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ELEMENTS  OF  MECHANICS, 

INTRODUCTION. 

1.  Mechanical  experiences  are  without  doubt  of  great 

antiquity.  The  earliest  investigations  concerning  mechanic- 
al principles  are  ascribed  to  Archytas  of  Tarentum  (B.C. 

400).  He  is  said  to  have  worked  out  the  theory  of  the 
pulley.  Later,  in  the  writings  of  Archimedes  of  Syracuse 

(B.C.  287-212),  are  found  applications  of  geometry  to  various 
mechanical  questions,  including  a  treatise  on  levers  and 
other  machines.  From  Archimedes  to  Galileo  and  Stevinus, 

a  period  of  nearly  two  thousand  years,  no  marked  advance 
was  made.  It  is  to  Galileo  and  Stevinus  that  we  owe  the 

transition  from  Mechanics  in  its  original  signification  as  the 
Science  of  Machines  to  Mechanics  as  the  term  is  now  under- 

stood— in  fact  they  are  to  be  regarded  as  the  founders  of  the 
science  of  mechanics. 

2.  The  qualities  of  natural  phenomena  become  known 
to  us  through  our  senses.  Certain  of  these  qualities  are 
assumed  to  be  fundamental,  in  the  sense  that  no  one  can  be 

expressed  in  terms  of  the  others.  They  are  incapable  of 
definition  and  include  space,  matter,  and  time.  Closely 
related  to  these  fundamental  ideas  are  the  ideas  of  motion 
and  force. 

But  although  it  is  not  possible  to  define  these  qualities, 
we  may  consider  their  mutual  relations.     In  order  to  investi- 
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gate  these  relations  it  is  necessary  to  compare  by  measure- 
ment the  quantities  that  enter.  The  science  which  treats  of 

the  relations  of  matter,  motion,  and  force  and  of  their  meas- 
urement is  called  Mechanics. 

3.  The  term  body  is  applied  to  a  limited  portion  of  matter. 
Bodies  are  said  to  occupy  different  positions  relative  to 
neighboring  bodies.  We  define  the  position  of  any  point  in 
a  body  by  reference  to  points  in  some  other  body  chosen  as 
points  of  reference. 

Thus  the  position  of  a  point  P  relative  to  a  chosen  point 
0  in  the  same  plane  is  defined  by  either  (1)  the  distance  OP 

and  the  angle  POX  made  by  OP  with  any  known  line  OX  in 

the  plane, — an  east  and  west  line,  for  example, — or  (2)  the 

distances  PM,  PN  ivom  two  perpendicular  lines  OX,  OJ^in 
the  plane. 

In  the  first  case  the  distance  OP  and  the  angle  POX  are 

the  polar  co-ordinates  of  P;  in  the  second,  PM  and  PN  or 
OM  are  the  rectangular  co-ordinates  of  P. 

4.  When  a  body  is  changing  its  position  it  is  said  to  be  in 
motion.  The  line  drawn  through  the  successive  positions 
occupied  forms  the  path  of  the  moving  body. 
Now  as  we  contemplate  the  body  moving  in  its  path, 

questions  arise  as  to  the  influence  of  the  body  itself  on  the 

motion.  We 'may,  however,  consider  the  motion  only,  apart 
from  the  body  moving,  and  study  the  nature  of  the  path 
traced  out  as  the  body  moves  from  one  position  to  another. 
Of  course  no  such  separation  exists.  It  is  a  mere  abstraction 

introduced  to  reduce  questions  of  motion  to  a  purely  mathe- 
matical form  and  to  serve  as  an  introduction  to  the  more 

complex  problem  itself. 
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This  science  which  investigates  motion  without  consider- 
ing the  nature  of  the  body  moved  or  how  the  motion  is  pro- 

^^uced  is  called  Phoronomics  [=  law  of  going]  or,  more  com- 
monly, but  less  properly.  Kinematics. 

Since  in  changing  position  a  certain  time  is  taken,  the  ele- 
ments of  a  motion  may  be  said  to  be  distance,  direction,  and 

time.  Kinematics,  therefore,  deals  with  distance,  direction, 

and  time,  and  may  be  regarded  as  an  extension  of  geometry 
by  the  introduction  of  the  idea  of  time.  Like  geometry, 
it  is  a  purely  abstract  science  resting  upon  certain  ideal 
assumptions. 

The  term  Kinematics  [cinematique]  was  first  proposed  by 
Ampere  [1775-1836].  The  term  Phoronomics  ((popeco)  ex- 

presses the  idea  of  mere  motion.  Kinematics  {Ktveao)  in- 
volves the  idea  of  the  cause  of  motion. 

The  tendency  at  present  is  rather  to  restrict  the  term 
Kinematics  to  the  geometry  of  machine  parts. 

5.  When  we  consider  not  only  the  motion  but  the  body 
moving  as  well,  we  pass  from  kinematics  to  dynamics 
(Svva/Ai?),  the  science  of  force.  If  a  body  at  rest  or  in 
motion  has  its  condition  of  rest  or  motion  changed,  it  is 
usual  to  say  that  the  change  is  produced  by  the  action  of 

force.  If  the  form  of  the  body  is  changed — as  in  bending  a 
spring — we  say  that  the  change  of  form  is  due  to  the  opera- 

tion of  force.  In  the  popular  sense  a  force  is  a  push  or  a 
pull.  The  idea  of  force  seems  to  be  derived  from  a  sense  of 
resistance  offered  to  the  use  of  our  muscles,  and  to  muscular 

effort,  or  to  anything  producing  like  effects  we  give  the  name 
force.  The  science  which  treats  of  the  different  effects  of 
force  on  bodies  is  called  Dynamics. 

6.  Each  of  the  two  effects  of  force — change  of  motion  and 

change  of  form— furnishes  a  means  of  measuring  force.  Of 
the  two  the  former  mentioned  is  the  more  elementary  and 
will  be  considered  first.  Forces  causing  change  of  size  or  of 
shape,  or  stram  as  it  is  called,  will  be  discussed  in  Chapter 
VIII. 
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Mechanics  is  thus  divided  into  Kinematics  and  Dynamics. 
For  purposes  of  study  each  of  these  divisions  has  various 

subdivisions,  depending  upon  the  circumstances  of  the  mo- 
tion, the  nature  of  the  body  moved  or  of  the  forces  acting, 

and  which  will  appear  as  we  proceed. 

7.  Kinematical  Units. — There  can  be  no  exact  knowledge 
in  physical  science  without  measurement.  In  order  to  meas- 

ure any  quantity  we  must  choose  some  definite  quantity  of 
the  same  kind  as  standard  unit  of  measurement.  Natural 

standards  first  suggest  themselves,  as  the  palm,  foot,  span, 
quadrant  of  the  earth,  etc.,  some  variable  and  others  whose 
values  are  approached  as  our  methods  and  instruments  are 
improved.  But  a  standard  should  as  far  as  possible  have  a 
constant  value.  Hence  at  present,  artificial  standards  are  in 
general  use;  their  invariability  being  as  certain  as  that  of  any 

natural  standard,  they  can  be  chosen  of  dimensions  conven- 
ient for  the  purpose  in  hand  and  any  number  of  copies  can 

be  made  with  the  greatest  precision.     (See  Chapter  IX.) 
In  kinematics  the  fundamental  or  independent  units  are 

those  of  length  or  distance  and  time.  All  other  units  can  be 
expressed  in  terms  of  these  two. 

{a)  The  standards  of  length  differ  in  different  countries. 
Two  systems  of  units  are  in  use  in  Great  Britain  and  the 
United  States,  the  British  and  the  metric.  The  British, 

being  the  system  of  every-day  life,  will  be  explained  first;  the 
metric  is  explained  in  Chapter  IX.  All  formulas  will  be  so 
expressed  as  to  be  applicable  to  any  system  of  units. 

The  British  standard  unit  of  length  is  the  imperial  stand- 

ard yard,  which  is  "  the  straight  line  or  distance  between  the 
centres  of  the  transverse  lines  in  the  two  gold  plugs  or  pins 

in  the  bronze  bar  declared  to  be  the  imperial  standard" 

when  the  bar  is  at  the  temperature  62°  F.*  This  bronze  bar 
is  deposited  in  the  standards  department  of  the  Board  of 

*  The  Weights  and  Measures  Act  1878,  41  &  42  Vict.  c.  49. 
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Trade,  London.  One  third  part  of  the  imperial  yard  is  a 
foot,  and  one  twelfth  of  a  foot  is  an  inch. 

The  Tronghton  82  -  inch  brass  scale  obtained  by  Mr. 
Hassler  for  the  Coast  Survey  in  1814  was  formerly  accepted 

as  a  standard  of  length  of  the  United  States,  the  dis- 
tance between  the  twenty-seventh  and  sixty-third  divisions 

being  at  62°  F.,  the  standard  yard.  Direct  comparison 
showed  that  this  distance  was  equal  to  the  imperial  yard  at 

59.62°  F.,  instead  of  at  62°  F.  By  reason  of  its  faulty  con- 
struction and  the  inferiority  of  its  graduation  the  Troughton 

scale  "  is  entirely  unsuitable  for  a  standard,  and  for  a  long 

time  it  has  been  of  historic  interest  only.*' 
In  1866  the  metric  system  of  measures  was  made  lawful 

throughout  the  United  States,  and  the  yard  as  known  in  the 

Office  of  "Weights  and  Measures  at  "Washington  is  defined  by the  relation 

,       3600       ̂  

^^^'^  =  3937^'*'"' 

this  being  the  ratio  legalized  by  Congress. 
In  the  absence  of  any  material  normal  standard  of  the  yard 

the  value  of  the  yard  is  derived  from  the  standard  of  the 
meter,  in  accordance  with  the  above  relation.  (Arts.  65, 
280.) 

(b)  The  standard  unit  of  time  throughout  the  world  is 
the  mean  solar  day,  which  is  the  average  of  the  intervals 

between  successive  transits  of  the  sun's  centre  -across  the 
same  meridian.  Familiarly  it  is  the  time  given  by  two  revo- 

lutions of  the  hour-hand  of  a  common  clock.  The  one- 

twenty-fourth  part  of  a  day  is  an  hour,  the  one-sixtieth  part 
of  an  hour  a  minute,  and  the  one-sixtieth  part  of  a  minute 
a  second.     (See  Art.  48.) 



CHAPTER  I. 

KINEMATICS— MOTION. 

8.  One  body  is  said  to  be  in  motion  relative  to  another 
body  when  it  changes  its  position  with  respect  to  that  other. 
Change  of  position  implies  change  of  distance  or  of  direction 
or  of  both  distance  and  direction.  Also  in  this  displacement 
a  certain  time  is  taken,  so  that  the  elements  of  motion  are 

distance,  direction,  and  time.  Although  we  cannot  assert 
that  any  body  in  the  universe  is  at  rest  absolutely,  yet  it  is  in 
most  cases  sufficient  to  consider  motion  referred  to  some 

body  assumed  as  fixed.  Thus  the  motion  of  a  railroad  train 
may  be  referred  to  the  roadbed  and  depots  as  fixed,  though 
they  all  have  the  motion  of  the  earth. 

The  more  general  case  will  be  discussed  later  on  (Art.  42). 

9.  When  all  points  of  a  body  describe  paths  equal  in  mag- 
nitude and  parallel  in  direction,  the  motion  is  said  to  be  a 

motion  of  translation.  The  path  of  the  body  is  therefore 
determined  when  the  path  of  any  point  of  it  is  determined. 

This  conception  of  dealing  with 

a  point  greatly  simplifies  the 
treatment  of  problems  of  trans- 
lation. 

If  a  point  proceeds  continually 
in  the  same  direction,  the  path 
is  a  straight  line ;  if  the  direction 
is  continually  changing,  the  path 
is  a  curve.  The  direction  of 

motion  at  any  point  ̂   of  a  curvilinear  path  ABD  being 
the  line  joining  that  point  to  the  consecutive  point  in  the 

6 
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path,  will  be  in  the  direction  of  the  tangent  AA^  to  the  curve 
at  A.  Similarly,  at  B  the  direction  of  motion  is  along  the 
tangent  BB^ ,  so  that  in  moving  from  A  to  B  the  direction  of 
motion  has  changed  from  AA^  to  BB^ ,  or  through  the  angle 

10.  Velocity. — When  a  point  changes  its  position,  displace- 
ment takes  place  along  some  continuous  path  and  occupies  a 

certain  time. 

The  rate  at  which  a  moving  point  changes  its  position  is 

called  its  velocity.  Velocity  is  thus  rate  of  growth  of  dis- 
tance. 

If  the  point  moves  so  as  to  pass  over  equal  distances  in 
equal  intervals  of  time  it  is  said  to  have  a  C07istant  speed.  If 
the  direction  also  is  constant,  the  point  is  said  to  move  with 
constant  velocity. 

The  extremity  of  the  minute-hand  of  a  clock  moves  in  a 
circular  path  over  equal  distances  in  equal  intervals,  but  its 
direction  is  continually  changing.  Its  speed  is  therefore 
constant,  but  its  velocity  is  not. 

The  term  speed  thus  denotes  the  magnitude  of  a  velocity. 
However,  the  term  velocity  itself  is  ordinarily  used  in  the 

sense  of  speed  as  well  as  in  the  strict  sense  of  speed  and  di- 
rection. In  fact  in  the  great  majority  of  cases  the  direction 

is  assumed  to  be  known,  and  the  magnitude  of  the  velocity  is 
the  important  thing. 

11.  Measure  of  Constant  Velocity. — Velocity,  if  constant,  is 
measured  by  the  number  of  units  of  distance  described  in 
the  unit  of  time.  Thus  if  a  distance  s  ft  were  described  in  t 

sec,  the  velocity  v  would  be  expressed 
V  =  s/t, 

giving  the  number  of  feet  described  in  one  second. 
To  express  the  measure  of  a  velocity  it  is  necessary  to 

assume  a  unit  of  velocity.  Since  when  s  =  1  and  ̂   =  1  we 

have  2;  =  1,  we  must  take  for  unit  of  velocity  the  velocity  of 
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a  point  which  describes  unit  distance  in  unit  time.  The 
above  velocity,  which  describes  ?;  ft  in  1  sec,  contains  v 
units  and  may  be  written 

V  ft  per  sec    or    v  ft/sec. 

Its  numerical  measure  is  v  or  s/t. 

The  unit  of  velocity  of  1  ft  per  sec  being  expressed  in 
terms  of  the  fundamental  kinematical  units  of  length  and 
time,  is  a  derived  unit.  It  has  no  single  name  generally 
adopted.     The  names  vel,  velo,faSf  etc.,  have  been  proposed. 

12.  Distance  passed  over.— If  s  ft  denote  the  distance 
passed  over  in  t  sec  by  a  point  moving  with  constant  velocity, 
then  s/t  is  the  distance  passed  over  in  one  second  and  the 
velocity  v  is  found  from 

V  =  s/t. 

Conversely,  if  v  were  known  we  should  determine  5  from 
the  relation 

s  =  vt. 

This  is  otherwise  evident.  For  if  the  point  has  a  constant 
velocity  v  ft/sec,  it  will  describe  v  ft  in  1  sec,  2v  ft  in  2  sec, 
and  so  on.     Hence  if  s  ft  is  the  distance  described  in  t  sec, 

s  =  vt  ft. 

13.  Graphical  Representation. — A  velocity  having  magni- 
tude and  direction  as  its  components  may  be  appropriately 

represented  by  a  straight  line  whose  length  on  an  assigned  scale 
will  show  the  magnitude  and 
whose  direction  as  indicated 

by  an  arrow  will  show  the 
direction  of  the  velocity. 

We,  may  hence  give  a  geo- 

metrical representation  of  uni- 
form motion.  Along  a  straight 

  X  line    OX  lay  off  equal   dis- 
tances OA,  AB,  ,.,  to  any  convenient  scale  (as  10  sec  =  1 

vel.curve 



§  13]  GRAPHICAL   REPRESENTATION.  9 

in)  for  as  many  seconds  as  the  motion  has  continued.  Let 
the  velocities  at  the  points  0,  A,  B, ,  .  .be  represented  by 
OF,  Aa, ...  to  any  scale  (as  10  ft  =  1  in).  Now  since  the 
velocity  is  constant,  the  lines  OY,  Aa,  ...  are  equal  to  one 

another,  and  the  curve  of  velocity  Yd  is  a  straight  line  par- 
allel to  OX,  the  time  line.     Also 

Distance  passed  over  =  OY  X  OD 
=  area  YD, 

That  is,  the  number  of  feet  in  the  distance  described  would 

be  represented  by  the  number  of  square  feet  in  the  area  of  the 
rectangle  YD, 

Ex.  1.  A  velocity  of  60  miles  per  hour  is  88  feet  per  second. 
For 

60  m       60  X  5280  ft       __  ft        _^  .,  . 
V  =  -zr-r-  =    nr.  ..   an    =  ̂ 8    =  88  ft/sCC* 

1  h        60  X  60  sec  sec  ^ 

2.  In  a  thunder-storm  the  clap  was  heard  6  seconds  after  the 
flash  was  seen.  Find  the  distance  of  the  discharge,  the  ve- 

locity of  sound  being  1100  ft/sec.  Ans.  1.25  miles. 
3.  A  passenger  sitting  in  a  railroad -car  counts  45  telegraph 

poles  (distant  100  ft)  passed  in  one  minute:  show  that  the    " 
train  is  running  at  50  miles  an  hour. 

4.  The  minute-hand  of  a  clock  is  7  in  long:  find  the  linear 
velocity  of  its  extremity.  Ans,  11/900  in/sec. 

5.  Compare  the  velocities  of  two  points  one  of  which  passes 

over  a  it  in  b  sec,  and  the  other  b  ft  in  a  sec.      Ans.  a^  :  5^ 
6.  A  knot  being  a  sea-mile  per  hour,  find  how  far  apart  the 

knots  on  the  log  line  of  a  vessel  must  be  placed  so  that  the 
number  of  knots  which  pass  over  the  taffrail  in  half  a  minute 
may  give  the  speed  of  the  vessel  in  knots.    Ans.  50  ft  8  in. 

[The  value  of  the  nautical  mile  adopted  by  the  U.  S.  Coast 
and  Geodetic  Survey  is  6080.27  ft;  by  the  English  Hydro- 
graphic  Office,  6080  ft.] 

7.  A  man  a  ft  in  height  walks  along  a  level  street  at  the 
rate  of  c  miles  an  hour  in  a  straight  line  from  an  electric  light 
h  ft  in  height:  find  the  velocity  of  the  end  of  his  shadow. 

Ans.  hc/{b  —  a)  miles/hour. 
8.  The  diameter  of  the  earth  being  8000  miles,  show  that 

the  velocity  of  a  body  at  the  equator  due  to  the  earth^s  rota-  ̂ - 
tion  is  about  17.5  miles/minute. 
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9.  Plot   a  velocity  of   60   miles  an   hour  on   a  scale  of 
11  ft/sec  =  1  in. 

[For  plotting  it  is  convenient  to  use  cross-section  paper.] 
10.  AB,  AC  are  any  two  straight  lines.  Two  bodies  P,  Q 

move  along  these  lines  with  uniform  velocities  u,  v.  Find 
the  path  of  a  body  E  which  lies  at  the  middle  point  of  the 
line  FQ. 

14.  Variable  Velocity. — If  a  point  in  motion  does  not  pass 
over  equal  distances  in  equal  intervals  of  time  the  velocity  is 
said  to  be  variable. 

The  expression  s/t  will  then  represent  the  average  velocity 

with  which  s  ft  are  described  in  t  sec.  Thus  a  train  in  pass- 
ing over  150  miles  in  3  hours  would  have  an  average  velocity 

of  50  miles  an  hour,  though  its  actual  velocity  at  any  instant 
might  often  differ  from  this. 

The  actual  velocity  at  any  instant  would  be  determined 
by  finding  the  limiting  value  of  the  average  velocity  for  an 
indefinitely  small  distance  /Js  described  during  an  indefinitely 
small  time  /It,  including  the  instant.     Thus 

,.    .,  /Is      ds 
V  =  limit  —n  =  ̂ n- M      dt 

This  being  the  general  expression  for  the  velocity  at  a  point 
includes  the  case  of  constant  velocity.    For 

ds  =  V  dt, 

and  the  total  distance  passed  over  in  the  time  t  is  found  by 

summing  the  distances  ds,  that  is  by  the  integration  (  = 
summation)  of  the  expression  v  dt  between  the  proper  limits. 

We  have,  if  v  is  constant, 

s  =  vj  dt 
=  vt  -\-  c, 

where  c  is  the  constant  of  integration. 

If  the  time  is  measured  from  the  starting-point  of  the 
motion,  or  ̂   =  0  when  5  =  0,  then  c  =  0,  and 

8  =  vt 
as  found  above. 
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15.  Variable  motion  may  be  illustrated  geometrically.  For 
the  velocities  Oy,  Aa,  Bh,  ...  at  the  times  0,  OA,  OB,  .  .  . 

if  plotted  and  their  extremities  y,a,l)  .  .  .  joined  would  form 

a  line  yob  ,  .  .  not  parallel  to  the  time  line  OX,  as  in  the  case 
of  uniform  motion.  This  line 

would  be  the  velocity  curve. 

The  points  A,B,.  .  .  may  be  con- 
ceived to  be  taken  so  close  to- 

gether that  the  velocities  between 
may  be  considered  uniform  and 
the  figures  Oa,  Ah,  ,  .  ,  formed 

to  be  rectangles.  Each  rectangle  represents  a  distance  passed 
over,  and  therefore  the  total  distance  would  be  represented 
by  the  sum  of  these  rectangles,  that  is,  by  the  area  01. 

Conceive  now  a  point  to  start  from  0,  and  moving  with 
uniform  velocity  Oz,  to  describe  the  same  distance  s  in  the 
time  t  as  the  point  moving  with  the  variable  velocity.  The 
distance  would  be  represented  by  the  rectangle  OM.  But 
with  the  variable  velocities  it  is  represented  by  the  figure  01. 
Hence  the  rectangle  OM  is  equal  to  the  figure  01,  which  can 
happen  only  when  Oz  is  the  average  (mean)  of  the  values 
Oy,  Aa,  Bb,  .  .  .  Hence,  if  we  can  find  the  average  velocity 
V,  or  the  velocity  of  a  point  which,  moving  uniformly,  passes 
over  the  same  distance  in  the  same  time  t  as  the  point  moving 
with  variable  velocity,  we  can  find  the  distance  s  described, 
from  the  equation s  =  vt, 

and  conversely. 

16.  A  velocity  curve  may  also  be  constructed  by  laying 
off  OA,  OB,  .  .  .  along 
the  line  OX  to  represent 
the  distances  passed  over, 
and  Aa,  Bb,  ...  at  right 
angles  to  OX  to  represent 
the  corresponding  velocities. 
The  line  through  the  points 
a,b,  ,  .  ,  would  represent  the  curve  of  velocities. 

distance 



12  KINEMATICS — MOTION.  [§16 

A  familiar  illustration  is  afforded  by  the  motion  of  the 

piston  of  a  steam-engine.  At  the  beginning  and  end  of  its 
stroke  the  velocity  is  zero,  at  the  middle  of  the  stroke  the 
velocity  is  greatest,  and  it  varies  from  this  value  to  the  end 
values.  The  curve  of  velocity,  if  plotted,  is  found  to  be  of  a 
fr)rm  such  as  Oah  ...  Z  in  the  figure. 

Ex.  1.  In  September  1895  the  Empire  State  Express  made 
the  trip  from  New  York  to  East  Buffalo,  436^^^  miles,  in  407 
minutes:  find  the  average  speed. 

Ans.  64.35  miles/hour,  or  94.4  ft/sec. 
2.  A  train  runs  29  miles  for  2  hours,  30  miles  for  3  hours, 

and  32  miles  for  1  hour:  find  its  average  velocity. 
Ans.  44:  ft/sec. 

3.  An  engine  makes  100  revolutions  a  minute.  The  stroke 
is  2  ft:  find  the  average  piston  speed.         A7is.  400  ft/min. 

[Piston  speed  is  usually  stated  in  feet  per  minute.] 
4.  A  speed  of  16.5  knots  is  equivalent  to  a  speed  of  19  miles 

an  hour. 
5.  In  October  1894  the  S.S.  Lucania  made  the  trip,  from 

Queenstown  to  Sandy  Hook  Lightship,  2779  nautical  miles,  in 
5  d  7  h  28  min:  find  the  average  speed  in  knots. 

A71S.  21.80  knots. 

6.  Two  trains  running  on  parallel  tracks  pass  at  a  certain 
place  in  6J  seconds.  If  each  train  has  the  same  velocity,  and 
consists  of  8  coaches  of  52  ft  9  in  in  length,  find  the  rate  per 
hour.  Ans.  46  miles/hour. 

7.  In  one  of  the  shafts  of  the  Comstock  lode,  Nevada,  a 
36-inch  water-wheel  is  run  under  a  head  of  2100  ft  at  1150 
revolutions  per  minute :  find  the  peripheral  velocity  in  ft/min. 
{tt  =  d\)  Ans.  10842.9  ft/min. 

8.  The  tunnel  of  the  Cataract  Construction  Co.  at  Niagara 
Falls  is  6700  ft  long.  A  chip  thrown  into  the  water  at  the 
wheel-pit  will  pass  out  of  the  portal  in  3.5  minutes.  Show 
that  the  water  has  a  velocity  of  about  21  miles  an  hour. 

9.  The  law  of  velocity  being  v  =  at  -\-  d,  to  find  the  law  of 
distance,  distance  being  reckoned  from  the  initial  position. 

Ans.  s  ==  af/2  +  bL 

^  10.  The  law  of  velocity  being  v  =  c  Vs,  to  find  the  law  of 
distance.  Ans.  s  =  &f/4. 

<11.  A  point  describes  a  diameter  (2r)  of  a  circle  with  a 
velocity  proportional  to  the  corresponding  ordinate,  -feo  find 
the  law  of  distance  from  the  center.  Ans.  s  =  r  sin  ct. 
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17.  Composition  of  Velocities. — A  body  in  motion  has  one 
definite  path  and  a  definite  velocity  at  each  point  of  its  path. 
But  this  velocity  may  be  due  to  several  velocities  separately 
communicated  to  it.  Thus  a  rowboat  crosses  a  stream  with 

a  velocity  made  up  of  the  velocity  of  rowing  and  the  velocity 
of  the  current. 

To  the  single  velocity  to  which  the  path  is  due  the  name 
of  resultant  velocity  is  given,  and  to  the  separate  velocities 
the  name  of  component  velocities. 

(a)  Velocities  in  the  Same  Line. — Suppose  a  point  P  in 
motion  along  a  straight  line  AB,  as  a  ring  sliding  along  a 

rod,  and  that  at  the  same  time  the  rod 

~   1;      is  moved  in  the  same  straight  line  AB, 
The  point  thus  receives  two  simultaneous  velocities  and  has 
a  single  velocity  equal  to  the  sum  of  the  separate  velocities 
of  ring  and  rod  if  in  the  same  direction,  and  equal  to  their 
difference  if  in  the  opposite  direction. 

Ex.  A  balloon  rises  with  a  velocity  of  15  ft/sec  for  one 
minute,  it  then  descends  at  the  rate  of  5  ft/sec  for  10  sec  and 
10  ft/sec  for  one  minute :  how  far  is  it  now  above  ground  ? 

Ans.  250  ft. 

(h)  Velocities  Not  in  the  Same  Line. — Suppose  the  point  P 
has  two  simultaneous  velocities  u,  v  in  fixed  directions  A  C, 
AB  not  in  the  same  line.  For  ex- 

ample, if  a  ring  slide  along  a  rod  A  C 
with  velocity  w,  and  at  the  same  time 
AC  moves  parallel  to  itself  with  ve- 

locity V  along  AB. 
At  the  beginning  of  the  motion  let 

the  ring  be  at  A.    After  t  sec  the  rod  has  moved  to  BD  and 

the  ring  has  moved  a  distance  BD  along  the  rod  and  is 
found  at  D.    Then 

BD  =  ut,    AB  =  vt,  ' 
and  therefore 

BD/AB=^u/v. 
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But  u  and  v  are  constant.  Hence  the  ratio  of  BD  to  ̂ 5  is 

constant  and  the  ring  describes  a  straight  line  AD  passing 
through  A. 

At  the  end  of  the  first  second  let  BD  be  in  the  position  hd, 
then  AI?  =  Ujbd  =  v,  and  the  ring  will  be  at  d  on  the  line  AD. 
Also 

AD/ Ad  =  BD/bd  =  ut/u  =  t/1, 

or  the  distances  passed  over  by  the  ring  are  proportional  to 
the  times.  Hence  the  distance  passed  over  in  one  second,  or 
the  resultant  velocity  of  the  ring,  is  constant. 

Again,  since  Ad  represents  the  resultant  velocity,  if  we 
draw  da  parallel  to  bA,  then  Aa  is  equal  to  bd  and  Abda  is  a 

parallelogram  with  sides  Aa  =  u,  Ab  =  v.     Hence 
If  a  2Joint  possess  two  si7nuUa7ieous  velocities  represented 

by  two  straight  lines  Aa,  Ab,  their  resultant  is  represented 

in  magnitude  and  direction  by  the  diagonal  Ad  of  the  paral- 
lelogram constructed  on  Aa,  Ab  as  adjacent  sides. 

This  proposition  is  known  as  the  parallelogram  of  veloci- 
ties. 

18.  Motion  in  a  curvilinear  path  is  a  result  of  the  paral- 
lelogram law  on  the  assumption  that  each  of  the  elements  of 

the  path  is  rectilinear.  (See  Art.  9.)  The  direction  at  any 
point  of  the  path  is  along  the  tangent  at  that  point. 

Ex.  1.  Show  that  the  resultant  of  two  velocities  OA,  OB  is 
represented  by  20D  when  D  is  the  middle  point  of  AB. 

2.  A  BCD  is  a  square  and  0  is  the  middle  point  of  BC. 
Find  the  resultant  of  the  velocities  AB,  AO,  AC. 

Ans.  3 AG. 

3.  Velocities  of  8  ft/sec  and  10  ft/sec  are  impressed  upon 
a  particle.  Find  the  greatest  and  least  values  of  their  result- 

ant. A71S.  18  ft/sec;  2  ft/sec. 
4.  Show  that  the  resultant  velocity  diminishes  as  the  angle 

between  the  directions  of  the  two  component  velocities  in- 
creases. 

5.  The  velocity  along  AB  is  9  ft/sec  and  along  JC  12 

ft/sec.     If  the  angle  BAC  =  90°,  find  the  resultant  velocity. 
[Draw  ̂ ^,  ̂ C  at  right  angles.     Plot  on  a  scale  of  12  ft  = 
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1  in.  Then  ̂ 5  =  f  in,  ̂ (7=  1  in.  Complete  the  parallelo- 
gram A  BOD.  Scale  off  AD.  It  measures  li  in.  Hence 

resultant  velocity  (=  li  X  12)  =  15  ft/sec] 
6.  A  particle  has  a  velocity  of  5  ft/sec  and  an  equal 

velocity  at  an  angle  of  120°  is  communicated  to  it.  Show 
that  the  final  velocity  is  5  ft/sec  and  that  we  have  an  ex- 

ample of  change  of  direction  without  change  of  speed. 
7.  A  ball  moving  with  a  velocity  of  15  ft/sec  is  struck  so 

as  to  move  off  at  right  angles  to  its  path  with  a  velocity  of  20 
ft/sec:  find  the  velocity  given  to  it.  A7is.  25  ft/sec. 

8.  Show  that  the  direction  of  motion  of  any  point  B  on 
the  rim  of  a  wheel  running 
with  velocity  v  on  a  straight 
track  is  perpendicular  to  AB 
when  A  is  the  point  of  the 
wheel  in  contact  with  the  track 
at  the  instant  considered. 

[For  B  has  two  velocities 
each  =  V,  one  along  the  tangent 
BU  and  the  other  along  BD 
parallel  to  the  path  of  C.     The  resultant  BG  bisects 

angle  EBD.     .'.  ABG  =  90°. The  solution  also  follows  at  once  from  Art.  222. 
The  path  of  ̂   is  a  cycloid.  The  line  BG  is  sk  tangent  to 

the  path  of  B  at  the  point  B.  Hence  we  have  a  simple 
method  of  drawing  a  tangent  to  a  cycloid  at  a  given  point — a 
method  first  suggested  by  Boscovich  and  Eoberval. 

9.  Find  the  magnitude  of  the  resultant  velocity  in  (8)  when 
6  =  60°.  Ans.  V. 

10.  Draw  a  tangent  to  an  ellipse  at  a  point  P  by  the 
method  of  Roberval. 

[The  tangent  bisects  the  angle  between  the  focal  dis- 
tances.] 

19.  It  is  often  convenient  to  find  the  resultant  by  comput- 
ing the  diagonal  of  the  parallelogram  instead  of  finding  it  by 

a  geometrical  construction.  Thus  in  Ex.  5  preceding^  since 

BD  =  ACfWe  find  AD  by  computing  the  hypotenuse  -o/  the 
right  triangle  ABD.     We  have 

AD'  =  AB'  +  BD\ 



16  KINEMATICS— MOTION.  [§  20 

or  R"  =  12'  +  9' 
and        R  =  15,  as  before. 

Ex.  1.  Solve  Ex.  6,  7  Art.  18  by  computation. 
2.  Two  velocities  of  3  ft/sec,  4  ft/sec  are  inclined  at  an 

angle  of  60°.     Find  their  resultant.  Ans.   VW7  ft/sec. 
3.  Two  velocities  u,  v  are  inclined  at  120°.  Find  their 

resultant.  Ans.  Vu"  ~  uv  -\-  v\ 
Show  that  the  resultant  makes  with  v  an  angle 

tan-^  uV3/(2v  —  u). 
4.  Two  velocities  15  ft/sec  and  36  ft/sec  have  a  resultant 

of  39  ft/sec.     Find  the  angle  between  them.         Ans.  90°. 
5.  If  velocities  w,  v  are  inclined  at  120°  and  the  resultant 

is  inclined  to  u  at  90°,  show  that  v  =  2u. 
6.  A  point  has  velocities  3,  3,  5  inclined  at  120°  to  each 

other.     Find  their  resultant.  Ans,  2. 
What  is  its  direction  ? 

7.  Two  velocities  u,  v  are  inclined  at  an  angle  ̂ °.  Show  that 

resultant  velocity  =  Vu"^  +  2uv  cos  6  -\-  v". 
20.  Resolution  of  Velocities. — Conversely,  a  velocity  v  rep- 

resented by  AD  may  be  broken  up  or  resolved  into  two  com- 
c   D  ponents  AB,  AC,  being  the  adjacent  sides 

^^  of  the  parallelogram  constructed  on  AD 

I         ̂ ^r  as  diagonal.     This  may  be  done  in  an  in- 
^^      definitely  great  number  of  ways,  as  an  in- 
A  convg.         B  (jefinitcly  great  number  of  parallelograms 

may  be  constructed  on  the  same  diagonal.  Other  conditions 
must  be  added  to  render  the  problem  determinate. 

Suppose  (1)  that  the  components  of  AD  are  to  be  at  right 
angles  and  the  angle  BAD  (=6)  is  given.  Then  CAD  is 
known,  and  the  components  AB,  AC csltl  be  plotted.  They 
are  thus  determined  graphically. 

Since  BD  =  AC,\i  is  evident  that  the  magnitudes  of  the 
components  of  AD  could  be  represented  by  the  two  sides  AB, 
BD  of  the  triangle  ABD.  Their  values  may  be  found  by 
solving  the  triangle  ABD  trigonometrically.    Thus 

AB  =  AD  cos  6  =  V  cos  6, 
AC  =  AD  sin  6  =  v  sin  6, 
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These  are  the  rectangular  components  of  the  velocity  v. 

In  general,  if  a  particle  is  at  the  point  P,  whose  co-ordi- 
nates are  x,  y  at  the  time  ̂ ,  and  if  ds/dt  is  the  velocity  of  the 

particle  in  its  path  and  dx/dt,  dy/dt  the 
velocities  of  the    particle    parallel  to  the 
axes  of  X  and   Y  respectively,  and   6  the 
angle  which  the  direction  of  motion,  that 
is,  the  tangent  at  x,  y,  makes  with  the  axis 
of  X,  then,  since 

^      dx      dx  Ids ''°'^  =  d^  =  Ti/Tf 

we  have dx di 

ds 

di 
cos  S» 

Similarly, 
dy      ds   .     a 
dt      dt 

These  are  the   rectangular  components    of  the  velocity 
ds/dt. 

Also, (dxV      (dyV  _  (djY 

\dt)  ~^\dt)  ~\dt)' 
(2)  Let  the  components  AB,  AC  ot  AD  be  not  at  right 

angles. 
Denote  angle  BAD  by  a  and  CAD  by  J3, 

Then 

AB/AD  =  sin  ADB/sin  ABD 
=  sin  /3/sm  {a  -}-  /3), 

or  AB  =  V  sin  /3/sm  {a  +  /3). 

Also,  AC  =  V  sin  a/s'm  (a  +  /3). 
Hence  the  components  of  a  velocity  v  in  two  directions, 

making  given  angles  with  it,  are  found. 

Ex.  1.  A  ship  is  sailing  N.  30°  E.  at  8  miles  an  hour.    Find 
its  easterly  velocity  and  its  northerly  velocity. 

A?is,  4  m,  41/3  m  an  hour. 
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2.  Find  the  vertical  velocity  of  a  train  when  moving  up  a 
1^  grade  at  30  m  an  hour.  A71S.  0.3  m  an  hour. 

[A  1^  grade  is  a  rise  of  1  ft  in  a  horizontal  distance  of  100 
ft.     This  is  the  engineering  rule.] 

4.  Show  that  the  components  of  a  velocity  v  in  two  direc- 

tions, making  angles  of  30°,  60°  with  it  on  opposite  sides,  are 
vVy2,  v/2. 

21.  Acceleration. — In  variable  motion  the  velocity  changes 
from  point  to  point  of  the  path.  The  rate  of  change  of 
velocity  is  called  acceleration. 

If  a  point  moves  in  a  straight  line  with  uniform  velocity, 
there  is  no  change  of  velocity,  and  therefore  no  acceleration. 
If  the  velocity  changes  uniformly  with  the  time  [grows],  the 
acceleration  is  constant ;  if  it  does  not  change  uniformly 
with  the  time,  it  is  variable. 

22.  Measure  of  Acceleration. — Acceleration,  if  constant, 
is  measured  by  the  number  of  units  of  velocity  added  per 
second. 

The  unit  of  acceleration  is  the  acceleration  of  a  point 
moving  with  constant  velocity  which  has  its  velocity  changed 
by  the  unit  of  velocity  per  second.  Now  unit  velocity  being 

unit  distance  per  second,  unit  acceleration  must  be  unit  dis- 
tance-per-second  per  second.  Thus  if  an  engine  3  minutes 
after  starting  has  a  velocity  of  30  ft  per  sec, 

the  total  change  of  velocity  is     30  ft  per  sec; 
the  rate  of  change  of  velocity  is  30  ft  per  sec  in  3  min 

or  i  ft  per  sec  in  1  sec; 
and  the  acceleration  is  said  to  be  J  ft  per  sec  per  sec. 

In  general,  if  a  point  moves  with  a  velocity  that  changes 
uniformly  so  as  to  change  v  ft  per  sec  in  i  sec,  then  v/t  is  the 
change  of  velocity  in  one  second,  and  the  acceleration  a 
would  be  expressed 

a  =  v/t  ft  per  sec  per  sec. 

The  unit  acceleration  of  1  ft  per  sec  per  sec  has  no  single 
name  in  general  use;  the  names  accel,  eel,  celo,fasp,  etc.,  have 
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been  proposed.     We  shall  use  the  abbreviation  ft/sec'  for  ft 
per  sec  per  sec. 

Like  the  unit  velocity,  the  unit  acceleration  is  a  derived 
unit. 

23.  The  nature  of  an  acceleration  may  be  indicated  by  the 

signs  -1-  and  — ,  as  the  change  of  velocity  is  in  the  same  sense 
or  in  the  opposite  sense  to  that  of  the  original  velocity. 

Hence  an  acceleration  is  +  if  the  velocity  increases  algebraic- 

ally, and  —  if  it  decreases  algebraically.  To  a  negative  accel- 
eration the  name  retardation  is  sometimes  given. 

24.  Motion  under  Constant  Acceleration, — A  point  moves  in 
a  straight  line  with  a  constant  acceleration  a.  If  u  denotes 
its  initial  velocity,  it  is  required  to  find  its  velocity  v  at  the 
end  of  a  time  t,  and  the  distance  s  passed  over  in  this  time. 

The  change  of  velocity  in  the  time  t  being  v  —  u,  the  rate 
of  change  is  {v  —  u)/t.     Hence 

a  =  {v  —  u)/t, 

and  ,*.        V  =  u  -\-  at,   (1) 

giving  the  velocity  at  the  end  of  the  time  t. 
Also  the  distance  s  passed  over  is  (Art.  15)  equal  to  the 

product  of  the  average  velocity  by  the  time  t.  But  the 
growth  of  velocity  being  constant  from  beginning  to  end  of 
the  motion,  the  average  velocity  is  equal  to  that  of  the  point 
half-way,  that  is 

average  vel  =  ̂   (initial  vel.  +  final  vel.) 
=  i{u-\-  v). 

Hence  s  =  i  {u -]- v)  X  t;   (2) 
or,  putting  v  =  u -{-  at, 
we  have  s  =  ut  -{-  \af,   (3) 

giving  the  distance  passed  over  in  the  time  t. 

The  two  equations  (1)  and  (3)  contain  relations  between  the 
quantities  involved  which  are  independent  of  one  another. 
Other  relations  may  be  deduced  from  them  which  are  con- 



20  KINEMATICS — MOTION.  [§25 

venient,  but  which  contain  no  new  principle.     Thus,  elimi- 
nating t,  we  find 

i;=  =  w"  4-  'jluat  +  a^e  from  (1) 
=  u''  +  2fl^  {ut  +  iaf) 
=  «^'  +  2as  from  (3) 

ox  V  =  Vu^  +  2as     .   (4) 

which  may  be  compared  with  (1) 
It  is  sometimes  useful  to  write  (4)  in  the  form 

vy%  -  uyz  =  as   (5) 

25.  If  the  point  had  started  from  rest,  then  u  =  0,  and  the 
equations  become 

V  =  at,  iv*  =  as, 
s  =  \af,  s  =  ivt. 

These  results  may  be  deduced  independently.  For  if  the 
point  has  a  constant  acceleration  a  ft/sec^  there  will  be  added 
a  ft/sec  to  the  velocity  in  each  second  of  the  motion.  In  t 
sec  there  will  be  added  at  ft/sec.  Hence,  if  v  denotes  the 
velocity  acquired  from  rest  in  t  sec,  v  will  be  equal  to  this 

gain,  or 
v  =  at   (1) 

Also        s  =  average  velocity  X  time 
=  iv  X  t 
=  iat  X  t 

=  iat\   (2) 

giving  the  distance  passed  over. 
Eliminating  t  between  (1)  and  (2), 

^v^  =  as,     .......     ,     (3) 
as  before. 

26.  Variable  Acceleration. — If  the  change  of  velocity  is 
variable,  then 

a  =  {v  —  u)/t 

would  give  the  average  acceleration  with  which  the  velocity 
changed  from  ic  to  v  in  time  t. 
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The  actual  acceleration  at  any  instant  is  the  limiting  value 
of  the  average  acceleration  for  an  indefinitely  small  change  of 
velocity  /Iv  during  an  indefinitely  small  time  ̂ t,  including 
the  instant.     We  have 

,.    .,^v      dv  .-. 
«  =  limit^  =  ̂    (^) 

This  may  be  put  in  two  other  forms,*  both  of  which  are  of 
frequent  application.     Thus 

dv      ds  dv        dv  .^. 

dt       dt  ds        ds  ^  ' 

dv        \dtl      d's  ,„, 

27.  The  formulas  found  in  Art.  24  follow  at  once  from  these 

equations.     Thus  («)  let  a  particle  start  from 

a  point  0  with  a  velocity  w:  it  is  required  to  ̂ -+ — '   j   ■ 
find  its  velocity  v  and  distance  OP  from  0  at 
the  end  of  a  time  t^  the  acceleration  a  being  constant.     Let 
OP  =  s;  then 

d^s 

W  =  ̂'
 

Integrating, 
ds         .  . 

^  =  a^  +  ., 
c  being  the  constant  of  integration.     But  when  ̂   =  0,  ds/dt 
OT  v  =  u;  hence  c  =  u,  and 

ds        ,  . 

j^  =  at  +  u, 
which  gives  the  velocity  at  the  end  of  the  time  t. 

Integrating  a  second  time, 

s  =  ̂ af  +  ̂^> 

*  First  published  by  Varignon  in  1700. 
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since  when  t  =  0,  s  =  0,  and  therefore  the  constant  of  inte- 
gration is  0. 

(5)  Let  the  particle  start  from  0  with  velocity  u,  and  under 
a  constant  acceleration  a:  required  to  find  its  velocity  v  alter 
passing  over  a  distance  s.    Here 

dv 

Integrating, 
as 

v'^/2  =  as  -\-  c. 

But  when  s  =  0,  v  =  ti; 

vy2  =  as  +  uy2, 

or  v''/2  —  u^/2  =  as, 
as  found  before. 

28.  Graphical  Eepresentation. — We  have  seen  how  to  con- 
struct the  curve  of  velocity  of  a  point  in  motion,  either  by 

taking  the  times  as  abscissas  or  the  distances  as  abscissas. 

We  proceed  now  to  show  how  to  construct  the  curve  of  accel- 
eration when  the  curve  of  velocity  has  been  plotted. 

Take  the  case  of  a  motion  in  which  the  times  are  plotted 
as  abscissas.     Let  the  velocity  change  uniformly  from  u  to  v 

in  the  time  t.  The  rate  of 

change  of  velocity  being  con- 
stant, the  velocity  curve  ab 

.  .  .  becomes  a  straight  line. 

The  acceleration  a=(v—u)/t 
is  represented  in  the  figure 

by  tan  8,  that  is,  by  the  tan- 
gent of  inclination  of  the 

line  ah  .  .  .  to  OX.  Hence,  if  the  distances  OA,  AB, .  .  . 
represent  one  second,  the  accelerations  measured  on  the 
velocity  scale  would  be  represented  from  second  to  second  by 
««j,  bb^,  .  .  .  all  of  which  are  equal  to  one  another.  If, 
therefore,  a  line  be  drawn  parallel  to  OX,  and  at  a  distance 
a  from  it  measured  on  the  velocity  scale,  it  will  represent  the 
curve  of  acceleration. 
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If  the  rate  of  velocity  is  not  constant,  so  that  the  curve  of 

velocity  is  curvilinear,  then  since  a  =  dv/dt,  the  acceleration 

at  a  point  P  (whose  co-ordinates 
are  v,  t)  is  represented  by  tan  6 
when  0  is  the  inclination  of  the 

tangent  at  P  to  OX.  Hence,  to 
plot  the  acceleration  curve,  draw 
tangents  to  the  velocity  curve 
from  second  to  second,  and  lay  off 
as  the  ordinates  the  rise  or  fall  of 

the  tangent  measured  on  the  velocity  scale, 
thus  be  plotted  from  point  to  point. 

time 

The  curve  may 

>/ 

:b 

Ex.  1.  In  5  seconds  the  velocity  of  a  point  changes  from 
200  ft/sec  to  100  ft/sec.     Find  the  acceleration.  / 

A71S.  a  =  —  20  ft/sec". 
2.  The  velocity  of  a  point  changes  from  20  ft/sec  to  10 

ft/sec  in  passing  over  75  ft.  Find  the  acceleration  and  time 
of  motion.  Ans.  a  =  —  2  ft/sec%  ̂   =  5  sec. 

Draw  a  figure  illustrating  the  motion. 
3.  A  point  starts  from  rest.  Show  that  numerically  the 

acceleration,  if  constant,  is  equal  to  twice  the  distance  de- 
scribed in  the  first  second. 

4.  A  point  moving  with  constant  acceleration  describes 
160  ft  in  the  first  two  seconds  of  its  motion,  and  50  ft  in  the 
next  second.  When  will  it  come  to  rest?  When  has  it  a 

velocity  of  20  ft/sec  ?     When  of  -  20  ft/sec  ? 
Ans.  5  sec;  4  sec;  6  sec. 

5.  A  point  starts  with  a  velocity  u  and  under  a  constant 
acceleration  —  a.  Show  that  it  will  come  to  rest  in  a  time 

u/a,  after  describing  a  distance  tc'^/2a, 
6.  The  distances  described  by  a  point  uniformly  accel- 

erated in  the  first,  second,  .  .  .  seconds  of  its  motion  form  an 
arithmetic  progression  whose  common  difference  is  a. 

7.  The  velocity  of  a  railway  train  increases  uniformly  for 
the  first  3  minutes  after  starting,  and  during  this  time  the  ̂  
train  travels  1  mile.     Find  the  velocity  acquired. 

Ans.  40  miles/hour. 
8.  It  is  observed  that  a  body  describes  40,  76,  and  112  ft 

in  successive  half  seconds.     Is  the  motion  consistent  with',*^.^ uniform  acceleration  ? 

0 

v^ 
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9.  A  train  uniformly  accelerated  takes  5  minutes  to  run 
the  first  mile.     How  long  will  it  take  to  run  the  next  mile  ? 

Ans.  2.1  min,  nearly.    ' 10.  In  passing  between  two  stations  6  miles  apart  a  train 
is   first   constantly   accelerated   and   then   equally   retarded,    j^ 
The  time  taken  is  12  min.     Find  the  greatest  velocity  at- 
tained.  A7is.  60  miles/hour. 

11.  In  the  Westinghouse  air-brake  trials  (1887)  on  the 
P.  R.  R.  a  train  of  50  freight  cars  running  at  36  miles  an 
hour  was  stopped  in  593.5  ft.  Find  the  acceleration  of  the 
brake.  Ans.  a  =  —  2.3  ft/sec\ 

29.  Acceleration  in  Curvilinear  Motion. — When  a  point 
moves  in  a  curve,  it  must  have  an  acceleration  not  in  the 
direction  of  motion.     For  if  the  acceleration  were  in  the 

direction    of   motion,  the   path 
would  be  a  straight  line. 

Let  v^ ,  v^  denote  the  velocities 
at  two  points  A,  B  ot  a.  curve, 

and  t  the  time  occupied  in  pass- 

ing from  A  to  B.  The  direc-. 
tion  of  the  velocity  at  A  and  B 
is  along  the  tangent  at  A  and  B. 

From  any  point  0  draw  Oa 
parallel  to  the  tangent  at  A  to  represent  v^  in  magnitude  and 
direction,  and  Ob  parallel  to  the  tangent  at  B  to  represent  v^. 
Complete  the  parallelogram  Oabd. 

Then  the  velocities  Oa  and  Od  or  ab  are  equivalent  to 

the  velocity  Ob  (Art.  17).  Hence  ab  represents  the  velocity 

which  must  be  combined  with  Oa  to  produce  Ob,  and  there- 

fore ab  is  the  change  of  velocity  in  the  time  t  in  both  magni- 
tude and  direction.  The  magnitude  of  the  rate  of  change 

would  be  ab/t  and  its  sense  is  indicated  by  the  direction 
of  ab. 

In  its  most  general  signification,  therefore,  acceleration 
involves  change  in  both  magnitude  and  direction. 

If  Oa  and  Ob  were  in  the  same  straight  line,  acceleration 

would  be,  strictly,  rate  of  change  of  speed.     The  term  Quick- 
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ening  has  been  suggested  for  this.  But  commonly  the  term 
acceleration  is  used  in  a  similar  double  sense  as  velocity 

(Art.  10),  and  has  been  sojised  in  the  sections  preceding. 

30.  Composition  and  Resolution  of  Accelerations. — An  ac- 

celeration, like  a  velocity,  being  a  quantity  which  has  magni- 
tude and  direction,  may  be  represented  by  a  straight  line. 

The  same  method  of  reasoning  as 

in  Art.  17  may  be  applied  to  the  com-  a;—   *-   7 

bination   of  two   accelerations.      The        /    ̂ ^"^^  / 
statement  —  called   the   parallelogram       /            ̂ ^"^      >' 
of  accelerations — is  this:  /   .   --^^' 

C  D If  a  point  possess  Uoo  simultaneous 
accelerations  represented  by  two  straight  lines  AB,  AC,  their 
resultant  is  represented  in  magnitude  and  direction  by  the 
diagonal  AD  of  the  parallelogram  ABDG. 

Conversely,  an  acceleration  may  be  resolved  into  its  com- 
ponents after  the  manner  of  Art.  20. 

In  general  an  acceleration  a  at  any  point  x,  y  of  a  curvi- 
linear path  may  be  resolved  into  two  components  in  given 

directions.  The  directions  usually  taken  are  along  the  tan- 
gent and  normal  at  the  point,  and  in  directions  parallel  to 

rectangular  axes  OX,  OY.  The  latter  is  in  general  the  more 
convenient. 

With  the  notation  of  Art.  20  the  components  parallel  to  the 
axes  being  the  rates  of  increase  of  dx/dt  and  of  dy/dt  would 

be  denoted  by  d'^x/df  and  d'^y/df,  respectively.  The  resultant acceleration  a  is  the  sq.  root  of  the  sum  of  the  squares  of  these 
components. 

To  find  the  component  acceleration  a^  along  the  tangent  at 
P,  we  have 

d'^x         n  ̂    d'^y    .     ̂  
a,=  -oose+Jsme 

__  d^x  dx       d^y  dy 
~drTs  ~^df"ds 

d^s  r  ds^      dx*      dy^~] 
=  dP  \}^  difEerentiation  of  ̂ -^  =  ̂   +  ̂   J, 

or,  the  tangential  component  of  the  acceleration  is  the  same 
as  for  rectilinear  motion. 
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The  method  of  resolving  parallel  to  fixed  axes  the  accelera- 
tion of  a  particle  and  replacing  the  curvilinear  motion  by  the 

formulas  for  rectilinear  motion  was  given  by  Maclaurin  in 
1742.  This  marks  a  great  advance  in  algebraical  mechanics, 
or,  as  it  is  commonly  called,  analytical  mechanics. 

31.  Notice  that  although  the  same  law  of  combination 

applies  to  velocities  and  accelerations,  yet  a  velocity  and  an 
acceleration  cannot  be  combined  directly.  An  acceleration 
continuing  for  a  certain  time  produces  a  change  of  velocity, 
and  this  velocity  combined  with  the  initial  velocity  by  the 
parallelogram  of  velocities  gives  the  final  velocity.  Or  an 
acceleration  continuing  for  a  certain  time  produces  a  certain 

displacement,  and  this  may  be  combined  with  the  displace- 
ment produced  by  the  velocity  continued  for  a  certain  time. 

See  for  illustration  Art.  96. 

Ex.  A  particle  moves  so  that  the  components  of  its  velocity 
parallel  to  the  co-ordinate  axes  vary  as  the  corresponding  co- 

ordinates X,  y,  respectively.  Show  that  the  axial  accelerations 
also  vary  as  the  co-ordinates. 

\~  =  ax;    then    ̂   =  «'«.,  etc.] 
APPLICATIONS   AND   ILLUSTRATIONS. 

The  general  principles  developed  in  the  preceding  pages 
will  now  be  applied  to  various  important  special  cases. 

32.  (1)  Circular  Motion. — When  a  point  describes  a  circle 
of  radius  r  with  constant  velocity  v,  it  experiences  a  con- 

stant acceleration  v'^/r  directed 
towards  the  center  of  the  circle. 

Eor  suppose  a  point  to  move 
uniformly  along  a  side  AB  ot  a, 
regular  polygon  with  velocity  v 
in  time  t,  and  that  when  it  ar- 

rives at  the  angle  B  it  receives  a 
velocity  ti  which   causes  it  to 

^  move  with  the  same  velocity  v 
along  BC.     Similarly,  at  C  a  velocity  u  which  causes  it  to 
move  along  CD,  and  so  on. 
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From  any  point  P  draw  PQ  parallel  to  AB  and  =  v,  PR 
parallel  to  ̂ (7  and  =  v,  complete  the  parallelogram  PQRS. 

Then  (Art.  17)  PS  or  QR  represents  the  change  of  velocity 
u  at  B,  Also,  if  0  is  the  center  of  the  polygon,  then  from 
the  geometry  of  the  figure  BO  is  parallel  to  QR.  or  the  change 
of  velocity  ti  at  B  is  directed  along  the  radius  BO. 

Similarly,  the  change  of  velocity  w  at  C  is  directed  along 
the  radius  CO,  and  so  on. 

To  find  the  magnitude  of  the  change  of  velocity  per  second : 
The  triangles  PQR,  OBG  are  similar. 

.-.     QR/PQ  =  BG/OB, 

or  u/v  =  vt/r, 

or  u/t  =  v'/r, 

giving  the  rate  of  change  of  velocity  towards  0. 
Now  when  the  number  of  sides  is  indefinitely  increased,  the 

polygon  becomes  a  circle,  and  the  constant  velocity  v  in  the 
polygon  becomes  constant  velocity  in  the  circle. 

The  changes  of  velocity  which  in  the  polygon  took  place 
at  the  angles,  and  therefore  occurred  at  intervals,  take  place 
from  point  to  point  and  become  continuous  in  the  circle. 
The  rate  of  change  u/t,  that  is,  the  acceleration,  is  equal  to 

the  same  quantity  v^/Vy  and  is  always  directed  towards  the 
center  0,  which  proves  the  proposition. 

The  velocity  being  constant  in  magnitude,  the  acceleration 
is  expended  in  changing  the  direction  of  motion.  Being 
always  directed  towards  the  center  of  the  circular  path,  it  is 
said  to  be  centripetal. 

If  T  is  the  time  in  which  the  circular  path  is  described, 
then 

vT  =  2nr. 

Also,  a  =  v^/r. 

Hence  a  =  4:n''r/T\ 
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33.  Tangential  and  Normal  Acceleration. — Consider  next 

the  more  general  case  of  the  acceleration  of  a  point  describing 
a  circle  in  which  the  velocity  in  the  circumference  is  not 
uniform. 

Let  A,  B  be  two  points  in  the  path  at  an  indefinitely  small 
distance  /is  apart ;  At  the  time  of 
moving  from  ̂   to  ̂ ;  and  Ad  the 
angle  between  the  tangents  at  A 
and  B, 

From  any  point  0  draw  OP,  OQ 
^to  represent  the  velocities  v  and 

V  -\-  Av  dX  A  and  B  in  magnitude  and  direction.  Then  PQ, 
being  the  velocity  which  must  be  compounded  with  OP  to 
produce  OQ,  will  represent  the  change  of  velocity  between  A 
and  B  in  the  time  At,  The  limiting  value  of  PQ/At  as  B 
approaches  A  represents  the  acceleration  at  A, 

Let  fall   QN  L  OP,     Then  PN/At,  NQ/At  will   in  the 
limit  represent  the  accelerations  along  the  tangent  A  T  and 
the  normal  AO  at  A.     We  have 

Tangential  acceleration  =  It.  PN/At 

=  lt.  \{y-\-  Av)Q,o^Ae--v\/At 

—  dv/dtf  since  It.  cos  A6  =  1, 

Normal  acceleration        =  It.  NQ/At 

=  It.  {v-^Av)BmAe/At 

.,   ,     ,     .  .sinAe  AS  As At 

1 
v  X  1  X  -  X  V r 

=  v'/r. 

See  also  Arts.  109,  237. 

Ex.  1.  Find  the  centripetal  acceleration  of  a  point  which 
moves  in  a  circle  of  5  ft  diameter  with  a  velocity  of  5  ft/sec. 

Ans.  10  ft/secl 
2.  Explain  how  it  is  that  although  the  particle  constantly 

gains  velocity  along  the  radius  it  never  possesses  any  such 
velocity. 
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["As  fast  as  velocity  along  the  radius  is  generated,  so  fast 
does  the  direction  of  the  radins  change,  in  the  same  way  that 
a  promise  for  to-morrow  need  never  be  fulfilled  because  to- 

morrow never  comes."] 
3.  A  man  falls  overboard  from  a  vessel  running  at  20  miles 

an  hour.  If  the  masts  are  88  ft  above  the  water,  find  when 

they  will  cease  to  be  visible.  A^is.  204^3  min. 
4.  The  earth  if  suddenly  stopped  in  its  orbit  would  fall  to 

the  sun  about  one  ninth  of  an  inch  in  the  first  second. 

5.  A  point  describes  a  circle  of  radius  r  so  that  its  pro- 
jection on  a  diameter  describes  the  diameter  with  uniform 

velocity  v:  to  find  the  acceleration  perpendicular  to  diam- 

eter. %       A71S.  —  r^v^  /y"^. 
6.  A  point  describes  a  hyperbola  xy  =  &  with  a  uniform 

velocity  v\  to  find  the  component  accelerations  parallel  to 
the  asymptotes. 

Ans.  2c*v'^/r*Xy  2c*v'^/r*y  when  r'^  =  x^  -\-  ?/^ 

34.  (2)  Motion  of  Oscillation. — Suppose  that  while  a  par- 
ticle P  moves  in  a  circumference  of  radius  r  with  uniform 

velocity  v,  auotTierparticle  Jf  moves  along  any  diameter  AA^ 

in  such  a  way  that  PM'ib  always  perpendicular  to  AA^\  then 
as  P  describes  the  equal  arcs  AB,  EC,  ,  .  ,  M  describes  the 

distances  Ab,  he,  .  .  .,  until  A^  is  reached.  As  P  continues, 
M  returns  along  the  diameter  A^A  to  A.  Thus  while  P 
makes  a  complete  revolution,  M  oscillates  back  and  forth 
along  the  diameter  AOA^.  The  motion  of  ilf  as  it  oscillates 
along  the  line  AOA^  about  0  as  a  centre  is  called  a  simple 
harmonic  melon  (S.IT.M.).  A  motion  of  oscillation  is  alter- 

nate in  direction. 
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The  name  harmonic  is  given  to  such  oscillatory  motion 
because  this  motion  is  characteristic  of  the  vibrations  of 

sounding  bodies,  as  tuning-forks,  piano-wires,  etc. 
S.H.M.  is  the  simplest  form  of  harmonic  vibration,  and  is 

of  great  importance  in  mathematical  physics. 
The  time  of  oscillating  from  ̂   to  ̂ ,  and  back  to  A,  being 

the  same  as  that  required  for  passing  once  round  the  circum- 
ference in  the  corresponding  circular  motion,  is  27rr/v,  and 

is  called  the  period  of  the  S.H.M.     Denote  it  by  T. 
The  distance  OM  of  the  moving  particle  M  at  any  time 

from  its  mean  position  0  is  called  the  displacement  at  that 
time.     Denote  it  by  y. 

The  distance  OA  or  OB  of  the  extreme  position  of  M  from 
the  mean  position  0  is  called  the  amplitude.     It  is  the  radius 
of  the  circle  of  reference  and  may  be  denoted  by  r. 

/^  The  fraction  of  the  period  of  vibration  which  has  elapsed 
fin  the  passage  from  A  to  Mis  called  the  phase  of  Mat  the 
(Hime  considered.     It  is  evidently  the  ratio  of  the  angle  POA 

\  to  360°  or  6/27r  if  0  is  the  circular  measure  of  the  angle 
\POA, 

The  phase  of  vibration  at  0  is  different  by  1/4  from  that  at 
A,  and  the  phase  at  J,  differs  by  1/2  from  that  at  A,  or  A  and 
A^  are  said  to  be  in  opposite  phases. 

35.  Let  the  time  be  counted  from  the  instant  when  F  is  at 

A.  Then  if  6  denotes  the  angle  POA  described  in  t  sec  and 

T  the  period, 

f:  T=  e:27t, 

or        6  =  2nt/T 
=  Got, 

where  go  =  27r/T  is  the  angle  described  in  one  second  ex- 
pressed in  circular  measure.     Hence 

y  =  OM  =  OP  cos  0  =  r  cos  cot, 

giving  the  displacement  in  t  seconds. 
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If  from  P  a  perpendicular  PN  is  let  fall  on  OX,  then 

X  =  ON  =^  r  ̂ m  oot  =  r  cos  {oot  —  27t/^), 

or  the  motion  of  iV^  is  a  S.H.M.  of  the  same  amplitude  and 

period  as  M,  but  differing  1/4  in  phase. 

36.  The  acceleration  a  of  if  is  the  component  of  the  ac- 
celeration of  P  in  the  direction  AA^.  But  the  acceleration 

of  P  is  along  PO,  and  is  equal  to  v^r  (Art.  32).     Hence 

n    —  -  COS  POA v^      y 

=  -  X- r       r 

=  v^y/r'. 

Also,  since  the  circular  path  is  described  in  T  seconds  with 
uniform  velocity  v^ 

But 

or,  the  circular  measure  go  of  the  angle  described  in  one  sec- 
ond being  constant,  the  acceleration  of  M  varies  as  the  dis- 

placement y  from  0.     (See  Art.  101.) 
37.  Again,  since 

T=27r/a), 

if  ft?  is  a  constant  quantity,  it  follows  that  the  period  of  the 
S.H.M.  is  independent  of  the  amplitude  r.  In  other  words, 
at  whatever  distance  from  0  the  particle  M  is  started  it  will 

return  to  its  starting-point  in  the  same  time.  This  property 
of  oscillating  in  the  same  time,  whatever  the  amplitude,  is 
called  isochronism,  and  the  vibrations  of  M  are  said  to  be 
isochronous. 

vT=27tr. 
GjT=27t; 

,\      V  =  GOV, 

and  hence 
ay=  GD'y; 
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We  may  write 

T-=27t/GO 

_       . /displacement  at  any  point 

~~       ̂   acceleration  at  that  point ' 

a  convenient  formula  for  finding  the  period. 

38.  Composition  of  S.H.M.'s. — Simple  harmonic  motions 
may  be  combined  into  one  resultant  motion  by  the  parallelo- 

gram, law  as  with  motions  of  translation.  For  example,  to 

find  the  resultant  of  two  equal  S.H.M.'s  in  directions  at  right 
angles  to  each  other  and  in  the  same  phase. 

1.  Graphically.     Let  both  motions  start  from  0,  one  along 
Y  y  OX  and  the  other  along  OY  oX  right  angles ^   ^    to  OX. 

With  the  equal  amplitudes  OX,  OiF  as 
radii  describe  the  semicircles  ABX,  BAY. 

The  periods  being  the  same,  let  the  semi- 
circles be  divided  into  the  same  number  of 

equal  parts,  say  eight.  The  harmonic  in- 
tervals Ottf  abf  ,  .  .  along  OX,  0  Y  are  equal. 

Since  the  motions  both  start  from  0,  the  actual  position  of 
the  particle  at  the  end  of  the  first  interval  will  be  at  a^ ,  at  the 
end  of  the  second  interval  at  l^ ,  and  so  on.  Hence  the  result- 

ant motion  will  be  along  the  straight  line  Oafi^c^  .  .  .  and 
will  be  a  S.H.M.     Since 

Oa.  :  Oh. Oa  :  Oh 

the  amplitude  is  evidently  r  V2. 
2.   Analytically.    The   equations  to  the  two   component 

S.H.M.^s  are 

^  X  =  r  cos  Got; 

y  =z  r  cos  Goto 
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Eliminating  t,  the  equation  to  the  resultant  path  of  the  par- 
ticle is 

a  straight  line  inclined  at  45°  to  the  axes  of  X  and  Y,  as 
before. 

39.  Harmonic  Curve. — When  a  S.H.M.  along  AA^i%  com- 
bined with  a  uniform  motion  at  right  angles  to  AA^,  the 

resultant  path  is  called  the  harmonic  curve. 

To  find  this  curve  (1)  graphically.  Let  01,  12,...  rep- 
resent the  distances  passed  over  in  equal  time -intervals,  and 

Ahf  bo,  .  .  .  the  distances  passed  over  in  the  same  intervals 

by  the  vibrating  particle.  At  the  end  of  the  first  interval 

the  particle  will  be  at  6',  at  the  end  of  the  second  interval  at 
c',  and  so  on.  Having  reached  e'  it  has  made  half  a  vibra- 

tion, and  at  ̂ '  a  complete  vibration.  The  curve  Al'c'd'e' 
.  .  .  k'  is  the  harmonic  curve. 

(2)  Analytically.     The  equation  of  a  S.H.M.  along  AA^  is 

y  =  r  cos  oot, 

and  of  uniform  motion  in  a  straight  line 
s  =  vtf 

where  v  is  the  velocity  of  motion  and  s  the  displacement  in 
the  time  t. 

To  find  the  locus  eliminate  t,  and 

y  =  r  cos  Gos/v 
=  r  cos  Ins/vT 
=  r  cos  27ts/\ 
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if  we  place  vT=  A,  the  distance  traveled  in  the  period  2 
in  the  straight  path  with  velocity  v. 

Now  when 
5  =  0,  ^  =  r, 
5  =  A/8,  i/  =  r/V2, 
s  =  A/4,  y  =  0, 

s  =  A/2,  y=-r, 
s  =  3A/4,        y  =  0, 
5  =  A,  y  =  r, 

and  the  vibration  is  completed. 
The  curve  now  repeats  itself,  and  the  periodicity  of  the 

motion  of  the  particle  is  shown.  The  time  of  a  period  is 
^Tt/ajf  as  above. 

40.  Now  instead  of  the  single  particle  which  has  the  two 
motions  which  combined  form  the  harmonic  curve  conceive 

particles  placed  along  the  line  OX  extending  from  0  to  8, 
and  made  to  oscillate  along  lines  perpendicular  to  OJT,  with 
S.H.M/s  differing  uniformly  in  phase.  In  the  figure  the 
S.H.M/s  differ  1/8  in  phase.     As  before,  call  the  period  T, 

At  the  end  of  a  certain  time  the  particle  8  is  in  the  highest 
position  ¥;  the  other  particles,  being  times  T/8,  2T/8,  ,  .  . 

behind,  will  be  in  the  positions  ̂ ',  ̂ ',  ...  shown  in  the  figure. 
The  positions  will  plainly  lie  in  the  harmonic  curve. 

At  the  end  of  the  next  interval  T/8,  h'  will  be  the  highest 
point,  d*  the  lowest,  and  at  the  end  of  the  period,  that  is,  at 
the  end  of  a  complete  oscillation,  the  highest  point  will  have 
traveled  to  A, 

The  form  of  the  curve  assumed  by  the  vibrating  particles 
is  called  a  wave,  and  the  distance  passed  over  by  the  wave 

during  a  complete  oscillation  is  the  wave-length,  that  is,  A¥ 
or  its  equal  08.  The  wave-length  is  thus  the  distance  be- 

tween two  points  in  corresponding  positions  on  the  harmonic 
curve. 

If  the  oscillations  had  taken  place  along  OX,  we  should 
have  had  longitudinal  instead  of  transverse  waves. 

41.  Harmonic  vibrations  in  the  same  line  may  be  combined 



§41] HARMONIC   CURVES. 35 

by  first  combining  each  with  a  perpendicular  translation  and 
plotting  the  harmonic  curves. 
Then,  since  the  motions  are 
in  the  same  straight  line,  the 
compound  harmonic  curve 
will  result  from  plotting  the 
curve    whose    ordinates    are 

equal  to  the  algebraic  sum  of 
the   ordinates  of  the  simple 
curves. 

Thus    to    compound    two 
equal  S.H.M/s  in  the  same 
line  and  having  the  same  amplitude  the  resultant  curve  will 
be  a  curve  of  twice  the  amplitude. 

If  the  curves  are  of  opposite  phase,  the  resultant  curve  is  a 

straight  line,  or  the  motions  destroy  one  another.  This  illus- 
trates the  interference  of  two  waves  of  the  same  length,  but 

of  opposite  phase. 

Ex.  1.  A  particle  revolving  uniformly  in  a  circle  will  to  an 
eye  in  the  plane  of  the  circle  appear  to  oscillate  along  a  di- 
ameter. 

[The  motion  of  Jupiter^s  moons  as  seen  from  the  earth 
appears  to  be  approximately  a  S.H.M.] 

3.  Show  that  the  upward  and  downward  motion  of  the 
connecting-rod  of  a  locomotive  is  a  S.H.M. 

3.  In  the  cross-head  of  an  engine  a  slot  is  cut  perpen- 
dicular to  the  direction  of  the  stroke.  If  the  crank-arm 

revolving  uniformly  works  with  one  extremity  C  in  the  slot, 
the  motion  of  C  is  a  S.H.M.  v 

4.  If  the  particle  M  (Art.  34)  be  projected  on  any  line  at  §,  /A 

the  motion  of  Q  will  be  a  S.H.M.  of  the  same  period  and  /"\/ 
phase  as  M,  but  of  amplitude  the  projection  of  the  ampli-  \Z) 
tude  of  M. 

[This  may  be  illustrated  by  viewing  the  S.H.M.  of  M  in 
figure  on  p.  29  obliquely.] 

5.  Find  the  average  velocity  of  the  point  M  as  it  oscillates 
from  A  to  A^  and  back  again  to  A,  if  the  greatest  velocity  at- 

tained is  1  ft/sec.  Ans.  27t~'^  ft./sec. 
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6.  The  velocity  of  M  along  the  diameter  AA^  is  v  sin  aot, 
the  velocity  of  P  in  the  circle  of  reference  being  v. 

7.  By  taking  the  first  and  second  differentials  of  the  equa- 
tion y  =  r  cos  Got  show  that 

vel  oi  M  =■  —  rco  sin  aot    =^  —  gdx; 

accel  ot  M=  —  rca^  cos  cot  =  —  co'^y; 

X,  y  being  the  co-ordinates  of  P  in  the  circle  of  reference. 
8.  At  what  point  is  the  velocity  of  Jf  a  maximum,  and  what  J, 

is  its  value  ?  Ans.  ?;  at  the  center  0.        '%. When  is  the  acceleration  greatest,  and  when  least  ?  I  ̂ 
9.  Combine  graphically  and   analytically  two  S.H.M.\s  in   ./f 

same  line  and  of  equal  amplitude,  period,  and  phase.  ^  | 
Ans,  A  S.H.M.  of  equal  period  and  of  twice  the  amplitude. 

10.  Compound  two  S.H.M. ^s  in  the  same  line  of  the  same 
amplitude,  but  differing  1/4  in  phase,  into  a  S.H.M.  in  the 
same  line  and  of  the  same  period. 

[^  =  r  cos  oot  -\-  r  cos(cw^  +  27r/4)  =  r  V'Z  cos  {cot  +  7r/4)]. 
11.  Find  the  path  of  a  point  which  has  two  equal  S.H.M.^s 

in  directions  at  right  angles  to  each  other  and  differing  1/2 
in  phase.  A^is.  A  straight  line. 

12.  If  in  (11)  the  two  S.H.M.'s  differ  1/4  in  phase  and  also 
in  amplitude,  find  the  path.  Ans.  An  ellipse. 

13.  Uniform  circular  motion  is  equivalent  to  two  S.H.M.'s 
at  right  angles  to  each  other  of  equal  amplitude  and  period, 
but  differing  1/4  in  phase. 

14.  A  particle  has  two  S.H.M.'s  of  the  same  amplitude  and 
phase  and  in  directions  at  right  angles,  the  periods  being  as     . 
1  to  2.     Find  the  path.  Ans.  A  parabola. 

Eliminate  t  between  x  =^  r  cos  aot  and  y  =  r  cos  2  oot. 
Plot  the  curve  after  the  manner  of  Art.  38. 

This  forms  one  of  a  series  of  curves  known  as  Lissajous' 
curves.  Others  may  be  formed  by  changing  the  ratio  of  the 
periods. 

[For  a  mechanical  method  of  producing  these  curves  see 
Art.  118.] 

15.  If  in  Ex.  14  the  phase  differs  by  1/4,  find  the  equation 

of  the  path.  Ans.  r'^y''  =  4:X^{r''  —  x^). 
42.  Relative  Motion. — The  motion  of  a  point  P  has  been  de- 

fined by  its  change  of  position  with  reference  to  another  point 
0  regarded  as  fixed.  This  gave  the  absolute  motion  of  P. 
But  if  the  point  0  is  also  in  motion,  or  has  an  absolute  motion 
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with  respect  to  a  third  point,  tlie  motion  of  P  is  no  longer 
said  to  be  absohite,  but  relative.  This  is  really  the  case  of 
bodies  in  nature,  as  no  point  in  space  is  known  to  be  fixed 
absolutely.  Still,  for  the  purpose  considered,  an  assumed 
point  may  be  regarded  as  fixed,  and  in  thfe  sense  motion  is 
said  to  be  absolute. 

The  problem  of  relative  motion  is  really  an  example  of  the 
composition  of  motions.  Suppose,  for  example,  a  point  A  to 
move  with  an  absolute  velocity  u,  and  B  with  an  absolute 
velocity  v,  both  being  referred  to  the  same  fixed  point  0,  and 
in  the  same  straight  line;  it  is  required  to  find  the  velocity 
of  A  relative  to  B.  Conceive  both  A  and  B  to  move  in  a 

medium  which  itself  moves  with  a  velocity  v,  but  in  the  oppo- 
site direction  to  the  motion  of  B.  Then  B  is  at  rest  with 

reference  to  the  fixed  point  0.  But  as  the  motion  of  the 
medium  affects  A  and  B  alike,  their  relative  motion  is  un- 

changed. Hence,  as  a  velocity  v  has  been  imparted  to  A,  the 

velocity  of  A  relative  to  B  will  hQ  u  —  v  it  both  were  origi- 
nally moving  in  the  same  direction  and  u  -\-  v  it  in  opposite 

directions. 

As  an  illustration,  take  two  men  A  and  B  walking  on  a 

boat's  deck  from  bow  to  stern,  and  that  the  velocity  of  the 
boat  is  equal  to  the  velocity  of  B.  Then  B  is  at  rest  relative 
to  the  shore,  and  the  motion  of  A  relative  to  B  is  the  same  as 
if  the  boat  were  at  rest. 

43.  Consider  next  when  the  velocities  u,  v  of  the  two 

points  A,  B  are  not  in  the  same  straight  line.     Suppose  the 

lines  OX,  0  F  to  represent  these  ve- 

locities in  magnitude  and  direction.     V"  ^——^ 
Let  a  velocity  v  in  the  direction  YO     A          ̂ ^       \ 
and  represented  by  OZ be  imparted        \^y__^n   ^ 
to  both  A  and  B.     The  relative  mo-        °  \^  ^'' 
tion  of  A  and  B  is  unchanged,  and  A  ,,'' 

the  point  B  is  now  at  rest.     The  v-'^' 
velocity  of  A  is  the  resultant  of  the 

velocities  OZ,  OX,  that  is,  is  equal  to   the   diagonal  OW, 
which  therefore  represents  the  velocity  of  A  relative  to  B. 
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The  three  velocities  are  represented  by  the  sides  of  the  tri- 
angle OXW.  Hence,  if  in  a  triangle  one  side  OX  represent 

the  velocity  of  A,  XW  a  velocity  equal  to  and  opposite  that 

of  J5,  and  OX,  XW  are  in  the  same  sense  around  the  tri- 
angle, the  third  side  0  W  taken  in  the  opposite  sense  around 

the  triangle  will  represent  the  velocity  of  A  relative  to  B. 

So,  too,  if  a  point  X  had  a  velocity  XO  relative  to  Z,  and 
at  the  same  time  Z  had  a  velocity  ZO  relative  to  Y,  then  evi- 

dently XY  is  the  velocity  of  X  relative  to  Y;  that  is. 
If  two  sides  of  a  triangle  XO,  OY  taken  the  same  way 

round  represent  the  velocity  of  X  relative  to  Z  and  of  Z  rela- 
tive to  F,  the  third  side  XY  will  represent  the  velocity  of  X 

relative  to  Y. 

Corresponding  propositions  hold  for  accelerations  and  for 
linear  displacements. 

Any  mechanism  may  be  employed  to  illustrate  relative 
motion  by  putting  a  sheet  of  paper  on  one  of  its  moving 
pieces,  and  a  pencil  on  another  moving  piece,  when  the  curve 
traced  by  the  pencil  on  the  paper  will  represent  the  relative 
motion  of  the  two  pieces. 

Ex.  1.  Two  trains  A  and  B  are  running  on  parallel  tracks 
at  20  and  50  m/h  respectively.  Find  the  velocity  of  A  rela- 

tive to  B.  Ans,  —  30  m/h  or  —  70  m/h. 
2.  A  steamer  is  sailing  north  at  16  miles  an  hour  in  an  east 

wind  blowing  12  miles  an  hour.    Find  the  apparent 
direction  of  the  wind  to  a  passenger  on  the  steamer. 

[Let  a  velocity  of  16  miles  an  hour  south  be  im- 
parted to  steamer  and  wind.     The  relative  motion 

is  unchanged.     The  steamer  is  at  rest  and  the  ve- 
locity of  the  wind  is  composed  of  12  miles  an  hour 

"16   west  and  16  miles  an  hour  south.     .*.  apparent  di- 
rection of  wind  =  tan"^  12/16  or  tan"^  3/4  east  of "^    north.] 

3.  In  Ex.  2  find  the  direction  of  the  vessel's  smoke. 
4.  Two  vessels  start  at  the  same  time  from  the  same  har- 

bor, one  sailing  east  at  12  miles  an  hour,  the  other  south  at 
9  miles  an  hour.  Find  the  velocity  of  one  relative  to  the 
other.  ^         Ans,  15  miles  an  hour. 

5. y^         Jins,  ID  miles  an  nour. 
Two  railroad  tracks ^^tersect  at  60°,  and  two  trains 
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start  ̂ mhe  same  instant  from  the  junction  at  30  miles  an 
houi^fch.     Find  their  relative  velocity  in  magnitude  and di   

wo  bodies  A,  B  move  with  velocities  w,  v  inclined  at 
angle   6.      Show   that  fehe  velocity  of  B  with   respect 

is   Vu^  -j-  v'^  —  2uo   cos   6,   and   inclined   at   an   angle 
tair^  V  sin  6/{v  cos  d  —  u)  to  the  direction  of  A. 

7.  Two  railroad  tracks  intersect  at  90°.  To  a  passenger  in 
one  train  traveling  at  the  rate  of  32  miles  an  hour  the  other 
seems  to  have  a  velocity  of  40  miles  an  hour.  Find  its  abso- 

lute velocity.  Ans.  24  miles  an  hour. 
8.  The  displacement  of  A  relative  to  ̂   is  s  ft  south  and 

relative  to  C  it  is  5  ft  west.     Find  the  position  of  C  relative    ̂  
to  B.  Ans.  5V2  S.E. 

9.  A  boat  is  propelled  at  12  miles  an  hour  across  a  stream 
flowing  at  5  miles  an  hour  in  a  direction  perpendicular  to  the 
current.  Find  the  velocity  of  the  boat  with  reference  to  the 
bottom  of  the  channel.  A7is.  13  m/h. 

10.  The  hour  and  minute  hands  of  a  clock  are  6  in  and  7 
in  respectively.  Find  the  relative  velocities  of  their  ex- 

tremities at  (1)  6  A.M.,  (2)  9  A.M.,  (3)  noon,  and  show  that  at 
3  P.M.  the  direction  of  their  relative  velocity  makes  an  angle 
tan"^  1/14  with  the  horizontal. 

\\k(\^     11.  a  nian  traveling  eastward  at  v  miles  an  hour  in  a  wind 
'     apparently  from  the  north  doubles  his  speed  when  the  wind 

appears  to  blow  from  the  northeast.     Show  that  the  wind  is 
really  from  the  northwest  and  blowing  with  a  velocity  of 
vV'2  miles  an  hour. 

12.  A  vessel  steams  due  north  at  10  knots  in  a  wind  due 

east.  If  the  vane  on  the  mast  is  30°  west  of  south,  find  the 
velocity  of  the  wind.  Ans.  6.65  m/h. 

13.  Find  the  linear  displacement  of  the  highest  point^  A  of a  6-ft  locomotive-wheel  with  reference  to  the  lowest  point  B 
while  the  wheel  makes  a  quarter  revolution  along  u  straight 

track.  Ans.  6^2  ft  inclined  at  45°  to  the  track. 
14.  Three  displacements  of  a  point  are  parallel  to  the  sides 

of  an  equilateral  triangle  in  order  and  are  in  magnitude  a, 
a  +  1,  «  +  2  inches.  Show  that  the  magnitude  of  the  result- 

ant displacement  is  independent  of  a. 
15.  Show  that  the  time  in  which  it  is  possible  to  cross  a 

road  of  breadth  c  ft  in  a  straight  line  with  the  least  uniform 
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velocity,  between  a  stream  of  carriages  of  breadth  h  ft  follow- 
ing at  intervals  a  ft,  moving  with  velocity  v  ft/sec,  is 

—  rH — )  seconds/ v\l)      a  I 

16.  A  point  P  describes  a  circle  relative  to  axes  through  0. 
Show  that  relative  to  parallel  axe^  through  P  the  point  0 
also  describes  a  circle. 

Compare  the  areas  of  the  two  circles. 
Is  a  similar  proposition  true  for  any  curve  ? 
17.  Two  bicycle  racers  start  with  velocities  u,  u^ ,  keep  up 

constant  accelerations  «,  «/,  and  make  a  dead  heat.  Show 
that  the  length  of  the  race  is 

18.  If  telegraph-poles  are  n  ft  apart,  find  for  how  many 
seconds  one  must  count  poles  in  order  that  the  number 
counted  may  equal  the  number  of  miles  per  hour  that  the 
train  is  running,  the  speed  of  the  train  being  assumed  uniform. 

Ans.  lbn/22  seconds. 
EXAMINATIONc 

1.  How  is  the  position  of  a  point  defined  ? 
2.  What  ideas  are  involved  in  the  term  displacement  ? 
3.  In  what  sense  is  a  body  said  to  be  at  rest  ?  in  motion  ? 
4.  Mention  some  units  of  length.  What  is  the  British 

standard  of  length  ? 
5.  Mention  some  units  of  time.  Mention  some  natural 

standards  of  time  besides  the  day. 

6.  Define  the  term  velocity,  and  state  how  velocity  is  meas- 
ured when  uniform,  and  when  variable. 

7.  Define  the  average  velocity  of  a  moving  point  in  any 
given  time. 

8.  Explain  the  statement 
distance  =  average  velocity  X  time. 

9.  A  knot  is,  roughly,  a  velocity  of  100  ft/min. 
10.  Give  examples  of  a  body  in  motion  the  different  parts 

of  which  have  different  velocities. 
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11.  The  minute-hand  of  a  clock  is  twice  as  long  as  the 
hour-hand.     Compare  the  speeds  of  their  extremities. 

Ans,  1  :  34. 

12.  Explain  the  statement 

unit  velocity  =  one  foot/one  second. 

How  is  velocity  represented  graphically  ? 
13.  Explain  the  difference  between  uniform  motion  and 

uniformly  accelerated  motion. 

14.  Give  examples  of  bodies  having  accelerations  (1)  con- 
stant  in  magnitude  and  direction,  (2)  constant  in  magnitude, 
but  not  in  direction,  (3)  variable  in  magnitude  and  direction. 

15.  Show  that  for  uniform  acceleration  from  rest 

5  =  t;^/2  =  «f /2. 

16.  Define  acceleration  at  a  given  instant  of  time. 

,      17.  Illustrate  the  meaning  of  «  =  dv/dt  geometrically. 

18.  If  a  body  is  projected  with  the  velocity  u  in  the  direc- 
^  ̂ :^     tion  of  a  uniform  acceleration  a,  and  v  be  the  velocity  and  «     y/ 

the  distance  described  at  the  end  of  the  time  t,  prove 

i(o  —  u)/a  =  2s/(v  -\-  u)  =  t. 
19.  A  particle  starts  with  a  velocity  of  12  ft/sec  and  the 

motion  is  retarded  2  ft/sec^     Draw  a  diagram  to  find  the   ̂  
distance  described  in  6  seconds. 

20.  Show  how  the  distance  described  may  be  represented 

graphically  when  a  particle  moves  with  constant  accelera- 
tion, starting  with  a  velocity  u. 

21.  Show  by  a  diagram  that  when  a  particle  moves  from 

rest  with  constant  acceleration  the  distance  described  is  pro- 
portional to  the  square  of  the  time  of  motion. 

22.  The  distance  s  described  in  the  nth  second  of  its  mo- 

tion by  a  particle  having  an  initial  velocity  u  and  a  uniform 
acceleration  a  is  given  by 

s  =  u-\-  (2n  —  l)a/2. 

Compare  an  acceleration  of  1200  yds/min'  with  an  accelera- 
tion of  1  ft/sec",  the  unit  of  acceleration. 

/ 
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23.  Show  how  two  coexistent  velocities  or  accelerations 

may  be  combined. 
24.  Show  how  to  resolve  a  velocity  in  two  directions  at  right 

angles  to  each  other. 
25.  State  the  principle  of  Robervars  method  of  drawing 

tangents  to  a  curve. 
26.  Find  the  direction  and  magnitude  of  the  acceleration 

of  a  particle  which  describes  a  circle  of  radius  r  with  uni-     '^ 
form  velocity  v. 

27.  From  a  point  draw  lines  to  represent  in  magnitude  and 

direction  the  velocity  at  the  different  points  of  the  path  of  a      "^ 
particle  moving  uniformly  in  a  circle. 

28.  Define  a  simple  harmonic  motion.     Is  it  a  rectilinear      y^ 
motion  ? 

29.  A  point  P  moves  uniformly  in  a  circle.  Show  that  the 

velocity  and  acceleration  of  the  projection  Jf  of  P  on  any  di- 
ameter are  proportional  to  PM  and  OM  respectively,  0  being 

the  center  of  the  circle. 

30.  Oscillatory  motion  is  the  projection  of  circular  motion     y 
upon  a  diameter. 

31.  When  is  motion  said  to  be  periodic  ? 

32.  The  motion  of  a  point  along  a  straight  line  OX  is  de- 
fined by  the  equation 

X  —  a  cos  oot^ 

show  by  finding  dx/dt,  d^x/df  that  the  motion  is  vibratory 
and  of  a  period  '^Tt/oo, 

33.  Given  the  velocities  of  two  points  A  and  B  to  deter-    ̂  
mine  the  velocity  of  A  relative  to  B. 

34.  A  person  walking  rapidly  in  a  vertical  rain  holds  his 
umbrella  towards  the  front.     Explain. 

35.  Two  trains  are  on  parallel  tracks.  Why  is  it  difficult 
for  a  passenger  to  tell  whether  his  own  train  or  the  other  is 
in  motion  ? 

36.  Explain  why  the  smoke  of  a  steamer  is  in  a  parallel 
plane  to  the  vane  on  the  mast  ? 

37.  From  a  car  window  a  man  fires  at  a  buffalo  running  in 
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a  parallel  direction  with  the  train.     Show  that  he  must  aim 
in  front  if  his  velocity  is  <  that  of  the  buffalo. 

38.  Find  the  velocity  with  which  a  man  must  jump  back-*' 
ward  from  a  car  in  motion  to  fall  vertically. 

39.  Two  points  move  with  velocities  w  and  v  in  opposite 

directions  round  a  circle.  Find  their  greatest  and  least  rela- 
tive velocities. 

40.  Define  phoronomics,  kinematics. 

41.  What  are  the  fundamental  independent  units  used  in 
linear  kinematics  ?     [Length  and  time.] 

42.  Mention  some  derived  units. 
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CHAPTEE  11. 

MATTER  IN  MOTION.     NEWTON'S   LAWS   OF  MOTION. 

44.  Hitherto  we  have  considered  motion  in  the  abstract — 
how  represented  and  how  measured.  No  reference  has  been 
made  to  the  nature  of  the  body  moving,  and  the  problem  has 
been  as  purely  ideal  as  a  problem  of  geometry. 
We  shall  now  consider  motion  with  reference  to  the  body 

moving  and  the  force  acting,  that  is,  pass  from  kinematics  to 
dynamics.  This  brings  us  to  the  region  of  sense  and  makes 
our  results  capable  of  verification,  or  such  that  we  can  test 
computation  by  observation  and  measurement.  In  order  to 
verify  results  certain  fundamental  postulates  are  taken  as 
bases  of  operation,  which  will  now  be  stated. 

45.  The  relations  of  matter,  motion,  and  force,  which  con- 

stitute the  science  of  dynamics,  may  *  be  based  upon  three 

postulates  known  as  Newton^s  laws  of  motion.  These  laws 
were  known  to  Galileo  and  other  forerunners  of  Newton,  but 

were  first  stated  by  Newton  in  concise  terms.  They  are  not 
axiomatic  in  the  sense  of  a  geometrical  axiom,  because  when 

stated  they  are  not  at  once  assented  to.  They  do  not  com- 
mend themselves  to  the  mind  either  as  true  or  as  false. 

In  stating  Newton^s  laws  certain  rude  experiments  will  be 
indicated  which  are  sufficient  to  suggest  the  truth  of  the 
laws,  but  not  to  establish  it.  No  direct  proof  is  possible. 
The  proof  is  indirect  and  is  made  in  this  way.  Assume  tlio 
laws   true,  and  certain  consequences  follow  which  can  he 

*  See  Art.  217. 
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tested  experimentally.  This  has  been  done  in  so  many  ways 

and  by  so  many  independent  observers,  particularly  in  astro- 
nomical work,  that  we  are  justified  in  accepting  them  as  true. 

For  example,  the  Ephemeris  or  Nautical  Almanac  is  pub- 
lished several  years  beforehand,  and  the  predictions  made  in 

it  and  based  on  these  laws  are  always  found  to  agree  with 
the  occurrences  when  observed.  Such,  for  instance,  are  the 

predictions  of  the  times  of  eclipses  of  the  sun  and  moon,  the 
positions  of  the  planets,  etc. 

46.  Law  I.  Every  body  [particle]  contiyiues  in  its  state 
of  rest  or  of  uniform  motion  in  a  straight  line  except  in  so 
far  as  it  may  he  co7npelled  by  exterfial  force  to  change  that 
state. 

The  law  lies  beyond  our  experience,  as  we  have  no  experi- 
ence of  one  body  not  acted  upon  by  another.  Our  direct 

experience  goes,  however,  a  certain  distance  in  confirmation 
of  the  law.  Thus,  as  suggested  by  Galileo,  consider  a  body 
placed  on  a  level  surface.  If  at  rest  it  will  remain  at  rest; 

if  in  motion  it  will  come  to  rest  after  going  a  distance  de- 
pending upon  the  smoothness  of  the  surface.  The  smoother 

the  surface  the  farther  it  goes  and  the  more  nearly  in  a 
straight  line.  Conceive  a  surface  perfectly  smooth  and  the 
air  to  have  no  influence  on  the  motion,  and  we  cannot  think 

of  any  reason  why  the  body  should  not  continue  to  move  uni- 
formly in  a  straight  line. 

47.  From  the  law  we  learn  that  rest  and  motion  are  equally 
states  of  a  body,  the  body  being  wholly  without  influence  on 
its  rest  or  motion.  This  property  of  matter  is  called  inertia 
[the  vis  insita  of  Newton],  and  the  law  itself  is  often  named 
the  law  of  inertia. 

From  the  law  we  also  learn  that  by  the  term  forge  is  meant 
a  cause  of  change  in  motion,  not  in  the  sense  of  moving 
agent,  but  in  the  sense  of  antecedent.  Force  is  thus  not  to 
be  regarded  as  the  cause  of  a  state  of  motion,  but  of  a  change 
of  state,  from  rest  to  motion,  motion  to  rest,  or  to  an  altera- 

tion of  motion — in  a  word,  of  acceleration.     Whenever  force 
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acts,  an  acceleration  of  the  motion  of  the  body  acted  upon  is 

produced. 
48.  The  law  guides  us  in  finding  a  timekeeper.  A  body  in 

motion  and  not  acted  upon  by  external  forces  would  afford  a 
means  of  measuring  times.  For  the  distances  passed  over  by 
such  a  body  in  equal  times  are  equal. 

We  know  of  no  permanent  motion  that  is  at  the  same  time 
uniform  and  rectilinear.  The  standard  motion  for  the  meas- 

urement of  time  is  the  rotation  of  the  earth  on  its  axis.  We 

assume  that  the  earth  revolves  uniformly  or  through  equal 

angles  in  equal  times,  and  find  that  predictions  of  astronom- 
ical phenomena  made  on  this  hypothesis  agree  closely  with 

subsequent  observation. 

There  is  no  essential  reason  why  the  rotation  of  some  other 
planet  should  not  be  adopted  as  a  standard  of  uniformity, 
and  the  results  would  not  necessarily  be  the  same  in  the  two 
cases;  for  there  are  certain  causes  (notably  the  tides)  which 
tend  to  make  our  planet  rotate  more  slowly,  so  that  after  the 
lapse  of  many  centuries  the  period  of  its  rotation  may  have 
appreciably  increased,  and  the  extent  of  such  retarding  in- 

fluences would  be  different  for  different  planets.* 

49.  Law  II.  Having  learned  that  a  characteristic  mani- 
festation of  force  is  acceleration,  our  next  inquiry  is  as  to  the 

relation  between  force  acting,  body  acted  upon,  and  accelera- 
tion produced — in  a  word,  as  to  how  force  is  measured. 

Now  it  is  found  that  when  the  same  body  is  exposed  to 
action  of  the  same  force  it  has  the  same  change  of  motion. 

Thus  the  same  pull  of  a  spring- balance — equal  pulls  being 
measured  by  equal  stretch  of  spring— gives  the  same  body 
the  same  acceleration  at  all  times  and  places.  The  same 

general  result  is  found  no  matter  how  the  manner  of  making 
the  experiment  is  varied. 

If  two  bodies  exposed  to  the  action  of  the  same  force  receive 
the  same  acceleration  we  say  that  they  are  of  the  same  mass, 
and  if  the  accelerations  are  not  the  same  we  say  that  the 
bodies  are  of  different  mass.     The  term  mass  is  thus  applied 

*  Burton,  DyrMmics,  p.  103, 
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to  that  physical  quality  of  a  body  that  determines  its  accel- 
eration. Experiment  shows  that  mass  is  a  definite  entity 

altogether  independent  of  the  physical  state  of  the  body. 

Newton  defines  "the  quantity  of  any  matter  as  the  meas- 

ure of  it  by  its  density  and  volume  conjointly/'  and  states 
that  this  quantity  is  what  he  shall  understand  by  the  term 

mass  or  body,* 
53.  The  quantitative  relation  between  force,  mass,  and  ac- 

celeration is  given  by  Newton's  second  law  of  motion, 
Change  of  motio7i  is  proportional  to  the  impressed  force 

and  takes  place  in  the  direction  of  the  straight  line  in  which 
the  force  is  impressed;  or,  in  modern  phraseology  [see  Art. 
53  for  other  statements]. 

Force  [is  that  which  produces  acceleration  and]  is  propor- 
tional to  the  mass  m  of  the  hody  and  the  acceleration  a  pro- 

duced jointly. 
Expressed  in  symbols,  the  law  gives  the  relation 

F  =  cma, 

where  c  is  a  constant. 

In  this  expression  the  only  unit  whose  value  has  been 
already  defined  is  the  unit  of  acceleration.  If  one  of  the  two, 
unit  force  or  unit  mass,  is  assumed,  the  other  is  fixed  by  the 
equation.  It  is  usual  to  assume  unit  mass  as  the  mass  of  a 
certain  piece  of  metal  carefully  preserved  as  standard  of 
reference.     (A  fuller  account  of  this  unit  will  be  given  later  on.) 

Having  assumed  the  unit  mass,  the  unit  force  may  be 

chosen  such  that  c  =  1,  'so  that  we  may  write F=  ma 

as  the  expression  of  the  law. 
In  this  equation  when  a  =  l  and  m  =  1  we  have  F  =1, 

or  unit  force  is  that  force  which  acting  on  unit  mass  pro- 
duces unit  acceleration. 

