
;
each apex live load, 10 tons, or 1 ton per

foot. Dead load, half as much. Two systems of triangulation,
as shown in the Fig.
Our proportions are taken for the sake of illustration merely,

and not as an example of actual practice. All the points to be

observed are, however, illustrated as well as by a much longer

span, and more usual proportions.

It is to be observed that the end verticals are compression
members only, and cannot take tension. This is necessary to

prevent ambiguity as to the way in which the strains go. A
negative reaction might otherwise cause tension in 1 2, and

compression in F, or tension in 1 5, compression in 5 6, and

tension in A. If 1 5 cannot take tension, we have but one

course for the strains, and the problem is determinate.

We also, for similar reasons, construct the centre span so

that the diagonals take tension only, and the verticals compres-

sion only. These points as to construction being settled, let us

proceed, first, to determine the reactions.

\st. REACTIONS.

We shall consider the case of the "
Tipper? or secondary

central span only [Art. 120], as this case most nearly ap-

proaches the true state of things. The method of procedure

for four/,z^<supports is precisely similar, only taking the for-

mulae for that case from Art. 122.

The less the span B C, the nearer the case approaches to three

fixed supports ;
and when ttie distance B C is zero, n is zero, and

our formulae are the same as for beam over three supports.

For a load in the left span distant a from A, these formulas

are as follows [Art. 120] :
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RA =
2^j |2H.

-
(10 + 15n + 3 tf) k + (2 + ri)tf I,

RB = RC^ ["(6
+ 9 n + 3O k - (2 + n) &

31
,

Sn + 3 w2
.

3 -
(2 + 3n

in which =1 Z=AB=CD, 7i = BC and H =
I

"We have first to put these formulae into the most convenient

shape for use in the particular case under consideration. Thus

1 35
in this case I = 40, n I = 20

;
hence n = - and H =

, and

Jc - ^, where a has the successive values of 10, 20, 30, 40 for P
15

4U

1 2 3 4
P

3 ,
P

3 ,
P

4 . Tc, is therefore successively -, -,
- and -

Our equations for reactions are then, after reducing,

10 F

"35

Now, as we may notice, the denominator of ~k is always 4, of

T always 64
;
the numerator only changing according to the

position of the weight. These equations can then be written

where a has the values 1, 2, 3 for P
1}
P2,

P3 ,
etc.

These, then, are the practical formulae for this case, and from
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them we can easily find the reactions for the apex loads of 10
tons each.

Thus, for Px make a=l, and we have

RA = 7.415, RB = RC = 1.58, RD = _ 0.584.

For P2 make a = 2, and

RA = 4.964, RB = Rc = 3.035, RD = - 1.035.

For P3 make a 3, and

RA = 2.78, RB = Rc = 4.22, RD = - 1.22.

For P4 make a = 4, and

RA = 1, RB = Rc = 5, RD = - 1.

Loads npon the centre of the span B C acting, that is, at

apex 10, give no reactions, but are supported directly by the

turn-table. Hence, for P5 ;
RA ,

RB ,
Rc and RD are zero. For

the first load, P7 to the right of C, the reactions at A and B are

the same as for P3 at D and C, already found. For the next

load, P8 ,
the reactions at A and B are the same as for P2 at D

and C, already found. For P9, the same as for P
t . For P6 ,

as

for P4 ,
etc.

We thus have the reactions at A and B due to every indi-

vidual apex load, and can now proceed to find the strains.

Our formulae, it will be observed, thus become very simple
and easy of application for any particular case.

2d. FLANGES BRIDGE SHUT.

Let us first find the strains in the Ranges. We have only to

apply the method of moments, and the work is so simple that

an example or two will suffice.

We repeat again the rule. Conceive a section cutting only
three strained pieces. Take the intersection of two of these as

the centre of moments for finding the strain in the third. The

moment of the strain in this last about this point must be equal

to the algebraic sum of the moments of all the forces acting

between the section and one end. Take P! for example. Its

upward reaction at A is 7.415. [A negative reaction acts

down. Thus, for P7 above, the reaction at A is, from our for-

mulse, 1.22. The minus sign indicates that the reaction is

down, and that, neglecting the dead load, the girder must be

held'doion to the support A. If the reader will draw roughly

the curve of deflection, he will see that this is so.]
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I

Conceive a section through the girder at, say, the centre of

flange A. It cuts 4 pieces, but, since the weight P! acts only

through its own system of diagonals, only three are strained.

The point of moment for A is then at 6, the intersection of the

other two strained pieces. The strain, then, in A x by its lever

arm 7.415 x 10. The lever arm of A is 6.965
;
hence

A x 6.965 = 7.415 x 10,

or A = 4- 10.64 tons compression,

because the upward reaction acting with 6 as a centre of rota-

tion tends to compress A.

This strain evidently acts through both A and B, since both

these flanges are included by the two diagonals of the system
for P! ;

hence also, B + 10.64 tons.

For flanges C and D, since 7 8 is the strained diagonal, 8 is

the centre of moments. The same reaction acts now with the

lever arm 30 to cause compression, and P
t acts with the lever

arm 20 to cause tension. We have then

C x 8.955 = + 7.415 x 30 - 10 x 20,

or C = D = 2.5 tons compression.

Now we come to the centre span, and must carefully observe

the following points. Since D has been found to be compres-
sion for P

15 we see at once that the whole upper flange for the

span A B is for this weight in compression. Diagonal 8 9 is

therefore in tension. Were there no vertical strut at B, this

would cause compression in 910. But brace 910 cannot by
construction take compression. The strained pieces cut by a

section through E are then E, B 11 and K, which give us the

centre of moments at B for strain in E. Observe, that were

it not for the vertical, we should have had 10 for the centre

of moments
; or, with the vertical, had D been found tension,

8 9 would have been compression ;
there would then have been

no strain in the vertical, that being incapable of tension, and

diagonal 9 10 would have been strained, thus giving us also 10

for the centre of moments. Attention to the above is necessary
in order to properly pass from the span AB into the middle

span.

We have then for strain in E

E x 10 = 7.415 x 40 - 10 x 30, or E = -
0.34,
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or in tension, as indicated by the sign, since the moment of P,
overbalances that of the reaction.

[Note. The different lever arms are easily obtained from
the known dimensions of the truss. We have considered it

unnecessary to detail how they are to be found. They may
either be measured to scale from the frame or computed trigo-

nometrically.]

The lower flanges are found in similar manner.

Thus, strain in F is zero, since it passes through the point of
moments.

For G and H, we have

G x 8 = - 7.415 x 20 + 10 x 10, or G = - 6.04 tension.

