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PREFACE 

In  this  little  book  I  have  attempted  to  treat  the  Elemenl>8 

of  Non-Euclidean  Plane  Geometry  and  Trigonometry  in  such 
a  way  as  to  prove  useful  to  teachers  of  Elementary  Geometry 
in  schools  and  colleges.  Recent  changes  in  the  teaching  of 
Geometry  in  England  and  America  have  made  it  more  than 
ever  necessary  that  the  teachers  should  have  some  knowledge 
of  the  hypotheses  on  which  Euclidean  Geometry  is  built,  and 

especially  of  that  hypothesis  on  which  Euclid's  Theory  of 
Parallels  rests.  The  historical  treatment  of  the  Theory 

of  Parallels  leads  naturally  to  a  discussion  of  the  Non-Euclidean 
Geometries  ;  and  it  is  only  when  the  logical  possibility  of  these 

Non-Euclidean  Geometries  is  properly  understood  that  a 
teacher  is  entitled  to  form  an  independent  opinion  upon  the 
teaching  of  Elementary  Geometry. 

The  first  two  chapters  of  this  book  are  devoted  to  a  short 
discussion  of  the  most  important  of  the  attempts  to  prove 

Euclid's  Parallel  Postulate,  and  to  a  description  of  the  work 
of  the  founders  of  Non-Euclidean  Greometry,  Bolyai,  Lobat- 
schewsky  and  Riemann. 

In  Chapters  III.-V.  the  Non-Euclidean  Geometry  of  Bolyai 
and  Lobatschewsky,  now  known  as  the  Hyperbolic  Geometry, 
is  developed  in  a  systematic  manner.  The  feature  of  this 
treatment  is  that  in  Chapter  III.  no  use  is  made  of  the  Principle 

of  Continuity,  and  that  both  the  Geometry  and  the  Trigono- 
metry of  the  Hyperbolic  Plane  are  built  up  without  the  use 

of  Solid  Geometry. 
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In  Chapters  VI. -VII.  a  similar  treatment,  though  in  less 
detail,  is  given  for  the  Elliptic  Geometry. 

Chapter  VIII.  deals  with  Poincare's  representation  of  the 
Non-Euclidean  Geometries  by  the  geometry  of  the  families 
of  circles  orthogonal  or  diametral  to  a  fixed  circle.  From 

these  representations  an  elementary  proof  of  the  impossibility 

of  proving  Euclid's  Parallel  Postulate  can  be  obtained,  and 
they  throw  fresh  light  upon  the  Non-Euclidean  Geometries 
themselves. 

This  little  book  could  never  have  been  written  had  it  not 

been  for  the  work  of  Bonola.  It  was  from  him  that  I  first 

learnt  that  an  elementary  treatment  of  the  subject  was  possible. 

Both  to  his  historical  work,  an  English  translation  of  which 

I  had  the  privilege  of  undertaking,  and  to  his  article  in  Enriques' 
Questioni  riguardanti  la  geometria  elementare,  especially  in 
its  extended  form  in  the  German  edition  of  that  work,  this 

book  owes  a  very  great  deal. 

The  other  writers  on  the  same  subject  to  whom  I  am  most 
indebted  are  Liebmann  and  Stackel.  The  treatment  of  Plane 

Hyperbolic  Trigonometry  is  due  to  Liebmann  ;  and  to  the 

second  edition  of  his  well-known  Nichteuklidische  Geometrie, 
as  well  as  to  his  original  papers,  most  of  which  he  has  sent  to 

me  as  they  appeared^  I  am  much  indebted.  A  similar  acknow- 
ledgment is  due  to  Stackel.  When  he  learnt  that  I  was  engaged 

on  this  work,  I  received  from  him,  in  the  most  generous  way, 

a  set  of  all  his  papers  on  the  subject,  many  of  which  were 

inaccessible  to  me  in  Australia  ;  and  the  gift  of  a  copy  of  his 

book  on  Wolfgang  and  Johann  Bolyai,  immediately  on  its 

publication,  allowed  me  to  make  some  use  of  his  final  account 

of  the  discovery  of  the  Hyperbolic  Geometry  in  reading  my 

proofs. 
Other  acknowledgments  will  be  found  in  their  proper  place 

in  the  text.  However,  I  would  mention  here  the  frequent 

use  I  have  made  of  Halsted's  work  and^of  the  Bibliography 
of  Sommerville  ;    also  the  assistance  which  I  have  received 
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from  Dr.  F.  S.  Macaulay,  who  read  all  tlie  proofs  and  made 

many  valuable  suggestions  and  amendments.  The  work 
of  another  of  the  Editors  of  this  Series,  Mr.  C.  S.  Jackson, 

has  made  my  labour  lighter,  and  one  of  my  colleagues  in 

Sydney,  Mr.  R.  J.  Lyons,  has  also  read  a  great  part  of  the 

final  proofs. 

II.  S   CARSLAW. 

Sydney,  September,  1914. 

NOTE. 

The  final  proofs  of  this  book  had  been  corrected,  and  the 

foregoing  preface  written  and  set  up  in  type  before  the 

outbreak  of  the  war.    

In  the  course  of  years  v^hetinie\m^  come  when  such  co- 
operation as  I  have  here  acknowledged  will  again  be  possible. 

H.  S.  C. 

Sydney,  January,  1916. 
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CHAPTER  I. 

THE  PARALLEL  POSTULATE,  AND  THE  WORK  OF 
SACCHERI,  LEGENDRE  AND  GAUSS. 

§  1.  By  the  term  Non-Euclidean  Geometry  we  understand 
a  system  of  Geometry  built  up  without  the  aid  of  the  Euclidean 
Parallel  Hypothesis,  while  it  contains  an  assumption  as  to 
parallels  incompatible  with  that  of  Euclid. 

The  discovery  that  such  Non-Euclidean  Geometries  are 
logically  possible  was  a  result  of  the  attempts  to  deduce 

Euclid's  Parallel  Hypothesis  from  the  other  assumptions 
which  form  the  foundation  of  his  Elements  of  Geometry. 
It  will  be  remembered  that  he  defines  Parallel  Lines  as  follows  : 

Parallel  straight  lines  are  straight  lines  which,  being  in  the 
same  plane  and  being  produced  indefinitely  in  both  directions, 
do  not  meet  one  another  in  either  direction* 

Then  in  I.  27  he  proves  that 

//  a  straight  line  falling  on  two  straight  lines  make  the  alter- 
nate angles  equal  to  one  another,  the  straight  lines  will  be  parallel 

to  one  another. 

And  in  I.  28  that 

If  a  straight  line  falling  on  two  straight  lines  make  the  exterior 
angle  equal  to  the  interior  and  opposite  angle  on  the  same  side, 

*Here  and  in  other  places  where  the  text  of  Euclid's  Elements  is 
quoted,  the  rendering  in  Heath's  Edition  (Cambridge,  1908)  is  adopted. 
This  most  important  treatise  will  be  cited  below  as  Heath's  Euclid. 
N.-E.G,  A 
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or  the  interior  angles  on  the  same  side  equal  to  two  right  angles, 
the  straight  lines  will  be  parallel  to  one  another. 

In  order  to  prove  tlie  converse  of  tliese  two  propositions, 
namely  (I.  29),  that 

A  straight  line  falling  on  parallel  straight  lines  makes  the 
alternate  angles  equal  to  one  another,  the  exterior  angle  equal  to 
the  interior  and  opposite  angle,  and  the  interior  angles  on  the 
same  side  equal  to  two  right  angles, 

he   found   it   necessary   to   introduce   the  hypothesis   as   to 
parallel  lines,  which  he  enunciates  as  follows  : 

If  a  straight  line  falling  on  two  straight  lines  make  the  interior 
angles  on  the  same  side  less  than  two  right  angles,  the  two  straight 
lines,  if  produced  indefinitely,  meet  on  that  side  on  ivhich  are 
the  angles  less  than  the  two  right  angles. 

This  hypothesis  we  shall  refer  to  as  Euclid's  Parallel  Postu- 
late. It  is  true  that  in  some  of  the  MSS.  it  finds  a  place  among 

the  Axioms.  In  others  it  is  one  of  the  Postulates,  and  it 
seems  to  belong  more  properly  to  that  group.  No  use  is  made 
of  it  in  the  earlier  propositions  of  the  First  Book.  Accordingly 

these  would  find  a  place  in  the  Non-Euclidean  Geometries, 
which  differ  only  from  the  Euclidean  in  substituting  for 
his  Parallel  Postulate  another  incompatible  with  it.  Other 

theorems  of  the  Euclidean  Geometry  will  belong  to  the  Non- 
Euclidean,  if  they  have  been  proved,  or  can  be  proved,  without 
the  aid  of  the  Parallel  Postulate,  and  if  these  geometries 
adopt  the  other  assumptions,  explicit  and  implicit,  made  by 
Euclid. 

§  2.  It  is  not  within  the  scope  of  this  book  to  discuss  the 
modern  treatment  of  the  assumptions  on  which  the  Euclidean 
and  Non-Euclidean  Geometries  are  based.  We  shall  deal 
simply  with  the  assumption  regarding  parallels.  But  it  is  right 
to  mention  that  the  idea  of  motion  or  displacement,  which 
forms  part  of  the  method  of  superposition,  itself  involves  an 

axiom.  The  fourth  proposition  of  Euclid's  First  Book  now 
finds  a  place  among  the  Axioms  of  Congruence,  and  upon  this 
group  of  axioms  the  idea  of  motion  is  founded.  Apparently 
Euclid  recognised  that  the  use  of  the  method  of  superposition 
was  a  blot  upon  the  Elements.     He  adopted  it  only  in  1.  4,  and 
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refrained  from  employing  it  in  other  places,  where  it  would 
have  shortened  the  demonstration. 

Again,  Postulate  I.,  which  asserts  the  possibility  of  drawing 
a  straight  line  from  any  one  point  to  any  other,  must  be  held 
to  declare  that  the  straight  line  so  drawn  is  unique,  and  that 
two  straight  lines  cannot  enclose  a  space.  And  Postulate  II., 
which  asserts  the  possibility  of  producing  a  finite  straight  line 
continuously  in  a  straight  line,  must  also  be  held  to  assert  that 
the  produced  part  in  either  direction  is  unique  ;  in  other  words, 
that  two  straight  lines  cannot  have  a  common  segment. 

But  the  following  more  fundamental  and  distinct  assump- 
tions are  made  by  Euclid,  without  including  them  among  the 

axioms  or  postulates  : 

(i)  That  a  straight  line  is  infinite. 

This  property  of  the  straight  line  is  required  in  the  proof  of 
I.  16.  The  theorem  that  the  exterior  angle  is  greater  than 
either  of  the  interior  and  opposite  angles  does  not  hold  in  the 

Non-Euclidean  Geometry  in  which  the  straight  line  is  regarded 
as  endless,  returning  upon  itself,  but  not  infinite. 

(ii)  Let  A,  B,  C  be  three  points,  not  lying  in  a  straight  line,  and 
let  a,  be  a  straight  line  lying  in  the  plane  ABC,  and  not  passing 
through  any  of  the  points  A,  B,  or  C.  Then,  if  a  passes  through 
a  point  of  the  segment  AB,  it  must  also  pass  through  a  point  of  the 

segment  BC,  or  of  the  segment  AC  {Pasch's  Axiom). 
From  this  axiom  it  can  be  deduced  that  a  ray  passing  through 

an  angular  point,  say  A,  of  the  triangle  ABC,  and  Ijdng  in  the 
region  bounded  by  AB  and  AC,  must  cut  the  segment  BC. 

(iii)  Further,  in  the  very  first  proposition  of  the  First  Book 
of  the  Elements  the  vertex  of  the  required  equilateral  triangle 
is  determined  by  the  intersection  of  two  circles.  It  is  assumed 
that  these  circles  intersect.  A  similar  assumption  is  made  in 
I.  22  in  the  construction  of  a  triangle  when  the  sides  are  given. 
The  first  proposition  is  used  in  the  fundamental  constructions 
of  1.  2  and  I.  9-11. 

Again,  in  I.  12,  in  order  to  be  sure  that  the  circle  with  a 
given  centre  will  intersect  the  given  straight  line,  Euclid  makes 
the  circle  pass  through  a  point  on  the  side  opposite  to  that  in 
which  the  centre  lies.  And  in  some  of  the  propositions  of 
Book  III.  assumptions  are  made  with  regard  to  the  inter- 

section of  the  circles  employed  in  the  demonstration.    Indeed 
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right  through  the  Elements  constructions  are  effected  by  means 
of  straight  lines  and  circles  drawn  in  accordance  with  Postulates 

I. -III.  Such  straight  lines  and  circles  determine  by  their  inter- 
section other  points  in  addition  to  those  given  ;  and  these 

points  are  used  to  determine  new  lines,  and  so  on.  The  exist- 
ence of  these  points  of  intersection  must  be  postulated  or 

proved,  in  the  same  way  as  the  existence  of  the  other  straight 
Unes  and  circles  in  the  construction  has  been  postulated  or 

proved. 
The  Principle  of  Continuity,  as  it  is  called,  is  introduced  to 

fill  this  gap.  It  can  be  stated  in  different  ways,  but  probably 

the  simplest  is  that  which  Dedekind  originally  adopted  in  dis- 
cussing the  idea  of  the  irrational  number.  His  treatment  of 

the  irrational  number  depends  upon  the  following  geometrical 
axiom  : 

//  all  the  points  of  a  straight  line  can  he  separated  into  two 
classes,  such  that  every  point  of  the  first  class  is  to  the  left  of  every 
point  of  the  other  class,  then  there  exists  one,  and  only  one,  point 
which  brings  about  this  division  of  all  the  points  into  two  classes, 

this  section  of  the  line  into  two  parts* 

This  statement  does  not  admit  of  proof.  The  assumption  of 
this  property  is  nothing  less  than  an  axiom  by  which  we  assign 
its  continuity  to  the  straight  line. 

The  Postulate  of  DedeJcind,  stated  for  the  linear  segment,  can 
be  readily  applied  to  any  angle,  (the  elements  in  this  case 
being  the  rays  from  the  vertex),  and  to  a  circular  arc.  By 
this  means  demonstrations  can  be  obtained  of  the  theorems 

as  to  th»  intersection  of  a  straight  line  and  a  circle,  and  of 

a  circle  with  another  circle,  assumed  by  Euclid  in  the  pro- 

positions above  mentioned.")*  The  idea  of  continuity  was 
adopted  by  Euclid  without  remark.  What  was  involved  in  the 
assumption  and  the  nature  of  the  irrational  number  were 
unknown  to  the  mathematicians  of  his  time. 

This  Postulate  of  Dedekind  also  carries  with  it  the  important 

*  Dedekind,  Stetigkeit  und  irrationale  Zahhn,  p.  11  (2nd  ed.,  Braun- 
schweig, 1892) ;  English  translation  by  Beman  (Chicago,  1901). 

t  This  question  is  treated  fully  in  the  article  by  Vitali  in  Enriques' 
volume,  Queationi  rigiiardaiiii  la  geomeiria  elementare  (Bologna,  1900) ; 
German  translation  under  the  title,  Fragen  der  Elementargeometrie, 

vol.  i.  p.  129  (Leipzig,  1911).     See  also  Heath's  Euclid,  vol.  i.  p.  234. 
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Postulate  of  Archimedes,  which  will  be  frequently  referred  to  in 
the  following  pages  : 

//  two  segments  are  given,  there  is  always  some  muUijple  of 

the  one  ivhich  is  greater  than  the  other.* 

§  3.  An  interesting  discovery,  arising  out  of  the  recent  study 

of  the  Foundations  of  Geometry,  is  that  a  great  part  of  Ele- 
mentary Geometry  can  be  built  up  without  the  Principle  of 

Continuity.  In  place  of  the  construction  of  Euclid  I.  2,  the 
proof  of  which  depends  upon  this  Principle,  the  following 

Postulate "]  is  made  : 

//  A,  B  are  two  points  on  a  straight  line  a,  and  if  A'  is  a  point 
upon  the  same  or  another  straight  line  a',  then  we  can  always  find 
on  the  straight  line  a',  on  a  given  ray  from  A',  one  and  only  one 
point  B',  such  that  the  segment  AB  is  congruent  to  the  segment 
A'B'. 

In  other  words,  we  assume  that  we  can  always  set  off  a 
given  length  on  a  given  line,  from  a  given  point  upon  it, 
towards  a  given  side.  By  the  term  ray  is  meant  the  half-line 
starting  from  a  given  point. 

With  this  assumption,  for  Euclid's  constructions  for  the 
bisector  of  a  given  angle  (I.  9),  for  the  middle  point  of  a  given 
straight  line  (I.  10),  for  the  perpendicular  to  a  given  straight 
line  from  a  point  upon  it  (I.  11),  and  outside  it  (I.  12),  and, 

finally,  for  an  angle  equal  to  a  given  angle  (I.  23) — all  of  which, 
in  the  Elements,  depend  upon  the  Principle  of  Continuity — 
we  may  substitute  the  following  constructions,  which  are 
independent,  both  of  that  Principle  and  of  the  Parallel 
Postulate.  J 

*  For  the  proof  of  the  Postulate  of  A  rchiinedes  on  the  assumption  of 
Dedekind's  Postulate,  see  Vitali's  article  named  alwve,  §  3.  Another 
treatment  of  this  question  will  be  found  in  Hill)ert's  GrHudtayen  der 
Geometrte,  3rcl  ed.  §  8.  An  English  translation  of  the  first  edition  was 
made  by  Townsund  (Chicago,  1902).  The  Postulate  of  Archimedes 
stated  above  for  linear  segments  is  adopted  also  for  angles,  areas,  and 
volumes. 

tCf.  Hilbert,  he.  cit.  3rd  ed.  §  5,  Axioms  of  Congruence. 

J  The  constructions  in  Problems  1,  2,  3  and  5  are  given  by  Halsted 
in  his  book,  Rational  Geometry  (2nd  ed.  UX)7).  Those  for  Problems  4 
and  6  in  the  text  are  independent  of  the  Parallel  Postulate,  and 
replace  those  given  by  Halsted,  in  which  the  Euclidean  Hypothesis  is 
assumed. 



6 NON-EUCLIDEAN  GEOMETRY 

[CH.  1. Problem  1 .     To  bisect  a  given  angle. 

Construction.     On  one  of  the  lines  bounding  the  given  angle  A  take 
any  two  points  B,  C. 

On  the  other  bounding  line  take  AB'  =  AB  and  AC'=AC. 
Join  BC  and  B'C. Let  them  intersect  at  D. 
Then  AD  is  the  desired  bisector. 

Proof.     The  triangles  BAG'  and  B'AC  are  congruent. 
Therefore  Z.ACB'=  Z.AC'B  and  ̂ DBC=^DB'C'. 

It  follows  that  the  triangles  BDC  and  B'DC  are  congruent,  since 

BC  =  B'C'. Therefo
re  

DB'  =  DB. 

Finally  the  triangles  BAD  and  B'AD  are  congruent,  and  AD  bisects 
the  given  angle. 

Problem  2.     To  draw  a  perpendicular  to  a  given  straight  line. 

Construction.     Let  AB  be  the  given  straight  lin?. 
Take  any  other  straight  line  AC  through 

A. 

Upon  AB  take  AD  ̂   AC. 
Join  CD. 
Bisect  ;^CAD  (by  Problem  1),  and  let  the 

bisector  cut  CD  at  G. 
On  AB  take  AF  =  AG,  and  on  the  ray  AG 

take  AH  =  AD. 
Join  FH. 
Then  FH  is  perpendicular  to  AB. 

Proof.     From  the  triangles  ACG  and  ADG,  we  have  Z.AGD  equal  to 
a  right  angle. 

Also  the  triangles  AGD  and  AFH  are  congruent. 
Therefore  Z.AFH=:  Z.AGD  =  1  right  angle. 
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Problem  3.     At  a  given  point  on  a  given  straight  line  to  erect  the 
perpendicular. 

Comtruction.     Let  A  be  the  given  point  and  BC  the  given  straight  line. 
Draw  the  perpendicular  ZOY  (by  Problem  2),  meeting  BC  in  O. 
Take  OY  =  OZ,  and  join  AY  and  AZ. 
Produce  YA  through  A  to  X. 
Bisect  Z-XAZ  by  AD  (by  Problem  I). 
Then    AD    is    the    perpendicular    to    BC 

through  A, 

Proof.      By    the    construction,    the    tri- 
angles OAZ  and  GAY  are  congruent. 

Therefore      L  ZAO  =  L  Y  AG 

=  Z.XAC. 

But  LD^Z=L\^D. 

Therefore  AD  is  perpendicular  t(j  BC. 
Fig.  3. 

Pkoblem  4.  From  a  given  point  outside  a  given  straight  line  to 
draw  the  perpendicular  to  the  line. 

CoiiMrucflon.  Let  A,  B  be  two  points  on  the  given  line,  and  C  the 
point  outside  it. 

Join  AC  and  BC. 
On  the  segment  AB  take  a  point  D,  and 

(by  Problem  3)  draw  the  perpendicular  at 
D  to  AB. 

By  Pasch's  Axiom,  this  lino  nnist  cut either  AC  or  BC 
Let  it  cut  AC,  and  let  the  point  of 

intersection  be  E. 
Produce  ED  through  D  to  F,  so  that 

DE  =  DF. 
Join  AF  and  produce  AF  to  G,  such 

that  AG  =  AC. 
Join  CG,  and  let  it  be  cut  by  AB,  or  AB 

produced,  at  H. 
Then  CH  is  the  required  perpendicular. 

Proof.     I'roni  the  construction,  the  tri- 
angles ADE   and  ADF  are  congruent,  so  F'o-  *■ 

that  AB  bisects  /.CAG. 
It  follows  that  tlie  triangles  ACH  and  AGH  are  congruent,  and  that 

Z.AHC  is  a  right  angle. 

Problem  5.  At  a  given  point  on  a  giYen  straight  line  to  make  an 
angle  equal  to  a  given  angle. 

Canstniction.     Let  A  be  the  point  on  the  given  line  a.     (Cf.  Fig.  5.) 
Let  D  be  the  given  (acute)  angle. 
From  a  point  E  on  one  of  the  lines  bounding  the  angle,  draw  (by 

Problem  4)  the  perpendicular  EF  to  the  other  bounding  line. 
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[CH.  I. On  Aa  take  AC=DF. 

At  C  erect  the  perpendicular  Cc  to  Aa  (by  Problem  3). 
Make  BC  =  EF,  and  join  AB. 

C  a Fig.  5. 

Proof.     By  the   construction,    the   triangles    DEF    and    ABC    are 
congruent. 
Therefore  L  BAG  =  Z.  E  D  F. 

Problem  6.     To  bisect  a  given  finite  straight  line. 

Construction.     Let  AB  be  the  given  segment. 
At  B  draw  the  perpendicular  Bfo  to  AB  (by 

Problem  3). 
Upon  B/)  take  any  point  C  and  join  AC. 

At  B  make  Z.AB"E=  Z.BAC  (by  Problem  5). Let  the  line  BE  cut  AC  at  D. 
Bisect  iLADB  by  the  line  cutting  AB  at  F  (by 

Problem  1). 
Then  F  is  the  middle  point  of  AB. 

Proof.  From  the  construction  it  follows  that 
the  triangles  ADF  and  DBF  are  congruent. 
Thus  AF=FB. 

Noli.  This  construction  has  to  be  slightly  modified  for  the  Elliptic 
Geometry.  The  point  C  must  lie  between  B  and  the  pole  of  AB. 
[Cf.  §78.] 

Fig.  0. 

§4.  Two  Theorems  independent  of  the  Parallel 
Postulate. 

1.  The  'perpendicular  to  the  base  of  any  triangle  through  its 
middle  point  is  also  perpendicular  to  the  line  joining  the  middle 
'points  of  the  two  sides. 

Let  ABC  be  any  triangle,  and  let  F  and  E  be  tlie  middle 
points  of  the  sides  AB  and  AC. 

Join  F  and  E  ;  and  draw  A  A',  BB',  and  CC'  perpendicular to  EF  from  A,  B,  and  C. 
Let  H  be  the  middle  point  of  BC,  and  K  the  middle  point 

of  B'C. 
Join  HK. 



3,4] TWO  •  THEOREMS 

We  shall  prove  that  HK  is  perpendicular  to  BC  and  EF. 

From  the  triangles  AFA'  and  BFB',  which  are  congruent, 
we  have  AA'  =  BB'. 

Similarly       AA'  =  CC'. 
Therefore      BB'  =  CC'. 
Join  BK  and  KC. 

In  the  triangles  BB'K  and  CC'K we  have 

BB'  =  CC',  B'K  =  C'K, 

and  the  angles  at  B'  and  C  are  equal. 
Therefore  the  triangles  are  con- 

gruent, and  BK  =  CK. 
Again,  in  the  triangles  BHK  and  CHK,  we  have  the  three 

sides  equal,  each  to  each. 
Therefore  the  triangles  are  congruent,  and 

L  BHK  =  L  CHK  =  a  right  angle. 
Also  ̂ BKH=^CKH. 

But,  from  the  triangles  BB'K  and  CC'K,  we  have 
iBKB'=^CKC'. 

Therefore  l  HKB'  =  ̂   HKC'  =  a  right  angle. 
Thus  HK  is  perpendicular  to  both  BC  and  EF. 

2.  The  locus  of  the  middle  points  of  the  segments  joining  a  set 

of  points  ABC...  on  one  straight  line  and  a  set  A'B'C'...  on 
another  straight  line  is  a  straight  line,  provided  that  AB  =  A'B', 
BC  =  B'C',  etc. 

Via.  8. 

Let  M,  N,  and  P  be  the  middle  points  of  AA',  BB',  and  CC'. 
Join  BM  and  produce  it  to  B",  so  that  BM  =  M  B". 
Join  B"A'  and  B"B'. 
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The  sides  of  the  triangle  BB'B"  are  bisected  at    M  and  N. 
Therefore  the  line  bisecting  B'B"  at  right  angles  is  also 

perpendicular  to   MN. 

But  this  line  bisects  z.  B'A'B",  since  A'B'  =  A'B". 
Now  produce  A'B"  to  C",  so  that  B"C"  =  BC  =  B'C'. 
Join  C'  C",   MC"  and   MC. 
The  triangles  MAC  and  MA'C"  are  congruent,  and  it  follows 

♦  that  MC  and  MC"  are  in  one  straight  line. 
Since  A'C'  =  A'C",  the  line  bisecting  C'C"  at  right  angles 

coincides  with  the  line  bisecting  B'B"  at  right  angles. 
Therefore  MN  and  MP  are  perpendicular  to  the  same 

straight  line. 
Therefore   MNP  are  coUinear. 

Proceeding  to  the  points  A,  B,  D,  A',  B',  D'  we  have  a 
corresponding  result,  and  in  this  way  our  theorem  is  proved. 

§  5.  From  the  Commentary  of  Proclus  *  it  is  known  that  not 
long  after  Euclid's  own  time  his  Parallel  Postulate  was  the 
subject  of  controversy.  The  questions  in  dispute  remained 

unsolved  till  the  nineteenth  century,  though  many  mathe- 
maticians of  eminence  devoted  much  time  and  thought  to 

their  investigation.  Three  separate  problems  found  a  place 
in  this  discussion  : 

(i)  Can  the  Parallel  Postulate  be  deduced  from  the  other 

assumptions  on  which  Euclid's  Geometry  is  based  ? 
(ii)  If  not,  is  it  an  assumption  demanded  by  the  facts  of 

experience,  so  that  the  system  of  propositions  deduced  from 
the  fundamental  assumptions  will  describe  the  space  in  which 
we  live  ? 

(iii)  And  finally,  are  both  it  and  assumptions  incompatible 
with  it  consistent  with  the  other  assumptions,  so  that  the 
adoption  of  the  Euclidean  Hypothesis  can  be  regarded  as  an 
arbitrary  specialisation  of  a  more  general  system,  accepted  not 
because  it  is  more  true  than  the  others,  but  because  the 
Geometry  founded  upon  it  is  simpler  and  more  convenient  ? 

There  can  be  little  doubt  that  Euclid  himself  was  convinced 

that  the  first  of  these  questions  must  be  answered  in  the 
negative.    The  place  he  assigned  to  the  Parallel  Postulate  and 

*  Of.  Friedlein,  Prodi  Diadochi  in  primiim  Eudidis  elementorum 
libmm  comvientarii  (Leipzig,  1873).  Also  Heath's  Eudid,  vol.  i. 
Introduction,  chapter  iv. 

U 
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his  refusal  to  use  it  earlier  than  I.  29  are  evidence  that  with 

him  it  had  only  the  value  of  an  hypothesis.  It  seems  at  least 
very  probable  that  he  realised  the  advantage  of  proving 
without  that  postulate  such  theorems  as  could  be  established 
independently  ;  just  as  he  refrained  from  using  the  method 
of  superposition,  when  other  methods  were  available  and 
sufficient  for  the  demonstration. 

But  the  followers  of  Euclid  were  not  so  clear  sighted.  Fruit- 
less attempts  to  prove  the  Parallel  Postulate  lasted  Well  into 

the  nineteenth  century.  /Indeed  it  will  be  surprising  if  the 

use  of  the  vicious  directio7i-theory  of  parallels,  advocated  at 
present  in  some  influential  quarters  in  England,  does  not  raise 
another  crop  of  so-called  demonstrations — the  work  of  those 
who  are  ignorant  of  the  real  foundations  on  which  the  Theory 
of  Parallels  rests. 

The  assumption  involved  in  the  second  question  had  also 
an  effect  on  the  duration  of  the  controversy.  Had  it  not  been 

for  the  mistake  which  identified  Geometry — the  logical  doc- 
trine— with  Geometry — the  experimental  science — the  Parallel 

Postulate  would  not  so  long  have  been  regarded  as  a  blemish 
upon  the  body  of  Geometry.  However,  it  is  now  admitted 
that  Geometry  is  a  subject  in  which  the  assertions  are  that 

such  and  such  consequences  follow  from  such  and  such  pre- 
mises. Whether  entities  such  as  the  premises  describe  actually 

exist  is  another  matter.  Whenever  we  think  of  Geometry  as 
a  representation  of  the  properties  of  the  external  world  in 
which  we  live,  we  are  thinking  of  a  branch  of  Applied  Mathe- 

matics. That  the  Euclidean  Geometry  does  describe  those 
properties  we  know  perfectly  well.  But  we  also  know  that  it 
is  not  the  only  system  of  Geometry  which  will  describe  them. 
To  this  point  we  shall  return  in  the  last  pages  of  this  book. 

In  the  answer  to  the  third  question  the  solution  of  the 
problem  was  found.  This  discovery  will  always  be  associated 
with  the  names  of  Lobatschewsky  and  Bolyai.  They  were  the 
first  to  state  publicly,  and  to  estabhsh  rigorously,  that  a  con- 

sistent system  of  Geometry  can  be  built  upon  the  assumptions, 
explicit  and  implicit,  of  Euclid,  when  his  Parallel  Postulate  is 
omitted,  and  another,  incompatible  with  it,  put  in  its  place. 
The  geometrical  system  constructed  upon  these  foundations  is 
as  consistent  as  that  of  Euclid.  Not  only  so,  by  a  proper 
choice  of  a  parameter  entering  into  it,  this  system  can  be  made 
to  describe  and  agree  with  the  external  relations  of  things. 
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This  discovery,  wMch  was  made  about  1823-1830,  does  not 
detract  from  the  value  of  Euclid's  work.  The  Euclidean 
Geometry  is  not  to  be  replaced  by  the  Non-Euclidean  Geome- 

tries. The  latter  have  thrown  light  upon  the  true  nature  of 

Geometry  as  a  science.  They  have  also  shown  that  Euclid's 
Theory  of  Parallels,  far  from  being  a  blot  upon  his  work,  is 
one  of  his  greatest  triumphs.  In  the  words  of- Heath  :  "  When 
we  consider  the  countless  successive  attempts  made  through 
more  than  twenty  centuries  to  prove  the  Postulate,  many  of 
them  by  geometers  of  ability,  we  cannot  but  admire  the  genius 
of  the  man  who  concluded  that  such  a  hypothesis,  which  he 
found  necessary  to  the  validity  of  his  whole  system  of  geometry, 
^was  really  indemonstrable."  * 

§  6.  The  Work  of  Saccheri  (1667-1733). 
The  history  of  these  attempts  to  prove  the  Parallel  Postulate 

does  not  lie  within  the  scope  of  this  work.f     But  we  must 
refer  to  one  or  two  of  the  most  important  contributions  to  that 
discussion  from  their  bearing  on  the  rise  and  development  of 
the  Non-Euclidean  Geometries. 

r^       Saccheri,  a  Jesuit  and  Professor   of  Mathematics   at   the I       University  of  Pavia,  was  the  first  to  contemplate  the  possi- 
\      bility  of  hypotheses  other  than  that  of  Euclid,  and  to  work 
\      out  the  consequences  of  these  hypotheses.    Indeed  it  required 

J     only  one  forward  step,  at  the  critical  stage  of  his  memoir,  and 
\      the  discovery  of  Lobatschewsky  and  Bolyai  would  have  been 

''      anticipated  by  one  hundred  years.    Nor  was  that  step  taken 
by  his  immediate  successors.     His  work  seems  to  have  been 
quickly  forgotten.    It  had  fallen  completely  into  oblivion  when 
the    attention    of   the    distinguished    Italian    mathematician 
Beltrami  was  called  to  it  towards  the  end  of  the  nineteenth 

century.      His  Note  entitled  "  un  precursore  italiano  di  Legendre 
e  di  Lobatschewsky  "  %  convinced  the  scientific  world  of  the 
importance  of  Saccheri's  work,  and  of  the  fact  that  theorems, 
which  had  been  ascribed  to  Legendre,  Lobatschewsky,  and 

,      Bolyai,  had  been  discovered  by  him  many  years  earlier. 

*  Heath's  Eiiclid,  vol.  i.  p.  202. 
tCf.  Bonola,  La.  geometria  iioneudidea  (Bologna,  1906);  English 

translation  (Chicago,  1912).  In  quoting  this  work,  we  shall  refer  to 
the  English  translation. 

XHend.  Ace.  Lincei  (4),  t.  v.  pp.  441-448  (1889). 
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Saccheri's  little  book — EucUdes  db  omni  ncevo  vindicatus — 
is  now  easily  accessible.*  It  was  published  in  1733,  the  last 
year  of  his  life.  Much  of  it  has  been  incorporated  in  the 

elementary  treatment  of  the  Non-Euclidean  Geometries.  A 
great  deal  more  would  be  found  therein  were  it  not  for  the  fact 
that  he  makes  very  frequent  use  of  the  Principle  of  Continuity. 

It  must  not  be  forgotten  that  Saccheri  was  convinced  of  the 

truth  of  the  Euclidean  Hypothesis.  He  discussed  the  con- 
tradictory assumptions  with  a  definite  purpose — not,  like 

Bolyai  and  Lobatschewsky,  to  establish  their  logical  possi- 
bilit)» — but  in  order  that  he  might  detect 
the  contradiction  which  he  was  persuaded 
must  follow  from  them.  In  other  words, 
he  was  employing  the  reductio  ad  absurdum 
argument. 

The  fundamental  figure  of  Saccheri  is 

the  two  right-angled  isosceles  quadrilateral 
ABDC,  in  which  the  angles  at  A  and   B  are     ̂   ^ 
right  angles,  and  the  sides  AC  and  BD  equal. 
It  is  easy  to  show  by  congruence  theorems  that  the  angles 
at  C  and  D  are  equal.     [Cf.  §28.] 

On  the  Euclidean  Hypothesis  they  are  both  right  angles. 
Thus,  if  it  is  assumed  that  they  are  both  obtuse,  or  both  acute, 
the  Parallel  Postulate  is  implicitly  denied. 

Saccheri  discussed  these  three  hypotheses  under  the  names  : 

The  Hypothesis  of  the  Right  Angle  . . ,  z.  C  =  z.  D  =  a  right  angle. 

The  Hypothesis  of  the  Obtuse  Angle  ...  LC  =  LD=an  obtuse 
angle. 

The  Hypoth'jsis  of  the  Acute  Angle  ...  LC=LD=an  acute 
angle. 

He  showed  that 

According  as  the  Hypothesis  of  the  Right  Angle,  the  Obtuse 
Angle,  or  the  Acute  Angle  is  found  to  be  true,  the  sum  of  the 
angles  cf  any  triangle  will  be  respectively  equal  to,  greater  than, 
or  less  than  tivo  right  angles. 

Also  that 

If  the  sum  of  the  angles  of  a  single  triangle  is  equal  to,  greater 
than,  or  less  than  two  right  angles,  then  this  sum  mil  be  equal 

*Cf.  Engel  u.  Stackel,  Die  Theorie  der  ParcUlellinien  von  Euclid  bis 
auf  Gaiiss,  pp.  31-136  (Leipzig,  1895). 
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to,  greater  than,  or  less  than  two  right  angles  in  every  other 
triangle. 

Again,  he  showed  that 

The  Parallel  Postulate  follows  from,  the  Hypothesis  of  the  Right 
Angle,  and  from  the  Hypothesis  of  the  Obtuse  Angle. 

He  was  thus  able  to  rule  out  the  Hypothesis  of  the  Obtuse 
Angle  ;  since,  if  the  Parallel  Postulate  is  adopted,  the  sum  of 
the  angles  of  a  triangle  is  two  right  angles,  and  the  Hypothesis 
of  the  Obtuse  Angle  is  contradicted.  It  should  be  remarked 
that  he  assumes  in  this  argument  that  the  straight  lijae  is 
infinite.  When  that  assumption  is  dropped,  the  Hypothesis 
of  the  Obtuse  Angle  remains  possible. 

As  we  have  already  mentioned,  Saccheri's  aim  was  to  show 
that  both  the  Hypothesis  of  the  Acute  Angle  and  that  of  the 
Obtuse  Angle  must  be  false.  He  hoped  to  establish  this  by 
deducing  from  these  hypotheses  some  result,  which  itself 
would  contradict  that  from  which  it  was  derived,  or  be  in- 

consistent with  a  previous  proposition.  So,  having  demolished 
the  Hypothesis  of  the  Obtuse  Angle,  he  turned  to  that  of  the 
Acute  Angle.  In  the  system  built  upon  this  Hypothesis, 
after  a  series  of  propositions,  which  are  really  propositions  in 
the  Geometry  of  Lobatschewsky  and  Bolyai,  he  believed  that 
he  had  found  one  which  was  inconsistent  with  those  preceding 
it.  He  concluded  from  this  that  the  Hypothesis  of  the  Acute 
Angle  was  also  impossible  ;  so  that  the  Hypothesis  of  the 
Right  Angle  alone  remained,  and  the  Parallel  Postulate  must 
be  true. 

In  his  belief  that  he  had  discovered  a  contradiction  in 

the  sequence  of  theorems  derived  from  the  Hypothesis  of  the 
Acute  Angle,  Saccheri  was  wrong.  He  was  led  astray  by  the 
prejudice  of  his  time  in  favour  of  the  Euclidean  Geometry  as 
the  only  possible  geometrical  system.  How  near  he  came  to 
the  discovery  of  the  Geometry  of  Lobatschewsky  and  Bolyai 
will  be  clear  from  the  following  description  of  the  argument 
contained  in  his  Theorems  30  to  32  : 

He  is  dealing  with  the  pencil  of  rays  proceeding  from  a 
point  A  on  the  same  side  of  the  perpendicular  from  A  to  a  given 
line  h,  and  in  the  same  plane  as  that  perpendicular  and  the  line. 

He  considers  the  rays  starting  from  the  perpendicular  AB 
and  ending  with  the  ray  AX  at  right  angles  to  AB. 

In  addition  to  the  last  ray  AX,  he  shows  that,  on  the  hypo- 
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thesis  of  the  Acute  Angle,  there  are  an  infinite  number  of  rays 
which  have  a  common  perpendicular  with  the  line  h.  These 
rays  obviously  cannot  intersect  the  line  b. 

There  is  no  last  ray  of  this  set,  although  the  length  of  the 
common  perpendicular  decreases  without  limit ;  but  there  is 
a  lower  limit  to  the  set. 

Also,  proceeding  from  the  line  AB,  we  have  a  set  of  rays  which 
intersect  the  line  6.  There  is  no  last  ray  of  this  set ;  but  there 
is  an  upper  limit  to  the  set. 

The  upper  limit  of  the  one  set  and  the  lower  limit  of  the  other, 
he  showed  to  be  one  and  the  same  ray. 

Thus,  there  is  one  ray,  the  line  a^,  which  divides  the  pencil 
of  rays  into  two  parts,  such  that  all  he  rays  on  the  one  side 
of  the  line  a^,  beginning  with  AB,  intersect  the  line  b  ;  and  all 
the  rays  on  the  other  side  of  the  line  a^,  beginning  with  the 
line  AX,  perpendicular  to  the  line  AB,  do  not  intersect  6. 
The  line  a^  is  the  boundary  between  the  two  sets  of  rays,  and 
is  asymptotic  to  b. 

The  result  which  Saccheri  obtained  is  made  rigorous  by  the 
introduction  of  the  Postulate  of  Dedekind.  According  to  that 
postulate  a  division  of  the  two  classes  such  as  is  described  above 
carries  with  it  the  existence  of  a  ray  separating  the  one  set  of 
lines  from  the  other. 

This  ray,  which  neither  intersects  6  nor  has  with  it  a  common 
perpendicular,  is  the  right-handed  (or  left-handed)  parallel  of 
Bolyai  and  Lobatschewsky  to  the  given  line. 

§7.  The  Work  of  Legendre  (1752-1833). 
The  contribution  of  Legendre  must  also  be  noticed.  Like 

Saccheri,  he  attempted  to  establish  the  truth  of  Euclid's 
Postulate  by  examining  in  turn  the  Hypothesis  of  the  Obtuse 
Angle,  the  Hypothesis  of  the  Right  Angle,  and  the  Hypothesis 
of  the  Acute  Angle.  In  his  work  these  hypotheses  entered  as 
assumptions  regarding  the  sum  of  the  angles  of  a  triangle. 

If  the  sum  of  the  angles  of  a  triangle  is  equal  to  two  right 
angles,  the  Parallel  Postulate  follows  ;  at  any  rate,  if  we 
assume,  as  Euclid  did,  the  Postulate  of  Archimedes.* 

Legendre  thus  turned  his  attention  to  the  other  two  cases. 
He  gave  more  than  one  rigorous  proof  that  the  sum  of  the 
angles  of  a  triangle  could  not  be  greater  than  two  right  angles. 

*Cf.  Heath's  Euclid,  vol.  i,  pp.  218-9. 
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In  these  proofs  the  infinity  of  the  line  is  assumed.     One  of 
them  is  as  follows  : 

Let  the  sum  of  the  angles  of  the  triangle  ABC  be  tt  +  ol,  and 
let  A  be  the  smallest  angle. 

Bisect  BC  at  D  and  produce  AD  to  E,  making  DE  =  AD. 
Join  BE. 

Then  from  the  triangles  ADC  C^  E 
and  BDE,  we  have 

lCad=l  bed, 
^ACD=^DBE. 

Thus  the  sum  of  the  angles  of 
the  triangle  AEB  is  also  equal  to     __ 
TT  +  oc,  and  one  of  the  angles    /\ 
BAD   or  AEB    is   less  than  or 

equal  to  |  ̂CAB. 
Apply  the  same  process  to  the  triangle  ABE,  and  we  obtain 

a  new  triangle  in  which  one  of  the  angles  is  less  than  or  equal 

to  —lCAB,  while  the  sum  is  again  -tt  +  ol. 