"  Of  this  definition  Macli  remnrks  [Die  MecJianik,  p.  181]  :  "It  is  to 
be  observed  tbat  the  foinuilation  given  by  Newton  which  defines  mass" 
as  the  quantity  of  matter  (»f  a  body  measured  by  the  product  of  its  vol- 

ume and  density,  is  unfortunnte.  Since  we  can  only  define  density  as 

the  mass  of  unit  volume,  the  circle  is  manifest." 
See  also  Pearson,  Grammar  of  Science,  p.  858. 
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61.  It  follows  that  with  this  system  of  units  the  equation 

F=  ma 

means  that  the  force  which  produces  an  acceleration  ^5  in  a 
body  of  mass  m  is  expressed  by  the  product  ma,  called  the 
mass-acceleration. 

Also,  since  a  =  d  "^s/df    or    a  =  v  dv/ds, 

d^ 

df 

or  F—  mv-=-, ds 

as  the  expression  of  the  law. 
Any  one  of  these  forms  is  the  general  equation  of  motion 

of  a  particle  free  to  move,  the  two  latter  forms  being  some- 
times called  the  differential  equations  of  ̂notion. 

The  general  equation  of  motion,  which  is  the  algebraic 
statement  of  the  second  law  of  motion,  is  the  connecting  link 
between  motion  and  force.  It  enables  us  to  pass  from  the 

kinematical  properties  of  motion  already  laid  down  to  ques- 
tions involving  force  and  mass. 

52.  Inferences  from  the  law: 

(1)  If  i<^  units  of  force  produce  in  a  mass  m  an  acceleration 
a,  and  F^  units  produce  in  a  mass  m,  an  acceleration  a^ ,  then 

F/F^  =  ma/m^u^. 

(a)  Now  when  m  =  m^,  the  forces  are  proportional  to  the 
accelerations.     Hence 

Equal  forces  are  such  as  produce  equal  accelerations  in 
equal  masses. 

(b)  When  F=  F^^  the  masses  are  inversely  proportional  to 
the  accelerations.     Hence 

Equal  masses  are  such  as  are  equally  accelerated  by  equal 

forces. 
The  law  thus  enables  us  to  express  all  forces  in  terms  of 
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the  unit  force,  and  all  masses  in  terms  of  the  unit  mass.    (See 
question  24,  p.  68.) 

(2)  The  law  implies  that  when  two  or  more  forces  act  on  a 
particle  at  the  same  time,  each  produces  an  acceleration  in  its 
own  direction  without  reference  to  the  others.  In  other 

words,  the  acceleration  produced  by  a  force  on  a  particle  is 

independent  of  any  motion  the  particle  may  have  and  inde- 
pendent of  motions  produced  by  other  forces  acting  simul- 

taneously. This  is  known  as  the  principle  of  the  independ- 
ence of  forces.    It  was  first  pointed  out  by  Galileo. 

That  this  principle  is  not  axiomatic  is  evident  from  the 

opinion  of  Descartes.  "It  is  certain  that  a  stone  is  not 
equally  disposed  to  receive  a  new  motion  or  increase  of  veloc- 

ity when  it  is  already  moving  very  quickly  and  when  it  is 

moving  slowly." 

63.  The  law  may  be  stated  in  other  forms. 
{a)  Let  a  force  F  act  on  a  mass  m  for  a  time  #,  and  let  v 

be  the  velocity  acquired.     Then  if  a  is  the  acceleration  of 
motion, 

F  =  ma. 

Also  (Art.  25),  v  =  at. 

Eliminating  a,  we  find 

Ft  =  mv 

as  the  expression  of  the  law. 
The  product  mv  of  the  mass  m  and  its  velocity  v  at  any 

instant  is  called  the  momentum.  The  unit  of  momentum  is 

the  momentum  of  unit  mass  moving  with  unit  velocity. 
The  product  Ft  is  called  the  impulse  of  the  force  F  during 

the  time  f.    It  is  expressed  in  the  same  unit  as  mv. 
Hence  the  statement : 

The  momentum  acquired  hy  a  hody  in  any  time  is  mimeri- 
cally  equal  to  the  impulse  of  the  force  which  produces  xt;  or, 
in  a  word, 

change  of  momentum  =  imptdse. 
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The  term  momentum  (Lat.  momentum  =  movimentum,  a 

movement)  is  the  modern  equivalent  of  Newton's  phrase 
"quantity  of  motion"  {quantitas  mofus). 

The  term  impulse  was  proposed  by  Belanger  (1790-1874) 
in  his  Cours  de  Mecanique  (1847). 

(h)  Suppose  the  distance  passed  over  by  the  mass  m  under 

the  action  of  the  force  i^to  be  s,  and  that  v  is  the  velocity  ac- 
quired.    Then  (Art.  25) 

But  F  =  ma. 

Eliminating  a,  we  have 

Fs  =  mvy2 

as  the  expression  of  the  law. 

The  product  Fs  is  called  the  work  done  by  the  force  F  act- 
ing through  the  distance  s.  The  unit  work  is  the  work  done 

by  unit  force  acting  through  unit  distance. 

The  expression  mv^/2  is  the  energy  of  the  moving  body  in 
units  of  the  same  name  as  the  unit  work. 

Hence  the  statement; 

The  energy  acquired  by  a  moving  tody  is  numerically 
equal  to  the  work  which  produces  it,  or 

energy  change  =  worh  done. 

The  term  work  was  proposed  by  Coriolis  (1792-1843)  in  his 
Traits  de  Mecanique  (1829);  the  term  energy  in  this  sense 
by  Thomas  Young  (1773-1829),  physicist  and  Egyptologist. 

54.  The  relations  in  the  preceding  article  indicate  differ- 
ent aspects  of  the  measure  of  force.  The  first  two  given  by 

the  equations 
F  =  ma, 

Ft  =  mv, 

in  which  force  is  measured  by  the  mass-acceleration  or  by  the 
rate  of  change  of  momentum  with  time,  are  due  to  Newton. 
All  dynamical  questions  are  by  him  disposed  of  with  the  aid 
of  the  ideas  of  force,  mass,  and  momentum. 
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The  third  equation, 

.  Fs  =  mv'/2, 

introduces  a  distinct  measure  of  force,  and  is  the  method  of 

Huygens. 
The  first  method  is  the  one  most  commonly  used  in  ele- 

mentary mechanics  and  will  be  employed  at  first;  the  other 
will  be  discussed  in  Chapters  VI  and  VIII. 

55.  If  the  acting  force  F  be  variable,  it  may  be  considered 

to  consist  of  a  succession  of  constant  forces  acting  for  in- 
definitely small  intervals  /It  and  through  indefinitely  small 

distances  /Js.  The  total  impulse  would  be  found  by  the  sum- 
mation of  FJt  throughout  the  whole  time  of  motion  t,  and 

would  be  represented  by 

/ 
FdL 

0 

The  total  work  would  be  found  by  the  summation  of  F^s 
throughout  the  whole  distance  of  motion  5,  and  would  be 
represented  by 

X Fds, 
An  impulse  may  therefore  be  defined  as  the  time-integral 

of  the  force,  and  work  may  be  defined  as  the  line-integral  of 
the  force. 

56.  Law  III.  In  order  to  exert  force  the  agent  acting 
must  meet  a  resistance.  Thus  the  hand  in  motion  does  not 

exert  force  until  it  meets  some  object.  The  object  reacts  on 
the  hand.  Press  the  table  and  the  table  will  press  the  hand. 
Force  is  always  a  mutual  action:  in  other  words,  forces  are 

never  single,  but  act  in  pairs — one  the  action  and  the  other 
the  reaction.  This  pair  of  actions  between  two  bodies  or  two 
parts  of  the  same  body  is  known  as  a  stress.  If  it  is  of  the 
nature  of  a  push,  preventing  approach  of  the  two  bodies,  it 
is  called  com2)ressioii  or  pressure;  if  of  the  nature  of  a  pull, 
preventing  separation,  it  is  called  tension;  if  of  the  nature 



52  MATTER   IN   MOTION.  [§  57 

of  a  shear,  preventing  sliding,  it  is  called  a  shearing  stress  or 
shear. 

When  we  speak  of  a  force  acting  on  a  body  we  consider 
only  one  of  the  two  bodies  between  which  stress  exists.  The 

force  is  the  component  of  the  stress  on  the  body — the  action. 
This  was  the  case  in  discussing  the  preceding  two  laws. 

But  since  a  force  cannot  exist  by  itself, — forces  being  dval, 
— the  view  given  in  laws  I  and  II  is  only  partial  and  re- 

quires to  be  supplemented.  This  is  done  by  the  law  of 

stress,  or  Newton^s  third  law  of  motion,  which  is : 
When  one  tody  acts  on  another,  the  reacting  force  {reac- 

tion) is  equal  in  magnitude  and  opposite  in  direction  to  the 
acting  force  {actio7i),  or,  as  it  may  be  expressed : 

The  mutual  actions  of  two  bodies  are  always  equal  and  act 
in  opposite  directions. 

67.  In  some  cases  the  relation  between  the  action  of  the 

agent  and  the  reaction  of  the  resistance  is  sufficiently  evi- 
dent. Thus  if  one  body  rests  upon  another  it  will  be  granted 

that  the  pressure  exerted  by  the  upper  is  equal  to  the  counter- 
pressure  exerted  by  the  lower:  if  a  horse  hauls  a  canal-boat 
to  which  he  is  attached  by  a  rope,  the  pull  of  the  rope  on  the 
horse  is  equal  to  its  pull  on  the  boat,  and  so  on.  But  when  a 
stone  falls  from  a  height  it  is  not  evident  whether  the  action 
of  the  earth  on  the  stone  is  equal  to  the  action  of  the  stone 
on  the  earth.  Nor  is  the  relation  evident  between  the  actions 

of  a  magnet  and  a  piece  of  iron,*  nor  between  bodies  widely 
separated,  as  the  earth  and  the  moon.  But  the  law  asserts 
that  in  all  cases  the  acting  force  and  reacting  force  are  equal. 

Newton  points  out  the  consequence  of  denying  the  truth 

of  the  law:  "  For  instance,  if  the  attraction  of  any  part  of  the 
earth,  say  a  mountain,  upon  the  remainder  of  the  earth  were 

*  Newton,  by  placing  a  magnet  in  one  vessel  and  the  iron  in  another, 
and  floating  both  vessels  in  water  so  as  to  touch  each  other,  showed 
that,  as  neither  vessel  was  able  to  propel  the  other  along  with  itself 
through  the  water,  the  attraction  of  the  iron  on  the  magnet  must  be 
equal  and  opposite  to  that  of  the  magnet  on  the  iron,  both  being  equal 
to  the  pressure  between  the  two  vessels.     (Maxwell.) 
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greater  or  less  than  that  of  the  remainder  of  the  earth  upon 
the  mountain,  there  would  be  a  residual  force  acting  upon 
the  system  of  the  earth  and  the  mountain  as  a  whole  which 

would  cause  it  to  move  off  with  an  ever-increasing  velocity 
through  infinite  space.  This  is  contrary  to  the  first  law  of 
motion,  which  asserts  that  a  body  does  not  change  its  state 

of  motion  unless  acted  upon  by  external  force." 
58.  Newton  interprets  the  terms  action  and  reaction  in 

more  than  one  sense.  These  interpretations  are  contained 
in  the  statements — 

When  two  bodies  act  upon  one  another  (1)  the  impressed 
force  on  the  one  is  equal  and  opposite  to  the  impressed  force 
on  the  other;  (2)  the  gain  of  momentum  by  the  one  is  equal 
to  the  loss  of  momentum  by  the  other;  (3)  the  gain  of  en- 

ergy by  the  one  is  equal  to  the  loss  of  energy  by  the  other. 

Notice  that  action  and  reaction  take  place  between  dif ev- 

ent bodies.  Thus  in  a  tug-of-war  the  pull  along  the  rope  of 
A  on  B  is  equal  to  the  pull  of  B  on  A.  No  matter  where 
the  rope  is  cut,  the  force  on  one  side  of  the  section  is  equal 
to  that  on  the  other  side. 

69.  Summary  of  the  Laws. — The  laws  of  motion  may  be 
summarized  in  these  statements : 

(1)  Every  force  is  one  component  of  a  stress,  and  the  two 
forces  of  a  stress  are  equal  and  opposite. 

(2)  There  is  no  acceleration  without  force,  and  the  mass- 
acceleration  produced  is  directly  proportional  to  the  measure 
of  the  force  acting.  In  symbols :  If  a  force  F  acts  on  a  mass 
7n  and  produces  an  acceleration  a,  then F  =  ma, 

and  if  v  be  the  velocity  acquired  after  a  time  t, 
Ft  =  mv; 

or  if  V  be  the  velocity  acquired  in  describing  a  distance  5, 

Fs  =  imv^. 

60.  Which  of  the  laws  of  motion  do  the  following  state- 
ments illustrate? 
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(a)  A  circus-rider  to  jump  through  a  hoop  and  alight  on 
his  horse  springs  vertically  upward. 

(b)  "  If  a  stone  be  dropped  from  the  top  of  the  mast  of  a 
ship  in  motion,  the  stone  will  fall  at  the  foot  of  the  mast  not- 

withstanding the  motion  of  the  ship." 
(6-)  When  an  omnibus  turns  a  sharp  corner  there  is  a  tend- 

ency to  tlirow  the  driver  from  his  seat. 
{(/)  When  a  horse  tows  a  canal  boat  the  pull  backward  on 

the  horse  is  equal  to  the  pull  forward  on  the  boat. 
(e)  When  a  train  stops  suddenly  the  passengers  receive  a 

jerk. 
(/■)  A  cannon-ball  has  a  different  effect  on  a  granite  wall and  on  an  earth  wall. 

{g)  A  severe  jar  is  received  from  a  step  downward  when 
one  expects  to  step  on  the  level. 

(Ji)  In  suburban-passenger  traffic  the  trains  must  stop  and 
start  quickly.  The  boiler  and  machinery  are  placed  over  the 
driving-wheels. 

(i)  Speaking  of  the  third  law  of  motion,  Dr.  Lodge  says: 
"  Action  and  reaction  are  equal  and  opposite.  Sometimes 

an  absurd  difficulty  is  felt  with  regard  to  this,  even  by  engi- 
neers. They  say:  "If  the  cart  pulls  against  the  horse  with 

precisely  the  same  force  as  the  horse  pulls  the  cart,  why  does 
the  cart  move?"  Why  on  earth  not?  The  cart  moves 
because  the  horse  pulls  it,  and  because  nothing  else  is  pulling 

it  back.  "  Yes,"  they  say,  "  the  cart  is  pulling  back,  but  what 
is  it  pulling  back,  not  itself  surely  ?  "  "  No,  the  horse."  Yes, 
certainly  the  cart  is  pulling  the  horse;  if  the  cart  offered  no 
resistance,  what  would  be  the  good  of  the  horse  ?  That  is 
what  he  is  for,  to  overcome  the  pull-back  of  the  cart;  but 
nothing  is  pulling  the  cart  back.  There  is  no  puzzle  at  all 
when  once  you  realize  that  there  are  two  bodies  and  two 

forces  acting,  and  that  one  force  acts  on  each  body." 
It  has  been  objected  to  this  that  if  the  cart  pulls  the  horse 

as  much  as  the  horse  pulls  the  cart,  there  is  just  as  much 
reason  that  the  cart  drag  the  horse  as  the  horse  drag  the  cart 
after  it. 

Does  the  objection  appear  to  you  a  valid  one  ? 

61.  Dynamical  Units. — In  Art.  7  were  given  the  names 
of  the  kinematical  units  of  length  and  time.  Before  giving 
the  names  of  the  units  of  dynamics  some  explanations  are 
necessary. 
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The  methods  of  comparing  masses  and  of  comparing  forces 
given  in  Art.  52  are  theoretically  sufficient.  A  system  of 

units,  known  as  an  absolute  system,  based  upon  these  con- 
siderations and  used  in  theoretical  investigations  in  scientific 

laboratories,  is  given  in  Chapter  IX. 
But  these  methods,  though  capable  of  being  described  in 

succinct  terms,  are  difficult  of  performance  in  practice.  To. 
compare  masses  by  comparing  their  accelerations  produced 
by  forces  assumed  equal,  or  to  compare  forces  by  comparing 
their  effects  upon  masses  assumed  equal,  though  useful  as  a 
laboratory  experiment,  is  an  experiment  not  capable  of  much 

precision  with  any  apparatus  at  present  in  existence.  Ac- 
cordingly this  dynamical  method  is  in  practice  replaced  by 

another  more  easily  put  in  operation  and  much  more  precise.* 
62.  It  is  a  fact  of  common  observation  that  a  body  free  to 

move  falls  towards  the  earth.  It  acts  as  if  the  earth  attracted 

it.  It  is  assumed  as  a  convenient  explanation  of  the  observed 
phenomenon  that  there  exists  a  stress  between  the  earth  and 
the  body,  and  to  one  component  of  this  stress  the  nsime  force 

of  gravity  is  given. 
A  body  free  to  move  if  exposed  to  the  action  of  the  force 

of  gravity  is  uniformly  accelerated.  Experiment  shows  that 
at  the  same  place  this  force  acts  on  all  bodies  in  the  same 
way;  that  is,  the  acceleration  g  [initial  of  gravity]  produced 
by  it  has  no  relation  to  the  magnitude  or  form  of  the  bodies 
or  to  the  material  of  which  they  are  composed. 

Experiment  shows,  too,  that  the  value  of  g  is  constant  so 

long  as  we  keep  to  the  same  place  on  the  earth^s  surface. 
It  is  found  to  vary  with  the  latitude  and  the  height  above 

sea-level.  It  is  greatest  at  the  poles  and  least  at  the  equator. 
It  decreases  as  the  height  above  sea-level  increases.  (See  Arts. 
101,  111.) 

*  For  the  comparison  of  masses  by  the  inertia  method  see  text-books 
of  laboratory  physics.  For  the  method  by  the  ballistic  balance  see 
Hicks'  Dynamics,  pp.  23-26. 
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At  New  York  g  =  32.16,  at  San  Francisco  g  =  32.16,  at 
London  g  =  32.19,  at  Paris  g  =  32.18,  at  the  equator  g  = 

32.09  ft/sec'.  The  approximate  value  32  ft/sec"  is  very  often 
used  for  convenience  of  computation  and  as  being  close 
enough  in  ordinary  cases. 

The  experiments  referred  to  are  carried  out  with  Atwood's 
Machine  (Art.  70);  or  after  Galileo's  method,  with  falling 
bodies  and  the  inclined  plane  (Art.  105);  or  best  of  all  with 
the  pendulum,  as  first  pointed  out  by  Newton  (Art.  116). 

We  add  a  familiar  illustration.  If  we  let  drop  say  a  coin 
and  a  piece  of  paper,  the  coin  will  reach  the  floor  first;  but  if 
we  place  both  in  a  vessel  without  a  lid  and  drop  the  vessel,  the 
bodies  inside  will  reach  the  floor  together.  This  suggests  that 
when  the  resistance  offered  by  the  air  is  removed,  the  time  of 
falling  the  same  distance  and  consequently  the  acceleration 
of  gravity  on  both  bodies  is  the  same. 

A  better  method  is  to  let  drop  the  bodies  simultaneously 
from  a  shelf  in  a  tall  glass  cylinder  from  which  the  air  has 
been  pumped  out.  Both  will  be  seen  to  strike  the  bottom  at 
the  same  instant. 

63.  Let  two  bodies  m,  m'  be  exposed  to  the  action  of  the 
force  of  gravity.     If  connected  together,  as  by  a  thread  pass- 

ing over  a  smooth  pulley,  and  in  equilibrium,  the 
action  and  reaction  through  the  thread  being  the 
same,  we  have 

mg  =  m'g\ 
But  from  the  preceding  article 

9=9'- 

Hence 

and  in  this  way  masses  may  be  compared. 
No  great  accuracy  of  measurement  is  to  be  looked  for  with 

this  apparatus,  simple  as  it  appears  (see  Ex.  1,  Art.  70).  It, 
however,  is  theoretically  the  simplest  form  of  balance,  and 
suggests  that  instrument. 
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In  making  measurements  of  precision  the  connection  be- 
tween the  bodies  is  made  by  placing  them  on  the  pans  of 

a  beam-balance.  If  the  balance  remains  in  equilibrium  the 
bodies  are  of  the  same  mass.  When  the  comparison  is  made 
in  this  way  the  term  weight  is  by  prevailing  custom  used 
instead  of  mass,  and  it  is  usual  to  say  that  bodies  which 

equipoise  in  the  beam-balance  are  of  the  same  weight.  The 
process  is  called  weighing;  and  by  assuming  z  standard  unit 
the  weights  of  all  bodies  may  be  expressed  in  terms  of  the 
standard.  Instead,  therefore,  of  comparing  masses  by  the 

dynamical  method  as  required  by  the  fundamental  concep- 
tion of  mass,  we  may  make  the  comparison  by  the  beam- 

balance — an  operation  capable  of  extreme  precision.  With 
our  present  appliances  and  methods  weighings  can  be  carried 

out  within  one  part  in  ten  millions.  "  It  is  claimed  that  two 
avoirdupois  pounds  can  be  compared  with  an  error  not  ex- 

ceeding 0.0002  of  a  grain.^^ 
64.  Notice  that  this  method  of  comparing  bodies  by  the 

balance  is  entirely  independent  of  the  locality  where  the  ex- 
periment is  made.  The  beam-balance  does  not  show  what 

the  forces  on  the  two  bodies  are,  but  only  that  these  forces 

are  equal  at  any  place.  With  a  spring-balance,  however, 
assuming  that  it  takes  the  same  force  to  produce  the  same 
deflection  of  the  spring,  we  may  compare  forces  at  the  same 
place  or  at  different  places. 

Thus,  at  any  place,  let  two  bodies  be  compared  by  beam- 
balance  and  also  by  spring-balance.  If  the  whole  apparatus 
is  carried  to  another  locality  of  different  elevation,  the  bodies 

will  still  equipoise  on  the  beam-balance,  but  the  deflection  of 
the  spring-balance  will  be  different  from  what  it  was  before, 
though  both  bodies  will  produce  the  same  deflection.  The 
weight  [or  the  mass]  of  a  body  is  therefore  constant,  but  the 
force  of  gravity  on  the  body  varies  from  place  to  place. 

66.  Gravitation  Units — (a)  Unit  Weight. — The  standard 
unit  used  in  comparing  bodies  by  weighing  is  the  pound  (lb). 
The  British   standard  of  weight   is   the  imperial  standard 
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pound,  which  is  defined  by  the  Weights  and  Measures  Act 

1878,  41  and  42  Vict.  c.  49,  as  "of  platinum,  the  form  being 
that  of  a  cylinder  .  .  .  marked  P.  S.  [Parliamentary  Stand- 

ard] 1844,  1  Ib.^'  Like  the  imperial  yard  it  is  deposited  in 
the  standards  department  of  the  Board  of  Trade,  London. 

In  the  United  States  the  weights  and  measures  in  common 
use  were  introduced  from  England  before  the  Revolution. 
In  1828  Congress  legalized  a  troy  pound  for  purposes  of 

coinage,  in  1830  the  Treasury  Department,  for  custom- 
house purposes,  adopted  the  Troughton  82-inch  brass  scale  as 

standard  unit  of  length  (Art.  7),  the  pound  avoirdupois  de- 
rived from  the  troy  pound  as  unit  of  weight,  the  wine  gallon 

of  231  cubic  inches  as  unit  of  liquid  measure,  and  the  Win- 
chester bushel  of  2150.42  cubic  inches  as  unit  of  dry  meas- 

ure. 

In  1836  Congress  authorized  the  Secretary  of  the  Treasury 

to  send  copies  of  all  weights  and  measures  adopted  as  stand- 
ards by  the  Treasury  Department  to  every  State  for  the  use 

of  the  State.  Some  of  the  States  had  already  legalized 
standards,  but  all  of  them  formally  adopted  these  standards, 
and  in  this  way  a  practically  uniform  system  of  weights  and 

measures  was  secured  throughout  the  Union.  Strictly  speak- 
ing, however,  each  State  has  its  own  standards,  and  these 

standards  are  entirely  independent  of  the  standards  of  the 
Office  of  Weights  and  Measures  at  Washington,  though  copies 
of  them. 

In  1866  the  metric  system  of  weights  and  measures  was 
made  legal  throughout  the  United  States,  and  the  pound  was 
defined  in  terms  of  the  kilogram  by  the  relation 

1  pound  avoirdupois  =  1/2.2046  kilogram. 

There  being  no  material  normal  standard  of  the  pound 
avoirdupois,  its  value  is  derived  from  the  standard  of  the 
kilogram  in  accordance  with  this  relation.     (Art.  280.) 

The  act  of  1873  reads:  "For  the  purpose  of  securing  a 
due  conformity  in  weight  of  the  coins  of  the  United  States 
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the  brass  troy  pound  weight  procured  by  the  Minister  of  the 
United  States  at  London  in  1827  for  the  use  of  the  mint  and 
now  in  the  custody  of  the  mint  at  Philadelphia  shall  be  the 
standard  troy  pound  of  the  mint  of  the  United  States,  con- 

formably to  which  the  coinage  thereof  shall  be  regulated." 
(h)  The  unit  force  is  naturally  taken  to  be  equal  to  the 

force  with  which  the  earth  attracts  the  unit  weight,  the 
standard  pound.     The  unit  force  is  named  a  pound. 

The  pound  is  called  the  gravitation  unit  of  force,  because 
its  value  depends  on  the  force  of  gravity.  This  force  is  not 

constant  over  the  earth's  surface,  but  varies  from  place  to 
place.  The  unit  of  force  defined  in  Art.  50,  being  entirely 
independent  of  the  force  of  gravity,  is  known  as  the  absolute 
unit  of  force. 

With  the  gravitation  system  of  units  the  abbreviation 
lb  will  be  used  to  indicate  mass  as  found  by  weighing,  and 
the  word  pound  to  indicate  force;  thus  we  speak  of  a  body 
weighing  w  or  M  lb,  a  force  of  F  pounds.  It  is  customary 
to  use  the  letter  w  or  W  instead  of  m  or  M  with  gravitation 
measures. 

66.  Relation  of  the  Units  of  Force. — The  fundamental 
units  of  distance,  time,  and  mass  or  weight  are  the  same  in 
both  the  absolute  and  gravitation  systems.  The  divergence 
occurs  at  the  derived  unit  force  and  related  quantities. 

A  relation  between  the  absolute  and  gravitation  units  of 
force  is  readily  found.     For 

1  grav.  unit  force  produces  in  unit  weight  g  units  accel. 
1  abs.  unit  force  produces  in  unit  mass  1  unit  accel. 

.*.  1  gravitation  unit  of  force  =  g  absolute  units  of  force. 
We  may  therefore  convert  absolute  measures  of  force  to 

gravitation  measures  by  dividing  by  the  value  of  g  at  the 
place  in  question,  and  vice  versa. 

Thus  a  force  acting  upon  a  body  weighing  W  and  causing 
an  acceleration  a  is  equivalent  to 

Wa      absolute  units  of  force, 

Wa/g  gravitation  units  of  force. 
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Similarly,  the  momentum  of  a  body  weighing  W  and  mov- 
ing with  velocity  v  is 

Wv      absolute  units  of  momentum, 

Wv/g  gravitation  units  of  momentum. 

The  energy  of  a  body  weighing  W  and  moving  with  veloc- 
ity V  is 

Wv^/2     absolute  units  of  energy, 

Wv^/2g  gravitation  units  of  energy. 

In  all  cases  g  is  not  to  be  regarded  as  a  divisor  of  either  one 
of  the  factors  W  or  a  or  v,  but  as  a  divisor  of  the  product 

Wa  or  Wv  or  Wv"^,  and  with  a  corresponding  change  of  unit 
when  the  division  is  performed.  Keeping  this  in  mind,  there 

can  be  no  confusion  in  the  use  of  g  in  passing  from  one  sys- 
tem of  units  to  another. 

Hence  rules  such  as  the  following  are  misleading:  ''The 
number  of  units  of  mass  in  a  body  is  found  by  dividing  the 
weight  in  pounds  by  the  value  of  g  at  the  place  where  the 

weight  is  determined.^' 
67.  Restatement  of  Newton's  Second  Law. — Comparing  Arts. 

50,  66,  it  is  evident  that,  using  gravitation  measures,  the  state- 
ment of  Newton's  second  law  would  be 

F=  Wa/g   (1) 

when  a  force  F  pounds  acting  on  a  body  weighing  W  lb  pro- 

duces an  acceleration  a  ft/sec";  or,  if  v  ft/sec  is  the  velocity 
acquired, 

Ft  =  Wv/g,   (2) 

where  Ft  is  the  impulse  in  second-pounds,  and  Wv/g  is  the 
momentum  in  second-pounds;  or,  if  s  ft  is  the  distance  passed 
over, 

Fs  =  Wvy2g   (3) 

where  Fs  is  the  work  doriein  foot-pounds,  and  Wv^/2g  is  the 
energy  acquired  in  foot-pounds. 
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Equation  (1)  may  be  written  in  the  differential  form  by 
putting 

a  =  d^s/dfj    or    a  =  v  dv/ds, 
68.  Weight, — With  the  gravitation  system  of  units,  which 

is  the  system  of  every-day  life  and  of  the  more  usual  com- 
mercial and  engineering  questions,  it  is  necessary  to  conform 

to  the  terms  sanctioned  by  prevailing  custom.  Here  there 
is  some  confusion.  Thus  the  term  weight  is  used  in  the 

double  sense  of  quantity  and  of  force* — or  rather  in  a 
triple  sense.  (1)  In  commerce  it  is  used  to  denote  quantity 
as  measured  by  the  beam-balance.  For  example,  when  we 
say  the  weight  of  a  barrel  of  flour  is  196  lb  we  indicate 
quantity.  This,  too,  is  the  legal  sense  of  the  term.  The 
Weights  and  Measures  Act,  1878,  in  defining  the  standard 

pound,  states  that  "the  weight  in  vacuo  of  the  platinum 
weight  declared  to  be  the  imperial  standard  shall  be  the  legal 
standard  of  weight,  and  of  measures  having  reference  to 
weight,  and  shall  be  called  the  imperial  standard  pound,  and 
shall  be  the  only  unit  or  standard  measure  of  weight  from 
which  all  other  weights  and  all  measures  having  reference  to 

weight  shall  be  ascertained.^' 
(2)  Again,  we  speak  of  the  pressure  of  a  weight,  lifting  a 

weight,  etc.  A  pressure  may  be  balanced  by  the  pressure  of 
a  weight.  The  law  of  action  and  reaction  is  the  formulation 

of  the  equality  of  pressure  and  counterpressure  in  the  dy- 
namical sense.  Thus  the  term  weight  is  extended  to  mean 

the  pull  or  force  of  the  earth  on  the  body.f  A  body  which 
weighs  W  lb  is  attracted  with  a  force  of  W  pounds. 

*  In  French,  poids  and  pesanteur. 
f  Some  writers  who  define  mass  as  "  quantity  of  matter"  introduce 

into  the  gravitation  system  of  units  the  term  mass  in  the  sense  of  quan- 

tity, and  restrict  th*e  term  weight  to  mean  the  force  with  which  the earth  attracts  the  body.  Thus  a  barrel  of  flour  has  a  mass  of  196  lb, 
and  its  weight  is  expressed  as  "  the  weight  of  196  lb,"  or  as  "196  lb 
weight."    The  weight  of  a  mass  of  1  cwt  is  112  lb  weight,  etc. 

The  term  mass,  however,  belongs  strictly  to  an  absolute  system  of 
units  only,  and  the  innovation  adds  confusion  to  a  system  already  con- 

fused enough.     See,  for  a  discussion  of  this  question,  Nature,  vols. 
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The  distinction  is  stated  by  Maxwell  [Theory  of  Heat,  p. 

80]  as  follows :  "  In  fact,  the  only  occasions  in  common  life 
in  which  it  is  required  to  estimate  weight  considered  as  a 
force  is  when  we  have  to  determine  the  strength  required  to 
lift  or  carry  things,  or  when  we  have  to  make  a  structure 
strong  enough  to  support  their  weight.  In  all  other  cases 
the  word  weight  must  be  understood  to  mean  the  quantity  of 
the  thing  as  determiiied  hy  the  process  of  weighi7ig  against 

'  standard  iveightsf  " 
(3)  The  term  is  also  used  to  denote  the  determinate  body 

employed  in  the  beam-balance  as  "a  weight,^'  "a  set  of 
weights,^^  etc. 

The  word  pound  has  a  similar  variety  of  meanings.  We 
speak  of  a  pound  weight,  a  pound  force,  and  of  a  certain 

body  itself  as  "a  pound.^' 
At  the  close  of  the  last  century,  in  different  parts  of  the 

world,  the  word  pound  was  applied  to  391  units  of  weight, 
and  the  word/oo^  to  292  different  units  of  length.  Not  only 
were  no  two  of  these  identical,  but  in  only  a  few  cases  were 
their  relative  values  known  with  anything  like  precision. 
Most  of  these  have  since  been  swept  away.     (Mendenhall. ) 

69.  It  is  to  be  clearly  understood  that  in.  mechanics  we  are 
compelled  to  recognize  two  classes  of  problems,  each  with  its 
nomenclature  and  units. 

To  the  problems  that  ordinarily  present  themselves  in  daily 

life — local  questions — the  units  of  the  gravitation  system  are 
exclusively  used.  But  many  questions  in  electricity  and 
magnetism,  in  physical  science  and  in  astronomy,  compel  us 
to  drop  local  considerations.  For  the  purpose  of  comparing 
measurements  the  need  of  standards  universal,  and  not  local, 
becomes  imperative.  This  was  indicated  by  Newton  and 
clearly  pointed  out  by  Gauss,  who  introduced  the  absolute 
system  of  units  (Arts.  50,  65). 

There  are  two  series  of  gravitation  units  in  use  in  Great 
Britain  and  the  United  States — the  British  and  the  metric. 

xxxvii-XLVi— particularly  a  paper  by  Prof.  Greenhill,  vol.  xlvi,  pp. 
247-253. 
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At  present  the  British  gravitation  system  is  in  most  common 

use.  The  metric  system,  however,  is  legalized  hy  both  coun- 
tries, and  is  the  only  system  legalized  by  the  United  States, 

the  British  system  having  been  "inherited  from  England 
with  the  common  law.^* 

The  absolute  system  of  units  is  founded  on  metric  meas- 
ures only — that  is,  the  only  absolute  system  that  has  obtained 

universal  recognition,  the  O.G.S.  system.     (See  Chapter  IX.) 
The  student  must  be  familiar  with  all  three  sets  of  meas- 

ures and  with  the  methods  of  passing  from  one  to  another. 
For  clearness  the  British  system  and  the  metric  system  are 
in  this  book  presented  separately.  So  far  the  British  system 
only  has  been  made  use  of.  But  at  this  point  Chapter  IX 
may  be  read  for  an  account  of  the  metric  system.  The 
metric  system  may  then,  if  thought  advisable,  be  introduced 
and  carried  side  by  side  with  the  British  system,  or  may  be 

used  altogether.  The  tables  on  pp.  364-367  have  been  ar- 
ranged to  give  a  synoptical  view  of  the  various  nomenclatures 

and  to  facilitate  conversions  from  one  system  to  another. 

Ex.  1.  A  force  of  5  pounds  acts  on  a  weight  of  40  lb.     Find  /\ 
the*  acceleration  produced.  Ans.   «  =  4  ft/sec^ 

2.  A  60-lb  shot  is  fired  with  a  velocity  of  1200  ft/sec.  Find 
the  impulse  communicated  by  the  powder.  / 

Ans,  2250  second-pounds. 
3.  A  16-lb  weight  falling  from  a  height  strikes  the  ground 

with  a  velocity  of  16  ft/sec.     Find  the  momentum  destroyed,  j/'l Ans,  8  second-pounds. 
4.  In  what  senses  is  the  term  weight  used  in  the  following 

statements  ? 

{a)  "  Every  person  who  sells  coal  in  quantities  of  less  than 
half  a  ton  in  weight  shall  keep  scales  and  weights  of  the  legal 

standard,  and  shall  weigh  such  coal  before  delivery.^^ — yilie 
Weights  and  Measures  Act.] 

(b)  "It  will  therefore  be  understood  that  the  expression 
'weight  of  the  earth ''  has  no  physical  meaning.  This  weight 
m  ay  be  anything.  It  is  an  indeterminate  quantity." —  [Nipher's 
Electricity y  p.  16.] 

5.  Explain  how  to  pass  from  gravitation  to  absolute  meas- 
ures of  force,  momentum,  and  energy;  and  vice  versa  (Art.  66). 
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6.  A  baseball  weighing  6^  oz  has  a  velocity  of  50  ft/sec. 
.    What  constant  force  must  the  catcher  apply  to  bring  it  to  rest 

in  1  ft  ?  Ans.   13.4  pounds. 
7.  A  baseball  has  a  horizontal  velocity  of  66  ft/sec.  An 

V  ̂   impulse  causes  it  to  travel  back  on  the  same  line  with  a  ve- 

^"^      locity  of  62  ft/sec.     Find  the  change  of  momentum. 
A71S.  11/8  second-pounds. 

8.  A  railroad  train  which  weighs  150  tons  and  has  a  ve- 
locity  of  60  miles/hour  is  brought  to  rest  in  half  a  minute 

^  by  the  action  of  the  brakes.     Find  the  average  force  exerted. 
Ans.  27,500  pounds. 

9.  A  4-lb  ball  is  moving  with  a  velocity  of  40  ft/sec  and 
in  10  sec  afterwards  it  is  moving  with  the  same  speed  i^  the 
opposite  direction.     What  force  has  acted  during  this  time  ? 

Ans.  1  pound. 
10.  A  50-ton  train  acquires  a  speed  from  rest  of  10 

miles/hour  in  5  minutes.  How  long  would  it  take  a  75-ton 
train  drawn  by  the  same  engine  to  acquire  a  speed  of  12 
miles/hour  ?  Ans.  9  minutes. 

11.  "  In  computing  the  energy  of  a  railroad  train  I  am  di- 
rected  to  use  the  formula  Wv''/2g.     Now  why  use  2g,  since 

^  that  quantity  is  exclusively  an  element  of  falling  bodies  ?  Is 
it  not  possible  to  compute  the  energy  by  a  process  entirely 

independent  of  gravity  considerations?^' — [Query  in  Sci, 
Amer.,  1893.] 

12.  The  66-ton  Canet  guns  made  (1890)  for  the  Japanese 
^  navy  use  projectiles  weighing  1034  lb  with  an  initial  velocity 

of  2262  ft/sec.     Find  the  velocity  of  recoil  of  the  gun. 
Ans.  17.7  ft/sec. 

13.  A  1000-lb  shot  strikes  a  target  directly  with  a  velocity  of 
700  ft/sec  and  rebounds  with  a  velocity  of  100  ft/sec.  Find 
the  measure  of  the  impulse.       Ans.  25,000  second-pounds. 

14.  A  ball  weighing  1  lb  falls  on  a  level  floor  with  a  velocity 
of  100  ft/sec  and  rebounds  with  a  velocity  of  76  ft/sec.  Find 
the  average  force  exerted  between  ball  and  floor,  supposing 
the  time  of  impact  to  be  1/100  sec.  Ans.  550  pounds. 

15.  A  man  who  weighs  150  lb  moves  from  the  bow  to  the 
J  stern  of  a  boat,  a  length  of  10  ft.     If  the  boat  weighs  225  lb 

find  how  far  it  will  have  moved  forward,  supposing  the  resist- 
ance of  the  water  not  taken  into  account.  Ans.  4  ft. 

16.  A  spring-balance  is  graduated  at  New  York.  Find  the 
true  weight  of  a  body  which  weighs  67  lb  in  this  balance  at 
London.  Ans.  67  lb  1  oz. 

[At  New  York  g  =  32.16,  at  London  y  =  32.19  ft/sec\] 
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17.  A  body  weighing  W\h  acted  on  by  a  force -F  pounds,  de- 
scribes the  distance  6^  ft  in  ̂   sec.     Show  that 

velocity  acquired        =  Fgt/  W  ft/sec, 

distance  passed  over  =  Fgf*  (2  W  ft, 
momentum  acquired  =  Ft  second-pounds. 

70.  Test  of  the  Laws  of  Motion. — A  laboratory  contrivance 
in  common  use  for  illustrating  the  laws  of  motion  is  known 

as  Atwood's  machine,*  the  essential  features  of 
which  are  as  follows  : 

Two  bodies  weighing  W^ ,  TT,  lb  are  fastened  /'""^ to  a  light  inextensible  thread,  which  passes  over 
a  pulley  mounted  so  as  to  oppose  the  motion  as 
little  as  possible.  The  effect  of  the  pulley  is  to 

change  the  direction,  but  not  to  alter  the  mag- 
nitude of  the  pull. 

Let  P  denote  the  pull  of  the  thread  expressed 
in  pounds.  The  one  body  If,  falls  and  the  other 
^2. rises  with  the  same  acceleration  a  along  the 
motion  of  the  thread,  and  therefore  of  the  same 

sign. 

The  force  causing  an  acceleration  a  ft/sec'  on  W,  lb  is 
W^  —  F  poundso 

W,-P=  W,a/g. 

The  force  causing  an  acceleration  a  ft/sec*  on  W^  lb  is 
P  —  W^  pounds. 

P  -  TF,  =  W,a/g. 

Hence,  eliminating  P, 

a  =  g(W,-  PF,)/(Tr,  +  W,)  ft/sec*. 

By  taking  If,  and  F",  of  considerable  magnitude,  but  nearly 
equal,  the  acceleration  a  may  be  reduced  to  so  small  a  quan- 

*  Invented  by  George  Atwood,  F.R.S.  (1746-1807),  Cambridge,  Eng- land. 
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tity  that  the  distance  s  fallen  through  in  a  given  time  t  is 
easily  observed  on  a  vertical  scale  attached.  The  time  of 

motion  may  be  taken  from  a  clock  or  from  a  pendiUam  at- 
tached to  the  apparatus  and  beating  seconds. 

The  manner  of  making  experiments  with  the  machine  will 
be  found  described  in  any  book  of  laboratory  physics. 

Ex.  1.  In  an  Atwood  machine  W^  =  21  oz,  W^  =  20  oz, 
and  it  was  observed  that  in  5  sec  the  weight  W^  descended 
9.5  ft.     Find  the  value  of  g  the  acceleration  of  gravity. 

A71S.  31  4-  ft/sec'. 
\Hint, — Equate  the  values  of  a  found  from  s  =  aty2  and 

The  result  would  seem  to  show  that  there  is  something 
wrong  either  with  the  apparatus  or  with  the  observed  values 
of  distance  or  time.  The  fact  is  that  on  account  of  friction 
and  the  resistance  of  the  air  the  distance  and  time  observed 
will  not  be  the  ideal  quantities  demanded  by  the  problem,  so 
that  no  very  exact  measure  of  g  can  be  made  with  this  ap- 

paratus. The  Atwood  machine  is  now  regarded  as  of  historic 
interest  mainly.] 

^  2.  In  an  Atwood  machine  find  the  pull  of  the  cord  if  the 
weights  are  3  lb  and  2  lb.  Ans.  2.4  pounds. 

3.  In  an  Atwood  machine  the  weights  are  P  -}-  Q  and 
F  —  Q.  Show  that  if  a  is  the  acceleration  of  motion,  then 
Pa  =  Qg. 

4.  In  an  Atwood  machine  the  weights  are  each  equal  to  31 
oz,  and  a  weight  of  2  oz  is  placed  on  one  of  them  and  removed 
after  it  has  fallen  2  ft.  Find  the  time  of  fall  and  the  dis- 

tance through  which  each  weight  will  move  in  the  next  second. 
Ans,  2  sec;  2  ft. 

>J  5.  In  an  Atwood  machine,  the  sum  of  the  weights  being 
given,  show  that  the  pull  of  the  thread  will  be  greatest  when 
the  weights  are  equal. 

v^  6.  In  an  Atwood  machine  the  pull  of  the  thread  is  an  har- 
monic mean  between  the  moving  weights. 

^  7.  If  the  thread  breaks  at  any  instant,  show  that  when  the 
ascending  motion  of  one  of  the  weights  ceases  the  otlier  will 
have  descended  through  three  times  the  distance  through 
which  the  former  has  ascended  in  the  interval 
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EXAMINATION. 

1.  A  body  is  set  in  motion  and  left  wholly  to  itself.  What 
is  the  nature  of  the  subsequent  motion  ? 

2.  What  is  meant  by  inertia  ? 

[The  tendency  of  a  body  to  continue  in  its  state  of  rest  or 
of  uniform  motion  in  a  straight  line.] 

3.  Give  illustrations  of  inertia. 

[Ex.  The  taking  up  of  water  by  a  moving  train  from  a  long 
trough  situated  between  the  tracks.] 

4.  Deduce  from  the  laws  of  motion  a  definition  of  force. 

Is  force  necessary  to  maintain  motion  ? 

5.  State  the  law  of  motion  which  gives  a  quantitative  state- 
ment as  to  the  effect  produced  on  a  particle  by  a  force. 

6.  A  constant  force  produces  a  uniform  acceleration. 
7.  How  may  force  be  measured  ? 
[By  deformation  caused,  as  of  a  spring;  by  acceleration 

contributed  (Art.  50);  by  opposing  it  to  the  pull  of  the  earth 
(Art.  65)  ] 

8.  Define  an  impulse.     What  is  the  unit? 
9.  State  the  parallelogram  of  momenta. 
10.  Prove  that  the  average  fprce  which,  acting  for  t  sec 

through  ?  ft  on  a  body  weighing  IT  lb,  is  required  to  produce 

a  velocity  of  v  ft/sec  is  Wv/gt,  or  Wv^ /^gl  pounds. 
If  the  body  is  moving  with  the  velocity  v  ft/sec,  what  force 

is  required  to  stop  it  ? 
11.  Show  that  force  may  be  defined  as: 
(1)  Eate  of  change  of  momentum  with  time. 
(2)  Rate  of  change  of  energy  with  distance. 

[These  questions  suggest  the  answer  to  a  question  keenly 
debated  soon  after  the  time  of  Galileo  as  to  whether  force 
was  to  be  regarded  as  proportional  to  the  velocity  produced 
or  to  the  square  of  the  velocity.  The  first  view  was  held 
by  Descartes  and  his  school;  the  second  by  Leibnitz.  The 

dispute  lasted  for  nearly  sixty  years,  until  D'Alembert  dissi 
pated  the  misunderstanding  by  showing  that  with  respect  to 
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time  force  is  propontional  to  the  velocity,  but  with  respect  to 
distance,  to  the  square  of  the  velocity.  Thus  F  =  mv/t,  or 
F  =  mvy2s.] 

13.  Compare  the  momentum  of  a  20-lb  shot  moving  with  a 
velocity  of  500  ft/sec  with  that  of  a  2-oz  bullet  moving  at  the 
rate  of  500  yds/sec.  A}is.  160  :  3. 

^      13.  What  velocity  will  the  force  of  gravity  give  to  a  pound 
weight  in  one  second  ?  Ans.  g  ft/sec. 

14.  "  One's  weight  is  given,  but  not — or  not  in  the  same 
way  and  degree — one's  velocity.  Weight  given,  it  is  only  by 
doubling  or  trebling  his  velocity  that  a  man  can  make  his 

momentum  double  or  treble  as  needed."  (Carlyle,  Friedricli 
the  Second.)     Explain. 

15.  Show  that  it  necessarily  follows  from  the  second  law  of 
motion  that  forces  can  be  represented  by  straight  lines. 

16.  What  are  the  tests  of  the  equality  (1)  of  two  forces,  (2) 
of  two  weights  ? 

^       17.  A  man  with  a  hod  on  his  shoulder  falls  oif  a  ladder. 
Find  the  pressure  on  his  shoulder  during  the  fall. 

18.  Describe  an  experiment  which  involves  the  principle 
of  the  second  law  of  motion,  and  show  how  the  probability  of 
the  law  may  be  inferred  from  it. 

^        19.  State  the  units  of  weight,  force,  momentum,  and  work 
in  the  gravitation  system. 

20.  "A  force  of  100  pounds  is  the  force  which  would  bal- 

ance a  weight  of  100  lb  if  acted  upon  by  gravity  only." 
21.  Would  it    be   advantageous  for  a  merchant   to  buy 

J      groceries  in  New  York  to  sell  in  Cuba  if  he  used  the  same 

spring-balance  in  both  places  ?  How  would  a  pair  of  scales 
answer  ? 

22.  A  force  of  10  pounds  acts  upon  a  weight  of  10  lb  for  10 

sec.     Find  the  momentum  acquired  in  second-pounds. 

23.  "When  you  weigh  a  thing  in  an  ordinary  balance,  do 

you  find  its  weight  ?  " 
24.  It  is  sometimes  said  that  we  reason  in  a  circle  in  stating 

the  foundations  of  dynamics,  defining  force  by  mass  and  mass 
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by  force.  We  say  in  effect :  "  Equal  forces  are  those  which 
produce  equal  accelerations  in  equal  masses;  equal  masses 
those  in  which  equal  accelerations  are  produced  by  equal 

forces.'* 
["  If  we  assume  constancy  of  mass  of  a  body  and  of  the 

physical  properties  say  of  a  spiral  spring,  there  is  no  diffi- 
culty in  getting  out  of  this  circle  of  definition.  These  are 

assumptions  we  are  entitled  to  make  as  the  result  of  experi- 
ence."] 

25.  Explain  the  theory  of  Atwood's  machine  for  illustrat- 
ing the  laws  of  motion. 

26.  Masses  may  be  compared  by  the  impulses  required  to 
produce  unit  velocity. 

27.  Weights  W\ ,  W\  lb  hang  at  the  ends  of  a  string  which 
passes  over  a  smooth  pulley.     Find  the  pull  of  the  string. 

Ans.  2  W,  WJ{  W,  +  W,)  pounds. 
28.  A  bucket  weighing  25  lb  is  let  down  into  a  well  with 

uniform  speed.     Find  the  pull  of  the  rope. 
Ans,  25  pounds. 

29.  "  Why  when  we  place  an  ax  upon  wood,  and  on  the 
ax  place  a  heavy  weight,  is  the  wood  but  slightly  indented; 
whereas  if  we  raise  the  ax  without  the  weight  and  strike 
upon  the  wood  the  wood  is  split,  although  the  falling  weight 

is  much  less  than  the  resting  and  pressing  weight  ?  "  (Aris- 
totle.) 

[In  Aristotle's  day  the  conception  that  force  was  measured 
by  mv  was  unsuspected. — Lewes.] 

30.  Describe  any  method  of  testing  whether  the  accelera- 
tion produced  by  gravity  is  uniform  ? 

31.  Which  of  Newton's  laws  implies  the  principle  of  the 
"  independence  of  forces  "  ? 

32.  What  authority  have  we  for  saying  that  the  same  force 
will  produce  the  same  change  of  motion  in  a  particle  whether 
the  particle  is  at  rest  or  in  motion  ? 

33.  Write  down  the  kinematical  equation  of  rectilinear 
motion . 

[dv/dt  =  a,    or    d^s/df  =  a.] 

2fY.  Vy"  ■;■•/'      r '-.':.- 
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34.  Write  down  the  dynamical  equation  of  rectilinear 
motion. 

[mdv/dt  =  F,    or    md's/dt'  =  F.] 
35.  Write  down  the  equation  of  motion  of  a  particle  acted 

upon  by  (1)  a  vertical  force  only,  (2)  a  horizontal  force  only. 
36.  When  is  a  train  said  to  be  going  at  full  speed  ? 
37.  If  A  pulls  against  B  and  action  and  reaction  are  equal, 

how  is  it  that  A  may  overcome  B  ? 
38.  Explain  the  kick  of  a  gun. 

39.  Explain  how  an  ice-boat  can  sail  with  greater  velocity 
than  that  of  the  wind  propelling  it,  assuming  that  the  ice 

offers  no  resistance  to  the  boat^s  motion. 
(1)  Consider  the  case  of  the  wind  abaft  the  beam. 
As  the  velocity  of  the  boat  increases  the  resistance  of  the 

air  on  the  sail  increases,  until  a  velocity  is  reached  when  the 
force  of  the  wind  behind  the  sail  is 

/D  balanced  by  the  reaction  of  the  air  in 
t>.       f/  .V     B  front  of  the  sail.     The  action  and  re- 

A  W^>v    /  ̂̂v^       action  balancing,  the  boat  moves  with 
Q^E.   'g     uniform  velocity  and  at  full  speed. Call  this  velocity  v. 

Let  AB  represent  the  keel  of  the  boat,  CD  the  sail,  FF  the 
direction  of  the  wind,  u  its  velocity,  and  /?,  y  the  inclinations 
of  sail  and  wind  to  the  keel  AFB. 

Let  a  velocity  —  v  he  imparted  to  both  boat  and  wind. 
The  boat  will  be  at  rest.  The  velocity  —  v,  combined  with 
the  velocity  u  of  the  wind,  will  give  the  velocity  direction  of 
the  apparent  wind  along  EB  (Art.  43),  which  must  be  paral- 

lel to  the  sail,  since  at  full  speed  the  sail  is  in  a  calm.     Hence 

v/u  =  sin  {y  —  /?)/sin  ft. 
For  a  given  velocity  of  wind  and  a  given  position  of  sail  u 

and  f3  are  fixed.  The  value  of  v  is,  then,  evidently  greatest 
when  sin  (y  —  /3)  is  greatest,  that  is,  when  sin  (y  —  ̂)  =  1, 
and  then  y  -  P=  90°,  or  /  =  90"  +  /3,  When  this  is  the case, 

v  sin  y^  =  u. 

Now  sin  /?  is  always  less  than  unity,  and  therefore 
V  >   11, 

or  the  velocity  of  the  boat  exceeds  that  of  the  wind. 
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Lefc  Vj  denote  the  component  of  the  boat's  velocity  in  the direction  of  the  wind.     Then 

v^  =  V  cos  (180  —  y) 
=  u  sin  (y  —  y5)  cos  (180  —  y)/^m  p. 

This  is  a  maximum  when  y  =  135°  +  fi/'Z,  and  then. 

v^  =  u(l  +  sin  /?)/3  sin  fi. 

Now  v^>  u 

if  1  +  sin  /?  >  2  sin  /?, 

or  if  sin  /?  <  1,     which  it  is. 

Hence  the  component  in  the  direction  of  the  wind  is 
greater  than  the  velocity  of  the  wind,  or  the  boat  can  run  to 
leeward  faster  than  by  sailing  directly  before  the  wind. 

If  the  wind  is  before  the  beam,  it  may  be  shown  in  a  similar 

manner  that  if  /?  <  19.5°  and  y  =  45°  +  /3/2,  the  component 
velocity  of  the  boat  in  the  direction  of  the  wind  is  greater 
than  the  velocity  of  the  wind,  or  it  is  possible  to  run  to  wind- 

ward faster  than  the  wind. 

40.  If  the  wind  is  nearly  abeam,  or  ;^=85°  say,  and  the  sail 
is  set  so  that  /3  =  20°,  show  that  v  =  2.6u, 

41.  An  ice-boat  runs  directly  before  the  wind.  What  is 
the  greatest  velocity  it  can  attain  ? 

42.  Which  of  Newton's  laws  corrects  the  opinion  held  by 
the  ancients  that  circular  motion  is  perfect  and  natural  9 
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CHAPTER  III. 

DYNAMICS  OF  A  PARTICLE. 

71.  Having  considered  the  geometrical  properties  of  motion, 
and  also  the  methods  of  measuring  force,  we  are  ready  to 

study  the  motion  produced  in  a  body  by  forces  of  given  mag- 
nitude. 

When  a  body  is  acted  on  by  forces,  experience  shows  that 
various  forms  of  motion  may  arise.  If  all  of  the  component 
particles  of  the  body  move  through  equal  distances  in  the 
same  direction,  the  motion  is  a  motion  of  translation.  The 
motion  of  any  particle  would  in  this  case  give  the  motion  of 
the  body.  In  a  motion  of  rotation  the  particles  do  not  move 
through  equal  distances  in  the  same  direction,  those  nearest 
the  axis  of  rotation  moving  the  shortest  distance.  If  a  body 
consisted  of  a  single  particle,  it  would,  in  its  rotation  about 
an  axis  passing  through  it,  remain  in  the  same  position.  We 

shall  therefore  exclude  rotation,  and  be  able  to  stud}^  the 
translation  of  a  body  if  we  consider  the  motion  of  a  single 
particle  only. 

72.  Composition  of  Forces.— The  number  of  forces  acting 
on  a  particle  may  be  one  or  more  than  one.  If  we  can  com- 

bine the  separate  forces  into  an  equivalent  single  force,  we 
can  reduce  all  cases  to  that  of  the  action  of  a  single  force. 
The  method  of  combining  forces  will  be  our  first  step,  and 
next  we  shall  consider  the  motion  of  a  particle  under  the 
action  of  forces. 

73.  Represe7itation  of  Force. — The  elements  of  a  force  that 
completely  determine  it  are : 

(1)  Its  magnitude  or  the  number  of  units  of  force  in  it; 
(2)  Its  position  or  line  of  action; 
(3)  Its  direction  along  the  line  of  action  or  its  sense. 
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A  force  acting  on  a  particle,  or  at  a  point  in  a  body,  may 
therefore  be  represented  by  a  straight  line  AB  in  the  line  of 

action  of  the  force,  the  length  of  AB  representing  the  magni- 
tude of  the  force,  the  direction  from  ̂   to  ̂   the  direction  of 

tlie  force,  and  the  point  A  the  point  of  application.  Each 
unit  of  length  of  AB  will  represent  unit  force.  But  the 
length  of  the  unit  is  arbitrary.  Hence  we  may  plot  forces  to 

any  scale  we  please,  as  1  pound  =  1  inch,  10  pounds  =  1 
inch,  etc. 

In  a  diagram  the  direction  of  a  force  is  conveniently  indi- 
cated by  an  arrow-head.     When  different  forces  act  in  the 

same  line,  their  directions  may  be  indi- 

cated by  the  signs  +  and  — .     Thus  a     — J  +  ^ 
force  of  3  pounds  acting  at  A  along  AB 

may  be  written  -f  2,  and  an  equal  force  at  A  along  ̂   0  would 
be  written  —  2.     The  choice  of  signs  is  of  course  arbitrary. 

74.  A  force  acting  on  a  body  may  be  considered  to  act  at 
any  point  in  the  body  in  the  line  of  action  of  the  force. 

Thus  let  the  force  F  act  at  A  in  the  direction  AC,  and  let 
^  be  a  fixed  point  in  the  line  of  action.     The  action  of  F  at 

A  has  an  equal  and  opposite  reaction  F^ 

A  B  c     ̂ *  ̂ f  according  to  Newton's  third  law. 
F       Fi   Fj  But  jPj  at  B  would  be  balanced  by  F^  at 

B,  equal  and  opposite  to  it,  and  therefore 
in  the  same  direction  as  F.     Hence  F  Q,t  A  may  be  replaced 
by  an  equal  force  F^  at  B. 

This  principle  is  known  as  the  transmissihility  of  force. 

Ex.  1.  On  a  scale  of  100  pounds  per  inch  what  force  would 
be  represented  by  a  line  20  inches  long  ? 

Ans.  2000  pounds. 
2.  If  a  force  of  P  pounds  be  represented  by  a  straight  line 

a  inches  long,  by  what  straight  line  will  a  force  of  Q  pounds 
be  represented  ?  A7is.  Qa/P  inches. 

3.  Find  the  force  equivalent  to  the  forces  3,  5,  —  7  pounds 
acting  downward  in  the  same  line. 

4.  The  forces  a  -{-!),  a  —  d,  2a,  in  the  same  line,  can  be 
made  to  balance.    How  ? 
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76.  Composition  of  Tiuo  Forces  {Grapliical  Method). — Sup- 
pose that  F^ ,  F^  are  two  forces  which  act  on  a  particle  lu. 

Let  Ahf  Ac  represent  the  accelerations  «, ,  a^  due  to  F^ ,  F^. 
The  resultant  a  of  these  accelerations  is 

represented   by  the  diagonal  Ad  of  the 
parallelogram  AMc  (Art.  30). 

But  F^  being  equal  to  wajg  and  F^ 
to  waJg,  may  be  represented  by  two  lines 
AB,  ̂  C  in  the  directions  of  the  accelera- 

tions ttj ,  «2  produced  by  them.  Complete  the  parallelogram 
ABDC  and  join  AD,     Then 

AB  :  BD  —  waJg  :  waJg 

=  Ah  :  M, 

and  therefore  Ad,  AD  coincide  in  direction. 

Also,  from  similar  triangles  Adb,  ADB, 

AD:DB  =  Ad:  db, 

or  AD  :  waJg  —  a  \  a^, 

that  is,  AD  =  tva/g. 

Hence  AD  represents  the  force  which  produces  the  acceler- 
ation a,  and  is  equivalent  to  the  two  forces  F^ ,  F^  represented 

hj  AB,A  C.  It  is  therefore  called  the 
resultant  force.     Hence 

If  two  forces  F^ ,  F^  acting  on  a  par- 
ticle A  (or  at  a  point  A)  be  represented 

by  two  lines  AB,  AC,  their  resultant 
R  is  represented  by  the  diago?ial  AD  of 

the  parallelogram  ABDC  constructed  on  AB,  AC  as  adja- 
cent sides. 

This  principle  is  called  the  parallelogram  of  forces. 
The  problem  of  finding  the  resultant  of  two  forces  is  by 

this  proposition  reduced  to  the  solution  of  a  geometrical 

problem. 
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The  parallelogram  of  forces  was  first  clearly  formulated  by 
Newton  (1642-1727).  It  is  a  direct  consequence  of  the  second 
law  of  motion,  and  may  be  employed  to  test  the  truth  of  the 
law.  The  principle  had  been  previously  employed  by  Ste- 
vinus  of  Bruges,  who  derived  it  from  the  inclined  plane. 

76.  Consider  in  the  parallelogram  figure  the  manner  in 
which  the  resultant  is  formed.  The  forces  F^,  F^,  drawn  to 
scale,  are  represented  by  the  lines  AB,  AC.  From  B  the  line 
BD  is  drawn  parallel  to  A  G,  and  from  C  the  line  CD  is  drawn 

parallel  to  AB.  The  diagonal  AD  ot  the  parallelogram  rep- 
resents the  resultant  in  magnitude,  direc- 

tion, and  position. 
This  construction  is  equivalent  to  the 

following :  Plot  the  forces  F^ ,  F^  as 
before.  From  B  draw  BD  parallel  and 

equal  to  AC.  Join  AD,  which  repre- 
sents the  resultant. 

Still  better,  by  breaking  the  figure  into  two  parts.  Let 
F^ ,  F^  be  the  forces  acting  at  0.     From  any  point  A  draw 

AB  to  scale  equal  and  par- 
allel to  F^.    From  B  draw 

^2-/  3^  /^      /     BD    to    scale    equal    and 
parallel  to  F^.  Join  AD, 
which  will  represent  the 
resultant  in  magnitude  and 

direction.  To  ̂ ndi  ii^  position :  We  know  that  it  must  pass 
through  0,  and  hence,  if  through  0  we  draw  a  line  equal  and 

parallel  to  AD,  we  have  R  in  magnitude,  direction,  and  po- 
sition. We  have  therefore  2i>  force  diagram  and  a  construction 

diagram  purely  geometrical.  In  simple  cases  there  is  no  con- 
fusion when  the  two  overlap  and  are  included  in  one  figure; 

but  in  compjicated  cases  it  is  better  to  keep  them  separate,  as 
we  shall  see  later  on. 

Ex.  1.  If  forces  of  10  pounds  and  12  pounds  act  on  a  par- 
ticle, find  the  greatest  and  least  possible  resultants. 

Ans,  22  pounds;  2  pounds. 
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2.  Show  by  a  drawing  that  the  value  of  the  resultant  de- 
creases as  the  angle  between  the  forces  increases. 

3.  ABCBBF  is  a  regular  hexagon.  Show  that  the  result- 
ant of  the  system  of  forces  represented  by  AB,  AD,  AE  is '^AD. 

4.  Two  equal  forces  F  act  at  an  angle  of  120°.     Find  R. Ans.  R  =  F. 
5.  Two  equal  forces  act  at  a  point.  Through  what  angle 

mnst  one  of  them  be  turned  that  their  resultant  may  be 

turned  through  a  right  angle  ?  Afis.  180°. 
6.  Show  by  a  drawing  that  the  resultant  of  P  and  P  -\-  Q 

acting  at  120°  is  equal  to  the  resultant  of  Q  and  Q -\-  P  act- 
ing at  120°. 7.  If  R  is  the  resultant  of  two  forces  P  and  Q,  and  8  the 

resultant  of  P  and  R,  show  that  the  resultant  of  /S'  and  0  is 2R. 

77.  We  may  express  the  resultant  R  of  two  forces  F^,  F^  in 
terms  of  the  forces  and  their  included  angle  0.     This  method 

P     of  finding  R  is  often  more  conven- 
ient than  the   graphical  method  of 

measuring  the  diagonal. 

IjQi  AB^F^,  AC=F^,  ABAC=e. 
Then  from  trigonometry  we  have  in 

the  triangle  ABD  [note  AC=  BD', 
A  BAG -^  A  J^Z)  =  180°] 

AD 

or 

AB'  -  2AB  .  BD  cos  ABD  -f  BD' 
=  AB'  +  2AB .  AC  cos  BAG  -j-  AG% 

R'  =  F^'  -f  2F^F,  cos  e  4-  F,% 

which  gives  the  magnitude  of  the  resultant. 

The  line  of  action  of  R  may  be  found  by  solving  the  tri- 
angle ABD  to  find  the  angle  BAD. 

Thus  from  D  let  fall  DF  perpendicu- 
lar to  AB,     Then  if  /  DAB  =  a,  we 

have 

tan  a  =  DF/(AB  +  BF) 
=  F,  sin  6/{F,  +  F,  cos  0). 

Hence  R  is  completely  determined. 
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The  special  case  of  the  forces  acting  in  directions  at  right 
angles  is  important.  The  parallelogram  becomes  a  rectangle, 
and  from  the  figure R-  =  f: + f:, 

i^na  =  FJF„ 

whence  the  resultant  is  determined. 

Ex.  1.  If  two  equal  forces  F,  F  are  at  right  angles  to  one 

another,  then  R  =  i^i/2  and  a  =  45°. 
2.  Find  the  resultant  of  two  equal  forces,  each  of  10 

pounds,  acting  at  an  angle  of  30°.  A7is.  19.3  pounds. 
3.  If  two  equal  forces  F,  Fare  inclined  at  an  angle  26,  then 

R  =  2F  cos  6^  and  Of  =  6. 
4.  Show  from  the  general  formula  that  the  value  of  R  in- 

creases as  the  angle  between  the  forces  diminishes,  and  vice 
versa, 

5.  When  the  angle  BACis  0°  or  180°  the  forces  are  in  the 
same  straight  line,  and  the  formula  for  finding  R,  if  correct, 
should  reduce  to  the  sum  or  difference  of  the  forces.  Exam- 

ine, and  see  if  it  does. 

6.  Find  the  resultant  of  P  and  P  +  Q  acting  at  120°,  and 
also  the  resultant  of  Q  and  Q  -{-  P  acting  at  120°. 

Ans.  R  =  VP'-{-  PQ-\-  Q'  in  both  cases. 
7.  The  resultant  of  two  forces  P  and  Q  at  right  angles  to 

each  other  is  E.  If  each  force  is  increased  by  E,  show  that 
the  new  resultant  makes  with  R  an  angle 

tm-' (P  -  Q)/{P  +  Q -{- R). 
8.  The  resultant  R  ot  P  and  Q  is  equal  to  P.  If  P  is 

doubled,  show  that  the  resultant  R^  of  2P  and  Q  is  at  right 
angles  to  Q,  and  find  its  magnitude  in  terms  of  P  and  Q, 

78.  Composition  of  More  than  Two  Forces  {Graphical 

Method). — Let  F^,  F^,  F^,  F^  represent  forces  acting  on  a 
particle  at  0;  it  is  required  to  find  their  resultant. 

Following  the  method  of  Art.  76,  from  a  point  A  we  draw 
AB  equal  and  parallel  to F^,BC equal  and  parallel  to F^ ,  CD 
equal  and  parallel  to  F^,  DE  equal  and  parallel  to  F^.  Join 
AE^  which  will  represent  the  resultant  in  magnitude  and  di- 

rection. For  join  AC,  AD.  Then  ̂  C  represents  the  result- 
ant of  F^,  F^  in  magnitude  and  direction;  AD  the  resultant 
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of  AO  and  F^,  that  is,  of  I\y  I\,  F^\  and  ̂ ^  the  resultant 
of  AD  and  F^,  that  is,  of  F^,  F^,  F,,  F^, 
AE  represents,  therefore,  the  resultant  of  all  the  forces  at 

0  in  magnitude  and  direction.     From  0  in  the  force  diagram 

draw  a  line  R  equal  and  parallel  to  AE.  Then  will  7?  repre- 
sent the  resultant  of  F^,  F^,  F^,  F^  in  magnitude,  direction, 

and  position,  and  be  completely  determined  (see  Art.  73). 
We  might  have  combined  the  two  diagrams,  or  we  might 

have  derived  the  resultant  directly  from  the  parallelogram  of 
forces,  as  indicated  in  the  figures  below. 

Notice  that  in  any  method  we  may  take  the  forces  in  a7iy 
order  and  we  shall  always  find  the  same  value  of  the  result- 

ant AE.     Test  this  by  making  drawings  to  a  large  scale. 

Ex.  1.  Three  forces  of  6,  8, 10  pounds  act  at  angles  of  120° 
with  each  other.  Find  their  resultant.  Draw  to  scale  by 
different  methods,  and  compare  results.  Vary  order,  and 
compare. 

2.  Forces  of  1,  2,  3,  4,  5,  6  act  at  angles  of  60°.  Find  7?. Test  as  in  Ex.  1. 
3.  Forces  of  20,  20,  21  pounds  act  at  a  point.  The  angle 

between  the  first  and  second  is  120°,  and  between  the  second 
and  third  30°.     Find  E.  Ans.  29  pounds. 

4.  Is  it  necessary  that  force  and  construction  diagrams  be 
drawn  to  the  same  scale  ? 
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5.  In  the  construction  diagram  the  lines  are  drawn  parallel 
to  the  forces.  Would  it  be  allowable  to  draw  them  perpen- 

dicular to  the  forces,  or  inclined  at  any  (the  same)  angle,  d 
for  example  ?     Test  by  a  drawing. 

6.  If  the  forces  are  in  the  same  straight  line,  what  does  the 
force  polygon  become  ?  what  the  construction  diagram  ? 

7.  0  is  any  point  in  the  plane  of  the  triangle  ̂ ^(7,  and 
D,  E,  F  are  the  middle  points  of  the  sides.  Show  that  the 
system  of  forces  OA,  OB,  0Ci8  equivalent  to  the  system  OD, 
OB,  OR 

79.  Resolution  of  Forces. — By  means  of  the  parallelogram 
of  forces,  a  force  B  can  be  found  equivalent  to  two  forces 

F^,  i^3,  acting  on  a  particle^.     Conversely,  i 

the  force  R  acting  at  A  may  be  resolved  into      i        "     "P^ 
two  component  forces  F^,  F.^  acting  at  A,  by  ̂       ̂ f^  j 
constructing  on  AD  {  =  E)  slb  diagonal  a  par-    ly^         j 
allelogram,  and  taking  the  sides  AB,  AC  to  ̂   f,       b 
represent  the  components.     The  problem  is 
similar  to  that  already  discussed  in  Art  20. 

When  the  two  components  are  at  right  angles  their  values 
may  readily  be  found  analytically.     For  example,  to  resolve 

a  force  R  represented  by  the  line  AD  into 

  .       ̂ ^Q  components  X,  Y  at  right  angles  along 

r/^     AB,  AC. 
y^  Complete  the  rectangle  AD, 
— — X   B      ̂ ^^  components  are  represented  by  the 

sides  AB,  AC ot  this  rectangle.     Then 

X  =  AB  =  AD  cos  e  =  R  cos  f^; 

Y  =  AC  =  AD  cos  (90  -  6)  =  R  cos  (90  -  6)  or  R  sin  e. 
Hence  the  rectangular  componeiit  {or  resolved  part)  of  a 

force  R  in  a  given  direction  is  equal  to  the  product  of  the 
force  and  the  cosine  of  the  angle  between  the  force  and  the 
given  direction. 

As  a  check, 

X'  +  Y'  =  R'  cos^  d  +  R'  sin''  6 
=  R\ 

which  is  also  evident  from  the  figure. 
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Examples  to  de  Solved  Graphically, 

1.  If  a  force  is  resolved  into  two  components,  prove  that 
the  greater  component  always  makes  the  smaller  angle  with 
the  force. 

2.  Eesolve  a  force  of  20  pounds  into  two  components  each 

of  which  makes  an  angle  of  60°  with  it. 
Ans.  Each  =  20  pounds. 

3.  If  two  forces  acting  at  a  point  be  represented  in  magni- 
tude and  direction  by  the  diagonals  of  a  quadrilateral,  their 

resultant  will  coincide  with  that  of  the  forces  represented  by 
two  opposite  sides. 

4.  Explain  the  boatmen's  saying  that  there  is  greater 
"power''  in  a  horse  hauling  a  canal-boat  with  a  long  rope 
than  with  a  short  one.     Is  the  same  true  of  a  steam-tug  ? 

5.  Discuss  the  action  of  the  wind  in  propelling  a  sailing- 

[Let  ABhe  the  keel,  CD  the  sail.  Let  the 
force  of  the  wind  be  represented  in  magni- 

tude and  direction  by  EF.  The  component 
GF  of  EF,  perpendicular  to  the  sail,  is  the 
eifective  component  in  propelling  the  ship; 
the  other  component,  EG,  parallel  to  the 
sail,  is  useless.  But  GF  drives  the  ship 
forward  and  sidewise.  The  component 
GH  of  GF,  perpendicular  to  AB,  produces 

side  motion  or  leeway,  and  the  other  component,  HE,  along 
the  keel  produces  forward  motion  or  headway.] 

6.  Discuss  the  action  of  the  rudder  of  a  vessel  in  counter- 
acting leeway. 

7.  Show  that  one  effect  of  the  action  of  the  rudder  is  to 

diminish  the  vessel's  motion. 

Mi/Bxamples  to  he  Solved  Analytically. 

8.  Find  the  rectangular  components  of  a  force  10  when 

e  =  60°,  90°,_120°,  180°,  240°,  270°, ^00°.  Ans.  5,  5  V^;_0, 
10;  -  5,  5  VZ;  -  10,  0;   -5,-5  V3;  0,  -  10;  5,-5  VK 

[Draw  a  figure  for  each  case,  and  explain  the  sign  of  the 
result.] 
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9.  Resolve  a  force  of  10  pounds  into  two  equal  components,/? 

one  of  them  making  an  single  of  45°  with  the  force. Ans.  7  pounds,  nearly. 
10.  The  force  on  a  smooth  surface  from  a  N.  E.  wind  of 

strength  F  is  equal  to  the  force  from  a  north  wind  of  strength  ̂  

F/V2, 
11.  Find  that  rectangular  component  of  a  force  of  10 

pounds  which  makes  an  angle  of  90°  with  the  force. 
12.  The  pull  on  the  rope  of  a  canal-boat  is  100  pounds  and  j? 

the  direction  of  the  rope  makes  an  angle  of  60°  with  the  par-  *^ 
allel  banks.     Find  the  force  urging  the  boat  forward. 

A71S.  50  pounds. 
13.  Show  that  the  components  of  a  force  F  in  two  direc- 

tions making  angles  of  30°,  45°  with  it  on  opposite  sides  are  / 
2  F/{1  +  V3)  and  V2F/(l  +  V3). 

If  the  angles  are  /?,  y,  show  that  the  components  are 

i^sin  j3/sm  {J3  -\-  y)  and  i^sin  ;^/sin  {P  -{-  y). 
14.  In  a  direct-acting  steam-engine  the  piston-pressure  P 

is  equivalent  to  P  tan  6  perpendicular  to  its  line  of  action 
and  P  sec  6  along  the  connecting-rod,  6  being  the  angle  of 
inclination  of  the  connecting-rod  to  the  line  of  action  of  the 
piston. 

15.  If  F  be  the  force  of  the  wind,  and  /?,  y  the  inclinations 
of  wind  and  sail  to  the  keel  AB  of  a  boat,  then  (see  ex.  5) 

headway  force  =  i^sin  {y  —  jS)  sin  y, 
leeway  force     =  F  ̂ m  {y  —  ̂ )  cos  y. 

16.  Show  that  the  headway  force  is  greatest  when  the  sail 
bisects  the  angle  between  the  boat  and  the  wind. 

'W^jOomjoosiHmuiSiFuxcas^  {Anali/tical  Method). — The  ana- lytical method  of  resolving  a  force  into  its 

components  leads  us  to  a  method  of  combin- 
ing forces  which  is  often  more  convenient 

than  the  graphical  method  given  in  Art.  78. 
The  two  methods  may  be  used  to  check  one 
another. 

Take  three  forces  F^,  F^,  F^,  acting  on 
a  particle  0.  Through  0  draw  any  two 

lines  OX,  0  Y  at  right  angles  to  each  other,  and  let  6^, ,  8^,  6^ 
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denote  the  angles  which  the  directions  of  F^,  F^,  F^  make 
with  OX.     The  components  of 

F^  SLYe  F^  cos  6^  along  OX,  F^  sin  6^  along  OY; 
F^  are  F^  cos  6^  along  OX,  F^  sin  6^  along  OY; 

F,  are  F^  cos  ̂ 3  along  OX,    F^  sin  6^3  along  OY. 

The  components  along  OX  being  in  the  same  straight  line, 
may  be  combined  by  addition  into  a  single  force  X;  that  is, 

F,  cos  0^  +  F,  cos  6,  +  F^  cos  6*3  =  X.     .     .     (1) 

Similarly,  the  components  along  OY,  being  in  the  same 
straight  line,  may  be  combined  into  a  single  force  Y,  or 

F,  sin  6^  +  F,  sin  ̂ ,  +  F,  sin  6^3  =  F.     .     .     (2) 

Hence  the  original  forces  are  equivalent  to  two  forces  X,  Y 
acting  in  directions  OX,  OF  at  right  angles  to  each  other. 
The  resultant  of  X,  Y  must  therefore  be  the  resultant  of  the 

original  forces.  Call  it  E,  and  let  d  be  the  angle  it  makes 
with  the  axis  of  X;  then 

Rcosd  =  X,        Esin  0=  Y.      ...     (3) 

Square  and  add  (remembering  that  cos"  0  +  sin'^  ̂   =  1),  and 

E  =  VX'  +  F',   (4) 

which  gives  the  magnitude  of  the  resultant. 
Divide  the  second  of  equations  (3)  by  the  first,  and 

tan  6  =  Y/X,      ......     (5) 

which  gives  the  direction  of  the  resultant. 
Hence,  since  the  resultant  acts  at  0,  it  is  known  in  position, 

magnitude,  and  direction,  and  is  completely  determined. 
81.  If  we  equate  the  values  of  X,  Y  in  equations  (1),  (2), 

(3),  we  find 

i2  cos  <9  =  F,  cos  <9,  +  F^  cos  6^  +  F^  cos  6^-, 
E  sin  e  =  F,  sin  6^  +  F^  sin  6^  +  F^  sin  0^. 
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Now  OX,  OF  are  any  two  rectangular  axes.     Hence 

The  component  in  any  direction  of  the  resultant  of  a  num- 
ber of  forces  is  equal  to  the  sum  of  their  compone7its  in  the 

same  direction. 

This  principle  may  readily  be  proved  geometrically. 

For  let  i^,,  F^y  i\  be  three  forces  acting  at  0.  Find  the 
resultant  R[=  AD)  by  constructing  the  polygon  ABCD 
(Art.  78). 

Let  OX  be  the  line  along  which  the  forces  are  to  be  re- 
solved. From  A,  B,  C,  D  let  fall  perpendiculars  on  OX, 

Then  evidently 

ad  —  ab  -\- he  -\-  cd. 

But  ad  is  the  component  along  OX  oi  R,  ah  of  F^ ,  he  of 
jP,,  and  cd  of  F^.     Hence  the  proposition  is  proved. 

Ex.  1.  Three  forces  of  6,  8,  10  pounds  act  on  a  particle  at 

angles  of  120"  to  each  other.  Find  the  resultant  in  magni- 
tude and  direction.     (Solved  graphically,  p.  78.) 

Since  the  direction  of  OX  is  arbitrary,  we  may  take  it  along 
one  of  the  forces. 

{a)  Take  OX  to  fall  along  the  force  6. 
Then 

X=  6  cos  0°  +  8  cos  120°  +  10  cos  240° 
=  6  -  8  cos  60°  —  10  cos  60° --3; 

r  =  6  sin  0°  +  8  sin  120°  4-  10  sin  240° 
=  6  sin  0°  +  8  sin  60°  -  10  sin  60° =  -  V3. 

.-.  i?=  i/9  +  3  =  21/3; 

tan  ̂   =  _  i/3/  -  3  =  1/1/3     and     d  =  30°  or  210°, 
or  the  resultant  is  perpendicular  to  the  force  8.     Plot  it. 



84  DYNAMICS   OF   A   PARTICLE.  [§  83 

(b)  Take  OX  along  the  force  8.     Then 

X=  8  cos  0°  -  6  cos  60°  -  10  cos  60° 
=  0; 

F  =  8  sin  0°  -  6  sin  60°  +  10  sin  60° =  2^3. 

/.     i?  =  i/0~+T2  =  2|/37as  before; 

tan  0  =  2^/3/0  =  cx)     and     6  =  90°, 
or  the  resultant  is  perpendicular  to  the  force  8,  and  in  the 
same  position  relative  to  the  forces  as  before. 

(c)  Take  OX  along  the  force  10  and  solve. 
2.  The  forces  of  2, 1, 4  pounds  are  inclined  to  the  axis  of  X 

at  angles  of  0°,  60°,  and  180°.  Find  the  inclination  of  their 
resultant  to  the  same  axis.  A71S,  150°. 

3.  Two  forces  of  1  and  2  pounds  act  at  an  angle  of  120°. 
Show  that  the  direction  of  the  resultant  is  perpendicular  to 
that  of  the  smaller  force. 

4.  ABCBFFis  a  regular  hexagon.     Show  that  the  result- 
ant of  the  forces  represented  by  AB,  AC,  AB,  AE,  AF  \^    v 

GAB. 

5.  A  particle  placed  at  the  centre  of  an  octagon  is  acted  on 
by  forces  in  directions  tending  to  each  of  the  angles  of  the 
figure  and  of  magnitudes  taken  in  order  of  4,  6,  8, 10, 12, 14, 
16, 18  pounds.  Find  the  magnitude  of  the  resultant  and  the 
angle  it  makes  with  the  force  8. 

jins.  —  8  /4  +  2V^  pounds;  tan"^  {V2  —  1). 
6.  Three  smooth  pegs  are  driven  into  a  vertical  wall  and 

form  an  equilateral  triangle  whose  base  is  horizontal.  Two 
equal  weights  of  10  lb  are  connected  by  a  thread  which 
is  hung  over  the  pegs;  find  the  pressure  on  each  peg. 

Ans,  10  V'S,  10  a/2  -  i^S" pounds. 7.  Three  forces  P,  Q,  R  act  at  angles  a,  fi,  y.  Find  their  ^ 
resultant.  nS^ 

Ans.  ̂ (P'-{-Q'-{-E'+2QR  cos  a+2RPcos  /3+2PQ  cos  y).     ̂     ̂ 
82.  We  have  now  the  means  of  combining  the  separate 

forces  that  act  on  a  particle  into  a  single  force  producing  the 
same  motion  as  the  separate  forces.  If  the  forces  act  so  as 
to  neutralize  each  other,  this  single  force  vanishes  and  the 
condition  of  the  particle  as  to  rest  or  motion  will  remain 
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unchanged.  If  at  rest  before  the  forces  begin  to  act  it  will 
remain  at  rest;  if  in  motion,  it  will  continue  to  move  with 

uniform  velocity  in  a  straight  line  (Art.  46). 
Thus  suppose  a  particle  0  acted  on  by  a  number  of  forces 

whose  resultant  is  R,  If  a  force  equal  and  opposite  to  R 
be  applied,  the  resultant  of  the 

forces  now  acting  on  the  par- 
ticle is  7iil  and  the  acceleration 

produced  is  nil.  The  forces  are 

said  to  equilibrate  one  another,  aiid  the  particle  is  said  to  be 
in  equilibrium. 

A  particle  is  in  equilibrium  so  long  as  its  condition  of  rest 
or  motion  remains  unchanged.  Equilibrium  therefore  does 
not  imply  rest,  but  rest  implies  equilibrium.  That  branch  of 

dynamics  which  considers  the  circumstances  for  which  equi- 
librium is  possible  is  called  Statics. 

When  the  forces  do  not  equilibrate  an  acceleration  arises 

from  the  resultant  force,  and  the  particle  has  a  motion  com- 
pounded of  the  motion  in  its  original  path  and  that  due  to 

the  resultant.  That  branch  of  dynamics  which  considers  the 
circumstances  under  which  change  of  motion  takes  place  is 
called  Kinetics. 

STATICS   OF   A   PARTICLE. 

83.  The  condition  of  equilibrium  of  forces  acting  on  a  par- 
ticle is,  in  general  terms,  that  the  resultant  of  these  forces 

shall  be  zero,  or,  in  other  words,  that  any  one  of  the  forces 
shall  be  equal  and  opposite  to  the  resultant  of  the  others.  In 
most  cases,  however,  more  specific  rules  are  necessary.  The 
more  important  of  these  we  shall  now  consider. 

84.  A.  Equilihrium  under  Three  Forces — Lami's  Theorem, 
— Let  three  forces  F^,F^,  F^  not  in  the  same  straight  line  act 
on  the  particle  A.  Let  F^ ,  F^  be  represented  by  AB,  A  G,  re- 

spectively. Find  the  resultant  {R—  DA)  of  i^, ,  F^  by  com- 
pleting the  parallelogram  ABDC,  For  equilibrium  to  exist 

R  and  F^  must  be  equal  and  opposite. 
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Now  in  the  parallelogram  the  side  DCis  equal  and  paral- 
lel, to BA.  Hence  the  sides  DC,  CA,  AD  of  the  triangle  /> (7^ 

are  proportional  to  the  forces. 

Notice  that  the  directions  of  the  forces  are  the  same  way 
round  the  triangle  DC  A.  Thus  if  the  first  force  is  in  the 
direction  DGj  the  second  must  be  in  the  direction  CA,  and 
the  third  in  the  direction  AD.  Notice  also  that  the  ratios  of 

the  sides  of  the  triangle  are  the  same  as  those  of  any  similar 
triangle.     Hence 

If  three  forces  in  the  same  plane  acting  on  a  particle  keep 
it  in  equilibrium  they  may  he  represented  in  magnitude  and 
directio7i  {hut  not  in  position)  hy  the  three  sides  of  a  triangle 
taken  the  same  way  round. 

The  converse  of  this  proposition  is  known  as  the  triangle 

offerees. 

By  means  of  the  triangle  DC  A  we  may  find  a  relation  be- 
tween the  forces  and  their  included  angles.  If  a,  p,  y  be 

the  angles  between  the  directions  of  the  forces,  then  in  the 

triangle  the  angles  are  evidently  180°  —  a,  180°  —  /?,  180°  —  ;/; 
and  since  the  sides  of  a  triangle  are  as  the  sines  of  the  oppo- 

site angles, 

J)(7/sin  (180°  -  a)  =  O^/sin  (180°  -  fi) 
=  AD/sin  (180°  -  y), 

or 

FJain  a  =  FJa'm  /3  =  i^ysin  y\ 
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that  is,  when  three  forces  acting  on  a  particle  keep  it  in  equi- 
librium,  each  is  proportional  to  the  sine  of  the  angle  between 
the  directions  of  the  other  two  forces. 

This  is  known  as  Lami's  Theorem.  It  was  first  published 
by  Father  Lami  in  his  Mecanique  in  1687,  the  same  year  that 

Newton's  Principia  appeared. 
Illustration. — Take  a  piece  of  board  and  drive  in  three 

smooth  pegs,  A,  B,  C,  or  place 
three  pulleys  at  A,  B,  C.  Eun 
strings  over  the  pegs,  and  knot 
together  as  at  0.  Suspend 
weights  from  the  strings.  Draw 
lines  along  the  strings  on  the 
board,  and  plot  the  triangle  ahc 
with  sides  parallel  to  these  lines. 
The  sides  of  this  triangle  will 
be  found  to  be  proportional  to 
the  weights.  Thus  make  the 
weights  3,  4,  5  oz.,  and  it  will  be  found  that  one  angle  of  the 

triangle  ahc  will  be  90°. 
Ex.  1.  If  two  forces  acting  at  a  point  are  represented  in 

magnitude  and  direction  by  two  sides  of  a  triangle,  show  that 
the  third  side  represents  the  resultant. 

2.  Can  forces  of  5,  6, 13  pounds  acting  on  a  particle  keep  it 
at  rest  ? 

What  is  the  least  force  that  will  produce  rest  ? 
Ans.  2  pounds, 

3.  If  three  forces  acting  at  a  point  are  represented  by  the 
sides  of  a  triangle  taken  the  same  way  round,  show  that  they 
equilibrate.     [Triangle  of  forces.] 

4.  If  three  forces  acting  at  a  point  equilibrate,  show  that 
they  may  be  represented  by  the  three  sides  of  a  triangle  per- 

pendicular to  the  directions  of  the  forces  and  taken  the  same 
way  round. 

5.  Three  forces  acting  at  a  point  are  determined  by  the 
three  median  lines  of  a  triangle;  show  that  they  equilibrate. 

6.  Show  that  any  force  may  be  resolved  into  three  forces 
of  given  magnitude,  the  direction  of  one  of  these  forces  being 
assumed. 

7.  Three  forces  P,  Q,  R  acting  on  a  particle  equilibrate. 

The  angle  between  P  and  Q  is  90°,  between  Q  and  R  120°; show  that 
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85.  B.  Equilibrium  under  any  Forces  {Graphical  Con- 
dition).— If  in  the  force  diagram  (Art.  78)  tlie  direction  of 

R  is  reversed,  the  particle  0  will  be  in  equilibrium  under  the 

action  of  F^,  F^,  F^^F^,  8,  where  /S^ is  a  force  equal  and  op- 
posite to  R,  Indicate  the  directions  of  these  forces  on  the 

construction  diagram  and  notice  that  they  are  the  same  way 
round.  Notice,  too,  that  ABCDEA  is  a  closed  polygon. 
Hence 

If  any  mimber  of  forces  in  the  same  plane  acting  on  a  par- 
ticle heep  it  in  equilibrium,  they  may  he  represented  in  mag- 

nitude and  direction  by  the  sides  of  a  closed  polygon  taken 
the  same  way  round. 

This  is  the  graphical  condition  of  equilibrium  of  forces 
acting  on  a  particle. 

,^\[\v^Ex.  1.  A  BCD  is  a  quadrilateral^  and  0  the  point  of  inter- 
v^ section  of  the  lines  bisecting  the  opposite  sides.     Show  that 

forces  represented  by  OA,  OB,  OC,  OD  acting  at  0  equili- 
brate. 

2.  ABCDEF  is  a  regular  hexagon.  Show  that  equal  forces 
acting  along  AB,  CD,  EF,  AF,  ED,  CB  equilibrate. 

3.  If  forces  acting  at  a  point  are  represented  by  the  sides 
of  a  polygon  taken  the  same  way  round,  show  that  they  equil- 

ibrate.    [Polygon  of  forces:  converse  of  Art.  85.] 
4.  If  four  forces  act  at  a  point  and  are  represented  in  magni- 

tude and  direction  by  the  sides  of  a  quadrilateral,  either  they 
keep  the  point  at  rest  or  have  a  resultant  which  is  double  a 
force  represented  by  one  of  the  sides  or  one  of  the  diagonals, 
or  four  times  the  line  joining  the  middle  points  of  the  diagonals. 

A^    86.  C.  Equilibrium  under  any  Forces  (Analytical   Con- 
^    dition). — The  analytical  equivalent  of  Art.  85  may  be  deduced 

from  Art.  80.     For  if  the  forces  acting  at  0  equilibrate,  the 

resultant  R  must  be  equal  to  zero.     Hence 

which,  since  X'  and  F'  are  both  positive,  can  only  be  satis- 
fied by  X=  0,  r  =  0,  that  is,  by 

F,  cos  ̂ ,  +  i^,  cos  ̂ ,  +  .  ,  o  =  0, 
F,  sin  6^,  -f  i^,  sin  /9,  +  . . .  =  0. 
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Hence  if  any  number  of  forces  in  the  same  plane  acting  on 

a  particle  keep  it  in  equililrium,  the  siims  of  the  components 

of  the  forces  along  any  tioo  straight  lines  at  right  angles  to 
each  other  through  the  particle  are  equal  to  zero. 

These  are  the  analytical  conditions  of  j 
equilihriimi  when  any  number  of  forces 
act  on  a  particle. 

Ex.  1.  A  rod  AB  whose  weight  may  be 
neglected  is  hinged  at  A,  and  supports 
a  weight  W  at  B.  It  is  held  up  by  a 
thread  BC  fastened  to  a  fixed  point  G 
vertically  above  A.  If  AB  is  horizontal 

and  angle  ABC  =  30",  find  the  pull  T^ 
of  the  thread,  and  the  thrust  T^  along  the  rod  AB. 

[The  point  B  is  in  equilibrium  under  tlie  forces  Tj, 
We  have  therefore  the  two  relations,  resolving  along  a  hori- 

zontal line  through  B  as  BA, 

T^  cos  0°  -  T^  cos  30°  -  TTcos  90°  =  0, 

and  along  a  vertical  line  through  B  o,^  BW, 

T^  sin  0°  -  T^  sin  30°  +  TTsin  90°  =  0. 

Solving  these  equations. 

T„,  W. 

T^  =  V3  Tf.  ] 

2.  Solve  Ex.  1  by  Lami's  theorem. 
3.  A  thread  whose  length  is  21  is  fastened  at  two  points  A}  wNj/ 

and  B  in  the  same  horizontal  and  distant  I  from  each  other.  ̂   '^ The  thread  carries  a  smooth  ring  of  weight  W,    Find  the  pull 

of  the  thread.  Ans.   W/  Vs.'' 4.  In  a  canal  with  parallel  banks  a  boat  is  moored  by  two 
ropes  attached  to  posts  on  the  banks.  If  the  ropes  are  in- 

clined at  angles  of  30°,  60°  to  the  banks,  compare  the  pulls  in 
them,  both  ropes  being  in  the  same  horizontal  plane. 

Ans.  1  :  Vs. 
5.  A  man  weighing  160  lb  rests  in  a  hammock  suspended 

by  ropes  which  are  inclined  at  30°  and  45°  to  two  vertical 
posts.     Find  the  pull  in  each  rope. 

Ans.  117.1  and  82.8  pounds. 
/ 
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6.  A  man  weighing  160  lb  is  seated  in  a  loop  at  the  end  of 
a  rope  10  ft  3  in  long,  the  other  end  being  fastened  to  a  point 
above.  What  horizontal  force  will  pnll  him  2  ft  3  in  from 
the  vertical,  and  what  will  be  the  pnll  on  the  rope  ? 

A71S.  36  pounds;  164  pounds. 

KII^ETICS   OF  A   PARTICLE. 

87.  If  a  number  of  forces  act  on  a  particle  and  the  result- 
ant be  found,  a  certain  motion  is  due  to  this  resultant.  If 

the  particle  has  this  motion,  it  is  said  to  be  free;  if  it  has 

some  other  motion,  the  deviation  must  be  owing  to  the  en- 
trance of  some  cause  not  accounted  for,  and  the  motion  is 

said  to  be  co7istrained.  In  free  motion  the  particle  is  iso- 
lated from  all  causes  tending  to  affect  its  motion  except  the 

acting  forces,  while  in  constrained  motion  this  is  not  the 
case. 

"We  have  seen  that  the  position  of  a  particle  is  defined  by its  coordinates  with  reference  to  certain  axes  assumed  to  be 

fixed.  A  change  in  position  is  represented  by  changes  in 

these  coordinates.  Hence  the  coordinates  being  either  a  dis- 
tance and  two  angles  or  three  distances,  a  point  is  said  to 

have  three  degrees  of  freedom  to  move. 
If  the  point  is  compelled  to  remain  in  an  assigned  plane 

(as  the  plane  of  the  paper),  its  position  is  defined  by  two  co- 
ordinates, and  it  is  said  to  have  two  degrees  of  freedom  and 

one  degree  of  constraint.  Similarly,  if  compelled  to  remain 
at  the  same  distance  from  a  fixed  point  it  would  move  on  the 

surface  of  a  sphere,  and  have  two  degrees  of  freedom  and  one 
of  constraint. 

Again,  if  the  point  were  compelled  to  remain  in  two  planes, 
that  is,  in  their  line  of  intersection,  it  would  have  one  degree 

of  freedom  and  two  of  constraint :  so  also  if  compelled  to  re- 
main in  one  plane  and  keep  at  the  same  distance  from  a  fixed 

point,  that  is,  to  move  in  a  circular  path. 
If  compelled  to  remain  in  three  planes,  it  can  have  only  one 

position,  their  point  of  intersection,  and  is  therefore  wholly 
constrained. 
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88.  Fkee  Motion. — By  means  of  the  second  law  of  motion 
(Art.  50)  connecting  force  acting,  particle  acted  upon,  and 
acceleration  produced,  we  are  able  to  extend  the  geometrical 
properties  of  motion  to  particles  acted  upon  by  given  forces. 
We  shall  first  of  all  consider  the  particle  to  be  unconstrained 
and  have  all  degrees  of  freedom. 

Various  cases  may  arise  depending  on  whether  the  force 
acting  is  in  the  direction  of  motion  of  the  particle,  and 
whether  this  force  is  or  is  not  constant. 

89.  (A)  Force  Constant. — Let  a  particle  weighing  w  lb  be 
acted  on  by  a  force  F  pounds  in  the  direction  of  its  motion. 
The   acceleration  a  produced   is  found 

from  F  =  wa/g,  or  .  ?        ̂          ̂  
a  =  Fg/tv. 

Let  0  be  the  initial  position  of  the  particle,  P  its  position 
at  the  end  of  a  time  t,  and  let  OP  =  s.  It  u  is  the  initial 
velocity  of  the  particle,  the  velocity  v  at  the  end  of  the  time  t 
is  composed  of  that  due  to  u  and  that  due  to  the  acceleration 
a.    Hence  (Art.  24) 

v  =  u-\-at  =  u-{-  Fgt/w;   (1) 

and  the  distance  s  passed  over  is  given  by 

s  =  uf  +  iaf  =  ut-\-  ̂ Fgf/w   (2) 

The  same  results  follow  from  the  differential  equation  of 
motion.  For  let  a  particle  of  weight  w  be  acted  on  by  a  force 

F.  If  s  is  the  distance  of  the  particle  from  the  starting-point 
at  time  t,  the  equation  of  motion  may  be  written  (Art.  67) 

-  ̂^  =  p. 

gdf    
 -^^ 

or,  since  w,  F,  g  are  constant, 

where  the  constant  quantity  Fg/vj  is  denoted  by  a. 
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This  equation  may  be  developed  as  in  Art.  27,  and  the 
values  of  v,  s  given  above  found. 

Ex.  1.  An  ice-boat  weighing  1000  lb  is  driven  for  30  sec 
from  rest  by  a  wind  force  of  100  pounds.  Find  the  velocity 
acquired  and  the  distance  passed  over. 