In like manner, for I,

I x 10 = - 7.415 x 40 + 10 x 30 = + 0.34.

For K, for similar reasons as above for E, we have centre at

11, and therefore the reaction at B also enters into the equa-
tion of moments, and

K x 10 = - 7.415 x 50 + 10 x 40 - 1.58 x 10, or K = + 1.34.

We have then, finally, for the strains in the flanges due to P!

In a precisely similar manner we find the strains due to P2 ,

P3 and P4 .

We have only to observe that for P7, the first weight to the

right of C in the other span, the reaction at A is negative and

equal to the reaction of P3 at D, already found, or 1.22.

Now as we suppose the end A bolted down, this reaction acts

as a weight of 1.22 tons suspended from the end. So for the

reactions of P8 and P9, viz.,
- 1.035 and - 0.584. These reac-

tions, moreover, must all take effect through diagonal 1 2 and

flange F, as the end vertical cannot take tension.

Finding then the strains due to each of the other weights,

we can, finally, tabulate our results as on next page:
24
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STRAINS IN FLANGES LIVE LOAD BRIDGE SHUT.

In the two horizontal lines at bottom, we have the total

strains of each kind caused by the live load.

3d. FLANGES BRIDGE OPEN DEAD LOAD.

We have next to find the strains due to the dead load when
the span is open.
We have then 5 tons at each apex, except the ends, where

we have P = 2.5 tons.

These strains are easily found by moments as above, and we
have then the following table :

If now, as should be the case, we suppose the centre sup-

ports raised above the level of the ends, so that the ends just

bear, then these strains above act even when, the bridge is shut.

As we have already seen in Art. 131, our formulae for the

reactions are not affected by this state of things. The strains

due to live load will then be increased by those above, and we
thus have for the total maximum strains which can ever occur,
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Of course, for this condition of things the ends must always
be bolted down.

It is sometimes customary to raise the ends by an apparatus
for that purpose, after closing the draw, until the proper pro-

portion of the dead load takes effect also as a positive reaction.

We can easily find the strains in this case also by adding

the numbers in the last horizontal line of our table for bridge

shut, with their proper signs, and taking half the results for a

new line for dead load strains. The resulting strains can

then be found precisely as in the table of Art. 8 (Appendix).

We must also find the strains for bridge open as above, and then

take the greatest strains of each kind from these two tables.

In this case the strains would be differently distributed.

Flange E will be always in tension, A and K always in com-

pression ;
the compression in B C and D will be somewhat

greater than above, and the tension in the same flanges less.

The reader can easily deduce the strains for this case from the

two preceding tables.

If the truss may act as a girder over four Jixed supports,

we should, in order to be certain of the maximum strains,

make the calculation for this case also, using the formulae of

Art. 122. This is unnecessary, however, if the supports B and

C can never sink far enough to strike the turn-table, or be im-

peded in their motion.

th. STKAINS IN THE DIAGONALS.

We may find the strains in the diagonals also for each

weight separately, both for bridge open and shut ;
and a pre-

cisely similar method of tabulation will give the strains.

It will here be found preferable to make a series of dia-

grams, as illustrated in Fig. 86, Art. 124, for each weight and

its own system of triangulation.
We obtain thus the diagonal

strains, and at the same time check the results obtained

flanges above. ,

If we wish to calculate the diagonals, it will be better to fi,

the resultant shear acting upon the diagonal, and multiply it by

the secant of the angle the diagonal makes with the vertical.
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We can also, if we wish, apply the method of moments.

Thus, if we determine the point of intersection in the present
case of the inclined upper flange with the horizontal lower

flange, this point will be a common centre of moments for the

diagonals. The lever arms of the diagonals with reference to

this point must next be determined, and then we are ready.
This point above for centre of moments is easily found ;

thus

4 : 40 ! ; 10 : 100.

It is therefore 60 ft. to the left of A, or 100 ft. left of B.

Take now any diagonal, as 3 4. Its angle with the horizontal

is very nearly 42, and with the vertical 48. Its lever arm is

then 80 sin 42 =
53.5, and sec. of angle with vertical is 1.49.

Now take the weight P2. Its upward reaction at A is 4.964,

P2 being 10.

"We have then

[str. in 3 4] x 53.5 = 10 x 80 - 4.964 x 60 = + 502.16.

The resultant rotation is then positive, or from left to right.

The point P2 then sinks and 4 rises, and 34 is in tension and

This is sufficient to illustrate the method.

For the first method referred to above, viz., that by resultant

shear, the following points are to be observed :

When a piece slopes towards the nearest support, we say it is

sloped as a strut, whatever the real strain in it may be.

When it slopes away from the nearest support, it is sloped as

a tie.

The simple shear is the reaction at the support minus the

weights between any point and that support.

If any three strained pieces are cut by a section through the

structure, the strains in these pieces are in equilibrium with the

simple shear at this section. Hence the algebraic sum of the

vertical components of these pieces must be equal and opposite

to the shear itself.

In order to add these vertical components witli proper signs,

we must remember that if a flange is in tension and sloped as a

strut, or in compression and sloped as a tie, we add the vertical

component of the strain in it to the simple shear already

obtained. If in compression and sloped as a strut, or tension

and sloped as a tie, we subtract.
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The resultant shear thus obtained then, multiplied by the
secant of the angle with vertical, gives the strain in diagonal.

If the sign of the result is negative (-), it shows that the
strain on the diagonal is contrary to that indicated by its slope.To illustrate, let us again take the weight P2 and consider

diagonal 34.

The simple shear at apex 4 is 4.964 - 10 = - 5.036. The
strain in C for P2 we have found to be compression, and equal
to + 12.47. It is sloped as a strut, and its vertical component is

therefore to be subtracted from the shear above. Since its

angle is nearly 5 43' with the horizontal, this vertical com-

ponent is

12.47 x sin 5 43'= 1.24.

Since H is in this case horizontal, it has no vertical com-

ponent.
The resultant shear is then

- 5.036 - 1.24 = - 6/276.

As the secant of the angle of 3 4 with the vertical is 1.49,
we have for the strain in 34, 6.276 x 1.49 = 9.35.

This result being minus, and 3 4 being sloped as a strut
y.

the strain is 9.35 tons tension, agreeing closely with the value

found above by moments.

The above method is preferable to the method by moments
for the diagonals, as we have only to determine the secants for

the verticals and the sines for the flanges, which is in most

cases easier than to find the lever arms for the diagonals and
the points of intersection of the upper and lower flanges in each

panel. It is, like the method of moments, of general applica-

tion to any framed structure whose outer forces are known.