Proceeding  in  this  way  after  n  operations  we  obtain  a  tri- 
angle, in  which  the  sum  of  the  angles  is  tt  +  ol,  and  one  of  the 

angles  is  less  than  or  equal  to  —  ̂ CAB. 

But  we  can  choose  n  so  large  that  2"a>^CAB,  by  the 
Postulate  of  Archimedes. 

It  follows  that  the  sum  of  two  of  the  angles  of  this  triangle 
is  greater  than  two  right  angles,  which  is  impossible  (when  the 
length  of  the  straight  line  is  infinite). 

Thus,  we  have  Legendre's  First  Theorem  that 
The  sum  of  the  angles  of  a  triangle  cannot  he  greater  than  two 

right  angles. 

Legendre  also  showed  that 

If  the  sum  of  the  angles  of  a  single  triangle  is  equal  to  two 
right  angles,  then  the  sum  of  the  angles  of  every  triangle  is  equal 
to  two  right  angles. 

From  these  theorems  it  follows  that 

If  the  sum  of  the  angles  of  a  single  triangle  is  less  than  two 
right  angles,  then  the  sum  of  the  angles  of  every  triangle  is  less 
than  two  right  angles. 
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All  these  results  had  been  obtained  many  years  earlier  by 
Saccheri. 

Legendre  made  various  attempts  to  prove  that  the  sum  can- 
not be  less  than  two  right  angles,  even  in  a  single  triangle  ; 

but  these  efforts  all  failed,  as  we  now  know  they  were  bound  to 

do.  He  published  several  so-called  proofs  in  the  successive 
editions  of  his  text-book  of  geometry,  the  Moments  de  GeomHrie. 
All  contained  some  assumption  equivalent  to  the  hypothesis 
which  they  were  meant  to  establish. 

For  example,  in  one  he  assumes  that  there  cannot  be  an 

absolute  unit  of  length  ;  *  an  alternative  hypothesis  already 
noted  by  Lambert  (1728-1777).t 

In  a  second  he  assumes  that  from  any  point  whatever,  taken 
within  an  angle,  we  can  always  draw  a  straight  line  which 
will  cut  the  two  lines  bounding  the  angle. 

In  a  third  he  shows  that  the  Parallel  Postulate  would  be 

true,  if  a  circle  can  always  be  drawn  through  any  three  points 
not  in  a  straight  line. 

In  another  [cf.  p.  279,  llth  Ed.]  he  argues  somewhat  as  follows : 

A  straight  line  divides  a  plane  in  which  it  lies  into  two  con- 
gruent parts.  Thus  two  rays  from  a  point  enclosing  an  angle 

less  than  two  right  angles  contain  an  area  less  than  half  the 
plane.  If  an  infinite  straight  line  lies  wholly  in  the  region 
bounded  by  these  two  rays,  it  would  follow  that  the  area  of 
half  the  plane  can  be  enclosed  within  an  area  itself  less  than 
half  the  plane. 

Bertrand's  well-known  "  proof  "  (1778)  of  the  Parallel  Postu- 
late {  and  another  similar  to  it  to  be  found  in  Crelle's  Journal 

(1834)  fail  for  the  sani^  reason  as  does  Legendre's.  They 
depend  upon  a  comparison  of  infinite  areas.  But  a  process  of 
reasoning  which  is  sound  for  finite  magnitudes  need  not  be 
valid  in  the  case  of  infinite  magnitudes.  If  it  is  to  be  extended 
to  such  a  field,  the  legitimacy  of  the  extension  must  be  proved. 
Lobatschewsky  himself  dealt  with  these  proofs,  and  pointed  out 
the  weakness  in  the  argument.  First  of  all,  the  idea  of  con- 

gruence, as  applied  to  finite  areas,  is  used  in  dealing  with  in- 
finite regions,  without  any  exact  statement  of  its  meaning  in 

this  connection.    Further — and  here  it  seems  best  to  quote  his 

*  See  below,  p.  90.     Also  Bonola,  loc.  cit.  §  20. 
t  Cf.  Engel  u.  Stackel,  loc.  cit.  p.  200. 
jCf.  Frankland,  Theories  of  Parallelism,  p.  26  (Cambridge,  1910). 
N.-B.O.  B 
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own  words  :  "  when  we  are  dealing  with  areas  extending  to 
infinity,  we  must  in  this  case,  as  in  all  other  parts  of  mathe- 

matics, understand  by  the  ratio  of  two  of  these  infinitely  great 
numbers,  the  limit  to  which  this  tends  when  the  numerator  and 

denominator  of  the  fraction  continually  increase."  * 
It  is  not  a  little  surprising  that  at  the  present  day  mathe- 

maticians of  distinction  have  been  found  quoting  Bertrand's 
argument  with  approval. "j" 

§  8.  Both  Legendre  and  Saccheri,  in  their  discussion  of 
these  hypotheses,  make  use  of  the  axiom  that  the  length  of  the 
straight  line  is  infinite,  and  they  also  assume  the  Postulate  of 
Archimedes.  Hilbert  |  showed  that  the  Euclidean  Geometry 
could  be  built  up  without  the  Postulate  of  Archimedes.  Dehn  § 
investigated  what  effect  the  rejection  of  the  Postulate  of 
Archimedes  would  have  on  the  results  obtained  by  Saccheri 

and  Legendre.  He  found  that  the  sum  of  the  angles  of  a  tri- 
angle can  be  greater  than  two  right  angles  in  this  case.  In 

other  words,  the  Hypothesis  of  the  Obtuse  Angle  is  possible. 
Again,  he  showed  that  without  the  Postulate  of  Archimedes 

we  can  deduce  from  the  angle-sum  in  a  single  triangle  being 
two  right  angles,  that  the  angle-sum  in  every  triangle  is  two 
right  angles.  But  his  most  important  discovery  was  that, 
when  the  Postulate  of  Archimedes  is  rejected,  the  Parallel 
Postulate  does  not  follow  from  the  sum  of  the  angles  of  a 
triangle  being  equal  to  two  right  angles.  He  proved  that 
there  is  a  Non-Archimedean  Geometry  in  which  the  angle-sum 
in  every  triangle  is  two  right  angles,  and  the  Parallel  Postulate 
does  not  hold. 

His  discovery  has  been  referred  to  in  this  place  because  it 
shows  that  the  Euclidean  Hypothesis  is  superior  to  the  others, 
which  have  been  suggested  as  equivalent  to  it.  Upon  the 
Euclidean  Hypothesis,  without  the  aid  of  the  Postulate  of 
Archimedes,  the  Euclidean  Geometry  can  be  based.     If  we 

*  Cf.  Lohatsehewsky,  Nein  Principles  of  Geometry  icith  a  Complete 

Theory  of  Parallels,  Engel's  translation,  p.  71,  in  Engcl  u.  Stiickel's 
Urkunden  zur  Geschichte  der  nichieuklidischen  Geometrie,  I.  (Leipzig, 
1898). 

tCf.  Frankland,  The  Mathematical  Gazette,  vol.  vii.  p.  136  (1913) 
and  p.  332  (1914)  ;  Nature,  Sept.  7,  1911,  and  Oct.  5,  1911. 

:J:  Cf .  loc.  cit.  chapter  iii. 

§Cf.  Math.  Ann.  vol.  liii.  p.  404  (1900),     . 
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substitute  for  it  the  assumption  that  the  sum  of  the  angles  of  a 

triangle  is  two  right  angles — or  that  the  locus  of  the  points 
equidistant  from  a  straight  line  is  another  straight  line — 
different  geometries  can  be  created.  One  of  these  is  the 
Euclidean  Geometry,  in  which  only  one  parallel  can  be  drawn 
to  a  straight  line  from  a  point  outside  it.  Another  is  what 

Dehn  calls  the  Semi-Euclidean  Geometry,  in  which  an  infinite 
number  of  parallels  can  be  drawn.* 

§  9.   The  Work  of  Gauss  (1777-1855). 
Though  Bolyai  and  Lobatschewsky  were  the  first  to 

publicly  announce  the  discovery  of  the  possibility  of  a  Non- 
Euclidean  Geometry  and  to  explain  its  content,  the  great 
German  mathematician  Gauss  had  also  independently,  and 
some  years  earlier,  come  to  the  same  conclusion.  His  results 
had  not  been  published,  when  he  received  from  Wolfgang 
Bolyai,  early  in  1832,  a  copy  of  the  famous  Appendix,  the 
work  of  his  son  John. 

This  little  book  reached  Gauss  on  February  14,  1832.  On 
the  same  day  he  wrote  to  Gerling,  with  whom  he  had  been 
frequently  in  correspondence  on  mathematical  subjects  :  f 

"...  Further,  let  me  add  that  I  have  received  this  day  a 
little  book  from  Hungary  on  the  Non-Euclidean  Geometry.  In 
it  I  find  all  my  own  ideas  and  RESULTS,  developed  with 
remarkable  elegance,  although  in  a  form  so  concise  as  to  offer 
considerable  difficulty  to  anyone  not  familiar  with  the  subject. 
The  author  is  a  very  young  Austrian  officer,  the  son  of  a  friend 
of  my  youth,  with  whom,  in  1798,  I  have  often  discussed  these 
matters.  However  at  that  time  my  ideas  were  still  only 
slightly  developed  and  far  from  the  completeness  which  they 
have  now  received,  through  the  independent  investigation  of 
this  young  man.  I  regard  this  young  geometer  v.  Bolyai  as  a 

genius  of  the  highest  order.  ..." 
The  letter  in  which  Gauss  replied  to  Wolfgang  Bolyai  three 

weeks  later  is  better  known,  but  deserves  quotation  from  the 
light  it  throws  upon  his  own  work  :  J 

"  .  .  .  If  I  commenced  by  saying  that  I  am  unable  to  praise 
this  work  (by  John),  you  would  certainly  be  surprised  for  a 
moment.    But  I  cannot  say  otherwise.    To  praise  it  would  be  to 

*  Cf.  Halsted,  Science,  N.S.  vol.  xiv.  pp.  705-717  (1901). 
tCf.  Gauss,  Werke,  vol.  viii.  p.  220. 

ij:  Gauss,  Werke,  vol.  viii.  p.  220. 
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praise  myself.  Indeed  the  whole  contents  of  the  work,  the  path 
taken  by  your  son,  the  results  to  which  he  is  led,  coincide 
almost  entirely  with  my  meditations,  which  have  occupied  my 
mind  partly  for  the  last  thirty  or  thirty-five  years.  So  I 
remained  quite  stupefied.  So  far  as  my  own  work  is  concerned, 
of  which  up  till  now  I  have  put  little  on  paper,  my  intention 
was  not  to  let  it  be  published  during  my  lifetime.  Indeed  the 
majority  of  people  have  not  clear  ideas  upon  the  questions  of 
which  we  are  speaking,  and  I  have  found  very  few  people  who 
could  regard  with  any  special  interest  what  I  communicated  to 
them  on  this  subject.  To  be  able  to  take  such  an  interest  one 
must  have  felt  very  keenly  what  precisely  is  lacking,  and  about 
that  most  men  have  very  confused  ideas.  On  the  other  hand, 
it  was  my  idea  to  write  all  this  down  later,  so  that  at  least  it 
should  not  perish  with  me.  It  is  therefore  a  pleasant  surprise 
for  me  that  I  am  spared  this  trouble,  and  I  am  very  glad  that 
it  is  just  the  son  of  my  old  friend  who  takes  the  precedence  of 
me  in  such  a  remarkable  manner.  ..." 

Wolfgang  sent  a  copy  of  this  letter  to  his  son  with  the 
remark  : 

"  Gauss's  answer  with  regard  to  your  work  is  very  satis- 
factory, and  redounds  to  the  honour  of  our  country  and  nation. 

A  good  friend  says,  That's  very  satisfactory  !  "  * 
John  Bolyai  was  the  reverse  of  pleased.  That  he  would 

be  disappointed  at  the  news  that  Gauss  had  already  reached 
the  same  conclusions  as  himself  was  natural.  But  his  chagrin 

led  him  to  doubc  whether  Gauss  had  really  made  these  dis- 
coveries independently  of  his  work.  He  conceived  the  absurd 

idea  that  his  father  must  have  sent  his  papers  to  Gauss  some 
time  earlier  (they  had  been  in  his  hands  for  several  years), 
and  that  Gauss  had  made  use  of  them,  jealous  of  being  beaten 
by  this  young  Hungarian.  In  this  he  relied  upon  a  remark 
made  by  Gauss  in  1804,  in  a  letter  to  his  father,  when  both 
of  them  were  trying  to  demonstrate  the  Parallel  Postulate. 
Wolfgang  had  sent  him  what  he  thought  was  a  rigorous  proof, 
and  Gauss  replied  that  his  demonstration  was  invalid,  and  that 

he  would  try  as  clearly  as  possible  to  bring  to  light  thestumbling- 

*Cf.  Stackel,  "Die  Entdeckung  der  nichteuklidisehen  Geometrie 
durch  Johann  Bolyai,"  Math.  u.  Naturwiaseyiachaftliche  Berichte  aws 
Ungarn,  Bd.  xvii.  p.  17  (1901).  Also  by  the  same  author  in  Engel  u. 

Stackel's  Urkunden  zur  Geschichte  dfr  nichleiildidiachen  Geometrie,  II., 
Wolfgang  u.  Johann  Bolyai,  vol.  i.  p.  72  (Leipzig,  1913). 
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block  which  he  found  therein.  That  this  was  not  unlike  the 

obstacle  which  so  far  had  baffled  his  own  efforts.  "  However, 

I  am  always  hopeful,"  he  added,  "that  some  day,  and  that 
in  my  own  lifetime,  a  way  over  this  obstacle  will  be  revealed."  * 

Though  John  Bolyai  afterwards  saw  how  groundless  his 
suspicions  were,  he  always  held  that  Gauss  had  treated  him 
badly  in  this  matter  ;  and  it  does  seem  unfortunate  that  Gauss 
did  not  more  effectively  use  his  great  influence  to  rescue  from 

ill-merited  neglect  the  notable  work  of  the  two  comparatively 
unknown  young  mathematicians,  Bolyai  and  Lobatschewsky. 
Not  till  years  after  they  had  passed  away  did  the  scientific 
world  realise  the  immense  value  of  their  discoveries. 

§  10.  Bolyai's  discovery  was  made  in  1823,  and  first  pub- 
lished in  1832.  Far  away  in  Kasan,  Lobatschewsky — one  of 

the  Professors  of  Mathematics  in  the  local  University — not 
later  than  1829,  and  probably  as  early  as  1826,  had  also  dis- 

covered this  new  Geometry,  of  which  the  Euclidean  was  a 
special  case.  Thus  it  is  interesting  to  trace,  so  far  as  we  can. 

Gauss's  attitude  to  the  Theory  of  Parallels  at  that  time.  The chief  available  authorities  are  some  letters  of  his  which  still 

survive,  and  some  notes  found  among  his  papers.f 
In  the  early  years  of  the  nineteenth  centiiry  he  shared  the 

common  belief  that  a  proof  of  the  Euclidean  Hypothesis  might 
possibly  be  found.  But  in  1817  we  find  him  writing  to  Olbers 
as  follows  : 

"  Wachter  has  published  a  little  paper  on  the  *  First  Prin- 
ciples of  Geometry,'  of  which  you  will  probably  get  a  copy 

through  Lindenau.  Although  he  has  got  nearer  the  root  of 
the  matter  than  his  predecessors,  his  proof  is  no  more  rigorous 
than  any  of  the  others.  I  am  becoming  more  and  more 
convinced  that  the  necessity  of  our  geometry  cannot  be 

proved  ..."  J 
In  1819  he  learnt  from  Gerling  in  Marburg  that  one  of  his 

colleagues,  Schweikart — a  Professor  of  Law,  but  formerly  a 
keen  student  of  Mathematics — had  informed  him  that  he  was 

practically  certain  that  Euclid's  Postulate  could  not  be  proved 
without  some  hypothesis  or  other  ;  and  that  it  seemed  to  him 

*  Gauss,  Werlce,  vol.  viii.  p.  160. 
t  See  Gauss,  Werke,  vol.  viii. 

J  Gauss,  Werke,  vol.  viii.  p.  177. 
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not  improbable  that  our  geometry  was  only  a  special  case  of  a 
more  general  one.     At  the  same  time  Gerling  sent  him,  at 

Schweikart's  request,  a  Memorandum,  which  the  latter  had 
given  him,  desiring  to  know  Gauss's  opinion  upon  it. 

This  Memorandum  is  as  follows  :  * 

"  Marburg,  December,  1818. 

"  There  are  two   kinds  of  geometry — a  geometry  in  the 
strict  sense — the  Euclidean  ;    and  an  astral  geometry. 

"  Triangles  in  the  latter  have  the  property  that  the  sum  of 
their  three  angles  is  not  equal  to  two  right  angles. 

"  This  being  assumed,  we  can  prove  rigorously  : 
(a)  That  the  sum  of  the  three  angles  of  a  triangle  is  less 

than  two  right  angles  ; 

(6)  That  the  sum  becomes  always  less,  the  greater  the  area 
of  the  triangle  ; 

(c)  That  the  altitude  of  an  isoscele('  right-angled  triangle 
continually  grows,  as  the  sides  increase,  but  it  can 
never  become  greater  than  a  certain  length,  which  I 
call  the  Constant. 

"  Squares  have,  therefore,  the  following  form  (Fig.  11)  : 

"  If  this  Constant  were  for  us  the  radius  of  the  earth  (so 
that  every  line  drawn  in  the  universe  from  one  fixed  star  to 

another,  distant  90°  from  the  first,  would  be  a  tangent  to  the 
surface  of  the  earth),  it  would  be  infinitely  great  in  comparison 
with  the  spaces  which  occur  in  daily  life. 

*  Gauss,  Werkt,  vol.  viii.  p.  180. 
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"  The  Euclidean  geometry  holds  only  on  the  assumption  that 
the  Constant  is  infinite.  Only  in  this  case  is  it  true  that  the 
three  angles  of  every  triangle  are  equal  to  two  right  angles  ; 
and  this  can  easily  be  proved,  as  soon  as  we  admit  that  the 
Constant  is  infinite." 

This  document  is  of  peculiar  importance,  as  it  is  in  all 
probability  the  earliest  statement  of  the  Non-Euclidean  Geome- 

try. From  a  passage  in  a  letter  of  Gerling's,*  we  learn  that 
Schweikart  made  his  discovery  when  in  Charkow.  As  he  left 
that  place  for  Marburg  in  1816,  he  seems  by  that  date  to  have 
advanced  further  than  the  stage  which  Gauss  had  reached 
in  1817,  according  to  the  letter  quoted  above. 

To  Gerling,  Gauss  replied  as  follows  :  f 

"...  Schweikart 's  Memorandum  has  given  me  the  greatest 
pleasure,  and  I  beg  you  to  convey  to  him  my  hearty  con- 

gratulations upon  it.  It  could  almost  have  been  written  by 
myself.  (Es  ist  mir  fast  alles  aus  der  Scele  geschiieben).  .  .  . 

I  would  only  fm'ther  add  that  I  have  extended  the  Astral 
Geometry  so  far,  that  I  can  fully  solve  all  its  problems  as  soon 
as  the  Constant  =  C  is  given,  e.g.  not  only  is  the  DefectJ  of  the 
angles  of  a  plane  triangle  greater,  the  greater  the  area,  but  it  is 
exactly  proportional  to  it ;  so  that  the  area  has  a  limit  which 
it  can  never  reach  ;  and  this  limit  is  the  area  of  the  triangle 

formed  by  three  lines  asymptotic  in  pairs.  ..." 
From  Bolyai's  papers  it  appears  that  at  this  date  he  was 

attempting  to  prove  the  truth  of  the  Parallel  Postulate.  Also 

in  1815-17  Lobatschewsky  was  working  on  the  same  traditional lines. 

§  11.  The  above  Memorandum  is  the  only  work  of  Schwei- 

kart's  on  the  Astral  Geometry  that  is  known.  Like  Gauss,  he 
seems  not  to  have  published  any  of  his  researches.  However, 
at  his  instigation,  and  encouraged  by  Gauss,  his  nephew 
Taurinus  devoted  himself  to  the  subject.  In  1825  he  pub- 

lished a  Theorie  der  Parallsllimen,  containing  a  treatment  of 

Parallels  on  Non-Euclidean  Lines,  the  rejection  of  the  Hypo- 
thesis of  the  Obtuse  Angle,  and  some  investigations  resembling 

those  of  Saccheri  and  Lambert  on  the  Hypothesis  of  the  Acute 
Angle.     For  various  reasons  he  decided  that  the  Hypothesis  of 

*Cf.  Gauss,  Werke,  vol.  viii.  p.  238. 

t  Gauss,  Werke,  vol.  viii.  p.  181.  J  See  p.  54. 
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the  Acute  Angle  must  also  be  rejected,  though  he  recognised  the 
logical  possibility  of  the  propositions  which  followed  from  it. 

Again,  it  is  from  a  letter  which  Gauss  wrote  to  Taurinus  in 
1824,  before  the  publication  of  his  book,  that  we  obtain  the 
fullest  information  of  his  views  :  * 

"  Your  kind  letter  of  the  30th  October  with  the  accompany- 
ing little  theorem  I  have  read  not  without  pleasure,  all  the 

more  as  up  till  now  I  have  been  accustomed  to  find  not  even  a 
trace  of  real  geometrical  insight  in  the  majority  of  the  people 
who  make  new  investigations  upon  the  so-called  Theory  of 
Parallels.  In  criticism  of  your  work  I  have  nothing  (or  not 
much)  more  to  say  than  that  it  is  incomplete.  It  is  true  that 
your  treatment  of  the  proof  that  the  sum  of  the  angles  of  a 

plane  triangle  cannot  be  greater  than  180°  is  still  slightly 
lacking  in  geometrical  precision.  But  there  is  no  difficulty  in 
completing  this  ;  and  there  is  no  doubt  that  that  impossi- 

bility can  be  established  in  the  strictest  possible  fashion.  The 
position  is  quite  different  with  regard  to  the  second  part,  that 

the  sum  of  the  angles  cannot  be  smaller  than  180°.  This  is 
the  real  hitch,  the  obstacle,  where  all  goes  to  pieces.  I  imagine 
that  you  have  not  occupied  yourself  with  this  question  for 

long.  It  has  been  before  me  for  over  thirty  years,  and  I  don't 
believe  that  anyone  can  have  occupied  himself  more  with  this 
second  part  than  I,  even  though  I  have  never  published  any- 

thing upon  it.  The  assumption  that  the  sum  of  the  three 

angles  is  smaller  than  180°  leads  to  a  peculiar  Geometry,  quite 
distinct  from  our  Euclidean,  which  is  quite  consistent.  For 
myself  I  have  developed  it  quite  satisfactorily,  so  that  I  can 
solve  every  problem  in  it,  with  the  exception  of  the  determina- 

tion of  a  Constant,  which  there  is  no  means  of  settling  a  priori. 
The  greater  we  take  this  Constant,  the  nearer  does  the  geometry 
approach  the  Euclidean,  and  when  it  is  given  an  infinite  value 
the  two  coincide.  The  theorems  of  that  Geometry  appear 
almost  paradoxical,  and  to  the  ignorant,  absurd.  When  con- 

sidered more  carefully  and  calmly,  one  finds  that  they  contain 
nothing  in  itself  impossible.  For  example,  the  three  angles  of 
a  triangle  can  become  as  small  as  we  please,  if  only  we  may  take 
the  sides  large  enough  ;  however,  the  area  of  a  triangle  cannot 
exceed  a  definite  limit,  no  matter  how  great  the  sides  are 
taken,  nor  can  it  reach  that  limit.    All  my  attempts  to  find  a 

*  Cf.  Gauss,  Werke,  vol.  viii.  p.  186.  This  letter  is  reproduced  in 
facsimile  in  Engel  u.  Stackel's  Theorie  der  ParalleUinien  (Leipzig,  1895). 
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contradiction,  an  inconsistency,  in  this  Non-Euclidean  Geome- 
try, have  been  fruitless.  The  single  thing  in  it,  which  is  opposed 

to  our  reason,  is  tliat  if  it  were  true,  there  must  exist  in  space 
a  linear  magnitude,  determined  in  itself  (although  unknown  to 
us).  But  methinks,  in  spite  of  the  meaningless  Word- Wisdom 
of  the  Metaphysicians,  we  know  too  little  or  nothing  at  all 
about  the  real  meaning  of  space,  to  stamp  anything  appearing 
unnatural  to  us  as  Absolutely  Impossible.  If  the  Non-Euclidean 
Geometry  were  the  true  one,  and  that  Constant  were  in  some 

ratio  to  such  magnitudes  as  we  meet  in  om-  measurements  on 
the  earth  or  in  the  heavens,  then  it  might  be  determined  a 
posteriori.  Thus  I  have  sometimes  in  jest  expressed  the 
wish,  that  the  Euclidean  Geometry  were  not  the  true  one, 
because  then  we  would  have  a  priori  an  absolute  measure. 

"  I  have  no  fear  that  a  man  who  has  shown  himself  to  me 
as  possessed  of  a  thinking  mathematical  head  will  misunder- 

stand what  I  have  said  above.  But  in  every  case  take  it  as 
a  private  communication,  of  which  in  no  wise  is  any  public 
use  to  be  made,  or  any  use  which  might  lead  to  publicity. 
Perhaps,  if  I  ever  have  more  leisure  than  in  my  present  cir- 

cumstances, I  may  myself  in  the  future  make  my  investigations 

known." 

§  12.  Finally,  in  1831,  after  Bolyai's  Appendix  was  in  print, 
but  before  a  copy  had  reached  him,  we  find  Gauss  writing  to 
Schumacher,  who  thought  he  had  proved  that  the  sum  of  the 
angles  of  a  triangle  must  be  two  right  angles,  by  a  method 
practically  the  same  as  the  rotation  method  of  Thibaut,  which 
so  unfortunately  has  lately  received  official  sanction  in  England 
and  crept  into  our  text-books  of  Elementary  Geometry.  He 
pointed  out  to  him  the  fallacy  upon  which  that  so-called  proof 
rests.    Then  he  added  :  * 

"  In  the  last  few  weeks  I  have  commenced  to  put  down  a 
few  of  my  own  meditations  which  are  already  to  some  extent 
forty  t  years  old.  These  I  had  never  put  in  writing,  so  that  I 
have  been  compelled  three  or  foiir  times  to  think  out  the 
whole  question  afresh.  Nevertheless  I  did  not  want  it  to 

perish  with  me." 

*  Cf.  Gauss,  Werke,  vol.  viii.  p.  213. 
t  Forty  years  before  the  date  of  this  letter  Gauss  would  be  just  a 

little  over  14  years  old  ! 
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The  Notes  on  Parallels,*  found  among  his  papers,  probably 
belong  to  this  period.  Some  use  of  them  will  be  made  below  in 
the  formal  development  of  the  Geometry  of  Bolyai  and 
Lobatschewsky. 

However  his  plans  were  changed  when,  in  February,  1832, 

Bolyai's  work  reached  his  handS.  He  saw  that  it  was  now 
unnecessary  for  him  to  proceed  with  this  work.  The  enthu- 

siasm with  which  he  read  the  Appendix  we  have  already  seen. 

I  have  entered  at  some  length  into  this  story,  partly  because  -a, 
of  its  intrinsic  interest ;  partly  because  of  the  urifortunate  \ 
claim  made  by  some  mathematicians  that  to  Gauss  should  j 
be  ascribed  the  discovery  of  the  Non-Euclidean  Geometry  ;  / 
partly,  also,  because  it  has  been  suggested  that  the  work  of  / 

Bolyai  and  Lobatschewsky  had  been  inspired  by  the  investiga-  ( 
tions  of  Gauss.  | 

The  claim  and  the  suggestion  we  now  know  to  be  unfounded. 
The  wonderful  discovery,  which  revolutionised  the  science  of 
Geometry,  must  always  be  associated  with  the  names  of  Bolyai 
and  Lobatschewsky,  who,  independently  and  without  any 
knowledge  of  the  work  of  Gauss,  fully  developed  the  new 
Geometry.  While  the  glory  of  the  discovery  is  theirs,  we  must 
not  forget  the  advance  which  Gauss,  and  also  Schweikart,  had 
made  along  the  same  lines. 

*  Cf.  Gauss,  Werke,  vol.  viii.  p.  202 ;  also  Bonola,  loc.  cit.  p.  67. 



CHAPTER   II. 

THE  WORK  OF  BOLYAI,  LOBATSCHEWSKY,  AND  RIEMANN. 

THE  FOUNDERS  OF  THE  NON-EUCLIDEAN  GEOMETRIES. 

§  13.  John  Bolyai  (1802-1860). 
As  we  have  already  seen,  John  Bolyai,  a  Hungarian  officer 

in  the  Austrian  army,  had  in  1823  built  up  a  consistent  system 
of  geometry  in  which  the  Parallel  Postulate  of  Euclid  was 

replaced  by  another,  contradictory  to  the  former.  His  dis- 

covery was  published  in  1832  as  an  Appendix  to  his  father's 
work  :  Tentamen  juventutem  studiosam  in  elernenta  tnatheseos 

purae,  elementaris  ac  sublimioris,  methodo  intuitiva,  evidentia- 
que  huic  propria,  introducendi.  This  work  is  usually  referred 
to  as  the  Tentamen.  The  title  of  the  Appendix  contributed  by 
the  son,  and  placed  at  the  end  of  vol.  i.  of  the  Tentamen,  is  : 
Appendix.  Scientiam  spatii  absolute  veram  exhibens :  a  veritate 
aut  falsitate  Axiomatis  XI  Euclidei  (a  priori  lumd  unquani 

decidenda)  independenlem  :  adjecta  ad  casum  falsitatis,  qtiadra- 
tura  circuli  geometrica.  Auctore  Johanne  Bolyai  de  eadem, 
Geotnetrarum  in  Exercitu  Caesareo  Regio  Austriaco  Castrensium 
Capitaneo. 

If  we  omit  the  title  page,  a  page  explaining  the  notation, 
and  two  pages  of  errata,  the  Appendix  contains  only  twenty- 
four  pages. 

Bolyai's  discovery  was  made  as  early  as  1823,  when  he  was 
but  21  years  old.  At  the  time,  we  find  him  writing  to  his 
father  as  follows  :  * 

"  I  have  resolved  to  publish  a  work  on  the  theory  of  parallels, 
as  soon  as  I  shall  have  put  the  material  in  order,  and  my  cir- 

*  Stackel  u.  Engel,  "  Gauss  die  beiden  Bolyai  und  die  nichteuklidische 
Geometrie,  Math.  Ann.  vol.  xlix.  p.  155  (1897).  Also  Stackel,  loc.  cit. 
vol.  i.  p.  85. 
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cumstances  allow  it.  At  present  I  have  not  yet  completed  this 
work,  but  the  road,  which  I  have  followed,  has  made  it  almost 
certain  that  the  goal  will  be  attained,  if  that  is  at  all  possible  : 
the  goal  is  not  yet  reached,  but  I  have  made  such  wonderful 
discoveries  that  I  have  been  almost  overwhelmed  by  them,  and 
it  would  be  the  cause  of  continual  regret  if  they  were  lost. 
When  you  will  see  them,  my  dear  father,  you  too  will  recognise 
it.  In  the  meantime  I  can  only  say  this  :  /  have  created  a  new 
universe  from  nothing.  All  that  I  have  sent  you  till  now  is  but 
a  house  of  cards  compared  to  a  tower.  I  am  as  fully  persuaded 
that  it  will  bring  me  honour,  as  if  I  had  already  completed  the 

discovery." 
Wolfgang  suggested  that  his  son  should  publish  his  work, 

and  offered  to  insert  it  as  an  Appendix  in  the  Tentatnen.  He 
advised  him,  if  he  had  really  succeeded,  not  to  lose  time  in 

letting  the  fact  be  known,  for  two  reasons  :  * 
"  First,  because  ideas  pass  easily  from  one  to  another,  who 

can  anticipate  its  publication ;  and,  secondly,  there  is  some 
truth  in  this,  that  many  things  have  an  epoch,  in  which  they 
are  found  at  the  same  time  in  several  places,  just  as  the  violets 
appear  on  every  side  in  spring.  Also  every  scientific  struggle 
is  just  a  serious  war,  in  which  I  cannot  say  when  peace  will 
arrive.  Thus  we  ought  to  conquer  when  we  are  able,  since  the 

advantage  is  always  to  the  first  comer." 
But  the  publication  of  the  Tentamen  was  delayed  for  some 

years.  In  the  meantime  the  MSS.  was  placed  in  his  father's 
hands,  and  he  called  some  parts  of  it  in  question.  His  doubts 
were  partly  removed,  and  the  work  was  inserted  in  the  first 
volume,  an  advance  copy  of  which  reached  Gauss  at  Gottingen 
in  February,  1832.  The  younger  Bolyai  attached  immense 
importance  to  the  approval  of  Gauss,  at  that  time  the  greatest 
authority  in  the  world  of  mathematics.  The  high  praise  which 
Gauss  gave  to  his  work  we  have  already  mentioned. 

§  14.    We  now  give  a  short  description  of  the  Appendix. 
(i)  It  opens  with  a  definition  of  parallels.  //  the  ray  AM  is 

not  cut  by  the  ray  BN,  situated  in  the  same  plane,  but  is  cut  by 
every  ray  BP  comprised  in  the  angle  ABN,  this  will  be  denoted 
by  BNlllAM. 

*Stackel,  "Die  Entdeckung  der  nichteuklidischen  Geometrie  durch 
Johann  Bolyai,"  Math.  u.  Naturw.  Berichte  aus  Ungarn,  vol.  xvii. 
p.  14  (1901).     Also  loc.  cit.  vol.  i.  p.  86. 
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In  a  footnote  he  adds  "  pronounced  BN  asymptotic  to  AM." 
Bolyai  always  used  tlie  word  -parallel    and  the  symbol  II 

in   the    sense    of   equidistant,    while   he   reserved    the   word 
asymptotic  and  this  symbol  III  for  the   new  parallels,  in  the 
sense  in  which  we  shall  see  Lobatschewsky  used  the  term. 

The  properties  of  the  new  parallels  are  then  established. 

(ii)  The  properties  of  the  circle  and  sphere  of  infinite  radius 
are  obtained.  It  is  shown  that  the  geometry  on  the  sphere  of 

infinite  radius  is  identical  with  ordinary  plane  geometr}'. 
(iii)  Spherical  Geometry  is  proved  to  be  independent  of  the 

Parallel  Postulate. 

(iv)  The  formulae  of  the  Non-Euclidean  Plane  Trigonometry 
are  obtained  with  the  help  of  the  sphere  of  infinite  radius. 

(v)  Various  geometrical  problems  are  solved  for  the  Non- 

Euclidean  Geometry  ;  e.g.  the  construction  of  a  "  square  " 
whose  area  shall  be  the  same  as  that  of  a  given  circle,* 

Bolyai  laid  particular  stress  upon  the  demonstration  of  the 
theorems  which  can  be  established  without  any  hypothesis  as 
to  parallels.  He  speaks  of  such  results  as  absolutely  true,  and 
they  form  part  of  Absolute  Geometry  or  the  Absolute  Science  of 
Space.  As  the  title  of  the  Appendix  shows,  one  of  his  chief 
objects  was  to  build  up  this  science. 

In  the  Appendix  he  says  little  about  the  question  of  the 
impossibility  of  proving  the  truth  of  the  Euclidean  Parallel 

*  Of  course  the  Non -Euclidean  "square"  is  not  a  quadrilateral  with 
equal  sides  and  all  its  angles  right  angles.     A  rectangle  is  impossible  \«    . 
in  the  Non-Euclidean  plane.     The  square  of  Bolyai  is  simply  a  regular  \  y 
quadrilateral.    The  angles  are  equal,  but  their  size  depends   on   the     r" sides.  / 
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Postulate.  He  refers  to  the  point  more  than  once  ;  but  he 
postpones  fuller  treatment  till  a  later  occasion  ;  an  occasion 
which,  so  far  as  the  public  are  concerned,  never  came.  The 

last  sentences  of  the  Appendix  (Halsted's  translation)  are  as follows  : 

"  It  remains  finally,  (that  the  thing  may  be  completed  in 
every  respect),  to  demonstrate  the  impossibility  (apart  from 
any  supposition),  of  deciding  a  priori,  whether  2,  or  some  S 
(and  which  one)  exists.*  This,  however,  is  reserved  for  a  more 
suitable  occasion." 

§  15.  Bolyai  retired  from  the  army  in  1833  and  lived  till 
1860.  So  far  as  we  know  he  published  nothing  further,  either 
in  extension  of  the  Appendix  or  on  any  other  mathematical 
subject.  From  several  sources,  chiefly  notes  found  among  his 
papers,  we  learn  that  he  occupied  himself  with  some  of  the 
problems  of  the  Non-Euclidean  Geometry.  He  carried  his 
work  further  in  the  direction  of  Solid  Geometry.  He  investi- 

gated more  fully  the  relation  between  the  Non-Euclidean 
Geometry  and  Spherical  Trigonometry  ;  and  he  pondered  the 

question  of  the  possibility  or  impossibility  of  proving  Euclid's 
Hypothesis. 

An  unpublished  version  of  part  of  the  Appendix  exists  in 
German,!  in  which  he  gives  clearer  expression  to  his  views  upon 
the  last  of  these  topics  than  is  to  be  found  in  the  corresponding 
section  of  the  original.  In  this  version,  which  dates  from  1832, 
the  first  part  of  §  33  reads  as  follows  : 

"  Now  I  should  briefly  state  the  essential  result  of  this 
theory,  and  what  it  is  in  a  position  to  effect  : 

"  I.  Whether  2  or  S  actually  exists,  remains  here  (and,  as 
the  author  can  prove,  for  ever)  undecided. 

"  II.  Now  there  is  a  Plane  Trigonometry  absolutely  true 
{i.e.  free  from  every  hypothesis),  in  which,  however,  (according 
to  I.),  the  constant  i  and  its  very  existence  remain  wholly 
undetermined.  With  the  exception  of  this  unknown  every- 

thing   is    determined.      But    Spherical    Trigonometry    was 

*  Bolyai  calls  2  the  system  of  Geometry  resting  upon  Euclid's 
Hypothesis;  and  S  the  system  founded  upon  his  own  definition  of 
parallels. 

fCf.  Stiickel,  "  Untersuchungen  aus  der  absoluten  Geometrie  aus 
Johann  Bolyai's  Nachlass,"  Math.  u.  Naturw.  Berichte  aus  Ungam, 
vol.  xviii.  p.  280,  1902.     Also  loc.  cit.  vol.  ii.  p.  181. 
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developed  absolutely  and  completely  in  §  26  ;  so  that  the 
ordinary  familiar  Spherical  Trigonometry  is  not  in  the  least 
dependent  upon  Axiom  XI.  and  is  unconditionally  true. 

"  III.  By  means  of  these  two  trigonometries  and  several 
subsidiary  theorems  (to  be  found  in  the  text  of  §  32)  one  is  able 
to  solve  all  the  problems  of  Solid  Geometry  and  Mechanics, 
which  the  so-called  Analysis  in  its  present  development  has  in 
its  power  (a  statement  which  requires  no  further  qualification), 
and  this  can  be  done  downright  without  the  help  of  Axiom  XI. 

(on  which  until  now  everything  rested  as  chief-foundation- 
stone),  and  the  whole  theory  of  space  can  be  treated  in  the 
above-mentioned  sense,  from  now  on,  with  the  analytical 
methods  (rightly  praised  within  suitable  limits)  of  the  new 
(science). 

"  Taking  now  into  consideration  the  demonstration  of  the 
impossibility  of  deciding  between  2  and  S  (a  proof  which  the 
author  likewise  possesses),  the  nature  of  Axiom  XI.  is  at 
length  fully  determined  ;  the  intricate  problem  of  parallels 
completely  solved  ;  and  the  total  eclipse  completely  dispelled, 
which  has  so  unfortunately  reigned  till  the  present  (for  minds 
thirsting  for  the  truth),  an  eclipse  which  has  robbed  so  many  of 
their  delight  in  science,  and  of  their  strength  and  time. 

"  Also,  in  the  author,  there  lives  the  perfectly  purified  con- 
viction (such  as  he  expects  too  from  every  thoughtful  reader) 

that  by  the  elucidation  of  this  subject  one  of  the  most  important 
and  brilliant  contributions  has  been  made  to  the  real  victory 

of  knowledge,  to  the  education  of  the  intelligence,  and  con- 

sequently to  the  uplifting  of  the  fortunes  of  men." 
His  proof  of  the  impossibility  of  proving  the  Euclidean 

Hypothesis  seems  to  have  rested  upon  the  conviction  that 

the  Non-Euclidean  Trigonometry  would  not  lead  to  any  con- 
tradiction. The  following  sentences  are  to  be  found  among 

his  papers  : 

"  We  obtain  by  the  analysis  of  a  system  of  points  on  a 
plane  obviously  quite  the  same  formulae  as  on  the  sphere  ; 
and  since  continued  analysis  on  the  sphere  cannot  lead  to  any 
contradiction  (for  Spherical  Trigonometry  is  absolute),  it  is 
therefore  clear  that  in  the  same  way  no  contradiction  could 
ever  enter  into  any  treatment  of  the  system  of  points  in  a 

plane."  * 

*Cf.  Stiickel,  loc.  cit.  vol.  i.  p.  121. 

J 
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And  lower  down  in  the  same  passage  : 

"  But  there  still  remains  the  question,  whether  in  some  way 
or  other  the  considerations  of  space  would  not  avail  for  the 
establishment  of  2." 

Indeed,  owing  to  a  mistake  in  his  analysis,  he  thought  for 
a  time  that  he  had  actually  obtained  a  proof  of  the  Euclidean 
Hypothesis  on  these  lines.    But  he  discovered  his  error  later. 

From  the  fact  that  at  one  time  he  was  willing  to  admit  that, 
Avith  the  aid  of  Solid  Geometry,  evidence  against  the  logical 
consistency  of  the  Non-Euclidean  Geometry  might  be  obtained, 
we  must  not  imagine  that  he  had  failed  to  grasp  the  significance 
of  his  earlier  work.  On  the  contrary,  his  argument  shows  that 
he  had  seen  more  deeply  into  the  heart  of  the  matter  than 
Lobatschewsky  himself.  The  latter,  as  we  shall  see  below, 
relied  simply  upon  the  formulae  for  the  plane.  Even  when  it 
has  been  established  that  the  Non-Euclidean  Plane  Geometry 
is  a  perfectly  logical  and  consistent  system,  the  question  still 
remains,  whether,  somewhere  or  other,  contradictory  results 
might  not  appear  in  the  theorems  of  Solid  Geometry. 

This  question,  raised  for  the  first  time  by  Bolyai,  was 

settled  many  years  later  by  Klein,*  following  upon  some 
investigations  of  Cayley.  We  shall  give,  in  the  last  chapter 
of  this  book,  an  elementary  and  rigorous  demonstration 
of  the  logical  possibility  of  the  Non-Euclidean  Geometry  of 
Bolyai-Lobatschewsky,  and  shall  show  how  the  same  argument 
can  be  applied  to  the  Non-Euclidean  Geometry  associated  with 
the  name  of  Riemann. 