Ans.  96  ft/sec;  1440  ft. 
2.  A  train  of  100  tons  is  running  at  the  rate  of  45  miles  an 

hour.  Find  what  constant  force  is  required  to  bring  it  to 
rest  in  one  minute.  A7is.  6875  pounds. 

3.  The  pull  of  the  engine  on  a  train  whose  weight  is  100 
tons  is  1000  pounds.  In  what  time  will  the  train  acquire  a 
velocity  of  45  miles  an  hour  ?  A^is.  6  min  52|^  sec. 
^  4.  What  pressure  will  a  man  weighing  150  pounds  exert  on 
the  floor  of  an  elevator  descending  with  an  acceleration  of  4 

ft/sec^  ? [The  force  causing  the  man  to  move  is  the  resultant  of  the 
force  of  gravity  on  the  man  (150  pounds)  and  the  upward  force 

A^of  the  platform  on  the  man,  that  is,  to  150  —  i^  pounds. 
But  this  force  causes  an  acceleration  4  ft/sec^  in  a  weight 

of  150  lb.     Hence,  from  Newton^s  second  law, 

150  -  A"  =  150  X  4/32 

and  A'^  131.25  pounds.] 
*  5.  Find  the  pressure  when  the  elevator  is  ascending  with 
the  same  acceleration. 

6.  The  scale-pans  of  a  balance  each  weigh  W  lb  and  weights 
TTj,  Tfj  are  placed  in  them.  Find  the  pressures  on  the  pans 
during  the  motion. 

Ans.  2W,{W-\-  Tf,)/(2  Tf  +  W,  +  TFJ  pounds  and 
2  Tf,(  r  +  F;)/(2  r  +  W,  4-  W,)  pounds. 7.  A  man  who  is  just  strong  enough  to  lift  150  lb  can  lift 

a  barrel  of  flour  of  200  lb  from  the  floor  of  an  elevator  while 
going  down  with  an  acceleration  of  8  ft/sec^ 

8.  A  chain  16  ft  long  is  hung  over  a  smooth  pin  with  one 
end  2  ft  higher  than  the  other  end  and  then  let  go.  Show 

that  the  chain  will  run  off  the  pin  in  about  7/5  second,  q  ̂^^<'v 

90.  Falling  Bodies. — A  case  of  special  interest  is  that  of 
bodies  falling  freely  towards  the  earth.  The  acting  force  is 

the  force  of  gravity  which  produces  an  acceleration  g  ft/sec'* 
vertically  downward  if  the  motion  takes  place  in  a  vacuum, 
and  this  no  matter  what  the  body  may  be.     For  places  near 
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the  earth's  surface   the  value  of  g   is  practically  constant. 
(See  Art.  62.) 

The  doctrine  of  Aristotle  (b.c.  384-322)  that  the  rate  at 
which  a  body  falls  depends  upon  its  weight  was  held  until 
the  time  of  Galileo  (a.d.  1564-1642),  who  in  1590,  by  letting 
fall  weights  from  the  leaning  tower  of  Pisa,  demonstrated  its 
falsity.  By  giving  the  true  theory  of  falling  bodies  Galileo 
laid  the  foundation  of  the  modern  science  of  motion.  Its 

development  was  carried  forward  by  Huygens  (1629-1693), 
who  first  discussed  the  dynamics  of  a  system  of  bodies,  Gali- 

leo having  confined  himself  to  that  of  a  single  body.  It  was, 
however,  reserved  for  Newton  to  raise  it  to  the  rank  of  an 
exact  science. 

91.  In  the  case  of  a  body  falling  in  the  open  air  it  is  not 
true  that  the  motion  is  uniformly  accelerated.  The  air  offers 
a  certain  resistance  to  the  motion.  The  exact  law  of  this  re- 

sistance is  not  known.  But  for  simplicity  of  treatment,  and 
as  close  enough  for  most  purposes  and  for  moderate  heights, 
it  is  assumed  that  a  body  falls  in  the  air  with  a  constant  ac- 

celeration g  ft/sec\ 
Hence  if  a  body  is  projected  vertically  dowmvard  with  a 

velocity  u,  its  velocity  v  at  the  end  of  a  time  t  would  be 

found  by  putting  ̂   =  a  in  equation  (1),  Art.  24,  or 
v  =  u-^  gt, 

and  the  vertical  distance  y  fallen  through  by  putting  g  =  a 
in  equation  (3),  or 

y  =  ut+gty'Z. 
Also  by  eliminating  t, 

vy^  =  uy2  +  gy, 

which  gives  the  velocity  at  any  distance  y  fallen  through. 

Ex.  Give  the  corresponding  formulas  when  the  body  is  pro- 
jected vertically  upward.     [Write  —  g  for  g.] 

92.  If  the  body  falls  from  rest  these  equations  reduce  to v  =  gt, 

y  =  gtV2, 
vy2=gy. 
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The  last  equation  gives  the  value  acquired  by  a  body  fall- 
ing through  a  height  A  to  be 

v  =  V2gh, 

and  is  sometimes  said  to  be  the  velocity  due  to  the  Jiead  h. 
Conversely, 

h  =  vy2g, 

which  would  give  the  head  due  to  the  velocity  v. 

93.  The  same  results  follow  from  the  differential  equa- 
tion of  motion.  For  let  a  body  weighing  w  lb  be  projected 

vertically  downward  with  velocity  u.  The  acting  force  being 
w  pounds,  the  equation  of  motion  is 

w  d'y 

9  dt'
 

d'y 

the  axis  of  y  being  vertically  downward. 
This  equation  may  be  developed  as  in  Art  27.  The  results 

are 

V  or  dy/dt  =  u  -\-  gt, 
y  =  ut-\-  igt% 

as  already  found. 
If  the  body  were  projected  vertically  upward  the  equation 

of  motion  would  be 

dr       ̂ ' and  thence  v  =  u  —  gt, 
y-ut-  igt\ 

94.  Special  Problems. — A  body  is  projected  vertically  up- 
ward with  a  velocity  u  ft/sec. 

(a)  To  find  the  time  of  reaching  the  highest  point  of  its 

path.     At  the  highest  point  the  vertical  velocity  v  =  0,  or    ' 
u  —  gt  =  0, 

and  t  =  u/g  sec. 
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(i)  To  find  the  time  of  flight. 

This  would  be  the  time  of  reaching  the  starting-point. 
At  this  time  ̂   =  0,  or 

ut  -  \gf  =  0, 

and        ̂   =  0  or  '^u/g  sec, 

which  shows  that  the  body  is  twice  at  the  starting-point, 
once  at  the  beginning  of  the  motion  when  ̂   =  0  and  again  at 
the  end  when  t  =  2u/g.  The  latter  being  the  time  from  the 
beginning  to  the  end  of  the  motion  is  the  time  of  flight. 

The  time  of  rising  has  been  found  =  it/g  sec. 

.*.    time  of  falling  =  2u/g  —  u/g  =  u/g  sec, 
or     time  of  rising  =  time  of  falling.* 

(c)  To  find  the  greatest  height  reached. 
This  will  be  the  value  of  y  at  the  time  u/g. 
Substitute  this  value  for  t  in 

y  =  ut-  igt\ 

and  we  find  y  =  u^ /1g  ft, 
the  greatest  height. 

Or  it  may  be  found  by  putting  y  in  the  form 

noting  that  y  is  greatest  when  t  —  u/g  =  0,  and  then 

y  =  uy2g  ft 
as  before. 

The  result  also  follows  by  putting  v  =  0  in 

vys  =  uy2  -  gy. 

(d)  To  find  the  velocity  at  any  point  of  the  path.    Here 

V  =  u  —  gt, 

*  Descartes  wrote  to  Mersenne  :  "  I  am  astonished  at  what  you  tell 
me  of  having  found  by  experiment  that  bodies  thrown  up  in  the  air 
take  neither  more  nor  less  time  to  rise  than  to  fall  again." 
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which  gives  the  velocity  at  any  time  t; 

or  vy2  =  uy2  -  gy, 

which  gives  the  velocity  at  any  height  y, 

95.  Galileo's  experimental  demonstration  of  the  formula 
y  =  gf/2  was  as  follows. 

He  caused  balls  to  slide  down  grooves  in  inclined  planes, 
measured  off  the  distances  1,  4,  9, .  .  .  on  the  grooves,  and 
observed  that  the  times  of  descent  were  represented  by  the 
numbers  1,  2,  3,  .  .  .  He  used  inclined  planes  because  by  re- 

tarding the  descent  he  could  observe  the  motion  more  accu- 
rately than  if  the  balls  fell  freely.  He  had  to  assume  that 

the  law  of  descent  was  unaltered. 
To  measure  small  times  he  constructed  a  clock.  This  con- 

sisted of  a  vessel  of  water  of  large  cross-section  and  having  a 
small  hole  in  the  bottom.  When  a  ball  began  to  roll  the 
water  was  allowed  to  run  out  and  fall  on  a  balance.  The 
orifice  was  closed  when  the  ball  reached  the  end  of  its  path. 
The  times  were  as  the  weights  of  water  discharged. 
Much  more  precise  measurements  can  now  be  made  with 

Atwood's  machine  and  a  modern  clock.  The  leading  idea  in 
the  Atwood  machine — that  of  diluting  the  acceleration  of 
gravity — is  the  same  as  Galileo's,  which  he  effected  by  the 
inclined  plane. 

Ex.  1.  Find  the  distance  passed  over  by  a  body  falling 
freely  during  the  sixth  second  of  its  fall. 

Dist.  fallen  in  6  sec  =  32  X  6y2  =  16  X  36  ft; 
Dist.  fallen  in  5  sec  =  32  X  572  =  16  X  25  ft. 

.-.  Dist.  fallen  in  the  sixth  second  (=  16  X  11)  =  176  ft. 
2.  Two  bodies  are  dropped  from  a  height  at  an  interval  of        / 

0     2  sec.     Find  the  distance  between  them  at  the  end  of  the     v 
next  2  sec.  Ans.  192  ft. 

3.  Given  that  at  New  York  a  body  falls  through  48.24  ft 
in  the  second  second  of  its  fall,  find  the  value  of  the  accelera- 

tion of  gravity  there.  A7is.  32.16  ft/sec'. 
4.  A  body  is  projected  vertically  upwards  with  a  velocity  of 

160  ft/sec.  Find  (1)  when  it  will  come  to  rest,  (2)  the  height 
to  which  it  will  rise.  Ans.  5  sec;  400  ft. 

5.  In  Ex.  4  find  the  velocity  when  the  body  is  at  a  height 
of  256  ft.  Ans.  96  ft/sec. 

6.  A  body  is  projected  vertically  upwards  with  a  velocity  of 

0 
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160  ft/sec.     Find  at  what  times  it  is  256  ft  above  the  start- 
ing-point and  find  the  total  time  of  flight. 

Ans.  8  sec  or  2  sec;  10  sec. 
7.  It  is  required  to  project  a  body  vertically  to  a  height  of  |/ 

36  ft.     Find  the  velocity  of  projection.         Ans.  48  ft/sec. 
8.  A  stone  thrown  vertically  upwards  is  observed  to  be  at  a    ( 

O     height  of  96  ft  in  2  sec.     How  much  higher  will  it  rise  ?  L^' A71S.  4  ft. 

9.  A  stone  after  falling  for  one  second  strikes  a  pane  of 
r7\      glass,  in  breaking  through  which  it  loses  one  half  of  its  ve- 

locity.     How  far  will  it  fall  the  next  second  ?     Ans.  32  ft. 
10.  A  body  has  fallen  through  16  ft.     With  what  velocity 

must  another  be  shot  downwards  so  as  to  overtake  the  other  ̂  
in  4  seconds  ?  Ans.  36  ft/sec. 

11.  If  5j  i  5,,  ̂ 3  are  the  distances  described  by  a  falling  body 
,  in  the  pth,  qth,  rth  seconds  of  its  fall,  prove 

s,{g  -r)+  s,{r  -p)-\-  s,(2J  -  q)  =  0. 
12.  A  stone  is  dropped  into  a  well  and  after  2  seconds  is 

heard  to  strike  the  water.  Eequired  the  distance  x  to  the 
surface  of  the  water,  the  velocity  of  sound  being  1100  ft/sec. 

\  [2  sec  =  time  of  fall  of  stone  +  time  of  rise  of  sound 

\  =  V2x/g-\-  ic/llOO.     .'.  x=^  60.5  ft.] 
13.  If  ̂   is  the  height  fallen  through  by  a  body  in  the  nth 

second  of  its  fall,  show  that  2h/g  is  an  odd  integer. 
14.  A  body  falls  through  the  same  distance  at  two  differ-  s^\  v, 

ir      ent  places  on  the  earth's  surface,  and  it  is  observed  that  the  s-  h  y 
cC  0  ̂^^^  ̂ ^  falling  is  t  sec  less  and  the  velocity  acquired  n  ft/sec   ,  C^ 

^-'"^  greater  at  one  place  than  at  the  other.     If  g^ ,  g^  be  the  accel-  ̂ <'*  ̂   ' ; erations  of  gravity  at  the  two  places,  show  that. 

g,g,  =  n'/f.  '-^p,  l'^:  ̂\;^'^5f  '  J^  ̂  J I 
15.  A  two-ton  hammer  falls' through  16  ft.  Find  its  ve^tJ  ̂   ̂   ' 

locity.  ^  Ans.  32  ft/sec.     \f    ̂ 
16.  Three  bodies  are  thrown  vertically  downwards  withLtv"'^^.^ 

velocities  ?^,,  u^,  u^  from  heights  h^yJi^,  li^  and  reach  the  ̂ ,  "*  5^ ' ground  at  the  same  instant.     Show  that  .  j: 

'/"(/'■-  K)l{^-  «J  =  {K-  ».)/(",-  «,)  =  {K-  A,)/(«3-  «.)•    i^J^ -^       )i^^-  A  man  in  an  elevator  which  is  rising  with  a  uniform  ̂ ^ 
^r.  ̂     afsi^eleration  a  tosses  a  ball  vertically  upwards  with  velocity  v      \ 

V — ^    and  after  t  seconds  overtakes  it.     Show  that 
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96.  Projectiles. — If  a  body  be  projected  with  a  given  ve- 
locity in  a  direction  not  vertical  and  be  acted  upon  by  the 

force  of  gravity  only,  it  is  called  a  projectile.  Neglecting  the 
influence  of  the  air,  the  body  after  projection  is  subject  to  a 
vertical  acceleration  g  due  to  the  force  of  gravity,  as  in  the 

case  of  a  falling  body.  The  path  will  result  from  a  combina- 
tion of  the  motions  due  to  the  velocity  of  projection  and  to 

the  vertical  acceleration  g.  The  name  trajectory  is  often 
given  to  it. 

Let  0  be  the  point  of  projection,  OA  the  direction  of  pro- 
jection, and  u  the  velocity  of 

projection. 
The  body  if  subject  to  the 

velocity  u  only  would  arrive  in 
time  ̂   at  a  point  A,  where 

OA  =  ut; 

and  if  subject  to  the  accelera- 
tion g  only,  would  arrive  at  B,  where 

OB  =  gty2. 

But  since  the  body  receives  both  displacements  simul- 
taneously, its  actual  position  is  at  P,  the  opposite  vertex  of 

the  parallelogram  OP  to  0.  The  locus  of  P  for  different 
values  of  t  will  be  the  path. 

A  good  illustration  is  afforded  by  a  jet  of  water  issuing 
from  a  hose-pipe,  or  from  an  orifice  in  the  side  of  a  vessel. 

97.  In  order  to  determine  the  properties  of  the  path,  it  is 
convenient  to  find  its  equation  referred  to  rectangular  axes 
OX  horizontal  and  0  Y  vertical. 

Let  the  velocity  of  projection  u  make  an  angle  6  with  OXy 

and  let  x,  y  denote  the  co-ordinates  of  P  at  the  time  t.    Then 
x  =  OM 

=  ut  cos  6;   o    (1) 

y  =  PM =  AM -AP  (or  OB) 

=  ut  sin  0  -  gty2.    .     .     ,    .     o    «     (2) 
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Eliminating  t  between  these  two  equations,,  we  find  a  rela- 
tion between  the  co-ordinates  x,  y  which  holds  for  all  values 

of  t  and  is  therefore  the  equation  of  the  path.     This  gives 

y  =  xtan  0  —  gx^/2u^  cos'  0,  ,    ̂ "oTv 

which  represents  a  parabola* — the  parabola  of  ApolIoniusi^nV-/^^' 

—  ii^ 

Ex.  Refer  
to  your  

Analytical  
Geometry  

and  show  
that  the      

'^y^ 
co-ordinatefe  

of  the  vertex  
of  this  parabola  

are  u^  sin  20 /2g, 
ii'  sin'  6/2ff;  

and  the  latus  
rectum  

is  2u^  cos'  0/g.     
What  

isy^  ?-  ̂"^t- the  distance  
of  the  directrix  

from  
the  vertex  
?
 
 

/^J^-- Ans.  u^  cos'  0/2g, 

1 

-.      ̂ ^^ 

98.  Special  Problems. — (a)  To  find  the  resultant  velocity  v 
and  the  direction  of  motion  at  any  point  P  of  the  path. 

Resolve  the  initial  velocity  u  into  horizontal  and  vertical 
components;  that  is,  into  u  cos  0  along  OX,  and  ti  sin  6 

along  OY.  The  horizontal  acceleration  is  zero  a^d  the  ver- 
tical acceleration  is  —  a.    Hence  at  the  end  of  time  t 

horizontal  velocity  v^  =  u  cos  0; 

vertical  velocity      v^  =  u  sin  6  —  gt. 

Then,  v^  and  v,  being  at  right  angles,  U^  \t^^,-^  '-'hP 

—  {u  cos  &y  +  {ti  sin  d  —  gty  — — 
=  w'  —  2ut  g  sme-\-  gH\  ^ 

and  the  velocity  at  any  time  t  is  found. 
This  may  be  written 

y'  =  w'  —  2g{ut  sin  6  —  gty2), 
or         vy2  =  uy2-gy, 

and  the  velocity  at  any  height  y  is  found. 
.   .   -N 

*  This  was  first  demonstrated  by  Galileo.  No  attempt  had  been 
made  up  to  his  time  to  explain  curvilinear  motion  of  any  kind.  (See 
A.rt.  99.) 
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The  direction  of  motion  at  P  makes  with  the  horizontal 

OX  an  angle  a  such  that 

tan  a  =  vjv^ 

=  (u  sin  0  —  gt)/u  cos  0 
=  tan  6  —  gt/u  cos  6, 

giving  the  direction  at  any  time  t; 

or  tan  a  =  Vv.//v^^ 

=  V(u'  sin''  0  -  2gy)/u''  cos'  0 

=  VtsLn'  d  -  Igy/u"  cos'  d, 

giving  the  direction  at  any  height  y, 
(b)  To  find  the  time  of  reaching  the  highest  point  of  the 

path. 
At  this  point  the  vertical  velocity  v^  =  0. 

u  sin  6  —  gt  =  0, 
and  t  =  u  sin  B/g, 

the  time  of  reaching  the  highest  2)oint. 
{c)  To  find  the  greatest  height  reached. 

This  will  be  the  value  of  y  at  the  time  u  sin  d/g.     Substi- 
tute this  value  of  t  in 

y  =  ut  sin  6  —  igt*, 
and      y  =  u^  sin'  B/2g, 

the  gi^eatest  height. 
(d)  To  find  the  time  of  fiight,  that  is,  the  time  in  which 

the  particle  will  reach  the  line  OX.    At  this  time  y  =  0,  and 

0  =  w^  sin  ̂   —  igt^, 
whence  ^  =  0,    ̂   =  2w  sin  d/g; 

which  shows  that  the  particle  is  twice  on  the  line  OX,  once 
at  0,  the  beginning  of  the  motion,  when  t  =  0,  and  again  at 
C,  the  end  of  the  motion,  when  t  =  2u  sin  6/g.  The  latter, 
being  the  time  from  the  beginning  to  the  end  of  the  motion; 
is  the  time  of  flight. 

(e)  To  find  the  range,  that  is,  the  distance  00. 
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The  distance  OC  is  described  with  the  constant  velocity 
u  cos  6  in  the  time  2u  sin  d/g.     Hence 

OG  =  UC08  d  X  2u  sin  6/g  =  u"  sin  2Q/g, 

the  range. 
The  greatest  value  sin  28  can  have  is  unity,  and  this  occurs 

when  2B  =  90°  or  6  =  45°.  Hence,  for  a  given  velocity,  the 
range  is  greatest  when  the  angle  of  projection  is  45°  and  its 
value  is  u^/g.  This  result  is  not  true  in  practice,  as  we  have 
not  taken  into  account  the  resistance  of  the  air.  When  the 

resistance  of  the  air  is  considered,  experiment  gives  an  angle  of 

about  34°  instead  of  45°. 
99.  It  will  be  instructive  to  deduce  the  preceding  results 

from  the  differential  equations  of  motion. 

Take  the  axes  of  co-ordinates  OX,  OY  horizontal  and  ver- 
tically upward,  respectively,  and  let  x,  y  be  the  co-ordinates 

of  the  particle  in  its  path  at  the  end  of  the  time  t  when  re- 
ferred to  these  axes.  / 

The  force  acting  is  wholly  vertical.  Hence  the  horizontal 
component  is  zero  and  the  equations  of  motion  along  OX, 
0  Y  are,  respectively  / 

w  d^'x  _  w  d*g  _ 

'gdf'~'  ~glr~"~''^' 
d'x      ̂   d'y 

^  =  ̂ '  /    'W=-9> 
the  minus  sign  entering  since  the  axis  of  Y  is  drawn  verti- 

cally upward. 
Integrating  with  respect  to  ̂   and  noting  that  u  cos  6  is  the 

initial  velocity  along  the  axis  of  X  and  ii  sin  6  that  along  the 
axis  of  Y,  we  have 

dx  '  dy  '     n        ± 

Integrating  a  second  time, 

X  =  tu  Q08  6,  y  =  tu  sin  6  —  ̂ gf, 
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the  constants  of  integration  vanishing  because  when  ̂   =  0, 
we  have  a:  =  0,  «/  =  0. 

These  four  equations  completely  determine  the  motion  of 
the  particle. 

Eliminating  t  between  the  last  two  equations,  we  have 

y  =  X  tan  6  —  gx'/^u'*  cos"  6, 

the  equation  to  the  parabolic  path  as  already  found  (p.  99). 

Special  Problems. — (a)  To  find  the  velocity  v  at  any  time  t. 

.•=(S)'+(I)' 
=  (u  COS  f^y  +  {u  sin  6  —  gty 

=  u^—2utg  sin  B  -{•  g'^t^, 

as  already  found  (p.  99). 
Also,  if  a  is  the  angle  which  the  velocity  makes  with  the 

horizontal, 

tan  a  =  dy/dx 

=  {u  sin  6  —  gf)/u  cos  0 
=  tan  6  —  gt/u  cos  6, 

as  before  (p.  100). 
(h)  To  find  the  greatest  height  and  time  of  reaching  it. 
Make  y  a  maximum  in 

y  =  tu  sin  6  —  Igt^, 

The  first  differential  coefficient  is  zero,  or 

0  =  dy/dt  =  u  sin  d  —  gt, 
.*.     t  —  u  sin  0/g, 

which  gives  the  time  of  reaching  the  greatest  height. 
This  value  of  t  makes 

y  =  u'  sin'  e/2g, 

the  value  of  the  greatest  height,  as  before  (p.  100). 
(h)  To  find  the  range  and  its  greatest  value. 
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Put  y  =  0  in  the  equation  to  the  path  and 

a;  =  tan  6^  X  2w'  cos'  O/g  =  u'  sin  26/ g, 

as  before  (p.  101). 
This  is  a  maximum  when 

dx/de  =  0    or    cos  2^  =  0, 

which  gives  6  =  45°,  as  before.     Hence 

greatest  range  =  u'^/g,    as  before  (p.  101). 

100.  According  to  ancient  theories  of  gunnery  the  trajec- 
tory was  composed  of  (i)  the  mottis  violentus  when  the  ve- 

locity was  so  great  that  the  shot  flew  in  a  straight  line,  the 
extent  of  the  motus  violentus  being  the  point-blank  range, 
an  error  which  prevails  to  this  day;  (ii)  the  motus  mixtus, 
the  curvilinear  path  of  the  trajectory;  (iii)  the  motus  natu- 

ralise in  which  the  body  fell  vertically  downwards,  as  it  tends 
to  in  reality  in  the  neighborhood  of  the  vertical  asymptote 
when  the  resistance  of  the  air  is  taken  into  account,  so  that 
after  all  the  ancient  theory  was  a  fair  imitation  of  the  true 
trajectory. 

Galileo  combined  the  motus  violentus  OA  and  the  motus 
naturalis  AP  into  the  motus  mixtus  OP  [figure,  p.  98] 
throughout  the  trajectory,  and  thus  obtained  a  parabola; 
but  when  this  theory  was  accepted  by  artillerists  it  was  nec- 

essary to  suppose  that  the  velocity  of  the  shot  was  very  much 
less  than  its  real  value,  a  discrepancy  that  couid  not  be  de- 

tected till  Robins  invented  his  Ballistic  Pendulum,  1740. 
(See  Art.  255.) 
When  the  resistance  of  the  air  is  taken  into  account  all  the 

simplicity  of  the  preceding  theory  disappears.    (Greenhill.) 
Ex.  1.  Find  the  angle  of  elevation  in  order  to  attain  a 

range  of  10,000  ft,  the  velocity  of  projection  being  800  ft/sec. 

Ans.  15°. 2.  A  man  can  throw  a  ball  100  ft  vertically  upwards.  Find 
the  greatest  distance  he  can  throw  on  a  level  field. 

Ans.  200  ft. 

3.  Prove  that  the  range  for  an  elevation  of  30°  is  the  same 
as  for  an  elevation  of  60°. 

4.  Compare  the  greatest  heights  in  the  two  cases  in  Ex.  3. 
Ans,  1  :  3. 



104  DYNAMICS  OP  A   PARTICLE.  [§  100 

5.  The  range  is  four  times  the  greatest  height.  Find  the 

angle  of  projection.  Ans.  45°.  3W|-^ 
G.  The  champion  eollege  record  (1893)  for  throwing  a  base-  \  y'V-  •'''? 

ball  is  349  ft.     How  high  did  the  ball  rise  ?  ^J'yr^^^^^ A71S.  87  ft  3  in. 

Show  that  the  time  of  flight  was  about  4.7  sec. 
7.  Show  that  numerically 

(twice  time  of  flight  in  sec)'  =  greatest  height  in  ft. 
8.  A  shot  is  fired  horizontally  from  a  roof  16  ft  in  height. 

Find  the  velocity  with  which  it  strikes  the  ground. 
L  A71S.  32  ft/sec. 

To.  A  ball  is  fired  at  an  angle  of  45°  so  as  just  to  pass  over  a  JC  'Ji^!^''^ 
weII  10  ft  high  at  a  distance  of  100  yards.  How  far  from  the  (  -^  '•'^•^ 
wall  will  it  strike  the  ground  ?  Ans.  10.34  ft.     l^*fc^*-^ 

10.  A  body  is  projected  horizontally  from  a  given  height  h  *?^*J*:5^, 
with  a  velocity  u.    Prove  that  the  equation  to  the  path  is         v^<*^-v»^ 

Show  that  the  range  is  uV2h/g  ft,  and  find  the  time  of 
flight. 

11.  A  railroad  train  is  crossing  a  bridge  64  ft  above  a  river  ̂ «  ̂ prp 
at  the  rate  of  30  miles  an  hour.  At  what  distance  from  ^'^  c 
the  abutment  must  a  passenger  drop  a  coin  so  as  just  to  land 
at  its  foot  ?  A71S.  SS  ft. 

12.  An  arrow  shot  horizontally  from  the  top  of  a  tree  64  ft 
high  strikes  the  ground  100  ft  from  the  foot  of  the  tree. 
Find  the  time  of  flight  and  the  initial  velocity. 

Ans.  2  sec;  50  ft/sec.  b'     .< 
%d    13.  A  stone  is  thrown  with  a  velocity  of  80  ft/sec  so  as  just  /(^^""^K reo  pass  over  two  trees  100  ft  apart  and  each  50  ft  in  height.*^.  -r^-> 
Show  that  the  time  of  passing  between  the  trees  is  2.5  sec-  *jctA/»**' 

onds  and  that  the  angle  of  throw  is  60°.  ̂ ,[':^^-\~^!^if,^}M^ -w^'^'^'^''^ 14.  When  the  elevation  is  <a'  a  projectile  falls  s  it  short  of 
the  mark  aimed  at,  and  when  the  elevation  is  /?  it  goes  s  ft 
too  far.     Show  that  if  6  is  the  elevation  for  hitting  the  mark, 

^  then  2  sin  26  =  sin  2a  +  sin  2/3,  ^ 
15.  Develop  a  formula  for  finding  the  distance  to  which  a 

stone  could  be  hurled  from  an  ?-ft  sling  swung  in  a  horizon- 
tal circle  at  n  revolutions  per  second  and  h  ft  from  the 
ground.  Ans.  l.bllnVh. 
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16.  If  t^  be  the  time  from  0  to  any  point  P  of  the  path  of 
a  projectile,  and  t^  the  time  from  P  to  ̂   when  OA  is  the 
range  on  a  horizontal  plane,  then  the  height  of  P  above  OA 
is  ̂ gt^t^. 

17.  A  ship  sailing  uniformly  in  a  straight  course  with  a 
velocity  ii  is  fired  at  from  a  battery  at  the  instant  when  she 
passes  nearest  to  it,  her  distance  then  being  h.  If  v  be  the 
velocity  of  the  ball,  it  is  necessary  in  order  to  hit  that 

v"  —  w'  >  gh. 

18.  The  inclination  of  a  slope  OD  to  the  horizontal  is  a. 
From  the  foot  0  of  the  slope  a  gun  elevated  at  an  angle  ̂   ̂  
above  the  horizontal  is   fired  up 
the   slope   with   a   velocity   of    u 
ft/sec.     Find  the  range  OD  and 
time  of  flight  t. 

[Solved  most  readily  by  the 
method  of  Art.  96. 

Draw  DE  vertical  to  meet  OE 
at  E.    Then 

OE  =  ut,        DE  =  \gt\ 

But  the  sides  of  a  triangle  being  proportional  to  the  sines 
of  the  opposite  angles, 

DE/OE  =  sin  (d  -  a)/sin  (90  +  a), 
.'•  igf/ut  =  sin  {0  —  a)/co^  a 

% 

and  t  =  2tc  sin  (d  —  a)/g  cos  a. 

Also        OD/OE  =  sin  (90  -  6^)/sin  (90  +  a), 

and  .*.  OD  =  ut  cos  ̂ /cos  a 
=  22^'  sin  {0  —  a)  cos  B/g  cos*  or.] 

19.  Find  the  velocity  of  projection  in  order  that  a  shot  rs, 

fired  at  an  elevation  of  30°  should  hit  an  object  half  a  mile    1 ';  () 
distant  on  a  hillside  sloping  1  in  40.       Ans.  319  -j-  ft/sec.  . 

20.  If  in  (18)  the  shot  strikes  the  plane  perpendicularly, 
show  that  o,  ̂  

2tan(^-«)  tan  Of  =  1.  J^ 

21.  In  (18)  show  that  the  maximum  range  is  u^/gi)-  +  sin  a). 
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Show  also  that  the  angle  of  elevation  for  maximum  range 
bisects  the  angle  between  the  slope  OD  and  the  vertical. 

22.  Particles  projected  from  a  point  with  velocity  u  and 
in  the  same  plane  will  at  the  end  of  any  time  t  lie  on  a  circle 
whose  radius  is  ut.     Plot  this  circle. 

23.  A  particle  is  projected  with  velocity  u  so  as  to  reach  a 
given  point  a,  I.  If  d^ ,  d^  are  the  possible  angles  of  eleva- 

tion, show  that 

cot  e^  +  cot  e^  =  2auy(2bu'  +  ga^). 

24.  A  shell  discharged  from  a  mortar  just  touched  in  its 
flight  the  top  of  a  steeple,  and  in  4  seconds  after  fell  at 
the  distance  of  3262f  feet  from  the  bottom  of  the  steeple, 
from  whence  the  report  of  its  fall  was  heard  at  the  mortar 
just  12  seconds  after  the  explosion.  Find  the  time  of  flight 
and  the  height  of  the  steeple,  taking  the  velocity  of  sound 
1142  ft /sec.  Ans.  7  sec  ;  192  ft. 

25.  "  Swift  of  foot  was  Hiawatha: 
He  could  shoot  an  arrow  from  him 
And  run  forward  with  such  fleetness 
That  the  arrow  fell  behind  him! 
Strong  of  arm  was  Hiawatha : 
He  could  shoot  ten  arrows  upward. 
Shoot  them  with  such  strength  and  swiftness 
That  the  tenth  had  left  the  bowstring 
Ere  the  first  to  earth  had  fallen." 

If  one  second  elapsed  between  the  discharge  of  each  of  the  ten 

arrows  and'  Hiawatha  shot  at  his  greatest  range  every  time, he  must  have  been  able  to  run  at  least  at  the  rate  of  98  miles 
an  hour. 

101.  (B)  Force  Variable  and  in  the  Direction  of  Motion. — 
(a)  Let  the  force  be  directed  to  a  fixed  point  0  as 

Y  center  of  force,  and  let  its  magnitude  be  propor- 
T"  tional  to  the  distance  from  0.     Let  YFO  be  the 

line  of  motion,  and  let  P  be  the  position  of  the 

     particle  w  at  any  time  t.     If  the  distance  OF  is 
denoted  by  y,  the  equation  of  motion  along  OF  is 

w  d^y 

-gw=-'y' 
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where  c  is  a  constant,  the  minus  sign  being  taken  because  the 
acceleration  tends  to  diminish  y. 

Put  cg/w  =  00^,  and  the  equation  of  motion  becomes 

^=_a,V   (1) 

Multiply  both  sides  of  this  equation  by  2dy  and  integrate. 
Then 

{dy/dty  =C-  Goy. 
Let  the  motion  start  at  a  point  distant  r  from  0.     Then 

when  y  =  r,  dy/dt  or  v  =  0.     Hence  C  =  caV  and 

(dy/dty  =  Go\r' -  f),   (2) 

giving  the  velocity  at  any  point  of  the  path  of  a  body  attracted 
from  rest  towards  the  center  of  force  0  from  a  distance  r. 

To  find  the  time  of  describing  any  distance. 

Taking  the  square  root  of  both  members  of  eq.  (2),  we  find 

dt  =  —  dy/oo  Vr""  —  ?/% 
the  minus  sign  being  taken  because  the  motion  is  towards 
0,  and  as  t  increases  y  decreases. 

Integrating, 

cot  =  cos~^  y/r,   (3) 

since  ̂   =  0  when  y  =  r. 
This  may  be  written 

y  —  r  cos  cot, 

the  same  equation  as  found  in  Art.  35.  The  motion  is  there- 
fore a  S.H.M.  of  period  2;r/co,  of  amplitude  r,  and  whose 

oscillations  are  isochronous. 

This  conclusion  is  also  evident  from  eq.  (2).  For  v  =  0 

when  y  =  r  ov  y  =  —  r,  and  v  has  its  greatest  value  when 
y  =  0.  Hence  the  particle  starting  from  rest  at  P  increases 
in  velocity  until  it  reaches  0,  decreases  in  velocity  until  Q  is 

reached  where  OQ  =  ~  r,  when  it  comes  to  rest.     From  Q 
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it  returns  under  the  action  of  the  central  force  through  0  to 
P,  when  it  again  comes  to  rest.  Hence  it  oscillates  through 
the  distance  2r. 

The  time  t  of  moving  from  P  to  0  is  found  by  putting 
y  =  0  in  eq.  (3),  that  is, 

and  cot  =  cos"^  0  =  7r/2, 
t  =  7r/2cy. 

The  time  of  an  oscillation  being  four  times  this,  is  ̂ tt/go. 

Ex.  1.  Suppose  the  earth  a  sphere  8000  miles  in  diameter, 
and  that  a  cannon-ball  were  dropped  at  P  into  a  vertical 
shaft  POQy  passing  through  the  center  0.  The  attraction  of 
the  sphere  on  the  ball  may  be  taken  to  vary  directly  as  the 
distance  from  the  center.  Hence,  neglecting  the  resistance 
of  the  air,  the  ball  would  oscillate  between  P  and  Q,  Re- 

quired the  time  of  an  oscillation. 

The  acceleration  of  gravity  at  P  =  g  ft/sec'. 
Hence  from  equation  (1),  putting  y  =  r,  we  have 

gjV  =  g, 

and  time  =  27r/Gj  =  85  minutes,  nearly. 
2.  Find  the  velocity  of  the  ball  at  the  earth's  center. 

Ans.  5  miles/sec  nearly. 
3.  Show  that  the  velocity  at  any  time  may  be  found  from 

V  =  —  Gor  sin  cot. 

4.  Compare  the  time  of  falling  down  the  first  2000  miles 
with  that  of  falling  down  the  second  2000  miles.     Ans.  2  :  1. 

The  following  paragraph  shows  ignorance  of  the  real  con- 
ditions: 

"Let  us  now  conceive  of  a  huge  shaft  of  8000  miles  in 
length  extending  entirely  through  the  earth  to  our  antipodes. 
If  a  metal  ball  be  dropped  from  either  end  of  this  shaft  it  is 

evident  that  it  will  drop  *  down,' but  we  should  not  expect 
to  see  the  antipodean  metallic  sphere  come  falling  ̂ up'  to 
us,  nor  would  the  Celestials  in  China  expect  to  see  the  ball 

dropped  from  our  side  come  falling  'up'  to  them." 

(b)  Let  the  force  be  inversely  proportional  to  the  square  of 
the  distance  from  0. 
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With  the  same  notation  as  before,  the  equation  of  motion 
may  be  written 

where  c  is  a  constant.     The  minus  sign  is  taken,  since  y  is 
measured  in  a  direction  opposite  to  that  of  the  motion. 

Multiply  both  sides  of  the  equation  by  2dy  and  integrate. 
Then 

(I)'  =  V  +  ̂̂ ^^*- 
y 

Let  the  motion  start  at  a  point  distant  r  from  0.    Then 

when  y  =  r,v  or  dy/dt  =  0,  and 

(i)'=-e-i)   « 
which  gives  the  velocity  at  any  point  of  the  path  of  a  body 

falling  from  rest  towards  the  center  of  force  0  from  a  dis- 
tance r. 

For  example,  assuming  the  earth  a  homogeneous  sphere  of 

radius  i?,  and  that  its  attraction  on  a  body  outside  of  its  sur- 
face is  the  same  as  if  its  weight  were  concentrated  at  its  cen- 

ter 0,  we  have  for  the  acceleration  of  a  falling  body  at  its 

surface  c/R^,  But  this  surface  acceleration  is  known  to  be 
equal  to  g,  so  that 

c/E^  =  g,     or    c  =  gR". 

Hence  the  velocity  with  which  a  body  falling  from  a  height 

li  would  reach  the  earth's  surface  is  found  by  putting  y  =  Rj 
r  =  R  -\-hm  equation  (2),  and 

v'  =  2c{l/R-l/{R^n)} 
=  2gR'\l/R-l/{RJ^h)] 
=:2gh/(l  +  h/R)   (3) 
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When  the  height  li  is  small  in  comparison  with  the  earth's 
radius  R,  the  term  h/R  may  be  neglected,  and  we  have  the 
ordinary  formula  for  the  velocity  of  falling  bodies  already 
given  in  Art.  92. 

To  find  the  time  of  reaching  the  center  of  force. 
Take  the  square  root  of  both  members  of  eq.  (2).    Then 

dt  ^  /^       y 

x^ dy~        V   2c  Vry  —  y^ i 

the  —  sign  being  taken  because  y  decreases  as  t  increases. 
Integrating  between  the  limits  y  =  r  and  ?/  =  0,  we  find 

t=7lV?/'^\^C   (4) 

Ex.  1.  If  a  body  fall  from  an  indefinitely  great  distance  it 
will  reach  the  earth  with  a  velocity  of  about  seven  miles  a 
second. 

2.  Find  the  velocity  of  projection  so  that  a  body  would  not 
return  to  the  earth. 

3.  Show  that  the  time  of  reaching  a  point  distant  y  from 
the  center  of  force  0  is 

Vr/2c\Vry  —  y"  +  ̂  cos"^  i^^^/rf. 

4.  "  Men  called  him  Mulciber :  and  how  he  fell 
From  heaven  they  fabled,  thrown  by  angry  Jove 

Sheer  o'er  the  crystal  battlement :  from  morn 
To  noon  he  fell,  from  noon  to  dewy  eve, 

A  summer's  day;  and  with  the  setting  sun 
Dropt  from  the  zenith  like  a  falling  star, 

On  Lemnos  th'  ̂ gean  isle." 
Taking  the  summer's  day  15  hours,  show  that  the  distance 

of  Lemnos  isle  from  heaven  is  about  one-fourth  of  the  dis- 
tance to  the  moon. 

5.  If  the  earth  were  suddenly  stopped  in  its  orbit  it  would 
fall  into  the  sun  in  a  little  over  two  months,  the  eccentricity 
of  the  orbit  being  neglected. 
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102.  (C)  Force  Variable  and  NQt4a-4he  Direction  of  Mo- 
tion.— Let  the  particle  ivJ^erfTOJected  in  any  direction  and 

acted  on  by  the  attractive  force  F.  The 
path  will  lie  in  the  plane  passing  through 
the  center  of  force  and  the  direction  of 

projection. 
In  this  plane  let  0  be  the  center  of 

force,  OX,  01^ the  axes  of  coordinates,  and 
X,  y  the  coordinates  of  the  particle  P  at  a 

time  t.     Let  OP  =  r,  and  the  angle  POX 
Let  the  force  F  vary  inversely  as  the  square  of  the  distance 

r  from  0  or  F  =  n/v''  when  w  is  a  constant. ../ 

The  equations  of  motion  along  OX  and  OY  are  (Art.  50) 

w  d^x  -no  n       X 

g  at  r'      r 
nx 

-  jT?  =  -Psin  0=  --, 

9  de 
.  X  ̂-  =  -  ̂  

or 
ex 
r 

cy 

I 
(1) 

(2) 

df  
~ 

dy  _ 

df  ~~r when  c  =  7ig/w. 

The  relation  between  x  and  y  will  give  the  equation  to  the 
path  of  the  particle.     To  find  it : 

Multiply  the  first  equation  by  y,  the  second  by  x,  and 
subtract. 

d^'i)        d'x      ̂  

and  by  integration 

dx 
y-ji  =  k,SL  constant. 

Also,  since  a;  =  r  001^6^,  y  =  r  sin  &, 
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""dt    yat-'^dt   ^'*' 

Hence,  eliminating  r', 

d-'x  c  M         d'y  c    .     M 

and  by  integration 

—  —  cyl^fi     (4)  =  cx/kr,     (5) 

when  c, ,  ̂2  are  constants. 

Multiply  the  fourth  equation  by  y,  the  fifth  by  Xj  and  sub- 
tract, and  we  have 

the  equation  to  a  conic  section  with  the  origin  at  the  focus. 
Hence  the  path  described  hy  a  particle  under  the  action  of 

a  central  force  varying  inversely  as  the  square  of  the  dis- 
tance is  a  conic  section  whose  focus  is  at  the  center  of  force. 

This  is  the  case  of  planetary  motion,  the  sun  being  at  the 
center  of  force. 

The  further  discussion  of  this  problem  will  be  found  in 
works  on  mathematical  astronomy. 

103.  CoNSTRAii^ED  Motion. — To  a  particle  acted  on  by  a 
force  F  in  an  assigned  direction  a  certain  path  results.  If 
the  path  differs  from  this,  it  must  be  owing  to  some  cause 
which  changes  the  motion,  that  is,  to  the  action  of  another 
force.  Hence  if  the  path  is  prescribed,  we  may,  by  adding 
forces  which  with  the  original  force  will  give  a  resultant 
which  can  produce  this  path,  consider  the  motion  free.  The 

discussion  will  therefore  come  under  the  principles  already 
laid  down. 
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104.  Motion  on  a  Horizontal  Plane.— Resolve  the  given 
force  F  into  its  two  components  F  cos  6  along  the  plane  AB 
and  F  sin  0  at  right  angles  to  it, 
6  being  the  inclinaton  of  F  to 
the  plane.     To    each   of   these 
forces   an    acceleration    is   due. 

But  the  particle  is  constrained 
so  as  not  to  move  in  the  direc- 

tion of  the  force  F  sin  0.     This  can  be  brought  about  by  as- 
suming that  the  plane  exerts  an  equal  force  F  sin  6  in  the 

opposite  direction,  which  force  is  known  as  the  reaction  of 
the  plane. 

As  regards  the  horizontal  stress  between  the  particle  and 
the  plane,  we  can  say  nothing  a  priori.  Experiment  shows 

that  it  depends  on  the  nature  of  the  surfaces  in  contact.  "We 
shall  for  the  present  assume  that  the  stress  between  the  par- 

ticle and  the  plane  is  normal  only,  or,  as  it  is  often  expressed, 
that  the  plane  is  smooth. 

If  therefore  a  particle  slides  on  a  smooth  plane  under  the 
action  of  a  force  F  inclined  at  an  angle  6^,  the  reaction  of  the 
plane  is  i^sin  6'and  the  force  acting  along  the  plane  is  F  cos  0, 
which  latter,  being  that  to  which  the  motion  is  due,  is  the 
effective  force. 

105.  Motion  on  an  Inclined  Plane. — Suppose  a  particle  P  to 
slide  down  a  smooth  inclined  plane 
AB  under  the  action  of  gravity. 
If  the  particle  weighs  w  lb,  the 
force  acting  is  lu  pounds  vertically 
downward. 

Eesolve  the  vertical  force  w  into 

two  components  w  sin  6  along  the 
plane  and  lu  cos  0  at  right  angles 

to  the  plane.  The  motion  down  the  plane  is  evidently  due  to 
the  component  lu  sin  6  only. 

Hence  if  a  denotes  the  acceleration  down  the  plane,  the 
equation  of  motion  is 
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w  sin  6  =  wafg, 

and  .*.  a  =  g  sin  6, 

The  problem  is  therefore  the  same  as  that  of  a  particle  mov- 
ing freely  under  an  acceleration  g  sin  6, 

Let  the  particle  start  from  rest  at  0 
to  slide  down  the  plane.  If  the  point 
P  is  reached  in  the  time  t,  the  velocity 
V  attained  will  be  given  by  (Art.  25) 

V  =  tg  sin  6,    .     .     .     (1) 

The  velocity  may  also  be  expressed  in  terms  of  the  distance 
OP  passed  over.     Thus  (Art.  25) 

v^  =  2g  sin  6  x  OP 
=  2g  X  OG 

it  PC  islet  Ml  ±  OB. 

This  velocity  is  the  same  as  that  attained  at  C  by  the  par-  . 
tide  falling  freely  from  rest  through  the  distance  OC  (Art. 
92). 

Hence  the  velocity  acquired  on  reaching  A,  the  foot  of  the 
plane,  is  found  from 

V  =  V2gh   (2) 

when  Ji  —  OBy  the  height  of  the  plane. 
If  the  particle  at  0  had  an  initial  velocity  u  in  the  direc- 

tion of  the  acceleration  down  the  plane,  then,  corresponding 

to  eqs.  (1)  and  (2),  we  should  have 

V  =  u  -{-  tg  sin  0',   (3) 

V  =  Vu'  -f  2gh.  .   (4) 

If  t  is  the  time  of  sliding  down  the  plane  from  rest  and  I 
represents  the  length  OA,  then 

I  =  ig  sin  e  X  t\ 

Hence  if  I  be  measured  and  t  be  observed,  we  have  a 

method  of  computing  the  value  of  g.     On  account  of  the  im- 
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possibility  of  finding  a  smooth  plane  an  accurate  value  of  g  is 

not  to  be  looked  for  by  this  method.  Galileo,  who  first  em- 
ployed it,  found  g  to  be  about  31  ft/sec^     See  Art.  116. 

106.  The  differential  equation  of  motion  of  a  particle  P 
sliding  down  an  inclined  plane  is  evidently 

w  cf's  .     ̂  

{f  dt 
d'^s  .     ̂  
—,=gsme, 

where  s  is  the  distance  of  F  from  0  at  the  time  t. 

This  equation  may  be  developed  as  in  Art.  27   and   the      / 

above  results  obtained.  "V^v  /  >^ 

Ex.  1.  If  a  body  slide  down  an  incline  whose  length  is   /      ̂  
a  twice  its  height,  the  acceleration  of  motion  is  one  half  that  of  ̂ 

the  same  body  falling  freely. 
/  2.  The  starting-point  of  a  switchback  railroad  is  1 21  ft  above 

/.t'^the  terminus.  Neglecting  friction,  find  the  terminal  velocity \J  of  a  car  which  starts  from  rest.  Ans.  60  m.  an  hour. 
3.  A  body  starts  from  rest  and  slides  down  a  smooth  plane 

Gof  height  h  and  length  I  ft.  Prove  that  the  distance  passed 
over  in  I  sec  is  iglh  ft. 

4.  A  car  shunted  up  a  1^  grade  with  a  velocity  of  60  miles 
an  hour  just  reaches  the  top  of  the  incline.  Find  the  time  oc- 

cupied. Ans.  4  m  35  sec. 
5.  A  car  starts  down  a  1^  grade  with  a  speed  of  1 5  miles  an 

hour.    Find  the  distance  passed  over  in  2  minutes. 
A71S.  4944  ft. 

6.  Find  the  time  occupied  in  sliding  down  an  inclined 
plane  of  height  h  and  length  I  ft.  A71S.  I  V2/gh  sec. 

7.  A  weight  of  4  lb  is  drawn  up  a  smooth  plane  inclined  at 

30°  by  a  weight  of  4  lb  joined  to  the  first  by  a  thread  which 
passes  over  a  smooth  peg  at  the  top  of  the  plane  and  which 
descends  vertically.  Show  that  the  acceleration  is  8  ft/sec. 
If  the  weight  on  the  plane  were  8  lb,  what  would  the  mo- 

tion be  ? 
8.  A  weight  of  W  lb  placed  on  a  smooth  plane  inclined  at 

an  angle  0  to  the  horizontal  is  acted  on  by  a  horizontal  force 
of  W  pounds.  Show  that  the  acceleration  down  the  plane  is 

g  V2  sin  (0  -  tz/^l). 
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9.  A  body  is  projected  up  a  smooth  plane  with  velocity  u. 

Show  that  it  will  go  a  distance  u'^/'^g  sin  ̂   in  a  time  u/g  sin  6 and  then  come  to  rest. 

10.  Show  that  the  time  of  descent  from  a  given  point  to  the 
center  of  a  circle  vertically  below  it  is  the 
same  as  that  to  the  circumference  down  a 
tangent. 

11.  Prove  that  the  time  of  descent  of  a 
particle  starting  from  the  extremity  ̂   of  a 
vertical  diameter  ̂ Z  is  the  same  along  all 
chords  AB,  AC,  .  .  .  ol  the  circle. 

A71S.  time  =  2  Vr/g. 
Would  the  same  be  true  for  chords  of  the 

circle  ending  at  the  lowest  point  L  ? 
In  this  case  show  that  the  velocity  attained  on  reaching  the 

lowest  point  varies  as  the  length  of  the  chord. 
12.  Ex.  10  was  first  given  by  Galileo  in  this  form : 
Imagine  gutters  radiating  in  a  vertical  plane  from  a  com- 

mon point  A  at  different  inclinations. 
Place  at  ̂   a  like  number  of  heavy  bodies 
and  let  them  descend  the  gutters  simul- 

taneously. The  bodies  will  at  any  instant 
lie  on  a  circle.  The  radii  of  these  circles 
increase  as  the  squares  of  the  times. 

[Show  that  in  general  r  =  gt''/4:.] 13.  Find  the  line  of  quickest  descent 
from  a  given  point  ̂   to  a  given  straight 
line  BC. 

[Through  A  draw  AB  horizontal  to  meet  BC  at  B.  Make 
BC=  BA.     Then  AC  k  the  line  required.     Proof  ?J 

14.  The  axis  of  a  parabola  is  vertical.  Show  that  the  focal 
chord  down  which  a  particle  would  slide  in  the  shortest  time 

is  inclined  to  the  axis  at  an  angle  tan"^  V2. 

107.  Equilibrium  on  an  Inclined  Plane.* — When  a  particle  or 
body  weighing  W  lb,  placed  on  a  smooth  inclined  plane,  is  acted 
on  by  gravity  only,  the  acceleration  down  the  plane  is  due  to 

*  This  is  of  special  interest,  as  being  one  of  the  problems  of  oblique 
forces  first  solved.  The  solution  is  due  to  Simon  Stevinus  of  Bruges, 

Belgium  (1548-1620).     It  may  be  found  in  Whewell's  Mechanics,  p.  44. The  modern  methods  of  statics  date  from  Stevinus. 
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the  component  along  the  plane  W  sin  6  of  the  vertical  force 
W  pounds.  For  equilibrium  to  exist  an 
equal  acceleration  must  be  applied  in 
the  opposite  direction;  in  other  words, 
the  resultant  force  along  the  plane  must 
be  nil.  Hence  if  a  force  F  be  applied 

parallel  to  the  plane  it  will  hold  the  par- 
ticle in  equilibrium  if 

F=  Pfsin  d. 

Acceleration  perpendicular  to  the  plane  is  prevented  by  the 
constraint  of  the  plane,  the  normal  reaction  N  being  equal  to 

the  normal  component  W  cos  tl. 
Hence  for  equilibrium  we  have 

— »       the  two  conditions, 
p 

F=  Wsin  0, 

N=  W  cos  e, 

(2)  If  a  force  F  be  applied  par- 
allel to  the  base  of  the  plane,  we  shall  evidently  have  equi- 

librium provided 

FGoa0=  TFsin  8, 
F=  TFtan  d, 

JSr=  Wcos  ̂   +  i^sin  e 
=  TTcos  0+  rtan  61  sin  ̂  
=  PFsec  d. 

These  results  may  also  be  obtained 

(a)  Directly  by  means  of  Lamias  Theorem. 
(1)  When  the  force  is  parallel  to  the  plane : 

F/sin  (180°  -8)  =  JST/sin  (90°  -\- 6)  =z  F/sin  90°. 

(3)  When  the  force  is  parallel  to  the  base : 

i^/sin(180°  -6)  =  JSr/sin  90°  =  W/sin  (90  +  6), 

which  easily  reduce  to  the  same  relations  as  before. 
(b)  By  the  method  of  Art.  86. 

w 

or 
and 
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(1)  When  the  force  is  parallel  to  the  plane. 
Kesolve  along  AO  and 

F"  Tf  cos  (90-  6)  =0. 

Kesolve  along  a  line  perpendicular  to  A  0,  and 

N-  Tfcos  6  =  0, 

Whence  F  =  TT  sin  ̂ ,  JV  =  W  cos  6,  as  before. 
(2)  Similarly,  when  the  force  is  parallel  to  the  base  we 

find 

F=  TTtanl?,    iV^=  TTsec  ̂ . 

{c)  By  the  method  of  Art.  84. 
For  the  particle  is  held  in  equilib- 

rium by  the  three  forces  F,  W,  iV 
pounds.  Construct  the  triangle  of 
forces  by  drawing  lines  parallel  to 

the  forces.  Solving  the  right  tri- 
angles, we  have 

or 

as  before. 

F=  Wsin  e, 
F=  Wta.n6, 

iVr  =  Tf  cos  6, 

]sr=  wsec  e. 

Ex.  1.  What  force  acting  horizontally  will  support  a  weight 

of  10  lb  on  a  plane  inclined  at  45°  to  the  horizon  ? Ans.  10  pounds. 
2.  Find  the  angle  of  inclination  when  a  force  of  10  pounds 

along  the  plane  supports  a  weight  of  20  lb.  Ans.  30°. 
3.  A  man  pushes  a  garden  roller  weighing  80  lb  up  a 

plank  10  ft  3  in  long  and  with  one  end  2  ft  3  in  above  the 
ground.  If  the  handle  is  horizontal,  find  the  force  applied 
g,nd  the  pressure  of  the  roller  on  the  plank. 

Ans.  18  pounds;  82  pounds. 
4.  Show  that  a  body  of  weight  Tf  resting  on  an  inclined 

plane  will  be  held  in  equilibrium  by  a  force  F  parallel  to  the 
plane  if 

F:  FT  =  height  :  length. 
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and  parallel  to  the  base  if 

F  :  W=  height  :  base. 

5.  A  cask  weighing  400  lb  is  lowered  into  a  cellar  down  a 
smooth  slide  inclined  at  45°  to  the  vertical.  It  is  lowered  by- 
two  ropes  passing  under  it,  one  end  of  each  rope  being  fixed, 
while  two  men  pay  out  the  other  ends.  Find  the  pull  ex- 

erted by  each  man.  Ans.  100/  V2  pounds. 
6.  Find  the  force  required  to  haul  a  train  weighing  100 

tons  up  a  1^  grade  if  the  force  required  on  the  level  is  10 
pounds  per  ton.  Ans.  3000  pounds. 

7.  On  an  inclined  plane,  if  JV  is  the  reaction  when  the  force 
acting  is  along  the  plane  and  iY^  the  reaction  when  an  equal 

force  is  horizontal,  show  that  the  weight  =  l^iVLY^. 
8.  On  an  inclined  plane  a  force  P  parallel  to  the  plane  sup- 

ports a  weight  W,  and  a  horizontal  force  Q  will  also  support 
W.     Show  that 

9.  On  an  inclined  plane  a  force  P  acting  parallel  to  the 
plane  can  support  a  weight  W^ ,  and  acting  horizontally  a 
weight  W^;  prove 

W,'  -  TF/  =  P\ 

10.  A  body  weighing  W  lb  is  kept  at  rest  on  a  plane  whose 
inclination  is  6^  by  a  force  P  acting  at  an  angle  a  with  the 
plane.    Show  that 

P  =  PF  sin  ̂ /cos  or, 

^  =  W  cos  (  a-\-  6)/cos  a, 

11.  If  two  weights  TF", ,  TF,  support  each  other  on  a  double inclined  plane  by  means  of  a  thread  passing  over  the  common 
vertex  of  the  planes,  and  6^^ ,  ̂,  are  the  inclinations  of  the 
planes,  then 

WJW^  =  sin  l9ysin  6^, 

108.  Motion  in  a  Circle. — Suppose  a  particle  weighing  to  to 
move  with  constant  velocity  v  in  the  circumference  of  a  circle 

■h 
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of  radius  r.  It  was  shown  in  Art.  32  that  the  acceleration  of 

motion  is  always  directed  towards  the  center  0  of  the  circular 
path;  in  other  words,  the  particle  is  constrained  by  a  constant 
force  C  directed  towards  0,  and  therefore  having  its  direction 

always  perpendicular  to  the  direction  of  motion  of  the  par- 
ticle.    To  this  force  the  name  centripetal  force  is  given. 

The  motion  may  be  illustrated  by  supposing  the  particle 
attached  by  a  thread  to  an  axis  through  0  and  to  revolve 
about  this  axis  with  uniform  velocity,  the  motion  being  due 
to  the  initial  velocity  v  and  to  the  pull  of  the  thread,  and  to 
these  alone. 

Suppose  that  the  thread  is  cut  when  the  particle  reaches 
any  point  P.  Since  there  is  no  force  now  acting,  the  particle 
will  move  in  the  tangent  to  the  circle  at  P  and  with  velocity 
V,  This  follows  from  the  first  law  of  motion.  The  pull  of 
the  thread  acts  only  in  changing  the  motion  from  uniform 
rectilinear  to  uniform  circular  motion;  it  acts  towards  the 
center  0  and  constantly  changes  direction  as  the  particle 

changes  place;  it  acts  constantly,  and  produces  an  accelera- 
tion a  which  changes  at  every  moment  the  direction  of  the 

velocity  v  without  changing  its  magnitude. 
Consider  further.  The  pull  in  the  thread  is  a  stress,  the 

action  on  the  particle  towards  the  center  0  and  the  reaction 

of  the  particle  from  0.  The  two  are  equal  by  Newton's 
third  law.  The  first  is  the  centripetal  force,  and  to  the  other 
the  name  centrifugal  force  is  commonly  given. 

Notice  that  the  centrifugal  force  does  not  act  on  the  mov- 
ing particle,  but  is  tlie  form  with  which  the  moving  particle 

acts  upon  the  constraint  when  it  is  constrained  to  move  in  a 
circular  path.  In  other  words,  the  centrifugal  force  is  the 
tension  of  the  thread  directed  outwards  from  0,  the  center 

of  the  circular  path. 
The  pull  of  the  thread  acts  as 

a  centrifugal  force  on  0, 
a  centripetal  force  on  P. 
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109.  To  find  the  magnitude  of  the  centripetal  or  centrifu- 
gal force. 

If  the  particle  were  free  to  move  it  would 
proceed  in  the  tangent  PT  with  velocity  v, 
and  after  an  interval  t  would  be  at  Twhen 

PT=zvt. 

But  as  it  is  found  on  the  circumference  at 

Q,  it  must  be  deflected  by  the  central  force  C  a  distance  TQ 
in  this  interval.  Let  a  be  the  acceleration  due  to  this  force. 
Then 

TQ  =  iat\ 

Prolong  TQ  through  the  center  0  to  R.    From  geometry, 

TQxTR=  TP\ 

Proceeding  to  the  limit,  we  have,  since  limit  TR  =  2r, 

iat'  X2r  =  vH' 

or        a  =  v^/r, 
the  same  result  as  already  found  in  Art.  32. 

Now,  from  Newton's  second  law, O  =  tva/g 

=  wv^/gr, 

the  value  of  the  centripetal  or  centrifugal  force. 

If  the  whole  circumference  is  described  in  t  seconds,  then 

tv  =  27rr 

and        C  =  4:7t^wr/gt'  pounds,     C 
if  tv  is  expressed Jn  lb  and  r in_ft.^ 

If  n  is  the  number  of  revolutions  per  minute, 

V  =  27rrn/60  ft/sec 

and        C  =  0,OOOUwrn^  pounds, 

a  rule  used  by  machinists. 
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The  term  centrifugal  force  was  introduced  by  Huygens 
(1629-1695),  and  is  very  of  ten  misunderstood.  See  question 
60,  page  139.  It  is  sometimes  defined  as  the  tendency  of  a 
body  in  motion  to  continue  to  move  in  a  straight  line.  This 
definition  may  be  compared  with  that  given  above. 

110.  A  very  remarkable  application  of  the  idea  of  cen- 
tripetal force  was  made  by  Newton  to  test  the  truth  of  the 

law  that  the  acceleration  of  gravity 
varies  inversely  as  the  square  of  the 

distance  from  the  earth's  center.* 
Observation  shows  that  the  moon 

revolves  round  the  earth  in  an  or- 
bit nearly  circular  and  with  uniform 

velocity.  It  v  =  velocity  of  moon, 
E  =  radius  of  orbit,  then  the  accel- 

eration of  the  moon  directed  to  the 

center  of  the  earth  is  v^/E.  If  this  acceleration  is  due  to 
gravity,  we  have 

ff'  =  v'/B 

when  g'  is  the  value  of  g  at  the  distance  E  from  the  earth's 
center.  Also,  if  the  acceleration  of  gravity  varies  inversely 

as  the  square  of  the  distance  from  the  earth's  center, 

g'/g  =  T^m 

when  r  is  the  earth's  radius. 
Hence,  eliminating  g\  we  have,  as  the  condition  to  be  sat- 

isfied if  the  hypothesis  is  true, 

v^E  =  r^'g. 

Now  from  measurement,  E  =  240,000  miles,  r  =  4000  miles, 

^  =  32  ft/sec'',  time  of  revolution  of  moon  =  27  days  8  hours 

*  "In  our  day  the  principle  is  so  familiar  that  we  imagine  it  must 
have  been  an  easy  step  to  generalize  from  terrestrial  to  celestial  me- 

chanics. Yet  neither  Kepler  the  bold  nor  Galileo  the  far-seeiug  had 
the  courage  to  make  such  a  generalization.  Even  Newton  was  very 
timid  in  extending  terrestrial  to  celestial  laws." — Lewes. 
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=  2,360,000  seconds  nearly,  whence  v  =  3315  ft/sec.  Sub- 
stitute these  values,  and  the  expression  will  be  found  to 

check. 

111.  Uffect  of  the  JEJarth's  Rotation. — Consider  a  particle  at 

a  point  P'  on  the  earth's  surface.  Assuming  the  earth  a 
sphere,  the  force  w^  on  the  particle  due 
to  gravity  alone  acts  along  PO  towards 
the  center  0,  But  in  consequence  of 

the  earth's  rotation  the  particle  receives 
a  centripetal  acceleration  along  PA 

perpendicular  to  N8,  the  earth's  axis. 
Hence  the  force  ̂ u  exerted  by  the  par- 

ticle on  its  support  is  the  resultant  of 
w^  along  PO  and  the  centripetal  force 
C  reversed  (Art.  108). 

If  the  particle  were  supported  by  a  thread,  the  direction  of 
the  thread  would  be  along  ̂ o,  so  that  the  direction  of  w  is  that 

of  a  pluml-line  at  P.  We  may  therefore  say  that  the  particle 
P  is  in  equilibrium  under 

w^  directed  to  the  center  0  of  the  earth; 

—  w  directed  upward  along  the  plumb-line; 
—  C  the  reversed  centripetal  force. 

Let    A  =  the  latitude  of  P  =  z  POB; 
r  =  the  radius  of  the  earth; 

6  =  inclination  of  plumb-line  to  radius  OP. 

Eesolving  the  forces  along  OP  and  _L  to  OP,  we  have 
(Art.  86) 

—  w  cos  ̂   —  (7  cos  A  -f  w„  =  0,    ,    ,    .     .     (1) 
—  w  sin  (9  +  C  sin  A  =  0,   .     .     .     .     (2) 

from  which  to  find  w  and  6, 

Now  G  =  47r'w,  X  PA/gf        (Art.  109) 
=  4i7r^w^r  cos  X/gt\ 
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But  t  =  24  hours,     r  =  4000  miles; 

.-.     C  =  w,  cos  A/289, 

and  w  =  w^{l  —  cos'  A/289),  nearly, 

which  shows  how  the  attractive  force  is  diminished  in  conse- 

quence of  the  earth^s  rotation. 
To  put  it  in  slightly  different  form:  If  g^  is  the  accelera- 

tion due  to  gravity  alone,  and  g  is  the  resultant  acceleration 

in  the  direction  of  the  plumb-line,  then 

and  .-.     ̂   =  ̂ „(1 -cos''X/289), 

which  shows  the  variation  of  g  with  the  latitude. 

At  the  equator,  where  A  =  0,  experiment  gives 

g  =  32.09  ft/sec'. 

Hence  at  the  equator  g,  =  (32.09  +  0.11)  ft/sec», 
and  at  latitude  X  g=  32.09  +  0.11  -  0.11  cos' A 

=  32.09  +  0.11  sin'  A  ft/sec\ 

Also,  from  eqs.  (1)  and  (2) 

tan  6^  =  sin  A  cos  A/289, 

giving  the  inclination  of  the  plumb-line  at  any  point  to  the 
radius  of  the  earth  through  that  point. 

112.  Attention  was  first  called  by  Huygens  to  the  influenc 
of  centrifugal  force  on  the  acceleration  of  gravity.  A  pen 
dulum  clock  taken  from  Paris  to  Cayenne  by  Eicher  in 
1671-1673  lost  time  unaccountably,  and  when  adjusted  and 
brought  back  to  Paris  it  gained  an  equal  amount.  When 
Halley  in  1677  went  to  the  island  of  St.  Helena  to  observe 
the  stars  of  the  southern  hemisphere,  he  found  his  clock  lost 
so  much  that  the  screw  at  the  bottom  of  the  pendulum  did 
not  enable  him  to  shorten  it  sufficiently.  Huygens,  by  demon- 

strating the  greater  centrifugal  acceleration  of  the  earth  near 
the  equator  and  the  consequent  diminution  of  g,  cleared  up  the 
mystery.     (See  Art.  115.) 

Ex.  1.  A  stone  weighing  4  ounces  is  whirled  90  times  a 
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minute  at  the  end  of  a  thread  3  ft  6  in  long.     Find  the  pull 
of  the  thread.  A7is.  2.4  pounds,  nearly. 

2.  A  locomotive  weighing  60  tons  is  running  at  15  miles  an 
hour  on  a  level  track  round  a  curve  of  3300  ft  radius  (about      , 

1°  44').     Show  that  the  lateral  pressure  on  the  rails  is  550 
pounds. 

3.  Show  that  the  lateral  pressure  on  the  rails  by  a  loco- 
motive of  weight  W  Ih,  and  running  at  the  rate  of  v  miles      y 

an  hour  on  a  curve  of  r  ft  radius  is  0.067  Wv^/r  pounds.  ^ 
4.  Find  the  velocity  of  projection  in  order  that  a  bullet 

shot  horizontally  may  travel  round  the  earth  continually. 
Ans.  5  miles  per  sec. 

5.  The  center  of  a  steel  crank-pin  which  weighs  16  lb  is 
12  in  from  the  center  of  the  engine-shaft.  The  shaft  makes 
180  revolutions  per  minute.  Find  the  centrifugal  force  aris- 

ing from  the  pin.  A^is.  178  pounds  nearly. 
6.  Show  that  the  rubber  tire  of  a  bicycle  becomes  slack 

when  running  at  more  than  i^7rgdT/W  ft /seCy^vhere  TT  is 
the  welght-el-4he-trrgTn:tb,  y  the  tension  in  pounds,  and  d the  diameter  of  the  wheel  in  feet. 

7.  The  attractive  force  of  the  earth  is  diminished  in  conse--,') 
quence  of  the  earth^s  rotation  by- 1/289  part.  "'  • 

8.  "We  know  by  the  mere  consideration  of  centrifugal 
force  that  the  whole  sun  attracts  each  ton  of  the  earth  with  a 
force  of  a  little  more  than  a  pound,  and  that  the  whole  earth 
attractiS-oach  ton  of  the  moon  with  a  force  of  ten  ounces." 
"ST^how  that  the  acceleration  of  a  body  falling  freely  at 

the  equator  is  1/9  ft/sec^  less  than  it  would  be  if  the  earth did  not  revolve  on  its  axis. 

10.  A  spring-balance  graduated  at  New  Orleans,  in  lat.  30°, 
will  be  in  error  0.09^  as  shown  by  the  beam-balance  on  the 

boundary  between  the  U.  S.'and  Canada  in  lat.  45°,  and  an 
equal  amount  at  the  equator,  near  the  mouth  of  the  Amazon. 

11.  If  the  earth  were  to  revolve  on  its  axis  17  times  as  fast 
as  it  does,  no  stress  would  exist  at  the  equator  between  the 
earth  and  a  body  resting  on  its  surface. 

Per  Contra. — The  universe  is  not  twice  given,  with  an 
earth  at  rest  and  an  earth  in  motion.  It  is  accordingly  not 

permitted  us  to  say  how  things  would  be  if  the  earth  did  not' 
rotate^^Mach.) 

113.  Conical  Pendulu7n. — Suppose  a  particle  of  weight  w 
suspended  by  a  thread  from  a  point  0  and  caused  to  swing 
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about  the  vertical  axis  OA  with  a  uniform  velocity  ̂ ;  in  a 
circular  path.  Such  an  arrangement 
is  called  a  conical  pendulum. 

Let  I  be  the  length  of  the  thread 
OB,  and  let  T  be  the  time  of  a  com- 

plete revolution,  or  the  period. 

Let  B  be  the  position  of  the  par- 

A  J    tide  at  any  time.     Denote  the  angle 
^'^  ^     between  OB  and  the  vertical  OA  by 

0,  and  the  radius  AB  by  r. 

w  y  '  The  particle  B  is  acted  on  by  two 
forces — the  weight  2u  vertically  down- 

wards and  the  pull  P  along  the  thread  BO.  Since  the 
resultant  motion  has  a  uniform  velocity  v  in  sl  circle  with 
center  A  and  radius  r,  the  resultant  of  the  acting  forces 
must  be  a  centripetal  force  directed  to  A.  The  magnitude 

of  this  force  is  wv^/gr  (Art.  109). 
Hence  the  particle  B  would  be  in  equilibrium  under  P,  2V, 

and  a  force  equal  and  opposite  to  the  centripetal  force  wv^/gr, 
Kesolving  vertically  and  horizontally  (Art.  86), 

-  w  +  F  cos  e  ̂   0,     .    .    .    .     (1) 

~  lov'/gr  +  P  sin  6/  =  0   (2) 

Also,  since  T  is  the  period  of  revolution, 

vT=27tr   (3) 

From  these  equations  it  readily  follows  that 

cos  e  =  gTy4:7t%   (4) 
P  =  w/co8  e,   (5) 

v^  =  gl  sin  (9  tan  6^   (6) 

It  is  sometimes  convenient  to  write  these  relations  in  a  dif- 
ferent form.    Denote  the  vertical  distance  OA  by  li.     Then 

T=27tVhrg>   (7) 
Ph  =  wl,   (8) 

hv''  =  g?-'   (9) 
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The  relation  (7)  shows  that  the  period  is  the  same  as  that 
of  a  simple  pendulum  of  length  h  (Art.  115). 

114.  The  conical  pendulum  may  be  used  as  a  regulator  of 
mechanical  motion.  An  apparatus 

depending  upon  this  principle, 
known  as  the  governor,  was  ap- 

plied by  James  Watt  to  the  steam- 

engine.* 
In  the  figure,  which  represents 

one  form  of  governor,  as  the  speed 
of  the  engine  increases  the  spindle 
AO  revolves  more  quickly,  and 
the  balls  separate;  as  it  diminishes, 
the  balls  come  together.  The 
slide  0  rises  and  falls  accordingly, 
and  by  means  of  a  set  of  levers,  O, 

the  steam -valves  of  the  engine  are 
acted  on,  and  the  supply  of  steam 
admitted  to  the  cylinder  regulated. 

Ex.  1.  Obtain  the  results  (1)  and  (3)  by  means  of  Lami*s theorem. 
2.  By  taking  moments  about  A  and  0  in  succession,  show 

that 

Ph  =  wl,    hv^  =  gr^, 

3.  Show  that,  roughly, 

h  =  (twice  period )y5. 

4.  Show  how  to  find  the  value  of  the  acceleration  g  of 
gravity  by  means  of  a  conical  pendulum. 

[Observe  7\  measure  h,  and  compute  g  from  g  =  4t7r^h/T'.'] 5.  A  train  is  running  around  a  horizontal  curve  of  5445  ft 
radius  at  30  miles  an  hour.     Show  that  the  surface  of  a  basin 

*  "If  a  pair  of  common  fire-tongs  suspended  by  a  cord  from  the  top 
be  made  to  turn  by  the  twisting  or  untwisting  of  the  cord  the  legs  will 
separate  from  each  other  with  force  proportioned  to  the  speed  of  rota- 
lion.  Mr.  Watt  adapted  this  fact  most  ingeniously  to  the  regulation  of 
the  speed  of  his  steam-eugine." 
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of  water  on  the  train  will  be  inclined  to  the  horizontal  at  an 

angle  tan~^  1/90. 
6.  Find  the  length  of  a  Watt  governor  that  will  run  60 

revolutions  per  minute.  A^is.  9.78  in. 
7.  If  n  is  the  number  of  revolutions  per  second  of  a  conical 

pendulum  having  a  thread  I  ft  long  and  a  bob  weighing  w  lb, 

show  that  the  pull  of  the  thread  is  ̂ n'^ln'^w/g  pounds. 8.  A  skater  5  ft  10  in  in  height  in  going  round  a  ring  100 
ft  in  diameter  leans  inward  5  in  from  the  vertical.  Find  his 

speed.  Ans,  10.7  ft/sec.    ̂  

116.  Simple  Pendulum. — Consider  a  particle  tv  suspended 
from  a  fixed  point  (7  by  a  thread  of  length  I  and  moving  in  a 

vertical  arc  under  the  action  of  the  force 

of  gravity.     The  arrangement  is  called  a 
simple  pendulum.     (See  Art.  119.) 

Let  P  be  any  position  of  the  particle. 
Denote  the  angle  between  CP  and  the 
vertical  CO  by  6. 

The  force  w  on  the  particle  acting  ver- 
tically downward  may  be  resolved  into  two 

rectangular  components,  to  sin  6  along  the  tangent  at  P  and 
w  cos  d  along  PC,  The  component  along  PC  cannot  affect 
the  motion  in  the  arc.  The  motion  of  the  particle  therefore 

depends  on  the  tangential  component  only. 
If  a  denotes  the  acceleration  along  the  tangent  at  the  point 

P,  the  equation  of  motion  is 
w^mO  =  wa/g, 

and  therefore  a  =  ̂   sin  S. 

Now  if  d  is  expressed  in  circular  measure  and  is  a  small 
angle,  we  may  replace  sin  Q  by  B,     Hence 

a  =  gd,  approximately,  if  6  be  small; 
=  g  (arc  OP/radius  CO), 

=  jx  OP, 
or,  since  g  and  I  are  constant,  the  acceleration  is  proportional 
to  the  displacement  OP,  and   therefore  the  motion  in  the 
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small  arc  OP  is  a  S.  H.  M.    The  time  t  of  an  oscillation 

being  one  half  the  period,  we  have  (Art.  37) 

t  =  7t  V'displacement/acceleration. =  Tt  VOP/a 

a  result  independent  of  the  length  of  the  arc.  Hence  in  all 
small  arcs  the  times  of  oscillation  are  the  same,  and  the  vibra- 

tions of  a  pendulum  are  therefore  said  to  be  isochronous, 

Galileo,  it  is  said,  first  tested  this  by  watching  the  swinging 
of  a  bronze  lamp  (a  masterpiece  of  Benvenuto  Cellini)  in  the 
cathedral  at  Pisa,  Italy,  and  measuring  the  time  by  counting 
the  beats  of  his  pulse. 

116.  A  pendulum  which  makes  one  oscillation  in  one  sec- 
ond is  called  a  seconds-pendulum.  If  I  be  its  length,  we  have, 

since  t  =  1, 

1  =  nVTJ-g 
or        I  =z  g/n^. 

An  approximate  value  of  g  is  32.2  ft/sec*.    Hence 
/  =  39.12  inches, 

or  a  pendulum  which  beats  seconds  is  about  3  ft  3 J  in  in 
length.  [The  length  of  the  meter  is  3  ft  3f  in.]  See  Ex.  lo, 

p.  131. 
Conversely,  if  the  length  I  is  known,  we  may  find  the  value 

of  g,  the  acceleration  due  to  gravity  at  any  place.    For  then 

g  =  7zH  =  \.Oly  roughly. 

To  test  whether  the  value  of  g  was  the  same  for  all  bodies, 
Newton  placed  different  materials  in  equal  small  boxes  and 
suspended  them  by  equal  long  threads.  He  noted  that  the 
time  of  oscillation  was  the  same  for  each  used  as  a  pendu- 

lum. The  resistance  of  the  air  being  the  same  in  each  case, 
he  concluded  that  the  acceleration  due  to  gravity  was  con- 

stant at  the  same  place  for  all  substances,  whatever  their 
chemical  composition. 
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117.  If  a  pendulum  of  length  I  makes  n  oscillations  in  a 
given  time  r  at  a  place  where  the  acceleration  of  gravity  is  g, 
then 

r/n  =  t=  nVl/g, 

Suppose  (1)  the  length  of  the  pendulum  changed  to  /  +  A, 
when  A  is  small.     By  differentiation, 

-rdn/n'='^Vl/ildl 
and  —  dn  =  ndl/2l  =  nX/2l, 

giving  the  loss  in  the  number  of  oscillations. 

Thus,  if  a  seconds-pendulum  loses  20  sec  a  day,  its  change 
in  length  would  be  found  from 

20  =  86,400A/(2  X  39.12) 
or  A  =  0.018  inch. 

Suppose  (2)  the  pendulum  carried  to  a  place  where  g  has 

the  value  g  -{-  y,  the  change  y  being  small  and  the  length  / 
remaining  the  same.    Then 

^       rdn/n^  =  ̂VJ/fdg 
and  dn  =  ndg/2g  =  ny/2g, 

giving  the  gain  in  the  number  of  oscillations. 
Suppose  (3)  the  pendulum  carried  to  a  height  h  above  the 

earth's  surface.  Then,  since  g  varies  as  1/r',  r  being  the  dis- 
tance from  the  earth's  center,  we  have 

r/n  =  cr^/l,    where  c  is  a  constant. 

Hence  —  rdn/n*  =  cVldr, 
—  dn  =  ndr/r  =  nh/r, 

giving  the  loss  in  the  number  of  oscillations. 
(4)  If  carried  to  a  depth  h  below  the  surface,  g  varies  as 

r,  and  the  loss  in  the  number  of  oscillations  would  be  nh/2r, 

Ex.  1.  If  a  pendulum  of  length  I  vibrates  n  times  in  s  sec- 
onds, prove 

/tt'w^  =  gs^. 
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2.  Find  the  number  of  oscillations  made  by  a  pendulum  a 
yard  long  in  one  minute.  Ans.  62.57.^ 

3.  A  plummet  attached  to  a  fine  wire  vibrates  60  times  in 
3  minutes.     Find  the  length  of  the  wire.        Aiis.  29.36  ft. 

4.  A  seconds-pendulum  makes  11  oscillations  more  in  24 
hours  at  the  foot  of  a  mountain  than  at  the  top.  Find  the 
height  h  of  the  mountain.  J7is.  1/2  mile  nearly. 

5.  A  pendulum  which  beats  seconds  at  the  surface  when 
carried  to  the  bottom  of  a  mine  loses  5  beats  in  24  hours. 
Find  the  depth  of  the  mine. 

6.  A  seconds-pendulum  is  lengthened  1/100  inch.  Show 
that  it  will  lose  11  sec  per  day. 

7.  A  clock  gains  30  min/week.  How  much  should  the 
pendulum  be  lengthened  for  correct  time  ? 

Ans.  0.006  of  its  length. 
8.  A  clock  keeps  correct  time  at  a  place  where  g  is  32.24 

ft.  Show  that  it  will  lose  3  min  21  sec/day  at  a  place  where 
g  is  32.09  ft. 

9.  A  pendulum  clock  is  in  an  elevator  which  is  going  down 
with  an  acceleration  of  1  ft/sec^  Show  that  the  clock  loses 
15/16  sec/min. 

10.  To  find  the  length  x  of  a  seconds-pendulum.  Count 
the  number  of  vibrations  7i  made  in  a  day  by  a  pendulum  of 
known  length  I.     Then  compute  x  from 

Vx/l  =  ?^/86,400. 

118.  The   paths   found   analytically   in   the   examples    of 

combining  S.H.M.^s  (p.  36)  and  many  others  may  be  traced 
mechanically   by  an   apparatus    known   as 

TJie  Blackburn  pendulum.  — 
Two  threads  ACP,  BCP  fastened  at  two 

points  A,B  m^  horizontal  line  are  brought 
together  by  a  small  ring  at  C  sliding  over 
the  threads.  At  P  is  attached  a  funnel  to 

carry  sand  or  ink  to  trace  the  curve  made. 
The  bob  P  oscillates  in  the  plane  of  the  paper  about  C,  and 

also  perpendicular  to  this  plane  about  ̂ 5  as  axis.  Hence 

for  small  disturbances  P  has  two  S.H.M.'s  at  right  angles, 
of  which  the  period  of  that  in  the  plane  of  the  paper  is 

^nVGPjg,  and   of  the  other  In^PD'fg.     If,  for  example, GP  =  PD/4:,  the  curve  traced  out  will  be  a  parabola. 
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[§119 
119.  Motion  on  a  Vei^tical  Circle. — AVe  shall  now  discuss 

the  motion  of  a  particle  iv  constrained  to  move  on  a  smooth 
vertical  circle  under  the  action  of  gravity.  The  problem  of 
the  simple,  pendulum  is  a  special  case. 

Since  a  circle  may  be  regarded  as  the  limit  of  a  polygon  of 
an  indefinitely  great  number  of  sides,  the  path  on  the  circular 

arc  may  be  treated  as  a  series  of 
inclined  planes.  The  problem  is 
therefore  similar  to  that  of  Art. 
105. 

Take  the  origin  at  0,  the  lowest 
point  of  the  circle;  OX,  the  axis  of 
X  horizontal,  and  0  Y  the  axis  of 
Y  vertical,  and  passing  through 
the  center  C. 

Let  A  be  the  initial  position  of  the  particle  and  P  its  posi- 
tion at  the  end  of  a  time  t;  a,!),  the  coordinates  of  ̂ ;  x,  y, 

the  coordinates  of  P;  AP  =  s,  and  angle  OCP  =  6, 
Draw  AB  and  PD  parallel  to  OX. 
The  direction  of  motion  at  P  being  ultimately  along  the 

tangent  at  P,  the  equation  of  motion  is  (Arts.  67,  20) 

w  (Ps 
IV 

dy 

ds' 

or 

d^ 

df 

dy 

(1) 

the  minus  sign  being  taken  because  y  decreases  as  s  increases. 

Multiply  by  2ds  and  integrate. 

.-.     v'  =  {ds/dty  =  -  2gy  +  O. 

But  when  y  =1),  v  ~  0,  ami  .-.  C  =  2gb. 

Hence  f'  =  2^(6  —  y) 
=  2^  X  /ii>,   (2) 

or  the  velocity  at  P  is  the  panie  as  would  be  acquired  in  fall- 



§  121]  MOTION   ON  A  VERTICAL   CIRCLE.  133 

ing  through  the  distance  BD,  the  height  of  A  above  P  (Art. 
105). 

If  we  put  the  angle  OCA  =  /3,  equation  (2)  may  be  written 

v'  =  2g{CI)  -  CB) 
=  2gr  (cos  6^  —  cos  /?),   (3) 

where  r  is  the  radius  of  the  circle. 
120.  To  find  the  time  of  motion  in  the  small  arc  AP, 

"We  have,  writing  ds/dt  for  v, 

[-J.)  =2^^  (cos  6^—008  /?). 

Also  ds  =  rdd, 

.\    V2g/7^dt  =  -  de/Vco8  8  -  cos  /?,      .    .     (4) 

the  —  sign  being  taken  because  0  decreases  as  t  increases. 
This  equation  cannot  be  integrated  by  the  ordinary  methods. 
If,  however,  /?  is  so  small  that  powers  above  the  second  may 
be  neglected,  we  have 

cos  d-co8  (3  =z  (1  -  6y2)  -  (1  -  /5V2) 

Hence  Vg/?dt  =  -  dd/V^'  -  d\   (5) 

Integrating,  and  noting  that  when  t  =  0,  6  =  /3,we  have 

V^rt  =  co8-'W/3),   (6) 

which  gives  the  value  of  t,  the  time  sought. 
The  time  of  making  an  oscillation,  that  is,  the  time  of 

moving  through  the  arc  AOA^,  is  found  by  putting  6=  —  /3. 
This  gives 

t  =  7tV7/^,   (7) 

the  result  already  deduced  in  Art.  115. 
121.  We  may  also  determine  the  pressure  JVof  the  circle 

on  the  particle  iv. 

The  centripetal  force  along  PC  =  tvv^/gr. 
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The  resultant  along  PC  oi  the  force  iVand  the  vertical 
force  w  \&  N  —  w  cos  8.    Hence 

N  —  w  cos  6  =  iuv*/gr 
and  ]^=  w  cos  0  -{-  wv*/gr 

=  wjcos  6^  +  2(cos  6  —  cos  /3)] 
.    =  w(3  cos  0  —  2  cos  /3), 

Ex.  1.  Compare  the  times  of  a  particle  sliding  down  a 
small  arc  ̂ 0  of  a  vertical  circle  to  the  time  of  sliding  down 
the  chord  AO.  Ans.  11  :  14. 

2.  A  particle  starts  from  the  highest  point  of  a  smooth 
vertical  circle  and  slides  down  the  convex  side  nnder  the 
action  of  gravity.     Find  where  it  leaves  the  circle. 

Ans.  At  a  depth  =  radius/3. 
3.  A  weight  attached  to  a  thread  2  ft  long  revolves  in  a 

vertical  circle.  Find  the  velocity  at  the  highest  point  of  the 
path  that  the  thread  may  just  remain  taut.     Ans.  8  ft/sec. 

[At  the  highest  point  the  centripetal  accel.  =  the  accel.  of 
gravity.] 

4.  A  weight  w  hanging  at  the  end  of  a  thread  of  length  I 
is  projected  with  a  velocity  u  so  as  to  describe  a  vertical 
circle.  Show  that  the  pull  P  of  the  thread  and  the  velocity 
V  at  any  point  in  the  path  whose  vertical  height  above  the 
lowest  point  is  7i  are  found  from 

Pl/w  =  u'/g  +  Z  -  3^. 

5.  In  (4)  show  that  if  u"^  >  bgl  the  particle  will  perform complete  revolutions. 
In  this  case  the  pull  at  the  lowest  point  is  not  less  than  6w 

pounds. 
6.  A  pendulum  is  let  go  from  a  horizontal  position.  If  W 

is  its  weight,  show  that  the  pull  on  the  thread  when  the  bob 
is  in  the  lowest  position  is  3  W, 

7.  If  I,  is  the  length  of  the  seconds-pendulum  at  latitude 
X  and  I  the  length  at  the  equator,  then 

IJl  =  1  -  cos'  A/289. 
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EXAMINATION. 

1.  State  the  elements  which  specify  a  force. 
2.  Forces  may  be  represented  by  straight  lines  drawn  in 

their  direction  and  of  lengths  proportional  to  their  magni- 
tudes. 

3.  Which  of  Newton's  laws  implies  the  principle  of  the 
transmissibility  of  force  ? 

4.  Show  clearly  from  Newton's  second  law  that  the  result- 
ant of  two  concurrent  forces  may  be  found  by  the  same  proc- 

ess as  the  resultant  of  two  concurrent  velocities. 

5.  Show  that  the  parallelogram  of  forces  may  be  illustrated 
experimentally. 

6.  What  is  meant  by  a  force  resolved  in  a  given  direction  ? 

7.  A  force  i^acts  at  0  in  the  line  OA.  Find  its  component 
along  the  line  OB, 

8.  A  force  may  be  resolved  into  two  components  in  any 
assigned  directions. 

9.  What  is  meant  by  the  resultant  of  a  number  of  forces 
acting  at  a  point  ? 

10.  Given  two  forces  and  their  resultant,  show  how  to  find 

the  angle  between  their  directions. 
11.  Since  a  force  can  have  no  component  at  right  angles  to 

itself,  how  is  it  that  a  ship  can  be  sailed  at  right  angles  to  the 
wind  ? 

12.  To  resolve  a  force  P  into  two  others  such  that  the  angle 

between  them  is  60°  and  their  sum  is  the  greatest  possible. 
13.  Explain  the  action  of  the  forces  by  which  an  arrow  is 

discharged  from  a  bow. 
14.  A  body  moves  with  uniform  velocity  in  a  straight  line. 

Find  the  relation  between  the  acting  forces. 
15.  When  are  forces  said  to  equilibrate  ? 

16.  "  Equilibrium  is  not  a  balancing  of  forces,  but  of  the 
effects  of  forces.*'    Explain. 

17.  "  Two  or  more  forces  can  hardly  be  said  to  balance  each 
other  unless  they  all  act  on  the  same  body."    Why  ? 
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18.  State  and  prove  the  triangle  of  forces. 
19.  State  and  prove  the  polygon  of  forces. 
20.  State  the  graphical  condition  of  equilibrium  when 

forces  act  at  a  point. 
21.  Three  forces  equilibrate.  Show  that  no  one  of  them 

can  be  greater  than  the  sum  of  the  other  two. 

22.  State  and  prove  Lamias  theorem. 
23.  State  the  analytical  conditions  of  equilibrium  when 

two,  three,  ,  ,  ,  n  forces  act  at  a  point. 
24.  What  is  meant  by  saying  that  the  acceleration  of  a 

falling  body  is  g  ft/sec''  ? 
["  Velocity  is  poured  into  the  body  at  that  rate.'^] 
25.  What  is  the  average  velocity  of  a  body  during  the  first 

second  of  its  fall  under  the  action  of  gravity  ? 
26.  A  particle  is  shot  upwards  with  a  velocity  u  ft/sec. 

Find  the  height  reached  and  the  time  of  ascent. 
27.  The  times  of  falling  from  rest  through  two  successive    y 

equal  distances  are  as  4^2  —  1:1. 
28.  Prove  that  the  distances  passed  over  in  the  first,  sec- 

ond, .  .  .  seconds  by  a  body  falling  freely  under  gravity  are  as 
the  numbers  1,  3,  5, .  .  .  respectively. 

29.  The  velocity  with  which  a  body  must  be  projected  to 

reach  a  height  h  ft  is  ̂ Vh  ft/sec. 
30.  How  did  Galileo  show  experimentally  that  distances 

fallen  through  are  as  the  squares  of  the  times  of  falling  ? 
31.  Aristotle  asserted  that  the  time  of  falling  of  a  body  is 

inversely  as  its  weight.  Show  that  this  requires  the  accelera- 
tion of  gravity  to  be  proportional  to  the  square  of  the  weight. 

32.  Find  the  momentum  produced  when  a  weight  of  20  lb 

falls  through  a  distance  of  25  ft.     Ans.  25  second-pounds. 
33.  Discuss  the  motion  of  a  body  acted  on  by  a  constant 

force  (1)  in  the  direction  of  motion;  (2)  not  in  the  direction 
of  motion. 

34.  A  shot  is  fired  from  an  elevation  in  a  horizontal  direc- 

tion with  a  velocity  of  1000  ft/sec.  Draw  a  figure  represent- 
ing its  position  at  the  end  of  1,  1.5,  2,  2.5,  3  seconds. 
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35.  Explain  how  it  is  that  a  body  projected  at  a  given  angle 
to  the  horizon  describes  a  curve. 

36.  Find  the  path  of  a  projectile  in  a  vacuum.  Show  that 
the  problem  is  one  of  kinematics. 

37.  Find  the  position  and  velocity  of  a  projectile  at  the 
end  of  a  given  time  t. 

38.  Find  the  range  of  a  projectile  on  (1)  a  horizontal  plane; 
(2)  an  inclined  plane. 

39.  A  man  running  with  uniform  speed  along  a  level  road 
throws  a  ball  upward.  In  what  direction  must  he  throw  it 
that  it  may  return  to  his  hand  ? 

40.  Two  bodies  are  projected  in  any  manner  under  the  di- 
rection of  gravity.  Show  that  their  relative  velocity  is  con- 

stant throughout  the  motion. 
^       41.  From  a  balloon  sailing  horizontally  at  60  miles  an  hour 

a  ball  is  let  drop.     Find  its  direction  after  2f  sec. 

Ans.  45°  to  the  horizontal. 
42.  Prove  that  the  elevation  required  to  attain  a  range  R 

with  initial  velocity  u  is  given  by 

sin  26*  =  gR/u\ 

0      43.  If  R  is  the  range  and  T  the  time  of  flight  of  a  projec- 
tile, the  angle  of  elevation  6  is  given  by 

tan  e  =  gTy2R, 

44.  If  u^,  u^  are  the  velocities  at  the  ends  of  a  focal  chord 
of  the  path  of  a  projectile  and  v  the  horizontal  velocity,  show 
that 

45.  Two  projectiles  are  shot  from  two  points  in  the  same 
horizontal  plane  with  velocities  2i,  v  and  at  inclinations  a,  (i. 
Show  that  if  they  meet, 

u  ̂ m  a  =  V  sin  y5. 

46.  Two  bodies  are  projected  from  the  same  point  at  the 
same  time  and  in  the  same  direction,  but  with  different  ve- 
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locities.     Show  that  the  direction  of  the  line  joining  them  at 
any  time  is  parallel  to  the  line  of  projection. 

[This  forms  a  good  illustration  of  the  principle  of  the  in- 
dependence of  forces.     Art.  52.] 

47.  The  world^s  record  for  putting  the  shot  is  47  ft.  Find 
the  time  the  shot  was  in  the  air. 

48.  Find  the  velocity  acquired  by  a  particle  sliding  from 
rest  down  a  length  Z  of  a  smooth  plane  inclined  at  an  angle  0 
to  the  horizontal. 

49.  A  body  slides  from  rest  down  a  series  of  smooth  in- 
clined planes  whose  total  heights  are  h  ft.  Show  that  the 

velocity  at  the  bottom  is  V^gli  ft/sec. 
50.  A  series  of  inclined  planes  begin  at  the  same  point  and 

terminate  in  the  same  horizontal.  Compare  the  velocities 
acquired  by  bodies  sliding  down  them. 

51.  The  problem  of  finding  the  line  of  quickest  descent 

from  a  given  point  to  a  given  line  is  equivalent  to  the  geo- 
metrical problem  of  describing  a  circle  tangent  to  the  given 

line  and  whose  highest  point  shall  be  the  given  point. 

52.  The  9^1e  of  an  incline  is  15°.  If  the  pressure  on  the 
plane  is  equal  to  the  acting  force,  show  that  the  inclination 

of  the  force  to  the  plane  is  60°. 
53.  Find  the  pressure  exerted  by  a  barrel  of  flour  (196  lb) 

on  an  elevator  floor  (1)  rising  with  uniform  speed,  (2)  falling 
at  a  speed  which  increases  1  ft  in  each  second. 

Ans.  196;  189 J  pounds. 

54.  Give  examples  of  a  central  stress  as  a  tension  and  as  a 

pressure. 
[Weight  at  the  end  of  a  thread;  train  passing  round  a 

curve.] 

55.  Define  centrifugal  force.  Illustrate  by  reference  to  the 
preceding  question. 

56.  "  When  a  weight  tied  to  a  thread  is  wheeled  about  a 
center  the  tension  upon  the  thread  is  measured  by  the  for- 

mula Wv'/gr  =  pull." 
57.  A  particle  moves  with  uniform  velocity  in  a  circle. 
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Show  that  the  centrifugal  force  varies  as  the  radius  directly 
and  as  the  square  of  the  time  of  circuit  inversely. 

58.  A  fly-wheel  in  consequence  of  too  rapid  rotation  goes 
to  pieces.     In  what  direction  do  the  pieces  fly  off  ? 

59.  The  centrifugal  force  of  1  lb  making  1  revolution  per 
minute  in  a  circle  of  1  ft  radius  is  0.000341  pound. 

60.  "  You  have  heard  [said  the  lecturer]  of  the  wonderful 
centripetal  force  by  which  Divine  Wisdom  has  retained  the 
planets  in  their  orbits  round  the  sun.  But  it  must  be  clear 

to  you  that  if  there  were  no  other  force  in  action  the  cen- 
tripetal force  would  draw  our  earth  and  the  other  planets  into 

the  sun,  and  universal  ruin  would  ensue.  To  prevent  such  a 

catastrophe  the  same  Divine  Wisdom  has  implanted  a  centrif- 

ugal force  of  the  same  amount  and  directly  opposite,  etc," 
Quoted  by  De  Morgan, 

What  was  the  lecturer's  probable  meaning  ? 
61.  How  far  will  a  body  fall  towards  the  earth  in  one  min- 

ute at  the  moon's  distance  ?  Ans.  16  ft. 
62.  What  is  the  "  discount  in  the  attraction  of  the  earth 

due  to  its  rotation"  at  the  equator  ? 
63.  How  is  the  law  of  gravitation  vorifled  by  means  of  the 

moon's  motion  ? 
64.  How  is  it  that  as  an  elevator  comes  to  rest  in  its  de- 

scent a  passenger  feels  as  if  he  were  being  lifted  up  ? 
65.  Prove  that  a  conical  pendulum  of  which  the  bob  de- 

scribes a  horizontal  circle  at  a  depth  of  h  inches  below  the 

point  of  support  will  make  188/vT  revolutions  per  minute; 
and  that  if  the  thread  is  I  inches  long  and  the  bob  weighs  W 
lb  the  tension  of  the  thread  is  Wl/h  pounds. 