The method of diagram in Art. 124 will be found preferable
to both.

It is unnecessary to pursue our example further. With the

mutual checks of the two methods of calculation explained

above, as well as the diagrams, correct results cannot fail to be

obtained. The diagrams should always be made first, as they

settle by mere inspection many points which may at first cause

trouble such as whether the shear in a piece is subtractive or

not according to our rule, the character of the strains in dif-

ferent pieces, etc. It is well to indicate on the diagrams com-

pressive strains by double or heavy lines.
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NOTE TO ART. 128, CHAPTER XII.

17. We wish here to call more particular attention to the

relative economy of the continuous as compared with the

simple girder. This, we think, is greater than is generally sup-

posed. It may reach from 18 to 25, and even as high as 50

per cent.

Take the example worked out in Art. 128, Fig. 88. We
have obtained the maximum strains in that Art. upon every

piece.

We give them below, compared with the strains in the same

pieces for a simple girder of same dimensions anb load :

At B6 Bd B/ BA
-203.5 +89.3 115.9 115.9 +89.8

90 210 210 90

aft be cd de ef fg gh hk
Continuous.. +189.3 109.9 +109.9 +45.5 +45.5 +109.9 +109.9 +189.3

Simple +127.3 127.3 +56.5 +56.5 56.5 +56.5 127.3 +127.3

It will be seen at once that there is a saving in the flanges
about 11 per cent, in all but the bracing is heavier, giving lit-

tle or no saving. The span is too short to properly represent
the relative economy of the two systems.

If we take a truss such as represented in PI. 2, Fig. VII.,

Appendix, by the full lines only, omitting the dotted verticals and

diagonals height 6 ft., span 50 ft., panel length 10 ft., dead

load 5 tons per panel, live load 7 tons per panel and calculate

the strains in the pieces for a simple girder, and then as a con-

tinuous girder of two spans and three spans, we have the fol-

lowing results :

Aa Ac A A?
Continuous.. -203.5 +63.6 +115.3 +63.6

Simple +180 +240 +180
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We have then, in the first case, a saving of 8 per cent., in the

second, 10, and in the third, 18 per cent, over a simple girder.

Quite a notable saving, although the spans are very short, and

although, in the first two cases (the spans being end spans), we do

not obtain the full advantages of continuity. If, then, instead

of three simple girders of the above dimensions, we should con-

struct the girder continuous over the piers, we should save in

strain, and hence in material, 10 per cent, in each end span, and

18 per cent., or nearly twice as much, in the centre span.

The advantage of continuity is rendered still more apparent

by taking a longer span. Thus for a girder of 200 ft., height

20 ft. 10 panels, and double system of triangulation, similar to

Fig. VII. for a live load of 20 tons per panel, and dead load

of 10 tons we have the following results :

One span. Two spans. Five spans.

centre.

Bracing....... 1398.6 1428.2 1596.2

Lower Chord., 2400. 1793.2 1395.7

Upper Chord . . 2550, 1981.6 1622.6

Total..... 6348.6 5203.0 4614.5

Per cent, saving ............ 18 per cent. 27 per cent.

That is, we have a saving of 18 per cent, instead of only 8

per cent, as before, for two spans, and of 27 per cent, for the

centre span of five spans. For three spans, then, of this length

we should save 18 per cent, on the end, and at least 30 per cent.

on the centre span.

If we suppose the same girder as above fastened or fixed

horizontally at the ends, we shall have the case of a middle span

in a very great number, and may expect to find the greatest

saving possible for this length.

The formulae of Chapter XIII., as also the simple graphical

method for this case, given in Chapter XII., Art. 114 [Fig. 80],

enable us to solve this case easily. The reader will
fi|d,

on mak-

ing the calculation, the following strains :

Strain In ton*.

Diagonals ....................

Upper Chord..................

Lower Chord.................. 965'*

Total .................... _E?M
Per cent, saving...............



376 NOTE TO ART. 128. [APPENDIX.

The above will serve to illustrate the point in question quite
as well, perhaps, as an extended theoretical discussion. We see

that the saving increases rapidly with the length of the span,
and may easily rise as high as 30 or 40 per cent., while in some

cases even 50 per cent. may. be realized.

THE DISADVANTAGES OF THE CONTINUOUS GIRDER ARE:

\st. The fact that the various pieces, especially the chords,

undergo strains of opposite character.

This, in wrought-iron structures, we venture to think of little

importance. The extra work and cost of chords and chord con-

nections necessary to secure the flanges against both compressive
and tensile strain, can hardly amount to 10, 18, 30, or even 50

per cent, of the cost of girder !

2d. Difficulty of calculation.

We have, we trust, in what precedes, and in Chapter XIII.,

succeeded in removing this objection.

The opinion is widespread among engineers that the deter-

mination of strains in the continuous girder is impracticable
and involved in mystery. No opinion could well be more un-

founded. The accurate and complete calculation for all pos-

sible loading, live or dead, is precisely similar to and offers no

more difficulty than the simple girder itself.

The formulae for moments and shears are, as we have seen,

simple and easy of application.

The graphic method here developed offers also a thorough
solution. In view of both, and of the extensive literature upon
the subject (which seems, by the way, to have been so generally

ignored), we can finally pronounce the problem to be fully
solved.

3d. The changes of strain, unforeseen and often considerable,

which a small settling of the piers or change of level of the

supports imty occasion.

This, be it observed, is only of importance when the piers

settle after the erection of the superstructure. If piers are to

be considered as settling indefinitely, or continuously during a

succession of seasons, continuous girders are not to be thought

of. If, however, as is generally the fact, the piers take their

permanent set during the first season, and afterwards are im-

movable, the above objection has no weight. It is not necessary
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that the piers should be exactly on level or even on line, or even

that the differences of level be known.

As shown in Art. 121, these differences produce no effect,

provided the girder be built to the profile of the supporting

points.

If in any case these differences are required, and it is con-

sidered difficult to determine them over water with sufficient

accuracy, then the proper reactions at the several piers may be

weighed off* and the girder thus left in position under pre-

cisely the circumstances for which it has been calculated.

THE PRINCIPAL ADVANTAGES OF THE CONTINUOUS GIRDER ARE :

1st. Ease of erection, where false works are difficult or ex-

pensive. The girder may be built on shore, and then pushed

out over the piers.

2d. Saving in width of piers, as compared with width re-

quired for separate successive spans. The girder may be placed

upon knife edges at the piers. In fact, such a construction is

preferable, as better ensuring the calculated strains. Width of

piers is undesirable.

3d. Saving in material usually from 25 to 30 per cent.

