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.     PREFACE 

The  present  work  is  an  extension  and  elaboration  of  a 

course  of  lectures  on  Non-Euclidean  Geometry  which  I 
dehvered  at  the  Colloquium  held  under  the  auspices  of  the 

Edinburgh  Mathematical  Society  in  August,  1913. 

Non-euclidean  geometry  is  now  a  well-recognised  branch 
of  mathematics.  It  is  the  general  type  of  geometry  of 

homogeneous  and  continuous  space,  of  which  euclidean 

geometry  is  a  special  form.  The  creation  or  discovery  of 

such  types  has  destroyed  the  unique  character  of  euclidean 

geometry  and  given  it  a  setting  amongst  geometrical 

systems.  There  has  arisen,  so  to  speak,  a  science  of  Com- 
parative Geometry. 

Special  care  has,  therefore,  been  taken  throughout  this 

book  to  show  the  bearing  of  non-euclidean  upon  euclidean 
geometry  ;  and  by  exhibiting  euchdean  geometry  as  a 

really  degenerate  form — in  the  sense  in  which  a  pair  of 

straight  hues  is  a  degenerate  conic — to  explain  the  apparent 
want  of  symmetry  and  the  occasional  failure  of  the  principle 

of  duality,  which  only  a  study  of  non-eucHdean  geometry 
can  fully  elucidate. 
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There  are  many  ways  of  presenting  the  subject.  In  the 

present  work  the  primary  exposition  follows  the  lines  of 

elementary  geometry  in  deduction  from  chosen  postulates. 
This  was  the  method  of  Euclid,  and  it  was  also  the  method 

of  the  discoverers  of  non-euclidean  geometry.  Restrictions 
have,  however,  been  made.  It  was  felt  that  a  rigorously 

logical  treatment,  with  a  detailed  examination  of  all  the 

axioms  or  assumptions,  would  both  overload  the  book  and 

tend  to  render  it  dry  and  repulsive  to  the  average  reader. 

It  is  hoped,  however,  that  the  principles  have  been  touched 

upon  sufficiently  to  indicate  the  nature  of  the  problems 

involved,  especially  in  such  cases  where  they  throw  light 

upon  ordinary  geometry. 

It  IS  impossible  thoroughly  to  appreciate  non-euclidean 

geometry  without  a  knowledge  of  its  history.  I  have  there- 
fore given  in  the  first  chapter  a  fairly  full  historical  sketch 

of  the  subject  up  to  the  epoch  of  its  discovery.  Chapters  II. 

^and  III.  develop*  Jhe  ̂ principal  results  in  hyperbolic  and 
elliptic  geometries.  Chapter  IV.  gives  the  basis  of  an 
analytical  treatment,  the  matter  chosen  for  illustration  here 

being,  for  the  most  part,  such  as  was  not  touched  on  m  the 

preceding  chapters.  This  completes  the  rudiments  of  the 

subject.  The  next  two  chapters  exhibit  non-euclidean 
geometry  in  various  lights,  mathematical  and  philosophical, 

and  bring  up  the  history  to  a  later  stage.  In  the  last  three 

chapters  some  of  the  more  interesting  branches  of  geometry 

are  worked  out  for  the  non-euclidean  case,  with  a  view  to 

providing  the  serious  student  with  a  stimulus  to  pursue  the 

subject  in  its  higher  developments.     The  reader  will  find 
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a  list  of  text-books  and  references  to  all  the  existing  litera- 

ture up  to  1910  in  my  Bibliography  of  Non-Euclidean 
Geometry  (London  :   Harrison,  1911). 

Most  of  the  chapters  are  furnished  with  exercises  for 

working.  As  no  examination  papers  in  the  subject  are  yet 

available,  the  examples  have  all  been  specially  devised,  or 

culled  from  original  memoirs.  Many  of  them  are  theorems 

of  too  special  a  character  to  be  included  in  the  text. 

In  preparing  the  treatise,  the  needs  of  the  student  reading 

privately  have  been  kept  steadily  in  view.  Hence  it  is 

hoped  that  the  work  will  prove  useful  to  the  "  Scholarship 

Candidate  "  in  our  Secondary  Schools  who  wishes  to  widen 
his  geometrical  horizon,  to  the  Honours  Student  at  our 

Universities  who  chooses  Geometry  as  his  special  subject, 

and  to  the  teacher  of  Geometry,  in  general,  who  desires  to 

see  in  how  far  strict  logical  rigour  can  be  made  compatible 

with  a  treatment  of  the  subject  capable  of  comprehension 

by  schoolboys. 

In  acknowledging  my  indebtedness  to  previous  writers 

on  the  subject,  special  mention  should  be  made  of  Bonola's 
article  in  the  collection,  Questioni  riguardanti  la  geometria 

elementare,  edited  by  Enriques  (Bologna,  1900  ;  German 

translation,  Leipzig,  1911) ;  and  Liebmann's  Nichi- 
euklidische  Geametrie  (Leipzig,  2nd  ed.,  1912). 

I  take  this  opportunity  of  expressing  my  obligations  to 

Mr.  Peter  Eraser,  M.A.,  B.Sc,  Lecturer  in  Mathematics  at 

the  University  of  Bristol,  and  Mr.  E.  K.  Wakeford,  Trinity 

College,  Cambridge,  for  kindly  criticising  the  work  while  in 

manuscript  form  and  giving  many  valuable  suggestions. 
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I  am  also  greatly  indebted  to  Mr.  W.  P.  Milne,  M.A.,  D.Sc, 

Clifton  College,  Bristol,  for  continued  assistance,  by  criti- 
cism and  suggestion,  all  through  the  preparation  of  the 

book.  To  Dr.  A.  E.  Taylor,  Professor  of  Moral  Philosophy 

at  the  University  of  St.  Andrews,  and  Mr.  C.  D.  Broad,  B.A., 

Fellow  of  Trinity  College,  Cambridge,  and  Assistant  to  the 

Professor  of  Logic  at  the  University  of  St.  Andrews,  I  have 

also  to  express  my  thanks  for  reading  and  criticising 

Chapter  VI.  In  correcting  the  proofs  I  have  profited  by 

the  assistance  of  my  wife  and  by  the  excellence  of  Messrs. 

MacLehose's  printing  work. 
D.  M.  Y.  S. 

The  University,   St.  Andrews, 

April,  1914. 
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I 

NON-EUCLTDEAN  GEOMETRY 

CHAPTER  I. 

HISTORICAL. 

1.  The  origins  of  geometry.  ^ 
Geometry,  according  to  Herodotus,  and  the  Greek  deriva- 

tion of  the  word,  had  its  origin  in  Egypt  in  the  mensuration 
of  land,  and  the  fixing  of  boundaries  necessitated  by  the 
repeated  inundations  of  the  Nile.  It  consisted  at  first  of 
isolated  facts  of  observation  and  rude  rules  for  calculation, 

until  it  came  under  the  influence  of  Greek  thought.  The 

honour  of  having  introduced  the  study  of  geometry  from 

Egypt  falls  to  Thales  of  Miletus  (640-546  B.C.),  one  of  the 

seven  "  wise  men  "  of  Greece.  This  marks  the  first  step  in  j 
the  raising  of  geometry  from  its  lowly  level ;  geometric  ele- 

ments were  abstracted  from  their  material  clothing,  and 

the  geometry  of  lines  emerged.  With  Pythagoras  (about 

580-500  B.C.)  geometry  really  began  to  be  a  metrical  science, 
and  in  the  hands  of  his  followers  and  the  succeeding 

Platonists  the  advance  in  geometrical  knowledge  was  fairly 
rapid.  Already,  also,  attempts  were  made,  by  Hippocrates  i 

of  Chios  (about  430  B.C.)  and  others,  to  give  a  connected  and  V 
logical  presentation  of  the  science  in  a  series  of  propositions 

based  upon  a  few  axioms  and  definitions.  The  most  famous 
of  such  attempts  is,  of  course,  that  of  Euclid  (about  300 

B.C.),  and  so  great  was  his  prestige  that  he  acquired,  like 
N.-E.  G.  A  ® 
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Aristotle,  the  reputation  of  infallibility,  a  fact  wh- ch  latterly 
became  a  distinct  bar  to  progress. 

2.  Euclid's  Elements. 
The  structure  of  Euchd's  Elements  should  be  familiar  to 

every  student  of  geometry,  but  owing  to  the  multitude  of 
texts  and  school  editions,  especially  in  recent  years,  when 

Euclid's  order  of  the  propositions  has  been  freely  departed 
from,  Euclid's  actual  scheme  is  apt  to  be  forgotten.  We 
must  turn  to  the  standard  text  of  Heiberg^  in  Greek  and 

Latin,  or  its  English  equivalent  by  Sir  Thomas  Heath. ^ 
Boot  I.,  which  is  the  only  one  that  immediately  concerns 

us,  opens  with  a  list  of  definitions  of  the  geometrical  figures, 
followed  by  a  number  of  postulates  and  common  notions, 

called  also  by  other  Greek  geometers  "  axioms." 
Objection  may  be  taken  to  many  of  the  definitions,  as  they  appeal 

simply  to  the  intuition.  The  definition  of  a  straight  line  as  "  a 
line  which  lies  evenly  with  the  points  on  itself  "  contains  no  state- 

ment from  which  we  can  deduce  any  propositions.  We  now  recog- 
nise that  we  must  start  with  some  terms  totally  undefined,  and  rely 

upon  postulates  to  assign  a  more  definite  character  to  the  objects. 
A  right  angle  and  a  square  are  defined  before  it  has  been  shown  that 
objects  corresponding  to  the  definitions  can  exist. 

An  axiom  or  common  notion  was  considered  by  Euclid  as  a  pro- 
position which  is  so  self-evident  that  it  needs  no  demonstration  ; 

a  postulate  as  a  proposition  which,  though  it  may  not  be  self-evident, 
cannot  be  proved  by  any  simpler  proposition.  This  distinction 
has  been  frequently  misunderstood — to  such  an  extent  that  later 
editors  of  Euclid  have  placed  some  of  the  postulates  erroneously 
among  the  axioms.  A  notable  instance  is  the  parallel-postulate, 
No.  6,  which  has  figured  for  ages  as  Axiom  11  or  12. 

The  common  notions  of  Euclid  are  five  in  number,  and 

deal  exclusively  with  equalities  and  inequalities  of  magni- 
tudes. 

»  12  vols.,  Leipzig,  1883-99.  '  3  vols.,  Cambridge,  1908. 
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The  postulates  are  also  five  in  number  and  are  exclusively 
geometrical.  The  first  three  refer  to  the  construction  of 

straight  Knes  and  circles.  The  fourth  asserts  the  equahty 
of  all  right  angles,  and  the  fifth  is  the  famous  Parallel- 

Postulate  :  "  If  a  straight  line  falling  on  two  straight  fines 
make  the  interior  angles  on  the  same  side  less  than  two  right 
angles,  the  two  straight  lines,  if  produced  indefinitely,  meet 

on  that  side  on  which  are  the  angles  less  than  two  right 

angles." 

3.  Attempts  to  prove  the  parallel-postulate. 
It  seems  impossible  to  suppose  that  Euclid  ever  imagined 

this  to  be  self-evident,  yet  the  history  of  the  theory  of 
parallels  is  full  of  reproaches  against  the  lack  of  self-evidence 

of  this  "  axiom."  Sir  Henry  Savile^  referred  to  it  as  one  of 
the  great  blemishes  in  the  beautiful  body  of  geometry  ; 

D'Alembert^  called  it  "  I'ecueil  et  le  scandale  des  elemens 

de  Geometric." 

The  universal  converse  of  the  statement,  "  if  two  straight  lines 
crossed  by  a  transversal  meet,  they  will  make  the  interior  angles 

on  that  side  less  than  two  right  angles,"  is  proved,  with  the  help 
of  another  unexpressed  assumption  (that  the  straight  line  is  of 

unlimited  length),  in  Prop.  17  ;  while  the  contrapositive,  "  if  the 
interior  angles  on  either  side  are  not  less  than  two  right  angles  {i.e., 

by  Prop.  13,  if  they  are  equal  to  two  right  angles)  the  straight  lines 

will  not  meet,"  is  proved,  again  with  the  same  assumption,  in 
Prop.  28. 

Such  considerations  induced  geometers  (and  others),  even 

up  to  the  present  day,  to  attempt  its  demonstration.  From 

the  invention  of  printing  onwards  a  host  of  parallel-postu- 

late demonstrators  existed,  rivalled  only  by  the  "  circle- 

squarers,"  the  "  flat-earthers,"  and  the  candidates  for  the 
1  Praelectianes,  Oxford,  1621  (p.  140). 

2  Melanges  de  Litterature,  Amsterdam,  1759  (p.  180). 
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Wolfskehl  "  Fermat "  prize.  Great  ingenuity  was  expended . 
but  no  advance  was  made  towards  a  settlement  of  the 

question,  for  each  successive  demonstrator  showed  the  false- 

ness of  his  predecessor's  reasoning,  or  pointed  out  an  un- 
noticed assumption  equivalent  to  the  postulate  which  it 

was  desired  to  prove.  Modern  research  has  vindicated 

Euclid,  and  justified  his  decision  in  putting  this  great 
proposition  among  the  independent  assumptions  which  are 
necessary  for  the  development  of  euclidean  geometry  as  a 

logical  system. 
All  this  labour  has  not  been  fruitless,  for  it  has  led  in 

modern  times  to  a  rigorous  examination  of  the  principles, 

not  only  of  geometry,  but  of  the  whole  of  mathematics,  and 
even  logic  itself,  the  basis  of  mathematics.  It  has  had  a 
marked  effect  upon  philosophy,  and  has  given  us  a  freedom 

of  thought  which  in  former  times  would  have  received  the 
award  meted  out  to  the  most  deadly  heresies. 

4.  In  a  more  restricted  field  the  attempts  of  the  postulate- 
demonstrators  have  given  us  an  interesting  and  varied 

assortment  of  equivalents  to  Euchd's  axiom.  It  would  take 
up  too  much  of  our  space  to  examine  the  numerous  demon- 

strations,^ but  as  some  of  the  equivalent  assumptions  have 
come  into  school  text-books,  and  there  appears  still  to 
exist  a  beHef  that  the  Euclidean  theory  of  parallels  is  a 
necessity  of  thought,  it  will  be  useful  to  notice  a  few  of 
them. 

One  of  the  commonest  of  the  equivalents  used  for  Euchd's 
axiom  in  school  text-books  is  "  Playfair's  axiom  "  (really 

due  to  Ludlam^)  :   "  Two  intersecting  straight  lines  cannot 
*  A  useful  account  of  these  is  given  by  W.  B.  Frankland  in  bis  Theories 

of  ParalMism,  Csimhrid^e,  11)10. 

*  The  Rudiments  of  Malhematics,  Cambridge,  1785  (p.  145). 
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both  be  parallel  to  the  same  straight  hne,"  which  is  equiva- 
lent to  the  statement,  "  Through  a  given  point  not  more 

than  one  parallel  can  be  drawn  to  a  given  straight  hne," 
and   from   this   the   properties   of  parallels   follow   very 

^4 

Fig.  1. 

elegantly.    The  statement  is  simpler  in  form  than  EucHd's, 
but  it  is  none  the  less  an  assumption. 

Another  equivalent  is  :    "  The  sum  of  the  angles  of  a 

triangle  is  equal  to  two  right  angles."    I  do  not  think  that 
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anyone  has  been  so  bold  as  to  assume  this  as  an  axiom, 

but  there  have  been  many  attempts  to  estabhsh  the  theory 

of  parallels  by  obtaining  first  an  intuitive  proof  of  this 
statement.  A  very  neat  proof,  but  particularly  dangerous 
unless  it  be  regarded  merely  as  an  illustration,  is  the 

"  Rotation  Proof,"  due  to  Thibaut.^ 

5.  Let  a  ruler  (Fig.  1)  be  placed  with  its  edge  coinciding 

with  a  side  AC  of  a  triangle,  and  let  it  be  rotated  succes- 
sively about  the  three  vertices  A,  B,  C,  in  the  direction 

ABC,  so  that  it  comes  to  coincide  in  turn  with  AB.  BC  and 

CA.  When  it  returns  to  its  original  position  it  must  have 

rotated  through  four  right  angles.  But  this  whole  rotation 

is  made  up  of  three  rotations  through  angles  equal  to  the 

exterior  angles  of  the  triangle.  The  fault  of  this  "  proof  " 
is  that  the  three  successive  rotations  are  not  equivalent  at 

all  to  a  single  rotation  through  four  right  angles  about  a 

definite  point,  but  are  equivalent  to  a  translation,  through 

a  distance  equal  to  the  perimeter  of  the  triangle,  along  one 
of  the  sides. 

The  construction  may  be  performed  equally  well  on  the 
surface  of  a  sphere,  with  a  ruler  bent  in  the  form  of  an  arc 

of  a  great  circle  ;  and  yet  the  sum  of  the  exterior  angles  of 
a  spherical  triangle  is  always  less  than  four  right  angles. 

A  similar  fallacy  is  contained  in  all  proofs  based  upon  the 

idea  of  direction.  Take  the  following  :  AB  and  CD  (Fig.  2) 
are  two  parallel  roads  which  are  intersected  by  another 
road  BC.  A  traveller  goes  along  AB,  and  at  B  turns  into 

the  road  BC,  altering  his  direction  by  the  angle  at  B.  At 
C  he  turns  into  his  original  direction,  and  therefore  must 

have  turned  back  through  the  same  angle.    But  this  requires 

'  Orundrts8  der  reinen  Mathemaiik,  2nd  ed.  Gottingen,  1809. 
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a  definition  of  sameness  of  direction,  and  this  can  only  be 
effected  when  the  theory  of  parallels  has  been  established. 

The  difficulty  is  made  clear  when  we  try  to  see  what  we 

mean  by  the  relative  compass-bearing  of  two  points  on  the 

earth's  surface.  If  we  travelled  due  west  from  Plymouth 
along  a  parallel  of  latitude,  we  should  arrive  at  Newfound- 

land, but  the  direct  or  shortest  course  would  start  in  a 

"  direction  "  WNW.  and  finish  in  the  "  direction  "  WSW. 

Fig.  2. 

Other  statements  from  which  Euclid's  postulate  may  be 
deduced  are 

"  Three  points  are  either  collinear  or  coney cHc."  (W. 
Bolyai.i) 

"  There  is  no  upper  limit  to  the  area  of  a  triangle." 
(Gauss.2) 

"  Similar  figures  exist."    (WalHs.^) 

6.  Another  class  of  demonstrations  is  based  upon  con- 

siderations of  infinite  areas.  The  following  is  "  Bertrand's 
Proof."  * 

^  Kurzer  Grundriss,  1851  (p.  46). 

'-  Letter  to  W.  Bolyai,  16th  December,  1799. 
3  Opera,  Oxford,  1693  (t.  ii.  p.  676). 

"*  L.  Bertrand,  Developpement  nouveau  de  la  partie  elementaire  des 
mathematiques,  Geneva,  1778  (t.  ii.  p.  19). 
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Let  a  line  AX  (Fig.  3),  proceeding  to  infinity  in  the  direc- 
tion of  X,  be  divided  into  equal  parts  AB,  BC,  ...  and  let 

the  lines  AA',  BB',  ...  each  produced  to  infinity,  make  equal 

angles  with  AX.  Then  the  infinite  strips  A' ABB', 
B'BCC,  ...  can  all  be  superposed  and  have  equal  areas, 
but  it  requires  infinitely  many  of  these  strips  to  make  up  the 

area  A' AX,  contained  between  the  Hnes  AA'  and  AX,  each 

produced  to  infinity.  Again,  let  the  angle  A' AX  be  divided 
into  equal  parts  A'AP,  PAQ, ....  Then  all  these  sectors 
can  be  superposed  and  have  equal  areas,  but  it  requires 

only  a  finite  number  of  them  to  make  up  the  area  A' AX. 

Fig.  8. 

Hence,  however  small  the  angle  A'AP  may  be,  the  area 

^'^P  is  greater  than  the  area  A' ABB',  and  cannot  there- 
fore be  contained  within  it.  AP  must  therefore  cut  BB'  ; 

and  this  result  is  easily  recognised  as  Euclid's  axiom. 
The  fallacy  here  consists  in  applying  the  principle  of  super- 

position to  infinite  areas,  as  if  they  were  finite  magnitudes. 

If  we  consider  (Fig.  4)  two  infinite  rectangular  strips  A' ABB' 
and  A'PQB'  with  equal  bases  AB,  PQ,  and  partially  superposed, 
then  the  two  strips  are  manifestly  unequal,  or  else  the  principle  of 
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superposition  is  at  fault.  Again,  suppose  we  have  two  rectangular 
strips  A'ABB\  C'CDD'  (Fig.  5).  Mark  off  equal  lengths  AA^, 
Ji^2 »  -  along  AA',  each  equal  to  CD,  and  equal  lengths  COj,  C^C^, ... 
along  CC\  each  equal  to  AB,  and  divide  the  strips  at  these  points 
into  rectangles.  Then  all  the  rectangles  are  equal,  and,  if  we 

«    Q 

p 
Fig.  4. 

B'
 number  them  consecutively,  then  to  every  rectangle  in  the  one 

strip  there  corresponds  the  similarly  numbered  rectangle  in  the 
other  strip.  Hence,  if  the  ordinary  theorems  of  congruence  and 
equaUty  of  areas  are  assumed,  we  must  admit  that  the  two  strips 
are  equal  in  area,  and  that  therefore  the  area  is  independent  of  the 
magnitude  of  AB.  Such  deductions  are  just  as  vahd  as  the  de- 

duction of  Euclid's  axiom  from  a  consideration  of  infinite  areas. 

B 

) 2 3 

A / K                 / K                     > 

^3 

Pig.  5. 

7.  It  will  sufl&ce  to  give  one  other  example  of  the  attempts 
to  base  the  theory  of  parallels  on  intuition.  Suppose  that, 

instead  of  Euclid's  definition  of  parallels  as  "  straight  lines, 
which,  being  in  the  same  plane,  and  being  produced 
indefinitely  in  both  directions,  do  not  meet  one  another  in 
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either  direction,"  we  define  them  as  "  straight  lines  which 
are  everywhere  equidistant,"  then  the  whole  Euclidean 
theory  of  parallels  comes  out  with  beautiful  simplicity.  In 

particular,  the  sum  of  the  angles  of  any  triangle  ABC  (Fig.  6) 

is  proved  equal  to  two  right  angles  by  drawing  through  the 

vertex  A  a  parallel  to  the  base  BC.  Then,  if  we  draw  per- 
pendiculars from  A,  B,  C  on  the  opposite  parallel,  these 

perpendiculars  are  all  equal.  The  angle  EAB=Z-B  and 

the  angle  C^ii^  =  ZC. 
It  is  scarcely  necessary  to  point  out,  however,  that  this 

definition  contains  the  whole  debatable  assumption.     We 

Fig. 

have  no  warrant  for  assuming  that  a  pair  of  straight  lines 

can  exist  with  the  property  ascribed  to  them  in  the  defini- 
tion. To  put  it  another  way,  if  a  perpendicular  of  constant 

length  move  with  one  extremity  on  a  fixed  line,  is  the  locus 

of  its  free  extremity  another  straight  line  ?  We  shall  find 

reason  later  on  to  doubt  this.  In  fact,  non-euclidean 
geometry  has  made  it  clear  that  the  ideas  of  paralleHsm  and 

equidistance  are  quite  distinct.  The  term  *'  parallel  " 
Greek  7rapaAA>yXo?  =  running  alongside)  originally  con- 

noted equidistance,  but  the  term  is  used  by  Euclid  rather 

in  the  sense  "  asymptotic  "  (Greek  a-o- J^iTrTftjTo 9  =  non- inter- 
secting), and  this  term  has  come  to  be  used  in  the  limiting 
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case  of  curves  which  tend  to  coincidence,  or  the  limii 

case  between  intersection  and  non-intersection.  In  noi 

euclidean  geometry  parallel  straight  Hnes  are  asymptotic 
in  this  sense,  and  equidistant  straight  lines  in  a  plane  do 
not  exist.  This  is  just  one  instance  of  two  distinct  ideas 
which  are  confused  in  euclidean  geometry,  but  are  quite 

distinct  in  non-euclidean.  Other  instances  will  present 
themselves. 

8.  First  glimpses  of  Non-Euclidean  geometry. 
Among  the  early  postulate-demonstrators  there  stands  a 

unique  figure,  that  of  a  Jesuit,  Gerolamo  Saccheri  (1667- 
1733),  contemporary  and  friend  of  Ceva.  This  man  devised 
an  entirely  different  mode  of  attacking  the  problem,  in  an 
attempt  to  institute  a  reductio  ad  ahsurdum}  At  that  time 

the  favourite  starting-point  was  the  conception  of  parallels 
as  equidistant  straight  lines,  but  Saccheri,  hke  some  of  his 

predecessors,  saw  that  it  would  not  do  to  assume  this  in 
the  definition.  He  starts  with  two  equal  perpendiculars  AC 
and  BD  to  a  line  AB.  When  the  ends  C,  D  are  joined,  it  is 

easily  proved  that  the  ang'es  at  C  and  D  are  equal  ;  but 
are  they  right  angles  ?  Saccheri  keeps  an  open  mind,  and 

proposes  three  hypotheses  : 

(1)  The  Hypothesis  of  the  Right  Angle. 
(2)  The  Hypothesis  of  the  Obtuse  Angle. 

(3)  The  Hypothesis  of  the  Acute  Angle. 

The  object  of  his  work  is  to  demohsh  the  last  two  hypo- 
theses and  leave  the  first,  the  Euclidean  hypothesis,  supreme ; 

^  Euclides  ab  omni  naevo  vindicatus,  Milan,  ]733.  English  trans,  by 
Halsted,  Amer.  Math.  Monthly,  vols.  1-5,  1894-98  ;  German  by  Stiickel 
and  Engel,  Die  Theorie  der  Parallellinien,  Leipzig,  1895.  (This  book 
by  Stackei  and  Engel  contains  a  valuable  history  of  the  theory  of 
parallels.) 
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the  task  turns  out  to  be  more  arduous  than  he  expected, 
.e  estabhshes  a  number  of  theorems,  of  which  the  most 

important  are  the  following  : 

If  one  of  the  three  hypotheses  is  true  in  any  one  case, 
the  same  hypothesis  is  true  in  every  case. 

On  the  hypothesis  of  the  right  angle,  the  obtuse  angle, 
or  the  acute  angle,  the  sum  of  the  angles  of  a  triangle  is 
equal  to,  greater  than,  or  less  than  two  right  angles. 
On  the  hypothesis  of  the  right  angle  two  straight  lines 

intersect,  except  in  the  one  case  in  which  a  transversal  cuts 
them  at  equal  angles.  On  the  hypothesis  of  the  obtuse  angle 
two  straight  lines  always  intersect.  On  the  hypothesis  of 
the  acute  angle  there  is  a  whole  pencil  of  hues  through  a 
given  point  which  do  not  intersect  a  given  straight  hne,  but 
have  a  common  perpendicular  with  it,  and  these  are  sepa- 

rated from  the  pencil  of  lines  which  cut  the  given  hne  by 
two  Unes  which  approach  the  given  Hne  more  and  more 
closely,  and  meet  it  at  infinity. 

The  locus  of  the  extremity  of  a  perpendicular  of  constant 
length  which  moves  with  its  other  end  on  a  fixed  hne  is 
a  straight  Hne  on  the  first  hypothesis,  but  on  the  other 
hypotheses  it  is  curved  ;  on  the  hypothesis  of  the  obtuse 
angle  it  is  convex  to  the  fixed  Hne,  and  on  the  hypothesis 
of  the  acute  angle  it  is  concave. 

Saccheri  demolishes  the  hypothesis  of  the  obtuse  angle  in 
his  Theorem  14  by  showing  that  it  contradicts  Euclid  I.  17 
(that  the  sum  of  any  two  angles  of  a  triangle  is  less  than 
two  right  angles)  ;  but  he  requires  nearly  twenty  more 
theorems  before  he  can  demolish  the  hypothesis  of  the 
acute  angle,  which  he  does  by  showing  that  two  lines  which 
meet  in  a  point  at  infinity  can  be  perpendicular  at  that 
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point  to  the  same  straight  hne.  In  spite  of  all  his  efforts, 
however,  he  does  not  seem  to  be  quite  satisfied  with  the 

validity  of  his  proof,  and  he  offers  another  proof  in  which  he 
loses  himself,  like  many  another,  in  the  quicksands  of  the 
infinitesimal. 

If  Saccheri  had  had  a  little  more  imagination  and  been 
less  bound  down  by  tradition,  and  a  firmly  implanted  belief 

that  Euclid's  hypothesis  was  the  only  true  one,  he  would 
have  anticipated  by  a  century  the  discovery  of  the  two 

non-euclidean  geometries  which  follow  from  his  hypotheses 
of  the  obtuse  and  the  acute  angle. 

9.  Another  investigator,  J.  H.  Lambert  (1728-1777),^ 
fifty  years  after  Saccheri,  also  fell  just  short  of  this  dis- 

covery. His  starting-point  is  very  similar  to  Saccheri's,  and 
he  distinguishes  the  same  three  hypotheses  ;  but  he  went 
further  than  Saccheri.  He  actually  showed  that  on  the 

hypothesis  of  ̂ he  obtuse  angle  the  area  of  a  triangle  is 
proportional  to  the  excess  of  the  sum  of  its  angles  over  two 
right  angles,  which  is  the  case  for  the  geometry  on  the 

sphere,  and  he  concluded  that  the  hypothesis  of  the  acute 
angle  would  be  verified  on  a  sphere  of  imaginary  radius. 
He  also  made  the  noteworthy  remark  that  on  the  third 

hypothesis  there  is  an  absolute  unit  of  length  which  would 
obviate  the  necessity  of  preserving  a  standard  foot  in  the 
Archives. 

He  dismisses  the  hypothesis  of  the  obtuse  angle,  since  it 

requires  that  two  straight  Knes  should  enclose  a  space,  but 

his  argument  against  the  hypothesis  of  the  acute  angle, 
such  as  the  non-existence  of  similar  figures,  he  characterises 

1  Theorie  der  ParallelUnien,  1786.  (Reprinted  in  Stackel  and  Engel, 
Th.  der  Par.,  1895.) 
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as  arguments  ab  amore  et  invidia  ducta.  Thus  he  arrived 

at  no  definite  conclusion,  and  his  researches  were  only 
published  some  years  after  his  death. 

10.  About  this  time  (1799)  the  genius  of  Gauss  (1777- 
1855)  was  being  attracted  to  the  question,  and,  although 
he  published  nothing  on  the  subject  except  a  few  reviews, 
it  is  clear  from  his  correspondence  and  fragments  of  his 
notes  that  he  was  deeply  interested  in  it.  He  was  a  keen 

critic  of  the  attempts  made  by  his  contemporaries  to 
establish  the  theory  of  parallels  ;  and  while  at  first  he 

incHned  to  the  orthodox  beUef,  encouraged  by  Kant,  that 

Euclidean  geometry  was  an  example  of  a  necessary  truth, 

he  gradually  came  to  see  that  it  was  impossible  to  demon- 
strate it.  He  declares  that  he  refrained  from  publishing 

anything  because  he  feared  the  clamour  of  the  Boeotians, 
or,  as  we  should  say,  the  Wise  Men  of  Gotham  ;  indeed  at 

this  time  the  problem  of  parallel  lines  was  greatly  dis- 
credited, and  anyone  who  occupied  himself  with  it  was 

liable  to  be  considered  as  a  crank. 

Gauss  was  probably  the  first  to  obtain  a  clear  idea  of  the 

possibiHty  of  a  geometry  other  than  that  of  Euclid,  and  we 

owe  the  very  name  Non-Euclidean  Geometry  to  him.^  It  is 
clear  that  about  the  year  1820  he  was  in  possession  of  many 

theorems  of  non-ouclidean  geometry,  and  though  he  medi- 
tated publishing  his  researches  when  he  had  sufficient 

leisure  to  work  them  out  in  detail  with  his  characteristic 

elegance,  he  was  finally  forestalled  by  receiving  in  1832, 
from  his  friend  W.  Bolyai,  a  copy  of  the  now  famous 

Appendix  by  his  son,  John  Bolyai. 

11.  Among  the  contemporaries  and  pupils  of  Gauss  there  are  three 
names  which  deserve  mention.     F.  K.  SchweikaRt  (1780-1859), 

*  Letter  to  Taurinus,  8th  November,  1824. 
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Professor  of  Law  in  Marburg,  sent  to  Gauss  in  1818  a  page  of  MS. 

explaining  a  system  of  geometry  which  he  calls  "  Astral  Geometry," 
in  which  the  sum  of  the  angles  of  a  triangle  is  always  less  than 
two  right  angles,  and  in  which  there  is  an  absolute  unit  of  length. 

He  did  not  publish  any  account  of  his  researches,  but  he  induced 

his  nephew,  F.  A.  Taurinus  (1794-1874),  to  take  up  the  question. 

His  uncle's  ideas  did  not  appeal  to  him,  however,  but  a  few  years 
later  he  attempted  a  treatment  of  the  theory  of  parallels,  and 

having  received  some  encouragement  from  Gauss,  he  published  a 
small  book,  Theorie  der  Parallellinien,  in  1825.  After  its  publication 

he  came  across  Camerer's  new  edition  of  Euclid  in  Greek  and  Latin, 
which,  in  an  Excursus  to  Euclid  I.  29,  contains  a  very  valuable 

history  of  the  theory  of  parallels,  and  there  he  found  that  his  methods 

had  been  anticipated  by  Saccheri  and  Lambert.  Next  year,  accord- 
ingly, he  published  another  work,  Geometriae  prima  elementa,  and 

in  the  Appendix  to  this  he  works  out  some  of  the  most  important 

trigonometrical  formulae  for  non-euclidean  geometry  by  using  the 
fundamental  formulae  of  spherical  geometry  with  an  imaginary 
radius.  Instead  of  the  notation  of  hyperbolic  functions,  which  was 
then  scarcely  in  use,  he  expresses  his  results  in  terms  of  logarithms 

and  exponentials,  and  calls  his  geometry  the  "  Logarithmic  Spherical 
Geometry." 

Though  Taurinus  must  be  regarded  as  an  independent  discoverer 

of  non-euclidean  trigonometry,  he  always  retained  the  belief,  unlike 
Gauss  and  Schweikart,  that  Euclidean  geometry  was  necessarily 

the  true  one.  Taurinus  himself  was  aware,  however,  of  the  impor- 
tance of  his  contribution  to  the  theory  of  parallels,  and  it  was  a 

bitter  disappointment  to  him  when  he  found  that  his  work  attracted 
no  attention.  In  disgust  he  burned  the  remainder  of  the  edition  of 
his  Elementa,  which  is  now  one  of  the  rarest  of  books. 

The  third  to  be  mentioned  as  having  arrived  at  the  notion  of  a 

geometry  in  which  Euclid's  postulate  is  denied  is  F.  L.  Wachter 
(1792-1817),  a  student  under  Gauss.  It  is  remarkable  that  he 
affirms  that  even  if  the  postulate  be  denied,  the  geometry  on  a  sphere 
becomes  identical  with  the  geometry  of  Euclid  when  the  radius  is 
indefinitely  increased,  though  it  is  distinctly  shown  that  the  limiting 
surface  is  not  a  plane.  This  was  one  of  the  greatest  discoveries  of 
Lobachevsky  and  Bolyai.  If  Wachter  had  lived  he  might  have 
been  the  discoverer  of  non-euclidean  geometry,  for  his  insight  into 

the  question  was  far  beyond  that  of  the  ordinary  parallel-postulate 
demonstrator. 
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12.  While  Gauss,  Schweikart,  Taurinus  and  others  were 

working  in  Germany,  and  had  arrived  independently  at 

some  of  the  results  of  non-euclidean  geometry,  and  were, 
in  fact,  just  on  the  threshold  of  its  discovery,  in  France  and 

Britain  the  ideas  were  still  at  the  old  stage,  though  there 
was  a  considerable  interest  in  the  subject,  inspired  chiefly 

by  A.  M.  Legendre  (1752-1833).  Legendre's  researches 
were  published  in  the  various  editions  of  his  Elements, 
from  1794  to  1823,  and  collected  in  an  extensive  article 

in  the  Memoirs  of  the  Paris  Academy  in  1833. 

Assuming  all  Euclid's  definitions,  axioms  and  postulates, 
except  the  parallel-postulate  and  all  that  follows  from  it, 

he  proves  some  important  theorems,  two  of  which.  Proposi- 
tions A  and  B,  are  frequently  referred  to  in  later  work  as 

Legendre's  First  and  Second  Theorems. 
Prop.  A.  The  sum  of  the  three  angles  of  a  rectilinear  tri- 

angle cannot  he  greater  than  two  right  angles  (x).  {Elements, 
3rd  ed.  1800.) 

In  Fig.  7,  AqA^A^  ...  A^^  is  a  straight  line,  and  the  tri- 
angles AJBqAi,  A^B^A^,  ...  are  all  congruent,  and  the 

vertices  Bfii ...  B^^  are  joined  by  a  broken  hne. 

A. 

Fio.  7. 

Suppose,  if  possible,  that 

Now  ̂ 5o4 0^1=^1^1.4  2 

and  /.BqAiBi+BiAiA^+AoAiBo^-tt. 
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Therefore  L  A  fi^{>B^^B^, 
and  therefore  ^o^i>-SA- 

Let  A  (y4i  -  B^^  =  d ;  then 

AoB,  +  B^,+B,B^  +  „.+Bn-A.+B,4,,=2A,Bo  +  nBJB^ 
^2A^Q  +  nAQA^-nd=AQAn  +  2A^Q-nd, 

i.e.      AoAn  =  AoBQ  +  BQB^  +  ...  +5„^^  +  (nd!-2^o^o). 
But,  by  increasing  n,  nd  can  be  made  to  exceed  the  fixed 

length  2AqBq  ;  and  hence  AqAu,  which  is  the  length  of  the 
straight  hne  joining  Aq  and  An,  can  be  greater  than  the 
sum  of  the  parts  of  the  broken  line  which  joins  the  same 
two  points,  which  is  absurd. 

There  are  several  points  in  this  proof  that  require  careful 
examination. 

In  the  first  place,  the  assumption  that  nd  can  always  exceed 
2^0-^0  by  taking  n  sufficiently  great  lies  at  the  basis  of  geometrical 

continuity,  and  is  equivalent  to  the  denial  of  the  existence  of  infini- 
tesimals.    This  is  generally  known  as  the  Axiom  of  Archimedes.    .. 

The  question  of  continuity  is  fundamental  in  '^iealing  with  th  /  /©> 
foundations  of  geometry,  but  it  would  be  outside  rhe  scope  of  thfs    ̂  
book  to  enter  further  into  this  extensive  and  difficult  subject. 

Twice  in  this  proof  we  have  assumed  the  "  theorem  of 
the  exterior  angle  "  of  a  triangle  (Euchd  I.  16),  first  in  the 
statement  that  ̂ o^i>-^o^i»  ̂ ^^  second  in  the  assumption 

that  the  straight  line  joining  two  points  is  the  shortest 
path  (Euclid  I.  20).  This  is  equivalent  to  the  rejection 

of  Saccheri's  hypothesis  of  the  obtuse  angle.  If  this 
hypothesis  be  followed  to  its  logical  conclusion,  it  can  be 

shown  (see  Chap.  III.)  that  two  straight  Hues  in  a  plane 
will  always  intersect,  when  produced  in  either  direction. 

The  straight  line  is  then  re-entrant,  and  there  are  at  least 
two  straight  paths  connecting  any  two  points.  The  straight 
line  AqA,i  would  not  then  of  necessity  be  the  shortest  path 
from  Aq  to  A„. 

N.-E.  G.  B 
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Prop.  B.  //  tJiere  exists  a  single  triangle  in  which  the  sum 
of  tlie  angles  is  equal  to  two  right  a7igles,  then  in  every  triangle 

the  sum  of  the  angles  must  likewise  he  equal  to  two  right 

angles. 
This  proposition  was  already  proved  by  Saccheri,  along 

with  the  corresponding  theorem  for  the  case  in  which  the 

sum  of  the  angles  is  less  than  two  right  angles,  and  we  need 

not  reproduce  Legendre's  proof,  which  proceeds  by  con- 
structing successively  larger  and  larger  triangles,  in  each  of 

which  the  sum  of  the  angles  =  tt. 
Legendre  makes  an  attempt  to  prove  that  the  sum  of 

the  angles  of  a  triangle  is  equal  to  two  right  angles,  as  follows 

(Elements,  12th  ed.  1823)  : 

Let  A^Bfii  (Fig.  8)  be  a  triangle,  in  which  A^B^  is  the 

greatest  side  and  Bfii  the  least.  Join  A^  to  M^,  the  middle 

c. 

"^h. 

point  of  Bfii,  and  produce  AiM^  to  C2  so  that  A fi 2=^1^1- 
On  A^Bi  take  AJ<: -=KB2=A^M^,  and  join  C^K.  Then 
we  get  a  second  triangle  AJBjJ^^  i^  which  A^  coincides 
with  ̂ 1,  and  in  which  A^B^  is  the  greatest  side  and  Bfi^ 
the  least.  Denote  the  angles  of  the  triangles  A^Bfi^, 

A2B2C2  by  single  letters. 
Then  A  Afi^K^A^B.M^    and    aC^KB^^C.MjA,. 

Therefore    AAfiJC^B^,  LKCJS^^C^,  /LM^Afi^^B^. 

Therefore         ̂ 1=^2+^2    ̂ nd    B^+Ci^C^. 
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Hence  ^j +J5i +C'i=^2+^2+C'2 
and  area  ̂ i5i(7i=  area  ̂ 2^2^*2  • 

By  repeating  this  construction  we  get  a  series  of  triangles 

with  the  same  area  and  angle-sum. 