§  16.  The  Work  of  Lobatschewsky  (1793-1856). 
Nicolaus  Lobatschewsky — Professor  of  Mathematics  in  the 

University  of  Kasan — was  a  pupil  of  Bartels,  the  friend  and 
fellow-countryman  of  Gauss.  As  early  as  1815  he  was  working 
at  the  Theory  of  Parallels,  and  in  notes  of  his  lectures  (1815- 
1817),  carefully  preserved  by  one  of  his  students,  and  now  in 
the  Biblioteca  Lobatschewskiana  of  the  Kasan  Physical- 

Mathematical  Society,  no  less  than  three  "  proofs  "  of  the 
Parallel  Postulate  are  to  be  found.  From  a  work  on  Elementary 
Geometry,  completed  in  1823,  but  never  published,  the  MSS.  of 
which  was  discovered  in  1898  in  the  archives  of  the  University 
of  Kasan,  we  know  that  by  that  date  he  had  maSe  some 

*Cf.  "tJber  die  sogenannte  Nicht-Euklidische  Geometrie,"  Math. 
Ann.  vol.  iv.  (1871). 
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advance  ;  for  lie  says  regarding  the  Parallel  Postulate,  "  a 
rigorous  proof  of  this  truth  has  not  hitherto  been  discovered  ; 
those  which  have  been  given  can  only  be  called  explanations, 
and  do  not  deserve  to  be  considered  as  mathematical  proofs 
in  the  full  sense."  * 

Between  1823  and  1826  Lobatschewsky  had  entered  upon 
the  path  which  finally  led  him  to  his  great  discovery.  It  is 
known  that  in  1826  he  read  a  paper  to  the  Physical-Mathe- 

matical Society  of  Kasan,  entitled,  Exposition  succiiicte  des 
jrrincipes  de  la  geometrie,  avec  mie  demonstration  rigoureuse  du 

theorl'me  des  paralleles.  The  MSS.  of  this  work  does  not  survive, 
and  the  last  clause  in  the  title  is  ominous,  for  it  suggests  that 

he  had  not  yet  reached  his  goal.  But  in  1829-30  he  published 

a  memoir  in  Russian,  On  (lie  Principles  of  Geometry, '\  and  in 
a  footnote  to  the  first  page  he  explains  that  the  work  is  an 
extract  from  the  Exposition  succincte. 

This  memoir  and  many  other  works  of  Lobatschewsky  have 

come  down  to  us,  for,  unlike  Bolyai,  he  was- a  prolific  writer. 
He  published  book  after  book,  hoping  to  gain  for  the  Non- 
Euclidean  Geometry  the  recognition  it  deserved — a  recognition 
which  in  his  lifetime  it  wholly  failed  to  receive.  But  his  first 
published  work  contains  all  that  is  essential  to  the  treatment 
of  the  subject ;  and  fully  establishes  the  truth  and  value  of 
his  discovery.  Thus,  if  the  year  1826  cannot,  with  absolute 
certainty,  be  taken  as  the  date  at  which  Lobatschewsky  had 
solved  the  problem,  there  is  not  the  least  doubt  that  his  dis- 

covery of  the  Non-Euclidean  Geometry  was  an  accomplished 
fact  in  the  year  1829. 

§  17.  This  memoir  consists  of  nearly  seventy  pages.  The 
earlier  sections,  §§  1  to  7,  deal  with  the  ordinary  geometrical 
notions  of  surface,  line,  point,  distance,  etc.  In  §  8  he  intro- 

duces his  theory  of  parallels. 
This  section  reads  as  follows  :  J 

*  1  am  indebted  to  Dr.  D.  M.  Y.  Sommerville  for  a  rendering  of  the 
Appendix  I.  by  Vasiliev  to  the  Russian  translation  of  Bonola's  La 
geometr'ta  non-euclidea.  From  this  Appendix  the  sentence  in  the  text is  taken. 

t  When  Lobatschewsky's  works  appeared  in  Russian.  We  give  the 
titles  in  English.  This  work  is  available  in  German  in  Eugel's 
translation.  See  Engel  u.  Staekel's  Urkimden  ztir  Oeschichte  der  vicht- 
euk/idischen  Geometrie,  I.  (Leipzig,  1898). 

jCf.  Engel,  loc.  cit.  p.  10. 
N.-E.a.  c 
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"  We  have  seen  that  the  sum  of  the  angles  of  a  rectilinear 
triangle  cannot  be  greater  than  tt.  There  still  remains  the 
assumption  that  it  may  be  equal  to  tt  or  less  than  tt.  Each  of 
these  two  can  be  adopted  without  any  contradiction  appearing 
in  the  deductions  made  from  it ;  and  thus  arise  two  geometries  : 
the  one,  the  customary,  it  is  that  until  now  owing  to  its  sim- 

plicity, agrees  fully  with  all  practical  measurements  ;  the 
other,  the  imaginary,  more  general  and  therefore  more  diffi- 

cult in  its  calculations,  involves  the  possibility  of  a  relation 
between  lines  and  angles. 

"  If  we  assume  that  the  sum  of  the  angles  in  a  single  rectilinear 
triangle  is  equal  to  tt,  then  it  will  have  the  same  value  in  all. 
On  the  other  hand,  if  we  admit  that  it  is  less  than  tt  in  a  single 
triangle,  it  is  easy  to  show  that  as  the  sides  increase,  the  sum  of 
the  angles  diminishes. 

"In  all  cases,  therefore,  two  lines  can  never  intersect,  when 
they  make  with  a  third,  angles  whose  sum  is  equal  to  tt.  It  is 
also  possible  that  they  do  not  intersect  in  the  case  when  this 
sum  is  less  than  tt,  if,  in  addition,  we  assume  that  the  sum 
of  the  angles  of  a  triangle  is  smaller  than  tt. 

'•  In  relation  to  a  line,  all  the  lines  of  a  plane  can  therefore 
be  divided  into  intersecting  and  not-intersecting  lines.  The 
latter  will  be  called  parallel,  if  in  the  pencil  of  lines  proceeding 
from  a  point  they  form  the  limit  between  the  two  classes  ; 
or,  in  other  words,  the  boundary  between  the  one  and  the 
other. 

"  We  imagine  the  perpendicular  a  dropped  from  a  point  to 
a  given  line,  and  a  parallel  drawn  from  the  same  point  to  the 
same  line.    We  denote  the  angle  between  a  and  the  parallel 

TT 

by  F(a).    It  is  easy  to  show  that  the  angle  F(a)  is  equal  to  — z 

for  every  line,  when  the  sum  of  the  angles  of  a  triangle  is  equal 
to  TT  ;   but,  on  the  other  hypothesis,  the  angle  F  (a)  alters  with 
o,  so  that  as  a  increases,  it  diminishes  to  zero,  and  it  remains 

always  less  than  — . 

"  To  extend  the  meaning  of  F(a)  to  all  lines  a,  on  the  latter 
hypothesis,  we  shall  take 

f{0)  =  ̂,     F(-a)  =  7r-F(a). 

In  this  way  we  can  associate  with  every  acute  angle  A  a 
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positive  line  a,  and  with  every  obtuse  angle  A,  a  negative  line 
a,  sucli  that  .      ̂ ,  , A  =  F(a). 

Further  parallels,  in  both  cases,  possess  the  following  pro- 
perties : 

"  If  two  lines  are  parallel,  and  two  planes  passing  through 
them  intersect,  their  intersection  is  a  line  parallel  to  both. 

"  Two  lines  parallel  to  a  third  are  parallel  to  each  other. 
"  When  three  planes  intersect  each  other  in  parallel  lines,  the 

sum  of  the  inner  plane  angles  is  equal  to  tt." 
In  §  9  the  circle  and  sphere  of  infinite  radius  are  introduced  ; 

the  Limiting-Curve  a.nA  Limiting-Surface*  of  the  Non-Euclidean 
Geometry. 

In  §§11  to  15  he  deals  with  the  measurement  of  triangles 
and  the  solution  of  the  problems  of  parallels. 

At  the  end  of  §  13  are  to  be  found  the  fundamental  equations 
(17)  connecting  the  angles  and  sides  of  a  plane  triangle. 

§  16,  and  those  which  follow  it,  are  devoted  to  the  determina- 
tion, in  the  Non-Euclidean  Geometry,  of  the  lengths  of  curves, 

the  areas  of  surfaces,  and  the  volumes  of  solids. 
After  the  most  important  cases  have  been  examined,  he  adds 

a  number  of  pages  dealing  with  definite  integrals,  which  have 
only  an  analytical  interest. 

From  the  conclusion  I  make  the  following  extract,  as  it  is 
related  to  the  question  already  touched  upon  in  the  sections 

dealing  with  Bolyai's  work — the  logical  consistency  of  the 
new  geometry  : 

'■  After  we  obtained  the  equations  (17),  which  express  the 
relations  between  the  sides  and  angles  of  a  triangle,  we  have 
finally  given  general  expressions  for  the  elements  of  lines, 
surfaces,  and  volumes.  After  this,  all  that  remains  in  Geometry 
becomes  Analysis,  where  the  calculations  must  necessarily 
agree  with  one  another,  and  where  there  is  at  no  place  the 
chance  of  anything  new  being  revealed  which  is  not  contained 
in  these  first  equations.  From  them  all  the  relations  of  the 
geometrical  magnitudes  to  each  other  must  be  obtained.  If 
anyone  then  asserts  that  somewhere  in  the  argument  a  con- 

tradiction compels  us  to  give  up  the  fundamental  assumption, 
which  we  have  adopted  in  this  new  geometry,  this  contradiction 
can  only  be  hidden  in  equations  (17)  themselves.     But  we 

■''■  See  note  on  p.  80. 
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remark  that  these  equations  are  transformed  into  the  equations 
(16)  of  Spherical  Trigonometry  by  substituting  ia,  ib,  and  ic  for 
the  sides  a,  b,  and  c.  And  in  ordinary  geometry  and  Spherical 
Trigonometry  there  enter  only  the  relations  between  lines.  It 
follows  that  the  ordinary  geometry,  (Spherical)  Trigonometry 
and  this  new  geometry  must  always  be  in  agreement  with 
one  another."  * 

§  18.  "  The  writings  of  Lobatschewsky  were  brought  under 
the  notice  of  Gauss  as  early  as  1841,  and  we  gather  from  his 
letters  how  much  impressed  he  was  with  them.  Indeed  it 
almost  appears  as  if  he  had  thrown  himself  into  the  study  of 
Russian  that  he  might  be  able  to  read  the  numerous  papers 

which  he  hears  this  "  clear-sighted  mathematician  "  had 
published  in  that  tongue.  Through  Gauss  the  elder  Bolyai 

learnt  in  1848  of  the  Russian's  work,  and  in  particular  of  the 
Geometrische  Untersuchungen  zur  Theorie  der  Parallellinien  of 

1840.  The  astonishing  news  and  the  volume,  which  Lobat- 
schewsky had  written  as  a  summary  of  his  work,  were  passed 

on  from  the  father  to  his  son.  How  he  received  the  intelligence 
we  learn  from  the  following  passage  in  some  unpublished  Notes 

upon  Nicolaus  Lobatschewsky' s  Geometrische  Untersuchungen  :  "i" 
"  Even  if  in  this  remarkable  work  many  other  methods  are 

adopted,  yet  the  spirit  and  the  result  so  closely  resemble  the 

Appendix  to  the  Tentamen  matheseos,  which  appeared  in  Maros- 
Vasarhely  in  1832,  that  one  cannot  regard  it  without  astonish- 

ment. If  Gauss  was,  as  he  says,  immensely  surprised,  first  by 
the  Appendix  and  soon  after  by  the  remarkable  agreement  of 
the  Hungarian  and  Russian  mathematician,  not  less  so  am  L 

"  The  nature  of  absolute  truth  can  indeed  only  be  the  same 
in  Maros-Vdsdrhely  as  in  Kamschatka  and  on  the  Moon,  or,  in 
a  word,  anywhere  in  the  world  ;  and  what  one  reasonable 
being  discovers,  that  can  also  quite  possibly  be  discovered  by 

another." 

*  The  same  point  is  referred  to  in  Lobatsehewsky's  other  works  : 
cf.  (i)  Imaginary  Geometry  (Liebmann's  translation,  p.  8)  ;  (ii)  Geo- 
metrische  Untersuchimr/en  zur  Theorie  der  Parallellinien  (Halsted's 
translation,  p.  163) ;  (iii)  Pang4om^trie,  §  8  (quoted  by  Bonola,  he.  cit. 
p.  93). 

+  Cf.  Kiirscliak  ii.  Stackel,  ".Tohann  Bolyai's  Bemerkungen  iiber 
Nicolaus  Lobatsehewsky's  Geometrische  Untersuchungen  zur  Theorie 
der  Parallellinien,"  Math.  m.  Naturw.  Berichte  aus  Uiiga^vi,  vol.  xviii. 

p.  256  (1902)".     Also,  Stackel,  loc.  cit.  vol.  i.  p.  140. 
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Then  lie  goes  on  to  remark  that  in  the  world  of  science  dis- 
coveries are  not  unlikely  to  be  made  about  the  same  time  ;  but 

he  cannot  help  wondering  whether  someone  had  not  brought 

his  own  work  to  Lobatschewsky's  notice  ;  after  which  the 
latter  might  have  attempted  to  reach  the  same  goal  by  another 
path.  And  he  also  makes  the  absurd  suggestion  that  Lobat- 

schewsky's work  might  really  be  due  to  Gauss  himself ;  that 
Gauss,  unable  to  endure  that  anyone  should  have  anticipated 
him  in  this  matter,  and  yet  powerless  to  prevent  it,  might  have 

himself  written  this  work  under  Lobatschewsky's  name.  Bolyai 
was  undoubtedly  a  great  genius,  but  he  seems  to  have  been  the 
possessor  of  an  extraordinarily  suspicious  nature  ! 

The  opinion  of  Gauss  on  the  same  work  is  given  in  a  letter 
to  Schumacher  of  1846  :  * 

"...  I  have  lately  had  occasion  again  to  go  through  the 
little  book  ...  by  Lobatschewsky.  It  contains  the  outlines 
of  that  geometry  which  must  exist,  and  could  quite  consistently 
exist,  if  the  Euclidean  Geometry  is  not  true.  A  certain  Schwei- 
kart  called  such  a  geometry  the  Astral ;  Lobatschewsky  calls  it 
the  Imaginary.  You  are  aware  that  for  fifty-four  years  (since 
1792)  f  I  have  had  the  same  conviction  (with  some  extension 
later,  of  which  I  shall  not  say  more  here).  I  have  found  nothing 

really  new  to  myself  in  Lobatschewsky's  work  ;  but  the 
development  is  made  on  other  lines  than  I  had  followed,  and  by 
Lobatschewsky,  indeed,  in  a  most  masterful  fashion  and  with 
real  geometrical  spirit.  I  feel  compelled  to  bring  the  book  under 

your  notice.    It  will  give  you  exquisite  pleasure.  ,  .  ." 
Lobatschewsky  died  in  1856  and  Bolyai  four  years  later  : 

one  of  them,  probably,  a  disappointed  man  ;  the  other, 
certainly,  an  embittered  one.  Public  recognition  they  had 
not  gained,  and  in  all  likelihood  the  number  of  mathematicians 
acquainted  with  their  work  was  extremely  small.  Had  Gauss 
only  made  public  reference  to  their  discoveries,  instead  of 
confining  himself  to  praise  of  their  work,  cordial  and  enthu- 

siastic though  it  was,  in  conversation  and  correspondence,  the 
world  would  earlier  have  granted  them  the  laurels  they 
deserved. 

A  few  years  after  they  had  passed  away  the  correspondence' 
of  Gauss  and  Schumacher  was  published,  and  the  numerous 

*  Gauss,  Werke,  vol.  viii.  p.  238. 
t  Rather  an  early  date,  surely,  for  Gauss  was  born  in  1777. 
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references  to  the  works  of  Lobatschewsky  and  Bolyai  showed 
the  mathematicians  of  that  day  in  what  esteem  Gauss  had  held 
these  two  still  unknown  and  obscure  names.  Soon  afterwards, 

thanks  chiefly  to  Lobatschewsky 's  works,  and  to  the  labours  of 
some  well-known  French,  German,  and  Italian  geometers,  the 
Non-Euclidean  Geometry,  which  Bolyai  and  Lobatschewsky 
had  discovered  and  developed,  began  to  receive  full  recognition. 
To  every  student  of  the  Foundations  of  Geometry  their  names 
and  their  work  are  now  equally  familiar. 

§19.  The  Work  of  Riemann  (1826-1866). 
The  later  development  of  Non-Euclidean  Geometry  is  due 

chiefly  to  Riemann,  another  Professor  of  Mathematics  at 
Gottingen.  His  views  are  to  be  found  in  his  celebrated  memoir  : 

Uber  die  HypotJiesen  welche  der  Geometrie  zu  Grunde  Uegen.  This 
paper  was  read  by  Riemann  to  the  Philosophical  Faculty  at 
Gottingen  in  1854  as  his  Hahilitationsschrift,  before  an  audience 
not  composed  solely  of  mathematicians.  For  this  reason  it 
does  not  contain  much  analysis,  and  the  conceptions  introduced 
are  mostly  of  an  intuitive  character.  The  paper  itself  was  not 
published  till  1866,  after  the  death  of  the  author  ;  and  the 
developments  of  the  Non-Euclidean  Geometry  due  to  it  are 
mostly  the  work  of  later  hands. 

Riemann  regarded  the  postulate  that  the  straight  line  is 
infinite — ^adopted  by  all  the  other  mathematicians  who  had 
devoted  themselves  to  the  study  of  the  Foundations  of  Geome- 

try— as  a  postulate  which  was  as  fit  a  subject  for  discussion  as 
the  Parallel  Postulate.  What  he  held  as  beyond  dispute  was 
the  unboundedness  of  space.  The  difference  between  the  in- 
\jinite  and  unbounded  he  puts  in  the  following  words  : 

"In  the  extension  of  space  construction  to  the  infinitely 
great,  we  must  distinguish  between  unboundedness  and  infinite 
extent  ;  the  former  belongs  to  the  extent  relations  ;  the  latter 

to  the  measure  relations.  That  space  is  an  unbounded  three- 
fold jnanifoldness  is  an  assumption  which  is  developed  by 

every  conception  of  the  outer  world  ;  according  to  which  every 
instant  the  region  of  real  perception  is  completed,  and  the 
possible  positions  of  a  sought  object  are  constructed,  and  which 

by  these  applications  is  for  ever  confirming  itself.  The  un- 
boundedness of  space  possesses  in  this  way  a  greater  empirical 

certainty  than  any  external  experience,  but  its  infinite  extent 
by  no  means  follows  from  this  ;    on  the  other  hand,  if  we 
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assume  independence  of  bodies  from  position,  and  therefore 
ascribe  to  space  constant  curvature,  it  must  necessarily  be 
finite,  provided  this  curvature  has  ever  so  small  a  positive 

value."  * 

§20.  Riemann,  therefore,  substituted  for  the  hypothesis 
that  the  straight  line  is  infinite,  the  more  general  one  that  it  is 
unbounded.  With  this  assumption  the  Hypothesis  of  the 
Obtuse  Angle  need  not  be  rejected.  Indeed  the  argument  which 
led  Saccheri,  Legendre,  and  the  others  to  reject  that  hypothesis 
depended  upon  the  theorem  of  the  external  angle  (I.  16).  In 
the  proof  of  this  theorem  it  is  assumed  that  the  straight  line  is 
infinite. 

The  Hypothesis  of  the  Obtuse  Angle  being  available,  another 
Non-Euclidean  Geometry  appeared.  The  importance  of  this 
new  Geometry  was  first  brought  to  light,  when  the  ideas  of 
the  Non-Euclidean  Geometry  were  considered  in  their  bearing 
upon  Projective  Geometry. 

A  convenient  nomenclature  was  introduced  by  Klein. f  He 
called  the  three  geometries  Hyperbolic,  Elliptic,  or  Parabolic, 
according  as  the  two  infinitely  distant  points  on  a  straight 
line  are  real,  imaginary,  or  coincident.  The  first  case  we  meet 
in  the  Geometry  of  Lobatschewsky  and  Bolyai ;  the  second 
in  the  Geometry  of  Riemann  ;  the  third  in  the  Geometry  of 
Euclid.  These  names  are  now  generally  adopted,  and  the 
different  Non-Euclidean  Geometries  will  be  referred  to  below 
by  these  terms. 

It  is  evident  that  at  this  stage  the  development  of  the  Non- 
Euclidean  Geometries  passes  beyond  the  confines  of  Elementary 
Geometry.  For  that  reason  the  Elliptic  Geometry  will  not 
receive  the  same  treatment  in  this  book  as  the  simpler  Hyper- 

bolic Geometry.  Also  it  should  perhaps  be  pointed  out  here — 
the  question  will  meet  us  again  later — that  the  Elliptic  Geome- 

try really  contains  two  separate  cases,  and  that  probably  only 
one  of  these  was  in  the  mind  of  Riemann.  The  twofold  nature 

of  this  Geometry  was  discovered  by  Klein. 

*  This  quotation  is  taken  from  Clifford's  translation  of  Riemann's 
memoir  {Nature,  vol.  viii.  1873).  The  surface  of  a  sphere  is  unbcuvcled : 
it  is  not  infinite.  A  two-dimensional  being  moving  on  the  surface  of  a 
sphere  could  walk  always  on  and  on  witliout  being  brought  to  a  stop. 

tCf.  Klein,  "  Uber  die  sogenannte  Nicht-Euklidische  Geometric," 
Math.  Ann.  vol.  iv.  p.  577  (1871),  and  a  paper  in  Math.  Ann.  vol.  vi. 

Also  Bonola,  loc.  cit.  English  translation,  App.  iv,  *" 
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CHAPTER  III. 

THE  HYPERBOLIC  PLANE  GEOMETRY. 

§  21.  In  this  chapter  we  proceed  to  the  development  of  the 
Plane  Geometry  of  Bolyai  and  Lobatschewsky — -the  Hyperbolic 
Geometry.  We  have  already  seen  that  we  are  led  to  it  by  the 
consideration  of  the  possible  values  for  the  sum  of  the  angles 
of  a  triangle,  at  any  rate  when  the  Postulate  of  Archimedes 
is  adopted.  This  sum  cannot  be  greater  than  two  right  angles, 
assuming  the  infinity  of  the  straight  line.  If  it  is  equal  to 
two  right  angles,  the  Euclidean  Geometry  follows.  If  it  is 
less  than  two  right  angles,  then  two  parallels  can  be  drawn 
through  any  point  to  a  straight  line. 

It  is  instructive  to  see  how  Lobatschewsky  treats  this 

question  in  the  Geometrische  U ntersuchungen  *  one  of  his  later 
works,  written  when  his  ideas  on  the  best  presentation  of  this 
fundamental  point  were  finally  determined. 

"  All  straight  lines  in  a  plane  which  pass  through  the  same 
point,"  he  says  in  §  16,  "  with  reference  to  a  given  straight 
line,  can  be  divided  into  two  classes,  those  which  cut  the  line, 
and  those  which  do  not  cut  it.  That  line  which  forms  the 

boundary  between  these  two  classes  is  said  to  be  parallel  to  the 
given  line. 

"  From  the  point  A  (Fig.  13)  draw  the  perpepdicular  AD 
to  the  line  BC,  and  at  A  erect  the  perpendicular  AE  to  the  line 
AD.  In  the  right  angle  EAD  either  all  the  straight  lines  going 
out  from  A  will  meet  the  line  DC,  as,  for  example,  AF  ;  or  some 
of  them,  as  the  perpendicular  AE,  will  not  meet  it. 

"  In  the  uncertainty  whether  the  perpendicular  AE  is  the 
only  line  which  does  not  meet  DC,  let  us  assume  that  it  is 

*  Geomefrische  Untersxichungen  zur  Theorie  der  Paralhllinien  (Berlin, 
1840).     English  translation  by  Halsted  (Austin,  Texas,  1891). 
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possible  tliat  there  are  other  lines,  such  as  AG,  which  do  not 
cut  DC  however  far  they  are  produced. 

"  In  passing  from  the  lines  AF,  which  cut  DC,  to  the  lines  AG, 
which  do  not  cut  DC,  we  must  come  upon  a  line  AH,  parallel 
to  DC,  that  is  to  say,  a  line  on  one  side  of  which  the  lines  AG 
do  not  meet  the  line  DC,  while,  on  the  other  side,  all  the  lines 
AF  meet  DC. 

"  The  angle  HAD,  between  the  parallel  AH  and  the  perpen- 
dicular AD,  is  called  the  angle  of  parallelism,  and  we  shall 

denote  it  by  ̂{p),  p  standing  for  the  distance  AD." 
Lobatschewsky  then  shows  that  if  the  angle  of  2}arallelisvi 

were  a  right  angle  for  the  point  A  and  this  straight  line  BC, 
the  sum  of  the  angles  in  every  triangle  would  have  to  be  two 
right  angles.  Euclidean  Geometry  would  follow,  and  the  angle 
of  parallelism  would  be  a  right  angle  for  any  point  and  any 
straight  line. 

On  the  other  hand,  if  the  angle  of  parallelism  for  the  point  A 
and  this  straight  line  BC  were  an  acute  angle,  hf  shows  that 
the  sum  of  the  angles  in  every  triangle  would  have  to  be  less 
than  two  right  angles,  and  the  angle  of  parallelism  for  any 
point  and  any  straight  line  would  be  less  than  a  right  angle. 

The  assumption  n(^)  =  ̂   serves  as  the  foundation  for  the 
IT 

ordinary  geometry,  and  the  assumption  ̂ {p)<a  leads  to  the 

new  geometry,  to  which  he  gave  the  name  Imaginary  Geo- 
metry. In  it  two  parallels  can  be  drawn  from  any  point  to  any 

straight  line. 
In  this  argument  Lobatschewsky  relies  upon  the  idea  of 
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continuity  without  stating  the  assumptions  underlying  that 

term.  The  same  remark  applies  to  the  argument  of^Bolyai. 
Indeed  their  argument  does  not  prove  the  existence  of  the  two 
parallels.  The  existence  of  the  two  parallels  in  this  geometry 
is  an  axiom,  just  as  the  existence  of  only  one  parallel  is  an 
axiom  in  the  Euclidean  Geometry. 

§22.  Hubert's  Axiom  of  Parallels. 
Hilbert  makes  the  matter  clearer  by  definitely  inserting  in  his 

treatment  of  the  Hyperbolic  Plane  Geometry  *  the  following 
Axiom  of  Parallels  : 

//  b  is  any  straight  line  and  A  any  point  outside  it,  there  are 
akvays  two  rays  through  A,  a^,  and  ag,  which  do  not  form  one  and 
the  same  straight  line,  and  do  not  intersect  the  line  b,  while  every 
other  ray  in  the  region  hounded  by  a^  and  ag,  which  passes  through 
A,  does  intersect  the  line  b. 

Fig.  14. 

Let  BC  be  the  line  h  and  AH,  AK  the  rays  a^  and  a2- 

From  Pasch's  Axiom  f  it  follows  that  no  line  in  the  regions 
H'AH,  K'AK  cuts  BC  (Fig.  14). 

Hence  the  rays  a^  (AH)  and  flg  (AK)  form  the  boundary 
between  the  rays  through  A  which  cut  BC  and  the  rays  through 
A  which  do  not  cut  BC. 

Through  A  draw  the  perpendicular  AD  to  the  line  b  (BC), 

and  also  the  perpendicular  E'AE  to  the  line  AD. 
Now  E'AE  cannot  intersect  BC,  for  if  it  cut  BC  on  one  side  of 

D,  it  must  cut  it  at  a  corresponding  point  on  the  other. 

*  Hilbert,  loc.  cit.  p.  160. t  Of.  p.  3. 
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Also  it  cannot  be  parallel  to  BC,  because  according  to  the 
Axiom  the  two  parallels  are  not  to  form  one  and  the  same 
straight  line. 

Therefore  the  angles  between  a^,  a^,  and  AD  must  be  acute. 

We  shall  now  show  that  they  are  equal. 

If  the  angles  are  unequal,  one  of  them  must  be  the  greater. 
Let  ttj  make  the  greater  angle  with  AD,  and  at  A  make 

-DAP=_DAK. 

Then  AP  must  cut  BC  when  produced. 

t \ 
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Let  it  cut  it  at  Q. 

On  the  other  side  of  D,  from  the  line  h  cut  off  DR  =  DQ  and 
join  AR. 

Then  the  triangles  DAQ  and  DAR  are  congruent,  and  AR 
makes  the  same  angle  with  AD  as  a^,  so  that  AR  and  a^  must 
coincide. 

But  ag  does  not  cut  BC ;  therefore  the  angles  which  a^,  a^ 
make  with  AD  are  not  unequal. 

Thus  we  have  shown  that  the  perpendicular  AD  bisects  the 
angle  between  the  parallels  ay  and  a^. 

The  angle  which  AD  makes  with  either  of  these  rays  is  called 
the  atigle  of  parallelism  for  the  distance  AD,  and  is  denoted, 
after  Lobatschewsky,  by  ̂ {p),  where  AD  =p. 

The  rays  a^  and  a^  are  called  the  right-handed  and  left- 
handed  parallels  from  A  to  the  line  BC. 

§  23.  In  the  above  definition  of  parallels,  the  starting  point 
A  of  the  ray  is  material.    We  shall  now  show  that 

A  straight  line  maintains  its  property  of  parallelism  at  all  -^ 
its  points.  '  ^ 
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In  other  words,  if  the  ray  AH  is  the  right-handed  {or  left- 
handed)  parallel  through  A  to  the  line  BC,  then  it  is  the  right- 
handed  {or  left-handed)  parallel  through  any  point  upon  the  ray 
AH,  or  HA  produced,  to  the  given  line. 

Case  I.    Let  A'  be  any  point  upon  the  ray  AH  other  than  A. 
Through  A'  draw  A'D'  perpendicular  to  BC. 
In  the  region  bounded  by  A'D'  and  A'H  draw  any  ray  A'P, 

and  take  Q,  any  point  upon  A'P. Join  AQ. 

Then  AQ  produced  must  cut  DC. 

It  follows  from  Pasch's  Axiom  that  A'Q  must  cut  D'C. 
But  A'H  does  not  cut  D'C,  and  A'P  is  any  ray  in  the  region 

D'A'H. 

Therefore  A'H  is  a  parallel  through  A'  to  the  line  BC. 

Case  II.   Let  A'  be  any  point  upon  the  ray  AH  produced 
backwards  through  A. 

Draw  A'D'  perpendicular  to  BC.  * 
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In  the  region  bounded  by  A'D'  and  A'H  draw  through  A' 
any  ray  A'P,  and  produce  PA'  through  A'  to  Q. 
Upon  A'Q  take  any  point  R  and  join  AR. 
Then  RA  produced  must  intersect  DC. 

It  follows  that  A'P  must  intersect  D'C. 

Therefore,  as  above,  the  ray  A'H  is  a  parallel  through  any 
point  A',  on  HA  produced,  to  the  line  BC. 

In  both  cases  the  parallels  are  in  the  same  sense  or  direction  as 

the  original  ray  (i.e.  both  right-handed  or  both  left-handed). 
We  are  thus  entitled  to  speak  of  a  line  AB  as  a  right-handed  (or 
left-handed)  parallel  to  another  line  CD,  without  reference  to 
any  particular  point  upon  the  line  AB. 

§24.  Another  property  of  parallels  with  which  we  are 
familiar  in  Euclidean  Geometry  also  holds  for  the  Hyperbolic 
Geometry. 

If  the  line  AB  is  parallel  to  the  line  CD,  then  the  line  CD  is 
parallel  to  the  line  AB. 

From  A  draw  AC  perpendicular  to  CD.  and  from  C  draw  CE 
perpendicular  to  AB. 

Fio.  18. 

In  the  region  DCE  draw  any  ray  CF,  and  from  A  draw  AG 
perpendicular  to  CF. 

It  is  easy  to  show  that  the  point  G  must  lie  in  the  region 
ECD. 

Further,  since  .^  ACG  is  an  acute  angle  and  z.  AGC  is  a  right 
angle,  AC>AG. 



46  NON-EUCLIDEAN  GEOMETRY  [chiti. 

From  AC  cut  off  AH  =AG,  and  draw  HK  perpendicular  to 
AH  on  the  same  side  as  CD. 

Make  ^  HAL  =  ̂   GAB. 

Then  the  ray  AL  must  cut  CD,  and  it  follows  that  HK  must 
cut  AL. 

Let  HK  cut  AL  at   M. 

From  AB  cut  off  AN  =AM,  and  join  GN. 
Then  the  triangles  HAM  and  GAN  are  congruent. 

Thus  /.  AGN  =a  right  angle. 
Therefore  GN  and  GF  coincide,  and  CF  produced  intersects 

AB. 

But  CF  was  any  ray  in  the  region  between  CE  and  CD,  and 
CD  itself  does  not  cut  AB. 

Therefore  CD  is  parallel  to  AB,  in  the  same  sense  as  A B  is 

parallel  to  CD.* 

§25.  A  third  important  property  of  parallels  must  also  be 
proved  : 

If  the  line  (1)  is  parallel  to  the  line  (2)  and  to  the  line  (3), 
the  three  lines  being  in  the  same  plane,  then  the  line  (2)  is  also 
parallel  to  (3). 

Case  I.   Let  the  line  (1)  lie  between  (2)  and  (3).    (Cf.  Fig.  19.) 

Fio.  19. 

Let  A  and  B  be  two  points  upon  (2)  and  (3),  and  let  AB  cut 

(1)  in  C. 
Through  A  let  any  arbitrary  line  AD  be  drawn  between 

AB  and  (2). 

*  The  proof  in  the  text  is  adapted  from  that  of  Lobatsehewsky  in 
Ne.w  Principles  of  Oeometry  loifh  a  Complete  Theory  of  Parallels,  §96 

(Engel's  translation,  p.  161t)-  t 
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Then  it  must  cut  (1),  and  on  being  produced  must  also  cut 

(3). 
Since  this  holds  for  every  line  such  as  AD,  (2)  is  parallel  to 

(3). 

Case  II.  Let  the  line  (1)  be  outside  both  (2)  and  (3),  and 
let  (2)  lie  between  (1)  and  (3).     (Fig.  20.) 

Fio.  20. 

If  (2)  is  not  parallel  to  (3),  through  any  point  chosen  at 
random  upon  (3),  a  line  different  from  (3)  can  be  drawn  which 
is  parallel  to  (2). 

This,  by  Case  I.,  is  also  parallel  to  (1),  which  is  absurd.* 

§26.  We  shall  now  consider  the  properties  of  the  figure 
[of.  Fig.  21]  formed  by  two  parallel  rays  through  two  given 
points  and  the  segment  of  which  these  two  points  are  the  ends. 

Fio.  21. 

It  is  convenient  to  speak  of  two  parallel  lines  as  meeting  at 
infinity.  In  the  Hyperbolic  Geometry  each  straight  line  will 
have  two  points  at  infinity,  one  for  each  direction  of  parallelism. 
With  this  notation  the  parallels  through  A,  B  may  be  said  to 
meet  at  12,  the  common  point  at  infinity  on  these  lines. 

*The  proof  in  the  text  is  due  to  Gauss,  and  is  taken  from  Boiiola, 
loc.  cit.  p.  72. 
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Also,  a  straight  line  will  be  said  to  pass  through  this  point 
12,  when  it  is  parallel  to  these  two  lines  in  the   same  sense. 

1.  If  a  straight  line  passes  through  one  of  the  angular  points 
A,  B,  or  12,  and  through  a  point  inside  this  figure,  it  must  cut 
the  opposite  side.     (Fig.  21.) 

Let  P  be  the  point  within  the  figure.  Then  AP  must  cut  BS2, 
by  the  Axiom  of  Parallels.  Let  it  cut  8(2  at  Q.  The  line  Pl2 
must  cut  one  of  the  sides  AB  or  BQ,  of  the  triangle  ABQ,  by 

Pasch's  Axiom.  It  cannot  cut  BQ,  since  it  is  parallel  to  Bl2. Therefore  it  must  cut  AB. 

2.  A  straight  line  in  the  plane  ABI2,  not  passing  through  an 
angular  point,  which  cuts  one  of  the  sides,  also  cuts  one,  and  only 
one,  of  the  remaining  sides  of  this  figure. 

Let  the  straight  line  pass  through  a  point  C  on  AB.  Let  Ci2 
be  drawn  through  C  parallel  to  AI2  and  BI2.  If  the  given  line 
lies  in  the  region  bounded  by  AC  and  Ci2,  it  must  cut  Ai2  ;  and 
if  it  lies  in  the  region  bounded  by  BC  and  Ci2  it  must  cut  Bl2. 

Again,  if  the  line  passes  through  a  point  D  on  AI2,  and  B,  D 
are  joined,  it  is  easy  to  show  that  it  must  cut  either  AB  or  Bi2. 

We  shall  now  prove  some  further  properties  of  this  figure. 

■  3.  The  exterior  angle  at  A  or  B  is  greater  than  the  interior  and 
opposite  angle. 

.c 

Fio.  22. 

Consider  the  angle  at  A,  and  produce  the  line  BA  to  C. 
Make  Z.CAM  =/.  ABO.  AM  cannot  intersect  Bi2,  since  the 
exterior  angle  of  a  triangle  is  greater  than  the  interior  and 
opposite  angle.  Also  it  cannot  coincide  with  AI2,  because  then 
the  perpendicular  to  Al2  from  the  middle  point  of  AB  would 
also  be  perpendicular  to  Bi2.  The  angle  of  parallelism  for 
this  common  perpendicular  would  be  a  right  angle,  and  this 

is  contrary  to  Hilbert's  Axiom  of  Parallels. 
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Therefore  ̂ CAi2>i.CAM,  which  is  equal  to  ̂ lABfl. 

'  Thus  the  exterior  angle  at  A  is  greater  than  the  interior 
angle  at  B. 

A  similar  proof  applies  to  the  angle  at  B. 
We  take  now  two  figures  of  this  nature  ;    each  consisting 

of  a  segment  and  two  parallels  through  the  ends  of  the  segment. 

4.  If  the  segment  AB=  the  segment  A'B',   and  the  angle  at 
A  =the  angle  at  A',  then  the  angles  at  B  and  B'  are  equal. 

D'
 

n 
B 

n' 
B'
 

Pio.  23. 

If  ̂   ABft  is  not  equal  to  l  A'B'12',  one  of  them  must  be  the 
greater. 
Let  ^ABi2>^A'B'0'. 

Make  ^  ABC  =.1  A'B'fi'. 
Then  BC  must  cut  Afi. 

Let  it  cut  it  at  D  ;  and  on  A'fl'  take  A'D'  =  AD,  and  join  B',  D'. 
Then  the  triangles  ABD  and  A'B'D'  are  congruent,  so  that 

z.  A'B'D'  =:!  ABD  -z.  A'B'i]',  which  is  absurd. 

It  follows  that  z.  AB12  is  not  greater  than  z.  A'B'12',  and  that 
the  angles  are  equal. 

5.  If  the  segment  AB  =  the  segment  A'B',  and  the  angles  at 
A  and  B  are  equal,  as  also  the  angles  at  A'  and  B',  then  the 
four  angles  at  A,  B,  A'  a)td  B'  are  equal  to  each  other. 

B  B' 
Fig.  24. 

If  the  angle  at  A  is  not  equal  to  the  angle  at  A',  one  of  them 
must  be  the  greater.    Let  it  be  the  angle  at  A, 
N.-E.O.  p 
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At  A  and  B  draw  the  rays  whicli  make  with  AB  an  angle 

equal  to  the  angle  at  A'. 
These  rays  must  intersect ;    let  them  meet  at  C. 

From  A'fi'  cut  ofi  A'C'-AC,  and  join  B'C 
The  triangles  ABC  and  A' B'C'  are  congruent,  so  that 

^  A'B'C  =z- ABC  =^  A'B'i]', 
which  is  absurd. 

Thus  the  angles  at  A  and  A'  must  be  equal ;  and  it  follows 
that  the  angles  at  A,  B,  A'  and  B'  are  equal  to  each  other. 

6.  //  the  angles  at  A  and  A'  are  equal,  and  the  angles  at  B  and 
B'  are  also  equal,  then  the  segment  AB=  the  segment  A'B'. 

If  A B  is  not  equal  to  A'B',  one  of  them  must  be  the  greater. Let  it  be  AB. 

A'
 From  AB  cut  off  AC  =  A'B',  and  draw  CI2  parallel  to  AI2. 

Then,  by  (4),  ̂   ACi2  ̂ l  A'B'il'  =l  ABI2. 
But  by  (3),  L  ACfi  >  L  ABfi. 

Therefore  AB  cannot  be  greater  than  A'B',  and  the  two 
segments  are  equal. 

§  27.  The  Angle  of  Parallelism. 
From  §  26  (4),  we  can  at  once  deduce  that  the  angles  of 

parallelism  coiresponding  to  equal  distances  are  equal. 

yy 
FiQ.  2(3. 

Combining  this  result  with  §  26  (3),  we  can  assert  that 

If    i.>j>P2,     then     n(^g)>II(^j). 
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We  shall  see  later  (§  41)  that  to  any  given  segment  we  can 
find  the  angle  of  parallelism,  and  that  to  any  given  acute  angle 
(§  45)  we  can  find  the  correspojiding  distance. 

Thus,  we  can  say  that 

If  lh=lh^  then     Il{2h)  =  ̂{p^). 
If  Pi>i?2.  then     Jl{p^)  <U{p^). 

If  Pi<P2,  then     n(^^)  >  n(;?2)- 

Also  n(0)  =  '^, 

n(oo)  =  o. It  is  convenient  to  use  the  notation 

a  =  n(a),     /3  =  n(&),  etc. 
Again,  if  the  segment  a  is  given,  we  can  find  the  angle  oc 

[cf.  §  41],  and  thus  7,  -a.     And  to  h  -oc  there  corresponds  a 

distance  of  parallelism  [cf.  §  45].     It  is  convenient  to  denote 

this  complementary  segment  by  a'. 
Thus  we  have  tt  /  /\     "^r     tt  /  \ 

n(a)  =  --n(a). 

Further,  in  the  words  of  Lobatschewsky,*  "  we  are  wholly 
at  liberty  to  choose  what  angle  we  will  denote  by  the  symbol 
n(^),  when  the  line  p  is  expressed  by  a  negative  number,  so 

we  shall  assume         Uln)  +  U(  -i->)='7r  "  ^** '''  ̂  *"*  ci»(m«l<.».  ■>( 

§28.  Saccheri's  Quadrilateral.  ^  (,..»u  ̂   .„, .,  ,^.. 
The  quadrilateral  in  which  the  angles  at  A  and  B  are  right    7-'*' 

angles,  and  the  sides  AC,  BD  equal,  we  shall  call  Saccheri's 
Quadrilateral.     We  have  seen  that  Saccheri 
made  frequent  use  of  it  in  his  discussion  of 
the  Theory  of  Parallels. 

In  Saccheri's  Quadrilateral,  when  the  right 
angles  are  adjacent  to  the  base,  the  vertical 
angles  are  equal  acute  angles,  and  the  line   
which   bisects  the  base  at  right  angles   also      A  E  B 
bisects  the  opposite  side  at  right  angles.  Fio.  27. 

Let  AC  and  BD  be  the  equal  sides,  and  the  angles  at  A  and 
B  right  angles. 

*  Oeometrische  Untersuchunyen  zur  TheoTie  der  ParcUlellinien,  §  23. 
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Let  E,  F  be  the  middle  points  of  AB  and  CD  respectively. 
Join  EF,  CE,  and  DE. 