1. Continuous CUrder Supports not on a level. In

Chapter XIII. we have all the formulae required for the solution

of the continuous girder for supports on a level, or all on line,

when the deviation from level is small, whatever may be the

number or relative length of the spans. If for a continuous girder

of constant cross-section, the supports are properly lowered
after

the girder is placed upon them, we may obtain a saving of $

per cent., or more in material over the same girder with sup-

ports all on level. If, however, the cross-section vanes accor

ing to the strain in other words, if the girder is of constant

strength- no advantage is gained from thus lowering interme-

diate supports. Such disposition
of the supports may e<

injuriously.

The formulae for shear and moments which we have given

are, indeed, based upon the hypothesis
of constant cross-sect!

but the strains in every piece of the girder being found f

shearsa^nomen^
* An idea first suggested by Clemens Herschel C.E.: am****, *****.

Draw Spans. Little, Brown & Co., Boston, 1875.
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to its strain, and the actual girder erected is not of constant

cross-section, but more nearly one of uniform strength. Formu-
lae for the case of supports out of level, as well as determina-

tions of the best differences of level, are hence of but little prac-
tical importance, and have not been given. If, however, it be

required to find the effect due to the sinking of any one pier,

the following may be found of service.

Let the nth
support be depressed below the level of the others

by the distance h. Then the moments at all the supports are

changed. The moments at n and at each alternate support
from n are diminished, and at the others increased.

Let

Then, wfien all the spans are equal, the following formulae

give the moment at any support :

"Lst. All spans equal, n number of lowered support,from
left,

when m <n, Mm = Cm Cs~n+2 H.
cs + l

when W = n, M, = - J* ^ ^-* + C "*
H,4c8 i

when m > n, Mm

where ct
= 0, c2 = + 1, Cg = 4, c4 = + 15, c5 = 56,

c6 = + 209, etc.

From the moments at the supports the shears can be readily
determined from the formula of Art. 148, viz. :

t

o _Sm
Mm - Mm+1 Mm ----- --

where q = P (1 k) for concentrated load and ^-
r

;
for uniform,

2i

^'-P/feand^.
2i

%d. Spans all unequal.

when m < n, fluf^tilLzA**! +
^-n+s -<?.-. +2"!

6 h E j

T L ^ ^-1 J1VT =



The reader who has learned the use of the formulae of Chap-
ter XIII. will have no difficulty in applying the above to any

particular case. In the same way as there explained, by mak-

ing ^ and 4 zero, we may fix the girder at the ends, etc. The

formulae for shear at any support are, of course, the same as

before (Art. 150).

Ex. 1. Let a beam of two equal spans be uniformly loaded

throughout its whole length, and let the centre support be low-

ered by an amount h^ = *
. What are the moments and

reactions ?

The moments due to the full load alone before the support is

lowered are Mx
=

0, M2
= ^?, M8

= (Art. 150). For
o

the moment due to the lowering of the support alone, we have

from the above formulae, since

i
=

, ,= -,
Hence the total moment is

"16
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For the shears, then, we have

'

7 18 7
Hence, R! = w

I,
'R9=wlJ Rz = --wl

ID lo lo

Ex. 2. How much must we lower the second support in the

above example, in order that the reaction at the centre support

may be just zero f

In this case we have

__ WIT H w I/ 3 Aj E I

,
2 M2 7

w I 6 Aa E I
7

5
7

6 Aa E 1% =
-, + w I =

-j-
-~ \- wl = -wl

If this is to be zero, we have

and R! = w ?, Rj = 0, R
3
= w I,

or precisely as for a beam of single span and length 2 I.

Ex. 3. A l>eam of four equal spans is unloaded, and the

third support is lowered by an amount h% = . What are

the reactions ?

Ans. *, = ? R =i? * = W?

Ex. 4. A beam offive equal spans rests as a continuous gir-

der over six supports. Having given the dimensions of the

beam, length of spans, and coefficient of elasticity / to deter-

mine the reactions due to a sinking of the third support one-

eighth of an inch.

Let the beam be of wood, 1 foot wide, 1.5 deep,

I = 20 feet, s = 5, r = 3, E = 288,000,000 Ibs. per sq. ft,

A, = I in. = 0.010417 ft.
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Then, c2 = l, 63= -4, c4 = 15, cs = -
56, c6 = 209,

or, inserting the constants above, and I = b d* = 3 -3^5

Mt
= M6

=
0, Ma

= 5448, M
3
= -

9142, M4 = 5812,M
5
= _ 1453 ft. Ibs.

If all the spans are unloaded. For the reactions necessary
to bend it and keep it down to the supports, RI = 272 Ibs

112 = 1002, 1*3= -1477, R
4
= llll, R8 =-436, R6 =73.'

If the learn weigh 75 Ibs. per foot, what defection of third

support will raise the left endfrom the abutment f

Ans. R
t
= w 1=

5

,
or A, - 0.0226 ft=0.2712 in.

It will be observed that a small difference of level has then
considerable effect.

Ex. 5. Two equal spans are uniformly loaded. How high
must the centre be raised in order that the ends may just
touch f

This is the case of the pivot span with centre support raised.

(See Art. 121.)

The reactions at the ends are zero. At pier, then, Rj = 2w /,

hence moment at pier M2
= \ w P. But the moment when the

supports 'are on level is M2
=

-J wP, hence fwP must be due
to the elevation of the support. Then from our formulae,

3 El AS wl4

--' or ^-
which is precisely the same as the deflection of an horizontal

beam, fastened at one end, and free at the other (Supplement
to Chap. VII., Art. 13).*

* The calculations and formulae given in this Note (pp. 874-881) are

by permission, from a manuscript work on the Theory and Calculation of Con-

tinuous Bridges, by Mansfield Merriman, C.E., which, we hope, will be soou

given to the public.
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NOTE TO CHAPTER XIV.

THE BRACED AKCH.

19. The subject of braced arches is an important one, and

is treated in no work with the fulness and completeness it

deserves. The methods and formulae of Chapter XIV. will,

we believe, render the determination of the strains in this class

of structure easy, and we propose in the following to illustrate

their use, so far as may be necessary to render their application

clear.

In PL 4. Fig. X., we have represented a braced circular

arch with parallel flanges. Span of centre line 175 ft.
;

radius, 201.4 ft.
; rise, 20 ft. In practice, the panels would be

taken of equal length; for convenience of calculation, however,
we suppose the panel length to vary so that the horizontal pro-

jection is constant, and equal to 25 ft. Depth of arch, 10 ft.

Hence, span of lower flange
= 170.6 ft.