66.  Find  the  time  of  oscillation  of  a  pendulum  of  length  I 
inches. 

67.  Describe  a  method  of  finding  the  length  of  a  seconds- 
pendulum. 

68.  Show  that  the  period  of  a  conical  pendulum  is  the 
same  as  the  time  of  oscillation  of  a  certain  simple  pendu- 
lum. 
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69.  A  pendulum-clock  is  carried  in  a  balloon.  Does  it 
gain  or  lose  time  as  the  balloon  rises  ? 

70.  Show  that  the  lengths  of  pendulums  vibrating  at  any 

place  are  inversely  as  the  squares  of  the  numbers  of  oscilla- 
tions. 

71.  A  pendulum  is  let  fall  from  a  height  h.  Find  the 
height  when  the  pull  of  the  thread  is  equal  to  the  weight  of 
the  plummet.  Ans.  2A/3. 

72.  The  vibrations  of  a  simple  pendulum  are  isochronous. 
73.  Show  how  the  height  of  a  mountain  or  the  depth  of  a 

mine  may  be  found  by  counting  the  number  of  oscillations 

lost  by  a  pendulum  which  beats  seconds  on  the  earth's 
surface. 

74.  A  pendulum  which  beats  seconds  at  Paris,  where  g  — 
32.18,  is  carried  to  New  York,  where  ̂   =  32.16.  Find  the 
number  of  seconds  lost  per  day.  Ans,  27  sec. 

75.  A  seconds  pendulum  if  carried  to  the  top  of  a  moun- 
tain 1  mile  above  sea-level  would  lose  between  21  and  22  sec 

per  day. 
76.  The  New  York  Central  R.E.  tracks  between  Albany 

and  Buffalo  lie  approximately  along  the  43d  parallel  of  lati- 
tude. The  weight  of  the  Empire  State  Express  is  about  280 

tons.  A  speed  of  60  miles  an  hour  is  often  attained.  At  that 
speed  find  the  difference  between  the  vertical  pressures  on 
the  rails  of  train  east  and  train  west. 
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CHAPTER  IV. 

STATICS  OF  A  BODY. 

122.  In  the  preceding  chapter  the  behavior  of  a  particle 
under  the  action  of  forces  has  been  considered.  This  includes 

the  case  of  a  body  under  forces  acting  at  the  same  point,  and 
such  that  the  resulting  motion  is  a  motion  of  translation 
only. 

The  directions  of  forces  applied  to  a  particle  must  necessa- 
rily all  pass  through  the  particle.  Applied  to  a  body  the 

directions  need  not  all  pass  through  one  point.  Besides, 
forces  applied  to  a  body  may  cause  it  to  change  its  form,  as 
well  as  to  change  its  position.  To  exclude  the  former  we 
shall  assume  that  the  body  while  under  the  action  of  the 
forces  retains  an  invariable  form.  It  is  not  necessary  to 
assume  that  the  body  cannot  be  made  to  change  its  form,  or, 
as  it  is  commonly  stated,  be  rigid,  but  only  that  while  the 
forces  act  the  form  should  remain  unchanged. 

123.  Composition  of  Concurrent  Forces.  —  Suppose  two 
forces  F^ ,  F^  to  act  along  the  lines  AB,  CD  at  the  points  B, 
D  ot  Si  body.  It  is  required  to  find  their 
resultant. 

Prolong  the  lines  of  action  to  meet  in 

a  point  0.  The  forces  F^ ,  F^  may  be  con- 
sidered to  act  at  this  point  (Art.  74). 

Their  resultant  R  is  found  by  completing 
the  parallelogram  OF  as  in  Art.  75,  and  the  line  of  action  of 
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R  is  along  the  line  EO.     The  value  of  R  may  be  computed 

as  in  Art.  77. 

If  the  number  of  forces  is  more  than  two, 
combine  two  of  them  F^ ,  F^  into  a  resultant 
i?, ;  next  combine  R^  and  F^  into  a  resultant 

.     j.^»  R^;  and  so  on.     The  final  resultant  i?  will 

/      R    V^s        ̂ ®  ̂ ^^  resultant  of  all  the  forces  in  magni- 
/fi  \  tude  and  position. 

124,    Composition   of  Parallel  Forces.— If 
in  Art.  123  the  lines  of  action  of  F^ ,  F^  are  parallel,  the 
construction   for  finding  R   fails.      A 
special  artifice  is  necessary. 

Let  F^  be  resolved  into  any  two 
components  EA,  BA,  and  F^  into  the 
two  components  FB,  AB  (Art.  79). 

Since  BA  and  AB  are  equal  and  oppo- 
site forces,  the  two  forces  F^ ,  F^  may 

be  replaced  by  EA,  FB,  whose  resultant 
is  found  as  in  Art.  123.  Hence  the  resultant  of  F^ ,  F^  is 
found. 

125.  "With  a  number   of   parallel   forces  the   resolutions 
and  compositions  required  to  find  R  would  produce  a  very 

N 
\. 

\ 

/ 

To  avoid  overlapping  a  construc- complicated  force  diagram, 
tion  diagram  is  introduced. 

Let  F^ ,  F^  be  the  parallel  forces  drawn  to  any  convenient 
scale.  From  any  point  a  draw  ah  equal  and  parallel  to  F^ , 
and  from  h  draw  he  equal  and  parallel  to  F^ . 
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From  any  point  0  draw  the  lines  Oa,  Oh,  Oc  to  the  points 
a,  b,  c. 

Now  ah,  or  F^ ,  may  be  resolved  into  the  two  components 
aO,  Ob,  and  be,  or  F^ ,  into  bO,  Oc. 

In  order  to  determine  the  lines  of  action  of  these  compo- 
nents we  transfer  the  components  to  the  force  diagram.  Draw 

any  line  AG  parallel  to  aO  to  meet  F^  in  A,  AB  parallel  to 
bO  to  meet  F^  in  B,  and  BC  parallel  to  Oc.  Then  F^  is  equiv- 

alent to  aO  along  AC,  and  Ob  along  BA  ;  F^  is  equivalent 
to  bO  along  AB,  and  Oc  along  BC  But  the  forces  along  BA 

and  AB  are  equal  and  opposite.  Hence  F^  and  F^  are  equiv- 
alent to  aO  along  J (7,  and  Oc  along  ̂ C. 

Now  the  resultant  oi  aO  and  Oc  is  ac,  or  F^-\-  F^,  and  the 
lines  of  action  ̂ 6',  ̂ (7  intersect  in  C,  which  is  therefore  a 
point  on  the  resultant. 

Hence,  if  through  0  a  line  equal  and  parallel  to  ac  is 

drawn,  it  will  represent  the  resultant  F^  -\-  F^  of  the  two 
parallel  forces  F^ ,  F^  in  magnitude,  direction,  and  line  of  ac- 

tion. The  resultant  is  therefore  completely  determined 

(Art.  73). 
The  rule  for  plotting  R  that  follows  from  this  is  given  in 

Art.  129. 

126.  We  may  readily  compute  the  position  of  the  point 
D  in  which  the  resultant  cuts  AB.  From  similar  triangles 
Oab,  A  CD;  Ocb,  BCD, 

CD/ AD  =  ab/Ob,  CD/BD  =  cb/Ob. 

Eliminate  CD  and  Ob  by  dividing  one  equation  by  the  other, 
and 

BD/AD  =  ab/cb  =  FJF, , 

which,  since  the  whole  distance  AB  is  known,  gives  the  posi- 
tion of  the  point  D. 

Notice  that  the  position  of  the  point  D  does  not  involve 
the  directions  of  the  forces  F^,  F^.  Being  independent  of 
their  directions,  it  is  a  fixed  point  for  forces  F^ ,  F^  acting  at 
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assigned  points  A,  B  in  any  lines  of  action.     (Test  this  by  a 
drawing.) 

The  point  D  is  called  the  center  of  parallel  forces — more 
strictly  it  is  the  center  of  the  points  of  application  of  the  forces. 

To  sum  up :  When  two  parallel  forces  act, 

(a)  The  magnitude  of  the  resultant  =  the  sum  of  the  forces, 
(h)  The  direction  of  the  resultant  =  the  direction  of  the 

forces. 
{c)  The  line  of  action  of  the  resultant  divides  the  line  join- 

ing the  points  of  application  of  the  forces  inversely  as  the 

forces, 
Ex.  ̂ Yioyfthdii  AD  =  ABxFJ(F,-\-F;) 
and  BD  =  ABxFJ{F^-\-F,), 

127.  Galileo's  demonstration  of  principle  (c)  is  very  in- 
genious. 

Imagine  a  uniform  beam  suspended  at  its  middle  point  0 
and  in  a  horizontal  position.  Let  it  be 
divided  into  two  parts  by  a  vertical  plane 
so  that  the  length  of  one  part  is  2a  and 
of  the  other  2?,  the  whole  length  of  the 
beam  being  2a  -\-  2b. 

Imagine  weights  proportional  to  2a,  2b 
suspended  at  the  middle  points  of  the 

two  parts;  then  the  distances  of  these  weights  from  the 
point  of  suspension  are  evidently  b  and  a  respectively. 

Hence  equilibrium  exists  if  a  weight  a  is  suspended  at  a 
distance  b  on  one  side  of  the  point  0,  and  a  weight  b  sus- 

pended at  a  distance  a  on  the  other  side  of  the  same  point. 

128.  General  Method  of  Combining  Forces  (Graphical). — 
We  proceed  now  to  show  that  the  method  of  Art.  125  will  in 
general  apply  to  combining  forces  in  the  same  plane,  whether 
parallel  or  not. 

Let  F^,  F^f  F^  be  the  forces  plotted  to  scale.  From  any 
point  a  draw  the  line  ab  equal  and  parallel  to  F^,  from  b  draw 

be  equal  and  parallel  to  i^,,  and  from  c  draw  cd  equal  and 
parallel  to  F^.  The  line  ad  will  represent  the  resultant  E  of 

i^,,  F^,  F^  in  magnitude  and  direction  (Art.  78). 
To  find  the  line   of  action  of  B:   From  any  convenient 

b 

■miiiiiw 

a 
0 

2a > 2& 
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point  0  draw  lines  Oa,  Oh,  Oc,  Od  to  the  angular  points  of  the 
polygon  abed.    Draw  any  line  Ip  parallel  to  a  0  to  meet  F^  in 

p,  pq  parallel  to  50  to  meet  F^  in  q,  qr  parallel  to  cO  to  meet 
F^  in  r,  and  rs  parallel  to  dO. 

Then,  remembering  that  the  direction  of  a  force  is  indi- 
cated by  the  order  of  the  letters  on  the  line  representing  it, 

F^y  or  ah,  is  equivalent  to  ̂ 0  along  Ip  and  Oh  along  qp', 

F^,  or  he,  is  equivalent  to  bO  along ^g'  and  Oc  along  rq; 
F^,  or  cd,  is  equivalent  to  c<9  along  qr  and  Od  along  sr. 

Adding,  and  noting  that  the  forces  along  pq  and  qp  are  equal 
and  opposite,  and  that  the  forces  along  qr  and  rq  are  equal 
and  opposite,  we  have 

i^j,  F^,  F^  equivalent  to  aO  along  Ip  and  Od  along  sr. 

But  the  resultant  oi  aO  and  Od  is  ad  (or  R),  and  the  di- 
rections Ip,  sr  of  aO,  Od  intersect  in  t,  which  is  therefore  a 

point  on  the  resultant  R. 
Hence,  if  through  t  a  line  is  drawn  equal  and  parallel  to  ad, 

it  will  represent  the  resultant  R  oi  F^,  F^,  F^  in  magnitude, 
direction,  and  line  of  action. 

129.  AA^e  hence  derive  the  following  rule  for  finding  graph- 
ically the  resultant  of  any  number  of  forces  in  the  same 

plane : 
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(1)  Construct  a  polygon  abed  to  scale  whose  sides  are  equal 
and  parallel  to  the  forces;  the  closing  side  ad  will  represent 
the  resultant  in  magnitude  and  direction. 
When  the  forces  are  parallel,  this  polygon  becomes  a 

straight  line  (Art.  125),  sometimes  called  thef'  load-line. 
(2)  From  any  point  0,  called  the  pole,  draw  lines  Oa,  01, 

Oc,  Od  to  the  angular  points  of  the  polygon. 
(3)  Draw  any  line  Ip  parallel  to  aO,pq  parallel  to  hO,  qr 

parallel  to  cO,  and  rs  parallel  to  dO. 
(4)  A  line  through  the  intersection  of  Ip  and  sr  equal  and 

parallel  to  ad  will  represent  the  resultant  in  magnitude,  di-        J^ 
rection,  and  position. 

130.  Condition  of  Equilibrium  (Graphical). — It  is  evident 
that  a  force  equal  and  opposite  to  the  resultant  B  would 

equilibrate  the  forces  i^,,  F^,  F^.  Hence  forces  in  a  plane 
which  equilibrate  may  be  represented  by  the  sides  of  a  closed 
polygon  abed  whose  sides  are  parallel  and  in  the  sa7ne  seyise 
as  the  forces. 

The  converse  of  this,  that  if  forces  acting  in  a  plane  can  be 

represented  by  the  sides  of  a  closed  polygon  which  are  paral- 
lel to  and  in  the  same  sense  as  the  forces  they  equilibrate,  is 

not  true.  For  the  polygon  would  be  the  same,  no  matter 
what  the  positions  of  the  forces  may  be.  This  condition,  in 

fact,  provides  against  translation  only.  An  additional  con- 
dition to  provide  against  rotation  is  necessary. 

Examples.     (1)  Forces  not  Parallel 

1.  Three  forces  are  represented  by  AD,  BC,  DB  in  a  par- 
allelogram ^5  Ci).     Find  their  resultant.  A^is.  AC. 

2.  Four  forces  are  represented  by  the  sides  AB,  BC,  CD, 
AD  of  a  rectangle  ABCD.     Find  their  resultant. 

Ans.  2BG. 

3.  Show  that  if  four  forces  be  represented  by  the  four  sides 
of  a  quadrilateral  taken  the  same  way  round  they  cannot 
equilibrate. 

4.  Forces  1,  2,  3,  4  pounds  act  along  the  sides  AB,  BG,  CD 
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DA  of  a  square,  each  side  being  12  in  long.     Find  their  re- 
sultant. 

A71S.  2V2  pounds,  parallel  to  CA  and  cutting  CD  in 
B  so  that  DE  =  18  in. 

5.  Forces  1,  2,  3  pounds  act  along  the  sides  AB,  BC,  CA 
of  an  equilateral  triangle,  each  side  being  12  in  long.  Find 
their  resultant. 

A71S.  V'd  pounds,  perpendicular  BC  and  cutting  BC in  D  so  that  CD  =  Q  in. 
6.  Three  forces  P,  Q,  R  are  represented  in  direction  by  the 

sides  of  an  equilateral  triangle  taken  the  same  way  round. 
Show  that  their  resultant  is 

V{P'  -\-Q'  +  E'-PQ-QB-  BP). 

7.  If  the  lines  of  action  of  forces  F^ ,  F^,  F^,  F^  meet  in  a 
point  Oy  the  resultant  R  is  completely  determined  by  drawing 

through  0  a  line  equal  and  opposite  to  ea,  the  closing  side  of 
the  polygon  whose  sides  tib,  be, ,  ,  ,  are  parallel  and  equal  to 
the  forces. 

8.  In  a  jib-crane  a  weight  of  20  tons  hangs  from  B,     Find 
the  pull  P  of  the  tie-rod  AB  it  AC  =  12  ft, 
^i?  =  6  ft,  ̂ C  =  15  ft,  and  the  weights  of 
the  parts  are  neglected. 

[The  jib  CB,  neglecting  its  weight,  is  in 
equilibrium  under  P,  20,  and  the  reaction  of 
the  hingie  at  C,  which  latter  must  be  along 
CB  and  equal  to  the  thrust  along  the  jib. 

We  may  consider  these  three  forces  acting 
at  Bj  and  tliat  this  point  is  in  equilibrium 
under  P,  20,  and  the  thrust  along  the  jib. 
Hence  the  three  forces  are  proportional  to 
the  sides  of  the  triangle  ABC  (Art.  84). 
Ilence  P  =  10  tons.] 
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9.  The  post  ̂   (7  of  a  jib-crane  is  10  ft,  the  jib  CB  is  in- 
clined at  30°,  and  the  tie  AB  at  60°,  to  the  vertical.  If  the 

weight  lifted  is  10  tons,  find  the  stresses  in  AB,  BC, 

Ans.  10  tons;  10 1^3  tons. 

(2)  Forces  Parallel  ^ 

10.  Let  BChe  a  light  rod  suspended  at  A,    Let  weights  of    • 
3  oz,  4  oz  be  attached  to  it  at  the  points  B,  C,  7  in  apart. 

Eind  the  upward  pull  at  A  and  the  dis- 
^/////////y/////////////A  tances  BA,  CA. 

Ans.  7  oz;  4  in;  3  in. 
[Make  the  apparatus  and  note  if  with 

these  weights  and  measurements  it  will 
be  in  equilibrium.] 

11.  Draw  the  figure  corresponding  to 
     that  in  Art.  125  when  F^,  F^  act  in      v 

6pposite  directions.     Show  that 
B  =  F,-F,. 

Illustrate  by  means  of  the  above  ap- 

paratus. 12.  Two  like  parallel  forces  of  3  pounds  and  5  pounds  act     y 
at  points  2  ft  apart.     Find  their  resultant  in  magnitude  and 
position.  A71S.  8  pounds;  9  in  from  5. 

13.  Two  unlike  parallel  forces  of  3  pounds  and  5  pounds       y 
act  at  points  2  ft  apart.     Find  their  resultant  in  magnitude 
and  position.  Ans,  2  pounds;  3  ft  beyond  5. 

14.  Kesolve  a  force  of  100  pounds  into  two  like  parallel        y 
forces  10  ft  apart,  one  of  them  being  2  ft  from  the  given 
force.  Ans.  80  pounds;  20  pounds. 

15.  0  is  any  point  within  a  triangle  ABC.  If  parallel 
forces  proportional  to  the  areas  of  the  triangles  OBC,  OCA, 
OAB  act  at  A,  B,  C  respectively,  show  that  the  resultant 
must  pass  through  0. 

16.  At  the  three  vertices  of  a  triangle  are  applied  three 
parallel  forces  proportional  to  the  opposite  sides.     Show  that     \/ 
the  center  of  parallel  forces  is  at  the  center  of  the  inscribed 
circle. 

17.  The  center  of  three  parallel  forces  at  the  vertices  of  a 
triangle  ABC  is  at  the  intersection  of  the  perpendiculars  to      ̂  
the  opposite  sides.     Show  that  the  forces  must  be  proportional 
to  tan  Ay  tan  B,  tan  O. 
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18.  Show  that  the  resultant  R  of  two  parallel  forces  F^ ,  F^ 
may  be  found  as  follows : 

At  Ay  B  introduce  two  equal  and  opposite  forces  S,  —  S. 
Find  the  resultant  i2,  of  F^,  S,  and  B^ 
oiF,,  -S. 

0   s 
Ay 

Ri 

Let  i?, ,  i2,  be  transferred  to  0.  Ke- 
solve  E,  at  0  into  S  and  F^  and  i?,  into 
-  S  and  F,.  Combine  S  and  -  S,  F, 
and  F,,  at  0. 

19.  Draw  the  corresponding  figure 
when  F^ ,  F^  act  in  opposite  directions. 

20.  "  We  have  a  set  of  hay-scales,  and 
sometimes  we  have  to  weigh  wagons  that  are  too  long  to  go 
on  them.  Can  we  get  the  correct  weight  by  weighing  one  end 

at  a  time  and  then  adding  the  two  weights  ?" 

131.  Couple — Moment. — If  in  Art.  125  the  two  parallel 
forces  F^ ,  F^  are  equal  and  act  in  opposite  directions,  the 
points  a  and  c  in  the  construction  diagram  coincide,  and  the 
line  ac  which  represents  the  resultant  becomes  zero.  Also 
the  lines  AC,  BG  do  not  intersect,  being  parallel.  Hence  the 
resultant  of  the  forces  is  zero  and  its  point  of  application  is  at 
an  infinite  distance.  In  other  words,  the  two  forces  cannot 

be  reduced  to  a  single  force  in  a  definite  position  and  direc- 
tion. Another  method  of  measuring  the  effect  of  force  must 

therefore  be  introduced. 

, — .  -^ ^ 

To  two  equal  parallel  forces  acting  in  opposite  directions, 
but  not  in  the  same  straight  line,  the  name  couple  is  given. 

A  familiar  example  is  seen  in  the  use  of  a  copying-press.    The 
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handle  is  pushed  at  A  and  pulled  at  B,  the  push  and  pull  if 
equal  forming  a  couple.  In  consequence  the  handle  turns 
about  the  axis  of  the  screw.  So,  too,  in  winding  a  watch  a 
couple  is  employed. 

132.  The  tendency  of  a  couple  on  a  body  is  to  cause  rota- 
tion. Through  any  point  0  in  the  plane  of  the  couple  draw 

a  Ob  perpendicular  to  the  direction  of  the  forces.  Consider 

one  of  the  forces  i^and  let  the  point  0  be  fixed.  The  effect 
of  the  force  in  producing  rotation  about  0  will  evidently 

depend  upon  the  magnitude  of  the  force  and 
upon  the  distance  aO  ot  its  line  of  action  from 
0.  We  may  say,  therefore,  that  the  product 
F  X  aO  is  ̂  measure  of  the  importance  of  the 
force  in  producing  turning.  This  product  is 
called  the  moment  of  the  force  F  about  the 

point  0,  the  word  moment  being  used  in  its 

old-fashioned  sense  of  importance  or  influence.     Hence  the 
definition : 

The  moment  of  a  force  aboid  a  point  0  is  the  product  of  the 
measure  of  the  force  F  mid  the  perpendicular  p  let  fall  from 
the  point  upon  the  line  of  action  of  the  force, 

T'he  term  moment  is  from  Lat.  momentum,  a  particle  suf- 
ficient to  turn  the  scales,  a  moving  cause.  The  expression 

"  moment  of  a  force  "  was  used  by  Galileo  to  denote  its  effect 
in  setting  a  machine  in  motion.  Many  writers  use  the  term 

torque  as  the  equivalent  of  "  turning  moment." 
133.  The  Unit  Moment  is  the  moment  of  unit  force  act- 

ing at  an  arm  equal  to  unit  length.  It  is  named  a  foot- 
pound, an  inch-ton,  etc.,  according  to  the  units  of  length  and 

force  employed.  Thus  a  moment  of  10  foot-pounds  is  ten 
times  the  moment  of  a  force  of  one  pound  acting  at  a  dis- 

tance of  one  foot  from  the  point  0. 

Less  frequently  the  term  pound -foot  is  used  for  unit  of 
moment. 

134.  Sign  of  the  Moment. — It  is  evident  that  the  direction 
of  turning  about  0  is  as  indicated  by  the  arrow  in  the  figure 
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the  moment  about  0  being  considered  —  or  -f  according  as 
Lne  tendency  of  the  force  F  to  produce  turning  is  in  the  di- 

rection of  motion  of  the  hands  of  a  clock  [clockwise]  or  in 

the  opposite  direction  *  [counter  clockwise].  In  the  figure 
the  moment  of  F  about  0  =  —  Fp. 

Or,  better,  since  a  moment  has  magnitude  and  direction,  it 
may  be  represented  by  a  straight  line.  Lay  off  along  a  line 
through  0  normal  to  the  plane  of  0  and  F,  that  is,  along  the 
axis  of  rotation,  a  length  numerically  equal  to  the  moment. 

That  end  of  the  line  from  which  the  rotation  appears  counter- 
clockwise indicates  the  -f  direction,  or 

the  +  direction  of  the  axis  of  a  torque  is  that  in  which  a 

right-handed  screiu  would  move  if  driven  ty  the  torque. 
135.  The  moment  of  a  force  F  with  reference  to  a  fixed 

point  0  may  also  be  represented  by  an  area  ;f,[^^^ 
numerically  equal  to  it.  For  if  ah  plotted  to 
scale  represent  the  force  F,  and  Oc  the  distance 
p  of  0  from  F,  then  the  moment  Fp  or  ai  X  Oc, 
is  represented  numerically  by  twice  the  area  of 
the  triangle  Oab,  which  has  ab  for  base  and  Oc 
for  altitude. 

136.  Equation  of  Moments  {Varignon's  Theorem). — The 
sum  of  the  moments  of  two  forces  F^ ,  F^  about  any  point  0 

in  their  plane  is  equal  to  the  moment 

'5^::--T   ~S^^     ̂ ^  their  resultant  R  about  the  same 

^A~^ — ~^^  (^)  ̂ ®*  *^®  directions  of  the  forces 
F^ ,  F^  be  along  the  lines  AB  and  A  C^ 

and  the  direction  of  the  resultant  R  be  along  AD.  From  0 
draw  OD  parallel  to  the  direction  AB  of  F^,  meeting  the 
directions  of  F^  and  E  in  C  and  D  respectively;  from  D 
draw  BB  parallel  to  CA  :  then  AB,  AC,  AD  represent  the 
forces  F^,F^,Eonthe  same  scale. 

Join  OA  and  OB.     Then 

moment  of  F^  about  0  =  2J0AB; 
moment  of  F^  about  0  =  2^0A0; 

moment  of  R  about  0=2^  OAD.   

*  This  is  the  direction  assumed  by  the  whirl  of  cyclones. 
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But  evidently 

JOAB-]-/}OAC=^OAD. 

r,  mom.  of  F^  abt.  0  -\-  mom.  of  F^  abt.  0  =  mom.  of  E  abt.  0. 
(b)  If  the  forces  F^ ,  i^,  are  parallel,  from  0  let  fall  Oab 

perpendicular  to  their  lines  of  action  and 
meeting  the  direction  of  the  resultant  E 
in  L    Then  (Art.  126) 

__  F,Xal  =  F,X  hi, 
or  F^(Ol  ~  Oa)  =  F,(Ob  -  01), 

F,t      R    tF,  or  F,X  Oa  +  F,X  Ob  =  {F,  +  F;)01 =  Ex  01, 

or  mom.  of  F^  abt.  0  +  mom.  of  F^  abt.  0  =  mom.  of  i?  abt.  0. 

(c)  Generally  if  any  number  of  forces  in  a  plane  act  on  a 
body,  the  sum  of  the  moments  of  the  forces  about  any  point 
is  equal  to  the  moment  of  the  resultant  about  the  same  point. 

For,  from  the  preceding,  the  sum  of  the  moments  of  any 
two  forces  is  equal  to  the  moment  of  their  resultant  about  the 
same  point;  of  this  resultant  and  a  third  force,  that  is,  of  the 
three  forces,  to  the  moment  of  their  resultant;  and  so  on 
until  the  last  resultant  is  reached,  which  is  the  resultant  of 
all  the  forces. 

This  is  known  as  Varignon's  theorem  of  moments. 

Ex.  1.  Prove  Art.  136  {b)  when  the  point  0  lies  between 
F,  and  F,. 

2.  A  force  of  5  pounds  acts  along  one  side  of  an  equilateral 
triangle  whose  side  is  2  ft  long.  Find  the  moment  about  the 
vertex  of  the  opposite  angle.  Jns.  5  1^3  foot-pounds. 

3.  A  force  of  F  pounds  acts  along  the  diagonal  of  a  square 
whose  side  is  25  ft.  Find  the  moments  of  F  about  each  of 
the  four  angular  points. 

Ans.  0,  Fs  V2,  0,  —  Fs  t^2"foot-pounds. 4.  Find  the  moment  of  a  force  about  any  point  in  its  line 
of  action. 

5.  Show  that  the  moments  of  two  forces  about  any  point 
on  their  resultant  are  equal  and  of  opposite  sign. 
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5a.  Hence  find  the  algebraic  sum  of  the  moments  of  a  sys- 
tem of  forces  about  any  point  on  their  resultant. 

6.  Apply  the  principle  of  Ex.  4  to  find  the  position  of  the 
resultant  of  forces  3,  4,  5,  6  acting  along  the  sides  AB,  BC, 
CD,  DA  of  a  square. 

[Let  the  resultant  cut  AD,  CD  in  E  and  F.  Take  mo- 
ments about  E  and  F  and  place  each  sum  =  0.  These  two 

relations  determine  the  positions  of  E  and  F,  It  will  be 
found  that  the  line  EF  is  parallel  to  the  diagonal  A  C] 

Get  the  same  result  by  means  of  the  polygon  of  forces. 
7.  Forces  1,  2,  3  act  along  the  sides  of  an  equilateral  tri- 

angle. Show  that  the  resultant  is  equal  V3  and  cuts  the 
direction  of  2  at  right  angles. 

Plot  this  resultant. 

8.  Forces  P,  Q  act  along  the  sides  AB,  AC  oi  an  equi- 
lateral triangle  ABC  Show  that  their  moments  about  a 

point  D  m  BC  are  equal  if  BD  =  sQ/(P  +  Q),  where  5  is  a 
side  of  the  triangle. 

9.  If  P  is  the  thrust  along  the  connecting-rod  of  an  engine, 
r  the  crank  radius,  and  the  connecting-rod  is  inclined  to  the 
crank  axis  at  150°,  show  that  the  moment  of  the  thrust  about 
the  crank-pin  is  one  half  the  greatest  moment  possible. 

10.  At  what  height  from  the  foot  of  a  tree  must  one  end  of 
a  rope  of  length  I  ft  be  fastened  so  that  a  given  force  acting 
at  the  other  end  may  have  the  greatest  tendency  to  overturn 
the  tree  ?  j,^.^.  1/^2  ft. 

11.  The  post  ̂   C  of  a  jib-crane  (page  147)  is  10  ft,  the  jib 
CB  is  inclined  at  30°,  and  the  tie  AB  at  60°  to  the  vertical. 
If  the  weight  lifted  is  10  tons,  find  the  moment  about  C  tend- 

ing to  upset  the  crane.  Ans.  50  I/3  foot-tons. 

137.  Moment  of  a  Couple, — In  the  couple  represented  by  the 
figure  on  page  149  the  moments  of  the  forces  F,  F  about  0 
are  Fx  aO  and  F  X  bO  units  of  moment.  The  total  mo- 

ment about  0  is  F{aO  -{- bO)  or  F  X  ab  units  of  moment. 
The  distance  db  between  the  forces  F,  F  is  called  the  arm 

of  the  couple.     Hence  the  definition : 

The  moment  of  a  couple  [or  the  torque']  is  the  product  of  one 
of  the  forces  forming  the  couple  and  the  arm  of  the  couple. 
The  term  torque  is  specially  significant  when  applied  to 

"turning  moments''  in  machine  shafting. 
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The  unit  torque  is  the  same  as  the  unit  moment. 

•The  sign  of  the  torque  is  negative  if  the  couple  tends  to 
cause  rotation  in  the  direction  of  driving  a  right-handed 
screw  (Art.  134). 

138.  Properties  of  a  Couple. — The  moment  of  a  couple 
depending  only  on  the  magnitude  of  the  forces  and  the  dis- 

tance between  them,  the  effect  of  a  couple  is  not  altered  by 
turning  the  arm  through  any  angle  about  one  end,  nor  by 
moving  the  arm  parallel  to  its  former  position  in  the  plane  of 
the  couple,  nor  by  changing  the  couple  into  another  couple 
having  the  same  moment. 

It  hence  follows  that  the  resultant  of  a  number  of  couples 
in  a  plane  is  a  couple  whose  moment  is  equal  to  the  sum  of 
their  moments. 

It  also  follows  that  a  single  force  F  and  a  couple  P,  P  act- 
ing in  the  same  plane  on  a  hody  can- 
not he  in  equiliinum. 

For  let  the  moment  of  the  couple 
be  Pa,  a  being  its  arm.  Replace  the 

couple  P,  P  by  a  couple  P,  P  of  arm 
h,  so  that  Fb  =  Pa,  and  place  it  in 
the  plane  so  that  one  of  its  forces  P 

is  opposite  to  the  single  force  P.  The  two  forces  P,  P  at  C 

are  in  equilibrium,  leaving  the  single  force  F  at  D  unbal- 
anced.    Hence  there  cannot  be  equilibrium. 

The  theory  of  couples  was  first  given  by  Poinsot  in  hh 
Statique  (1829). 

Ex.  1.  A  force  and  a  couple  acting  on  a  body  are  equiva- 
lent to  the  single  force  acting  in  a  direction  parallel  to  its 

original  direction. 
2.  Two  like  couples  of  the  same  moment  are  together  equal 

to  a  single  couple  of  twice  the  moment. 
3.  The  side  of  a  square  A  BCD  is  s  inches  long.  Along 

the  sides  AB,  CD  forces  P  act,  and  along  AD,  CB  forces 
2P.     Find  the  moment  of  the  equivalent  couple. 

Ans.  Ps  inch-pounds. 

p^ 

p 
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4.  Three  forces  are  completely  represented  by  the  sides  of 
a  triangle  taken  the  same  way  round.  Show  that  they  form 
a  couple  whose  moment  is  represented  by  twice  the  area  of 
the  triangle. 

5.  Show  that  the  sum  of  the  moments  of  the  two  forces 
forming  a  couple  about  any  point  in  their  plane  is  equal  to 
the  moment  of  the  couple. 

139.  General  Method  of  Combining  Forces  {Analytical). — 
It  is  evident  from  the  preceding  articles  that — 

{a)  Any  system  of  forces  in  one  plane  acting  on  a  body 
may  he  reduced  to  a  single  force  or  to  a  couple. 

For  (Art.  123)  the  forces  may  be  combined  two  and  two 
until  we  arrive  at  a  single  force  or  at  two  forces  forming  a 
couple. 

This  may  be  put  in  the  slightly  different  form : 
{b)  Any  system  of  forces  in  one  plane  acting  on  a  body, 

may  be  reduced  to  a  single  force  acting  at  an  assigned  poirit, 
and  a  couple. 

For  let  the  forces  jP,  ,  i^, , .  .  .  act  at  the  points  A,  B, , , , 
of  the  body.     At  any  point  0  introduce  two 

forces  F^ ,  i^/,  each  equal  to  F^  and  of  oppo- 
site directions.     This  will  not  disturb  the 

equilibrium.     Hence 

F^2XA  =  F,2iiA-\-F,2LiO-\-  F^  at  0 
=  i^[  at  0  +  i^,  at  ̂   +  F,'  at  0. 

But  F^  at  A  and  F^  at  0  form  a  couple 

whose  moment  is  i^,/?, ,  where/?,  is  the  distance  of  0  from  the 
line  of  action  of  F^.     Thus 

J^j  at  ̂   =  F^  at  0  and  the  couple  F^p^, 
Similarly, 

i^",  at  ̂   =  F^  at  0  and  the  couple  F^p^, 
and  so  on. 

Adding,  we  have  i^,  at  J,  i^,  at  ̂ , .  .  . ,  equivalent  to  equal 
and  parallel  forces  F^  at  0,  F^  at  0,  ... ,  together  with  the 
couples  whose  moments  are  F^p^ ,  Fj)^ , .  .  . 
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The  forces  at  0  may  be  combined  into  a  single  resultant  R 
by  the  method  of  Art.  78  or  of  Art.  80.  The  couples  may  be 

combined  into  a  single  couple  G  by  adding  together  their  mo- 
ments, so  that  (Art.  138) 

=  2Fp, 

where  2  is  the  symbol  of  summation. 
Hence  the  proposition  is  proved. 

CoK. — Notice  carefully  the  important  principle  employed 
in  the  preceding  demonstration : 

A  force  F  acting  at  a  point  A  is  equivalent  to  (1)  an  equal 
and  parallel  force  F  acting  at  any  point  0,  and  (2)  a  couple 

luhose  members  are  +  F  acting  at  A  and  —  F  at  0  with  an 
arm  p,  the  perpendicular  distance  between  the  members,  and  a 
moment  Fp, 

Ex.  1.  Plot  the  single  force  equivalent  to  a  given  force  of     ̂  
10  pounds  and  a  given  couple  consisting  of  two  forces  of  4 
pounds  each  at  a  distance  apart  of  5  inches. 

Ans.  10  pounds  distant  2  inches  from  the  given  force. 
2.  A  couple  and  a  single  force  are  equivalent  to  a  single 

force  equal  and  parallel  to  the  given  force  and  at  a  distance 
from  it  found  by  dividing  the  moment  of  the  couple  by  the 
single  force. 

3.  Compare  the  above  corollary  with  the  second  principle 
of  Art.  138. 

4.  Forces  1,  2,  3,  4  pounds  act  along  the  sides  AB,  BO, 
CD,  DA  of  a  square  12  in  long.  Find  the  force  passing 
through  the  center  and  couple  which  are  together  equal  to 
these  forces.  _ 

Ans,  Force  =  2  1^2  pounds  along  CA ;  couple  =  60 
inch-pounds. 

140.  General  .Conditions  of  Equilibrium  (Analytical). — 
The  general  conditions  of  equilibrium  may  be  stated  in  either 
of  two  forms  according  as  we  start  from  one  or  other  of  the 
methods  of  grouping  forces  just  given. 

(«)  In  general  a  system  of  forces  acting  in  one  plane  on  a 
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body  may  be  reduced  to  a  single  resultant  force  or  to  a  couple 
(Art.  139  (a)  ). 
Now  a  force  cannot  have  zero  moment  unless  the  point  of 

moment  is  in  its  line  of  action.  The  line  of  action  is  fixed 

by  two  points  in  it.  Hence  if  the  moment  of  the  system 
about  each  of  three  points  not  in  one  line  is  zero,  the  resultant 
force  must  be  zero.  Also,  since  forces  forming  a  couple  never 
have  zero  moment,  if  the  moment  of  the  system  is  zero  no 
couple  can  exist.     Hence 

If  forces  act  in  one  plane  on  a  body  so  that  the  sum  of  their 
moments  about  each  of  three  points  not  in  the  same  straight 
line  is  zero,  the  body  is  in  equilibrium. 

(b)  In  general  a  system  of  forces  acting  in  one  plane  on  a 

body  may  be  reduced  to  a  single  force  B  referred  to  an  arbi- 
trary point  0  and  a  single  couple  G  (Art.  139  (b) ). 

Now  a  single  force  and  a  single  couple  cannot  equilibrate 
(Art.  138).  Hence,  that  the  system  may  be  in  equilibrium, 
we  must  have  the  two  conditions : 

1.  The  resultant  force  R    =  0; 
2.  The  resultant  couple  G  =  0. 

That  is,  for  equilibrium  to  exist  there  must  be  neither  trans- 
lation nor  rotation. 

These  conditions  may  be  put  in  a  form  more  convenient  for 

computation.  For  the  force  E  being  the  resultant  of  a  sys- 
tem of  forces  parallel  to  the  given  forces  and  acting  at  a  point 

0,  the  condition  E  =  0  may  be  stated  in  the  form  given  in  Art. 

86.  Also  if  6^  =  0,  then  2Fp  =  0,  or  the  sum  of  the  mo- 
ments of  the  forces  about  the  point  0  must  =  0. 

Hence  the  conditions  of  equilibrium  may  be  stated; 

(1)  The  sum  of  the  components  of  the  forces  in  any  direc- 
tion OX=0; 

(2)  The  sum  of  the  components  of  the  forces  in  a  J.  direc- 
tion 0Y=  0; 

(3)  The  sum  of  the  moments  of  the  forces  about  any  point 
in  their  plane  =  0. 



158  STATICS   OF   A   BODY.  [§  141 

This  method  is  usually  more  convenient  of  application  than 
method  (a). 

Ex.  State  the  conditions  of  equilibrium  if  the  forces  are 
parallel.  Ans.  2F=  0;  2Fp  =  0. 
Why  only  two  conditions  ? 

141.  Equilibrium  under  Three  Forces. — The  case  of  equi- 
librium under  the  action  of  three  forces  admits  of  special 

simplification.  For  it  is  evident  from  Art.  124  that  three 
parallel  forces  acting  on  a  body  may  equilibrate. 

If  three  forces  not  parallel  equilibrate  they  must  meet  in  a 

point.  For  two  of  the  forces  at  least  intersect.  Their  result- 
ant acting  at  the  point  of  intersection  must  equilibrate  the 

third  force;  that  is,  all  three  must  meet  in  one  point.     Hence    p 

If  three  forces  in  the  same  plane  keep  a  body  in  equilibrium  \  '  ̂^^ 
they  must  he  parallel  or  meet  in  a  poi7it.  ^  ̂\S) 

The  great  value  of  this  principle  in  the  solution  of  prob- 
lems is  that  the  meeting  of  the  lines  of  action  enables  us  to 

obtain  a  geometrical  or  trigonometrical  statement.  Also,  we 

can  at  once  apply  Lamias  Theorem  (Art.  84). 
The  results  in  any  problem  might  also  be  found  directly, 
(1)  by  resolution  along  two  rectangular  axes  (Art.  86); 
(2)  by  taking  moments  (Art.  140); 

(3)  graphically  (Art.  85). 
142.  In  the  application  of  the  general  conditions  of  equi- 

librium of  forces  acting  on  a  body  (Arts.  140,  141)  we  are 
met  by  a  difficulty  which  did  not  appear  when  the  equilibrium 
of  a  particle  only  was  considered  (Art.  86).  The  force  of 
gravity  on  a  particle  acts  vertically  downwards,  and  its  point 
of  application  is  the  particle  itself.  As  every  particle  of  a 
body  is  acted  on  by  the  force  of  gravity,  we  must  be  able  to 
find  the  position  of  the  resultant  force  of  gravity  on  the  body 
before  we  can  apply  the  general  conditions  of  equilibrium  to 
statical  questions.     This  problem  we  now  proceed  to  solve. 

The  subject  proper  will  be  resumed  in  Art.  152. 
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143.  Center  of  Gravity.— Let  A,  B,  (7,  ...  be  a  system 

of  particles  in  one  plane  rigidly  con- 
nected, and  let  these  particles  weigh 

w, ,  «^, ,  Wg ,  .  .  .  lb  respectively.  The 
forces  due  to  gravity  acting  on  the 
particles  are  w, ,  w, ,  iv^, .  .  .  pounds. 
These  forces  are  all  directed  towards 

the  earth's  center,  which  is  so  distant 
that  they  may  be  considered  parallel. 

Then,  as  in  Art.  126,  through  whatever  angle  the  system  is 
turned  the  vertical  forces  w, ,  to^  at  A,  B  will  remain  vertical 
and  may  without  altering  their  effect  be  supposed  to  act  as 

one  force  w^  -\-  lo^  at  G^ ,  where 

AGJBQ,  =  wjio,. 

Similarly  w^  +  lo^  at  G^  and  w^  at  C,  that  is,  w,  at  A,  w^  at 
B,  w,  at  C,  may  be  supposed  to  act  as  one  force  w^  +  «^3  +  w^ 
at  G^  through  whatever  angle  the  system  is  turned,  where 

Adding  thus  particle  to  particle  we  see  that  the  resultant 
of  the  system  of  forces  will  pass  through  a  point  G  in  the 
body  such  that  its  position  remains  the  same  no  matter  how 
the  body  is  turned  about.  This  point  G  is  called  the  center 
of  gravity,  or  centroid,  or  mean  center  of  the  body,  so  that 

Tlie  center  of  gravity  of  a  body  regarded  as  composed  of  a 
system  of  particles  rigidly  connected  is  the  point  through 
which  the  resultant  force  of  gravity  on  the  body  passes  no 
matter  hoiv  the  body  is  turned  about. 

The  idea  of  the  center  of  gravity  is  due  to  Archimedes 
(B.C.  250).  He  determined  the  center  of  gravity  of  a  triangle, 
parallelogram,  trapezium,  parabola,  etc. 

144.  It  is  evident  that  if  a  vertical  force  equal  and  opposite 
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.^w. 

to  the  resultant  force  of  gravity  on  the  body  be  applied  at  the 
center  of  gravity  the  body  will  be  in  equilib- 

rium in  any  position.  This  suggests  an  ex- 
perimental method  of  finding  the  center  of 

gravity.  Thus  conceive  the  body  suspended 
by  a  thread  from  a  point  P.  The  forces  act- 

ing are  the  resultant  force  of  gravity  at  the 
center  of  gravity  and  the  pull  of  the  thread. 
The  lines  of  action  of  these  forces  must  lie  in 

the  vertical  through  P.    Hence,  to  find  6^, 
suspend  the  body  from  P,  and  strike  the  vertical  PIT;  next 
suspend  from  any  other  point  Q,  and  strike  the  vertical  QK; 
the  point  of  intersection  of  PH  and  QK  will  be  the  center  of 

gravity  G  required.  ^ 

145.  Coordinates  of  the  Genm^of  Gravity, — Let  a  system 
of  particles  ̂ ,  ̂ ,  .  .  .  be  referred  to  horizontal 
and  vertical  axes  OX,  OF  in  their  plane  and 

drawn  through  any  fixed  point  0.     Also  let 

x^  y,  be  the  coordinates  of  ̂ ;  a;,, «/,,  of  B\ 
.  .  .  ;  x,y,oiG,  the  center  of  gravity. 

The  resultant  w^-\-  w^ -{-..»  oi  the  system 
of  parallel  forces  w, ,  w, , . .  .  acts  at  G.    Also,      o  x 
since  the  moment  of  the  resultant  about  a  fixed  point  0  is 
equal  to  the  sum  of  the  moments  of  the  separate  forces  (Art. 
136),  we  have 

(w,  -\-u\-\- .  ..)x  =  W,X^  +  lU^X^  +  .  . . , 

which  may  be  written  in  the  abbreviated  form 

X  =  2wx/2to, 

Similarly, 

y  =  2wy/2w, 

Ex.  1.  Weights  1,  2,  3,  4  oz  are  placed  at  the  angles  0,  X, 
B,  Y  of  a.  square  OX^F  whose  sides  are  each  1  ft  in  length. 
Find  the  coordinates  of  the  0.  G.  referred  to  OX,  OF  as 
axes.  Ans.  0.5  ft;  0.7  ft. 

■iw. 



§  147]  CENTER  OF   GRAVITY.  t61 

2.  Equal  particles  are  placed  at  the  angles  ABC  of  an  equi- 
lateral triangle,  and  at  the  middle  points  D,  E,  Foi  the  sides. 

Find  the  C.  G.  of  the  whole. 
Ans.  At  G  on  AD  when  GD  =  AD/d. 

3.  Weights  of  1,  2,  3  oz  are  placed  at  the  angles  of  an  equi- 
lateral triangle  whose  sides  are  6  inches  long.  Find  the  dis- 
tances of  their  0.  G.  from  the  angles.         _ 

A71S.    VTd,  4/13,  V7  inches. 
4rt.  If  the  velocities  v, ,  v, ,  .  .  .  of  a  system  of  particles      y 

w,,  w, , .  .  .  parallel  to  a  fixed  line  01^  in  their  plane  are 
given  at  any  instant,  the  velocity  v  of  their  C.G.  is  found  from      (j 

V  =  2wv/2w. 

[For  differentiate  x  =  2wx/2w  with  respect  to  t.] 
4:b.  Hence  show  that  the  momentum  of  the  system  collected 

at  the  C.G.  is  equal  to  the  sum  of  the  momenta  of  the  separate 
particles. 

4c.  If  the  particles  possess  accelerations  state  the  propo- 
sition corresponding  to  (4«). 

5.  Two  weights,  1  oz  and  2  oz,  are  joined  by  a  light  thread 
passing  over  a  smooth  peg  and  let  go.  Prove  that  during 
the  motion  the  acceleration  of  their  center  of  gravity  is  g/9. 

6.  Two  bodies  move  with  uniform  speed  along  two  straight 
lines  inclined  at  an  angle  0.  Find  the  locus  of  their  center 
of  gravity.  Ans,  A  straight  line. 

146.  It  follows  from  the  forms  of  the  expressions  2wx, 
2to,  in  Art.  145,  that  the  finding  of  the  center  of  gravity  is  a 
problem  of  summation  of  molecular  quantities  and  therefore 
one  of  integration.  It  is  a  problem  of  the  integral  calculus. 
In  many  cases,  however,  from  the  shape  of  the  body  or  by 
the  introduction  of  some  artifice,  integration  may  be  avoided. 

We  shall  confine  ourselves  to  bodies  that  are  homogeneous 
or  of  uniform  density;  that  is,  to  bodies  of  such  a  nature  that 
the  particles  are  equal  and  the  same  number  of  particles  make 
up  the  same  volume  in  any  and  every  part. 

147.  If  a  body  of  uniform  density  is  symmetrical  about  a 
point  the  C.G.  must  coincide  with  this  point.  Thus  a  sphere 
being  symmetrical  about  its  center,  the  C.G.  will  be  at  the 

\ln 
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center  of  the  sphere.     So  the  C.G.  of  a  cule  will  be  at  the  in- 
tersection of  the  diagonals. 

Again,  with  a  straight  rod  of  uniform  cross-section,  tlie 
number  of  particles  on  one  side  of  the  central  section  being 
equal  to  the  number  on  the  other  side,  the  C.G.  will  be  in 
this  section,  and  if  we  consider  the  area  of  the  cross-section 
to  be  indefinitely  small,  so  that  the  rod  becomes  a  straight 
line,  the  C.G.  will  be  at  the  middle  point  of  the  rod. 

For  a  lamina  or  plate  of  uniform  thickness  the  C.G.  will 

lie  in  a  plane  midway  between  the  bounding  planes.  Con- 
sider the  lamina  indefinitely  thin,  and  the  C.G.  will  lie  in  the 

lamina  itself  and  at  its  center  of  figure,  if  it  has  onco  Thus 
the  C.G.  of  a  circular  lamina  is  at  the  centre  of  the  circle,  of 

a  rectangular  lamina  at  the  intersection  of  the  diagonals,  and 
so  on. 

148.  In  a  triangular  lamina  not  equilateral  and  therefore 
without  a  center  of  figure  we  have  to  introduce   a  special 

artifice  in  order  to  find  the  C.G. 

Conceive  the  triangle  divided  into  strips 
parallel  to  one  side  ̂ 5  and  of  indefinitely 
small  width.  Each  strip  may  be  regarded 
as  a  uniform  rod  whose  C.G.  is  at  its 

middle  point.  These  middle  points  all  lie 
in  a  line  CD,  joining  C  to  the  middle 

point  of  AB.  Hence  the  C.G.  of  the  tri- 
angle lies  in  the  line  CD. 

Similarly  the  C.G.  may  be  shown  to  lie  in  AE,  the  line 
joining  A  to  E,  the  middle  point  ot  BC. 

Hence  it  is  at  G,  the  intersection  of  CD  and  AE, 

To  find  the  position  of  G  on  CD. 
Join  DE.     Then  DE  is  evidently  parallel  to  AC, 
Also,  the  triansrles  D  GE  and  CGA  are  similar. 

/^ 

Hence  DG/GC  =  DE/AC  =\/2,     ̂ I}^^  ̂"^^ 
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and  DG=GC/2 

or  DG^BC/Z. 

Similarly,  EG  =  EA/Z. 

Hence  the  C,  G.  of  a  triangle  is  on  a  median  line  of  the 
triangle  at  tioo  thirds  its  length  from  the  vertex, 

Ex.  1.  Prove  that  the  C.Gr.  of  three  equal  weights  placed     ̂  
at  the  angular  points  of  a  triangle  coincides  with  that  of  the 
triangle  itself. 

[For  W  Sit  B  and  TF  at  (7  are  equivalent  to  2  Tf  at  D,  the 

middle  point  of  BC.    Also,  STP^at  i)  and  W  at  A  are  equiva-    /^ 
lent  to  3  TF  at  6^  when  DG  =  A  6^/2.     But  G  is  the  C.G.  of 
the  triangle.] 

2.  Three  men  support  a  heavy  triangular  board  at  its  cor-     . 
ners  in  a  horizontal  position.     Compare  the  weights   sup- 

ported by  each  man. 
3.  The  sides  of  a  triangle  are  3,  4,  5.  Find  the  distances 

of  the  C.G.  from  the  angles.        Ans.   VTS/S,  2i^/3,  5/3. 
4.  Equal  weights  are  placed  at  the  angular  points  of  a  tri- 

angular board  and  also  at  the  middle  points  of  its  sides.    ̂  
Find  the  C.G.  of  the  system. 

5.  If  G  is  the  C.G.  of  a  triangle  ABC,  prove 

^^        3( GA'  +  GB"^  J^GC')=  AB'  +  BC  -f  GA\ 

6.  A  series  of  triangles  of  equal  area  are  described  on  the 
same  base  and  on  the   same  side  of  it.     Show  that  their   ̂  
centers  of  gravity  lie  in  a  straight  line. 

7.  A  right  triangle  ABC  \^  suspended  from  a  point  P  in 

the  hypotenuse  AC,  and  one  side  AB  hangs  vertical.     Show  ̂  that  2AP  =  CP. 
8.  G  is  the  C.G.  of  a  triangle  ABC,  0  any  point  in  its 

plane.  ̂ The  forces  represented  by  OA,  OB,  OC  acting  at  0 
have  for  resultant  a  force  represented  by  306^. 

9.  A  uniform  wire  is  bent  into  the  form  of  a  triangle  with 
sides  a,  b,  c.  Show  that  the  distances  of  the  C.G.  of  the 
whole  from  the  sides  are  as 

{b  +  c)/a  :  (c  +  a)/b  :  (a  +  b)/c. 
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10.  A  triangle  ABC,  right-angled  at  C,  is  suspended  suc- 
cessively from  A  and  B.  If  /3,  y  be  the  angles  made  by  AC, 

BG  with  the  vertical  in  each  position,  show  that 

cot  fi  cot  /  =  4. 

149.  CMo  of  a  System  of  Bodies, — We  pass  at  once  to  the 
center  of  gravity  of  a  system  of  bodies  rigidly  connected,  by 

considering  that  each  body  may  be 

conceived  concentrated  into  a  par- 
ticle of  equal  weight  acting  at  the 

center  of  gravity  of  the  body.  Thus 
if  G^  is  the  center  of  gravity  of  a 
body  weighing  W^  lb,  and  G^  the 
center  of  gravity  of  a  body  weighing 
TT,  lb,  then  the  vertical  forces  at  G^ , 

G,  being  PT, ,  IF,  pounds,  the  posi- 
tion of  the  center  of  gravity  G  of 

the  system  will  be  found  from 

W,  X  G,G W,x  G,G. 

Similarly,  if  the  positions  of  G,  G^  are  given,  that  of  G^ 

may  be  found. 
Ex.  la.  Weights  of  1,  2,  3,  4,  5  lb  are  strung  on  a  uniform 

rod  ABy  whose  weight  is  3  lb  at  distances  of  4  in  from  each 
other.     Find  the  point  at  which  the  rod 
will  balance.  a  ♦        b 

[The  weight  of  the  rod  may  be  sup- 
posed collected  at  the  middle  point  (Art. 

148).     We  have  then  to  find  the  C.G.  of 
the  weights  1,  2,  6,  4,  5  lb  placed  4  in  apart, 
about  A. 

\   1  i'l  1 
Take  moments 

(1  +  2  +  6  +  4  +  5)  X^6^  =  2X4  + 6X8  +  4X12 +  5X16). 

.-.  ̂ G^=10f  in. 

Check  the  result  by  taking  moments  about  G;  also  about 
other  points.] 
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The 

iC  b 

lb.  What  is  the  pressure  on  the  point  of  support  ? 
2.  A  bicycle  weighing  tv,^  lb  has  its  wheels  a  in  apart. 

C.G.  of  the  rider,  who  weighs  w,  lb  is  «,  in  behind  the  front 
wheel,  and  the  C.G.  of  the  bicycle  is  «,  in  behind  the  same 
wheel.  Find  the  pressure  of  the  rear  wheel  on  | 
the  ground.          Ans.  {iv^a^  +  zv^a^)/a  pounds. 

3.  A  cylindrical  jar  6  in  deep  weighs  3  lb  and  | 
holds  2  lb  of  water.     Its  C.G.  is  3^  in  from  the  , 
top  when  empty.     Find  its  position  when  the  jar 
is  full  of  water.  Ans.  3.3  in  from  the  top. 

4.  Find  the  C.G.  of  a  T-iron  whose  depth  of 
flange  =  h,  depth  of  web  =  h^,  breadth  of  flange 
=  b,  breadth  of  web  =  &,. 

Ans.  C.G.  =  (bh'  -f-  b,h;  +  2b,hh;)/2(bh  +  &>,). 
5.  A  common  form  of  cross-section  of  a  reservoir  wall  or 

embankment  wall  is  a  trapezoid  whose 
top  and  bottom  sides  are  parallel.  If 
top  side  =  ttf  bottom  =  b,  and  height 
=  h,  show  that 

GH 
h(2a-}-b\ d\a-]-br 

[Divide  the  figure  into  a  rectangle  and  a  triangle  or  into 
two  triangles.] 

6.  Show  that  if  one  fourth  part  ADU  of  a  triangle  ABC  is 
cut  off  by  a  line  DB  parallel  to  the  base  BC,  the  distance  of 
the  C.G.  of  the  remainder  from  the  vertex  A  is  7/9  of  the 
median  AF. 

7.  CA  and  CB  are  the  arms  of  a  bent  lever  2  ft  and  4  ft  in 

length,  respectively,  and  inclined  at  an  angle  of  60°.  Find 
the  distance  of  their  C.G.  from  C.  j^s.  V2i/Z  ft. 

8.  A  triangular  bracket  projects  30  ft  from  a  building  and 
weighs  2  tons.  A  load  of  3  tons  hangs  from  the  vertex.  Find 
position  of  the  C.G.  of  the  whole. 

Ans.  22  ft  from  the  building. 

9.  In  a  painter's  palette,  formed  by  cutting  a  small  circular 
disk  from  a  larger  one,  if  the  diameters  of  the  disks  are  1  to  n 
and  the  distance  between  their  centers  a,  show  that  the  dis- 

0^ 

/I 

/ 

/ 

/ 

/ 
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tance  of  the  0.  G.  of  the  palette  from  the  center  of  the  larger 

disk  is  a/{n^  —  1). 
10.  Show  that  the  cen- 

ter of  gravity  6r  of  a  trape- 
zoid lies  in  the  straight 

line  ̂ ^  joining  the  mid- 
dle points  of  AB  and  CD, 

the  parallel  sides. 
11.  Show  in  (10)  that 

7i 

^-""i 

->s 

-—--«!: 

He 
-     -at. 

HQ'.KG^AB^  2CD  :  2AB  +  CD. 

12.  Prove  the  following  construction  for  finding  the  C.G.  l  -^ 

of  a  trapezoid  ABOD.                                                                     =  '*'^*^i 
Prolong  AB,  making  BB  =  CD;  prolong  DO,  making 

CF=  AB,  The  point  of  intersection  of  BF  and  HK,  the 
line  joining  the  middle  points  of  AB,  CD,  is  the  C.G. 

[This  construction  is  due  to  Poinsot.] 
13.  Prove  the  following  rule  for  finding  the  C.G.  of  a  qua- 

D     drilateral  ABDC: 
Draw  the  diagonals  AD,  BC.  Make 

AF  =  DE.  The  C.G.  of  the  triangle  CFB 
is  also  that  of  the  quadrilateral. 

14.  Prove  the  following  rule  for  finding 
the  C.G.  of  a  quadrilateral. 

Join  each  vertex  with  the  middle  point 
of  the  opposite  side.     Join  the  intersec- 

^  tions  of  the  lines  from  opposite  vertices. 
The  intersection  of  these  lines  is  the  C.G. 

15.  If  x^,y^\  ̂ 2*2/2?  ̂ 3>2/3J  ̂ 4 J  2/4  ̂ ^®  *^®  coordinates  of 
the  angular  points  of  a  quadrilateral,  and  x^ ,  y^  of  the  inter- 

section of  the  diagonals,  and  x,  y  of  the  C.G,  then 

\. 

/F 

x  =  (x^-]rX^+x^-\-x,-  a;J/3; 

^  =  (y,  +  2/2  +  ̂3  +  ̂4  -  y.)/^' 

150.  General  Method  of  Finding  the  CG, — We  now  return 
to  the  general  formula  of  Art.  145,  which  includes  all  cases, 
and  shall  show  its  application  to  some  of  the  problems 
already  solved  and  to  others  which  do  not  admit  of  any 
special  artifice  in  their  solution. 
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Ex.  1.  To  find  the  C.G.  of  a  thin  lamina 
in  the  form  of  a  quadrant  of  a  circle  of 
radius  r, 

[Take  the  origin  at  the  center  0,  and  let 
the  lamina  li  be  divided  into  strips  by  lines 
parallel  to  the  axis  of  Y. 

Let  PiVbe  any  strip;  x,  y,  the  coordinates 

of  P;  x-{-  Ax,  y  +  Ay,  the  coordinates  of  Q', 
and  let  the  lamina  weigh  d  per  unit  area.    Then 

area  of  strip  =  yAx; 
force  of  gravity  on  strip  =  SyAx, 

The  C.Gr.  of  the  strip  being  ultimately  at  its  middle  point, 

its  coordinates  are  x,  y/2.  Hence  if  x,  y  denote  the  coordi- 
nates of  the  C.  G.  of  the  quadrant, 

x  X  2SyAx  =  2SxyAx; 

^  X  ̂ SyAx  =  i:^Sy'Ax; 
or  in  the  notation  of  the  calculus,  d  being  constant, 

xj  ydx  =   I  xydx;        yj  ydx  =  i  /  y'^dx. 

Performing  the  integrations  indicated,  remembering  that 

x^  -\-  y"^  —  r^j  we  have 
X  =  4r/3;r  =  y, 

and         0G=  Vx  +y'  =  4r  f%/3;r. 
3.  To  find  the  C.G.  of  a  thin  lamina  in  the  form  of  a 

quadrant  of  an  ellipse  whose  semi-axes  are  a,  b. 

Ans.  X  =  ̂ al'6n\  y  =  ̂ h/^n. 
3.  Find  the  position  of  the  centroid  of  a  semicircle. 

Ans.OG  =  4:r/37r, 
4.  To  find  the  C.G.  of  a  triangle  ACB  whose   sides  are 

a,  by  c. 
[Take  C  as  origin;  CB,  CA,  as  axes  of 

X,  Y. 
Cut  into  strips  parallel  to  GB,  Let  PQ 

be  any  strip,  and  x,  y  the  coordinates  of  P. 
Then 

Area  of  strip  PQ  =  xAy  sin  C. 
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The  coordinates  of  the  C.G.  of  the  strip  PQ  are  x/2,  y,  ulti- 
mately.    Hence 

X  I    xdy  =    I    -dy;  y  j    xdy  =    I    xydy. 

But,  from  the  equation  of  the  straight  line  AB, 

V»  +  y/^  =  1. 
Performing  the  integrations,  we  find 

x  =  a/3;         y  =  b/3; 

giving  the  same  position  of  the  0.  G.  as  found  in  Art.  148.] 
5.  Solve  Example  4  using  rectangular  coordinates. 
6.  To  find  the   C.G.   of  a  hemisphere  of  radius  r  and 

center  0. 

[From  symmetry  the  C.G.  must  lie  in 
OX  normal  to  the  base. 

Divide  the  hemisphere  into  slices  by 
planes  normal  to  OX. 

Volume  of  slice  =  ny^Ax, Coordinates  of  C.G.  of  slice  are  x,  0. 

.'.  OGL  ny^dx  =  /  nxy^'dx, 

and         OG  =  3r/8.] 

Sometimes  it  is  advantageous  to  introduce  polar  coordi- 
nates. 

Ex.  7.  To  find  the  centroid  of  a  quadrant  of  a  circle  of 
radius  r  (see  Example  1). 

[Take  OX  as  initial  line,  and  r,  6  the  coordinates  of  Q. 
Join  OP,  OQ,  forming  with  PQ  the  element  area  OPQ. 

Area  OPQ  =  \OPxPQ  =  ir'A6  ultimately. 
Coordinates  of  C.G.  of  area  OPQ  are  |r  cos  6,  fr  sin  d, 

ultimately.     (Art.  148.) 
JT  It 

Hence     xj^^r'dd  =f^\r  cos  d  X  ̂r'de,  etc.] 
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8.  Find  after  the  manner  of  Ex.  7  the  position  of  the  cen- 
troid  of  a  semicircle.     (Compare  Ex.  3.) 

9.  To  find  the  C.G.  of  a  circular  sector  AOB  if  angle 
A  OB  =  2/3  and  r  is  the  radius. 

Ans.  OG  =  ir  sin  /3//3  =  2  radius  X  chord/3  arc. 
10.  Find  the  C.G.  of  a  sector  of  a 

circular  ring,  radius  OA  =  r, ,  radius 
OC=r^,  angle  AOB  =  2/3. 

Ans, 

OG  =  2(r,'-7',')  sin  /?/3(r,'-r;0A 

[A  practical  illustration  is  the  front 
surface  of  a  circular  arch.] 

11.  Show  that  the  distance  of  the  C.G.  of  a  segment  of  a 

circle  from  the  center  is  c^/12A  when  c  is  the  chord  and  A 
the  area  of  the  segment. 

12.  To  find  the  distance  of  the  C.G.  of  a  semi-circumfer- 
ence from  the  center  0.  Ans.  OG  =  2r/n. 

13.  To  find  the  distance  of  the  C.G.  of  a  quadrantal  arc 
from  the  center  0.  Ans.  OG  =  2V2r/7r. 

14.  To  find  the  distance  of  the  C.G.  of  a  circular  arc  AB 
subtending  an  angle  2/?  at  the  center. 

Ans.  OG  —  r  sin  /3//3,  or  OG  =  radius  X  chord/arc. 
15.  ABC  is  a  triangle  inscribed  in  a  circle  center  0,  and 

F,  Gy  Hsire  the  centers  of  gravity  of  the  sectors  AOB,  BOG, 
CO  A.    Show  that 

AB/OF-\-  BC/OG  +  CA/OH=  Stt. 

151.  Having  now  found  the  position  of  the  point  of  appli- 
cation of  the  resultant  force  of  gravity  on  a  body,  it  is  pos- 

sible to  apply  the  general  conditions  of  equilibrium  to  bodies 
acted  on  by  forces  (Art.  140).  This  application  will  form 
the  remainder  of  this  chapter. 
We  shall  confine  ourselves  to  forces  that  lie  in  the  same 

plane.  This  will  include  the  great  majority  of  problems  that 
occur  in  practice;  for  in  structures  forces  are  in  general  so 

applied  as  to  be  symmetrical  about  'a  plane,  and  therefore 
their  resultants  lie  in  this  plane,  so  that  the  forces  may  be 
treated  as  if  all  acted  in  this  plane. 
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r  162. Mt  is  well  to  call  to  mind  at  this  place  how  to  find 
(1)  The  resultant  of  a  number  of  forces  acting  at  a  point 

(a)  graphically,  Art.  78; 
(b)  analytically,  Art.  80. 

(2)  The  resultant  of  a  number  of  forces  acting  at  different 

points 
{a)  graphically.  Art.  128; 
(h)  analytically,  Art.  139. 

(3)  The  conditions  of  equilibrium  when  forces  act  at  a 

point 
{a)  graphically.  Art.  85; 
(h)  analytically,  Art.  86. 

(4)  The  conditions  of  equilibrium  when  forces  act  on  a 
body 

{a)  graphically  (three  forces).  Art.  141; 
(b)  analytically,  Art.  140. 

In  many  applications  of  Mechanics  in  Architecture  and 

Bridge-building  both  the  graphical  and  analytical  methods  of 
computation  are  used.  At  times  one  is  more  convenient 
than  the  other,  and  always  one  may  be  used  to  check  the 
other.     This  will  be  illustrated  as  we  proceed. 

153.  We  shall  consider  first  the  equilibrium  of  a  single 
body  variously  supported,  and  then  that  of  a  system  of  bodies. 
The  same  general  principle  runs  through  all  cases.  When 
one  body  is  in  contact  with  another  at  one  or  more  points, 
the  action  of  one  body  is  equal  to  the  reaction  of  the  other. 
If,  therefore,  the  support  be  removed  and  a  force  applied  to 
the  body  in  magnitude  and  direction  equal  to  the  reaction  of 
the  support  on  the  body,  the  conditions  of  equilibrium  may  be 
applied  to  the  body  as  if  acted  on  by  the  original  forces  and 
this  reaction.  In  this  way,  too,  the  equilibrium  of  a  body  as 
part  of  a  system  may  be  studied. 
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164.  Equilibrium  of  a  Body  Supported  at  One  Point. — Con- 
sider a  uniform  beam  of  length  21,  depth  2h,  and  weighing 

W  lb,  suspended  at  its  middle  point  0.  The  force  on  the  sup- 
port 0  is  equal  to  ]V  pounds  and  acts  vertically  along  OG 

through  the  center  of  gravity  G  of  the  beam.    A  body  weigh- 

A 
0                 B                     C 

R, 

i: 
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P 

( 
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ing  P  lb,  if  placed  on  the  beam  or  suspended  from  it  any- 
where except  on  the  line  OG,  will  cause  the  beam  to  take  an 

inclined  position. 
Suppose  P  to  be  suspended  at  the  extremity  A,  and  let  B 

denote  the  reaction  of  the  support  at  0,  and  0  the  angle  of 
deflection  of  the  beam  from  the  horizontal  position. 
We  may  consider  the  support  removed  and  the  beam  in 

equilibrium  under  the  vertical  parallel  forces 
P,  W,  R.     Then  (Art.  140) 

(1)  The  sum  of  the  forces  is  zero,  or 

P+  W-  R  =  0, 

Hence  the  pressure  R  on  the  support  is  found. 
(2)  The  sum  of  the  moments  about  any  point 

is  zero.     Take  moments  about  0  and 

P  X  OC-  WX  GH^R  X  0  =  0, 
or  P  X  ̂  cos  6^  —  PF  X  /i  sin  6*  =0, 
or  iB.nd  =  Pl/Wh, 

and  the  inclination  6  is  found. 

By  attaching  a  pointer  to  the  beam  free  to  move  over  a 

graduated  arc  we  have  a  means  of  comparing  weights.  An 
example  is  afforded  by  the  common  letter-scale. 
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Ex.  1.  Let  AB  represent  a  rigid  rod  (as  a  crowbar)  turning 
on  a  fixed  support  C.     Let  a  force  F 

|r  be  applied  at  A,  and  let  W  be  the  re- 
^!  g     sistance  to  be  balanced  at  B.     Given 

j   -^   {     the  lengths  of  AC,  CB,  it  is  required 
j  I     to  find  the  relation  between  F,  TV  when 
i  I     in  equilibrium. 
{  I         [Neglect  for  the  present  the  weight 
'f'  ^'     of  the  rod.     Let  i^and  If  be  vertical, and  let  B  denote  the  reaction  at  C. 

We  may  consider  the  support  removed  and  the  rod  in  equi- 
librium under  F,  W,  B.     Then  the  equations  of  equilibrium 

Qte 

F+W-B  =0. 
Fx  AC-  Wx  BC=0. 

Hence  F/BC  =  W/A  C  =  B/AB, 

the  relation  sought. 
If  W^  is  the  weight  of  the  rod  acting  at  its  middle  point  G, 

the  equations  of  equilibrium  become 

F+W-{-W^-B  =  0, 
Fx  AC-i-  W,X  GC-  WxBC=0, 

from  which  the  ratios  of  F,  W,  R  may  be  found. 

The  rod  AB  is  known  as  a  Lever,  the  support  C  the  fulcrum, 
and  the  distances  A  C,  CB  the  arms  of  the  lever.    The  relation 

F/BC  =  W/AC=  B/AB 

is  sometimes  called  the  principle  of  the  lever. 

The  condition  of  equilibrium  in  the  case  of  forces  acting  at 
right  angles  to  the  arms  of  a  straight  lever  was  given  by  Ar- 
cliimedes  (B.C.  287-212).  But  it  was  not  until  the  end  of  the 
fifteenth  century  that  the  case  of  forces  acting  obliquely  was 
solved.  This  was  done  by  Leonardo  da  Vinci  (1452-1519)  of 
Florence,  painter  and  philosopher. 

2.  A  lever  is  2  ft  long.  Where  must  the  fulcrum  be  placed 
that  10  pounds  at  one  end  may  balance  30  pounds  at  the 
other  end  ? 
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3.  From  a  pole  resting  on  the  shoulders  of  two  men  a 
weight  W  is  suspended.  It  is  n  times  as  far  from  one  man 
as  from  the  other;  what  does  each  support  ? 

Jns.    W/(n  +  1),  n  W/(n  +  1). 
4.  Find  the  relation  between  F  and  Win  a,  bell-crank  lever. 

A  and  B  are  the  bell  wires,  C  is  the 
pivot  about  which  the  lever  turns. 

[The  directions  of  F,  W,  and  the 
reaction  R  of  the  pivot  meet  in  a  point 
0.     Hence  take  moments  about  C] 

5.  A  pair  of  nut-crackers  is  a  inches 
in  length,  and  a  pressure  of  p  pounds 
will  crack  a  nut  placed  h  inches  from 
the  hinge.  What  weight  placed  on 
the  nut  would  crack  it  ? 

Alls,  pa/h  pounds. 
6.  The  handle  of  a  claw-hammer  is 

1  ft  long  and  the  length  of  the  claw 
is  2  in.  A  pressure  of  25  pounds  is 
applied  at  the  end  of  the  handle. 
Find  what  resistance  ojffered  by  a  nail  would  be  overcome. 

Ans.  150  pounds. 
7.  A  uniform  wire  bent  into  the  form  of  three  sides  of  a 

square  is  hung  up  from  one  of  the  angles.  Show  that  the  in- 
clination of  the  first  side  to  the  horizontal  is  tan"^  2/3. 

S,  ABC  is  a  triangular  board  having  AB  =  6  m,  BC  =  4: 
in,  ̂ (7  =  3  in.  Find  the  point  on  BC  from  which  the  board 
if  suspended  will  hang  with  AB  horizontal. 

Ans.  7/12  in  from  C. 
9.  A  plank  16  ft  long  and  weighing  120  lb  projects  over  a 

vertical  wall  in  a  horizontal  plane  to  a  distance  of  6  ft  A 
boy  weighing  80  lb  walks  slowly  along  the  plank.  When  will 
it  begin  to  topple  over  ? 

Ans.  When  3  ft  from  end. 
10.  Two  weights  P,  Q  balance  at  the  ends  of  a  lever  whose 

weight  may  be  neglected.  If  when  the  weights  are  inter- 
changed equilibrium  is  maintained  by  adding  weights  P, ,  Q^ 

to  P,  Q,  respectively,  show  that 

165.  Balance. — Consider  a  uniform  beam  hanging  in  equi- 
librium in  a  horizontal  position,  being  suspended  from  a 
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point  0  directly  above  the  center  of  gravity  G,  and  with  the 
extremities  A,  B  equidistant  from 
0  and  in  the  same  straight  line 
with  it.  If  from  A,  B  are  sus- 

pended two  equal  weights  P,  P, 
the  beam  will  still  remain  in  a 

jyy  horizontal  position,  since  the  mo- 
^  ments  about  0  are  equal. 
Hence  the  apparatus,  which  is  evidently  a  lever  with  equal 

arms,  may  be  used  for  comparing  equal  weights.  Attaching 
pans  to  A,  B,  the  weights  for  comparison  may  be  placed  in 

these  pans  and  the  operation  facilitated.  Such  an  arrange- 
ment is  the  common  Balance. 

If  the  attached  weights  are  not  equal,  the  beam  will  not  rest 
in  a  horizontal  position.  We  proceed  to  find  the  position  of 
equilibrium  in  this  case  and  thence  to  infer  the  requisites  of 
a  good  balance. 

Let  W  be  the  weight  of  the  beam  acting  at  G,  and  suppose 

unequal  weights  P,  Q  suspended  from  A  and  B,  P  being  the 
greater.     When  the  beam  is  again  in  equilibrium  denote  the 
angle  of  inclination  of  ̂ P  to  the  horizontal  CD  by  6, 

Let  A0=  OB  =  1    and     OG  =  h. 

The  beam  is  in  equilibrium  under  the  parallel  forces  P,  Q, 
W,  and  the  reaction  E  at  0.     Hence 

P+Q+W-E  =  0   (1) 

Take  moments  about  0,  and 

Fl  COB  e  -  Wh  sin  H  -  Ql  cos  6  =  0,      .     .     (2) 

or  ta.n  e=(P  -  Q)l/Wh. 

Now  the  balance  will  indicate  small  differences  P  —  Q  the 
more  clearly  the  greater  the  angle  6  through  which  it  swings 
for  these  differences.  But  tan  d  or  0  is  greatest  when  //  W7i 

is  greatest,  that  is,  when  I  is  large  or  the  beam  has  long  arms, 
when  W  is  small  or  the  beam  light,  when  h  is  small  or  the 
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center  of  gravity  is  jnst  below  the  point  of  suspension.  Such 
a  balance  has  great  sensihility,  and  is  suitable  for  delicate 
investigations  in  Chemistry,  Physics,  Assaying,  etc. 

In  scales  for  weighing  large  weights  stability  rather  than 
sensibility  is  wanted;  that  is,  for  small  differences  of  P  and 
Q  the  angle  of  deviation  of  the  beam  from  the  horizontal  as 
shown  by  tan  6  should  be  small.  This  requires  Wi  to  be 
large  or  the  beam  to  be  heavy,  with  a  long  distance  between 
the  center  of  gravity  G  and  the  point  of  suspension  0.  By 
making  the  arms  long,  a  balance  may  be  constructed  which 
shall  possess  in  a  measure  both  sensibility  and  stability.  As 

the  two  conditions  are  at  variance,  the  amount  of  compro- 
mise must  be  decided  by  the  use  to  which  the  balance  is  to 

be  put. 

For  very  accurate  work  the  method  called  double  tveigJiing 
is  in  use  Place  the  body  to  be  weighed  in  one  pan,  and  bal- 

ance with  sand  placed  in  the  other  pan.  Remove  the  body, 
and  balance  the  sand  with  standard  weights.  The  weight  of 
the  body  is  then  shown  by  the  standard  weights,  for  they  pro- 

duce the  same  effect  as  the  body  itself. 
This  method,  which  is  due  to  Borda,  is  really  a  method  of 

substitution,  and  gives  a  correct  result  if  the  balance  is  not 
properly  adjusted. 

156.  To  Test  a  Balance. — Suppose  the  beam  to  rest  in  a 
horizontal  position  when  the  scale-pans  are  empty.  Weigh  a 
body  P  first  in  one  pan  and  then  in  the  other.  If  the  two 
values  obtained  are  equal  to  one  another,  the  balance  is  true. 

For  let  rt,  b  denote  the  lengths  of  the  arms  and  W^y  Wf,  the 

weights  of  the  scale-pans.  Then  if  ]V  denotes  the  observed 
weight  of  the  body  P,  we  have 

WaXa=  W^Xb;   (1) 

{P-{.Wa)Xa  =  (W+W,)b;.    ...     (2) 

(W+  Wa)a  =  (P+  W,)b   (3) 

Hence  a  =  b,  Wa=  W^,,  and  P  =  W,or  the  arms  are  equal. 
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the  pans  are  of  the  same  weight,  and  the  observed  weight  is 
the  weight  of  the  body. 

Ex.  la.  The  beam  of  an  unloaded  balance  rests  in  a  hori- 
zontal position,  and  the  arms  are  known  to  be  of  unequal 

length.  Show  that  the  true  weight  W  of  a  body  which  appears 
to  weigh  W^  when  placed  in  one  scale  and  W^  when  placed 
in  the  other  scale  is  given  by 

W=VW,  W, 

Ih.  Show  that  if  W^,  W\  are  nearly  equal,  this  may  be 
written  closely  enough 

r=(Tf, +  r,)/2. 

■  [For  2  VW\W,  =  (w,+  W,)-(  VW,  -  Vl^)'.] 

2a.  If  the  arms  of  a  balance  are  of  equal  length  but  (from 
wear)  the  pans  are  not  of  the  same  weight,  show  that  the  true 
weight  ̂   of  a  body  which  appears  to  weigh  PF,  when  placed 
in  one  pan  and  W^  when  placed  in  the  other  pan  is  found  from 

W=(W,-\-  W,)/2. 

2h,  Show  that  the  difference  of  the  weights  of  the  scale- 
pans  is  equal  to  ( TF,  —  W^)/2. 

3.  If  the  C.G.  of  the  beam  is  not  directly  under  the  point 
of  suspension,  show  that  the  correct  weight  may  be  found  as 
in  Ex.  2a. 

4.  Is  it  fair  to  infer  that  in  all  cases 

correct  wt.  =  half -sum  of  apparent  wts.  in  the  two  scales  ? 

5.  A  balance  has  unequal  arms.  The  apparent  weights  of  a 
body  weighed  first  in  one  scale-pan  and  then  in  the  other  are 
9  and  11  grains.  What  error  is  made  by  taking  10  grains  as 
the  true  weight  ?  Ans.  0.05  grain. 

6.  Why  must  not  the  0.  G.  of  a  beam-balance  coincide  with 
the  point  of  suspension  ? 

7.  In  a  balance  show  that  if  the  scale-pans  hang  freely  no 
error  can  arise  from  the  weights  not  being  placed  in  the 
center  of  the  pans. 
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8.  A  body  whose  weight  is  10  lb  when  placed  in  one  pan 
of  a  false  balance  appears  to  weigh  9.5  lb.  Find  its  apparent 
weight  when  placed  in  the  other  pan.  Ans.  10.526  lb. 

9.  The  arms  of  a  balance  are  a  in  and  b  in.  A  grocer  uses 
the  scale-pans  in  alternate  order  in  serving  customers.  Find 
his  gain  or  loss  per  lb.  Ans,  {a  —  by/2ab  lb. 

10.  Discuss  the  balance  if  the  point  of  suspension  0  is  at  a 
distance  k  above  the  beam. 

157.  Steelyard. — Consider  a  beam  suspended  from  a  point 

0  directly  above  its  center  of  gravity  and  hanging  in  equi- 
librium in  a  horizontal  posi- 

tion.    If  from  the  beam  we  ^ 

suspend  two    bodies    of   un- 

equal weight  P,  Q,  it  will  still        "1 
remain   in    equilibrium    in  a  I 
horizontal  position  if 

FxAO=:QxBO. 

Let  the  weight  P  suspended  from  ̂   be  a  hook  or  a  scale- 
pan.  If  to  P  we  add  an  unknown  weight  W,  we  shall  still 
have  equilibrium,  provided  Q  is  shifted  to  a  point  C  such  that 

(P-j-W)AO=  Qx  CO. 

Subtract  these  equations,  and 

WxAO=  QxBC, 

which  gives  the  unknown  IF  as  soon  as  BCis  measured. 

To  save  measurements  of  ̂  Cat  every  weighing  of  a  body, 
it  is  convenient  to  graduate  the  beam  in  the  first  place. 
Thus  suppose  P  =  1  lb,  §  =  2  lb,  and  JO  =  4  in.  Then 
OB  =  2  in,  and  a  notch  can  be  made  at  B,  which,  as  the 
weight  Q  then  balances  the  pan  P  only,  would  be  marked  0. 
Let  now  W=l  lb;  then  BC=  A0xW/Q  =  2  in,  and  0 
would  be  the  position  at  the  1-lb  mark.  Make  pr=  2  lb  and 
BD  =  4  in,  giving  D  the  2-lb  mark,  and  so  on.  Hence  in 

^^ighing  a  body  it  is  only  necessary  to  place  it  in  the  pan 
and  move  the  weight  Q  until  the  notch  is  found  where  the 
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beam  will  remain  horizontal.     The  number  at  the  notch  in- 

dicates the  weight.     This  instrument  is  called  a  Steelyard. 

The  advantages  of  a  steelyard  over  the  balance  are:  (1) 
the  exact  adjustment  of  the  instrument  is  made  by  moving  a 
single  weight  Q  along  the  rod;  (2)  when  the  body  to  be 
weighed  is  heavier  than  the  fixed  weight  the  pressure  on  the 
point  of  support  is  less  than  in  the  balance.  The  steelyard 
is  therefore  better  adapted  to  measure  large  weights.  There 
is,  on  the  other  hand,  this  advantage  in  the  balance,  that  by 
using  numerous  small  weights  the  reading  can  be  effected 
with  greater  precision  than  by  subdividing  the  arm  of  the 
steelyard.     (Routh.) 

Ex.  1.  Graduate  a  steelyard  to  weigh  half-pounds. 
2.  If  the  point  of  suspension  0  be  not  over  the  center  of 

gravity  and  the  movable  weight  Q  placed  at  a  point  H  holds 
the  steelyard  in  a  horizontal  position,  show  that  when  the 
weight  P  is  attached  HB  =  AOx  P/Q,  and  hence  show  how 
to  graduate  the  steelyard. 

[For  AO  and  Q  are  constant.  .*.  HB  varies  as  P.  Hence 
i/is  the  point  from  which  the  graduations  must  be  made. 
If  Q  is  at  B  when  P  =  1  lb,  then  by  taking  BD  =  BH  and 
placing  Q  Sit  D,  P  will  be  2  lb,  that  is,  B  is  the  2-lb  notch, etc.] 

3.  A  steelyard  beani  weighs  3  lb,  the  wt.  §  is  4  lb,  and  the 
distance  of  the  center  of  gravity  from  0  is  3  in,  and  of  the 
point  of  suspension  of  the  scale  A  from  0  5  in.  Show  thjit 
the  l-lb  graduation-marks  are  at  intervals  of  5/4  in. 

4.  A  steelyard  weighs  W  lb  and  is  correctly  graduated  for 
a  movable  weight  Q.  Prove  that  a  weight  2Q  may  be  used 
provided  a  fixed  weight  W  is  suspended  at  the  center  of  grav- 

ity of  the  steelyard,  but  the  readings  must  be  doubled. 



§  158] EQUILIBRIUM. 179 

5.  A  piece  is  broken  off  the  longer  arm  of  a  steelyard. 
Show  that  the  customer  is  defrauded. 

6.  A  grocer  files  the  movable  weight  of  his  steelyard. 
Show  that  he  cheats  his  customers. 

158.  Equilibrium  of  a  Body  Supported  at  Two  Points. — 
Consider  next  a  body  in  which  two  points  are  supported,  as, 
for  example,  a  beam   supported   by 
two  smooth  horizontal  pins  A  and  B, 
or  a  beam  resting  on  two  props  A 
andB. 

The  forces  acting  are  the  weight 
W  vertically  downwards  through  G, 
the  center  of  gravity  of  the  beam, 

and  the  reactions  N^ ,  N^  of  the  sup- 
ports A  and  B.  Since  the  direction  of  TTis  known,  if  from 

the  conditions  of  the  question  that  of  one  of  the  two  N^  or 

A^3  is  given,  the  direction  of  the  other  is  found;  otherwise 
the  problem  is  indeterminate. 

If  the  forces  are  not  parallel  they  must  meet  in  a  point, 
and  the  solution  is  given  by  Art.  141;  if  they  are  parallel  it 

is  given  by  Art.  140.  As  this  latter  case  is  of  special  impor- 
tance, it  is  here  worked  out  in  full. 

Let  the  two  props  A,  B  be  in  the  same  horizontal  plane. 

Since  the  direction  of  l^^is  vertical, the  directions  of  the  reac- 
tions N^ ,  N^  at  Ay  B  must  also  be 

^'^*     vertical.     To  find  these  reactions, 
resolve  vertically,  and  take   mo- 

ments about  G',  then 

JV,  +  A^,-Tr=0, 
N,XAC-N,X  BC=0, 

from  which  N^ ,  N^  are  found. 
Or  take  moments  about  ̂   and  ̂   in  succession,  and 

-  N,  XAB  +  WXBC=0, 
]^,XAB-WxAC=0, 

from  which  the  same  values  of  A^^,  A^,  result. 
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The  pressures  JV, ,  N^  on  the  supports  may  also  be  deter- 
mined graphically. 

Thus  suppose  the  beam  AB  to  carry  besides  its  own  weight 
W  a  load  W,  at  C.  Draw  ah,  he 
to  scale  to  represent  the  vertical 
forces  TF, ,  Win  magnitude  and 
direction.  The  force  repre- 

sented by  the  line  cha  which 
closes  the  polygon  of  forces 

will  hold  W^y  IF^ in  equilibrium 
and  will  be  the  sum  of  the  re- 

actions JV, ,  N^. 

Take  any  pole  0  and  join 
0«,  Oh,  Oc.  From  any  point 
p  in  the  direction  of  iV,  draw 

pq  parallel  to  aO,  from  q  draw 
qr  parallel  to  hO,  and  from  r 
draw  rs  parallel  to  cO.  Join 
sp,  and  draw  01  parallel  to  sp. 
Then  cl,  la  are  the  reactions 

N^,  iV;  sought. 
Proof. — The  intersection  t  of 

pq  and  sr  gives  the  position  of 
the  resultant  ahc  of  W^  and  W. 

(Art.  128.)  And  cha,  the  re- 
sultant of  iV,  and  N^,  being  equal  and  opposite  to  ahc,  must 

act  upwards  through  t. 
Now  cha  acting  at   t   is  equiv.  to  cO  along  ts  and  Oa 

along  tp. 

But   cO  along  ts  is  equiv.  to  c?  along  sB  and  ZO  along  jt?5, 
and    Oa  along  i^jt?  is  equiv.  to  01  along  5jo  and  la  along  jo^. 
The  forces  10  and  01,  being  equal  and  opposite,  balance. 

Hence  cha  acting  at  t  is  equiv.  to  cl  along  sB  and  la  along  jo^ ; 
that  is,  cl,  la  represent  the  reactions  N^,  N^dX  A,  B  on  the 
scale  of  forces. 

Hence  the  rule : 

.^jm LE  ©F  FOTCESi 
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(a)  Form  the  force  polygon  or  load  line  ahca  by  laying  off 
the  forces  to  scale. 

(b)  Select  a  convenient  pole  0  and  form  the  equilibrium 
polygon  pqrs. 

(c)  Draw  01  parallel  to  the  closing  line  sp  of  the  equilib- 
rium polygon,  dividing  ca  into  parts  la,  d,  which  will  repre- 

sent the  reactions  JV^ ,  iV,  at  ̂   and  B  respectively.  (Compare 
Art.  129.) 

169.  The  graphical  method  may  be  employed  in  finding  the 

stresses  in  a  mechanism.  Take,  for  example,  the  steam- 
engine.  Let  P  be  the 
pressure  exerted  by  the 
piston  on  the  pin  A  of 
the  cross-head.  It  is 

transmitted  by  the  con- 
necting-rod to  the  crank- 

pin  B,  and  thence  to  the 
crank  axis  C.  If  now 

the  machinery  is  driven  by  a  wheel  CG  on  the  axis  C  work- 
ing in  another  wheel  at  G,  the  resistance  E  would  be  tangent 

to  the  pitch-circles  of  these  wheels. 
Consider  the  pin  A.  It  is  in  equilibrium  under  the  press- 

ure F  along  the  axis  of  the  piston-rod,  the  thrust  Q  along 
the  connecting-rod,  and  the  reaction  J^  of  the  guide-bar  of 
the  cross-head.  Hence  plot  P  to  scale,  and  complete  the  tri- 

angle of  forces,  from  which  scale  off  Q  and  JV". 
Again,  the  wheel  CG  is  in  equilibrium  under  the  action  of 

Q,  R  and  the  reaction  8  of  the  crank  axis  C.  All  three  must 

meet  in  the  point  D,  where  Q  and  R  meet.  Hence  plot  the 
triangle  of  forces,  and  scale  off  8  and  R.  The  relation  be- 

tween P,  the  piston  pressure,  and  R,  the  force  transmitted  to 
the  mechanism,  is  therefore  determined. 

We  have  neglected  the  weights  of  the  pieces.  The  only 
one  important  to  consider  is  the  weight  resting  on  the  crank 
axis  C.  Call  it  W.  It  acts  vertically.  Combine  Q  and  W 
into  one  resultant  R^,     The  reaction  8  will  now  pass  through 



182 STATICS  OF   A   BODY. 

[§159 

the  intersection  of  R^  and  R.  Hence  complete  the  triangle  of 
forces  for  7?,  8y  R^,  and  scale  off  S  and  R.  Thus  the  relation 
between  P  and  R  is  found. 

Similarly,  the  weights  of  all  the  pieces  may  be  taken  into 
account  if  desired. 

Ex.  1.  A  spherical  shot  weighing  100  lb  lies  between  two 

smooth  planes  inclined  at  respectively  30° 
and  60°  to  the  horizontal.  Find  the  press- 

ure on  each  plane. 
[The  pressures  of  the  shot  on  the  planes 

are  perpendicular  to  the  planes.  These 
pressures  are  balanced  by  the  reactions 
iV,,  JVj  o^  ̂ ^®  planes,  which  reactions  pass 
through  the  center  of  the  sphere.  The 
weight  of  the  sphere  acts  vertically  down- 

ward at  the  center. 
Hence  the  center  0  may  be  considered  in  equilibrium 

under  the  forces  JV^,,  iV^,,  100  pounds,  and  the  planes  may  be removed.     Finish  in  all  the  ways  indicated  in  Art.  141. 

Ans.  JV,  =  50  pounds;  iV,  =  50  Vd  pounds.] 
2.  A  rod  AB  whose  weight  may  be  neglected  and  which  is 

35  in  long  carries  a  weight  W  at  G  20  in  from  the  end  A, 



§159]  EQUILIBRIUM.  183 

The  rod  is  carried  by  a  thread  49  in  long,  tied  to  the  ends 
A,  B  and  slung  over  a  smooth  peg  C.    Find 

the  pull  on  the  thread  and  the  inclination  c 
of  the  rod  to  the  horizontal  when  it  comes  /    '^\j 
to  rest.  yf      I       \^ 

[The  peg  being  smooth,  the  pull  T  is  the         /    3.^-'^b 
same  on  both  sides  of  the  peg.     The  rod      ̂ ^^rrrm  h 
is  held  in  equilibrium  by  the  three  forces     a  ^ 
T,  T,  W.     The  directions  of  T,  T  pass 
through   C.     Hence  the  direction  of  W,  which  is  vertical, 
must  pass  through  C.     (Art.  141.) 

Let  the  angles  at  G  be  a,  (3, 

By  Lami's  theorem 

T/%m  a  =  r/sin  /3  =  TT/sin  {a  +  /?). 
/.  a  =  /i    and     T=  W/2  cos  a. 

The  value  of  the  inclination  6  follows  from  the  geometry  of 
the  figure. 
For  AC:  CB  =  AG:  GB  =  20: 15. 

.-.  AG  =28    and     CB  =  21. 

Hence  lAGB  =  90°    and     a  =  45°. 

Also  cos  6  =  AII/AG 

=  7/5  V2,    and  6  is  found. 

Finally,  T  =  W/2  cos  45  =  W/V2,  the  pull  in  the  thread. 
3.  A  uniform  beam  weighing  W  lb  rests  on  two  smooth 

planes  inclined  at  30°  and  60°  to  the  horizontal.     Find  the 
angle  which  the  beam  makes  with  the  horizontal  in  the  posi-    \j 
tion  of  equilibrium,  and  also  the  pressures  on  the  planes.  ■ 

Ans.  30°;   WV^/2,  Tr/2  pounds. 
4.  If  in  (3)  the  angles  of  inclination  of  the  planes  are  /3,  y, 

and  6  is  the  inclination  of  the  beam  to  the  horizontal,  then 

2  tan  6  =  cot  /3  —  cot  y. 

5.  If  in  (3)  the  beam  is  not  uniform,  but  has  its  C.G.  at  a 
distance  a  from  one  end  and  Z>  from  the  other  end,  then 

(a  +  i)  tan  6^  =  «  cot  y^  —  Z>  cot  y. 



184  Sl^Af ICS  OF  A  BObV.  [§  159 

6.  A  cellar-door  AB,  hinged  at  the  upper  edge  A^  rests  at 
an  angle  of  45°  with  the  horizontal.  Its  weight, TTlb  may  be 
taken  to  act  at  its  middle  point  G.  The  door  is  raised  by  a 
horizontal  pull  F  applied  at  the  lower  edge  B,  Find  F,  and 
also  the  reaction  B  at  the  hinge  A. 

A71S.  F=  W/2;  R=  W ^5/2. 
7.  A  straight  rod  4  in  long  is  placed  in  a  smooth  hemi- 

spherical cup,   and  when  in   equilibrium  one  inch  projects 
over  the  edge.     Find  the  radius  of  the  cup.       Ans.  V3  in. 

8.  A  rod  3  ft  long  is  in  equilibrium  resting  upon  a  smooth 
pin  and  with  one  end  against  a  smooth  vertical  wall.  If  the 
pin  is  1  ft  from  the  wall,  show  that  the  inclination  8  to  the 

horizontal  is  given  by  3  cos^  0  =  2. 
9.  One  end  of  a  heavy  uniform  rod  rests  against  a  smooth 

vertical  wall.  A  smooth  ring  whose  weight  may  be  neg- 
lected, attached  to  a  point  in  the  wall  by  an  inextensible 

thread,  slides  on  the  rod.  If  0  is  the  angle  which  the  rod 
makes  with  the  wall  when  in  equilibrium,  and  if  the  length 
of  the  rod  be  2n  times  that  of  the  thread,  prove 

cot'  6^  +  cot  0  =  n. 

10.  To  a  point  A  is  fastened  one  end  of  a  thread  of  length 
?,  with  a  smooth  ring  at  the  other  end  B.  Through  this  ring 
passes  another  thread  with  one  end  fastened  at  C,  distant  21 
from  A  and  on  the  same  horizontal  line  with  it.  A  weight 
Wis  attached  to  the  other  end  of  this  thread.  Show  that  in 
the  position  of  equilibrium,  neglecting  weight  of  thread  and 

ring,  the  inclination  6^  of  ̂ ^  to  ̂ C' is  given  by 
cos  6/  =  2  cos  20, 

and  the  inclination  <p  of  CB  to  OA  by 

sec  0/2  +  cosec  0/2  =  4i^. 

Examples. — To  be  Solved  Graphically  (Art.  158). 

1.  A  highway  bridge  25  ft  long  weighs  6  tons.  Find  the 
pressures  on  the  abutments  when  a  2i-ton  wagon  is  one  fifth 
of  the  distance  across. 

[Referring  to  figure  of  Art.  158,  W=6  tons,  W^  =  2.5  tons. 
Draw  on  a  scale  of  forces  of  1  ton  =  1  in.  Then  ab  =  2.5 

in,  be  =  6  in. 
Complete  the  equilibrium  polygon  and  draw  OL    Then  cl 
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will  be  found  to  measure  3.5  in  and  la  5  in,  showing  that  the 
pressures  are  3.5  tons  and  5  tons. 

Solve  also  analytically  by  taking  moments  about  the  sup- 
ports.] 

2.  A  ladder  20  ft  long  and  weighing  75  lb  is  carried  by  two 
men,  one  at  each  end.  If  one  man  carries  30  lb,  how  far  is 
the  C.G.  from  the  end  of  the  ladder  ?  Ans.  12  ft. 

3.  A  beam  of  40  ft  span  weighs  1  ton  per  running  foot. 
One  half  of  it  carries  a  uniform  load  (as  a  train  of  coal  cars) 
of  2  tons  and  the  other  of  3  tons  per  running  foot.  Find  the 
pressures  on  the  end  supports.  Ans.  65  tons;  75  tons. 

4.  A  truss  of  60  ft  span  and  weighing  100  tons  carries  an 

OOP 

10' 

4'6'     4'6'    5'9'      81' 

Erie  consolidation  engine  as  in  the  figure.     Find  the  press- 
ures on  the  supports.  Ans.  66.6  tons;  84.9  tons. 