Then  the  triangles  ACE  and  ED  B  are  congruent,  and  the  con- 
gruence of  CFE  and  EFD  follows. 

Thus  the  angles  at  C  and  D  are 
equal,  and  EF  is  perpendicular  both 
to  AB  and  CD. 

Further,  the  angles  at  C  and  D 
are  acute. 

To  prove  this,  at  C  and  D  draw 
Cfl  and  D12  parallel  to  AB. 

Then,  by  §  26  (4),  i.  ACfi  =l  BDI2. 
Produce  CD  to  E. 

By  §26  (3),  ̂ ED12>^DCU. 
Therefore,  since  z.ACD=:_BDC,  it  follows  that 

^EDB>^CDB. 

Thus  L  ACD  and  l  BDC  are  both  acute  angles. 

§29.    If  in  the  quadrilateral  A  BDC,  the  angles  at  A  and  B  are 
right  angles,  and  the  side  AC  is  greater  than 
BD,   the  angle  at  C   is  less   than   the  angle     C 

at  D.  E   =~1D 

Since  we  are  given  AC  >  BD,  we  can  cut 
off  from  AC  the  segment  AE=BD.  When 
this  has  been  done,  join  DE. 

It  follows  from  §  28  that  i.  AED  =l  BDE. 
But  L.  AED  >  ̂   ACD  and  l  BDC  >  ̂   BDE. 
Therefore  l  BDC  >  l  ACD. 

The  converse  of  these  theorems  is  easily  proved  indirectly, 
namely,  that,  if  the  angles  at  A  and  B  are  right  atigles,  according 
as  z.ACD  =  :lBDC.  so  is  AC=BD. 

§30.    //  A  BDC  is  a  quadrilateral  in  which  the  angles  at  A,  B, 
and  C  a^e  right  angles,  then  the  angle  at  D  must  be  acute. 

Produce  BA  through  A  to  B',  making  AB'  =  AB.     (Fig.  30.) 
Draw  B'D'  perpendicular  to  B'A  and  equal  to  BD. 
Join  CD',  D'A,  and  DA. 
From  the  congruent  triangles  D'B'A  and  DBA,  we  have 

D'A=DA    and    z.  D'AB' =^  DAB. 
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Thus  ̂   D'AC  =zL  DAC,  and  the  triangles  D'AC  and  DAC  are 
congruent. 

Therefore  l  D'CA  is  a  right  angle,  and  DC,  CD'  form  one 
straight  line. 

d'  c  d 

Applying  the  result  of  §  28  to  the  quadrilateral  D'B'BD,  it 
follows  that  the  angles  at  D'  and  D  are  equal  and  acute. 

§  31.  The  sum  of  the  angles  of  every  triangle  is  less     ̂  
than  two  right  angles. 

Case  I.   Let  the  triangle  ABC  be  any  right-angled  triangle 
with  0  =90°. 

At  A  make  l  BAD  =^  ABC. 

Fio.  31. 

From  O,  the  middle  point  of  AB,  draw  the  perpendiculars  OP 
and  OQ  to  CB  and  AD  respectively. 

Then  the  triangles  POB  and  ACQ  are  congruent,  and  it 
follows  that  OP  and  OQ  are  in  one  and  the  same  straight  line. 
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Thus  the  quadrilateral  ACPQ,  has  the  angles  at  C,  P,  and  Q 

right  angles. 
Therefore,  by  §30,  the  angle  at  A,  namely  _CAD,  must  be 

acute. 

It  follows  that  the  sum  of  the  angles  of  any  right-angled 
triangle  must  be  less  than  two  right  angles. 

Case  II.  Consider  now  any  triangle,  not  right-angled. 
Every  triangle  can  be  divided  into  two  right-angled  triangles 
by  drawing  the  perpendicular  from  at 
least  one  angular  point  to  the  opposite 
side  (Fig.  32). 

Let  AD  be  the  perpendicular  referred 
to  in  the  triangle  ABC,  and  let  the 

angles  a.',  «.",  /3,  y  be  as  in  the  figure. 

Then    A  +  B  +  C  =  (a'  +  /3)  -1-  («."  +  y). 

But  a'  + 18  <  1  right  angle 

and  a"  -f-  y  <  1  right  angle. 

Therefore   A  -f  B  +  C  <  2  right  angles.  !°' 
It  should  be  noticed  that  no  use  has  been  made  of  the 

Postulate  of  Archimedes  in  proving  this  result. 
The  diflference  between  two  right  angles  and  the  sum  of  the 

angles  of  a  triangle  will  be  called  the  Defect  of  the  Triangle. 

Corollary.  There  cannot  he  two  triangles  tvith  their  angles 
equal  each  to  each,  which  are  not  congruent. 

It  is  easy  to  show  that  if  two  such  triangles  did  exist,  we 
could  obtain  a  quadrilateral  with  the  sum  of  its  angles  equal  to 
four  right  angles.  We  have  simply  to  cut  off  from  one  of  the 
triangles  a  part  congruent  with  the  other.  But  the  sum  of 
the  angles  of  a  quadrilateral  cannot  be  four  right  angles, 
if  the  sum  of  the  angles  of  every  triangle  is  less  than  two 
right  angles. 

§32.  Not-intersecting  Lines. 
It  follows  from  the  Theorem  of  the  External  Angle  (I.  16) 

that  if  two  straight  lines  have  a  common  perpendicular,  they 
cannot  intersect  each  other.  And  they  cannot  be  parallel, 

since  this  would  contradict  Hilbert's  Axiom  of  Parallels  [cf. 
§  26  (3)]. 
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The  converse  is  also  true,  namely,  that 

If  two  straight  lines  neither  intersect  nor  are  parallel,  they 

must  have  a  common  perpendicular.* 

Fio.  33. 

Let  a  and  b  be  the  two  given  lines,  which  neither  intersect 
nor  are  parallel. 

From  any  two  points  A  and  P  on  the  line  a,  draw  AB  and 

PB'  perpendicular  to  the  line  6. 
If  AB  =  PB',  the  existence  of  a  common  perpendicular 

follows  from  §  28.  Therefore  we  need  only  discuss  the  case 

when  AB  is  not  equal  to  PB'. 
Let  PB'  be  the  greater. 
Cut  off  A'B'  from  PB'  so  that  A'B'  is  equal  to  AB. 
At  A'  on  the  line  A'B',  and  on  the  same  side  of  the  line  as 

AB,  draw  the  ray  a'  making  with  A'B'  the  same  angle  as  a,  or 
PA  produced,  makes  with  AB. 

We  shall  now  prove  that  a'  must  cut  the  line  a. 
Denote  the  ray  PA  by  a^,  and  draw  from  B  the  ray  h  parallel 

to  a^. 

Since  a,  b  are  not-intersecting  lines,  the  ray  h  must  lie  in  the 

region  between  B A  and  B'  B  produced. 
Through  B'  draw  the  ray  h',  on  the  same  side  of  B'A'  as 

h  is  of  BA,  and  making  the  same  angle  with  the  ray  B'B  as 
A. does  with  B'B  produced. 

From  §  26  (3),  it  follows  that  the  parallel  from  B'  to  h  and  a^ 
lies  in  the  region  between  h'  and  B'  B. 

*  This  proof  is  due  to  Hilbert ;  cf.  loc.  cit.  p.  162. 
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Therefore  Ji'  must  cut  a^. Let  it  cut  this  line  at  T. 

Since  a'  is  parallel  to  B'T,  it  follows  that  the  ray  a'  must 
cut  PT  (Pasch's  Axiom). 

Let  these  rays  a^,  a'  intersect  at  Q. 
From  Q  draw  QR  perpendicular  to  the  line  h,  and  from  the 

line  h  cut  ofE  BR'  equal  to  B'R  and  on  the  opposite  side  of  B 
from  B'. 

In  the  same  way,  from  the  line  a  cut  o£E  AQ'  equal  to  A'Q, 
and  on  the  opposite  side  of  A  from  P. 

In  this  way  we  obtain  a  quadrilateral  ABR'Q'  congruent  with A'B'RQ. 

Thus  QRR'Q'  is  a  Saccheri's  Quadrilateral,  and  the  line 
joining  the  middle  points  of  QQ',  RR'  is  perpendicular  to  a and  h. 

§  33.  Two  'parallel  lines  approach  each  other  continually,  and 
their  distance  apart  eventually  becomes  less  than  any  assigned 
quantity. 

Let  a  and  b  be  two  parallel  lines. 
Upon  a  take  any  two  points  P  and  Q,  PQ  being  the  direction 

of  parallelism  for  the  lines. 
■>b 

M     H     N 

From  P  and  Q  draw  the  perpendiculars  PM  and  QN  to  b: 
Bisect  MN  at  H,  and  draw  the  perpendicular  at  H  to  the 

line  6. 

This  must  intersect  the  segment  PQ  ;    let  it  do  so  at  K. 

At  K  draw  the  ray  a'  parallel  to  b  in  the  other  direction. 
This  ray  must  intersect  PM,  since  it  enters  the  triangle 

PKM  at  the  vertex  K. 

Let  it  cut  PM  at  P'. 
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Since  the  triangles  KHM  and  KHN  are  congruent,  and 

L  HKP'=^  HKQ,  it  easily  follows  that  P'M  is  equal  to  QN. 
But  P'  lies  on  the  segment  PM. 
Therefore  PM  is  greater  than  QN,  and  we  have  shown  that 

as  we  pass  along  the  line  a,  in  the  direction  of  parallelism,  the 
distance  from  h  continually  diminishes. 

We  have  now  to  prove  the  second  part  of  the  theorem. 
Let  a  and  6  be  two  parallel  lines  as  before,  and  P  any  point 

on  the  line  a. 

N  M' Fio.  35. 

Draw  PM  perpendicular  to  6,  and  let  «  be  any  assigned 
length  as  small  as  we  please. 

If  PM  is  not  smaller  than  e,  cut  o£E  MR  =  6. 
Through  R  draw  the  ray  a^  (RT)  parallel  to  a  and  6  in  the 

same  sense. 

Also  draw  through  R  the  ray  RS  perpendicular  to  MR. 
RS  must  cut  the  ray  a,  since  l  PRT  is  an  obtuse  angle. 
Let  it  cut  a  at  Q  and  draw  QN  perpendicular  to  h. 
Now  the  lines  RQS  and  the  line  h  have  a  common  perpen- 

dicular. 

Therefore  they  are  not-intersecting  lines. 
It  follows  that  Z.NQR  is  greater  than  the  angle  of 

parallelism  for  the  distance  QN. 

At  Q  make  l.  NQR'  =  l  NQR. 

Then  l  NQR'  >  l  NQT',  T'  being  any  point  upon  PQ  pro- duced. 
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From  the  line  b  cut  off  NM'  =  NIVI,  on  the  other  side  of  N 
from  M,  and  from  QR'  cut  ofi  QR'  =  QR. 

Join  R'M'. 

Then  R'M'  is  perpendicular  to  b,  and  is  cut  by  the  ray  PQ 
between  R'  and  M'. 

Let  the  point  of  section  be  H. 

Then  M'H  <  M'R',  and  M'R'  =  MR. 
Therefore  we  have  found  a  point  on  the  line  a  whose  distance 

from  b  is  less  than  the  given  length  e. 

• 

§  34.  The  shortest  distance  between  any  two  not-intersecting 
lines  is  their  common  perpendicular,  and  as  we  proceed  along 
either  of  the  lines  from  the  point  at  which  it  is  cut  by  the  common 
perpendicular  the  distance  from  one  to  the  other  continuxilly 
increases. 

Let  the  common  perpendicular  to  two  not-intersecting  lines 
a  and  b  meet  them  at  A  and  B. 

Let  P  and  Q  be  two  other  points  on 
one  of  the  lines  on  the  same  side  of  Aj 
and  such  that  AP  <  AQ. 

Draw  PM  and  QN  perpendicular  to  the 
other  line. 

Then  in  the  quadrilateral  A  BMP,  the 

angle  A  is  a  right  angle  and  the  angle  B      M      N 
APM  is  acute  (cf.  §  30).  pi«-  so. 

Therefore  PM  >  AB  (cf.  §  29). 
Also  in  the  quadrilateral  PQMN,  the  angle  MPQ  is  obtuse 

and  PQN  is  acute. 
Therefore  QN  >  PM. 

Thus,  as  we  pass  along  the  ray  APQ...  the  distance  from  the 
line  b  continually  increases  from  its  value  at  A. 

It  can  be  shown  that  two  parallel  lines  continually  diverge 
towards  the  side  opposite  to  the  direction  of  parallelism,  and 
that  two  intersecting  lines  continually  diverge  from  the  point 
of  intersection.  Also,  the  distance  apart,  both  in  the  case  of 
intersecting  lines,  of  parallel  lines,  in  the  direction  opposite  to 

that  of  parallelism,  and  of  not-intersecting  lines  will  become 
eventually  greater  than  any  assigned  length. 

The  theorems  of  §§  33-4  were  all  proved  by  Lobatschewsky ; 
cf.  New  Principles  of  Geometry  with  a  Complete  Theory  of 

Parallels  (Engel's  translation),  §  108  et  seq. 
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§35.  The  correspondence  between  a  Right- Angled 
Triangle  and  a  Quadrilateral  with  Three  Right 
Angles  and  One  Acute  Angle. 

The  sides  of  a  right-angled  triangle  ABC,  in  which  C  is  the 
right  angle,  are  denoted  as  usual  by  a,  h,  and  c ;  the  angles  A 
and  B  by  A  and  ju  ;  and  the  distances  corresponding  to  the 
angles  of  parallelism  X  and  ju  are  denoted  by  I  and  m. 
Between  these  quantities  a,  h,  c,  I,  m,  A,  and  fx  certain  relations 
hold. 

Similarly  the  elements  of  a  quadrilateral,  in  which  three 
angles  are  right  angles,  the  remaining  angle  being  necessarily 
acute,  are  connected  by  certain  relations. 

We  proceed  to  find  the  equations  connecting  these  quanti- 
ties, and  to  establish  a  very  important  correspondence  between 

the  two  figures. 

Fio.  38. 

I.  The  Right- Angled  Triangle. 

Let  ABC  be  any  right-angled  triangle.  Produce  the  hypo- 
thenuse  through  A  a  distance  Z,  and  at  the  other  end  of  the 
segment  I  draw  the  parallel  to  the  line  CA.  Also  draw  through 
B  the  parallel  to  both  these  lines. 

It  follows  from  Fig.  38  that 

fM  +  U{c  +  l)=^U{a)  =  (A,      (1) 

and  in  the  same  way  we  have 

\  +  U{c  +  m)  =  n{b)  =  l3   (1') 
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Now  draw  through  A  the  parallel  to  the  line  BC  (Fig.  39). 
Also  draw  the  line  perpendicular  to  c,  which  is  parallel  to 

BC  in  the  same  sense.  This  line  will  cut  the  hypothenuse,  or 
the  hypothenuse  produced,  according  as  m  is  less  than  or 
greater  than  c. 

If  m  <  c,  we  have 
\-f/3  =  n(c-w)   (2) 

If  m  >  c,  then  we  would  have 

7r-X-/3  =  n(77i-c). 

Fio.  39. FiCf,  40. 

With  the  usual  notation  (cf.  §  27)  this  reduces  to 

\  +  /3  =  Il{c-m). 
In  the  same  way  we  have 

IUL+(X.  =  II{C-1)   
  (2') 

Finally,  produce  CB  through  B,  and  draw  the  perpendicular 
to  CB  produced  which  is  also  parallel  to  AB  (Fig.  40).  Also 
produce  AC  through  C,  and  draw  the  perpendicular  to  AC 
which  is  parallel  to  AB. 

From  Fig.  40,  if  we  suppose  a  line  drawn  through  C  parallel 
to  AB,  it  is  clear  that 

U{l-b)  +  U{m  +  a) 

2' 

(3) 

and  similarly 
U(m-a)  +  U{l  +  h)  =  ̂    (3') 
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II.  The  Quadrilateral  with  Three  Right  Angles  and  an  Acute 
Angle. 

Let  PQRS  be  a  quadrilateral  in  which  the  angles  P,  Q,  R 
are  right  angles.  We  denote  the  sides,  for  reasons  that  will 
presently  appear,  by  Zj,  a^,  m^ ,  and  c^ ;  the  acute  angle  ,by 
y3j ;  and  l^,  c^  contain  this  angle  /3j. 

Produce  c^  through  R  a  distance  w^,  and  draw  the  perpen- 

dicular  at  the  end  of  that  segment.     Since  II  (wij)  +  11  (w^')  =  -^ , 
if  the  parallel  through  R  to  PQ  is  supposed  drawn,  it  follows 
that  this  perpendicular  is  parallel  to  PQ  (Fig.  41). 

It  follows  that         A, -fn(Ci-l-Wj)  =  /3i,    (I.) 

and  correspondingly     yj +  n(/i -f-rt\)  =  /8i   (I'.) 

Fig.  42. 

From  RS  cut  off  the  segment  m^ ;  then  it  is  obvious  from 

Fig.  42  that  Xj+A  =  n(c,-m,),    (II.) 
and  correspondingly     Yi  +  /3i  =  n(/j  - a^)   (IF.) 
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Finally,  from  QP  cut  off  the  segment  m^,  and  from  PS  pro- 
duced the  segment  &j,  and  raise  the  perpendiculars  at  the  ends 

of  these  lines  (Fig.  43), 

p 
m, 

Fig.  43. 

It  follows  that 

U{l^  +  h,)  +  U{m., 

and  correspondingly 

n(ci-K&i)  +  n« 

Q. 

.(III.) 

(iir.) 

III.  We  are  now  able  to  establish  the  correspondence  be- 
tween the  two  figures. 

A  right-angled  triangle  is  fully  determined  when  we  know 
c  and  ju  ;  a  quadrilateral  of  this  nature,  when  we  know  Cj 

and  ?%'. 

Let  Ci  =  c    and    n(mi')  =  ̂ -yu, 
so  that  m^  =  m. 

Then  it  follows  from  (!')  and  (2)  that 
X  +  ̂   =  U(c-m), 

-A+^=n(fi-t-m), 

and  therefore  2X  =  11  (c  -  m)  -  U(c  +  m), 

2^  =  U{c-m)  +  U{c  +  m). 
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But  from  (I.)  and  (II.)  we  have 

Xi  +  |8i  =  n(q-7ni)  =  n(c-m), 

-  Xi  + /3^  =  n  (Cj + Wj )  =  n  (c + w). 

Therefore  Aj  =  A     and     /3i  =  /3. 

From  (III')  and  (III.)>  we  now  obtain 

Thus  m  -  ttj  =  w  -  a, 

and  ftj  =  a. 

Therefore  we  have  obtained  the  important  result : 

//  a,  b,  c,  (A,  fx)  are  the  five  elements  of  a  rigid-angled  triangle, 
then  there  exists  a  quadrilateral  with  three  right  angles  and  one 

acute  angle,  in  which  the  sides  are  c,  m',  a,  and  1,  taken  in  order, 
and  the  acute  angle  ̂   lies  between  c  and  1.* 

The  converse  of  this  theorem  also  holds. 

§  36.  The  Closed  Series  of  Associated  Right- Angled 
Triangles. 

We  have  seen  that  to  the  right-angled  triangle  a,  h,  c,  (A,  fx) 
there  corresponds  a  quadrilateral  with  three  right  angles  and 

*  This  result  was  given  by  Lobatschewsky  in  his  earliest  work,  On  the 
Principles  of  Oeome/ry  (of.  §§  11,  16,  Engel's  translation,  pp.  15  and  25), but  liis  demonstration  requires  the  theorems  of  the  Non  Euclidean  Solid 
Geometry.  TI)e  proof  in  the  text  is  due  to  Liebmann  (Math.  Ann, 
vol.  Ixi.  p.  185  (1905),  and  NichteuHidische  Oeometrie,  2nd  ed.  §10), 
who  first  established  the  correspondence  between  the  right-angled  tri- 

angle and  the  quadrilateral  with  three  right  angles  and  an  acute  angle 
by  the  aid  of  Plane  Geometry  alone. 

This  is  an  important  development,  as  the  Parallel  Constructions 
depend  upon  this  correspondence, and  theNon-EuclideanPlane  Geometry 
and  Trigonometry  is  now  self-contained. 

Further,  as  we  shall  see  below  (§  45),  the  existence  of  a  segment 
corresponding  to  any  given  angle  of  parallelism  can  be  established 

without  the  use  of  the  Principle  of  Continuity,  on  which  Lobatschewsky 's 
demonstration  depends.  Therefore,  though  the  existence  of  j),  when 

n(jo)  is  given,  is  assumed  in  the  above  demonstration,  the  cori'espond- 
ence  between  the  triangle  and  quadrilateral  is  independent  of  that 
principle. 
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an  acute  angle  /3,  the  two  sides  enclosing  the  acute  angle 

being  c  and  I,  and  the  other  two  a  and  m'. 
If  we  interchange  c  and  I,  and  m'  and  a,  we  obtain  the  same 

quadrilateral.  It  follows  that,  given  the  right-angled  triangle 
a,  h,  c,  (X,  fi),  there  exists  another  right-angled  triangle  whose 
elements  are  a^,  h^,  c^,  (A^,  yUj),  where 

aj  =  m',  b^  =  b,  c-^  =  l,  A|  =  y,  ijl^  =  -^-cl. 

Thus,  starting  with  the  right-angled  triangle 

a,  b,  c,  (X,  /i),     (1) 

we  obtain  a  second  right-angled  triangle  whose  elements  are 

<  ̂   h  (y.  f-"-)   (^) 
If  we  now  take  the  sides  and  opposite  angles  of  this  triangle 

in  the  reverse  order,  i.e.  write  it  as  the  triangle 

b,  m',  I,  (|-a-,  yj, 
we  obtain  another  right-angled  triangle  with  the  elements 

c',  m',  a,  (X,  |-iS)   (3) 
Writing  this  as 

m',  c',  a',  (I -A  ̂ )' 
we  obtain  another  with  the  elements 

V,  c',  b',  (|-oc,  m)   (4) 
From  this  we  obtain  in  its  turn 

/',  a,  m,  (y,  |-^)   (5) 

Again,  from  this  we  have 

b,  a,  c,  (fi,  X),    (6) 

the  last  being  the  original  triangle. 
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The  relation  between  the  elements  of  these  triangles  can  be 
put  in  the  form  of  the  following  rule  : 

Let  a,  b,  c,  (A  =  IT  (1),  y«  =  11  (m))  he  the  sides,  hypothenuse,  and 
the  angles  opposite  the  sides  of  a  right-angled  triangle.  Write  the 

letters  a',  1,  c,  m,  b'  m  cyclic  order  on  the  sides  of  a  pentagon.  The 
six  triangles  which  form  the  closed  series  of  associated  triangles 

are  obtained,  if  ive  write  the  letters  a,^',  \r,  Cr,  mr,  br'  in  the  same  or 
reverse  order  on  the  sides,  starting  with  any  one  side,  and  take  the 
elements  with  the  suffices  equal  to  those  on  the  same  sides  without 
the  suffices. 

i.e.     ar  =  r ; 

br  =  a\     i.e.      br  =  a ; 
IT 

•  mr  =  b\     i.e.     fir  =  -2 -13; 
Cr  =  ra; 

Ir  =  c,      i.e.     Xy  =  y  ; 

giving  the  triangle  (5)  above. 

These  results  have  an  important  bearing  on  certain  problems 
of  construction.  For  example,  the  problem  of  constructing  a 

right-angled  triangle  when  the  hypothenuse  c  and  a  side  a  are 
given,  with  the  usual  construction  involves  the  assumption  as 
N.-E.a.  .  E 
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to  tlie  intersection  of  a  circle  and  a  straight  line  ;  an  assumption 
which  depends  upon  thel Principle  of  Continuity.  But  we 
know  that  with  the  triangle  a,  h,  c,  (A,  ju)  there  is  associated  a 

triangle  l',a,m,  [y,  -n- /S).    In  this  triangle  we  are  given  a 
side  a  and  the  adjacent  angles  y,  —  ;  and  it  can  be  constructed z 
without  that  assumption.     The  associated  triangle  gives  us 
the  second  side  h  of  the  required  triangle.     This  argument 

depends  upon  the  theorem  proved  in  §§41-3,  that  we  can  always 
find  n  (p)  when  p  is   given,  and  that  proved  in  §  45,  that 
given  Il{p),  we  can  always  find  p. 

§37.  Proper  and  Improper  Points. 
In  the  Euclidean  Plane  two  lines  either  intersect  or  are 

parallel.  If  we  speak  of  two  parallels  as  intersecting  at  "  a 
point  at  infinity  "  and  assign  to  every  straight  line  "  a  point 
at  infinity,"  so  that  the  plane  is  completed  by  the  introduction 
of  these  fictitious  or  improper  points,  we  can  assert  that  any 
two  given  straight  lines  in  the  plane  intersect  each  other. 

On  this  understanding  we  have  two  kinds  of  pencils  of 
straight  lines  in  the  Euclidean  Plane  :  the  ordinary  pencil 
whose  vertex  is  a  proper  point,  and  the  set  of  parallels  to 
any  given  straight  line,  a  pencil  of  lines  whose  vertex  is  an 
improper  point. 

Also,  in  this  Non-Euclidean  Geometry,  there  are  advantages 
to  be  gained  by  introducing  fictitious  points  in  the  plane.  If 
two  coplanar  straight  lines  are  given  they  belong  to  one  of 
three  classes.  They  may  intersect  in  the  ordinary  sense  ;  they 

may  be  parallel ;  or  they  may  be  not-intersecting  lines  with  a 
common  perpendicular.  Corresponding  to  the  second  and 
third  classes  we  introduce  two  kinds  of  fictitious  or  improper 
points.  Two  parallel  lines  are  said  to  intersecif  at  a  point  at 
infinity.  And  every  straight  line  will  have  two  points  at 
infinity,  one  corresponding  to  each  direction  of  parallelism. 
All  the  lines  parallel  to  a  given  line  in  the  same  sense  will 
thus  have  a  common  point — a  point  at  infinity  on  the  line. 

Two  not-intersecting  lines  have  a  common  perpendicular. 
The  lines  are  said  to  intersect  in  an  ideal  point  corresponding 
to  this  perpendicular.  And  all  the  lines  perpendicular  to  one 
and  the  same  straight  line  are  said  to  intersect  in  the  ideal 
point  corresponding  to  this  line. 
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We  shall  denote  an  ordinary  point — a  proper  point — ^by  the 
usual  capital  letter,  e.g.  A.  An  improper  point — a  point  at 
infinity — -by  the  Greek  capital  letter,  e.g.  12 ;  and  a  point 
belonging  to  the  other  class  of  improper  points — an  ideal  point 
— by  a  Greek  capital  letter  with  a  suffix,  to  denote  the  line  to 
which  the  ideal  point  corresponds,  e.g.  Fg. 

Thus  any  two  lines  in  the  hyperbolic  plane  determine  a 
pencil. 

(i)  If  the  lines  intersect  in  an  ordinary  point  A,  the  pencil 
is  the  set  of  lines  through  the  point  A  in  the  plane. 

(ii)  If  the  lines  are  parallel  and  intersect  in  the  improper 
point  i2,  the  pencil  is  the  set  of  lines  in  the  plane  parallel  to 
the  given  lines  in  the  same  sense, 

(iii)  If  the  two  lines  are  perpendicular  to  the  line  c,  and 
thus  intersect  in  the  ideal  point  which  we  shall  denote  by  F,., 
the  pencil  is  the  set  of  lines  all  perpendicular  to  the  line  c. 

§38.  We  now  enumerate  all  the  cases  in  which  two  points 
in  the  Hyperbolic  Plane  fix  a  straight  line  and  the  correspond- 

ing constructions  : 
(1)  Two  ordinary  points  A  and  B.  The  construction  of  the 

line  joining  any  two  such  points  is  included  in  the  assumptions 
of  our  geometry, 

(2)  An  ordinary  point  [A]  and  a  point  at  infinity  [12],  The 
line  Ai2  is  constructed  by  drawing  the  parallel  through  A  to 
the  line  which  contains  (2,  in  the  direction  corresponding  to  i2. 
This  construction  is  given  below  in  §§41-3, 

(3)  An  ordinary  point  [A]  and  an  ideal  point  [r,.].  This  line 
is  constructed  by  drawing  the  perpendicular  from  A  to  the 
representative  line  c  of  the  ideal  point, 

(4)  Two  points  at  infinity  [12,  12'].  The  line  1212'  is  the 
common  parallel  to  the  two  given  lines  on  which  12,  12'  lie. 
These  lines  are  not  parallel  to  each  other  or  12  and  12'  would 
be  the  same  point.  The  construction  of  this  line  is  given  below 
in  §  44. 

(5)  An  ideal  point  [Tg]  and  a  point  at  infinity  [12]  not  lying 
on  the  representative  line  c  of  the  ideal  point.  The  line  rci2 
is  the  line  which  is  parallel  to  the  direction  given  by  12  and 
perpendicular  to  the  representative  line  c  of  the  ideal  point. 
The  construction  of  this  line  is  given  below  in  §  45. 
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(6)  Two  ideal  points  [F^,  F^],  when  the  lines  c  and  c'  do  not 
intersect  and  are  not  parallel.  The  line  F^F^,  is  the  common 

perpendicular  to  the  two  not -intersecting  lines  c  and  c'.  The 
construction  of  this  line  was  given  in  §  32. 

The  pairs  of  points  which  do  not  determine  a  line  are  as 
follows  : 

(i)  An  ideal  point  and  a  point  at  infinity  lying  on  the  repre- 
sentative line  of  the  ideal  point. 

(ii)  Two  ideal  points,  whose  representative  lines  are  parallel 

or  meet  in  an  ordinary  point.* 

§  39.  With  this  notation  the  theorems  as  to  the  concurrence 
of  the  lines  bisecting  the  sides  of  a  triangle  at  right  angles,  the 
lines  bisecting  the  angles  of  a  triangle,  the  perpendiculars  from 
the  angular  points  to  the  opposite  sides,  which  hold  in  the 
Euclidean  Geometry,  will  be  found  also  to  be  true  in  this  Non- 
Euclidean  Geometry.  Lines  will  be  said  to  intersect  in  the 
sense  of  §§  37,  38.  Also,  in  speaking  of  triangles,  it  is  not 
always  necessary  that  they  should  have  ordinary  points  for 
their  angular  points.  The  figure  of  §  26  is  a  triangle  with  one 

angular  point  at  an  improper  point — a  point  at  infinity.  It 
will  be  seen  that  a  number  of  the  theorems  of  that  section 

are  analogous  to  familiar  theorems  for  ordinary  triangles. 
With  regard  to  the  concurrence  of  Ifnes  in  the  triangle  we 

shall  only  take  one  case — the  perpendiculars  through  the 
middle  points  of  the  sides. 

The  perpendiculars  to  the  sides  of  a  triangle  at  their  middle 
points  are  concurrent. 

Let  ABC  be  the  triangle  and  D,  E,  F  the  middle  points  of  the 
sides  opposite  A,  B  and  C. 

Case  (i)  If  the  perpendiculars  at  the  middle  points  of  two 
of  the  sides  intersect  in  an  ordinary  point,  the  third  perpen- 

dicular must  also  pass  through  this  point.  The  proof  depends 
on  the  congruence  theorems  as  in  the  Euclidean  case. 

*In  the  foundation  of  Projective  Geometry  independent  of  the 
Parallel  Postulate,  this  difficulty  is  overcome  by  the  introduction  of 
new  entities,  called  improper  lines,  and  ideal  lines,  to  distinguish  them 
from  the  ordinary  or  proper  lines,  Cf .  Bonola,  lac.  cit.  English  transla- 

tion, App.  IV. 
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Case  (ii)  Let  the  perpendiculars  at  D  and  E  be  not-inter- 

secting lines,  and  let  D'E'  be  the  line  perpendicular  to  both. 
From  A,  B,  and  C  draw  A  A',  BB',  and  CC  perpendicular  to 

D'E'. 
Then  it  is  not  difficult  to  show  from  congruent  triangles  that 

AA'-CC  and  BB'  =  CC'. 

Thus  AA'  =  BB'. 

Let  F'  be  the  middle  point  of  A'B'. 
From  §  28  it  follows  that  FF'  is  perpendicular  to  AB  and  A'B'. 

Therefore,  in  this  case  the  three  perpendicular  bisectors  of 
the  sides  meet  in  an  ideal  point. 

Case  (iii)  There  remains  the  case  when  the  lines  through 
D  and  E  perpendicular  to  the  sides  are  parallel.  It  follows 
from  Cases  (i)  and  (ii)  that  the  perpendicular  to  the  third  side 
through  F  cannot  intersect  the  other  perpendiculars  either  in 
an  ordinary  point,  or  in  an  ideal  point.  It  must  therefore  be 
parallel  to  these  two  lines  in  the  same  sense  ;  or  it  must  be 
parallel  to  the  first  in  one  sense  and  to  the  other  in  the  opposite 
sense. 

The  second  alternative  we  shall  show  to  be  impossible  ;  so 
the  first  necessarily  will  be  true. 
When  the  angular  points  of  a  triangle  are  all  at  infinity 

(ft',  0",  ft'")  a  straight  line  cannot  cut  all  three  sides.  For 
if  it  cuts  two  of  them  at  P  and  Q,  say,  PQ  produced  must 
be  one  of  the  rays  through  Q  which  does  not  intersect  the  other 
side.     (Cf.  Fig.  46.) 
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But  if  BC  is  the  greatest  side  of  the  triangle,  the  angle  at  A 
is  the  greatest  angle. 

Pio.  46. 

If,  then,  we   make   .lCAP  =  lACB,  AP  produced  must  cut 
BC.     (Fig.  47.) 

Let  it  cut  it  at  Q. 
Then  EQ  is  perpendicular  to  AC. 
A  similar  argument  applies  to  the  perpendicular  through  F. 

Fio.  47. 

Therefore  the  perpendiculars  at  E  and  F  both  intersect  BC. 
It  follows  that  the  three  perpendiculars  cannot  form  a  tri- 

angle whose  angular  points  are  all  at  infinity. 
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Therefore  they  are  parallel  to  one  another  in  the  same  sense 
and  intersect  in  an  improper  point — a  point  at  infinity. 

If  we  take  these  three  cases  together,  it  will  be  seen  that  the 
theorem  is  established. 

§40.  The  Parallel  Constructions. 

In  Hubert's  Parallel  Axiom  the  assumption  is  made  that 
from  any  point  outside  any  straight  line  two  parallels  can 
always  be  drawn  to  the  line.  In  other  words,  it  is  assumed  that 
to  any  segment  'p  there  corresponds  an  angle  of  parallelism 
n(p). 

The  fundamental  problems  of  construction  with  regard  to 
parallels  are  the  following  : 

L  To  draw  the  parallel  to  a  given  straight  line  from  a  given 
point  towards  one  end. 

2.  To  draw  a  straight  line  which  shall  be  parallel  to  one 
given  straight  line,  and  perpendicular  to  another  given  straight 
line  which  intersects  the  former. 

In  other  words  : 

1.  Given  j),  to  find  11(2)). 

2.  Given  11(2)),  ̂ ^  ̂ ^^  V- 

For  both  of  these  problems  Bolyai  gave  solutions  ;  and 
one  was  discussed  by  Lobatschewsky.  In  both  cases  the 
argument,  in  one  form  or  other,  makes  use  of  the  Principle  of 
Continuity. 

In  the  treatment  followed  in  this  book  the  Hyperbolic 
Geometry  is  being  built  up  independently  of  the  Principle  of 

Continuity.  For  that  reason  neither  Bolyai's  argument 

(Appendix,  §§  34,  35),  nor  Lobatschewsky's  discussion  *  of  the second  problem,  will  be  inserted. 

§  41.  To  draw  the  Parallel  to  a  given  Line  from 

a  Point  outside  it.  Bolyai's  Classical  Construction 
(Appendix,  §34). 

To  draw  the  'parallel  to  the  straight  line  AH  from  a  given  point  D, 
Bolyai  proceeds  as  follows  : 

Draw  the  perpendiculars  DB  and  EA  to  AN  (Fig.  48),  and  the 
perpendicular  DE  to  the  line  AE. 

*Cf.  Lobatschewsky,  Geametrische  Unterstichunyen  znr  Theorie  der 

Parallelinien,  §  23  (Halsted's  translation,  p.  135).  Also  Neiv  Principles 
of  Oeometry,  §  102  (Engel's  translation). 
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The  angle  EDB  of  the  quadrilateral  ABDE,  in  which,  three 
angles  are  right  angles,  is  a  right  angle,  or  an  acute  angle, 
according  as  ED  is  equal  to  or  greater  than  AB  (cf.  §29). 

With  centre  A  describe  a  circle  whose  radius  is  equal  to  ED. 

It  will  intersect  DB  at  a  point  C,  coincident  with  B,  or  be- 
tween B  and  D. 

The  angle  which  the  line  AC  makes  with  DB  is  the  angle  of 
parallelism  corresponding  to  the  segment  BD. 

Therefore  a  parallel  to  AN  can  be  drawn  by  making  the  angle 
BDM  equal  to  the  angle  ACB. 

Bolyai's  proof  is  omitted  for  the  reasons  named  above  ;  but it  should  be  remarked  that  his  construction  holds  both  for  the 

Euclidean  and  Non-Euclidean  Geometries  ;  in  his  language  it 
belongs  to  the  Absolute  Science  of  Space. 

§  42.  The  correspondence  which  we  have  established  in  §  35 
between  the  right-angled  triangle  and  the  quadrilateral  with 

three  right  angles  and  one  acute  angle,  leads  at  once  to  Bolyai's construction. 

We  have  seen  that,  to  the  right-angl«d  triangle  a,  b,  c,  (X,  ju), 
there  corresponds  a  quadrilateral  with  three  right  angles  and  an 
acute  angle  /3,  the  sides  containing  the  acute  angle  being  c  and 

1,  and  the  other  two,  a  and  m'. 
Therefore  we  can  place  the  right-angled  triangle  in  the 

quadrilateral,  so  that  the  side  a  of  the  triangle  coincides  with 
the  side  a  of  the  quadrilaterial,  and  the  side  h  of  the  triangle 
lies  along  the  side  I  of  the  quadrilateral.  Then  the  hypothenuse 
of  the  triangle  will  be  parallel  to  the  side  c  of  the  quadrilateral, 

since  it  makes  an  angle  ̂   ~  f^  with  m'. 
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§  43.  Second  Proof  of  Bolyai's  Parallel  Construction. 
The  following  proof  of  the  validity  of  Bolyai's  construc- 

tion is  due  to  Liebmann  :  *  it  will  be  seen  that  it  depends 
(1)  on  Theorem  (2)  of  §  4,  regarding  the  locus  of  the  middle 

points  of  the  segments  A  A',  BB',  etc.,  joining  a  set  of 
points,  A,  B,  C,  ... ,  A',  B',  C,  .••,  on  two  straight  lines, 
such  that  AB  =  A'B',  BC  =  B'C',  etc.;  and  (2)  on  the  con- 

currence of  the  perpendicular  bisectors  of  the  sides  of  a 
triangle  (cf.  §  39). 

Let  A  be  the  given  point,  and  AF  the  perpendicular  from  A 
to  the  given  line. 

It  is  required  to  draw  from  A  the  parallel  to  the  ray  Fi2. 
Let  us  suppose  the  parallel  Al]  drawn. 
From  Afi  and  FI2  cut  off  equal  segments  AS  and  FD,  and 

join  SD. 

Let  M  and  M'  be  the  middle  points  of  AF  and  SD. 
From  §4  we  know  that  the  line  MM'  is  parallel  to  Afi and  FO. 

Draw  the  line  I2"AI2'  through  A  perpendicular  to  AF,  and 
produce  M'M  through  the  point  M. 

Then  it  is  clear  that  the  ray  M'M  is  parallel  to  the  line  AO". 
Draw  from  F  the  parallel  FJ2'  to  All',  and  let  it  intersect  Ai2 in  G. 

From  FO'  cut  off  FS'  equal  to  AS.     Join  SS'  and  S'D. 
The  line  GM  bisects  SS'  at  right  angles,  and  is  perpendicular 

to  the  line  I2i2'. 

Also  the  perpendicular  bisector  of  DS'  bisects  the  angle  DFS', 
and  is  perpendicular  to  1212'. 

*  Ber.  d.  k.  scichs.  Gea.  d.  Wiss.  Math.  Phya.  Klaaae,  vol.  Ixii.  p,  35 
(1910)  ;  also  NichttuMidische  Geomeirie  (2nd  ed. ),  p.  35. 
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These  two  bisectors  have  therefore  an  ideal  point  in  common, 
and  the  perpendicular  bisector  of  SD  must  pass  through  the 
same  ideal  point  (cf.  §  39) ;  i.e.  it  must  also  be  perpendicular 

to  1212'. 
Suppose  the  parallel  M'12'  drawn  through  M'  to  AO'. 
The  bisector  of  the  angle  S2'M'i2  is  perpendicular  to  1212', and  therefore  to  SD. 

It  follows  that  M'S  bisects  the  angle  i2"M'i2'. 
But  M'12"  and  M'12'  are  the  parallels  from  M'  to  i2"Al2'. 
Therefore  M'S  is  perpendicular  to  12"Al2'. 
And  AS  was  made  equal  to  FD  in  our  construction. 

The  result  to  which  we  are  brought  can  be  put  in  the  follow- 
ing words  :  Let  the  perpendicular  AF  be  drawn  from  the  point 

A  to  the  given  line  a  (F12),  and  let  the  perpendicular  A12'  be 
drawn  at  A  to  AF.  From  any  point  D  on  the  ray  F12  drop  the 

perpendicular  DB  to  Al2'.  This  line  DB  cuts  off  from  the 
parallel  Ai2  a  length  equal  to  FD. 

The  parallel  construction  follows  immediately.  We  need  only 
describe  the  arc  of  a  circle  of  radius  FD  with  A  as  centre.  The 

parallel  A12  is  got  by  joining  A  to  the  point  at  which  this  arc 
cuts  DB. 

The  existence  of  the  parallel,  given  by  Hilbert's  Axiom, allows  us  to  state  that  the  arc  will  cut  the  line  once  between 

B  and  D,  without  invoking  the  Principle  of  Continuity.* 

§  44.  Construction  of  a  Common  Parallel  to  two  given 
Intersecting  Straight  Lines.! 

Let  012  and  012'  be  the  two  rays  a  and  6  meeting  at  O  and 
containing  an  angle  less  than  two  right  angles. 

From  these  rays  cut  off  any  two  equal  segments  OA  and  OB. 

From  A  draw  the  parallel  Al2'  to  the  ray  012',  and  from  B 
the  parallel  B12  to  the  ray  012. 

Bisect  the  angles  12A12'  and  12B12'  by  the  rays  a'  and  b'. 
By  §  26  (4),  we  know  that 

Z.0A12'  =  ̂ 0B12. 

*  In  pjuclid's  Elements  the  fundamental  problems  of  construction  of 
Book  I.  can  be  solved  without  the  use  of  Postulate  3  :  "To  describe  a 
circle  with  any  centre  and  distance."  To  draw  the  parallel  from  a 
given  point  to  a  given  line  can  be  reduced  to  one  of  the  problems  of 
§3.  On  the  other  hand,  in  the  Hyperbolic  Geometry,  the  parallel- 
construction  requires  this  postulate  as  to  the  possibility  of  drawing 
a  circle. 

t  Cf.  Hilbert,  loc.  cit.  p.  163^ 
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It  follows  that  ^I2Ai2'  =  ̂ I2Bl2', 

^i2AE  =  z.i2'BF  =  ̂ 12BF. 