Now^2<Mi.    ^3<i^2<i4.-,   ^«+i<2,A> 

^2<^1>       ■0  3<^2<2^l5  •••  5       -S^i+l<2^;ri^l* 

Hence  the  angles  A^  and  B^  both  tend  to  zero,  while  the 
vertex  On  ultimately  Hes  on  AnBn.  The  sum  of  the 

angles  thus  reduces  to  the  single  angle  Cn,  which  is  ulti- 
mately equal  to  two  right  angles. 

In  this  proof  there  is  a  latent  assumption  and  also  a 
fallacy.  In  the  first  place  it  is  tacitly  assumed  that  the 

straight  line  is  not  re-entrant,  for  if  it  were  re-entrant 

the  "  theorem  of  the  exterior  angle,"  upon  which  the 
proofs  of  the  inequalities  depend,  could  not  be  accepted, 

and  the  whole  proof  is  invalidated.  *  Again,  if  we  grant 
the  theorem  of  the  exterior  angle,  Bn  and  Cn  both  go  to 
infinity,  and  we  cannot  draw  any  conclusions  as  regards 
the  magnitude  of  the  angle  C„. 

Legendre's  other  attempts  make  use  of  infinite  areas. 

He  makes  reference  to  Bertrand's  proof,  and  attempts  to 

prove  the  necessity  of  Playfair's  axiom  in  this  way  :  if  it 
be  denied,  then  a  straight  line  would  be  contained  entirely 
within  the  angle  formed  by  two  rays,  but  this  is  impossible 

since  the  area  enclosed  by  the  angle  is  less  than  "  half  the 
area  of  the  whole  plane." 

13.  In  Britain  the  investigations  of  Legendre  stimulated 

such  men  as  Playfair  and  Leslie  (Professors  at  Edin- 
burgh), Ivory,  Perronet  Thompson,  and  Henry  Meikle. 

Of  these,  however,  none  but  Meikle  had  advanced  beyond 
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the  stage  of  Legendre.  Meikle  ̂   actually  proved  in  detail, 
what  had  been  foreshadowed  fifty  years  before  by  Lambert, 

that  if  the  sum  of  the  angles  of  a  triangle  is  less  than  two  > 
right  angles  the  defect  is  proportional  to  its  area.  He 
rejected  the  hypothesis  because  he  would  not  admit  the 
existence  of  a  triangle  with  all  its  angles  zero.  He  also 

proved  independently  Saccheri's  general  form  of  Legendre's 
second  theorem. 

But  by  this  time  the  epoch-making  works  of  Lobachevsky 
and  Bolyai  had  been  published,  and  the  discovery  of  a 

logically  consistent  system  of  geometry  in  which  the 

parallel-postulate  is  denied  proved  once  for  all  that  all 
attempts  to  deduce  this  postulate  from  the  other  axioms 
are  doomed  to  failure.  It  was  not,  however,  in  Germany 

after  all  that  non-euclidean  geometry  at  last  saw  the  light, 
but  simultaneously  in  remote  districts  of  Russia  and 
Hungary. 

14.  The  discovery  of  Non-Euclidean  geometry. 
Nikolai  Ivanovich  Lobachevsky  (1793-1856),  Professor 

of  Mathematics  at  Kazan,  was  interested  in  the  theory  of 

parallels  from  at  least  1815.  Lecture  notes  of  the  period 

1815-17  are  extant,  in  which  Lobachevsky  attempts  in 
various  ways  to  establish  the  Euclidean  theory.  He  proves 

Legendre's  two  propositions,  and  employs  also  the  ideas 
of  direction  and  infinite  areas.  In  1823  he  prepared  a 

treatise  on  geometry  for  use  in  the  University,  but  it 
obtained  so  unfavourable  a  report  that  it  was  not  printed. 
The  MS.  remained  buried  in  the  University  Archives  until 

it  was  discovered  and  printed  in  1909.  In  this  book  he 

states  that  "  a  rigorous  proof  of  the  postulate  of  Euclid  has 

»  Edinburgh  New  Philoe.  Joum.,  86  (1844),  p.  313. 
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not  hitherto  been  discovered  ;  those  which  have  been 

given  may  be  called  explanations,  and  do  not  deserve  to 

be  considered  as  mathematical  proofs  in  the  full  sense." 
Just  three  years  afterwards,  he  read  to  the  physical  and 

mathematical  section  of  the  University  of  Kazan  a  paper 

entitled  "  Exposition  succinte  des  principes  de  la  geometric 
avec  une  demonstration  rigoureuse  du  theoreme  des 

parallel es."  In  this  paper,  the  manuscript  of  which  has 
unfortunately  been  lost,  Lobachevsky  explains  the  prin- 

ciples of  his  "  Imaginary  Geometry,"  which  is  more  general 
than  Euclid's,  and  in  which  two  parallels  can  be  drawn  to 
a  given  line  through  a  given  point,  and  in  which  the  sum 

of  the  angles  of  a  triangle  is  always  less  than  two  right 
angles. 

In  the  course  of  a  busy  life  Lobachevsky  wrote  some  half 

dozen  extensive  memoirs  expounding  the  new  geometry. 
The  first  of  these  were  in  Russian,  and  therefore  inaccessible. 
In  1840  he  tried  to  reach  a  wider  circle  with  a  small  book 

in  German  entitled  Geometrische  Untersuchungen  zur  Theorie 

der  Parallellinien,  and  just  before  his  death  he  wrote  a 

summary  of  his  researches  under  the  title  "  Pangeometry," 
which  he  put  into  French  and  contributed  to  the  memorial 

volume  pubHshed  at  the  jubilee  of  his  own  University. ^ 

15.  BoLYAi  Janos  (John)  (1802-1860)  was  the  son  of 

BoLYAT  Farkas  (Wolfgang)  (1775-1856),  a  fellow-student 
and  friend  of  Gauss  at  Gottingen.  The  father  was  early 
interested  in  the  theory  of  parallels,  and  without  doubt 

discussed  the  subject  with  Gauss  while  at  Gottingen.  The 
professor  of  mathematics  at  that  time,  A.  G.  Kaestner,  had 

^  An  English  translation  of  the  Geometrische  Untersuchungen  was 
published  by  Halsted  (Austin,  Texas,  1891).  An  extensive  Life  of 
Lobachevsky  was  published,  together  with  German  translations  of  two 
of  the  Russian  papers,  by  Engel  (Leipzig,  1898). 
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himself  attacked  the  problem,  and  with  hi  help  G.  S. 
Kliigel,  one  of  his  pupils,  compiled  in  1763  the  earliest 
history  of  the  theory  of  parallels. 

In  1804  Wolfgang  Bolyai,  just  after  his  appointment  as 

professor  of  mathematics  in  Maros-Vasarhely,  sent  to 

Gauss  a  "  Theory  of  Parallels,"  the  elaboration  of  his 
Gottingen  studies.  In  this  he  gives  a  demonstration  very 

similar  to  that  of  Meikle  and  some  of  Perronet  Thompson's, 
in  which  he  tries  to  prove  that  a  series  of  equal  segments 
placed  end  to  end  at  equal  angles,  like  the  sides  of  a  regular 

polygon,  must  make  a  complete  circuit.  Though  Gauss 
clearly  revealed  the  fallacy,  Bolyai  persevered  and  sent 
Gauss,  in  1808,  a  further  elaboration  of  his  proof.  To 
this  Gauss  did  not  reply,  and  Bolyai,  wearied  with  his 

ineffectual  endeavours  to  solve  the  riddle  of  parallel  lines, 

took  refuge  in  poetry  and  composed  dramas.  During  the 

next  twenty  years,  amid  various  interruptions,  he  put 
together  his  system  of  mathematics,  and  at  length,  in 

1832-3,  published  in  two  volumes  an  elementary  treatise  ̂  
on  mathematical  discipline  which  contains  all  his  ideas  with 

regard  to  the  first  principles  of  geometry. 
Meanwhile  John  Bolyai,  while  a  student  at  the  Royal 

College  for  Engineers  at  Vienna,  had  been  giving  serious 

attention  to  the  theory  of  parallels,  in  spite  of  his  father's 
solemn  adjuration  to  let  the  loathsome  subject  alone.  At 

first,  like  his  predecessors,  he  attempted  to  find  a  proof 

for  the  parallel-postulate,  but  gradually,  as  he  focussed 
his  attention  more  and  more  upon  the  results  which  would 

follow  from  a  denial  of  the  axiom,  there  developed  in  his 

mind  the  idea  of  a  general  or  "  Absolute  Geometry  "  which 

*  Tentamen  juventiUem  studiosam  in  elementa  maiheseos  .  .  .  intro- 
ducendi,  Maros-VAsArhely,  1832-3. 
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would  contain  ordinary  or  euclidean  geometry  as  a  special 
or  limiting  case.  Already,  in  1823,  he  had  worked  out  the 

main  ideas  of  the  non-euclidean  geometry,  and  in  a  letter 
of  3rd  November  he  announces  to  his  father  his  intention 

of  pubHshing  a  work  on  the  theory  of  parallels,  "  for," 
he  says,  "  I  have  made  such  wonderful  discoveries  that  I 
am  myself  lost  in  astonishment,  and  it  would  be  an  irre- 

parable loss  if  they  remained  unknown.  When  you  read 
them,  dear  Father,  you  too  will  acknowledge  it.  I  cannot 
say  more  now  except  that  out  of  nothing  I  have  created  a 
new  and  another  world.  All  that  I  have  sent  you  hitherto 

is  as  a  house  of  cards  compared  to  a  tower."  Wolfgang 
advised  his  son,  if  his  researches  had  really  reached  the 

desired  goal,  to  get  them  published  as  soon  as  possible, 
for  new  ideas  are  apt  to  leak  out,  and  further,  it  often 

happens  that  a  new  discovery  springs  up  spontaneously 

in  many  places  at  once,  "  like  the  violets  in  springtime." 
Bolyai's  presentment  was  truer  than  he  suspected,  for 
at  this  very  moment  Lobachevsky  at  Kazan,  Gauss  at 

Gottingen,  Taurinus  at  Cologne,  were  all  on  the  verge  of 

this  great  discovery  It  was  not,  however,  till  1832  that 
at  length  the  work  was  published.  It  appeared  in  Vol.  I. 

of  his  father's  Tentamen,  under  the  title  "  Appendix, 
scientiam  absolute  veram  exhibens." 

W.  Bolyai  wrote  one  other  book,^  in  German,  in  which 
he  refers  to  the  subject,  but  the  son,  although  he  continued 
to  work  at  his  theory  of  space,  published  nothing  further. 

Lobachevsky's  Geometrische   Untersuchungen  came  to  his 
1  Kurzer  Grundriss  eines  Versuchs,  Maros-Vasarhely,  1851.  J.  Bolyai's 

"  Appendix  "  has  been  translated  into  French,  Italian,  German,  English 
and  Magyar  ;  English  by  Halsted  (Austin,  Texas,  1891).  A  complete 

life  of  the  Bolyai,  with  German  translations  of  the  "  Appendix,"  parts 
of  the  Tentamen,  etc.,  has  been  published  by  Stiickel  (Leipzig,  1913), 

as  a  companion  book  to  Engel's  Lobatschefskij. 
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knowledge  in  1848,  and  this  spurred  him  on  to  complete 

the  great  work  on  "  Raumlehre,"  which  he  had  already 
planned  at  the  time  of  the  publication  of  his  "  Appendix," 
but  he  left  this  in  large  part  as  a  rudis  indigestaque  moles, 
and  he  never  realised  his  hope  of  triumphing  over  his  great 
Russian  rival. 

On  the  other  hand,  Lobachevsky  never  seems  to  have 

heard  of  Bolyai,  though  both  were  directly  or  indirectly 
in  communication  with  Causs.  Much  has  been  written 

on  the  relationship  of  these  three  discoverers,  but  it  is 

now  generally  recognised  that  John  Bolyai  and  Lobachevsky 
each  arrived  at  their  ideas  independently  of  Gauss  and  of 

each  other ;  and,  since  they  possessed  the  convictions  and 

ibhe  courage  to  publish  them  which  Gauss  lacked,  to  them 
alone  is  due  the  honour  of  the  discovery. 

16.  The  succeeding  history  of  non-eucHdean  geometry 

will  be  passed  over  here  very  briefly.^  The  ideas  inaugu- 
rated by  Lobachevsky  and  Bolyai  did  not  for  many  years 

attain  any  wide  recognition,  and  it  was  only  after  Baltzer 

had  called  attention  to  them  in  1867,  and  at  his  request  ■ 

HoUel  had  published  French  translations  of  the  epoch- 

making  works,  that  the  subject  of  non-euclidean  geometry 
began  to  be  seriously  studied. 

It  is  remarkable  that  while  Saccheri  and  Lambert  both 

considered  the  two  hypotheses,  it  never  occurred  to 
Lobachevsky    or  .  Bolyai    or    their    predecessors,    Gauss, 

1  Some  of  the  later  history  will  be  given  in  Chap,  VI.  The  best 
history  of  the  subject  is  R.  Bonola  :  La  geometria  non-euclidea  :  espo- 
aizione  storico-crilica  del  suo  svilnppo  (Bologna,  1906) ;  English  transla- 

tion (based  on  the  German  translation  by  Liebmann,  I^ipzig,  1908) 
by  H.  S.  Carslaw  (Chicago,  1912).  A  full  classified  bibliography  is  to 

be  foimd  in  SommerviWo's  Bibliography  of  non-eudidenn  geotnetry,  including 
tfu  theory  of  parallels^  the  foundations  of  geometry  and  space  of  n  dimensions 
(London,  1911). 

\ 
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Schweikart,  Taurinus  and  Wachter,  to  admit  the  hypo- 
thesis that  the  sum  of  the  angles  of  a  triangle  may  be  greater 

than  two  right  angles.  This  involves  the  conception  of 

a  straight  hne  as  being  unbounded  but  yet  of  finite  length. 

Somewhere  "  at  the  back  of  beyond  "  the  two  ends  of  the 
line  meet  and  close  it.  We  owe  this  conception  first  to 

Bernhard  Riemann  (1826-1866)  in  his  Dissertation  of 

1854^  (pubhshed  only  in  1866  after  the  author's  death), 
but  in  his  Spherical  Geometry  two  straight  lines  intersect 

twice  Hke  two  great  circles  on  a  sphere.  The  conception 
of  a  geometry  in  which  the  straight  hne  is  finite,  and  is, 

without  exception,  uniquely  determined  by  two  distinct 

points,  is  due  to  FeHx  Klein. ^  Klein  attached  the  now 
usual  nomenclature  to  the  three  geometries  ;  the  geometry 
of  Lobachevsky  he  called  Hyperbolic,  that  of  Riemann 
Elliptic,  and  that  of  Euchd  Parabolic. 

EXAMPLES    I. 

1.  If  the  angle  in  a  semicircle  is  constant,  prove  that  it  is  a  right 

2.  AB  is  a  fixed  line  and  P  a  variable  point  such  that  the  angle 
APB  is  constant.  Show  that  the  tangents  at  A  and  B  to  the 
curve  locus  of  P  are  equally  inclined  to  AB. 

3.  If  every  chord  in  the  locus  of  Question  2  has  the  property 
that  it  subtends  a  constant  angle  at  points  on  the  curve,  prove  that 
the  sum  of  the  angles  of  a  triangle  must  be  equal  to  two  right  angles. 

Examine  the  fallacies  in  the  following  proofs  of  Euchd' s  axiom : 
4.  If  the  side  c  and  the  angles  A  and  i5  of  a  triangle  are  given  the 

triangle  is  determined,  and  therefore  the  angle  C  =f{A,  B,  c).  But 
since  this  equation  must  be  homogeneous,  it  cannot  contain  the 

^  "  tiber  die  Hypothesen,  welche  der  Geometrie  zu  Grunde  liegen  " ; 
English  translation  by  W.  K.  Chflford,  Nature,  8  (1873). 

*  "  tiber  die  sogenannte  Nicht-EukHdische  Geometrie,"  Math.  Annalen, 
4  (1871),  6  (1873). 
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side  c.  Hence  C=f{A,  B).  Let  ABC  be  a  right-angled  triangle, 
and  draw  the  perpendicular  CD  on  the  hypotenuse.  Then  the 
two  triangles  ABC,  ACD  have  two  angles  equal,  and  therefore  the 

third  angle  ACD  =  B.  Similarly  BCD=A.  Therefore  A-\-B-{-C 
=  2  right  angles.     (A.  M.  Legendre,  1794.) 

5.  Let  OB  and  NA  be  both  perpendicular  to  ON,  then  OB  does 
not  meet  NA.  Let  OG,  making  a  finite  angle  GOB,  be  the  last  line 

through  0  which  meets  NA.  Then  NA  can  be  produced  beyond 
its  point  of  intersection  with  OG  to  K,  and  OK  still  meets  NA. 
Hence  OG  is  not  the  last,  and  therefore  all  lines  through  0  within 

the  angle  NOB  must  meet  NA.     (J.  D,  Gergonne,  1812.) 

6.  One  altitude  ̂ D  of  an  equilateral  triangle  ABC  divides  it  into 

two  right-angled  triangles,  in  which  one  acute  angle  is  double  the 
other.  If  the  three  altitudes  meet  in  O,  each  of  the  triangles  AOE, 

etc.,  has  one  angle  equal  to  half  the  angle  of  the  equilateral  triangle  ; 

hence  the  angle  OAE  =  \AOE.  Hence  the  sum  of  the  angles  of 
the  triangle  ABC  is  equal  to  half  the  sum  of  the  angles  at  0,  i.e. 
equal  to  two  right  angles.     (J.  K.  F.  Hauff,  1819.) 

7.  AA'  1.AB  and  ABB'  is  acute.  From  D,  any  point  on  BB\ 

is  drawn  the  perpendicular  DE  to  AB.  C  is  any  point  on  AA' , 
and  BC  cuts  DE  in  F.  G  is  the  middle  point  of  EF,  and  BG  meets 
AC  in  H.  An  isosceles  triangle  is  drawn  with  base  EF  and  sides 

equal  to  ED,  making  the  base  angles  =  a.  Rotate  the  plane  of  the 
figure  about  AB  through  the  angle  a.  Denote  the  points  in  their 

new  positions  by  suffixes.  Then  D^GLEF,  and  BH  is  the  pro- 
jection of  BB^\  H  is  therefore  the  projection  of  a  point  on  both 

BB^'  and  AA^,  and  these  lines  therefore  meet.  (K.  Th.  E.  Gronau, 
1902.) 



CHAPTER  II. 

ELEMENTARY  HYPERBOLIC  GEOMETRY. 

1.  Fundamental  assumptions. 
In  establishing  any  system  of  geometry  we  must  start 

by  naming  certain  objects  which  we  cannot  define  in  terms 

of  anything  more  elementary,  and  make  certain  assump- 
tions, from  which  by  the  laws  of  logic  we  can  develop  a 

consistent  system.  These  assumptions  are  the  axioms  of 
the  science.  The  axioms  of  geometry  have  been  classified 

by  Hilbert  ̂   under  five  groups  : 
1.  Axioms  of  connection,  or  classification,  connecting 

point,  fine  and  plane. 

2.  Axioms  of  order,  explaining  the  idea  of  "  between." 
3.  Axioms  of  congruence. 
4.  Axiom  of  parallels. 
5.  Axioms  of  continuity. 

Without  entering  into  these  in  more  detail, ̂   we  shall 
assume,  as  deductions  from  them,  the  theorems  relating 

to  the  comparison  and  addition  of  segments  and  angles. 

The  method  of  superposition  can  be  used  as  a  fa^on  de  parler. 

Strictly  speaking,  a  geometrical  figure  is  incapable  of  being  moved  ;  ̂ 

^  D.  Hilbert,  Grundlagen  der  Geometric,  Leipzig,  1899,  4th  ed.  1913  ; 
EngUsh  translation  by  Townsend,  Chicago,  1902. 

2  The  reader  who  wishes  to  study  the  development  of  non-euclidean 
geometry  from  a  set  of  axioms  may  refer  to  J.  L.  CooUdge,  Elements  of 
Non-Euclidean  Geometry,  Oxford,  1909 

3  Cf.  Chap.  VI.  §  4. 
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lines  are  not  drawn,  nor  are  figures  constructed.  It  is  only  the  act 
of  the  mind  which  fixes  the  attention  on  certain  geometrical  figures 
which  already  exist,  developing  them  out,  so  to  speak,  like  the 
picture  on  a  photographic  plate.  And  when  we  speak  of  applying 
one  figure  to  another  by  superposition,  all  that  we  mean  is  that  a 
comparison  is  made  between  the  two  figures  and  certain  results 
deduced  by  the  axioms  of  congruence.  When  a  geometrical  figure, 
e.g.  a  line  or  a  point,  is  spoken  of  as  moving,  we  are  really  trans- 

ferring our  attention  to  a  succession  of  lines  or  points  in  different 
positions. 

The  measurement  of  angle  >  is  independent  of  the  theory 

of  parallels.  Vertically  opposite  angles  are  equal ;  the  sum 
of  the  four  angles  made  by  two  intersecting  lines  is  an 
absolute  constant,  and  one  quarter  of  this  is  a  right  angle. 

An  absolute  unit  of  angle,  therefore,  exists.  A  "  flat- 
angle,"  which  is  equal  to  two  right  angles,  is  generally 
denoted  by  the  symbol  tt.  Through  a  given  point  only 

one  perpendicular  can  be  drawn  to  a  given  straight  hne, 
the  usual  construction  for  this  being  always  possible. 

The  question  of  the  numerical  value  of  tt,  or,  what  is  the  same  thing, 
of  the  unit  of  angle,  need  not  concern  us  until  we  come  to  consider 
trigonometrical  formulae  (see  §  39).  We  tnav,  however,  state  at 
once  that  when  tt  is  treated  as  a  number  it  has  just  the  value 
which  we  are  already  accustomed  to  assign  to  it,  viz.  3}  to  a  rough 
approximation,  or.  accurately,  4  times  the  sum  of  the  infinite  series 

\-\->r\-\-\-....  But  it  is  necessary  to  warn  the  reader  that  tt  does 
not  stand  for  the  ratio  of  the  circumference  of  a  circle  to  its  diameter, 

for  in  non-euclidean  geometry  this  ratio  is  not  constant ;  and  the 
radian,  or  unit  angle,  in  terms  of  which  a  flat-angle  is  represented 
by  the  number  tt,  does  not  admit  of  the  familiar  construction  by 
means  of  a  circle. 

We  shall  assume,  as  deductions  from  the  axioms  of 

congruence,  the  congruence- theorems  for  triangles  (Euc.  I. 

4,  8,  26),  and  those  on  the  base-angles  of  an  isosceles 
triangle  (Euc.  I.  5,  6),  which  imply  the  symmetry  of  the 

plane.    .The  theorems  relating  to  inequalities  among  the 
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sides  and  angles  of  a  triangle  (Euc.  I.  16-20)  are  true  within 

a  restricted  region.  In  particular,  the  "  theorem  of  the 

exterior  angle,"  upon  which  the  others  depend,  is  proved 
in  §  6  to  be  true  without  exception  in  hyperbolic  geometry. 

An  important  axiom  of  order  which  must  be  expUcitly 

mentioned  is  Pasch's  Axiom. ^  If  a  straight  line  cuts  one 
side  of  a  triangle  and  does  not  pass  through  a  vertex,  it  will 

also  cut  one  of  the  other  sides  ("  side  "  being  understood  to 
mean  the  segment  subtended  by  the  opposite  interior  angle 
of  the  triangle). 

A  large  part  of  geometry  can  be  constructed  without  the 

axioms  of  continuity,^  but  we  shall  in  general  assume 
continuity. 

The  watershed,  so  to  speak,  between  the  euclidean  and 

the  non- euclidean  geometries  which  we  are  about  to 
develop,  is  the  axiom  of  parallels. 

2.  Parallel  lines. 
Consider  (Fig.  9)  a  straight  line  I  and  a  point  0  not  on 

the  line.  Let  ON  be  _L  I,  and  take  any  point  P  on  I. 

The  line  OP  cuts  I  in  P.  As  the  point  P  moves  along  I 
away  from  N  there  are  two  possibilities  to  consider  : 

(1)  P  may  return  to  its  starting  point  after  having 
traversed  a  finite  distance.  This  is  the  hypothesis  of 
Elliptic  Geometry. 

(2)  P  may  continue  moving,  and  the  distance  NP  tend 
to  infinity.  This  hypothesis  is  true  in  ordinary  geometry. 

The  ray  OP  then  tends  to  a  definite  limiting  ̂   position  Oi, 

1  M.  Pasch,  Vorlesungen  riber  neuere  Geometrie,  Leipzig,  1882  ;  2nd  ed. 1912. 

2  Of.  G.  B.  Halsted,  Rational  Geometry,  New  York,  1904. 
^  This  assumes  continuity.  We  might  dispense  with  this  assumption 

by  assuming  a  definite  line  OL  which  separates  the  intersectors  of  NA 
from  the  non -intersectors. 
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and  OL  is  said  to  be  'parallel  to  NA.  If  P  moves  along  I 
in  the  opposite  sense,  OP  will  tend  to  another  limiting 
position,  OM,  and  OM  \\  NB. 

In  Euclidean  Geometry,  the  two  rays  OL  and  OM  form 

one  line,  and  the  angles  NOL  and  NOM  are  right  angles. 
The  hypothesis  of  Hyperbolic  Geometry  is  that  the 

rays  OL,  OM  are  distinct,  so  that  Playfair's  axiom  is 
contradicted. 

o 

M- 

N  p    ̂   - Pia.  9. 

3.  In  this  chapter  we  shall  develop  the  fundamental 
theorems  of  Hyperbolic  Geometry. 

Definition  of  Parallel  Lines.     A  A'  is  said  to  be  parallel 
to  BB'  in  the  sense  thus  indicated  when 

(^)  A  A'  and  BB'  lie  in  the  same  plane, 

(2)  AA'   does  not  meet  BB' ,   both  being  produced 
indefinitely,  and 

(3)  every   ray   drawn   through   A    within   the   angle 

BAA'  meets  the  ray  BB' . 
Through  any  point  0  two  parallels  OL  and  OM  can  be 

drawn  to  a  given  line  AB,  so  that  OL  \\  NA  and  OM  ||  NB. 

The  angles  NOL  and  NOM  are,  by  symmetry,  equal,  and 
this  angle  depends  only  on  the  length  of  the  perpendicular 

ON  =p.  It  is  called  the  angle  of  parallelism  or  the  parallel- 
angle,  and  is  denoted  by  II  (p).  There  are  two  distinct 

senses  of  parallehsm. 
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The  two  parallel  lines  separate  all  the  lines  through  0 
into  two  classes,  those  which  intersect  AB  and  those  which 
are  non-intersectors  of  AB. 

Properties  of  Plane  Figures,  Parallelism,  etc. 

4.  Parallel  Hnes  possess  in  common  wi.ttt  euclidean 
parallels  the  following  properties  : 

(1)  The  property  of  parallelism  is  maintained,  in  the  same 

sense,  throughout  the  whole  length  of  the  line.  (Property  of 
transmissibility. ) 

Let  AA'  II  BB',  and  let  P  be  any  point  in  AA\    We  have 

Fig.  10. 

to  prove  that  within  the  angle  BPA'  every  ray  through 
P  cuts  BB\  and  no  other  ray  through  P  cuts  BB'. 

There  are  two  cases  to  be  considered,  according  as  P  is 
on  the  side  of  A  in  the  direction  of  parallelism  or  not. 

In  the  first  case  draw  any  line  PQ  through  P  within 

the  angle  BPA' ,  and  on  it  take  a  point  K.  Then  the  hne 
AK  must  cut  BB'  in  some  point  L,  and  BP  in  M.  Hence 
PQ,  which  cannot  cut  again  either  ML  or  BM,  must  cut 

the  third  side  BL  of  the  triangle  BML  (Pasch's  Axiom). 
But  PA'  does  not  cut  BB' ;  therefore  PA'  \\  BB'. 

In  the  second  case  it  is  only  necessary  to  take  K  on  QP 
produced  backwards. 
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(2)  Paralhlism  is  reciprocal,  i.e.  if  A  A'  \\  BB\  then 
BB'WAA'  (Fig.  11). 

The  bisectors  of  the  angles  BAA',  ABB'  meet  in  a  point 
M,  since  each  meets  the  other  parallel.  Draw  perpendi- 

.fulars  MP,  MQ,  MR  from  M  on  AA',  BB',  AB.  By  a 
c.omparison  Vf  the  triangles  these  perpendiculars  are 

equal.  Draw  MM'  bisecting  the  angle  PMQ.  Then,  if 

PQ  is  joined,  PQ±MM',  and  makes  equal  angles  with  AA' 
and  BB'.     The  lines  AA',  BB'  are  therefore  symmetrical 

with  respect  to  MM',  and  the  reciprocity  is  therefore 
established. 

P,  Q  are  called  corresponding  points  on  the  two  parallels. 

(3)  Parallelism  is  transitive,  i.e.  if  A  A'  \\  BB'  and 
BB'  II  CC,  then  AA'  \\  CC.  There  are  two  cases  to  be 
considered. 

(a)  Let  BB'  he  between  AA'  and  CC  (Fig.  12).  We 

may  suppose  ABC  to  be  collinear.  Within  the  angle  CAA' 
draw  any  line  AP.  Since  AA'  \\  BB',  AP  cuts  BB'  in  a 
point  Q.  Then,  since  QB'  \\  CC,  PQ  produced  within  the 
angle  CQB'  must  cut  CC.  Also  A  A'  itself  does  not  cut 

CC  ;  therefore  AA'  \\  CC. 
(b)  In  the  same  figure  let  AA'  and  BB'  be  ||  CC.     Then 



n.  5]  PARALLELISM  33 

any  line  within  the  angle  CAA'  must  cut  CC\  and  therefore 
BB'.  Also  AA'  itself  cannot  cut  BB',  for  then  we  would 
have  two  intersecting  straight  lines  AA'  and  BB'  both 

parallel  to  CC  in  the  given  sense.     Therefore  A  A'  \\  BB'. 
Parallels  in  hyperboUc  geometry  are,  however,  sharply 

distinguished  from  eucHdean  parallels  hy  Uhe  following 
property  : 

The  distance  between  two  parallels  diminishes  in  the  'I 
direction  of  parallelism  and  tends  to  zero  ;  in  the  other  ̂  

direction  the  distance  increases  and  tends  to  infinity.  \ 

Fig.  12. 

Before  we  can  prove  this  we  shall  require  several  pre- 
liminary theorems. 

(      b.  If  a  transversal  meets  two  lines  making  the  sum  of  the 
V  interior  angles  on  the  same  side  equal  to  two  right  angles, 

the  two  lines  cannot  meet  and  are  not  parallel. 

Let  PQ  be  a  transversal  cutting  the  two  lines  AA' 
and  BB'  in  P  and  Q  (Fig.  13),  and  making  the  sum  of  the 
angles  APQ+PQB  equal  to  two  right  angles.  Then,  since 

the  sum  of  the  angles  PQB+B'QP  =  ir,  therefore  the 
alternate  angles  APQ  and  B'QP  are  equal. 

Bisect  PQ  at  M  and  draw  MKLAA'  and  MLLBB'. N.-E.G.  n 
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Then  the  triangles  MKP  and  MLQ  are  congruent  and 
Z.KMP=LLMQ.  Therefore  KML  is  a  straight  line, 

perpendicular  to  both  A  A'  and  BB' . 
By  symmetry,  if  A  A'  and  BB'  meet  on  one  side,  they  will 

also  meet  on  the  other.  This  is  only  possible  in  elliptic 

geometry.  Pi  d  if  AA'  and  BB'  are  parallel  in  one  sense, 
they  will  be  parallel  also  in  the  opposite  sense,  which  is 
only  true  in  euclidean  geometry.  Hence,  in  hyperbolic 

geometry  they  neither  intersect  nor  are  parallel. 

Fig.  13. 

It  follows  that  if  a  transversal  meets  two  parallel  lines  it 

makes  the  sum  of  the  interior  angles  on  the  side  of  'parallelism 
less  than  two  right  angles. 

u     Q.  An  exterior  angle  of  a  triangle  is  greater  than  either 

of  the  interior  opposite  angles. 

Let  ABC  (Fig.  14)  be  a  triangle  with  BC  produced  to  D. 
Then  if  the  exterior  angle  ACD  is  not  greater  than  the 
interior  angle  ABC  it  will  be  either  equal  to  it  or  less. 

Suppose  first  that 
Z. ACD  =  ABC,    then  ̂ ACB+ABC  =  7r 

and  BA,  CA  cannot  meet  (except  in   elliptic  geometry). 

Second,  if  LACD<ABC,  draw  BA'  making  LA'BC=ACD. 



II.  7]    THEOREM  OF  THE  EXTERIOR  ANGLE        35 

Then  BA'  lies  within  the  angle  ABC  and  must  meet 

AC,  while  the  sum  of  the  angles  A'BC +AVB  =  7r. 
But  this  is  impossible  (except  in  elliptic  geometry). 

Fig.  14. 

Hence  the  "  theorem  of  the  exterior  angle  "  is  true, 
except  possibly  in  elliptic  geometry. 

7.  The  parallel-angle  Jl{p)  diminishes  as  the  distance  p 
increases. 

Let  AA'  and  BB'  be  ||  MM'  (Fig.  15),  and  ABM ± MM' ; 
and  suppose  AM  >BM. 

Fig.  15. 

Then  Z  MA  A'  +  ABB'  <  tt.     (§  5,  Cor.) 
But  AMBB'+ABB'  =  7r. 

Therefore  Z.  MA  A'  <  MBB'. 
To  avoid  further  prolixity  we  shall  assume,  or  leave  as 

exercises  to  the  reader,  the  theorems  that  II  (p)  is  uniquely 
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defined  for  any  value  of  jp,  and  that  there  is  a  unique  value 

of  p  corresponding  to  any  acute  angle  as  parallel-angle. 

Further  ri(^)  is  a  continuous  function  of  ̂ .     As  ̂ ->oo, 

n  (jp)  ->0,  and  as  ;p  ->0,  II  (jp)  -» ,^ .     The  analytical  expression 

for  II  (^)  will  be  found  later  in  §27.  The  range  of  p  may 
be  extended  into  the  negative  region.  If  we  suppose  the 

point  A  to  move  to  the  other  side  of  the  hne  MM',  the 

angle  MAA'  will  become  obtuse,  and  we  have,  in  fact, 

n(-;7)+n(^)=7r. 
8.  (a)  Let  ABNM  be  a  quadrilateral  with  right  angles 

at  the  adjacent  vertices  M,  N,  and  let  MA=NB.     If  we 

bisect  MN  perpendicularly  by  PQ  we  see  from  symmetry 

that  the  angles  MAB  and  NBA  are  equal. 

Draw  AA'  and  BB'  ||  MN.  Then,  since  MA  =NB,  the 

angles  MAA'  and  NBB'  are  equal. 

But  Z. A' AB+B'BA<7r;    therefore   AB'BOA'AB. 
Hence  LMAB<NBC,  and  the  angles  MAB  and  NBA 

are  acute.  Thus,  hyperbolic  geometry  impHes  Saccheri's 
Hypothesis  of  the  Acute  Angle. 

It  follows,  by  considering  the  quadrilateral  AMQP,  that 
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if  a  quadrilateral  has  three  right  angles  the  fourth  angle  must 
he  acute. 

(b)  If  AM,  BN  are  perpendiculars  to  MN  and  AM>BN, 
then  the  angle  MAB<NBA. 

Fig.  17. 

C\itof£MA'=NB.     Then 

ANBA  >NBA'  =MA'B>MAB, 
from  the  theorem  of  the  exterior  angle. 

Conversely,  if  Z.MAB<NBA,  then  MA>NB.     (Proof 
by  reductio  ad  absurdum,  using  (a)  and  (b).) 

9.  The  distance  between  two  intersecting  lines  increases 
without  limit. 

Take  two  points  P,  P'  on  OA  such  that  OF>OP,  and 

•A 

drop  perpendiculars  PM,  P'M'  on  ON. 
M'P'O  and  MPO  are  both  acute. 

Then  the  angles 
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Therefore  AMTT<MPP\    and  hence  MT'> MP. 
Take  any  length  G.  Let  ON  be  the  distance  correspond- 

ing to  the  parallel-angle  NO  A,  and  draw  NN'  ±0N.  Then 
NN'  II  OA.  Take  NH  >  G,  and  draw  a  Une  HK  making  the 
acute  angle  N'HK.  Then  HK,  which  lies  within  the  angle 
OHN',  must  meet  OA  in  some  point  K.  Draw  KL1.0N. 
Then,  since  the  angle  KHN  is  obtuse,  ALKH<NHK; 
therefore  LK>NH>G.  Hence  the  perpendicular  PM 

can  exceed  any  ̂ ength. 

I         10.  (a)  The  distance  between  two  parallels  diminishes  in 

\ihe  direction  of  parallelism  and  tends  to  zero. 

Let  AA'  II  MM\  and  let  AM,  BN  be  two  perpendiculars 

dropped  on  MM'  from  points  on  AA' ,  such  that  B  lies 
on  the  side  of  A  in  the  direction  of  parallehsm.  Then 

the  angles  MA  A'  and  NBA'  are  both  acute ;  therefore 
AMAB<NBA,  therefore  NB<MA  (§8(6),  converse). 

Choose  any  length  e,  however  small,  and  make  MP<e. 

Draw  PBLMA.  If  PX  \\  MM',  /LMPX  is  acute  ;  there- 

fore PB  lies  within  the  angle  APX  and  will  meet  A  A'  in 

some  point  B,  since  PX  \\  AA'. 
Make  Z.NBP'  =NBP,  BP'  =BP,  and  draw  P'M'INM'. 

Then  BP'  neither  meets  nor  is  parallel  to  NM',  and  BA' 

must  he  within  the  angle  M'BP',  and  therefore  meets  M'P' 
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in  some  point  A\  Then  M'A'<M'P'<e.  Hence  the 
distance  between  the  parallels  diminishes  indefinitely. 

Parallel  lines  are  therefore  asymptotic,  and  not  equi- 
distant as  in  euclidean  geometry. 

(h)  In  the  direction  opposite  to  that  of  parallelism  the 
distance  between  two  parallels  increases  without  limit. 

We  have,  in  Fig.  19,  AM>BN.  Draw  AL\\M'M 

(Fig.  20).     From  P,  any  point  on  A'A,  draw  PNIM'M, 

FIO.  20. 

cutting  AL  in  J?,  and  draw  PK  ±  AL.  Then  PN  >PR  >PK, 
and  PK,  the  distance  of  P  from  AL,  can  exceed  any  length. 

Hence  PN  can  exceed  any  length. 

11.  Two  parallel  lines  can  therefore  be  regarded  as  meeting 

at  infinity,  and,  further,  the  angle  of  intersection  must  be 
considered  as  being  equal  to  zero. 

Fig.  21. 

Let  AA'  II  BB',  and  choose  any  small  angle  e.     Draw 
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AP   making    /.PAA'<€.     Then   AP  cuts  BB'  in  some 
point  P.     Make  PQ=PA,  and  join  AQ.     Then 

/.AQP=PAQ<PAA'<e. 
Hence  as  BQ^co ,  AQ  tends  to  the  position  AA\  and 

Z.AQB-^0. 

12.  Non-intersectors. 
If  two  hnes  are  both  perpendicular  to  a  third,  they  cannot 

meet  and  are  not  parallel ;  and  conversely,  if  two  lines  are 

non-intersecting  and  not  parallel,  they  will  have  a  common 
perpendicular. 

Let  AB'  and  LX  be  any  two  Hnes  (Fig.  22).  From  any 
point  A  on  the  one  line  draw  a  perpendicular  AL  to  the 

FiQ.  22. 

other.  Then  if  AL  is  not  perpendicular  to  both  lines 

it  makes  an  acute  angle  with  AB'  at  one  side,  say  the  angle 
LAB'  is  acute.  If  BM  is  another  perpendicular  on  the 
side  of  AL  next  the  acute  angle,  and  such  that  the  angle 

MBB'  is  also  acute,  then  MB<LA.  The  distance  between 
the  two  hnes  thus  diminishes  in  this  direction,  but  unless 

the  lines  intersect  or  are  parallel,  it  cannot  diminish  inde- 
finitely. 

Draw  MM'  \\  BB',  and  let  the  perpendicular  C'N'  to 

LX  from  any  point  C  on  BB'  meet  MM'  in  Q,     Then 
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C'N'>QN\  But  QN' -^oo  ;  therefore  C'N'-^ao.  Thus 

the  distance  between  the  two  given  Hnes  AB'  and  LX  at 
first  diminishes  and  finally  tends  to  infinity.  It  must, 

therefore,  have  a  minimum  value,  and,  if  ?7F  is  that  mini- 
mum distance,  UV  must  be  perpendicular  to  both  lines. 

Hubert's^  construction  for  the  common  perpendicular. 
Take  A,  B,  any  two  points  on  the  one  fine  (Fig.  22),  and 

draw  perpendiculars  AL,  BM  on  the  other.  If  AL=BM, 
the  common  perpendicular  is  found  by  bisecting  LM 

perpendicularly. 

Suppose  AL>BM.  Make  LP  =  MB,  and  the  angle 

LPP'=MBB\  Draw  XXM|  PP'  and  Mir  II  55'.  Then, 
from  the  congruence  of  the  figures  XLPP'  and  XMBB', 

the  angles  XLL'  and  XMM'  are  equal.  Hence  LL'  is 
not  parallel  to  MM',  and  therefore  is  not  parallel  to  BB'  ; 
nor  does  it  meet  MM\  therefore  it  must  cut  BB\  There- 

fore, since  PP'  \\  LL' ,  it  must  meet  BB'  in  some  point  C. 
Make  BC  =  PC.  Draw  the  perpendiculars  CN,  C'N'  to  LX. 

Then,  comparing  MBC'N'  and  LPCN,  we  find  CN^C'N', 
and  the  common  perpendicular  is  found  by  bisecting 

NN'  perpendicularly  by  UV. 