160.  Equilibrium  of  a  System  of  Bodies. — If  bodies  rest 
against  one  another  or  are  connected  by  threads,  hinges,  etc., 
so  that  the  system  while  in  equilibrium  under  external  forces 

can  be  regarded  as  remaining  unchanged  in  form,  the  condi- 
tions of  Art.  140  are  at  once  applicable.  The  pulls  (tensions) 

of  threads,  reactions  of  hinges,  etc.,  being  in  pairs  and  form- 
ing stresses,  are  in  equilibrium  when  the  whole  system  is 

considered.  Hence  in  writing  down  the  equations  of  equi- 
librium these  internal  stresses  may  be  neglected,  the  external 

forces  alone  being  considered. 
Also,  each  body  in  the  system  being  in  equilibrium,  we  may 

consider  it  as  severed  from  the  system  provided  we  apply 
forces  equal  to  the  resultant  ac- 

tions of  the  system  on  it.  The 
conditions  of  equilibrium  may  be 

applied  to  each  body  in  succes- 
sion. 

Thus  take  two  equal  uniform 
beams  AB,  BC  of  weight  W  lb 

each,  hinged  at  B,  and  with  the  other  ends  A,  C  moving  on 
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hinges  in  the  same  horizontal  plane,  the  beams  being  in  a 
vertical  plane. 

Put  the  length  AB  =  I,  the  height  BO  =  h,  and  the  span 
AC  =  2a.  The  beams  being  equal,  the  reactions  Ny  N 2bt  B 
will  be  horizontal.  Also,  if  the  beam  J? (7  were  removed,  AB 

would  be  in  equilibrium  under  the  forces  W,  N,  and  the  reac- 
tion iVj  of  the  hinge  A,  which  reaction  must  pass  through 

Hf  the  intersection  of  W  and  N  (Art.  141).  Hence  the  di- 

rection of  iV",  is  known.     Put  its  inclination  to  ̂ C'^  y5. 
The  beam  AB  is  in  equilibrium  under  the  forces  W,  N,  N^, 

Kesolve  vertically  and  horizontally,  and 

W-N,^\nft  =  0; 
N-  N,  COB  /3  =0, 

or        JV,  =  TTcosec  /3; 
=  TFV¥^Ahy2h; 

=  Wa/2h; 

and  the  forces  iV^,  iV^  are  found. 
Or,  graphically,  since  the  forces  on  the  beam  AB  are  par- 

allel to  the  sides  of  the  triangle  AHK,  if  we  take  HK  to 

represent  W,  the  values  of  JV,  iV^^  will  be  represented  by 
AK,  HK,  and  may  be  scaled  off  or  computed. 

Ex.  1.  Find  the  values  of  N,  N^  by  taking  moments  about 
A,  Kill  succession. 

2.  Find  the  value  of  N^  by  considering  the  system  as  a 
whole  in  equilibrium  under  W,  W,  N^ ,  iV,  (the  internal  forces 
N,  N  forming  a  stress)  and  resolving  vertically. 

3.  Two  beams  AB,  BC,  of  weight  W  lb 
each  are  hinged  at  B,  and  with  their  mid- 

dle points  D,  E  joined  by  a  beam  DE  of 
weight  TT,  lb  hinged  at  D,  E.  The  ends  A, 
C  rest  upon  a  smooth  horizontal  support; 
to  find  the  reactions  at  A,  D,  B,  E,  C. 

[The  reactions  I^at  A  and  (7  are  vertical. 
Let  the  reaction  at  D  due  to  the  weight  W\ 

be  resolved  into  two  components,  X^  horizontal  and  Y^^  vertical. 
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The  beam  DE  is  in  equilibrium, 

.-.  2r,=  w,. 

The  beam  AB  is  in  equilibrium, 

r -}-¥,=  w, 

and  taking  moments  about  D, 

]}^sm  e=  Yco8  0, 

Hence  F,  Fj ,  X, ,  and  JV  are  found.] 
4.  What  are  the  values  of  Y,  1\ ,  X^ ,  and  N  in  the  above 

example  ? 
What  is  the  total  reaction  at  i)  ? 
5.  In  a  row  boat  propelled  by  two  oars  the  pulls  exerted  by 

the  rower  are  equal.  Find  the  resistance  of  the  water  to  the 
motion  of  the  boat  and  the  pressure  on  the  rowlock. 

[Let  P  =  pull  on  each  oar; 
Q  =  pressure  of  water  on  each  blade; 
E  =  reaction  between  each  rowlock  and  oar; 
S  =  resistance  of  water  to  motion  of  boat; 
a  =  distance  of  hand  of  rower  from  rowlock; 
b  =  distance  of  rowlock  from  blade  of  oar. 

Now  the  system  as  a  whole  is  in  equilibrium  under  the  ex- 
ternal parallel  forces  Q,  Q,  8.     Hence 

Q+Q  =  8. 
Also,  since  each  oar  is  in  equilibrium  under  the  parallel 

forces  P,  Qf  R,  by  taking  moments  about  the  rowlock 

Pa  =  Qh, 

\    Pa  =  Sh/^, 

and  the  resistance  8  is  found. 

The  pressure  R  on  the  rowlock  would  be  given  by  taking 
moments  about  the  blade,  or 

Rh  =  P{a  +  5). 

As  a  check  we  have 
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F+Q  =  E, 

the  forces  P,  Q,  R  being  parallel.] 
6.  In  an  8-oar  boat  the  oars  are  10  ft  long,  and  the  dis- 

tance of  the  hand  of  each  rower  from  the  rowlock  is  2.5  ft. 
If  the  pull  of  each  rower  is  75  pounds,  find  the  force  exerted 
on  the  boat.  Ans.  400  pounds. 

la.  Two  weights  P,  Q  rest  on  the  outside  of  a  smooth  ver- 
tical hoop  and  are  connected  by  a  thread  which  subtends  a 

right  angle  at  the  center  of  the  hoop.  Find  the  inclination 
B  of  the  thread  to  the  horizontal  when  in  the  position  of  equi- 

librium. Ans.  6  =  tan-i(P  -  Q)/{P  +  Q). 
7b.  Show  that  if  T  denotes  the  pull  in  the  thread,  then 

r/P'  +  TyQ'  =  2. 

8.  Two  smooth  spheres,  each  1  ft  in  diameter  and  weigh- 
ing 10  lb,  are  placed  inside  a  hollow  cylinder  of  20  in  diameter, 

open  at  both  ends  and  resting  on  a  horizontal  table.  Find 
the  weight  of  the  cylinder  when  just  on  the  point  of  over- 

turning. Ans.  8  lb. 
9.  Two  equal  cylindrical  sawlogs,  of  weight  W  lb  each,  are 

in  contact  with  each  other  and  with  the  bottom  and  sides  of 
a  truck  in  which  they  are  placed.  A  third  equal  log  is  placed 
on  the  other  two.     Find  the  pressure  on  the  sides  of  the  truck. 

Ans.   Tf/2|/3  pounds. 
10a.  Find  the  proper  elevation  BE  of  the  outer  rail  on  a 

railroad  track  for  a  given  velocity  v  of  engine  weighing  W 
lb,  and  on  a  curve  of  radius  r  ft,  in 

^(^^\  order  that  there  may  be  no  flange  or 
^^-{\     \  lateral  pressure  on  the  rails. 

^-/    \     Y    \      c  [The  forces  acting  are  W  pounds 

\     ̂    ̂ X     \---^— >^-     vertically  downward  through   G,  the 
\     ̂    ly^^m^^^        center  of  gravity  of  the  engine,  and 

X^Vj"^^^^^"^        the  reactions  JV^,  iV,   of   the    rails. ^^^^--'-   •     Since  there  is  no  flange  pressure,  the 
*^^  ̂   \  reactions    must  be  perpendicular  to 

i       \  the  track. 
The  resultant  motion  is  due  to  a 

force  C  directed  to  the  center  of  the  curve  (Art.  108).  Hence 
the  engine  may  be  said  to  be  in  equilibrium  under  If,  JV^,  JV^, 
and  —  C. 

Let  6  be  the  inclination  of  ̂ -5  to  the  horizontal. 
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Kesolve  the  forces  along  AB  and 

-  C  cos  6/  +  Tf  sin  6'  =  0. 

But  (Art.  109) 

C  =  Wv*/gr  pounds. 
.-.    t&ii0=C/W  =  vygr, 

If  6  is  small,  tan  6  =  BE/AB  =  elevation/gauge  of  track. 

.*.    elevation  of  outer  rail  =  gauge  X  v^/gr. 

For  standard  gauge  of  4  ft  8i  in  this  gives 

elevation  of  outer  rail  =  7vy4r  inches,  nearly, 

V  being  expressed  in  feet  per  second,  and  r  in  feet.  ] 
lOJ.  If  the  velocity  Fis  expressed  in  miles  per  hour,  show 

that 

elevation  of  outer  rail  =  15  Fy4r  inches,  nearly, 

the  radius  r  being,  as  before,  expressed  in  feet. 
10c.  If  the  velocity  V  is  expressed  in  miles  per  hour,  and 

D  is  the  degree  of  curve,  then 

elevation  of  outer  rail  =  F'Z^/ISSO  inches,  nearly. 

11.  A  train  is  running  round  a  curve  of  radius  r  with  ve- 
locity V.  Show  that  the  weight  of  a  carriage  is  divided  be- 
tween the  outer  and  inner  rails  in  the  ratio  of 

gra  +  'o'h    to    gra  —  v'hy 

where  h  is  the  height  of  the  C.G.  of  the  carriage  above  the 
rails,  and  2a  is  the  distance  between  the  rails. 

12.  A  train  is  running  round  a  level  curve  of  3025  ft 
radius  at  15  miles  an  hour.  Show  that  the  deflection  of  a 

plumb-line  suspended  in  a  car  from  the  vertical  is  tan"^  1/200. 
13.  Find  the  greatest  velocity  v  a  locomotive  can  have  to 

be  just  on  the  point  of  overturning  on  a  curved  level  track 
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of  radius  r  ft,  the  center  of  gravity  of  the  locomotive  being 
6  ft  above  the  rails,  and  the  gauge  of  the  track  4  ft  8^  inches.       ̂ -n 

V  161.  Stability. — A  body  in  equilibrium  under  the  action^ 
of  .forces  may  be  at  rest  or  move  with  uniform  velocity  in  a 
straight  line.  Consider  it  at  rest  in  some  one  position.  If 
displaced  from  this  position  it  may  remain  at  rest  under 
the  forces  acting,  or  it  may  begin  to  move.  Thus  let  a  rod 

suspended  from  a  fixed  point  0  be  in  equilib- 

t^  iw    rium.     The  force  acting,  the  weight  W  verti- 

^  '^'^    cally  downward,  is  balanced  by  the  reaction  of 
the  support.  If  the  rod  is  displaced,  the  forces 
at  0  and  G  are  no  longer  in  the  same  line  but 
form  a  couple  tending  to  turn  the  rod.     If  0 

■w  ̂ w  is  above  G,  the  tendency  of  the  rod  is  to  re- 
turn to  its  original  position,  and  the  rod  in  its 

original  position  is  said  to  be  in  stable  equilibrium.  The  sta- 
bility is  measured  by  the  torque,  that  is,  by  the  moment  of  W 

about  the  point  of  turning  0. 
If  0  is  below  G,  the  tendency  of  the  rod  when  disturbed  is 

to  move  farther  from  its  original  position,  and  the  equilibrium 
is  unstable.  If  0  is  at  G,  the  rod  will  remain  in  any  position 

and  the  equilibrium  is  neut^-al. 

162.  An  important  case  is  that  in  which  a  body  rests  on  a 
horizontal  plane.  If  the  body  is  symmetrical  and  is  under 
the  action  of  gravity  only,  the  resultant  force  of  gravity  acts 
vertically  through  the  center  of  gravity  and  must  be  balanced 
by  the  resultant  vertical  reaction  of  the  plane.  The  problem 
may  thus  be  treated  as  if  all  the  forces  acted  in  one  plane. 

If  the  body  is  not  symmetrical  and  the  resultant  vertical 
force  falls  within  the  base  of  the  body  resting  on  the  plane, 

equilibrium  will  exist;  if  it  does  not  so  fall,  the  weight  down- 
ward and  equal  reaction  upward  will  form  a  couple  and  the 

body  will  rotate  and  topple  over. 

Suppose^  for  example,  A  BOD  to  be  the  cross-section  of  a 
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wall  built  to  withstand  the  pressure  of  earth  on  one  side,  as 

the  wall  of  a  railroad  em- 
bankment. Such  a  wall  is 

called  a  retaining  wall.  We 
assume  that  the  wall  can- 

not give  way  except  in  one 

piece  and  by  being  over- 
turned about  the  edge  A. 

Let  P  be  the  resultant  of 

the  forces  acting  on  the 
side  BD  of  the  wall,  and  let  | 

0  be  the  point  of  applica- 
tion of  P.     The  weight  W  of  the  wall  acts  vertically  down- 
ward through  the  center  of  gravity  G. 

The  tendency  to  overturn  about  the  edge  A  is  measured  by 

the  moment  of  P  about  A,  that  is,  by  P  X  AE.  The  ten- 
dency to  withstand  overturning  is  measured  by  TT  X  AH. 

The  stability  against  rotation  depends  upon  the  difference  of 
these  two  moments. 

Hence  in  the  position  of  limiting  equilibrium  when  the 
wall  is  just  on  the  point  of  turning  about  A  we  have  the 
relation 

PXAE=  WX  AH. 

For  the  condition  of  security  against  the  shearing  force 
causing  sliding  see  Ex.  21,  p.  222. 

The  problem  of  stability  is  further  discussed  in  Art.  219. 
Ex.  1.  A  cubical  block  is  placed  on  an  inclined  plane.  If 

kept  from  slipping,  find  the  inclination  of  the  plane  when 

just  on  the  point  of  rolling  over.  Ans.  45°. 2.  The  silver  dollar  is  1.5  in  diameter  and  0.1  in  thick. 
Show  that  a  cylindrical  pile  of  100  dollars,  but  no  more,  will 
stand  if  placed  on  a  desk  sloping  3  in  20. 

3.  A  triangular  board  whose  sides  are  2,  5,  VTs  inches  will 
just  stand  if  placed  with  the  side  2  on  a  horizontal  table. 

4.  A  triangular  lamina  whose  sides  are  «,  h,  c  can  just  stand 
on  the  side  c  when  placed  on  a  smooth  table.     Show  that a''-b'  =  3c^ 
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5a.  A  circular  table  weighing  Tflb  has  three  equal  legs  at 
equidistant  points  on  its  circumference.  The  table  is  placed 
on  a  level  floor.  Neglecting  the  weight  of  the  legs,  find  the 
smallest  weight  which,  hung  upon  the  edge,  will  be  upon  the 
point  of  upsetting  the  table.  A7is.  Wlh. 

5 J.  If  the  table  has  four  legs  at  equidistant  points,  find  the 

least  weight  that  will  upset  it.  Ans.  W(  V2  -{- 1)  lb. 
5c.  If  the  table  is  square  and  the  legs  are  at  the  middle 

points  of  the  sides,  show  that  any  weight  greater  than  W 
placed  at  one  of  the  corners  will  upset  the  table. 

163.  Graphical  Statics. — If  in  Art.  160  the  beams,  in- 
stead of  being  connected  at  ̂   by  a  hinge  rigidly  attached  to 

the  beams,  are  connected  by  a  pin  distinct  from  both  beams, 
and  also  rest  upon  pins  at  A,  C  distinct  from  the  beams,  the 
problem  is  much  simplified. 

Consider  the  beam  AB.    Suppose  the  forces  acting  on  the 
beam,  including  its  weight,  to  be  combined  into  a  single  force 

F,  and  let  F  be  resolved  into  two  com- 
ponents F^  at  A  and  F^  at  B. 

Let  iV, ,  AT",  be  the  reactions  of  the 
pins  at  ̂ ,  ̂   on  the  beam.  The  beam 
is  in  equilibrium  under  the  forces  F^ , 

JV,  at  A,  and-Pj,  iV,  at  B.  Combine 

F^ ,  A'j  into  a  single  force  E^ ,  and  F^ , 
A^,  into  a  single  force  i?,.  Then  the 
beam  being  in  equilibrium,  the  forces 

i?j,  i?3  must  be  equal  and  act  in  oppo- 
site directions.     Hence  they  form  a  stress. 

Since  B^  is  the  resultant  of  F^  and  A^^,  a  force  i?,,  equal 
and  opposite  i?,,  would  keep  F^  and  A^,  in  equilibrium. 

Now  since  each  pin  in  a  framework  connects  two  or  more 
beams,  the  resultant  action  of  these  beams  on  the  pin  A,  say, 

is  equal  to  JV^,  Hence  F^,  the  action  of  the  component  of 
the  external  force  on  the  pin,  i?g,  the  action  of  the  beam  AB 

on  the  pin,  and  A^,,  the  action  of  the  other  beams  on  the 
pin  A,  are  in  equilibrium. 

In  general,  each  pin  is  in  equilibrium  under  the  action  of 
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the  external  force  at  the  pin  and  the  forces  in  the  beams  that 
meet  at  the  pin,  the  directions  of  these  forces  being  along  the 
beams. 

The  external  force  F  being  known  in  magnitude  and  di- 
rection, and  the  directions  of  the  forces  along  the  beams 

being  known  from  the  form  of  the  structure,  the  computation 
of  the  magnitude  of  these  forces  (commonly  called  stresses) 
forms  a  simple  problem  of  forces  meeting  at  a  point,  and 
may  be  solved  graphically  or  analytically. 
A  careful  study  of  the  examples  will  show  that  in  some 

cases  the  graphical  solution  is  to  be  preferred,  and  in  others 
the  analytical.  The  graphical  solution  is  in  general  the  more 
convenient  if  the  structure  is  at  all  complex. 

164.  The  determination  of  stresses  in  beams  pinned  to- 
gether and  subjected  to  external  forces  generally  in  the  form 

of  loads  of  some  kind  is  very  important  in  architecture  and 
engineering.  The  subject  belongs  to  a  special  branch  of 
mechanics,  known  as  grapliical  statics.  We  add  a  short 
sketch  of  its  application  to  simple  framed  structures. 

165.  Jointed  Frames. — As  the  simplest  possible  example  of 
a  jointed  frame,  let  us  consider  three 
beams  hinged  by  pins  at  A,  By  O, 
and  resting  on  supports  at  A,  C  in 
the  same  horizontal  plane.  This  is 

known  as  a  triangular  truss.  Sup- 
pose the  beams  all  alike  and  weigh- 

ing W  lb  each.  The  reactions  of  the 
supports  Ay  0  balance  the  weights 

of  the  beams  and  act  vertically  up- 
wards. Hence  the  external  forces 

acting  and  keeping  the  truss  in  equilibrium  are  as  in  the 
figure. 

Now  transfer  the  weights  to  the  pins.     Thus, 

TTat  G,  =  W^'^A^\W^iB, 
TTat  G^,  =  ilf  at^  +  ̂ PFat  (7, 
TFat  6^,  =  irat^  +  irat  C\ 
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[§165 or  the  weights  at  G^,  G^,  G^  are 

replaced  by  weights  W  at  A^  PT  at 
i?,  and  Tfat  C. 
The  total  reactions  at  A,  G 

being  equal,  each  is  one  half  the 
total  weight,  or  is  equal  to  3  W/2. 
Combining  the  upward  and 

downward  forces,  we  have,  finally 

the  force  Wat  B  vertically  down- 
ward, and  the  resultant  forces  (or  reactions)  W/2  at  A  and 

W/2  at  (7  vertically  upward,  keeping  the  truss  in  equilibrium. 
We  have  thus  transferred  the 

"weights  of  the  beams  to  the  joints, 
and  can  now  consider  the  beams 

as  without  weight,  and  indicat- 
ing direction  only.  The  resulting 

stresses  in  the  pieces  we  next  find. 
Since  the  weights    on    each   pin 

are  in  equilibrium  with  the  stresses 
produced  in  the  pieces  meeting  at 
the  pin,  the  condition  of  Art.  85  is  at  once  applicable 
sider  the  forces  at  each  pin  in  order. 

(a)  Pin  A.  The  forces  acting  are  W/2  vertically  upwards, 
and  the  unknown  stresses  in  BA,  CA,  and  these  three  forces 

keep  the  pin  in  equilibrium.  Draw  Oa  to  scale  (fig.  A)  to 

represent  W/2.  From  a  draw  ab  parallel  to  ̂ ^,and  bO  par- 
allel to  AC,  closing  the  triangle.  Then  ab,  bO  represent  on 

the  same  scale  the  stresses  in  AB,  A  C.  The  direction  of  W/2 
or  Oa  is  known  to  be  vertically  upwards.  And  since  for 
equilibrum  Oa,  ab,  bO  must  be  taken  the  same  way  round, 
their  directions  are  as  in  the  figure. 

Transfer  these  directions  to  the  truss  diagram.  The  stress 

ab  in  AB  is  towards  A,  showing  that  the  piece  ̂ 5  is  in  com- 
pression, or  is  a  Strut;  the  stress  50  in  ̂ Cfrom  A,  showing 

that  the  piece  AC  is  in  tension,  or  is  a  Tie. 

Con- 
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(b)  Pin  B.  The  forces  equilibrating  are  the  stress  in  AB 
towards  B  (being  equal  and  opposite  that  towards  A)  and 
the  force  W  vertically  downwards,  which  are  known,  and  the 

bi       B     >r 

stress  in  CB,  which  is  unknown.  Draw  (fig.  B)  ba  to  rep- 
resent the  stress  in  AB,  ac  to  represent  TF;  then  cl  will  rep- 
resent the  stress  in  GB.  Transferring  the  directions  to  the 

stress  diagram,  we  see  that  CB  is  a  strut. 
(c)  Pin  0.  The  forces  equilibrating  are  the  stress  in  BC, 

W/2,  and  the  stress  in  AC,  all  of  which  are  known.  For 
check  the  diagram  may  be  drawn  as  in  Fig.  C. 

166.  It  is  evident  that  we  should  have  saved  labor  by  add- 
ing the  second  figure  to  the  first  and  the  third  to  the  sum  as 

in  the  fourth  figure,  which  is  the  complete  stress  diagram. 
In  practice  it  is  convenient  to  consider  the  stress  diagram 

as  in  two  parts.  Thus  the  line  ac  is  the  polygon  of  external 
forces,  ac  being  the  downward  force  at  B  balanced  by  the 
upward  forces  cO  at  (7  and  Oa  at  A,  and  is  complete  in  itself. 
The  closing  of  this  line  shows  that  the  external  forces  have 
been  properly  estimated.  On  this  force  polygon  as  base  the 
stress  diagram  is  added  step  by  step  by  passing  from  pin  to 
pin  as  indicated. 

In  case  the  truss  is  symmetrical,  as  in  our  example,  it  is 
only  necessary  to  consider  the  first  half  of  the  pins.  But  it 
is  safer  to  consider  all  of  them,  as  the  symmetry  of  the  draw- 

ing will  furnish  a  test  of  its  accuracy. 
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Notice  carefully  that  a  study  of  the  stress  diagram  shows 
not  only  the  amount  of  stress  but  the  kind  of  stress  in  any 
piece,  and.  therefore  whether  a  strut  or  a  tie  should  be  em- 

ployed. 
167.  For  tracing  the  connection  between  the  pieces  them- 

selves and  the  stresses  in  them  as  shown  by  the  stress  dia- 
gram, an  exceedingly  convenient  system  of  notation,  due  to 

Prof.  Henrici,  London,  but  usually  known  as  Bow^s  notation, 
is  in  common  use. 

A  beam  or  a  force  is  named  by  letters  placed  on  either  side 
of  it.  Thus,  in  the  second  figure,  p.  194,  Oi  is  the  tie  AC,  Oa 
the  reaction  TF/3  at  the  left  support,  ah  the  strut  AB,  ac  the 
force  W  at  B,  and  so  on.  These  letters  carried  into  the 

stress  diagram  aOcb  give  us  ah  the  stress  in  the  piece  ah,  ch 
the  stress  in  ch,  Oh  the  stress  in  the  rod  Oh,  The  letters 

A,  B,  C  at  the  pins  do  not  enter  the  stress  diagram  and  are 
not  necessary. 

168.  The  following  examples  should  be  solved  both  graphi- 
cally and  analytically.  The  first  will  be  worked  out  in  detail 

by  both  methods. 
The  general  outline  of  the  graphical  solution  is  this : 
(1)  Draw  the  truss  to  scale  from  the  dimensions  given. 

(2)  Compute  the  pin  loads. 
(3)  Compute  the  resultant  reactions  of  the  supports. 
(4)  Draw  the  force  polygon  to  scale. 
(5)  Draw  the  stress  diagram  on  the  force  polygon  as  base. 
(6)  Scale  off  the  stresses  and  tabulate,  indicating  forces  in 

compression  by  the  sign  — ,  and  pieces  in  tension  by  the 

sign  4- . 

The  analytical  solution  is  carried  out  by  equating  the  mo- 
ments of  the  lateral  forces  and  of  the  stresses  developed  in 

the  pieces.     See  page  198. 

Ex.  1.  In  a  roof  of  32  ft  span  and  height  12  ft  the  trusses 
are  10  ft  apart,  and  the  pieces  EF,  GH  come  to  the  middle 
points  of  the  rafters.  If  the  weight  of  the  roof-covering  is 
25  lb/ft%  draw  the  stress  diagram  and  scale  off  the  stresses. 
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(a)  Graphical  Solution. — (1)  Draw  the  truss  to  scale  from 
the  given  dimensions.  Take  the  scale  of  dimensions  5  f t  = 
lin. 

(2)  The  length  of  each  rafter  =  VW  +  16'  =  20  ft. 
The  load  on  each  rafter  =  20  X  25  x  10  =  5000  pounds. 
The  pin  loads  AB,  BC,  CD  are  each  2500  pounds  and  act 

vertically  downward  as  indicated  in  the  figure. 
(3)  The  resultant  reaction  at  each  pier  =  7500/2  =  3750 

pounds  vertically  upward. 
(4)  Take  the  scale  of  stresses  1000  pounds  =  1  in. 
Form  the  force  polygon  by  laying  off  ah  =  2500  pounds, 

he  =  2500  pounds,  cd  =  2500  pounds,  do  =  3750  pounds, 
oa  =  3750  pounds,  thus  closing  the  polygon  or  load  line  ad. 

(5)  Next  the  stress  diagram. 
Begin  at  the  left-hand  pin.  The  forces  acting  are  OA  — 

3750  pounds  and  the  unknown  stresses  in  AE,  EO.  From 
a  draw  a  line  ae  parallel  to  the  piece  AE,  and  from  o  a  line  oe 
parallel  to  the  piece  OE  intersecting  ae  in  e,  thus  forming  the 
stress  triangle  oae.  Scale  off  ae,  oe,  and  we  find  the  stresses  in 
the  pieces  AE,  OE  to  be  6250  and  5000  pounds  respectively. 

To  find  the  character  of  the  stresses  note  that  OA  acts  up- 
ward. Carrying  the  direction  the  same  way  round  the  tri- 

angle oae  and  transferring  these  directions  to  the  pieces 
themselves,  we  find  the  piece  AE  in  compression  and  the 
piece  OE  in  tension. 

Proceed  to  the  next  pin  to  the  right.  The  stresses  are  rep- 
resented by  the  sides  of  the  quadrilateral  ahfe,  of  which  ah,  ae 

are  known.  The  unknown  stresses  are  hf,  fe,  which  may  be 
scaled  off  and  their  directions  determined  as  before. 

Next  take  the  pin  at  the  vertex.     The  stresses  in  the  pieces 
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meeting  here  are  represented  by  the  sides  of  the  crossed  figure 
hcfgh,  of  which  he,  hf  are  known.     . 

(6)  Finally,  the  results  may  be  tabulated  as  follows: 

Name  of 
Piece. AE  or  BE EO  or  RO BFox  CG EFotGH 

FG 

Stress —  6250 

+  5000 

-4170 
-2080 

+  2500 
Note. — Instead  of  scaling  off  AF,  EO,  etc.,  we  may  com- 

pute their  values.  For  the  triangle  oae  is  similar  to  the  tri- 
angle formed  by  the  left  half  of  the  truss  diagram,  whose 

dimensions  are  known.     Then 

and  hence 

3750  (or  oa) 
3750  (or  oa) 

ae  =  6250;  oe 

ae  =  l2  :  20; 

oe  =12  :  16; 

5000;  as  before. 

The  computed  and  measured  stresses  may  differ  a  few 
pounds,  depending  on  the  scale  used.  The  allowable  differ- 

ence depends  upon  the  character  of  the  work. 
(b)  Analytical  Solution, — Suppose  the  truss  divided  into 

two  parts  by  the  plane /^^. 

x^[v  Consider  the  equilibrium  of 
''  fJK      ̂ ^  the  part  to  the  left  of  this 

plane. The  part  to  the  right 

may  be  removed  if  we  con- 
ceive forces  X,  y,  z  applied 

equal  and  opposite  to  the 
stresses  in  the  pieces.  Equilibrium  will  exist  between  the  ex- 

ternal forces  3750  pounds  at  a  and  2500  pounds  at  h  and  these 
forces.  The  directions  in  which  the  forces  3750,  2500  tend  to 
turn  the  truss  is  indicated  by  the  arrows.  To  counteract  this 
tendency  the  forces  X,  Y,  Z  must  act  as  shown  in  the  figure. 

In  forming  the  equation  of  moments  (Art.  136)  labor  is 
saved  if  we  take  the  point  of  moment  for  any  unknown  force 
at  the  intersection  of  the  directions  of  the  other  two  unknown 
forces.  Thus,  to  find  x,  take  moments  about  0  and,  noting 
that  the  length  of  the  perpendicular  from  0  on  the  direction 
of  X  is  9.6,  we  have 

9.6X+  2500  X  8  -  3750  X  16  =  0, 
or  X=  4167  pounds. 
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To  find  Ftake  moments  about  a. 

then 

or 
9.6F- 2500  X  8  =  0, 

Y  =  2083  pounds. 

To  find  Z  take  moments  about  b, 

then 

or 

6Z  -  3750  X  8  =  0, 
Z  =  5000  pounds. 

the  values  already  found. 
The  directions  of  the  arrows  sho^ff  that  X  and  Y  are  forces 

of  compression  and  Z  of  tension. 
Similarly,  by  taking  sections  in  other  places  we  may  find 

the  stresses  in  all  of  the  pieces. 
(a)  Why  are  a,  b,  0  the  best  points  for  taking  moments 

in  finding  X,  Y,  Z?  Would  other  points  do  .^  Try  and 
see. 

{13)  Explain  clearly  how  it  is  that  the  taking  of  moments 
about  a,  b,  c  gives  the  same  results  as  the  application  of  the 
three  conditions  of  equilibrium  of  Art.  1405. 

2.  In  a  triangular  roof-truss  the  rafters  are  2^  ft  apart  and 
the  roofing  material  weighs  20  Ib/ft^  The  span  is  24  ft  and 
height  5  ft.     Find  the  stresses  in  the  rafters. 

Ans.  845  pounds. 
3.  Show  that  the  stress  diagram  for  the  truss  represented 

in  the  figure,  loaded  at  the  center  over  the  vertical  piece  ah, 
known  as  the  king-post,  is  as  in  the  margin. 

4.  A  foot-bridge  18  ft  span  and  6  ft  breadth  has  a  crowd 
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of  people  on  it  equal  to  100  Ib/ft^  floor  surface.     The  king- 

posts of  the  two  trusses  are  3  ft  in  depth.     Find  the  stresses. 
A71S.  Stress  on  post  ab  =  2700  pounds. 

5.  In  (3)  the  span  is  21,  depth  d.  Show  that  the  compres- 
sion in  ̂ rt  is  Wl/2d,  and  find  the  tension  in  Oa  and  the  stress 

in  the  vertical  ab.  Ans.  WVd'-{-r/2d;  W, 
6.  Find  the  stresses  in  the  roof-truss  represented  in  the 

figure.  The  span  is  24  ft,  rise  of 
ridge  16  ft,  rise  of  hip  8  ft;  the 
trusses  are  5  ft  apart,  and  the 
weight  of  the  roof-covering  is  20 
lb/ft^ Ans. 

AE otDH 

BF 
or  CG EF 

or  OH 
EO or  HO 

FG 

-3750 -2500 
-750 

+  2700 

4-3000 

7.  Draw  a  stress   diagram  for  a  queen-post  truss.     The 
queen-posts  ab,  be  divide  the  span  into  three  equal  parts,  and 

the  truss  is  loaded  at  uhe  joints  with  weights  TT. 
8.  A  foot-bridge  (queen-post)  of  span  24  ft,  breadth  7  ft, 

length  of  queen-posts  3  ft,  carries  a  load  of  100  Ib/ft^  of  floor. 
Find  the  stresses  developed,  the  queen-posts  dividing  the 
span  into  three  equal  parts. 

Ans.  Aa,  Bb,  or  Cc  =  -  7467;  Oa  or  Oc  =  +  7970; 
ab  or  be  =  -  2800;  Ob  =  -}-  7467  pounds. 

EXAMINATION. 

1.  Show  how  to  find  graphically  the  resultant  of  any  num- 
ber of  coplanar  forces  acting  on  a  body. 
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2.  Is  a  system  of  coplanar  forces  equivalent  to  a  single 
force  ?    If  not,  state  the  exceptions. 

3.  Show  how  to  find  the  resultant  of  two  like  parallel  forces 

and  its  line  of  action.  When  the  forces  are  unlike  and  par- 
allel, how  then  ? 

4.  Define  the  moment  of  a  force  with  reference  to  an  as- 

signed point. 

5.  Why  is  it  diflBcult  to  hold  a  heavy  weight  at  arm's 
length  ? 

[President  Lincoln  "  could  take  a  heavy  ax  and,  grasping 
it  with  his  thumb  and  forefinger  at  the  extreme  end  of  the 

handle,  hold  it  out  in  a  horizontal  line  from  his  body."] 
6.  Distinguish  between  the  terms  moment  and  momen- 

tum. 

7.  Three  men  are  to  carry  a  stick  18  ft  long  and  weighing 
200  lb,  each  to  sustain  one  third  of  the  weight.  One  man  is 

to  lift  from  the  end  and  the  other  two  by  means  of  a  cross- 
bar.    Where  must  the  cross-bar  be  placed  ? 

8.  An  inch  is  taken  as  the  unit  of  length.  What  is  the 
geometrical  representation  of  the  unit  of  moment  ? 

9.  State  and  prove  Varignon's  theorem  of  moments  (1) 
for  forces  not  parallel,  (2)  for  parallel  forces. 

10.  Is  there  any  reason  why  a  man  should  put  his  shoulder 
to  the  spoke  rather  than  to  the  body  of  a  wagon  in  helping  it 

uphill  ? 
11.  A  couple  can  never  be  balanced  by  a  single  force. 
12.  The  moment  of  a  couple  can  never  be  zero. 
13.  State  the  changes  which  a  couple  may  undergo  without 

altering  its  statical  effect. 

14.  Show  how  to  find  a  couple  equivalent  to  a  number  of 
couples  having  the  same  plane. 

15.  Forces  acting  along  the  sides  of  a  polygon  in  order  and 
proportional  to  the  sides  in  magnitude  may  be  reduced  to  a 
single  couple. 

16  Show  that  couples  may  be  combined  according  to  the 
parallelogram  law. 
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17.  The  sum  of  the  moments  of  the  two  forces  of  a  couple 
about  any  point  in  their  plane  is  constant. 

18.  The  moment  of  a  couple  may  be  represented  by  the 
area  of  the  parallelogram  formed  by  the  two  forces  of  the 
couple  as  opposite  sides. 

19.  Show  how  to  combine  analytically  any  number  of  co- 
planar  forces  acting  on  a  body. 

30.  If  any  number  of  forces  acting  at  a  point  equilibrate, 
the  algebraic  sum  of  the  components  of  the  forces  in  any  two 
directions  must  each  be  equal  to  zero. 

21.  Three  forces  in  a  plane  equilibrate.  Show  that  one  of 
two  conditions  must  be  satisfied. 

22.  State  the  conditions  of  equilibrium  of  any  number  of 
coplanar  forces  acting  on  a  body. 

23.  The  conditions  to  be  satisfied  for  parallel  forces  in 
equilibrium  are 

:^F=0,        2Fp  =  0. 

24.  A  body  free  to  move  in  a  plane  has  one  point  fixed. 
State  the  condition  of  equilibrium. 

25.  Two  torques  (P,  P),  (Q,  Q)  with  arms  a,  h  are  in  equi- 
librium if  Pa—  Ql  —  0. 

26.  "  In  problems  of  equilibrium  it  is  necessary  to  con- 
sider bodies  to  be  perfectly  rigid.^'  Is  this  true  ?  Consider 

a  bridge,  for  example. 

27.  Find  the  pressures  on  the  rails  due  to  a  given  pressure 
P  on  the  locomotive  crank-pin. 

28.  Three  forces  represented  by  the  three  median  lines 
AD,  BE,  CFoi  a  triangle  ̂ 1  PC  equilibrate  (Art.  140a). 

29.  Define  the  C.G.  of  a  system  of  heavy  particles,  and 
show  that  in  every  case  there  exists  only  one  such  point. 

[Suppose  there  are  two  such  points  G^ ,  G^. 
The  direction  of  the  resultant  force  of  gravity  is  towards 

the  earth's  center  no  matter  how  the  body  is  turned. 
Turn  the  body  so  that  the  line  G^ ,  G^  is  perpendicular  to 

the  direction  of  this  force. 
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The  force  cannot  therefore  pass  through  both  G^  and  G^,.] 
30.  A  flat  disk  is  not  perfectly  circular.  How  would  you 

find  its  C.G.  ? 

31.  A  body  supported  at  its  C.G.  will  remain  at  rest  in  any 

position. 
32.  A  person  going  uphill  appears  to  lean  forwards  and 

going  down  to  lean  backwards.     Explain. 

33.  State  a  rule  for  finding  the  centroid  of  a  uniform  tri- 
angular (1)  lamina,  (2)  wire. 

34.  Find  the  centroid  of  a  trapezoid,  the  parallel  sides 
being  a  and  h  respectively  and  their  distance  apart  d. 

35.  Given  the  weights  and  C.G.  of  a  body  and  of  one  part 
of  it  to  find  the  C.G.  of  the  remainder. 

36.  In  an  inclined  plane  AB  a  weight  P  suspended  by  a 
thread  passing  over  the  highest  point  B  balances  a  weight  Q 
on  the  plane.  Show  that  the  C.G.  of  P  and  Q  remains  at 
the  same  height  above  the  base  whatever  the  positions  of  the 

weights.     (Torricelli's  principle.) 
37.  Find  the  C.  G.  of  a  quadrilateral. 
38.  P  is  a  point  without  a  triangle  ABC.  Show  that  the 

resultant  of  the  forces  represented  by  PA,  PB,  PC  passes 
through  the  C.G.  of  the  triangle. 

39.  The  three  sections  of  a  fishing-rod  are  4  ft,  2  ft,  and 
1  ft  long  and  weigh  8  oz,  6  oz,  and  4  oz  respectively.  Find 
the  C.G.  of  the  rod  when  drawn  out  to  its  full  length. 

40o^,  How  does  the  property  that  every  body  has  but  one 
C.G.  help  us  to  solve  geometrical  theorems  ? 

[Place  weights  at  certain  points.  Combine  in  different 
order  to  find  the  C.G.  of  the  system.  The  various  portions 
of  the  C.G.  found  must  coincide.] 

40&.  The  median  lines  of  a  triangle  pass  through  one  point. 
40c.  The  lines  joining  the  middle  points  of  the  opposite 

sides  of  a  quadrilateral  bisect  each  other. 

40c?.  The  line  joining  the  middle  point  of  the  two  diago- 
nals of  a  quadrilateral  and  the  lines  joining  the  middle  points 

of  the  opposite  sides  all  intersect  in  one  point. 
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41.  Explain  the  positions  of  force,  resistance,  and  fulcrum 
in  the  following  levers :  Wheelbarrow,  spade,  pair  of  scissors, 
the  forearm. 

42.  A  man  carries  a  bundle  at  the  end  of  a  stick  which 

passes  over  his  shoulder.  Show  that  the  pressure  on  his 
shoulder  varies  inversely  as  the  distance  of  his  hand  from  his 
shoulder. 

43.  Find  the  position  in  which  a  beam-balance  will  rest 
when  loaded  with  unequal  weights. 

44.  In  a  beam-balance  if  the  C.Gr.  coincides  with  the  point 
of  suspension  the  balance  remains  in  equilibrium  in  all  posi- 
tions. 

45.  Show  that  Borda's  m€rt;hod  of  double  weighing  gives 
the  correct  weight  of  a  body  no  matter  how  false  the  balance 
used. 

46.  In  a  beam-balance  great  sensitiveness  and  quick  weigh- 
ing are  to  a  certain  extent  incompatible. 

47.  In  a  common  steelyard  the  length  of  the  graduations  is 
inversely  proportional  to  the  movable  weight. 

48.  Two  smooth  spheres,  each  weighing  W  lb,  rest  in  con- 

tact between  two  smooth  planes  inclined  at  30°  and  60°  to 
the  horizontal.     Find  the  position  of  equilibrium. 

Ans.  Inclination  of  line  joining  centers  to  horizon- 

tal =  tan-'  3/4. 
49.  A  rod  a  yard  long  rests  over  the  edge  of  a  vertical 

hollow  cylinder  2i  inches  diameter  with  one  end  against  the 
inner  surface.  Show  that  in  the  position  of  equilibrium  the 

rod  is  inclined  at  60°  to  the  horizontal. 
50.  Forces  P,  Q,  R  act  at  a  point  0  and  keep  it  in  equilib- 

rium.    If  any  line  cut  their  directions  in  ̂ ,  ̂ ,  G,  prove 

P/OA  -f  Q/OB  +  R/OC  =  0. 

51.  If  forces  P,  Q,  R  acting  at  the  center  0  of  a  circular 

lamina  along  the  radii  OA,  OB,  0(7  equilibrate  forces  P',  Q', 
R'  acting  along  the  sides  BC,  CA,  AB  of  the  inscribed  tri- 

angle ABC,  show  that 



§  168  J  EXAMINATION.  205 

PP'/BC  +  QQ:/GA  +  RR'/AB  =  0. 

52.  If  D  is  the  degree  of  curve,  show  that  the  elevation  of 
outer  rail  required  for  an  engine  speed  of  30  miles  an  hour  in 
passing  round  a  circular  curve  is 

3i>/5  inches,  nearly. 
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CHAPTER  V. 

FRICTION. 

169.  As  already  stated,  greater  simplicity  and  clearness  are 
secured  by  considering  the  properties  of  bodies  one  at  a  time, 
and  thus  leading  up  to  the  actual  state  of  the  case,  which  is 

quite  complicated,  since  bodies  in  nature  possess  many  prop- 
erties. Thus  far  the  surface  of  a  body  has  been  assumed  to 

be  perfectly  smooth,  that  is  (Art.  104),  to  offer  no  resistance 
to  the  motion  of  a  body  in  contact  with  it.  But  in  reality  we 
know  that  if  one  body  be  moved  along  another  (as  a  book 
along  a  table)  a  certain  resistance  will  be  offered  to  the  motion. 
The  resistance  arises  from  irregularities  in  the  surfaces  in 
contact,  from  elevations  and  depressions  which  fit  more  or 
less  closely  into  one  another.  To  it  the  name  Friction  is 

given. 
Suppose  a  body  weighing  W  lb  to  rest  on  a  horizontal  plane 

and  to  be  acted  on  by  a  vertical  force  of  Q  pounds.  The 

total  vertical  force  (P  =  Q -}-  W) 
pounds  is  equilibrated  by  the  ver- 

tical reaction  iV  of  the  plane.  If 

now  a  small  force  is  applied  paral- 
lel to  the  plane,  the  motion  of  the 

body  is  prevented  by  the  equal 
force  of  friction  called  into  play. 

If  the  force  be  increased,  the  fric- 
tion is  equally  increased  until  a 

certain  limit  is  reached  when  a  further  increase  of  force 

causes  motion.  The  friction  between  two  bodies  thus  accom- 
modates itself  to  the  acting  force  up  to  a  certain  limit  when 
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motion  takes  place,  and  the  amount  called  into  play  when  the 
body  is  just  on  the  point  of  moving  is  called  limiting  friction. 

Or,  since  the  body  is  just  on  the  point  of  moving  and  the  act- 
ing forces  may  be  regarded  as  equilibrating  one  another,  the 

friction  is  named  static  friction. 
If  the  surfaces  in  contact  were  smooth,  the  reaction  JV  would 

be  normal  to  the  table.  But  now  that  the  plane  is  not  smooth 

the  reaction  R  is  necessarily  no  longer  normal.  The  com- 
ponent of  R  normal  to  the  plane  would  be  the  reaction  N  as 

between  smooth  surfaces,  and  the  component  along  the  plane 
would  be  the  friction /between  the  two  surfaces. 

170.  Laws  of  Static  Friction. — From  experiment  it  is  found 
that  between  surfaces  with  little  or  no  lubrication,  under  mod- 

erate loads,  and  just  beginning  to  slide  on  one  another,  or 
when  the  velocity  of  motion  is  small,  the  amount  of  static 
friction  is — 

(1)  Proportional  to  the  normal  stress  letween  the  surfaces 
in  contact. 

(2)  Independent  of  the  areas  in  contact,  the  normal  stress 
remaining  the  same. 

(3)  Dependent  on  the  material  of  lohich  the  bodies  are  com- 

posed. 
Hence  from  law  (1)  the  friction  /  corresponding  to  the 

normal  stress  JSf  is  given  by 

f=MW,    or    f/Ii=M, 

where  /i  is  a  constant  depending  on  the  material  and  character 
of  the  surfaces  in  contact.  It  is  called  the  coefficient  of  fric- 

tion, and  its  value  must  be  determined  by  experiment  (Arts. 
175,  179). 

171.  The  above  "laws^'  of  friction  were  deduced  from  ex- 
periments made  with  surfaces  having  little  or  no  lubrication, 

and  moving  with  low  velocities;  and  for  such  conditions  only 
are  they  to  be  depended  on.  In  machines,  however,  surfaces 
without  lubrication  and  moving  with  low  velocities  are  the 
exception,  and  we  there  have  an  entirely  different  set  of  con- 
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ditions.  The  friction  is  now  kinetic*  Recent  experiments 
show  that  even  with  surfaces  of  the  same  material,  the  charac- 

ter of  the  lubrication,  the  thickness  of  the  lubricating  film, 
the  load,  the  velocity,  the  form  of  the  surfaces  whether  flat  or 

curved,  the  areas  in  contact,  and  the  temperature  of  the  sur- 
faces have  each  great  influence  on  the  friction  produced. 

The  films  that  coat  the  surfaces  slide  over  one  another  when 

the  pressure  is  not  excessive.  No  general  relation  between 
the  friction  (/)  and  the  pressure  (iV)  producing  it  has  yet 

been  deduced  depending  on  these  conditions.  Special  experi- 
ments are  necessary  in  all  cases  where  the  conditions  differ 

in  any  of  the  points  mentioned  from  those  entering  into  ex- 
periments already  made. 

We  may,  however,  in  general  write 

where  the  value  of  //  is  determined  by  the  conditions  of  the 
problem.  These  conditions  will  show  whether  we  may  assume 

the  so-called  laws  of  statical  friction  or  have  recourse  to  special 
experiment.  Roughly,  the  coefficient  of  friction  /«  for  well- 
lubricated  surfaces  is  from  i  to  ̂ ^^  that  for  dry  surfaces. 

172.  When  one  surface  rolls  on  another,  the  resistance  en- 
countered is  termed  rolling  frictio7u  Consider  a  heavy  wheel 

rolling  over  a  horizontal  surface.  The  wheel  from  its  weight 
compresses  the  surface  and  is  itself  compressed  at  the  place  of 
support.  Thus  the  area  in  contact  is  greater  than  if  both 
were  rigid,  and  the  wheel  is  forced  to  climb  an  elevation  in 
order  to  move  forward.  The  elevation  occurs  at  every  new 
position  of  the  wheel,  and  the  resistance  is  continuous.  The 
amount  of  this  frictional  resistance  depends  on  the  nature  of 
the  materials  in  contact. 

Hence  the  importance  of  smooth  hard  roads  for  carriages 

*  The  distinctiou  between  static  and  kinetic  friction  was  first  pointed 
out  by  Coulomb  (1736-1806).  The  laws  of  static  friction  were  enun- 

ciated by  Coulomb,  and  confirmed  by  the  later  experiments  of  Morin 
at  Metz  in  1837-1838. 
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and  bicycles.  Hence,  too,  the  importance  of  tracks  well  bal- 
lasted, and  of  heavy  rails  whether  for  loco- 

motive or  street-car  traffic.  In  railway 
work  when  the  road  is  of  heavy  steel  rails 
the  rolling  friction  is  found  to  be  small 
in  comparison  with  the  bearing  friction. 

173.  Angle  of  Friction — In  the  experi- 
ment of  Art.  169  the  three  forces  F,  P,  R 

hold  the  body  in  equilibrium  and  may  be 

represented  by  the  sides  of  a  right  tri- 
angle. The  reaction  R  is  equivalent  to 

the  two  forces  /  along  the  plane  and  iV 
normal  to  it. 

The  angle  0  between  the  directions  of 
R  and  N  is  called  the  angle  of  friction. 

Now,  since  the  body  is  in  equilibrium  under  F,  N,f,  P, 

J\A  _  P  =  0. 

Also,  since  the  body  is  in  equilibrium  under  F,  B,  P, 

F  —  R  sm  4>  =  0;  .    . 

P  -  iJ  cos  0  =  0.   .    . 

But  by  definition  /  =  nN.      .    .    , 

Hence  m  =  fIN  =  F/P  =  tan  <p, 

(1) 

(3) 

(3) 
(4) 

(5) 

or  the  coefficient  of  friction  is  equal  to  the  tangent  of  the  angle 

of  friction. 

Ex.  1.  Find  the  coefficient  of  friction  when  the  angle  of 

repose  is  30°;  45°.  Ans.  l/t^=  .577;  1. Find  the  angle  of 

Ans.  21°  48'. 

,  ;^  2.  The  coefficient  of  friction  is  0.4. 
\friction. 

174.  The  fact  that  the  reaction  i?,  which  holds  the  forces 

i^and  P  in  equilibrium,  makes  with  the  normal  to  the  sur- 
faces in  contact  an  angle  equal  to  the  angle  of  friction  0, 
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gives  a  key  to  the  application  of  the  graphical  method  of  the 
polygon  of  forces  to  problems  involving  friction.  The  method 
is  especially  valuable  in  cases  where  the  forces  are  interlaced 
as  in  mechanisms. 

175.  Measurement  of  the  Coefficient  of  Friction.— Suppose  a 
body  of  weight  PF  to  rest 

^  on  a  table,  and  that  the 
table  is  tilted  about  the 

edge  A.  We  have  now 
the  body  resting  on  an 

inclined  plane  A  C,  Con- 
tinue tilting  until  an 

inclination  6  is  reached 

when  the  body  is  just  on 

the  point  of  moving  down  the  plane.  At  this  point  the  forces 

holding  it  in  equilibrium  are  TF  vertically  downward,  JV  nor- 
mal to  the  plane,  and  /along  the  plane.  Draw  the  triangle 

of  forces,  and 

//JV^=tan  d. 

But  since/ is  the  limiting  friction, 

f/JSf  =  tan  0. 

Hence  6  =  cfy,or  the  angle  of  inclination  of  the  plane,  is 
equal  to  0,  the  angle  of  friction.  For  this  reason  the  angle 
of  friction  is  called  the  Angle  of  Repose. 

This  gives  an  experimental  method  of  measuring  the  angle 
of  friction,  and  thence  the  coefficient  of  friction  between  two 

bodies  P,  Q.  For  form  an  inclined  plane  of  one  of  the  bodies, 
P,  and  on  this  place  the  other,  Q,  Tilt  the  plane  until  Q  just 
begins  to  slide:  the  tangent  of  the  angle  of  inclination  is  the 
coefficient  of  friction  for  the  two  bodies. 

176.  The  following  coefficients  of  friction  may  be  regarded 
as  average  values,  to  be  used  when  no  special  experiments 

covering  the  cases  under  consideration  are  possible.  The  cir- 
cumstances may  be  such  that  the  tabular  values  are  very  far 
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from  the  truth.     Indeed,  at  present  we  may  be  said  to  be  ac- 
quainted with  no  quantitative  laws  of  friction  of  much  value. 

Wood  on  wood  or  metal,  surface  dry    0.4  to  0.6 
«  "  "  "        lubricated .  0.1  to  0.2 

Metal  on  metal,  "        dry    0.3 
lubricated..  0.075 

Steel  on  ice    0.02  __ 

177.  Equilibrium  on  a  Rough  Incline. — To  find  the  limits 
between  which  a  force  F  must  lie  to  hold  in  equilibrium  a 

body  of  weight  W  on  the  rough  incline  AC,  the  inclination  d 
of  the  plane  to  the  horizon,  the  inclination  f3  of  the  force  to 
the  plane,  and  the  angle 
of  friction  0  being  given. 

{a)  Let  the  body  be  on 
the  point  of  moving  up 
the  plane.  ^ 

The  friction/ acts  f?ow7i   a.^^^ 
the  plane. 

The  forces  acting  are 
F,  Wy  N,  and/.  Or,  since  the  resultant  R  of  iV  and /makes 
an  angle  0  with  the  normal  to  the  plane,  the  forces  acting  may 

be  taken  to  be  F,  W,  R.     Then  by  Lami's  theorem 

i^/sin  (^  +  0)  =  TF/sin  (90  +  y5  -  0), 
or  i^  =  TF  sin  (6^  +  0)/cos  (fi  -  (p), 

(b)  Let  the  body  be  on  the  point  of  moving  down  the  plane* 
Then  similarly 

F=  Pf  sin  (<9  -  0)/cos  (fi  +  0). 

Hence  for  any  force  lyiug  between  these  values  of  F  the 

body  remains  in  equilibrium  and  is  not  on  the  point  of  mov- 
ing either  up  or  down  the  plane.  These  values  of  F  are  the 

limiting  values  required. 
178.  These  results  may  also  be  obtained  by  the  method  of 

Art.  86.     For  when  the  body  is  on  the  point  of  moving  up  the 

\ 

0 
m 
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plane,  we  have,  resolving  along  and  perpendicular  to  the  plane, 

Fco^P  -  f  -  W  sin  d  =  0, 

F&in/S-^JSr-  Wcos  6  =  0. 

Also,  /  =  ̂ N,    and    /^  =  tan  0. 

The  resulting  value  of  F  will  be  -found  to  agree  with  that 
just  given  in  {a). 

The  value  of  the  resultant  reaction  of  the  plane  will  be 

found  to  be  W  cos  {/3  +  /9)/cos  {/J  —  0). 

^jl  (?Ex.  1.  A  weight  of  60  lb  rests  on  a  rough  level  floor.  .  Find     . 
M  '         the  least  horizontal  force  that  will  move  it,  the  coefficient 

,     of  friction  being  0.5.  Ans.  30  pounds. 
Find  the  resultant  reaction  of  the  floor. 

Ans.  30  V6  pounds. 
2.  In  Ex.  1  find  the  least  force  inclined  at  45°  to  the  floor  ̂  

u    that  will  move  the  weight.  A^is.  20  V2  pounds. Find  the  resultant  reaction  of  the  floor. 

Ans.  20  Impounds. 
What  is  its  direction  ? 

3.  The  weight  on  the  driving-wheels  of  a  locomotive  is  v 
V   twenty  tons,  and  the  coefficient  of  friction  is  0.2.     Find  the 

greatest  pull  the  engine  is  capable  of.  Ans.  4  tons.  \^ 
4.  Find  the  least  force  that  will  drag  a  body  weighing  100  i^   ̂ ^  P 

lb  along  a^ough  horizontal  plane,  the  coefficient  of  friction  ̂ ^^ 
^     being  l/Vs.  Ans,  50  pounds. 

Find  the  resultant  reaction  of  the  plane. 

^  Ans.  50  i^3  pounds. 
^^,  5«.  Find  the  angle  ft  which  a  given  force  F  must  make 

H-^  with  a  horizontal  plane  that  a  weight  W  may  just  be  on  the     "* 
^        point  of  sliding  on  the  plane,  the  angle  of  friction  being  0. 

Ans.  /3  is  found  from  F  cos  (/?  —  0)  =  W  sin  0. 
5^.  For  what  value  of  /?  is  the  force  F  the  least  possible, 

^  and  what  is  the  value  of  the  least  force  ? 
Ans.  /3  =  (p;  F=  W  sin  0. 

J     5c.  What  is  the  resultant  reaction  of  the  plane  ? 
"*  Ans.   W  cos  0. 

6.  Find  the  least  angle  of  inclination  of  a  wooden  incline 
that  stone_  blocks  may  slide  down  it   under  gravity  only 

•     (;/  =  1/V3).  Ans.  30°. 

P^
 

X        ̂ ne-/^ 
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7.  The  foot  of  a  ladder  of  weight  W  and  length  I  rests  on 
the  ground  at  A,  and  the  top  at  B  against  a  rough  vertical 
wall.     Find  its  inclination  0  when  on  the  point  of  sliding, 
the  coefficient  of  friction  in  each  case 
being  0.5. 

[The  forces  acting  are  W  Sit  G  the 
middle  point  of  AB,  the  reaction  JV  of 
the  ground  at  A  normal  to  AC,  and  the 
friction  /  along  AC;  the  reaction  iV^, 
at  B  normal  to  CB,  and  the  friction  /, 
along  CB. 

The  forces  equilibrating,  the  con- 
ditions of  Art.  86  must  be  satisfied. 

Hence,  resolving  vertically,  horizontally, 
and  taking  moments  about  G, 

N -{-/,-  W=0,   

f-N,  =0,   
-  m  cos  e  -\-fl  sin  e  +  N,1  sin  0  +fj  cos  ̂   =  0. 

0) 
(3) 
(3) 

Also,  since  the  ladder  is  just  on  the  point  of  sliding,  we 

have  from  the  first  of  Morin's  laws  (Art.  170) 

f=W/2,       f,  =  N,/2. 

Hence,  by  substitution  in  (3), 

tan  6  =  3/4. 

From  equations  (1)  and  (2)  we  have  the  reactions 

W=z4W/6,        ̂ ^  =  2W/5.] 

r7a.  Is  there  any  advantage  in-  taking  moments  about  G 
in  the  preceding  solution  ? 
J(fb,  Take    other  points  and   find   from  which  the    most 
^  simple  equation  results.     Try  A  and  B  for 

example. 
7c.   Deduce    the  relation    tan    6  =  3/4 

from  geometrical  considerations. 
[The  resultant  R  of  N  and  /  makes  an 

angle  0  with  the  normal  at  A. 
The  resultant  R^  of  N^  and/,  makes  an 

angle  0  with  the  normal  at  B. 
There  being  three  forces  R,  R^ ,  W,  they  must  meet  in  a 
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point  0  (Art.  141),  which,  since  the  direction  and  position  of 
W  are  fixed,  must  lie  on  the  vertical  passing  through  G. 

Evidently  lAOB  =  90°.  But  ̂ G^  =  GB,  .:  GO=GB 
and  90  —  0  =  6^  +  0.     Hence 

tan  6^  =  cot  20  =  3/4,         since  cot  0  =  2. 

The  reactions  N  and  iV,  may  now  be  found  by  Lamias 
theorem.     Find  them.] 

7c?.  If  the  coefficients  of  friction  at  A  and  B  are  //  and  /(, , 
show  that 

tan  6^  =  (1  -  MMi)/^M' 

Obtain  this  in  two  ways  as  above. 
7e.  If  the  wall  is  smooth  and  the  coefficient  of  friction 

between  ground  and  ladder  is  //,  the  inclination  of  the  ladder 

to  the  horizontal  is  cot"^  2/i. 
8.  Find  the  horizontal  force  necessary  to  push  a  body 

weighing  W\h  up  a  rough  incline,  the  angle  of  inclination  of 
the  plane  to  the  horizon  being  6  and  the  angle  of  friction  0. 

Ans.    Wtan  (6' +  0). 
What  is  the  force  necessary  to  keep  the  body  from  sliding 

down  ?  Ans.    Jf  tan  (6  —  0). 
9.  A  weight  Wis  just  supported  by  friction  on  a  plane  in- 

clined at  an  angle  6  to  the  horizon.  Show  that  it  cannot  be 
moved  up  the  plane  by  any  horizontal  force  less  than 
rtan  20. 

Examine  the  special  case  oi  0  =  45°. 
10.  A  ladder  20  ft  long  rests  at  45°  against  a  rough  vertical 

wall.  A  man  whose  weight  is  twice  that  of  the  ladder  mounts 
it.  When  will  the  ladder  begin  to  slip,  the  coefficient  of  fric- 

tion being  0.5  at  either  end?        Ans.  After  going  up  13  ft. 
Wa.  A  body  weighing  WVo  is  placed  on  a  rough  plane  in- 

clined at  an  angle  6  to  the  horizon.  Find  the  limits  between 
which  a  force  acting  parallel  to  the  plane  must  lie  in  order  to 
keep  the  body  from  moving. 

Ans,   W  (sin  6  ±  /x  cos  6)  or  W  sin  (6^  ±  0)/cos  0 
if  yw  =  tan  0. 

Q     lib.  If  the  force  necessary  to  pull  the  body  up  the  plane 
be  n  times  that  required  to  keep  it  from  sliding  down,  then 

{n  —  1)  tan  6  =  (n -\- 1)  tan  0. 

12.  A  weight  can  just  be  sustained  on  a  rough  plane  in- 
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clined  at  45°  by  a  force  acting  horizontally  or  by  an  equal 
force  acting  along  the  plane.     Show  that 

/i=  V2-  1. 

d(  13.  On  a  hill  sloping  1  in  50  a  loaded  sled  weighing  1  ton 
is  kept  from  sliding  down.  Show  that  the  pull  of  the  horses 
may  vary  from  360  to  440  pounds,  the  coefficient  of  friction 
between  sled  and  snow  being  0.2. 

14.  A  rod  resting  within  a  rough  sphere  subtends  a  right 
angle  at  the  center  of  the  sphere.  If  the  rod  is  on  the  point 
of  moving,  show  that  its  inclination  to  the  horizontal  is  twice 
the  angle  of  friction. 

15.  If  in  (14)  the  rod  subtends  an  angle  2/3  at  the  center, 
then 

2  tan  6^  i:-  tan  (y5  +  0)  -  tan  {/3  -  (p). 

16.  The  angle  of  a  wooden  incline  is  68°.  Show  that  it  is 
impossible  to  drag  a  wooden  block  up  the  plane  by  a  horizon- 

tal force,  the  coefficient  of  friction  being  0.4. 
^  17.  The  force  necessary  to  haul  a  train  at  uniform  speed 

on  a  Ifo  grade  is  3.5  times  that  on  the  level.  Show  that  the 
coefficient  of  friction  is  1/250. 

18.  A  uniform  beam  rests  on  two  rough  inclined  planes. 
Show  that  in  the  position  of  equilibrium  the  inclination  6  of 
the  beam  to  the  horizontal  is  given  by 

2  tan  ̂   =  cot  («  +  0)  -  cot  (/3  -  0), 

when  a,  /3  are  the  inclinations  of  the  planes  and  0  is  the 
angle  of  friction. 

J  19a.  Two  weights  W^,  W^,  joined  by  a  thread,  are  placed  on 
a  rough  narrow  inclined  plane.  If  the  coefficients  of  friction 
between  weights  and  plane  are  Mu  M^f  show  that  the  weights 
will  just  begin  to  slide  down  when  the 
plane  is  tilted  to  an  angle 

[This  is  a  good  illustration  of  Art.  160. 
Consider  the  system  as  a  whole.     Then 

the  tensions  T,  T  are  internal  forces.     For  equilibrium,  re- 
solving along  the  plane  and  perpendicular  to  it. 
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W,  sin  e-{-  W^8m6=  ^^N,  +  /i,iV„ 
W^  cos  d-\-  W^GO^d  =  N,-\-  jsr,. 

But  since  the  first  weight  is  in  equilibrium  under  W^ ,  N,  T, 

N,  =  W^  cos  (9; 

and  since  the  second  weight  is  in  equilibrium  under  W^ ,  N,  T, 

JSr,  =  TF,  cos  0. 

Hence  after  a  simple  reduction 

tan  ff  =  (//.  W,  +  M,  WM  r,  +  W,).] 

195.  Solve  the  problem  by  considering  the  weights  in  equi- 
librium under  TT, ,  iV,  T  and  PF, ,  iV,  T  respectively,  and 

equating  the  two  values  of  T. 
19c.  Show  that  the  tension  of  the  thread  is 

TT  sin  d  —  juW  cos  0, 

20.  Three  equal  weights  are  joined  as  in  Ex.  19.  If  the 
coefficients  of  friction  are  0.4,  0.5,  0.6,  show  that  the  slope  of 
the  plane  is  as  1  to  3. 

-(i'\\   179.  Motion  on  a  Rough  Plane. — Suppose  a  body  weighing 
V^         W  lb  to  slide  on  a  rough  horizontal  plane  and  let  /j.  be  the 

coefficient  of  friction,  to  determine  the  motion. 

The  normal  force  being  W  pounds,  the  friction  is  /^TF 
pounds.    Hence  the  motion  may  be  said  to  be  due  to  a  force 

ot  —  jdW  pounds. 
Let  a  be  the  acceleration  produced.    Then  (Art.  67) 

—  jaW=  Wa/ff, 

and  .'.  a  =  —  /^g. 

If  u  is  the  initial  velocity,  we  have  (Art.  24) 

V  =  u  —  /xgf, 

s  =  ut  —  i^gt^, 

which  will  give  the  velocity  acquired  and  distance  passed  over 
at  the  end  of  a  time  t. 
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Application, — Coulomb  and  Morin  used  an  apparatus  similar 
to  that  shown  in  Art.  169  to  determine  the  coefficient  of  fric- 

tion. The  coefficient  of  static  friction  was  given  by  the  force 
F  necessary  to  bring  the  body  P  from  rest  to  motion.  The 
coefficient  of  kinetic  friction  was  computed  by  noting  the 
time  t  taken  by  P  to  slide  over  a  distance  s.    Here 

moving  force  =  F—  piP. 

If  a  is  the  acceleration  produced, 

(F-\-P)a/g  =  F-ixP. 

But  5  =  i«f; 

.-.    }i  =  F/P-'^{F-\-P)s/Pgt\ 

and  fx  is  found. 

180.  Motion  on  a  Rough  Incline. — Let  the  plane  be  in- 
clined to  the  horizontal  at  an  angle  d 

and  let  //  be  the  coefficient  of  friction. 
If  the  body  is  moving  doivn  the  plane, 

the  forces  acting  are  TTvertically  down- 
wards, the  reaction  N  normal  to  the 

plane,  and  the  friction  fxNup  the  plane. 
The  force  causing  motion  down  the 

plane  is  the  sum  of  the  components 

along  the  plane  ̂   C,  or  W  sin  Q  —  }aN. 
Hence,  if  a  is  the  acceleration  of  motion  (Art.  67), 

W^\Tie-ixN=Wa/g   (1) 

Kesolving  the  forces  perpendicular  to  AC^  we  have 

N=  Tfcos  e.   (3) 

Eliminating  N  between  (1)  and  (2), 

a  =  ̂ (sin  0  —  jncoa  6), 

or,  putting  fji  =  tan  0, 
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a  =  g  sin  (0—  0)/cos  0,     ....     (3) 

which  gives  the  acceleration  down  the  plane. 
Similarly,  if  the  body  is  projected  up  the  plane,  the  acckra* 

tion  (found  by  changing  the  sign  of  jj)  is 

^  sin  (^-j-  0)/cos  0. 

The  acceleration  being  found,  the  velocity  at  any  time  and 
the  distance  passed  over  are  known  from  Art.  24. 

Ex.  1.  A  curling-stone  is  projected  along  ice  with  a  veloc- 
ity of  16  ft /sec.  If  the  coefficient  of  friction  is  0.1,  find  in 

what  time  it  will  come  to  rest  and  how  far  it  will  travel. 
A71S.  5  sec;  40  ft. 

V  2.  A  weight  of  8  lb  rests  on  a  rough  floor.     Find  the  least 

horizontal  force  that  will  give  it  an  acceleration  of  4  ft/sec^, 
the  coefficient  of  friction  being  0.5.  Ans.  5  pounds. 

3.  A  body  with  initial  velocity  ti  slides  along  a  rough  hori- 
zontal plane  on  which  the  coefficient  of  friction  is  ja.     Show 

that  it  will  come  to  rest  in  a  time  u/Mff  after  passing  over  a 

distance  u^/2/ig. 
y     4.  A  train  moving  at  40  miles  an  hour  on  a  level  track  is 
brought  to  rest  by  friction  in  half  a  minute.     Prove  that  the 
coefficient  of  friction  is  11/180. 

yw        5.  A  weight  W\  lb  is  moved  along  a  rough  table  by  a  weight 
V^      TF,  lb  attached  to  a  thread  passing  over  a  smooth  pin  at  the 

\^      edge  of  the  table.     Find  the  pull  of  the  thread. 
Ans.   Tf,  >F,(1 +  //)/( r,  +  rj  pounds. 

6.  The  inclination  of  a  plane  is  45°  and  the  coefficient  of 
friction  0.75.  Show  that  the  time  taken  by  a  body  to  slide 
down  this  plane  is  twice  what  it  would  be  if  the  plane  were 
smooth. 

7.  A  body  is  projected  up  a  rough  plane  inclined  at  an 
\\  angle  6  to  the  horizon.  If  t^  is  the  time  of  ascending  and  t, 
5^     the  time  of  descending,  show  that 

^  (^;  +  t,')  cot  e  =  (C  -  t:)  cot  0, 
where  <p  is  the  angle  of  friction. 

8.  A  train  of  100  tons  (excluding  engine)  runs  up  a  1^  grade 
with  an  acceleration  of  1  ft/sec^  If  the  friction  is  10  pounds 
per  ton,  find  the  pull  on  the  drawbar  between  engine  and 
train.  Ans.  4|  tons. 
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181.  Belt  Friction. — This  is  an  interesting  and  important 
application  of  the  preceding  principles. 
Consider  a  belt  or  rope  passing  over  (or 

around)  a  cylindrical  block  securely  fas- 
tened, and  let  P, ,  §,  denote  the  forces  at 

the  ends  of  the  belt.  Suppose  P,  to  be  just 
on  the  point  of  overcoming  §, ,  or  that  the 
belt  is  moving  with  uniform  velocity.  The 
forces  acting  on  the  belt,  its  weight  being 
neglected,  are  P, ,  Q^y  the  reaction  of  the  cylinder,  and  the 
friction  of  the  cylinder.  In  order  to  find  the  relation  between 
them  conceive  the  arc  of  contact  of  the  belt  cut  into  ele- 

ments of  indefinitely  small  length,  find  the  relation  for  one 
element,  and  then  sum  up  for  the  whole 
arc. 

The  pull  of  the  belt  increases  from 
§j  to  Pj.  Consider  an  element  ab  of 
the  belt  and  let  P  denote  the  pull  at  a 

and  P  -\-dP  the  pull  at  I.  The  third 
force  acting  is  the  reaction  dR  of  the 

pulley,  which  makes  an  angle  0  equal 
to  the  angle  of  friction  with  the  radius  (Art.  174). 

The  forces  which  hold  db  in  equilibrium  P,P  -{-  dP,  and 
dR,  being  three  in  number,  must  intersect  in  one  point  c  (Art. 
141).     Call  the  angle  aOh  =  dO, 

Then  by  Lami's  theorem 

P/sin  (90  +  (f)  -\-dd)  =  (P  +  dP)/%m  (90  -  0), 

or        P/(cos  (p-dd  sin  0)  =  (P  +  dP)/cos  0, 

since  d6  is  a  small  angle,  and  therefore  cos  dd  =  1, 
sin  dO  =  dd. 

Hence,  clearing  of  fractions,  we  have  ultimately 

dP  =  P  iMi(f)  dd 
=  fiPdd, 

putting  tan  <p  =  p.  the  coefficient  of  friction. 
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Summing  up  all  the  elements  ah  of  the  rope  in  contact, 
noting  that  the  limits  of  P  are  P,  and  Q^ ,  and  calling  the 
angle  subtended  by  the  arc  of  contact  6,  we  have,  if  6  is  ex- 

pressed in  circular  measure, 

J%p/p  =  J\a%- 
or     logePye,  =/^^, 

or  P,  =  Q^e^^, 

when   c(  =  2.718)   is    the   base   of   the   natural   system   of 
logarithms. 

Transferring  to  the  common  system  of  logarithms,  as  more 
convenient  for  computation, 

logio  PJQ,  =  OAS^Mff. 

182.  If  the  weight  §,  is  on  the  point  of  slipping  down  in- 
stead of  being  drawn  up,  the  action  is  the  same  as  if  P^  and 

Q^  changed  places,  and  therefore  Q^  =  P^ef^^. 

The  conditions  are  the  same  and  the  relation  between  P, 
and  Q^  the  same  if  the  cylinder  instead  of  being  fixed  is 

capable  of  turning  about  0,  and  no  slipping  occurs,  axle  fric- 
tion being  neglected. 

Ex.  1.  Obtain  the  relation 

dP  =  ̂ PdS 

by  resolving  the  forces  along  and  perpendicular  to  the  tangent 
at  a. 

^     2,  A  rope  passing  over  a  wooden  cylinder  supports  a  barrel 
^  of  flour  weighing  196  lb.     Find  the  force  which  will  just 

"^   raise  the  barrel,  the  coeflBcient  of  friction  being  0.4. 
Ans.  689  pounds. 

^       3.  In  Ex.  2  find  the  force  that  will  just  keep  the  barrel 
>     from  slipping  down.  A7is.  56  pounds. 
^         4.  Find  the  number  7i  of  turns  of  rope  round  a  snubbing- 

post  that  a  man  pulling  P  pounds  may  just  be  able  to  hold  a 

canal-boat  pulling  Q  pounds.  Ans.  '^Ttj.m  =  loge  Q/P* 

X 
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5.  A  chain  is  wrapped  twice  round  an  iron  drum.  Find 
the  coefficient  of  friction  if  a  pull  of  100  pounds  just  supports 
50  tons.  ^^s.  0.55. 

6.  If  /i  =  0.25,  and  a  rope  passes  twice  round  a  post,  prove 
that  any  force  will  balance  another  more  than  twenty  times  as 
great.  v. 

7.  If  the  coefficient  of  friction  between  belt  and  pulley  is    v  y^ 
0.3,  and  0.4  of  the  pulley  is  embraced  by  the  belt,  show  that  ̂   V 
P  =  2Q,  nearly. 

EXAMINATION. 

1.  When  is  a  body  said  to  be  smooth  ?    When  rough  ? 
[As  it  exerts  force  on  another  body  normal  or  not  to  the 

surface  in  contact.] 

2.  "  Friction  is  a  self-adjusting  force."    Explain. 
3.  The  slopes  of  railroad  embankments  vary.     Explain. 
4.  What  is  the  usual  rule  for  slopes  in  a  railroad  cut 

through  sand  and  gravel  ?     [IJ  to  1.] 
5.  State  the  laws  of  limiting  friction  and  define  the  coeffi- 

cient of  friction. 

6.  Show  that  coefficient  of  friction  =  tan  (angle  of  fric- 
tion). 

7.  Give  an  experimental  method  of  finding  the  coefficient 
of  friction  between  two  surfaces. 

8.  What  horizontal  force  will  cause  a  state  bordering  on 

motion  in  a  weight  of  10  lb  lying  on  a  level  floor  if  the  coef- 
ficient of  friction  is  0.5  ? 

9.  The  total  resistance  to  motion  of  a  body  on  a  rough  in- 

cline and  just  on  the  point  of  motion  is  AT' Vl  +  /*%  where  AT is  the  normal  force. 

10.  A  body  is  held  in  equilibrium  on  a  rough  inclined  plane 
by  a  force  along  the  slope.     Find  the  limits  of  this  force. 

11.  The  force  required  to  haul  a  sled  up  hill  is  least  when 
the  inclination  of  the  tongue  is  equal  to  the  angle  of  friction. 

12.  Simon  Stevinus  of  Bruges  (1548-1620)  remarked  that 

the  question,  "  What  force  will  support  a  wagon  on  an  inclined 
plane  ?  is  a  statical  question,  but  that  the  question.  What  force 
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will  move  the  wagon?  requires  additional  considerations  to 

be  introduced."     Discuss  this  statement. 
13.  A  die  rests  on  a  rough  board  and  the  board  is  tilted. 

Will  the  die  slide  or  topple  over  ? 

'  14.  A  cylindrical  jar  3  in  in  diameter  and  1  ft  in  height 
rests  on  a  rough  table  (/«  =  1/3)  and  the  table  is  tilted.  Show 
that  the  jar  will  topple  over  before  it  slides. 

15.  A  sphere  cannot  rest  upon  an  inclined  plane  however 
rough. 

16.  A  cubical  box  is  half  filled  with  water  and  placed  upon 
a  rough  incline.     Show  that  it  will  slide  or  topple  over  as 

17.  What  is  meant  by  the  "friction  of  adhesion"  of  a  loco- 
motive ? 

[Force  at  circum.  of  driver/weight  on  driver.] 

18.  The  weight  on  the  driving-wheels  of  the  St.  Clair  tun- 
nel decapod  locomotive  is  195,000  lb.  Taking  the  coefficient 

of  traction  to  be  600  pounds  per  ton,  find  the  hauling  force 
on  the  drawbar.  Ans.  58,500  pounds, 

19.  The  tractive  force  required  to  propel  a  bicycle  over  a 
smooth  level  surface  is  0.01  of  the  load.  Calling  the  load  150 
lb,  a  force  of  one  and  a  half  pounds  would  be  required  to 
move  the  wheel  forward. 

20.  Explain  the  contrivance  known  as  friction-wheels. 
What  is  the  advantage  of  ball-bearings  for  bicycles  ?  Sketch 
in  section  such  a  bearing. 

21.  In  the  figure  of  Art.  162  the  condition  of  security  of 
the  wall  against  sliding  on  the  base  AB  is  that  the  horizontal 
component  of  the  force  F  is  less  than  ju  W. 

22.  Account  for  girder-rails  taking  the  place  of  thin  rails 
for  economy  in  railroad  traffic. 

[The  blows  from  the  wheels  would  distort  the  rails  so  that 
rolling  friction  would  be  enormous.] 

23.  A  tug-boat  running  at  15  miles/hour  begins  to  turn  on 
a  curve  of  150  ft  radius.     Show  that  objects  on  the  deck  will 
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slide  unless  the  coefficient  of  friction  exceeds  0. 1,  the  deck 

being  supposed  to  remain  horizontal. 
24.  Prove  that  starting  from  scratch  the  shortest  time  over 

100  yards  is  about  15  seconds,  taking  the  adhesion  of  the  feet 
as  1/12  the  weight. 

25.  A  drawer  of  length  I  can  be  pulled  out  by  one  handle 
unless  the  distance  of  the  handle  from  the  center  exceeds 

^/2/i,  where  jj.  is  the  coefficient  of  friction. 
26.  A  rod  I  ft  long  and  weighing  1  lb  per  foot  lies  on  a 

rough  table,  the  coefficient  of  friction  being  //.  The  rod  is 
pulled  at  right  angles  to  its  length  by  a  force  at  one  end. 
Show  that  the  point  P  about  which  it  begins  to  turn  is  at  a 

distance  1/V2,  ft  from  that  end. 
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CHAPTEK  VI. 

WORK  AND  ENERGY. 

183.  In  Art.  53  it  was  shown  that  if  a  force  i^acts  upon  a 
particle  w  through  a  distance  s,  and  v  is  the  velocity  acquired^ 
we  have  the  relation 

Fs  =  wvy2 

F  being  expressed  in  absolute  units,  or 
Fs  =  wvy2g 

F  being  expressed  in  gravitation  units. 
This  equation,  which  was  first  stated  by  Huygens,  being 

an  algebraic  statement  of  the  second  law  of  motion,  may 

consequently  be  used  as  the  starting-point  of  the  science  of 
dynamics.  It  was  so  used  first  by  Lagrange,  and  often  since 
his  time  by  other  writers.     (Art.  217.) 

We  proceed  to  discuss  the  separate  terms  of  this  equation 
and  then  the  equation  itself. 

184.  Work. — When  a  particle  acted  on  by  a  force  is  dis- 
placed in  the  direction  of  the  force,  the  force  is  said  to  do 

luorh  in  moving  the  particle,  and  the  work  done,  depending 
both  on  the  force  and  the  displacement,  is  expressed  by  their 

product.  Thus,  if  a  weight  of  WVo  falls  th«-ough  a  height  of 
h  ft,  the  acting  force  is  TT  pounds,  and  the  work  done  ty  the 
force  of  gravity  is  expressed  by  the  product  Wh.  If  the 
weight  is  raised  through  li  ft,  the  resisting  force  of  gravity  W 
pounds  is  overcome  through  h  ft,  and  the  work  done  against 

the  force  of  gravity  is  expressed  by  —  Wh. 
In  general,  when  work  is  being  done  by  a  force  Fy  constant 

in  magnitude  and  line  of  action,  the  point  of  application  of 
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the  force  is  being  displaced  through  a  distance  s  in  the  direc- 
tion of  the  force,  and  the  work  done  W  by  the  force  is  meas- 
ured by  the  product  of  the  force  F  and  the  displacement  s,  or 

W  =  Fs. 

If  the  motion  be  uniform  and  R  denote  the  resisting  force 
overcome,  we  may  write 

H4=  -  Rs 

as  the  expression  for  the  work  done  on  the  resistance. 

Work  may  therefore  be  defined  as  the  overcoming  of  re- 
sistance. 

185.  The  definition  of  work  done  may 

equivalent  form,  which  is  often  conven- 
ient. Let  the  particle  on  which  the  force 

F  acts  at  A  be  displaced  to  B  so  that  AB 
is  the  total  displacement.  Let  fall  BO 
perpendicular  to  GA,  and  denote  the 
angle  j5^  (7  by  d. 

Then  by  definition 

be  stated  in  an 

But 

or 

yH  =  FxAO. 
AO=AB  cos  6. 

Yl  =  Fx  AB  cos  0, 
W  =i^cos  6x  AB, 

or  the  worh  done  by  a  force  acting  obliquely  to  the  path  of  a 

particle  is  measured  by  the  product  of  the  force  and  the  pro- 
jection on  its  direction  of  the  total  displacement,  or  by  the 

product  of  the  component  of  the  force  along  the  total  dis- 
placement by  that  displacement. 

When  6  =  90°,  then  cos  8  =  0  and  W  =  0.  Hence,  when 
the  displacement  is  at  right  angles  to  the  direction  of  the 
force,  the  work  done  by  the  force  is  nil. 

Ex.  In  a  pendulum  find  the  work  done  by  the  pull  of  the 
rod  on  the  bob  as  it  swings  to  and  fro. 
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186.  In  the  definition  nothing  is  said  about  the  nature  of 

the  path  of  the  point  of  application  of  the  force.     We  shall 
now  show  that  the  work  done  does  not  de- 

pend on  the  form  of  the  path. 

::^c  Let  the  particle    on  which  the  force  F 
V  |\      acts    at  A  be    moved   to  B  either  in  the 

|\\    straight    path  AB   or  in  the  broken  path 

o       o  c  A  ACS,    Let  fall  Bha,  Cc   perpendicular  to 
OAy  the  direction  of  F.     Then  by  definition 

work  done  in  straight  path  AB  =  F  X  Aa; 

work  done  in  broken  path  ACB  =  Fx  Ac-\-  Fx  ca 
=  F{Ac  +  ca) 
=  Fx  Aa, 

or  the  work  done  is  the  same  in  the  two  paths. 

The  same  result  evidently  follows  if  the  broken  path  con- 
sists of  any  number  of  parts  instead  of  two.  And  this  no 

matter  what  the  magnitude  of  these  parts.  But  a  curve  is 
the  limit  of  an  indefinitely  great  number  of  indefinitely  short 
paths.  Hence  the  result  is  true  for  a  curvilinear  path.  So 
that 

The  work  done  ly  a  force  on  a  particle  in  passing  from 
one  position  A  to  another  position  B  is  entirely  independent 
of  the  path  of  the  particle  between  A  and  B. 

187.  Work  under  Variable  Force. — If  the  acting  force  i^is 
not  constant  in  magnitude,  we  may  conceive  the  path  s  de- 

scribed by  its  point  of  application  between  two  points  A  and  B 
divided  into  an  indefinitely  great  number  of  parts,  each  part  so 
small  that  the  force  may  be  considered  constant  throughout 

it.  Let  FQ{=  ̂ s)  denote  one  of  these  small  portions  of  the 

path.  Then,  the  line  of  action  of  i^at  P  being  along  FQ, 
the  work  done  through  PQ  is  Fx  ̂ s,  and  the  total  work 
done  in  moving  through  the  distance  s  is  found  by  summing 
the  elementary  works  F  X  ̂ s,  and  would  be  expressed  by 

/. 

Fds. 
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More  generally,  if  the  line  of  action  of  i^  at  P  is  not  in  the 
direction  of  PQ,  let  ̂ j)  denote  the  projection  of  the  dis- 

placement of  the  point  of  application  of  P  along  the  direc- 
tion of  F\  then  the  elementary  work  done  is  Fx  ̂ p,  and  the 

total  work  done  between  two  positions  A  and  B  would  be  ex- 
pressed by 

188.   Unit  of  ̂ 07-^.— In  the  general  formula  for  work 

W  =  Fs; 

taking  P  =  1,  5  =  1,  we  have  w  =  1;  and  therefore  the  unit 
of  work  is  taken  to  be  the  work  done  by  unit  force  acting 
through  unit  distance. 

The  engineering  unit  of  work  or  unit  of  everyday  life  is 
based  on  the  gravitation  measure  of  force,  and  is  the  work 
done  by  a  force  of  one  pound  acting  through  a  distance  of 

one  foot.  This  is  usually  called  a  foot-pound.  Thus  the 
work  done  in  raising  a  body  weighing  100  lb  vertically 
through  6  feet  is  the  work  done  in  overcoming  a  force  of  100 

pounds  through  6  feet,  and  is  600  foot-pounds. 

Ex.  1.  The  tractive  force  of  a  locomotive  is  10  tons.  Find 
the  work  done  in  hauling  a  train  one  mile. 

A71S.  105,600,000  ft-pounds. 
2.  The  steam-pressure  on  the  piston  of  an  engine  is  50 

pounds/in%  the  area  of  the  piston  300  in',  and  the  stroke  is 4  ft.    Find  the  work  done  in  one  stroke. 

Ans.  60,000  ft-pounds. 
3.  A  hole  is  punched  through  a  wrought-iron  plate  1/2  in 

thick,  the  punch  exerting  a  uniform  pressure  of  42  tons. 
Find  the  work  done.  A7is.  3500  ft-pounds. 

4.  A  horse  hauling  a  wagon  exerts  a  constant  pull  of  100 
pounds  and  travels  at  the  rate  of  2  miles  an  hour.  How  much 
work  will  be  done  in  5  min  ?  A^is.  88,000  ft-pounds. 

5.  Find  the  work  done  in  lifting  a  chain  which  hangs  ver- 
tically, its  length  being  I  ft  and  its  weight  JV  lb. 

Ans.   m/2  ft-pounds. 



228  WORK   AKD   ENERGY.  [§  189 

189.  Graphical  Representation  of  Work, — Work  done  may 
be  represented  graphically. 

(1)  Let  the  acting  force  F  be  constant  in  magnitude  and 
direction.  Let  AL  plotted  to  scale  rep- 

resent the  displacement  of  the  point 
of  application  of  the  force,  and  let  Aa 
plotted  to  scale  and  perpendicular  to  AL 
represent  the  force  at  A,    Then,  since  the 

force  is  uniform  throughout,  the  work  done  AL  X  Aa  is  rep- 
resented by  the  area  of  the  rectangle  Al. 

Ex.  Plot  on  a  scale  of  5  pounds  =  1  in  and  10  ft  =  1  in 
the  work  done  in  overcoming  a  resistance  of  20  pounds 
through  a  distance  of  20  ft. 

(2)  If  the  force  F  is  variable,  the  work  done  is  expressed 
as  already  explained  in  Art.  187. 

Let  AL  represent  the  displacement,  and  let  Aa,  LI  perpen- 
dicular   to    AL    represent    the 

r^f^-..^^^^^^  initial  and  final  values   of  the 

i    i  ̂^^^^^^^>^     "^       force  F  in  the  direction  of  mo- 
j    j  ^^^     *^^^-     ̂ ^^  ̂ ^  ̂ ®  divided  into  a 
^-^   'l     large  number  n  of  equal  parts, 

and  let  Bh,  Cc,  .  ,  .  represent 
the  corresponding  forces.  A  line  through  the  extremities 
ff,  h,  c,  .  ,  ,1  forms  the  curve  of  resistance. 

The  element  work  FAp  is  represented  by  the  area  BCcl 

ultimately,  and  the  total  work   /  Fdp  by  the  sum  of  these  ele- 

ment areas,  that  is,  by  the  area  ALla. 

The  value  of  the  work  done  may  be  computed  approxi- 
mately from  the  diagram. 

For  the  work  done  from  ̂   to  ̂   may  be  taken  to  be  that 

due  to  the  force  ̂ {Aa  -\-  Bh)  acting  through  the  distance  AB 
or  AL/n,  or 

the  work  done  through  AB  =  i(Aa  +  Bh)AL/n. 
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Similarly,  the  work  done  through  BC  =  i(Bh  +  Cc)AL/n. 

Hence  by  addition 

total  work  done  =  i{Aa  +  2^5  +  2Cc  +  . . .  +  Ll)AL/n. 

By  means  of  certain  contrivances  the  curve  ahc  .  .  .  I  may 
be  plotted  mechanically  by  the  force  itself,  as,  for  example,  in 

the  steam-engine  by  means  of  the  indicator.  Having  the 
curve,  the  mean  force  AO  may  be  found  by  stretching  a  thread 
so  as  to  have  equal  areas  above  and  below  it.  Or  the  area  may 
be  read  off  at  once  by  an  Amsler  polar  plani meter,  and  the 
work  done  found  directly.  Or  the  indicator  drawing  or 

"card''  may  be  divided  up  by  drawing  equidistant  ordinates, 
the  lengths  of  these  ordinates  scaled  off,  and  the  formula 
above  applied.    All  of  these  methods  are  at  times  useful. 

Ex.  1.  Draw  a  diagram  for  the  work  done  in  raising  the 
chain  in  Ex.  5,  p.  227. 

Ans.  A  right  triangle,  the  force  decreasing  from 
WtoO. 

2.  Draw  a  diagram  for  the  work  done  in  lifting  a  chain 
vertically  by  one  end  from  the  ground. 

Ans.  A  rt.  triangle.     (Plot  it.) 

190.  Work  of  Raising  a  System  of  Particles  from  One 

Position  to  Another. — Let  the  particles  weigh  w^,w^,.  .  .  and 
let  x^,  x^,  .  .  .  denote  their  respective  heights  above  a  fixed 
horizontal  plane.  Let  the  system  as  a  whole  weigh  W,  and  let 

X  denote  the  height  of  its  C.G.  above  the  plane.     Then 

Wx  =  w^x^  +  w^x^  +   (1) 

Suppose  the  system  displaced  so  that  w^  is  raised  through 
a  height  h^,  w^  through  a  height  7i.^ ,  .  .  .  and  the  C.G.  of  the 

whole  through  a  height  h.    Then 

W{h+~x)  =  to,(h,  +  x,)-{-w,{h,-\-x,)  +  ...     .     (2) 
Subtracting  (1)  from  (2), 

Wh  =  w,h,  +  wji^  -f   (3) 
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But  by  definition  loji^  +  luji^  +  .  .  .  is  the  work  done  in 
raising  the  particles  from  one  position  to  the  other.  And  this 

is  equal  to  Why  the  work  done  in  raising  the  total  weight  W 

through  the  height  h  through  which  the  C.G.  of  the  system 
has  been  raised. 

The  same  method  of  treatment  may  readily  be  applied  to 
the  case  of  raising  a  body  in  parts. 

It  is  evident  that  in  general  it  requires  less  work  to  com- 

pute the  value  of  Wh  than  that  of  2wli.  Hence  the  utility 
of  the  proposition. 

Ex.  1.  A  cylindrical  shaft  14  ft  in  diameter  has  to  be  sunk 
to  a  depth  of  10  fathoms  through  chalk  whose  weight  is 

144  lb/ft'.     Find  the  work  done. 
Ans.  39,916,800  foot-pounds. 

2.  How  many  foot-pounds  must  be  expended  in  raising 
from  the  ground  the  materials  for  building  a  column  66  ft  8  in 
high  and  21  ft  square,  the  material  weighing  112  lb/ft^ 

Ans.  109,760,000  ft-pounds. 
3.  Find  the  work  done  in  raising  a  Venetian  blind  having 

n  slats,  the  weight  of  each  slat  being  lo  lb  and  their  distance 
apart  a  ft.  Ans.  awn{n  -f- 1)/2  ft-pounds. 

4.  In  pumping  1000  gallons  from  a  water-tank  with  vertical 
sides  the  surface  of  the  water  is  lowered  5  ft.  Find  the  work 
done,  the  discharge  being  10  ft  above  the  original  surface. 
(A  gallon  of  water  weighs  8^  lb.) 

Ans.  104,167  foot-pounds. 
Draw  the  work  diagram. 

191.  Principle  of  Work.— Let  forces  i^, ,  i^, , .  .  .  act  at  a 
point  causing  a  displacement  OA, 
Let  R  be  the  resultant  of  the  forces. 

From  A  let  fall  perpendiculars  on 
the  directions  of  the  forces,  and  let 

^j,  6',,  ...  be  the  inclinations  of 
these  directions  to  OA,  and  6  the  in- 

clination of  the  resultant  R.  Then, 

(Art.  81)  the  sum  of  the  components  of  the  forces  along  OA 



§  192]  PRINCIPLE   OF  WORK.  231 

being  equal  to  the  component  of  the  resultant  along  OA,  we 
have 

F^  cos  e, -\-F^  cos  e^ -]-,,,  =  E  cos  f^, 

or     F,  X  Oa/OA  +  ̂,  X  Ob/OA  +  . . .  =  i?  X  01/ OA, 

or  i^,  X  Oa-{-F^X  Oi  +  , , ,  =  B  X  01; 

that  is,  the  woric  done  hy  a  system  of  forces  acting  at  a  point 
is  equal  to  that  done  by  their  resultant. 

The  equation  may  be  written 

i^,  X  Oa  +  i?;  X  06  +  . . .  -  i2  X  0?  =  0; 

which  shows  that  if  a  system  of  forces  acting  at  a  point  equili' 
brate  and  the  system  receives  a  displacement  the  algebraic 
sum  of  the  works  done  by  the  forces  is  equal  to  zero. 

Conversely,  if  any  number  of  forces  act  at  a  pointy  the  con- 
dition of  equilibrium  is  that  the  sum  of  the  luorhs  done  by 

the  forces  for  every  displacement  shall  be  equal  to  zero. 
For  let  F  denote  the  resultant  and  p  the  resolved  part  of 

the  displacement  parallel  to  the  resultant.  Then  the  work 
done  by  the  forces  is  equal  to  Fp,  But  this  by  hypothesis  is 
zero.  As  p  is  not  zero,  F  must  be  zero,  or  the  forces  must 
equilibrate. 

This  is  called  the  principle  of  work  as  applied  to  forces  act- 
ing at  a  point  or  to  forces  acting  on  a  particle. 

It  is  to  be  noticed  that  the  displacement  need  not  actually 
be  made.  It  may  be  conceived  to  be  made,  the  geometrical 
relations  of  the  parts  remaining  the  same.  The  displacement 
is  then  said  to  be  virtual  [hypothetical],  and  the  work  done 
by  the  forces  virtual  work. 

192.  Equilibrium  of  a  System. — Let  a  system  of  particles 
forming  a  body  be  acted  on  by  forces  whose  points  of  appli- 

cation remain  at  invariable  distances  from  each  other.  The 

forces  acting  on  the  particles  consist  of  the  external  forces 
and  of  the  forces  arising  from  the  connection  of  the  particles 



232  WOU^  AND  EKEEQY.  [§  193 

among  themselves.  The  condition  of  equilibrium  of  any 
particle  is  (Art.  191)  that  the  sum  of  the  works  done  by  the 
forces  external  and  internal  is  for  every  displacement  equal 

to  zero.  Hence,  summing  from  particle  to  particle,  the  con- 
dition of  equilibrium  for  the  body  is  that  the  sum  of  the 

works  done  by  the  forces  external  and  internal  is  for  every 

displacement  equal  to  zero.  But  the  work  done  by  the  inter- 
nal forces, being  that  due  to  the  mutual  actions  and  reactions 

of  the  particles,  necessarily  vanishes  for  the  whole  system. 
Hence  it  is  necessary  to  consider  the  external  forces  only,  and 
the  condition  of  equilihrium  is  that  the  sum  of  the  works 

done  ly  the  external  forces  is  equal  to  zero  for  every  displace- 
ment of  the  tody. 

The  same  principle  will  apply  to  a  system  of  bodies  rigidly 

connected,  or  so  connected  that  the  geometrical  relations  ex- 
isting among  the  parts  are  not  disturbed  by  a  given  displace- 
ment, and  hence  to  what  is  called  a  machine. 

Ex.  1.  If  two  particles  of  a  system  are  joined  by  an  inelas- 
tic thread,  the  work  of  the  pull  of  the  thread  is  nil. 
[For  let  the  pull  T  at  A  be  transferred  to  B.  The  pulls  at 

^  being  equal  and  opposite,  the  sum  of  the  works  done  is  nil.] 
2.  If  a  body  turn  about  a  fixed  point,  the  work  of  the  reac- 

tion is  nil. 
[For  there  is  no  displacement.] 
3.  If  a  body  slide  on  a  smooth  plane,  the  work  of  the  reac- 

tion is  nil. 
[Displacement  is  at  right  angles  to  force.] 

193.  Machines. — In  a  machine  the  separate  pieces  are  so 
constrained  that  when  one  piece  moves  every  other  receives 
a  determinate  motion  relative  to  it  and  to  the  others.  The 

motion  of  the  pieces  being  thus  constrained,  the  direction  of 
motion  is  altogether  independent  of  that  of  the  acting  force. 
Hence  the  paths  of  the  parts  and  their  relative  velocities  may 
be  treated  as  a  kinematical  problem  when  we  consider  the 
mechanism  only. 

A  machine  is  a  mechanism  to  which  a  driving  force  is  ap- 
plied.    The  object  of  a  machine  is  the  overcoming  of  force 
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at  one  place  by  means  of  a  force  applied  at  another  place. 
The  acting  force  doing  work  on  the  machine  is  called  the 

di'iving  force*  and  the  force  overcome  is  called  the  resist- 
ance. The  pieces  in  constraint  are  termed  elements,  and  can 

occur  only  in  pairs.  No  single  body  can  form  a  machine. 
Thus  a  tow-line,  though  it  transmits  force,  is  not  a  machine. 
Neither  is  a  bridge,  because  the  parts  do  not  move  relatively 
to  one  another. 

The  condition  of  equilibrium  for  forces  acting  on  a 
machine  is  that  the  algebraic  sum  of  the  works  done  by  the 
external  forces  is  equal  to  zero  for  any  displacement  ivhich 
does  not  disturb  the  geometrical  relations  of  the  parts. 

The  displacement  must  be  so  chosen  as  to  be  in  conformity 

with  the  motion  of  the  parts  when  the  machine  is  in  opera- 
tion. No  work  is  then  done  by  or  against  the  internal 

forces. 