; rise, 19.5 ft.
; radius,

196.4 ft. Span of upper flange, 179.34 ft.
; rise, 20.5 ft.

; radius,

206.4 ft.

Since the flanges are, in practice, broken lines, and not true

curves, the depth or lever arm for upper flanges is 9.43 ft., for

lower flanges, 10.4 ft.

The determination of the other dimensions required is then

easy, and a simple question of trigonometry.
Thus we have for the half central angle a = 25 45', and for

the distances of the apices from the chord of the centre line :

For 1... -4.5 3.... 4.7 5.... 11.3 7.... 14.6 ft.

" 2.... 10.8 4.... 18.5 6.... 23.4 8.... 25 "

We suppose the load at each apex 10 tons, and shall consider

\st. Arch hinged at crown or apex 8, and at the ends of
the lowerflange the flanges H and A being removed.

2d. Arch hinged at apex 8, and at the ends of the centre

line the flanges A and E butting against a skew back'or pivoted

plate, and the flange H only being removed.

3d. Arch continuous at crown the flange H being retained,

and hinged at ends of lower flanges.
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4th. Arch, as in 3d, but pivoted at ends of centre line.

5th. Arch without hinges, or continuous at crown and fixed

at abutments.

These cases will illustrate all the principles of Chapter XIV.,
and a comparison of the results obtained in each case may
prove instructive.

2O. Arch hinged at apex 8, and at the extremities of the

lowerflange flanges H and A being removed.

From Art. 158 we can easily find the reaction and horizon-

tal thrust at left end either by construction or formula for

every weight. Thus

y = P( + *) ^ f(a -A

For the first weight P,, then,

_

For the weight PJ

10(85.3 + 37.5) an(1

170.6

2 x 29. 5

In similar manner, we find

P, = 0.603, P2
= 1.33, P3

= 2.06,

H
x
= 2.74, H2

= 3.84,
H3
= 5.9,

P4 = 2.8,
P5
= 3.53, P

fl

= 4.2,

H4
=

8.1,
H6
= 10.2, H6

= 12.1,

P7
= 5.0,

P8
= 5.7, P, = 6.47,

P10=7.2,

H7
= 14.4, H8

= 12.1, H,= 10.2,
Hw= 8.1,

P11= 7.94, ?= 8.6,
P18
= 9-4,

Hu= 5.9,
H12
= 3.84,

H
18
= 1.74.

It will be at once seen that the reaction of P. at A is the

same as of P. at B, or equal to 10 - P,; while the
horizontal

thrust is the same for both. We need them only to find I

H for weights 1 to 7, and can then at once write down t

others. We are now ready either to calculate or diagra

strains.
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Thus, for instance, for P10 (see Fig. X.), we lay off the reaction

at A upwards to scale from C to D, then the horizontal thrust

at A from D to 1, then the equal thrust at B from 1 back to D,
then the reaction at B from D to 8, and finally the weight
down from 8 back to C, thus closing the polygon for the exterior

forces. Lines parallel to the pieces then give the strains.

Thus the thrust and reaction at A are in equilibrium with E
and 1 2. Then 1 2 is in equilibrium with B and 2 3, and so on.

Observe that the diagram checks itself. Thus the last diagonal

7 8 must be in equilibrium with 6 7 and G- (flange H being re-

moved), and that this is so is shown by the strain in 7 8 passing

exactly through 8, thus making the strain in H zero. We can

also check the work by calculating the strain in the last flange
D by moments. Thus for P10

D x 9.43 = 7.2 x 72.8 - 8.1 x 19.1 - 10 x 25 = 119.45,

or D = + 12.6.

If this agrees with D as found by diagram, and if the diagram
also checks, we may have confidence in the accuracy of the

work, and at once scale off the strains. Observe that diagonals
45 and 5 6 are both tension ; also that F and G are tension.

We have given also the diagram for Pu ,
which the reader

can easily follow through for himself. F and G are both ten-

sion, 3 4 and 4 5 both compression. The horizontal thrust is

8 J, and the reaction at A = b 1.

We thus make a diagram for each separate weight, and then

taking the dead load at -| the live, we can form the following
table of strains. Since we wish only the maximum strains on

one-half the arch, those on the other half being precisely simi-

lar, we can diagram the strains due to all the weights upon the

right half at once by taking the sum of their reactions and

thrust at A. We have then the following table :
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25
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31. Arch hinged at Apex and at the Extremities of the
centre Line; Flanges A being retained, and only li re-

moved. The method of solution is precisely the same as

before, the only difference being that the span is now 175 ft.

instead of 170.6, and the rise 25 ft. instead of 29.5. The reac-

tions and thrust will then be somewhat different. Thus, for

the left abutment A,

Pt
= 0.71, P2

= 1.42, P3
= 2.14, P4

=
2.85, P5

=
3.57,

H!=2.48, H2 =4.97, H3
= 7.5, H4

= 9.97, H5
= 12.5,

P6
= 4.28, P7

= 5.00, P8
= 5.72, P9

=
6.43, Pw = 7.15, etc.

H6
= 14.98, H7

= 17.5, H8 = 14.98, H9
= 12.5, H

10
= 9.97, etc.

We have therefore the following table :



APPENDIX.] THE BRACED AECH. 387



388 NOTE TO CHAP. XIV. [APPENDIX.

A comparison of this table with the preceding shows that we

have gained nothing by introducing two end flanges at A at

each end, and pivoting the arch at the extremities of the centre

line. "We have indeed slightly diminished the strains in the

lower flanges E and F, as also in the bracing, but the other

strains are much greater than before a result which might
have been anticipated, since the effect of hinging at the centre,

instead of at the extremities of the lower flange, is simply to

reduce, the effective height or rise from 29.5 ft. to 25 ft. In our

example, since the depth of arch is half the whole rise of the

centre line, this reduction is considerable.

For a much longer span and smaller proportional depth the

difference would not be so marked, but it would seem that the

strains in the second case must always be greater than in the

first. The best construction, then, seems to require the hinge
in the upper flange at the crown, and at the extremities of the

lower flange at the abutments. By this means, the greatest ef-

fective rise is obtained, and both ribs aid in supporting the

load. Were the hinges all three in the same rib, then, for

uniform load, that rib alone is the sole supporting member, and

is unassisted by the other. This should then be avoided.

22. Aroli continuous at Crown, and hinged at Ends of

tower Rib. For this case, referring to Art. 159, we have sim-

ply to interpolate from our table there given the values of A,

B and y in the equation,

1 +B/c
y= l=A^*

and thus plot the curve cdeik, Fig. 91. The construction of

the reactions and horizontal thrust for each weight is then easy.