13.  If  we  make  the  common  perpendicular  to  two  non- 
intersecting  lines  zero,  the  two  hnes  will  coincide,  but  if 
the  common  perpendicular  at  the  same  time  goes  off  to 
infinity  the  two  lines  may  become  parallel. 

Two  straight  lines  may  therefore  be — 
(1)  Intersecting,  and  have  a  real  angle  of  intersection, 

but  no  common  perpendicular, 

(2)  Non-intersecting,  and  have  a  real  shortest  distance 
or  common  perpendicular,  but  no  real  angle. 

^  Grundlagen  der  Geometric,  2nd  ed.  (1903),  Appendix  III.  §  1. 
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(3)  Parallel,    with    a    zero    angle   and    zero    shortest 
distance  or  common  perpendicular  at  infinity. 

Before  the  principles  of  non-euclidean  geometry  became  known, 
Unes  were  sometimes  classified  as  convergent,  divergent  and  equi- 

distant. In  fact,  from  the  assumption  that  two  straight  lines  cannot 
first  converge  and  then  diverge  without  intersecting,  Robert  Simson 

(1756)  was  enabled  to  prove  Euclid's  postulate.  In  non-euclidean 
geometry  equidistant  straight  lines  cannot  exist.  Intersectors 
are  convergent  or  divergent  in  the  same  sense  as  in  euclidean  geo- 

metry;  parallels  are  convergent  and  asymptotic  in  one  direction 
and  divergent  in  the  other  ;  non- intersectors  are  ultimately  divergent 
in  both  directions. 

Planes,  Dihedral  Angles,  etc. 

14.  If  two  planes  have  a  point  in  common  they  have  a 

line  in  common.^  The  dihedral  angle  between  two  planes 
is  measured  in  the  usual  way  by  the  angle  between  two 

intersecting  hues,  one  in  each  plane,  perpendicular  to  the 

Hne  of  intersection.  If  this  angle  is  a  right  angle  the 
planes  are  perpendicular. 

The  usual  proof  in  euclidean  geometry  that  the  dihedral  angle 
measured  in  this  way  is  independent  of  the  point  chosen  on  the  line 
of  intersection  involves  parallels,  and  another  proof  is  required. 

Take  P,  P',  any  two  points  on  the  line  of  intersection  of  two 
planes  a,  /?  (Fig.  23).  Draw  PA  =P'A'±PP'  in  the  plane  a,  and 
PB=P'B'1.PP'  in  the  plane  /?.  Join  PA'  and  P'A  intersecting  in 
Ui  and  PB'  and  P'B  intersecting  in  V.  Then,  by  comparing  the 
triangles  PAP'  and  P'A'P,  we  find  PA'=P'A  and  lPAU=P'A'U. 
Hence  PU  =P'U.  Similarly  PB'=P'B  and  PF=PT.  Hence, 
by  comparing  triangles  PUV,  P'UV,  we  find  lUPV  =  UP'V. 
Then,  by  comparing  triangles  PA'B'  and  P'AB,  we  find  AB  =A'B\ 
Lastly,  by  comparing  triangles  APB  and  A' P'B',  we  obtain 
lAPB=A'P'B'. 

For  the  following  theorems  the  usual  proofs  are  valid. 

^  This  is  an  assumption,  explicitly  excluding  space  of  four  or  more dimensions. 
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If  a  straight  line  jp  is  perpendicular  to  each  of  two  inter- 
secting hnes  a,  h  at  their  point  of  intersection  0,  it  is 

perpendicular  to  every  line  through  0  in  the  plane  ah,  and 
is  said  to  be  perpendicular  to  the  plane  ah.  Every  plane 

through  f  is  perpendicular  to  the  plane  ah.     The  line  of 

intersection  of  two  planes  which  are  both  perpendicular 

to  a  plane  a  is  perpendicular  to  a.  Two  parallel  Hnes  lie 
in  the  same  plane  (by  definition).  Two  lines  a,  h,  which 

are  both  perpendicular  to  a  plane  y,  lie  in  a  plane,  for  if  a,  h 

cut  ym  A,B,  then  the  planes  aB  and  hA  are  both  perpendi- 
cular to  y,  and  therefore  coincide. 

Three  planes  which  have  a  point  in  common  intersect  in 
pairs  in  three  concurrent  straight  hnes.  Three  Hnes  which 
intersect  in  pairs  are  either  concurrent  or  coplanar. 

15.  (a)  If  two  lines  A  A'  and  CC  are  hoth  parallel  to  a 

third  line  BB\  then  AA'  \\  CC  (Fig.  24). 
(The  case  in  which  all  three  hnes  lie  in  the  same  plane 
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has  already  been  proved  in  §4.)     Take  three  fixed  points 

A,  B,  C  on  the  three  lines,  and  any  other  point  P  on  BB'. 

Fig.  24. 

Join  PA,  PC.  As  P  moves  along  BB\  the  plane  PAC 
rotates  about  AC.  In  the  limit,  AP  and  CP  become 

parallel  to  BB',  and  coincide  respectively  with  A  A'  and 
CC  ;  therefore  AA'  and  CC  lie  in  the  same  plane. 

Again,  if  CP  is  fixed  while  the  plane  PAC  revolves,  PA 

tends  to  PB'  and  the  plane  CPA  to  CPB'.    CA,  the  line 

of  intersection  of  the  planes  CPA  and  C'CAA',  therefore 

tends  to  CC,  and  CC  \\  AA'. 
This  result  may  be  stated  also  in  the  form  :   two  planes 
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which  pass  respectively  through  two  parallel  lines  intersect 
in  a  line  parallel  to  the  two  given  lines. 

(b)  If  three  planes  a,  jS,  y  intersect  in  lines  a,  b,  c,  such 
that  a  and  b  are  neither  parallel  nor  intersect,  then  a,  b,  c 

are  all  perpendicular  to  the  same  plane  (Fig.  25). 
Let  AB  be  the  common  perpendicular  to  a,  b.  Then 

the  plane  through  A  La  passes  through  B  and  is  ±  the 

plane  ab,  and  therefore  ±  6.  Let  this  plane  cut  c  in  C. 
Then  the  planes  ac  and  be  are  both  perpendicular  to  the 

plane  ABC^  and  therefore  a,  b,  c  are  all  perpendicular  to 
this  plane. 

16.  Pencils  and  bundles  of  lines. 

A  system  of  coplanar  Hnes  through  a  point  0  is  called 

a  pencil  of  lines  with  vertex  0.  The  whole  system  of  lines 
and  planes  through  0  in  space  is  called  a  bundle  of  lines 

and  planes. 

Fig.  26. 

If  a  system  of  Hnes  is  such  that  each  is  parallel  in  the  same 

sense  to  a  given  hne,  they  are  all  parallel  in  pairs  (§  15  (a) ), 
and  form  a  pencil  or  bundle  of  parallel  hnes,  or  a  parallel 
bundle.  This  is  completely  determined  by  one  line  with  a 
given  direction. 
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Denote  a  bundle  of  lines  with  vertex  0  by  0,  and  a  bundle 
of  lines  parallel  to  Zin  a  given  sense  by  Q.  Then  these  two 

bundles  uniquely  determine  a  line  OQ,  which  passes  through 
0  and  is  parallel  to  I  in  the  given  sense. 

Two  parallel  bundles  Q,  Q'  uniquely  determine  a  Hne 
QQ',  which  is  parallel  to  both  /  and  V.  The  line  Qi}'  may 
be  constructed  thus  :  Take  any  point  A  and  determine 

AQ  and  AQ'  (Fig.  26).  Bisect  the  angle  QAQ\  and  take 
the  distance  AN  corresponding  to  the  parallel-angle  ̂ QAQ'. 

The  line  through  N±AN  in  the  plane  QAQ'  is  ||  ̂Q  and 

to  AQ'. 
So  also  we  can  prove  that  any  three  bundles,  ordinary 

or  parallel,  uniquely  determine  a  plane,  for  each  pair 
determines  a  straight  line,  and  the  three  straight  lines  thus 
determined  are  coplanar. 

17.  Points  at  infinity. 
To  an  ordinary  bundle  corresponds  a  point  0,  but  to  a 

parallel  bundle  there  is  only  a  direction  corresponding. 
We  shall  extend  the  class  of  points  by  introducing  a  class 

of  fictitious  points  called  points  at  infinity.  These  points 
function  in  exactly  the  same  way  as  ordinary  or,  as  we  shall 

call  them,  actual  points,  and  determine  lines  and  planes 
with  each  other  or  with  actual  points. 

On  every  line  there  are  two  points  at  infinity,  and  the 
assemblage  of  points  at  infinity  in  a  plane  is  a  curve  of  the 

second  degree  or  conic, ^  since  it  is  met  by  any  line  in  two 
points.  In  three  dimensions  the  assemblage  is  a  surface 

of  the  second  degree  or  quadric.  This  figure,  the  assem- 
blage of  all  the  points  at  infinity,  is  called  the  Absolute. 

1  The  definition  of  a  conic  which  we  shall  use  is  "  a  plane  curve  which  is 
cut  by  any  straight  line  in  its  plane  in  two  points,"  For  the  explanation 
of  the  case  of  "  imaginary  "  intersection  see  Chap.  III.  §  6. 
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When  two  points  at  infinity  approach  coincidence,  the  line 
determined  by  them  becomes  a  tangent  to  the  absolute.  As 

Q,  Q'  approach,  the  angle  QAQ'  in  Fig.  26  tends  to  zero 
and  AN^co .  The  line  QQ'  therefore  goes  off  to  infinity. 
Such  a  line  is  called  a  line  at  infinity.  Similarly  we  obtain 

planes  at  infinity,  which  are  tangent  planes  to  the  Absolute. 

In  euclidean  geometry  there  is  just  one  parallel  through  a  given 
point  to  a  given  line  in  a  plane,  and  the  two  points  at  infinity  upon 
a  line  coincide.  The  assemblage  of  points  at  infinity  in  a  plane  then 
reduces  to  a  double  hne,  the  line  at  infinity,  which  is  a  degenerate 
case  of  a  conic.  There  is  in  this  case  only  one  real  hne  at  infinity ; 
but  any  line  whose  equation  in  rectangular  coordinates  is  of  the 

form  x±iy  +  c=0  is  at  an  infinite  distance  from  the  origin,  since 

l  +  i^=0,  and  the  assemblage  of  these  lines  consists  of  two  imaginary 
pencils.  The  equation  of  the  hne  at  infinity  is  a=0x  +  0t/  +  l=^0, 

and  the  equations  of  the  two  pencils  are  a>  +  A.a=0,  (o''  +  Aa=0, 
where  o>,  w'  =x  ±  iy. 

The  absolute  in  euclidean  geometry  thus  consists,  as  a  locus  of 

points,  of  the  line  at  infinity  a  =  0  taken  twice,  and,  as  an  envelope 

of  lines  of  two  imaginary  pencils  a>+A.a=0,  a)'  +  Aa=0,  with  their 
vertices  on  the  line  at  infinity.  These  two  imaginary  vertices  are 

the  points  of  intersection  of  the  point- circle  (sua'  ̂ x^  +  y^—0  with  the 
line  at  infinity  Since  the  equation  of  any  circle  can  be  written 

w(o'  +  wa=0,  where  u=0  represents  a  straight  hne,  we  see  that 

every  circle  passes  through  the  two  points  (ww'=0,  a=0),  and  for 
this  reason  these  two  imaginary  points  are  called  the  circular  points. 

In  euclidean  geometry  of  three  dimensions  the  absolute  consists, 
as  a  locus  of  points,  of  the  plane  at  infinity  taken  twice,  and,  as  an 
envelope  of  planes,  of  all  the  planes  through  tangents  to  an  imaginary 

circle,  the  intersection  of  the  point-sphere  x^  +  y^  +  z^=0  with  the 
plane  at  infinity. 

The  whole  of  metrical  geometry  is  determined  by  the  form  of  the 
Absolute  ;  this  will  be  more  fully  treated  in  Chap.  V. 

18.  Ideal  points. 
If  a  system  of  lines  is  such  that  any  two  are  coplanar,  while 

they  do  not  all  lie  in  the  same  plane  and  are  neither  parallel 
nor  intersect,  then  they  are  all  perpendicular  to  a  fixed  plane. 
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If  a,  b  are  any  two  of  the  lines  they  determine  a  plane  tt, 
which  is  perpendicular  to  both.  If  c  is  any  third  line, 
which  does  not  lie  in  the  plane  ab,  it  is  the  intersection  of 

two  planes  ac  and  be,  which  are  both  JL  tt,  and  therefore  c 
is±7r(§15(6)). 

We  shall  call  this  system,  which  is  completely  determined 

by  two  of  the  lines,  or  by  a  certain  plane  tt,  a  bundle  of 
lines  with  an  ideal  vertex  0.  The  plane  tt  is  called  the 
axis  of  the  bundle.  All  those  lines  of  the  system  which  lie 

in  a  plane  are  perpendicular  to  a  straight  line  Z,  the  inter- 
section of  their  plane  with  the  fixed  plane,  and  form  a 

pencil  of  lines  with  ideal  vertex  0.  The  line  I  is  called  the 
axis  of  the  pencil. 

The  ideal  points  thus  introduced  behave  exactly  like 

actual  points.  They  can  be  regarded  as  lying  outside 

the  absolute,  and  are  therefore  ultra-spatial  or  ultra-infinite 

points. 
Two  ideal  points  may  determine  a  real  or  actual  hne. 

Considering  only  points  in  a  plane,  the  two  ideal  points  are 

determined  by  two  Hues  a,  a'.  If  a,  a'  are  non-intersecting, 
the  common  perpendicular  to  these  lines  belongs  to  both 
pencils,  and  is  therefore  the  hne  determined  by  the  two 

ideal  points.  If  a  ||  a',  the  Hne  00'  is  a  line  at  infinity  ; 
if  a  cuts  a',  00'  is  an  ideal  line,  which  contains  only  ideal 
points.  An  ideal  line  hes  entirely  outside  the  absolute. 

Similarly,  in  three-dimensional  hyperbolic  geometry,  we 
have  ideal  planes. 

It  is  left  to  the  reader  to  show  now  that  any  two  points, 

actual,  at  infinity  or  ideal,  always  determine  uniquely 

a  line,  actual,  at  infinity  or  ideal ;  and  that  any  three  points, 
actual,  at  infinity  or  ideal,  always  determine  miiquely  a 

plane,  actual,  at  infinity  or  ideal. 
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These  relations,  in  two  dimensions,  can  be  pictured  more 

clearly  if  we  draw  a  conic  to  represent  the  absolute,  or 

assemblage  of  points  at  infinity  (Fig.  26  bis).  Actual 

points  are  then  represented  by  points  in  the  interior  of  the 
conic,  ideal  points  by  points  outside  the  conic.  Lines 

which  intersect  on  the  conic  represent  parallel  Hues,  those 

Fig.  26  bis. 

which  intersect  outside  the  conic  represent  non-inter- 

sectors.  If  OQ  and  OQ'  are  the  tangents  to  the  conic 
from  an  ideal  point  0,  all  the  hues  of  the  pencil  with  vertex 

0  are  perpendicular  to  QQ'.  For  the  present  this  may  be 
used  as  a  mere  graphical  representation.  Its  full  meaning 
can  only  be  understood  in  the  light  of  projective  geometry. 

(See  Chap.  III.  §§  5,  6,  and  Chap.  V.  §§  1-14.) 

19.  Extension  to  three  dimensions. 

If  the  point  of  intersection  of  a  hne  with  a  plane  is 
at  infinity,  the  line  is  said  to  be  parallel  to  the  plane.  If 
the  point  of  intersection  is  ideal  there  is  a  unique  line  and 

a  unique  plane  perpendicular  to  both  the  given  line  and  the 
given  plane. 
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Two  planes  intersect  in  a  line.  If  this  line  is  at  infinity 
the  planes  are  said  to  be  parallel ;  if  it  is  ideal  the  two 

planes  are  non-intersecting  and  there  is  a  unique  line 
perpendicular  to  both. 

All  planes  parallel  to  a  given  line  in  a  given  sense  pass 
through  the  same  point  at  infinity  and  intersect  in  pairs 
in  a  parallel  bundle  of  hues. 

All  planes  perpendicular  to  a  given  plane  pass  through 
the  same  ideal  point  and  intersect  in  pairs  in  a  bundle  of 
lines  with  ideal  vertex. 

The  following  theorem  is  of  great  importance  : 

Through  a  line  which  is  parallel  to  a  plane  passes  just  one 
plane  which  is  parallel  to  the  given  plane. 

Let  the  line  I  cut  the  plane  a  in  the  point  at  infinity  Q. 
Through  Q  passes  just  one  line  at  infinity  o),  and  this  hne 

determines  with  I  a  unique  plane,  which  is  parallel  to  a. 
The  actual  construction  may  be  obtained  thus  :  Take  any 

point  A  on  I  and  draw  AN  ±  a.  Through  A  draw  AB  ±  the 

plane  IN.     Then  Bl  is  the  plane  required. 
Through  a  Hne  which  meets  a  plane  a  in  an  ideal  point 

0  pass  two  planes  parallel  to  the  plane  a,  for  two  tangents 
can  be  drawn  from  0  to  the  section  of  the  absolute  made 

by  the  plane  a. 

20.  Principle  of  duality. 
There  is  a  correspondence  between  points  and  lines  in 

a  plane,  and  between  points  and  planes  in  space,  which 

gives  rise  to  a  sort  of  duahty.  To  an  actual  plane  a  corre- 
sponds uniquely  an  ideal  point  A,  all  the  hues  and  planes 

through  which  are  perpendicular  to  the  plane  a  ;  and  to 
an  actual  point  A  corresponds  an  ideal  plane  a,  which  is 
perpendicular   to   all    the   lines   and   planes   through   the 
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point  A.  Let  B  be  any  point  on  a  ;  then  the  plane  /3  which 
corresponds  to  B  must  pass  through  A,  since  every  plane 
perpendicular  to  a  passes  through  A.  If  the  plane  a  is 

at  infinity  the  corresponding  point  A  is  its  point  of  contact 
with  the  absolute.  The  points  and  planes  are  therefore 

poles  and  polars  with  regard  to  the  absolute.  This  reci- 
procity will  appear  again  in  elliptic  geometry,  where  the 

elements  are  all  real. 

The  Circle  and  the  Sphere. 
21.  The  circle. 

In  a  plane  the  locus  of  a  point  which  is  at  a  constant 

distance  from  a  fixed  point  is  a  circle.  The  fixed  point  is 
the  centre,  and  the  constant  distance  the  radius. 

A  circle  cuts  all  its  radii  at  right  angles.  This  follows 
in  the  Hmit  when  we  consider  a  chord  PQ,  which  forms  an 

isosceles  triangle  with  the  two  radii  CP,  CQ.  That  is,  a 
circle  is  the  orthogonal  trajectory  of  a  pencil  of  lines  with  a 
real  vertex. 

Let  the  vertex  go  to  infinity ;  then  the  fines  of  the  pencil 
become  parallel,  and  the  circle  takes  a  limiting  form,  which 
is  not,  as  in  ordinary  geometry,  a  straight  line,  but  is  a 
uniform  curve.  This  curve,  a  circle  with  infinite  radius,  is 

called  a  horocycle;  it  is  the  orthogonal  trajectory  of  a  pencil 
of  parallel  lines.  The  parallel  fines,  normal  to  the  horocycle, 
are  called  its  radii.     All  horocycles  are  superposable. 

To  obtain  the  orthogonal  trajectory  of  a  pencil  of  lines 
with  ideal  vertex  we  proceed  thus : 

Let  ̂ ^'  be  the  axis  of  the  pencil  (Fig.  27),  and  draw 
perpendiculars  to  AA\  Cut  off  equal  distances  MP,  NQ, ... 
along  these  perpendiculars.  Then  the  locus  of  P  is  again 

a  uniform  curve,  which  is  not,  as  in  ordinary  geometry,  a 
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straight  line;  and  the  curve  cuts  all  the  perpendiculars 

to  AA'  at  right  angles.  It  is  therefore  the  orthogonal 
trajectory  required.  From  the  property  that  the  curve  is 

equidistant  from  the  straight  Hne  AA'  it  is  called  an  equi- 
Q 

Fig.  27. 

distant-curve.  The  complete  curve  consists  of  two  branches, 
symmetrical  about  the  axis,  and  also  symmetrical  about  any 

line  (radius)  which  is  perpendicular  to  the  axis. 

As  the  axis  tends  to  infinity,  the  perpendiculars  tend  to 

become  parallel,  and  the  equidistant-curve  becomes  a 
horocycle.  We  can  thus  pass  continuously  from  an 

equidistant-curve  to  a  circle.  When  the  axis  goes  to 
infinity  the  centre  also  appears  at  infinity  ;  then  the  axis 
becomes  ideal  and  the  centre  becomes  real. 

There  are  therefore  three  sorts  of  circles  : 

(1)  Proper  circles,  with  real  centre  and  ideal  axis. 

(2)  Horocychs,  with  centre  and  axis  at  infinity. 

(3)  Equidistant-curves,  with  ideal  centre  and  real  axis. 
A  straight  line,  or  rather  two  coincident  fines,  is  the  limiting 

case  of  an  equidistant-curve  when  the  distance  vanishes. 

22.  The  sphere. 

In  space  of  three  dimensions  the  locus  of  a  point  which  is  j 

equidistant  from  a  fixed  point  is  a  sphere.  It  is  the  ortho-  j 
gonal  trajectory  of  a  bundle  of  fines  with  a  real  vertex,  i 

When  the  centre  is  at  infinity  the  surface  is  called  a  horo-  '> 
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sphere,  and  when  the  centre  is  ideal  the  surface  is  an 

equidistant-surface  to  a  plane  as  axis. 
A  plane  section  of  a  sphere  is  always  a  circle  ;  the  greatest 

section,  or  the  section  of  least  curvature,  is  a  diametral 

section  passing  through  the  centre,  that  is,  a  great  circle 
on  the  sphere. 

A  plane  section  of  a  horosphere  is  a  circle,  except  when 

the  section  is  normal  to  the  surface,  i.e.  passes  through  a 
normal,  in  which  case  the  section  is  a  horocycle. 

A  section  of  an  equidistant  surface  by  a  plane  which 
does  not  cut  the  axial  plane  is  a  circle  ;  if  the  plane  cuts 

the  axial  plane  the  section  is  an  equidistant-curve  with 
the  line  of  intersection  as  axis  ;  if  the  plane  is  parallel  to 
the  axial  plane  the  section  is  a  horocycle. 

23.  Circles  determined  by  three  points  or  three  tangents. 

Let  Aj  B,  C  hQ  three  given  points :  to  find  the  centre  of  a  circle 
passing  through  A,  B,  C.    Bisect  the  joins  of  the  three  points 

A'       n'  m'  b'  l'  C 
Fig.  28. 

perpendicularly.     If  two  of  the  perpendiculars  meet,  all  three  will     ̂ ;  \ 
be  concurrent  in  the  centre  required. 
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Suppose  the  perpendicular  bisectors  NN'  and  LL'  to  AB  and  BC 
are  non-intersecting.  Let  N'U  be  their  common  perpendicular. 
Let  this  line  cut  the  perpendicular  at  M  in  M\  and  draw  the 

perpendiculars  AA\  BB\  CC.  Then,  since  NN'  bisects  AB 
perpendicularly  and  is  JL  A'B\  A  A'  =  BB'.     Similarly  BB'  =  CC 

In  the  quadrilaterals  AA'M'M,  CC'M'M,  AA'=CC',  AM=MG 
and  the  angles  at  i¥,  A'  and  C  are  right ;  therefore  if  the  quadri- 

lateral CC'M'M  be  folded  over  MM\  C  will  coincide  with  A,  and, 
since  only  one  perpendicular  can  be  drawn  from  A  upon  A'M\ 
CC  will  coincide  with  AA',  and  the  angles  at  M'  are  right.  Hence 
LL\  MM\  NN'  are  all  perpendicular  to  A'C\  and  ABC  lie  on  an 
equidistant-curve  with  axis  A'B'C 

Suppose  NN'\\LL' ;  then  MM'  must  be  parallel  to  both.  For, 
if  MM'  cuts  LL',  then  by  the  first  case  the  three  lines  are  concurrent ; 
and  if  MM'  is  a  non-intersector  to  LL',  then  by  the  second  case  LL' 
and  NN'  are  non-intersecting.  Therefore  MM'  \\  LL'.  A,  B,  C 
then  lie  on  a  horocycle. 

In  addition  to  the  circle,  equidistant- curve  or  horocycle,  which 
can  be  drawn  through  ABC  in  this  way,  there  exist  three  equi- 

distant-curves such  that  one  of  the  points  lies  on  one  branch  while 
the  other  two  lie  on  the  other  branch.  Bisect  AB,  AC  at  M  and  N. 

Join  MN  and  draw  the  perpendiculars  AA',  BB',  CC  to  MN. 
(See  Fig.  50,  p.  77.)  Then  AA'  =  BB'  =  CC',  and  an  equidistant- 
curve  with  axis  MN  passes  through  B,  C  and  A.  A  triangle  has 
therefore  four  circumcircles,  at  least  three  of  which  are  equidistant- 
curves.  There  cannot  be  more  than  one  real  circumcentre.  This 

point,  which  we  may  call  the  circumcentre,  is  the  point  of  concur- 
rence of  the  perpendicular  bisectors  of  the  sides,  and  may  be  real, 

at  infinity,  or  ideal. 

If  L  is  the  middle  point  of  BC,  the  perpendicular  from  L  on  3IN 

is  also  A.  BC,  since  it  bisects  the  quadrilateral  BB'C'C.  Hence  the 
altitudes  of  the  triangle  LMN  are  concurrent  in  the  circumcentre 
of  the  triangle  ABC.  A  triangle  therefore  possesses  a  unique 
orthocentre,  real,  at  infinity,  or  ideal.  If  the  orthocentre  is  ideal 
there  is  a  real  orthaxis,  which  is  perpendicular  to  the  three 
altitudes. 

The  construction  for  the  circles  touching  the  sides  of  a  triangle 
is,  as  usual,  obtained  by  bisecting  the  angles.  Three  of  the  circles 

may  be  equidistant-curves  or  horocycles. 
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24.   Geometry  of  a  bundle  of  lines  and  planes. 

In  plane  geometry  we  have  points,  lines,  distances  and 

angles  ;  in  a  bundle  of  lines  and  planes  through  a  point  0 

we  have  Hues,  planes,  plane  angles  and  dihedral  angles  Let 

us  change  the  language  to  make  it  resemble  the  language  of 
plane  geometry.  In  translating  from  one  language  to  another 
we  require  a  dictionary.     The  following  will  suffice  : 

"Point"  -         -  Line  through  0. 
"  Line  "  -         -         -  Plane  through  0. 
"  Distance  "  between  Angle  between  two  lines 

two  "  points  "       -         through  0. 

"  Angle  "   between  Dihedral  angle  between 
two  "  Hues  "         -        two  planes  through  0. 

"  Parallel  hues  "      -  Parallel  planes. 

Then  two  "  points  "  determine  a  "  hne  "  and  two  "  lines  " 

determine  a  "  point."  "  Parallel  hues  "  only  exist  when  0 
is  at  infinity  or  ideal. 

When  0  is  at  infinity,  through  a  given  "  point  "  there 
passes  just  one  "  hne  "  "  parallel  "  to  a  given  "  hne  " 

(§  19),  and  when  0  is  ideal,  two  "  parallels  "  can  be  drawn 
through  a  given  "  point  "  to  a  given  "  line." 

There  are  therefore  three  kinds  of  geometry  of  a  bundle 

according  as  the  vertex  0  is  actual,  at  infinity  or  ideal,  and 

these  are  exactly  of  the  same  form  as  elliptic,  parabolic 
{i.e.  euclidean)  and  hyperbolic  plane  geometry. 

If  a  sphere  be  drawn  with  centre  0  cutting  the  lines  and 

planes  of  the  bundle,  we  can  get  a  further  correspondence. 
When  0  is  an  actual  point  we  have  a  proper  sphere.  We 
have  then  the  following  dictionary  : 

"  Point  "         -     Pair  of  antipodal  points  on  sphere. 
"  Line  "  -        -     Great  circle. 
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Distance  "    -        -     Length  of  arc. 

Angle  "  between        Angle  between  great  circles. 
"  lines  " 

Hence  the  geometry  on  a  proper  sphere,  where  great 

circles  represent  lines,  and  pairs  of  antipodal  points  repre- 
sent points,  is  the  same  as  elliptic  geometry.  (See  further 

Chapter  III.) 

When  0  is  ideal,  the  sphere  becomes  an  equidistant- 
surface,  and  its  geometry  is  hyperboHc  ;  when  0  is  at 
infinity  it  becomes  a  horosphere,  and  its  geometry  is 

euclidean  :  ''  point "  in  each  case  being  represented  by  a 

point,  and  "  lines  "  by  normal  sections,  which  are  also 
shortest  lines  or  geodesies  on  the  surface. 
We  have  here  the  important  and  remarkable  theorem 

that  the  geometry  on  the  horosphere  is  euclidean. 

Trigonometrical  Formulae. 

25.  We  shall  now  proceed  to  investigate  the  metrical 

relations  of  figures,  leading  up  to  the  trigonometrical 
formulae  for  a  triangle.  The  starting  point  is  found  in  a 

relation  connecting  the  arcs  of  concentric  horocycles,  and 
this  leads  to  the  expression  for  the  angle  of  parallelism. 

The  great  theorem  which  enables  us  to  introduce  the 

circular  functions,  sines  and  cosines,  etc.,  of  an  angle  is 

that  the  geometry  of  shortest  lines  (horocycles)  traced  on  a 
horosphere  is  the  same  as  plane  euclidean  geometry. 

Let  A,  B,  C  be  three  points  on- a  horosphere  with  centre  O. 
The  planes  ABQ,  etc.,  cut  the  surface  in  horocycles,  and 
we  have  a  triangle  ABC  formed  of  shortest  lines  or  geodesies, 

which  are  arcs  of  horocycles.  The  angles  of  this  triangle 

are  the  angles  between  the  tangents  to  the  arcs  or  the 
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dihedral  angles  between  the  planes  QAB,  QBC,  QCA.     If 
the  angle  at  0  is  a  right  angle,  then  the  ratios  of  the  arcs  are 

AC BC      .     , 
AB AB 

=  cos^,  etc. 

The  circular  functions  could  be  introduced  independently  of  the 
horosphere  by  defining  them  as  analytical  functions  of  the  angle  0, 
viz.  : 

sin6'  =  ̂- 3!"^5! 

cos^=  1 2r4i 

the  unit  of  angle  bemg  such  that  the  measure  of  a  flat-angle  is 

TT  =3-14159...  .  We  may  call  this  "circular  measure."  Then  it 
could  be  shown  that  if  ABC  is  a  rectilinear  triangle,  right-angled  at 
C,  the  ratios  BC/AB  and  AC/AB  tend  to  the  hmits  sin  ̂   and  cos^ 

as  BC,  AC  and  AB  all  tend  to  zero,  while  the  angle  A  is  fixed. 
(Cf.  Chap.  III.  §  18,  footnote). 

26.  Ratio  of  arcs  of  concentric  horocycles. 

Let  A^Q,  BjQ  be  two  parallel  lines,  and  let  them  be  cut 
by  horocycles  A^B^,  A^^B^,  AJB^  with  centre  at  infinity  Q. 

Then  the  ratio  of  the  arcs  A^B^ :  ̂2^2  depends  only  on  the 
distance  A^A2=x.     (See  Ex.  25  and  26.) 

Let    g=/(.);  then  ̂ =f(y)   and  g^=/(^+y). 

Therefore  f(x  +  y)  =f(x) .  f{y). 
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This  is  the  fundamental  law  of  indices,  and  the  function 

is  therefore  the  exponential  function  : 

c  being  an  absolute  constant  greater  than  unity.  f(x)  is 
a  pure  ratio,  and  must  be  independent  of  the  arbitrary 
unit  of  length  which  is  selected  ;  therefore  log/  (x)  or  x  log  c 

must  be  a  pure  ratio.  Hence  log  c  must  be  the  reciprocal 

of  a  length.     We  shall  put  log^  c  =  l/k;  then 

f{x)=A where  k  is  an  absolute  linear  constant  and  e  is  the  base  of 

the  natural  logarithms,  k  is  called  the  space-constant ; 
its  actual  value  in  numbers  of  course  depends  upon  the 

arbitrary  unit  of  length  which  is  selected,  but  it  forms 
itself  a  natural  unit  of  length,  and  it  is  often  convenient 
to  make  its  value  unity.  This  is  one  of  the  most  remarkable 

facts  in  non-euchdean  geometry,  that  there  is  an  absolute 
unit  for  length  as  well  as  for  angle.  It  can  be  proved  (see 

§  39)  that  k  is  the  length  of  the  arc  of  a  horocycle  which  is 

such  that  the  tangent  at  one  extremity  is  ̂parallel  to  the  radius 
through  the  other  extremity. 

27.  The  parallel-angle. 

We  can  apply  this  now  to  find  the  value  of  the  parallel- 
angle  n  (p)  in  terms  of  jp.  This  is  the  simplest  case  of  the 
determination  of  the  relations  between  the  sides  and  angles 

of  a  triangle.  The  triangle  in  this  case  has  two  sides  infinite, 

one  angle  right  and  another  angle  zero. 

Let  AY  II  BY,  and  ABLBY  (Fig.  30).  Erect  a  perpen- 
dicular at  A  to  the  plane  of  ABY.  Draw  the  parallels  BQ, 

and  YQ.  Draw  the  horosphere  with  centre  at  infinity  Q, 

and  passing  through  A,  and  let  it  cut  Bil  m  B'  and  YQ. 
in  C    Let  BB'  =  y,  and  the  arcs  EC,  C'A,  AB'  be  a,  b,  c. 
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Since  BFlAB  the  plane  Q5r±  plane  QAB,  and  since 

the  angles  which  the  arcs  AB\  B'C,  C'A  make  with  the 
lines  ilA,  QB,  QC  are  all  right, 

AC'AB'=TAB=I[(p),     AAB'C'^l. 

and  since  geometry  on  the  horosphere  is  euchdean, 

^AC'B'=^-U{p). 

sin  n  {p)  =  r    and     cos  11  (^)  =  t  ; Hence 

therefore (1) 
tanin(^)=^;   -     ̂ ^  ̂     b+c 

The  arc  of  the  horocycle  6  is  a  standard  length,  viz.  the 

length  of  the  arc  which  is  such  that  the  tangent  at  one 
extremity  is  parallel  to  the  radius  at  the  other  extremity. 

In  Fig.  30  BK  is  such  an  arc,  and  =  b.     Hence 
b ■  ek. 

(2) 



60  ELEMENTARY  HYPERBOLIC  GEOMETRY  [ii.  27 

Now  fold  the  plane  QAT  about  QA  until  it  lies  in  the 

plane  QAB  (Fig.  31).     Draw  TB"  ±Bi2.     Then,  if  we  draw 

Fig,  31. 

the  horocycHc  arc  B"C"  with  centre  Q,  this  arc  =6.     Also 
BB"  =p ;  therefore  B'B"  ='p-y. 

Therefore 

.(3) 

Hence,  multiplying  (2)  and  (3)  and  using  (1),  we  have 

tanjn(^)=e  *. 

This  relation  may  be  put  into  other  forms,  e.g. 

cot  n  (f)  =  sinh  ̂   ; 

other  equivalent  forms  can  be  read  off  from  the  accom- 
panying figure  (Fig.  32),  treating  the  figure  as  a  euclidean 

triangle. 
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We  shall  effect  a  simplification  by  taking  in  the  following 

paragraphs  (§§  28-37)  the  constant  k  as  the  unit  of  length 

H/pj 

The  formulae  may  be  restored  in  their  general  form  by 
dividing  by  k  every  letter  which  represents  a  length. 

28.  Two  formulae  for  the  horocycle. 

Let  AB=s  be  an  arc  of  a  horocycle  with  centre  Q,  and 
let  S  be  the  length  of  an  arc  of  a  horocycle  such  that  the 
tangent  at  one  end  is  perpendicular  to  the  radius  at  the 

other  end  (Fig.  33).     Let  s<S. 

Extend  BA  to  M  so  that  BM=S;  then  AM=S-s. 
Take  Ai  on  the  radius  through  A  so  that  the  perpendicular 

at  Ai  to  A^A  is  parallel  to  MM^.  Then  the  arc  A^Mi=S, 

Let  BQ^  cut  A^Q  in  D.  Then  DA^=DB=t,  say.  Let 
DA  =  u.  Then  we  have,  comparing  the  arcs  Aj^M^  and  AM, 

>S-5=/Se-*-"   (1) 
Extend  AB  to  N  so  that  BN  =S.  Take  A  2  on  the  radius 

through  A  so  that  the  perpendicular  at  ̂ 2  ̂o  AA2  is  parallel 

to  M^N.  Then  the  arc  ̂ 2^2=>Sf.  And  since  BQ  \\  DA^, 

and  A2Q2 1!  DB,  DA2=DB  =  t. 

Then  S+s=Se'-''   (2) 
Adding  these  two  equations,  we  get 

or  e"=^(e^+e-^)=cosht   (3) 
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Substituting  in  (1),  we  get 

2e-'
 

&  -e s=>S  1— p— J=^V-^  =  'S^tanh«   (a) 

Draw  s'  the  arc  of  the  horocycle  with  centre  Q  passing 
through  J). 

Then s'  =  s&'  =  S  tanh  i .  cosh  t  =  /S  sinh  ̂ . 

.^B) 

These  two  formulae  (a)  and  (b)  give  the  tangent  and 
ordinate  at  the  extremity  of  an  arc  of  a  horocycle,  viz.  if 

s  is  the  arc  AB  of  a  horocycle,  t  the  length  of  the  tangent 
AT  intercepted  between  the  point  of  contact  A  and  the 

radius  through  B,  and  y  the  ordinate  AN  from  A  on  the 
radius  5r,  then 

s=S  tanh  t  =  S  sinh  ?/. 
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29.  The  right-angled  triangle;  complementary 
angles  and  segments. 

Let  ABC  be  a  right-angled  triangle  with  right  angle  at  C. 
Denote  the  sides  by  a,  b,  the  hypotenuse  by  c,  the  angles 
opposite  the  sides  by  X,  /x. 

Leta=n(a),  etc.  Then  we  have  five  segments  and 
five  angles  connected  by  the  relations 

a=U(a),   /3=n(6),    y=n(c),    X=U(l),    /x=Il(m). 

Fig.  84. 

Let  a  denote  Jtt  -  a  ;  then  we  have  the  complementary 
segments  and  angles 

a'=U(a'),    l3'=U(b'),  etc. 
We  have  to  deal  with  the  circular  functions  of  the  angles, 

and  the  complementary  angles  are  of  course  connected  by 
the  relations 

sin  a  =  cos  a,     tan  a  =  cot  a,  etc. 

We  have  also  to  deal  with  the  hyperbolic  functions  of 

the  segments,  and  we  have  the  relations 

sinh  a  =  cot  n  {a)  =  cot  a  =  tan  a  =  tan  11  {a')  =  cosech  a', 
cosh  a  =  cosec  11  (a)  =  cosec  a  =  sec  (/  =  sec  11  {a')  =  coth  a\ 

30.  Correspondence  between  rectilinear  and  spheri- 
cal triangles. 

Draw  AQ  _L  the  plane  of  the  triangle  (Fig.  35),  and  draw 
BQ  and  CQ  11  AQ. 
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Then  BQ  \\  CQ,  and  BC  ±  plane  ACQ  ;  therefore  BC ±Cn. 

The  plane  QBA  J_  plane  ABC,  and  the  angle  between  the 

planes  QBC  and  ABC  =11  (b).    Also,  since  the  planes  ilAB, 

Fia.  35. 

QBC,  QCA  intersect  in  parallel  lines,  the  sum  of  the  angles 

of  intersection  =  tt  ;  therefore  the  angle  between  the  planes 

QAB3indQBC  =  '^-\. 
Now  draw  a  sphere  with  centre  B,  and  we  get  a  right- 

angled  spherical  triangle  with  hypotenuse  a  =  IT  (a),  sides 

/J.  and  y  =n(c),  measured  by  the  angles  which  they  sub- 

tend at  the   centre,  and  opposite  angles  X'=^-X   and 
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/3==II(6),  i.e.  to  the  rectilinear  triangle  (c,  a\,  b /m)  corre- 

sponds the  spherical  triangle  (a,  /x  X',  y  /3). 

31.  Associated  triangles. 

To  the  spherical  triangle  (a,  jul  X',  y  13)  we  get  four  other 
associated  triangles  by  drawing  the  polars  of  the  two 
vertices  (cf.  Chapter  III.  §  20).  This  gives  a  star  pentagon 

(Fig.  36)  whose  outer  angles  are  all  right  angles.     The  five 

Fig.  36. 

associated  right-angled  triangles  have  the  parts  indicated 
in  the  figure.  The  inner  simple  pentagon  has  the  measure 
of  each  side  equal  to  that  of  the  opposite  exterior  angle. 

If  we  write  down  in  cyclic  order  the  parts  X',  /x',  a,  y',  (3 
as  they  occur  on  the  sides  of  the  simple  pentagon,  the  parts 
of  the  five  associated  spherical  triangles  can  be  written 

down  by  cyclic  permutation  of  these  letters,  thus  : 
1.  a, 

jU     \', 

y  ̂. 2.  y', 

a    n  , 

,8'X'. 

3.  ̂ , 

y  a  , 

X    m'- 
4.  \', 

P'y, 

fi    a  . 

5.  m', 
X  (8  , a'  y'. 

N.-E.  G. B 
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Corresponding to  these we 
get  five  associated  rectilinear 

triangles  : 
L 

c  , 

a 

X, 

b 

M  • 

2. 

b', 

c'
 

M> 
V a 

3. 