If,  therefore,  F  is  the  driving  force,  R  the  resistance,  x  the 
displacement  of  F,  and  y  the  displacement  of  R,  the  condition 
of  equilibrium  may  be  written 

Fx-Ry^  0. 

This  principle  was  first  stated  by  Simon  Stevinus  of  Bruges 
in  investigating  the  equilibrium  of  systems  of  pulleys.  It  was 
also  noted  by  Galileo  in  the  case  of  the  inclined  plane,  and 
was  given  by  him  as  the  condition  to  be  satisfied  for  the  equi- 

librium of  a  machine. 

In  the  generalized  form,  for  any  system  of  forces  in  equi- 
librium, the  principle  was  named  the  principle  of  Virtual  Ve- 

locities by  John  Bernoulli  [1717]  and  by  this  name  it  is  still 
very  generally  known. 

194.  Machines  [Friction  Neglected).  —  In  general  in  a 
machine  the  force  of  friction  enters  as  a  resistance;  but  for 

simplicity  we  shall,  first  of  all,  neglect  friction  and  consider 
the  parts  to  be  perfectly  smooth.  This  is  an  ideal  case,  and 
may  be  looked  upon  as  a  first  approximation  to  the  actual. 

We  proceed  to  find  the  relation  between  driving  force  and 

*  Often  called  "the  power."  It  is  best  to  reserve  "  power"  to  de- 
note the  rate  of  doing  work.     (Art,  209.) 
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resistance  in   some  simple  forms   of  machines,  the  motion 
being  uniform,  that  is,  the  acting  forces  are  in  equilibrium. 

It  is  usually  stated  that  "all  machines  are  either  certain 
simple  machines  known  as  the  mechanical  powers, — the  lever, 
inclined  plane,  pulley,  wedge,  screw, — or  combinations  of  two 
or  more  of  these  mechanical  powers/^  But  as  Prof.  Kennedy 
very  justly  remarks  in  his  Mechmiics  of  Machinery,  "  It  is 
not  worth  while  to  discuss  a  theory  so  hopelessly  inconsistent 
with  facts  as  this.'' 

See,  for  a  full  discussion,  Reuleaux,  Theorefische  Kine- 
matik, 

195.  Inclined  Plane. — A  body  weighing  IF  rests  on  a  plane 
inclined  to  the  horizon,  and  is  constrained  so  as  to  be  capable 
of  sliding  parallel  to  the  greatest  slope  of  the  plane  and  of 

no  other  motion — in  a  groove,  for  example.  The  mechanism 
forms  an  example  of  what  is  called  a  slidi^ig  pair. 

(a)  Let  the  body  be  held  from  sliding  down  the  plane  by  a 
force  F  acting  parallel  to  the  greatest 
slope. 

The  force  F  may  be  regarded  as  the 
acting  force  and  the  vertical  force  W  as 
the  resistance. 

In  bringing  the  body  from  A  to  C 

work  done  hj  F  =  F  X  AC; 

work  done  hj  W=  —W  X  CB, 

Hence,  since  there  is  equilibrium, 

FxAO-WxCB  =  0, 

or       W/F=AC/BG, 

giving  the  force  ratio,  or  mechanical  advantage,  or  theoretical 
advantage. 

The  same  result  could  be  found  by  considering  the  con- 
straint of  the  plane  replaced  by  the  reaction  JV  and  the  body 



§195] INCLINED  PLANE. 135 

in  equilibrium  under  F,  W,  N.    Then,  if  the  displacement  is 
from  A  to  C, 

work  done  hy  F  =  F  x  AC; 
work  done  by  iV^  =  0; 
work  done  hjW=  —  Wx  BO; 

and  for  equilibrium  (uniform  motion) 

FxAC-\-0-  WxBC=0, 

or      FxAC=WxBC,    as  before. 

This  equation  also  shows  that  the  work  done  m  moving  a 
hody  up  a  smooth  plane  is  equal  to  that  done  in  raising  it 
through  the  vertical  height  of  the  plane. 

To  find  the  reaction  N, 
Let  the  body  be  displaced  through  a 

distance  DE  perpendicular  to  the  plane. 
Then  in  the  displacement 

work  done  by  iV^=  JV^  X  DE; 
work  done  by  i^  =  0; 
work  done  by  ̂   =  —  TF  X  EG. 

Hence  for  equilibrium 

NxDE  -  WxEG  =  0, 

and        iVy  r  =  EG/BE  =  AB/A  C. 

(i)  If  the  force  F  which  holds  W  in  equilibrium  is  parallel 
to  the  base,  then  in  moving  from  ̂   to  C 
W  acts  through  BC,  and  F  acts  through 
AB,  each  in  its  line  of  action.     Hence 

-\J. 

FxAB-Wx  BC=0, 

or         W/F=AB/BC, 

giving  the  mechanical  advantage. 

Ex.  1.  Show  in  (b)  that  ]V/W=AC/AB, 
2.  A  weight  of  100  lb  is  hauled  up  an  incline  of  1  in  100 

and  1000  ft  long.     Find  the  work  done. 
Ans,  1000  ft-pounds. 

3.  Draw  a  diagram  of  the  work  done  in  moving  a  weight  of 
10  lb  up  a  smooth  incline  5  ft  high. 
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196.  Tlie  Straight  Lever. — If  a  bar  is  constrained  to  move 
about  an  axis  or  fulcrum,  plane  motion  only  being  possible, 

it  is  a  lever,  A  lever — that  is, 
bar  and  fulcrum — forms  an  ex- 

ample of  a  turning -pair. 
Let  the  driving  force  F  and 

the  resistance  W  be  both  ver- 
tical. 

While  the  point  of  applica- 
tion of  F  descends  a  distance  x 

the  resistance  W  will  ascend  a  certain  distance  y.  Then  for 
equilibrium 

Fx-Wy  =  0. 

But  from  similar  triangles 

xiy  =  AC',BG, 

Hence  FxAC  =  WxBCr 

which  is  the  "  principle  of  the  lever."     (Art.  154.) 
Ex.  1.  What  is  the  mechanical  advantage  ? 
2.  If  the  force  F  and  resistance  R  are  not  vertical,  show 

that 
FxAC  =  RxBG, 

197.  The  Wheel  and  Axle, — Two  cylinders  fastened  to- 
gether move  freely  on  a  common  axis  C  which  is  horizontal 

and  works  in  fixed  bearings.     A  force  F 

acts  by  a  cord  coiled  round  the  larger  cyl- 
inder (or  ivheel),  and  balances  a  weight  W 

hanging  from  a  cord  coiled  round  the 
smaller  cylinder  (or  axle). 

The  mechanism  is  equivalent  to  a  lever 

with  miequal  arms,  the  axis  correspond- 
ing to  the  fulcrum  of  the  lever,  and  the 

radii  to  the  arms.  It  is  called  the  wheel 

and  axle,  and  forms  a  turning-pair. 
While  the  driving  force  F  descends  a  distance  equal  to  the 
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circumference  of  the  wheel  the  weight  Wia  raised  a  distance 

equal  to  the  circumference  of  the  axle.  Hence  for  equi- 
librium 

Fx  27rr,-  Wx  27rr,  =  0, 

or         W/F=:rjr^, 

giving  the  mechanical  advantage. 

Ex.  1.  Obtain  the  relation  between  i^and  TFby  the  "prin- 
ciple of  moments.^' 2.  Find  the  vertical  force  on  the  axis. 

198.  The  Pulley  and  Cord. — A  pulley  is  a  wheel  with  a 
groove  round  its  outer  edge  [sheave],  and  capable  of  revolving 
freely  about  an  axis  through  its 
center  0.  This  axis  is  fixed  in  a 
frame  or  block  to  which  a  hook 
is  attached. 

This  mechanism  consists  of  three  links,  the  cord,  sheave, 

and  frame,  the  term  link  being  applied  to  bodies  arranged  so 
as  to  give  the  required  motion. 

(a)  The  single  fixed  pulley. 
,I^P  The  driving  force  F  and  the  weight  W  to  be 

raised  are  both  vertical,  the  constraint  prevent- 

ing cross-motion. 

K^"^  It  jP descend  any  distance  x,  T^'will  ascend  an equal  distance  x.    Hence  for  equilibrium 

Fx  —  Wx  =  0, 
& 

and         W/F=l. 

If  P  is  the  force  on  the  support  and  w  the  weight  of  the 

pulley,  then,  the  four  parallel  forces  F,  iv,  W,  P  being  in 

equilibrium,  we  have 

p  =  F+W-^w 
=  2W+w. 
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(b)  The  single  movable  pulley. 
In  the  figure  we  have  a  single 

fixed  and  a  single  movable  pulley. 

If  F  descends  any  vertical  dis- 
tance X,  W  will  ascend  a  distance 

x/2.    Hence  for  equilibrium 

Fx  -  Wx/2  =  0, 

or        W/F=2. 

If  the  weight  to  of  the  pulley  is 
taken  into  account,  then  evidently 

W+w  =  2F, 

Ex.  Find  the  pull  on  the  hook  C, 

{c)  Pulley  tackle. 
In  the  figure  is  represented  a  tackle,  the  upper  and  lower 

blocks  each  containing  two  sheaves,  and  the  same  rope  pass- 
ing round  all. 

The  motion  is  not  strictly  in  one  plane, 
but  we  may  assume  it  to  be  so  as  a  first 

F  approximation. 
While  F  descends  a  distance  x^  W  as- 

cends a  distance  x/4:, 

.-.    Fx  -  Wx/^  =  0, 

and         W/F=4. 

(d)  The  Weston  differential  pulley  consists  in  the  upper 
block  of  two  sheaves  of  slightly  different  radii  a,  h  fastened 

together,  and  in  the  lower  block  of  a  single  sheave  of  diam- 
eter a-\-h.  Each  block  is  a  turning-pair.  An  endless  chain 

passes  round  the  sheaves  as  in  the  figure.  Notches  are  cut 
or  teeth  set  in  the  upper-block  sheaves  which  fit  the  links  of 
the  chain. 
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While  the  upper  block  makes  one  revolution  the  lower  is 

raised  an  amount  equal  to  one  half  the  difference  of  the  cir- 

cumferences of  the  two  pulleys  in  the  upper  block.     Hence 

for  equilibrium 

Fx'i7ih  —  Wx(7th—  Tta)  =  0, 

or         W/F=U/{b-ay 

Ex.  1.  In  a  Weston  pulley  the  diameters  of  the  pulleys  in 
the  upper  block  are  7  and  8  inches.  Find  the  theoretical 
advantage.  Arts.  16. 

2.  Obtain  the  relation  between  F  and  W  by  the  method  of 
moments. 

3.  The  diameters  of  the  pulleys  are  6  and  7  in  and  the 
weight  is  to  be  raised  at  the  rate  of  an  inch  a  second.  Find 
the  rate  at  which  the  chain  must  be  pulled. 

Ans.  70  ft/min. 
Show  that  to  raise  the  weight  1  ft  between  seven  and  eight 

revolutions  must  be  made. 
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199.  A  common  form  of  hoisting  apparatus  is  the  worm- 

wheel  gear,  shown  in  the  figure.  A  light  end- 
less chain  passes  over  a  pulley  A,  which  has 

teeth  in  the  groove  to  fit  the  links.  This  is 

the  driving-chain.  On  the  axle  of  the  pulley 
is  a  worm  which  works  in  the  toothed  wheel 

fixed  to  the  pulley  B.  Over  the  pulley  B 
passes  the  movable  end  of  the  heavy  chain 
that  runs  under  the  block  C,  This  is  the  lift- 

ing-chain. 
To  C  the  weight  to  be  raised  is  attached. 

Ex.  The  driving  and  driven  pulleys  A  and 
B  are  each  1  ft  in  diameter  and  the  number 
of  teeth  in  the  toothed  wheel  is  24.  What 
weight  could  be  raised  by  a  pull  of  10  pounds 
applied  to  the  endless  chain  ?       A^is.  480  lb. 

200.  The  Screw. — In  turning-pairs  the  mo- 

tion is  simply  a  motion  of  rotation.  We  may,  however,  con- 
ceive the  rotating  body  not  only  to  revolve  about  the  axis  of 

rotation,but  to  advance  along  the  axis,  the  motions  being  in  per- 
pendicular planes.  The  combination  of  the  two  motions  gives 

rise  to  screw  motion,  and  thb  two  bodies  form  a  twisting -pair. 

Thus  suppose  ̂   to  be  a  point  on  the  surface  of  a  cylinder 
which  is  revolving  in  a  bearing  or  nut  and  at  the  same  time 
advancing  uniformly  along  its  axis. 
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By  the  motion  of  rotation  alone,  while  the  cylinder  makes 
a  revolution,  H  would  describe  a  path  equal  to  the  circum- 

ference. Develop  this  in  the  line  HE.  But  the  motion  of 
translation  carries  it  a  distance  equal  to  EF,  Hence  it  is 

found  at  Ky  and  the  path  HK  would  be  traced  by  wrapping 
the  triangle  HEF  about  the  cylinder.  The  path  of  the  point 
H  is  called  the  thread  of  the  screw,  and  the  distance  HK  or 

^i^  between  consecutive  threads  the  pitch. 
The  inclination  of  the  thread  to  the  axis  is  given  by  the 

angle  EHF  (  =  fi).    Now 

tan  /3  =  EF/HE 
=  pitch/circum.  of  cylinder. 

201.  Take  the  bell-bottom  jack-screw  (p.  249)  with  force  F 
applied  at  the  end  of  a  lever-arm  I  to  raise  a  weight  W  with 
uniform  speed. 

While  the  lever-arm  makes  one  revolution,  that  is,  while 

the  force  moves  through  a- distance  2;r?,  the  weight  is  raised 
a  distance  equal  to  the  pitch  p  of  the  screw.  Hence  for 

equilibrium 
Fx27rl-  Wxp  =  0, 

or        F/W=:p/27rl 

202.  In  machine  tools  sliding  motion  is  commonly  pro- 
duced by  means  of  screws.  The  relation  between  the  pitch, 

number  of  revolutions,  and  rate  of  sliding  is  very  simple. 
Thus  if  p  is  the  pitch  in  inches,  n  the  number  of  revolutions 
per  minute,  and  v  the  velocity  in  ft/min,  then  evidently 

np  =  12y. 
For  example,  if  a  screw  moves  a  slide  at  16  ft/min,  and  has 

a  pitch  of  1.5  in,  the  number  of  revolutions  required  would  be 
128  per  minute. 

Ex.  1 .  In  a  pulley  tackle  the  driving  force  descends  1  ft 
while  the  weight  to  be  raised  ascends  1  in.  What  force  will 
raise  1  ton  ?  Ans.  1Q6^  pounds. 

2.  Find  the  relation  between  F  and  W  in  the  copying-press 
(p.  149),  21  being  the  length  of  the  handle. 

Ans.  F=  W  X  pitch  of  screw/4;r/. 
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3.  A  weight  of  400  lb  is  being  raised  by  a  pair  of  double 

pulley-blocks.  The  rope  is  fastened  to  the  upper  block,  and 
the  parts  of  the  rope  (whose  weight  may  be  disregarded)  are 
considered  vertical.  Each  block  weighs  10  lb.  Find  the 
pressure  on  the  axle  of  the  upper  block. 

Ans.  522.5  pounds. 
4.  The  axle  of  a  capstan  is  2  ft  in  diameter.     If  four  sail- 

ors push  with  a  force  of  40  pounds  each  at  the  ends  of  spikes 
4  ft  long,  find  the  weight  of  the  anchor  that  is  lifted. 

5.  A  man  has  to  raise  a  weight  and  has  only  one  pulley  at 
his  disposal.  How  must  he  apply  it  to  gain  the  greatest  ad- 

vantage ? 
6.  In  a  differential  pulley  the  diameters  of  the  pulleys  of 

the  compound  sheave  are  a,  h 
in.  Find  how  many  revolutions 
are  required  to  raise  the  weight 

c  in.  Ans.  'Zc/7r(a  —  h). 

Mtfllllid'HH^'  '^*  ̂^  ̂  telescopic  jack-screw  a "I   ̂ iflB^  smaller  screw  C  works  in  a  com- 
panion nut  cut  in  the  larger 

screw  D,  which  latter  works  in 
a  nut  in  the  fixed  block  B.  The 
block  A  being  fixed,  the  upper 
screw  does  not  rotate.  If  I  is 

the  length  of  the  lever-arm,  find 
the  relation  between  F  and  W. 

Ans.  Fx2nl=  W  X  diff.  of 

pitches  of  screws. 
8.  A  screw  moves  the  table  of 

a  planing-machine  12.5  ft  a  min- 
ute and  makes  100   revolutions 

per  minute.     Find  the  pitch.  A7is.  1.5  inch. 
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9.  In  a  derrick-winch  the  crank  AB  is  I  in  leyerage,  the 

gears  n  to  1,  and  the  drum  ̂   is  ̂   in  diameter.  Find  the 
two-man-power  capacity,  each  man  exerting  a  force  of  p 
pounds.  A71S.  Aphi/d  pounds. 

In  general  show  that  for  one  man  exerting  a  force  F  a 
weight  W  will  be  raised,  given  by 

F  _  rad.  drum       no.  of  teeth  in  pinion 

W      length  arm       no.  of  teeth  in  wheel  * 
10.  In  a  winch,  given  that  the  cranks  have  18  in  leverage, 

the  gears  are  4  to  1,  the  drum  is  6  in  in  diameter,  and  the 

capacity  with  two-man  power  is  3  tons.    Find  the  force  exerted 
by  each  man.  Ans,  125  pounds. 
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11.  In  a  hoisting-machine  the  gears  are  36  to  36  teeth,  the 
drum  2L  in  in  diameter,  and  the  load  for  one  horse  1^  tons. 
Find  the  pull  exerted  by  the  horse  at  the  end  of  a  7-ft  hori- 

zontal lever.  A^is.  375  pounds. 
12.  In  a  combination  of  single- 

threaded  worm  and  wheel  used  in 
hoists  the  worm-wheel  has  n  teeth, 
the  radius  of  the  driving-wheel  is  I  in 
in  length,  and  the  radius  of  the  drum 
around  which  the  lifting-rope  winds 
is  r  in.  Find  the  relation  between 
i^and  W,  Ans.  Fin  =  Wr, 

203.  Machines  {Friction  Consid- 

ered).— To  overcome  frictional  re- 
sistance in  a  machine  work  must  be 

done.  Part  of  the  driving  force  is 
taken  up  in  doing  this  work,  and  is, 
as  it  were,  absorbed.  Although  it 
serves  no  useful  purpose,  it  is  not  lost. 

"^^^^  (Art.  216.) 
The  work  absorbed  in  overcoming  friction  is  measured  as 

the  work  done  on  any  other  resistance.     We  have 

work  against  friction  =  friction  X  distance  described 

=  Z^JV^  X  s, 

where  JV  is  the  normal  pressure,  yu  the  coefficient  of  friction, 
and  s  the  distance  described  in  the  direction  of  the  resistance. 

Thus  the  work  done  in  overcoming  the  frictional  resistance 
in  one  revolution  of  a  journal  of  diameter  d  ft  and  carrying  a 

load  of  IT  lb  is  piW  X  Ttd  ft-pounds.  In  case  the  journal 
revolves  7i  times  per  minute  the  work  absorbed  is 

n  X  mW  X  nd  ft-pounds  per  minute. 

In  a  machine,  owing  to  friction  between  the  pieces,  part  of 
the  work  done  by  the  driving  force  is  wasted,  so  that  the  re- 

sulting useful  work  is  less  than  the  total  work  done  by  the 
driving  force  in  the  first  place.     We  have,  in.  fact, 

total  work  =  useful  work  +  useless  work. 
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The  ratio  of  the  useful  work  to  the  total  work  is  known  as  the 

efficiency  of  the  machine,  so  that 

eflBciency  =  useful  work/total  work; 

or,  as  sometimes  expressed, 

efficiency  =  work  got  out/work  put  in. 

204.  The  Inclined  Plane. — To  find  the  force  F  necessary 
to  haul  a  weight  Wup  a  rough  incline  A  0,  the  coefficient  of 
friction  being  /a  and  the  force  F  parallel 
to  the  plane. 

Let  JV  denote  the  normal  reaction. 

The  friction  juJV  acts  down  the  plane, 
the  forces  being  as  in  the  figure. 

Then,  if  the  displacement  is  from  A  to 
C,  we  have  for  equilibrium 

FxAC-WxBC-jiiIfxAC=0,     .     ,     (1) 

Resolving  the  forces  perpendicular  to  the  plane, 

N-Wco^  e  =  0.    ......     (2) 

Eliminating  N  between  (1)  and  (2), 

Fx  AC  =WX  BC-{- /xW  cos  Ox  AC 
=  WxBC-\-mWxAB,  .     ...     (3) 

or  the  work  done  in  hauling  the  body  up  the  plane  A  C  is 
equal  to  that  done  in  raising  it  through  the  height  BC  and 
in  hauling  it  along  the  base  AB,  the  coefficient  of  friction 
leing  the  same  on  AC  and  AB. 

The  work  wasted  is  (Art.  196) 

}aWxAB. 
205.  In  case  the  force  F  acts  doivn  the  plane,  it  may  be 

shown  similarly  that 

FxAC  =  fxWxAB-WxBC, 
and  the  work  wasted  is  the  same  as  before. 
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It  mWxAB  =  WXBC,  then  F  =z  0,  and  the  body  would 
slide  down  the  plane  with  uniform  velocity. 

Ex.  1.  Find  the  work  done  in  hauling  a  sled  weighing  500 
lb  half  a  mile,  the  coefficient  of  friction  being  0.3. 

A71S.  264,000  ft-pounds. 
2.  Find  the  work  done  in  hauling  a  train  of  100  tons  one 

mile  up  a  Ifo  grade,  the  resistance  being  8  pounds  per  ton. 
Ans.  7392  foot-tons. 

3.  "  On  a  grade  of  1  in  10  a  bicycle-rider,  in  addition  to 
the  tractive  force,  actually  lifts  one  tenth  of  his  weight  and 
that  of  the  machine.'' 

206.  The  Pulley.— {a)  The  single  fixed  pulley. 
Let  F  be  the  driving  force  and  W  be  the  weight  to  be 

raised.     The  normal  reaction  is  F-\-W,  and 

the  friction  ;i(F-\-W),  if  /( is  the  coefficient 
of  friction. 

Let  r  =  radius  of  axle,  a  =  radius  of  sheave. 
Let  a  complete  revolution  of  the  pulley  be 

made;    then,  summing   the  work   done,  we 
have  for  equilibrium 

Fx27ra-  Wx  27ra  -  m(F+  W)  X  ̂ nr  =  0, 

or        F{a  —  fxr)  =  W{a  +  /tr), 
and  W/F  =  {a  -  Mr)/ {a  +  /ir) 

=  1  —  2/ir/a,  nearly, 
=  1/A,  suppose, 

the  symbol  X  being  introduced  for  convenience  of  writing. 
In  pulley  tackle  so  much  depends  on  the  stiffness  of  the 

ropes  that  it  is  of  little  use  to  determine  the  effect  of  axle- 
friction  only.  The  formulas  in  all  practical  cases  are  empir- 

ical and  the  investigation  outside  our  province. 

Ex.  1.  If  the  axle  were  smooth,  then  F  =  W. 
2.  The  effect  of  the  friction  is  the  same  as  the  raising  of 

an  additional  weight  (k  —  l)Wit  the  axle  were  smooth. 
3.  Find  the  tension  of  the  cord  supporting  the  pulley. 
4.  Show  that  the  efficiency  =  1/A. 
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(b)  The  single  movable  pulley. 
In  a  derrick  where  the  rope   passes  under  the  movable 

pulley  and  over  the  fixed  pulley  let  F  be  the 
force  applied  and  W  the  weight  to  be  raised. 
From  the  preceding  it  follows  that  the 

pulls  in  the  three  parts  of  the  cord  are  F, 

F/\,  and  F/X^,  respectively. 
Hence,  considering  the  cords  which  hold 

the  lower  pulley  to  be  parallel, 

W=F/X^F/X\ 

and         W/F=(X  +  1)/X% 

Ex.  1.  If  friction  is  neglected,  show  that 
W=2F. 

2.  With  two  double-sheave  blocks 

W=F{X'-1)/(X'-X*). 

3.  With  two  double  -  sheave  blocks,  neglecting  friction, 
W=  4:F.     Hence  find  the  loss  due  to  friction. 

4.  In  a  double-sheave  tackle  the  under  block  is  fixed  and 
the  upper  movable.  Find  the  pull  on  the  support  A  and  the 
loss  due  to  friction. 

(c)  The  differential  pulley. 
Let  F  be  the  force  applied  and  W  the  weight  which  is  on 

the  point  of  being  raised  (figure,  page  239). 
Consider  the  lower  pulley.  Let  F^  denote  the  pull  of  the 

driving  chain  and  F^  that  of  the  driven.    Then  from  {a) XF. 

But 
F,-\-F,=  W. 

(1) 
(3) 

In  the  upper  block  F  and  F^  drive  and  F^  is  driven;  i^and 
F^  act  on  the  larger  sheaf,  and  F^  reduced  to  this  sheaf  is 
F^a/b.     Then 

F+F^a/b  =  XF,. 
(3) 
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Eliminating  F^ ,  F^  from  these  equations, 

which  gives  the  mechanical  advantage. 

When  the  weight  is  on  the  point  of  slipping  down,  that  is, 
when  W  acts  as  driving  force  and  F  as  resistance,  then,  writ- 

ing \/\  for  A,  we  have 

F/W={J)-Va)lh\{^-\-TC) 
as  the  condition  to  be  fulfilled. 

If  the  driving  force  F  is  removed,  then  whatever  be  the 
weight  we  must  have,  in  order  that  no  back  action  may  take 

place, h-Va  =  0, 

which  gives  the  relation  between  the  radii,  that  this  may  be 
possible.  If  A  =  1.1  then  h/a  =  1.2,  and  the  diameters  of 
the  pulleys  are  roughly  as  5  to  6.  For  these  dimensions 
the  chain  will  not  slip,  whatever  weight  is  being  raised.  The 
practical  value  of  the  pulley  lies  largely  in  this  circumstance. 

207.  Tlie  Screw. — Consider  a  screw-jack  with  the  driving 
force  F  acting  at  the  end  of  a  lever 
I  and  a  weight  W  on  the  point  of 

being  raised,  the  coefficient  of  fric- 
tion being  ̂ . 

The   screw   unwrapped  is  an  in- 
clined plane  with  the  force  parallel 

to  the  base  (Art.  200). 

Let  a  complete  revolution  of  the  screw  be  made;  then,  sum- 
ming the  works  by  the  external  forces,  we  have  for  equilibrium 

-  XAB-  WxBC- M^XAC=0,    .    .     (1) 

Kesolving  the  forces  perpendicular  to  AC, 

TjlJ 

JV-  Wco8^ -  —  8111/3  =  0;.    ...     (2) 

"
\
 

C ' 

^ 

n/r 

A 

w 
i 
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(3) 

§208] 

.•.  by  substituting  for  JV  its  value  from  (2)  in  (1), 

tr
y 
 \ 

rcos^  +  — sin^j, 

or    Fl  ==  Wr  im  i/S  ̂   <p),   

the  result  required. 

The  useful  work  is  W  X  AB  ta>n  /?,  and  the  total  work  is 

W  X  AB  ta.n  {/3 -{- <p). 

/.    efficiency  =  tan  /?/tan  (^  +  0). 

208.  The  relation  between  F  and  W  may  also  be  found 

graphically. 

The  resultant  i?  of  iV  and  juJV  makes  an  angle  0  with  the 
normal.  Hence  lay  off  W  to  scale,  complete  the  triangle  of 
forces,  and  scale  off  Fl/r  and  R, 

From  the  triangle  we  have  at  once 

FI/r=  Tf  tan  (>6  +  <fi). 
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If  the  weight  W  is  on  the  point  of  moving  dotvn  and  the 
acting  force  is  denoted  by  F^ ,  then  it  may  be  shown  in  a 
similar  manner  that 

FJ/r  =  W  tan  (/?  -  0). 

Hence  if  the  force  applied  has  any  value  between  F  and  F^ 
the  screw  will  be  in  equilibrium  when  supporting  a  weight  W, 

Ex.  1.  If  y5  =  0  we  have  F^  =  0.     What  does  this  mean  ? 
2.  The  circumference  of  a  screw  is  4  in,  there  are  2  threads 

to  the  inch,  and  the  coefficient  of  friction  is  0.2.  Find  the 
force  applied  at  the  end  of  a  lever  14  in  long  that  will  raise  a 
weight  of  100  lb.  A7is.  1.5  pounds. 

What  force  would  just  support  the  weight  ? 
Ans,  1/3  pound. 

3.  It  /3  =  0,  the  efficiency  is  null.     Explain. 
4.  In  what  other  case  is  the  efficiency  null  ? 
5.  Show  that  the  efficiency  of  a  screw  is  greatest  when  the 

pitch  angle  is  45°,  nearly. 
6.  In  a  screw  the  pitch  angle  is  45°  and  the  coefficient  of 

friction  0.16.     Find  the  efficiency.  Ans.  0.72. 
7.  If  tan  y5  =  0.1,  tan  0  =  0.01,  prove  efficiency  =  0.9; 

tan  /?  =  0.1,  tan  0  =  0.1,      "  "         =  0.5; 
tan  /3  =  0.1,  tan  0  =  0.2,      "  «         =  0.3. 

Hence  show  the  importance  of  lubrication. 
8.  The  efficiency  of  a  rectangular  screw  is  a  maximum 

when 

/3=(7t-  20)/4. 

209.  Power.  Activity. — It  is  plain  from  the  definition  of 
work  that  any  small  force  can  do  work  of  any  magnitude  pro- 

vided sufficient  time  is  given.  Hence,  in  order  to  compare 
agents  which  do  work,  it  is  necessary  to  take  the  time  employed 
into  consideration.  To  indicate  the  rate  of  doing  work  or  the 
amount  of  work  performed  in  a  given  interval  the  term  power 
or  activity  is  used.  Thus  to  raise  one  ton  of  coal  through 
300  ft  in  10  min  would  require  an  expenditure  of  2000  X  300 

ft-pounds  of  work  in  10  min,  or  of  60,000  ft-pounds  per  min, 
or  of  1,000  ft-pounds  per  sec,  either  one  of  which  would  be 
an  expression  for  the  power  of  the  agent. 
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In  general,  if  a  resistance  of  R  pounds  is  overcome  at  a 
velocity  of  v  ft/sec,  then 

Rv  ft-pounds/sec 

will  measure  the  power  of  the  agent. 

By  the  unit  power  or  unit  rate  of  working  is  meant  the 
power  of  an  agent  which  can  do  unit  work  in  unit  time.  The 

gravitation  unit  is  the  foot-pound  per  second  or  the  foot- 
pound per  minute. 

In  engineering  work  the  foot-pound  per  minute  being 
too  small  a  unit  for  most  purposes,  the  multiple  unit  of  the 

horse-power  has  been  introduced.  A  horse-power  is  defined 
as  the  power  of  an  agent  which  can  do  a  work  of  33,000  foot- 

pounds per  minute  or  of  550  foot-pounds  per  second.  It  does 
not  give  the  average  power  of  a  horse;  but  as  a  unit  of  this 
size  is  convenient,  the  name  introduced  by  Savery  and  defined 
by  James  Watt  has  been  retained.  Carefully  notice  that  the 

term  horse-power  does  not  express  an  amount  of  work  but  the 
rate  of  doing  work. 

Conversely,  33,000  X  60  (=  1,980,000)  ft-pounds  is  called  a 
horse-power-hour,  a  term  frequently  employed  in  engineering. 
The  term  horse-power-hour  is  thus  a  unit  of  work  and  not  a 
unit  of  power. 

Watt  derived  his  horse-power  from  actual  experiments 
carried  out  at  Barclay  and  Perkins'  brewery,  London,  with 
certain  of  the  very  heavy  horses  belonging  to  the  firm.  These 
horses  were  caused  to  raise  a  weight  from  the  bottom  of  a 
deep  well  by  pulling  horizontally  on  a  rope  passing  over  a 
pulley.  lie  found  that  a  horse  could  walk  2.5  miles  an.  hour 
and  at  the  same  time  raise  a  weight  of  100  lb.  This  is  equiva- 

lent to  2.5  X  5280  X  100/60  =  22,000  foot-pounds  per  min- 
ute. By  adding  50  per  cent  to  this  he  obtained  33,000.  The 

margin,  11,000  foot-pounds,  he  allowed  for  loss  in  engine- 
friction,  etc. 

Gen.  Morin's  estimate  of  the  power  of  a  horse  is  26,150 
ft-pounds  per  minute. 
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210.  For  determining  the  power  developed  by  a  steam- 
engine  or  other  machine,  some  form  of  friction-brake  is  used. 
The  idea  is  to  balance  the  work  done  by  the  machine  by  a 
frictional  resistance,  compute  this  resistance,  and  thence  find 
the  power  of  the  machine.  The  brake  absorbs  the  work  to 
be  measured. 

Let  0  be  a  shaft  of  radius  r,  to  which  the  brake  ̂ ^  is 

fastened.    By  means  of  the  screws  a,  b  the  friction  of  the 

a  b 

brake  on  the  shaft  may  be  regulated.  Suppose  it  adjusted  so 
that  the  engine  develops  a  friction/,  just  sufficient  to  balance 
a  body  of  weight  W  placed  at  the  end  A  of  the  beam.  Then 
the  moments  of/ and  ̂   about  0  must  be  equal,  or 

fr  =  Wl 

Suppose  the  shaft  to  revolve  uniformly  n  times  per  min- 
ute. Then,  assuming  that  the  friction  for  uniform  motion 

of  the  shaft  is  the  same  as  at  the  point  of  just  beginning  to 
move,  we  have 

Work  done  in  one  min  =  friction  developed  in  n  revs. 

=  fX27trXn 
=  27tnWl 

If  W  is  expressed  in  pounds  and  I  in  feet,  then  the 

H.P.  =  27t7iWl/3d,000 
=  O.OOOlQn  WL 
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Since  the  total  work  done  by  a  machine  is  given  by  the 

indicated  horse-power  (Art.  189)  and  the  useful  work  by 
the  braked  horse-power,  we  may  define  the  efflciency  of  the 
machine  to  be  the  ratio  of  the  B.H.P.  to  the  I.H.P.,  or 

efficiency  =  B.H.P./I.H.P. 

Ex.  1.  Show  that  one  H.P.  =  396,000  inch-pounds/minute 
=  198  inch-tons/minute. 

2.  22  tons  of  coal  are  to  be  hoisted  through  50  yards  in  10 
min.     Find  the  H.P.  of  engine  necessary.       Ans,  20  H.P. 

3.  A  traction-engine  weighing  5  tons  hauls  a  load  of  10 
tons  at  8  miles  an  hour,  the  resistance  being  20  pounds  per 
ton.     Find  the  H.P.  exerted.  Ans.  6.4  H.P. 

4.  A  belt  passing  round  two  pulleys  moves  with  a  velocity 
of  10  ft/sec.  Find  the  H.P.  transmitted  if  the  difference  of 
tension  of  the  belt  above  and  below  the  pulleys  is  1100 
pounds.  Ans.  20  H.P. 

5.  Find  the  H.P.  required  to  propel  a  train  weighing  W 
tons  at  F  miles  an  hour  on  a  level  track,  the  resistance  being 
j»  pounds  per  ton.  Ans.    WpV/375. 

6.  Find  the  H.P.  required  by  a  vessel  to  overcome  a  resist- 
ance of  E  pounds  at  a  speed  of  V  knots. 

Ans.  EV/326.66  horse-power. 
Hence  show  that  one  horse-power,  or  550  ft-pounds  per 

second,  is  about  326  knot-pounds. 
7.  A  shaft  14  ft  in  diameter  is  sunk  in  gravel  to  a  depth  of 

10  fathoms  in  10  days  of  10  hours  each.  Taking  the  weight 

of  the  gravel  at  100  lb/ft',  find  the  H.P.  expended  in  lifting 
out  the  gravel.  A71S.  0.14  H.P. 

8.  "  At  80  miles  an  hour  a  pull  of  4  pounds  11  ounces  rep- 
resents one  horse-power." 

9.  Find  the  horse-power  necessary  to  pump  out  the  St. 
Mary's  Falls  Canal  Lock,  Sault  Ste.  Marie,  in  24  hours,  the 
length  of  the  lock  Leing  500  ft,  width  80  ft,  and  depth  of 
water  18  ft,  the  water  being  delivered  at  a  height  of  42  ft 
above  the  bottom  of  the  lock.  Ans.  31.2  H.P. 

10.  A  belt  can  stand  a  pull  of  100  pounds  only.  Find  the 
least  speed  at  which  it  can  be  driven  to  transmit  20  H.P. 

Ans.  110  ft/sec. 

11.  How  many    gallons    of  water  would    be   raised   per 
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minute    from  a  mine   600   ft    deep   by   an   engine   of   175 
H.P.,  supposing  a  gallon  of  water  to  weigh  8^  lb.? 

Ans.  1155  gals. 
12.  The  average  flow  over  Niagara  Falls  is  270,000  cubic 

feet  per  second.  The  height  of  fall  is  161  feet.  Show  that 
the  H.P.  developed  is  in  round  numbers  5  million, 

13.  The  U.  S.  war-ship  Columbia  has  a  speed  of  23  knots 
with  an  indicated  horse-power  of  22,000.  Find  the  resistance 
offered  by  the  water  to  her  passage.  Ans.  156  tons. 

14.  In  testing  a  Corliss  engine  running  at  100  revolutions 
per  minute,  the  lever-arm  of  the  brake  employed  was  lOJ  ft 
and  the  weight  attached  2000  lb.     Find  the  H.P.  developed. 

A71S.  400  H.P. 

15.  "A  C.  and  C.  electric  motor  shows  on  a  Prony  brake  a 
pull  of  5  ounces  on  a  1-ft  lever,  that  is,  2  ft-pounds  per 
revolution,  or  about  yV  H.P.  at  1500  revolutions  per  minute." Check  the  conclusions  in  this  statement. 

16.  In  a  Corliss  engine  running  at  100  pounds  pressure  per 
sq  in  and  100  revolutions  per  minute,  the  diameter  of  the 
cylinder  is  18  in  and  length  of  stroke  42  in.  If  the  brake 
was  used  on  a  pulley  6  ft  in  diameter  and  keyed  to  the  engine- 
shaft,  find  the  friction  on  the  face  of  the  pulley. 

Ans.  f  =  9450  pounds. 
17.  A  6-ton  fly-wheel  on  a  14-in  axle  makes  90  revolutions 

per  minute.  Find  the  H.  P.  absorbed  in  friction,  the  coeffi- 
cient of  friction  being  0.1.  Ans.  12  H.P. 

18.  A  steam-hoist  of  3  H.P.  is  found  to  raise  a  weight  of 
10  tons  to  a  height  of  50  ft  in  20  min.  How  many  ft-pounds 
of  work  are  wasted  by  friction  in  a  day  of  10  hours  ? 

Ans.  29,400,000  foot-pounds. 

19.  A  pumping-engine  of  piston  area  100  in",  steam-press- 
ure 60  pounds/in",  length  of  stroke  3  ft,  and  number  of  revo- 

lutions per  min  25,  raises  500  gallons  of  water  per  minute  a 
height  of  50  ft.     Find  the  efficiency.        A7is.  0.23,  nearly. 

20.  A  train  weighing  100  tons  runs  at  42  miles  an  hour  on 
a  level  track,  the  resistance  being  8  pounds  per  ton.  Find 
its  speed  up  a  Ifo  grade  (1  ft  rise  in  100  ft)  if  the  engine- 
power  is  unchanged.  Ans.  12  miles/hour. 

21.  A  traction-engine  weighing  5  tons  can  haul  15  tons  on 
a  level,  the  coefficient  of  friction  being  0.02.  Find  the  net 
load  it  can  haul  up  a  1^  grade.  A?is.  8^  tons. 

22.  A  train  weighs  W  tons  and  the  resistance  is  p  pounds 
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per  ton.     Find  the  horse-power  necessary  to  propel  it  at  a 
speed  of  V  miles  an  hour  up  a  grade  of  7i^. 

Ans.    WV{p  +  20w)/375  horse-power. 
23.  Find  the  speed  of  a  driving-pulley  3.5  ft  in  diameter  to 

transmit  6  H.P.,  the  driving 
force  of  the  belt  being  150 
pounds.     Ans,  120    revolu- 

tions/minute. 
24«. . The  horse-power 

transmitted  by  an  endless 
belt  passing  over  two  pul- 

leys is 

7tdn{P  -  0/33000 

when  d  =  diameter  of  driving-pulley  in  ft, 
n  =  no.  of  revolutions  per  minute  of  driving-pulley, 

P,  Q  =  the  pulls  in  the  belt  on  the  taut  and  slack  sides 
expressed  in  pounds. 

24^.  If  T  is  the  torque  of  the  driver,  then 

H.P.  =  7VJ/5250. 

25.  A  train  of  100  tons  is  hauled  by  an  engine  of  150  H.P. 
The  resistance  is  14  pounds  per  ton.  Find  the  greatest 
velocity  that  the  engine  can  attain.       Ans.  40  miles/hour. 

26.  Check  this  statement:  "55  pounds  mean  effective 
pressure  at  600  ft  piston  speed  gives  one  H.P.  for  each  sq  in 

of  piston  area.^^ 
27.  Prove  H.P.  of  an  engine  =  ;S'iV^P/33000  where 

S  =  length  of  stroke  in  ft; 
JV=  no.  of  strokes  per  minute; 
A  =  piston  area  in  square  inches ; 
F  =  mean  steam-pressure  in  pounds  per  square  inch  of 

piston  area. 

28.  Find  the  work  done  per  hour  at  the  crank-pin  of  an 
engine  revolving  40  times  a  minute  and  acting  against  a  re- 

sistance of  7000  pounds,  the  radius  of  the  crank  being  18 
inches.  Ans.  79,200  ft-tons. 

29.  Show  that 

tractive  pull  of  a  locomotive  (in  pounds)  =  d^ps/D 
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where  d  =  diameter  of  cylinders  in  inches; 
p  =  mean  effective  pressure  in  pounds  per  sq.  inch ; 
s  =  stroke  in  inches; 
D  =  diameter  of  driving-wheels  in  inches. 

30.  Show  that  the  cylinder  diameter  of  an  engine  that  will 
produce  n  horse-power  at  a  piston  velocity  of  s  ft  per  minute 
under  a  mean  effective  pressure  of  p  pounds  per  sq  in  is 
205  Vn/ps  inches  nearly. 

211.  Energy. — We  have  seen  that  when  the  forces  acting 
on  a  body  are  in  equilibrium  or  the  body  moves  with  a  uni- 

form velocity,  the  sum  of  the  works  done  is  zero;  that  is,  the 
work  done  by  the  resultant  driving  force  is  equal  to  that  done 
on  the  resistance.  Now  the  action  of  a  force  is  to  cause  ac- 

celeration. If  the  motion  is  uniform,  the  acceleration  caused 

by  the  driving  force  is  balanced  by  the  equal  and  opposite 
acceleration  caused  by  the  resistance.  But  if  the  acceleration 

caused  by  the  driving  force  exceeds  that  caused  by  the  re- 
sistance, velocity  is  gained,  and  the  motion  is  not  uniform. 

Thus  let  a  force  F  pounds  act  on  a  body  weighing  W  lb 

through  a  distance  s  ft  and  let  v  ft/sec  be  the  velocity  ac- 
quired.    Then  (Art.  183) 

Fs  =  Wvy2g. 

Now  Fs  is  the  work  done  by  F  in  passing  over  a  distance 
s  in  its  line  of  action,  and  therefore  a  body  W  in  acquiring  a 

velocity  v  from  rest  must  have  Wv^/2g  units  of  work  done 
upon  it. 

Conversely,  the  force  F  which  will  generate  a  velocity  v  in 
acting  through  a  distance  s,  will  destroy  the  same  velocity  if 
acting  through  the  same  distance  in  the  opposite  direction,  or 

the  body  by  virtue  of  its  velocity  v  can  do  Fs  or  Wv''/2g  units 
of  work  in  giving  up  that  velocity  and  coming  to  rest.  This 
capacity  which  a  body  possesses  of  doing  work  in  consequence 
of  its  velocity  is  known  as  energy.  Hence  the  measure  of 
the  energy  of  a  body  which  weighs  W  and  has  a  velocity  v  is 

Wv^/2g  units  of  work.  We  may  therefore  state  the  equation 
Fs  =  Wvy2g. 
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If  a  body  is  in  motion  under  the  action  of  force,  the  work 
done  in  passing  from  one  position  to  another  is  equal  to  the 

energy  produced. 
212.  More  generally,  if  a  force  F  acting  on  a  body  which 

weighs  W  is  opposed  by  a  uniform  resistance  R  in  the  same 

line  of  action,  then  the  net  driving  force  i^  F  —  R.  Let  a 

be  the  acceleration  produced;  then,  from  Newton's  second law, 

F-R=  Wa/g. 

If  s  is  the  distance  passed  over  and  the  velocity  is  changed 
from  w  to  V  in  passing  over  this  distance,  then 

as  =  vy2  -  uy2. 

Eliminating  a, 

Fs  =  Rs+  Wvy2g  -  Wuy2g; 

which  may  be  stated : 

The  work  done  by  a  force  on  a  body  (or  system  of  bodies 
with  configuration  remaining  the  same)  is  equal  to  the  work 
done  against  the  resistance  together  with  the  change  of  energy 
generated  in  the  body  (or  system  of  bodies), 

213.  The  possession  of  energy  as  defined  implies  motion. 
But  the  motion  may  not  appeal  directly  to  our  senses.  A 

body  may  possess  energy  by  virtue  of  its  position.  For  ex- 
ample, let  a  body  be  thrown  upward.  The  body  possesses 

energy  as  shown  by  its  capacity  to  overcome  obstacles.  But 
its  visible  energy  is  continually  diminishing,  and  becomes  zero 
when  the  highest  point  is  reached.  In  its  fall  it  acquires 

visible  energy  until  at  the  starting-point  this  energy  is  equal 
to  the  initial  energy. 

In  rising  the  energy  was  expended  in  overcoming  the  re- 
sistance offered  by  gravity.  The  force  of  gravity  is  prepared 

to  restore  in  the  return  to  the  initial  position  the  energy  ab- 
stracted. The  body  and  the  earth  thus  form  a  system  of  give 

and  take — a  connected  system  in  which  the  sum  total  of  the 
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energy  remains  the  same.  But,  instead  of  saying  that  as  one 
member  of  a  system  loses  energy  some  other  member  of  that 
system  gains  energy,  it  is  convenient  to  confine  our  attention 
to  one  member  of  the  system  only,  and  say  that  as  it  loses 
energy  of  motion  (kinetic  energy)  it  stores  or  gains  energy  by 
virtue  of  its  position  (potential  energy);  or,  as  it  is  sometimes 
expressed,  by  virtue  of  the  configuration  of  the  system. 

The  kinetic  energy  of  a  body  or  the  energy  which  it  pos- 
sesses in  virtue  of  its  motion  is  measured  by  the  work  it  can 

do  against  resistance  in  parting  with  this  motion.  Thus  the 
kinetic  energy  of  a  body  weighing  W  lb  and  moving  with  a 

velocity  v  ft /sec  is  Wv^/2ff  foot-pounds  of  work. 
The  potential  energy  of  a  body,  or  the  energy  it  possesses 

by  virtue  of  its  configuration,  is  measured  by  the  work  it  can 
do  in  passing  from  its  present  configuration  to  some  standard 
configuration.  Thus  a  weight  W  lb,  if  raised  to  a  height  h  ft, 

would  possess  a  potential  energy  of  W7i  foot-pounds  of  work, 
because  it  could  do  that  amount  of  work  in  falling  to  its 

original  position — in  driving  a  clock,  for  example. 

The  term  potential  energy  was  introduced  by  Prof.  Mac- 
quorn  Kankine,  and  the  term  kinetic  energy  by  Lord  Kelvin. 

214.  Unit  of  Energy. — The  energy  expended  being  equal 
to  the  work  done,  the  unit  of  energy  must  be  the  same  as  the 
unit  of  work.  In  the  British  system  the  unit  is  therefore 

the  foot-pound. 

The  expression  Wv^'/g,  introduced  by  Leibnitz  (1646-1716) 
under  the  name  vis  viva,  or  living  force,  is  still  made  use  of 
by  some  writers.  Its  value  is  equal  to  twice  the  kinetic  en- 

ergy. In  view  of  the  prominence  of  the  doctrine  of  energy 
in  modern  physics,  the  term  kinetic  energy  is  to  be  preferred, 
and  vis  viva,  being  quite  superfluous,  should  be  dropped. 
The  Leibnitz  term  vis  mortua,  as  the  name  for  pressure,  is 
long  dead. 

Galileo  used  the  terms  '*■  momentum,"  "impulse,"  and 
^'^ energy"  indiscriminately. 
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216.  For  illustration,  consider  the  relation  between  the 
kinetic  and  potential  energies  in  the  following  simple  ex- 

amples : 
(1)  A  body  weighing  W  lb  falls  from  ̂   to  ̂   through  a 

height  h  ft. 

The  p.e.  at  ̂   =  work  in  falling  from  A  to  B 
=  W7i  foot-pounds. 

The  k.e.  at  ̂   =  0. 

.%  total  energy  at  ̂   =  Wh  foot-pounds. 

Let  C  be  any  point  in  AB  and  let  AC  =  s  ft.  When  the 
weight  W  has  fallen  a  distance  s  it  has  acquired  a  velocity  v, 

so  that  v'  =  2ffs  (Art.  91).     Then 

k.e.  at  (7  =  Wvy2ff  =  Ws; 

p.e.  atC  =  W{h  -  s). 

.*.  total  energy  at  C  =  Ws  -\-  W(h  —  s) 
=  Wh  foot-pounds 
=  total  energy  at  A, 

But  0  is  an^  point,  and  therefore  the  sum  of  the  kinetic 
and  potential  energies  of  the  body  is  constant  throughout 
the  fall. 

(2)  Consider  a  body  sliding  down  a  smooth  inclined  plane 
of  height  h  and  length  I  under  the  action  of  gravity. 

This  is  very  similar  to  the  preceding,  and  its  development 
is  left  to  the  student. 

(3)  A  body  sliding  down  a  rough  inclined  plane  AB  under 
the  action  of  gravity. 

With  the  same  notation  as  before,  yu  being  the  coefficient  of 
friction, 

k.e.  at  ̂   =  0; 

p.e.  at  ̂   =  Wh =  Wl  sin  d, 

.*.  total  energy  a.t  A  =Wl  sin  6  ft-pounds. 

The  acceleration  down  the  plane  =  ̂ (sin  d  —  /x  cos  6); 

velocity  at  ̂   =  y'2^(8in  6  —  ju  cos  6)1; 
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k.e.  at  B  ==i  TTx  2^(sin  6— ju  cos  6)l/g 
=  ]Vl{sin  d  —  fx  cos  6) 

p.e.  at  5  =  0; 

.*.  total  energy  at  5  =  WI{s\tl  Q  —  p.  cos  ̂ )  foot-pounds. 

216.  In  the  last  case,  instead  of  the  energies  at  A  and  B 
being  equal  as  in  (1)  and  (2),  there  is  a  loss  }jl  Wl  cos  6  in 

passing  from  A  to  B.  It  would  thus  appear  that  when  en- 
ergy passes  from  one  form  to  another  it  is  not  always  capable 

of  being  changed  into  its  original  form — at  least  with  the 
jgame  degree  of  readiness.  The  loss  jj.  Wl  cos  6  is  explained 
by  saying  that  this  energy  has  been  converted  into  other 
forms  of  energy,  principally  the  molecular  energy  called  heat. 
Experiment  shows  that  heat  may  be  expressed  as  a  definite 

number  of  foot-pounds  of  work.  Thus  Joule  found  that 
the  amount  of  heat  necessary  to  raise  one  pound  of  water 

from  0°  to  1°  F.  is  capable  of  doing  778  foot-pounds  of 
work. 

217.  These  examples  are  simple  illustrations  of  a  general 
principle,  known  as  the  conservation  of  energy,,  which  is 
stated  by  Maxwell  as  follows : 

The  energy  of  a  system  is  a  qumitity  which  can  neither  he- 
increased  nor  diminished  hy  any  actions  between  the  parts 

of  the  system,  though  it  may  he  transformed  into  any  of  the 

forms  of  luhich  energy  is  susceptible  ;  in  a  word. 
The  energy  of  a  closed  system  is  a  constant  quantity,  or 
Energy  is  indestructible, 
218.  The  principle  of  the  conservation  of  energy  is  the 

greatest  of  all  physical  laws.  It  is  founded  upon  experi- 
mental evidence  most  extensive,  so  that  no  doubt  of  its  appli- 
cability to  all  forces  in  nature  is  now  entertained.  It  includes 

Newton's  laws  of  motion  and  the  principle  of  work,  and  hence 
upon  it  the  science  of  dynamics  may  be  based.  It  cannot, 

however,  be  deduced  from  Newton's  laws  of  motion,  as  it  is 
more  comprehensive  than  they. 

It  is  perhaps  more  in  accordance  with  the  spirit  of  modern 
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science  to  consider  space,  time,  matter,  and  energy  as  the  fun- 
damental concepts  of  Mechanics  rather  than  space,  time,  mat- 

ter, and  force  (Art.  2).  The  further  principle  necessary  on 
which  to  base  the  science  would  in  the  former  case  be  that  of 

the  conservation  of  energy,  while  with  the  latter  Newton's 
laws  of  motion  are  commonly  employed.  The  latter  method, 
which  is  that  followed  in  this  book,  is  given  as  being  more 

readily  appreciated  by  the  beginner.  But  as  it  involves  diffi- 
culties from  which  the  first  is  free,  it  seems  likely  that  the 

notion  of  energy  will  in  time  be  adopted  universally  as  the 
fundamental  one  rather  than  that  of  force. 

Ex.  la.  Find  the  greatest  velocity  v  attained  by  a  car 
weighing  20  tons  if  hauled  along  a  level,  straight  track  by  a 
pull  of  1000  pounds  through  a  distance  of  half  a  mile  and 
against  a  constant  resistance  of  15  pounds  per  ton. 

A71S.  54.4  ft/sec. 
Id.  Show  that  the  car  will  come  to  rest  after  traveling  1^ 

miles  and  in  3.77  min  if  the  pull  ceases  at  ihe  end  of  half  a 
mile. 

2.  A  weight  of  25  lb  has  fallen  through  25  ft.  Find  the 
rate  at  which  work  is  being  done.       Ans.  0.9  horse-power. 

3.  A  cannon  when  fired  recoils  with  a  velocity  of  10  ft/sec 
and  runs  up  a  platform  having  an  incline  of  1  in  4.  Find  the 
distance  it  goes  before  coming  to  rest.  Ans.  6  ft  3  in. 

4.  A  body  weighing  64  lb  and  moving  east  with  a  velocity 
of  3  ft/sec  receives  a  blow  such  that  the  velocity  due  to  it  is  4 
ft/sec  north.     Find  the  resultant  kinetic  energy. 

Ans.  25  foot-pounds. 
[This  resultant  =  the  sum  of  the  separate  kinetic  energies.] 
5.  Find  the  work  done  in  stopping  a  100-lb  shot  moving 

with  a  velocity  of  1000  ft/sec. 
Ans.  1,562,500  foot-pounds. 

6.  Find  the  force  exerted  in  stopping  a  train  of  250  tons  in 
1000  ft  from  a  velocity  of  30  miles  an  hour. 

Ans.  15,125  pounds. 
7.  A  shot  pierces  a  target  of  a  certain  thickness.  Show 

that  to  pierce  one  of  4  times  the  thickness  twice  the  velocity 
is  necessary. 

8.  What  is  the  H.P.  of  an  engine  that  will  deliver  10,000 
gallons  of  water  per  minute  with  a  velocity  of  10  ft/sec,  if  10^ 
is  wasted  by  leakage?  Ans.  4.4  H.P. 
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9.  A  blacksmith^s  helper  using  a  16-lb  sledge  strikes  20 
fcimes  a  minute  and  with  a  velocity  of  30  ft/sec.  Find  his 
rate  of  work.  A7is.  3/22  H.P. 

10.  A  stone  is  thrown  with  a  horizontal  velocity  of  50  ft/sec. 
Find  the  velocity  with  which  it  strikes  the  ground,  which  is 
horizontal  and  6  ft  below  the  point  of  projection. 

Ans.  53.7  ft/sec. 

11.  Show  that  to  give  a  train  a  velocity  of  20  miles  an  hour 
requires  the  same  energy  as  to  lift  it  vertically  through  a 
height  of  13.4  feet. 

12.  A  hoisting-engine  lifts  an  elevator  weighing  1  ton 
through  50  ft  when  it  attains  a  velocity  of  4  ft/sec.  If  the 
steam  is  shut  off,  how  much  higher  will  it  rise  ?    Ans.  3  in. 

13.  In  (12)  find  the  time  of  rising  50  ft,  supposing  the 
motion  uniformly  accelerated,  and  also  find  the  H.P.  of  the 
engine.  Ans.  25  sec;  7.3  H.P. 

14.  Show  that  the  energy  stored  in  a  train  of  weight  JV  lb 
and  moving  with  a  velocity  of  V  miles  per  hour  is  ̂ Fy30 
foot-pounds. 

15.  A  train  of  100  tons  is  running  at  30  miles  an  hour  up 
a  2fo  grade.  Find  the  H.P.  required,  the  resistance  on  a  level 
being  10  pounds  per  ton,  due  to  axle-friction  chiefly. 

16a.  In  a  locomotive  running  on  the  level  at  30  miles  an 
hour  the  tractive  force  is  8  tons.  Taking  the  resistance  of 
friction  as  10  pounds  per  ton,  find  the  number  of  20-ton  cars 
that  can  be  hauled  if  engine  and  tender  weigh  100  tons. 

Ans.  75  cars. 

16b.  Find  the  number  that  would  be  hauled  up  a  2fo  grade. 
Ans.  11  cars. 

16c,  Find  the  H.P.  exerted  in  the  former  case. 
Ans.  1280  H.P. 

l'7a.  An  engine  exerts  on  a  car  weighing  20,000  lb  a  net 
pull  of  2  pounds  per  ton.  Find  the  energy  stored  in  the  car 
after  going  2^  miles.  Ans.  264,000  foot-pounds. 

17^.  If  shunted  to  a  level  side  track  when  the  frictional 
resistance  is  10  pounds  per  ton,  find  how  far  it  will  run  before 
coming  to  rest?  A^is.  1/2  mile. 

17c.  If  shunted  on  a  side  track  with  a  1^  grade,  how  far 
will  it  run  before  coming  to  rest  ?  Ans.  1/6  mile. 

17 d.  If  there  are  brakes  on  half  the  wheels,  and  these  are 
applied  with  a  pressure  of  half  a  wheel-load,  how  far  will  the 
car  run  up  a  1^  grade,  the  coefficient  of  friction  between 
wheel  and  brake-shoe  being  0.2  ?  Ans.  203  ft,  nearly. 
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18.  In  the  Westinghouse  brake  tests  (Jan.  1887)  at  Wee- 
hawken  a  passenger-train  moving  22  miles  an  honr  on  a  down 
grade  of  1^  was  stopped  in  91  ft.  There  was  94 fc  of  the  train 
braked.  Taking  the  frictional  resistance  as  8  pounds  per  ton, 
find  the  net  brake  resistance  per  ton  and  the  grade  to  which 
this  is  equivalent.  Ans.  393  pounds;  20.9  per  cent. 

19.  The  tractive  force  of  an  engine  is  F  tons.  If  the 

weight  of  engine  and  train  is  W  tons  and  the  frictional  resist- 
ance 71  pounds  per  ton,  show  that  in  going  up  an  afo  grade  the 

velocity  acquired  in  t  seconds  from  rest  will  be  Qgt  ft/sec, 

and  the  energy  0.5  WQ'gt'^  ft-tons,  where 

Q=zP/W-  a/100  -  7J/2000. 

219.  Stability  of  Equilibrium. — Conceive  a  body  in  equi- 
librium to  be  slightly  displaced:  the  forces  acting  will  tend 

either  to  restore  the  body  to  its  original  position  or  to  move 
it  farther  from  that  position,  or  will  themselves  equilibrate. 
In  the  first  case  the  original  position  is  said  to  be  one  of 
stahhf  in  the  second  of  unstable,  and  in  the  third  of  neutral, 

equilibrium  so  far  as  this  displacement  is  concerned.  In  the 

special  case  when  the  forces  continue  to  act  in  parallel  direc- 
tions, act  at  the  same  points,  and  remain  of  the  same  magni- 
tude, the  condition  of  neutral  equilibrium  is  called  astatic. 

Thus  a  body  supported  at  its  center  of  gravity  is  in  astatic 

equilibrium. 
We  shall  consider  the  force  of  gravity  to  be  the  only  exter- 

nal force  acting.  When  displacement  occurs  and  the  body 
tends  to  return,  the  force  of  gravity  does  work  in  this  return. 
Hence  the  potential  energy  is  greater  than  in  the  position  of 

equilibrium,  or  the  position  of  equilibrium  is  one  of  mini- 
mum potential  energy.  But  gravity  alone  acting,  the  poten- 

tial energy  depends  on  the  height  x  of  the  center  of  gravity 
above  a  fixed  horizontal  plane.  Hence  in  a  position  of  stable 
equilibrium  the  center  of  gravity  is  in  its  lowest  position. 

Similarly,  in  a  position  of  unstable  equilibrium,  the  center 
of  gravity  is  in  its  highest  position,  and  in  neutral  equilibrium 
it  remains  in  the  same  position  after  displacement. 

The  problem  thus  reduces  itself  to  a  determination  of 
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whether  the  JieigM  of  the  C.G.  above  a  fixed  horizontal  plane 
is  a  minimum  or  a  maximum,  or  is  stationary. 

The  "  Moving  Stone  '^  at  Lexington  is  one  of  the  most  re- 
markable freaks  of  nature  in  the  State  of  Kentucky.  In  the 

rear  of  the  grounds  attached  to  the  home  of  the  late  Gov. 
Gilmer  is  a  huge  boulder,  standing  alone  on  the  edge  of 
a  stream.  Eesting  directly  upon  this  boulder  is  another 
weighing  at  least  twenty  tons.  This  upper  boulder  rests 
upon  a  stone  pinnacle  not  more  than  two  feet  square,  and  so 
evenly  balanced  that  (although  the  slightest  touch  will  cause 
it  to  rock  to  and  fro)  a  hundred  horses  could  not  pull  it  from 
the  socket.     {8t,  Louis  Republic.) 

Ex.  1.  A  spoon  rests  in  a  hemispherical  cup:  to  determine 
the  nature  of  the  equilibrium. 

Let  r  =  radius  of  cup,  21  =  length 
of  spoon. 

Let  the  C.G.  of  the  spoon  be  at 
its  middle  point  G.  The  three 
forces  acting,  the  weight  and  the 
reactions  at  A  and  I)  cut  in  a 

point  B. Let  X  denote  the  depth  of  G  below  OD.    Then 

X  =  r  sin  26  —  I  sin  &, 

.'.  dx/dd  =  2r  cos  20  —  I  cos  6, 

Put  dx/dd  =  0,  and  we  have  for  the  position  of  equi- 
librium 

cos  6=(l-\-  V¥~^f32?)/Sr,    ....     (1) 

the  +  sign  of  the  radical  being  taken  because  0  is  less  than  a 
right  angle  necessarily. 

Also,  in  this  position 

d'x/dO'  =  -  4r  sin  2^  +  Z  sin  0, 

which  is  +  or  —  according  as 

4r  sin  26  <>  I  sin  6, 

or        cos  ̂   <  >  //8r. 
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But  cos  0  >  l/Sr  from  eq.  (1).  Hence  d^x/dO^  is  negative, 
or  a;  is  a  maximum  and  the  equilibrium  is  stable. 

2.  A  yard-stick  rests  over  the  edge  of  a  cylindrical  jar  2J 
in  diameter  with  one  end  against  the  inner  surface.  Show 

that  in  the  position  of  equilibrium  the  stick  is  inclined  at  60° 
to  the  horizontal  and  that  the  equilibrium  is  unstable. 

Show  also  that  in  order  that  the  jar  may  not  tumble  over, 
its  weight  must  be  at  least  six  times  that  of  the  stick. 

3.  A  hemisphere  rests  on  a  horizontal  table.  Show  that 
the  equilibrium  is  stable. 

4.  A  hemisphere,  radius  r,  rests  with  its  flat  surface  on  the 
top  of  a  sphere,  radius  R.  Show  that  the  equilibrium  is 
stable  or  unstable  as  i?  >  <  3r/8. 

5.  A  cylindrical  block  of  radius  r  with  a  hemispherical  end 
rests  on  a  horizontal  table.     Find  the  height  of  the  cylinder 

for  neutral  equilibrium.  Ans.  r/V%. 
6.  A  hemisphere,  radius  r,  rests  in  neutral  equilibrium  with 

its  curved  surface  on  the  top  of  a  fixed  sphere,  radius  R. 
Show  that 

5r  =  2>R. 

EXAMINATION. 

1.  "An  unbalanced  force  always  does  work.^^ 
2.  How  is  the  work  done  by  the  force  of  gravity  on  a  fall- 

ing body  measured  ? 
3.  How  is  the  work  done  against  friction  measured  ? 
4.  Give  examples  of  work  done  against  resistances. 

5.  Define  the  terms  foot-pound,  foot-ton,  and  inch-pound. 
6.  Find  the  work  done  against  gravity  in  going  upstairs. 
7.  Equal  forces  act  for  the  same  time  upon  unequal  weights 

w^y  w,.     Find  the  relation  between 

(1)  the  momenta  generated  by  the  forces; 
(2)  the  works  done  by  the  forces. 

8.  Define  a  lever,  and  find  the  conditions  of  equilibrium  on 
a  straight  lever. 

9.  "  The  reason  why  a  force  acting  at  a  greater  distance 
from  the  fulcrum  moves  a  weight  more  easily  is  because  it 

describes  a  larger  circle."     (Aristotle.) 
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10.  Put  a  5-lb  weight  into  one  of  the  pans  of  an  ordinary 
balance  and  drop  a  4-lb  weight  into  the  other  pan.  The 
beam  will  be  tilted,  and  if  the  4-lb  weight  is  quickly  removed 
it  may  lead  an  onlooker  to  think  it  really  weighs  more  than 
the  other. 

11.  In  catching  a  flying  ball  the  player  lets  his  hand  be 
carried  in  the  direction  of  motion  of  the  ball.     Why  ? 

12.  Find  the  relation  between  the  work  done  in  dragging  a 
body  up  an  inclined  plane  or  in  lifting  it  through  the  height 
of  the  plane  when  (a)  smooth,  (b)  rough. 

Also  find  the  condition  that  a  body  may  slide  down  a  rough 
incline  with  uniform  speed. 

13.  Find  the  condition  of  equilibrium  in  a  system  of 

pulleys  in  which  the  same  cord  goes  round  all  the  sheaves. 
14.  The  work  of  raising  a  body  in  sections  is 

Wh  foot-pounds, 

where  TTis  the  total  weight  in  lb  and  h  is  the  height  in  ft 
through  which  the  O.G.  has  been  raised. 

15.  In  a  screw-jack  the  pitch  of  the  screw  is  1  inch,  the 
lever  is  2  ft  long,  and  the  force  applied  at  the  end  of  the  lever 

25  pounds.  Find  the  weight  that  can  be  lifted,  friction  being 

neglected. 
16.  What  is  meant  by  backlash  in  screw  gears  ? 

[Slack  between  screw  and  nut.] 
17.  Find  the  forces  that  will  (1)  just  support,  (2)  just  move 

a  rough  screw  when  it  carries  a  given  weight. 
18.  The  mechanical  advantage  of  a  smooth  screw  =  (cir- 

cumference described  by  acting  force)/(pitch  of  screw). 
19.  Define  the  efficiency  of  a  machine.  In  all  cases  the 

efficiency  must  be  a  proper  fraction. 
20.  In  a  certain  machine  the  work  that  should  be  obtained 

theoretically  is  1600  ft-tons,  but  the  amount  actually  obtained 
is  1200  ft-tons.     Find  the  efficiency.  Ans.  75^. 
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21.  Explain  why  in  a  letter-balance  [Roberval  balance]  it 
does  not  matter  at  what  place  on  the  scale-pans 
the  weights  are  placed. 

[The  Roberval  balance  consists  of  a  jointed 
parallelogram  in  which  two  opposite  sides  turn 
freely  about  their  middle  points  A  and  B.  On 
the  other  sides,  which  are  always  vertical,  are 
fixed  the  scale-pans. 

A  druggist's  scales  are  an  example.] 
22.  An  ocean  steamer  is  running  at  n  knots  when  the 

engines  indicate  JV  horse-power.  Show  that  the  resistance 
offered  by  the  water  is,  roughly,  ]^/67i  tons. 

23.  The  weight  on  the  drivers  of  an  engine  is  W  lb,  the 
adhesion  is  1/n  part,  the  diameter  of  the  cylinders  d  in,  the 
diameter  of  the  driver  D  in,  the  length  of  stroke  s  in,  the 

mean  steam-pressure  per  sqinp  pounds;  then 

WD  =  d'nps. 

24.  Give  the  units  of  activity. 

25.  What  is  meant  by  the  term  horse-power  ?  By  horse- 
power-hour ? 

26.  What  is  the  ratio  of  man -power  to  horse -power? 
[From  1/5  to  1/10.] 

26a,  May  a  man  work  at  a  higher  rate  than  this  ? 
[Yes,  for  a  short  time.  He  may  work  at  the  rate  of  a 

horse-power  for  a  minute  or  two. 
It  does  not  follow  that  a  one-horse-power  engine  could  re- 

place a  horse  in  all  cases,  because  a  horse  could  make  a  spurt 
and  for  a  short  time  work  at  the  rate  of  3-  or  4-horse  power.] 

27.  Compute  the  horse-power  necessary  to  propel  a  train 
weighing  TTtons  at  a  speed  of  F miles  an  hour  (1)  on  the  level, 
(2)  up  a  grade  of  n^,  if  the  resistance  is  p  pounds  per  ton. 
(See  Examples,  p.  254.) 

A71S.  H.P.  on  level   =  .0027  WVp; 
on  grade  =  .0027  WV{p  +  20n). 

28.  The  tractive  power  of  the  engine  [870,  Empire  State 
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Express]  is  a  fraction  over  11  lb  per  pound  of  average  effect- 
ive cylinder-pressure.     This  represents  at  52.1  miles/hour 

very  nearly  16  H.P.     {Engineer,  London.) 
Check  the  conclusion. 

29.  If  P  pounds  represents  the  driving  force  and  v  ft/sec 

the  velocity,  show  that  the  power  is  represented  by  Pv  ft- 
pounds/sec. 

30.  A  turbine  can  utilize  75^  of  the  energy  of  falling 

water.    Show  that  the  effective  horse-power  of  a  waterfall  is 

Q7i/700,  nearly, 

where  Q  =  the  number  of  cubic  feet  of  water  per  minute, 
h  =  the  height  of  the  fall  in  feet. 

31.  Give  examples  of  bodies  possessing  kinetic  energy. 
32.  A  particle  free  to  move  is  acted  on  by  a  force.  Show 

that  the  work  done  by  the  force  is  equal  to  the  gain  of  kinetic 

energy  by  the  particle. 
33.  Show  that  force  may  be  defined  as  rate  of  change  of 

kinetic  energy  with  the  distance. 

34.  "  If  we  multiply  one  half  the  momentum  of  every  par- 
ticle of  a  body  by  its  velocity  and  add  the  results,  we  shall  get 

the  kinetic  energy  of  the  body." 
35.  How  much  kinetic  energy  does  a  body  weighing  Wlh 

lose  when  its  velocity  changes  from  u  to  v  ft/sec  ? 
36.  An  athlete  can  make  a  longer  running  jump  than 

standing  jump. 
37.  The  weight  of  a  train  is  95.5  tons,  and  the  drawbar  pull 

is  6  pounds  per  ton.  Find  the  H.P.  required  to  keep  the 
train  running  at  25  miles  an  hour.  Ans.  38.2  H.P. 

37a.  Find  the  energy  required  to  bring  the  train  to  full 

speed  from  rest.  Ans.  2000  foot-tons,  nearly. 
38.  A  train  weighing  W  lb  resting  on  a  straight  level  track 

is  acted  on  by  a  horizontal  pull  of  F  pounds  for  t  seconds. 
Show  that  the  energy  acquired  is 

i^'^/jy2ir  foot-pounds. 
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39.  The  work  done  by  an  impulse  of  i  second-pounds  in 
changing  the  velocity  of  a  weight  Wlh  from  u  to  v  ft/sec  is 

\(u  +  v)/2  foot-pounds. 

40.  The  kinetic  energy  of  a  moving  body  is  independent  of 
the  direction  of  the  motion. 

41.  Show  that  there  is  no  parallelogram  of  kinetic  energies. 
42.  Find  the  H.P.  of  an  engine  that  will  discharge  a  gallons 

of  water  per  minute  from  a  depth  of  b  ft  and  with  a  velocity 
of  V  ft/sec.     (A  gallon  of  water  weighs  8 J  lb.) 

A71S.  «(6  +  i;V2^)/3960  H.P. 
43.  State  what  is  meant  by  the  conservation  of  energy. 
44.  Show  from  the  principle  of  the  conservation  of  energy 

that  if  a  weight  slide  from  rest  down  a  smooth  inclined  plane 
of  height  h, v"  =  2gh, 

45.  A  particle  is  shot  up  a  smooth  tube  with  velocity  v. 
Show  that  it  will  come  to  rest  after  reaching  a  point  whose 

height  above  the  point  of  projection  is  v^/2g. 
46.  How  is  the  potential  energy  of  a  body  related  to  its 

stability  ? 

47.  A  hemisphere  rests  on  a  rough  inclined  plane.  Is  the 
equilibrium  stable  ? 

48.  Point  out  the  errors  in  the  following  : 

(1)  "A  car  of  weight  W  and  velocity  V  miles  per  hour 
in  passing  from  the  tangent  to  a  circular  curve  of  radius  E 
has  its  direction  suddenly  changed  by  the  impulse 

causing  a  corresponding  shock.'' 
(2)  "  An  equally  accurate  formula  is  the  weight  multiplied 

by  the  fall  in  feet  =  the  momentum  of  foot-pounds  of  work.'' 
(3)  "  A  collision  between  two  bicycles,  each  with  a  150-lb 

rider,  spinning  at  the  moderate  speed  of  seven  miles  an  hour, 

would  result  in  a  smash-up  with  a  force  of  3000  pounds." 
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(4)  "  How  much  energy  is  radiated  by  the  sun  is  very  well 
known  now,  and  is  reckoned  to  be  about  10,000  horse-power 

per  square  foot  of  its  surface." 49.  In  1895  a  train  on  the  Lake  Shore  E.K.  made  a  run  of 

86  miles  at  the  rate  of  73  miles  an  hour.  The  weight  of  the 
train  was  250  tons.  Taking  the  train  resistance  on  the 
straight  level  track  to  be  15  pounds  per  ton  at  this  speed, 

show  that  the  engine  must  have  developed  about  730  horse- 

power. 
50.  The  engine  in  (49)  was  a  10-wheeler,  having  drivers 

5  ft  8  in  in  diameter,  and  cylinders  17  X  24  in.  Show  that 

to  develop  730  horse-power  the  average  effective  cylinder- 
pressure  must  have  been  about  37  pounds  per  square  inch. 

[A  pressure  of  over  60  lb/in'  has  been  kept  up  at  this  speed. 
See  R.R.  Gazette,  Dec.  6, 1895.] 
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CHAPTER  VII. 

DYNAMICS  OF  ROTATION. 

220.  The  cases  of  the  motion  of  a  single  particle  and  of  a 
motion  of  translation  of  a  body,  together  with  some  of  the 
more  simple  problems  connected  with  rotation  about  a  fixed 
axis,  have  been  discussed  in  the  preceding  chapters.  We  now 
proceed  to  treat  with  some  degree  of  fullness  the  motion  of  a 
body  into  which  translation  and  rotation  both  enter. 

The  most  important  case  and  the  only  one  we  shall  con- 
sider is  that  in  which  the  particles  of  the  body  move  in 

parallel  planes.  In  this  case  the  position  of  the  body  is  de- 
termined when  the  positions  of  two  points  in  it  in  a  plane 

parallel  to  the  plane  of  motion  are  known.  For  one  point 
being  fixed,  rotation  only  is  possible  about  this  point.  But  a 
second  point  fixed  fixes  the  body  itself.  Changes  of  position 
of  the  body  will  be  determined  by  considering  the  changes  of 
position  of  these  two  points  fixed  in  the  body. 

221.  Consider  a  body  displaced  from  one  position  to  an- 

other.    Let  ̂ ,  ̂   be  the  initial  position  of  two  fixed  points  in 

the  body  and  A^,  B^  the  new  positions  after  ^ 
displacement,  the  displacement  taking  place         / 

in  the  plane  of  the  paper.  Ay   Bj 
(1)  If  A,B,  is  parallel  to  AB,  the  body     / 

may  be  moved  from  its  first  position  to  its    a  b 

second  position  by  a  motion  parallel  to  AA^  or  BB^.    This  a 
motion  of  translation  only. 

(2)  If  A^  coincides  with  A,  the  body  may  be 

moved  from  its  first  position  to  its  second  by  a 
rotation  about  A.     This  a  motion  of  rotation 
only. 

(3)  Let  A^B^  assume  any  position  relative  to  AB,    This 
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'B' 

/ 

displacement  may  be  considered  to  occur  in  either  of  two 
ways: 

a.  From  any  point  0  in  the  plane  of  the  points  let  fall  Oa 
perpendicular  to  the  line  AB  joining 
A  and  B.  Let  the  body  be  rotated 

about  0  until  AaB  assumes  the  posi- 

tion A'a'B'  parallel  to  A^B^,  A  mo- 

tion parallel  to  A'A^  will  bring  the 
points  A',  B'  into  coincidence  with 
^,,  B^\  that  is,  the  body  may  be 

moved  from  the  first  position  to  the  second  by  a  rotation 
about  any  assumed  point  and  a  translation. 

l.  Join  AA^  and  BB^.  Bisect  these  lines  at  a,  h  and  let  the 
perpendiculars  aO,hO  intersect  in  0. 

Then  evidently  OA  =  OA^,  OB  =0B„ 
and  I  AOA^=  I  BOB,,  Hence,  if 
the  body  be  rotated  about  0  through 
the  angle  AOA,,  the  point  A  will  fall 
on  A,  and  B  on  B,;  that  is,  the  body 
will  be  moved  from  the  first  position 
to  the  second  by  a  rotation  about  0. 

It  is  evident  from  the  construction 

that  the  position  of  the  point  0 
changes  from  instant  to  instant  with  the  change  of  position 
of  AB,  In  any  position  it  is  only  the  center  of  rotation 
for  an  instant,  so  that  0  is  called  the  instantaneous  center  of 
rotation. 

222.  This  may  be  still  further  illustrated. 

Suppose  two  points  ̂ ,  ̂   of  a  body  to  have  any  motion  in 
the  plane  of  the  paper.  The  points 
A,  B  will  each  trace  out  a  path. 
Consider  A.  The  line  joining  two 
consecutive  positions  of  A  will  give 
the  direction  of  motion  in  the  path. 
This  line  is  the  direction  of  the 

tangent   to    the    path  at  A.      Since  an  indefinitely  great 

^B. 
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number  of  curves  may  have  a  common  tangent  at  a  point,  it 
follows  that  this  tangent  is  quite  independent  of  the  form  of 
the  path.  Hence  for  the  instant  we  may  consider  the  path 
to  be  a  circular  arc.  The  perpendicular  ̂ 0  to  the  tangent 
will  pass  through  the  center  of  the  circle,  and,  conversely,  the 
direction  of  motion  at  A  for  the  instant  will  be  perpendicular 
to  the  radius  of  the  circle.  Hence  the  instantaneous  motion 

of  A  is  the  same  as  if  it  took  place  in  a  circle  with  center 
somewhere  on  AO.  Similarly,  the  motion  of  B  is  the  same 
as  if  in  a  circle  with  center  somewhere  on  BO.  But  0  is 
common  to  ̂ 0  and  BO.  Hence  the  instantaneous  motion  of 

A  and  B,  and  therefore  of  the  line  ̂ ^,  is  a  motion  of  rota- 
tion about  a  point  0  as  instantaneous  center. 

The  points  A,  B  are  any  two  points  in  the  body.  Hence, 
luliatever  the  pla^ie  motion  of  the  body,  it  is  alvmys  possible  to 

find  a  point  0  such  that  for  the  instant  the  motion  about  it 

shall  represent  the  actual  motion;  in  other  words,  at  any  in- 
stant one  point  0  is  at  rest,  and  the  other  points  are  moving 

in  directions  perpendicular  to  the  lines  joining  them  to  this 

point. 

If  the  radii  AO,  BO  ̂ o  not  intersect,  the  tangents  to  the 

paths  at  Ay  B  are  parallel,  and  the  motion  is  a  motion  of 
translation.  The  radii  being  parallel  may  be  said  to  intersect 
at  infinity,  and  hence  a  motion  of  translation  may  be  regarded 
as  a  rotation  about  a  center  at  an  infinite  distance. 

223.  In  general,  the  instantaneous  center  0  will  vary  in 

position  from  instant  to  instant.  The  locus  or  path  de- 
scribed by  it  is  called  a  centrode.  But  in  case  the  radii  AO, 

BO  continue  to  intersect  in  the  same  point  0,  as  the  motion 
progresses  the  instantaneous  center  becomes  a  permanent  or 

fixed  center.  For  example,  a  wagon-wheel  revolves  about  the 
axle  as  a  permanent  center,  but  with  reference  to  the  ground 
it  revolves  about  the  point  of  contact  as  an  instantaneous 
center.  The  path  traced  by  the  wheel  on  the  ground  is  the 
centrode. 
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Ex.  1.  A  ladder  BC  slides  between  a  vertical  wall  and  the 

ground,  which  is  horizontal.     Find  the  in- 
  "lo         stantaneous  center  and  the  centrode. 
—  /\-  -j —      [The  paths  are  along  AB,AC.     Hence  the 
\  /    I  instantaneous  center  is  at  the  intersection  0 
X      I     '      of  the  perpendiculars  BO,  CO,     It  is  evident 

''  \   I     '      that  AO  =  BC,  the  length   of   the  ladder, 
\l     I      and  tlierefore  0  is  at  a  constant   distance 

wmmWMm    from  A.     Hence  the  centrode  is  a  circle,  with 
A  as  center.] 

2.  What  is  the  direction  of  motion  of  any  point  G\tlBC2X 
any  instant?  Ans.  _L  to  GO. 

3.  The  Empire  State  Express  engine  999  has  driving-wheels 
7  ft  2  in  diameter.  Find  the  height  above  the  track  of  a 
point  on  the  circumference  that  has  half  the  velocity  of  the 
highest  point  of  the  wheel.  A  ns.  1  ft  9.5  in. 

224.  In  the  case  of  moving  bodies  rigidly  connected  to- 
gether the  determination  of  the  velocity  of  one  with  respect 

to  another  may  be  based  on  the  preceding.  For  illustration 

take  the  ordinary  steam-engine.  The  mechanism  itself  has 
been  already  shown  in  Art.  159. 

Suppose  we  wish  to  find  the  velocity  v^  of  the  piston  P 

relative  to  the  velocity  v,  of  the  crank-pin  B.  The  velocity 
of  the  piston  is  the  same  as  that  of  the  extremity  A  of  the 

connecting-rod  AB.  The  velocity  of  the  crank-pin  B  is  the 
same  as  that   of  the   extremity  B  of  the   connecting-rod. 
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Hence  the  relation  sought  is  the  same  as  that  between  the 

velocities  of  the  extremities  A  and  B  of  the  connecting-rod. 
The  bed-plate  is  fixed.  The  extremity  A  of  the  connect- 

ing-rod moves  in  a  straight  line  PC,  and,  the  direction  of 
motion  being  along  PC,  the  instantaneous  center  is  in  a  line 
AO  at  right  angles  to  PC,  The  extremity  B  moves  in  a 
circle  of  center  C,  and  therefore  the  instantaneous  center  is 

in  the  line  CB.  Hence  the  connecting-rod  is  for  the  ifistanf 
in  the  condition  of  a  body  turning  about  an  axis  through  0, 
the  intersection  ot  AO  and  CB,     Consequently 

v^  :  v^  =  OA  :  OB, 

or  the  velocities  of  piston  and  crank- pin  at  any  instant  are  as 
the  distances  of  the  cross-head  A  and  crank-pin  B  from  the 
instantaneous  center  0. 

If,  therefore,  the  velocity  of  one  of  the  two,  piston  or  crank- 
pin,  is  given,  that  of  the  other  follows  at  once.  Thus,  suppose 

the  crank-pin  to  have  a  velocity  of  10  ft/sec.  Lay  off  to  scale 
a  distance  BH  =  10  ft,  and  draw  HG  parallel  to  BA.  Then 
since 

HB  :  GA  =  OB  :  OA, 

we  scale  off  GA  as  the  velocity  of  the  piston. 
By  drawing  the  crank  in  different  positions,  and  finding 

the  corresponding  positions  of  G,  a  curve  will  result,  the  or- 
dinates  of  which  will  give  the  velocity  of  the  piston  through 
its  stroke. 

Ex.  1.  If  cw  is  the  angular  velocity  of  the  crank  B  and  v  the 
speed  of  the  piston  P,  then 

v  =  Gox  CE 

where  E  is  the  intersection  of  AB  and  the  perpendicular  OE 
to  CA  at  C. 

2,  It  V  denote  the  piston  velocity,  u  the  velocity  of  the 
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crank-pin  B,  I  the  length  of  AB,  r  the  length  of  CB,  and  6^ 
the  angle  ACB,  show  that 

v/u  —  sin  6^(1  4-  f  cos  6/1)  nearly. 

225.  The  relation  between  the  piston-pressure  P  and  the 
crank-pin  resistance  Q,  when  the  connecting-rod  is  inclined 

at  any  angle,  has  already  been  found  in  Art.  159,  but  may  be 

solved  more  simply  by  aid  of  the  instantaneous  center  of  ro- 
tation. 

For  if  v^  is  the  velocity  of  the  piston  and  v^  that  of  the 

crank-pin  at  any  instant,  then,  0  being  the  instantaneous 
center,  we  have  (Art.  224) 

v,:v^=  0A\  OB. 

But  from  the  principle  of  work 

P  X  V,  -  §  X  V,  =  0. 

Hence  P  X  0A=  Qx  OB, 

the  relation  sought. 

The  value  of  Q  for  a  given  piston-pressure  will  thus  vary 
according  to  the  position  of  the  connecting-rod.  It  may  be 
represented  graphically,  as  in  the  case  of  the  indicator-diagram 
(Art.  189). 
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The  average  of  the  values  of  Q  for  a  complete  revolution  of 

the  crank  corresponding  to  a  given  piston-pressure  P  will  be 
found  by  equating  the  work  done  by  each  of  the  two  forces. 

We  have,  if  r  is  the  radius  of  the  crank-arm  and  ;S^  the  length 
of  the  stroke, 

C  X  2;rr  =  P  X  25. 

But  8  =  2r. 

Q  =  2P/jr. 

the  relation  required. 

Ex.  1.  In  an  engine  the  diameter  of  the  cylinder  is  14  in, 

and  the  steam-pressure  75  pounds/in'.  Find  the  average 
value  of  the  force  acting  on  the  crank-pin. 

Ans,  7350  pounds. 
2.  In  (1)  find  the  force  acting  when  the  crank  stands  at 

60°,  and  the  ratio  of  the  connecting-rod  to  the  crank  is  5^. 
3.  In  a  steam-riveting  machine  the  piston-pressure  P  is  ap- 

plied at  the  joint  a,  and  the  rivet  squeezed  between  the  jaws 
Cy  d.  Find  the  relation  between  P  and  the  force  Q  exerted  on 
the  rivet. 

[The  instantaneous  center  is 
at  0,  where  ta  and  the  perpen- 

dicular through  c  to  the  sliding 
surface  8  intersect.     Then 

PxfO=QxcO. 
As  a 
ishes : approaches  ff,  cO  dimin- and  when  a  reaches  g,  Q  be- 

comes indefinitely  great.  Hence 
the  advantage  of  the  apparatus 
in  that  an  enormous  pressure 
may  be  produced  by  a  moderate 
force  acting  through  a  small  dis- 
tance. 

This  is  an  example  of  the  tog- 
gle-joint, a  mechanism  of  very 

considerable  importance.  It  is 
applied,  for  example,  in  the  railroad  air-brake,  in  cider,  oil. 

s 
5 

1^^
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and  other  presses,  etc.     In  the  figure  below  is  shown  part  of 
a  power-screw  oil-press.] 

226.  Angular  Velocity.— If  the  motion  of  a  body  is  a  mo- 
tion of  rotation  about  a  fixed  axis,  each  particle  describes  a 

circumference  whose  center  is  in  the  axis.  Since  each  cir- 
cumference is  described  in  the  same  time,  the  linear  velocities 

of  the  particles  in  the  circular  paths  must  be  proportional  to 

the  distances  of  the  particles  from  the  axis — the  greater  the 
distance  the  greater  the  velocity.  The  linear  velocity  of  the 

body,  however,  cannot  be  said  to  be 

equal  to  that  of  any  particle,  as  in  a  mo- 
tion of  translation. 

Suppose  0  to  be  an  axis  perpendicu- 
lar to  the  plane  of  the  paper,  and  A  any 

particle  of  the  body.  When  the  par- 
ticle has  reached  the  position  J,  it  has 

described  the  angle  AOh.  It  is  evident 
that  every  particle  of  the  body  would  describe  an  angle  equal 
to  this.    The  velocity  of  rotation  may  therefore  be  defined  in 
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terms  of  the  angle  of  rotation.  The  rate  at  which  the  angle 
is  described  is  the  angular  velocity  of  the  particle,  and  being 
the  same  for  every  particle,  is  also  the  angular  velocity  of  the 
body. 

Thus,  if  the  motion  is  uniform  and  the  angle  AOa  is 
described  in  t  sec,  the  angular  velocity  gj  of  the  body  is 
measured  by  the  angle  described  in  1  sec,  or 

00=  zAOa/t 

227.  The  unit  of  angular  velocity  is  naturally  taken  to 

be  unit  angle  described  in  one  second.  The  unit  angle  em- 
ployed is  the  unit  of  circular  measure,  being  the  angle  AOb, 

which  subtends  an  arc  Ab  equal  in  length  to  the  radius  AO, 

This  angle  is  called  a  radian,*  so  that  the  unit  of  angular 
velocity  is  07ie  radian  per  seco7id. 

Thus,  if  a  body  makes  n  revolutions  per  second,  the  number 
of  radians  described  per  second,  or  the  angular  velocity,  is 
^nn;  that  is, 

cy  =  27171  radians/sec. 
Kotice  that 

1  revolution/sec  =  2;r  radians/sec. 

228.  Relation  of  Angular  and  Linear  Velocity. — The  angu- 
lar velocity  of  every  point  of  the  body  has  the  same  value. 

The  relation  between  this  and  the  linear  velocity  v  of  any 
particle  A  situated  at  a  distance  r  from  the  axis  of  rotation 
follows  at  once.    For  the  time  of  motion  being  t  sec,  we  have 

Go  =  lAOa/t 
=  arc  Aa/rt =  v/r, 

the  relation  sought. 

*  It  is  shown  in  treatises  on  trigonometry  that 

one  radian  =  57.3°. 
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229.  The  direction  of  motion  of  a  particle  ̂   in  a  circular 

pa'th,  or  of  a  particle  ̂   of  a  body  revolving 
Y^    about  an  axis  0,  is  for  an  indefinitely  small 

^         ;;    arc  perpendicular  to  AO,  that  is,  along  the 
/      tangent  to  the  path  at  A.    We  may  therefore 

place 
tangential  velocity  v  =  rao 

if  cj  is  the  angular  velocity  of  the  particle  about  0. 

Let  the  particle  be  referred  to  fixed  rectangular  axes  OX, 
OYj  and  let  x,  y  be  its  coordinates  when  in 
any  position  P.    Denote  the  angle  POX  by 
6  and  OP  by  r. 

The  components  v^,  Vy  of  the  velocity  v  of 
the  particle  parallel  to  OX,  0  Y  are 

Vas=  —  V  Bin  6 

Vy  =  V  cos  & 

—  GOT  sin  ̂   =  —  Gt)y, 

cor  cos  0      =  Gjx, 

where  go  is  the  angular  velocity  about  0. 
230.  If  the  angular  velocity  is  not  constant,  the  actual 

angular  velocity  at  any  instant  is  determined  by  finding  the 

limiting  value  of  the  average  angular  velocity  for  an  indefi- 
nitely small  angle  z/6'  described  during  an  indefinitely  small 

time  ̂ t,  including  the  instant.     We  have 

GO  =  limit  AB/At 

=  dB/dt  radians/sec. 

231.  Graphical  Representation. — An  angular  velocity  about 
an  axis  having  magnitude  and  direction  may  be  represented 

by  a  straight  line.  This  line  is  taken  along  the  axis  of  rota- 
tion, and  therefore  perpendicular  to  the  plane  of  rotation, 

and  of  length  proportional  to  the  magnitude  of  the  angular 
velocity.  The  positive  direction  of  the  axis  is  taken  to  be 

that  in  which  a  right-handed  screw  would  move  if  placed 
along  the  axis  and  turned  with  the  body. 
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232.  Composition  of  Angular  Velocities. — In  the  case  of  a 
rigid  body  having  a  number  of  angular  velocities  one  point 
must  be  fixed,  or  may  be  considered  fixed  for  the  instant,  and 
the  angular  velocities  may  be  combined  in  a  similar  way  to 
that  in  which  linear  velocities  are  combined  by  means  of  the 

parallelogram  law. 
Thus  let  two  concurrent  angular  velocities  co^,  oo^  about 

two  axes  AB,  A  G  be  represented  by  the  lines  AB,AC,  and  let 

F  be  any  point  lying  in  the  di-  c   

agonal  AD  ot  the  parallelogram  r /\  ♦        o^^"^^^ 

Let  fall  the  perpendiculars  PQ,     /S-^^^^'l^;;;'---^^/ 
PR  on  AB,  AC,  a  q  b 

The  linear  velocity  of  P  due  to  the  angular  velocity  about 
the  axis  AB  is  represented  by  ̂ ^  X  P§  or  2AAPB.  Also 
the  linear  velocity  of  P  due  to  the  angular  velocity  about  the 
axis  ̂ C  is  represented  hj  AC  X  PR  or  2^APC.     Hence 

resultant  velocity  of  P  =  2AAPB  -  2JAP0 

=  0, 

or  P  is  at  rest.  But  P  is  any  point  in  AD.  Hence  every 
point  in  AD  has  a  resultant  velocity  due  to  the  two  rotations 
equal  to  zero;  that  is,  AD  is  the  direction  of  the  resultant 
axis  of  rotation. 

To  find  the  magnitude  of  the  resultant  angular  velocity  go 
about  AD. 

Consider  a  point  Q  of  the  body  situated  on  AB.  It  has  an 
angular  velocity  go  about  AD,  oo^  about  A  C,  and  0  about  AB. 

The  linear  vel.  of  Q  about  AD  =  od  x  1.  from  Q  on  AD 

=  Gj  X  AQ  sin  QAD', 

The  linear  vel.  of  Q  about  AC  =  cw,  x  ±  from  Q  on  AC 
=  AC  XAQ  sin  QAC; 

The  linear  vel.  of  Q  about  AB  =  0. 
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Hence,  since  AD  is  the  resultant  axis, 

GO  X  AQ^m  QAD  =  ACx  AQ  mi  QAO, 

and         Gj  =  ACxAI)/AO =  AD, 

or  GO  is  represented  in  magnitude  by  the  diagonal  AD  of  the 
parallelogram. 

If,  then,  6  is  the  angle  between  the  two  axes  AB  and  A  0, 
we  have,  as  in  Art.  19, 

CO*  =  00*  +  3c8?,G8?3  cos  6  +  ca,'. 

233.  Resolution  of  A  7igular  Velocities. — Any  angular  ve- 
locity may  be  resolved  into  components  after  the  manner  of 

linear  velocities. 

An  interesting  application  is  afforded  by  Foucault's  pen- 
dulum. The  apparatus  consists  of  a  long  pendulum  freely 

suspended  and  set  oscillating  in  a  vertical  plane.  A  horizon- 
tal table  placed  below  the  pendulum 

appears  to  revolve  in  a  direction  opposite 

that  of  the  hands  of  a  watch.  The  prob- 
lem is  to  find  the  angular  velocity  of  the 

plane  of  oscillation  of  the  pendulum  rela- 
tive to  the  table. 

Let  B  be  position  of  point  at  latitude  0 

at  a  given  moment,  and  B'  the  position 
at  end  of  short  time  At,  during  which  the 
earth  has  rotated  through  a  small  angle, 

A6,  whose  equatorial  measure  is  the  arc 

EE\     Draw  tangents  BA,  B'A,  cutting 

the  earth's  axis  prolonged  at  A.     Draw   B'A'  parallel  to  BA. 
The  initial  plane  of  the  pendulum  is  ABC  and  the  new 

plane  A'B'C;  hence  the  deviation  is  Ad  ̂   A'B'A  =  B'AB, 
or,  in  radial  measure. 

A 

R    /       / 

r        1       ̂ 1^ \ 

Ad  = 

B]r_ 

iB'
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Let  T  =  periodic  time.  Then  FB'  =  "InRj^,  Also  BB' 
=  EE'  cos  0  and  AB  =  R  cot  cp.     Hence 

^^       2nR  cos  (p   .^  Ad      27t    .     ̂  

TR  cot  0  At       T  ^ 
In  the  limit  this  becomes  the  rate  of  angular  change, 

.¥  =^  "  =  r  ̂"^  ̂- 

Integrating,  6=  —t  sin  0,  =  360°  X  -p-p  sin  0. 

If  the  hour  be  taken  as  unit  of  time,  T  =  24,  and 
6^  —  Ibt  sin  0. 

2;r If  00  denote  the  earth's  angular  velocity,  =  — ,  the  expres- 

sion for  the  total  deviation  of  the  plane  of  the  Foucault  pen- 
dulum in  time  t  becomes 

6  =  cot  sin  0.  '^ 

Ex.  A  Foucault  pendulum  is  set  vibrating  at  New  Orleans 
in  lat.  30°.  After  what  interval  will  it  oscillate  in  the  initial 
plane  of  oscillation  ?  Ans.  1  day. 

What  is  the  time  of  a  complete  revolution  of  the  pen'dulum  ? 

234.  Angular  Acceleration. — The  rate  of  change  of  angular 
velocity  about  an  axis  is  called  the  angular  acceleration. 

The  unit  of  angular  velocity  being  one  radian  per  second, 
the   unit   of  angular  acceleration   is  taken  one  radian  per  .  \i> 

second  per  second,  or,  as  it  may  be  written,  1  radian/sec\  \i«''   ̂^ 
235.  If  a  body  start  from  rest  with  a  uniform  angular  ac-       '\-   ̂ ^.S^s^ 

celeration  a,  then  after  a  time  t  the  angular  velocity  go  woulcWl;  ̂ V -j!?^, 

be  given  by  ''y  ̂       ̂''^ 
CsO  =  LXt   (1) 

Also  the  angle  B  passed  through  is  given  by  (Art.  25) 
6  =  af/l   (2) 

Eliminating  t  between  (I)  and  (2), 

G9V2  =  cxd   (3) 

These  results  may  be  compared  with  those  of  Art.  25. 
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Ex.  If  the  body  instead  of  starting  from  rest  had  an  initial 
angular  velocity  go^  ,  show  that  (compare  Art.  24) 

(»V2  -  07^72  =  ad. 