We  shall  now  show  that  the  lines  a'  and  6'  neither  intersect, 
nor  are  parallel. 

If  possible,  let  them  intersect  at    M. 
The  triangle  AOB  is  isosceles,  and  /-OAB=^OBA. 
Therefore  l  BAM  =z_  ABM,  and  AM  =  BM. 

M 
Fio,  50. 

Through  M  draw  the  parallel  M12  to  Afi  and  BI2, 
Then,  since  AM  =  BM  and  ̂ MA12  =  ̂ MBi2,  by  §26  (4),  we 

°^^^^^^^«  ^AM12  =  ̂ BM12, which  is  absurd. 

The  lines  AE  and  BF  therefore  do  not  intersect  at  an  ordinary- 
point,  and  this  proof  applies  also  to  the  lines  produced  through 
A  and  B. 

Next,  let  us  suppose  that  they  are  parallel. 

Since  the  ray  a'  lies  in  the  region  BAI2,  it  must  intersect  BI2. Let  it  cut  that  line  at  D. 

Then  we  have  z.i]AE  =  i.DBF,  and  ̂ ADI2  =  ̂ BDE. 
Also  we  are  supposing  DE  and  BF  parallel,  and  we  have 

A12  and  DJ2  parallel. 
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It  follows  from  §26  (6)  that  AD  =  DB. 
Therefore  we  have  -l  DAB  =  ̂   DBA. 
But  ̂   BAG  =^  ABC. 

Therefore  we  have  z_DAB=^CAB,  which  is  absurd. 
Thus,  the  rays  AE  and  AF  cannot  be  parallel. 
Similarly  the  rays  EA,  FB  produced  through  A  and  B  cannot 

be  parallel. 

We  have  now  shown  that  the  lines  a'  and  h'  neither  intersect 
nor  are  parallel.  ^ 

They  must,  thereforCj  have  a  common  perpendicular  (§  32). 
We  shall  now  show  that  this  common  perpendicular  is 

parallel  to  both  012  and  0S2'. Let  it  cut  the  lines  AE  and  BF  at  U  and  V. 

Then  AU  =  BV,  by  §  29. 
If  VU  is  not  parallel  to  AS2,  draw  through  U  the  ray  U12 

parallel  to  AI2,  and  through  V  the  ray  Vi2  parallel  to  Afi. 
Then,  by  §  26  (4),  l  AUO  =/.  BVfi. 
Also  the  angles  AUV  and  BVU  are  right  angles,  so  the  exterior 

angle  at  U  would  be  equal  to  the  interior  and  opposite  angle 
12 VU,  which  is  impossible  (§26  (3)). 

Thus  we  have  shown  that  the  ray  VU  is  parallel  to  012. 

The  same  argument  applies  to  the  ray  UV  and  012'. 
Therefore  we  have  proved  that  there  is  a  common  parallel 

to  the  two  given  intersecting  rays,  and  we  have  shown  how  to 
construct  it. 

Corollary.  A  common  'parallel  can  he  drawn  to  any  two 
given  coplanar  lines. 

If  the  given  lines  intersect  when  produced,  the  previous 
proof  applies. 

If  they  do  not  intersect,  take  any  point  A  on  the  line  (i)  and 
draw  a  parallel  from  A  to  the  line  (ii). 

We  can  now  draw  a  common  parallel  to  the  two  rays  through 
A,  and  by  §  25  this  line  will  also  be  parallel  to  the  two  given 
lines. 

§  45.  Construction  of  the  Straight  Line  which  is  per- 
pendicular to  one  of  two  Straight  Lines  containing  an 

Acute  Angle,  and  parallel  to  the  other. 
Let  a{OA)  and  6 (OB)  be  the  two  rays  containing  an  acute 

angle. 
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At  O  make  /.AOB'=^AOB,  and  denote  the  ray  OB' 

by  b'. 
The  common  parallel  to  the  rays  b  and  b'  will  be  perpendicu- 

lar to  O  A.     (Cf.  §22.) 

B 

PlO.  51, 

We  have  thus  solved  the 

second  fundamental  problem 
of  parallels.  To  a  given  angle 

of  parallelism  to  find  the  corre- 
sponding segment.  In  other 

words,  given  n(^)  to  find  p. 
Incidentally  we  have  also 

shown  that  to  any  acute  angle 

n  (p),  however  small,  or  how- 
ever near  a  right  angle,  there 

corresponds  a  segment  p. 

Corollary.  If  two  co- 
planar  lines  are  not-inter- 

secting lines,  we  can  still  draw 
a  line  parallel  to  one  and 
perpendicular  to  the  other. 

We  need  only  take  a  point  on  the  line  (i),  and  draw  from 
it  a  ray  parallel  to  the  line  (ii).  The  line  perpendicular 
to  (i)  and  parallel  to  the  ray  just  drawn  will  be  parallel  to  the 
line  (ii). 

§  46.  Corresponding  Points  on  two  Straight  Lines. 
P  and  Q  are  said  to  be  corresponding  points  on  two  straight 

lines  when  the  segment  PQ  makes  equal  angles  with  the  two  lines 
on  the  same  side. 

If  the  lines  intersect  at  an  ordinary  point  O,  and  P  is  any 

point  upon  one  of  them,  we  need  only  take  OQ  =  OP,  and 
the  point  Q  on  the  second  line  will  correspond  to  P  on 
the  first. 

Obviously  there  is  only  one  point  on  the  second  ray  cor- 
responding to  the  point  P  on  the  first ;  and  if  R  is  the  point 

corresponding  to  Q  on  a  third  ray  through  O,  then  P  and  R 
are  corresponding  points. 

Also  the  locus  of  the  points  on  the  rays  of  a  pencil,  whose 
vertex  is  an  ordinary  point  O,  which  correspond  to  a  given 
point  P  on  one  of  the  rays,  is  the  circle  with  centre  O  and 
radius  OP. 
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§  47.  We  proceed  to  the  case  when  the  lines  are  parallel 
and  thus  intersect  at  an  improper  point  (a  point  at  infinity). 

1.  //  (i)  and  (ii)  are  any  two  parallel  straight  lines,  there 
exists  one  and  only  one  point  on  (ii)  which  corresponds  to  a  given 
point  on  (i). 

n 

Pio.  52. 

Let  P  be  the  given  point  on  (i)  and  take  any  point  R  on  (ii). 
Bisect  the  internal  angles  at  P  and  R.    The  bisectors  must 

meet  in  an  ordinary  point. 

I\ 

Pio.  53. 

Let  them  meet  at   S,  and  from   S  draw  SM  and  SN  per- 
pendicular to  (i)  and  (ii). 
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h Then  SM=SN. 
Through  S  draw  Si2  parallel  to  P12. 
It  will  also  be  parallel  to  Ri2,  and  it  will  bisect  ̂ MSN, 

since  there  is  only  one  angle  of  parallelism  for  a  given  distance. 

Let  S'  be  any  point  upon  the  parallel  through  S  to  (i)  and  (ii). 
From  S'  draw  S'M'  and  S'N'  perpendicular  to  these  lines. 
By  congruence  theorems,  it  is  easy  to  show  that  S'M' =  S'N', 

and  that  S'i2  bisects  z.M'S'N'. 
From  P  draw  PL  perpendicular  to  Si2,  and  from  L  draw 

Lm  and  Lw  perpendicular  to  (i)  and  (ii).     (Cf.  Fig.  53.) 
Cut  off  wQ  =  mP  on  the  opposite  side  of  n  from  12,  and 

join  LQ. 
Then  it  follows  that  PLQ  is  a  straight  line,  and  that  Q 

corresponds  to  P. 
It  is  easy  to  show  that  there  can  only  be  one  point  on  the 

second  line  corresponding  to  P  on  the  first. 

2.  If  P  and  Q  are  corresponding  points  on  the  lines  (i)  and  (ii), 
and  Q  and  R  corresponding  points  on  the  lines  (ii)  and  (iii),  the 
three  lines  being  parallel  t<f  each  other,  then  P,  Q,  and  R  cannot 
he  in  the  same  straight  line. 

\ JTl 

Fio.  54. 

If  possible,  let  PQR  be  a  straight  line. 
By  the  definition  of  corresponding  points,  we  have 

^fiPQ  =  ̂ l]QP, 

^i2QR  =  ̂ i2Ra 



80 NON-EUCLIDEAN  GEOMETRY 
[CH.  III. 

Therefore  zLl2PR+^f2RP  =  two  right  angles,  which  is  im- 
possible, since  PR  would  make  equal  alternate  angles  with  PD, 

and  RO,  and  these  two  parallels  would  have  a  common  per- 
pendicular. 

3.  If  P  corresponds  to  Q  on  the  parallels  (i)  and  (ii),  and  Q 
to  R  on  the  parallels  (ii)  and  (iii),  then  P  corresponds  to  R  on  the 
parallels  (i)  and  (iii). 

Fig.  55. 

This  follows  from  the  concurrence  of  the  perpendicular 
bisectors  of  the  sides  of  a  triangle  (§  39). 

The  perpendicular  bisector  of  PQ  is  parallel  to  the  given  lines  ; 
the  same  holds  of  the  perpendicular  bisector  of  QR, 

It  follows  that  the  line  bisecting  PR  at  right  angles  is  parallel 
to  the  other  two  bisectors,  and  to  (i)  and  (iii). 

Therefore  P  and  R  correspond. 

§48.  The  Limiting-Curve  or  Horocycle.* 
We  now  come  to  o»e  of  the  most  important  curves  in  the 

Hyperbolic  Geometry. 

The  locus  of  the  corresponding  points  on  a  pencil  of  parallel 
lines  is  a  curve  called  the  Limiting-Curve  or  Horocycle. 

It  is  clear  that  this  is  the  circle  of  infinite  radius,  and  from 

§  47  (2)  it  follows  that  it  is  not  a  straight  line. 

*  Lobatschewsky  uses  the  terms  grenzkreis,  courbe-limite,  and  hwi- 

cycle  ;  Bolyai  speaks  of  the  linea-L, 
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Let  P  and  P'  he  any  two  dijferent  'points  upon  the  same  ray  of  a 
pencil  of  parallel  lines;  the  Limiting-Curve  through  P  is  congruent 
with  the  Limiting-Curve  through  P'. 

Fio.  56. 

We  must  first  explain  what  we  mean  by  two  Limiting- 
Curves  being  congruent. 

We  suppose  a  set  of  points  obtained  on  the  Limiting-Curve 
which  starts  at  P' ;  e.g.  P',  Q',  R',  S',  etc.,  on  any  set  of  lines 
1,  2,  3,  4,  ... ,  of  the  pencil. 

We  shall  show  that  a  set  of  points  P,  q,  r,  s,  etc.,  exists  on 
the  Limiting-Curve  through  P,  such  that  the  segments  Pq, 
P'Q'  are  equal,  the  segments  qr,  Q'R'  are  equal,  etc.,  and 
these  related  linear  segments  make  equal  angles  with  the  lines 
of  the  pencil  which  they  respectively  intersect. 

To  prove  this,  take  the  segment  P'Q'. 
At  P  make  _12P)^z.l2P'Q',  and  take  Pj  =  P'Q'. 
From  q  draw  the  ray  parallel  to  P12. 

Then,  by  §26  (4),  we  know  that  £.PjI2=z.P'Q'fi. 
But  P'  and  Q'  are  corresponding  points. 
Therefore  P  and  q  are  corresponding  points. 

Proceeding  now  from  Q'  and  q  respectively,  we  find  a  point 
r  on  the  Limiting-Curve  through  P,  such  that  the  segments  qr 

and  Q'R'  are  equal,  while  qr  makes  the  same  angles  with  the 
N.-E.G.  ¥ 
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rays  passing  througli  its  ends,  as  Q'R'  does  with  the  rays 
through  its  ends. 

We  have  thus  shown  that  between  the  two  Limiting-Curves 
there  is  a  one-one  correspondence  of  the  nature  stated,  and  in 
this  case  we  say  that  the  two  curves  are  congruent. 

Further,  it  is  clear  that  it  is  immaterial  at  which  line  of 

the  pencil  we  begin  our  Limiting-Curve. 
It  is  convenient  to  speak  of  the  point  at  infinity,  through 

which  all  the  parallel  lines  of  the  pencil  pass,  as  the  centre  of 
the  Limiting-Curve  ;  also  to  call  the  lines  of  the  pencil  the 
axes  of  the  curve.  Concentric  Limiting-Curves  will  be  Limiting- 
Curves  with  the  same  centre. 

We  can  now  state  the  following  properties  of  these  curves  : 

(a)  The  Limiting-Curve  in  the  Hyperbolic  Geometry  cor- 
responds to  the  circle  with  infinite  radius  in  the  EucUdean 

Geometry. 

(6)  Any  two  Limiting-Curves  are  congruent  with  each  other. 

(c)  In  one  and  the  same  Limiting-Curve,  or  in  any  two 
Limiting-Curves,  equal  chords  subtend  equal  arcs,  and  equal 
arcs  subtend  equal  chords. 

{d)  The  Limiting-Curve  cuts  all  its  axes  at  right  angles,  and 
its  curvature  is  the  same  at  all  its,  points. 

f 

§49.  The  Equidistant-Curve. 
There  remains  the  pencil  of  lines  through  an  ideal  point : 

the  set  of  lines  all  perpendicular  tojthe  same  line. 

1.  If  two  given  lines  have  a 
common    perpendicular,    to    any 
point  P  on  the  one  corresponds       p    I  q 
one  and  only  one  point  Q  on  the 
other. 

Let  MN  be  the  common  per- 
pendicular to  the  given  lines, 

and  P  any  point  on  one  of  them. 
From  the  other  line  cut   off      

NQ=  MP,  Q  being  on  the  same  ^  j\j 
side    of    the    common    perpen-  f,o  57 
dicular  as  P. 

Then  PMNQis  one  of  Saccheri's  Quadrilaterals,  and  the  angles 
at  P  and  Q  are  equal. 
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Thus  Q  corresponds  to  P,  and  as  before  there  can  only  be 
one  point  on  the  second  line  corresponding  to  a  given  point 
on  the  first. 

2.  If  the  lines  (i),  (ii),  and  (iii)  are  all  perpendicular  to  the 
same  straight  line,  then  if  the  point  Q  on  (ii)  corresponds  to  the 
point  P  on  (i),  and  the  point  R  on  (iii)  to  the  point  Q  on  (ii), 
the  points  P  and  R  correspond. 

(i)                 (" )                        (iii) 

^IQ               1 
P 

- 

R 

M N 
Fio.  68. 

Let  the  common  perpendicular  meet  the  lines  in  M,  N,  and  S. 
Then  PIVI=QN  and  QN=RS. 

Therefore  PM  =  RS,  and  P  and  R  correspond. 

3.  The  locus  of  corresponding  points  upon  a  pencil  of  lines 
whose  vertex  is  an  ideal  point  is  called  an  Equidistant-Curve, 
from  the  fact  that  the  points  upon  the  locus  are  all  at  the  same 
distance  from  the  line  to  which  all  the  lines  of  the  pencil  are 

perpendicular.     This  line  is  called  the  base-line  of  the  curve. 

On  the  Euclidean  Plane  the  Equidistant-Curve  is  a  straight 
line.  On  the  Hyperbolic  Plane  the  locus  is  concave  to  the 
common  perpendicular. 

This  follows  at  once  from  the  properties  of  Saccheri's  Quadri- 
lateral (cf.  §  29).  Indeed  Saccheri  used  this  curve  in  his  sup- 

posed refutation  of  the  Hypothesis  of  the  Acute  Angle. 
We  have  thus  been  led  to  three  curves  in  this  Non-Euclidean 

Plane  Geometry,  which  may  all  be  regarded  as  "  circles." 
(a)  The  locus  of  corresponding  points  upon  a  pencil  of  lines, 

whose  vertex  is  an  ordinary  point,  is  an  ordinary  circle,  with 
the  vertex  as  centre  and  the  segment  from  the  vertex  to  one  of 
the  points  as  radius. 

(6)  The  locus  of  the  corresponding  points  upon  a  pencil  of 

lines,  whose  vertex  is  an  improper  point — a  point  at  infinity — 
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is  a  Limiting-Curve,  or*  Circle  of  Infinite  Radius,  with  its  centre at  the  vertex  of  the  pencil. 
(c)  The  locus  of  corresponding  points  upon  a  pencil  of  lines, 

whose  vertex  is  an  improper  point — an  ideal  point — is  an  Equi- 
distant-Curve, whose  base-line  is  the  representative  line  of  the 

ideal  point. 

According  as  the  perpendiculars  to  the  sides  of  a  triangle  ABC  at 
their  middle  points  meet  in  an  ordinary  point,  a  point  at  infinity,  or  an 
ideal  point,  the  points  ABC  determine  an  ordinary  circle,  a  limiting-curve, 
or  an  equidistant-curve.     (Cf.  §  39.) 

THE  MEASUREMENT   OF  AREA. 

V     §50.  Equivalent  Polygons. 
\A        Two  polygons  are  said  to  be  equivalent  when  they  can  he  broken 
,  \    up  into  a  finite  number  of  triangles  congruent  in  pairs. 
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Fig.  59. 

With  this  definition  of  equivalence,  we  shall  now  prove  the 
following  theorem  : 

7/  two  polygons  P^  and  P^  are  each  equivalent  to  a  third  polygon 
Pg,  then  P-y  and  Pg  are  equivalent  to  each  other. 
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We  are  given  both  for  P^  and  P2  a  partition  into  tria.  pc' 
such  that  to  these  two  partitions  correspond  two  partition^ 
of  Pg,  the  triangles  in  the  partitions  of  P3  being  congruent  in 
pairs  to  the  triangles  in  the  partitions  of  P^  and  Pg. 

Consider  the  two  partitions  of  P3  simultaneously ;  in 
general,  every  triangle  of  the  one  partition  will  be  cut  into 
polygons  by  the  sides  of  the  triangles  of  the  second  partition. 

We  now  introduce  (cf.  Fig.  59)  a  sufficient  number  of  linear 
segments,  so  that  each  of  these  polygons  shall  be  cut  into 
triangles. 

By  this  means  the  two  partitions  of  P3  are  further  reduced 
to  the  same  set  of  triangles,  and  this  can  be  associated  with  a 
set  of  triangles  in  P^  and  Pg  respectively. 

Therefore  the  polygons  P^  and  Pg  can  be  broken  up  into  a 
finite  number  of  triangles  congruent  in  pairs,  and  they  are 
equivalent  to  each  other. 

§51.  Equivalent  Triangles. 
A  necessary  and  sufficient  condition  that  two  triangles  are 

equivalent  is  that  they  have  the  same  defect.     (Cf.  §  31.) 

The  theorem  stated  above  will  now  be  proved.  It  has  to 
be  taken  in  several  steps. 

1.  Two  triangles  with  a  side  of  the  ofie  equal  to  a  side  of  the 
other,  and  the  same  defect,  are  equivalent. 

Consider  the  triangle  ABC,  in  which  E,  F  are  the  middle 
points  of  the  sides  CA  and  AB. 

Let  the  perpendiculars  from  A,  B, 

and  C  on  EF  meet  that  line  at  A', 
B',  and  C. 
Then  AA'  =  BB'=CC',  and  the 

quadrilateral  BCC'B'  is  one  of  Sac- 
cheri's  Quadrilaterals,  the  angles  at 
B',  C'  being  right  angles,  and  the 
sides  BB'  and  CC  being  equal. 

Further,  the  acute  angles  at  B  and  C  in  that  quadrilateral 
are  each  equal  to  half  the  sum  of  the  angles  of  the  triangle 
ABC. 

Now,  the  quadrilateral  is  made  up  of  the  triangles  BB'F, 
CC'E,  and  the  figure  BCEF, 

Also  the  triangles  BB'F  and  CC'E  are  congruent,  respectively, 
with  AA'F  and  AA'E. 
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aerefore  the  quadrilateral  BB'C'C  and  the  triangle  ABC  are 
equivalent. 

Next,  let  AiBjCj  be  another  triangle  with  its  side  BjCi  equal 
to  BC,  and  the  same  defect  as  the  triangle  ABC. 

For  this  triangle  we  get  in  the  same  way  one  of  Saccheri's 
Quadrilaterals,  the  acute  angles  at  Bj  and  C^  being  equal  to 
the  acute  angles  at  B  and  C,  while  the  side  B^Cj  =  the 
side  BC. 

It  is  easy  to  see  that  these  quadrilaterals  must  be  congruent, 
for  if  they  were  not,  we  should  obtain  a  quadrilateral,  in  which 
the  sum  of  the  angles  would  be  four  right  angles,  by  a  process 
which  amounts  to  placing  the  one  quadrilateral  upon  the 
other,  so  that  the  common  sides  coincide. 

It  follows  that  the  triangles  ABC  and  A^BjCi  are  equivalent. 
Thus  we  have  shown  that  triangles  with  a  side  of  the  one  equal 
to  a  side  of  the  other,  and  the  same  defect,  are  equivalent. 

Corollary.  The  locus  of  the  vertices  of  triangles  on  the 

same  base,  with  equal  defects,  is  an  Equidistant-Curve. 

2.  Any  two  triangles  with  the  same  defect  and  a  side  of  the  one 
greater  than  a  side  of  the  other  are  equivalent. 

Let  ABC  be  the  one  triangle  and  A^BjCi  the  other,  and  let 
the  side  AiCj(6^)  be  greater  than  the  side  AC  (6). 

Let  E,  F  be  the  middle  points  of  AC  and  AB. 
From  C  draw  CC  perpendicular  to  EF  ;  CC  cannot  be  greater 

than  \h. 
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Construct  the  right-angled  triangle  with  a  side  equal  to  CC 
and  ̂ bi  for  the  hypothenuse.* 

Cut  ofi  C'Eg  equal  to  the  other  side  of  this  triangle. 
Join  CEg,  and  produce  it  to  Ag  making  CE2=E2A2. 
Join  AgB. 
Then  the  triangle  AgBC  has  a  side  equal  to  h^,  and  the  same 

defect  as  the  two  given  triangles. 
Also  the  triangles  ABC  and  AgBC  are  equivalent ;  and  the 

triangles  AgBC  and  AiB^Ci,  by  (1). 
Therefore  the  triangles  ABC  and  A^BjCi  are  equivalent  (§  50). 

3.  Any  two  triangles,  with  the  same  defect,  are  equivalent. 

For  a  side  of  one  must  be  greater  than,  equal  to,  or  less 
than,  a  side  of  the  other. 
When  it  is  a  case  of  equality,  the  triangles  are  equivalent 

by  (1). 
In  the  other  two  cases,  the  same  result  follows  from  (2). 

4.  The  converse  of  this  theorem  also  holds  : 

Any  two  equivalent  triangles  have  the  same  defect. 

From  the  definition  of  equivalence,  the  two  triangles  can  be 
broken  up  into  a  finite  number  of  triangles  congruent  in  pairs. 
But  if  a  triangle  is  broken  up  by  transversals  f  into  a  set  of 

sub-triangles,  it  is  easy  to  show  that  the  defect  of  the  triangle 
is  equal  to  the  sum  of  the  defects  of  the  triangles  in  this  parti- 

tion. Further,  following  Hilbert,|  it  can  be  shown  that  any 
given  partition  of  a  triangle  into  triangles  can  be  obtained  by 
successive  division  by  transversals.  It  follows  that  the  sum  of 
the  defects  of  the  triangles  is  equal  to  the  defect  of  the  original 
triangle. 

Now  the  two  equivalent  triangles  can  be  broken  up  into  a 
finite  number  of  triangles  congruent  in  pairs.  And  the  defects 
of  congruent  triangles  are  equal. 

*  The  construction  of  the  riglit-angled  triangle  from  a  side  and  the 
hypothenuse  does  not  involve  the  Principle  of  Continuity.  The  results 
of  §36  show  that  this  problem  can  be  reduced  to  that  of  constructing  a 
right-angled  triangle  out  of  a  side  and  the  adjacent  angle. 

t  A  triangle  is  said  to  be  broken  up  by  transverscds,  when  the  parti- 
tion into  triangles  is  obtained  by  lines  from  the  angular  points  to  the 

opposite  sides,  either  in  the  original  triangle  or  in  the  additional 
triangles  which  have  been  obtained  from  the  first  by  division  by 
transversals. 

:J:Cf.  Hilbert,  loc.  cit.  §20,  or  Halsted,  Rationed  Geometry,  p.  87. 
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Therefore  the  defects  of  any  two  equivalent  triangles  are 
equal. 

The  theorem  enunciated  at  the  head  of  this  section  is  thus 

established  :  a  necessary  and  sufficient  condition  for  equiva- 
lence of  triangles  is  equal  defect. 

5.  A  triangle  is  said  to  be  equivalent  to  the  sum  of  two 
other  triangles,  when  the  three  triangles  can  be  broken  up 
into  a  finite  number  of  triangles,  such  that  the  triangles  in  the 
partition  of  the  first  are  congruent  in  pairs  with  the  sum  of  the 
triangles  in  the  partitions  of  the  other  two. 

Now  the  defect  of  each  triangle  is  equal  to  the  sum  of  the 
defects  of  the  triangles  into  which  it  is  divided. 

It  follows  that  if  a  triangle  is  equivalent  to  the  sum  of  two 
other  triangles,  its  defect  is  equal  to  the  swn  of  their  defects. 

§  52.   If  we  regard  area  as  a  concept  associated  with  a  recti- 
\   linear  figure,  just  as  length  is  with  a  straight  line,  it  is  obvious 

^  that  equivalent  figures  have  equal  area*    And  if,  further,  we 
regard  the  area  of  a  rectilinear  figure  as  a  magnitude  to  which 
we  can  ascribe  the  relations  of  sum,  equality  and  inequality, 
greater  and  less,  we  obtain  at  once  from  the  theorems  of  §  51 
the  result  that  the  areas  of  triangles  are  proportional  to  their 
defects.    Indeed  if  we  start  with  any  triangle  as  the  triangle  of 
imit  area,  a  triangle  which  is  n  times  this  triangle  will  have  n 
times  its  defect. 

\     But  closer  examination  of  the  argument  shows  that  in  this 
treatment  of  the  question  of  area  various  assumptions  are 
made  ;   and  the  work  of  some  mathematicians  of  the  present 
day  has  put  the  theory  of  area  on  a  sounder  logical  basis.f 

This  more  exact  treatment  of  the  theory  of  area  in  the  Hyper- 
'  bolic  Plane  is  simple,  and  will  now  be  given  : 

The  measure  of  area  of  a  triangle  is  defined  as  P  multiplied 

*  Hilbert  distinguished  between  equivalent  polygons,  as  defined  above, 
and  polygons  which  are  equivalent  by  completion.  Two  polygons  are 
said  to  be  equivalent  hy  completion,  when  it  is  possible  to  annex  to  them 
equivalent  polygons,  so  that  the  two  completed  polygons  are  equivalent. 
If  the  Postulate  of  Archimedes  is  adopted,  polygons,  which  are  equiva- 

lent by  completion,  are  also  equivalent.  Hilbert  was  able  to  establish 
the  theory  of  area  on  the  doctrine  of  equivalence  by  completion  without 
the  aid  of  the  Postulate  of  Archimedes.     Loc.  cit.  Chapter  IV. 

+  Cf.  Art.  VI.  by  Amaldi,*in  Enriques'  volume  referred  to  above. 
Also  Finzel,  Die  Lehre  vom  Fldcheninhalt  in  der  allgemeinen  Geometric 
(Leipzig,  1912). 
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by  its  defect,  k  being  a  constant  depending  on  the  unit  triangle, 

and  the  unit  of  angle  is  chosen  so  that  a  right  angle  has  ̂   for 

its  measure.  The  number  h^  is  introduced  to  bring  the  results 
into  agreement  with  the  analytical  work  in  other  parts  of  this 
book. 

It  follows  from  §  51  that  ^ 
1.  If  two  triangles  have  the  same  measure  of  area,  they  are 

equivalent,  and  that  if  two  triangles  are  equivalent,  they  have , 
the  same  measure  of  area. 

2.  If  a  triangle  is  broken  up  into  a  finite  number  of  triangles, 
the  measure  of  area  of  the  triangle  is  equal  to  the  sum  of  the 
measures  of  area  of  the  triangles  in  the  partition. 

3.  If  a  triangle  is  equivalent  to  the  sum  of  two  other  tri- 
angles, the  measure  of  area  of  this  triangle  is  equal  to  the  sum 

of  the  measures  of  area  of  the  other  two  triangles. 

The  measure  of  area  of  a  polygon  is  defined  to  he  the  sum  of  the 
measures  of  area  of  the  triangles  into  which  it  is  divided  in  any 
given  partition. 

This  sum  is  independent  of  the  partition  which  has  been 

chosen.  The  sum  of  the  defects  of  the  triangles  in  any  parti- 
tion is  equal  to  {n  -  2)  times  two  right  angles  -  the  sum  of  the 

angles  of  the  polygon.  This  is  sometimes  called  the  Defect  of 
the  Polygon. 

With  regard  to  polygons  we  can  now  state  the  following 
theorems  : 

1.  If  two  polygons  have  the  same  measure  of  area,  they  are 
equivalent.  For  they  are  each  equivalent  to  the  triangle  whose 
defect  is  the  sum  of  the  defects  of  the  given  partitions. 

2.  If  two  polygons  are  equivalent,  they  have  the  same 
measure  of  area.  For  they  can  be  broken  up  into  a  finite 
number  of  triangles  congruent  in  pairs. 

3.  If  a  polygon  is  broken  up  into  a  finite  number  of  sub- 
polygons,  the  measure  of  area  of  the  polygon  is  the  same  as 
the  sum  of  the  measures  of  area  of  the  sub-polygons. 

4.  If  a  polygon  is  equivalent  to  the  sum  of  two  other  poly- 
gons, its  measure  of  area  is  equal  to  the  sum  of  the  measures 

of  area  of  these  two  polygons. 
Rectilinear  polygons  with  the  same  measure  of  area  will  be 

said  to  have  equal  area.    Thus  equivalent  polygons  have  equal 
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area.  The  area  of  a  polygon  will  be  said  to  be  greater  or  less 
than  the  area  of  another  polygon  according  as  its  measure  of 
area  is  greater  or  less  than  the  measure  of  area  of  the  other. 

§  53.  In  the  Euclidean  Plane  we  say  that  a  rectilinear  figure 
contains  so  many  square  inches  (or  sq.  ft.,  etc.),  and  by  con- 

sidering a  curvilinear  figure  as  the  limit  of  a  rectilinear,  figure 
we  obtain  a  method  of  measuring  curvilinear  figures. 

In  the  Hyperbolic  Plane  there  is  no  such  thing  as  a  square 
inch,  or  rectangle  with  equal  sides,  or  any  rectangle.  To  every 

rectilinear  figure  there  corresponds  an  equivalent  Saccheri's 
Quadrilateral.  To  all  equivalent  rectilinear  figures  there 

corresponds  one  and  the  same  Saccheri's  Quadrilateral  with  a 
definite  acute  angle. 

This  quadrilateral  with  a  given  acute  angle  can  be  con- 
structed in  this  geometry  immediately.  The  construction 

follows  from  the  correspondence  established  between  right- 
angled  triangles  and  the  quadrilateral  with  three  right  angles. 
If  the  acute  angle  is  /3,  we  obtain  the  corresponding  segment 
6{/3  =  n(6)},  by  the  construction  of  §45.  We  draw  any 
right-angled  triangle  with  a  side  equal  to  h.  The  associated 

quadrilateral  has  its  acute  angle  equal  to  0,  and  the  Saccheri's 
Quadrilateral  is  obtained  by  placing  alongside  it  a  congruent 
quadrilateral. 

All  Saccheri's  Quadrilaterals  with  the  same  acute  angle  are 
equivalent. 

Thus  it  will  be  seen  that  there  is  a  fundamental  difierence 

between  measurement  of  length  and  area  in  the  Euclidean 

and  the  Hyperbolic  Plane.*  In  the  Euclidean,  the  measures 
are  relative.  In  the  Hyperbolic,  they  are  absolute.  With  every 
linear  segment  there  can  be  associated  a  definite  angle,  namely 
the  angle  of  parallelism  for  this  segment.  With  every  area, 
a  definite  angle  can  be  associated,  namely  the  acute  angle 

of  the  equivalent  Saccheri's  Quadrilateral. 

*  Cf.  Bonola,  loc.  cit.  §  20.     Also  supra,  p.  17. 
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THE    HYPERBOLIC   PLANE   TRIGONOMETRY. 

§  54.  In  this  chapter  we  shall  develop  the  Trigonometry  of 
the  Hyperbolic  Plane,  as  in  the  preceding  one  we  have  discussed 
the  Geometry  of  the  Hyperbolic  Plane,  without  introducing 
the  theorems  of  Solid  Geometry  into  the  argument. 

The  properties  of  the  Limiting-Curve  lead  to  the  formulae 
of  Plane  Trigonometry,  without  the  use  of  the  Limiting-Surface, 
as  the  surface  formed  by  the  rotation  of  a  Limiting-Curve 
about  one  of  its  axes  is  called.  The  method  of  Lobatschewsky 
and  Bolyai  is  foimded  upon  the  Geometry  upon  that  Surface. 

We  begin  with  some  theorems  upon  Concentric  Limiting- 
Curves. 

1.  If  A,  B  and  A',  B'  are  the  'points  in  which  two  Concentric 
Limiting -Curves  cut  tivo  of  their  axes,  then  AB  =  A'B'. 

Fir..  62. 

Join  AA'  and  BB'  (Fig.  62). 
Through  the  middle  point   M 

parallel  to  the  rays  of  the  pencil. 

n.' 

of  the  chord  AA'  draw  Mi2 
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Then  Mfl  is  perpendicular  to  the  chord  BB',  and  is  sym- 
metrical to  the  two  parallels  AB  and  A'B'  (cf.  §  26  (4)  and  §  47). 

Therefore  it  passes  through  the  middle  point  N  of  BB'. 
Then  it  follows  from  the  quadrilateral  ABB' A'  that  AB  =  A'B'. 

2.  //  A,  B  and  A',  B'  are  the  points  in  which  two  Concentric 
Limiting -Curves  cut  two  of  their  axes,  and  P,  Q,  are  the  middle 

points  of  the  arcs  A  A'  and  BB',  then  PQ  is  a  line  of  the  pencil. 

Fio.  63. 

Since  equal  arcs  subtend  equal  chords  (cf.  §  48),  the  chords 

AP  and  A'P  are  equal,  and  the  chords  BQ  and  B'Q  are  equal. 
It  follows  that  PQ  is  the  line  of  symmetry  for  the  two  axes 

AB  and  A'B',  and  is  parallel  to  both  (cf.  §  47). 

Corollary.  If  the  points  P^,  Pg,  Pg,  P^, ... ,  divide  the  arc  A  A' 
into  n  equal  arcs,  and  the  axes  through  these  points  are  met  hy  the 

Limiting -Curve  BB'  in  Q^,  Q^,  Qg,  Q4,  ... ,  the  points  Q.y,  Qg, 
Q3,  Q4,  ...  divide  the  arc  BB'  into  n  equxil  arcs. 

3.  //  A,  A',  A",  are  three  points  on  a  Limiting-Curve,  and 
B,  B',  B",  are  the  three  points  in  which  a  Concentric  Limiting- 
Curve  is  cut  by  the  axes  through  A,  A',  and  A",  then 

arc  A  A' :  arc  AA"  =  arc  BB'  :  arc  BB". 

First,  let  the  arcs  A  A'  and  AA"  be  commensurable,  and  let the  one  be  tn  times  the  arc  AP  and  the  other  n  times  the  arc 
AP. 

Through  P  draw  the  line  of  the  pencil.  Let  it  cut  the  second 

Limiting-Curve  in  Q. 
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Then  we  know  from  (2)  that  the  arc  BB'  =  m  times  the  arc     '' 
BQ,  and  that  the  arc  BB"  =  n  times  the  arc  BQ, 

Fio.  64. 

Thus  the  proportion  follows. 
Secondly,  if  the  arcs  are  incommensurable,  we  reach  the 

same  conclusion  by  proceeding  to  the  limit. 

Fio.  65. 

ri 

§  55.    Let  us  start  with  a  Limiting-Curve  whose  centre  is  12, 
and  take  any  two  points  A  and  B  upon  the  curve  (Fig.  65). 
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On  the  ray  AQ,  cut  off  the  equal  segments  AA^,  A^Aa,  AgAg,  .... 
Let  the  Concentric  Limiting-Curves  through  A^,  Ag,  Ag,  ...  , 
cut  the  ray  Bfi  in  B^,  B.^,  Bg,  ...  . 

Then  we  have,  by  §  54  (1). 

A  Aj  =  B  Bj  =  B^  Bg  =  B2B3  =  etc. 

Also,  from  §48  and  §54(3), 

arcAB  :  arc  AiBj  =  arc  A^Bj  :  arc  A2B2  =  arc  AgBg :  arc  A3B3  =  etc. 

This  ratio  is  greater  than  unity,  and  depends  only  on  the 
length  of  AAi . 

We  may  choose  the  unit  segment  so  that  the  ratio  is  equal  to 
e,  when  AAi  =  AiA2  =  A2A3  = ...  =the  unit  segment. 

Let  the  arcs  AB,  A^B^,  AgBg,  etc.,  be  denoted  by  s,  s^,  $2, 
etc.,  when  the  segment  AA^  is  the  unit  of  length. 

Then  we  have 

0  .  S-t  ̂ ^  oj   ■  00  ̂ ^  09  •  Ot>  ̂ ^^  .  .  .  ̂   c. 

Thus  Sn  =  se-'^,  when  w  is  a  positive  integer. 

n 

It  is  easy  to  deduce  from  this  that  when  the  segment  AP 
(Fig.  66)  is  X  units,  x  being  any  rational  number,  and  the  arc 
PQ  is  denoted  by  Sx,  then  we  have 

■■se- 
We  obtain  the  same  result  for  an  irrational  number  x  by 

proceeding  to  the  limit. 
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Therefore,  with  this  unit  of  length  we  have  the  following 
theorem  : 

If  ABDC  (Fig.  67)  is  a  figure  hounded  by  two  Concentric 
Limiting-Curves  AC  and  BD,  and  ttvo  straight  lines  AB  and  CD, 
the  straight  lines  being  axes  of  the  curves,  the  lengths  a  and  Sx  of 
the  arcs  AC  and  BD  are  connected  by  the  equation 

Sx^se     , 

ivhen  the  segments  AB  and  CD  are  x  units  of  length,  and  AC  is 
the  external  curve,  BD  the  internal. 

St 

Fio.  67. 

If  another  unit  of  length  had  been  chosen,  so  that  the 
ratio  of  the  arc  AB  (Fig.  65)  to  the  arc  A^Bj  had  been 
a(a>l),  when  AAi  =  BBi=the  unit  of  length,  the  equation 
connecting  s  and  Sx  would  have  been 

Sx  =  sa-^. 1 

Putting
  

a  =  e^, 
X 

we  have  Sx  =  se  *. 

The  number  Jc  is  the  parameter  of  the  Hyperbolic  Geometry- 
depending  upon  the  unit  of  length  chosen. 

§  56.   Since  we  can  find  p  to  satisfy  the  equation 

n(;;)  =  J, 
there  is  a  point  Q  on  the  Limiting-Curve  through  P,  such  that 
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the  tangent  at  Q  is  parallel  to  the  axis  through  P,  in  the 
opposite  sense  to  that  in  which  the  axis  is  drawn  (Fig.  68). 

We  shall  for  the  present  denote  the  length  of  this  arc  by  S.* 
Let  B  be  a  point  on  the  Limiting-Curve  through  A,  such  that 

the  arc  AB  is  less  than  S  (Fig.  69). 

It  follows  that  the  tangent  at  B  must  intersect  the  axis 
through  A. 

Let  it  cut  12A  in  D,  and  let  the  segments  AD  and  BD  be  u 
and  t.     It  is  easy  to  show  that  u<t. 

Produce  the  arc  BA  to  the  point  C,  such  that  the  arc 
BC  =  S, 

On  OD  produced  take  the  point  A^,  such  that  DAi  =  DB  =  ̂. 
Then  the  perpendicular  through  A^  to  the  axis  is  parallel  to 

BD,  and  therefore  to  Cl2'. 
Let  the  Limiting-Curve  through  Aj  meet  C12'  in  C^. 
Since  the  tangent  at  A^  is  parallel  to  Ci2',  the  arc  fKjC^  =  S. 

*Cf.  p.  119. 
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It  follows  from  §  55  that 

arc  AjCj  :  arc  AC  =  e«+'. 

Therefore  S-s  =  Se-(«+')   (1) 
Next,  produce  the  arc  AB  through  B  to  the  point  P,  such  that 

the  arcBP  =  S  (Fig.  70). 

m 

t 

Du 

  >n. 

Q 

t 
Fio.  70. 

Let  the  tangent  at  B  as  before  cut  the  axis  through  A  at 
D,  and  let  AD=w  and  BD=^. 
On  Afl,  on  the  opposite  side  of  A  from  D,  take  the  point  Q, 

such  that  DQi  =  t. 
Then  the  perpendicular  through  Q  to  the  axis  is  parallel  to 

DB,  and,  therefore,  to  P12'. 
Let  the  Limiting-Curve  through  Q  cut  the  axis  PI2  in  R. 
Since  the  tangent  at  Q  is  parallel  to  the  axis  through  R, 

arcQR  =  S. 
But  AQ=<-w. 

Therefore  S-Fs  =  Se«-«   (2) 
From  (1)  and  (2),  we  have 

e'*  =  cosh^,      (3) 

and  ,s  =  Stanh^   (4) 

§  57.  The  Equation  of  the  Limiting-Curve. 
Let  Ox  and  Oy  be  two  lines  at  right  angles,  and  let  P  be  the 

point  {x,  y)  on  the  Limiting-Curve  through  O,  with  Ox  for 
axis  (Fig.  71). 

Draw  PM  perpendicular  to  the  axis  Ox,  and  let  the  Con- 
centric Limiting-Curve  through  M  cut  the  axis  through  P  in  N. 

ThenOM  =  PN=x,  MP  =  ?/. 

Let  arc  OP  =  s,  and  arc  MN  =s'. 
From  the  construction  it  follows  that  s'  <  S. 
N.-E.a.  0 
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Now  the  coordinates  of  P,  a!;(OM),  and  y{MP)  are,  respec- 
tively, the  u  and  t  of  the  previous  section  with  reference  to 

the  arc  .9'. 
Therefore  we  have,  from  §  56  (3), 

e^  =  cosh  y   (1) 

Fio.  71. 

This  is  the  equation  of  the  Limiting -Curve  through  O  with 
its  axis  coinciding  with  the  axis  of  x. 

Also,  we  have  s  =  s'e^ 
=  Se*  tanh  y,  from  §  56  (4), 

=  Ssinh?/   (2) 

§58.  The  Hyperbolic  Functions  of  Complementary 
Segments. 

Let  Oa;  and  Oy  be  two  lines  at  right  angles,  and  let  the 

Limiting-Curve  through  O  with  axis  Ox  have  the  arc  OP  =  S 
(Fig.  72). 

Let  A  be  a  point  upon  Ox,  such  that  OA  =  a;,  and  let  the 
Limiting-Curve  through  A  be  cut  by  the  axis  through  P  in  B. 