These once known, we proceed as above, in order to find the

strains.

Now, in the formulae above K =
-^ and since we can put

for the square of the radius of gyration, and this radius is

approximately the half depth of the arch, we have

25 25 1"
(170.6)

2
~

29104.36
~"
116?

Now B and A are, as we see from the table, small, and hence

in our present example the terms containing K can be disre-
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garded, and the value of y can be taken directly from the

table for y , given in Art. 159. For a = 25 45', then we have

at once, since h = 19.5,

for = 0, y = 1.295 h = 25.25 ft.,

= 0.2 a, y = 1.304 h = 25.42 ft.,

= 0.3 a, y = 1.335 h = 26.03 ft., etc.

The corresponding value of x is R cos .

Having thus plotted the curve, and constructed the reaction

and thrust for each weight, the diagram for strains proceeds as

before. We thus form the following table :
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Comparing these results with those in onr table above, Art.

19, for the same case not continuous at the crown, we see that

the strains in the upper flanges are much less, and are, more-

over, of opposite character
;

while the strains in the lower

flanges are greatly increased, and nothing is gained. This re-

sult might also have been anticipated, since the effect of insert-

ing the flange H is to reduce the effective height from 29.5 to

19.5 ft., and, moreover, for total dead and live load, nearly the

whole weight comes directly upon the continuous lower rib, and

the upper aids but very little.

23. Strains due to Temperature. We have, in addition,

strains due to change of temperature to be taken into account

in determining the total maximum strains.

For the present case we have, from Art. 165, for the thrust

due to change of temperature,

_ 15EIA C
~~

8 A A2 + 15 I'

or, substituting in the place of
-^

the square of the radius of

gyration
= f, we have

=

Now g is approximately the half depth of arch
;
hence 0* =

25 sq. ft. = 3600 sq. inches. Taking 5 tons to the square inch

as our unit strain, we may take the area of our flanges, as de-

termined from the abave table of strains at about 25 square

inches. Hence A = 50. Taking E = 14,000 tons per sq. inch,

A2 = 19.52 = 54,756 sq. inches, and supposing the temperature

to vary. 25 (Centigrade) on each side of the mean, we have,

assuming e at 0.000012, the thrust H = about 25 tons.

It is easy to find either by moments or diagram, or both, the

strains due to this thrust. Since the temperature varies between

25 on loth sides of the mean, this thrust can bo both positive

and negative, and the corresponding strains have, therefore,

double sign. We find, therefore,

B = =F 24.5 C = =f 40.4 D = T 49.1 E = 37.5

p = 55-9 G = 66 -9 H =
=*= 69 '6

12==fl7-l 23 = 15.0 34= T 8.6 45= 12.5

56- T2.2 67 = 9.7 78 = T 5.7
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Hence we have, for the total maximum strains for the case of

the preceding article,

B =+ 57.4-63.4 C= + 81.1-77.1 D= + 64.2-91.4

E =+279.4 F= + 286.3 G=+ 286.5

H =+285.3 12=+ 53.4-39.7 23=+- 43.7-28.8

34=+ 37.3-22.445=+ 40.4-28.456=+ 23.4-12.5

67=-+ 36.4-22.778=+ 42.5-23.8

24. Arcb continuous at the Crown, pivoted at the

extremities of the Centre L,ine. The method of solution is

precisely similar to the preceding. We have only to take the

rise of the centre line, or h = 20, instead of h =19.5, as before,

and the radius and span of centre line, instead of the radius and

span of the lower rib.

One point only needs to be noticed. Having found the reac-

tion and thrust for any weight, these forces now act at the ex-

tremity of the centre line. We can therefore form the strain

diagram as follows :

First calculate by moments the strain in A and E. Then, in

diagram (c), Fig. X., having laid off the thrust o C and the reac-

tion C J, draw from o and b lines parallel to A and E, and lay
off o A equal to the strain in A, and b d to the strain in E.

Then, if these strains have been correctly found, the line A d
must be parallel to and give the strain in diagonal 1 2. The

diagram thus commenced, can then be continued as shown, and

the strains in all the pieces determined.

We may also form the strain diagram without calculating A
and E. Thus o b is the resultant acting at the end of the

centre line. Since it acts then half way between A and E,
bisect it in

,
and draw a A perpendicular to flange A. . Then

o A is the strain in A, and drawing A d parallel to diagonal 1 2,

we have at once the strain in E and 1 2.

Performing the operations indicated, we obtain the following
table of strains :
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A comparison of the above with the same case hinged at

the ends of the lower rib, shows a decided gain. The effective

height is increased, being now 20 ft., in place of 19.5
;

in

addition to which both ribs under total load bear their proper

proportion. If, then, we wish the arch continuous at crown,
both ribs should butt against an end plate, pivoted in the

centre. This is preferable to hinging the lower rib at its ex-

tremities, and removing the end flanges A.

25. Temperature Strains. For the strains due to tem-

perature, we may take, as before, the thrust H = 25 tons, and

find thus

A = 11.2 B = qp 13.2 C = =F 29.4 D = =F 37.6

E = 27.0 F = 45.5 G = 56.4 H = 59.2

12 =T 17.8 23=13.9 34=^9.8 45= 11.3

56 = T 2.8 67 = 8.1 7 8 ='4.3

all somewhat less than in the previous case, as they should be,

since the point of application is at the centre between the

flanges.

We have then from the preceding table the total maximum
strains :

A = + 135.7 B = + 135.2 C = + 144.3 D = + 155.5

E _ , i *Q o F _+ 1^6.7 r __+ .173.9 + 172.3
58.2 - G_ H =

12= +49.0
2 3 _ + 33.4 34 = + 28.5 45= +24.8

K _ + 27.8
ft
- _ + 29.4 7 o _ + 33.0" - 28.5

' - - 30.7
- - 34.7

26. Arch continuom at Crown and fixed at the Ends.
From our table, Art. 160, we have directly for a = 25 45',

and h = 20, y being now measured above the horizontal tangent
at crown of centre line,

for ft
=

0, y = 0.209 h = 4.18 ft.

ft
=

0.2a, y = 0.208 h = 4.16

ft = 0.4a, y = 0.206 A = 4.12

/3 = 0.6a, y = 0.201 h = 4.02

= 0.8a, y = 0.198 A = 3.96

= l.Oa, y = 0.189 A- = 3.78
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Also from our formulae of Art. 160, we have

40

40

^=+0.8 63 =+ 6.7, etc.,

negative values of c being laid off above the ends of centre

line.