236.  If  the  angular  acceleration  is  not  constant,  the  actual 
angular  acceleration  at  any  instant  would  be  determined  by 
finding  the  limiting  value  of  the  average  angular  acceleration 
for  an  indefinitely  small  angular  velocity  /ioo  acquired  in  an 
indefinitely  small  time  At,  including  the  instant.    We  have 

a  =  limit  Ago /At 
=  doo/dt 

=  d^'B/dt'^  radians/sec*, 

or,  as  it  may  be  written, 

a  =  Godao/dd  radians/sec*. 

These  results  may  be  compared  with  those  of  Art.  26. 

237.  Tangential  and  Nor7nal  Acceleration. — The  accelera- 
tion of  a  particle  ̂ ^  of  a  body  revolving  about  an  axis  may  be 

resolved  into  two  components  at  right  angles  to  each  other. 
Let  V  be  the  linear  velocity  at  any  instant  along  the  tangent  to 
the  path,  go  the  angular  velocity  about  the  axis,  and  r  the 
radius  of  the  path.     Then  (Art.  33) 

tangential  acceleration  =  dv/dt 
=  d(Gor)/dt 
=  rdGo/dt 
=  m; 

normal  acceleration 

Hence we  may  write 

=:G0'r. 

tangential  force 
normal  force 

=  zvra/g, 

=  WGj'r/g, 
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where  go  and   a  may  be  expressed  in  any  of  the  differential 
forms  given  above. 

238.  Note  the  analogy  between  the  kinematical  formulas 
for  translation  and  the  corresponding  formulas  for  rotation. 
We  have 

Translation. Rotation. 

V  =  to  -\-  at 00  ■=  oo^-{-  at 

s  =  ut-\-  aty2 e=  coJ-{-  aty2 

as  =  vy2  -  wV2 aS  =  00^%  -  oo^y% 

Corresponding  differential 
equat 

ions  are 

ds '  =  dt dd 

"  =  ̂  

d's 

""=  
df 

d'd 

''=dt^ 

do 
a  —  V-r- ds doo 

"='^de- 

239.  Example. — A  wheel  is  revolving  50  times  per  second. 
It  is  brought  to  rest  with  a  uniform  angular  retardation  in  10 
seconds.  Find  the  number  of  turns  it  makes  before  coming 
to  rest. 

Here  ol)^  =  2  tt  X  50  =  100 ;r  radians/sec. 

G7  =  0,  ^  —  10  sec. 

Now  GO  =  00^  -^  at,       .     (1) 

or        0  =  lOO/t  +  10«; 

.*.     «  =  --  10;r  radians/sec  c 

Also  ad  =  ooy2  -  (W//2, 

or     -  lOnO  =  0  -  (1007r)y2; 

/.     0  =  500 7t  radians, 

and  number  of  revolutions  =  500;r/2;r 
=  250. 
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Ex.  1.  If  GO  is  expressed  in  degrees,  show  that 

V  =  27tGDr/360°. 
2.  A  body  makes  n  revolutions  per  second.  Show  that  the 

angular  velocity  is  2  Tin  radians/sec. 
3.  A  belt  passes  over  a  pulley  d  ft  in  diameter  and  making 

n  revolutions  per  min.     Find  its  linear  velocity. 
Ans.  71  dn  ft/min. 

4.  A  wheel  4  ft  in  diameter  revolves  420  times  per  minute. 
Find  the  angular  velocity  and  the  linear  velocity  of  a  point 
1.5  ft  from  the  center.     Ans.  147r  radians/sec;  21  tt  ft/sec. 

5.  The  crank  of  an  engine  makes  n  revolutions  per  min. 
Its  radius  is  r  ft.  Find  the  linear  velocity  of  the  crank-pin 
in  ft/sec.  A7is.  nrn/dO. 

6.  A  locomotive  is  running  at  45  miles  an  hour.  The 
driving-wheels  are  6  ft  in  diameter  and  the  stroke  is  2  ft. 
Find  the  average  piston  velocity  in  ft/sec. 

Ans.  44/ zr  ft/sec. 
^.  A  wheel  making   20  revolutions  a  second  is  brought 

gradually  to  rest  in  10  seconds.     How  many  revolutions  has 
it  made  after  the  brake  was  applied  ? 

A71S.  100  revolutions. 

8.  One  of  the  12  spokes  of  a  carriage-wheel  is  vertical. 
Find  the  velocity  of  the  extremity  of  the  first  spoke  in  ad- 

vance if  the  velocity  of  the  carriage  is  7.5  miles  an  hour., 

Ans.  11^2+  1/3  ft/sec. 
9.  A  particle  describes  a  circle  of  radius  r  with  uniform 

velocity  v.  Find  its  angular  velocity  about  any  point  on  the 
circumference.  A71S.  v/2r. 

10.  A  coin,  radius  r,  is  rolled  along  a  table.  If  v  denotes 
the  linear  velocity  of  its  center  and  go  its  angular  velocity 
about  the  point  of  contact  with  the  table,  then 

V  =  Gor, 

lla.  A  system  has  two  component  rotations  of  2  and  3 

radians/sec  about  axes  inclined  at  60°.  Show  that  the  re- 
sultant rotation  is  Vl9  radians/sec. 

115.  What  is  the  position  of  the  resultant  axis  of  rotation  ? 
12a.  If  a  body  has  two  angular  velocities  &?,,  go^  about  par- 

allel axes  through  A,  B,  show  that  the  resultant  go  is  found 
from 
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and  is  about  an  axis  through  a  point  (7  such  that 

Go^xAC=  Go^X  BC. 

125.  Give  the  corresponding  proposition  for  parallel  trans- 
lations. 

13.  If  u,  V  denote  the  component  velocities  of  translation 
of  a  point  P  parallel  to  rectangular  axes  OX,  OY,  and  oo  the 
angular  velocity  of  P  about  0,  then 

total  velocity  of  P  parallel  to  0X=  it,  —  aoy, 

total  velocity  of  P  parallel  to  OY  =  v  -{-  gox, 

240.  Dynamical  Equations  of  Motion. — We  have  seen  (Art. 
221)  that  the  plane  motion  of  a  rigid  body  may  be  indicated 
in  two  ways : 

1.  As  a  translation  of  the  body  and  a  rotation  about  an 
axis  through  any  point  and  perpendicular  to  the  plane  of 
motion;  or 

2.  As  a  rotation  about  an  axis  which  changes  from  instant 
to  instant — the  instantaneous  axis  of  rotation. 

The  cases  in  which  the  motion  is  wholly  a  translation  or 
wholly  a  rotation  about  a  fixed  axis  are  evidently  included. 

There  are  two  cases  to  be  considered :  (A)  the  motion  due 
to  continuous  forces,  (B)  the  initial  motion  due  to  impulses. 

241.  Motion  under  Continuous  Forces. — When  a  single  par- 
ticle w,  at  rest  and  free  to  move  is  acted  on  by  a  force  F^ ,  the 

acceleration  a'  produced  is  in  the  direction  of  F^,  and  its 
value  is  found  from  (Art.  67) 

F,  =  tv.a'/g. 

But  if  the  particle,  instead  of  being  free  to  move,  forms 
one  of  a  rigid  system,  then,  besides  the  external  force  F^ , 
other  forces  act  on  the  particle  arising  from  the  mutual 
actions  of  the  particles.  Let  R^  be  the  resultant  of  these 
internal  reactions  on  w^. 

The  acceleration  of  w^  is  now  due  not  to  i^^,  but  to  the 
resultant  of  F^  and  i?j.    Denote  this  acceleration  by  a^. 



288  DYNAMICS   OF   ROTATIOIir.  [§  241 

Then  w^a  /g,  called  the  effective  force  on  the  particle,  is  the 
resultant  of  F^  and  R^ ,  or,  in  other  words,  F^,R^,  and  w^ajg 

reversed,*  are  in  equilibrium. 
Similarly,  for  a  particle  w^  the  forces  i^,,  i?^,  and  to^ajg 

reversed,  are  in  equilibrium. 

Summing  up  for  the  whole  system,  and  assuming  as  a  con- 
sequence of  the  third  law  of  motion  that  the  internal  actions 

and  reactions  R^,  R^,  ,  .  .  of  the  system  are  in  equilibrium 
among  themselves,  we  conclude  that 

The  external  forces  F^,  F^, .  .  .  a7id  the  reversed  effective 
forces  for  all  the  ̂ particles  form  a  system  of  forces  in 

equilihriu'tn. 
Hence  the  solution  of  the  problem  is  reduced  to  the  statical 

problem  of  Art.  140. 

[The  above  principle  is  known  as  D^Alemberfs  principle, 
having  been  enunciated  by  D^Alembert  in  1742.  It  is  not 
an  independent  principle,  but  an  immediate  consequence  of 

Newton's  laws  of  motion.  Its  great  use  is  that  it  enables  us 
to  state  dynamical  propositions  in  a  statical  form.] 

For  the  first  two  conditions  of  equilibrium  (Art.  140),  that 
the  sum  of  the  forces  parallel  to  two  rectangular  axes  should 

each  equal  zero,  let  Xj,  Yi;  X^,  J\;  .  .  .  de- 
note the  components  of  the  external  forces 

F^y  F^,  ,  .  .  parallel  to  the  rectangular  axes 
OX,  OY  drawn  through  a  fixed  point  0. 

Also  let  w,aj/g,  n\ay'yg',  w^aj'/g,  iv^ay"/g\ 
.  .  .  denote  the  components  of  the  effective 

X    forces  parallel  to  these  axes,  aj ,  ay  \  aj' , 
being  the  component  accelerations  of  the  particles 

Then,  resolving  parallel  to  the  axes,  we  have 

:^X=:2waJg,   (1) 

:2Y::=:2ioaJg   (2) 

*  The  reveised  effective  force — ioa/g  is  sometimes  called  the  force  oj 
inertia  or  the  inertia  resistance  of  the  particle. 
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For  the  third  condition  of  equilibrium,  that  the  sum  of  the 

moments  of  the  forces  acting — that  is,  of  the  external  forces 
and  the  effective  forces  reversed — should 
be  equal  to  zero,  let  p^,  ;?,,  .  .  .  denote  the 
distances  of  the  directions  of  the  external 

forces  F^,  F^,  .  .  .  from  0,  and  r,,  r,,  .  .  . 
the  distances  of  the  particles  P^,  P„  ...  , 
on  which  these  forces  act  from  0. 

Now,  since  each  particle  moves  in  a       *^ 
circle  about  the  axis  0,  it  is  convenient  in  taking  moments  to 

resolve  the  effective  forces  into  components  along  and  per- 
pendicular to  the  radii  OP,,  OP^,  .  .  . 

The  component  forces  at  P,  are  (Art.  237) 

w^r^Go*/g2k\oTig  OP,, 

w,r,a/g  l_OP,y 

where  go  is  the  angular  velocity  and  a  the  angular  accelera- 
tion of  the  particle. 

Hence,  taking  moments  about  0  for  all  the  forces,  we  have 

F,p,  +  F,p^  +  . . .  =  w,r,'a/g  +  w,r,'a/g  +  . . . , 

the  angular  acceleration  a  being  the  same  for  all  of  the 

particles. 
This  may  be  written 

:SFp  =  -:Swr\ 9 

since  a/g  is  a  constant  factor  in  each  term. 
The  left-hand  member  of  this  equation  is  the  ordinary 

expression  for  the  statical  moment  or  torque.  The  factor 

2wr^  of  the  right-hand  member,  which  is  independent  of 
tiie  angular  acceleration  a,  is  called  the  second  moment  or 
moment  of  inertia  of  the  body  relative  to  the  axis.  It  is  usu- 

ally denoted  by  the  letter  /,  so  that 

2Fp  =  la/g   (3) 
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Hence  the  angular  acceleration  a  of  a  body  about  the  axis 
of  rotation  is  found  whether  fixed  or  not. 

The  three  equations  (1),  (2),  (3),  above,  are  the  equations 
of  motion  of  a  rigid  body  when  acted  on  by  continuous  forces 
in  the  same  plane. 

[The  term  moment  of  inertia  was  introduced  by  Euler  in 
order  to  express  in  analogous  terms  the  formulas  for  linear 
and  angular  acceleration.  Thus  for  translation,  using  abso- 

lute units  (Art.  50), i^=  ma, 

or  force  =  inertia  X  linear  acceleration,  ...     (1) 

if  we  use  the  term  inertia  instead  of  the  term  mass  as  Euler 
did. 

For  rotation 

'^F'p  =  ̂ mr"  X  a. 

Here  'SFp  is  moment  of  force  and  a  is  angular  accelera- 
tion. Hence, if  for  ̂ mr'^  is  written  "moment  of  inertia,"  we have,  analogous  to  (1), 

moment  of  force  =  moment  of  inertia  X  angular  acceleration.] 

242.  The  point  0  selected  as  fixed  point  is  usually  the 
C.G.  of  the  body,  and  the  motion  is  reduced  to  a  translation 
of  this  point  and  a  rotation  about  it. 

Thus  if  «a.,  Gy  are  the  accelerations  of  the  C.G.  of  the  body 
parallel  to  the  axes,  then  (Art.  146) 

Wa,.  =  2waa;,  Wtty  =  ̂ lotty. 

Hence  2X-  W'ajg,         2Y=  Wtty/g, 

or  the  C.  G,  of  a  body  moves  as  if  the  whole  weight  were  con- 
centrated at  that  point  and  the  external  forces  tuere  to  act  on 

it  parallel  to  their  original  directions. 

The  motion  of  rotation  about  the  C.G-.  is  given  by 

2Fp  =  la/g. 
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Being  given  the  initial  velocities  of  translation  and  rota- 
tion, the  displacement  and  resulting  velocities  after  any  term 

may  be  found  from  Art.  24  for  translation  and  from  Art.  235 
for  rotation.     Hence  the  motion  is  completely  determined. 

Ex.  1.  A  fly-wheel  weighing  W  lb  is  rotating  at  n  revolu- 
tions per  minute  about  its  axle,  whose  radius  is  r  ft.  If 

the  driving-belt  is  slipped,  in  what  time  t  will  the  wheel 
come  to  rest,  ju  being  the  coefficient  of  friction  ? 

Let  CD  =  the  angular  velocity  to  be  destroyed 
=  27rn/60  radians/sec; 

a  =  the  angular   acceleration  required  to  destroy  <w 
in  t  sec 

=  Go/t  radians/sec'. 

Now,  since  the  wheel  rotates  about  a  fixed  axis, 

torque  =  loc/g, 

or  fjiWXr  =  Inn/ZOgt, 
and  t  =  InnjZ^jx  Wrg  seconds. 

2.  Show  that  the  number  of  revolutions  made  by  the  wheel 
before  it  comes  to  rest  is  /7r7iy3600//  Wrg. 

243.  It  is  evident  that  before  we  can  find  numerical  results 

in  any  case  we  must  be  able  to  compute  the  value  of  /,  the 
moment  of  inertia  of  the  rotating  body.  The  method  of 
doing  this  we  proceed  to  explain  in  the  following  sections. 

The  sections  treating  of  moments  of  inertia,  like  the  sec- 
tions on  center  of  gravity  (Arts.  143-151),  form  a  sort  of 

interlude,  and  might  be  placed  in  a  treatise  on  the  integral 

calculus — perhaps  better  placed  there.  The  subject  of  me- 
chanics proper  is  resumed  in  Art.  251. 

244.  Moment  of  Inertia. — The  form  of  the  expression  for 

the  moment  of  inertia  about  an  axis,  '^wr^,  shows  that  we 
may  define  it  as  the  sum  of  the  products  of  the  particles 
w,,  w,, ...  of  a  rigid  body  into  the  squares  of  their  distances 
r, ,  r,, .  .  .  from  the  axis  of  rotation.    The  finding  of  moments 
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of  inertia  is  therefore  a  problem  of  summation  of  indefinitely 
small  quantities,  and  not  a  mechanical  question  at  all.  This 
summation  may  in  some  cases  be  made  without  the  calculus, 
as  in  the  first  example  following,  which  for  illustration  is 
solved  in  both  ways. 

In  the  case  of  bodies  of  irregular  shape  it  is  in  general  most 

convenient  to  determine  the  moment  of.  inertia  experimen- 
tally. A  method  of  doing  this  is  indicated  in  example  4, 

page  314. 

Ex.  1.  To  find  the  moment  of  inertia  7  of  a  thin  uniform 

rod,  weight  W,  length  I,  about  an  axis 
OY  through  its  center  0,  and  at  right 
angles  to  the  rod. 

[Conceive  the  rod  cut  into  elements 
of  indefinitely  small  length  ̂ x,  and  let 

^    f^      X  be  the  distance  of  any  one  of  these- 
^  elements  from  0. 

Let  each  unit  of  length  weigh  d,  then  the  length  ̂ x  will 
weigh  6^x,  and  the  moment  of  inertia  of  this  element  about 
the  axis  is  S^x  X  x"".    Hence  for  the  whole  rod 

1=1      dx'dx  =  dr/12  =  wv/vt. 

Or  thus :  Suppose  the  rod  divided  into  a  large  number  2n  of 
equal  parts.  The  length  of  each  part  is  l/2n  and  its  weight 
is  dl/2n.  The  distances  of  these  parts  from  0  may  be  taken 
to  be  the  distances  of  their  centers  of  gravity  from  0,  that 

is,  l/4n,  U/4:n, .  .  .     Hence,  taking  half  the  rod, 

4/= —  —     +  ;^  -7-     4- .  .  .  to  7J  terms 

=  ̂ (1^  +  3«  +  .  .  .  to  ̂   terms) 

=  61^/24:  when  n  is  indefinitely  great, 

and  /=  Wr/12,  as  before.] 

la.  Show  that  the  moment  of  inertia  about  a  perpendicular 
axis  through  one  extremity  is  Pf  r/3. 
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245.  Unit  Moment  of  Inertia, — The  unit  moment  of  in- 
ertia is  the  moment  of  inertia  of  a  particle  of  unit  weight 

situated  at  unit  distance  from  the  axis  of  rotation.  No 

special  name  is  in  use,  but  it  is  necessary  in  giving  moments 
of  inertia  to  state  the  units  employed  in  computing  them. 
The  name  newton  has  been  suggested  as  an  appropriate  name 
for  the  unit  moment  in  the  British  gravitation  system. 

If  the  pound  weight  were  made  into  a  thin  cylinder  of  1  ft 
radius  and  caused  to  revolve  about  the  central  axis  it  would 
have  unit  moment  of  inertia. 

246.  The  computation  of  moments  of  inertia  may  be  facili- 
tated by  the  aid  of  the  following  two  propositions : 

(1)  The  moment  of  inertia  of  a  body  about  any  axis  is  equal 
to  the  moment  of  inertia  about  a  parallel  axis  through  the 
center  of  gravity ,  together  with  the  iwoduct  of  the  weight  of 
the  body  into  the  square  of  the  distance  between  the  two  axes. 

For  suppose  the  two  parallel  axes  through  a  point  0  and 
the  center  of  gravity  G  to  lie  in  a  plane 

perpendicular  to  the  plane  of  the  paper.  ''  ^ 
Take  G  as  origin,  the  plane  of  the  paper 
the  plane  of  XZ,and  OGXi\\Q  axis  of 

X,  Let  X,  y  denote  the  coordinates  -of 
any  particle  P  weighing  w.  Call  the 
distance  GO  =  h.  Then  if  /denote  the  / 

moment  of  inertia  about  an  axis  through 
0,  we  have 

i=:2w\y'-\-{x-\-hy] 
=  :2w(y''  +  x')  +  2h:2ivx  +  h'^w, 

s^'nce  the  distance  h  is  constant. 
Of  the  three  jexpressions  in  the  right-hand  member,  the 

first  is  equal  to  /the  moment  of  inertia  about  G',  the  second 
is  equal  to  zero,  since  G  is  the  center  of  gravity  (Art.  145) ; 

and  the  third  is  equal  to  Wh'^,  where  W  is  the  total  weight  of 
the  body.     Hence 

I  =  lJ^Wh\ 

which  proves  the  proposition. 
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This  proposition  is  due  to  Lagrange. 
(2)  The  moment  of  inertia  of  a  plane  lamina  about  an  axis 

through  any  point  0  and  perpendicular  to  its  pla7ie  [polar 
moment]  is  equal  to  the  sum  of  the  moments  of  inertia  about 
two  rectangular  axes  through  0  and  in  the  plane  [rectangular 
moment]. 

Let  OX,  or"  be  rectangular  axes  through  any  point  0  in 
the  plane  of  the  lamina,  x,  y  the  coordi- 

nates of  P  any  particle  weighing  w,  and 
r  the  distance  OP.    Then 

r^=x*-\-  y\ 

,\    lor^  =  wx' -{- wy^ ; 

and  summing  up  for  the  particles  in  the  whole  lamina, 

2wr^  =  2wx^  +  ̂'^y^y 

/about  0  =  /about  0F+  /about  OX, 

X p 

t/ 
V 

or 

or I=ly-\-I. 

which  proves  the  proposition. 

Ex.  2.  Find  the  /  of  a  thin  rectan- 
gular lamina  or  plate  of  breadth  h 

and  depth  h,  about  an  axis  through  its 
center  of  gravity  0  and  parallel  to  h, 

[Conceive  the  lamina  cut  into 
strips  parallel  to  the  axis,  and  of 
breadth  Ax,  Let  x  denote  the  dis- 

tance of  one  of  these  strips  from  the 
axis,  and  let  it  weigh  S  per  unit  area. 
The  strip  will  weigh  dhAx.     Hence 

/=    /     'dh  Xdxxx'  =  ̂ ^dh¥  =  tV^^% 

where  the  whole  lamina  weighs  W,] 
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C            D 

A G B 

h 

b 

3.  If  in  (2)  the  axis  is  parallel  to  the  side  b  show  that 

I  =  Why  12. 

4.  Show  that  the  /  of  a  rectangular 
lamina  breadth  b,  depth  h  about  the  side 
b  is  ir/iys.  (For  example,  a  door  about 
its  hinges.) 

[Deduce  from  Ex.  (3)  by  aid  of  Art. 
246,  and  also  solve  independently.] 

5.  Find  the  i  of  a  rectangular  lamina, 
breadth  b,  depth  7i,  about  an  axis  through 
its  center  of  gravity  and  perpendicular 

to  its  plane.  Ans.  I  =  Wib'  +  y^'')/12. 
6.  The  /  of  a  square  plate  of  side  a  about  a  diagonal  is 

Wayi2. 
7.  Show  that  the  /of  a  square  lamina  about  a7iy  axis  in 

its  plane  and  through  its  center  is  the  same  and  equal  to 
Wayi2. 

8.  Find  the  /  of  a  rectangular  plate  about  a  diagonal,  the 
sides  of  the  rectangle  being  a,  b. 

Ans.  I  =  Wa'by6(a'  +  F), 
9.  Find  the  7  of  a  thin  circular  ring  of  radius  r  and  weight 

TT  about  an  axis  through  its  center  and  perpendicular  to  its 

plane.  Ans.  I  =  Wr^. 
10.  Find  the  /  of  a  circular  ring,  radius  r  and  weight  W 

about  a  diameter. 
[Conceive  the  ring  cut  into  elements 

PQ  subtending  an  angle  dd  at  the  cen- 
ter 0.  Then  weight  oi  FQ  =  6  x  rdS, 

Hence 

J=      Srdexr'  sin'  0 

2^1  —  cos  26* 

=  Ttdr' 

11.  Find  the  /of  a  circular  ring  or  wire  about  a  tangent. 
A71S.  1=  3Wr'/2. 

[Deduce  from  Ex.  10  by  aid  of  Art.  246,  and  also  solve  in* 
dependently.] 
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12.  Find  the  /of  a  quadrantul  wire  about  an  axis  through 

one  extremity  and  perpendicular  to  its  plane. 
A71S.  I=2Wr'(l  -  2/7r). 

13.  Find  the  /  of  a  thin  circular 
plate,  radius  r  and  weight  W,  about 
a  diameter. 

[Conceive  the  plate  cut  into 
strips  parallel  to  the  axis,  and  of 
breadth  /Ix,  Then  the  equation 

to  the  circle  being  x^ -\-  y^  =  r^, 
the  length  of  a  strip  at  a  distance 

X  from  0  is  ̂ ^r^  —  x^,  and  area 

of  strip  =  "ZVr"^  —  x^Ax,     Hence 

/=  A/icVr"  -  a^dx  =  d7tr*/4:  =  Wry4:. 

The  simplest  way  of  finding  the  value  of  this  integral  is 
to  put  X  =  r  sin  8.  The  limits  of  integration  then  become 
+  7r/2,  -  7t/2.] 

Solve  the  problem,  using  polar  coordinates. 
14.  Find  the  /of  a  thin  circular  plate  about  a  tangent. 

Ans.  bWr'y4:. 15.  Find  the  /of  a  circular  plate  of  radius  r  and  weight  W 
about  a  perpendicular  axis  through  its  center. 

Ans.  1=  Wry2. 

[May  be  deduced  from  Ex.  13  and  Art.  246  (2),  or  inde- 
pendently, as  follows : 

Conceive  the  plate  composed  of  concentric  rings.  Let  x 
denote  the  distance  of  any  ring  from  the  center  and  ̂ x  its 
width.     Then  the  ring  weighs  d  x  27tx  Ax.     Hence 

/=    C  2ndxdx  X  x^ 
—  n6r'/2 

=  Wry  2.] 

Conversely,  Ex.  13  may  now  be  deduced  from  Ex.  15, 
16.  Find  the  moment  of  inertia  of  a  grindstone  2  ft  in  di- 

ameter and  6  inches  thick  about  its  axis,  if  the  stone  weighs 

125  lb/ft'.  Ans.  98.2. 
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17.  Find  the  /  of  a  ring  of  radii  r, ,  r,  about  a  JL  axis 

through  its  center.  Ans.  1=  W(t\'  +  ̂ /)/2. 
18.  Find  the  /  of  a  triangular  lamina  of 

base  b  and  height  h  about  the  base.  V 
[Divide  the  lamina  into  strips  parallel  to 

the  base. 

Let  y  =  distance  of  any  strip  from  the base; 

Jy  =  width  of  strip. 
c  X 

Then         length  of  strip  :  b  =  h  —  y  :  h, 
or  length  of  strip  =  b(h  —  y)/hy 

area  of  strip  =  b{li—y)Ay/Ji, 

=  dbhyi2 y)dy/h 

19.  Find  the  7  of  a  triangle  of  base  b,  height  h,  about  an 
axis  through  its  center  of  gravity  and  parallel  to  the  base. 

Ans.  1=  W(hyQ  -  hy9)  =  Why  IS. 
20.  Find  the  /  of  a  triangle  of  base  b,  height  h,  about  an 

axis  through  its  vertex  and  parallel  to  the  base  b. 
Ans.  1=  Why  2. 

21.  Find  the  /of  a  hexagon  of  side  a  about  a  diagonal. 
Ans.  I=bWay^. 

22.  Find  the  /  of  a  T-iron,  breadth  of 
flange  =  6,  breadth  of  web  =  b, ,  depth  of 
flange  =:  h,  depth  of  web  =  A, ,  about  an  axis 
through  the  center  of  gravity.  (See  Ex.  4, 
p.  165.)  A71S. 

bhyi2-\-b,h;/i2-^(h+hjy4:(b-'h-'-]-b{'hr'). 
23.  Find  the  /  of  a  sphere  of  radius  r 

about  a  diameter  as  axis. 
[Conceive  the  sphere  divided  into  slices  of 

width  dx  by  planes  perpendicular  to  the  axis 
OX.     Let  the  distance  of  any  slice  from  the 

center  0  be  x.     Then  radius  of  slice  =  Vr""  —  ic' 

of  slice  =  7t{r^  —  x'^)Jx, 

"1 

1       1 

I   hi 

1. 
and  volume 
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The  moment  of  inertia  of  the  slice  about  OX  is  (Ex.  15) 

Summing  up  for  the  whole  sphere,  that  is,  integrating  be 
tween  the  limits  x  =  r  and  a;  =  —  r,  we  have 

I=Sd7tryib 
=  2  PFrys, 

since  weight  of  sphere  =  4(J;rry3.] 

24.  Find  the  /  of  a  sphere,  radius  r,  about  a  tangent  line. 

Ans.  1=  Pr(2rV5  +  r')  =  7  Wr'/b. 
25.  Show,  by  differentiating  the  result  of  Ex.  15,  that  the 

moment  of  inertia  of  an  indefinitely  thin  ring  of  radius  r 
about  an  axis  through  its  center  and  perpendicular  to  its 

plane  is  W?'^. 26.  Show,  by  differentiating  the  result  of  Ex.  23,  that  the 
moment  of  inertia  of  an  indefinitely  thin  spherical  shell  about 

a  diameter  is  2  Wr^/3. 
27.  Find  the  /  of  an  elliptical  plate  about  (1)  its  major 

axis,  (2)  its  minor  axis,  and  (3)  about  an  axis  through  its 
center  and  perpendicular  to  its  plane. 

Ans.   my 4;   Way4:',   W(a' +  I)y4:. 
28.  Find  the  /  of  a  right  cone,  height  h  and  radius  of 

base  r,  about  an  axis  through  the  vertex  parallel  to  the  base 
(solution  similar  to  that  of  Ex.  18). 

A71S,  I  =  3W(r'-\-ih')/20. 
29.  Find  the  /  of  a  right  cone,  height  h  and  radius  of  base 

r,  about  an  axis  through  its  center  of  gravity  and  parallel  to 

the  base.  Ans.  7=3  W{r'  +  /iV4)/20. 
30.  Find  the  /  of  a  right  cone,  height  h  and  radius  of  ba?e 

r,  about  its  own  axis.  Ans.  1=  dWr^/10. 
31.  Prove  that  /  is  the  same  for  all  parallel  axes  situated 

at  equal  distances  from  the  center  of  gravity. 
32.  Of  all  parallel  axes  the  /  about  that  which  passes 

through  the  center  of  gravity  is  the  least. 

247.  Radius  of  Gyration. — The  general  expression  for  the 
moment  of  inertia  of  a  series  of  particles  rigidly  connected 
and  weighing  w,,  i^,,  .  .  .  about  an  axis  situated  r, ,  r,, .  .  . 
from  the  particles  is  ̂ wr\     The  whole  series  of  particles 
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forms  a  body  weighing  '^20  or  W.  We  may  conceive  the 
body  concentrated  into  a  single  particle  weighing  W,  and  a 
distance  k  from  the  axis  may  always  be  found,  so  that  the 
moment  of  inertia  of  the  particle  W  about  the  axis  is  equal 
to  the  sum  of  the  moments  of  inertia  of  the  separate  particles 
of  the  body,  or 

Wk""  =  :2wr\  . 

To  this  distance  h  the  name  radius  of  gyration  is  commonly 

given. 
248.  If  the  axis  passes  through  the  C.G.  of  the  body,  we 

may  write 

Wl''  =  :Swr* 

when  k  is  called  the  principal  radius  of  gyration. 

The  relation  between  k  and  k  follows  at  once.  For  (Art. 246) 

2wr^  =  2tvr  -f  WIi^, 

or        Wk'  =  WV  +  WIi% 

or        k'  =  F  +  h\ 

the  relation  sought. 

249.  Reduced  Weight. — We  may  write 
/=  WJc^\ 

where  k^  is  any  assumed  distance  from  the  axis  of  rotation 

and  W^  =  I/k^^;  that  is,  we  can  replace  the  rotating  body  by 
an  equivalent  particle  of  weight  W^  at  any  distance  k^  from 
the  axis  of  rotation  by  dividing  the  moment  of  inertia  of  the 
body  about  the  axis  of  rotation  by  the  square  of  the  assumed 
distance.  The  weight  of  this  particle  is  called  the  reduced 
weight. 

The  reduction  is  of  frequent  application  in  mechanisms 

where  many  pieces  have  to  be  considered.  For  a  simple,  illus- 
tration take  the  case  of  a  fly-wheel  not  properly  centered. 
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Art.  238;  also  the  compound  pendulum,  Art.  251.  A  more 

complicated  example  will  be  found  in  Weisbach's  Hoisting 
Machinery,  p.  143. 

250.  The  results  in  the  following  table  for  the  square  of 
the  radius  of  gyration  about  an  axis  through  the  center  of 
gravity  should  be  carefully  checked. 

1.  Straight  rod,  length  I, 

axis  JL  rod  P  =  Zyi2 

2.  Rectangular  lamina,  breadth  &,  depth  A, 

axis  II  side  h  "P  =  hyi2 
axis  ±  plane  k'  =  {b'+h')/12 

3.  Square,  side  a,  __ 
axis  a  diagonal  k^  =  «yi2 

axis  _L  plane  k^  =  a'/G 

4.  Circular  disk,  diameter  d, 

axis  a  diameter  k*  =  d^/l6 

axis  _L  plane  ^''=  dys 

5.  Circular  ring,  diameter  d,  _ 
axis  a  diameter  F  =  dys 

axis  _L  plane  k^  =  c?y4 

6.  Triangular  lamina,  base  h,  height  h,  _ 

axis  parallel  base  F  =  h*/lS 

7.  A  sphere,  diameter  d,  __ 
axis  a  diameter  F  =  ̂ yiO 

8.  A  spherical  shell,  diameter  d,  _ 

axis  a  diameter  Jc^  =  d^/Q 

9.  Rectangular  prism,  sides  a,  l,  c,  _ 

axis  ±  face  Ic  ¥  =  (b'-\-c*)/12 
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[Since  the  prism  may  be  conceived  to  consist  of  an  infinite 
number  of  plates,  each  of  which  has  the  same  radius  of  gyra- 

tion with  respect  to  an  axis  through  the  centre  and  perpen- 
dicular to  their  planes,  the  radius  of  gyration  of  the  prism  is 

the  same  as  that  of  any  plate.] 

10.  Circular  cylinder,  length  I,  diameter  d, 

axis  the  axis  of  the  cylinder        k^  =  d^/S 
axis  J_  axis  of  cylinder  F  =  dyiQ-{-iyi2 

11.  Eight  cone,  altitude  h,  diameter  of  base  d, 

axis  X  to  axis  of  cone  k^  =  3(^'+A')/80 
axis  the  axis  of  the  cone  ^'  =  3rfV40. 

12.  Hollow  cylinder,  inner  diameter  d^ ,  outer  diameter  d^ , 

axis  the  axis  of  the  cylinder        ̂ '  =  (6?,"''+tZ,')/8 

251.  The  subject  proper  is  now  resumed.  It  was  inter- 
rupted at  Arts.  245,  246  by  the  discussion  of  moments  of 

inertia. 

Compound  Pendulum. — A  most  important  case  on  account 
of  its  applications  is  that  of  a  body  oscillat- 

ing about  a  horizontal  axis  under  the  action 
of  gravity. 

Let  G  be  the  C.G.  of  the  rotating  body, 

PT  the  weight  of  the  body,  C  the  axis  of  ro- 
tation, and  GO  the  angular  velocity. 

Let  the  distance  CG  =  h,  and  the  angle 
of  swing  =  ̂   at  the  instant  considered. 

The  external  forces  acting  are  the  weight 
W  at  Gf  and  the  reaction  of  the  axis  which 

may  be  resolved  into  horizontal  and  vertical  components  X 
and  Y. 

The  effective  forces  on  a  particle  w^  distant  r^  from  the 
axis  are  w,r,(»y^  along  r,  ,and  iv^r^a/g  perpendicular  to  ri 
(Art.  237).  The  resultant  of  these  effective  forces  acting  at 
G  is  evidently 

Whaoyg  along  GG    and     Wha/g  i.  CG. 
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Hence  resolving  horizontally,  vertically,  and  taking  moments 
about  C, 

Wha  cos  %  -  Whaj'  sin  d/g  =  X,  .     .     ,     .     (1) 

Wha  sin  6/g  +  Whco'  cos  6/gz=  Y-W,  .     .     (2) 

la/g—  Wh sin  0  =  0,  ,     ...     (3) 

the  equations  of  motion. 
The  third  equation  gives  the  angular  acceleration 

a=  Wghsin  6/1 

=  g  sin  6/1, 

if  //  W7i  is  denoted  by  I. 
But  the  linear  acceleration  a  at  a,  distance  I  from  C  is  /o'. 

Hence 

a  =  la 

=  ̂   sin  6. 

Now  (Art.  115)  this  is  the  equation  of  motion  of  a  simple 
pendulum  oscillating  under  the  action  of  gravity. 

Hence  the  angular  motion  of  the  body  about  the  axis  is  the 

same  as  that  of  a  simple  pendulum  under  the  same  initial  cir- 
cumstances and  whose  length  is  I.  This  length  I  or  //  Wh  is 

called  the  length  of  the  simple  equivalent  pendulum,  and  the 
oscillating  body  is  called  a  compound  pendulum. 

(a)  Time  of  Swmg. — The  time  t  of  an  oscillation  (single 
swing)  will  be  given  by  (Art.  115) 

t=  nsfljg 

=  7tVl/Whg, 

or,  as  it  may  be  written, 

t  =  7rVW~+¥)/hg, 

since  /=  W(h^  +  h^),  the  first  term  being  the  moment  of  in- 
ertia about  C,  and  h  the  distance  CG. 
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{b)  Principle  of  Reversion. — A  point  Z>  at  a  distance  I  from 
(7,  the  point  of  suspension,  is  called  the  centre  of  oscillation, 

for  the  reason  that  the  time  of  oscillation  of  the  whole  pen- 
dulum is  the  same  as  that  of  a  simple  pendulum  of  length  I 

and  swinging  about  C.  Denote  the 

distance  DGhy  h^ ,  so  that  h-{-h^  =  L 
Suppose  now  the  pendulum  in- 

verted, and  suspended  from  D  instead 
of  from  C,    Now 

CB  =  OP 

=  (F  +  h')/h 

=  Ji  +  Tc'/h 
and        CG  =  h. 

.'.   GD  =  kyh. 
Hence    CG .  GB  =  k\ 

This  may  be  written 

BG.GC=k'; 

which  shows  that  if  B  is  made  the  center  of  suspension,  C 
will  become  the  centre  of  oscillation,  as  was  first  pointed  out 

by  Huygens. 
Hence  the  points  of  suspension  and  of  oscillation  can  be 

interchanged  without  changing  the  time  of  oscillation,  and 
appropriately  therefore  a  pendulum  with  points  of  suspension 
situated  as  C,  B  is  known  as  a  reversion  pervdulum. 

(c)  Betermination  of  g. — The  pendulum  furnishes  one  of 
the  most  accurate  methods  of  determining  g,  the  acceleration 

due  to  gravity  at  the  earth's  surface.  We  have  for  the  time 
of  an  oscillation 

t  =  n  Vlfg', 

whence  g  =  n'^l/f. 

If  now  t  be  observed,  and  I  the  length  of  the  simple  equiva- 
lent pendulum,  can  be  found,  we  may  at  once  compute  g. 
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Borda  in  1793  constructed  a  pendulum  as  like  a  simple 
pendulum  as  possible,  of  a  platinum  sphere  suspended  by  a 
very  fine  wire.    Here,  if  r  is  the  radius  of  the  sphere 

h'  =  2rV5, 

and  hence         g  =  7r'(h-\-  2r^/5h)/t^, 

The  time  of  swing  t  was  observed,  and  the  distance  h  from 
the  point  of  suspension  to  the  center  of  the  sphere  measured. 
Hence  g  is  found. 

The  first  pendulum  constructed  on  the  Huygens'  principle 
of  reversion  was  Kater's  in  1818.  Other  forms  by  Repsold, 
Mendenhall,  etc.,  with  methods  of  finding  /  and  t,  are  described 
in  books  of  laboratory  physics. 

(d)  Pressure  on  the  Axis  of  Support. — Returning  to  the 
equation  of  motion,  we  note  that  there  are  three  equations 
but  four  unknowns,  X,  Y,  go,  a.  A  fourth  relation  is  afforded 

by  the  pendulum  motion  (Art.  255), 

lod'm  =  TF^(cos  e  -  cos  >5). 

Hence  X,  Y  may  be  computed. 
For  example,  the  pressure  of  a  large  bell  when  swinging. 

Ex.  1.  A  rod  of  length  I  is  suspended  at  one  end  and    y     V^ 

caused  to  oscillate.    Find  the  length  of  the  equivalent  simple     ,  V^"^  ' pendulum.  Ans.  2Z/3. 
2.  A  thin  circular  ring,  diameter  d,  and  a  small  ball,  sus- 

pended by  a  fine  thread  of  length  d,  are  caused  to  oscillate 
about  a  horizontal  axis  perpendicular  to  the  plane  of  the 
ring.     Show  that  the  two  will  oscillate  together. 

3.  A  circular  disk  16  in  diameter  makes  small  oscillations 

about  a  horizontal  tangent.  Find  the  length  of  the  equiva- 
lent simple  pendulum.  Ans.  10  in. 

4.  A  sphere  20  in  diameter  makes  small  oscillations  about 
a  horizontal  tangent.  Find  the  depth  of  the  center  of  oscil- 

lation below  the  axis.  Ans.  14  in. 
5.  A  rod  1  ft  long  is  suspended  from  a  point  3  in  from  one 

end.     Find  the  time  of  a  small  oscillation. 
Ans,  nVl/12g  sec. 

V. 
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6.  In  a  compoiind_peiidulum  the  time  of  oscillation  is  a    f 
minimum  when  h  =  k. 

7.  A  sphere  of  radius  r  oscillates  about  a  horizontal  tan- 
gent.    Find  the  length  of  the  equivalent  simple  pendulum,     y/ Ans.  7r/5. 

8.  A  cube  of  edge  a  oscillates  about  an  edge.  Find  the 

length  of  the  equivalent  simple  pendulum.     Ans,  24^2^/3. 
9.  A  st.  rod  of  length  ?'  slips  into  a  hemispherical  bowl  of 

radius  r.  Show  that  the  rod  wiH  oscillate  in  the  same 

time  as  a  pendulum  of  length  5r/3l/3. 
10.  A  cylindrical  disc  of  radius  r  and  weighing  W  lb  rolls 

without  sliding  down  an  inclined  plane  from  rest  under 
the  action  of  gravity.     Determine  the 
motion. 

The  external  forces  are  W  pounds  at 
C  vertically  downwards,  the  reaction  N 
normal  to  the  plane,  and  the  friction  / 
up  the  plane.  Unless  there  were  fric- 

tion the  disc  would  slide. 

The  point  of  contact  0  is  the  instan- 
taneous center  of  rotation.      Then,  a 

being  the  linear  acceleration  of  the  center  of  gravity  C,  the 
resultant  effective  force  along  the  plane  is  Wa/g. 

Resolving  along  the  plane,  normal  to  the  plane  and  taking 
moments  about  C,  the  three  equations  of  motion  are 

Wa/g  =  W^me-f',    (1) 

iV^=Tfcos^;       ......  (2) 

fr  =  Ia/g.          (3) 

Also                                  J=TFrV2;     .    .  ,    (4) 

and  since  the  disc  rolls  without  sliding,  ̂  

,^  \ 

a  =  ra,      ,    \   (6) 
Hence  we  find 

a  =  2g  sin  6/Z;        a  =  2g  sin  fl/3r. 
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The  velocity  v  at  any  distance  s  from  the  starting-point  is 
given  by v""  =  2as 

=  2s  X2ff  sin  6/3 
=  4^V3, 

if  h  is  the  height  of  the  starting-point  above  the  point  in 
question. 

The  force  of  friction  /  =  la/gr 
=  W  sin  0/3. 

The  reaction  JV  =W  cos  6. 

The  angular  acceleration  a  may  be  found  at  once  by  con- 
sidering the  disc  as  rotating  for  the  instant  about  the  instan- 
taneous center  of  rotation  0. 

Taking  moments  about  0, 

Wr  sin  l9  =  la/g  =  3  Wr''a/2g, 

and        a  =  2g  sin  <9/3r,    as  before. 

If  both  rolling  and  sliding  occur  we  cannot  write  a  =  ra, 

but  have  the  relation/  =  yuiV^  instead,  jx  being  the  coefficient of  friction. 
If  the  body  slide  without  friction,  a  =  g  sin  6. 
11.  A  spherical  shot  rolls  down  a  plane  70  ft  long  and  in-     y 

clined  at  30°  to  the  horizon.     Find  its  velocity  at  the  bottom. A71S.  40  ft/sec. 

12.  A  sphere  will  roll  and  not  slide  down  an  inclined  plane 
if  the  coefficient  of  friction  is  greater  than  2  tan  a/7  where 
a  is  the  inclination  of  the  plane. 

13.  A  ball  is  rolled  up  a  Ifo  incline  with  an  initial  velocity 
of  4  ft/sec.     How  far  will  it  run  ?  Ans.  37.5  ft. 

14.  Show  that  an  empty  keg  will  roll  down  an  incline 
slower  than  the  keg  filled  solid— as  with  nails  or  sand. 

252.  Initial  Motion  Due  to  Impulse. — The  impulse  given  to 

a  particle  at  rest  is  measured  by  the  momentum  of  the  par- 
ticle. Eeasoning  as  in  Art.  241,  if  an  impulse  be  given  to  a 

system  the  internal  actions  and  reactions  of  the  particles  will 
on  the  whole  balance,  and  the  external  impulse  will  therefore 
be  measured  by  the  momentum  of  the  system.     Considering, 
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then,  the  system  in  equilibrium  under  the  external  impulse 

and  the  momentum  reversed,  the  conditions  of  Art.  140  may- 
be applied. 

In  general,  instantaneous  motion  of  a  body  may  be  repre- 
sented by  a  rotation  about  the  instan- 

taneous axis  or  by  a  translation  and  a 
rotation  about  a  fixed  axis  0  of  the 

body.  Let  the  impulse  I  communi- 
cated to  the  rod  OGChQ  resolved  into 

components  i^.,  ij,  parallel  to  rectangu- 
lar axes  OXy  OF.  /^    x,  x 

Let  P,  be  a  particle  of  the  rod  weighing  w, ;  x^,y^  the  co- 
ordinates of  P, ;  and  r^  the  distance  of  Pj  from  0.  Let  gj 

denote  the  angular  velocity  of  the  system  of  particles  com- 
posing the  body. 

The  initial  velocity  of  P,  is  aor^  ±  to  OP,  (Art.  229).  Its 

components  along  OX,  OY  are  =  —  ooy,  and  =  gox^  respect- 
ively. The  momenta  of  the  particle  in  these  directions  are 

—  lu^GoyJg  and  tu^ooxjg. 
The  first  and  second  conditions  of  equilibrium  give 

=  -  Womj/g   ,    ....     (1) 

I,  =  Wc^/g   (2) 

where  x,  y  are  the  coordinates  of  the  C.G.  of  the  body. 

The  resultant  impulse  is  therefore  Woor/g  where  r  =  OG 
and  is  J_  to  OG. 

Hence  the  motion  is  the  same  as  if  the  whole  weight  were 
collected  at  the  C.G.  and  to  rotate   about  the  point  O 

For  the  third  condition  of  equilibrium  take  moments  about 

the  axis  0;  then,  if  p  is  the  perpendicular  from  0  in  the  di- 
rection of  I, 

\p  —  w^Goy^/g  -\-  w^Qox^/g  +  . . . 
=  w^QDr^/g  +  w^oor^lg  +  .  .  . 
=  Gp'2{ior'^)/g 
=  Ioo/g   (3) 
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when  /  is  the  moment  of  inertia  about  0, 
Hence 

angular  velocity  oo  =  moment  of  impulse /moment  of  inertia. 

As  in  the  case  of  continuous  forces,  it  is,  in  general,  most 
convenient  to  take  the  C.Gr.  as  origin. 

Ex.  1.  If  a  rod  CGO  at  rest  and  free  to  move  receives  an 
impulse  I  at  0  and  perpendicular  to  0  G,  the  line  joining  0  to 

the  C.G.  of  the  rod,  it  is  required  to  determine 
the  motion. 

Let  W=  the  weight  of  the  rod,  u  =  the  linear 
velocity  otG,  go=  the  angular  velocity  about  G, 
and  7i  =  the  distance  GO. 

The  equations  of  motion  are : 

\=Wu/g;   (1) 
\h  =  lo^/g 

=  WFGD/g   (2) 

Hence  u  and  co  are  found. 

The  velocity  of  a  point  C  on  GO  =  u  -{-  velocity  about  G 
z=U  —  GOX  GG, 

If  the  rod  begins  to  move  about  C, 

0  =  u  —  gjX  CG, 

and        CG  =  w/cj 
=  'kyGO; 

or        CG.GO=lc\ 

The  point  0  is  named  the  ce7iter  of  percussion,  and  the  cor- 
responding axis  (7  the  axis  of  spontaneous  rotation. 

If  I  is  the  length  of  the  rod,  then  k^  =  r/12  and  the  center 
of  percussion  0  is  at  a  distance  2//3  from  C. 

"  A  knowledge  of  the  center  of  percussion,  gained  instinc- 
tively or  otherwise,  enables  the  workman  to  wield  his  tools 

with  increased  power,  and  gives  greater  force  to  the  cut  of 
the  swordsman,  so  that  with  some  physical  strength  he  may 
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perform  the  feat  of  cutting  a  sheep  in  half  or  severing,  a  la 
Richard  the  Lion-hearted,  an  iron  bar." 

2.  A  rod  of  length  I  and  free  to  rotate  about 
a  fixed  axis  C  receives  an  impulse  I  perpendicu- 

lar to  the  rod  at  0,  distant  c  from  6".  Find 
the  impulse  on  the  axis. 

Ans,  |{1  -  ch/iji'  +  F)(  where  ̂   =  CG, 
Hence  deduce  example  1. 
3.  A  rod  is  suspended  by  two  vertical 

threads  at  its  ends.  One  thread  is  suddenly 
cut.  Show  that  the  initial  pull  in  the  other  is 
halved. 

4.  A  rod  AB  is  swinging  about  the  end  A,  and  when  hori- 
zontal the  end  B  is  fixed.  Show  that  the  jerks  at  the  ends 

are  as  1  to  2. 

5.  At  what  point  must  a  rod  AB  a  yard  long  be  struck  per- 
pendicularly that  one  end  A  may  be  initially  at  rest  ? 

Ans.  2  ft  from  A, 

253.  Energy  of  Motion. — The  kinetic  energy  of  a  body  in 
motion  may  be  found  for  any  instant  by  considering  the 
motion  as  given  by  an  angular  velocity  about  the  axis  of 
motion,  fixed  or  instantaneous. 

Let  G?  radians/sec  be  the  angular  velocity  about  the  axis 
and  r  ft  the  distance  of  any  particle  w  lb  from  the  axis. 
Then,  if  v  ft/sec  denote  the  linear  velocity  of  the  particle  at 
the  given  instant, 

energy  of  the  particle  =  wv^/2g 
/\  .  ̂ \  =  WGi}^r^/2g  foot-pounds. 

Hence,  by  summing  up  the  energies  of  all  the  particles  and 
noting  that  gj  is  the  same  for  each  particle,  we  have 

energy  of  the  body  =  ̂ woo^r* /2g 
=  Go'':2iury2g  ^^..____  \ 
=  lGD''/2g  foot-pounds 

where  /  is  the  moment  of  inertia  about  the  axis  of  motion. 

Take,  for  example,  a  railroad-car  while  in  motion.     The 
wheel  may  be  considered  a  disk  of  radius  r  ft.    If  its  weight  is 
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W\h,  the  moment  of  inertia  about  the  point  of  contact  with 

the  rail  [the  instantaneous  center]  is  3  Wr^/2j_\ 
Also,  if  the  speed  of  the  car,  and  therefore  of  the  center  of 

the  wheel,  is  u  ft/sec,  and  gd  radians/sec  the  angular  velocity 
of  the  wheel,  then  u  =  oor. 

Hence         energy  of  wheel  =  Ioo'^/2g =  3  Wr'ooy4:g 

=  3  Wu'l^g  foot-pounds,   i 

254.  In  finding  the  energy  of  motion  it  is  in  many  cases 
more  convenient  to  refer  to  the  center  of  gravity  than  to  the 
center  of  rotation. 

Let  p  denote  the  distance  between  the  center  of  gravity 

and  the  axis  of  rotation,  and  I  the  moment  of  inertia  about 

the  parallel  axis  through  the  center  of  gravity.  Then  (Art. 246) 

and  therefore 

iGo^m  =  lod'm  +  Wfooy^g. 

But  'poo  =  the  linear  velocity  of  the  center  of  gravity.  Call 
it  u.    Then  \ 

energy  of  motion  =  Ioo^/1g  +  Wu*  /^g^  \ 

Hence  the  energy  of  motion  is  equal  to  the  energy  of  rota-: 
tion  about  the  center  of  gravity  and  the  energy  of  translation 
nf  ih.p.  ̂ ndy  mnving  with  the  linear  velocity  of  the  center  nf 

gravity^ 
Thus  in  the  preceding  example  /  =  Tfry2,  and 

energy  of  motion  =  \Wr'^Qo^ /1g  +  Wu'^/2g =  3Wuy4:g, 

since  u  =  oor,  as  found  before. 
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Ex.  1.  A    circular   disk  (as  a  coin)  rolls  on  its  edge  in  a     / 
vertical  plane.     Compare  the  rotation  energy  with  the  total    * 
energy  of  motion.  Ans.   1/3. 

2.  A  hoop  rolls  in  a  vertical  plane.     Show  that  the  energy 
of  rotation  is  1/2  the  total  kinetic  energy.  -  ^ 

3.  A  loaded  car  weighs  40,000  lb,  the  eight  wheels  4000  lb, 
and  the  speed  is  30  miles  an  hour.     Find  the  kinetic  energy  v 
stored.  Ans,  1,391,500  foot-pounds. 

4.  If  /  is  the  moment  of  inertia  of  a  fly-wheel  and  n  the 
number  of  revolutions  per  second,  then 

energy  of  rotation  =  bn^I/^, 

5.  If  the  weight  of  the  wheel  in  (4)  is  W  lb  and  the  greater 
part  is  contained  in  a  ring  whose  mean  diameter  is  d  ft,  then 

energy  of  rotation  =  St^'w"  Tr/32  foot-pounds, 

a  working  rule. 
6.  A  fly-wheel  weighs  15  tons,  and  its  diameter  is  20  ft ;  the 

wheel  makes  60  revolutions  per  minute.  Find  the  energy 
stored.     /  Ans.  1,875,000  ft-pounds. 

7.  The  axle  of  the  wheel  is  14  in  in  diameter.  If  the 
wheel  is  disconnected,  how  many  revolutions  will  it  make 
before  coming  to  rest,  the  coefficient  of  friction  being  0.8  ? 

Ans.  21.31. 

8.  In  order  to  control  an  engine  against  its  own  variations 
and  for  external  work  it  is  necessary  to  call  upon  the  fly-wheel 
for  60,000  foot-pounds,  and  at  the  same  time  a  change  of  ve- 

locity from  160  to  140  revolutions  per  minute  is  allowable. 
The  wheel  is  to  be  10  ft  in  diameter.     Compute  its  weight. 

Ans.    1.2  tons. 

9.  Find  the  energy  of  rotation  of  the  earth,  considering  it  a 
uniform  sphere  of  density  5.6  and  of  diameter  8000  miles. 

Ans.  10'y5  foot-pounds. 
10.  The  energy  of  a  sphere  rolling  without  sliding  along  a 

plane  is  to  that  of  an  equal  sphere  sliding  without  rolling 
and  with  the  same  velocity  of  the  center  of  gravity  as  7  to  5. 

[Energy  of  rolling  =  lGo^/2g =  7  Wr'GjyiOg, 

the  instantaneous  axis  being  tangent  to  sphere  and  plane. 

Energy  of  sliding  =  Wv^/2g. 
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Also,  V  =  car. 

/   Hence  the  result.] 
(X    11.  The  kinetic  energy  acquired  by  a  sphere  in  moving  from 

rest  down  a  smooth  plane  is  to  that  acquired  by  an  equal 
sphere  rolling  without  sliding  down  a  rough  plane  of  the 
same  inclination  and  length  as  7  to  5. 

12.  The  weight  of  a  fly-wheel  is  W  lb,  and  its  diameter  d^ 
inches.  If  it  is  making  n  revolutions  per  minute,  find  in  how 
many  revolutions  it  will  be  stopped  by  the  friction  of  the  axle 
if  its  diameter  is  J,  inches  and  the  coefficient  of  friction  //. 

Ans,  7tdy/86i00Md.^. 

13.  Examine  the  following  statement:  "Every  engineer 
knows  that  a  thing  so  balanced  as  to  stand  in  any  position  is 
not  necessarily  balanced  for  running;  that  a  4-lb  weight  at  3 
in  from  the  axis  of  rotation  thougn  balanced  statically  by  a 
1-lb  weight  at  12  in  from  the  axis  is  not  balanced  by  it  dy- 

namically. On  the  contrary,  a  4-lb  weight  at  5  in  is  balanced 
by  a  1-lb  weight  at  10  in  from  the  axis." 

255.  Equation  of  Energy. — When  forces  act  on  a  system 
of  particles,  the  change  of  kinetic  energy  is  equal  to  the  work 
done  by  the  forces.  But  in  the  case  where  the  particles  are 

rigidly  connected  the  internal  forces,  being  equal  and  op- 
posite, do  no  work  on  the  system  as  a  whole.  Hence  the 

change  in  kinetic  energy  is  due  to  the  external  forces  only, 
and  is  equal  to  the  work  done  by  them. 

If,  then,  F  is  the  resultant  external  force  and  5  the  dis- 

placement of  its  point  of  application,  the  equation  of  en- 
ergy is 

I(k^/2g=Fs   (1) 

If  the  force  is  not  constant,  then  at  any  instant  we  have 

d{lGo'/2g)  =  Fds   (2) 
as  the  expression  of  the  equation  of  energy. 
Expanding  (2), 

laodco/g  =  Fds  =  FpdO 

when  ̂ 6^  is  the  angle  of  rotation  and  ̂   is  the  distance  of  F 
from  the  axis.    That  is, 

Ia/g=.Fp,   (3) 



§  255]  E(itJATIOK'  OP  ENERGY.  ^13 

the   same  equation  as   found  in  Art.  241  by  D'Alembert's 
principle. 

Compare  with  the  various  forms  of  statement  of  Newton's 
second  law  in  Art.  67. 

Ex.  1.  To  find  the  time  of  oscillation  of  a  compound  pen- 
dulum (Art.  251). 

Let  0  be  the  point  of  suspension,  OA  the 
vertical  through  0,  G  the  position  of  the  center 
of  gravity  when  the  pendulum  is  at  the  end  of 
its  swing,  G^  the  position  of  G  when  Z  GfiA 
=  d,  and  Gl)  the  angular  velocity  there. 

Denote  Z  GO  A  hy  /3  and  let  06^  =  7i. 

The  work  done  by  gravity  as  G  moves  to  G^ 
=  Wxab 

=  Wh{cos  e-coa/3). 

The  kinetic  energy  acquired  =  Ico^ /Ig, 

Hence  Io[?/1g  =  Wh  {cos  6  —  cos  jS), 

and  G?'  =  2  Wgh{co8  6  -  cos  p)/I,       .    .    (1) 

which  gives  the  velocity  in  any  position. 
For  a  simple  pendulum  of  length  I  and  weight  of  bob  W  we 

have,  since  I=Wr, 

WVooy^g  =  Wl(cos  6  -  cos  /?), 

or  tt?'  =  2^(cos  d  —  cos  ̂ )/l   (2) 

Comparing  the  two  equations  (1)  and  (2),  we  see  that  if  a 
simple  pendulum  of  length  I/]¥h  be  set  oscillating  simulta- 

neously with  the  compound  pendulum,  the  two  will  have  the 
same  angular  velocity  for  the  same  angle  ̂ ,  and  therefor« 
the  same  time  of  oscillation.  Hence  the  time  of  oscillation, 
being  that  of  the  simple  pendulum,  is  given  by  (Art.  115) 

t  =  7t  VJ/g  =  TT  Vl/Wgh, 

as  found  before  (Art.  251). 
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/V      2.  Find  the  initial  angular  velocity  of  a  simple  pendulum 
of  length  I  that  it  may  swing  through  a  given  angle  J3. 
y  Aiis.  GO  =  2Vg/l  sin  ̂ /S. 

V        3.  Find  the  initial  angular  velocity  of  a  pendulum  39  in 

long  so  that  it  shall  swing  through  30°. Ans.  GO  =  1.62  radians/sec. 
4.  A  horizontal  rod  of  length  2a  hangs  by  two  parallel 

strings,  each  of  length  k,  attached  to  its 
ends.     If  it  be  twisted  horizontally  through 
a  small  angle  and  allowed  to  oscillate,  it  is 
required  to  find  the  time  of  an  oscillation. 

This  is  the  problem  of  hifilar  suspensioUy 
and  is  of  great  importance  in  physical  and 
electrical  investigations. 

Let  the  angle  of  displacement  of  AB  =  d, 
and  let  the  angle  of  displacement  of  the 
thread  from  the  vertical  due  to  moving  AB 
=  ft.    Then 

a6^  =  arc^^,  =  A/?   (1) 

The  height  to  which  J  ̂   is  raised  in  twisting  through  angle 
6  is  h  —  h  cos  /3. 

The  work  done  in  raising  AB  =  ]Vh{l  —  cos  /3), 

Hence  lGoy2g  =  Wh{l  -  cos  /?) 
=  Wh/3y2     (if  ft  is  small) 
=  Wlia'0'/2h\     from  (1), 

or        go'  =  Wga'e^/Ih, 

For  a  simple  pendulum  of  length  I  and  weight  of  bob  Wwb 
have,  if  the  angle  of  displacement  is  6  (Ex.  1,  p.  313), 

go'  =  2^(1  -  cos  d)/l =  goyi 

Hence 

length  of  simple  equivalent  pendulum  I  =  ITi/Wa*, 

and  time  of  oscillation  =  ̂ r  Vl/g 

=  n  s/lh/Wa'g. 
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Conversely,  if  the  time  of  an  oscillation  be  noted,  the  mo- 
ment of  inertia  of  the  bar  may  be  computed  from  this  rela- 
tion.    This  indeed  is  the  main  problem  of  bifilar  suspension. 

5.  The  bob  of  a  pendulum  consists  of  a  box  filled  with 
sand.     The  pendulum  is  deflected 
from  rest  through  an  observed 

angle' 6^  by  a  shot  fired  horizontally and  striking  the  box  at  a  point  P 
when  OP  =  x.  If  the  pendulum 
weighs  IFlb,  the  shot  w  lb,  and  the 
distance  OG  =  h  where  G  is  the 
center  of  gravity,  it  is  required  to 
find  the  velocity  v  with  which  the 
shot  strikes  in  terms  of  these  observed  quantities. 

Ans.  V  =  iW -\-  w)hV2gh{l  —  cos  8) /tax  ft/sec. 
This  instrument,  called  the  ballistic  pendiihim,  intro- 

duced by  Benjamin  Robins  in  1742,  and  at  one  time  largely 
used  for  finding  the  velocities  of  cannon-balls  and  rifle- 
bullets,  is  now  almost  entirely  discarded  for  more  accurate 
methods  depending  upon  electric  contacts. 

ba.  If  there  is  no  impulse  on  the  axis,  the  shot  must  strike 
at  a  point  P  such  that  OP  =  1/  Wh. 

[P  is  the  center  of  percussion.     (See  Ex.  1,  p.  308.)] 
6.  A  disk  of  radius  r  and  weight  IF  rolls  down  an  inclined 

plane  of  height  h  under  the  action  of  gravity.  To  find  the 
velocity  at  the  bottom. 

Let  u  =  velocity  of  center  of  gravity  down  the  plane; 
GJ  =  the  angular  velocity. 

Then 

kinetic  energy  acquired  =  work  done  by  gravity, 

or  lGjy2g  +  Wicy2g  =  Wh. 

But  T=  Wry  2,         ti  =  roD. 

,\     -w'  =  4^///3,     as  found  before  (p.  306) 

This  may  be  solved  at  once  by  referring  to  the  instanta- 
neous center  of  rotation  instead  of  to  the  O.G.  of  the  disk. 

In  this  case 
lGjy2g  =  Wh, 

and         7=3  Trry2. 

.*.     w^  :=  -^gh/'d,    as  above. 
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7.  A  solid  sphere  and  a  solid  cylinder  of  equal  radii  rol^ 
from  rest  down  the  same  inclined  j^lane.  Compare  their 
times  of  descent.  Ans.   Vl4:/Vlb. 

8.  A  circular  disk  of  radius  r  rolls  down  an  equal  fixed 
disk  under  the  action  of  gravity.  Show  that  the  velocity 
acquired  when  the  line  joining  their  centers  makes  an  anglr 
8  with  the  vertical  is  found  from 

dv'  =  8gr{l  -  cos  6). 

9.  Where  should  a  stop  be  placed  behind  a  thin  vertical 
door,  6  feet  high  and  2.5  feet  wide  ? 

A71S.  10  in  from  outer  edge  and  3  ft  from  top. 
If   the  stop  is  placed  on  the  floor  (as  with  a  railroad-ca: 

door),  account  for  the  "twist." 
10.  If  the  diameter  of  Sisyphus'  spherical  stone  be  2  ft, 

which  he  continually  rolls  up  the  surface  of  a  semi-globular 
mountain  half  a  mile  higli,  what  vertical  distance  will  the 
stone  have  rolled  down  under  the  force  of  gravity  when  it 
leaves  the  mountain?  A?is.  1088  ft. 

How  far  from  the  foot  of  the  mountain  does  the  stone  fall  '^ 

EXAMINATION. 

1.  When  has  a  moving  body  a  motion  of  translation  ? 
[When  all  points  describe  equal  and  similar  paths.] 
2.  AVhen  has  a  moving  body  a  motion  of  rotation  ? 
[When  it  has  two  points  fixed.] 

3.  The  motion  of  a  particle  in  a  plane  may  be  representec'i 
by  a  radial  velocity  dr/dt  and  a  transverse  velocity  rdQ/dt. 

4.  It  is  always  possible  to  represent  the  plane  motion  of  a 
body  at  any  instant  by  a  motion  of  rotation  about  a  certain 

point. 5.  Define  the  instantaneous  center  of  rotation. 

6.  Define  angular  velocity  and  explain  how  it  is  meas- 
ured. 

7.  Find  the  angular  velocity  of  the  extremity  of  the  min- 
ute-hand of  a  clock.  Ans.  7r/1800  rad/sec. 

8.  A  body  makes  30  turns  per  minute.  Show  that  its 
average  angular  velocity  is  n. 
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9.  The  angular  velocity  of  a  body  in  latitude  \  =  7r/12 
radians/hour. 

10.  Show  that  1  rev/min  =  0.10472  radians/sec. 
11.  A  particle  starts  from  rest  and  moves  in  a  circle  with  a 

uniform  acceleration  of  8  radians/sec\  Find  the  time  of  com- 
pleting the  first  revolution.  Ans.    ̂ / n/^  sec. 

12.  If  a  particle  weighs  w  lb,  the  center-seeking  force  re- 
quired to  keep  it  moving  with  uniform  angular  velocity  od  in 

a  circle  of  radius  r  is  ivrco^/g  pounds. 
13.  Show  how  to  combine  two  angular  velocities  about  par- 

allel axes. 

14.  Give  the  unit  of  angular  acceleration. 
15.  A  Foucault  pendulum  is  set  up  at  the  north  pole. 

Find  the  time  of  a  complete  revolution.  Ans.  1  day. 
If  set  up  at  the  equator,  how  then  ? 
16.  If  a  disk  rolls  on  a  plane,  the  velocity  of  translation  of 

its  center  is  equal  to  the  product  of  its  angular  velocity  about 
its  center  and  its  radius. 

17.  Show  that  the  activity  or  power  of  a  rotating  arma- 
ture is  equal  to  torque  X  angular  velocity. 

18.  Define  the  terms  moment  of  inertia  and  radius  of 

gyration. 
19.  State  two  propositions  which  abbreviate  computations 

of  moments  of  inertia. 

20.  The  moment  of  inertia  of  a  lamina  about  a  central 

axis  perpendicular  to  its  plane  is 

weight  X  sum  of  sqs  of  J_  semi-axes/3,  or  4, 

according  as  the  lamina  is  a  rectangle  or  circle. 
State  the  corresponding  proposition  for  the  sphere. 
21.  Show  that  the  moment  of  inertia  of  a  thin  hollow 

cylinder,  2  ft  diameter  and  weight  1  lb,  about  the  axis  of  the 
cylinder  is  the  unit  moment  of  inertia. 

22.  The  kinetical  behavior  of  a  body  cannot  be  determined 

until  we  know  the  value  of  the  radius  of  gyration  of  the  body. 
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23.  State  D'Alembert's  principle  and  give  an  example  of 
its  application. 

24.  Show  how  to  find  the  angular  acceleration  of  a  body 
about  a  fixed  axis  when  the  body  is  acted  upon  by  an  external 
force. 

25.  Prove  moment  of  impulse  =  moment  of  momentum. 
26a.  A  circular  cylinder  with  its  axis  horizontal  rolls  down 

an  inclined  plane.     Show  that  one  third  of  the  acceleration 
of  gravity  is  used  in  turning  the  cylinder. 

26b.  If  the  inclination  of  the  plane  is  30°,  the  distance 
passed  over  by  the  cylinder  in  6  seconds  is  6g. 

27.  A  sphere  rolls  down  a  plane  of  inclination  6.  Show 
that  the  motion  of  the  center  parallel  to  the  plane  is  that  of  a 

particle  moving  with  a  uniform  acceleration  5^  sin  6/7. 

28.  Show  that  change  of  momentum  about  a  fixed"  axis  is 
equal  to  the  moment  of  the  impressed  forces  about  the  axis. 

29.  When  is  a  machine  said  to  be  balanced  ? 

[When  the  relative  movements  of  its  parts  do  not  tend  to 
make  it  vibrate  as  a  whole.] 

30.  Apply  the  principle  of  the  conservation  of  energy  to 
find  the  time  of  swing  of  a  compound  pendulum. 

31.  What  is  meant  by  the  center  of  oscillation  ?  center  of 

percussion  ? 
32.  Find  experimentally  the  center  of  percussion  in  a 

baseball-bat. 

33.  Where  is  the  centre  of  percussion  in  a  hammer  ? 
34.  A  foot  rule  is  held  lightly  at  one  end  between  finger 

and  thumb  so  as  to  hang  vertically.  If  struck  4  inches  from 
the  lower  end,  there  is  no  pull  on  the  fingers.  If  struck  at  3 
or  6  inches,  what  happens  ? 

35.  Why  is  the  lighter  end  of  a  baseball-bat  held  in  the 
hand  ? 

36.  A  semicircular  wire,  length  I,  is  bent  at  its  middle 

point  into  two  quadrants  having  a  common  tangent.  It  os- 
cillates about  an  axis  through  this  middle  point.  Find  the 

length  of  the  simple  equivalent  pendulum. 
Ans,  1(71  —  2)/;r. 
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37.  In  ringing  a  bell  the  swing  is  through  an  angle  6, 
Compute  the  pressure  on  the  supports. 

38.  Explain  how  to  determine  the  moment  of  inertia  of  a 
bar  by  using  bifilar  suspension. 

39.  An  armor-plate  suspended  by  chains  is  struck  normally 
by  a  shot  at  a  point  P  vertically  below  the  C.G.  of  the  plate. 
Find  the  axis  about  which  the  plate  revolves. 

40.  A  fly-wheel  of  a  tons  weight  and  b  ft  diameter  makes 
c  revolutions  per  minute.     Find  the  energy  accumulated. 

Ans.  0.087«6V  ft-pounds,  nearly. 

41.  A  fly-wheel  is  not  perfectly  centered.  How  would  you' 
compute  the  centrifugal  force  ? 

42.  "The  outside  diameter  of  an  engine  fly-wheel  is  80  in, 
width  of  face  26  in,  average  thickness  of  rim  5  in,  revolutions 
per  minute  175  Show  that  the  centrifugal  force  of  the  rim 

is  260,136.35  pounds."     (Exam,  paper.) 
[If  the  wheel  is  properly  balanced,  is  not  the  centrifugal 

force  nilf] 

43.  The  work  stored  in  a  fly-wheel  is  quadrupled  if  the 
angular  velocity  is  doubled. 

y^Q/   4A,  "  There  is  more  energy  stored  in  a  ton  of  car- wheel 
than  in  a  ton  of  car-body.'*     (R.  R.  Gazette,  1892.) 
How  much  more  when  the  speed  of  the  train  is  30 

miles /hour  ? 
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CHAPTER  VIII. 

ELASTIC    SOLIDS. 

256.  Observation  and  experiment  show  that  forces  acting 
on  a  body  may  change  its  motion,  its  form,  or  its  size.  As 
most  simple,  we  have  considered  first  of  all  changes  of  motion 
only.  The  action  of  the  external  forces  was  conceived  to  be 

resisted  by  the  internal  reactions  of  the  particles  on  one  an- 
other in  such  a  way  that  the  particles  retained  their  original 

distances  fi'om  one  another,  so  that  changes  of  form  or  of  size 
did  not  take  place.  The  conditions  of  equilibrium  and  of 
change  of  motion  on  this  hypothesis  have  been  developed  in 
the  preceding  chapters. 

Experience  shows  that  no  perfectly  rigid  body  exists  in 
nature;  the  body  yields  to  the  external  forces,  and  the  inter- 

nal reactions  do  not  prevent  changes  of  form  or  of  size.  If 

the  body  returns  towards  its  original  configuration  on  the  re- 
moval of  the  forces  it  is  said  to  be  elastic. 

257.  Conceive  an  elastic  body  under  the  action  of  forces  to 
be  cut  by  a  plane.  The  particles  of  the  body  act  and  react 
on  one  another  across  the  plane.  The  actions  distributed 
over  one  side  of  the  plane  may  be  regarded  as  combined  into 
one  force  whose  place  of  application  is  the  plane  itself.  The 
action  and  reaction  form  a  stress,  though  the  term  stress  is 
frequently  used  for  either  component. 

The  ̂ ln^t  stress  is  unit  force  per  unit  area;  as,  for  example, 
1  pound  per  square  inch,  written  1  pound/in^  The  average 
stress  over  a  surface  (intensity  of  stress)  is  found  by  dividing 
the  total  stress  on  the  surface  by  the  area  of  the  surface. 
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Ex.  A  wire  of  0.1  in  diameter  is  stretched  by  a  5  lb  weight. 
Find  the  stress  across  any.  section,  neglecting  the  weight  of 

the  wire.  Ans.  2000/ tt  pounds/in'. 
258.  When  an  elastic  solid  is  subjected  to  the  action  of  a 

stress  it  suffers  distortion.  Any  change  of  form  or  of  size  is 
known  as  a  strain.*  Eemove  the  stress  and  the  solid  returns 
to  its  original  dimensions.  This  is  observed  to  be  true  for 

stresses  up  to  a  certain  amount.  When  that  amount  is  ex- 
ceeded the  solid  will  not  return  to  its  original  form  on  remov- 

ing the  stress,  but  will  assume  another  form  between  the  two, 
or  a  permanent  set,  as  it  is  called.  Increase  the  stress,  and 
the  solid  will  finally  be  ruptured.  The  limit  of  unit  stress 

up  to  which  a  body  of  unit  cross-section  may  be  subjected 
without  producing  permanent  sets  is  called  the  elastic  limit 
of  the  material  in  question. 

Until  this  limit  is  reached  experiment  shows  that  strain  is 
proportional  to  the  stress  producing  it.  This  is  known  as 

Hookers  law,  having  been  stated  by  Hooke  in  1678  under  the 
form  Ut  tensio  sic  vis.  It  is  analogous  to  Newton^s  second 
law  of  motion  in  that  it  connects  stress  and  strain  as  the 
second  law  connects  force  and  motion. 

259.  The  ratio  of  a  stress  to  the  strain  which  is  produced 
in  any  body  is  called  a  modulus  of  elasticity  for  that  body. 

(1)  If  the  body  is  acted  on  equally  in  all  directions  by 
stresses  normal  to  its  surface,  the  size  is  changed  but  not  the 
form,  and  the  strain  is  a  compression  or  an  extension,  the 
stress  being  compressive  or  tensile.  Thus  if  V  denotes  the 
volume  when  in  the  natural  state,  v  the  change  of  volume 
[dilatation],  and  p  the  unit  stress,  then  v/  V  is  the  unit  strain, 

and  the  ratio  unit  stress/unit  strain  is  the  modulus  of  elas- 
ticity of  volume. 

*  Rankine  in  1850  introduced  the  term  strain  to  denote  the  definite 
change  iu  the  size  or  shape  of  a  body  produced  by  a  stress.  The  term 
includes  distortion,  deflection,  elongation,  etc. 

But  the  innovation  has  not  been  universally  adopted.  Many  writers 
continue  to  use  strain  in  the  sense  of  force  and  as  synonymous  with 

stress.  For  example,  architects  and  engineers  use  the  term  "strain- 
sheet  "  rather  than  *'stress-sheet"  for  a  diagram  of  stresses  iu  structures. 
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It  IS  usually  denoted  by  the  letter  k,  so  that 

k  =  p  -^  v/V  =  p  V/v. 

It  is  evident  that  k  is  of  the  same  name  as  unit  stress;  for 
unit  strain  being  the  ratio  of  change  of  volume  to  original 
volume  is  an  abstract  number.  In  the  British  system  of  units 

k  is  usually  expressed  in  pounds/in^     i'or  steel, 

^  =  28  X  10"  pounds/in'. 

(2)  If  the  external  stress  produces  change  of  form  but  not 
of  size,  it  is  called  a  shearing  stress  or  shear 
and  the  distortion  a  shearing  strain. 

(a)  Suppose  the  stress  tangential. 
Let  A  BCD  be  a  rectangular  block  on 

the  base  BC.    Conceive  it  built  of  infinitely 
thin  sheets  placed  on.  BC.     It  BC  is  fixed 

and  the  sheets  are  moved  in  their  own  planes  parallel  to  BC, 

the  block  is  displaced  into  the  position  A' BCD'  say,  and  has 
undergone  a  shear. 

The  unit  strain  is  the  difference  of  displacement  of  any 
two  planes  divided  by  the  distance  between  them.    Thus 

unit  strain  =  AA^/AB. 

The  shearing  stress  is  parallel  to  BC.  It  p  represent  the 
stress  on  unit  area,  then  the  ratio 

unit  stress/unit  strain  =  p  -^  AA' /AB. 

=  pXAB/AA' 

is  the  modulus  of  elasticity  of  form,,  or  the  rigidity. 
It  is  denoted  by  the  letter  n,  so  that  n,  like  Ic,  is  expressed 

in  pounds/in'.     For  steel,  7i  =  12  X  10'  pounds/in'. 
(b)  Suppose  the  stress  to  twist  the  body  about  an  axis.  A 

common  example  occurs  in  machine  shafting,  in  which  the 
bodies  twisted  are  circular  cylinders.     A  similar  case  occurs 
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in  many  delicate  physical  instruments  in  which  wires  undergo 
twist. 

Consider  a  cylinder  fastened  at  one  end  and  acted  on  by 
external  forces.  If  the  resultant  of  these  forces  is  a  couple  in 
a  plane  perpendicular  to  the  axis,  it  will  cause  a  twist  about 
the  axis.  This  is  balanced  by  the  molecular  reaction  of  the 
particles  of  the  body,  giving  rise  to  an  equal  and  opposite 
con  pie  in  a  parallel  plane.  We  therefore  say  that  a  cylinder 

subject  to  two  equal  and  opposite  couples  in  planes  perpen- 
dicular to  the  axis  is  in  a  state  of  torsion. 

If  we  suppose  the  cylinder  built  up  of  circular  plates,  we 
may  conceive  them  to  slide  upon  one  another  in  the  twisting, 
just  as  the  leaves  of  a  thick  book  when  one  cover  is  held 
firmly  and  the  other  is  pulled  sideways. 

Let  the  cylinder  when  deflected  from  its  position  of  rest  by 
a  torque  T  applied  perpendicular  to  its  length  come  to  rest 

when  the  angle  of  torsion  is  6,  Then  it  was  shown  by  Cou- 
lomb experimentally  that 

T=hd 

where  5  is  a  constant,  called  the  cotistant  of  torsion. 
260.  Consider  a  uniform  wire,  radius  r,  clamped  at  one 

end  and  carrying  a  weight  attached  to  the  free  end.  Let  the 
wire  be  deflected  through  an  angle  d  from  its  position  of  rest 
by  the  torque  T.    Then  (Arts.  241,  259) 

Ia=  T=be 

where  /^  is  the  angular  acceleration  and  I  the  moment  of  in- 
ertia of  the  wire  about  the  axis. 

Hence  a  varies  as  0  and  a?-  varies  as  Or,  or  the  acceleration 
of  any  point  varies  as  the  displacement  of  the  point  from  the 
position  of  no  torsion.  The  motion  of  each  point  is  therefore 
a  S.H.M.,  and  the  wire  will  oscillate  about  the  position  of  no 
torsion.     The  apparatus  forms  a  tors ioji  pendulum. 
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Hence  the  time  of  an  oscillation  is  given  by  (Art.  115) 

t  ̂=  7t  VOr/ar 

=  7rVJ/h, 

261.  The  torsion  pendulum  may  be  used  to  determine  the 
constant  of  torsion.  For  let  a  weight  of  known  moment  of 
inertia  be  suspended  and  the  time  of  oscillation  observed. 
Then  h  may  be  computed. 

Conversely,  when  b  is  known,  the  moment  of  inertia  of  any 
suspended  body  may  be  computed.     (See  Ex.  7,  p.  336.) 

In  many  physical  investigations  the  instruments  employed 
involve  the  use  of  apparatus  suspended  by  a  fiber  and  caused 
to  oscillate.  Thus  the  Coulomb  torsion  balance  is  used  for 
the  measurement  of  small  forces  and  the  Cavendish  apparatus 
for  measuring  the  density  of  the  earth. 

In  his  classical  researches  (1894)  on  the  constant  of  gravi- 
tation, Prof.  0.  y.  Boys  found  fibers  of  quartz  to  possess  the 

properties  demanded  in  a  suspension  fiber  to  a  greater  degree 
than  any  material  hitherto  used — metallic  wires  or  silk  fibers, 
for  example. 

262.  Let  an  elastic  body  be  subjected  to  longitudinal  com- 
pression or  extension.  Let  I  denote  the  original  length,  A 

the  change  of  length,  P  the  stress  producing  the  change,  and 
A  the  cross-section.     Then 

longitudinal  stress  =  P/A, 

longitudinal  strain  =  A/Z, 

and  the  ratio 

long,  stress/long,  strain  =  P/A  -i-  X/l 

is  called  Young's  modulus  of  elasticity. 
It  is  denoted  by  the  letter  E^  so  that 

E  =  PI/ AX, 



§  263]  IMPACT.  325 

and  is  expressed   in   pounds/in'.     For  steel  ̂   =  30  X  10" 

pounds/in"'. The  work  done  by  the  unit  stress  in  causing  the  strain  A 
is  equal  to  the  unit  stress  multiplied  by  the  average  strain 
A/2,  or 
.  W  =  PA/2. 

The  work  which  a  body  can  do  in  returning  to  its  original 
dimensions  after  it  has  been  strained  up  to  the  elastic  limit  is 
the  luork  of  resilience. 

Ex.  1.  A  rod  0.1  in'*  cross-section  and  10  ft  long  is  sus- 
pended from  one  end.  A  weight  of  1  ton  is  hung  from  the 

lower  end  and  the  wire  increases  in  length  0.1  in.  Find  the 
unit  stress.  Ans.  20,000  pounds/in\ 

Also  show  that  the  modulus  of  elasticity  =  24,000,000 

pounds/in'. 2.  Can  a  steel  rod  1/2  in  X  1/2  in  safely  carry  a  load  of  4 

tons  ?  the  elastic  limit  of  steel  being  50,000  pounds/in'*  ? 
Ans.  Yes;  the  stress  is  within  the  elastic  limit. 

3.  Show  that  Young's  modulus  may  be  defined  as  a  stress 
which  would  double  the  length  of  a  bar  of  unit  cross-section, 
the  bar  remaining  within  the  elastic  limit. 

4.  A  steel  rod  50  ft  long  and  2  in'^  cross-section  is  stretched 
1/25  in  by  a  weight  of  2  tons.  Compute  Young's  modulus 
for  steel.  Ans.  30  X  10'  pounds/in'. 

5.  A  steel  bar  3  ft  long  and  2  in  X  1  in  section  was  sub- 
jected to  a  tensile  stress  of  60  tons.  The  elongation  was  0.05 

in.     Kequired  the  work  of  resilience. 
Ans.  3000  inch-pounds. 

6.  A  wrought-iron  rod  50  ft  long  and  2  in"  cross-section  is 
subjected  to  a  pull  of  25  tons.  Taking  the  modulus  of  elas- 

ticity =  30  X  10°  pounds/in'*,  find  the  elongation. Ans.  0.5  inch. 
The  further  development  of  this  subject  will  be  found  in 

treatises  on  the  strength  and  elasticity  of  materials. 

IMPACT. 

263.  In  Arts.  53,  67  it  was  shown  that  the  second  law  of 

motion  might  be  algebraically  expressed 
Ft  -  Wv, 
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F  being  in  absolute  units;  or 
Ft  ̂   Wv/g, 

F  being  in  gravitation  units. 
In  words, 

the  impulse  imparted  =  the  momentum  acquired. 

264.  Impact  of  Two  Bodies.— If  two  bodies  come  into  con- 
tact, a  collision  or  impact  is  said  to 

take  place.     This  impact  is  direct 

^ — .y^ — V  if  the  bodies  are  moving  in  the  di- 
+   J  >    .     rection  of  the  common  normal  at 
^^ — -^N — y  the   point   of  contact;    indirect  if 

they  are  not  moving  in  this  direc- 
tion. 

If  the  bodies  are  spheres,  the 
common  normal  is  the  line  joining 
their  centers. 

265.  When  two  bodies  impinge, 

the  impulse  [action]  received  by 
the  one  must  be  equal  to  the  impulse  [reaction]  received  by 
the  other.  This  follows  from  the  law  of  stress.  But  the  im- 

pulses are  measured  by  the  momenta  acquired.  Hence,  if  by 
the  impact  the  velocity  u  ft/sec  of  the  body  weighing  IT  lb 
is  changed  to  v  ft/sec  say,  and  the  velocity  u^  ft/sec  of  the 
body  weighing  W^  lb  is  changed  to  v^  ft/sec,  then 

momentum  lost  by  first  =  Wv/g  —  Wu/g  second- 

pounds; 

momentum  acquired  by  second  =  ̂ ^^^Jg  —  ̂ x'^Jg  second- 

pounds. Hence  Wv/g  —  Wu/g  =  W^ujg  —  W^vjg, 

or         Wv/g-VW,vJg^Wu/g-\-W,uJg',    .    .     (1) 

that  is,  tlie  sum  of  the  momenta  after  impact  is  equal  to  the 
sum  of  the  momenta  before  impact. 
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In  order  to  determine  the  unknowns  v  and  v,  we  must  have 

another  relation  between  them.  Now  it  is  found  by  experi- 
ment that  when  two  bodies  impinge  directly  the  difference  of 

velocities  after  impact  bears  a  constant  ratio  to  the  difference 
of  their  velocities  before  impact  so  long  as  the  materials  of 
the  bodies  are  the  same,  but  these  differences  are  in  opposite 

directions.  If  this  constant  ratio,  which  is  called  the  coeffi- 
cient of  restitution  of  the  two  bodies,  is  denoted  by  the  letter 

e,  we  have  * 
V  —  v^=  —  e{u  —  Wj)   (2) 

as  the  second  relation  between  v  and  v,.     Solving  (I)  and  (2), 
we  find 

Wu  +  W,u^  —  eWAu  —  u^ V  =    ■   —   —   — 

Wu  +  Wm^  -{-eWAu-  u,) 

giving  the  velocities  after  impact. 

Also,  the  impulse  i  on  the  body  TTis  measured  by  the  change 
of  momentum  produced.     Hence 

I  =  W{u-v)/g 

=  WW,{l^e){u  -  u,)/{W-^W,)g. 

The  impulse  on  the  other  body  is  of  course  equal  to  this 
and  opposite  in  sign. 

266.  The  value  of  the  coefficient  of  restitution  e  depends 
on  the  material  composing  the  bodies.  From  its  definition  it 
follows  that  the  extreme  values  of  e  are  0  and  1.  li  e  =  0,  or 
the  bodies  are  inelastic,  then 

or  the  bodies  move  together  with  a  common  velocity  after  im- 
pact.   If  6  =  1,  then 

V  —  v^=  —  {u  —  u^, 
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or  the  difference  of  their  velocities  after  impact  is  the  same 
as  it  was  before  impact,  but  in  the  opposite  direction.  In 
this  case  the  bodies  are  perfectly  elastic. 

No  examples  of  either  perfectly  inelastic  or  of  perfectly 
elastic  bodies  occur  in  nature.  But  some  bodies  with  very 

little  elasticity,  as  clay,  for  example,  may  be  regarded  as  be- 
longing to  the  first  class,  and  others,  as  glass,  to  the  second 

class.  For  two  glass  balls  e  =  0.94;  two  ivory,  e  =  0.81 ;  two 
cast  iron,  e  =  0.66;  two  lead,  e  =  0.2. 

267.  The  special  case  of  direct  impact  of  a  sphere  on  a 
synooth  fixed  plane  may  be  noticed. 

The  plane  being  fixed,  we  have 

u^  =  0,        V,  =  0. 

But  from  the  experimental  law 

V  —  v^=  —  e(u  —  w,). 

Hence  there  results 
If  =  —  eu, 

or  the  velocity  of  recoil  is  reversed  in  direction. 

The  impulse  on  the  sphere  is  measured  by  the  change  of 

momentum,  and  is  =  W(u  —  v)/g  =  Wu{l  +  ̂)/ff. 
The  impulse  on  the  plane  is  equal  and  opposite  to  this. 

Ex.  1.  A  perfectly  inelastic  ball  impinges  on  a  plane  per- 
pendicularly.    Show  that  there  is  no  recoil. 

2.  Two  inelastic  balls  are  brought  to  rest  by  the  impact. 
Prove  that  they  must  have  been  moving  in  opposite  direc- 

tions with  velocities  inversely  proportional  to  their  weights. 
3.  Two  balls  of  equal  weight  are  perfectly  elastic.  Prove 

that  after  impact  they  will  exchange  velocities. 
4.  A  series  of  equal  elastic  balls  are  placed  in  contact  in  a 

straight  line.  An  equal  ball  impinges  directly  on  them. 
Show  that  all  will  remain  at  rest  but  the  last,  which  will 
fjy  off. 

5.  Find  the  elasticity  of  two  balls  of  weights  2V  and  ̂ in 
order  that  if  PF  impinges  on  w  at  rest  it  will  itself  be  brought 
to  rest.  Ans.    W/tv. 

6.  A  ball  falls  from  a  height  of  16  ft  above  a  level  fioor. 
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Find  the  velocity  of  rebound  and  the  height  to  which  the 
ball  will  rebound  if  the  coefficient  of  restitution  is  0.75. 

A71S.  24  ft/sec;  9  ft. 
7.  A  ball  falls  from  a  height  h  above  a  level  floor  and  re- 

bounds to  a  height  h^.     Show  that 

h,  =  he' 
where  e  is  the  coefficient  of  restitution. 

For  example,  if  the  height  is  64  ft  and  the  ball  hops 
four  times,  show  that  the  height  of  the  fourth  hop  is  3  in, 
the  value  of  e  being  1/2. 

[Conversely,  ball  and  floor  being  of  the  same  material,  we 
can  by  this  method  find  the  value  of  e  experimentally.] 

8.  A  ball  falls  from  a  height  h  above  a  level  floor.  Show 
that  the  whole  distance  described  before  the  body  ceases  to 

rebound  is  h(l  -\-  e')/(l  —  e'^)  and  the  time  taken  is 
V2h(l  +  ey/g{l  -  ey. 

[For  distance  =  h  -^  2he'  +  2he'  +  ...  ad  inf.] 
9.  A  ball  weighing  4  lb  falls  from  a  height  of  9  ft  on  a  level 

floor  and  rebounds  to  a  height  of  4  ft.     Find  the  impulse. 
Ans.  5  second-pounds. 

10.  A  sphere  impinges  directly  on  an  equal  sphere  at  rest. 
Show  that  their  velocities  after  impact  are  as  1  to  3,  the  co- 

efficient of  restitution  being  0.5. 

268.  Oblique  Impact  of  a  Sphere  07i  a  Fixed  Smooth  Plane 

AB. —  IjQi  u  be  the  velocity  before 
impact,  and  v  the  velocity  after  im- 

pact; B  the  inclination  of  u  to  the 
normal,  and  ft  the  inclination  of  v. 

Resolve  the  velocities  along  and 

normal  to  the  plane.  The  plane  ̂  
being  smooth,  it  exerts  a  normal  pressure  only.  Hence  the 
impact  may  be  considered  direct,  with  velocity  w  cos  6  before 
and  V  cos  ̂   after  impact,  and 

.*.    V  co%  p  =  —  e  X  —  ic  cos  6  =  eu  cos  6. 
Also,  since  the  pressure  is  normal,  the  action  along  the  plane 
is  unchanged  by  the  impact,  or 

?;  sin  /?  =  w  sin  6'. 

Hence  v  and  fi  are  found. 
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Ex.  1.  What  are  the  values  of  v  and  /?  above  ? 

Ans.  V  =  u  4/sin''  0  -^  e"  cos"  6;  tan  /3  =  tan  6/e, 
2.  If  the  elasticity  be  perfect,  show  that  the  angle  of  inci- 

dence 6  is  equal  to  the  angle  of  reflection  /?  and  the  velocity 
is  unchanged. 

3.  If  the  impact  is  direct,  show  that  v  =  eu,  as  already 
found  in  Art.  267. 

4.  Show  that  the  impulse  of  the  sphere  on  the  plane  is 

Tr(l  +  e)tc  cos  6/g  sec-pounds 

if  the  sphere  weighs  W  lb. 
5.  To  hit  a  ball  §  by  a  ball  P  after  reflection  from  the  edge 

OA  of  a  billiard-table.  *•  Aim  at  a  point  B  as  far  behind  the 
edge  CA  as  Q  is  in  front  of  it."     Prove  this. 

6.  A  ball  impinges  on  an  equal  ball  at  rest  at  an  angle  of 

45°  to  the  line  of  impact.  Prove  that  if  both  are  perfectly 
elastic  their  velocities  will  be  equal  after  impact. 

7.  A  perfectly  elastic  ball  falls  from  rest  for  one  second  and 

strikes  a  smooth  plane  inclined  at  45°  to  the  vertical.  After 
what  interval  will  it  again  strike  the  plane  ?       Ans.  2  sec. 

8.  Find  the  angle  at  which  a  ball  must  strike  a  plane  so 
that  its  direction  after  impact  may  be  at  right  angles  to  its 
former  direction,  the  coefiicient  of  restitution  being  1/3. 

Ans.  30°  to  the  normal. 
Show  that  a  perfectly  inelastic  ball  will  after  impact  run 

along  the  plane. 
9.  Two  balls  weighing  4  lb  and  8  lb  are  moving  with  equal 

velocities  of  8  ft/sec  in  opposite  parallel  directions,  and  im- 

pinge at  an  angle  of  30°  with  the  line  joining  their  centers. 
It  e  =  0.5,  show  that  the  impulse  on  the  first  ball  =  Vd 
second-pounds. 

What  is  the  impulse  on  the  other  ball  ? 
10.  A  shell  is  fired  from  a  mortar  on  the  ground,  and  after 

once  ricocheting  rises  so  that  at  its  greatest  altitude  it  just 
passes  over  a  wall.  If  0  be  the  angle  subtended  by  the  wall 
at  the  mortar,  show  that  the  angle  of  elevation  a  is  given  by 

tan  a  =  20  tan  0, 

the   coefficient    of    restitution    between    ground    and  shell 
being  0.5. 

269.  Change  of  Energy  by  Impact. — Consider  the  direct 
impact  of  two  bodies  weighing  W  and  W^  lb  respectively. 
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With  our  usual  notation 

W  =  energy  before  impact  =  Wu^ftg  -\-  W^u^/^g  ft-pounds. 

Wi  —  energy  after  impact    =  Wv'^/2g  -f-  W^v^/^g  ft-pounds. 

The  change  of  energy  produced  by  the  impact  is  the  differ- 
ence of  these  two  expressions.  Substitute  for  v,  v,  their 

values  from  Art.  265,  and  we  find  after  reduction 

WW 

w  -  w,  =  (1  -  ̂ ^)  p^qr^/^^  -  ̂ ,)V2^. 
When  e  =  1,  or  the  bodies  are  perfectly  elastic,  then  w  =  W, , 

and  there  is  no  change  of  energy.  When  e  <  1,  or  e  =  0, 
then  w  >  Wj,  and  the  expression  indicates  a  loss  of  energy 
produced  by  the  impact. 

But  from  the  principle  of  the  conservation  of  energy  (Art. 
217)  there  can  be  no  loss  of  energy  in  the  system.  When 
energy  disappears  in  one  form  it  reappears  in  another  form. 
In  the  present  case  the  energy  of  impact  is  broken  into  two 
parts,  one  in  producing  motion  of  the  impinging  bodies,  and 

the  other,  the  so-called  loss,  in  producing  sound,  heat,  etc., 
and  it  may  be  in  deforming  the  bodies. 

270.  Whether  the  change  of  energy  produced  by  impact  is 

to  be  regarded  as  a  loss  or  not  depends  upon  the  end  to  be  at- 
tained. If  that  is  the  propulsion  of  a  missile  or  the  driving 

of  a  pile,  then  change  of  form,  heat,  etc.,  are  prejudicial,  and 
the  energy  used  in  producing  them  is  lost.  If,  on  the  other 
hand,  change  of  form  is  the  main  thing,  as  in  molding  metal 

under  a  hammer  or  in  riveting,  this  so-called  loss  becomes  the 
useful  energy,  and  the  energy  of  motion  useful  in  the  former 
case  becomes  prejudicial  in  this. 

Ex.  1.  Two  trains  weighing  60  tons  and  80  tons  come  into 
collision  with  velocities  of  60  miles/hour  and  45  miles/hour 
respectively.  Find  the  energy  expended  in  the  destruction 
of  the  cars,  supposing  them  inelastic. 

Ans.  25,410,000  foot-pounds. 
2.  Two  trains  of  equal  weight,  moving  with  velocities  of 

30  miles  an  hour  each  and  in  opposite  directions,  collide. 
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Show  that  the  loss  of  energy  produced  by  the  impact  is  the 
same  as  in  the  case  of  a  train  moving  at  60  miles  an  hour 
striking  another  at  rest. 

In  the  latter  case  find  the  velocity  with  which  the  debris 
will  be  moved  along  the  track. 

Also,  show  that  before  impact  the  total  energy  in  the  one 
case  is  double  that  in  the  other. 

3.  Find  the  loss  of  kinetic  energy  if  a  ball  weighing  10  lb 
falls  from  a  height  of  16  ft  and  rebounds  after  striking  the 
ground  to  a  height  of  4  ft.  •  A7is.  120  ft-pounds. 

4.  A  ball  weighing  w  lb  falls  from  a  height  h  ft  on  a  fixed 
plane.  Show  that  the  loss  of  energy  from  the  impact  is 

(1  —  e'^)wh  ft-pounds,  the  coefficient  of  restitution  being  e. 

271.  A])pU cations. — The  case  of  impact  that  occurs  most 
frequently  in  practice  is  when  the 
bodies  are  inelastic  and  one  is  at  rest 

before  impact.  Here  w,  =  0  and 
e  =  0.     Hence  from  Art.  265 

V  =  V, 
Wu/{W-^W,). 