Let  arc  AB  =  s. 
At  A  draw  the  perpendicular  to  the  axis  of  x.  Since  it  must 

cut  PB,  let  it  intersect  it  at  C. 

Produce  AC  through  C  to  the  point  D,  such  that  AC  =  CD. 
At  D  draw  DQ  perpendicular  to  CD. 
The  line  DQ  must  be  parallel  to  CP,  since  z.DCP  =  z.ACB, 

and  CB  is  parallel  to  Afi. 
Therefore  Oy,  CP,  and  DQ  are  parallel. 



57.58]  COMPLEMENTARY  SEGMENTS  99 

It  follows  that  the  segments  OA  and  AD  are  complementary, 

i.e.  n(0A)  +  n(AD)  =  5. 

With  the  usual  notation  (cf.  §  27)  we  take  x'  as  the  comple- 
mentary segment  to  x. 

Therefore,  if OA  =  x,     AC  =  S-- 

It  follows  that         Se-*  =  s  =  Stanh-.     (§56(4).) 

Fio.  72. 

Therefore  for  complementary  segments  we  have 

e-a;  =  tanhl. 
2 

But       sinh  x  = gx_  g-a; 

1  /  x' .'.   sinh  a;  =  ̂   (  coth  ̂   -  tanh 

x'\_      1 

2  /     sinh  x'  ~ 
cosech  x'. 

.'.  cosh  x  =  \/l+  sinh'' a;  =  coth  x'. 
.'.   tanh  X  =  sech  x'  and  coth  x  =  cosh  a;'. 

Also     sech  a;  =  tanh  x'  and  cosech  a;  =  sinh  x'. 
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§  59.  The  Equations  connecting  the  Sides  and  Angles 
of  a  Right- Angled  Triangle. 

Let  ABC  be  any  right-angled  triangle,  C  being  the  right 
angle. 

Produce  the  side  AC  througb  C,  and  draw  the  parallel  BO 
through  B  to  AC. 

Also  produce  AB  through  B  to  L,  where  AL  is  the  segment  I, 

such  that         x  =  U{l).     [\  =  ̂ BAC     (of.  Fig.  37).] 
Through  L  draw  Lfi  parallel  to  B12  and  AC. 
Let  the  Limiting-Curves  through  B  and  L,  with  centre  at 

fi,  meet  the  axes  at  B',  D,  and  D'  (Fig.  73). 
Let  the  arcs  BB',  DD',  LD  be  denoted  by  s,  s^,  s^,  and  let 

the  segment  BD=«. 
Then  we  have 

S  sinh  a  =  s  =  s^e"      [§  57  (2).] 

Si  +  52  =  Stanh/,     [§56(4).] 

§2  =  8  tanh  BL  =  S  tanh  (I  -  c), 
e'*  =  coshBL  =  cosh(l-c).     [§56(3).] 

It  follows  that 

sinh  a  =  cosh  (I  -  c){tanh  I  -  tanh  (l-c)} 

sinh  I  cosh  (l-c)-  cosh  I  sinh  (I  -  c) 
cosh  I 

=  sinh  c/cosh  Z. 
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Thus  sinh  c  =  sinh  a  cosh  1   1. 

(Hypothenuse,  side,  and  opposite  angle.) 

From  this  formula,  connecting  the  hypothenuse,  a  side,  and 
the  opposite  angle  of  any  right-angled  triangle,  we  can  obtain 
the  relations  between  all  the  other  elements,  by  using  the 
associated  triangles  of  §  36. 

We  know  that,  starting  with  a  right-angled  triangle  in 
which  the  elements  are 

a,  ̂,  c,  (X,  /u),    (1) 

we  obtain  successively  triangles  with  the  elements 

*',  b,  I,  (y.  f-oc),   (2) 

o',  m',  a',  (\,  |-/8),   (3) 

I'y  C,  b',  (|-a,  fij,   (4) 

I',  a,  m,  (y,  ̂-pj   (5) Fromfcdid  second  triangle 

we  have  sinh  I  =  sinh  m'  cosh  c 

=  ̂ —. —  cosh  c,  by  §  58. 

smhm  -^  ̂ 
Therefore  cosh  c  =  sinh  1  sinh  m   II. 

(Hypothenuse  and  two  angles.) 
Also,  from  the  same  triangle  (by  I.), 

sinh  I  =  sinh  b  cosh  a' 
=  sinh  b  coth  a. 

Therefore  tanha  =  ̂ ^r-^   Ill) 
(Two  sides  and  an  angle.) 

Now,  since  cosh  c  =  sinh  I  sinh  m, 
.  ,         sinh  b     sinh  a 

we  have  cosh  c  =  — = —  x  , — z-^. tanh  a    tanh  b 
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Therefore  cosh  c  =  cosh  a  cosh  b   IV. 

(Hypothenuse  and  two  sides.) 

Further,  cosh  a  =  sinh  I  ̂!"j^?     (by  III. ) 

.  ,  jcoshm     ,,      T  \ 
=  sinh(   — =-     (bv  1.). 

cosh  / 

Therefore  cosh  a  =  tanh  1  cosh  m   V. 

(Side  and  two  angles.) 

Applying  (IV.)  to  the  triangle 

c',  ?/i',  a',-U,  \-p\^ 

we  have  cosh  a  =  cosh  c'  cosh  m', 

and  this  gives  tanh  a  =  tanh  m  tanh  c   VI. 
(Hypothenuse,  a  side,  and  included  angle.) 

These  six  formulae  are  all  given  by  a  rule  similar  to  Napier's 
Rules  in  Spherical  Trigonometry  : 

(i)  Ld  the,  letters  a',  1,  c,  m,  b'  he  written  one  at  each  of  the  sides 
of  a  pentagon  taken  in  order.     Then 

cosh  of  the  middle  part  =  the  product  of  the  hyperbolic  sines  of  the 
adjacent  parts 

and 

cosh  of  the  middle  part  =  the  product  of  the  hyperbolic  cotangents 
of  the  opposite  parts. 



59,  60]     THE  OBLIQUE-ANGLED  TRIANGLE  103 

§  60.  The  Equations  for  an  Oblique- Angled  Triangle. 
In  the  case  of  the  Oblique-Angled  Triangle  ABC,  the  sides 

opposite  the  angular  points  A,  B,  and  C  will  be  denoted  hy  a,  b, 
and  c,  as  usual ;  but  the  angles  at  A,  B,  and  C  will  be  denoted 
by  X,  /i,  and  v. 

With  this  notation  the  distance  of  parallelism  for  the  angle 
at  A  will  be  /. 

We  proceed  to  prove  that 

I.         sinh  a :  sinh  b  :  sinh  c  =  sech  1 :  sech.  m  :  sech  n. 

This  corresponds  to  the  Sine  Rule  of  ordinary  Trigo- 
nometry. 

Via.  75. 

Let  ABC  be  all  acute  angles. 
From  an  angular  point,  say  A,  draw  the  perpendicular  AD  to 

the  opposite  side.  We  then  obtain  two  right-angled  triangles 
ABD  and  ACD,  as  in  Fig.  75. 

Writing  AD=p,  we  have  (by  §59,  I.) 
sinh  c 

sinh^  ■■ 
,  from  the  triangle  ABD, 

and 

cosh  m 

sinh  p  =      ,     ,  from  the  triangle  ACD. ^     cosh  n 
Thus  we  have 

sinh  b  :  sinh  c  =  sech  m :  sech  n. 

Taking  another  angular  point— say  B — and  proceeding  in 
the  same  way,  we  would  have 

sinh  a :  sinh  c  =  sech  I :  sech  n. 
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Therefore 

sinh  a  :  sinh  h  :  sinh  c  =  sech  I :  sech  m  :  sech  n. 

If  one  of  tlie  angles  is  obtuse,  we  obtain  the  same  result, 

using  the  notation  ri(  -  a;)  =  tt  -  n(x). 
For  the  right-angled  triangle,  the  result  follows  from§  59, 1. 

II.  We  shall  now  prove  the  theorem  corresponding  to  the 
Cosine  Rule  of  ordinary  Trigonometry. 

We  take  in  the  fii'st  place  the  case  when  B  and  C  are  acute 
angles. 

From  A  draw  the  perpendicular  AD  to  BC. 

Let        AD=p,  CD  =  5',  and  BD  =  a-^  (Fig.  75). 
Then,  from  the  triangle  ABD  we  have 

coshc  =  cosh(a-g)cosh^  (§59,  IV.), 

and  from  the  triangle  ACD  we  have 

cosh  b  =  cosh^  cosh  q. 
Also,  we  have 

tanh(a  -q)  =  tanh  c  tanh  m  (§  59,  VI.), 

mi       f  T-  7     cosh  c  cosh  q 
Therefore  cosh  o  =   r-.   ^ 

cosh(a-g') 

=  cosh  c(cosh  a  cosh  (a~q)  -  sinh  a  sinh  (a  -  q)) 
cosh  {a  -  q) 

=  cosh  a  cosh  c  -  sinh  a  cosh  c  tanh  {a  -  q) 
=  cosh  a  cosh  c  -  sinh  a  sinh  c  tanh  m. 

If  the  angle  B  is  obtuse,  so  that  D  falls  on  CB  produced, 
the  same  result  follows,  provided  account  is  taken  of  the 

notation  Ii{-x)  =  nr -n{x). 
If  the  angle  B  is  a  right  angle,  the  result  follows  from 

§  59,  IV. 
We  are  thus  brought  to  the  Cosine  Formula,  which  may 

be  put  in  the  form  : 

cosh  a  =  cosli  b  cosli  c  -  sinh  b  sinh  c  tanh  1, 

§  61.  The  Measurement  of  Angles. 
Up  till  this  stage,  except  in  §§  51-2,  there  has  been  no 

need  to    introduce   a   unit   of   angle   into    our    work.     The 
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equation  a  =  H  (a),  connecting  the  segment  and  the  correspond- 
ing angle  of  parallelism,  has  had  only  a  geometrical  significance. 

In  it  oc  has  stood  for  a  certain  definite  acute  angle,  which  has 
the  property  that  the  perpendicular  to  one  of  its  bounding  lines, 
at  a  distance  a  from  the  angular  point,  is  parallel  to  the  other 
bounding  line. 

When  it  comes  to  assigning  numerical  values  to  angles,  the 
choice  of  one  number  is  sufficient,  if,  in  addition,  the  angle 

zero  is  denoted  by  O.     In  the  Non-Euclidean  Trigonometry 

we  shall  assign  the  number  -  to  the  right  angle.    All  other 

angles  will  have  the  numerical  values  proper  to  them  on  this 
scale. 

In  the  rest  of  this  work,  when  we  use  the  equation  oc  =  11  (a), 
both  oc  and  a  will  be  numbers,  the  one  the  measure  of  the  angle 
on  this  scale,  the  other  the  measure  of  the  segment  on  one  of 
the  scales  agreed  upon  below  (§  55),  in  which  the  unit  segment 
is  the  distance  apart  of  two  concentric  Limiting-Curves,  when 

1 

the  ratio  of  the  arcs  cut  ofE  by  two  of  their  axes  is  e  or  e*. 
It  should  perhaps  be  remarked  that  in  dealing  with  the 

trigonometrical  formulae  in  the  previous  sections  the  measure 
of  the  segment,  and  not  the  segment  itself,  is  what  we  have 
meant  to  denote  by  the  letters  in  the  different  equations. 

§  62.  The  Trigonometrical  Functions  of  the  Angle. 
The  Trigonometrical  Functions 

sinoc,  cosoc,  tanoc,  etc., 

are  defined  by  the  equations  : 
la  -  ia  ia  -  ia, 

e    -e  e    +e 
sin  a  =  — TT- — >  cos  oc  = 

sin  oc  1 
tan  a.  =   ,  cot  oc  = cos  OL  tan  a 

1  1 
secoc  =   -,  cosecoc  = cos  a  sm  oc 

The  fundamental  equation  of  the  Hyperbolic  Trigonometry 

^^  tanha  =  cosa, 
when  a  =  n  (a). 
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We  proceed  to  obtain  this  relation  :  * 
Consider  the  function /(oc)  defined  l>y  the  equation 

tanh  a  =  cos/(a,). 

and  let  us  write  a  =  A(a.). 

When  0.  =  -^,  a  =  0,  tanha  =  0,  cos/(a)  =  0;  i.e.fl-^j  =  ~. 

When  a  =  0,  a  =  30  ,  tanh  a  =  1,  cos/ (a)  =  1  ;  i.e.  /(O)  =  0. 

Further,  as  a  increases  from  0  to  go  ,  /(oc)  diminishes  con 

tinuously  from  —  to  0. 

Next  consider  a  triangle  ABC — not  right-angled — and  let 
the  perpendicular  from  B  cut  the  base  AC  at  D.  Let  the 
elements  of  the  triangle  ABD  be  denoted  by  AB  =  c,  BD  =  a, 
DA  =  ft,  z.ABD  =  yu,  ̂ BAD  =  X.  Also  let  the  elements  of  the 
triangle  BDC  be  denoted  by  BC  =  Cj,  CD  =  bj^,  DB  =  a^, 
lBCD  =  \,  LDBC  =  jUL^,  FH=|^ 

As  the  side  BD  is  common,  a 
Tr^.)=^(*' 

Fio.  76. 

Then,  from  the  Cosine  Formula,  §  60,  we  have 

,      //_  cosh  c  cosh  Cj  -  cosh  (b  +  bj) tann  ut  =   ;  i      ;  i  • suih  c  smh  Cj ir^v-  ̂ *^ 
*  The  method  of  this  and  the  preceding  sections  is  due  to  Liebmann, 

"  Elementare  Ableitimg  der  nichteuklidischen  Trigonometrie,"  Ber. 
d.  k.  aiichs.  Oes.  d.  Wiss.  Math.  Phys.  Klasse,  vol.  lix.  p.  187  (1907),  and 
Nichteuklidische  Geometrie,  2nd  ed.  p.  71.  Another  method,  also  inde- 

pendent of  the  geometry  of  space,  is  to  be  found  in  Gerard's  work,  and 
in  the  paper  by  Young  referred  to  below,  p.  136. 
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With  the  notation  of  this  section,  we  have 

cosf{fjL  + fjL^)  =  tanh  A  (jut.  + ju^) 

cosh  c cosh  Cj  -  cosh  (b  +  b^) 
sinh  c  sinh  q 

,,  ,  cosh  i  cosh  ft,     sinh  ft  sinh  6, 
=  COth  C  COth  C,   ;-^j   ^-,   ^^j   ;— r — ■ . 

'      snih  c  snih  Cj     sinh  c  sinh  Cj 
But  we  know  that 

tanh  a  =  tanh  c  tanh  m,     [§  59,  VL] 

i.e.  tanh  a  =  tanh  c  cos/(yu). 

Similarly  tanh  a^  =  tanh  c^  cos/(^j). 

Therefore     coth  c  coth  f  j  =  coth^a  cosf{/j.)  cos/(/Xj). 

Further,  from  §  59,  L,  we  obtain 

sinh  6         1  •    /■/  \ 
•   ,     =  — r —  =  sin/  (fX), 

sinh  c     cosh  m         -^  v*-  /' 
sinh  ftj  _       1       _  •    /■/    \ 

sinh  Cj     cosh m^  ~      ''  ̂̂ ^'' 

Therefore        -r-r — .  ,    ̂  =  sin/(u)  sin/(ui ). 

sinh  c  sinh  Cj  "^  ̂'^^      •'  ̂'^^' 
We  are  left  with  the  term 

cosh  b  cosh  ftj 

sinh  c  sinh  Cj  * 
But,  from  §  59,  VL  and  IV.,  we  have 

tanh  m  _      cosh  c       _  cosh  b 

.  sinh  a     sinh  c  cosh  a     sinh  c ' 

Therefore    cosh  ft  cosh  b^  ̂  cos/(/i)  cos  fifx^)  _ 
sinh  c  sinh  Cj  sinh-^a 

Thus  we  obtain 

cos/(/i  +  ̂ aj)  =  coth^a  cos/(/oi)  cos/(/ij) 

-  cosech-rt  cosf{/u)  cos  f(fjL^)  -  sin/(/A)  sin/(jUj) 

=  cos/(/a)  cosf{^{)  -  sin/(yu)  sin/(/Xi) 

=  cos[/(ya)+/(Mi)]. 
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But  when  /x  =  /u^  =  ̂ t  +  /x^  =  0, 

/(m)=/(Mi)=/(a^  +  /«i)  =  0. 
Therefore  we  have 

This  is  a  functional  equation  from  which  the  continuous 
function  /(/x)  is  to  be  derived. 

It  may  be  written     f{x  +  y)  =f{x)  +f{y), 

with  /(0)  =  0,     /(f)  =  f- 
Thus  sve  have 

f(x  +  h)-f{x)_f(j/  +  h)-f{y) 
h  h 

Proceeding  to  the  limit 

Thus  / '  (^)  =  constant. 
Therefore  f(x)  =  Aa;  +  B. 

The  values  of /(O)  and/(^j  determine  A  and  B,  so  that  we 

have  finally  ^^'^ 

f{x)  =  x. Thus  we  are  led  to  the  desired  equation 

tanh  a  =  cos  a. 

§  63.    From  the  result  proved  in  last  section, 
tanha  =  cosa, 

it  follows  immediately  that 

sinha  =  cotcx., 

cosha  =  coseca, 

cotha  =  seccx., 

sech  a  =  sin  a, 

cosech  a  =  tan  oc. 
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If  we  insert  these  values  in  the  Trigonometrical  Formulae 
of  §  59,  we  obtain  : 

sinh  a  =  sinh  c  sin  \    from  sinh  c  =  sinh  a  cosh  I. 

sinh  6  =  tanh  a  cot  A      ,,     sinh  &  =  tanh  a  sinh  Z. 

cosh  c  —  cot  X  cot  /x       „     cosh  c  =  sinh  I  sinh  m. 
cosh  c  =  cosh  a  cosh  6    „     cosh  c  =  cosh  a  cosh  6. 

cosX    =  cosh  a  sin  y(jt      „     cosh  a  =  tanh  /  cosh  w. 

tanh  a  =  tanh  c  cos  yu      „     tanh  a  =  tanh  m  tanh  c. 

And  the  formulae  of  §  60  for  the  Oblique- Angled  Triangle 
become        gjj^j^  ̂   .  gjj^j^  ̂   .  ̂ ^^j^  c  =  sin  X  :  sin  /x  :  sin  v, 

cosh  a  =  cosh  h  cosh  c  -  sinh  h  sinh  c  cos  X. 

^Z/  ̂ Aese  results  agree  toith  the  coire^onding  formulae  in 
Spherical  Trigonometry,  when  X,  yu,  v  take  the  place  of  A,  B,  C,  and 
the  Hyperbolic  Functions  of  a,  b,  and  c  take  the  place  of  the  Circular 
Functions  of  a,  b,  and  c. 

§  64.  The  Angle  of  Parallelism. 
Since  tanh  a  =  cos  a. , 

we  have 1  -  cos  a.  _  1  -  tanh  a 

1  +  cos  a  ~  1  +  tanh  a' 

Therefore  tan^  —  =  e-^"^, 

and  tan^  =  e-« 

The  angle  oc  is  acute,  so  the  positive  sign  has  to  be  taken 
in  extracting  the  square  root. 

This  may  be  written 

tAn\'n.{p)  =  e-P* 
§65.  The  formulae  of  §§56-64  have  been  deduced  on  the 

understanding  that  the  unit  of  length  employed  is  the  distance 
between  concentric  Limiting-Curves  when  the  ratio  of  the  arcs 
cut  off  by  two  of  their  axes  is  e. 

*  This  result  is  given  by  Bolyai,  Appendix,  §  29,  and  by  Lobatschewsky 
in  his  various  books,  e.g.  Oeometrische  Untersuchungen  zur  Theorie  der 
Parallellinien,  §  36. 
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If  a  different  unit  is  adopted,  so  that  the  ratio  of  the  arc 
AB  to  the  arc  AjBj  is  a,  any  number  greater  than  unity,  we 
have  the  equation 

Sa  =  5a  ~  *  instead  of  Sx  =  se-  ̂ . 
I 

Putting  a  =  e*, 

this  gives  Sx  =  se   *. 

This  parameter  k  will  enter  into  all  the  equations  of  the 

preceding  sections,  so  that  sinhy,  cosh—,  etc.,  will  replace 
sinh  a,  cosh  a,  etc.  ^  "' 

And  the  equation  for  the  Angle  of  Parallelism  will  be 

_p 

tan|n
(^)  =  e"*. The  Euclidean  Geometry  now  appears  as  a  special  case  of 

the  Hyperbolic  Geometry,  for  if  we  let  k-^cc ,  the  formulae 
of  this  Non-Euclidean  Geometry  reduce  to  those  of  the 
Euclidean. 

In  the  first  place,  since 

tan|n(^)  =  e'<^, 
the  angle  of  parallelism  becomes  ̂   when  k->oo  . 

Further,  the  equations  connecting  the  sides  and  angles  of  a 
right-angled  triangle,  viz. 

sinh  -J-  =  sinh  ̂   sin  X, K  K 

sinh  -J-  =  tanh  ̂   cot  X, a;  k 

cosh  -r-  =  cot  X  cot  fjL, 

.    c  ,   a       .    b 

cosh  j^  =  cosh  -r  cosh  -r , 

cos  X  =  cosh  -r-  sin  jul, 

tanh  -r  =  tanh  -y-  cos  u, k  k 
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becom le sin  A  = 
a 

cotA  = 

h 

-    > 

a 

cot  A  cot  B  = 

=  1, 

a2  +  &2  = 

-c\ 

cosA  = 

=  sin  B, 

cosB  = 

a 

when we write  A,  B  for  \  and  /ul. 

From  the  Sine  and  Cosine  Formulae  for  the  Oblique-Angled 
Triangle  (§  63)  we  get  at  once, 

sin  A  :  sin  B  :  sin  C  =  a  :  &  :  c, 

a2  =  62  +  ̂ 2 -2k  cos  A. 

Again,  y,  y,  and  -  can  be  made  infinitesimals  by  letting  a,  6, 

and  c  tend  to  zero  instead  of  h  to  infinity.     In  this  case  again 
the  Euclidean  relations  are  obtained. 

This  result  can  be  stated  in  other  terms  : 

In  the  immediate  neighbourhood  of  a  -point  on  the  Hyperbolic    ,' 
Plane,  the  formulae  of  the  Euclidean  Geometry  hold  true. 

Or,  again  : 

The  Euclidean  Formulae  hold  true  in  Infinitesimal  Geometry 
on  the  Hyperbolic  Plane.  ■  J 

These  theorems  have  an  important  bearing  upon  the  question  • 
as  to  whether  the  Hyperbolic  Geometry  can  actually  represent 
the  external  relations  of  the  space  in  which  we  live.  The 
experimental  fact  that,  within  the  limits  of  error  to  which  all 
actual  observations  are  subject,  the  sum  of  the  angles  of  a 
triangle  is  two  right  angles  does  not  prove  that  the  geometry 
of  our  space  is  the  Euclidean  Geometry.  It  might  be  a  Hyper- 

bolic Geometry  in  which  the  parameter  k  was  very  great. 
The  Geometry  of  Bolyai  and  Lobatschewsky  can  be  made 

to  fit  in  with  the  facts  of  experience  by  taking  k  large  enough. 
The  Postulate  of  Euclid  reaches  the  same  end  by  another 
means.    It  is  a  better  means,  for  it  gives  a  simpler  geometry. 
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CHAPTEK  V. 

MEASUREMENTS   OF  LENGTH  AND   AREA,    WITH  THE 

AID   OF    THE   INFINITESIMAL  CALCULUS. 

§66.  In  this  Chapter  we  shall  apply  the  Trigonometrical 
Formulae  found  in  Chapter  IV.  to  the  measurements  of  Length 
and  Areas  of  Curves. 

The  first  thing  to  be  done  is  to  obtain  the  expression  for 
the  element  of  arc  of  a  plane  curve. 

The  Element  of  Arc  in  Cartesian  Coordinates. 
In  the  Euclidean  Plane 

ds^  =  dx^  +  dy"^. 
We  shall  now  prove  that  in  the  Hyperbolic  Plane 

ds2  =  cosh2  ?  dx2  +  dy2. k 

Let  P,  Q  be  the  points  {x,  y),  (x  +  Sx,  y  +  Sy). 
Draw  PM  and  QN  per-pendicular  to  the  axis  of  x. 
Then  0M=«,  MP^'^,  0[^=x  +  Sx,  and  NCl  =  y  +  Sy. 
From  P  draw  PH  perpendicular  to  QN. 
Let  PQ,  =  Ss,  PH=^,  HQ=^,  and  NH=2;. 
Then,  in  the  right-angled  triangle  PHQ, 

^§2  ̂ p2^q2*  ̂ Q  ̂ \iQ  lowest  order. 

*This  follows  from  §65,  where  we  have  proved  that  the  Euclidean 
Formulae  hold  in  Infinitesimal  Geometry.     If  we  start  with 

cosh  -r-  =  cosh  -^  cosh  ̂  , 

we  obtain  the  same  result  when  we  neglect  terms  above  the  lowest 
order. 
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Also>  in  the  quadrilateral  MNHP,  the  angles  at  M,  N,  and  H 
are  right  angles,  and  the  sides  beginning  at  M  are 

Sx,  z,  q,  y. 

These  correspond  to      a,  ni,  c,  I 

in  a  right-angled  triangle.     [Cf.  §  35.] 

M         N 
Fio.  77. 

Thus  we  have 

Therefore 

Also,  we  have 

.  ,  Sx 
smh   j-  = 

sinh 

cosh-v- 
k 

[Cf.§59,I.] 

q  =  cosh  -|-  Sx,  to  the  lowest  order. tC 

cosh  ̂   =  tanh  I  coth  j.     [Cf.  §  59,  V.,  and  §  58.] 

Therefore  y  and  z  diflFer  by  a  small  quantity  when  Sx  is  small. 

Put  z  =  y  +  r}. 

Then  we  have  tanh  ■^^7^  cosh  -r  «=  tanh  y . 
N.-E.O.  H 
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This  gives,  to  the  lowest  order, 

i.e.  ,y=-2^sinh|-cosh|-6a;2. 

Therefore  y  and  z  differ  by  a  quantity  of  the  second  order 
when  Sx  is  of  the  first  order. 

Now  p={y  +  ̂y)-  ̂• 

Therefore  p  =  Sy,  to  the  first  order. 

It  follows  from  Ss^  =p^  +  q"^,  that 

8s^  =  cosh^  1^  Sx^  +  Sy-,  to  the  lowest  order. 

Thus  we  have  shown  that  the  element  of  arc  in  Cartesian 
Coordinates  is  given  by 

ds2  =  cosli2|-dx2  +  dy2. k 

§  67.  Element  of  Arc  in  Polar  Coordinates. 
In  the  Euclidean  Plane  we  have  for  the  element  of  arc  in 

Polar  Coordinates,  the  equation 

We    proceed    to   find   the   corresponding  formula   in   the 
Hyperbolic  Plane. 

It  may  be  obtained  in  two  ways.    It  could  be  deduced  from 

ds^  —  cosh^  ̂   dx^  +  dyK 

k     .         ̂  
by  using  the  relations  connecting  x,  y  and  r,  Q ;  \'\7. 

[Cf.  §63.] 

cosh  T  = k =  cosh  r  cosh k 

tanh|       . A; 

sinh| 

y\ 

-    tan  a  = 

. 
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It  is  simpler  and  more   instructive   to   obtain   the   result 
directly. 

Let  P,  Q  be  the  points  (r,  0),  {r  +  Sr,  d  +  SO). 

Fio.  78. 

Draw  PN  perpendicular  to  OQ. 
Let  PQ  =  ̂>,  PN=^,  NQ=jo,  and  ON  =  z. 
Then,  from  the  triangle  PNQ,  we  have  as  before 

Also,  from  the  triangle  ONP,  we  have 

sinh  I  =  sinh  ̂   sin  66.     [§  63.] 

Therefore      q  =  k  sinh  j-  Sd,  to  the  lowest  order. fC 

Also,  we  have  from  the  same  triangle 

cosh  J,  =  cosh  -r  cosh  |. 

Therefore  r  and  z  are  nearly  equal. 

Put  »='2  +  f- 
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2ky' 

Then        cosh  y  +$  sinh  ̂   =  cosh  r ( 1  + k     k  k  k\ 

to  the  lowest  order. 

Thus  ^=91;  Goth-r,  to  the  lowest  order  ; 

i.e.r  and  z  differ  by  a  small  quantity  of  the  second  order, 
when  SO  is  of  the  first  order. 

But 

Therefore 

It  follows  that 

p  =  r  +  8r-z. 
p  =  dr,  to  the  first  order. 

Ss^  =  Sr^  +  k^  sinh^  y  SO^,  to  the  lowest  order. k 

Therefore ds2  =  dr2  +  k2sinh2~d02. k 

§68.  The  Element  of  Arc  in  Limiting- Curve  Co- 
ordinates. 

We  shall  now  describe  a  system  of  coordinates  peculiar  to 
the  Hyperbolic  Plane.  The  position  of  the  point  P  is  given 
by  the  Limiting-Curve  and  axis  on  which  it  lies,  the  Limiting- 

A 

Fio.  79. 

Curves  being  all  concentric,  their  common  centre  being  at 
infinity  on  the  axis  of  x. 

Let  the  Limiting-Curve   through  P  cut  off  a  segment  of 
length  ̂ (OPfl)  on  the  axis  of  x,  and  let  the  axis  through  P 
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cut  off  an  arc  of  length  ;;  (OA)  on  the  Limiting-Curve  through 
O.     (Fig.  79.) 

(^,  r})  are  called  the  Limiting-Curve  Coordinates  of  the 
point  P. 

Now  take  another  point  Q  with  coordinates 

Let  the  Limiting-Curve  through  Q  cut  the  axis  of  x  (the 
axis  through  O)  at  Qo. 

Let  the  Limiting-Curve  through  P  be  cut  by  the  axis  through 
Q  at  S,  and  the  Limiting-Curve  through  Q  by  the  axis  through 
P  in  R. 

Also,  let  A  and  B  be  the  points  where  the  Limiting-Curve 
through  O  is  cut  by  the  axes  through  P  and  Q. 

arcOA=;;,     arc  OB  =  r]  +  Stj, 

0P„  =  ̂ ,  0Q,==^+ Si. 

It    follows    from    the  properties  of  Concentric  Limiting- 
Curves  [§  55],  that 

arc  QR  =  Sr}e      ̂'    . _i 

.'.  arcQR  =  (5;/e   ̂ ,  to  the  first  order. 
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Further,  PR  =  8^,  and  we  write  PQ  =  Ss,  as  usual. 
Now  we  know  that 

PQ2  =  PR2  +  RQ2,  to  the  lowest  order. 

.'.   88"^  =  S^^  +  e   *  Sif,  to  the  lowest  order. 

Therefore  ds^  =  d^^  ̂q    k  ̂ ^2 
This  result  could  also  have  been  deduced  from  that  of 

§  66  by  using  the  equations  connecting  {x,  y)  and  (^,  rj).  [Cf. 
§57  and  §69  (3).] 

§  69.  We  apply  these  formulae  to  find  the  perimeter  of  a 
circle,  and  the  lengths  of  portions  of  the  Equidistant-Curve 
and  the  Limiting-Curve. 

1.  The  Perimeter  of  a  Circle  of  Radius  a. 

In  ds^  =  dr'^  +  ¥  sinh2  y  dQ"^, k 

we  put  r  —  a  and  dr  =  0. 

Thus  the  arc  from  0  =  0  to  6  =  6  is  given  by 

s  =  k  sinh  ̂   x6. 
k 

The  Perimeter  of  the  Circle  follows  by  putting  0  =  2x, 
and  is  given  by  the  expression 

I  27rk  sinh  r  • k 

2.  The  Equidistant-Curve  y  =  b. 

In  ds^  =  cosh^  |  dx^  +  dy\ 

we  put  i/  =  b  and  dij  =  0. 

Thus  the  arc  from  a;  =  0  to  x  =  x  is  given  by 

s  =  xcosli-. 
k 

3.  The  Limiting-Ciirve. 

The  equation  of  the  Limiting-Curve .  through  the  origin, 
with  its  centre  at  infinity  on  the  axis  of  x,  is 

e^=co8h|.     [Cf.  §57(1).] 
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In 
ds^=^cosh'^^dx'^  +  df-, 

we  put dx  =  tanh  j^  dy. 

Then 

fiJs2  =  ('l+sinh2|^rfy! 
Thus ds  =  cosh  j_  dy. 

119 

It  follows  that  s  =  k  sinh  - ,  when  we  measure  s  from  the 
origin.  ^ 

If  we  compare  this  result  with  §57  (2),  we  see  that  the 
length  of  the  arc  of  the  Limiting-Curve,  such  that  the  tangent 
at  one  end  is  parallel  to  the  axis  through  the  other,  is  unity, 
when  ̂ =1. 

§  70.  The  Element  of  Area. 
Let  the  arc  AB  be  an  arc  of  a  Limiting-Curve,  centre  12, 

such  that  the  tangent  at  B  is  parallel  to  the  axis  through  A. 

Then  we  know  that  the  length  of  the  arc  AB  is  k.     fS  57  (2) 
and  §69  (3).] 

1 

Also,  if  AAj  =  1,  the  length  of  the  arc  ̂ ■fi■^  =  ]ce    *; 

if   AiA2=  1,  the  length  of  the  arc  k.^B^  =  ke    *, 
and  so  on. 
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Let  the  area  of  ABB^Aj  be  denoted  by  A^. 
1 

Then  (cf.  §  48)  the  area  of  A^BjBgAg  will  be  A^e   *  ; 

that  of  AgBgBgAg  will  be  A^e    *,  etc. 

Thus  the  area  of  ABB„A„ 

L  i 

+  e 

1  _  i  n-l\ k  A.         J-  /?        * 

Therefore,  as  7i->  oo,  this  area  approaches  a  limit,  namely 

A„ 

A  = 

This  is  the  area  of  the  region  bounded  by  two  axes  of  a 
Limiting-Curve  and  an  arc  such  that  the  tangent  at  one  end 
is  parallel  to  the  axis  through  the  other  end. 

The  unit  of  area  has  not  yet  been  chosen  in  this  discussion. 
We  now  fix  it  so  that  the  area  denoted  above  by  A  will  be 
k^  the  unit  of  area. 

With  this  measurement 

Also  the  area  of  ABA,iB,i  will  be  k\l  -  e   ̂). 

Next,  let  P  be  a  point  on  A  B,  or  A  B  produced,  such  that  the 
arc  AP=s. 

Then  area  APPjAj  :  area  ABBjAj =s  :k, 

and  area  APP„An=^sVl -e  ̂ ). 

Taking  x,  first,  a  rational  number,  and  then  treating  the 
irrational  number  x  as  the  limit  of  a  sequence  of  rational 
numbers,  we  find  from  the  above  that  the  area  bounded  by  the 
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arcs  of  two  Concentric  Limiting-Curves,  distant  x  apart,  the 
larger  one  being  of  length  s,  is  equal  to 

Fio.  82. 

From  this  result  the  expression  for  the  element  of  area  in 
Limiting-Curve  Coordinates  will  now  be  deduced. 

Let  P,  Q,  R  and  S  be  the  points 

a,  ri),  (i+Si,  rj  +  Sr,),  (i+S^,  r,),  and  (^,  n  +  Sf})  [cf .  Fig.  80]. 
_i 

Then  arc  PS  =  87;e   *,     [§68] 

and  PR  =  ̂^. 

Therefore  the  area  PQRS  is  given  by 
-1/        JJ\ 

kSrje   *(l-e    V- 

When  S^,  St]  are  small,  this  becomes,  to  the  lowest  order, 
i 

e  ̂ SiSri. 

Therefore  the  element  of  area  in  LAmUing-Cv/rve  Coordinates  is 
i 

e   *  d^drj. 

This  is  equal  to  the  product  of  the  two  perpendicular  chords 
PR  and  PS  which  bound  the  infinitesimal  element,  and  with 
these  units  the  expression  for  the  element  of  area  is  the  same 
as  that  in  the  Euclidean  Plane. 
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§  71.  The  Element  of  Area  in  Cartesian  Coordinates. 
This  result  can  be  obtained  from  the  expression  found  in 

§  70,  by  using  the  methods  of  the  Calculup. 

We  have 
j7  =  A;tanh^e^ 

e  '^   =coshT- k 
[Cf.  §  57 

and  §  69  (3).] 

These  are  the  equations  connecting  (x,  y)  and  (A  j/). 
To  find  the  element  of  area  in  Cartesian  Coordinates  (x,  y), 

we  need  only  replace 

by 

lco8h'4^^Jxdy, 
k  d{x,  y)        ̂  After  reduction,  we  obtain 

cosh  \  dx  dy. 
k 

s 

p 

y 

• 

R 

0           X           ^ ̂ 

N        ̂  
Fio.  83. 

The  result,  however,  can  be  found  directly  as  follows : 
Let  P,  Q  be  the  points  (?;,  y),  {x  +  &,  y  +  <5//). 
Let  the  Equidistant-Curves  through   P  and  Q  with   Qx  as 

base-line  meet  the  ordinates  at  R  and  S  (Fig.  83). 
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The  figure  PRQS  becomes  a  i-ectangle  in  the  limit,  and  we 
can  use  the  Euclidean  expression  for  its  area  (cf.  i^  70). 

Then  arc  PR  =  cosh  |  Sx     [§  69  (2)] 
and  PS  =  Sy. 

Hence  the  element  of  area  in  Cartesian  Com'dinates  is 

cosh  ~  dx  dy. 
k 

§  72.  The  Element  of  Area  in  Polar  Coordinates. 
As  before,  the  result  can  be  obtained  by  using  the  equations 

cosh  J  =  cosh  J-  cosh  ̂  , 

tan0  = 

tanh  ̂  
k 

sinh 

which  connect  (r,  6)  and  (x,  y). 

Fig.  84. 

But  it  is  simpler  to  obtain  the  element  of  area  directly 
from  the  geometrical  figure  : 

Let  P,  Q  be  the  points  (r,  Q),  (r  +  Sr,  0  +  SO). 
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Let  the  circles  through  P  and  Q  cut  the  radii  at  S  and  R, 

forming  the  element  PRQS. 

Then  we  have  arc  PS  =  k  sinh  ̂   ̂0,  by  §  69  ( 1 ), 
PR  =  Sr. 

The  figure  PRQS  becomes  a  rectangle  in  the  limit. 

Therefore  the  element  of  area  in  Polar  Coo7-dinates  is 

ksinhidrdO. k 

The  area  of  the  circle  of  radius  a  is  thus  given  by 

I    I      k  sinh  -J-  dr  dO, 
Jo  Jo  fc 

which  becomes 

or 

27rA;2(coshT--  1  j, 

4:7rk^smh.^  -^. 
2k 

§  73.  The  Area  of  a  Triangle  and  of  a  Quadrilateral 
with  three  Right  Angles. 

Fig.  85. 

Let  OABC  be  a  quadrilateral  with  the  sides  a,  m',  c,  I,  as  in 
Fig.  85,  and  the  angles  at  O,  A,  C  right  angles ;  A  lying  on 
the  axis  of  z  and  C  on  the  axis  of  y. 
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Let  P  be  any  point  on  CB,  and  PM  the  perpendicular  from 
P  to  OA. 

Then,  from  the  associated  right-angled  triangle  for  the 
quadrilateral  OMPC,  we  have 

tanh|cosh-r  =  coshT.     (§59,  V.) 

But  the  area  of  the  quadrilateral  OABC  is  given  by 

\    I    cosh  I  dx  dy. 

Denote  this  by  S. 

Integrating,  we  have 

=  k\   si 
Jo 

sinh  ~  dx k 

{ 
COsh-r 

oV'^ 

'.dx 

sinh^  ̂   -  sinh^  -7 

sinh  — 
=  A;-sin  ̂  

sinh  -r- 

sinh  ̂  

..    8inTr,  =   k^      •  -um 
sinh  — k 

But,  from  the  associated  right-angled  triangle,  we  have 

h      ̂ ^"^  T- tanhy  =   1.     (§59,  IIL) 

sinh-j- k 

And  tanh|  =  cos^.        (§62.) 
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Therefore 

Therefore 

sin 

Thus  the  area  of  a  quadrilateral  with  three  right  angles  and  an 
acute  angle  /3  is  equal  to  .  . 

on  this  scale. 

But  a  triangle  ABC  (Fig.  86)  is  equal  in  area  to  Saccheri's 
Quadrilateral  BCC'B',  in  which  the  angles  at  B  and  C  are  each 
equal  to  half  the  sum  of  the  angles  of  the  triangle. 

The  triangle  is  thus  equal  in  area  to  twice  the  quadrilateral 
with  three  right  angles,  and  an  acute  angle  equal  to  J(A  +  B  +  C). 

Using  the  result  just  found,  the  area  of  the  triangle  ABC 
on  this  scale  of  measurement  is  » 

where 

F(7r-2;6), 

2/3  =  A  +  B  +  C. 

In  other  words,  the  area  of  the  triangle  is  the  product  of 
k"^  and  its  defect. 

Comparing  this  with  §  52,  we  see  why  the  particular  unit  of 
area  was  chosen  in  §  70. 



CHAPTER  VI. 

THE   ELLIPTIC   PLANE   GEOMETRY. 

§  74.  In  Hubert's  Parallel  Postulate,  through  any  point  A 
outside  any  line  b,  two  parallels  a^  and  a^  can  be  drawn  to  the 
line,  and  these  separate  the  lines  in  the  plane  of  the  parallels 
which  cut  6  from  the  lines  which  do  not  cut  it. 

On  the  Euclidean  Hypothesis,  the  two  rays  a^  and  02 
together  form  one  and  the  same  line,  and  there  is  but  one 
parallel  to  any  line  from  a  point  outside  it. 

There  is  still  another  case  to  be  examined,  namely  that  in 
which  all  the  rays  through  A  cut  the  line  6.  In  this  case  there 
is  no  parallel  through  a  point  outside  a  line  to  that  line. 

We  shall  see  that  this  corresponds  to  the  Hypothesis  of  the 
Obtuse  Angle  of  Saccheri,  in  accordance  with  which  the  sum  of 
the  angles  of  a  triangle  exceeds  two  right  angles.  Saccheri  and 
Legendre  were  able  to  rule  this  case  out  as  untrue  ;  but  their 
argument  depended  upon  the  assumption  that  a  straight  line 
was  infinite  in  length.  Riemaim  was  the  first  to  recognise  that 
a  system  of  geometry  compatible  with  the  Hypothesis  of  the 
Obtuse  Angle  became  possible  when,  for  the  hypothesis  that 
the  straight  line  is  infinite,  was  substituted  the  more  general 
one  that  it  is  endless  or  unbounded.     (Cf.  §§  19,  20.) 

The  geometry  built  up  on  the  assumption  that  a  straight 
line  is  unbounded,  but  not  infinite,  and  that  no  parallel  can  be 
drawn  to  a  straight  line  from  a  point  outside  it  will  now  be 
treated  in  the  same  manner  in  which  the  Hyperbolic  Geometry 
was  discussed. 

§  75.  We  proceed  to  the  development  of  Plane  Geometry 
when  the  assumptions 

(i)  All  straight  lines  intersect  each  other, 

(ii)  The  straight  line  is  not  infinite, 
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take  tlie  place  of  the  Parallel  Hypothesis  of  Euclid  and  his 
implicit  assumption  that  the  line  is  infinite. 