I, 

b w! y 
4. 

m, 

V 

7' 

a 

/3\ 

5. 

a\ 

m'
 

^', 

c'
 

X 

Hence,  if  we  establish  a  relationship  between  the  sides 

and  angles  of  one  triangle,  we  can  obtain  four  other  relation- 
ships by  applying  the  same  result  to  the  associated  triangles, 

or  by  a  cyclic  permutation  of  the  letters  (I'm'ac'b)  {Ima'ch') 

(XW^)(XAtaV/5')- 

32.  Trigonometrical   formulae   for    a  right-angled 
triangle. 

Produce   the   hypotenuse  AB  to   D  so  that  the  per- 
pendicular atZ)  to  AD  is  parallel  to  AC.  Then  AD  =  l, 

Fio.  87. 
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BD  =  l-c.     Draw  the  horocyclic  arcs  with  centre  Q  passing 
through  D  and  B.     Then  (by  §  28  (a),  (b)  and  (3) .) 

Si+S2=S  tanh I,        S2=S  tanh (I - c), 

Si=se~ "  =  S  sinh  a/cosh  (I  -  c). 
Therefore 

tanh  I  =  tanh  (l-c)  +  sinh  a/cosh  (I  -  c), 
sinh  a  cosh  I  =  sinh  I  cosh  (?  -  c)  -  cosh  I  sinh  (?  -  c)  =  sinh  c, 
or  sinh  a  =  sinh  c  sin  X   

From  the  associated  triangles  we  get 

sinh  c'   =  sinh  6'  sin  /x  ;  therefore    sinh  b  =  sinh  c  sin  /^i. 
sinh  b    =  sinh  Z  sin  a 

sinh  r    =  sinh  m  sin  y 

sinh  m'  =  sinh  a'  sin  ̂ ' 
From  (3),  (4)  and  (5)  we  get 

(1),  (4)  and  (5) 

(1),  (2)  and  (3) 
(1),  (2)  and  (5) 
(2),  (3)  and  (4) 

sinh  b  =  tanh  a  cot  X. 

cosh  c  =  cot  X  cot  JUL. 
sinh  a  =  tanh  b  cot  ̂ot. 

cosh  c  =  cosh  a  cosh  6, 

cos  X  =  tanh  b  coth  c. 

cos  X  =  cosh  a  sin  yot. 

COS//  =  cosh 6  sinX. 

(1) 

(2) 

(3) 
(4) 
(5) 

(6) (7) 

(8) 

(9) COS  JUL  =  tanh  a  coth  c.  (10) 

33.  Engel-Napier  rules. 
These  ten  formulae,  which  connect  all  the  five  parts  of 

the  triangle  in  sets  of  three,  are  of  exactly  the  same  form 

as  the  formulae  of  spherical  trigonometry,  with  hyperbolic 

Fig.  38. 
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functions  of  the  sides  instead  of  circular  functions,  and  can 

be  written  down  by  Napier's  rules.  ̂   If  we  write  the  five 
parts  b,  X,  c,  Ju,  a  in  cyclic  order  as  they  occur  in  the 

triangle  (Fig.  38),  then 

sine  (middle  part)  =  product  of  cosines  of  opposite  parts 

(a)  =  product  of  tangents  of  adj  acent  parts, 
it  being  understood  that  the  circular  functions  of  the  angles, 
and  the  hyperbolic  functions  of  the  sides,  are  taken,  and 

each  function  of  x  is  the  "  complement  "  of  the  correspond- 
ing function  ofx,  i.e.  cosh  o  =sinh  c,  tan  X  =cot  X,  etc. 

[Note. — A  has  the  same  meaning  as  X',  but  c  is  not  the 

same  as  c'.] 
This  rule  may  be  put  in  another  form,  which  is  more  homogeneous. 

Fia.  39. 

if  we  express  all  the  formulae  in  terms  of  the  segments  a',  I,  c,  m,  h'. 
The  formulae  become : 

cosh  c  =  sinh  I  sinh  m  =  coth  a'  coth  b', 

*  John  Napier,  Mirifici  logarithmorum  canonis  descriptio,  Edinburgh, 
1614  (Hb.  ii.  cap.  iv.).  These  rules  have  often  been  treated  disparagingly 
by  those  {e.g.  Airy  and  De  Morgan)  who  saw  in  them  only  artificial 
mnemonics  or  at  best  curiosities  with  no  fundamental  scientific  basis. 

The  properties  of  the  beautiful  star-pentagon  ("  pentagrarama  miri- 
ficum  "),  by  which  these  rules  were  originally  established  by  Napier, 
were  extensively  studied  by  Gauss  {Werke,  iii.  481).  The  foundation  of 
the  rules  for  hyperbolic  geometry  was  laid  by  Lobachevsky,  New  Founda- 

tions of  Geometry,  chap.  x.  He  makes  use  of  the  diagrams  in  the  first 

part  of  §  35.  The  modified  forms  of  Napier's  Rules  were  established  by 
Engel  in  his  edition  of  Lobachevsky's  New  Foundations,  p.  345. 
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and  four  other  pairs  obtained  by  the  cychc  permutation  {hna'ch') 
or  {a'lcmh'). 

If  we  write  the  five  parts  a',  I,  c,  m,  h'  in  cycHc  order  (Fig,  39), then 

cosh  (middle  part)  =  product  of  hyp.  sines  of  adjacent  parts 

(b)  =  product  of  hyp.  cotangents  of  opposite 

parts. 
It  is  easily  verified  that  this  rule  holds,  with  circular  functions 
instead  of  hyperbolic  functions,  for  a  spherical  triangle  in  euclidean 

space  with  hypotenuse  c,  sides  V  and  m'  and  opposite  angles  a' 
and  h'. 

34.  Expressing  the  formulae  in  terms  of  a',  X,  y,  /x,  /3', 
we  get,  since 

cosh  X  =  cosec  f ,     sinh  x  =  cot  f ,     coth  x  =  sec  ̂ , 

where  x  stands  for  any  one  of  the  letters  a,  b,  c,  I,  m,  and 
^  for  the  corresponding  Greek  letter  a,  /S,  y,  X,  fx, 

sin  y  =  tan  X  tan  /m  =  cos  a'  cos  /3', 

Fig.  40. 

with  four  other  pairs  obtained  by  the  cychc  permutation 

(a'Xyya/3').  They  may  be  read  off  from  Fig.  40  by  applying 
Rule  (b)  with  circular  functions. 

But  these  are  the  formulae  for  a  right-angled  spherical 

triangle  with  hypotenuse  y,  sides  a  and  /3'  and  opposite 
angles  /x'  and  X' ;   or  one  with  hypotenuse  a,  sides  jm  and  y 
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and  opposite  angles  X'  and  /3.  But  this  is  just  the  spherical 
triangle  which  we  found  to  correspond  to  the  rectilinear 

triangle  (§30).  Hence  the  formulae  for  a  spherical  irmngle  in 
hyperbolic  space  are  exactly  the  same  as  those  for  a  spherical 
triangle  in  euclidean  space,  when  we  take  as  the  measure 
of  a  side  the  angle  which  it  subtends  at  the  centre,  and  as 
the  measure  of  an  angle  the  dihedral  angle  between  the 

planes  passing  through  the  sides  and  the  centre.  (Cf. 

Chap.  III.  §  21.)  It  may  be  noted  that  the  letters  ̂ ',  a,  y\ 
/3,  X'  in  Fig.  40  are  the  same,  and  in  the  same  order,  as  those 
on  the  sides  of  the  simple  pentagon  in  Fig.  36. 

35.  Correspondence  between  a  right-angled  triangle 
and  a  tri-rectangular  quadrilateral. 

Draw  512  ||  CA,  and  DQ.LBA  and  ||  CA  (Fig.  41).     Then  AD  =1, 
CBn=  a,  and 

a-ix  =  U{c  +  l)   (1) 

Similarly  P-X=U{c+m)   (1') 

Fig.  41. 
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Draw  Bn  \\  AC,  and  Dn±BA  and  ||  AC  (Fig.  42).     Then  AD  =1, 

CBn=a,  and  a  +  fi  =  Il{c-l)   
Similarly  /3  +  A=n(c-m)   

(2) 

(2') 

Fig.  42. 

Note. — If  I  > c,  then     tt  -  (a  +  /x)  =  11  (c  -  Z) ; 

if  Z=c, tt  +  /x  =  n(0)  = 

2'
 

which  are  both  contained  in  (2)  if  we  understand  that 

U(-x)=7r-U{x). 

Draw  nniCA  and  ||  BA,  and  EQ.1.BC  and  |1  BA  (Fig.  43). 
D 
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Then  AD  =  1,  BE  =  m,  ECQ  =11  {m-  a),  DCQ  =  U{1  +  6),  and 
  (3) 

Similarly 

U{m-a)  +  U{l  +  b)  =  -. 

(3') 

In  the  tri-rectangular  quadrilateral  with  angle  Q  and  sides  in  order 
A 

U  u,  V,  w,  draw  EQ  \\  DC  and  ±AB  (Fig.  44).     Then  BE  =u\  for 

U{u)-\-U{u')=1,  DAn=U{w),  BAn  =  U{t  +  u%  and 

U{w)+U{t+u')=e   (I) 

Similarly  n{t)  +  U{w  +  v')  =  e   (II) 
Draw  Ai2  ||  CD,  and  En±AB  and  ||  CD  (Fig.  45).     Then  BE  =u\ 

DAn  =  U{w),  BA^  =  U{t-u'),  and 

U{w)  +  0=U{t-u')   (F) 

Similarly  U{t)  +  e  =  U{w-v')   (IF) 
Draw  EQ.LCD  and  ||  BA,  FQ.1.DA  and  ||  BA  (Fig.  46).     Then 

EC  =  u\  and  i£  AF=f,  d  =  U{f),  and  we  have 

Similarly 

U{u'-v)  +  U{w+f)  =  -. 

U{v'-u)  +  U{t+f)  =  ''^. 

.(Ill) 

.{III') 
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Now  the  quadrilateral  is  determined  by  t  and  u.     Let  i=c  and 
tt=m'.     Then 

Il{c  +  m)  =  e-Il{w)  =  P-X,  from  (I)  and  (1'). 
ll{c-m)  =  d  +  Il{w)  =  p  +  X,  from  (F)  and  (2'). 

Therefore  d=P  and  Ii{w)  =  \  oj:w=1  and /=  6. 

Fig.  45. 

Then,  comparing  (III)  and  (3),  we  have 

n(m-v)  =  --n(Z  +  fe)  =  n{m-a);  therefore  v=a. 2t 
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Hence,  to  a  right-angled  triangle  (c,  aX,h  fx)  there  corresponds  a 
tri- rectangular  quadrilateral  with  angle  ̂   and  sides,  starting  from 
the  angle,  c,  m\  a,  Z.  By  reversing  the  order  of  the  sides,  we  get 

the  quadrilateral  (/?,  lam' c),  to  which  corresponds  a  triangle 
{ly  m'y,  h  a'),  or  (Z,  h  of,  m'y),  Fig.  47. 

Fio.  47. 

If  we  take  a',  I,  c,  m,  V  as  quantities  determining  the  parts  a.  A., 
c,  /x,  6  of  the  triangle,  then  we  get  a  triangle  corresponding  to  the 
quantities  h\  a\  I,  c,  m,  and  similarly,  by  cyclic  permutation,  we  get 
five  associated  triangles.  This  forms  an  independent  proof  of  the 
result  deduced  in  §  31  from  spherical  triangles. 

36.  We  can  deduce  from  this  correspondence  that  the  relations 
between  the  parts  of  a  tri-rectangular  quadrilateral  can  be  written 

down  by  rules  exactly  analogous  to  Napier's  rules.  If  the  angle  is 
C  and  the  sides  in  order  are  a,  m,  Z,  6,  write  down  in  a  circle  the 

parts  C,  a,  m,  Z,  h.     Then 

sine  (middle  part)  =  product  of  cosines  of  opposite  parts 

= product  of  tangents  of  adjacent  parts, 

with  the  same  understanding  as  in  the  case  of  the  triangle  (§  33  (a)). 

If  we  write  the  parts  in  the  cyclic  order  C,  I,  a,  b,  m,  we  get  rules 
analogous  to  (b)  at  the  end  of  §  33,  viz. : 

cos  (middle  part)  =  product  of  sines  of  adjacent  parts 

=  product  of  cotangents  of  opposite  parts. 

37.  The  formulae  for  a  general  triangle  can  be  obtained 

from  those  for  a  right-angled  triangle  by  dividing  the 

triangle  into  two  right-angled  triangles  (Fig.  48). 

Thus,         si  nh  ;p  =  sinh  aamB  =  sinh  b  ainA. 
TT  sinh  a    sinh  6    sinhc 
Hence  _.__     =   .        =       ri' sin  A     sin  B     sin  C 
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Again,  cosh  c  =  cosh  c^  cosh  Cg  +  sinh  Cj  sinh  r g , 

cos  (7  =cos  Ci  cos  Cg  -  sin  C^  sin  C2. 

Also      cosh  a  =  cosh  c^  cosh  jp,     cosh  6  =  cosh  Cg  cosh  |?, 

sinh  Cj  =  sinh  a  sin  Cj ,      sinh  0^  =  sinh  6  sin  C^ , 

cos  Ci  =  coth  a  tanh  j?,      cos  Cg  =  coth  6  tanh  f. 

Fig.  48. 

Therefore  cosh  c  =  cosh  a  cosh  h  sech^p 
+  sinh  a  sinh  6  sin  Ci  sin  C^ 

=  cosh  tt  cosh  h  sech^j)  +  sinh  a  sinh  h 

X  (coth  a  coth  6  tanh^^  -  cos  C) 
=  cosh  a  cosh  b  -  sinh  a  sinh  b  cos  (7. 

Similarly 

-  cos  C  =  cos  ̂   cos  j5  -  sin  ̂   sin  B  cosh  c. 

It  is  needless  to  write  down  other  formulae,  which  may 

be  obtained  from  the  corresponding  formulae  of  spherical 

trigonometry  by  putting  cosh  for  cos  and  2  sinh  for  sin, 
when  operating  upon  the  sides,  leaving  the  functions  of  the 
angles  unaltered. 

38,  The  formulae  of  hyperboUc  trigonometry  become 

those  of  euclidean  plane  trigonometry  when  the  constant 
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To  a  first  approximation 

The  formula 

cosh  ,  =  cosh  ,  cosh  ,  -  sinh  ̂   sinh  ,  cos  C 
A/  i\j  n/  fV  iv 

becomes      i +-^^  =  (l +- -j(^l +^^^j -^.  ̂ cosC, 
or  c^=a^+b^  - 2ab  cos  C 

This  shows  that  when  we  are  deahng  with  a  small  region, 

i.e.  small  in  comparison  with  k,  the  geometry  is  sensibly 
the  same  as  that  of  Euclid. 

39.  Circumference  of  a  circle. 

Let  ds  be  the  length  of  the  arc  PQ  of  a  circle  of  radius  r,  which 
subtends  an  angle  c^^  at  the  centre.     Then 

sinh  -  -—  =  sinh  -  sin  ̂ dd. 2  k  k 

or  d8  =  k  sinh  -  dO. 
k 

Y 

Hence  the  length  of  the  whole  circumference  is  27rfc  sinh  -. 

ft/ Here,  for  the  first  time,  we  require  to  consider  the  actual  value  of  tt, 

for  the  formula  lim  — -r—  =  1,  which  is  here  assumed,  is  true  only 

when  the  number  of  units  in  a  flat-angle  is  the  transcendental 
irrational  number  3'14159... . 

Draw  PNIOA  and  PT  the  tangent  at  P.  Let  the  arc  AP  =  s, 
PN  =y  and  PT  =t.     Then 

5  =  ̂ ^  sinh-, 
k 

sinh  7  =  sinh  -  sin  6, K  K 

sinh  -  =  tanh  7  cot  0. k  k 
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Let  the  centre  0  go  to  infinity,  so  that  the  circle  becomes  a  horo- 
cycle.     Then  r^  oo  ,  ̂^0,  and 

k  sinh  i  =  s .  — tt— k  u 
,     7  ,     ,  *  tan  6 

and    A;tanh-  =  s. — ^ — 

Comparing  these  with  the  formulae  in  §  28,  we  find  8  =  10. 

P 

Fig.  49. 

40.  Sum  of  the  angles  and  area  of  a  triangle. 
Join  MN,  the  middle  points  of  AB,  AC,  and  construct 

the  equidistant-curve  with  MiVas  axis,  which  passes  through 

B,  C  and  A.     Then  the  perpendiculars  AA',  BB',  CC  to 
MN  are  all  equal,  and  LB'BM  =MAA',  l.C'CN  =NAA\ 
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Denote  by  ABE  the  angle  which  AB  makes  with  the 

tangent  to  the  equidistant-curve  at  B ;  the  angle  B'BE  is 
a  right  angle.     Then 

Z_BAC  +  ABE  +  ACE  =  B'BM  +  MBE  +  C'CN  +  NCE  =  tt. 

Hence  the  sum  of  the  angles  of  the  triangle  ABO 

=  TT  -  2CBE.  The  difference  ir-(A+B+C)  m  called  the 
defect  of  the  triangle. 

Again,  the  area  of  the  triangle  ABC  4 

= BMNC  +  MA  A'  +  NAA'  =  B'BCC\  ^ 

Hence  all  triangles  with  base  BC  and  vertex  on  the  other 

branch  of  the  equidistant-curve  which  passes  through 
B,  C  and  A  have  the  same  area  and  the  same  angle-sum 
or  defect. 

Now,  if  we  are  given  any  two  triangles,  we  can  transform 
one  of  them  into  another  of  the  same  area  and  defect,  and 

having  one  of  its  sides  equal  to  one  of  the  sides  of  the  other 
triangle. 

Let  ABC,  DEF  be  the  two  triangles,  and  let  DF  be  the 

greatest  of  the  six  sides.  Construct  an  equidistant-curve 
passing  through  B,  C  and  A.  With  centre  C  and  radius 

equal  to  DF,  draw  a  circle  cutting  the  branch  of  the  equi- 

distant-curve on  which  A  Hes  in  ̂ '.  Then  the  triangle 

A'BC  has  the  same  area  and  defect  as  the  triangle  ABC, 
and  has  the  side  A'C  equal  to  DF. 

Again,  if  the  perpendicular  bisector  of  the  base  BC  of 

a  triangle  ABC  meets  the  other  branch  of  the  equidistant- 

curve  in  A',  the  isosceles  triangle  A'BC  has  the  same  area 
and  defect  as  the  triangle  ABC. 

Hence,  if  two  triangles  have  the  same  area  they  can  be 

transformed  into  the  same  isosceles  triangle,  and  have 
therefore  the  same  defect,  and  conversely. 
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Now,  let  a  triangle  ABC  with  area  A  and  defect  8  be 
divided  into  two  triangles  ABD,  ADC  with  areas  Ai  and  A  2 
and  defects  Si  and  S^. 

Then  ^i  =  tt  -  BAD  -B-  ADB, 

S^  =  ir-DAC-C-ADC. 

Therefore  Si  +  8<^  =  2ir -A-B -C -ir=7r -A-B-C=S, 
and  Ai  +  A2  =  A. 

If  Ai  =  A2,  then  ̂ 1  =  ̂2  and  A=2Ai,  ̂   =  2^i. 
Hence  the  defect  is  proportional  to  the  area,  or 

A=A(x-^-5-C'). 
The  value  of  this  constant  X  depends  upon  the  units  of 

angle  and  area  which  are  employed  ;  but  when  these  have 
been  chosen  it  is  given  absolutely. 

41.  Relation  between  the  units  of  length  and  area. 

In  eucHdean  geometry  the  units  of  length  and  area  are 

immediately  connected  by  taking  as  the  unit  of  area  the 
area  of  a  square  whose  side  is  the  unit  of  length.  In  fact 

the  relationship  is  so  obvious  that  there  is  constant  con- 
fusion, though  we  are  not  always  aware  of  it,  between  the 

area  of  a  rectangle  and  the  product  of  two  numbers.  Thus 
modern  treatment  has  tended  to  confuse  the  theorems  of 

the  second  book  of  Euclid,  which  are  purely  geometrical 

theorems  relating  to  areas  of  squares  and  rectangles,  with 

algebraic  theorems  relating  to  "  squares  "  and  products 
of  numbers.  The  expression  "  product  of  two  hues  "  has 
no  meaning  until  we  frame  a  suitable  definition  consistent 

with  the  rest  of  the  subject-matter.  The  area  of  a  rectangle 
is  not  equal  to  the  product  of  its  sides,  but  the  number  of 
units  of  area  in  the  area  of  a  rectangle  is  equal  to  the  product 
of  the  numbers  of  units  of  length  in  its  sides. 
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It  would  take  us  too  far  out  of  our  way  to  examine 

completely  the  notion  of  area.  We  shall  simply  take 

advantage  of  the  fact,  that  when  we  are  dealing  with  a  very 

small  region  of  the  plane  we  can  apply  euclidean  geometry. 
Thus,  while  there  exists  no  such  thing  as  a  euclidean  square 

in  non-euclidean  geometry,  if  we  take  a  regular  quadri- 

lateral ^  with  all  its  sides  very  small  we  may  take  as  its 
area  the  square  of  the  number  of  units  of  length  in  its 
sides  ;  or,  more  accurately,  the  units  of  length  and  area  are 

so  adjusted  that  the  ratio  of  the  area  of  a  regular  quadri- 
lateral to  the  square  of  the  number  of  units  of  length  in  its 

side  tends  to  the  limit  unity  as  the  sides  are  indefinitely 
diminished. 

Let  us  apply  this  to  find  the  area  of  a  sector  of  a  circle  POQ,  the 
angle  POQ  =  6  being  very  small. 

Q 
Q 

Fig.  51. 

Produce  OP,  OQ  to  P'  and  Q\    Let  OP  =  OQ  =  r,  PP'  =  QQ'  -  dr 
Then 

area  of  PQQ'P'  =  dr.PQ  =  kd  dr  sinh  -. k 

Hence  the  area  of  the  sector  =^1(^0{  cosh  7  -  1 
=  J(^0(i 

=  2P^sinh2— , 2k 
T 

and  the  area  of  the  whole  circle  is  47rP  sinh^  — . Ik 

*  A  regular  polygon  is  one  which  has  all  its  sides  equal  and  all  its  angles 
equal. 
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We  can  apply  this  now  to  find  the  area  of  a  triangle  by  another 
method.  It  is  sufficient  to  take  a  triangle  ABC  with  a  right  angle 
at  C.  Divide  it  into  small  sectors  by  lines  drawn  through  A.  Then 
the  area  is  given  by 

y  Ic'dA  fcoah^--l\ 

Express  c  in  terms  of  A  and  the  constant  b,  write  tanh-  =  f,  and 

put  cos^^  =y,  and  we  get,  after  some  reductions, 

The  integral  of  this  term,  from  y=\toy  =c,o&^A,  is 

\  cos-i  ?^^11±^  =  1  cos-i  f  1  -  2  cosh^  \  am^A) 

=  ̂  cos-i  (1  -2  cos25)  =  ̂(7r  -25). 

Hence  the  area  of  the  triangle 

42.  It  appears  then  that,  when  the  angles  are  measured 

in  "  circular  "  measure,  the  constant  X  =k^,  and  the  formula 
for  the  area  of  a  triangle  becomes 

A=k^7r-A-B-C). 

As  the  area  of  a  triangle  increases  the  sum  of  the  angles 

diminishes,  but,  so  long  as  the  vertices  are  real,  the  angles 
are  positive  quantities  ;  the  area  cannot  therefore  exceed 
TrA:^.  This  is  therefore  the  maximum  hmit  to  the  area  of  a 

triangle  when  its  angles  all  tend  to  zero.  A  triangle  of 
maximum  area  has  all  its  vertices  at  infinity  and  its  sides 

are  parallel  in  pairs. 
N.-E.  G.  F 
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43-  On  account  of  its  neatness,  we  add  the  proof  that  Gauss 

gave  of  the  formula  for  the  area  of  a  triangle,  in  a  letter  ̂   to 

W.  Bolyai  acknowledging  the  receipt  of  the  "  Appendix." 
Gauss  starts  by  assuming  that  the  area  enclosed  by  a  straight  line 

and  two  lines  through  a  point  parallel  to  it  is  finite,  and  a  certain 

function  /(tt  -  ̂ )  of  the  angle  (f>  between  the  two  parallels ;  and 
further,  that  the  area  of  a  triangle  whose  vertices  are  all  at  infinity 
is  a  certain  finite  quantity  t 

Then  we  have,  from  Fig.  52,    /(tt  -  </>)  +/{<(>) =t. 

Fig.  52. 

Again,  from  Fig.  53,    /(<^)  +/( \p)  +/(7r  '-cj>-\p)=t. 

Fig.  53. 

Hence  /(</>) +/('A) -/(</> +  «/'). 
Whence  /(</>)  =  A</,, 

where  A.  is  a  corfetant,  and  therefore  t  =  Att. 

1  6th  March,  1832  (Gauss'  Werke,  viii.  221). 
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1]     Now,  by  producing  the  sides  of  any  triangle  with  angles  a,  /?,  y, 
and  drawing  parallels,  we  have  (Fig.  54) 

Therefore 

Fig.  54. 

^=/(a)  +  /(ft+/(7)+A. 

A  =  /\(7r-a-/3-7). 

I     44.  Area  of  a  polygon. 
I  The  area  of  a  polygon  can  be  found  by  breaking  it  up  into 

I  triangles.  By  joining  one  vertex  to  each  of  the  others, 

1  we  divide  an  w-gon  into  n-2  triangles.  The  sum  of  the 

,  angles  of  the  n-gon  is  equal  to  the  sum  of  the  angles  of  the 

\n-2  triangles. 
i     Let  Ai,  Ag, ...  be  the  areas,  and  ̂ i,  S^,  ...  the  defects 

of  these  triangles ;  then,  if  S  is  the  sum  of  the  angles  and 
A  the  area  of  the  polygon, 

^  =2A  =SZ:2^  =  A;2(^r^  .ir-S). 

i     If  S'  is  the  sum  of  the  exterior  angles,  S'  +S=nir\ 
I  therefore 

I  A=k\S'-2ir\ 
which  is  independent  of  n. 
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45-  We  add  here  another  proof  of  the  result  that  the  geometry  of 
liorocycles  on  the  horosphere  is  the  same  as  the  geometry  of  straight 
lines  on  the  eudidean  plane. 

Let  the  three  parallel  lines  in  space  ̂ 12,  -B12,  012  be  cut  by  a 

Fig.  55. 

horosphere  with  centre  ft  in  A,  J5,  C,  and  make  AA'  =  BB'  =  CC', 
so  that  A'B'C  lie  again  on  a  horosphere  with  centre  12.     (See  Ex.  8.) 

Let  the  dihedral  angles  between  the  planes  5Ci2,  C^12,  .4512 

be  a,  P,  y,  and  let  the  angles  of  the  rectilinear  triangle  A'B'C  be 
a',  fi\  y\  and  its  area  A. 

Then,  as  A  A'  increases,  the  angles  Q.A'B',  Q.A'C\  etc.,  all  tend  to 

right  angles;  hence  a\  /?',  y'  tend  to  the  values  a,  /?,  y.  Also A^O. 

Now  A  =  P(7r-a'-^'- y') ;  hence  a  +  (i  +  y  =  Tr,  i.e.  when  three 
planes  intersect  in  pairs  in  three  parallel  lines  the  sum  of  the  dihedral 

angles  is  equal  to  two  right  angles.  Hence  the  sum  of  the  angles  of 
a  geodesic  triangle  on  the  horosphere  is  equal  to  two  right  angles. 

EXAMPLES   n. 

1.  Prove  that  the  four  axes  of  the  circumcircles  of  a  triangle  form 

a  complete  quadrilateral  whose  diagonal  triangle  is  the  given  triangle; 
and  state  the  reciprocal  theorem. 

2.  If  a  simple  quadrilateral  is  inscribed  in  a  circle,  horocycle  or 

one  branch  of  an  equidistant-curve,  prove  that  the  sum  of  one  pair 
of  opposite  angles  is  equal  to  the  sum  of  the  other  pair  of  opposite 
angles.  Show  that  this  holds  also  for  a  crossed  quadrilateral  if 

the  angles  are  measured  always  in  the  same  sense,  and  for  a  quadri- 
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lateral  whose  vertices  are  distributed  between  the  two  branches  of 

an  equidistant-curve  if  the  angles  on  opposite  branches  are  reckoned 
of  opposite  sign. 

3.  If  a  simple  quadrilateral  is  circumscribed  about  a  circle,  prove 
that  the  sum  of  one  pair  of  opposite  sides  is  equal  to  the  sum  of  the 
other  pair  of  opposite  sides.  Examine  the  case  of  a  crossed  quadri- 

lateral circumscribed  about  a  circle,  equidistant- curve  or  horocycle. 

4.  If  a  is  the  chord  of  an  arc  a  of  a  horocycle,  prove  that 

a  =  2k  sinh  \alk. 

6.  If  0  is  the  angle  which  the  chord  of  a  horocycle  makes  with  the 
tangent  at  either  end,  and  a  is  the  arc,  prove  that  a  =  2k  tan  d. 

6.  If  <^  is  the  angle  which  the  tangent  at  one  extremity  of  an  arc  a 
of  a  horocycle  makes  with  the  radius  through  the  other  extremity, 
prove  that  a=k  cos  6. 

7.  Prove  that  the  arc  of  an  equidistant- curve  of  distance  a, 
corresponding  to  a  segment  x  on  its  axis,  is  x  cosh  a/k. 

8.  If  A,  B  are  corresponding  points  on  the  parallels  AA',  BB\ 
and  A,  C  are  corresponding  points  on  the  parallels  AA',  CC,  prove 
that  B,  C  are  corresponding  points  on  the  parallels  BB',  CC\ 

9.  Prove  the  following  construction  for  the  parallel  from  O  to 
NA.  Draw  ONLNA.  Take  any  point  A  on  NA,  draw  OB  ±0N 
and  AB  ±0B.  With  centre  O  and  radius  equal  to  NA,  draw  a 
circle  cutting  AB  in  P.     Then  OP\\NA, 

10.  Prove  that  the  radius  of  the  inscribed  circle  of  a  triangle  of 
maximum  area  is  ̂ k  log^S. 

11.  In  a  quadrilateral  of  maximum  area,  if  2a,  26  are  the  lengths 
of  the  common  perpendiculars  of  opposite  sides,  prove  that 

sinh  -  sinh  -  =  1. k         k 

12.  A  regular  quadrilateral  is  symmetrically  inscribed  in  a  regular 

maximum  quadrilateral ;  prove  that  each  of  its  angles  is  cos~^J. 
13.  If  the  three  escribed  circles  of  a  triangle  are  all  horocycles, 

prove  that  each  side  of  the  triangle  is  cosh~^i^,  and  that  the  radius 
of  the  inscribed  circle  is  tanh~^| ,  and  the  radius  of  the  circumcircle 
is  tanh~i.7  {k  being  unity). 
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14.  In  euclidean  geometry  prove  that  any  convex  quadrilateral 
can  by  repetition  of  itself  be  made  to  cover  the  whole  plane  without 
overlapping. 

15.  In  hyperbolic  geometry  prove  that  any  convex  polygon  with 
an  even  number  of  sides  can  by  repetition  of  itself  be  made  to  cover 

the  whole  plane  without  overlapping,  provided  the  sum  of  its  angles 
is  equal  to  or  a  submultiple  of  four  right  angles.  Show  that  the 
same  is  possible  if  the  number  of  sides  is  odd,  provided  the  sum  of  the 
angles  is  equal  to  or  a  submultiple  of  two  right  angles. 

16.  If  a  is  the  side  and  a  the  angle  of  a  regular  7i-gon,  prove  that 
TT       .a       ,    a 

cos  -  =  sm  -  cosh  —r  • n  2  2k 

17.  If  r  is  the  radius  of  the  inscribed  circle,  R  that  of  the  circum- 

scribed circle  of  a  regular  n-gon  with  side  a  and  angle  a,  prove  that 

sinh  -  =  cot  -  tanh  -7,    and    cosh  -  =  cot  -  cot  -• k  n  2k  k  n        2 

18.  A  regular  network  is  formed  of  regular  7i-gons,  p  at  each  point. 

Show  that  the  area  of  each  polygon  is  k^7r{2n/p  -n  +  2). 

19.  A  semiregular  network  is  formed  of  triangles  and  hexagons  1 

with  the  same  length  of  side,  three  of  each,  being  at  each  point. 

Prove  that  the  length  of  the  side  is  2k  cosh~^\/,^(4  +  \/3). 

20.  A  semiregular  network  consists  of  regular  polygons  all  with 

the  same  length  of  side.      At  each  vertex  there  are  pi  Wi-gonjMJ 

Pz  rJ-a-gons,  ps  n.^-gons,  etc.     If  each  ni-gon  has  area  Ai,  prove  th^| 

21.  If  a  ring  of  n  equal  circles  can  be  placed  round  an  equal 
circle,  each  one  touching  the  central  circle  and  two  adjacent  ones, 

r       IT 

prove  that  the  radius  of  each  circle  is  given  by  2  cosh  -sin  -  =  1. A/  71 

22.  Prove  that  the  area  included  between  an  arc  of  an  equidistant- 
curve  of  distance  a,  its  axis,  and  two  ordinates  at  distance  x  is 

/•.rsinh    . 
k 

^^I='^*^K^^^!)-^} 
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23.  AA'  II  BB'  and  they  make  equal  angles  with  AB.  AC±  BB' 
I  and  AD  ±AC.  If  the  angle  A'AD=z,  prove  that  the  area  of  the 
i    ch'cle  whose  radius  is  ̂ J5  is  equal  to  irk^  tan^z.     (J.  Bolyai.) 

24.  Prove  that  the  volume  of  a  sphere  of  radius  r  is 

rf=(Binh|:--^). 

25.  These  parallel  lines  AQ.,  BQ,,  C12  are  cut  by  two  horocycles 
with  centre  U  in  A,  B,  C  and  A\  B\  C.  Prove  that  the  arcs 

AB:BC  =  A'B'    BC\ 

26.  A^Bi,  A2B2,  A^Bs  are  arcs  of  concentric  horocycles  as  in 

Fig.  29,  and  A-^Ai=A^A^.  Prove  that  A^B^ :  A^B^^A^B^ :  A^B^. 
Hence  show  that  the  ratio  A^B^ :  ̂2-S?  depends  only  on  the  length 
of  ̂ 1^2- 

27.  Prove  that  the  sides  of  a  pentagon  whose  angles  are  all  right 
angles  are  connected  by  the  relations 

cosh  (middle  side)  =  product  of  hyp.  cots,  of  adjacent  sides 
=  product  of  hyp.  sines  of  opposite  sides. 

28.  A  simple  spherical  pentagon,  each  of  whose  vertices  is  the  pole 
of  the  opposite  side,  is  projected  from  the  centre  upon  any  plane. 

Prove  that  the  projection  is  a  pentagon  whose  altitudes  are  con- 
current ;  and  that  the  product  of  the  hyp.  tangents  of  the  segments 

into  which  each  altitude  is  divided  is  the  same. 
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CHAPTER  III. 

ELLIPTIC  GEOMETRY. 

1.  The  hypothesis  of  elHptic  geometry  is  that  the  straight 
Hne,  instead  of  being  of  infinite  length,  is  closed  and  of 
finite  length.  Two  straight  lines  in  the  same  plane  will 

always  meet,  even  when  they  are  both  perpendicular  to 
a  third  straight  hne. 

Let  If  m,  n,  be  three  straight  fines  drawn  perpendicular  to 

another  straight  Hne  a  at  the  points  L,  M,  N.     Let  m, 
meet  in  A;  n,lmB;  and  I,  m  in  C. 

When  LB  is  produced  it  will  meet  a  again  either  in  L 
in  some  other  point.     Let  U  be  the  first  point  in  whi< 

it  again  meets  a. 

Then,  from  isosceles  triangles,  we  have  BL  =  BN  =  BL\ 
CL  =  CM=CU.    Hence  B  and  C  are  both  the  middle 
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point  of  the  segment  LBL',  and  must  therefore  coincide. 
In  the  same  way  A,  B  and  C  all  coincide. 

Hence  all  the  perpendiculars  to  a  given  line  a  on  one  side 
of  it  meet  in  a  point  A,  and  A  is  equidistant  from  all  points 
on  the  line.  The  point  A  is  called  the  absolute  pole  of  the 
Hne  a,  and  a  is  called  the  absolute  polar  oi  A.  If  P  is  any 

point  on  a,  the  distance  AP  is  called  a  quadrant,  and  A  is 
said  to  be  orthogonal  to  P,  or  A  and  P  are  called  absolute 

conjugate  points. 

2.  The  perpendiculars  drawn  in  the  other  sense  will 

similarly  meet  in  a  point  A'. 
The  question  arises  :  are  A  and  A'  distinct  points  ? 

On  the  hypothesis  that  A  and  A'  are  distinct  points,  two 
straight  hues  have  two  points  in  common.  It  could  be 

proved  that  in  this  case  any  two  straight  lines  would 
intersect  in  a  pair  of  points  distant  from  one  another  two 

quadrants.  A  consistent  system  of  geometry  results,  which 

is  exactly  like  the  geometry  on  a  sphere,  straight  hues  being 

represented  by  great  circles,  and  is  therefore  called  Spheri- 
cal Geometry.  The  two  points  of  intersection  of  two  lines 

are  called  antipodal  points.  Two  points  determine  a  Hne 

uniquely  except  when  they  are  antipodal  points  ;  a  pair 
of  antipodal  points  determine  a  whole  pencil  of  lines. 

On  the  hypothesis  that  A  and  A'  are  one  and  the  same 
point,  two  straight  lines  always  cut  in  just  one  point,  and 

two  distinct  points  uniquely  determine  a  line.  This  gives 
again  a  consistent  system  of  geometry,  which  is  called 
Elliptic  Geometry.  ^ 

^  Sometimes  both  of  these  systems  are  called  Elliptic  geometry,  and 
they  are  distinguished  as  the  Antipodal  or  Double  form  and  the  Polar 
or  Single  form.  We  shall,  however,  keep  the  term  Elliptic  geometry 
for  the  latter  form. 
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While  spherical  geometry  admits  more  readily  of  being 
realised  by  means  of  the  sphere,  elliptic  geometry  is  by 
far  the  more  symmetrical,  and  our  attention  will  be  confined 

entirely  to  this  type.  Elliptic  geometry  has  also  the  advan- 
tage that  it  more  nearly  resembles  euclidean  geometry, 

since  in  euclidean  geometry  all  the  perpendiculars  to  a 
straight  hne  in  a  plane  have  to  be  regarded  as  passing 

through  one  point  (at  infinity). 
Another  mode  of  representation  of  these  two  geometries 

exists,  which  exhibits  them  both  with  equal  clearness. 

Consider  a  bundle  of  straight  lines  and  planes  through  a 

point  0.  If  we  call  a  straight  hne  of  the  bundle  a  "  point," 
and  a  plane  of  the  bundle  a  "  hne,"  we  have  the  following 
theorems  with  their  translations.     (Cf.  Chap.  II.  §  24.) 

Two     lines     through     0  Two   "  points "   uniquely 

uniquely  determine  a  plane  determine  a  "  line." 
through  0. 

Two    planes    through    0  Two    "  Hues "     intersect 

intersect  always  in  a  single  always  in  a  single  "  point." 
hne  through  0. 

All  the  planes  through  0  All  the  "  lines  "  perpendi- 
perpendicular    to    a    given  cular  to  a  given  "  hne "  a 

plane    a    through    0    pass  pass  through  a  fixed  "  point" 
through  a  fixed  hne  a  through  A,  which   is   orthogonal   to 

0,  which   is   orthogonal   to  every  "  point  "  lying  in  a. 
every  line  through  0  lying 
in  a. 

Hence  elliptic  geometry  can  be  represented  by  th(^ 
geometry  of  a  bundle  of  lines  and  planes.  In  the  same  way 

spherical  geometry  can  be  represented  by  the  geometry 

of  a  bundle  of  rays  (or  half-lines)  and  half-planes.     Two 
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rays  which  together  form  one  and  the  same  straight  hne 
represent  a  pair  of  antipodal  points. 

In  elliptic  geometry  all  straight  lines  are  of  the  same 

finite  length  2q,  equal  to  two  quadrants. 
If  we  extend  these  considerations  to  three  dimensions, 

all  the  perpendiculars  to  a  plane  a  pass  through  a  point  A, 
the  absolute  pole  of  a,  and  the  locus  of  points  a  quadrant 
distant  from  a  point  ̂   is  a  plane  a,  the  absolute  polar  of  A. 

3.  The  plane  in  elliptic  geometry,  or,  as  we  may  call  it, 
the  elliptic  plane,  differs  in  an  important  particular  from 
the  euclidean  or  hyperbolic  plane.  It  is  not  divided  by  a 
straight  hne  into  two  distinct  regions. 

Imagine  a  set  of  three  rectangular  lines  Oxyz  with  Oy 
on  the  line  AM  and  Oz  always  cutting  the  fixed  line  AP. 

Fig.  57. 

As  0  moves  along  ̂ M  it  will  return  to  A,  but  now  Oz  is 
turned  downwards  and  Ox  points  to  the  left  instead  of  to 

the  right.  The  point  z  has  thus  moved  in  the  plane  PAM 
and  come  to  the  other  side  of  the  line  AM  without  actually 
crossing  it. 

A  concrete  illustration  of  this  pecuHarity  is  afforded  by 

what  is  called  Mobius'  sheet,  which  consists  of  a  band  of 
paper  half  twisted  and  with  its  ends  joined.     A  hne  traced 
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along  the  centre  of  the  band  will  return  to  its  starting 

point,  but  on  the  opposite  surface  of  the  sheet.     The  two 

Fia.  58. 

sides  of  the  sheet  are  continuously  connected.     The  elliptic 

plane  is  therefore  a  one-sided  surface. 