Consider,  for  example,  the  pile- 
driver. 

It  is  assumed  that  the  pile  is  in- 
elastic, that  there  is  no  deformation 

of  the  head  of  the  pile,  the  blow 

being  instantaneous,  and  that  the  re- 
sistance of  the  ground  is  uniform. 

Suppose  a  pile  weighing    Tf,   lb 
is  driven   vertically  s   ft   into   the 

gTOund  by  a  ram  weighing  TTlb  fall- 
ing through  a  height  of  h  ft.     Let 

^  V  ft/sec  be  the  velocity  of  ram  and 

^  ̂ ^^^^^^E£E^^^  pile  after  the  blow  is  given.  The 
-elocity  of  the  ram  before  striking  being  denoted  by  u  ft/sec, 
we  have 

u"  =  2^7i, 

v=  Wu/{W  +  W,). 
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The  kinetic  energy  of  ram  and  pile  causing  penetration  is 

=  W'h/(  W  +  W,)  f t-pounds. 

The  work  done  by  the  force  of  gravity  on  ram  and  pile  is 

(Tr+Tf,)5ft-ponnds. 

If  F  pounds  denotes  the  average  resisting  force  offered  by 
the  ground,  we  have  by  the  principle  of  work 

Fs  =  W'h/(W-\- W,)-\-(W-j-  W,)s, 

and  F  is  found. 

At  the  last  blow,  the  value  of  s  being  small,  the  second  term 
may  be  disregarded  in  comparison  with  the  first,  and  we  have 

Fs=z  Wh/iW-i-W,). 

Still  more  approximately,  by  neglecting  the  weight  of  the  pile 
in  comparison  with  that  of  the  ram, 

Fs=  Wh. 

For  example,  to  find  the  ultimate  load  a  pile  weighing  500 
lb  could  carry  if  the  last  blow  from  a  height  of  25  ft  of  a 

one-ton  ram  sinks  the  pile  one  inch.  The  three  formulas  give 
482,500,  480,000,  600,000  pounds,  respectively. 

272.  The  kinetic  energy  dissipated  by  the  blow  is  evidently 

Wh  -  Wh/(  W+W,)  =  WWJi/{  W -f  W,)  f t-pounds, 

and  appears  principally  as  sound  and  heat. 
It  is  useful  to  notice  that,  the  energy  of  the  ram  before 

impact  being  Tf/i,  the  loss  of  energy  will  be  less  the  more 

nearly  pry(  W  -\-  W^)  is  equal  to  W,  that  the  more  nearly 
W/{  W  -\-W^)  is  equal  to  unity,  that  is,  the  greater  W  is  in 
comparison  with  W^  Hence  the  ram  should  be  large  in  weight 
compared  with  the  pile. 
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With  the  riveting-hammer,  steam-hammer,  etc.,  in  which 
change  of  form  is  the  end  to  be  attained,  the  useful  work 

done  by  the  hammer  depends  on  WWJi/{  W  -f  TFJ,  which  is 
the  more  nearly  equal  to  Wh  the  greater  Tf^  is  in  comparison 
with  W;  that  is,  the  heavier  the  anvil  is  in  comparison  with 
the  hammer. 

This  was  first  put  in  practice  by  Nasmyth,  the  inventor  of 

the  steam-hammer.  "I  may  mention,"  he  says,  "that  pile- 
driving  had  before  been  conducted  on  the  cannon-ball  prin- 

ciple. A  small  mass  of  iron  was  drawn  slowly  up  and  sud- 
denly let  down  on  the  head  of  the  pile  at  a  high  velocity. 

This  was  destructive,  not  ifnpulsive,  action.  Sometimes  the 
pile  was  shivered  into  splinters  without  driving  it  into  the 
soil;  in  many  cases  the  head  of  the  pile  was  shattered  into 
matches,  and  this  in  spite  of  the  hoop  of  iron  about  it.  On  the 
contrary,  I  employed  great  mass  and  moderate  velocity.  The 
fall  of  the  steam-hammer  block  was  only  3  or  4  ft,  but  it  went 
on  at  80  blows  the  minute,  and  the  soil  into  which  the  pile  was 

driven  never  had  time  to  grip  or  thrust  it  up.'' 

273.  In  building,  the  safe  load  to  be  carried  by  the  pile  is 
some  fractional  part  of  the  load  P  required  to  drive  the  pile, 

say  one  nth  part. 
Then  nP  =  F,    and 

nPs  =  W'n/{W-\-W,), 

or        P  =  W'h/{W-\-W,)ns. 

The  fraction  1/n  is  to  be  determined  by  experience.  An 
average  value  is  1/4. 

Ex.  1.  A  steam-hammer  weighing  500  lb  has  a  stroke  of  3  ft. 
If  the  piston-pressure  is  1000  pounds  and  the  blow  is  verti- 

cal, find  the  work  delivered  in  6  blows. 
Ans.  27,000  foot-pounds. 

2.  A  pile  weighing  half  a  ton  is  driven  12  ft  into  the 
ground  by  30  blows  of  a  hammer  weighing  2  tons  falling  30 
ft.  Prove  that  it  would  require  120  tons  in  addition  to  the 
hammer  to  be  superposed  on  the  pile  to  drive  it  down  slowly, 
supposing  the  resistance  of  the  ground  uniform. 
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3.  Find  the  safe  load  for  a  pile  weighing  500  lb  to  carry  if 
the  pile  sinks  0.1  ft  at  the  last  blow  under  the  5-ft  fall  of  a 
500-lb  ram.  Ans.  3125  lbs. 

4.  A  pile  is  driven  s  ft  vertically  into  the  ground  by  n  blows 
of  a  steam-hammer  fastened  to  the  head  of  the  pile.  Given 
p  the  mean  pressure  of  the  steam  in  pounds/in%  d  the  di- 

ameter of  the  piston  in  inches,  I  the  length  of  the  stroke  in 
ft,  T'Tthe  weight  in  lb  of  the  moving  parts  of  the  hammer, 
and  TF,  the  weight  in  lb  of  the  pile  and  fixed  parts  of  the 
hammer  attached  to  it,  and  E  the  mean  resistance  of  the 
ground  in  pounds,  prove 

nW{W-{-  7tpdy4)l  =  Es(W-{-  W,). 

5.  In  firing  from  a  rifle  of  weight  TTlb  a  bullet  of  weight 
TT,  lb  with  velocity  v  ft/sec,  show  that  the  energy  of  recoil 

is  Wyi'lWg. 
6«.  Prove  that  the  mean  resistance  of  the  wood  is  204  pounds 

to  a  nail  weighing  1  oz,  supposing  a  hammer  weighing  1  lb 
striking  it  with  a  velocity  of  34  ft/sec  drives  the  nail  1  in  into 
a  fixed  block  of  wood. 

6&.  If  the  block  is  free  to  move  and  weighs  68  lb,  prove 
that  the  hammer  will  drive  the  nail  only  64/65  in. 

6c.  Prove  that  the  nail  is  0.0052  sec  and  0.005128  sec  in 
penetrating  the  wood  in  the  two  cases,  during  which  the 
block  if  free  will  move  0.015  in. 

7.  A  hammer  weighing  W  lb  strikes  a  nail  weighing  PF,  lb 
with  a  velocity  of  u  ft/sec  and  drives  it  s  ft  into  a  piece  of 
wood  which  is  fixed  in  position.  If  the  resistance  of  the  wood 
is  R  pounds,  find  the  time  of  penetration. 

Ans.  Wu/Rg  sec. 
8.  If  water  flowing  in  a  pipe  50  ft  long,  with  velocity  24 

ft/sec,  is  shut  olf  in  0.1  sec  by  a  stop-valve,  show  that  the 
water-pressure  in  the  pipe  near  the  valve  is  increased  by  162.5 
pounds/in^ 

EXAMIlyTATION. 

1.  Distinguish  stress  and  strain.  In  what  senses  is  the 
term  strain  used  ? 

2.  What  is  meant  by  the  elastic  limit  ?  How  is  the  work- 
ing stress  related  to  it  ? 

3.  State  Hooker's  law. 
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4.  Define  the  modulus  of  elasticity  of  volume.     Of  form. 

5.  What  is  meant  by  Young^s  modulus  of  elasticity  ? 
6.  State  CoulomVs  law  of  torsion. 

7.  Explain  how  to  determine  moments  of  inertia  by  means 
of  the  torsion  pendulum. 

[Suspend  a  body  whose  moment  of  inertia  (/J  is  required 
and  note  the  time  of  oscillation  (t^).  Replace  it  by  a  body 
whose  moment  of  inertia  (/)  is  known  by  computation  or 
otherwise,  and  note  the  time  of  oscillation  (t).    Then 

i=if,'/t'.] 
8.  A  nut  is  placed  on  a  table,  the  forefinger  of  the  left  hand 

placed  upon  a  suture  of  the  nut,  and  a  blow  given  to  the 
finger  by  the  right  fist.  The  finger  will  be  uninjured,  but 
the  nut  will  almost  certainly  be  cracked. 

Explain  the  general  principle  involved. 
9.  State  the  experimental  law  on  which  the  determination 

of  the  motion  of  two  elastic  balls  after  impact  depends. 
10.  Two  inelastic  spheres  are  moving  in  one  straight  line. 

Find  the  result  of  a  collision  upon  their  velocities. 
11.  An  inelastic  sphere  impinges  on  another  of  twice  its 

weight  at  rest.  Show  that  the  impinging  body  loses  2/3  of 
its  velocity  by  the  impact. 

12.  A  ball  weighing  2  lb  impinges  obliquely  upon  an  8-lb 
ball  at  rest.  The  coefficient  of  restitution  is  0.25.  Show 

that  after  impact  the  balls  move  off  at  right  angles. 

13'.  Show  that  an  inelastic  ball  will,  after  impact  with  a 
smooth  plane,  slide  along  the  plane. 

14.  Two  perfectly  elastic  spheres  collide  directly.  Show 
that  their  kinetic  energy  is  unaltered  by  the  impact. 

15.  A  body  collides  with  an  equal  body  at  rest.  Show  that 
the  energy  before  impact  cannot  exceed  twice  the  energy 
after  impact. 

16.  A  block  weighing  100  lb  falls  through  25  ft  and  is 

brought  to  rest  in  1/10  sec.  Find  the  average  pressure  ex- 
erted on  the  block.  Ans.  1250  pounds. 
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17.  A  nail  is  driven  1/10  in  into  wood  by  a  blow  from  a  2- 
Ib  hammer  having  a  velocity  of  16  ft/sec.  Find  the  average 
pressure  offered  by  the  wood.  Aiis.  960  pounds. 

18.  An  80-ton  gun  discharges  an  800-lb  shot  with  a  velocity 
of  1500  ft/sec.  If  the  recoil  is  resisted  by  a  constant  press- 

ure of  15  tons,  how  far  will  the  gun  recoil  ?        Ans.  4.7  ft. 
19.  In  driving  a  nail  of  weight  w^  lb  with  a  hammer  of 

weight  w  lb  and  velocity  u  ft/sec  the  energy  spent  in  produc- 
ing deformation  of  the  head  of  the  nail,  sound,  etc.,  is 

— —^—u^/2g  foot-pounds, 

and  the  energy  spent  in  driving  the  nail  is 

-u^/2g  foot-pounds. 

20.  A  shot  weighing  to  lb  is  fired  from  a  gun  whose  weight 
is  W  lb  with  velocity  v  ft/sec  relative  to  the  gun.  Show  that 
the  actual  velocities  of  shot  and  gun  are  Wv{  W  +  w)  and 

wv/{  W  -f  tv)  ft/sec  respectively. 
21.  Prove  that  if  a  link  of  a  chain  which  is  coiled  up 

loosely  near  the  edge  of  a  table  is  allowed  to  hang  over  the 
edge  the  chain  will  slip  over  with  a  uniform  acceleration  ^/3. 

22.  What  is  the  effect  of  a  charge  between  light  and  heavy 
cavalry,  the  light  cavalry  having  the  greater  energy  and  the 
heavy  the  greater  momentum  ? 
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CHAPTEK  IX. 

METKIC    UNITS. 

274.  In  Chapter  II  it  was  explained  that  there  are  two  sys- 
tems of  units  in  use  in  Mechanics,  the  absohite  system  and 

the  gravitation  system.  The  British  gravitation  system, 
being  that  in  most  common  use  in  this  country,  lias  been  em- 

ployed in  this  book  so  far.  There  is  no  system  of  absolute 
units  depending  upon  British  measures  that  is  generally 

acknowledged  or  is  likely  to  come  into  use.* 
The  metric  system  of  measures,  on  the  other  hand,  pro- 

vides a  nomenclature  for  absolute  and  gravitation  units. 
The  metric  gravitation  system,  like  the  British  gravitation 
system,  is  local  in  character;  the  absolute  system,  known  as 
the  C.G.S.  system,  is  cosmopolitan,  having  been  devised  for 
international  purposes. 

For  clear  understanding  of  the  units  at  present  in  use  it 
will  be  necessary  to  go  into  considerable  detail  and  to  present 
the  subject  in  historical  order. 

The  Standards  of  the  Archives. 

275.  (a)  Unit  of  Length.— l\i  1790  the  French  govern- 
ment, at  the  suggestion  of  Talleyrand,  asked  the  Academy  of 

Sciences  to  propose  a  scheme  tor  the  reformation  of  the  con- 
fusion existing  among  the  weights  and  measures  of  the  coun- 

try. The  report  of  the  committee  of  the  Academy — which 
included  Laplace,  Lagrange,  and  Borda — was  adopted  in 

1791.     The  committee  resolved  that  the  1/10'  part  of  an  arc 

*  The  system  involving  the  "  poundal"  as  unit  of  force  is  quite  super- fluous. 
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of  the  meridian  extending  from  the  equator  to  the  pole 
should  be  the  basis  of  the  standard  of  length  and  be  called  a 
meter. 

Accordingly  an  arc  of  the  meridian  was  measured  and  the 
length  of  the  meter  determined.  The  standard  of  the  meter, 
which  consists  of  a  platinum  bar  about  1  in  wide  and  1/7  in 
thick,  was  constructed  by  Borda,  presented  to  the  National 
Assembly  by  Laplace,  and  on  the  same  day  deposited  among 
the  Archives  of  France.  It  is  hence  called  the  7netre  des 
archives. 

The  meter  thus  fixed  upon  as  the  standard  of  length  was 
defined  by  a  law  of  the  French  Republic  as  the  distance  at 

0°  C,  the  temperature  of  melting  ice,  between  the  ends  of  the 
Borda  platinum  bar  just  described. 

Later  determinations  have  shown  that  the  length  of  the 

quadrant  is  not  exactly  10^  meters.  According  to  Clarke  it 
has  a  length  of  10,002,015  meters,  being  2015  meters  [5/4 
mile]  in  excess.  Other  determinations  give  different  values. 

Hence  if  the  meter  were  lost  or  destroyed  it  would  be  impos- 
sible to  replace  it  with  any  great  degree  of  accuracy  by  refer- 
ence to  the  quadrant  of  the  meridian  as  natural  unit. 

276.  It  is  probable  that  some  other  natural  unit,  as  the 

wave-length  of  homogeneous  light,  may  be  chosen  as  the  ulti- 
mate standard  of  length.  Michelson  found  (1893)  that  the 

meter  and  length  of  a  light-wave  of  red  cadmium  light  might 
be  compared  with  the  same  degree  of  accuracy  as  is  now  pos- 

sible in  the  comparison  of  two  meter  bars.*  He  says:  "If, 
therefore,  the  meter  and  all  its  copies  were  lost  or  destroyed, 
they  could  be  replaced  by  new  ones  which  would  not  differ 

from  the  originals  more  than  do  these  among  themselves." 

"  The  science  of  the  eighteenth  century  sought  to  render 
itself  immortal  by  basing  its  standard  units  upon  the  solid 
earth;  but  the  science   of  the  nineteenth  century  soars  far 

*  The  meter  =  1,553,163.5  wave-leDgtbs  (MichelsoD) ;   =1,553,163.6 
wave-lengths  (Beuoit). 
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beyond  the  solar  system  and  connects  its  units  with  the  ulti- 
mate atoms  which  constitute  the  universe  itself.'' 

*  277.  (b)  Unit  of  Weight. — The  standard  of  weight  is  the 
kilogram^  which  is  a  certain  cylinder  of  platinum  constructed 
under  the  direction  of  the  French  Academy  at  the  same  time 
as  the  meter,  and  with  it  deposited  among  the  archives  of 
France.     It  is  hence  called  the  kilogramme  des  archives. 

The  kilogram  was  intended  to  equipoise  in  a  vacuum  a 

cubic  decimeter  or  liter  of  water  at  3.9°  C,  the  temperature 
of  greatest  density  of  water;  that  is,  it  should  be  of  the  same 
weight.  But  as  weight  and  length  have  no  natural  relation, 
it  was  impossible  that  this  relation  could  be  exactly  realized. 

The  numerical  determination  changes  as  methods  of  com- 
parison become  more  perfect,  though  within  small  limits. 

Without  doubt  two  weights  can  be  compared  at  least  a 
thousand  times  more  accurately  than  either  of  them  can  be 
reproduced  by  weighing  a  specified  volume  of  water,  and  for 
that  reason  the  kilogram,  like  the  English  pound,  can  now 
be  regarded  only  as  an  arbitrary  standard  of  which  copies 
must  be  taken  by  direct  comparison.     (Harkness.) 

The  International  Standards. 

278.  In  1875,  by  the  concurrent  action  of  the  princi- 

pal governments  of  the  world — seventeen  in  number — an 
international  bureau  of  weights  and  measures  was  estab- 

lished at  the  Pavilion  de  Breteuil,  Sevres,  near  Paris,  France. 
Under  the  direction  of  the  international  committee  two 

ingots  were  cast  of  platinum-iridium  in  the  proportion  of 
nine  parts  of  the  former  to  one  of  the  latter  metal.  From 

one  of  these  a  number  of  meter-bars  were  prepared,  and 
from  the  other  a  number  of  kilogram-weights.  These 
standards  of  length  and  of  weight  were  intercompared. 
After  the  comparison  had  been  made,  one  of  the  bars,  the 

length  of  which  at  0°  0.  was  found  equal  to  that  of  the  Metre 
des  Archives,  and  one  of  the  kilograms,  with  which  the  others 
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were  compared,  were  selected  as  international  prototype  stand- 
ards. The  others  were  in  1889  distributed  by  lot  to  the  dif- 
ferent governments  and  are  called  national  prototype  stand- 
ards. Those  apportioned  to  the  United  States — meter 

number  27,  kilogram  number  20 — are  in  the  keeping  of  the 
National  Bureau  of  Standards,  Washington.  The  standards 
allotted  to  Great  Britain  are  meter  number  16  and  kilogram 
number  18,  deposited  with  the  Standards  Department  of  the 
Board  of  Trade,  London.  The  ultimate  standards  are  the 

international  prototype  standards  at  Breteuil,  which  are 
defined  as  follows: 
The  International  Standard  Meter  is  derived  from  the 

Metre  des  Archives,  and  its  length  is  defined  by  the  distance 

between  two  lines  at  0°  Centigrade  on  a  platinum-iridium  bar 
deposited  at  the  International  Bureau  of  Weights  and  Meas- 

ures. This  bar  is  in  transverse  section  nearly  of  the  form  of 
the  letter  X,  known  as  the  Tresca  form. 

The  International  Standard  Kilogram  is  a  lump  of  platinum- 
iridium  deposited  at  the  same  place,  and  its  weight  in  vacuo 
is  the  same  as  that  of  the  Kilogramme  des  Archives. 

Like  the  Kilogramme  des  Archives  it  is  in  shape  a  cylinder, 
having  the  same  diameter  as  altitude  (39  mm). 

279.  Of  the  two  definitions  of  the  liter  given  in  Art.  277 
the  international  committee  decided  that  one  should  be  chosen 

which  is  most  convenient  for  purposes  of  measurement.  They 
accordingly  in  1880  resolved  that  the  liter  (1)  should  denote 
the  volume  of  a  kilogram  of  water  at  the  temperature  of 
maximum  density.  The  1/1000  part  of  the  liter  is  called  the 
milliliter  (ml). 

The  liter  is  therefore  not  precisely  the  same  as  the  cubic 
decimeter,  nor  the  milliliter  the  same  as  the  cubic  centimeter. 

280.  The  international  prototype  meter  and  kilogram  are 

now  regarded  by  the  National  Bureau  of  Standards,  Washing- 
ton, as  the  standards  of  length  and  weight  in  the  United 

States.  In  the  absence  of  any  material  normal  standards  the 
units  in  ordinary  use,  the  yard  and  the  pound,  are  derived 
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from  the  international  units  in  accordance  with  the  act  of 

July  28,  1866.     This  act  gives  the  relations: 

1  yard        =  3600/3937  meter; 
1  lb  avoir.  =  1/2.2046  kilogram. 

The  British  imperial  yard  is  equal  to  36/39.370113  meter, 
and  the  imperial  pound  is  equal  to  1/2.2046212  kilogram. 

The  following  are  the  principal  determinations  of  the  value 
of  the  meter  in  terms  of  the  inch : 

Date. Authority. Inches. 

1818 
1835 
1866 
1885 
1893 

Kater   
Biiily   

39.37079 
39.369678 
39.370433 
39.36985 
39.370155 
39.370113 

Clarke   
Comsiock   
Rocjers   
International  Bureau. . . 

'No  value  of  the  inch  in  terms  of  the  meter  nor  of  the  pound 
in  terms  of  the  kilogram  has  been  adopted  by  international 
agreement. 

281.  The  subdivisions  and  multiples  of  the  meter  with 
their  equivalents  in  British  measures  are  as  follows.  The 
abbreviations  are  those  given  by  the  international  committee 
and  should  be  used. 

Micromillimeter 
Micron   
Millimeter   
Centimeter   
Decimeter   
Meter   
Decameter   
Hectometer .... 
Kilometer   

Myriameter   

1/109  m 
1/106  m 1/1000  m 
1/100  m 
1/10  m 1  m 

10  m 
100  m 

1000  m 
10000  m 

0.03937  in 

39.37  in 

0.6214  mile 
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The  subdivisions  and  multiples  of  the  gram  with  their 

abbreviations  and  equivalents  in  British  measures  are  as 
follows  : 

Microgram   
Milligram   
Centigram   
Decigram   , 
Gram   
Decagram ....... 
Hectogram   
Kilogram   
Myriagram   
Quintal   
Tonneau  (Millier) 

r 1/10«  g 

mg 

1/1000  g 

eg 

1/100  g 

dg 

1/10  g 

g 

ig 

10  g 

100  g 

kg 

1,000  g 
10,000  g 

q 
100,000  g 

t 1,000,000  g 

0.01543  grain. 

15.43235  grains 

2.204C  lb. 

The  following  approximate  values  are  for  many  purposes 
close  enough: 

Lekgth. 

1  millimeter  =  1/25  inch 1  inch =    2.5  centimeters 

1  centimeter  =  2/5  inch Ifoot =  30.5  centimeters 

1  meter          =1.1  yard 1  yard 
=    0.9  meter 

1  kilometer   =  5/8  mile 1  mile =  1609.3  meters 

Weight. 

1  gram  =  15.4  grains 
1  kilogram    =    2.2  lb 
1  tonne         =  2205  lb 

1  ounce  =  28.3  grams 
1  lb  =  453.6  grams 
1  ton      =  10/11  tonne 

282.  The  metric  system  is  in  use  among  nearly  all  the 
nations  of  Europe,  of  America,  North  and  South,  also  in 
Japan.  The  principal  exceptions  among  civilized  nations 
are  the  United  States,  Great  Britain,  and  Russia.  In  1864 

its  use  was  made  legal  but  not  compulsory  in  Great  Britain, 
and  in  1866  in  the  United  States.     The  act  of  1866  reads : 

"  It  shall  be  lawful  throughout  the  United  States  of  Amer- 
ica to  employ  the  weights  and  measures  of  the  metric  sys- 
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tern;  and  no  contract  or  dealing  or  pleading  in  any  court 
shall  be  deemed  invalid  or  liable  to  objection  because  the 
weights  or  measures  expressed  or  referred  to  therein  are 
weights  or  measures  of  the  metric  system. 

"  The  Secretary  of  the  Treasury  is  hereby  authorized  and 
directed  to  furnish  each  State,  to  be  delivered  to  the  Governor 
thereof,  one  set  of  the  standard  weights  and  measures  of  the 

Metric  System  for  the  use  of  the  States  respectively." 
This  was  the  first  general  legislation  upon  the  subject  in 

the  United  States,  and  the  metric  system  is  thus  the  first  and 
thus  far  the  only  system  made  legal  throughout  the  country. 

(See  Art.  65.)  It  is  now  used  in  the  U.  S.  Coast  and  Geo- 
detic Survey,  the  U.  S.  Pharmacopoeia,  and  to  some  extent  in 

the  Mint,  the  Geological  Survey,  the  Post  Office,  and  the 
Weather  Bureau. 

Our  fractional  silver  coins  represent  metric  weights.  Thus 

the  50-cent  piece  weighs  125  decigrams,  the  25-cent  piece  625 
centigrams,  etc. 

283.  The  standards  being  defined,  we  proceed  to  explain 
the  two  systems  of  metric  units  in  use  in  Mechanics.  (See 

Arts.  65-69.) 
(1)  The  gravitation  system,  used  in  commerce  and  the 

arts. 

(2)  The  absolute  system,  used  in  theoretical  investigations 
and  in  laboratory  work. 

Gravitation  Units. — The  fundamental  units  of  the  metric 

gravitation  system  are  the  units  of  length,  weight,  and  time. 
The  unit  length  is  the  meter  [m]  or  centimeter  [cm].  (Art. 

278.) 

The  unit  weight  is  the  kilogram  [kg]  or  gram  [g].  (Art. 
278.) 

The  unit  time  is  the  second  [sec].     (Art.  7.) 

The  principal  derived  units  are: 
The  unit  velocity,  which  describes  unit  distance  in  unit 

time,  is  denoted  by  the  symbols  1  cm/sec;  1  m/sec;  1  m/min; 
etc.,  according  to  the  units  of  length  and  time  employed. 
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The  unit  acceleration,  which  changes  the  velocity  one 

unit  in  unit  time,  is  denoted  by  the  symbols  1  cm/sec"; 
1  ni/sec^;  1  m/min';  etc. 

The  unit  force,  or  the  force  of  gravity  on  the  unit  of 
weight  [the  kilogram  or  the  gram],  is  called  the  kilogram  or 
the  gram. 

The  term  kilogram  is  used  in  a  double  sense,  corresponding 
to  the  use  of  the  term  pound  in  the  British  system.    (Art.  QS,) 

The  unit  impulse  is  the  impulse  of  unit  force  [1  kilogram] 

in  unit  time  [1  second],  and  is  called  a  second-kilogram. 

The  unit  momentum  is  the  momentum  of  1  kg  moving 
with  unit  velocity,  and  is  the  same  as  the  unit  of  impulse. 

Thus  the  momentum  of  If  kg  moving  with  a  velocity  of 

V  m/sec  is  Wv/g  second-kilograms,  g  being  equal  to  9.81 

m/sec''. 
The  unit  loorh,  or  the  work  done  by  unit  force  acting 

through  unit  distance,  is  called  the  kilogrammeter  [kgm]  or 

the  gram-centimeter  [gem]. 
It  may  also  be  defined  as  the  work  done  in  lifting  unit 

weight  through  unit  height. 

Thus  a  force  of  i^  kilograms  acting  through  s  meters  docs 
a  work  of  Fs  kgm.  Or  the  work  done  in  lifting  a  weight  of 
W  kg  through  a  height  of  h  meters  is  Wh  kgm. 

The  unit  energy  is  the  same  as  the  unit  of  work.  (Art. 
214.)  Thus  the  energy  of  TFkg  moving  with  a  velocity  of  v 

m/sec  is  Wv'^/2g  kgm. 
The  energy  stored  in  a  weight  of  IT  kg  at  a  height  of  h 

meters  above  the  earth's  surface  is  Wh  kgm. 

The  unit  activity  [or  power]  is  the  kilogrammeter  per 
second  [kgm/sec].  The  enlarged  unit  is  the  cheval  vapeur, 
which  is  75  kgm/sec. 
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Ex.  1.  A  horse  trots  12  km  in  1  h  40  min.  Find  his  aver- 
age speed.  A71S.  2  m/sec. 

2.  Show  that  an  acceleration  of  500  cm/sec"^  =18  km/min^ 3.  Show  that  the  velocity  of  the  earth  round  the  sun  is 

3  X  10"  cm/sec,  the  mean  distance  of  the  earth  and  the  sun 
being  1.487  X  10"  cm. 

4.  A  point  has  velocities  of  4,  4,  8  cm/sec  inclined  at  120° 
to  each  other.     Find  the  resultant  velocity. 

Ans.  4  cm/sec. 

5.  Find  the  centripetal  acceleration  of  a  point  which 
moves  in  a  circular  path  of  1  m  diameter  with  a  velocity  of 
10  cm/sec.  Ans.  2  cm/sec^ 

6.  A  railroad  train  timed  past  posts  1  km  apart  took  2  min 
and  1  min  to  pass  over  two  consecutive  distances.  Find  the 
velocity  at  the  middle  post,  assuming  the  acceleration  con- 

stant. Ans.  50  km/hour. 
If  t^,  t^  were  the  times,  show  that  the  acceleration  is 

2(^.-^-^r')/(^,  +  0km/sec«. 
II. 

7.  A  force  of  5  kilograms  acts  on  a  weight  of  10  kg.  Find 
the  distance  described  in  10  sec.  A7is.  245.25  m. 

8.  Show  that  a  brake  resistance  of  102  kilograms  per  tonne 
will  bring  to  rest  a  train  running  at  72  km/hour  in  about 
20  sec. 

9.  If  a  carriage  weighing  W  kg  is  placed  on  a  smooth  level 
road  and  acted  on  by  a  pull  of  P  kilograms  for  t  sec,  find  the 
velocity  acquired.  A71S.  v  =  Pgt/W, 

Find  the  momentum  acquired. 
10.  Explain  why  a  waterfall  h  meters  high  can  support  a 

column  of  water  2h  meters  high. 

III. 

11.  Two  forces  of  4  kilograms  and  7  kilograms  act  at  an 

angle  of  55°.  Show  that  their  resultant  is  9  kilograms  855 
grams. 

12.  The  wind  is  blowing  from  the  southwest.  Show  that  a 
vessel  may  be  sailed  due  west. 
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13.  Two  cords  making  an  angle  of  60°  support  a  chandelier 
weighing  50  kg.    Find  the  pull  in  each  cord. 

A71S.  50/|/3  kilograms. 

14.  Three  forces  of  3, 4, 5  kilograms  act  at  120°.  Find  their resultant. 
15.  A  locomotive  weighing  98.1  tonnes  runs  round  a  curve 

of  800  m  radius  with  a  velocity  of  72  km/hour.  Find  the 
centrifugal  force.  A7is.  5000  kilograms. 

16.  A  ball  is  thrown  upwards  with  a  velocity  of  20  m/sec. 
Find  its  velocity  when  half  way  up. 

17.  A  marline  spike  falling  from  a  mast  down  a  hatchway 
took  t  sec  to  fall  to  the  bottom  of  the  hold,  a  depth  of  h 
meters.     Find  the  velocity  with  which  it  struck. 

A?is.  h/t  -j-  gt/2  m/sec. 
18.  The  wheels  of  a  train  running  at  36  km/hour  on  coming 

to  a  drop  of  5  mm  in  the  rails  will  go  about  32  cm  before 
touching  the  rails. 

IV. 

19.  Weights  of  1,  2,  3  g  are  placed  at  the  angles  of  an  equi- 
lateral triangle  whose  sides  are  12  cm  in  length.  Find  the 

distance  of  the  C.G.  from  the  angle  1.  Ans.  2  Vl9  cm. 
20.  A  body  appears  to  weigh  240  g  when  placed  in  one 

pan  of  a  balance,  and  250  g  when  placed  in  the  other  pan.  Find 
its  real  weight.  Ans.  100  VQ  g. 

21.  The  length  of  the  beam  of  a  false  balance  is  1  m.  A 
body  placed  in  one  scale  weighs  8  kg,  and  in  the  other  8.1  kg. 
Find  the  lengths  of  the  arms  of  the  balance. 

22.  A  steelyard  is  1  m  long  and  weighs  2  kg.  It  is  sus- 
pended at  a  point  10  cm  from  one  end.  The  movable  weight 

is  1  kg.     Find  the  greatest  weight  that  can  be  weighed. Ans.  17  kg. 

23.  A  10-kg  weight  slides  with  constant  speed   down  a 
rough  plane  which  rises  1  in  10.     Find  the  resistance. 

Ans.  1  kilogram. 

24.  A  10-kg  weight  rests  on  a  plane  whose  inclination  is  30°. Find  the  force  of  friction  called  into  action. 
Ans.  5  kilograms. 

25.  "What  force  will  haul  a  10-kg  weight  along  a  rough 



348  METRIC  UNITS.  [§284 

table  with  a  uniform  acceleration  of  1  m/sec^  the  coefficient 
of  friction  being  0.5  ?  Ans.  6.02  kilograms. 

VI. 

26.  Find  the  number  of  kgm  necessary  to  raise  200  cm^  of 
water  to  a  height  of  1  km.  A7is,  200  kgm. 

27.  The  pitch  of  a  screw  is  30  mm,  and  the  force  exerted  by 
each  of  two  men  with  levers  2  m  long  is  15  kilograms.  Find 
the  greatest  weight  that  can  be  raised.     Ans.  12.57  tonnes. 

28.  In  a  differential  pulley  the  radii  of  the  upper  sheaves 
are  190  mm  and  200  mm.  If  the  pull  on  the  chain  is  20 
kilograms,  find  the  greatest  weight  that  can  be  raised. 

A71S.  800  kg. 

29.  Find  the  distance  in  which  a  boat  weighing  50  tonnes 
and  moving  at  the  rate  of  4J  km/hour  can  be  brought  up  by 
a  rope  round  a  post  if  the  greatest  pull  the  rope  is  capable  of 
sustaining  is  1  tonne.  Ans.  4  m  nearly. 

30.  Show  that  a  train  running  at  36  km/hour  can  be 
brought  to  rest  in  about  34  m  by  the  brakes,  supposing  them 
to  press  on  the  wheels  with  3/4  of  the  weight  of  the  train 
and  that  the  coefficient  of  friction  is  0.2. 

31.  A  train  starts  from  a  station  at  the  foot  of  an  incline  of 

30°  and  of  length  I  meters.  If  the  train  weighs  W  kg  and  it 
reaches  the  top  of  the  incline  with  a  velocity  v  m/sec,  show 

that  the  work  done  is  W(l/2  -|-  v^/2g)  kgm. 

284.  Absolute  Units. — As  already  explained  in  Chapter  II, 
a  system  of  units  is  absolute  when  it  does  not  involve  the  ac- 

celeration of  gravity  at  any  place. 
The  fundamental  units  are  those  of  length,  time,  and  mass; 

the  term  mass  being  used  instead  of  weight  because  in  an  ab- 
solute system  comparisons  are  made  fundamentally  by  kinetical 

methods  and  not  by  weighing.  Comparisons  of  masses  may, 
however,  be  made  by  the  beam  balance  (Art.  63). 

285.  C.G.S,  Units.^Gauss  and  Weber,  who  first  developed 
the  absolute  system  of  units,  employed  the  millimeter  as  unit 
of  length,  the  milligram  as  unit  of  mass,  and  the  second  as 
unit  of  time. 

In  1873  a  committee  of  the  British  Association  recom- 
mended as  dynamical  and  electrical  units  the  centimeter, 

gram,  and  second  as  the  fundamental  units,  and  also  recom- 
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mended  a  system  of  nomenclature.    Additions  were  made  to 
the  nomenclature  in  1888. 

This  system,  involving  as  fundamental  units  the  centimeter 
as  unit  of  length,  the  gram  as  unit  of  mass,  and  the  mean 

solar  second  as  unit  of  time,  is  called  the  C.G.S. — centimeter- 

gram-second — system.  It  is  growing  more  and  more  inter- 
national in  character  and  is  used  in  theoretical  investigations 

in  Astronomy,  Physics,  Electricity,  and  Mechanics  to  the  ex- 
clusion of  every  other  system. 

The  principal  derived  units  are  as  follows  : 

The  unit  velocity  which  describes  unit  distance  in  unit 

time  [1  cm  in  1  sec]  is  called  a  kine  {Kiveoo), 

The  unit  acceleration  which  changes  the  velocity  1  unit  in 
time  [1  kine  in  1  sec]  is  called  a  spoud  (^anovdrj). 

The  unit  force  which  produces  unit  acceleration  in  unit  mass 
[1  spoud  in  1  gram]  is  called  a  dyne  (6vvafxi£),  Thus  a 

force  of  F  dynes  acting  on  m  grams  produces  an  accelera- 

tion of  a  cm/sec'',  given  by 
F  =  ma. 

The  unit  momentum  is  the  momentum  of  unit  mass  moving 
with  unit  velocity  [1  gram  with  velocity  1  kine],  and  is  called 
a  bole  (/?oAo?).  Thus  the  momentum  of  m  grams  moving 
with  a  velocity  of  v  cm/sec  is  mv  boles. 

The  unit  impulse  which  generates  unit  momentum  is  also 

called  a  bole.  Thus  a  force  of  F  dynes  acting  for  an  inter- 
val of  t  sec  on  a  mass  of  m  grams  generates  an  impulse  of  Ft 

boles,  and  is  equivalent  to  mv  boles  if  v  is  the  velocity  change. 

The  unit  work,  which  is  the  work  done  by  unit  force  acting 
through  unit  distance  [1  dyne  through  1  cm],  is  called  an  erg 
(epyov).  Thus  a  force  of  F  dynes  acting  through  s  cm 
does  a  work  of  Fs  ergs. 

The  unit  energy  is  the  same  as  the  unit  work,  the  erg. 
Thus  the  energy  of  m  grams  moving  with  a  velocity  of  v 

cm/sec  is  mv^/2  ergs. 
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286.  M.K.8.  Unils. — In  practical  electricity  and  in  me- 
chanical pursuits  many  of  the  C.G.S.  units  are  found  to  be 

inconveniently  small.  Accordingly  what  is  known  as  the 
M.K.S.  system,  in  which  the  meter,  kilogram,  and  second  are 
the  fundamental  units,  is  being  adopted  as  a  working  system. 
It  has  as  yet  received  only  a  partial  nomenclature. 

In  this  system 

The  unit  distance  is  1  meter  [=  10'  centimeters]. 

The  unit  mass  is  1  kilogram  [=  10^  grams]. 
The  unit  time  is  1  second. 

The  unit  force  which  produces  unit  acceleration  [10" 
cm/sec']  in  unit  mass  [10'  grams]  is  consequently  10'  dynes. 
The  name  gauss  *  has  been  suggested  for  this  unit. 

Another  unit  of  force  is  the  megadyne,  being  one  million 

dynes. 

The  unit  worh  is  the  work  done  by  unit  force  acting 

through  unit  distance  [10"  dynes  through  10'  cm],  that  is, 
10'  ergs,  and  is  called  a  joule, f  so  that 

1  joule  =  10'  ergs. 
Another  unit  of  work  is  the  megalerg,  or  a  million  ergs, 

being  the  work  done  by  a  megadyne  acting  through  a  cm. 

The  unit  energy  is  the  same  as  the  unit  of  work,  the  joule. 
Thus  the  energy  of  m  kilograms  moving  with  a  velocity  of  v 

meters/sec  is  mv'^/2  joules. 
The  unit  power  is  the  power  of  an  agent  which  can  do  a 

work  of  one  joule  per  second,  and  is  called  a  watt,J:  so  that 

1  watt  =  10'  ergs/sec. 
The  kilowatt  [1000  watts]  is  the  unit  of  power  in  electric 

*  After  Gauss  of  G5ttingen  (1777-1855),  who  first  published  an  abso- 
lute system  of  units  of  dynamics. 

f  After  Joule  of  Manchester  (1818-1889),  who  first  measured  accu- 
rately the  mechanical  equivalent  of  heat. 

X  After  James  Watt  of  Glasgow  (1736-1819),  who  made  the  steam- 
engine  a  commercial  success. 
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lighting.     Roughly,  3  kilowatts  are  equivalent  to  4  horse- 

powers. 
The  kilowatt-hour  is  analogous  to  the  horse-power-hour 

(Art.  209),  and  is  a  unit  of  work  or  energy. 
So  also  the  watt-second  is  a  unit  of  energy,  and  is  equiva- 

lent to  a  joule. 
I. 

Ex.  1.  A  point  moves  with  a  uniform  speed  of  100  kines. 
In  what  time  will  it  pass  over  1  km  ?     A7is.  16  min  40  sec. 

2.  Show  that  the  velocity  of  a  point  on  the  equator  arising 
from  the  earth's  rotation  is  about  46,300  kines,  the  mean 
radius  of  the  earth  being  2  X 10"/ ;r  cm. 

3.  A  particle  starts  with  a  velocity  of  100  kines  and  moves 
under  an  acceleration  of  —  2  spouds.  In  what  time  will  it 
come  to  rest?  Ans.  50  sec. 

4.  A  ball  is  dropped  in  an  elevator  which  is  rising  with  an 
acceleration  of  1  spoud.  Find  its  acceleration  relative  to  the 
floor  of  the  elevator. 

5.  A  ball  is  dropped  from  the  top  of  an  elevator  2.45  m 
high.  Find  the  time  in  which  it  will  reach  the  platform 
when  the  elevator  is  descending  with  an  acceleration  of  490 
spouds.  Ans.  1  sec. 

6.  The  maximum  piston-speed  of  an  engine  cross-head  is 
200  kines.  Find  the  average  speed,  neglecting  the  obliquity 
of  the  connecting-rod.  Ans.  400/7r  kines. 

7.  Find  the  distance  passed  over  in  the  fifth  second  from 
rest  of  a  body  falling  at  a  place  where  g  =  980  spouds. 

Ans.  44.1  m. 

11. 

8.  A  body  of  mass  10  g  is  acted  on  by  a  force  of  10  dynes. 
Find  the  resultant  acceleration.  Ans.  1  spoud. 

9.  Find  the  momentum  of  a  body  of  mass  10  g  (1)  moving 
with  a  velocity  of  10  kines,  (2)  acted  on  by  a  force  of  10 
dynes  for  10  sec.  A7is,  100  boles. 

What  is  the  energy  in  each  case  ? 
10.  A  body  of  mass  10  g  moving  with  a  velocity  of  10  kines 

is  acted  on  by  a  force  of  10  dynes  for  10  sec.  The  inclination 

of  the  force  to  the  original  direction  of  motion  is  60°.  Find 
the  final  velocity.  Ans.  lOf^  kines. 

11.  A  body  of  mass  10  g  produces  a  certain  deflection  in  a 
spring-balance  at  a  place  where  the  acceleration  of  gravity  is 
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981  spouds,  and  at  another  place  it  is  noted  that  it  requires 
10.01  g  to  produce  the  same  deflection.  Find  the  vahie  of 
the  acceleration  of  gravity  at  this  place. 

Ans.  980.02  spouds. 

12.  A  body  of  mass  m  grams  is  moving  with  a  velocity  of  v 
cm/sec.  In  what  time  will  a  force  of  F  dynes  reduce  it  to 
rest? 

13.  Find  the  force  which  acting  on  1  kg  for  10  sec  will 
produce  a  velocity  of  1  kine.  A  ns.  100  dynes. 

14.  If  1  gram  of  air  occupies  773  cm'  and  behaves  like 
a  cloud  of  inelastic  particles,  prove  that  the  pressure  of 
the  wind  against  a  plane  perpendicular  to  its  direction  is 

0.00129?;'  barads,  if  the  velocity  of  the  wind  is  v  kines. 
III. 

15.  A  body  slides  down  a  smooth  plane  inclined  at  30°  to 
the  horizon.  Through  how  many  cm  will  it  fall  in  the  sec- 

ond second  ?  Ans,  735|  cm. 
16.  A  body  of  mass  m  g  revolves  uniformly  in  a  circle  of 

radius  r  cm  and  makes  n  rev/min.     Show  that 

the  centrifugal  force  =  mr(7tn/Z0y  dynes. 

If  t  sec  is  the  time  of  revolution, 

the  centrifugal  force  =  mri^n/tY  dynes. 

17.  Find  the  length  of  a  seconds-pendulum  at  a  place 
where  g  =  981  spouds.  Ans.  99.3  cm. 

18.  If  the  speed  of  a  bicycle  is  18  km/hour,  show  that  a 
piece  of  mud  thrown  from  the  highest  point  of  the  front 
wheel  70  cm  in  diameter  will  strike  the  ground  lO/VT  meter  in 
advance  of  the  point  of  contact  of  the  wheel  with  the  ground. 

19.  Forces  whose  magnitudes  are  as  3  to  4  act  at  a  point 
and  in  directions  at  right  angles.  If  their  resultant  is  2 
dynes,  find  the  forces.  Ans.  1.2,  1.6  dynes. 

20.  A  mass  of  6  grams  is  held  up  by  two  threads,  one 
horizontal  and  the  other  inclined  at  30°  to  the  vertical. 
Find  the  pulls  in  the  threads. 

Ans.  39241^,  1962 VT  dynes. 
21.  Eesolve  a  force  of  12  dynes  into  two  equal  forces  each 

inclined  at  30°  to  it.  Ans.  41^3  dynes. 
22.  A  cylinder  10  cm  in  diameter  stands  on  a  rough  plane 

and  is  just  on  the  point  of  tumbling  over  when  the  inclina- 
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tion  of  the  plane  to  the  horizontal  is  30°.    Find  the  height 
of  the  cylinder.  Ans.  lOV^  cm. 

23.  A  kg  weight  is  thrown  vertically  upward  with  a  ve- 
locity of  981  kines.  Find  its  energy  at  the  instant  of  pro- 

pulsion and  also  after  1  sec.  Ans.  481,180,500  ergs;  0. 
24.  How  much  work  is  done  against  gravity  by  a  man 

whose  mass  is  80  kg  in  walking  a  distance  of  1  km  up  a 

mountain  path  inclined  at  80°  to  the  level  ? 
Ans.  392,400  joules. 

25.  A  5-kg  cannon-ball  is  discharged  with  a  velocity  of 
500  m/sec.     Show  that  the  energy  =  625,000  joules. 

26.  A  kg  weight  is  lifted  through  1  m.  Find  the  increase 
of  potential  energy.  Ans.  9.81  joules. 

27.  A  gun  recoils  with  a  velocity  of  327  cm/sec  and  runs 
up  an  incline  of  1  in  4  to  a  distance  of  218  cm.  Find  the 
value  of  the  acceleration  of  gravity  at  that  place. 

Ans.  981  cm/sec'. 
28.  A  particle  of  mass  1  gi-am  moving  with  a  S.H.M.  vi- 

brates 100  times  a  second.  If  the  range  of  vibration  is  1  cm. 
at  its  mean  position,  find  the  energy  of  the  particle. 

29.  The  energy  of  a  particle  of  mass  m  which  executes  a 
simple  harmonic  motion  of  amplitude  a  cm  and  period  T  sec  is 

ima^GD^  sin*  cot 

where  go  =  27r/T. 
30.  The  kinetic  energy  of  translation  of  the  earth  relative 

to  the  sun  is  10"  X  2.69  joules,  the  radius  being  2  X  loy^r 
cm,  and  the  density  5.6  g/cm.* 

31.  The  electrical  power  unit  adopted  at  Niagara  Falls  is 
5000  electrical  horse-power.  Show  that  this  is  equivalent  to 
3700  kilowatts. 

287.  Change  of  Units— Dimensions.— The  numerical  value 
or  measure  of  a  quantity  is  the  number  of  units  that  must  be 
added  together  to  produce  the  given  quantity;  in  other  words, 
it  is  the  ratio  of  the  quantity  to  the  unit.  If  the  unit  is 
changed,  the  numerical  value  is  changed  in  inverse  ratio. 
Thus  a  line  100  cm  long  may  be  stated  as  being  1000  mm 
long  or  1  m  long,  the  unit  in  the  first  change  being  10  times 
as  small  and  in  the  second  100  times  as  large  as  the  original 
unit.     Hence  the  numerical  measure  varies  inversely  as  the 
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unit.  Of  course  the  quantity  itself  is  quite  independent  of 

the  unit  employed  to  measure  it — just  as  the  matter  of  this 
book  is  in  no  way  affected  by  the  size  of  type  used  by  the 

printer. 
288.  In  mechanics  certain  units  are  assumed  as  fundamen- 

tal units.  They  are  called  fundamental  because  a  change  in 
any  one  of  them  does  not  imply  a  change  in  any  of  the  others. 
They  are  arbitrary,  being  chosen  as  the  result  of  circumstances 
or  as  seems  most  convenient  for  the  purpose  on  hand.  Those 
usually  but  not  necessarily  taken  are  the  units  of  length, 

time,  and  mass.*  They  are  denoted  by  the  symbols  L,  T,  and 
M  respectively. 

But  besides  the  fundamental  units  there  are  other  units 

which  are  systematically  derived  from  them  by  definition,  and 
which  therefore  depend  on  them.  A  system  of  this  kind  in 

which  a  magnitude  can  be  expressed  in  terms  of  the  funda- 
mental units  is  called  an  absolute  system.  The  C.G.S.  system 

is  an  absolute  system,  the  derived  units  being  systematically 
defined  in  terms  of  the  units  of  length,  time,  and  mass. 

289.  The  relation  between  a  derived  unit  and  the  funda- 

mental units  from  which  it  is  derived  may  be  stated  as  an 
algebraic  formula.  The  indices  of  the  fundamental  units  in 
the  formula  of  the  derived  unit  are  called  the  dimensions  of 
this  unit.  The  formula  itself  is  a  dimensional  formula. 

Knowing  the  dimensions,  we  can  at  once  write  down  the 
change  in  the  value  of  a  derived  unit  due  to  any  changes  in 
the  fundamental  units  of  that  system,  or  we  can  convert 
units  of  one  absolute  system  into  those  of  another. 

290.  The  doctrine  of  dimensions  was  first  given  by  Fourier 
in  1821  in  his  Analytical  TJieory  of  Heat,  but  brought  into 
use  by  Maxwell. 

The  view  of  dimensional  formulas  here  given  is  the  primary 
one  that  the  formulas  indicate  numerical  relations  between 

*  Maxwell's  statement  that  "the  whole  system  of  civilized  life  is 
symbolized  by  a  foot  rule,  a  clock,  and  a  set  of  weights"  is  for  the 
present  too  sweeping.  All  dectricnl  and  magnetic  units  have  not  yet 
been  expressed  in  terms  of  these  units. 
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units;  in  a  word,  that  they  are  change-ratios.  As  the  tend- 
ency of  modern  science  is  to  express  everything  dynamically, 

it  is  probable  that  dimensional  formulas  may  be  so  expressed 
as  to  indicate  the  nature  of  the  quantity — the  way  in  which 
it  is  built  up.  At  present  they  do  not  do  this.  For  example, 
the  table  on  p.  367  will  show  that  torque  and  work,  though 
by  no  means  identical,  are  of  the  same  dimensions. 

For  a  proposed  extension  of  their  meaning  along  quater- 
nion lines  see  Phil.  Mag.,  Sept.  1892. 

291.  The  principal  derived  or  secondary  units  are  as  follows : 

1.  Velocity. — From  the  definition 

unit  velocity  =  unit  length/unit  time^ 
or  V  =  L/T =  LTS 

and  the  unit  of  velocity  is  said  to  be  of  one  dimension  with 
respect  to  length  and  minus  one  dimension  with  respect  to 
time. 

If  we  change  to  units  L, ,  T,  of  length  and  time  when 

then  unit  vel.  =  L,/Ti  =  tL/t. 

Ex.  Find  the  unit  of  velocity  if  the  units  of  length  and 
time  are  the  mile  and  minute. 

Unit  vel.  =  l/T,  =  5280l/60t  =  88l/T; 

that  is,  the  unit  of  velocity  is  SS  ft/sec. 

2.  Acceleration. — Unit  acceleration  is  rate  of  change  of 
unit  velocity.     Hence 

A  =  V/T  =  L/r  =  LT-', 

and  is  said  to  be  of  dimensions  1  in  length  and  —  2  in  time. 
3.  Force. — Unit  force  gives  unit  acceleration  to  unit  mass. 

Hence 

F  =  MA  =  ML/t'  =  LMT"'. 
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4.  Impulse, — Unit  impulse  is  given  by  unit  force  acting  for 
unit  time.     Its  notation  therefore  is 

FT  =  LMT-'  X  T  =  LMT"'. 

5.  Momentum. — Unit  momentum  is  given  by  unit  mass 
moving  with  unit  velocity.    Its  notation  therefore  is 

MV  =  LMT"', 
or  an  impulse  is  of  the  same  dimensions  as  a  momentum. 

This  also  follows  from  unit  impulse  being  that  which  gen- 
erates or  destroys  unit  momentum. 

6.  Work. — Unit  work  is  given  by  unit  force  acting  through 
unit  distance.    Hence 

F  X  L  =  LMT''  X  L  =  L'MT"'. 

7.  Kinetic  energy  (translation)  is  of  the  same  dimensions  as 
work.    For 

iMV'  =  iML'T-'. 
8.  Power  or  Activity. — Unit  power  is  unit  work  per  unit 

time.     Hence 

unit  power  =  w/t 
=  L^'MT-yr 

=  L'MT-'. 
9.  Density, — Unit  density  is  unit  mass  per  unit  volume. 

Hence 

unit  density  =  m/l'. 

10.  Pressure. — Unit  pressure  is  unit  force  per  unit  area. 
Hence 

unit  pressure  =  T/C 

=  LMT  Vl' 
=  L-'MT-'. 

11.  Torque. — Unit  torque  is  unit  force  into  unit  length. 
Hence 

unit  torque  =  f  X  L 

=  LIVIT-'  X  L 
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12.  Heat. — In  the  dynamical  theory  of  heat  it  is  necessary 
to  consider  the  dimensions  of  the  unit  of  heat. 

The  unit  of  heat  is  the  calorie,  or  the  quantity  of  heat  re- 

quired to  raise  unit  mass  through  unit  temperature,  or  1°. Hence 

dimensions  of  unit  heat  =  DM 

when  D  denotes  a  degree  of  temperature  on  any  scale. 
Now  to  produce  a  unit  of  heat  requires  J  units  of  work 

when  J  is  known  as  Joule's  equivalent,  or 

1  unit  heat  =  j  units  work. 

Let,  as  the  result  of  experiment, 

H  units  heat  =  w  units  work. 

.-.     1/H  =  J/W, 
or  J  =  w/H. 

Hence  the  dimensions  of  j  are 

L'^MT-VdM  =  D-'L'T-% 

which  enables  us  to  find  the  value  of  j  when  the  units  of  work 

and  of  temperature  are  changed  from  one  system  to  another. 
292.  By  considering  the  dimensions  of  the  units  involved 

in  a  mechanical  formula  we  may  check  at  least  its  possibility 
and  thus  save  the  labor  of  going  over  the  demonstration. 
For  example,  in  Art.  28  it  was  found  that 

V*  =  ar. 

Considering  the  dimensions  only,  we  have  for  the  separate 
terms,  r  being  a  length, 

L^'T-',     LT-'  X  L,     or     l'T', 

and  the  expression  is  therefore  homogeneous,  each  term  being 

of  the  same  dimension.     Hence  v''  =  ar  is  possibly  true. 
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A  similar  test  would  show  that  such  an  expression  as 

mH  +  'ZFf  =  3m''s 
is  absurd. 

If,  then,  in  the  course  of  an  investigation  we  had  arrived  at 
an  equation  of  this  form,  we  should  at  once  conclude  that 
there  was  an  error  somewhere.  By  applying  the  principle  we 
may  check  our  work  at  intervals  and  save  carrying  along 
mistakes. 

293.  It  is  often  required  to  pass  from  an  absolute  to  a  gravi- 
tation system  of  units  and  vice  versa.  In  these  cases  the  rule 

given  in  Art.  66  must  be  observed. 

For  example,  to  find  the  number  of  watts  in  a  horse-power: 
Let  X  =  the  number  of  ergs  per  sec  in  1  H.P. 

Now  1  H.P.  =  550  foot-pounds  per  sec. 
Then 

X  X  L^MT-'  =  32.2  X  550  X  L^M.T"', 

the  second  being  the  unit  of  time  in  both  systems. 
But 

100  cm  =  39.37/12  ft.  1000  g  =  2.2046  lb. 

.-.     L,  =  1200/39.37L.  .*.     M,  =  1000/2. 2046  M. 

-r^  o^^       ..^       /1200V         1000 
Hence       x  =  32.2  X  550  X  (3^^)   X  ̂ ^^^ 

=  746  X  10'  ergs/sec 
=  746  watts. 

1.  Show  that  a  velocity  of  1  kine  =  0.0328  ft/sec. 
2.  "  "  "  "        *'  1  ft/sec  =  30.48  cm/sec. 
3.  "  "  "  "•        ''  1  mile/hour  =  44.7  cm/sec. 
4.  "  "  "  "        "  1  km/hour  =  27.78  cm/sec. 
5.  "  "  "  "        "  1  km/hour  =  0.62137  miles/hour. 
6.  "  "  "  "        "  1  knot  =  1853.25  m/hour. 
7.  "  "  an  acceleration  of  1  spoud   =  0.0328  ft/sec'. 
8.  "  "  "  "  "  1  ft/sec'  =  30.48  cm/sec'. 
9.  Express  in  miles  per  hour  the  speed  of  a  vessel  which 

steams  at  the  rate  of  16.5  knots.  Ans,  19  miles/hour. 
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10.  Find  the  numerical  value  of  a  velocity  of  10  ft/sec  if 
the  fundamental  units  of  length  and  time  are  the  yard  and 
minute.  A7is.  200. 

1 1.  Find  the  unit  of  velocity  if  one  meter  is  the  unit  of  length 
and  one  spoud  the  unit  of  acceleration.  Ans.  10  kines. 

12.  Show  that  the  foot  per  second  and  mile  per  hour  units 
of  velocity  are  as  15  :  22. 

13.  Find  the  numerical  value  of  g  (981  spouds)  if  one 
meter  is  the  unit  of  length  and  one  minute  the  unit  of  time. Ans.  36  g. 

14.  The  unit  of  velocity  is  1  mile  per  minute  and  the  unit 
of  time  1  minute.     Find  the  unit  of  acceleration. 

A71S,  22/15  ft/sec^ 
15.  If  the  acceleration  of  gravity  is  taken  as  the  unit  of 

acceleration,  and  a  velocity  of  43  j^  miles  an  hour  the  unit  of 
velocity,  find  the  units  of  time  and  distance. 

Ans.  2  sec;  128  ft. 
16.  Find  the  unit  of  time  if  g  is  taken  as  unity;  one  ft 

being  the  unit  of  length.  Ans.  1/Vg^  sec. 17.  The  unit  of  length  is  a  meter,  the  unit  of  mass  a  kilo- 
gram, and  the  unit  of  time  a  minute.  Find  the  unit  of 

force.  A71S.  250/9  dynes. 
18.  If  the  unit  of  length  is  1  meter,  the  unit  of  velocity  100 

kines,  and  the  unit  of  energy  100  ergs,  find  the  r.^it  of  power. 
Ans.  10"^  watt. 

19.  Taking  L,  T,  W  as  units  of  length,  time,  and  energy, 
find  the  units  of  mass,  momentum,  and  force. 

A71S.  WL-'r;  WL-'T;  WL"'. 20.  Show  that 

1  gram  [force]         =  981  dynes. 
1  grain  [force]         =  63.57  dynes. 
1  gram-centimeter  =  981  ergs. 
1  kilogrammeter     =  10"  ergs,  approx., =  9.81  joules, 
1  pound  [force]       =  445,000  dynes 

=  2/5  megadyne,  roughly. 
1  foot-pound  =  1.356  joules 

=  0.138  kilogrammeter. 
1  joule  =  3/4  foot-pound,  approx. 
1  watt  =  3/4  foot-pound/sec,  approx. 
1  horse-power  =  745.9  watts. 
1  kilowatt  =  1^  horse-power,  approx. 
1  poncelet  =981  watts. 
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1  watt-second  —  10  megalergs. 
3  kilowatt-hours     =  4  horse-power-hours. 
1  pound/ft'  =  479  barads. 

21.  Show  by  considering  its  dimensions  that 

mvt  -f  2Ft'  =  3ms 
is  a  possible  expression. 

22.  Show  by  a  consideration  of  dimensions  that  the  dis- 
tance described  from  rest  by  a  body  acted  on  by  a  force  in 

the  direction  of  its  motion  varies  as  the  square  of  the  time. 
23.  Show  that  the  equation 

Fs  =  mvy2 
is  homogeneous. 

24.  The  mean  value  of  Joule's  equivalent  /  is  4.2x10'  ergs 
when  the  unit  of  work  is  the  erg  and  the  unit  of  temperature 

1°  C.  Express  this  in  foot-pounds  when  the  unit  of  work  is 
the  foot-pound  and  the  unit  of  temperature  1°  F. 

Let  X  =  the  number  of  foot-pounds  required. 

Then  XX  32.2  X  L'D"^  T"' =  4.2  X  W  X  L.'Dr'T"'. 

But    100  cm  =  39.37/12  ft.  5°  C.  =  9°  F. 

.-.  L,  =  39.37/1200L.         .'.  D,  =  9D/5, 

,  4.2  X  10'  ̂   /39.37V  ̂   ̂ 
^^^  ̂ =-3272— ><ll200-j    ><9 

=  780.1  foot-pounds. 

[Griffith's  value  (1893)  is  779.97.  The  value  in  common 
use  is  772,  which  is  certainly  too  small.] 

25.  Find  the  value  of  /  when  the  unit  of  work  is  the  kilo- 

gram meter  and  the  unit  of  temperature  1°  0. A71S.  0.428  kgm. 

EXAMINATION". 
1.  Describe  the  international  standard  units  of  length  and 

weight. 
2.  What  is  the  international  unit  of  time  ? 

3.  How  are  the  inch  and  lb  in  the  United  States  defined  by 
the  act  of  1866  ? 

[In  terms  of  the  meter  and  kilogram  by  the  relations 
1  m  =  39.37  in,  1  kg  =  2.2046  lb.] 
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4.  What  are  the  legal  equivalents  in  Great  Britain  accord- 
ing to  the  act  of  1878  ? 

Aus.  1  m  =  39.37079  in;  1  kg  =  2.2046212  lb. 

5.  Explain  the  prefixes  micro-,  milli-,  centi-,  deci-,  deca-, 
hecto-,  kilo-,  myria-. 

6.  How  many  mm  in  an  inch  ?    How  many  cm  in  a  foot  ? 
7.  Show  that  8  kilometers  is  equal  to  5  miles,  nearly. 
8.  Show  that  10  kilograms  is  equal  to  22  lb,  nearly. 
9.  Should  the  abbreviation  c.c.  be  used  for  cubic  centi- 

meter ? 

[No,  use  cm'.] 10.  What  is  a  metrical  tonne  ? 

11.  How  many  cm'  in  a  fluid  ounce  ? 
12.  How  many  ounces  in  a  liter  of  water? 

13.  Is  this  true  :  1  tonne  =  1  m'  water;  1  milligram 
=  1  mm'  water  ? 

14.  How  many  kilograms  in  a  quintal  ? 
15.  What  is  a  fundamental  unit  in  mechanics  ?  a  derived 

unit? 

16.  State  the  fundamental  C.G.S.  units,  the  fundamental 

British  units,  commonly  employed.  What  other  units  might 
be  chosen  ? 

17.  Describe  the  C.G.S.  system  of  units. 
18.  What  fundamental  units  does  the  absolute  unit  of  force 

involve  ? 

19.  Define  the  terms  erg,  joule,  watt,  and  watt-second. 
20.  Express  an  erg  in  British  units. 

Ans.  7.37  X  10-«  foot-pounds. 
21.  A  force  de  clieval  is  75  kgm/sec.  Express  it  in  British 

units.  Ans.  542.48  foot-pounds/sec. 
22.  Show  that  1  force  de  cheval  =  736  watts. 
23.  What  is  a  micron  ?  a  megadyne  ?  a  megalerg  ? 
24.  A  megadyne  is  roughly  equivalent  to  a  kilogram. 
25.  Give  the  adopted  abbreviations  for  micron,  meter, 

cubic  centimeter,  square  millimeter,  gram,  kilogram,  kilo- 
grammeter,  quintal,  tonne. 



362  METRIC   UN^ITS.  [§  293 

26.  "  The  pressure  of  the  atmosphere  upon  every  cm^  of 
the  earth's  surface  is  1033.3  grams,  a  little  more  than  a  megor 
dyne."     Check  the  statement  in  italics. 

27.  A  watt  represents  10  megalergs  per  second. 
28.  Point  out  the  errors  in  the  following : 

{a)  "  The  service  of  express  trains  from  London  to  Edin- 
burgh has  received  an  acceleration  of  one  hour.'' 

{h)  "  The  couple  exerted  is  evidently  nc  dynes." 
{c)  "  The  momentum  of  the  needle  when  moving  with  the 

angular  velocity  go  is  Ioj'/'Z," 
{d)  "  The  momentum  is  all  expended  in  balancing  the 

couple." 
(e)  "  The  C.G.S.  unit  of  work  is  the  gram-centimeter." 
29.  How  does  the  length  of  the  meter  compare  with  that  of 

the  seconds-pendulum  ? 
30.  How  many  watts  in  a  horse-power  ? 

31.  "  A  kilowatt  is  a  unit  of  power  and  involves  the  ide.i  of 
time.  A  kilowatt-hour  is  a  unit  of  energy  or  work,  precisely 
like  the  term  foot-pound,  or  horse-power-hour,  or  joule,  into 

which  it  is  directly  convertible."    Examine  this  statement. 
32.  Is  the  following  rule  of  thumb  true  ? — 

"  A  motor  yielding  a  horse-power  for  every  kilowatt  con- 
sumed has  an  efficiency  of  75  per  cent." 

33.  Show  that  1  joule  =  0.00000028  kilowatt-hour. 
34.  Show  that  1  kilowatt-hour  =  1.34  horse-power-hours. 
35.  Show  that  1  watt-second  =  1  joule. 
36.  What  two  functions  do  dimensional  formulas  perform 

in  physical  investigations  ? 
What  other  function  has  been  suggested  ? 
37.  Show  that  the  equation 

Ft  =  mv 

is  homogeneous. 
38.  Is  the  equation 

astv  -f  sv"^  =  gH*' homogeneous  ? 
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39.  What  is  meant  by  a  barad  ?  [A  pressure  of  1  dyne/cm'.] 
40.  Kesolve  a  force  so  that  its  component  in  a  given  direc- 

tion shall  have  a  given  value. 
41.  Show  how  a  stick  may  be  balanced  on  the  finger  at  a 

constant  inclination  to  the  vertical  by  making  the  finger  de- 
scribe a  horizontal  circle  with  given  velocity. 

42.  A  projectile  is  fired  with  velocity  u  kines  and  at  an  ele- 
vation B.  What  are  the  horizontal  and  vertical  components 

of  its  velocity  after  2  seconds  ? 

43.  Determine  the  height  to  which  the  mud-splashes  from 
the  hind  wheel  will  reach  on  the  back  of  a  bicyclist. 

44.  A  mass  m  grams  is  moving  with  velocity  u  kines.  A  con- 
stant force  acts  on  it  in  the  direction  of  the  motion  until  the 

velocity  is  v  kines.    Prove  that  the  work  done  by  the  force  is 

mv^l%  —  mu^/%  ergs. 

45.  A  mass  of  1  decigram  executes  250  simple  harmonic 
vibrations  in  1  sec.  If  the  amplitude  of  the  vibration  is  2.5 
mm,  find  the  maximum  force  exerted. 

Ans.  6250 ;r'  dynes. 
46.  A  simple  pendulum  is  pulled  aside  until  the  bob  is 

raised  h  ft  above  the  horizontal  through  the  lowest  point  and 
then  let  go.  Find  its  velocity  as  it  swings  through  the  lowest 

point. 
47.  A  vessel  steams  directly  away  from  the  rock  of  Gibraltar 

at  a  speed  of  20  knots.  Show  that  the  rock  appears  to  sink 

with  a  constant  acceleration  of  5.5/10'  ft/sec'. 
Hence  show  how  a  passenger  on  board  could  compute  the 

height  of  the  rock. 

48.  The  actual  relation  of  prototype  meter  No.  16  is 

prototype  16  =  1  m  —  0.6//  ±  0.1/<  at  0°  0., 

so  that  it  may  be  said  that  the  meter  has  been  verified  with  a 
probable  accuracy  of  0.1  part  in  a  million. 

Explain  the  meaning  of  this  last  statement. 
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Length.      1  inch  =  25.4000  *  millimeters  (mm)   log  1.40483 
1  foot  =   0.304801  meter  (m)      "    9.48402 
lyard=    0.914402  meter      "    9.96114 
1  mile  =    1.60935*  kilometers  (km)      "    0.20665 

Area.  1  sq  inch  =  645.16  sq  millimeters  (mm'^)   log  2.80966 
1  sq  foot  =     0.09290  sq  meter  (m«)      "    8.96802 
lsqyard=     0.83613  sq  meter      "    9.92227 
1  sq  mile  =     2.59000  sq  kilometers  (km^)      "    0.41330 

Capacity.    1  U.  S.  gallon  (231  in^)  =  3.78543*  liters  (1)    log  0.57812 
1  imperial  gallon  (277.463  in^)  =  4.54683  liters.. .    "    0.65771 

Weight.      1  grain  =    64.7989*  milligrams  (mg). ..  log  1.81157 
1  ounce  (avoir.)  =    28.3495*  grams  (g)      "    1.45255 
lib  (avoir.)        =  453.5924*  grams       "    2.65667 
1  ton  (2000  lb)    =  907.1849  kilograms  (kg)      "    2.95770 

Force.         1  grain    =  63.57  d3^nes. 
1  pound  =   4.45  X  10^  dynes. 

Stress.         1  pound/sq  inch  =  70.307  grams/sq  centimeter.,  log  1.84700 

1  pound/sq  foot  =    4.8824  kilograms/sq  meter..    "    0.68863 

Energy.      1  foot-pound  =  1.3563  X  10"'  ergs 
=  0.13825  kilogramme ters  (kgm). .  log  9.14067 

1  horse-power-hour  =  1,980,000  foot-pounds. 

Activity     1  foot-pound/minute  =  0.0226  watt    log  8.35411 

(Power).     1  horse-power  =  33,000  foot-pounds/minute 
=  746  watts 

=  76  kilogrammeters/second. 

Velocity.     1  foot/second  =  0.3048  meter/second    log  9.48402 

1  mile/hour     =  0.4470  m/sec      "    9.65031 

=  1.6093  km/hr       "    020665 

*  These  are  the  values  given  by  the  Office  of  Weights  and  Measures, 
Washington,  based  on  the  act  of  July  28,  1866. 
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Length,      1  millimeter  (mm)  =    0.03937  inch  (in)   log  8.59517 

1  meter  (m)  =  39.37  *  inches      "    1.59517 
=    3.28083*  feet  (ft)      "    0.51598 

1  kilometer  (km)    =    0.62137*  mile      "    9.79335 

Area.          1  sq  centimeter  (cm')  =    0. 1550  *  sq  inches  (in') .  log  9. 19033 
Isq  meter  (m')            =  10.764*  sq  feet  (ft'). .. .  "    1.03197 

=    1.196*  sq  yards    "    0.07773 
1  sq  kilometer  (km«)   =   0.3861  sq  mile    '*    9.58670 

Capacity.    1  liter  (1)  =  61.023  *  cubic  inches  (in^)   log  1.78549 
=    1.0567*  U.  S.  quarts...      "    0.02395 
=   0.8797  imperial  quart      "    9.94433 

Weight.      1  gram  (g)          =  15.432  *  grains    log  1.18842 
1  kilogram  (kg)  =    2.2046  *  lb  avoir    "    0.34333 
1  tonne  (t)          =    1.1023  *  tons  (2000  lb)    "    0.04230 

=   0.9842  ton  (2240  lb)    "    9.99308 

Force.         1  dyne  =  0.01573  grain   log  8. 19673 
=  0.00102gram      "    7.00860 

1  megadyne  =  10®  dynes. 

1  gram  =  981  dynes   log  2.99167 
1  kilogram   =  9.81  X  10*  dynes. 

Stress.  1  gram/sq  centimeter  =  0.01422  pound/sq  inch,  log  8.15290 

1  kilogram/sq  meter  =  0.20482  pound/sq  foot. .  "  9.31137 
1  barad  =  0.00102  gram/sq  cm. . ..    "    7.00860 

Energy.      1  erg  =  7.37  X  10-8  foot-pounds. 
1  megalerg         =  10^  ergs. 

1  joule  =  lO""  ergs  =  1  watt-second.  • 
1  kilowatt-hour  =  1.34  horse-power-hours. 

1  gram-centimeter  =  981  ergs   log  2.99167 
1  kilogrammeter     =  9.81  joules 

=  7.2330  foot-pounds      *'    0.85933 

Activity.     1  watt  =  1  joule/second 
=    0.10194  kilogrammeter/second   log  9.00834 
=  44.2385  foot-pounds/minute       "    1.64580 

1  kilowatt  =1.34  horse-power. 
1  force  de  cheval  =    75  kilogrammeters/second. 
1  poncelet  =  100  kilogrammeters/second 

=  981  watts   log  2.99167 
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GRAVITATION  UNITS. 

British  Units. Metric  Units. 

Dynamical 

Sym- 

Defining 

Quantities. bols. Equations. 

Names, Abbrevia- tions. Names. 

Abbre- 

viations. 

Length  .... l,s 
foot 

ft 

meter m 

Time   t second sec second sec 

Weight .... W,  w 
pound 

lb 

kilogram 

kg 

Velocity..  . V 
v=s/t 

foot  per  sec ft/sec meter   per  sec- ond 
in /sec 

Accelera- 
tion  a a=v/t 

foot  per  sec 

per  sec ft/sec2 

meter    per    sec 

per  sec 
m/sec2 

Force   F 
F=wa/g 

pound 

.... kilogram 

Impulse.... 1 
\=Ft 

sec'd-pound .... second-kilogram 

Momentum 1 \=wv/g sec'd-pound second-kilogram 

Work   w \N=Fs foot-pound kilogram  meter kgm 

Energy .... w y^=iwvyg foot-pound 
.... 

kilogrammeter kgm 

Power   (ac- 
tivity) . . . p P='H/t 

ft-pound  per 

sec;  horse- 

power 

ft-pound/sec 
kgm  per  sec kgm/^ec 

Moment 
(torque) . T T=Fl 

Moment  of 
inertia... I I=-S.wr^ 

• 
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C.G.S.  Units. Practical  Units. 

Dynamical 
Quantities. 

Sym- 
bols. 

Defining 

Equa- 
tions. Dimen- sions. 

Names. 
Abbrevi- ations. Names. 

Abbrevi- 
ations. 

Length   
l,s 

L centimeter 
cm 

meter m 

Time   t T second 
sec 

second 
sec 

Mass   

V 
v=s/t 

M 

gram 

S kilogram 

kg 

Velocity, 
linear..  .. 

LT  » 

kine 

A  c  c  e  1  e  r  a- 

tion,  lin'ar 
a 

az=v/t 

LT-2
 

spoud 
Velocity, 
angular... 

<a <a=v/r 

ji
 

radian/sec 

Accelerat'n, 
angular... a 

a=u,/t 

T-, 

radian/sec» 
Force   F F=ma 

LMT-^ 

dyne 
.... megadyne 

Impulse  .... 1 
\=Ft 

LMT-> 

bole 

Momentum. 

Work    

I 

w 
\=mv 

Vf=Fs 
LMT-^ 

bole 

erg 

joule 

-  mega- 

lerg 

joule 

Energy...  . w 
W=^"it;> 

L^^T  2 

erg 

J 

Power   p p=y^/t 

UMT-3
 

.... 
.... watt;  kilo- 

watt kw 

Moment 
(torque)  . . T Tz^Fl 

UMT-^ 

Moment     of 
inertia.. I 

I='S.mr^ 
L^M 

Density.   .. 8 
fi  =  Hl/Z3 

LIVI-
3 

Pressure   P p^F/P 
L-»MT-=' 

barad 

Modulus    of 
elasticity  . E 

L-»MT-=^ 
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NOTATION. 

a  =  acceleration  (angular). 17  =  normal  reaction. 
a  =  acceleration  (linear). 

p  =  arm  o  '  couple. 
»aj ,  <%  =  acceleration  along  axes  of P  z=  power. 

Xand  Y. r  =  radius  of  circle. 

C  =  centripetal  force. B  =  resultant. 

C.  G.  =  center  of  gravity. s,  p  =  distance  passed  over. 
e  =  logarithmic   base  :    coef- 8.H.M. =  simple    harmonic    mo- 

ficient of  restitution. tion. 

E  =  energy. t  =  time. 

/  =  friction. T  =  period  of  a  S.H.M. 
F  =  force. 00  =  velocity  (angular). 

g  =  acceleration  due  to  grav- u, V  =  velocity  (linear). ity. 
Va:,  Vy  =  velocity  along  axes  of 

0  =  resultant       couple       or X,  Y. 
torque. w,  W=  weight  (gravitation 

h  =  height. 
units). 

H.P.  =  horse-power. X,  y  =  coordinates  of  a  point. 
1  =  impulse. 'xy'y  =  coordinates  of  C.G. 
I  =  moment  of  inertia. 

/J,  ;^,  6  =  angles  of  inclination. 
k  =  radius  of  gyration. (p  =  angle  of  friction. 

w,  Jf  =  mass  (absolute  units). /ii  =  coefficient  of  friction. 
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MECHANICS. 

Two  main  divisions,  Kinematics  and  Dynamics  (p.  3). 

A.  Kinematics. 

Motion  of  translation.  Motion  of  rotation. 

Velocity  uniform  (p.  8)  uniform  (p.  274) 

V  —  s/t  GO  =   6/t 

s  =  vt 

variable  (p.  10)  variable  (p.  280) 

V  =  ds/dt  GO  =  dd/dt 

Composition  of  velocities  (p.  16),  (p.  17);  (p.  381) 

R  =  Vu'  -\-  2uv  COS  6  -\-  v'         Go=  ̂ go^  -|-  2cWjGl),  cos  B-{-  od^ 

Eectangular  components  (p.  17) 

n  dx       ds  n 
Va,  =  V  cos  (^  -TT  =  -?7-  cos  0' dt       dt 

.     ̂   dv       ds    .     ̂  
Vy  =  V  Bin  0  -YT  =  ̂ rr  Bin  (7 ^  dt       dt 

Non-rectangular  components  (p.  17) 

Eelation  of  angular  and  linear  velocity  (p.  279^^ 
V   z=   GJT 

Acceleration 

uniform  (p.  19)     variable  (p.  20)        p.  284  p.  284 

a  =  {v  —  u)/t 
dv 

^  =  dt 

dGO 

""^  dt 

V  =  u  -\-  at 
d's 

~  df 

GO  =z  co^  •{.  at 
d'd 

"  df 
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Acceleration 

uniform  (p.  19)     variable  (p.  20)  p.  284  p.  284 

..      ,      .  dv  doD 

s^iit  -\-  aty^  6  =  ojj  +  aty2 

as  =  vy2  -  uy2  a6  =  gd'/2  -  gd;/2. 

Projectiles — acted  on  by  gravity  only. 
Body  falling  freely  from  rest  (p.  92).    [Equation  of  motion.] 

v=-9t',     y=  gty2 ;     vy2  =  gs  ̂   =  ̂   (p.  94) 

Body  projected  vertically  with  velocity  u  (p.  92). 

v  =  u±  gt;    y  =  ut±  igt';    v^i2-xiy2  =  gy,  -^^  =  ±  g 

Body  projected  vertically  up  with  velocity  w  (p.  94). 

Time  of  flight  =  2u/g  -^  z=i  —  g 

Greatest  height  =  ̂ l''/2g 
Velocity  at  any  time  =  u  —  gt 

Velocity  at  any  height  y  =  Vu^  —  2gy 

Body  projected  with  velocity  u  at  angle  6  to  horizontal  (p.98). 
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V  =  Vu""  —  2gy 
Time  of  flight     =  2ii  sin  d/g 

Greatest  height  =:  ?^'  sin'  B/2g 
Range        =  li^  sin  2B/g 

Direction  =  tan"  ̂ (tan  6  —  gt/u  cos  G) 

=  tan-  ̂ (tan'*  8  -  2gy/u'  cos^  6)^ 
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Motion  in  a  circle: 

Uniform  (p.  27)  Variable  (p.  28) 

a  =  v^'/r  ■  tang,  accel.  =  -j- 

vT  =  27rr  normal  accel.  =  v^/r 

a  =  ̂ n'^r/T'' 

Simple  harmonic  motion  (p.  29 ;  p.  107).    [Equation  of  motion.] 

y  z=  r  cos  ooty      X  =  r  cos  (aot  —  7r/2) 

ay  =  v-y/r^  =  oo^y  ^  =  -  ̂ 'V  (p.  107) 

T  =  1n/csD  —  27t  ydisplac./accel. 

Simple  pendulum  (p.  128;  p.  133) 

time  of  an  oscillation  =  n  Vl/g       ̂ —  =  —  g-^ 

Seconds  pendulum  (p.  129). 

length  =  g/n^ 

Blackburn  pendulum  (p.  131). 

Motion  under  gravity  down  a  smooth  incline  (p.  113) 

,    d's  .     . 
velocity  at  bottom  =  V^gh  dt    ~  ̂   ̂^^ 

velocity  at  time  t    ̂ ^  tg  sin  6 

distance  described  in  time  t  =  t'g  sin  0/2 

time  of  sliding  down  plane  =  I  V2/gh 

Motion  down  a  rough  incline  (p.  217).     [Equation  of  motion.] 

a  =  ̂ (sin  6  —  /I  cos  6)  dp  ~  di^'^^  ̂   —  yw  cos  6) 
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B.  Dynamics. 

Newton's  Laws: 

Law  of  inertia  (p.  45). 

Law  of  mass-acceleration  (p.  47). 
Law  of  action  and  reaction  (p.  51). 
Summary  of  laws  (p.  53). 
Algebraic  statement  of  law  2 : 

Absolute  units  Gravitation  units 

(pp.  49,  348)  (pp.  59,  344) 

F  •=^  ma  F  =  wa/g 

Ft  —  mv  Ft  =  wv/g 

Fs  =  mt;y2  Fs  =  iuv''/2g 

Illustrative  apparatus.     Atwood's  machine  (p.  65). 
Composition  of  two  forces  acting  at  a  point  (p.  76). 

R^  =  F,^  +  2F^F^  cos  d  +  F^^ 

P  =  tan-  \F^  sin  d)/{F,  +  F^  cos  6). 

Kesolution  of  a  force  R  into  rectangular  components  (p.  79) 

X=  i2cos  ̂ ;    F=  i?sin  d. 

Composition  of  any  forces  at  a  point  [analytical  method]  (p. 
81). 

X=  F,  cos  e^  +  i^,cos  ̂ ,  +  . . .;  ̂ =  F,  sin  6^  +  ̂,sin  «9,+... 

R  =  |/X»  +  F'         /3  =  tan-  \r/^) 

Composition  of  any  forces  at  a  point  0  [graphical  method] 

(p.  77). 
From  any  point  draw  lines  equal  and  parallel  to  the  forces. 

The  closing  side  of  the  polygon  is  the  resultant  in  mag- 
nitude and  direction. 
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Composition  of  any  forces  acting  on  a  body  [graphical  method] 

(pp.  145,  146). 
Statement  in  Art.  129. 

Composition  of  any  forces  on  a  body  [analytical  method]  (p. 
155). 

Any  coplanar  system  may  be  reduced — 
(a)  to  a  single  force  or  to  a  torque; 
(b)  to  a  single  force  at  an  assigned  point  and  a  torque. 

Motion  under  various  laws  of  force. 

Force  constant  and  in  the  direction  of  motion  (p.  91) 

ffdt'
 

Force  variable  and  in  the  direction  of  motion. 

(a)  Force  proportional  to  distance  from  a  fixed  point  0 

(p.  106). 

F  =  --jf,  =  —  cij, 

g  df  ^ (5)  Force  inversely  proportional  to  square  of  distance 
from  0  (p.  109). 

w^__  __c_ 
"^  -  gdf  -      f 

Force  variable  and  not  in  direction  of  motion  (p.  111). 
Force  varies  inversely  as  square  of  distance  from  0.   Plan- 

etary motion. 

Motion  on  a  vertical  circle  under  gravity  (p.  132). 

„      10  d's  dy 
g  df  ds 

pressure  of  circle  on  particle  =  w(3  cos  G  —  2  cos  /3). 

Centripetal  force  (p.  121). 

A  particle  of  weight  to  moves  with  constant  velocity  v  in 
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the  circumference  of  a  circle  of  radius  r  in  time  ty  and 

making  n  revolutions  per  minute. 

G  =  luv'/gr  =  ̂ n^'wr/gf  =  0.00034wrw«. 

Conical  pendulum  or  governor  (p.  125). 

T  —"In  \flifg\     v  =  rVg/h'y     P  —  wl/h. 

Elevation  ^  of  outer  rail  on  a  curve  of  radius  r  (pp.  127, 
188). 

p  =  tan-i  {f/gr\ 

Value  of  acceleration  g  of  gravity  (p.  127). 

g  —  4:7zVi/T^',  T\^  observed  and  h  is  measured. 

Variation  of  g  witli  the  latitude  A  of  the  place  of  observa- 
tion (p.  123). 

g  =  g,(l  -  cos^  V289). 

Inclination  6  of  plumb-line  at  latitude  X  to  earth's  radius. 

e  =  tan-  Xsin  X  cos  A/289). 

Equilibrium  (p.  85). 
(1)  Forces  acting  at  a  point  0. 

Graphical  condition.    The  forces  may  be  represented 
in  magnitude  and  direction  by  the  sides  of  a  closed 

polygon  taken  the  same  way  round  (p.  88). 
Analytical  condition.     The  sums  of  the  component 

forces  in  any  directions  OX  and  OY,  at  right  angles 
to  each  other,  are  each  equal  to  zero  (p.  89). 

Case  of  three  forces.     Each  force  must  be  pro- 
portional to  the  sine  of  the  angle  between  the 

other  two  forces  (p.  87). 

Special  problem. 
Inclined  plane:  Smooth  (p.  116)     Rough  (p.  211) 

{a)  Force  parallel  plane. 

F  =z  W  Bin  0,  li  =z  W  coA  e  F=:  Wbiu  (6  ±  0)/cos  0 
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{b)  Force  parallel  base, 

F=  TTtan  ̂ ,  iV  =  If  sec  6  F=  Tf  tan  (8  ±  0) 

(2)  Forces  acting  at  different  points. 
Graphical  condition.    No  general  statement  (p.  146). 

Case  of  three  forces.     The  forces  must  meet  in  a 

point  or  be  parallel  (p.  158). 
Analytical  condition  (p.  157). 

'  The  sum  of  the  component  forces  in  any  direc- tion OX  =  0. 

The  sum  of  the  component  forces  in  a  perpendic- 
ular direction  OY  =  0. 

The  sum  of  the  moments  about  any  point  in  the 
plane  of  the  forces  =  0. 

[Problem  of  Calculus. 

To  find  centroid  of  a  surface. 

=  2wx/2w  y  =  2wy/2w  (p.  160) 

^Jxydxj  Jydx  J  =  i^fy'dx  j  Jydx  (p.  167) 

X  —  j  j  xdxdy       11  dxdy 

y-J Jydxdy  j  J  Jdxdy 

X  -ffr^  cos  OdSdr    I  f  CrdBdr 

y  =ff^"  sin  Odddr   I J  JrdBdr.'X 

Special  problems. 
Body  supported  at  one  point  (p.  171). 

The  lever  (p.  172);  the  balance  (p.  174);  the  steel- 
yard (p.  177). 
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Special  Problems. 

Body  supported  at  two  points. 
Analytical  method  (p.  179). 
Graphical  method  (p.  .180). 

Stresses  in  a  mechanism  (p.  181). 

Stability  of  a  retaining-wall  (p.  191). 
Roof -trusses. 

Graphical  treatment  (p.  193). 
Analytical  treatment  (p.  198). 

Work,  Energy,  Activity  (pp.  224;  256;  258). 
Work  of  raising  a  system  in  parts  (p.  229). 
Principle  of  vis  viva  (p.  233). 

Application  to  machines. 
Without  friction  (p.  233). 
With  friction  (p.  244). 

Principle  of  conservation  of  energy  (p.  260). 

D'Alembert's  principle  and  general  equations  of  motion  (p. 287). 

[Problem  of  Calculus  (pp.  291-301). 

Computation  of  moments  of  inertia,  etc.] 

Special  problems. 
The  compound  or  physical  pendulum. 

Time  of  swing  =  n  Vl/  Whg  (pp.  302,  313). 
Pressure  on  supports  (p.  304). 
Determination  of  g  (pp.  303,  313). 

Motion  due  to  impulse  (p.  307). 
Energy  of  motion. 

Translation  Rotation  (p.  309) 

Wvy^  loo^m 

Total  energy  =  energy  of  rotation  about  C.  G.  -j-  energy  of 
translation 

=  loD^^  +  Wii'J'lg  (p.  310). 
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Equation  of  energy  (p.  312). 
Application  to  bifilar  suspension  (p.  314). 

ballistic  pendulum  (p.  315). 
Elasticity. 

Hooke'slaw  (p.  321). 
Extension  and  compression,  shear,  torsion. 

Young's  modulus  (p.  324). 

Impact. 
Momenta  before  and  after  impact  (p.  326). 

Change  of  energy  by  impact  (p.  330). 

Application  to  pile-driving  (p.  332). 
Units. 

Kinematics. 

Length  (pp.  4,  338,  341). 
Angle. 
Time  (p.  5). 

Velocity  (linear)  (pp.  7,  349). 
Velocity  (angular)  (p.  278). 
Acceleration  (linear)  (pp.  18,  349). 
Acceleration  (angular)  (p.  283). 

Dynamics. 
Absolute.  Gravitation. 

Mass  (p.  47).  Weight  (pp.  57,  340). 
Force  (pp.  47,  349).  Force  (pp.  59,  345). 
Momentum  (p.  349).  Momentum  (p.  60). 
Impulse  (p.  249).  Impulse  (p.  60). 
Work  (p.  349).  Work  (p.  227). 
Energy  (pp.  349,  350).  Energy  (p.  258). 
Activity  (p.  353).  Activity  (p.  251). 
Torque  (p.  356).  Torque  (p.  154). 

Theory  of  dimensions  (p.  353). 
Conversion  of  common  units  to  metric  (p.  364). 
Conversion  of  metric  units  to  common  (p.  365). 
Tabular  forms  (pp.  366,  367). 
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Absolute  units,  59,  348,  367 
Acceleration,  18 

unit  of,  19 
due  to  gravity,  55, 

129 
Accelerations,  composition  of,  25 

resolution  of,  25,  26 
Action  and  reaction,  54 
Activity,  250 
Ampere,  3 
Amplitude  of  a  S.H.M.,  30 
Angular  acceleration,  283 

unit  of,  283 
Angular  velocity,  278 

unit  of.  279 
Archimedes,  1,  159.  173 
Aristotle,  69 
Arm  of  couple,  153 
Atwood  machine,  65 

Baily,  342 
Balance,  172 
Ballistic  balance,  55 
Ballistic  pendulum,  315 
Barad,  363 
Bell  crank  lever,  173 
Belts,  219,  255 
Bitilar  suspension,  314 
Blackburn  pendulum,  131 
Bole,  349 
Borda,  175,  339 

Capstan,  242 
Carlyle,  43,  68 
Center  of  gravity,  159 

oscillation,  303 
parallel  forces,  144 
percussion,  308 

Central  forces,  106 
Centrifugal  force,  120,  121,  285 

Centripetal  force,  120,  123 
Centroid,  159 
C.G.S.  units,  348 
Circular  motion,  26,  119,  132 
Clarke,  342 
Coefficient  of  friction,  207 

restitution,  327 

Composition  of  accelerations,  25 
couples,  152 
energies,  261,  269 
forces,  74,  81,  141, 

144,  145 
harmonic  motions, 

32 
velocities,  13,  281 

Compression,  51,  321 
Comstock,  342 
Conical  pendulum,  125 
Conservation  of  energy,  260 
Constrained  motion,  90,  112 
Coulomb,  208,  323 
Couple,  149,  154 

D'Alembert.  67 

D'Alembert's  principle,  288 
De  Morgan,  139 
Descartes,  49 
Differential  pulley,  238,  247 
Dimensions  of  units,  353 
Displacement  of  a  S.H.M.,  30 

Dynamics,  3 
Dyne,  349 

Earth  round  the  Sun  ?  39 
Effective  force,  288 
Efficiency,  245,  253 
Elasticity,  modulus  of,  321 
Elevation  of  outer  rail,  188,  205 
Energy,  50,  60,  256 

of  impact,  330 

379 
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Energy,  of  rotation,  309 
of  translation,  256 
of  vibration,  353 
units  of,  258,  345,  349 

Equations  of  motion,  48,  287 
Equilibrium,  85 

three  forces,  85, 158 
any  forces,  88,  146, 

156,  185 
on  a  rough   incline, 

211 
on  a  smooth  incline, 116 

Erg,  349 

Falling  bodies,  92 
Fly-wheel,  311 
Foot,  5 
Foot  pound,  227,  258 
Force,  45 

centrifugal,  120,  285 
centripetal,  120,  139 
elements  of,  72 
representation  of,  73 
transfer  of,  156 
transmissibility  of,  73 
units  of,  59,  349,  350 

Force  of  inertia,  288 

Foucault's  pendulum,  282 
Fourier,  354 
Free  motion,  90 
Friction,  206 

angle  of,  209 
belt,  219 
coefficient  of,  207,  210 
rolling,  208 

Friction  brake,  252 

Galileo,  44.  49,  67,  96,  144 
Governor,  Watt,  127 
Graphic  statics,  180.  192 
Gravitation  units,  57,  344,  366 
Gravity,  center  of,  159 
Greenhill,  v,  62,  103 
Gyration,  radius  of,  299 

Harkness,  340 
Harmonic  curve,  33 
Harmonic  motion,  29,  107 
Henrici,  196 
Hoisting  machine,  240 
Hooke's  law,  321 
Horse- power,  251,  350 

Horse-power  hour.  251 
Huygens,  122,  124,  303 

Ice-boat,  70 

Impact,  325 
energy  of,  330 

Impulse,  49,  60.  306,  349 
Inclined  plane,  motion  on,  113 

equilibrium  on, 
116,  234,  245 

Independence  of  forces,  49 
Indicator,  229 
Inertia,  44 

force  of,  288 
law  of,  44 
moment  of,  290 

Instantaneous  center,  272 
Isochrouism,  31,  129 

Jointed  frame,  193 
Joule,  350 

Joule's  equivalent,  357 

Kepler,  132 
Kilogram  of  the  archives,  340 

international,  341 
Kilogrammeter,  345,  359 
Kilowatt.  350,  359 
Kilowatt  hour,  350 
Kine,  348 
Kinematics,  3 
Kinematical  units,  4 
Kinetic  energy,  258 
Kinetics,  85 
Knot,  9 

Lami's  theorem,  87 
Laws  of  motion,  44 
Leibnitz.  67.  258 
Lever,  173,  236 
Lewes,  122,  132 
Liter,  341 

Mach.  47,  125 
Machine,  232 
Mass,  47,  55,  57,  348 
Mass  acceleration,  law  of,  48 
Maxwell,  61,  260,  354 
Mechanics,  2 
Mechanical  units.  364,  365 

Megadyne,  350 
Megalerg,  350 
Mendeuhall,  62 
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^81 

3Icter,  of  the  archives,  338 
international,  341 

[Metric  system,  use  of,  343 
Micron,  342 
Moment  of  a  couple,  153 

of  a  force,  149 
of  inertia,  290 
units  of,  150,  293 

Momentum,  49,  60,  349 
Motion  in  a  circle,  118,  132 

under  constant  force,  91 
under  variable  force,  106 
under  impulse,  306 
on  a  smooth  incline,  113 
on  a  rough  incline,  216 

Kasmytb,  334 
Nautical  mile,  9 
Neutral  equilibrium,  190 
Newton,  75,  122,  129 

Oscillation,  motion  of,  29,  106 
of  a  pendulum,  129, 

301 
energy  of,  353 

Parallel  forces,  142,  180 
Parallelogram  of  acceleration,  25 

forces,  74 
velocities,  14 

Pendulum,  Blackburn,  131 
compound,  301 
conical,  125 
seconds,  129 
simple,  128 

Period  of  S.H.M.,  30,32 
Phase,  30 
Phoronomics,  3 
Pile  driving,  332 
Piston  velocity,  275 
Planetary  motion,  112 
Plumb-line,  124 
Pole  of  stress  diagram,  146 
Polygon  of  forces,  88 
Poncelet,  359 
Potential  energy,  258 
Pound,  imperial,  57,  61 

troy,  58 
United  States,  58,  342 
[force],  59 

Power,  250 
unit  of,  251,  345,  350 

Projectiles,  98 
Pulley.  237,  246 

Radius  of  gyration,  299 
Range  of  a  projectile,  101,  103, 105 
Relative  motion,  36 

Repose,  angle  of,  210 
Resolution  of  accelerations,  25 

forces,  79 
velocities,  16,  282 

Resultant,  74 
Roberval,  15 

Rogers,  342 
Rotation,  271 

energy  of,  309 
Row-boat,  187 

Sail-boat,  80 
Screw,  240,  248 
Seconds  pendulum,  129 
Shear,  52 
Smooth  surface,  113 

Speed,  7 
Spoud,  349 
Stability,  189,  263 
Standards  of  length,  4,  338 

time,  5,  46 

weight,  57,  340 
Statics,  85 

Steam-engine,  181,  274 
Steam-hammer,  334 
Steelyard,  177 
Steviuus,  1,  75 
Strain,  321 
Stress,  51 

law  of,  52 

diagram,  195 
Strut,  194 

Tension,  51 
Tie,  194 
Time,  5,  46 

Toggle-joint,  277 
Torque,  153,  356 
Torsion,  322 

pendulum,  323 
Traction,  force  of,  255 
Trajectory,  98 
Translation,  6,  72 
Triangle  of  forces,  86 
Troughton  scale,  5 

Troy  pound,  58 
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Units,  absolute,  39.  348,  367 
derived,  8,  19,  355 
fundamental,  4,  854 
gravitation,  59,  344,  366 
of  acceleration,  18,  349 
of  activity,  250,  350 
of  energy,  258,  345,  350 
of  force,  59,  349,  350 
of  impulse,  349 
of  length,  4,  5,  338,  341 
of  momentum,  60,  349 
of  pressure,  356,  363 
of  time,  5 
of  velocity,  7,  349 
of  weight,  57,  340 
of  wrork,  227,  349 

Varignon's  theorem,  151 
Velocity,  7  ;  angular,  278 

virtual,  233 
Vis  Viva,  258 

Watt,  350 
Watt  second,  350 
Watt,  James,  127,  251 
Watts  to  horse  power,  35S 
Wave-length,  34 
Weight,  57,  61 
Wheel  and  axle,  236 
Winch,  243 
Woodward,  iii 
Work,  50,  60,  224 

against  friction,  244 
principle  of,  230 
of  resilience,  325 
unit  of,  227,  349 

Worm  wheel,  244 

Yard,  imperial,  4,  342 
United  States,  5,  34^ 

Young,  Thomas,  50,  324 

Young's  modulus,  324 
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