Let  A  and  B  be  any  two  points  on  a  given  line  L. 
The  perpendiculars  at  A  and  B  to  the  line  must  intersect, 

by  assumption  (i). 
Let  them  meet  at  the  point  O. 
Since  ̂ OAB  =  z.OBA,  we  have  OA  =  OB. 
At  O  make  ̂ BOQ  =  ̂ AOB  (Fig.  87),  and  produce  OQ  to 

cut  the  line  L  at  P. 

Then  AB  =  BP  and  Z.OPA  is  a  right  angle. 
By  repeating  this  construction,  we  show  that  if  P  is  a  point 

on  AB  produced  through  B,  such  that  AP  =  m .  AB,  the  line  OP 
is  perpendicular  to  L  and  equal  to  OA  and  OB.  The  same 
holds  for  points  on  AB  produced  through  A,  such  that 
BP  =  m.AB.  In  each  case  m  is  supposed  to  be  a  positive 
integer. 

Now,  let  0  be  a  point  on  AB,  such  that  AB  =m .  AC,  m  being 
a  positive  integer.  The  perpendicular  at  0  to  L  must  pass 

through  the  point  O,  since  if  it  met  OA  at  O'  the  above  argu- 
ment shows  that  O'B  must  be  perpendicular  to  L  and  coincide with  OB. 

It  follows  that  if  P  is  any  point  on  the  line  L,  such  that 

AP  =  — .AB,  m  and  n  being  any  two  positive  integers,  OP  is n 

perpendicular  to  the  line  L  and  equal  to  OA  and  OB. 
The  case  when  the  ratio  AP  :  AB  is  incommensurable  would 

be  deduced  from  the  above  by  proceeding  to  the  limit. 
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Now,  all  points  on  the  line  are  included  in  this  argument, 
80  that  the  perpendiculars  at  all  points  of  the  line  L  pass 
through  the  same  point. 

Now,  let  L'  be  another  line  and  A',  B'  two  points  upon  it, 
such  that  the  segment  AB  =  A'B'. 

The  perpendiculars  at  A',  B'  meet  in  a  point,  which  we  shall 
call  O'. 

Pio.  88. 

The  triangles  AOB  and  A'O'B'  have  a  side  of  the  one  equal 
to  a  side  of  the  other,  and  the  two  angles  adjacent  to  the  sides 
are  equal,  each  to  each. 

It  follows  that  0'A'=OA. 
Thus  we  have  shown  that  the  perpendiculars  at  all  points  on 

any  line  meet  at  a  point  which  is  at  a  constant  distance  from 
the  line. 

The  point  will  be  called  the  Pole  of  the  Line. 

§76.   Now,  in  Fig.  89,  produce  OA  to  0^,  where  OiA=OA. 
Join  OjB. 
Then,  from  the  triangles  OAB  and  OiAB,  it  follows  that 

^OiBA  =  z.OBA  =  a  right  angle. 
Thus  OB  and  O^B  are  in  a  straight  lige. 
Also,  AOj  produced  must  intersect  AB  at  a  point  C,  such  that 

O^C  is  perpendicular  to  AB,  and  OC  will  be  also  perpendicular 
to  AB. 

Thus  OAOj  produced  returns  to  O,  and  the  line  is  endless  or 
unbounded. 

Its  length  is  four  times  the  distance  of  the  pole  of  the  line 
from  the  given  line. 
N.-E.G.  z 
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We  shall  denote  the  constant  distance  OA  by  ̂ ,  so  that 
with  this  notation  the  length  of  the  line  is  4^. 

Thus  two  other  assumptions  of  the  ordinary  geometry  are 
contradicted  in  this  geometry  : 

Two  straight  lines  enclose  a  space ; 

Two  points  do  not  always  determine  a  straight  line. 

Through  the  two  poles  of  a  line  an  infinite  number  of  lines 
can  be  dxawn,  just  as  through  the  two  ends  of  a  diameter  of  a 
sphere  an  infinite  number  of  great  circles  can  be  drawn. 

It  is  now  clear  that  the  argument  which  Euclid  employs  in 
I.  16  is  not  valid  in  this  geometry.  The  exterior  angle  of  a 
triangle  is  greater  than  either  of  the  interior  and  opposite 
angles  only  when  the  corresponding  median  is  inferior  to  W. 
If  this  median  is  equal  to  ̂ ,  the  exterior  angle  is  equal  to 
the  interior  angle  considered  ;  if  it  is  greater  than  %,  the 
exterior  angle  is  less  than  the  interior  angle  considered. 

Also,  as  I.  16  was  essential  to  the  proof  of  I.  27,  it  is  now 
evident  why  in  this  geometry  that  theorem  does  not  hold.  Of 
course,  if  I.  16  did  hold,  there  would  have  to  be  at  least  one 

parallel  to  a  line  through  any  point  outside  it.    In  a  limited 
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region  of  the  plane,  I.  16  does  hold,  and  theorems  dependent 
upon  it  are  true  in  such  a  region. 

The  plane  of  this  geometry  has  properties  completely  analo- 
gous to  those  possessed  by  the  surface  of  a  sphere.  The  great 

circles  of  the  sphere  correspond  to  the  straight  lines  of  the 
plane.  Like  the  line,  they  are  endless.  Any  two  points  on 
the  surface  of  the  sphere  determine  a  great  circle,  provided  the 
points  are  not  the  opposite  ends  of  a  diameter.  The  great 
circles  through  any  point  on  the  sphere  intersect  all  other 
great  circles. 

We  shall  find  that  this  analogy  can  be  carried  further.  The 
sum  of  the  angles  of  a  spherical  triangle  is  greater  than  two 
right  angles.  The  sum  of  the  angles  of  a  triangle  in  this  plane 
is  greater  than  two  right  angles.  The  Spherical  Excess 
measures  the  area  of  spherical  triangles.  With  suitable  units 
the  area  of  plane  triangles  is  equal  to  their  excess.  Indeed 
the  formulae  of  this  Plane  Trigonometry,  as  we  shall  show 
later,  are  identical  with  the  formulae  of  ordinary  Spherical 

Trigonometry.*  ^c^*^ 
§  77.   It  must  be  remarked,  however,  that  in  the  argument 

of  §  76  it  is  assumed  that  the  point  0^  is  a  different  point  from 
p.    If  the  two  points  coincide,  the  plane  of  this  geometry  has 
a  wholly  different  character.    The  length  of  a  straight  line  is 
now  2^  instead  of  4^.    If  two  points  P,  Q  are  given  on  the 
plane,  and  any  arbitrary  straight  line,  we  can  pass  from  P  to.   (1 
Q  by  a  path  which  does  not  leave  the  plane,  and  does  not  cutn     / 
the  line.    In  other  words,  the  plane  is  not  divided  by  its  lines]      , 

into  two  parts.  * 
The  essential  difference  between  the  two  planes  is  that  in 

the  one  the  plane  has  the  character  of  a  two-sided  surface,  and 
in  the  other  it  has  the  character  of  a  one-sided  surface  .f  The 
first  plane — that  which  we  have  been  examining — is  usually 
called  the  spherical  plane  (or  double  elliptic  plane)  ;  the  second 
plane  is  usually  called  the  elliptic  (or  single  elliptic)  plane. 

The  geometries  which  can  be  developed  on  both  of  these 

planes  are  referred  to  as  Riemann's  (Non-Euclidean)  Geome- 
tries.   It  seems  probable  that  the  Spherical  Plane  was  the  only 

•  Spherical  Geometry  can  be  built  up  independently  of  the  Parallel 
Postulate,  so  it  is  not  necessary  to  say  ordinary  Spherical  Trigonometry 
when  referring  to  it. 

tCf.  Bonola,  loc.  cit.  §75. 
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form  in  his  mind.  The  Single  Elliptic  Plane  and  its  importance 

in  the  higher  treatment  of  the  Non-Euclidean  Geometries  were 
first  brought  to  light  by  Klein. 

§  78.  We  shall  now  show  that  this  geometry  corresponds  to 

Saccheri's  Hypothesis  of  the  Obtuse  Angle,  so  that  the  sum  of 
the  angles  of  a  triangle  is  always  greater  than  two  right  angles. 

The  following  theorem  enables  us  to  put  the  proof  concisely  : 

1.  In  any  triangle  ABC  in  which  ike  angle  C  is  a  right  angle, 
the  angle  A  is  less  than,  equal  to,  or  greater  than  a  right  angle, 
according  as  the  segment  BC  is  less  than,  equal  to,  or  greater  than  |£. 

Let  P  be  the  pole  of  the  side  AC. 

Then  P  lies  upon  BC,  and  PC  =  ̂ . 
Join  AP. 

Then  z.PAC  =  a  right  angle. 

If  CB  > CP,  then  l  BAC  >  l  PAC  ;  i.e.  l  BAC  > a  right  angle. 

If  CB  =  CP,  then  l  BAC  =^  PAC  ;  i.e.  l  BAC  =  a  right  angle. 
If  CB  < CP,  then  L  BAC  < l  PAC  ;  i.e.  L  BAC  <  a  right  angle. 

The  converse  also  holds. 

Now  consider  any  right-angled  triangle  ABC  in  which  C  is 
the  right  angle. 

If  either  of  the  sides  AC  or  BC  is  greater  than  or  equal  to 
^,  the  sum  of  the  angles  is  greater  than  two  right  angles  by 
the  above  theorem. 

If  both  sides  are  less  than  ̂ ,  from  D,  the  middle  point  of 
the  hypothenuse,  draw  DE  perpendicular  to  the  side  BC. 

Let  P  be  the  pole  of  DE. 
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Produce  ED  to  F,  so  that  ED  =  DF. 
Join  AF  and  PF.  p 
Then  the  triangles  ADF  and  DEB  are  congruent,  and  AF,  F^- 

lie  in  one  straight  line. 

But  we  know  that  z.PAC>a  right  angle,  since  CP  is  greater 

than  'g. 
Therefore  the  sum  of  the  angles  at  A  and  B  in  the  right- 

angled  triangle  ACB  is  greater  than  a  right  angle  in  this  case 
as  well  as  in  the  others. 

Thus  we  have  proved  that 

2.  In  any  right-angled  triangle  the  sum  of  the  angles  is  greater 
i  than  two  right  angles. 

Finally,  let  ABC  be  any  triangle  in 
which  none  of  the  angles  are  right  angles. 

We  need  only  consider  the  case  when 
two  of  the  angles  are  acute. 

Let  Z.ABC  and  Z.ACB  be  acute. 
From  A  draw  AD  perpendicular  to 

BC  ;    D  must  lie  on  the  segment  BC. 
Then,  from  (2), 

L  ABD  + .'_  BAD  >  a  right  angle 
and       z.DAC  +  ̂ ACD>a  right  angle. 

Fio.  92. 

It  follows  that  the  sum  of  the  angles  of  the  triangle  ABC  is 
greater  than  two  right  angles. 
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Thus  we  have  proved  that 

3.  The  sum  of  the  angles  of  any  triangle  is  greater  than  two 
right  angles. 

The  amount  by  which  the  sum  of  the  angles  of  a  triangle 
exceeds  two  right  angles  is  called  its  Excess. 

§  79.  Saccheri's  Quadrilateral,  and  the  Quadrilateral 
with  three  Right  Angles  and  one  Obtuse  Angle. 

Let  AC  and  BD  be  equal  perpendiculars  to  the  segment  AB. 

The  quadrilateral  ABDC  we  have  called  Saccheri's  Quadri- lateral. 

Let  E,  F  be  the  middle  points  of  AB  and  CD. 
We  know  that  EF  is  perpendicular  to  both  AB  and  CD  ;  and 

that  the  angles  ACD  and  BDC  are  equal. 
But  the  sum  of  the  angles  of  a  quadrilateral  must  be  greater 

than  four  right  angles,  since  it  is  made  up  of  two  triangles. 
It  follows  that  the  angles  at  C  and  D  are  obtuse. 

Fio.  94. 

Thus  the  Elliptic  Geometry  corresponds  to  Saccheri's  Hypothesis 
of  the  Obtuse  Angle. 

Now  let  ABDC  (Fig.  94)  be  a  quadrilateral  in  which  the  angles 
at  A,  B,  and  D  are  right  angles. 

The  angle  at  C  must  be  obtuse  by  §78. 

Each  of  the  two  sides  containing  the  obtuse  angle  in  a  quadri- 
lateral with  three  right  angles  is  less  than  the  side  opposite  to  it. 

To  prove  this,  we  proceed  as  follows  : 
If  AC  is  not  less  than  BD,  it  must  be  either  greater  than  it 

or  equal  to  it. 
But  we  know  that  if  AC  =  BD,  z.ACD=/LBDC,  which  is 

impossible,  as  one  is  obtuse  and  the  other  a  right  angle. 
If  AOBD,  cut  ofi  AE=BD,  and  join  ED. 
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Then  we  know  that     l  NED  =^  EDB. 

But  :lEDB  is  acute,  so  that  both  must  be  acute,  which  is 
impossible. 

Therefore  AC  must  be  less  than  BD. 

Again,  starting  with  AB  and  CD,  which  are  both  perpendicular 
to  BD,  we  find  that  CD  is  less  than  AB,  so  our  theorem  is  proved. 

We  shall  not  proceed  further  with  the  formal  development 
of  this  geometry.  There  is  no  Theory  of  Parallels,  for 
parallel  lines  do  not  exist  in  it.  There  is  only  one  kind  of 
circle,  the  locus  of  corresponding  points  upon  a  pencil  of 
straight  lines.  The  measurement  of  areas  follows  on  the  same 
lines  as  in  the  Hyperbolic  Geometry. 

Two  triangles  which  have  the  same  excess  have  equal  areas, 
and  conversely. 

The  area  of  a  triangle  is  proportional  to  its  excess. 
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CHAPTER  VII. 

THE   ELLIPTIC  PLANE   TRIGONOMETRY. 

§  80.  The  following  treatment  of  the  Elliptic  Trigonometry 
is  due  to  Gerard  and  Mansion.  Gerard  discussed  the  Hyper- 

bolic Trigonometry  on  these  lines.*  Mansion  showed  that 
the  method  discovered  by  Gerard  was  applicable  also  to  the 
Elliptic  case.f 

The  notation  to  be  employed  has  first  to  be  explained. 

Let  OA  and  OA'  be  two  lines  meeting  at  O  at  right  angles. 
Let  OL  be  a  third  line  making  an  acute  angle  with  OA  and  OA'. 

Let  P  be  any  point  upon  the  line  OL,  such  that  0P<^. 

Let  PM  and  PM'  be  the  perpendiculars  to  OA  and  OA'. 
We  denote  OM,  MP,  and  OP  by  x,  y,  and  r ;   and  OM'  and 

M'P  by  y'  and  x'. 

*  Gerard,  Sur  la  G^om4trie  won  euclidienne  (Paris,  1892).  Cf.  also 
Young,  "  On  the  Analytical  Basis  of  Non-Euclidian  Geometry,"  Amer. 
Journ.  of  Math.,  vol.  xxxiii.  p.  249  (1911) ;  and  Coolidge,  Non-Euclidean 
Geometry,  ch.  iv.  (Oxford,  1909). 

t  Mansion,  Principes  Fondamentarix  de  la  64om,6trie  non  euclidienne 
de  Riemann  (Paris,  1895). 
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§  81.   I.  //"  P,  Q  are  any  two  points  on  OL,  sicch  that OP<OQ<^, 

and  Pp,  Qq  are  perpendicular  to  OA,  then  LOPp<LOQ,q. 

We  know  that    LpPQ.  +  LPQ.q>2  right  angles. 

Also  L0Pp  +  ̂ pPQ.  =  2  right  angles. 

Therefore  z.  OPp  <  l  PQ.q. 

If  S  is  the  point  on  OL,  such  that  0S  =  ̂   and  Ss  is  per- 
pendicular to  OA,  we  know  that  AOSs  =  a  right  angle. 

It  follows  that  LQPp<LOQ/i<z.  right  angle. 

II.    "From  O  to  S,  J  continually  increases. 
Let  P  and  Q  be  any  two  points  upon  OL,  such  that 

OP<OQ<|C. 

Then  we  know  that  if  Pp  =  Qq,  we  must  have  LpPQ  =  i.  PQq, 
which  is  impossible  by  (I.). 

Again,  if  Pp>Q,q,  cut  ofi  pP'  =  qQ„  and  join  P'Q.     (Fig.  97.) 
Then  LpP'Q,  =  LP'Qq. 
But  LPQlq<a,  right  angle. 
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Therefore  l  jaP'Q  and  l  P'Qq  are  equal  acute  angles,  whicli  is 
impossible. 

Fio.  97 

Thus,  as  the  point  P  [moves  along  OL  from  O  towards  S,  y 
continually  increases. 

III.  From  O  to  S,  the  ratio  -  continually  increases. 

First,  consider  points  upon  OL  corresponding  to  equal  seg- 
nients  on  OA. 

q       r 
Fig.  98. 

Let  P,  Q,  R  be  three  such  points,  so  that 

jyq  =  qr. 
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Then  we  know  that  pP<qQi<rR. 

From  rR  cut  off  rP'  =  pP,  and  join  QP'. 
Then  we  have  PQ  =  QP'  and  -Q,Pp  =  i.QlP'r. 

Therefore  z.QRP'>^QP'R  and  QR<^QP'. 

Thus,  if  J>q  =  i^>    PQ>QR. 

Therefore,  for  equal  increments  of  x,  we  have  decreasing 
increments  of  r. 

It  follows  from  this  that  if  P  and  Q  are  any  two  points  upon 
OL,  such  that  OP<OQ<^,  and  OM,  ON  are  commensurable, 

OM       ON 

OP  '^  OQ' When  OM  and  ON  are  incommensurable,  we  reach  the  same 

conclusion  by  proceeding  to  the  limit. 

Thus,  from  O  to  S,  the  ratio  -  continually  increases. 

IV.  From  O  to  S,  the  ratio  -^  decreases. r 

First  we  consider  points  upon  OL  at  equal  distances  along 
that  line. 

Let  P,  Q,  and  R  be  three  such  points,  so  that 

PQ  =  QR. 

From  P  and  R  draw  PH  and  RK  perpendicular  to  Qq. 
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Then  we  know  ttat  Pj)<  Hq  and  Rr  <  Kq  (§  79). 
But  QH  =  QK.     Therefore  Q,q-Hq  =  Kq-  Qq. 
It  follows  from  the  above  that  Qq-Pp>Rr-  Q,q. 
Therefore,  for  equal  increments  of  r  we  have  diminishing 

increments  of  y. 
It  follows  from  this  that  if  P  and  Q  are  any  two  points  upon 

OL,  such  that  OP  <  OQ  <  ̂ ,  and  OP,  OQ  are  commensurable, 
Pp      Qq 

OP     OQ' 
When  OP  and  OQ  are  incommensur

able,  
we  obtain  the  same 

result  by  proceeding 
 
to  the  limit. 

Thus,  as  P  moves  along  OL  from  O  towards  S,  the  ratio 

^  continually  decreases. 

V.  When  r  tends  to  zero,  the  ratio  x :  r  tends  towards  a  finite 
limit  from  above,  and  the  ratio  y  :  r  tends  towards  a  finite  limit 
from  below. 

From  (III.)  we  know  that  x :  r  continually  decreases  as  r 
tends  to  zero,  so  that  this  ratio  has  a  limit,  finite  or  zero. 
From  (IV.)  we  know  that  y :  r  continually  increases  as  r 

tends  to  zero,  so  that  this  ratio  either  has  a  finite  limit,  not 
zero,  or  becomes  infinite. 

But  from  the  quadrilateral  whose  sides  are  {x,  y,  x',  y')  we 
have  X  >  x'.     (Fig.  95.)     Thus  x:r  >x':r. 

But,  by  (IV.),  x':  r  either  has  a  finite  limit,  not  zero,  or becomes  infinite,  as  r  tends  to  zero. 
Therefore  the  limit  of  a; :  r  cannot  be  zero,  and  must  be  some 

finite  number.     Also  x  :  r  approaches  this  limit  from  above. 

But  it  follows  from  the  preceding  argument  that  y' :  r  has 
a  finite  limit,  not  zero. 

Also  we  know  that  y  <  y',  and  thus  y  :  r  <  y' :  r. 
It  follows  that  y  :  r  has  a  finite  limit,  not  zero,  and  it 

approaches  this  from  below. 

These   two  limits  Lt(^),  Lt(-|   are   chosen  as  the  sine 

and  cosine  of  the  acute  angle  which  OL  makes  with  OA,*  and 
the  other  ratios  follow  in  the  usual  way. 

*  These  limits  are  functions  of  the  angle.  It  can  be  shown  that  they 
are  continuous,  and  that  with  a  proper  unit  of  angle  they  are  given 
by  the  usual  exponential  expressions.     Cf .  Coolidge,  loc.  cit.  p.  53. 
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§82.  We  turn  now  to  the  quadrilateral  with  three  right 
angles  and  one  obtuse  angle. 

Let  0AB6  be  such  a  quadrilateral,  the  angles  at  O,  B,  and  b 
being  right  angles. 

Produce  06,  and  cut  off  bc  =  Ob  and  cd  =  bc. 
Draw  the  perpendiculars  to  06  produced  at  the  points  c  and 

d ;   and  from  A  the  perpendiculars  to  the  lines  just  drawn. 

Fig.  100. 

We  thus  obtain  three  quadrilaterals  0AB6,  OACc,  OADd,  of 
this  nature,  standing  on  the  bases  06,  Oc,  and  Od. 

It  is  easy  to  show  that  the  obtuse  angles  of  these  quadri- 
laterals increase  as  the  bases  increase. 

Let  6B  produced  meet  AC  at  H,  AB  produced  meet  Cc  at  I, 
and  AC  produced  meet  DtZ  at  J. 

Then  we  have  AB  =  Bl,  AB  <  AH,  and  Al  >  AC. 
It  follows  that  AB  >  AC  -  AB. 
Also  we  have  HC  =  CJ  and  AD  <  AJ. 

Therefore  AC  -  AH  =  AJ  -  AC,  and  finally  AC  -  AB  >  AD  -  AC. 
Thus  AB  >  AC  -  AB  >  AD  -  AC. 

§  83.  We  return  to  the  notation  of  §  80  and  the  figure 

OMPM',  in  which  the  angles  at  O,  M,  and  M'  are  right  angles, 
and  the  sides  OM,  MP,  PM',  and'OM'  are  denoted  by  x,  y,  x', 
and  y'  respectively. 

We  shall  now  prove  the  following  theorem  : 

In  the  quadrilateral  with  three  right  angles  (x,  y,  x',  y'),  in 
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which  the  sides  x',  y  include  the  obtuse  angle,  if  y'  is  Jcept  fixed 
and  X  tends  to  zero,  the  ratio  x':  x  tends  to  a  finite  limit  0(y') 
from  above,  and  this  ratio  is  less  than  <p{j). 

X  M 
Fio.  101. 

As  in  §  81  we  find  that  x' :  x  continually  decreases  as  x 
tends  to  zero.  It  must  have  a  limit,  which  may  be  zero  or 
some  number  less  than  unity. 

Produce  MP,  and  draw  M'Q  perpendicular  to  MP. 
From  §  82  we  know  that  as  x  decreases,  the  ratio  — — 

increases.  ^ 

Pio.  102. 

It  must  therefore  have  a  finite  limit,  not  zero,  or  become 
infinite. 

^   .    M'Q      M'P      .         ..,_   ̂   ..,„ But  — -  <   ,  smce  M  Q  <  M  P. 
x  X 

Thus  Lt(  — 1  cannot  be zero. 
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This  function  is  associated  with  the  segment  M'O,  denoted 
by  y',  and  will  be  written  as  (p{y'). Now  we  have  seen  that 

0  (?/')>  M'Q.x. 
But  in  the  quadrilateral  OM'PM,  the  side  PM  plays  the  same 

part  as  OM'  in  the  quadrilateral  OM'QM. 

Thus  <p(y)>  M'P:x. 

Thus  we  have 
0(y)<-<0(y)-. 

Since  x'  <x,  the  function  0(t/')  is  less  than  unity,  except  for 
t/'  =  0,  when  it  becomes  equal  to  unity. 

§  84.    We  shall  now  show  that  the  function  defined  in  the 
previous  section  is  continuous. 

Let  OS  and  Os  be  two  lines  meeting  at  O,  such  that 

OS  =  Os  =  |C  and  i.SOs  is  acute. 

m X 

"^ 

p c 

'      \ 

\,       y 

d 

Xt 
n 

/

"

 

D         C 
Fm.  103. 

Then  the  angles  at  S  and  s  are  both  right  angles. 
Let  SB  =  aj— y,  SC=a;,  and  SD=x  +  y. 
Let  the  perpendiculars  at  B,  C,  and  D  to  OS,  meet  05  at 

h,  c,  and  d. 
Through  6  and  d  draw  bm  and  dn  perpendicular  to  Cc. 
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From    §81  (III.),   applied   to    the   acute   angles   den  and 
bcm,  we  have  cb  <  cd,  cm  :cb<cC  :  cO,  and  cn:cd<cC  :  cO. 

From  the  second  of  these  relations  we  have 

I.e. 

Cm    Cc     Cc  cb 
~Ss~  Ss     Ss  cO 

'Bh     Bb\     Cc     Cc  cb /Bb  .BOX     Cc     Cc  cb  ,. 

\Ss'Cm)~Ss     Ss  cO   
Then,  by  §83,  if  Ss,  and  thus  Bb  and  Cm  tend  to  zero, 

we  have 

Ss     ̂ ^  ' Further,    LtcJ  =  CB  =  y    and    LtcO  =  CO  =  ̂ -a;. 

Therefore,  from  (a),  we  have 

i.e.  ^(^x-y)-ct>{x)<i>{y)^^^<l>{x)<t>{y).   (/3) 

Again,  from  the  inequality  — ^< — ^,  we  have  in  the  same  way Cu/        C\J 

^(x)(f>(y)-^(x  +  y)^^-^cl>(x)^{y)   (y) 
Adding  (^8)  and  (y),  we  have 

^(z-y)-(p(x  +  y)^-~^—<p{x)<p(y)<^^, 
since  (j){x),  (^{y)  are  each  less  than  unity.     It  follows  that 
<p{z)  is  a  continuous  function  of  x. 
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§  85.   We  shall  now  show  that 

</.(x  +  y)  +  0(x  -  y)  =  20(x)0(y). 
With  the  figure  of  §  84,  let  the  perpendicular  at  c  to  Cc 

meet  Dd  and  Bb  in  p  and  q.  From  cd  cut  off  cr  =  cb,  and 
join  jpr. 

Then  we  have  cp  =  cq  and  pr  =  qb. 
We  shall  presently  suppose  Ss  to  become  infinitesimal.  In 

this  case  the  angles  at  p  and  q  differ  infinitesimally  from  right 
angles,  and  Ldpr  becomes  infinitesimal. 

It  follows  that  dr  is  infinitesimal  as  compared  with  pd ;  * 
and  that  if  Ss  is  an  infinitesimal  of  the  first  order,  dr  is  at 
least  of  the  second  order. 

But  dp-qb  =  dp-pr<  dr. 
And  dp-qb  =  {Dp  -  Dd)  -  {Bb  -  Bq). 
Therefore  we  have  • 

J  ,  /  D/?    Cc     Dd     Bb     Bq    Cc\  _ 

\Cc'  Ss~  Ss~  S^     Cc' Ss)~ 

Lt(B^)  =  ,(,)  =  LtQ). 

And  Lt(|)  =  <^(x),       Lt(g)  =  0(x  +  3/), 

and  uQ-^  =  ̂ (x-y). 
Thus  we  have 

</>{x  +  y)-i<p(x-y)  =  2<f>(x)<l>(y). 

§86.   We  proceed  to  the  equation 

<t>{x  +  y)  +  (p(x  -y)  =  2<l){x)(p{y). 
We  are  given  that  (^{x)  is  a  continuous  function,  which  is 

equal  to  unity  when  x  =  0,  and  when  x>0,  <p{x)  <1. 
Let  Xi  be  a  value  of  x  in  the  interval  to  which  the  equation 

applies. 

Then  we  can  find  k,  so  that  <f>{x^)  =  coa-r- 

*C{.  Coolidge,  he.  cit.  p.  49. 
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The  function  cos  x  has  here  a  purely  analj^ical  meaning, 
being  defined  by  the  equation 

cosa;=l-2-j  +  ̂ , -•••• 

It  follows  that  0  (l^i)  =  cos  -=-J , 

0(??-.rj)  =  cos-^, 

nx,\  /nx 

Now  let  X  be  any  other  value  of  x  in  the  interval.  If  it 
happens  that  this  value  is  included  in  the  set 

nx-. nx.  or  —-i, 

we  know  that  0(.'r;)  =  cos  ( ,-),  by  the  above. 
But  if  it  is  not  included  in  these  forms,  we  can  still  find 

positive  integers  m,  n  by  going  on  far  enough  in  the  scale,  such 
that nx.\ 

where  e  is  any  positive  number  as  small  as  we  please. 

But  (b{x)  and  cos  y-'  are  continuous  functions. k 
x 

It  follows  that  0  (x)  =  cos  r  • 

This  value  of  k  will  be  related  to  the  measure  of  the  line  OS, 

denoted  by  ̂   in  the  previous  sections. 

§  87.  We  have  now  to  deal  with  a  rather  complicated  figure. 
From  it  we  shall  obtain  the  fundamental  equation  of  this 

Trigonometry  for  the  Right-Angled  Triangle  ABC,  in  which  C 
is  the  right  angle,  viz. 

c  a        b  /ix 
cos  r  =  cos .- cos  r   \^) k  k       k 

Let  ABC  be  a  right-angled  triangle,  in  which  C  is  the  right 
angle. 

From  a  point  b  upon  AB  produced  draw  be  perpendicular 
to  AC. 
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Move  the  triangle  6cA  along  AC  till  it  coincides  with  C  and 

he  takes  up  the  position  6'C. 
We  thus  have  the  triangle  h'a'C 

congruent  with  6Ac. 
In  the  same  way  move  the 

triangle  hck  along  BA  until  h 
coincides  with  B  and  the  triangle 

takes  up  the  position  Ba"c". 
Through  the  middle  point  I  of 

a'A  draw  I L  perpendicular  to  BA. 
Then  LI  produced  will  be  per- 

pendicular to  h'a' . 
We  thus  obtain  the  common 

perpendicular  to  h'a'  and  BA, the  line  KIL. 

In  the  same  way  we  obtain 
the  common  perpendicular  MJN 

to  AC  and  a"c"  through  the 
middle  point  J  of  Ao". 

Finally,  we  draw  ?>'Q  perpen- 
dicular to  AB  and  hh"  perpen- dicular to  BC. 

Fio.  104. 

We  have  seen  that  as  Bh  tends  to  zero,  we  have 

Lt*^'  =  Lt*|   
B6  bB 

•(i) 

MJ 

In  the  same  way       Lt  -—  =  Lt JA 

IL 

IA" 

Thi 
Lt^,  =  Lt^. Aa  Aa 

(ii) 

Dividing   (i)  by  (ii)  and  remembering   that  Aa"  =  Bb  and 
Aa'  =  C^,  Ave  have 

Lt 

which  may  be  written 

bir_ 

MN 
Lt^    Lt^' 

T  ̂   b'Q.     _    bb"    T  ̂   B^»' 

We  shall  now  show  that  this  equation  is  the  same  as 

0(AB)  =  0(BC)0(CA). 

.(iii) 
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From  §  83,  we  have 

0(LQ)<|^<</,(K6'). 

Now,  when  B6  tends  to  zero,  LQ  and  Kfe'  tend  to  BA,  and 

from  §  84,  0(LQ)  and  (p{^b')  tend  to  (/)(AB). 

Thus,  Lt^  =  0(AB)   (iv) 

In  the  same  way  we  have 

Lt(^')  =  0(BC)   (V) 

b6' 

The
re 

 
rem

ain
s  

the
  

limi
t  

of  — . 
MN 

Let  s  be  the  point  at  which  Be"  meets  AC. 
We  know  from  §  81  (I.),  that  s  lies  between  C  and  c,  and 

we  have  Bs>BC. 

Then,  since  Cb'  =  Bc",  we  have  Bh'>sc". 

Therefore  |^  >  ̂  >0(Nc«'). MN       Mn      ̂ ^       ' 

Produce  BC  till  it  meets  a"c"  in  R. 

We  have  BR>Bc",  so  that  BR>C6'. 
From  BR  cut  off  Bc'  =  C6'. 

Draw  c'P  perpendicular  to  MN. Then  we  have 

I^kF  <  ̂  =  S^  <  0(PO  <  0(CM  -  PM  -  Cc'). MN       MP     MP      w      /      v^  
'' 

BJ'
 

Thus  ^(CM-PM  -Cc')>^^TT>0(Nc")• 

MN      ' Proceeding  to  the  limit, 

^(*^>=i^Ki;)   <"> 
From  (iii)-(vi),  it  follows  that  0(AB)  =  0(BC)<^(CA),  or  with 

the  usual  notation  from  §  86, 

c  a       b 
COSi-  =  COSeCOSr. 



87,881        TRIGONOMETRICAL  FORMULAE 149 

Note.  At  several  points  in  this  argument  we  have  assumed 
that  the  segments  concerned  are  less  than  ̂ . 

Once  the  fundamental  theorem  has  been  proved  for  triangles 
in  which  this  condition  is  satisfied,  it  can  be  extended  by 
analysis  to  all  other  cases. 

§  88.    The  remaining  formulae  are  easily  obtained  : 
b                      c 

To  prove  tan  ̂   =  cos  A  tan  ̂     (2) 

Let  ABC  be  any  right-angled  triangle,  with  C  a  right  angle. 

Take  any  point  D  on  AC,  and  join  BD. 
Draw  DE  perpendicular  to  AB. 
Let  AE=p,  ED=q,  AD=r,  and  BD=Z. 
Then,  from  the  triangle  ABC,  we  have 

cos ■■  cos  r  cos 
k 

(^)  
  ' 

a       h       r  a  .    b  .    r 
=  cos  y  cos  J  cos  J  +  cos  J  sm  j  sin  y k       k       k  k       k       k 

c        r  a  .    b  .    r 
=  cos  T  cos  T  +  cos  T  sm  r  sin  t- 

fC  fC  iC  fC  fC 

Also,  from  the  triangle  BDE,  we  have  in  the  same  way 

I  c        r  q  .     p  .    c 
cos  T  =  cos  T  cos  r  +  cos  r  Sin  j:  sin  v. 

rri       r  a   .    b   .    r  .q   .    p   .    c 
1  here! ore     cos  j  sm  y  sin  ̂   =  cos  f  sm  y-  sm  y . *  k       k      k  k       k       k 



150  NON-EUCLIDEAN  GEOMETRY         [ch.  vii. 

TT  •        1  •  cab 

Using  the  equations    cos  r  =  cos  t  cos  t, 

r  P       Q 
cos  7  =  cos  =7  cos  y, k  k       k 

tan  T     tan  T 
1  .      .                                    k  k 

this  gives    =  ——  • 

tan  J     tan  r 

This  result  holds  however  small  r  may  be. 

But  we  have  seen  that  when  r->0,  ~  has  a  definite  limit r 

other  than  zero,  and  that  this  limit  is  taken  as  the  cosine  of 
the  angle.     (§81.) 

tan| 

Therefore  cos  A  =  Lt   

'■-^"tan'' 
tan , 

tan  J 

k 

b 

§89.  To  prove  that .    a 

sm- 

•  ]j^ 

sin  A  =     (3) 

sin- 
k 

We  have  seen  that  as  r^O,  the  ratio  "  tends  to  a  definite r 

limit,  other  than  zero,  and  that  this  limit  is  taken  as  the  sine 
of  the  angle. 

Now  from  the  equation 
c  a       b 

COS|;  =  COS  rCOST, 

we  find  that  when  a,  b,  and  c  are  small, 

c^  =  a'^  +  b\  to  the  lowest  order. 

It  follows  that  sin''' A  +  cos^A  =1.  • 
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But,  from  §  88,  we  have  j tatir 

cos  A  =   tariv 

A; 
tan^  r 

Therefore  sin^  A  =  1   

k 

sin^  T  -  tair  t  CDS'*  j 

1  "^  9  C 1  -  sec  T  cos^  7 

  k        k ■    oC 

1  -  COS''  y 

  
« 

8in^  ,- 

A: 
•    2« 

.    a 

Therefore  sin  A  =   . .    c sin  7 ^    k 

The  remaining  formulae, 

COS  A  =  cos  r  sm  B,   (4; 

sin  T  =  tan  -r  cot  A,   (5) 

cos  T  =  cot  A  cot  B,   (6) 

can  be  easily  deduced  from  those  already  obtained. 
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The  six  equations  (l)-(6)  are  the  equations  of   ordinary 

Spherical  Trigonometry,  when  ̂ ,  j,  and  -^  are  substituted  for 
a,  b,  c.  k    k  k 

8  90.  The  Trigonometry  of  the  Oblique-Angled  Triangle 
follows  from  that  of  the  Right-Angled  Triangle,  the  definitions 
of  the  sine  and  cosine  being  extended  to  obtuse  angles.  The 
formulae  will  be  identical  with  those  of  ordinary  Spherical 
Trigonometry,  with  the  parameter  k  introduced. 

The  elements  of  arc  and  area  can  also  be  deduced  as  in 

Chapter  V.    In  this  case  we  shall  have 

ds^  =  cos^  J  dx^  +  dif-, 

ds^^dr^  +  k'^sin^jdO'^, k 

d^  =  cos  r  dx  dy, 

T 
dA  =  k  sin  v  dr  d0. 

Also  the  Euclidean  Formulae  hold  true  in  Infinitesimal 

Geometry  on  the  Elliptic  Plane. 



CHAPTER  VIII. 

THE  CONSISTENCY  OF  THE  NON-EUCLIDEAN  GEOMETRIES 
AND  THE  IMPOSSIBILITY  OF  PROVING  THE  PARALLEL 

POSTULATE. 

j  §  91.  As  we  have  already  seen,  the  discovery  of  the  Non- 
I  Euclidean  Geometries  arose  from  the  attempts  to  prove 

'Euclid's  Parallel  Postulate.  Bolyai  and  Lobatschewsky  did 
a  double  service  to  Geometry.  They  showed  why  these 
attempts  had  failed,  and  why  they  must  always  fail ;  for  they 
succeeded  in  building  up  a  geometry  as  logical  and  consistent 
as  the  Euclidean  Geometry,  upon  the  same  foundations,  except 
that  for  the  Parallel  Postulate  of  Euclid,  another  incompatible 
with  it  was  substituted.  They  differed  from  almost  all  their 
predecessors  in  their  belief  that,  proceeding  on  these  lines,  they 
would  not  meet  any  contradiction  ;  and  they  held  that  the 
system  of  geometry  built  upon  their  Parallel  Postulate  was  a 
fit  subject  of  study  for  its  own  sake. 

The  question  naturally  arises  :  How  can  one  be  certain 

that  these  Non-Euclidean  Geometries  are  logical  and  con- 
sistent systems  ?  How  can  we  be  sure  that  continued  study 

would  not  after  all  reveal  some  contradiction,  some  incon- 
sistency ?  Saccheri  thought  he  had  found  such  in  the  Hyper- 

bolic Geometry  ;  •  but  he  was  mistaken.  Even  Bolyai,  many 
years  after  the  publication  of  the  Appendix,  was  for  a  time  of 
the  opinion  that  he  had  come  upon  a  contradiction,  and  that 

the  sought-for  proof  of  the  Euclidean  Hypothesis  was  in  his 
hands.     He,  too,  was  mistaken. 

Of  course,  it  is  not  sufficient  simply  to  point  to  the  fact  that 

these  geometries — developed  into  a  large  body  of  doctrine  as 
they  have  been — do  not  offer  in  any  of  their  propositions  the 
contradiction  which  the  earlier  workers  in  those  fields  were 

convinced  they  must  contain.  We  must  be  sure  that,  proceed- 
ing further  on  these  lines,  such  contradiction  could  never  be 
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discovered.     If  we  can  prove  this  to  be  the  case,  then  we  know 

that  Euclid's  Parallel  Postulate  cannot  be  demonstrated. 

§  92.  There  are  several  ways  by  which  it  is  possible  to 
establish  the  fact  that  the  Hyperbolic  and  Elliptic  Geometries 

are  as  logical  and  consistent  as  the  Euclidean  Geometry.* 
Lobatschewsky,  and  to  some  extent  Bolyai,  relied  upon 

the  formulae  of  the  Hyperbolic  Plane  Trigonometry.  These 
are  identical  with  the  formulae  of  Spherical  Trigonometry, 
if  the  radius  of  the  sphere  is  imaginary.  If  the  ordinary 

Spherical  Trigonometry  offers  no  contradiction,  their  geo- 
metry could  not  do  so.  However,  this  proof  is  not  complete 

in  itself,  for  it  leaves  aside  the  domain  of  Solid  Geometry,  and 
does  not  establish  the  impossibility  of  the  difficulty  appearing 
in  that  field.     (Cf.  Chapter  II.  §§  15,  17.) 

The  most  important  of  all  the  proofs  of  the  consistency  of 
the  Non-Euclidean  Geometries  is  that  due  to  Cayley  and 
Klein.  In  it  one  passes  beyond  the  elementary  regions  within 
the  confines  of  which  this  book  is  meant  to  remain.  Other 

proofs  are  analytical.  The  assumptions  of  geometry  are 
translated  into  the  domain  of  number.  Any  inconsistency 
would  then  appear  in  the  arithmetical  form  of  the  assumptions 
or  in  the  deductions  from  them.  This  form  of  proof  also  seems 
to  lie  outside  the  province  of  this  book. 

Finally,  there  are  a  number  of  geometrical  proofs,  depending 

upon  concrete  interpretations  of  the  Non-Euclidean  Geo- 
metries in  the  Euclidean.  The  earliest  of  these — due  to 

Beltrami,  and  dealing  with  the  Hyperbolic  Geometry — 
requires  a  knowledge  of  the  Geometry  of  Surfaces.  But  an 
elementary  representation  of  the  Hyperbolic  Plane  and  Space 
in  the  Euclidean  was  given  by  Poincare. 

"  Let  us  consider,"  he  says,  "  a  certain  plane,  which  I  shall 
call  the  fundamental  plane,  and  let  us  construct  a  kind  of 
dictionary  by  making  a  double  series  of  terms  written  in  two 
columns,  and  corresponding  each  to  each,  just  as  in  ordinary 
dictionaries  the  words  in  two  languages  which  have  the  same 
signification  correspond  to  one  another  : 

Space.        -  -     The  portion  of  space  situated  above 
the  fundamental  plane. 

*  For  a  discussion  on  more  advanced  lines,  cf.  Sommerville's  Non- 
Euclidean  Oeometry,  oh.  v.  and  vi.  (London,  1914). 
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Plane.  -        -    Sphere     cutting     orthogonally     the 
fundamental  plane. 

Line.  -  -  -  Circle  cutting  orthogonally  the  funda- 
mental plane. 

Sphere.        -        -    Sphere. 
Circle.  -        -    Circle. 

Angle.  -        -    Angle. 
Distance  between  The  logarithm  of  the  anharmonic 

two  points.  ratio  of  these  two  points  and  of 
the  intersections  of  the  fundamental 

plane  with  the  circle  passing  through 

these  points  and  cutting  it  ortho- 
gonally. 

Etc.  Etc. 