We can therefore easily construct the left reactions, as

explained in Art. 160, Fig. 92. We thus obtain

P, = 0.5, P2
= 0.9, P8

= 1.2,

Hi = 4.4, H2
=

8.6, H3
= 13.1,

M
x
= + 38.3, Ma = + 71.4, M8

= + 103.5,

P4
= 2.3,

P5
- 3.1, P6

= 4.4,

H4 = 15.9. JH, = 18.9, H6
= 21.1.

M4 = + 116.1, M
5
= + 126.6, M

6
= + 122.4,

P
7
= 5.0,

P8
= 5.6,

P =
6.9,

H7
= 22.4, H8

= 21.1, HB
= 18.9,

M7
= + 107.5, M8

= + 52.7, M9
= + 15.1,

P10
= 7.7, Pn = 8.8, P12

= 9.1, Pu = 9.5,

H10 =15.9, Hu = 18.1, Hu = 8.6, H,3
= 4.4,

M10
= - 9.7, Mu = -

22.3, Mu = -
23.2, M18

= - 15.3.

A positive moment indicates tension in the lower flange at

abutment, and compression in upper.
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We can therefore easily calculate the strains in flanges A
and E for each weight.

Thus, for u

A x 9.7 = 8.8 x 2.2 + 13.1 x 4.5 - 22.3,

or A = + 5.7.

E x 10.4: = - 8.8 x 12.5 + 13.1 x 10.8 + 22.3,

or E = + 5.1.

The strain diagram can then be commenced, as shown in dia-

gram (G), Fig. X., and explained above. "We can find by cal-

culation the flange H, and thus check our diagram.

Proceeding thus, we obtain the following table of strains :
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The strains in the present case are, we see, much greater
than for any of the others. Unless the maximum of stiffness

is essential, it would appear, then, undesirable to fix the arch at

the ends/or an arch of the above dimensions.

27. Temperature Strains. The strains due to tempera-
ture are also very great. Thus, from Art. 165, we have

_ _4~

and for the distance of the point of action of this thrust, below
the crown of the centre line,

(A a? + 6 I) h

3 A a2

or since - = g
2 25 ft.,

H
4 A2 + 45 g*

'
~

3 a'

For A = 60 square in., a = 87.5 ft., h = 20 ft. = 240 in.,

g = 60 in. = 5 ft., e = 0.000012, E = 14,000 tons, t = 30,
we have

H = 125 tons and e = 6.7 ft.

Hence we have the strains

A = 228, O = 29.0, E = q= 30.0, G = 118.5,

B = 112.5, D = T 13.0, F = =
65.0, H = 137.5,

1 2 = T 96.0, 34=+ 67.0, 5 6 = =F 29.5,

2 3 = 51.0, 4 5 = 39.5, 6 7 = 25.0,
7 8 2''

Therefore the total strains are

With the above we close our discussion of the braced arch.

Our design has been to illustrate the applicatipn of the for-

mulae and methods of Chapter XIY., and to show that by their

aid such a structure can be calculated with ease and certainty.



APPENDIX.] TnE BRACED ARCH. 399

In short, the
difficulty is but little if any greater than for a

simple girder, only for a long span and many panels the work
becomes tedious and wearisome.

In such a case, perhaps the method of moments will be found
preferable to diagrams. Thus, for any condition of loading, we
can easily find the strains at certain given intervals or portions
of the span, as ^th, Tyhs, etc. These strains being plotted to
scale along the span, we have a curve from which we can

readily determine the strain at other points.
The strains in the flanges being thus known, we can readily

determine the transverse force, or force at right angles to the

rib, at any point. This force causes strain in the diagonals, and
has simply to be multiplied by the secant of the angle made
with it by any diagonal.
As to the effects of temperature, the remarks of Art. 166 do

not seem to be substantiated by our results. It would seem

that, according to the received formulae, the strains due to tem-

perature are very great, and that by far the best form of con-

struction for short spans is that in which the arch is hinged at

both abutments and crown.

28. Advantage of Arch with fixed Ends for long Spans.
We cannot conclude from our results above anything as to the

comparative advantages or disadvantages of the arch with fixed

ends. Different proportions will give altogether different re-

sults. We can only say that for small spans the arch with

three hinges is undoubtedly the best construction. The ad-

vantages of continuity will be apparent only for long spans

where the point of inflexion is distant from the ends by a

greater proportion of the span. We have already seen the

same to be true of the continuous girder. If we were to judge
from comparisons of short spans only, we should be inclined

to discredit any great advantage for continuity. If, however,

we take longer spans, so as to bring the points of inflection well

out, we find a marked saving.*
We had intended to give here a comparison of the strains in

a hinged arch with those in the central span of the St. Louis

bridge, as given in the Report of Capt. Eads to the Illinois and

St. Louis Bridge Co. for May, 1868.

As this goes tp press, however, our attention has been called

* Art 17 of this Appendix.
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to an article in the Trans, of the Am. Soc. of Civil Eng. for

May, 1875, by Mr. S. H. Shreve, which, although written with

precisely the opposite intention, seems to prove so clearly the

superiority for long spans of the arch without hinges, that it is

unnecessary to give a comparison here. We have only to take

Mr. Shreve's results and properly interpret them.

Thus, while ostensibly investigating the strains in the centre

arch of the St. Louis bridge an arch which is continuous at

crown and fixed at the end Mr. Shreve uses the formula given

in .Art. 27 of the Supplement to Chap. XIY., viz., H = -^
That is, he considers the arch as having hinges at both crown

and ends.

Then, supposing the arch to be affected by temperature, he

applies the above formula to an arch hinged at crown in lower

chord and at ends in upper chord of the same dimensions as

the St. Louis bridge. It is hardly necessary to point out here

that if the arch is really thus hinged, or can be supposed thus

hinged, there can be no temperature strains. If, however, it is

not hinged, then the above formula does not apply. The one

assumption contradicts the other. The formula H = ?!_ can
2i fl

be applied to no arch which is strained by temperature. Such

a treatment would seem justified on Mr. Shreve's part in view

of the statement of Capt. Eads, that for the greatest rise of

temperature above the mean, the lower arch does all the duty
at crown, and the upper at the ends. If this were accurately

so, then Mr. Shreve's results would give the true strains. All

that Capt. Eads evidently intended to imply was, that a rise of

temperature relieved the upper chord at crown of a great part
of its compression and increased that of the lower. It does not

by any means follow that the upper chord is entirely relieved,

under which supposition only can the lower chord be supposed

hinged. On the contrary, for an equal fall of temperature
below the mean, the lower chord is relieved and extra strain

brought in the upper chord at crown. If the adjustment were

just such that the previous compression in the lower chord

should be exactly neutralized, then the arch might be consid-

ered as hinged at the upper flange and lower ends, and thus

Mr. Shreve should increase the rise of his arch by the depth,
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which would decrease greatly his strains. The one supposition
is as much justified by the remarks of Capt. Eads, which he

quotes, as the other and neither are correct. Apart, however,
from the merits of the controversy, with which we have nothing
to do, Mr. Shreve's results are undoubtedly correct for an arch

of the same dimensions as the St. Louis uniformly loaded and

hinged at the ends in upper flange and at the crown in lower.