If  we  carry  out  the  same  procedure  for  the  euclidean  plane,  we 
shall  obtain  exactly  similar  results,  with  the  exception  that  a  point 
passes  through  infinity  in  going  from  one  side  of  the  line  to  the  other. 
This  is  well  illustrated  by  the  case  of  a  curve  which  runs  along  an 

asymptote.  Ordinarily  the  curve  lies  on  opposite  sides  of  the  asymp- 
tote at  the  two  ends,  and  thus  appears  to  cross  the  asymptote. 

When  it  does  actually  cross  the  asymptote  at  infinity  it  has  a  point 
of  inflexion  there  and  lies  on  the  same  side  of  the  asymptote  at  each 
end. 

4.  Absolute  polar  system. 

To  every  point  in  space  corresponds  a  plane,  and  vice 
versa,  which  are  absolute  pole  and  polar. 

If  the  polar  of  a  point  A  passes  through  B,  the  polar  of  B 
will  pass  through  A,  because  the  distance  AB  is  a  quadrant. 

Let  A,  Bhc  two  points  on  a  line  I ;  the  polars  of  A  and  B 

intersect  in  a  Hne  V.    Let  'A'  and  B'  be  any  two  points 
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on  V ;  then  the  polar  of  A'  passes  through  both  A  and  B. 
Hence  the  polars  of  all  points  on  the  line  V  pass  through  the 
line  I.  If  P  is  any  point  on  I,  its  polar  will  pass  through 

A'  and  B'.  Therefore  the  polars  of  all  points  on  the  line  I 
pass  through  the  line  V. 

To  every  line  I,  therefore,  there  corresopnds  a  line  l\  the 

absolute  polar  of  I,  such  that  the  polar  of  any  point  on  I 
passes  through  V  and  vice  versa.  All  points  of  V  are  a 
quadrant  distant  from  all  points  of  I,  and  every  line  which 
meets  both  I  and  V  cuts  them  at  right  angles. 

If  we  confine  ourselves  to  a  plane,  to  every  point  in  the 
plane  corresponds  a  line  in  the  plane  and  vice  versa. 

These  relations  are  exactly  the  same  as  those  that  we 

get  in  ordinary  geometry  by  taking  poles  and  polars  with 
regard  to  a  conic  in  a  plane,  or  a  surface  of  the  second 

degree  in  space.  The  points  on  the  conic  or  quadric 
surface  have  the  property  that  they  lie  on  their  polars  ;  the 
polar  is  a  tangent  to  the  conic  or  quadric  and  the  pole  is  the 
point  of  contact. 

5    Projective  geometry. 

These  relations  of  polarity  with  regard  to  a  conic  belong 
to  pure  projective  geometry,  and  have  nothing  whatever  to 
do  with  actual  measurement,  distances  or  angles.  All  the 

theorems  of  projective  geometry  can  be  at  once  transferred 

to  non-euchdean  geometry,  for,  so  long  as  we  are  not 
dealing  with  actual  metrical  relations,  non-euclidean 
geometry  is  in  no  way  whatever  distinguished  from 
euclidean.  Pure  projective  geometry  takes  no  notice  of 
points  at  infinity,  for  infinity  here  implies  infinite  distance, 

and  is  therefore  irrelevant  to  the  subject.  It  has  there- 
fore nothing  to  do  with  parallel  lines. 
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Unfortunately  most  English  text-books  on  projective 
geometry  start  by  assuming  euclidean  metrical  geometry. 

A  harmonic  range  is  defined  in  terms  of  the  ratios  of  seg- 

ments, and  a  conic  is  obtained  as  the  "  projection  "  of  a 
circle.  This  treatment  unnecessarily  limits  the  generality 

of  projective  geometry,  and  attaches  a  quite  unmerited 
importance  to  euclidean  metric. 

The  use  of  analytical  geometry  might  be  thought  to  supply  a 
means  for  a  general  treatment,  for  the  algebraic  relations  between 

numbers  which  express  the  relations  of  projective  geometry  are  just 
theorems  of  arithmetic,  and  these  may  be  applied  to  any  subject 
matter  which  can  be  subjected  to  numerical  treatment,  whether  that 

subject  matter  is  euclidean  or  non-euclidean  geometry.  But  the 
difficulty  in  applying  this  procedure  is  that  the  subject  matter  must 
first  be  prepared  for  numerical  treatment.  This  means  either 

postponing  the  introduction  of  projective  geometry  until  metrical 

geometry,  with  a  system  of  coordinates,  has  been  established,^ 
which  is  just  the  fault  we  wish  to  avoid,  or  the  estabhshment  of  a 

system  of  projective  coordinates  independent  of  distance.  In 

either  case  we  have  to  assume  much  more  than  is  really  necessary. 

For  convenience  of  reference  we  shall  give  a  summary  of 
the  theorems  of  projective  geometry  which  we  shall  require, 
assuming  that  proofs  of  these  are  available  which  do  not 

involve  metrical  geometry.  (Reference  may  be  made  to 

Reye,  Geometry  of  Position,  Part  I.,  translated  by  Holgate, 
New  York,  1898,  or  Veblen  and  Young,  Projective  Geometry, 
Vol.  I.,  Boston,  1910.) 

If  two  ranges  of  points  are  made  to  correspond  in  such  a 

way  that  to  every  point  P  on  the  one  range  corresponds 

uniquely  a  point  P'  on  the  other,  and  vice  versa,  the  ranges 
are  said  to  be  homographic. 

Notation.  {P}a{P'}. 
The  simplest  way  of  obtaining  a  range  which  is  homo- 

iCf.  Chap.  IV.  §21. 
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graphic  with  a  given  range  is  as  follows.  Take  any  point  0, 
not  on  the  axis  of  the  range ;  join  0  to  the  points  of  the 

range,  and  cut  these  rays  by  any  transversal.  The  range 
on  this  transversal  is  called  the  projectiofi  of  the  first  range 

and  is  homographic  with  it.  In  this  special  position,  in 
which  the  hnes  joining  pairs  of  corresponding  points  are 
concurrent,  the  ranges  are  said  to  be  in  perspective,  with 
centre  0. 

Notation.         {P}^o{P'}     or     {P}^{F}. 
It  can  be  proved  that  two  homographic  ranges  can 

always  be  connected  by  a  finite  number  of  projections, 

and  in  fact  this  number  can  in  general  be  reduced  to  two. 
It  can  be  proved  that 

(ABCD)^{BADC)7^(CDAB)7^(DCBA), 

but  in  general  the  four  points  are  projective  in  no  other 
order. 

Properties  which  are  unaltered  by  projection  are  called 

projective  properties.  Thus,  points  which  are  coUinear, 
or  lines  which  are  concurrent,  retain  these  properties  after 

projection. 
A  harmonic  range  is  projected  into  a  harmonic  range. 

We  cannot  define  a  harmonic  range  in  terms  of  the  ratios 

of  segments,  because  a  segment  is  not  projective.  We 

define  a  harmonic  range  thus  :  Let  X,  Y  be  two  given 
points  on  a  line,  and  P  a  third  point.  (See  Fig.  85,  Chap. 

IV.)  Through  P  draw  any  line  PST,  and  on  it  take  any 
two  points  S,  T.  Join  S  and  T  to  Z  and  7  ;  let  SX  cut 
TY  in  F,  and  SY  cut  TX  in  TJ.  Join  UV,  and  let  it  cut 

XY  m  Q.  Q  is  called  the  harmonic  conjugate  of  P  with 
regard  to  X  and  Y.  This  construction  can  be  proved  to 

be  unique ;    P,  Q  are  distinct,  and  are  separated  by  and 
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separate  X  and  Y.  If  (XY ,  PQ)  is  a  harmonic  range 
(XY,PQ)MXY,QP). 

If  we  start  with  three  points  on  a  Hne,  we  can  derive  an 

indefinite  number  of  other  points  by  the  above  quadrilateral 

construction,  and  in  fact  we  can  find  a  new  point  lying 
between  any  two  given  points.  All  the  points  derived  in 

this  way  form  a  net  of  rationality.  They  do  not  give  all  the 
points  on  the  line.  To  secure  this  we  would  require  an 
assumption  of  continuity. 

If  three  points  A,  B,  C  of  one  line  are  projected  on  to 

three  points  A',  B\  C  of  another  line,  the  correspondence 
between  all  the  points  of  the  two  ranges  is  determined. 

This  is  the  fundamental  theorem  of  projective  geometry. 

Two  homographic  ranges  can  exist  on  the  same  line. 

If  three  points  A,  B,  C  are  self -corresponding,  it  follows  by 
the  fundamental  theorem  that  all  the  points  are  self- 
corresponding.  Hence  two  homographic  ranges  on  the 

same  line  cannot  have  more  than  two  self-corresponding 
points. 

That  it  is  possible  in  certain  cases  to  have  two  self 

corresponding  points  is  shown  in  Fig.  59.  I  is  the  given 

line,  Zi  an  intermediate  hne  on  which  a  range  of  points  {P} 

is  projected  from  centre  S^,  and  /Sg  is  a  second  centre  o: 

projection  from  which  the  projected  range  {Pj}  is  projected 
on  to  I. 

In  this  way  P'  corresponds  to  P.  Let  l^  cut  I  in  Y,  and 
let  S1S2  cut  I  in  X.  Then  X  and  Y  are  self-corresponding 

points.  If  li  passes  through  X,  the  two  self-corresponding 
points  will  coincide. 

If  '{P}  and  {P'}  are  two  homographic  ranges  on  the  same 
line,  such  that  to  P  corresponds  P',  in  general  to  P'  will 
correspond  another  point  P".     If  P"  coincides  with  P,  the 

J 1 
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points  of  the  line  are  connected  in  pairs  and  are  said  to 

form  an  involution.  If  D^  and  Dg  are  the  double  or  self- 

corresponding  points  of  an  involution,  and  X,  X'  are  a  pair 

of  corresponding  points,  {D-J)2^X')~^(D-J)2X'X),  so  that 
(Bfi^XX')  is  a  harmonic  range.     If  two  real  self-corre- 

sponding points  do  not  exist,  we  introduce  by  definition 

conjugate  pairs  of  "  imaginary "  points,  much  in  the 
same  way  as  ideal  points  were  introduced  into  hyperbolic 
geometry. 
When  the  double  points  are  real  the  involution  is  said  to 

be  hyperbolic,  and  when  they  are  imaginary  it  is  said  to  be 
elliptic.  If  the  double  points  coincide,  the  conjugate  of 

any  point  P  coincides  with  D,  and  the  involution  is  said  to 
be  parabolic. 

If  {^}  and  {p'}  are  two  homographic  pencils  with  different 
vertices,  the  locus  of  the  points  of  intersection  of  corre- 

sponding lines  is  a  curve  with  the  property  that  any  line 

cuts  it  in  two  points,  real,  coincident  or  imaginary.     A  line  I 
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[tii.  r> cuts  the  two  pencils  in  homographic  ranges,  and  the  self- 
corresponding  points  of  these  ranges  are  points  on  the  locus. 

Fia.  60. 

This  curve  is  called  a  point-conic ;  it  is  the  general  curve 
of  the  second  degree,  characterised  by  the  property  that 

any  line  cuts  it  in  two  points. 
Similarly  the  envelope  of  the  lines  joining  pairs  of 

corresponding  points  on  two  homographic  ranges  is  a  curve 

of  the  second  class,  or  line-conic,  characterised  by  the 
property  that  from  any  point  two  tangents  can  be  drawn 
to  it. 

It  can  be  proved  that  a  point-conic  is  also  a  line-conic,  and 
vice  versa.     The  term  conic  can  then  be  applied  to  either. 

6.  The  absolute. 

Let  us  return  now  to  the  absolute  polar  system  in  a  plane. 
We  shall  prove  the  theorem  :  In  every  polar  system  in  a 

plane  which  has  the  reciprocal  property  thai  ̂ ^  if  the  polar  oj 
a  point  A  passes  through  B,  the  polar  of  B  passes  through  A, 

there  is  a  fixed  conic,  the  locus  of  points  or  the  envelope  of  lines 
which  are  incident  with  their  polars. 
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Consider  a  line  I.  The  polar  of  a  point  P  on  I  cuts  I  in 

a  point  P',  and  the  polar  of  P'  passes  through  P.  Hence 
the  points  of  I  are  connected  in  pairs  and  form  an  involution 
whose  double  points  are  incident  with  their  polars.  Every 
line  therefore  cuts  the  locus  in  two  points,  and  the  locus 

is  a  point-conic.  Similarly  the  envelope  is  a  line-conic. 
If  /  cuts  the  locus  in  P  and  Q,  the  polars  of  P  and  Q  are  Hues 

of  the  hne-conic.  Further,  the  polar  of  P  does  not  cut  the 
locus  in  any  second  point,  since  the  polar  of  any  point 

upon  it  passes  through  P ;  hence  the  polar  of  P  is  a  tangent 

to  the  point-conic,  and  the  point-  and  line-conics  form  one 
and  the  same  conic. 

Similarly,  in  three  dimensions  a  polar  system  determines 
a  surface  of  the  second  degree  or  quadric  surface. 

Applying  this  theorem  to  the  absolute  polar  system,  we 
find  a  conic  in  a  plane  or  a  quadric  surface  in  space  which  is 

given  absolutely.  But  as  a  real  point  cannot  lie  on  its 
polar,  since  it  is  at  the  fixed  distance  of  a  quadrant  from 

any  point  of  it,  this  conic  or  quadric  can  have  no  real  points. 
This  imaginary  conic,  or  in  space  the  imaginary  quadric 

surface,  is  called  the  Absolute. 

Let  P,  P'  and  Q,  Q'  be  two  pairs  of  conjugate  points 

on  a  line  g,  so  that   PP'  =  QQ'  =  a  quadrant.     Therefore 

p  Q  P  Q 
Fig.  61. 

PQ=P'Q'.  Let  ̂ r  cut  the  absolute  in  X  and  Y;  then 

P,  P'  and  Q,  Q'  are  harmonic  conjugates  with  regard  to 
X  and  Y.  Let  Q  coincide  with  X ;  then  Q'  will  also 

coincide  with  X,  and  the  equation  PQ  =  P'Q'  becomes 
PX  =  FX=PX-PP\ 
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Therefore  1  - 1  -  PP'/PX.  Therefore  PX  must  be  infinite. 
Every  point  on  the  absolute  is  therefore  at  an  infinite 
distance  from  any  real  point,  and  the  absolute  is,  like  the 

real  conic  in  hyperbolic  geometry,  the  locus  of  points  at 
infinity. 

7.  Principle  of  duality. 

The  polar  system  with  regard  to  the  absolute  conic 
estabhshes  the  principle  of  duality.  In  euclidean  geometry 

the  principle  of  duality  holds  so  long  as  we  are  dealing  with 

purely  descriptive  properties,  i.e.  it  holds  in  projective 
geometry,  which  is  independent  of  any  hypothesis  regarding 
parallel  lines,  but  it  has  only  a  very  limited  range  in  metrical 
geometry,  and  is  often  applied  more  as  a  principle  of  analogy 
than  as  a  scientific  principle  with  a  logical  foundation. 

Thus,  four  circles  can  be  drawn  to  touch  three  given 

lines,  but  only  one  circle  can  be  drawn  to  pass  through  three 

points.  A  circle  is  the  locus  of  a  point  which  is  always 

at  a  fixed  distance  from  a  given  point,  but  we  cannot  con- 
sider it  also  as  the  envelope  of  a  line  which  makes  a  constant 

angle  with  a  fixed  straight  line. 

In  hyperbolic  geometry,  when  we  consider  equidistant 

curves  as  circles,  we  find  it  true  that  four  circles  are  deter- 
mined by  three  points  ;  and  if  we  introduce  freely  points 

at  infinity  and  ideal  points,  we  can  make  the  principle  of 
duality  fit  fairly  well. 

In  elliptic  geometry,  however,  the  principle  of  duality 
has  its  widest  field  of  validity,  and  extends  to  the  whole 

of  metrical  geometry.  The  reason  for  this  is  found  in  the 
nature  of  the  absolute  and  the  measure  of  distance  and 

angle.  In  a  pencil  of  lines  with  vertex  0  there  are  always 
two  absolute  lines,  the  tangents  from  0  to  the  absolute, 



III.  8]  PRINCIPLE   OF  DUALITY       '  101 

and  in  all  three  geometries  these  two  Hnes  are  conjugate 
imaginaries.  They  form  the  double  Hnes  of  the  elliptic 
involution  of  pairs  of  conjugate  or  rectangular  hnes  through 
0.  In  a  range  of  points  on  a  line  I  there  are  similarly  two 
absolute  points,  the  points  of  intersection  of  I  with  the 
absolute.  They  form  the  double  points  of  the  involution 

of  pairs  of  conjugate  points  with  regard  to  the  absolute. 

But  in  hyperbolic,  elliptic  and  euclidean  geometry  this 
involution  is  respectively  hyperbolic,  elliptic  and  parabohc. 

Thus  it  is  only  in  elliptic  geometry  that  the  involution  on  a 
line  is  of  the  same  nature  as  that  in  a  pencil. 

8.  As  a  consequence  of  this,  in  elliptic  geometry  the 
distance  between  two  points  is  proportional  to  the  angle 
between  their  absolute  polars. 

Consider  two  lines  OP,  OQ.  Let  P\  Q'  be  the  poles  of 
OP  and  OQ.     Then  P'Q'  is  the  polar  of  0.     PP'  =QQ'  =q. 

Now  distances  measured  along  PQ  are  proportional  to  the 
angles  at  0. 

Therefore    ̂ ^  =  A^^    and    P'Q' =PQ. 
Zq  TT 

Therefore  the  distance  d  between  the  poles  of  the  lines  is 
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connected  with  the  angle  a  between  the  lines  by  the  relation 

IT 

and  if  the  unit  of  distance  is  such  that  q=  c)^  t\iQXi  d  =  a. 

Here  we  must  observe  that  two  points  have  two  distances, 

viz.  d  and  2q-d;  two  lines  have  two  angles,  a  and  tt  -  a. 
In  the  above  relation  we  have  made  the  smaller  distance 

correspond  to  the  smaller  angle. 

Consider,  however,  a  triangle  ABC,  in  which  we  shall 

suppose  each  of  the  sides  <  q,  and  each  of  the  angles  <  ̂ . 

Fia.  63. 

The  absolute  polar  figure  is  another  triangle  A'B'C,  in   j 
which  B'C  is  the  polar  of  A,  etc.     Let  AB,  AC  meet  B'C   i 
in  M  and  N.     Then  ] 

B'N  =  MC'  =  q,  I 

and  BV'  =  2q-MN=2q-^A  =  ̂ (7r-A).  j 
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To  the  angle  A,  <^,  corresponds  therefore  the  segment 
a\>q. 

To  a  segment  d  corresponds  an  angle  ̂   {2q-d),  and  to 

2q  ̂  
an  angle  a  corresponds  a  segment  —  (tt  -  a),     if  the  segment 

TT 

d>d',  the  corresponding  angle  a<a'. 
In  applying  the  principle  of  duality,  therefore,  we  must 

interchange  point  and  line,  segment  and  angle,  greater  and 
less. 

9.  Area  of  a  triangle. 
Two  Hues  enclose  an  area  proportional  to  the  angle 

between  them,  =2k^A,  say,  where  A;  is  a  hnear  constant. 

Fig.  64. 

and  the  area  of  the  whole  plane  is  2^^^^  In  Fig.  64  the 
areas  enclosed  by  the  angles  of  the  triangle  are  shaded,  and 
these  areas  cover  the  area  of  the  triangle  three  times,  and 
the  rest  of  the  plane  only  once. 

We  have,  therefore,     2k^  {A+B  +  C)=  2^V  +  2 A, 
whence  A=k^(A+B +C -tt). 
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The  area  of  a  triangle  is  therefore  proportional  to  the 

excess  of  the  sum  of  its  angles  over  two  right  angles.  If 
Ai,  Bi,  Cj  are  the  exterior  angles, 

A=^2(27r-^i-Bi-6\). 

The  absolute  polar  of  the  triangle  ABC  is  a  triangle 

A'B'C  with  sides  a\  h\  c'  =  -^  (tt  -  A),  etc.     Hence 7r 

^^h^^(^q-a'-h■-c'), 
or  the  'perimeter  of  a  triangle  falls  short  of  iq  by  an  amount 
proportional  to  the  area  of  the  polar  triangle. 

These  results  hold  also  for  the  sum  of  the  exterior  angles 
and  the  perimeter  of  any  simple  polygon. 

10.  The  circle. 

A  circle  is  the  locus  of  points  equidistant  from  a  fixed 

point,  the  centre,  and  by  the  principle  of  duality  it  is  also 

Fig.  65. 

the  envelope  of  lines  which  make  a  constant  angle  with  a 
fixed  line,  the  axis. 
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Let  C  be  the  centre  and  c  the  polar  of  C.  Let  P  be  any 

point  on  the  circle,  and  draw  the  tangent  PT.  Then 
CMLTM  and  also  ±  TP.     Therefore  T  is  the  pole  of  CP. 

PM  =  q-r=  —a',  therefore  a  is  a  constant  angle  =  ̂"Z  r. 

Further,  since  PM  =  q-r,  the  circle  is  an  equidistant-curve 
with  c  as  axis.  Just  as  in  hyperbohc  geometry,  the  circle 

or  equidistant-curve  hes  symmetrically  on  both  sides  of 
the  axis,  but  the  two  branches  are  continuously  connected. 

In  elliptic  geometry,  therefore,  equidistant-curves  are 
proper  circles.  When  the  radius  of  a  circle  is  a  quadrant 
the  circle  becomes  a  double  straight  Une,  the  axis  taken 
twice. 

11.  In  three  dimensions  the  surface  equidistant  from  a 

plane  is  a  proper  sphere. 
A  remarkable  surface  exists  which  is  equidistant  from  a 

line.  With  this  property  it  resembles  a  cylinder  in  ordinary 
space.  A  section  by  a  plane  perpendicular  to  the  axis  is 
a  circle.  A  section  by  a  plane  through  the  axis  is  an 

equidistant-curve  to  the  axis,  but  this  is  also  a  circle,  and 
the  surface  can  be  generated  by  revolving  a  circle  about  its 
axis.  It  thus  also  resembles  an  anchor  ring  (Fig.  66).  But 

sections  perpendicular  to  the  axis  do  not  cut  it  in  pairs  of 
circles,  but  only  in  single  circles,  and  so  it  also  resembles  a 
hyperboloid  of  one  sheet.  Every  point  is  at  a  distance  d 

from  the  axis  I,  and  is  therefore  at  a  distance  q-d  from  the 

hne  V ,  the  absolute  conjugate  of  I.  The  surface  has  there- 
fore two  conjugate  axes,  and  can  be  generated  by  the 

revolution  of  a  circle  about  either  of  these.  It  is  therefore 
a  double  surface  of  revolution.  It  is  a  surface  of  the  second 

degree,  since  a  straight  Une  cuts  it  in  two  points. 
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From  its  resemblance  to  a  hyperboloid,  the  existence  of 

rectilinear  generators  is  suggested.  If  it  does  possess 
rectilinear    generators,  these    hnes   must    be    everywhere 

Fig.  66.1 

equidistant  from  either  axis.  We  shall  therefore  investigate 

the  existence  of  such  hnes,  and  return  in  §  17  to  a  description 

of  this  surface  {Clifford's  surface). 

12.  Common  perpendicular  to  two  lines  in  space. 

Consider  two  lines  a,  h  not  in  the  same  plane.  Let  a' 

and  h'  be  their  absolute  polars.  Any  line  which  cuts  both 

a  and  a'  is  perpendicular  to  both ;  hence  any  line  which 

1  This  picture  of  Clifford's  surface  will  be  best  understood  after  reading  ' 
Chap.  V.  In  the  conformal  representation  of  non-euclidean  geometry 
in  euclidean  space,  planes  and  spheres  are  all  represented  by  spheres, 

straight  lines  and  circles  by  circles.  Clifford's  surface  is  represented  by 
an  anchor-ring,  one  axis  being  represented  by  the  axis  of  the  ring,  the 
other  axis  being  represented  by  a  line  at  infinity.  The  circular  sections 
of  the  surface  by  planes  through  an  axis  (whicn  are  lines  of  curvature) 
are  represented  by  the  meridians  and  parallels  of  the  anchor-ring  (which 
are  also  lines  of  curvature).  The  rectilinear  generators  are  represented* 
by  the  bitangent  circular  sections  of  the  ring.  The  two  systems  of  these 
last-mentioned  circles  are  depicted  in  the  figure.  They  intersect  at  a< 
constant  angle. 
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meets  the  four  lines  a,  h,  a' ,  h'  cuts  them  all  at  right  angles. 
Now,  three  of  these  lines  a,  b,  a'  determine  a  ruled  surface 

of  the  second  degree,  and  the  fourth  line  b'  cuts  this  surface 
in  two  points  P,  Q.  The  two  generators  p,  q  of  the  opposite 
system  through  P  and  Q  are  common  transversals  of  the 

four  lines  a,  a',  b,  b',  and  therefore  cut  all  four  at  right 
angles.  The  two  lines  a,  b  have  therefore  two  common 

perpendiculars.  The  two  common  perpendiculars  p,  q  are 

absolute  polars.  For,  since  a,  a'  and  b,  b'  cut  p  and  q  at 

right  angles,  they  also  cut  the  polars  f'  and  c[ ,  but  they 
have  only  two  common  transversals;  therefore  p'  must 
coincide  with  q,  and  ((  with  p. 

Of  the  two  common  perpendiculars  one  is  a  minimum 

and  the  other  a  maximum  perpendicular  from  one  line  on 

FIG.  67. 

the  other.  Take  any  point  P^  on  a  and  draw  P^^Lb, 

Q^P^La,  and  so  on.  Then  P^Q 2> Q ̂P 2> P 2Q3>  ",  so 
that  the  perpendiculars  form  a  decreasing  sequence  which 
must  tend  to  a  finite  limit  AiB^.  So  if  we  continue 

the  sequence  in  the  other  direction,  drawing  P^Q^la, 
C1P0-L6,  ... ,  we  have  an  increasing  sequence  which  tends 

to  the  other  common  perpendicular  A^B^. 
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[ill.  13 
13.  Paratactic  lines. 

If  ̂ i5i  =  ̂2-^2'  ̂ 11  the  intermediate  perpendiculars  must 
also  be  equal ;  the  two  lines  have  then  an  infinity  of  common 

perpendiculars,  and  therefore  the  four  lines  a,  6,  a! ,  h'  all 
belong  to  the  same  regulus  of  a  ruled  surface  of  the  second 

degree.  The  two  lines  are  equidistant,  though  not  coplanar ; 

they  are  analogous  to  parallel  lines  in  ordinary  geometry 

and  possesses  many  of  their  properties.  They  were  dis- 
covered by  W.  K.  Clifford,  and  have  therefore  been  called 

Clifford's  parallels.  A  more  distinctive  name,  suggested 
by  Study,  is  paratactic  lines. 

Through  any  point  0  two  lines  can  be  drawn  paratactic 

to  a  given  straight  line,  one  right-handed  and  the  other  left- 
handed.  Each  is  obtained  from  the  original  Hne  by  screwing 

it  along  the  perpendicular  NO  either  right-handedly  or  left- 
handedly.  The  angle  through  which  it  has  to  be  turned  is  pro- 

portional to  the  distance  through  which  it  has  to  be  moved. 

In  the  plane  ONM  draw  OM±ON,  cutting  the  given 
line  in  M,  the  pole  of  ON  in  this  plane.     Draw  MP  the 

o 

P'  Fio.  68. 

polar  of  ON,  which  is  therefore  perpendicular  to  NM,  and 

along  it  cut  off  MP  =  MP'  =  d.     Then  OP  and  OP'  are  the 

two  lines  through  0  paratactic  to  NM. 
Ahod  =  ̂U. 
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14.  The  above  construction  for  a  common  perpendicular 

to  two  skew  lines  can  only  be  carried  out  in  elliptic  geo- 
metry, for  in  hyperbolic  geometry  the  polar  of  a  real  point 

is  ideal,  and  in  euclidean  geometry  it  is  at  infinity.  Con- 
sider a  system  of  pairs  of  planes  at  right  angles  to  each  other 

drawn  through  the  line  a.  This  forms  an  elHptic  involution, 

the  double  elements  of  which  are  the  imaginary  planes 
through  a  which  touch  the  absolute.  These  planes  are  cut 

by  the  line  6  in  a  range  of  points  forming  an  elliptic  involu- 
tion. Although  the  double  points  of  this  involution  are 

imaginary,  the  centres  B^,  B^oi  the  segments  determined  by 
the  double  points  are  always  real.  These  form  a  pair  of 
elements  of  the  involution  a  quadrant  apart.  In  elliptic 

geometry  there  are  two  real  centres,  in  euclidean  geometry 
one  is  at  infinity,  and  in  hyperbolic  geometry  one  is  ideal. 
The  perpendiculars  to  h  at  B^,  B^  are  the  two  common 

perpendiculars. 
Since  B^  and  B^  are  conjugate  points  and  A^B^LB^B^, 

AiBi  is  the  polar  of  i?2  i^  ̂ ^^  plane  A^b ;  therefore 
A1B2I.  A^B^.  But  the  plane  aB^ ±  the  plane  aB2, ;  therefore 

A^Bj  is  ±  the  plane  aBg ;    therefore  AiB^La.     Similarly 

The  points  A-^,  A^  are  the  centres  of  a  similar  elhptic 
involution  on  a. 



no ELLIPTIC  GEOMETRY 

[m.  15 15.  Two  par  atactic  lines  cut  the  sanie  two  generators,  of  the 
same  system,  of  the  absolute. 

Let  three  common  transversals  Z^,  I2,  h  cut  the  four 

lines  a,  a',  h,  h'  in  A,,  A',  B,,  B/,  and  the  absolute  in 
Z„  Yi  (^  =  l,  2,  3).     Then,  since  A^,  A^  and  B^,  B;  are 

Fig.  70. 

harmonic  conjugates  with  regard  to  Zj,  Y^,  {A^A{,  B^B^) 

is  an  involution  with  double  points  X^,   Yi.     Also,  by  a 

fundamental  property  of  a  ruled   surface  of  the  second 
degree, 

{A,A,'B,B,')^(AU,'B2B,')7^(A,A,'B,B,'). 
Therefore 

(A,A,'B,B,'X,Y,)-{A,A,'B,B,'X,Y,) 
-K(A,A,'B,B,'X,Y,). 

Therefore  X^XzX^  and  Y^Y^Y^^  are  two  generators  x,  y  of 

the  same  regulus  as  A-^A^A^,  etc.  ;  they  are  also  generators 
of  the  same  regulus  of  the  absolute,  since  they  cut  it  in  more 
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than  two  points.  Hence  all  the  common  perpendiculars 

to  two  paratactic  lines  cut  the  same  two  generators  of  the 
absolute. 

Let  a  cut  the  absolute  in  a-^^^a^^.  Through  each  of  these 

points  passes  one  generator  (g-^  and  g.^  of  the  absolute  of 
the  opposite  system  to  x,  y,  and  therefore  cutting  x,  y  in 

^1^2'  '/i^2-  9i  ̂ ^^d  ̂ 2  must  also  belong  to  the  same  regulus 
as  li,  I2,  I3,  since  they  cut  the  surface  in  more  than  two 

points.  Therefore  they  cut  a\  b  and  b'  also.  Hence  a  and 
6  cut  the  same  two  generators  of  the  absolute,     q.e.d. 

Conversely,  if  a  and  b  cut  two  generators  g^ ,  g^  of  the 
absolute  in  ai/5i,  a^^^^  1^^  ̂ u  ̂ 2  be  the  two  generators  of 
the  other  system  through  0^,02,  then  the  polar  of  a  is  the 

intersection  of  the  planes  (^i/^i),  {gji^),  and  therefore  cuts 

both  ̂ 1  and  g^ .  Hence  g^  and  g^  are  common  transversals 

of  a,  a' ,  b,  b'.  But,  by  §  12,  if  a,  a',  b,  b'  do  not  all  belong 
to  the  same  regulus,  they  have  only  two  common  trans- 

versals, which  are  absolute  polars.  Now  g-^  and  g^  are  not 

absolute  polars  (each  being  its  own  polar),  hence  a,  a',  6,  b' 
belong  to  the  same  regulus,  and  have  an  infinity  of* common 
transversals.     Therefore  a,  b  are  paratactic. 

The  two  sets  of  generators  of  the  absolute  may  be  called 

right-handed  and  left-handed.  Two  lines  which  cut  the  same 
two  left  (right)  generators  of  the  absolute  are  called  left 
(right)  paratactic  lines.  We  see,  therefore,  that  all  the 
common  transversals  of  two  right  paratactic  lines  are  left 

paratactic  lines.  Further,  if  a  and  b  are  both  right  (left) 

paratactic  to  c,  then  a  is  right  (left)  paratactic  to  b ;  for 
a,  b,  c  all  cut  the  same  two  generators  of  the  absolute. 

16.  Paratactic  Hues  have  many  of  the  properties  of 
ordinary  euclidean  parallels.     In  particular  they  have  the 
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characteristic  property  of  being  equidistant.  They  are 
not,  however,  coplanar.  We  shall  use  the  symbol  fl  for 
right  parataxy,  and  U  for  left  parataxy. 

If  ̂ ^  n  CD  and  if  AC  and  BD  are  both  1  CD,  they  are 
also  L  AB\  AC  =  BD  and  U  BD,  and  AB=CD.  Also 

AD  cuts  both  pairs  of  lines  at  equal  angles.  The  figure 
ABDC  is  a  skew  rectangle  ;  its  opposite  sides  are  equal 
and  paratactic. 

If  ABWCD  and  =CD,  then  joining  AC,  BD  and  AD, 

/LADC  =  ̂ DAB,  and  we  find  two  congruent  triangles 
ACD  and  DBA  ;  therefore 

AC=BD    and     Z.ACD  =  ADBA. 

Conversely,  if  AB==CD  and  AABD=Z.DCA,  or  if 

CAB  +  ACD  =  2  right  angles,  then  AB  is  paratactic  to  CD. 
Hence,  if  AB  =  and  n  CD,  it  follows  that  AC  =  and  U  BD. 
ABDC  is  analogous  to  a  parallelogram. 

Real  parataxy  can  only  exist  in  elliptic  space.  For  if 
ABDC  is  a  skew  rectangle,  the  lines  AB,  AC,  AD  are  not 

co-planar. 

Therefore  ACAD  +  BAD>  /LCAB,  i.e.  >  a  right  angle. 

But  ABAD  =  Z.ADC', 

therefore     Z.  CAD  +  ADC  +  ACD  >  2  right  angles ; 

therefore  the  geometry  is  elliptic. 

17.  Clifford's  surface. 
If  a  n  c  and  6  fl  c,  so  that  a  fl  6,  the  common  transversal! 

of  a,  b,  c  are  all  (J  ,  and  form  one  regulus  of  a  ruled  surface 
of  the  second  degree  ;  the  lines  of  the  other  regulus  are  all 

n  a,  6  and  c.  If  a'  is  a  generator  of  the  opposite  system  to 
a,  h,  c,  then  any  line  which  cuts  a  and  is  u  a'  cuts  b  and  c. 
The  surface  is  therefore  generated  by  a  Une  which  cuts  a 
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fixed  line  and  is  para  tactic  to  another  fixed  line.  By  §  16 
it  cuts  the  fixed  line  at  a  constant  angle,  20. 

Let  OP  be  the  fixed  line,  which  is  cut  by  the  variable 

line  OP'  (Fig.  68).  Draw  OiVl.  the  plane  POP'  and 
=d  =  2eq/7r.  Draw  OM  bisecting  the  angle  POP'  (=20), 
and  draw  NM±ON  in  the  plane  MON.  NM  is  then  para- 

tactic  to  both  OP  and  OP' ,  and  ON  is  supposed  to  be  drawn 
m  the  direction  such  that  NM  f]  OP  and  U  OP'.  Any  other 

line  which  cuts  OP  and  is  U  OP',  i.e.  any  generator  of  the 
left-handed  system,  is  also  U  NM,  and  is  at  the  same 
distance  d  from  NM.  Hence  NM  is  an  axis  of  revolution 

of  the  surface,  and  similarly  the  polar  of  NM  is  also  an 
axis  of  revolution. 

This  surface  is,  therefore,  just  the  surface  of  revolution 
of  a  circle  about  its  axis  which  we  considered  in  §11.  In 

fact,  through  any  point  P  of  this  surface  there  pass  two 

hues  paratactic  to  the  axis,  and  since  these  lines  are  equi- 
distant from  the  axis,  they  He  entirely  in  the  surface.  This 

surface,  which  is  called  Clifford's  Surface,  is  therefore 
a  ruled  surface.  AH  the  generators  of  one  set  are  fl  to  the 

axis  I,  and  all  the  generators  of  the  other  set  are  U  I.  Two 
generators  of  opposite  systems  cut  at  a  constant  angle 

-  d.     From  the  figure  in  §  15,  it  appears  that  Clifford's 

surface  cuts  the  absolute  in  two  generators  of  each 

system. 
Suppose  the  surface  is  cut  along  two  generators.  The 

whole  surface  is  covered  with  a  network  of  lines  inter- 

secting at  a  fixed  angle  20,  and  can  be  conformly  repre- 
sented upon  a  euclidean  rhombus  with  this  angle.  The 

geometry  on  this  surface  is  therefore  exactly  the  same  as 

that  upon  a  finite  portion  of  the  euclidean  plane  bounded 
N.-E.  G.  H 
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[m.  18 by  a  rhombus  whose  opposite  sides  are  to  be  regarded 
as  coincident.  As  an  immediate  consequence,  the  area  of 

the  surface  is  found  to  be  4^^ .  sin  20,  since  the  side  of  the 
rhombus  =  2g'.     We  have  therefore  the  remarkable  result 

Fig.  71. 

that  both  in  hyperboHc  and  in  elliptic  space  there  exist 

surfaces  (viz.  horospheres  and  CHfford's  surfaces  respec- 
tively) upon  which  euclidean  geometry  holds. 

18.  Trigonometrical  formulae.  Circumference  of  a 
circle. 

In  investigating  the  trigonometrical  formulae  we  shall 
use  a  method  which  might  equally  well  have  been  employed 

in  hyperbolic  geometry.  The  starting  point  is  the  assump- 
tion that  euclidean  geometry  holds  in  the  infinitesimal 

domain.^ 

^  The  truth  of  this  assumption  is  indicated  by  the  fact  that  when  the 
sides  of  a  triangle  tend  to  zero,  the  sum  of  the  angles  tends  to  the  value  w. 
The  steps  of  the  proof  are  as  follows.  Let  A  BC  be  a  triangle  with  right 
angle  at  C.  We  have  to  prove  (1)  that  the  ratio  AC  :  AB  tends  to  a 
limit.  This  limit  is  a  function  of  the  angle  A,  s&y  fiA).  We  have  to 
prove  (2)  that/(^)  is  continuous,  and  (3)  that  its  Value  is  cos^.  The 
last  step  is  best  obtained  by  the  formation  of  a  functional  equation 
f{d  +  <p)  h/( e-<p)=2f{e).f{<f>).     See  Coolidge,  Chap.  IV. 
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Let  AOB  be  a  small  angle  a,  OA=OB==r,  A  A'  ̂ BB' =dr, 

AB  =^a,  A'B'  =a+  da.  The  angle  OAB  is  nearly  =  ̂   .  Let 

OAB  =  OB  A  =1-0,  OA'B'  =  OB' A'  =  |  -  (^  +  dQ). 

Fig.  72. 

Draw  BM,  making  the  angle  ABM  =  ABO  =  '^-0. 
Then,  neglecting  higher  infinitesimals,  we  have  A'M  =  AB', 

therefore  MB'  =da,  and  BM  =dr. 

Therefore     da  =  2dr  sin  ̂ MBB'  =  2dr  sin  0, 

I  or  ^-=20. 

i      Again,  the  area  ABB' A'  =  a  dr,  and  the  sum  of  its  exterior 
'  angles  /^  ^  \ 
'  =2[^-e+^+e+de)=2{7r+de); 
therefore  adr= -2kHe,     (§9) 

d^a     a     ̂  

The  solution  of  this  is 

a  =  C  sinf  T +0)- 

Differentiating,     j~  =  20  =  t^  cos  (  t.  +  0 )  ■ 
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When  r=0,  a  =  0  and  2f^-0j=7r-a,  therefore  20  =  a, 

so  that  0  =  C  sin  0,  "  ̂   x,  ̂^^  ̂   '  whence  0=0  and  C  =  A;a. 

Hence  we  have,  finally, 

a  =  A;a  sin  t- 

Since  a  and  a  are  small,  we  can  take  a  as  the  arc  of  a 
circle  of  radius  r.     The  whole  circumference  of  a  circle  is 

T 
therefore  27rk  sin  t- 

When  r  =  ̂ 7rk,  the  circumference  is  27rk,  which  is  twice 

the  length  of  a  complete  line,  and  therefore  q  =  I'n-k. 

19.  Trigonometrical    formulae   for   a   right-angled 
triangle. 

Keep  one  part,  say  b,  fixed.     Let  BAB'  =dA,  BB'  ̂ da. 

Fig.  73. 

ABV=B  +  dB,   NB'=dc. 
Then  dc  =  da  cos  J5, 

^  sin  T  <^-4  =NB=da  sin  B. 

(1) 
(2) 
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The  area  of  BAB'  is  obtained  in  two  ways,  (1)  by  inte- 
grating C'- .    .    c =     ̂   sin  Y  dA  dc 
Jo  K 

=  k^dA(l-cos 

I)' 

(2)  in  terms  of  the  angular  excess 

=^k''(dA+'7r-B^B-^dB-'7r) 
=  k^dA+dB). 