"  Let  us  take  Lobatschewsky's  theorems  and  translate  them 
by  the  aid  of  this  dictionary,  as  we  would  translate  a  German 
text  with  the  aid  of  a  German-French  dictionary.  We  shall 
then  obtain  the  theorems  of  ordinary  geometry.  For  instance, 

Lobatschewsky's  theorem  :  '  The  sum  of  the  angles  of  a 
triangle  is  less  than  two  right  angles  '  may  be  translated  thus  : 
'  If  a  curvilinear  triangle  has  for  its  sides  arcs  of  circles  which 
cut  orthogonally  the  fundamental  plane,  the  sum  of  the  angles 

of  this  curvilinear  triangle  will  be  less  than  two  right  angles.' 
Thus,  however  far  the  consequences  of  Lobatschewsky's 
hypotheses  are  carried,  they  will  never  lead  to  a  contradiction  ; 

in  fact,  if  two  of  Lobatschewsky's  theorems  were  contra- 
dictory, the  translation  of  these  two  theorems  made  by  the 

aid  of  our  dictionary  would  be  contradictory  also.  But 
these  translations  are  theorems  of  ordinary  geometry,  and  no 

one  doubts  that  ordinary  geometry  is  exempt  from  contra- 
diction." * 

§  93.  To  Poincare  is  also  due  another  representation  of  the 

Hyperbolic  Geometry,  which  includes  that  given  in  the  pre- 
ceding section  as  a  special  case.  We  shall  discuss  this  repre- 

sentation at  some  length,  as  also  a  corresponding  one  for  the 
Elliptic  Geometry,  since  from  these  we  can  obtain  in  a  simple 
and  elementary  manner  the  proof  of  the   impossibility  of 

*  Poincard*,  La  Science  et  I' HypolMse.  English  translation  by  Green- 
street,  p.  41  et  seq. 
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proving  the  Parallel  Postulate  and  of  tlie  logical  consistency 
both  of  the  Hyperbolic  and  Elliptic  Geometries.  In  this 

discussion  the  "  dictionary  method  "  of  §"29vwill  be  more  fully 
explained.  ^^ 

We  shall  consider  three  families  of  circles  in  a  plane — 
extending  the  argument  to  spheres  later.  These  are  the 
family  of  circles  passing  through  a  fixed  point ;  the  family 

of  circles  cutting  a  fixed  circle  orthogonally  ;  and  the-  family 
of  circles  cutting  a  fixed  circle  diametrally  {i.e.  the  common 
chord  of  the  fixed  circle  and  any  of  the  variable  circles  is  to 
be  a  diameter  of  the  fixed  circle).  Denoting  the  fixed  point 
by  O,  and  taking  the  fixed  circle  as  a  circle  with  centre  O  and 
radius  k,  the  first  family  of  circles  has  power  zero  with  regard 

to  O  ;  the  second,  power  k^  ;  and  the  third,  poiver  —  P.  We 
shall  see  that  the  geometries  of  these  three  families  of  circles 
agree  with  the  Euclidean,  Hyperbolic,  and  Elliptic  Geometries, 
respectively. 

§  94.  The  System  of  Circles  through  a  Fixed  Point. 
If  we  invert  from  a  point  O  the  lines  lying  in  a  plane  through 

O  we  obtain  a  set  of  circles  passing  through  that  point.  To 
every  circle  there  corresponds  a  straight  line,  and  to  every 
straight  line  a  circle.  The  circles  intersect  at  the  same  angles 
as  the  corresponding  lines.  The  properties  of  the  family  of 
circles  could  be  deduced  from  the  properties  of  the  set  of  lines, 
and  every  proposition  concerning  points  and  lines  in  the  one 
system  could  be  interpreted  as  a  proposition  concerning  points 
and  circles  in  the  other. 

There  is  another  method  of  dealing  with  the  geometry  of 
this  family  of  circles.  We  shall  describe  it  briefly,  as  it  will 
make  the  argument  in  the  case  of  the  other  families,  which 

represent  the  Non-Euclidean  Geometries,  easier. 
If  two  points  A  and  B  are  given,  these,  with  the  point  O, 

fully  determine  a  circle  passing  through  the  point  O.  We 
shall  call  these  circles  nominal  lines.*  We  shall  refer  to  the 
points  in  the  plane  of  the  circles  as  nominal  points,  the  point  O 
being  supposed  excluded  from  the  domain  of  the  nominal 

*  In  another  place,  cf.  Bonola,  loc.  cit.,  English  translation,  Appendix 
v.,  and  Proc.  Edin.  Math.  Soc,  Vol.  28,  p.  95  (1910),  I  have  used  the 
terms  ideal  points,  ideal  lines,  etc.  For  these  I  now  substitute  nominal 
points,  nominal  lines,  etc.,  owing  to  possible  confusion  with  the  ideal 
points,  ideal  lines,  etc.,  of  §§  37,  38. 
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points.  We  define  the  angle  between  two  nominal  lines  as 
the  angle  between  the  circles  with  which  the  nominal  lines 
coincide  at  their  common  point. 

With  these  definitions,  two  different  nominal  points  A,  B 
in  this  Nominal  Geometry  always  determine  a  nominal  line 
AB,  just  as  two  different  ordinary  points  always  determine 
a  straight  line  AB. 

The  nominal  points  and  lines  also  satisfy  the  "  axioms  of 
order,"  *  which  express  the  idea  of  between-ness,  when  the 
point  O  is  excluded  from  the  domain  of  the  nominal  points. 
If  this  point  were  not  excluded,  we  could  not  say  that  of  any 
three  nominal  points  on  a  nominal  line,  there  is  always  one, 
and  only  one,  which  lies  between  the  other  two. 

Proceeding  to  the  question  of  parallels,  we  define  parallel 
nominal  lines  as  follows  : 

The  nominal  line  through  a  nominal  point  parallel  to  a  given 
nominal  line  is  the  circle  of  the  system  which  passes  through 
the  given  point  and  touches  at  O  the  circle  coinciding  with  the 
given  nominal  line. 

Referring  to  Fig.  106  we  see  that  in  the  pencil  of  nominal 
lines  through  A  there  is  one  nominal  line  which  does  not  cut 
BC,  namely,  the  circle  of  the  system  which  touches  OBC  at  O. 

This  nominal  line  does  not  cut  the  nominal  line  BC,  for  the 
point  O  is  excluded  from  the  domain  of  the  nominal  points. 

It  is  at  right  angles  to  AM,  the  nominal  line  through  A  per- 
pendicular to  the  nominal  line  BC.     Every  nominal  line  through 

*  Cf.  Hilbert,  loc.  cit.  §  3. 
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A  making  with  AM  an  angle  less  tlian  a  right  angle  will  cut 
BC  on  the  side  of  0AM  in  which  the  acute  angle  lies. 

Therefore  in  the  geometry  of  these  nominal  points  and  lines 
the  Euclidean  Parallel  Postulate  holds. 

§  95.  Before  we  can  deal  with  the  metrical  properties  of  this 
geometry,  we  require  a  measure  of  length.  We  define  the 
nominal  length  of  a  nominal  segment  as  the  length  of  the  rectilinear 
segment  to  which  it  corresponds. 
From  this  definition  it  is  not  difficult  to  show  that  the 

nominal  length  of  a  nominal  segment  is  unaltered  hy  inversion 
with  regard  to  a  circle  of  the  system ;  and  that  inversion  with 
regard  to  such  a  circle  is  equivalent  to  reflection  of  the  nominal 
points  and  lines  in  the  nominal  line  which  coincides  with  the 
circle  of  inversion. 

Now,  if  we  invert  successively  with  regard  to  two  circles  of 
the  system  {i.e.  if  we  reflect  in  two  nominal  lines  one  after 
the  other),  we  obtain  what  corresponds  to  a  displacement  in 
two  dimensions.  A  nominal  triangle  ABC  takes  up  the  position 

A'B'C  after  the  first  reflection  ;  and  from  A'B'C'  it  passes  to 
the  position  A"B"C"  in  the  second.  The  sides  and  angles 
of  A"B"C"  (in  our  nominal  measurement)  are  the  same  as  the 
sides  and  angles  of  the  nominal  triangle  ABC,  and  the  point 

C"  lies  on  the  same  side  of  A"B"  as  the  point  C  does  of  AB. 
Further,  we  can  always  fix  upon  two  inversions  which  will 

change  a  given  nominal  segment  AB  into  a  new  position  such 

that  A  comes  to  A',  and  AB  lies  along  a  given  nominal  line 
through  A'.  We  need  only  invert  first  with  regard  to  the 
circle  which  "  bisects  "  the  nominal  line  A  A'  at  right  angles. 
This  brings  AB  into  a  position  A'B",  say.  Then,  if  we  invert 
with  regard  to  the  circle  of  the  system  which  bisects  the  angle 

between  A'B"  and  the  given  nominal  line  through  A',  the 
segment  AB  is  brought  into  the  required  position. 

The  method  of  superposition  is  thus  available  in  the  geometry 

of  the  nominal  points  and  lines.  Euclid's  argument  can  be 
"  translated "  directly  into  the  new  geometry.  We  have 
only  to  use  the  words  nominal  points,  nominal  lines,  nominal 
parallels,  etc.,  instead  of  the  ordinary  points,  lines,  parallels, 
etc.,  and  we  obtain  from  the  ordinary  geometry  the  corre- 

sponding propositions  in  the  geometry  of  this  family  of  circles. 
It  should  perhaps  be  pointed  out  that  the  nominal  circle 

with   centre   A  is  an  ordinary  circle.    For  the   orthogonal 
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trajectories  of  the  circles  of  the  system  through  A  (i.e.  of  the 
nominal  lines  through  A)  is  the  family  of  coaxal  circles  with 
O  and  A  as  Limiting  Points.  The  nominal  lengths  of  the 
nominal  segments  from  A  to  the  points  where  one  of  these 
circles  cuts  the  pencil  of  lines  will  be  the  same. 

§  96.  The  argument  sketched  in  the  preceding  sections  can 
be  extended  to  Solid  Geometry.  Instead  of  the  system  of 
circles  lying  in  one  plane  and  all  passing  through  the  point  O, 
we  have  now  to  deal  with  the  system  of  spheres  all  passing 
through  the  point  O, 

The  nominal  point  is  the  same  as  the  ordinary  point,  but  the 
point  O  is  excluded  from  the  domain  of  the  nominal  points. 

The  nominal  line  through  two  nominal  points  is  the  circle 
passing  through  O  and  these  tivo  points. 

The  nominal  plane  through  three  nominal  points  is  the  sphere 
passing  through  O  and  these  three  points. 

The  nominal  line  through  a  point  A  parallel  to  a  nominal 
line  BC  is  the  circle  through  A  which  lies  on  the  sphere  through 
O,  A,  B  and  C,  and  touches  the  circle  OBC  at  the  point  O. 

It  is  clear  that  a  nominal  line  is  determined  by  two  different 
nominal  points,  just  as  a  straight  line  is  determined  by  two 
different  ordinary  points.  The  nominal  plane  is  determined 
by  three  different  nominal  points,  not  on  a  nominal  line,  just 
as  an  ordinary  plane  is  determined  by  three  different  ordinary 
points  not  on  a  straight  line.  If  two  points  of  a  nominal  line 
lie  on  a  nominal  plane,  then  all  the  points  of  that  line  lie  on 
that  plane .  The  intersection  of  two  nominal  planes  is  a  nominal 
line,  etc. 

The  measurement  of  angles  in  the  new  geometry  is  the  same 
as  that  in  the  ordinary  geometry  ;  the  angle  between  two 
nominal  lines  is  defined  as  the  angle  between  the  circles  with 
which  these  lines  coincide  at  their  intersection.  The  measure- 

ment of  length  is  as  before.  Inversion  in  a  sphere  through  O 
is  equivalent  to  reflection  in  the  nominal  plane  coinciding  with 
that  sphere.  Displacements,  being  point-transformations 
according  to  which  every  point  of  the  domain  is  transformed 
into  a  point  of  the  domain,  in  such  a  way  that  nominal  lines 
remain  nominal  lines,  and  nominal  lengths  and  angles  are 
unaltered,  will  be  given  by  an  even  number  of  inversions  in  the 
spheres  of  the  system. 
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Thus,  the  geometry  of  these  nominal  points,  lines,  and  planes 
is  identical  with  the  ordinary  Euclidean  Geometry.  Its 
elements  satisfy  the  same  laws  ;  every  proposition  valid  in 
the  one  is  also  valid  in  the  other ;  and  from  the  theorems 
of  the  Euclidean  Geometry  those  of  the  Nominal  Geometry 
can  be  inferred,  and  vice  versa. 

The  plane  geometry  of  the  nominal  points  and  lines  described 
in  the  preceding  sections  is  a  special  case  of  the  more  general 
plane  geometry  based  upon  the  definitions  of  this  section. 

§  97.  The  System  of  Circles  orthogonal  to  a  Fixed 
Circle. 

We  proceed  to  discuss  the  geometry  of  the  system  of  circles 
orthogonal  to  a  fixed  circle,  centre  O  and  radius  k.  We  shall 
call  this  circle  the  fundamental  circle.  Then  the  system  of 
circles  has  power  P  with  respect  to  O. 

Pio.  107. 

Let  A  and  B  be  any  two  points  within  the  fundamental 

circle  and  A',  B'  the  inverse  points  with  respect  to  that  circle. 
Then  A,  A',  B,  B'  are  concyclic,  and  the  circle  which  passes 
through  them  cuts  the  fundamental  circle  orthogonally. 
There  is  one  and  only  one  circle  orthogonal  to  the  fundamental 
circle  which  passes  through  two  different  points  within  that 
circle. 

In  discussing. the  properties  of  the  family  of  circles  ortho- 
gonal to  the  fundamental  circle,  we  shall  call  the  points  within 

that  circle  nominal  points.  The  points  on  the  circumference 
of  the  fundamental  circle  are  excluded  from  the  domain  of 

the  nominal  points.* 

*  In  this  discussion  the  nominal  points,  etc.,  are  defined  somewhat 
differently  from  the  idea^  points,  etc..  in  the  paper  referred  to  on  p.  156. 
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We  define  the  nominal  line  through  any  two  nominal  j)oints 
as  the  circle  which  passes  through  these  two  points  and  cuts  the 
fundamental  circle  orthogonally. 

Two  different  nominal  points  A,  B  always  determine  a  nominal 
line  AB,  just  as  two  different  ordinary  points  A,  B  always 
determine  a  straight  line  AB.  The  nominal  points  and  lines 

also  obey  the  "  axioms  of  order." 
We  define  the  angle  between  two  intersecting  nominal  lines 

as  the  angle  between  the  tangents  at  the  common  point,  within 
the  fundamental  circle,  of  the  circles  with  which  the  nominal 
lines  coincide. 

We  have  now  to  consider  in  what  way  it  will  be  proper  to 
define  parallel  nominal  lines. 

Fig.  108. 

Let  A  M  (Fig.  108)  be  the  nominal  line  through  A  perpendicular 
to  the  nominal  line  BC  ;  in  other  words,  the  circle  of  the  system 
which  passes  through  A  and  cuts  the  circle  of  the  system  through 
BC  orthogonally.  Imagine  A  M  to  rotate  about  A  so  that  these 
nominal  lines  through  A  cut  the  nominal  line  through  BC  at  a 
gradually  smaller  angle.  The  circles  through  A  which  touch 
the  circle  through  BC  at  the  points  U  and  V,  where  it  meets 
the  fundamental  circle,  are  nominal  lines.  They  separate  the 
lines  of  the  pencil  of  nominal  lines  through  A,  which  cut  BC 
from  those  which  do  not  cut  it.  All  the  lines  in  the  angle  ̂  
shaded  in  the  figure  do  not  cut  the  line  BC  ;  all  those  in  the 
angle  ̂ p,  unshaded,  do  cut  this  nominal  line. 
N.-E.a.  I, 
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This  property  is  what  is  assumed  in  the  Parallel  Postulate 
on  which  the  Hyperbolic  Geometry  is  based.  We  are  therefore 
led  to  define  parallel  nominal  lines  in  the  plane  geometry  we 
are  investigating  as  follows  : 

The  nominal  lines  through  a  nominal  point  parallel  to  a 
nominal  line  are  the  two  circles  of  the  system  passing  through 
the  given  point  which  touch  the  circle  with  which  the  given  nominal 
line  coincides  at  the  points  where  it  cuts  the  fundamental  circle. 

Thus  we  have  in  this  geometry  two  parallels — a  right-handed 
parallel  and  a  left-handed  parallel — and  these  separate  the 
lines  of  the  pencil  which  intersect  the  given  line  from  those 
which  do  not  intersect  it. 

§  98.  At  this  stage  we  can  say  that  any  of  the  theorems  of 
the  Hyperbolic  Geometry  which  involve  only  angle  properties 
will  hold  in  the  geometry  of  the  circles,  and  vice  versa.  Those 
involving  metrical  properties  of  lines  we  cannot  discuss  until 
the  nominal  length  of  a  nominal  segment  has  been  defined. 

Fia.  109. 

For  example,  it  is  obvious  that  there  are  nominal  triangles 
whose  angles  are  all  zero  (Fig.  109).  The  sides  of  these  triangles 
are  parallel  in  pairs,  and  we  regard  parallel  lines  as  containing 
an  angle  zero. 

Further,  we  can  prove  that  the  sum  of  the  angles  in  any  nominal 
triangle  is  less  than  two  right  angles,  by  inversion,  as  follows  : 

Let  Cj,  Cg,  Cg,  be  three  circles  of  the  system — i.e.  three 
nominal  lines  forming  a  nominal  triangle,  say  PQR.  We 
suppose  these  circles  completed,  and  we  deal  with  the  whole 



97,  98,  99]  NOT-INTERSECTING  NOMINAL  LINES  163 

circumference  of  each.  Invert  the  circles  from  the  point  of 

intersection  R'  of  Cj  and  C2,  which  lies  outside  the  fundamental 
circle.  Then  the  nominal  lines  C^  and  Cg  become  two  straight 

lines  Ci  and  C2',  through  the  inverse  of  R.  Also  the  funda- 
mental circle  C  inverts  into  a  circle  C',  cutting  Cj'  and  Cg'  at 

right  angles,  so  that  its  centre  is  at  the  point  of  intersection 

of  these  two  lines.  Again  the  circle  C3  inverts  into  a  circle  Cg', 
cutting  C'  orthogonally.     Hence  its  centre  lies  outside  C. 

We  thus  obtain  a  curvilinear  triangle  in  which  the  sum  of 
the  angles  is  less  than  two  right  angles  ;  and  since  the  angles 
in  this  triangle  are  equal  to  those  in  the  nominal  triangle,  Our 
result  is  proved. 

Finally,  it  can  be  shown  that  there  is  always  one  -and  only  one 
circle  of  the  system  which  will  cut  two  not-intersecting  circles 
of  the  system  orthogonally.  In  other  words,  two  not-intersecting 
nominal  lines  have  a  common  perpendicular. 

All  these  results  we  have  established  in  the  Hyperbolic 
Geometry.  They  could  be  accepted  in  the  geometry  of  the 
circles  for  that  reason. 

§  99.  As  to  the  measurement  of  length,  we  define  the  nominal 
length  of  a  nominal  segment  as  follows  : 

The  nominal  length  of  any  nominal  segment  AB  is  equal  to 

AV  /BV^ 

log , 

^VAU/  BU 

where  U  and  V  are  the  points  where  the  circle  which  coincides 
with  the  nominal  line  AB  cuts  the  fundamental  circle.  (Cf. 
Fig.  107.) 

With  this  definition  the  nominal  length  of  AB  is  the  same 
as  that  of  BA.  Also  the  nominal  length  of  the  complete  line 
is  infinite.  If  C  is  any  point  on  the  nominal  segment  AB 
between  A  and  B,  the  nominal  length  of  A  B  is  the  same  as  the 
sum  of  the  nominal  lengths  of  AC  and  CB. 

Let  us  consider  what  effect  inversion  with  regard  to  a  circle 
of  the  system  has  upon  the  nominal  points  and  lines. 

Let  A  be  a  nominal  point  and  A'  the  inverse  of  this  point in  the  fundamental  circle. 

Let  the  circle  of  inversion  meet  the  fundamental  circle  in  C, 
and  let  its  centre  be  D  (Fig.  110). 

Suppose  A  and  A'  invert  into  B  and  B'. 
N.-B.Q.  L  2 
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Since  the  circle  AA'C  touches  the  circle  of  inversion  at  C, 
its  inverse  also  touches  that  circle  at  C.  But  the  points 

A,  A',  B,  B'  are  concyclic,  and  the  radical  axes  of  the  three 
circles  AA'C,  BB'C  and  AA'B'B  are  concurrent. 

Therefore  BB'  passes  through  O  and  OB  .  0B'  =  0C2.  Thus 
the  circle  AA'B'B  is  orthogonal  to  the  fundamental  circle  and also  to  the  circle  of  inversion. 

It  follows  that  if  any  nominal  point  A  is  changed  by  inversion 
with  regard  to  a  circle  of  the  system  into  the  point  B,  the  nominal 
line  AB  is  perpendicular  to  the  nominal  line  with  which  the 
circle  of  inversion  coincides. 

We  shall  now  prove  that  it  is  "  bisected  "  by  that  nominal 
line.  Let  the  circle  through  A,  A',  B  and  B'  meet  the  circle of  inversion  at  M  and  the  fundamental  circle  at  U  and  V 

(Fig.  111).  It  is  clear  that  U  and  V  are  inverse  points  with 
regard  to  the  circle  of  inversion . 

Then  we  have         —-r  = 
BV 

AU 
CV 

CA' 

AV 
BU 

cy 

cb' 

AV 

AU 

AV 
AU 

BV 

Bu' 

MV 

MU 

cv^  _  ̂   _  /Mvy 
CA.CB~Clvr2~VMU/  ■ 
MV 

MU 

BV 

BU* 

Thus  the  nominal  length  of  AM  is  equal  to  the  nominal  length 
of  BM. 
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Therefore  we  have  the  following  result : 

Inversion  with  regard  to  any  circle  of  the  system  changes  any 
point  A  into  a  point  B,  such  that  the  nominal  line  AB  is  perpendi- 

cular to  and  "  bisected  "  by  the  nominal  line  tvith  which  the 
circle  of  inversion  coincides. 

Fio.  111. 

In  other  words, 

Any  nominal  point  takes  up  the  position  of  its  image  in  the 
nominal  line  coinciding  with  the  circle  of  inversion. 

We  shall  now  examine  what  effect  such  an  inversion  has  upon 
a  nominal  line. 

Since  a  circle  orthogonal  to  the  fundamental  circle  inverts 
into  a  circle  also  orthogonal  to  the  fundamental  circle,  any 
nominal  line  AB  inverts  into  a  nominal  line  ab,  and  the  points 
U  and  V  for  AB  invert  into  the  points  u  and  v  for  ab  (Fig.  112). 

When  the  circle  of  inversion  and  the  nominal  line  AB  inter- 
sect, the  lines  AB  and  ab  meet  on  the  circle  of  inversion. 

Denoting  this  point  by  M,  it  is  easy  to  show  that  the  nominal 
lengths  of  AM  and  BM  are  respectively  equal  to  the  nominal 
lengths  of  aM  and  6lVI.  It  follows  that  the  nominal  length  of 
the  segment  AB  is  unaltered  by  inversion  with  regard  to  any 
circle  of  the  system. 

The  same  result  can  be  obtained  immediately  from  the 
corresponding  figure  when  the  nominal  line  AB  does  not  cut 
the  circle  of  inversion. 
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The  preceding  results  may  be  summed  up  as  follows  : 

Inversion  with  regard  to  any  circle' of  the  system  has  the  same 
effect  upon  the  nominal  points  and  lines  as  reflection  in  the 
nominal  line  with  which  the  circle  of  inversion  coincides. 

The  argument  of  §  95  can  now  be  applied  to  the  geometry 
of  this  family  of  circles.  Successive  inversion  with  regard  to 
two  circles  of  the  system  corresponds  to  a  displacement  in 
two  dimensions.  We  can  always  fix  upon  two  circles  of  the 
system  which  will  change  a  nominal  segment  AB  into  a  new 
position,  such  that  A  coincides  with  P  and  AB  lies  along  a  given 
nominal  line  through  P.  The  method  of  superposition  is  thus 
available  in  this  geometry,  and  any  theorems  in  the  Hyperbolic 
Geometry  involving  congruence  of  linear  segments  can  be  at 

once  "  translated  "  into  it. 

§  100.  We  notice  that  the  definition  of  the  nominal  length 
of  a  segment  fixes  the  nominal  unit  of  length.  We  may  take 
this  unit  segment  on  one  of  the  diameters  of  the  fundamental 
circle,  since  these  lines  are  also  nominal  lines  of  the  system. 
Let  it  be  the  segment  OP  (Fig.  113). 

Then  we  must  have 

/Pu\  PU 

that  is,       log(^— J  =  l;  that  is,       —  =  e. 
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Thus  the  point  P  divides  the  diameter  in  the  ratio  e  :  1. 
The  unit  segment  is  thus  fixed  for  any  position  in  the  domain 

of  the  nominal  points,  since  the  segment  OP  can  be  "  moved  " 

Fio.  113. 

so  that  one  of  its  ends  coincides  with  any  given  nominal 

point. 
A  different  expression  for  the  nominal  length,  viz., 

would  simply  mean  an  alteration  in  this  unit,  and  taking 
logarithms  to  the  base  a  instead  of  e  would  have  the  same 
efiect. 

§  101.  We  are  now  able  to  establish  some  further  theorems 
of  Hyperbolic  Geometry,  using  the  metrical  properties  of  this 
Nominal  Geometry. 

In  the  first  place  we  can  say  that  Similar  Triangles  are 
impossible.  For  if  there  were  two  nominal  triangles  with  the 

same  angles  and  not  congruent,  we  could  "  move  "  the  second 
so  that  its  vertex  would  coincide  with  the  corresponding  angular 
point  of  the  first,  and  its  sides  would  lie  along  the  same  nominal 

lines  as  the  sides  of  the  first.  We  would  thus  obtain  a  "quadri- 
lateral "  whose  angles  would  be  together  equal  to  four  right 

angles  ;  and  this  is  impossible,  since  we  have  seen  that  the 
sum  of  the  angles  in  these  nominal  triangles  is  always  less 
than  two  right  angles. 
We  also  see  that  parallel  lines  are  asymptotic  ;  that  is,  they 

continually  approach  each  other.  This  follows  from  the 
figure  for  nominal  parallels  and  the  definition  of  nominal 
length. 
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Further,  it  is  obvious  that  as  the  point  A  moves  away  along 
the  perpendicular  MA  to  the  line  BC  (Fig.  108),  the  angle  of 

parallelism  diminishes  from  -  to  zero  in  the  limit. 

We  shall  now  prove  that  the  angle  of  parallelism,  11(2?),  ̂ ^^ 
the  segment  y,  is  given  by 

Consider  a  nominal  line  and  a  parallel  to  it  through  a  point  A. 

Let  AM  (Fig.  114)  be  the  perpendicular  to  the  given  line  ML) 
and  AU  the  parallel. 

Let  the  figure  be  inverted  from  the  point  M',  the  radius  of 
inversion  being  the  tangent  from  M'  to  the  fundamental circle. 

Then  we  obtain  a  new  figure  (Fig.  115)  in  which  the  corre- 
sponding nominal  lengths  are  the  same,  since  the  circle  of 

inversion  is  a  circle  of  the  system.  The  lines  AM  and  MU 
become  straight  lines  through  the  centre  of  the  fundamental 
circle,  which  is  the  inverse  of  the  point  M.    Also,  the  circle  AU 
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becomes  the  circle  au,  touching  the  radius  mu  at  u,  and  cutting 
ma  at  an  angle  11(59).  These  radii  mu,  mh  are  also  nominal 
lines  of  the  system. 

Let  the  nominal  length  of  AM  be  p. 

Then  we  have  :P  =  log(^/^) 

=  logf^V-)=logf-)- 
^  \acl  m^J        ̂   \acj 

Fio.   115. 

But  from  the  geometry  of  Fig.  115,  remembering  that  au 
cuts  he  at  the  angle  n(^),  we  have 

ac  =  i{l-tan(^-niH))}. 

where  k  is  the  radius  of  the  fundamental  circle. 

Therefore  2^  =  ̂^g  ̂o*  ( — W^ ) 

and 

Finally,  in  this  geometry  there  will  be  three  kinds  of  circles. 
There  will  be  (i)  the  circle  with  its  centre  at  a  finite  distance  ; 
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(ii)  the  limiting-curve,  witli  its  centre  at  infinity,  or  at  a  point 
where  two  parallels  meet ;  and  (iii)  the  equidistant-curve, 
with  its  centre  at  the  ideal  *  point  of  intersection  of  two  lines 
which  have  a  common  perpendicular. 

All  these  curves  are  ordinary  circles,  but  they  do  not 
belong  to  the  system  of  circles  orthogonal  to  the  fundamental 
circle. 

As  to  the  first,  the  nominal  lines  through  a  point  A  are  all 
cut  orthogonally  by  the  circles  of  the  coaxal  system  with  A 

and  its  inverse  point  A'  as  Limiting  "Points.  Thus  these 
circles  are  the  circles  of  this  nominal  geometry  with  A  as  their 
centre.  They  would  be  traced  out  by  the  end  of  a  nominal 
segment  through  A,  when  it  is  reflected  in  the  nominal  lines 
of  the  pencil. 

As  to  the  second,  the  circles  which  touch  the  fundamental 
circle  at  a  point  U  cut  all  the  circles  of  the  system  which 
pass  through  U  orthogonally.  They  are  orthogonal  to  the 
pencil  of  parallel  nominal  lines  meeting  at  infinity  in  U. 

Thus  these  circles  are  the  circles  of  this  nominal  geometry 
with  their  centre  at  the  point  at  infinity  common  to  a  pencil 
of  parallel  nominal  lines.  They  would  be  obtained  when  the 
reflection  takes  place  in  the  lines  of  this  pencil. 

As  to  the  third,  all  circles  through  U,  V  cut  all  the  nominal 
lines  perpendicular  to  the  line  AB  (cf.  Fig.  Ill)  orthogonally. 
Thus  these  circles  are  the  circles  of  the  nominal  geometry  with 
their  centre  at  the  ideal  point  common  to  this  pencil  of  not- 
intersecting  nominal  lines.  They  would  be  obtained  when 
the  reflection  takes  place  in  the  lines  of  this  pencil. 

These  three  circles  correspond  to  the  ordinary  circle,  the 

Limiting-Curve  and  the  Equidistant-Curve  of  the  Hyperbolic 
Geometry. 

§  102.  The  Impossibility  of  proving  Euclid's  Parallel Postulate. 

We  can  now  assert  that  it  is  impossible  for  any  inconsistency 
to  exist  in  this  Hyperbolic  Geometry.  If  such  a  contradiction 
entered  into  this  plane  geometry,  it  would  also  occur  in  the 
interpretation  of  the  result  in  the  nominal  geometry.  Thus 
a  contradiction  would  also  be  found  in  the  Euclidean  Geometry. 
We  can  therefore  state  that  it  is  impossible  that  any  logical 

♦  Cf.  §  37. 
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inconsistency  could  arise  in  the  Hyperbolic  Plane  Geometry, 
provided  no  logical  inconsistency  can  arise  in  the  Euclidean 

Plane  Geometry.  It  could  still  be  argued  that  such  a  contra- 
diction might  be  found  in  the  Hyperbolic  Solid  Geometry. 

An  answer  to  such  an  objection  is  forthcoming  at  once.  The 
geometry  of  the  system  of  circles,  all  orthogonal  to  a  fixed 

circle,  can  be  readily  extended  into  a  three-dimensional  system. 
The  nominal  points  are  the  points  inside  a  fixed  sphere,  exclud- 

ing the  points  on  the  surface  of  the  sphere  from  their  domain. 
The  nominal  lines  are  the  circles  through  two  nominal  points 
cutting  the  fixed  sphere  orthogonally.  The  nominal  planes  are 
the  spheres  through  three  nominal  points  cutting  the  fixed 
sphere  orthogonally.  The  ordinary  plane  enters  as  a  particular 
case  of  these  nominal  planes,  and  so  the  plane  geometry  just 
discussed  is  a  special  case  of  a  plane  geometry  of  this  system. 
With  suitable  definitions  of  nominal  lengths,  nominal  parallels, 

etc.,  we  have  a  solid  geometry  exactly  analogous  to  the  Hyper- 
bolic Solid  Geometry.  It  follows  that  no  logical  inconsistency 

could  arise  in  the  Hyperbolic  Solid  Geometry,  since,  if  such  did 
occur,  it  would  also  be  found  in  the  interpretation  of  the 
result  in  this  Nominal  Geometry,  and  therefore  it  would  enter 
into  the  Euclidean  Geometry. 

By  this  result  our  argument  is  complete.  However  far  the 
Hyperbolic  Geometry  is  developed,  no  contradictory  results 
could  be  obtained.  This  system  is  thus  logically  possible, 
and  the  axioms  upon  which  it  is  founded  are  not  contradictory. 

Hence  it  is  impossible  to  prove  Euclid's  Parallel  Postulate, 
since  its  proof  would  involve  the  denial  of  the  Parallel  Postulate 
of  Bolyai  and  Lobatschewsky. 

§  103.  The  System  of  Circles  cutting  a  Fixed  Circle 
diametrally. 

We  shall  now  discuss  the  geometry  of  the  system  of  circles 
cutting  a  fixed  circle  centre,  O  and  radius  k,  diametrally. 
The  points  in  which  any  circle  of  the  system  cuts  the  fixed 
circle  are  to  be  at  the  extremities  of  some  diameter.  We 
shall  call  the  fixed  circle,  as  before,  the  fundamental  circle. 

The  system  of  circles  with  which  we  are  to  deal  has  power  —  k^ 
with  respect  to  O. 

Let  A  and  B  be  any  two  points  within  the  fundamental 

circle,  and  A',  B'  the  points  on  OA  and  08,  such  that 
OA.OA'=  -A;2  and  OB.OB'=  -P. 
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Then  A,  A',  B,  B'  are  concyclic,  and  the  circle  which  passes 
through  them  cuts  the  fundamental  circle  diametrally 
(Fig.  116).  There  is  one,  and  only  one,  circle  cutting  the 
fundamental  circle  diametrally,  which  passes  through  two 
different  points  within  the  fundamental  circle. 

Fio.  116. 

In  discussing  the  properties  of  the  family  of  circles  cutting 
the  fundamental  circle  diametrally,  two  methods  can  be 
followed.  We  can  restrict  the  nominal  points  of  the  geometry 
to  the  points  within  and  upon  the  fundamental  circle.  In 
this  case  we  regard  the  points  on  the  circumference  at  the 
extremities  of  a  diameter  as  one  and  the  same  nominal  point. 
In  the  other  case,  we  extend  the  field  of  nominal  points  outside 
the  circle  to  infinity,  and  the  points  on  the  circumference  do 
not  require  special  treatment. 

These  two  alternatives,  we  shall  see  below,  correspond  to 
the  two  forms  of  the  Elliptic  Geometry,  in  one  of  which  every 
straight  line  intersects  every  other  straight  line  in  one  point, 
while  in  the  other  form,  straight  lines  have  always  two  points 
of  intersection.  The  nominal  lines  are  the  circles  which  cut 

the  fundamental  circle  diametrally. 
When  the  field  of  nominal  points  is  restricted  to  points  within 

or  upon  the  fundamental  circle,  any  two  different  nominal 

•points  A,  B  determine  a  nominal  line  AB.  Also  any  two  nominal 
lines  must  intersect  at  a  single  nominal  point. 
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When  tlie  domain  of  the  nominal  points  is  both  within  and 
without  the  fundamental  circle,  two  nominal  points  do  not 
always  determine  uniquely  a  nominal  line.  If  the  points 
A  and  B  are  upon  the  circumference  of  the  circle  at  opposite 
ends  of  a  diameter,  a  pencil  of  nominal  lines  passes  through 
A  and  B.  Again,  if  the  points  A  and  B  lie  on  a  line  through 

O  and  OA  .  0B=  -h^,  the  same  remark  holds  true. 
Further,  with  the  same  choice  of  nominal  points,  every 

nominal  line  intersects  every  other  nominal  line  in  two  nominal 
points. 

The  simplest  way  of  discussing  the  properties  of  the  system 
of  circles  with  which  we  are  dealing,  is  to  make  use  of  the 
fact  that  they  can  be  obtained  by  projecting  the  great  circles 
of  a  sphere  stereographically  from  a  point  on  the  surface  of 
the  sphere  on  the  tangent  plane  at  the  point  diametrally 
opposite.  If  the  centre  of  projection  is  a  pole  of  the  sphere, 
the  equator  projects  into  the  fundamental  circle,  and  one 
hemisphere  projects  into  points  outside  this  circle,  the  other 
into  points  within  it.  This  projection  is  a  conformal  one, 
and  the  angle  at  which  two  great  circles  intersect  is  the  same 
as  the  angle  at  which  the  corresponding  circles  in  the  plane 
cut  each  other. 

We  define  the  angle  between  two  nominal  lines  as  the  angle 
between  the  circles  with  which  they  coincide. 

We  are  now  able  to  prove  some  of  the  theorems  of  this 
Nominal  Geometry. 

Since  all  the  great  circles  perpendicular  to  a  given  great 
circle  intersect  at  the  poles  of  that  circle,  it  follows  that  all 
the  nominal  lines  perpendicular  to  a  given  nominal  line  intersect 
at  one  point,  in  the  case  when  the  nominal  points  are  within  or 
upon  the  circumference  of  the  fundamental  circle  ;  in  two  points, 

when  this  field  is  both  within  and  without.     (Of.  §§  lb-11.) 
The  point  of  intersection  is  spoken  of  as  a  pole,  or  the  pole, 

of  the  line. 

Again,  in  a  right-angled  spherical  triangle  ABC,  in  which 
C  is  the  right  angle,  the  angle  at  A  =  a  right  angle,  according 
as  the  pole  of  AC  lies  on  CB  produced,  or  coincides  with  B, 
or  lies  between  C  and  B. 

When  translated  into  the  language  of  the  nominal  geometry, 
we  have  the  theorem  which  corresponds  to  §  78  (1). 

Further,  the  sum  of  the  angles  of  a  spherical  triangle  is 
greater  than  two  right  angles.     It  follows,  since  the  projection 
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is  conformal,  that  the  sum  of  the  angles  of  a  nominal  triangle 
in  this  geometry  is  greater  than  two  right  angles.     (Cf.  §  78  (3).) 

However,  the  metrical  properties  of  this  geometry  cannot 
be  treated  so  easily  as  were  the  corresponding  properties  in 
the  geometry  of  the  system  of  circles  cutting  the  fundamental 
circle  orthogonally.  The  same  argument  to  a  certain  extent 

applies,  but  in  the  definition  of  nominal  lengths  the  inter- 
sections with  an  imaginary  circle  have  to  be  taken.  It  should 

be  added  that  in  the  extension  to  solid  geometry  the  system 
of  spheres  cutting  a  fixed  sphere  diametrally  has  to  be 
employed. 

The  fuller  discussion  of  this  nominal  geometry  will  not  be 
undertaken  here.  If  it  is  desired  to  establish  the  fact  that 

no  contradiction  could  appear  in  the  Elliptic  Geometry, 
however  far  that  geometry  were  developed,  there  are  simpler 
methods  available  than  this  one.  The  case  of  the  Hyperbolic 
Geometry  was  discussed  in  detail,  because  it  offered  so 
elementary  a  demonstration  of  the  impossibility  of  proving 
the  Parallel  Postulate  of  Euclid. 

§  104.  We  have  already  quoted  some  remarks  of  Bolyai's 
on  the  question  of  whether  the  Euclidean  or  the  Non-Euclidean 
Geometry  is  the  true  geometry.*  We  shall  conclude  this 
presentation  of  our  subject  with  two  quotations  from  modern 
geometers  on  the  same  topic  : 

"  What  then,"  says  Poincare,  "  are  we  to  think  of  the 
question  :  Is  Euclidean  Geometry  true  ?  It  has  no  meaning. 
We  might  as  well  ask  if  the  metric  system  is  true,  and  if  the 
old  weights  and  measures  are  false  ;  if  Cartesian  coordinates 
are  true  and  polar  coordinates  false.  One  geometry  cannot 
be  more  true  than  another  ;  it  can  only  be  more  convenient. 
Now,  Euclidean  Geometry  is,  and  will  remain,  the  most 
convenient :  first,  because  it  is  the  simplest,  and  it  is  so  not 
only  because  of  our  mental  habits  or  because  of  the  kind  of 
intuition  that  we  have  of  Euclidean  space  ;  it  is  the  simplest 
in  itself,  just  as  a  polynomial  of  the  first  degree  is  simpler  than 
a  polynomial  of  the  second  degree  ;  secondly,  because  it 
sufficiently  agrees  with  the  properties  of  natural  solids,  those 
bodies  which  we  compare  and  measure  by  means  of  our  senses  .f 

*  Cf.  §  16. 

■j-  Poincare,  La  Science  et  VHypothese.     English  translation,  p.  50. 
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And  another  French  geometer  writes  : 

"  We  are  then  entitled  to  say  that  the  geometry  which  most 
closely  resembles  reality  is  the  Euclidean  Geometry,  or  at  least 
one  which  differs  very  little  from  it ;  .  .  .  the  error  is  too 
small  to  be  apparent  in  the  domain  of  our  observations  and 
with  the  aid  of  the  instruments  at  our  disposal. 

"  In  a  word,  not  only  have  we  theoretically  to  adopt  the 
Euclidean  Geometry,  but  in  addition  this  geometry  is  physically 

true."* 
The  matter  can  be  put  in  another  way.     The  question 

whether  the  Euclidean  Geometry  is 'the  true  geometry  has  no 
place  in   Geometry — the  Pure  Science.     It  has  a   place  in 
Geometry — the  Applied  Science.     The  answer  to  the  question 
— if  an  answer  can  be  given — lies  with  the  experimenter.     But  , 
his  reply  is  inconclusive.     All  that  he  can  tell  us  is  that  the  \ 
sum  of  the  angles  of  any  triangle  that  he  has  observed —  : 
however  great  the  triangle  may  have  been — is  equal  to  two 
right  angles,  subject  to  the  possible  errors  of  observation. 
To  say  that  it  is  exactly  two  right  angles  is  beyond  his  power. 

One  interesting  point  must  be  mentioned  in  conclusion. 

In  the  Theory  of  Relativity,  it  is  the  Non-Euclidean  Geometry 
of  Bolyai  and  Lobatschewsky  which,  in  some  ways  at  least, 

is  the  more  convenient.  Gauss's  jesting  remark  that  he  would 
be  rather  glad  if  the  Euclidean  Geometry  were  not  the  true 
geometry,  because  then  we  would  have  an  absolute  measure 
of  length,  finds  an  echo  in  the  writings  of  those  who  in  these 
last  years  have  developed  this  new  theory .f 

*  Hadamard,  Let^ons  de  Odomitrie  dementaire,  vol.  i.  p.  286  (Paris,  1898). 
t  Cf.  the  letter  to  Taurinus,  quoted  on  p.  24.  Also  the  letter  to 

Gerling  given  in  Gauss,  Werke,  vol.  viii.  p.  169. 
A  similar  remark  is  to  be  found  in  Lambert's  Theorie  der  Parallel- 

Linien,  §  80 ;   see  Engel  u.  Stackel,  loc.  cit.  p.  200. 
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