If, then, a comparison of these results with those given by Capt.
Eads shows them all too large, then, since Capt. Eads' formula^

are, as we have seen, undoubtedly correct, it clearly shows the

superiority of the arch without hinges. This is the only legiti-

mate deduction which can be made.

Mr. Shreve's formulae are undoubtedly as
" true as the prin-

ciples of the lever," and apply, beyond question, to an arch

hinged as he supposes. Our formulae in Art. 27 of the Sup-

plement to Chap. XIV. are also as true as these principles ;
but

to apply correctly even so simple a principle as that of the

lever, demands a knowledge of all the forces and their points

of application. From our formulae, as we have shown in Art
34 of the above Supplement, we may easily deduce Capt. Eads',

thus proving the accuracy of both. Though the " calculus will

not determine the strains affecting a truss, whether arched or

horizontal," it may nevertheless be exceedingly serviceable in

determining the forces which act upon the truss without an

accurate knowledge of which the "
principle of the lever

"
can

only mislead. This principle, upon which Mr. Shreve lays such

stress, is precisely that which we have employed so often in

this work, and shown to be of universal application. In Art

36 of this Appendix we have made use of it, just as Mr. Shreve

does, in the calculation of an arch similar to the St. Louis.

Our results differ from those he would obtain, simply because

we take into account a force and lever arm whose existence he

ignores. Mr. Shreve assumes that V and H and the load are

all the forces which act, and these are all of which his formula

takes account. In common with Capt. Eads, we take in addition

a moment due to the continuity of the ends, while V and H them-

selves, by reason of this continuity, have very different values.

Thus, for full load, we have from eq. (81), Art. 34 of Sup-

plement to Chap. XIV.,
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and from eq. (84)

3 AA*+175gg?
70*

A
4AM-45/A*

Thus, instead of H = -
,
as given by Mr. Shreve, we have

this into a certain coefficient which is less than unity.

Taking pa = 936,000 Ibs., ^ = 6.025 ft., a = 257.88 ft.,

and h 46.65 ft. for centre line, we have H 2,178,317 for

thrust at crown, instead of 2,586,184.9 Ibs., as given by Mr.

Shreve. This thrust alone would cause, then, 1,089,158 Ibs.

compression in each flange. But due to continuity of ends and

crown, we have also a moment at crown M = 6,587,335,

which being negative causes tension in lower flange at crown.

Dividing by 12.05, the depth of arch, we have 546,666 Ibs.

tension, and therefore only 1,089,158 546,666 or 542,492 Ibs.

resulting compression. This at 27,500 Ibs, per square inch,

requires 19.72 square inches area, while Mr. Shreve requires
in his arch 126.42 square inches area. It is, however, but just

to notice, that while this loading (uniform) causes the maxi-

mum compression in lower flange at crown for Mr. Shreve's

arch, it does not for the arch fixed at ends and continuous at

crown.

In this latter case, as we may see at once from the table for

M of Art. 18, Supplement to Chap. XIV., a load within the

centre half anywhere causes tension in the lower flange, and

the maximum compression is when the flanks are loaded and

this portion is empty. It is with the maxima that the com-

parison must be made, and as Capt. Eads has, very properly,
taken the rolling -load into account, it is with these maxima
that the comparison has been made. From such comparison
Mr. Shreve finds that "

every member of the two tubes is

deficient in area, many containing much less than half the

material that is necessary." As his results are correctly calcu-

lated for a hinged arch, and Capt. Eads' results are also correct

for an arch without hinges, we can only conclude not that
" the great importance of immediately strengthening the ribs

of the St. Louis bridge can no longer be, ignored," but rather

that, for long spans of small relative rise, the arch without

hinges is much preferable and more economical. The case
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is, indeed, perfectly analogous to that of the continuous girder.
Here also we have end moments, and here also for long spans
the advantage over the simple girder is marked.

In Mr. Shreve's arch it is, indeed, perfectly true that,
" when

one segment is loaded, any weight whatever in any other

position on the other segment will lessen the tension on the
lower arc of the loaded segment." In the arch without hinges
the case is altogether different, owing to the influence of the

end moments, which Mr. Shreve so persistently ignores.
The two cases have, indeed, nothing whatever in common,

and from the strains in one no conclusion whatever can be
drawn as to what should be the strains in the other. With the

same propriety might one comparing the strains in the same

girder fixed at ends and free at ends, as given in Art. 17 of

this Appendix, infer that the strains in the first were unduly
small. The only legitimate conclusion from such comparison
is the one there drawn, viz., that the one in which the strains

are least is the one most economical of material. In this

respect, and in this only, Mr. Shreve's results are valuable, and

we can only thank him for having saved us the labor of

making the comparison for ourselves.

As a case in point bearing out our conclusion above, we

may instance the Coblentz bridge, which, as originally con-

structed, was continuous at the crown, but pivoted at the ends

of the centre line, as in our example, Art. 20. But unlike

that example, owing to the length of span being much greater,

and the rise and depth much less in proportion, it was found

advantageous to block tip the ends after erection, and thus fix

it at the ends.

If Mr. Shreve's deductions are to be believed, this was a

very dangerous thing to do; but, as experience has proved,

greater rigidity has thereby been secured, and no evil effects

have as yet been perceptible. It is, however, quite -possible

that before thus blocking the ends, the eifect of the end

moments thus brought into play was duly coMMck-red
;
and in

view of the result, it would appear as if they really had some

influence upon the character and distribution of the strains.

It would seem, therefore, that, for the present at least, the

"strengthening" of the arches of the St. Louis bridge by hinging

them (!) at crown and ends may be safely postponed until it

can be satisfactorily shown in what manner, for rise of tern-
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perature, the end moments mysteriously disappear, and the

previously existing compression, due to load in upper flange at

crown and lower at ends, is exactly and entirely neutralized.

Meanwhile it would seem that the St. Louis arch, as con-

structed, is far superior to the same arch hinged, more eco-

nomical of material and more rigid, and sanctioned alike by

theory and precedent.
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