Equating  these,         dB=  -coSidA   (3) 

Eliminate  da  and  dA  between  these  three  equations, 
and  we  get 

c  c 
k  dB  tan  ̂   =  -  A:  sin  ̂   ̂^  =  -  da  sin  B=  -dc  tan  B, 

giving  a  differential  equation  in  B  and  c.     The  integral  of 
this  is  g 

sin  7  sin  B  =f(h), 

since  h  is  the  only  constant  part. 

Putting  -B  =    ,  c  =  6,  and  we  find  f(h)  =  sin  y . 

Hence  we  have     sin  ,  =  sin  y  sin  B. k  k 

20.  Associated  triangles. 
In  order  to  obtain  the  other  relations  between  the  sides 

and  angles,  we  shall  establish  a  sequence  of  associated 

triangles  which  form  the  basis  for  Napier's  rules  in  spherical 
trigonometry.  This  sequence  has  already  been  referred 

to,  and  a  similar  sequence  was  found  in  hyperbolic  geometry. 
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We    shall    first    introduce    the    following    notation.     Let 

a=a/JCf  a=^-a;  then  the  angles  a,  0,  y  correspond  to 

the  sides  a,  6,  c  of  the  triangle. 
Draw  the  absolute  polars  of  the  vertices  A  and  B.     These 

form,  with  the  sides  produced  of  the  given  triangle,  a  star 

L.>^.u Fig.  74. 

i pentagon.  Mark  on  each  side  the  angle  which  correspon< 
to  it,  and  we  get  the  figure  (Fig.  74).  Each  of  the  five  ou 

angles  is  a  right  angle.  Each  vertex  of  the  simple  pentag 
is  the  pole  of  the  opposite  side.  We  obtain  then  fi 

associated  right-angled  triangles.  If  we  write  down  the  five 

quantities  A,  a',  y,  /3',  B  which  correspond  to  the  parts  of 
the  first  triangle  A^  a,  y,  ̂,  B,  the  corresponding  quantities 
in  the  same  order  for  the  second  triangle  are  a  ,  y,  ̂\  B,  A, 
but  these  are  the  same  as  the  five  quantities  corresponding 

to  the  first  triangle  permuted  cyclically  ;  and  they  are 

represented  in  proper  order  by  the  sides  of  the  simple 

pentagon. 
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21.  Napier's  rules. 
Now  we  have  proved  for  the, first  triangle  that 

.    b      •    c    .     p 
sm  ,  =  sin  7  sm  B. 

Writing  this  in  terms  of  A,  a',  y,  /3',  B,  we  have 
cos  j8'  =  sin  y  sin  B, 

and  since  this  equation  can  be  applied  to  each  of  the  five 

triangles,  and  therefore  transformed  by  cyclic  permutation, 
we  can  state  a  general  rule  as  follows  : 

Write  the  five  angles  A,  a,  y,  ft\  B  in  order  on  the  sides 
of  a  simple  pentagon.  Then,  calling  any  one  part  the 
middle  part  and  the  other  two  pairs  the  adjacent  parts  and 

the  opposite  parts,  we  have 

cos  (middle  part)  =  product  of  sines  of  adjacent  parts,  (a) 

Taking  in  succession  y,  A,  B  as  middle  parts,  we  get 

cos  y  =  sin  a  sin  ̂ ', 
cos  A  =  sin  a  sin  B, 

cos  B  =  sin  13'  sin  A. 
Hence  cos  y  ̂  cot  A  cot  5, 

I.e.  cos  (middle  part)  =  product  of  cotangents  of  opposite 
parts   (b) 

There  is  a  relation  of  one  of  these  forms  between  any  three 

parts  of  the  triangle.  For  convenience  we  write  down  the 
ten  relations  in  terms  of  a,  b,  c,  A,  B. 

cos  Y  =  cos  y  cos  7  =  cot  A  cot  B, 

.a  (^    '      A      ̂       ̂      ̂   r, sm  T  =  sm  7  sm  A  =  tan  7  cot  B, 

cos  A  =  cos  7  sm  5  =  cot  7  tan  7 , 

and  two  other  pairs  formed  by  interchanging  a,  b  and  A,  B. 
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These  are  exactly  the  same  as  the  relations  which  exist 

between  the  parts  of  a  spherical  triangle.  The  trigono^netry 
of  the  elliptic  plane  is  therefore  exactly  the  same  as  ordinary 
spherical  trigonometry 

If  we  write  the  parts  a,  B\  y\  A\  8  in  the  order  in  which 

they  occur  in  the  triangle,  we  get  the  more  familiar  rules  of 
Napier : 

sine  (middle  part)  =  product  of  cosmes  of  opposite  parts 
=  product  of  tangents  of  adjacent  parts. 

22.  In  elliptic  space  the  formulae  for  spherical  trigonometry 
are  the  same  as  in  euclidean  space,  when  we  take  as  the 

measure  of  a  side  of  a  spherical  triangle  the  angle  which  it 
subtends  at  the  centre,  and  as  the  measure  of  an  angle  the 

dihedral  angle  between  the  planes  passing  through  the 
sides  and  the  centre. 

Fig.  75. 

Let  0  be  the  centre  of  the  sphere,  and  let  OA,  OB,  OC 

cut  the  polar  plane  of  0  in  A',  B' ,  C     Then  we  get  a 
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rectilinear  triangle  A'B'C  with  sides  a  ,  h\  c'.  The  angles 
which  the  radii  OA' ,  etc.,  make  with  the  sides  are  right 
angles ;  hence  A'  =  the  dihedral  angle  between  the  planes 
OAB  and  OAC,  i.e.  A'  =A.  Also  a  =ka.  Hence  the  rela- 

tions between  a,  y8,  y,  A,  B,  C  are  the  same  as  those  between 

-f  J  T  »  r '  A\  B\  C',  which   are   the   same   as   those   of 

ordinary  spherical  trigonometry. 

The  measurement  of  angle,  plane  or  dihedral,  is  the  same 
in  all  three  kmds  of  space,  and  spherical  trigonometry 

involves  only  angular  measurement.  This  explains  why 

spherical  trigonometry  is  the  same  in  all  three  geome- 
tries. 

23.  The  trirectangular  quadrilateral. 
As  in  hyperbolic  geometry,  there  is  a  correspondence  between  a 

right-angled  triangle  and  a  trirectangular  quadrilateral.     In  fact 

we  see  that,  by  producing  two  opposite  sides  of  the  quadrilateral 
to  meet,  we  get,  corresponding  to  the  trirectangular  quadrilateral 

Carnlb,  a  right-angled  triangle  with  hypotenuse  \Trk-h=h,  sides 
a  and  \Trk  -m  =  m.  and  the  opposite  angles  I  and  tt  -  C. 
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If  we  write  the  parts 
TT  a     TT    m     IT    I     h 

~2'^  ■'    F    2~  k'    2~k'    k 
in  cyclic  order,  then  we  have  the  rules  : 

sine  (middle  part)  =  product  of  cosines  of  opposite  parts 
=  product  of  tangents  of  adjacent  parts. 

EXAMPLES    m. 

1.  Prove  that  the  bisectors  of  the  vertical  angle  of  a  triangle 
divide  the  base  into  segments  whose  sines  are  in  the  ratio  of  the 
sines  of  the  sides. 

2.  Prove  that  the  arc  of  an  equidistant-curve  of  distance  a,  corre- 
sponding to  a  segment  x  on  its  axis,  is  x  cos  ajk. 

Y 

3.  Prove  that  the  area  of  a  circle  of  radius  r  is  ̂irTc^svo? — 
2k 

4.  Prove  that  the  area  included  between  an  arc  of  an  equidistant- 
curve  of  distance  a,  its  axis,  and  two  ordinates  at  distance  x,  is 
,      .    a 
kx  sm  -. 

k 

5.  Prove  that  the  area  of  the  whole  plane  is  27rF,  and  the  volume 

of  the  whole  of  space  is  Tr^k^. 
6.  Prove  that  the  volume  of  a  sphere  of  radius  r  is 

I 

ttTc- 

/2r      .    2r\  ■ 

(In  the  following  examples  k  is  unity.) 
7.  If  R  is  the  radius  of  the  circumsphere  of  a  regular  tetrahedron 

whose  side  is  a,  show  that 

sin  \a  =  J^  sin  R. 

8.  If  2d  is  the  distance  between  opposite  edges  of  a  cube  of  edge  2a, 
2h  the  distance  between  opposite  faces,  and  R  the  radius  of  the 
circumsphere,  prove  that 

ain^d  =  2  tan^a,    sin'' A  =  sin^ a/cos  2a,    sm^ R  =  S  sin^a. 

9.  A  semiregular  network  is  formed  of  triangles  and  quadrilaterals, 
two  of  each  at  each  node.  Prove  that  this  can  only  exist  in  elliptic 
space,  and  that  the  length  of  the  side  is  jTT. 
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10.  In  elliptic  geometry  show  that  there  can  exist  six  equal 

i     circles,  each  touching  each  of  the  others,  and  of  radius  given  by 

\     2  cos  r  sin  -  =  1 ;   three  equal  circles  each  having  double  contact o 

I     with  the  other  two,  and  of  radius  - ;    and  (with  overlapping)  four 
1 

j     circles  each  touching  the  other  three,  and  of  radius  cos-^— p. 

i         11.  Prove  that  five  spheres,  each  of  radius  -,  can  be  placed  each o 

touching  the  other  four ;   eight  spheres,  each  of  radius  -,  and  each 4 

having  double  contact  with  four  others  ;  and  four  spheres  of  radius 

-,  each  having  double  contact  with  the  other  three. 

12.  For  a  regular  polyhedron  : 

a  =  length  of  edge. 

a  =  angle  subtended  by  edge  at  centre. 

6  =  angle  of  each  polygon. 

S  =  dihedral  angle  between  faces. 
n  =  number  of  sides  of  each  face. 

p  =  number  of  edges  at  each  vertex. 

R  =  radius  of  circumscribed  sphere. 

r  =  radius  of  inscribed  sphere. 

p  =  radius  of  sphere  touching  the  edges. 

R^  =  radius  of  circumcircle  of  each  face. 

r„  =  radius  of  incircle  of  each  face. 

Prove  the  relations : 

TT       .    TT        o.       ,    a       .     ̂    .    a       .  a        a 
cos  -  =  sm  -  cos  -,  •  sm  -  =  sm  ic  sm  -,     sm  p  =  tan  -  cot  -, 
n  p        2  2  2  2        2 

TT      .    0       a       .   a      .     ̂     .    IT      .  a     ̂   TT 
cos  -  =  sm  -  cos  -,    sm  -  =  sm  R.  sm  -,    sm  r..  =  tan  -  cot  -, ?i222  n  2       n 

cos  R  =  cos  r  cos  R^,    cos  p  =  cos  r  cos  r^,     sin  r„  =  tan  r  cot  -, 

smr  =  smpsm-,     sm2^  =  cos2;^cos2-/  (  cos^  -  -  cos^- ). 2  2  2        p 
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13.  For  a  regular  tetrahedron  prove  that  cos  8  =  cos  a/(l  +2  cos  a). 

„  „        hexahedron  „        cos  8  =  {cosa-l)/2  cosa 

„  „        octahedron  „        cos  S=  - 1/(1 +  2  cos  a). 
„  „        dodecahedron  prove  that 

cos  8=  {2cosa-(l  +\/5)}/{4cosa  +  (l  -\/5)}. 
For  a  regular  icosihedron  prove  that 

cos8={(l-V5)cosa-(l+x/5)}/2(l+2cosa). 

14.  Prove  that  elliptic  space  can  be  filled  twice  over  by  5  regular 

tetrahedra  of  side  cos~\-|^),  with  3  at  each  edge  and  4  at  each vertex. 

15.  Prove  that  elliptic  space  can  be  filled  in  the  following  ways  : 

(1)4  cubes,  of  edge  -,  3  at  each  edge  and  4  at  each  vertex. 

(2)  8  tetrahedra,  of  edge  - ,  4  at  each  edge  and  8  at  each  vertex. 

(3)  12  octahedra,  of  edge  -,  3  at  each  edge  and  6  at  each  vertex. 
^    _  1  +  3\/5 

(4)  60  dodecahedra,  of  edge  cos  ̂   -—,  3  at  each  edge  and 
4  at  each  vertex.  ° 

(5)  300  tetrahedra,  of  edge  cos  -,  5  at  each  edge  and  20  at  each 

vertex.  ^ 

I 



CHAPTER  IV. 

ANALYTICAL   GEOMETRY. 

1.  Coordinates. 

We  shall  assume  elliptic  geometry  as  the  standard  case, 

and  construct  a  system  of  coordinates.  The  formulae 

can  be  adapted  immediately  to  hyperbolic  geometry  by 

changing  the  sign  of  k^. 
Take  two  rectangular  axes  Ox,  Oy.  Let  P  be  any  point, 

and  draw  the  perpendiculars  PM=u  and  PN  =v.  Let 
OP=r,  xOP  =  0. 

V 

M 

—~'U   -, 

^ y \ 

ye 

6 N 

Fig.  77. 

r,  6  are  the  polar  coordinates  of  the  point,  u,  v  might 
be  taken  as  rectangular  coordinates,  but  we  shall  find  it 
more  convenient  to  take  certain  functions  of  these. 

We  have      sin  y  =  sin  ,  cos  6, k k sm sin  J  sin  Oo 
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For    any    point    on    OP,    therefore,    sin  ,  =  sin  ̂ ^  tan  0. 

This  is  the  equation  of  OP  in  terms  of  the  coordinates  u 
and  V. 

Consider   any   line.     Draw   the   perpendicular   ON=p, 

and  let  xON  =  a.    p  and  a  are  always  real,  and  completely 

Fig.  78, 

determine  the  line.     If  P  is  any  point  on  the  line  with 
coordinates  u,  v, 

tan  ̂   cot ,  =  cos  (6  -  a). 

Therefore    tan  ̂   cos  y  =  sm  y  cos  a  +  sm  j  sm  a. k       Jc  k  k 

This  equation  is  linear  and  homogeneous  in 
.    u       .    V  r 

sm^^,    sm^,     cos^. 

We  shall  effect  a  great  simpHfication,  therefore,  if  we 
take  as  coordinates  certain  multiples  of  these  functions. 

The  equation  of  a  straight  Hne  being  now  of  the  first  degree, 

the  degree  of  any  homogeneous  equation  in  these  coordi- 
nates gives  the  number  of  points  in  which  a  straight  line 
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meets  the  curve,  i.e.  the  degree  of  the  equation  is  the  same 

as  the  degree  of  the  curve. 
In  order  that  the  coordinates  of  a  real  point  may  be  real 

numbers,  both  in  elliptic  and  in  hyperboUc  geometry,  we 
shall  define  the  coordinates  as  follows  : 

ic  =  A;  sm  y  =  A:  sm  T  cos  0. 

y=^ksinj=k  sm  ,  sm  6, ^  k  k 
r 
k 

These  are  called  Weierstrass'  point-coordinates. 
The  three  homogeneous  coordinates  are  connected  by  a 

fixed  relationship.     We  have 

x^+y^  =  k^8m^^  =  k^l-z^), 

i.e.  x^+y^  +  k^z^  =  k^. 
As  any  equation  in  x,  y,  z  may  be  made  homogeneous 

by  using  this  identical  relation,  we  need  only,  in  general, 
use  the  ratios  of  the  coordinates. 

2.  The  absolute. 

In  hyperbolic  geometry,  putting  ik  instead  of  k,  we  find 
the  coordinates 

x  =  k  sinh  y , 

y  =  ksinhT, 

z  =  cosh  y ' k 

and  x,  y,  z  are  connected  by  the  relationship 

x^+y^-Bz^=  -k\ 
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If  r  is  infinite,  x,  y,  z  are  all  infinite,  but  they  have 
definite  limiting  ratios.  Let  a,  8,  y  be  the  actual  values, 

X,  y,  z  the  ratios,  so  that  a=\x,  B  =\y,  y  =  \z,  and  A-»oo  . 

Then  a2  +  /32-A;V=  -^'^ 

therefore  x^  +  2/^  -  ̂̂ ^^  =  ~  >:!  ""  ̂• 

Hence  the  ratios  of  the  coordinates  of  a  point  at  infinity 

satisfy  the  equation 

cc2+ 2/2-^:2^2  =  0. 
This  is  the  equation  of  the  absolute,  which  is  therefore 

a  curve  of  the  second  degree  or  a  conic.  In  hyperbolic 

geometry  it  is  a  real  curve  ;  in  elliptic  geometry  the  equation 

is  a:2  +  ̂ 2  +  ̂2;j2  ̂   Q^  which  represents  an  imaginary  conic. 

3.  Normal  form  of  the  equation  of  a  straight  line. 
Line-coordinates. 

We  found  the  equation  of  a  straight  line  in  terms  of  the 

perpendicular  p  and  the  angle  a,  which  this  perpendicular 
makes  with  the  x-axis,  in  the  form 

X  COS  a  +  ̂   sm  a  =  ̂2  tan  y  > 

which  may  be  written  A 

ix  +  rjy  +  ̂ z=0.  1 

The  ratios  ̂  :  >y :  f  determine  the  line,  and  can  be  taken 
as  its  hue- coordinates.  It  is  convenient  to  take  certain 

multiples  of  these  as  actual  homogeneous  coordinates,  viz. 

A  V 
(  =  COS  a  cos  T  > 

»7=sma  cos  , . 

f  =  -^sin 

P. 

V 
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which  are  connected  by  the  identical  relation 

These  are  called  Weierstrass'  line-coordinates. 
In  hyperbolic  geometry 

^  =  cos  a  cosh  ̂ '    >/=sina  cosh^'    ̂ =  -Jcsinhy 

and  the  identical  relation  is 

If  jo->oo ,  ̂,  »;,  f  all  ->oo .  Let  the  actual  values  be 

a,  3,  y,  and  let  a  =  X^,  8=Xr],  y  =  Xf ;  then 

Hence  the  coordinates  of  a  line  at  infinity  satisfy  the 

equation  k^^^-^-k^rj^ -^^=0. 

A  homogeneous  equation  in  line-coordinates  f ,  rj,  f  repre- 
sents an  envelope  of  lines.  This  equation  represents  an 

envelope  of  class  2,  i.e.  a  conic.  This  is  the  same  conic 
as  we  had  before  and  represents  the  absolute,  since  it 

expresses  the  condition  that  the  line  (f,  tj,  f)  should  be  a 

tangent  to  x^  +  y^-  kH^  =0. 

4.  Distance  between  two  points. 

Let  P{x,  y,  z)  and  P'{x\  y\  z')  be  the  two  points,  TF  =d. 

Then,  if  the  polar  coordinates  are  (r,  0)  and  (r',  Q'), 
d  T        t'  t       t 

COS  T  =  cos  r  cos  t  +  siu  v  sin  j  cos  (6  -  6') 

_    ,    xx^    yy' 

or,  in  terms  of  the  ratios  of  the  coordinates, 

d   xx'  +yy'  +k^zz'   ^ 

k~Jx^  +  y^+  kH^  Jx'^  +  y'^  +  kH'^ N.-E.  G.  I 

COSt  = 
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It  is  convenient  to  introduce  here  a  brief  notation.     If 

(x,  y,  z),  (x\  y\z')  are  the  coordinates  of  two  points,  we  shall 
^^^^^  XX'  ̂ yy'  ̂ IHz'^ixx'), 

and  we  shall  speak  of  the  points  {x)  and  {x'). 

Then  the  distance  between  the  points  {x)  and  {x')  is 
g^^«°  *'y  A      (XX') 

^      J(xx)sJ{x'x') 

5.  In  elliptic  geometry  the  distance-function  is  periodic. 

Suppose  d  =  \'Kh\  then  cos  t  =  0,  and 

xx'  +  yy'  +  kHz'  =  0, 
i.e.  all  points  on  this  line  are  at  the  distance  Jtt^  or  a 

quadrant  from  {x' ,  y' ,  z').     This  is  therefore  the  equation 

of  the  absolute  polar  of  (a?',  y\  z').    It  is  the  polar  with 
respect  to  the  conic  J 

This  is  therefore  the  equation  of  the  absolute. 

Suppose  d^irk;  then  cos  t  =  - 1,  and,  with  actual  values 
of  the  coordinates, 

xx'  +  yy'  +  kHz'  =  -  k^, 
but  x^+y^  +kH^  =B. 

and  x'2  +2/'2  +A;V2  =  A;2; 

therefore,  multiplying  the  first  equation  by  2  and  adding 
to  the  others, 

(x+x'f  +  {y+y')^  +  k^(z  +  z'f  =0, 

which  requires  that  x'  =  -x,  y'  ̂  -y,  z'  =  -z. 
In  spherical  geometry  these  would  represent  antipodal 

points.     In   elhptic   geometry   antipodal   points   coincide, 

i 
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and  therefore  in  every  case,  if  two  points  have  their  co- 
ordinates in  the  same  ratios,  they  must  coincide. 

6.  Angle  between  two  lines. 

From  the  figure  (Fig.  79)  we  have 

Vi 
Vi sin  -^  =  sin  ,  sin  0i ,      cos  Bi  =  cot  7  tan  ̂  

sin^  =  sin  ,  sm02) 
cos  Bo  =  cot  y  tan  y  , 

y 

^t_^ 

  Ap 

— 

1^ -r-\ 
0 X 

Fig.  79. 

COS  01  =  sin  (81  COS  y ,     0i  +  ̂ 2  =  ̂ r  -  <^j 

COS  02  =  sin /3  2  COS  ̂^,     /5i  +  |82  =  «2~«i> 

(01  +  02)  =  sin  ̂ j  sin  /^a  cos  -^^  cos  ̂ ^ 

-  cosec^y  sin  ̂   sin  V' 
^        A;         A; 

cos  (/3i  +  ̂2)  =  cot^ ^  tan  ̂   tan  ̂   -  sin  /3i  sin  /^g 

cos 

=^cos 

(02 -ai). 



132  ANALYTICAL  GEOMETRY  (iv.7 

Therefore 

cos  0  =  cosec^Y  sm  V  sin  ̂ , - 

+  f  cos  ag  -  «!  -  cot^v  tan  ~  tan ^^)  cos  Y  cos  Y 

^  sm  ̂   sin  ̂   +  cos^  cos  ̂   cos  (a,  -  a,) 
^^         k  k         k        ̂   ̂ 

or,  in  terms  of  the  ratios, 

If  (^^)  =0  is  the  line-equation  of  the  absolute, 

(Mi) 
cos^ 

-JiU^)  AM^) 
\ 

7.  Distance  of  a  point  from  a  line. 

If  d  is  the  distance  of  a  point  from  a  line,  JttZ;  -  c?  is  the 
distance  of  the  point  from  the  pole  of  the  line.  Let  the 

coordinates  of  the  point  be  (x,  y,  z)  and  of  the  hne  (^,  rj,  f ). 
The  pole  of  the  hne  is  {k%  k\  f ).     Therefore 

.d_  .       jx  +  riy  +  ̂ z  _^X+j^  +  ̂Z 

k     Jx^+y^  +  kh^Ji^'+rj^  +  ̂̂ /Jc^     s/{xx)\J(Ji) 

8.  Point  of  intersection  of  two  lines   (^i,  rj^,  fi), 

(^2»  ̂ 2^  ̂2)' 

The  coordinates  of  the  point  of  intersection  are  pro- 

portional to  Uh^2-^2^l^  flf2-f2ti»  fl^2-f2'/l)- 
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If  the  actual  values  are  a,  /5,  y,  so  that  a  =\x,  etc.,  then 

+  ̂M^i>y2-f2>yi)^] 

=  \2^2|-l_cos2  0]; 
therefore  X  =  cosec  0, 

where  <^  is  the  angle  between  the  lines. 

If  the  coordinates  of  the  point  of  intersection  satisfy  the 

equation  x^ ^y"^ +  kH^=0,  i.e.  if  the  lines  intersect  on  the 
absolute,  X  is  infinite  and  0  is  zero.  The  two  Hnes  in  this 
case  are  parallel. 

If  the  ratios  of  the  coordinates  make  x^+y'^ -\-h^z^<0, 
X  is  imaginary.  The  two  Hnes  have  then  no  real  point  of 
intersection,  and  the  angle  ̂   is  imaginary.  The  lines  may 
be  said  to  intersect  outside  the  absolute.  (These  two  cases 

can,  of  course,  only  happen  in  hyperbolic  geometry.) 

In  the  latter  case  the  two  hnes  have  a  common  perpendi- 
cular. 

Let  ̂ cc  +  v2/  +  f 2;  =  0  be  perpendicular  to  both  ;  then 

^^i+';'/i  +  ffi/^'=0,     ̂ ^2  +  W2  +  ff2/A^'=0; 

therefore  ̂  :  >/ :  f  =  ̂ hf  2  -  '72^1  •  ̂1^2  -  f  2^1 :  ̂̂   (^i'?2  -  ̂2^1) ; 
but  this  hne  is  just  the  polar  of  their  point  of  intersection. 

The  length  jp  of  the  common  perpendicular  is  equal  to  kef), 
and  we  have  .  c 

cos  0  =  cos  I  =  ̂1^2  +  ̂1^2  +  ̂• 

The  actual  Weierstrass  coordinates  of  an  ideal  point  are  therefore 
purely  imaginary  numbers  of  the  form  {ix,  iy,  iz),  and  their  ratios 
are  real.  If  we  let  the  coordinates  (x,  y,z)he  any  complex  numbers, 

we  get  points  belonging  to  the  whole  "  complex  domain."     This 
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includes  (1)  real  actual  points,  for  which  the  ratios  x  :  y  :  z  are  real 

and  x^-vy^-k-]^^  has  the  same  sign  as  1^.  (2)  real  ideal  points,  for 
which  the  ratios  x-.y-.z  are  real,  and  (x^  +  y^  +  k^z^)/J{^  is  negative, 
(3)  imaginary  points,  for  which  at  least  one  of  the  ratios  x:  y  xz 
is  imaginary.  The  line  joining  a  pair  of  conjugate  imaginary 
points  is  a  real  line,  actual,  at  infinity  or  ideal.  The  distance 
between  a  pair  of  conjugate  imaginary  points  is  real  only  if  their 
join  is  ideal. 

9.  Line  joining  two  points. 

Similarly  the  line-coordinates  of  the  line  joining  two 

points  (a^i,  ?/i,  Zj),  (x^,,  y^,  ̂ 2)  ̂^^  proportional  to  y^z^-y^^i, 
ZjX^-z^i,  x{y.^-x.^-y.  The  actual  values  of  the  line- 

coordinates  are  found  by  multiplying  by  the  factor  cosec  , , 
where  d  is  the  distance  between  the  two  points. 

If  the  ratios  of  the  Une-coordinates  satisfy  the  equation 

P  +  }f  +  ̂Ik^  =  0,  the  line  is  at  infinity,  and  the  distance  d 
is  zero. 

If  the  ratios  make  p  +  ri^  +  ̂ lk^<(),  the  line  is  wholly 
ideal,  and  the  distance  d  is  imaginary. 

10.  Minimal  lines. 

When  the  join  of  two  points  is  a  tangent  to  the  absolute, 
the  distance  between  the  two  points  is  zero.  For  this 

reason  the  tangents  to  the  absolute  are  called  minimal 
lines. 

In  euclidean  geometry  the  distance  between  two  points  {x^,  y/J, 

(X,.  J,,)  is  zero  if  (x,.x.).  +  (j,,-2,,)==0, 

i.e.  if  2/2  ~  2/1  =  i  *(^2  -  ̂ i)j 

i.e.  if  the  join  of  the  two  points  passes  through  one  of  the  circular 
points  (Chap.  II.  §17).  The  line  at  infinity  itself  passes  through 
both  of  the  circular  points,  and  it  is  the  only  real  line  which  passes 
through  them.  The  distance  between  two  points  at  infinity  should 
thus  be  zero.     But  again,  any  point  on  the  line  at  infinity  is  in- 
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finitely  distant  from  any  other  point.  Hence  the  distance  between 
two  points,  both  of  which  are  at  infinity,  becomes  indeterminate. 
In  relation  to  the  rest  of  the  plane  we  must  consider  such  distances 

as  infinite,  and  the  geometry  of  points  at  infinity  becomes  quite 
unmanageable.  The  geometry  upon  the  line  at  infinity  by  itself, 
however,  is  really  elliptic,  since  the  absolute  upon  this  line  consists 

of  a  pair  of  imaginary  points  ;  the  "  distance  "  between  two  points 
at  infinity  could  then  be  represented  by  the  angle  which  they  subtend 
at  any  finite  point. 

11.  Concurrency  and  coUinearity. 

The  condition  that  the  hnes  (^j,  >7i,  fj),  etc.,  be  con- 
current IS 

ii  vi 
fl ^2      ̂2 

^2 is    Vs 
^3 

0. 

The  condition  that  the  points  {x^,  y^,  ̂ j),  etc.,  be  collinear  is 

^1     2/i    ̂ 1 

•^2       2/2      ̂ 2 

^3       2/3       ̂ 3 

0. 

These  conditions  are,  of  course,  the  same  as  those  in 

ordinary  analytical  geometry,  with  homogeneous  co- 
ordinates. 

Since  the  equation  of  a  straight  line  is  homogeneous  and 
of  the  first  degree  in  the  coordinates,  all  theorems  of 

ordinary  geometry  which  do  not  involve  the  actual  values 

of  the  coordinates,  or  the  distance-formulae,  will  be  true 

also  in  non-euclidean  geometry.  These  theorems  are 
those  of  projective  geometry.  The  difference  between 

euclidean  and  non-euclidean  geometry  only  appears  in 
the  form  of  the  identical  relation  which  connects  the  point 
and  line  coordinates,  i.e.  in  the  form  of  the  absolute. 
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12.  The  circle. 

A  circle  is  the  locus  of  points  equidistant  from  a  fixed 
point.  Let  (x^,  y^,  %)  be  the  centre  and  r  the  radius ;  then 
the  equation  of  the  circle  is 

or,  when  rationahsed, 

(xx){XiX^  COS^T  =  (xx^^. 

This  equation  is  of  the  second  degree,  and  from  its  form  we 

see  that  it  represents  a  conic  touching  the  absolute  (xx)  =  0 
at  the  points  where  it  is  cut  by  the  line  (xx^  =  0.  (xx^  =  0 
is  the  polar  of  the  centre,  and  is  therefore  equidistant  from 
the  circle,  i.e.  it  is  the  axis  of  the  circle.  Hence  A  circle  is 

a  conic  having  double  contact  with  the  absolute ;  its  axis  is 

the  common  chord  and  its  centre  is  the  pole  of  the  common 
chord. 

The  equidistant-curve.  Let  (fi,  »?i,  fi)  be  the  coordinates 
of  the  axis,  and  d  the  constant  distance ;  then  the  equation 
of  the  curve  is 

^^^d^  iix  +  >j,y  +  ̂,z 

or  (XX)  Hi)  sin^^  =  {^.x  +  ̂ ,y  +  ̂,z)\ 

This  again  represents  a  conic  having  double  contact  with 
the  absolute,  the  common  chord  being  the  axis.  The  pole 

of  the  axis  is  equidistant  from  the  curve,  and  so  the  equi- 

distant-curve is  a  circle.  In  elliptic  geometry  both  centre 
and  axis  are  real,  in  hyperbolic  geometry  the  centre  alone 
is  real  for  a  proper  circle,  and  the  axis  alone  is  real  for  an 

equidistant-curve. 
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The  horocycle.     In   hyperbolic   geometry,  the   equation 

I  of  the  absolute  being  x^+y^  -  k^z^  =  0,  the  equation  of  a 
!  horocycle  is  of  the  form 

I  x^+y^-  kH^  =\(ax+by+  czf, 

1  where  ^^'^^^  =  1.2' 

13.  Coordinates  of  a  point  dividing  the  join  of  two 
points  into  given  parts. 

If  (Xi,  yi,Zi),  (^2, 2^2'  ̂ 2)  ̂re  any  two  points,  the  coordinates 
of  any  point  on  the  Hne  joining  them  are 

(\xi+^X2,  ̂ yi  +  f^y2,  A^i  +  MS^a), 

for  if  ax+by  +cz  =  0  is  the  equation  of  the  line,  so  that 
it  is  satisfied  by  the  coordinates  of  the  two  given  points,  it 
will  be  satisfied  also  by  the  coordinates  of  any  point  with 
coordinates  of  this  form.  Similarly,  if  we  consider  these 

as  the  line-coordinates  of  two  lines,  the  coordinates  of  any 
line  through  their  point  of  intersection  are  of  this  form. 
In  fact  the  line 

X  (a^x  +  h{y  +  c^z)  +  yu  {a^  +  h^  +  c^z)=0, 

whose  coordinates  are  (Xaj-f/xag' •••)'  passes  through  the 
intersection  of  the  two  given  hues  a-^x+h^y  +CiZ  =  0  and 
a^  +  h,^  +c,^z  =  Q. 

To  find  the  coordinates  of  a  point  dividing  the  join  of  two 

points  whose  actual  coordinates  are  {x-^^,  yi,  Zj)  and  (X2, 2/2,  ̂ 2) 

into  two  parts  r^  and  rg,  where  ri  -f-rg  =r. 
Let  (Xxi  +  M^Pg, ...)  be  the  actual  coordinates  of  the  re- 

quired point.     Then 

Xi  (Xxi  +  ijix^)  +  2/1  (X?/i  +  M2/2)  +  ̂%  i^^i  +  P-^2)  =  ̂̂   COS  ̂ ^ ; 
T  T 

therefore  X  +  /x  cos  t  =  cos  -^ . 
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Similarly  X  cos  ,  +  //  =  cos  ̂   ; 

whence        X  sin  ̂  =  sin  -^    and    /x  sin  v  =  sin  -/^ 

and  the  actual  coordinates  are 

iCjSm  ,^+a;2Sin^ 

If  (iCj,  2/i,  2;i),  etc.,  are  only  the  ratios  of  the  coordinates,  we 
must  first  find  their  actual  values  by  dividing  by  the 
factor  (xx)/k. 

If  the  line  is  divided  externally  into  two  parts  r^  and 

r2,  we  have  only  to  observe  the  proper  signs  of  r,  r^  and  r^- 

14.  Middle  point  of  a  segment. 

In  particular,  if  r^  =r2  we  get  the  ratios  of  the  coordinates 

of  the  middle  point  of  the  segment  (X1+X2,  2/1+^/2?  ̂ j^  +  2:2), 

or,  if  Xi,  etc.,  are  only  proportional  to  the  coordinates,  the 

ratios  of  the  coordinates  of  the  middle  point  are 

^   ^  Vi  2/2  ^1  ^2 

\l(x^x^     sl(x^^'  J(x^Xt)     J{x^^'  J{XiX^)     sJix^^' T 
the  actual  values  being  obtained  by  dividing  by  2  cos  x,  • 

The  join  of  two  points  has  a  second  middle  point  with 

coordinates  - .  -  -.     ̂       : . : .  ,  the  actual  values  being 
sJix^X^)       sj(x^^ 

obtained    by  dividing  by  2  sin  ̂ ^.     In  elliptic  geometry 

these  points  are  both  real  and  a  quadrant  apart ;  ̂    in 

*  In  spherical  geometry  the  two  middle  points  of  a  segment  are 
antipodal,  and  are  not  (as  in  elliptic  geometry)  harmonic  conjugates 
with  respect  to  the  given  points. 
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hyperbolic  geometry  the  factor  2  sin  ̂ -^  becomes  2i  sinh  ̂ p 

and  the  coordinates  of  the  second  middle  point  are  all 

imaginary. 

15.  Properties  of  triangles.  Centroid,  in-  and  circum- 
centres. 

Through  each  vertex  of  a  triangle  {x-j),  {x^,  (iCg)  pass 
two  medians,  and  the  medians  are  concurrent  in  sets  of 

three  in  four  centroidsy  denoted,  in  the  notation  of  §4,  by 

/  Xi  'J.  o 

^3  Y 

The  same  combination  of  signs  is  taken  for  all  three  co- 
ordinates, and  there  are  four  different  combinations  of 

signs,  one  corresponding  to  each  of  the  centroids. 
Similarly,  the  middle  points  of  the  sides  are  collinear  in 

sets  of  three  in  four  lines,  the  axes  of  the  circumscribed 
circles. 

The  bisectors  of  the  angles  are  concurrent  in  sets  of  three 

in  four  points,  the  centres  of  the  inscribed  circles  ;  and  their 
points  of  intersection  with  the  opposite  sides  are  collinear 
in  sets  of  three  in  four  lines. 

16.  Explanation  of  apparent  exception  in  euclidean 
geometry. 

In  euclidean  geometry  four  circles  can  be  drawn  to 
touch  the  sides  of  a  triangle,  but  apparently  only  one  can 
be  circumscribed.  Of  the  four  circumcircles  of  a  triangle 

in  hyperbolic  geometry,  three  are  equidistant-curves.  In 
euclidean  geometry  the  equidistant-curve  through  B,  C 
and  A  reduces  to  the  hne  BC  and  the  line  through  A  ||  BC. 

(Cf.  Chap.  II.  §23.) 
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[IV.  16 The  conception  of  a  pair  of  parallel  straight  lines  as 

forming  a  circle  in  euclidean  geometry  is  consistent  with 
the  definition  of  a  circle  as  a  conic  having  double  contact 

with  the  absolute,  for  the  absolute  in  this  case  is  a  pair  of 

coincident  straight  lines,  and  this  is  cut  by  a  pair  of  parallel 

lines  in  two  pairs  of  coincident  points.  A  single  straight 

Hne  is  not,  of  course,  a  tangent  to  the  absolute,  though  it 
cuts  it  in  two  coincident  points  ;  this  case  is  just  the  same 
as  that  of  a  line  which  passes  through  a  double  point  on  a 

curve,  but  which  is  not  considered  as  being  a  tangent. 
But  when  we  have  a  pair  of  parallel  lines  cutting  the 
absolute  Q  in  four  points  all  coincident,  we  can  regard  0 

as  being  a  tangent  to  the  curve  consisting  of  this  pair  of 
lines.  Fig.  80  represents  the  case  approximately  when  the 
absolute  is  still  a  proper  conic  and  the  pair  of  straight  lines 

is  also  a  proper  conic,  having  double  contact  with  the 
absolute. 

1 

4 

Fig.  80. 

The  axis  of  the  circle  consisting  of  a  pair  of  parallel 

lines  is  the  line  lying  midway  between  them ;  the  absolute 

pole  of  this  (a  point  at  infinity)  is  the  centre.     When  the 
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axis  passes  through  the  centre,  i.e.  when  it  coincides  with 
the  hne  at  infinity,  the  circle  becomes  a  horocycle,  which 

is  thus  represented  in  eucUdean  geometry  by  a  straight 
Hne  together  with  the  hne  at  infinity. 

Two  equidistant-curves,  with  parallel  axes,  have  the 
same  centre  at  infinity.  In  hyperbohc  geometry  two 

equidistant-curves,  with  parallel  axes  intersecting  at 
infinity  at  0,  have  their  centres  on  the  tangent  at  0,  and 
therefore  at  a  zero  distance  apart  though  not  coincident. 

17.  Polar  triangles.    Orthocentre  and  orthaxis. 

If  ̂ ,  5,  C  is  a  triangle  and  A' ,  B\  C  the  absolute  poles 
of  the  sides  a,  b,  c,  then  the  sides  a',  b',  c'  of  the  second 
triangle  are  the  absolute  polars  of  the  vertices  ̂ ,  £,  C  of 

the  given  triangle.  Two  such  triangles  are  called  'polar 
triangles. 

If  the  coordinates  of  A,  B,  C  are  (x^,  y^,  Zj),  etc.,  the 

equations  of  their  polars  are  (xx^)  =  0,  etc. 

The  point-coordinates  of  the  vertices  A',  B',   C  are 
yiZ2  -  y^i  5  ̂\^2  -  ̂ ^1 .  (^i2/2  -  ̂22/i)/^^  etc. 

The  equation  of  AA\  which  joins  (x^,  y^,  z^)  to  the  point 

of  intersection  of  {XX2)  =0  and  (xxg)  =0,  is 

(xx^)  (x^)  -  (xxs)  (Xi^a)  =  0. 

Writing  down  two  other  equations  by  a  cyclic  permuta- 

tion of  the  suffixes,  we  get  the  equations  of  BB'  and  CC, 
and  the  sum  of  these  vanishes  identically.  Hence  AA\ 

BB',  CC  are  concurrent.  AA' ±  BC  and  B'C  ;  hence  the 
point  of  concurrence  is  the  common  orthocentre  0  of  the 

triangles  ABC,  A'B'C. 
The  absolute  poles  of  AA\  BB' ,  CC,  i.e.  the  points  on 

the  sides  of  the  triangles  distant  a  quadrant  from  the 
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opposite  vertices,  will  be  collinear  in  a  line  called  the 

arihaxis,  o,  which  is  the  absolute  polar  of  the  ortho- 
centre. 

The  two  triangles  ABC,  A'B'C  are  in  perspective  with 
centre  0  and  axis  o. 

18.  Desargues'  theorem.    Configurations. 

The  last  result  is  a  particular  case  of  Desargues'  theorem 
for  perspective  triangles,  which,  since  it  expresses  a  pro- 

jective property,  is  true  in  non-euchdean  geometry,  and 
can  be  proved  (using  space  of  three  dimensions)  in  a  purely 

projective  manner. 

In  the  figure  for  Desargues'  theorem  (Fig.  81)  we  have 
two  triangles  with  their  corresponding  vertices  lying  on 

three  concurrent  lines,  and  their  corresponding  sides  inter- 
secting in  three  collinear  points.  There  are  thus  10  points 

and  10  lines :  through  each  point  pass  3  lines,  and  on  each 
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line  lie  3  points.  A  figure  of  points  and  lines  with  this 

property,  that  through  every  point  pass  the  same  number 
of  lines  and  on  every  hne  He  the  same  number  of  points,  is 
called  a  configuration.  If  2?oi  denotes  the  number  of  lines 

through  a  point,  jOjq  the  number  of  points  on  a  line,  jp^^ 
the  whole  number  of  points,  and  jp^^  the  whole  number  of 

lines,  the  configuration  may  be  denoted  by  the  symbol 

Desargues'  configuration  is  represented  by 

and  is  reciprocal.  A  convenient  notation  for  the  points  is 

by  pairs  of  the  numbers  from  1  to  5.  The  three  points 
which  lie  on  one  hne  are  denoted  by  the  combinations 
with  the  same  three  numbers. 

The  configuration  formed  by  the  six  middle  points  Mq^, 
M23,  etc.,  of  the  sides  of  a  triangle  ABC  and  the  four  points 
of  concurrency  Gq,  G^,  G2,  G^  of  the  medians  is  a  Desargues 
configuration  of  a  special  kind  (Fig.  82).  The  points  G 
form  a  complete  quadrangle,  and  the  points  M  are  the 
vertices  of  a  complete  quadrilateral,  both  having  ABC  as 

diagonal  triangle.  This  is  called,  therefore,  the  quadrangle- 
quadrilateral  configuration.  Each  vertex  M,,^  of  the  quadri- 

lateral lies  on  a  side  G^G^  of  the  quadrangle. 
Similarly,  the  six  bisectors  of  the  angles  and  the  four 

fines  of  colhnearity  of  the  points  in  which  they  meet  the 
sides  of  the  triangle  form  the  same  configuration. 
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M, 

M. 

& 

lM, 

M, 
B 

Fig.  82. 

19.  Desmic  system. 

In  three  dimensions  we  have  similar  interesting  con- 
figurations. 

If  (Xj),  (a; 2),  (ajg),  (x^)  are  four  points  in  space, 

^sl(x^x^      s/{X^^)      J(X^X^)      J{X^X^^ 

represent  the  eight  centroids  of  the  four  points.  Each 

centroid  is  on  a  Une  joining  one  of  the  points  to  the  cen- 
troid  of  the  other  three. 

If  the  four  given  points  be  denoted  by  ̂1,  A^,  Aq,  A^, 

and  the  other  points  corresponding  to  the  different  com- 
binations of  signs  be  represented  as  follows  : 
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+  +  +   +  Bi, +   o„ 

+  +   -   -  B^, +  -  +  +  C2, 

+  -  +  -  Bs, +  +  -  +  C3, 

+  -  -  +B„ +  +  +  -c„ 

then  the  join  of  any  B  with  any  C  passes  through  an  A, 

e.g.  B.^-Ci  gives  A^.  So  the  12  points  he  in  sets  of  3  on 
16  hnes.  They  form  three  tetrahedra,  any  two  of  which 
are  in  perspective  in  four  different  ways,  the  centres  of 
perspective  being  the  vertices  of  the  third  tetrahedron. 

Corresponding  planes  of  two  perspective  tetrahedra  inter- 
sect in  four  hnes  which  are  coplanar,  and  these  planes  are 

the  faces  of  the  third  tetrahedron.  A  system  of  tetrahedra 
of  this  kind  is  called  a  desmic  system. 

In  a  similar  way  it  may  be  proved  that  the  centres  or 

axial  planes  of  the  8  circum-  or  in-scribed  spheres  form  with 
the  given  tetrahedron  a  desmic  system. 

A  simple  example  of  a  desmic  system  in  ordinary  space  is 
afforded  by  the  corners  of  a  cube,  its  centre  and  the  points 
of  concurrency  (at  infinity)  of  its  edges. 

20.  Concurrency  and  coUinearity. 

In  euclidean  geometry  we  have  the  two  useful  theorems 

of  Menelaus  and  Ceva  as  tests  for  coUinearity  and  con- 
currency. Theorems  corresponding  to  these  hold  also  in 

non-euchdean  geometry. 
I.  If  a  transversal  meets  the  sides  of  a  triangle  ABC  in 

XYZ,  and  a,  j8,  y  are  the  angles  of  intersection,  taken 
positively,  we  have  (Fig.  83) 

sinBX _     siny     sin OY    sing      sin^4Z  _     sin^ 

smBZ  ~  ~  sin  a'    sin  CX  ~  sin  /?'    sin  AY  ~     sin  y ' 
N.-E.  G.  K 
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the  positive  directions  on  the  sides  being  in  the  cycUc 
order  ABC.     Hence 

sin.gZ    sinCY    sin^Z  _ 

sinCZ'sin^y'sin^Z""^ 

4 

i 
II.  If  three  concurrent  hnes  through  the  vertices  meet 

the  opposite  sides  of  a  triangle  ABC  in  XYZ,  and  a,  /3,  y 
are  the  angles  between  the  lines  (Fig.  84), 

sinBX     siny  ,     sinCZ_sin^. 

sin  OB  ~  sin  X  sin  DC  ~  sin  Z '  ■ 
^,       p  sin^Z        sinOJ5    siny 
thereiore  .    ̂ v=  -  • — ?vrf-    ■    o- sin  CX        sin  OC    sin  /3 

^.    .,    ,  sinCY         sinOC    sin  a 
{Similarly  - — j^>  =  -  •—  7=r7  •  -= — » •^  sin^Y         sinO^    siny 
,  sin^Z        sinO^    sin/5 
and  .     r>r^= --• — >>p sin  ̂ Z         sin  OB    sin  a 

^,       «  sin  5Z    sinCY    sin  JZ  _  _ 
itieretore      ̂ .^  ̂ .^  *  gin  ̂   Y  "  sin  BZ  ~     ̂' 

Conversely,  the  points  Z,  Y,  Z  are  collinear,  or  AX,  BY, 
CZ  are  concurrent,  according  as 

sin^Z    sinCY    sin^Z 

sin  CX   sin  ̂   Y '  sin  BZ 
=  +1  or  - 1. 
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This   condition  may   be   put   in   another  form.     Since 
sin^Z    sin  ̂ 5    sin^^Z    ^,  ,.  .  ^ 
~-"rTv^- — An  '    '    rfAvy  i^he  condition  reduces  to sm  CX    sm  AC   sin  CAX 

sin  BAX    sin  057    sin  ACZ 

sin  CAX  '  sin  ABY  '  sin  BCZ  ~  "  ̂' 
in  which  form  it  is  the  same  as  the  condition  in  eucHdean 

geometry. 

From  this  it  follows  at  once  that  if  AX,  ̂ Y,  CZ  are  three 

concurrent  Hues  through  0,  their  isogonal  conjugates  with 
respect  to  the  sid6s  of  the  triangle  are  concurrent  in  the 

isogonal  conjugate  of  0. 

21.  Position-ratio.    Cross-ratio. 

If  X,  Y,  P  are  colli  near,  the  ratio  -. — y/>i  is  called  the sm  YP 

I   position-ratio  of  P  with  respect  to  X  and  Y,  and  the  double 
sin  XP  .  sin  XQ 

is  called  the  cross-ratio  of  the  range '^*'''  sin  YP  •  sin  YQ 
(XY,  PQ). 

Similar  definitions  can  be  given  for  pencils  of  rays,  and 

the  whole  theory  of  cross-ratio  can  be  developed  on  the 
same  Unes  as  in  ordinary  geometry. 
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[IV.  2] Thus,  the  cross-ratio  of  a  pencil  is  equal  to  that  of  any- 
transversal,  and  cross-ratios  are  unaltered  by  projection. 

Further,  it  can  be  shown  that 

(ABCD)  =  (BADC)  =  (CDAB)  =  (DCBA), 

(ABCD) .  (ABDC)  =  1,     (ABCD)  +  (ACBD)  =  I. 

The  harmonic  property  of  the  complete  quadrilateral 
follows. 

For  (Fig.  85),  (XYPQ^AUYMQ),  and  aho^, (VUMQ). 

Therefore        (UV,  MQ)  =  (VU,  MQ)  =  -  1. 

If  A (Xi ,  2/i ,  Zi)  and  B (x^,  2/2 » ^2)  ̂^^  ̂ wo  fixed  points,  and 
P  a  variable  point  with  coordinates 

(xi  +  Xxz,     Vi  +  'Xyzy     ̂ i  +  '^z^), 
then,  if  AP=ri,     PB=rc,,     AB^r, 

TIT 

we  found  A  =  sin  7;  /  sin  ,f  =  the  position-ratio  of  P  with 

respect  to  A  and  B.  If  Q  is  the  point  corresponding  to 

the  parameter  yu,  the  cross-ratio  {AB,  PQ)=.     The  cross- 
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ratio  of  the  two  pairs  of  points  corresponding  to  the  para- 

meters A,  A'  and  //,  fx  is 

(W        >\     ̂   ~^    •  ̂  ~  ̂  
(AA  ,  /i/X  )=r   ,  —  ̂ ,   7- A  -  yU  A    -  fX 

These  results  are  the  same  as  in  eucUdean  geometry. 

EXAMPLES  IV. 

1.  Prove  that  the  actual  Weierstrass  Hne-coordinates  of  the 

absolute  polar  of  (a;,  y,  z)  are  [x/k,  yjlc,  kz),  and  the  actual  point- 
coordinates  of  the  absolute  pole  of  (^,  t],  ̂)  are  {k^,  krj,  ̂/k). 

2.  If  the  distance  between  the  points  (x^,  y^,  Zj),  {x^,  y^,  z^)  vanishes, 
prove  that  their  join  touches  the  absolute. 

3.  If  {x-i  +  ix^,  2/i  +  *2/2J  Zi  +  iZi)  are  the  actual  Weierstrass  coordi- 
nates of  a  point  (x^ ,  y^ ,  etc.,  being  real  numbers),  prove  that  {xi ,  y^ ,  Zj) 

and  {x^y  2/2 »  22)  are  conjugate  with  regard  to  the  absolute. 

4.  Ii{xi  +  ix2,"')  (% +  402,...) are  the  actual  Weierstrass  coordinates 

of  two  points  at  a  real  distance  {x-^,  y^,  etc.,  being  real  numbers), 
prove  that,  for  all  values  of  X,  (a:i  + Aa^, ...)  and  (a:;2  + Aag, ...)  are 
conjugate  with  regard  to  the  absolute. 

5.  If  ds  is  the  element  of  arc  of  a  curve  and  dx,  dy,  dz  the  differen- 

tials of  the  Weierstrass  coordinates,  prove  that  ds^=dx^  +  dy^  +  kHz^. 

If  r,  6  are  the  polar  coordinates,  prove  that  ds^=dr^  +  k^  sin^   c?^. k 

6.  A  BCD  is  a  skew  quadrilateral,  PQRS  are  points  on  the  four 
sides  AB,  BC,  CD,  DA.     Prove  that  if 

sin  AP  sin  BQ  sin  CR  sin  DS  =  sin  BP  sin  CQ  sin  DR  sin  AS, 

the  four  points  PQRS  lie  in  one  plane. 

7.  1,  2,  3,  4  are  the  vertices  of  a  tetrahedron.  A  plane  cuts 

each  of  the  six  edges.  If  the  edge  12  is  cut  at  A,  and  the  ratio 

sinl^/sin2^  is  denoted  by  (12),  prove  that  (12)(23)(34)(41)  =  1. 
Conversely,  if  ( 12)  (23)  (34)  (41  )  =  1,  prove  that  the  points  12,  23, 
34,  41  (i.e.  the  corresponding  points  on  these  edges)  are  coplanar. 

8.  If   (12)(23)(34)(41)  =  1=(12)(24)(43)(31)  =  (13)(32)(24)(41), 
prove  that  either  (i)  the  sets  of  points  12,  23,  31,  etc.,  are  collinear, 
or  (ii)  the  lines  (12,  34),  (13,  24),  (14,  23)  are  concurrent. 



150  ANALYTICAL  GEOMETRY  [Ex.  iv. 

9.  Four  circles  touch  in  succession,  each  one  touching  two  others 
(the  number  of  external  contacts  being  even) ;  show  that  the  four 
points  of  contact  he  on  a  circle,  and  that  the  four  tangents  at  the 
points  of  contact  touch  a  circle. 

10.  Four  spheres  touch  in  succession,  each  one  touching  two 
others  (the  number  of  external  contacts  being  even) ;  show  that  the 
four  points  of  contact  lie  on  a  circle,  and  that  the  four  tangent  planes 
at  the  points  of  contact  touch  a  sphere.  Show  further  that,  whatever 
the  nature  of  the  contacts,  the  four  tangent  planes  pass  through  one 

point. 

11.  Five  spheres  touch  in  succession,  each  one  touching  two 
others  (the  number  of  external  contacts  being  even) ;  show  that  the 
live  points  of  contact  lie  on  a  sphere,  and  that  the  five  tangent  planes 
at  the  points  of  contact  touch  a  sphere.  {Educ.  Times  (n.s.),  xi. 
p.  57.) 

12.  D,  E,  F  are  the  feet  of  the  perpendiculars  from  a  point  0  on 
the  sides  of  the  triangle  ABC.     Prove  that 

cos  BD  cos  CE  cos  ̂ jP  =  cos  CD  cosAE  cos  BF. 

13.  ABC  is  a  given  triangle,  and  I  is  any  Hne.  P,  (?,  R  are  the 

feet  of  the  perpendiculars  from  A,  B,C  on  I.  PP'±BC,  QQ'±CA, 
RR'  1.AB.  Prove  that  PP',  QQ',  RR'  meet  in  a  point  (the  orthopole 
oil). 

14.  Prove  that  the  locus  of  a  point  such  that  the  ratio  of  the 
cosines  of  its  distances  from  two  fixed  points  is  constant  is  a  straight 
line. 

15.  If  L,  M,  N  ',  Li,  Ml,  Ni;  etc.,  are  the  points  of  contact  of 
the  in-  and  e-scribed  circles  of  the  triangle  ABC  with  the  sides 
a,  b,  c,  and  28=a  +  b  +  c,  prove  the  relations: 

AMi=ANi  =  BN^  =  BL^=CL3=CM3=s, 

AM  =  AN  =  BN3  =  BL3  =  CL^  =  CM 2  =  s--a,  etc. 

16.  Establish  the  reciprocal  relations  to  those  in  Question  15  for 
the  circumcircles. 

17.  Prove  that  the  envelope  of  a  line  which  makes  with  two  fixed 
lines  a  triangle  of  constant  perimeter  is  a  circle.  Prove  also  that 
the  envelope  is  a  circle  if  the  excess  of  the  sum  of  two  sides  over  the 
third  side  is  constant.     What  is  the  reciprocal  theorem  ? 
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(In  the  following  questions,  18-22,  the  geometry  is  hyperboHc. 
The  formulae  are  analogous  to  well-known  formulae  in  spherical 
trigonometry.) 

18.  If  ha,  kb,  kc  are  the  sides,  and  A,  B,  C  the  angles  of  a  triangle, 

prove  that 

cos 4 A  _     /sinh  s  sinh  [s  -  a) 
A_     /si 

2"V~ 

sinh  {s  -b)  sinh  {s  -  c) 

sinh  b  sinh  c  i2      V         sinh  b  sinh  c 

19.  If  r,  fi,  rg,  rg  are  the  radii  of  the  in-  and  e-scribed  circles  of  a 
triangle  ABC,  prove  that 

tanh  r  sinh  s  =  tanh  r^  sinh  (s  -  a) =tanh  r^  sinh  (s  -  b) 

=tanh  rg  sinh  {s  -  c) 

=  >ysinh  (s  -  a)  sinh  {s-b)  sinh  (s  -  c). 

20.  Prove  that 

tanh  ri  tanh  r-g  tanhrg  -\/sinh  (s  -  a)  sinh  (s  -  b)  sinh  (5  -  c). 

21.  If  i?  is  the  radius  of  the  circumcircle  of  the  triangle  ABG^ 

prove  that 

sinh  6  _  sinh  c 
sin  B     sin  C 

If  Dx,  D2,  D3  are  the  distances  of  the  circumscribed  equi- 
distant-curves, prove  that 

,  a   .  ,  b   .  ,  c       ,    ̂       sinh  a     , 
2  cosh  -  smh  -  smh  -  coth  !),=  -—-,  etc. 2         2  2  sm^ 

22.  Prove  that 

coth  R  +  tanh  Z)i  +  tanh  Dg  +  tanh  Ds  =  2  cosh  5  sin  ̂ /sinh  a, 

coth  ̂   +  tanh  Dj  -  tanh  Dg  -  tanh  -D3  =  2  cosh  (s  -  a)  sin  ̂ /sinh  a,  etc. 

23.  Prove  that,  in  the  desmic  configuration  in  §  19,  the  following 

sets  of  points  are  coplanar :  AxA^B-xB^CiC^,  A^A^B^B^C-fi.^,  and 
those  obtained  from  these  by  cychc  permutation  of  ABC  or  of  234. 
Deduce  that  the  configuration  has  the  symbol 

,  a       ,6       ,  c        ,    _,    smh  a 
2  cosh  -  cosh  -  cosh  -  tanh  R  =  — — —  '- 2  2  2  sm^ 

12 4 6 

3 16 3 

6 4 12 
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24.  If  one  pair  of  altitudes  of  a  tetrahedron  A  BCD  intersect, 
prove  that  the  other  pair  will  also  intersect;  and  if  one  altitude 
intersects  two  others,  all  four  are  concurrent.  K  these  conditions 
are  satisfied,  prove  that 

cos  AB  cos  CD = cos  AC  cos  BD =co8  AD  cos  BC, 

26.  Prove  that  there  is  a  circle  which  touches  the  in-  and  the 

e-scribed  circles  of  a  triangle.  [In  spherical  geometry  this  is  Hart's 
circle,  and  corresponds  to  the  nine- point  circle  in  ordinary  geometry. 

See  M'Clelland  and  Preston's  Spherical  Trigonometry^  Chap.  VI. Art.  88.] 

26.  Prove  that  there  is  a  circle  which  touches  the  four  circum- 
circles  of  a  triangle.  [In  euclidean  geometry  the  circumscribed 

equidistant- curves  are  three  pairs  of  parallel  lines  and  form  a  triangle 

A'B'C\  of  which  A,  B,  C  are  the  middle  points  of  the  sides.  The 
circumcircle  of  ABC  is  the  nine-point  circle  of  A'B'C\  and  touches 
the  inscribed  circle  of  A'B'C.  That  is,  the  last-named  circle  touches 
the  four  "  circumcircles  '*  of  the  triangle  ABC] 



CHAPTER  V. 

REPRESENTATIONS   OF  NON-EUCLIDEAN  GEOMETRY 
IN  EUCLIDEAN  SPACE. 

1.  The  problem  of  Representation  is  one  that  faces  us 

whenever  we  try  to  reahse  the  figures  of  non-eucUdean 
geometry.  There  already  exists  in  the  mind,  whether 
intuitively  or  as  the  result  of  experience,  a  more  or  less  clear 

idea  of  euclidean  geometry.  This  geometry  has  from  time 
immemorial  been  applied  to  the  space  in  which  we  hve ; 
and  now,  when  it  is  pointed  out  to  us  that  there  are  other 

conceivable  systems  of  geometry,  each  as  self-consistent 

as  Euclid's,  it  is  a  matter  of  the  greatest  difficulty  to 
conjure  up  a  picture  of  space  endowed  with  non-eucHdean 
properties.  The  image  of  euclidean  space  constantly 
presents  itself  and  suggests  as  the  easiest  solution  of  the 

difficulty  a  representation  of  non-eucHdean  geometry  by 
the  figures  of  euchdean  geometry.  Thus,  upon  a  sheet  of 
paper,  which  is  for  us  the  rough  model  of  a  euclidean  plane, 

we  draw  figures  to  represent  the  entities  of  non-euchdean 
geometry.  Sometimes  we  represent  the  non-euclidean 
straight  lines  by  straight  Hues  and  sometimes  by  curves, 
according  as  the  idea  of  straightness  or  that  of  shape  happens 
to  be  uppermost  in  the  mind.  But  we  must  never  forget 

that  the  figures  that  we  are  constructing  are  only  repre- 

sentations,   and   that   the   non-euclidean   straight   line  is 
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every  bit  as  straight  as  its  euclidean  counterpart.  The 

problem  of  representing  non-euclidean  geometry  on  the 
euclidean  plane  is  exactly  analogous  to  that  of  map- 
projection. 

Projective  Representation. 

2.  The  fact  that  a  straight  hne  can  be  represented  by  an 

equation  of  the  first  degree  enables  us  to  represent  non- 
euclidean  straight  lines  by  straight  lines  on  the  euchdean 

plane.  Distances  and  angles  will  not,  however,  be  truly  ' 
represented,  and  we  must  find  the  functions  of  the  euclidean 
distances  and  angles  which  give  the  actual  distances  and 

angles  of  non-eucUdean  geometry. 

3.  The  absolute  is  represented  by  a  conic.  In  hyperboHc 

geometry  this  conic  is  real,  in  elliptic  geometry  it  is  wholly 

imaginary,  but  in  every  case  the  polar  of  a  real  point  is 
a  real  line.  The  conic  always  has  a  real  equation.  In 
the  case  in  which  the  absolute  is  a  real  conic,  we  could, 

if  we  Uke,  represent  it  by  a  circle,  but  except  in  special 

cases  this  does  not  give  any  gain  in  simplicity. 
Two  Hues  whose  point  of  intersection  is  on  the  absolute 

are  parallel ;  two  lines  whose  point  of  intersection  lies 

outside  the  absolute  are  non-intersectors.  The  points 

outside  the  absolute  have  to  be  regarded  as  ultra-infinite, 
and  are  called  ideal  points.  They  are  distinguished  from 

other  imaginary  points  by  the  fact  that,  while  their  actual 

coordinates  are  all  imaginary,  the  ratios  of  their  coordinates 

are  real.     In  the  present  representation  they  are  repre- 

^  In  the  sense  of  map-projections ;  i.e.  angles  which  are  equal  in  the 
euclidean  representation,  when  measured  by  euclidean  standards, 
do  not  in  general  represent  equal  angles  in  the  non-euclidean  geometry, 
but,  again  in  the  sense  of  map-projections,  figures  are  distorted. 
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sented  by  real  points  ;    other  imaginary  points  are  repre- 
sented by  imaginary  points.     (Cf.  Chap.  IV.  §  8.) 

A  real  line  has  two  points  at  infinity,  and  part  of  the  line 
lies  in  the  ideal  region.     A  line  which  touches  the  absolute 

Ideal    points 

has  one  point  at  infinity,  and  all  the  rest  of  the  line  is  ideal. 
A  Hne  which  Hes  outside  the  absolute  is  wholly  ideal. 

Through  any  point  two  parallels  can  be  drawn  to  a  given 
line,  viz.  the  points  joining  the  given  point  to  the  two 

points  at  infinity  on  the  given  line.  A  triangle  which  has 
its  three  vertices  on  the  absolute  has  a  constant  area. 

In  elHptic  geometry  the  absolute  is  imaginary,  and  there 
are  no  ideal  points. 

4.  Euclidean  geometry. 

Euclidean  geometry  is  a  limiting  case,  where  the  space- 
constant  k->co .  The  coordinates  of  a  point  become  the 

usual  rectangular  coordinates  x  and  y  with  z  =  l.  The 

equation  of  the  absolute  becomes  in  point-coordinates 

z  =  0,  and  in  line-coordinates  ^^  +  rj^=0,  i.e.  the  absolute 

degenerates  as  a  locus  to  a  straight  line  counted  twice — 
the  straight  line  at  infinity,  and  as  an  envelope  to  two 

imaginary  pencils  of  lines,  ̂   +  it]=0  and  ̂ -ii]=0,  whose 
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vertices  lie  on  the  line  at  infinity  since  the  hne-coordinates 

of  their   join  are   ̂   =  0,  r]=0,  f  =  f,  and   its   equation  is 
therefore  z  =  0.     The  equations  of  the  Unes  of  these  ima- 

ginary pencils  are  of  the  forms  x  +  iy  +  cz  =0,  x  -  iy  +  cz  =0. 
The  formula  for  the  distance  between  two  points, 

r  xx'  +  iiv'  +  l^zz' 
cos  T  = 

^    six"  +  2/2  +  l&z^slx"^  +  y"^  +  hH"^ 

becomes    \-^-  ̂   =  {xx  +yy  +^^)  •  p '  (^1  "2  *  ~~l^    )       | 

1   (a;-^?  +  (y-yO 
2'  A;2 

or  T^  =  {x-x'f -\-(y -y'Y. 

5.  The  circular  points. 

The  equation  of  a  circle  becomes  of  the  general  form  ■ 

x^  +y'^  +z  (ax  +  by  +  cz)  =  0, 
and  this  represents  a  conic  passing  through  the  points  of 

intersection  of  the  line  z  =  0  with  the  pair  of  imaginary 

lines  x  +  iy=0  and  x-iy  =  Oj  i.e.  every  circle  passes  through 
the  vertices  of  the  imaginary  pencils.  For  this  reason 

these  two  points  are  called  the  circular  points.  This  pro- 
perty of  the  circle  is  the  equivalent  of  the  property  that 

it  has  double  contact  with  the  absolute.     (Chap.  IV.  §  16.) 

6.  Now,  in  ordinary  geometry  the  angle  between  two  lines 
can  be  expressed  in  terms  of  the  two  lines  joining  their 

point  of  intersection  to  the  circular  points.^ 

^  E.  Laguerre,  "  Note  sur  la  theorie  des  foyers,"  Nouv.  Ann.  Math., 
Paris,  12  (1853). 
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Let  the  equations  of  the  two  hnes  u,  u'  through  the 
origin  be  y  =ic  tan  6,  y=x  tan  6',  and  denote  the  two  hnes 
joining  0  to  the  circular  points  by  o),  w  ;  their  equa- 

tions are  y=ix,  y^  -ix.  The  cross-ratio  of  the  pencil 

{m/,  0,0)')  is  ta^_e-^-^tan^0;^* 
tan  6  +i  '  tan  6'  +% 

^  i-  tan  6  _i  cos  0  -  sin  0  _ cos  0  +  ̂  sin  0  _  gj^ 
i  +  tan  d    i cos  0  +  sin  (?    cos  0  -ismO 

Therefore       {uu',  o)o,')  =  e"'^^ "  ̂'\ 

and  0  =  0'  _  0  =  -  log  (t^tt',  0)0)'), 

*.e.  ̂ Ae  angle  between  two  lines  is  a  certain  multiple  of  the 

logarithm  of  the  cross-ratio  of  the  pencil  formed  by  the  two 
lines  and  the  lines  joining  their  point  of  intersection  to  the 
circular  points. 

7.  Now  let  us  return  to  the  case  where  the  absolute  is 

a  real  conic  x^+y^  -  TcH'^  =  0.  Consider  two  points  P{x,  y,  z), 
P'(x',  y\  z').  The  point  (x  +  \x',  y +\y\  z  +  \z')  lies  on 
their  join.     If  this  point  is  on  the  absolute, 

(x  +  \x'f  +  (y+\y'f-B{z  +  \z'f=0, 

i.e.  X2  (x'2  +  y"^  -  kH"^)  +  2X  {xx'  +  yy'  -  IHz') 

+  (x2+?/2-fe2)=0. 

Let  Xi,  Xg  be  the  roots  of  this  quadratic.  The  hne  PF' 
cuts  the  absolute  in  the  two  points  X,  Y,  corresponding  to 

these  parameters,  and  the  cross-ratio  of  the  range 

{PP',XY)=^. 

X2 

Let  (PF)=d  =  Jc^,  and 

x^+y^-  kh^  =  r2,     a;'2  +  y'^  -  kh'^  =  r'^ ; 
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then  the  quadratic  for  X  becoraes 

XV2  +  2Ar/cos0+r2=O; 

whence    Xi ,  X  2  =  (  -  cos  0  dr  7  -  sin^  ̂ )  rjr'  =  -  e-^'''^T/r'. 

Therefore    \JX^  =  e-^''l'    and    <f>  =  U\og(PP',  XY). 

Therefore  d  =  ̂ ik log  (PP\  XY), 

i.e.  the  distance  between  two  points  is  a  certain  multiple  of 

the  logarithm  of  the  cross-ratio  of  the  range  formed  by  the  two 
points  and  the  two  joints  in  which  their  join  cuts  the  absolute. 

In  a  similar  way  it  can  be  shown  that  the  angle  between 

two  straight  lines  is  a  certain  multiple  of  the  .logarithm  of  the 

cross-ratio  of  the  pencil  formed  by  the  two  lines  and  the  two 
tangents  from  their  point  of  intersection  to  the  absolute. 

If  the  unit  angle  is  such  that  the  angle  between  two  lines 
which  are  conjugate  with  regard  to  the  absolute  is  ̂tt,  then 

<l>  =  U\og(pp\  xy).  _ 

8.  By  this  representation  the  whole  of  metrical  geometry 

is  reduced  to  projective  geometry,  for  cross-ratios  are 
unaltered  by  projection.  Any  projective  transformation 
which  leaves  the  absolute  unaltered  will  therefore  leave 

distances  and  angles  unaltered.  Such  transformations  are 

called  congruent  transformations  and  form  the  most  general 
motions  of  rigid  bodies. 

This  projective  metric  is  associated  with  the  name  of 
Cayley.i  who  invented  the  term  Absolute.     He  was  the 

1  "  A  sixth  memoir  upon  quantics,"  London  Phil.  Trans.  R.  Soc.,  149 
\1859).  Cayley  wrote  a  number  of  papers  dealing  specially  with  hon- 
euclidean  geometry,  but  although  he  must  be  regarded  as  one  of  the 
epoch-makers,  he  never  quite  arrived  at  a  just  appreciation  of  the  science. 
In  his  mind  non-euclidean  geometry  scarcely  attained  to  an  independent 
existence,  but  was  always  either  the  geometry  upon  a  certain  class  of 
curved  surfaces,  like  spherical  geometry,  or  a  mode  of  representation 
of  certain  projective  relations  in  euclidean  geometry. 
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first  to  develop  the  theory  of  the  absolute,  though  only  as 
a  geometrical  representation  of  the  algebra  of  quantics. 

Klein  ̂   introduced  the  logarithmic  expressions  and  showed 

the  connection  between  Cayley's  theory  and  Lobachevsky's 

geometry."^ 
9.  As  an  example  of  a  projective  solution  of  a  metrical  problem, 

let  us  find  the  middle  points  of  a  segment  PQ.  Let  PQ  cut  the 
absolute  in  X,  Y,  and  let  M^,  M^  be  the  double  points  of  the  involu- 

tion [PQ,  X  Y).  Then  {X  YPM^)1\{  YXQM,)  7^{X  YM^Q) ;  therefore 

dist.(PJfi)=dist.(ifi^).  ilfi,  Jfg  are  therefore  the  middb  points 
of  the  segment  (PQ). 

Since  Mi,  Mz  are  harmonic  conjugates  with  respect  to  X,  Y  and 
also  with  respect  to  P,  Q,  the  construction  is  therefore  as  follows. 

^  "  ijber  die  sogenannte  Nieht-Euklidische  Geometrie,"  Math.  Ann., 
4  (1871),  6  (1873). 

^  Since  the  definition  of  the  cross-ratio  of  a  range  is  the  same  in  non- 
euclidean  geometry,  the  logarithmic  expressions  for  distance  and  angle 
hold  not  only  in  the  euclidean  representation  of  the  geometry,  but  also 
m  the  actual  non-euclidean  geometry  itself. 
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Join  O,  the  pole  of  PQ,  to  P  and  Q,  cutting  the  absolute  in  AA\  BB\ 

AB\  A'B  intersect  in  Mi  and  AB,  A' B'  in  M^-  For  by  this  con- 
struction OM1M2  is  a  self- conjugate  triangle  and  ilfj,  Jf  2  are  harmonic 

conjugates  with  respect  to  X,  Y,  and  also  with  respect  to  P,  Q. 

10.  Classification  of  geometries  with  projective 
metric. 

Having  arrived  at  the  result  that  metrical  plane  geometry 
is  projective  geometry  in  relation  to  an  absolute  conic, 

distances  and  angles  being  determined  by  the  projective 

expressions 

dist.  (PQ)  =Z log {XY,  PQ),     angle  (pq)  =k\og (xy,  pq), 

we  may  reverse  the  process,  and  define  distances  and  angles 
by  these  expressions.  We  thus  get  a  general  system  of 

geometry  which  will  include  euchdean,  hyperbolic  and 

elliptic  geometries  as  special  cases.  The  nature  of  the 

geometry  will  be  determined  when  the  absolute  conic  is 
fixed,  and  the  values  of  the  constants  K  and  k  have  been 

determined.  Generally  speaking,  the  values  of  these 
constants  depend  only  on  the  units  of  distance  and  angle 
which  are  selected,  but  there  is  an  essential  distinction 

according  as  the  constants  are  real,  imaginary  or  infinite. 
There  is  no  distinction,  for  example,  between  the  cases 

corresponding  to  different  real  values  of  K.  This  simply 
corresponds  to  a  different  choice  of  the  arbitrary  unit  of 

length  ;  just  as  in  angular  measurement  the  constant  k  may 
be  chosen  so  that  the  measure  of  a  right  angle  may  be 

^  or  180  or  any  other  number.     As  each  of  the  constants 

may  conceivably  be  real,  infinite  or  imaginary,  there  are 
nine  species  of  plane  geometry. 

The  points  of  the  absolute  are  at  an  infinite  distance 
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from  all  other  points,  and  the  tangents  to  the  absolute 
make  an  infinite  angle  with  all  other  lines. 

If  the  measure  of  angle  is  to  be  the  same  as  in  ordinary 

geometry,  the  tangents  from  a  real  point  to  the  absolute 

must  be  imaginary  ;  the  cross-ratio  {pq,  xy)  will  be  imagi- 
nary, and  k  must  be  purely  imaginary.  When  p,  q  are 

conjugate  with  regard  to  the  absolute  they  are  at  right 

angles,  and  if  the  unit  angle  is  such  that  the  angle  in  this 

case  is  ̂ ,  then  Jc  =  ̂i. 

Then  there  are  three  cases  according  as  the  absolute  is  a 

real  proper  conic  (hyperbolic  geometry,  K  real),  an  ima- 
ginary conic  (elliptic  geometry,  K  imaginary),  or  degenerate 

to  two  coincident  hues  and  two  imaginary  points  (paraboUc 

or  euclidean  geometry,  K  infinite). 

11.  In  the  last  case  there  is  a  difficulty  in  determin- 

ing the  distance.  Since  X,  Y  coincide,  the  cross-ratio 
(PQ,  XY)  is  zero  and  K  must  be  infinite ;  but  the  dis- 

tance becomes  now  indeterminate. 

Suppose  PY  =  PX  +  e,  where  e  is  small. 

Then    (P(?,zr)=g.gf:  =  (l-.^)(l.^ 
^^'^'Kqx'px 

neglecting  squares  and  higher  powers  of  e, 
1        1 

and  (PQ)==K\og{PQ,  ^^)=^^\Qx-pX 
Let  K-^oo  and  e-^O  in  such  a  way  that  Ze->a  finite 

Hmit  X. 

Then  (PQ)=Xp^|^. 
N.-E.  a.  L 
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Now,  to  fix  X  we  must  choose  a  point  E  such  that 

(PE)  =  1,  the  unit  distance. 

Th.,.  (PQ\    P^-^^        fg        XE,XQ 
Then  {PQ)^—p^  .  pXTOZ^Pl^PQ  =(^^'  ̂ ^^- 

If  we  measure  distances  from  P  =  0  as  origin, 

{OQ)={XO,  EQ)  =  (0^,Ql)=f^^^. 

which  agrees  with  the  expression  in  euchdean  geometry, 

since      ̂   =  1,  and  01=1. 00  1 

This  case  differs  in  one  marked  respect  from  the  case  of 

elhptic  geometry.  In  that  system  there  is  a  natural  unit 
of  length,  which  may  be  taken  as  the  length  of  the  complete 

straight  line — the  period,  in  fact,  of  linear  measurement ; 
just  as  in  ordinary  angular  measurement  there  is  a  natural 
unit  of  angle,  the  complete  revolution.  In  euclidean 

geometry,  however,  the  unit  of  length  has  to  be  chosen 
conventionally,  the  natural  unit  having  become  infinite. 

12.  The  other  geometries,  in  which  the  measure  of  angle  is  either 
hyperbolic  or  parabolic,  are  of  a  somewhat  bizarre  nature. 

For  example,  if  the  absolute  degenerates  to  two  imaginary  Hues 

0),  (1)',  and  two  coincident  points  12,  the  case  is  just  the  reciprocal 
of  the  euclidean  case ;  linear  measurement  is  elliptic,  K  being 
imaginary,  and  angular  measurement  is  parabolic,  k  being  infinite. 
In  this  geometry  the  straight  line  is  of  finite  length  =  irKi.  If  the 
positive  direction  along  any  one  line  is  defined,  the  positive  directions 
along  all  other  lines  in  a  plane  are  determined,  for  this  is  determined 
by  the  sense  of  rotation  about  the  point  12.  The  sides  of  a  triangle 
are  defined  as  the  segments  which  subtend  the  opposite  angles 
which  do  not  contain  12,  just  as  in  euclidean  geometry  the  angles 
of  a  triangle  are  defined  as  the  angles  which  are  subtended  by  the 
opposite  segments  which  do  not  cut  the  line  at  infinity. 

Thus  the  sides  of  the  triangle  ABC  in  the  figure  (Fig.  88)  are 
represented  by  the  heavy  lines.     If  the  positive  direction  on  each 
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line  is  then  defined  as  the  direction  corresponding  to  clockwise 
rotation  about  12,  then 

a  +  b  +  c  =  the  length  of  the  complete  line, 

i.e.  the  perimeter  of  a  triangle  is  constant  and  =TrKi. 

Fig.  88. 

13.  Extension  to  three  dimensions. 

In  three  dimensions  the  absolute  is  a  quadric  surface. 

If  the  measures  of  angle  between  lines  and  between  planes 
are  to  be  eUiptic,  the  tangent  planes  through  an  actual  hne 
must  be  imaginary,  and  the  tangents  through  an  actual 

point  in  an  actual  plane  must  be  imaginary. 
(1)  Let  the  quadric  be  real.  If  the  quadric  has  real 

generators,  i.e.  if  it  is  a  ruled  quadric,  every  plane  cuts  it 
in  a  real  conic,  for  it  cuts  all  the  generators  in  real  points. 
Actual  points  must  lie  within  the  section  and  actual  lines 

must  cut  the  surface.  But  the  tangent  planes  passing 

through  a  line  which  cuts  a  ruled  quadric  are  real,  and  so 
the  measure  of  dihedral  angles  would  be  hyperbolic.  The 
quadric  cannot  therefore  be  ruled. 

Through  a  Une  which  does  not  cut  a  non-ruled  quadric 
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two  real  tangent  planes  pass  ;  hence  actual  lines,  and  there- 
fore planes,  must  cut  the  surface,  and  actual  points  are 

within  the  surface.  This  gives  hyperbolic  geometry.  The 

absolute  could  be  represented  by  a  real  sphere.  All  points 

outside  the  sphere  are  ideal  points. 
(2)  Let  the  quadric  be  imaginary.  The  measure  of 

distance  is  also  elliptic,  and  the  geometry  is  elliptic. 

(3)  Let  the  quadric  degenerate.  If  the  quadric  degene- 
rates to  a  cone,  necessarily  with  real  vertex,  the  measure 

of  dihedral  angle  must  be  parabolic.  If  the  quadric 

degenerates  to  two  planes,  unless  the  planes  coincide  they 
will  have  a  real  line  of  intersection  and  the  measure  of 

plane  angle  must  be  paraboHc.  Hence  the  quadric  must 
degenerate  to  two  coincident  planes. 

A  quadric  which  reduces,  as  a  locus,  to  two  coincident 

planes,  reduces  as  an  envelope  to  a  conic  lying  in  this  plane. 

If  the  measure  of  angle  is  elliptic  this  conic  must  be  ima- 
ginary. This  is  the  case  of  euclidean  geometry.  The 

absolute  consists  of  an  imaginary  conic  in  the  plane  at 
infinity.  Any  quadric  which  passes  through  this  conic  is 

cut  by  every  plane  in  a  conic  which  passes  through  the 
two  absolute,  or  circular,  points  in  this  plane,  i.e.  every 

plane  section  is  a  circle,  and  the  quadric  is  a  sphere.  The 
imaginary  conic  itself  must  be  regarded  as  a  circle  since 

it  is  the  plane  section  of  a  sphere.  This  is  the  imaginary 
circle  at  infinity. 

14.  Other  three-dimensional  geometries  can  be  constructed  in 
which  the  measure  of  plane  or  dihedral  angle  is  hyperbolic  or  para- 

bolic, but  they  are  not  of  much  interest,  as  they  resemble  ordinary 
geometry  too  slightly. 

One  appUcation  of  these  bizarre  geometries  may  be  given.  It  is 
obvious  that  in  euclidean  space  the  geometry  on  the  plane  at  infinity 
is  elliptic,  since  the  absolute  consists  of  the  imaginary  circle  in  this 
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plane,  and  it  follows,  as  we  have  already  seen,  that  the  geometry 
of  complete  straight  Unes  through  a  point  is  elhptic,  the  geometry 
of  rays,  or  of  points  on  a  sphere,  being  of  course  the  spherical  or 
antipodal  variety. 

Now  consider  three-dimensional  hyperbolic  space.  A  tangent 
plane  to  the  absolute  cuts  the  absolute  in  a  degenerate  conic  con- 

sisting of  two  imaginary  straight  lines  and  two  coincident  points  12 ; 
hence  the  geometry  on  such  a  plane  is  the  reciprocal  of  euclidean, 
i.e.  the  measure  of  distance  is  elhptic,  while  angular  measurement  is 
parabohc.  Now,  the  polar  of  a  point  (or  Une)  on  this  plane  is  a 
plane  (or  line)  passing  through  12.  Hence,  by  this  second  reciproca- 

tion, we  find  that  the  geometry  of  a  bundle  of  parallel  lines  and  planes 
is  euclidean,  and  if  we  cut  the  system  by  the  surface  (horosphere) 
which  cuts  each  line  and  plane  orthogonally,  we  find  that  the  geometry 
on  the  horosphere  is  euclidean. 

Geodesic  Representation. 

15.  It  has  been  seen  that  the  trigonometrical  formulae 

of  elhptic  geometry  with  constant  k  are  exactly  the  same 
as  those  of  spherical  trigonometry  on  a  sphere  of  radius  k, 
and  therefore  elliptic  geometry  can  be  truly  represented  on 
a  sphere,  straight  lines  being  represented  by  great  circles, 
and  antipodal  points  being  regarded  as  identical.  Within 
a  hmited  region  of  the  sphere  which  contains  no  pair  of 

antipodal  points,  the  geometry  is  exactly  the  same  as 

elhptic  geometry.  We  do  not  require,  as  in  Cayley's 
representation,  to  obtain  a  distance-  or  angle-function  ; 
distances  and  angles  are  represented  by  the  actual  distances 
and  angles  on  the  sphere. 

The  corresponding  representation  for  hyperbolic  geometry 
appears  at  first  sight  to  be  imaginary,  since  hyperbolic 
geometry  is  the  same  as  the  geometry  upon  a  sphere  of 

purely  imaginary  radius.  It  is  possible,  however,  to  obtain 

a  real  representation  of  this  kind,  though  confined  to  a 
limited  portion  of  the  hyperbolic  plane. 
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16.  Geometry  upon  a  curved  surface. 

We  must  first  understand  what  we  mean  by  the  geometry 
upon  a  surface  which  is  not,  like  the  sphere,  uniform.  The 

straight  Hne  joining  two  given  points  has  the  property  that 
the  distance  measured  along  it  is  less  than  that  measured 

along  any  other  line  joining  the  same  two  points.  This 
is  the  property  which  we  shall  retain  upon  the  surface. 

A  curve  lying  on  a  surface  and  having  this  minimum 

property  is  called  a  geodesic.  The  geodesies  of  a  sphere  are 

all  great  circles.  Now,  if  a  surface  can  be  bent  in  any  way, 
without  stretching,  creasing  or  tearing,  geodesies  will 
remain  geodesies,  lengths  of  lines  and  magnitudes  of  angles 
will  remain  unaltered,  and  the  geometry  on  the  surface 
remains  precisely  the  same.  Two  surfaces  which  can  be 

transformed  into  one  another  in  this  way  are  called  appli- 
cable  surfaces. 

If,  for  example,  a  plane  is  bent  into  the  form  of  a  cylinder, 

the  geometry,  at  least  of  a  limited  region,  will  be  unaltered. 
The  same  holds  for  any  surface  which  can  be  laid  flat  or 

developed  on  the  plane. 

The  sphere  is  a  surface  which  cannot  be  developed  on  the 

plane,  and  it  possesses  a  geometry  of  its  own.  A  complete 
sphere  cannot  in  fact  be  bent  at  all  without  either  stretching 

or  kinking,  but  a  hmited  portion  of  it  can  be  bent  into 

different  shapes  without  altering  the  character  of  the 

geometry. 

17.  Measure  of  curvature. 

Now  the  sphere  and  the  plane  possess  this  property  in 

common,  that  congruent  figures,  e.g.  triangles  with  equal 
corresponding  sides  and  angles,  can  be  constructed  in  any 

positions  on  the  surface,  or,  to  use  the  language  of  kinc 
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matics,  a  rigid  figure  is  freely  movable  on  the  surface.  It 
follows  that  the  surface  is  appHcable  to  itself  at  all  its 

points.  This  property  is  expressed  analytically  by  saying 
that  there  is  a  certain  quantity,  called  the  measure  of 
curvature,  which  is  the  same  at  all  points  of  the  surface  and 
is  not  altered  by  bending. 

To  see  what  this  invariant  quantity  is,  consider  any  plane 
section  of  a  surface  passing  through  a  tangent  line  OT 
at  0  ;  the  section  is  a  curve  having  this  line  as  tangent 
at  0.  The  more  obliquely  the  plane  cuts  the  surface  the 

sharper  is  the  curvature  of  the  section,  until,  when  the  plane 

touches  the  surface  at  0,  the  section  is  just  a  point.^  The 
section  of  least  curvature  occurs  when  the  plane  is  per- 

pendicular to  the  tangent  plane,  or  passes  through  the 
normal  to  the  surface. 

Again,  if  we  revolve  the  cutting  plane  about  the  normal, 
the  curvature  of  the  section  will  vary  continuously  and 

I  have  a  maximum  and  a  minimum  value.  These  occur  for 

i  sections  at  right  angles,  and  are  called  the  principal  curva- 
tures of  the  surface  at  0.  The  curvature  of  a  curve  at  a 

point  0  being  defined  as  the  reciprocal  of  the  radius  of  the 
circle  of  closest  fit  to  the  curve  at  0,  the  product  of 
the  principal  curvatures  at  0,  denoted  by  M,  is  called  the 

measure  of  curvature  of  the  surface  at  0.  If  the  two  curva- 
jtures  are  in  the  same  sense  M  is  positive,  if  in  opposite 

'  senses  M  is  negative ;  if  one  is  zero,  as  in  the  case  of  a 

'cylinder  or  any  developable  surface,  M  is  zero.  For  a 
;  sphere  of  radius  k,  M  is  the  same  at  all  points  and  =  1/k^. 
i  ̂  This  holds  for  a  convex  surface  like  a  sphere.  In  the  general  case 
the  section  of  a  surface  by  a  tangent  plane  is  a  curve  which  has  a  node 
iat  the  point  of  contact,  with  real  or  imaginary  tangents.  In  the  case  of 
ja  surface  of  the  second  degree  the  section  consists  of  two  straight  lines, 
jreal  or  imaginary.  In  the  text  we  are  considering  the  case  of  a  node 
iwith  imaginary  tangents,  which  appears  just  as  a  point. 
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18.  Surfaces  of  constant  curvature. 

Gauss,  who  founded  the  differential  geometry  of  surfaces, 

as  well  as  being  almost  the  discoverer  of  non-euclidean 

geometry,  discovered  the  beautiful  theorem  ̂   that  when 
a  surface  is  bent  in  any  way  without  stretching  or  hinking, 
the  measure  of  curvature  at  every  point  remains  unaltered. 

It  follows,  then,  that  the  only  surfaces  upon  which  free 

mobility  is  possible  are  those  which  are  applicable  upon 
themselves  in  all  positions,  and  therefore  for  which  M  has 
the  same  value  at  all  points. 

There  are  three  kinds  of  surfaces  of  constant  curvature, 

(1)  those  of  constant  positive  curvature,  of  which  the 

sphere  is  a  type  ;  (2)  those  of  constant  negative  curvature, 

saddle-backed  at  all  points  hke  a  "  diabolo  "  ;  (3)  those  of 
zero  curvature,  the  plane  and  all  developables. 

19.  The  pseudosphere. 

Fortunately,  we  do  not  require  to  take  an  imaginary 

sphere  as  the  type  of  surfaces  of  constant  negative  curva- 
ture. There  are  different  forms  of  such  surfaces,  even  of 

revolution,  but  the  simplest  is  the  surface  called  the 

Pseudospliere,  which  is  formed  by  revolving  a  tractrix  about 
its  asymptote. 

The  tractrix  is  connected  with  the  simpler  curve,  the 

catenary,  which  is  the  form  in  which  a  uniform  chain 

hangs  under  gravity.     The  equation  of  the  catenary  referred 

to  the  axes  Ox,  Oy  is  y  =  k  cosh  y.     It  has  the  properfv 

that  the  distance  of  the  foot  of  the  ordinate  N  from  the 

tangent  at  Q  is  constant  and  equal  to  k,  while  QP=the 

*  C.  F.  Gauss,  Diaquiaitionea  generalea  circa  auperficiea  curvaa,  Gotting< 
1828  (§12). 
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arc  AQ.  It  follows  then  that  if  a  string  AQ  is  unwound 
from  the  curve,  its  extremity  will  describe  a  curve  AP  with 

the  property  that  the  length  of  the  tangent  PN  is  constant 
and  equal  to  k.  This  curve  is  the  Tractrix.  Ox  is  an 

asymptote.  Now,  if  the  tractrix  is  revolved  about  the 

asymptote  we  get  a  surface  of  revolution  whose  principal 

sections  at  P  are  the  meridian  section  in  which  the  tractrix 

lies,  and  a  section  through  the  normal  PT  at  right  angles 
to  the  plane  of  the  curve.  The  radii  of  curvature  of  these 
sections  are  respectively  PQ  and  PT,  and  we  have 

PQ  .  PT  =PN^=Jc^,  but  since  the  curvatures  are  in  opposite 
senses,  the  measure  of  curvature  =  -  1/P. 

The  pseudosphere,  therefore,  gives  a  real  surface  upon 

which  hyperbolic  geometry  is  verified— ̂ within  a  Hmited 
region.  The  surface  does  not,  of  course,  represent  the 

whole  of  the  hyperbolic  plane,  for  it  has  only  a  single  point 
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at  infinity.  The  meridian  curves  are  geodesies  passing 
through  this  point  at  infinity,  and  therefore  represent 

a  system  of  parallel  hues.     So  the  surface  only  corresponds 

Fig.  90, 

to  a  portion  of  the  hyperboUc  plane  bounded  by  two  parallel 

lines  and  an  arc  of  a  horocycle.^ 

20.  The  Cayley-Klein  representation  as  a  projection. 
Through  the  medium  of  the  geodesic  representation  we 

can  now  get  a  geometrical  interpretation  of  the  Cayley- 
Klein  representation.  If  we  project  a  sphere  centrally, 

great  circles  are  projected  into  straight  Hues,  since  their 
planes  pass  through  the  centre  of  projection.  Hence  the 

Cayley-Klein  representation  of  elliptic  geometry  can  be 
regarded  as  the  central  or  gnomonic  projection  of  the 

geometry  on  a  sphere. 
The  equations  of  transformation  are  easily  found. 

*  The  intrinsic  equation  of  the  tractrix  is  8  =  k  log  cosec  \//,  and  since 

y  =  ks'm\f/  we  have  y  =  ke~*l^.  The  ratio  of  the  corresponding  arcs  of 
two  horocycles  (sections  X  to  the  axis)  is  therefore  e<*  *'*,  which  agrees 
with  the  expression  we  have  already  found  (Chap.  II.  §  26). 
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^^■jet  the  plane  of  projection  be  chosen  for  convenience 

^W  the  tangent  plane  at  0,  and  take  rectangular  axes,  Oz 
through  the  centre  of  the  sphere  S,  and  Ox,  Oy  in  the  plane 

Fig.  91. 

of  projection.  Let  the  coordinates  of  P,  any  point  on  the 

sphere,  be  (x,  y,  z)  and  the  coordinates  of  its  projection  P' 
be  (x',  y',  0).     Then  x^+tf  +  (z-  kf  =  B, 

x'    y'    OP'  ̂       OS      ̂     k 

x'y     ON    OS-NP    k-z 

k  Jx'^+y'^'  +  B 

Jk^-x^-y'^  k 

21.  Meaning  of  Weierstrass'  coordinates. 
Let  u,  V,  w  be  the  angles  which  SP  makes  with  the  planes 

yz,  zx  and  xy  ;  u,  v,  w  can  be  regarded  as  coordinates  on  the 
sphere,  and 

x  =  ksinu,     y  =  k8mv,    z-k  =  k  sin  w. 

Then  k  sin  u,  k  sin  v  and  sin  w  are  Weierstrass'  coordi- 
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nates,  denoted  by  X,  Y,  Z,  and  connected  by  the  relation 

Z^  +  Y^  +  Ic^Z^  =  k^.  In  terms  of  the  spatial  coordinates 
oiP,X=x,  Y  =  y,  hZ  =  z-k. 

We  see  thus  that  Weierstrass'  coordinates  are  pro- 
portional to  the  sines  of  the  distances  of  P  from  the  sides 

of  a  self-polar  triangle,  and  are  therefore  analogous  to 
trilinear  coordinates. 

Dually,  the  line-coordinates  of  a  line  are  defined  as  pro- 
portional to  the  sines  of  the  distances  of  the  line  from  the 

vertices  of  the  fundamental  triangle.  We  may  also  define 

the  point- coordinates  as  proportional  to  the  cosines  of 
the  distances  from  the  vertices,  and  the  line-coordinates 
as  proportional  to  the  cosines  of  the  angles  which  the 

line  makes  with  the  sides  of  the  triangle.  In  the  three- 
dimensional  representation  the  point-coordinates  are  the 

direction-sines  of  the  point  referred  to  rectangular  axes. 

Conformal  Representation. 

22.  Stereographic  projection. 

There  is  another  very  useful  projection  of  a  sphere,  the 

stereographic  projection.  In  this  case  the  centre  of  pro- 
jection is  taken  on  the  surface. 

Let  S  be  the  centre  of  projection,  and  C  the  centre  of  the 

sphere  of  radius  k.  Take  the  plane  of  projection  perpendi- 
cular to  SC,  and  at  distance  SO=d.  Choose  rectangular 

axes  with  OS  as  axis  of  z.  Let  the  coordinates  of  P,  any 

point  on  the  sphere,  be  (x,  y,  z),  and  the  coordinates  of  its 

projection  P'  be  {x',  y',  0).  Then,  since  SPA  is  a  right 
angle  =  .SOP',  SP .  SP'  =  .S.4  .  SO  =  2kd. 

The  formulae  of  transformation  are  : 

?'=^'=^^'=?^'=   ̂     =  ̂ ^^  ^x'^+y'^  +  d^ 
X     y     ON     SP    d-z    x^  +  y^  +  (z-d)^  2kd       ' 
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If  the  plane  of  projection  is  chosen  to  pass  through  C, 

and  the  xy  plane  of  P  is  the  tangent  plane  at  >S,  d[  =  k,  and 
the  formulae  become : 

2A;2 

h 

z    x^-\-y'^  +  z^ 

y'^  +  B 
2B 

Fig.  92. 

A  plane  ax  +  hy  ■\-cz-\-d=0  becomes 

2k^ax'+hy'  +ck)+d{x'^+y'^  +  k^)  =0, 
which  represents  a  circle.     Hence  all  circles  on  the  sphere 

are  represented  by  circles^ 

Consider  two  planes 

Ix  +  my  +nz  =  nk,     Vx  +  m'y  +  n'z  =  n'k 

through    the    centre,   and   cutting    the    sphere    in    great 
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circles.  The  angle  between  the  great  circles  is  equal  to 

the  angle  between  the  planes,  and  is  given  by 

cos  6  =  11'  +  mm'  +  nn'. 

The  projections  of  the  great  circles  are  the  circles 

'IBilx-^my  ̂ nk)  -nk(x^  +y'^  +  B)  =0, 

/      kl\^    (      km\^    k^     , 

The  angle  0  at  which  the  circles  cut  is  given  by 

\n    nJ  \n     n  J      n^    n^       nn        ̂  

therefore  cos  (p=lV  +  mm'  +  nn', 
i.e.  the  projections  cut  at  the  same  angle  as  the  great  circles. 

Stereographic  projection  is  three-dimensional  inversion, 

for  SP  .  SP'  =  const.,  circles  are  changed  into  circles,  and 
angles  are  unaltered.  A  small  figure  on  the  sphere  will 
therefore  be  projected  into  a  similarly  shaped  small  figure 

on  the  plane,  with  corresponding  angles  all  equal.  For  this 
reason  the  representation  is  called  conformal. 

23.  The  orthogonal  circle  or  absolute. 

A  circle  in  the  projection,  which  represents  a  straight  Une 

in  the  non-eucUdean  geometry,  has  for  its  equation 

n {x^  +  2/2)  -2k{lx  +  my)  -  nk^  =  0, 

and  this  cuts  at  right  angles  the  fixed  circle 

x^  +  y^  +  k^  =  0. 

This  circle,  imaginary  in  elliptic  geometry,  real  in  hyper- 
bolic, is  the  projection  of  the  absolute,  which  cuts  all 

straight  lines  at  right  angles. 
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24.  Conformal  representation. 

We  shall  now  consider  generally  the  problem  of  the 

conformal  representation  of  the  non-euclidean  plane  upon 

the  euclidean  plane,  straight  lines  being  represented  by- 
circles.  We  shall  set  aside  stereographic  projection 
entirely,  as  this  assumes  the  geodesic  representation  on  a 
sphere,  and  treat  the  problem  purely  as  a  problem  in 
correspondence. 

It  may  be  shown  directly  that  the  circles  which  represent 
straight  lines  all  cut  a  fixed  circle  orthogonally.  For,  if 
the  circles 

x2  +  2/2  +  2gx  +2fy  +  c.=0 
represent  straight  lines,  they  must  have  the  property  of 

being  determined  uniquely  by  two  points.  Hence  the 
three  coefficients  g,  f,  c  must  be  connected  by  a  fixed 

equation  of  the  first  degree,  say 

2gg'+2ff'=c  +  c', 
but  this  is  just  the  condition  that  the  circle  should  cut 
orthogonally  the  fixed  circle 

x^+y^  +  2g'x  +  2fy+c'  =0. 
In  elliptic  geometry  this  circle  is  imaginary,  in  hyperbolic 

geometry  it  is  real.  If  the  fixed  circle  reduces  to  a  point 

(the  transition  between  a  real  and  an  imaginary  circle),  all 

the  circles  which  represent  straight  lines  pass  through  this 
fixed  point:  Now,  if  we  invert  the  system  with  this  point 
as  centre,  the  circles  become  straight  lines.  Hence  the 
straight  lines  of  euchdean  geometry  can  be  represented  by 

a  system  of  circles  passing  through  a  fixed  point. 

25.  Point-pairs. 
This  representation  has  a  fault  which  we  must  try  to 

correct.     In  non-euclidean  geometry,  hyperbolic  or  elliptic, 
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two  straight  lines  intersect  in  only  one  point ;  but  the 
circles  which  represent  them  intersect  in  a  pair  of  points. 

In  the  representation  of  hyperbolic  geometry  the  fixed 
circle  is  real,  and  two  orthogonal  circles  may  intersect  in 

real,  imaginary  or  coincident  points,  according  as  the 

straight  lines  which  they  represent  are  intersectors,  non- 
intersectors  or  parallel.  The  pair  of  points  which  corre- 

spond to  a  single  point  are  inverses  with  respect  to  the 

fixed  circle.  We  must  therefore  consider  pairs  of  points 
which  are  inverses  with  respect  to  the  fixed  circle  as  forming 

just  one  point. 
In  the  representation  of  spherical  geometry,  as  distinct 

from  eUiptic  geometry,  the  points  of  a  pair  will  be  con- 
sidered as  distinct  and  constituting  a  pair  of  antipodal 

points. 
In  the  representation  of  euclidean  geometry,  one  of  the 

points  of  a  pair  is  always  the  fixed  point  itself. 

26.  Pencils  of  lines.    Concentric  circles. 

To  a  pencil  of  lines  through  a  point  P  corresponds  a 
pencil  of  circles  through  the  two  points  Pj,  Pg  which 
correspond  to  P.  The  radical  axis  of  this  system  is  itself 
a  circle  of  the  system,  and  is  in  no  way  distinguished  from 
any  other  circle  of  the  system. 

The  representation  of  straight  lines  by  circles  is  not 
necessarily  a  conformal  one,  nor  is  it  by  any  means  the  only 
possible  conformal  representation.  If  the  representation 

is  conformal  we  can  show  that  when  straight  fines  are 
represented  by  circles,  circles  also  are  represented  by  circles } 
For  a  system  of  concentric  circles  cut  all  the  lines  of  a  pencil 
with  vertex  P  at  right  angles.  They  will  therefore  be 

^  For  the  converse  of  this  theorem,  see  Chap.  VIU.  §  2. 
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Fig.  93. 

N.-E.  a 
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represented  by  a  system  of  curves  cutting  orthogonally  a 
system  of  coaxal  circles  ;  but  this  is  also  a  system  of  coaxal 

circles,  and  has  P^,  Pg  ̂s  Hmiting  points  (Fig.  93). 
A  circle  is  represented  actually  by  a  pair  of  circles ; 

these  are  inverses  with  respect  to  the  fixed  circle,  and  are 

coaxal  with  the  fixed  circle.  The  two  limiting  points  form 
its  centre. 

Corresponding  to  a  pencil  of  lines  through  an  ideal 

point  P,  i.e.  a  system  of  fines  cutting  a  fixed  fine  I  at  right 
angles,  we  have  a  system  of  circles  cutting  at  right  angles 

the  fixed  circle  and  the  circle  /'  which  represents  the  fixed 
line  (Fig.  94).  But  this  is  a  coaxal  system  whose  radical 

axis  is  the  common  chord  of  the  fixed  circle  and  the  circle  I' ; 

its  limiting  points  are  the  common  points  ft  and  Q2  oi  I' 
and  the  fixed  circle.  The  circles  with  centre  P  are  equi- 

distant-curves, and  are  represented  by  a  system  of  circles 
passing  through  ft,  Q^. 

Corresponding   to  a  pencil  of  lines  through  a  point  at 

Fio.  96. 
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infinity  P,  i.e.  a  system  of  parallel  lines,  we  have  a  system 
of  circles  cutting  the  fixed  circle  orthogonally  at  a  fixed  point 

on  it  (Fig.  95).  The  horocycles,  circles  with  centre  P,  are 
represented  by  circles  touching  the  fixed  circle  at  this 

point. 

27.  The  distance  between  two  points. 

If  ABC  is  a  circle  which  represents  a  circle  in  non- 
euclidean  geometry,  and  0  is  the  point  which  represents 

Fig.  96. 

its  centre,  the  radii  are  represented  by  arcs  of  circles  through 
0  cutting  the  given  circle  and  the  fixed  circle  orthogonally. 

The  arcs  OA,  OB,  OC, ...  represent  equal  distances  in  non- 
euclidean  geometry.  We  require  then  to  find  what 
function  of  the  positions  of  the  points  0  and  A  represents 
the  distance  between  their  corresponding  points. 

28.  Motions. 

In  order  to  investigate  this  function  we  shall  make  use  of 

the  idea  of  motion.  By  a  motion  or  displacement  in  the 
general  sense  is  meant  not  a  change  in  position  of  a  single 

point  or  of  any  bounded  figure,  but  a  displacement  of  the 
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of  the  whole  plane.  A  motion  is  a  transformation  which 

changes  each  point  P  uniquely  into  another  point  P'  in 
such  a  way  that  distances  and  angles  are  unchanged.  It 

follows  that  straight  lines  remain  straight  lines,  and  the 
displacement  is  a  particular  case  of  a  collineation  (the  general 

one-one  point-transformation  which  changes  straight  hues 
into  straight  hues).  Further,  it  will  change  circles  into 
circles,  and  the  fixed  circle  must  remain  fixed  as  a  whole. 

We  require  therefore  to  find  what  is  the  sort  of  transforma- 
tion of  the  eucUdean  plane  which  will  change  circles  into 

circles  and  leave  a  fixed  circle  unaltered. 

29.  Reflexions. 

The  process  of  inversion  with  respect  to  a  circle  at  once 

suggests  itself,  since  this  transformation  leaves  angles 
unaltered  and  changes  circles  into  circles.     Further,  since 

Fig.  97. 

the  fundamental  circle  must  be  unaltered  as  a  whole,  the 

circle  of  inversion  must  cut  it  orthogonally.     Let  us  then 
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consider  inversion  in  a  circle  which  represents  a  straight 
line. 

In  euclidean  geometry,  when  the  circle  of  inversion 

becomes  a  straight  line,  inversion  reduces  to  reflexion  in 
this  line.  Now  any  motion  or  displacement  in  euclidean 

geometry  can  he  reduced  to  a  pair  of  reflexions  in  two  suitably 
chosen  lines. 

If  AB  is  displaced  to  A'B'  (Fig.  97),  first  take  MO  the 
perpendicular  bisector  of  AA'  ;  the  reflexion  of  AB  in  MO 

lis  A'B^.  Then  take  M'O  the  perpendicular  bisector  of 
\B^B',  which  passes  through  A\  and  the  reflexion  of  A'Bi 
is  A'B'.  Since  OB  =  OB^=OB\  0  lies  also  on  the  perpen- 

dicular bisector  of  BB' ,  and  is  in  fact  the  centre  of 
rotation  for  the  given  displacement. 

30.  Complex  numbers. 

We  shall  find  now  what  is  the  most  general  transformation 

which  changes  circles  into  circles  and  the  fundamental 
circle  into  itself. 

The  equation  of  any  circle  is 

x^  +  ?/2  +  2gx  +  2fy+c  =  0. 

The  procedure  is  greatly  simphfied  by  the  introduction 

of  complex  numbers  and  the  use  of  Argand's  diagram. 
Let  z=x+iy,  p=g-^if,  and  write  the  conjugate  complex 
numbers  z  =  x-iy,  p=g-if-  Then  the  equation  of  the 
circle  becomes 

zz  +  pz+pz+c=0,   (1) 

a  lineo-linear  expression  in  z,  z.  Its  centre  is  2=  -p,  and 
the  square  of  its  radius  is  pp  -  c. 
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31.  Circular  transformation,  conformal  and  homo- 

graphic. 
Now  it  is  proved  in  the  theory  of  functions  that  any 

transformation  of  the  form 

is  conformal,  leaving  angles  unchanged.  A  real  trans- 
formation of  this  form  which  leaves  the  form  of  the  equation 

(1)  unaltered,  i.e.  which  changes  circles  into  circles,  is  one 

in  which  z,  z'  both  occur  only  to  the  first  power, ^  or 

_  a/+/3      -  _  az'  +  ̂  

where  a,  B,  y,  ̂  are  any  complex  numbers  such  that  aS4=8y. 

By  this  transformation  any  complex  number  z  is  trans- 
formed into  a  complex  number  z\  and  the  point  (x,  y) 

corresponding  to  z  is  transformed  into  the  point  (ic',  y') 
corresponding  to  z'. 

If  Zi,  Z2,Zq,  z^  are  any  four  complex  numbers  which  are 

transformed  into  2;/,  z^,  z^,  zl,  and  if  we  define  the  cross- 
ratio  (zjZ.^,  2:324) 

z^-z^'  Z^-Zi^ 

then  (21Z2,  2:32:4)  =  (2:/2:2',  2:3'2:4'). 
The  transformation  is  therefore  said  to  be  homographic. 

Let  ri3  be  the  modulus,  and  ̂ 13  the  amplitude  of  the 

complex  number   2:1-2:3,  so  that  2:^ -2:3=ri3e'^i3,  then  the 

cross-ratio  (2:12:2,  2:32:4)  has  modulus  --    ~   and  amplitude ^14/   ̂ 24 

^13  -  ̂U  -  ̂23  +  ̂24  or  0i3  +  032  +  ̂24  +  ̂41 ' 
*  The  only  other  type  of  real  transformation  having  this  property  is 

that  which  differs  only  from  this  one  by  interchanging  z  and  2.  J3ut 

this  only  differs  from  the  former  by  a  reflexion  in  the  x-axis,  2  =  i*, 
2  =  z". 
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The  cross-ratio  is  real  only  when  its  amplitude  is  a 
multiple  of  x,  i.e.  when  the  points  corresponding  to  the 

four  numbers  z-^,  z.^,  z^,  z^  are  concyclic,  and  its  value  is 

theng^-JJ^     (Fig.  98). 

Fig.  98. 

The  transformation  has  to  satisfy  the  further  condition 
that  it  transforms  the  fundamental  circle  into  itself. 

It  can  be  proved  that  if  the  fundamental  circle  is 

x^+y^  +  K=0,  or  zz+K=0,  the  general  form  of  the 
transformation  is 

_az'-K^ 

^      Pz'+a' 
If  the  fundamental  circle  is  ̂   =0,  or  2;  =  2,  it  can  be  proved 
that  the  general  transformation  is 

_az'  -\-h 

^~Vz^d' 

where  a,  b,  c,  d  are  real  and  ad^hc. 

32.  Inversion. 

Consider  now  the  equations  of  transformation  of  inversion 

in  a  circle  cutting  the  fundamental  circle  orthogonally. 
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The  equation  of  a  circle  cutting  zz  +  K=0  orthogonally 

is  zz+pz+pz-K=0. 

Let  C(  -;?)  be  the  centre,  P(z)  and  P'(z')  a  pair  of  inverse 
points. 

1 

Fig.  99. 

Let  the  complex  numbers  represented  by  CP  and  CP' 
be  u,  u'.     Then 

z= -p  +  u,        z'=-p+u'. 
Also,   since  u,  v!  have  the   same   amplitude,   and  the 

product  of  their  moduU  is  equal  to  the  square  of  the  radius 
of  the  circle  of  inversion, 

'wa'  =^pp-\-K. 

Therefore        (z  +  ;?)  (2'  +  jo)  -  ̂   -  Z  =  0, 

or  zz'  -\-pz-vpz'  -K=^{^, 

_-pz'+K 
%.e 

z  +p 
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A  second  inversion  in  the  circle  zz+qz  +qz-K--=0  gives 

_(K+pq)z"-K{p-q) 

(p-q)z"  +  {K+pq)  • 
This  will  not  hold  when  the  circle  of  inversion  is  a  straight 

line  0  =  (f).     Here  inversion  becomes  reflexion,  and  we  have 

therefore  z  =  z'er"^. 
This  combined  with  an  inversion  gives z"  -^p 

Let  </)  =  J-x/r,  ̂ =e"^;  thene2^<^= -e-2^'^=-|.  Then, 

if  p^  =  a,  the  transformation  becomes 

_az''-K^ 

^       j3z"  +  a' Hence  in  either  case  the  transformation  is  of  this  form. 

Hence  the  general  displacement  of  a  plane  figure  is  equivalent 

to  a  pair  of  inversions  in  two  circles  which  cut  the  fundamental 
circle  orthogonally. 

33.  Types  of  motions. 

In  the  general  displacement  there  are  always  two  points 

which  are  unaltered,  for  if  z'  =z  we  have  the  quadratic 
equation 

Pz^  +  (a-a)z  +  K^  =  (}. 

If  we  substitute  2;  =  -  K[z' ,  the  equation  becomes 
B^^'''  +  {a-a)z'+K^=0\ 

therefore  z'  is  also  a  root.     The  two  points  are  therefore 
inverses   with   regard   to   the   fundamental    circle.     This 

point-pair  corresponds  to  the  centre  of  rotation  in  the 
general  displacement.     In  hyperbolic  geometry  there  are 
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three  distinct  types  of  displacement  according  as  the 
centre  of  rotation  is  real,  ideal,  or  at  infinity.  The  first 
case  is  similar  to  ordinary  rotation  ;  the  second  case  is 

motion  of  translation  along  a  fixed  line,  and  points  not  on 

this  line  describe  equidistant-curves ;  in  the  third  case 
all  points  describe  arcs  of  horocycles. 

34.  The  distance-function. 
We  have  now  to  find  the  expression  for  the  distance 

between  two  points  P,  Q,  i.e.  the  function  of  their  co- 
ordinates or  complex  numbers  (z^,  z^,  which  remains 

invariant  during  a  motion. 

The  two  points  determine  uniquely  a  circle  cutting  the 
fundamental  circle  orthogonally  in  X,  Y.  This  circle 

represents  the  straight  line  joining  PQ,  and  X,  Y  represent 
the  points  at  infinity  on  this  hne.  If  the  motion  is  one 
of  translation  along  this  hne,  the  straight  line  as  well  as 
the  fundamental  circle  are  unaltered,  and  X,  Y  are  fixed 

points.  Let  x,  y  be  the  complex  numbers  corresponding 

to  Xy  Y ;  then  the  cross-ratio  (s^i^g,  xy)  remains  constant. 
If  we  suppose,  therefore,  that  for  points  on  this  line  the 

distance  (PQ)  is  a  function  of  this  cross-ratio,  we  can  write 
(PQ)  =f(zi,  Z2).  If  P,  Q,  R  are  three  points  on  the  line, 
corresponding  to  the  numbers  Zj,  Z2,  z^,  this  function  has 

to  satisfy  the  relation  (PQ) +(QR)={PR),  or 

f(Zi,Z2)+f{Z2,Z^)=f{Zi,Z^). 

This  is  a  functional  equation  by  which  the  form  of  the 

function  is  determined.  Consider  2;  as  a  parameter  deter- 
mining the  position  of  a  point,  and  diiferentiate  with  regard 

to  Zj.     Then,  since 

,z,-x   z^-y_PX    QY 
Kh.^2.  m -^^   z^-x~PY'QX' 
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we  have 

.,,         .QY  d   (PX\_f,,        .RY  d   /PX\ 

J  ̂̂ ^'  ̂'^  QX  d^  \Py)  '^  ̂^^'  ̂^^  RX  -dz^  \PY)' 
Hence 

f(z,,^,)_QX   RYJPX   RY\^(PX    QY\Jz,z„xy) 

f(zi,  z^)  ~QY  '  RX~\PY  '  RXJ  '  \PY  '  QXJ     {z,z„  xy)' 
i.e.       (2i,  z.^)f(z^,  22)  =(2i,  2^3)/' (2^1.  %)  =const.  =^i. 

Integrating,  we  find 

f(z,,z^)=^\o^(z^z^,xy)+C, 

and  substituting  in  the  functional  equation  we  find  (7  =  0. 
Hence 

(PQ)  =M log (^12^2,  ̂ y)  =M  log  (Jf  •  §)  =M  log {PQ.  XYl 

{PQ,  XY)  being  the  cross-ratio  of  the  four  points  P,  Q,  X,  Y 
on  the  circle,  i.e.  the  cross-ratio  of  the  pencil  0{PQ,  XY), 
where  0  is  any  point  on  the  circle. 

In  hyperboUc  geometry  K=  -k^,  and  the  fundamental 
circle  is  real.  The  distance  between  two  conjugate  points 

is  ̂ iirk,  and  the  cross-ratio  (PQ,  XY)=  -1.     Then 

(PQ)=^il- 
Therefore  ;u=  A;. 

35.  The  line-element. 
If,  returning  to  the  stereograpbic  projection,  we  take  the  formulae 

in  §  22,  we  can  find  an  expression  for  the  hne-element  ds.  We 
have,  X,  y,  z  being  the  coordinates  of  a  point  on  the  sphere, 

ds''=dx^  +  dy^  +  dz\ 

Expressing  this  in  terms  of  x'  and  y',  we  get 

'^kH^idx'^  +  dy'^) 

d^=- 
{x'^  +  y'^  +  d^f 
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tangent  plane  at  A  (Fig.  92),  we  get 

ds^Jdx'^^  +  dy'^ll  +  laix'^  +  y'^)}, 
where  a  =  1/P. 

36.  There  is  a  gain  in  simplicity  when  the  fundamental 
circle  is  taken  as  a  straight  hne,  say  the  axis  of  x.  Then 

straight  lines  are  represented  by  circles  with  their  centres 

on  the  axis  of  x.     Pairs  of  points  equidistant  from  the  axis 

^
•
 

B  \        •.    •. 

»  .'/ 

» 

';,: 

■
^
 

* 
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1 

Fig.  100. 

of  X  represent  the  same  point,  and  we  may  avoid  dealing 

with  pairs  of  points  by  considering  only  those  points  above 
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the  a;-axis.  A  proper  circle  is  represented  by  a  circle  lying 
entirely  above  the  ic-axis  ;  a  horocycle  by  a  circle  touching 
the  ic-axis  ;  an  equidistant-curve  by  the  upper  part  of  a 
circle  cutting  the  ic-axis  together  with  the  reflexion  of  the 
part  which  lies  below  the  axis. 

Through  three  points  A,  B,  C  pass  four  circles.  If 

A',  B\  C  are  the  reflexions  of  ̂ ,  B,  C,  the  four  circles  are 

represented  by  ABC,  A'BC,  AB'C,  ABC.  The  last  three 
are  certainly  equidistant-curves  ;  the  first  may  be  a  proper 
circle,  a  horocycle  or  an  equidistant-curve. 

37.  Angle  at  which  an  equidistant-curve  meets  its 
axis. 

Fig.  100  shows  that  the  two  branches  of  an  equidistant-curve  cut 
at  infinity  at  a  finite  angle,  a  fact  that  is  not  apparent  in  the  Cayley- 

Klein  representation.     Let  APBQA  (Fig.  101)  be  the  equidistant- 
curve,  AMB  its  axis,  represented  by  the  circle  on  ̂ J5  as  diameter, 
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and  let  C  be  the  centre  of  the  circle  APB.     Draw  CX1.AB  meeting 
the  two  branches  of  the  equidistant-curve  and  its  axis  in  P,  Q,  M. 

CX Let   PAQ  =  2a;    then   CAX=a,  tana=-— .     Let  d  be  the  dis- JLA 

tance  of  the  equidistant-curve  from  its  axis. 
The  line  PX  being  _L  AB  represents  a  straight  hne  ;   it  cuts  AB 

in  X,  and  the  second  point  at  infinity  on  the  line  is  represented  by 
Y  at  infinity. 

Hence  d  =  k\og{PM,  XY)  =  k\og^,  also  d  =  k\og^. MX  QX 

Now  CX  =  ̂ ^{PX-QX); 

therefore tan  a- 
PX-QX_\ 

2MX    ~~2 

-e  V: 
sinh 

We  can  get  a  geometrical  meaning  for  this  result.  Draw  PL±PN 
and  PE\\NE  (Fig.  102).  Then  the  equidistant- curve  and  the 
parallel  and  the  axis  all  meet  at  infinity  at  E. 

Fig.  102. 

The  angle  LPE  is  then  =  a. 
Consider  a  chord  PQ  of  the  equidistant-curve :  hke  a  circle,  the 

curve  cuts  the  chord  at  equal  angles.  Keeping  P  fixed,  let  ̂   go  to 
infinity.  PQ  becomes  parallel  to  NE,  and  makes  a  zero  angle  with 
it ;  hence  the  angle  between  the  curve  and  the  axis  is  equal  to  the 
angle  LPE. 
The  explanation  of  the  apparent  contradiction  shown  in  the 

Cayley-Klein  representation,  where  the  two  branches  of  the  equi- 
distant-curve form  one  continuous  curve,  lies  in  the  fact  that  the 

angle  between  two  lines  becomes  indeterminate  when  their  point  of 
intersection  is  on  the  absolute  and  at  the  same  time  one  of  the  lines 

touches  the  absolute.  K  the  first  alone  happens  the  angle  is  zero, 
if  the  second  the  angle  is  infinite. 
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38.  Extension  to  three  dimensions. 

The  conformal  representation  of  non-euclidean  geometry 
can  be  extended  to  three  dimensions,  planes  being  repre- 

sented by  spheres  cutting  a  fundamental  sphere  orthogon- 
ally. A  proper  sphere  is  represented  by  a  sphere  which  does 

not  cut  the  fundamental  sphere,  a  hprosphere  by  a  sphere 

touching  the  fundamental  sphere,  and  an  equidistant- 
surface  by  a  sphere  cutting  the  fundamental  sphere. 

A  horocycle  is  represented  by  a  circle  touching  the  funda- 
mental sphere.  The  horocycles  which  lie  on  a  horosphere 

all  pass  through  the  same  point  on  the  sphere,  viz.  the 
point  of  contact.  This  is  exactly  similar  to  the  system  of 

circles  on  a  plane  representing  the  straight  hues  of  euclidean 
geometry,  and  thus  we  have  another  verification  that 
the  geometry  on  the  horosphere  is  eucHdean. 

This  suggests  that  the  three  geometries  can  be  repre- 
sented on  the  plane  of  any  one  of  them  by  systems  of 

circles  cutting  a  fixed  circle  orthogonally. 



CHAPTER  VI. 

"SPACE  CURVATURE"   AND  THE  PHILOSOPHICAL 
BEARING  OF  NON-EUCLIDEAN  GEOMETRY. 

1.  Four  periods  in  the  history  of  non-euclidean 
geometry. 

The  projective  and  the  geodesic  representations  of  non- 
eucUdean  geometry  have  an  important  bearing  on  the 

history  of  the  subject,  for  it  was  through  these  that  Cay  ley 

and  Riemann  arrived  independently  at  non-euclidean 
geometry. 

Klein  has  divided  the  history  of  non-eucKdean  geometry 
into  three  periods.  The  first  period,  which  contains  Gauss, 

LoBACHEVSKY  and  BoLYAi,  is  characterised  by  the  syn- 
thetic method,  and  apphes  the  methods  of  elementary 

geometry.  The  second  period  is  related  to  the  geodesic 

representation,  and  employs  the  methods  of  differential 

geometry.  It  begins  with  Riemann's  classical  dissertation, 
and  includes  also  the  work  of  Helmholtz,  Lie  and 

Beltrami  on  the  formula  for  the  line-element.  The 

third  period  is  related  to  the  projective  representation,  and 

applies  the  principles  of  pure  projective  geometry.  It 
begins  with  Cayley,  whose  ideas  were  developed  and  put 

into  relationship  with  non-euclidean  geometry  by  Klein. 
To  these  a  fourth  period  has  now  to  be  added,  which  is 
connected  with  no  representation,  but  is  concerned  with  the 
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logical  grounding  of  geometry  upon  sets  of  axioms.  It  is 

inaugurated  by  Pas(;h,  though  we  must  go  back  to  von 
Staudt  for  the  true  beginnings.  This  period  contains 

HiLBERT  and  an  Itahan  school  represented  by  Peano  and 
PiERi ;  in  America  its  chief  representative  is  Veblen. 

It  has  led  to  the  severe  logical  examination  of  the  founda- 

tions of  mathematics  represented  by  the  Principia  Mathe- 
matica  of  Russell  and  Whitehead. 

2.   "Curved  space." 
If  we  attempt  to  extend  the  geodesic  representation 

of  non-euclidean  geometry  to  space  of  three  dimensions, 
we  find  ourselves  at  a  loss,  for  the  representation  of  plane 

geometry  already  requires  three  dimensions.  It  is  quite 
a  legitimate  mathematical  conception,  however,  to  extend 

space  to  four  dimensions.  A  limited  portion  of  elliptic 
space  of  three  dimensions  could  be  represented  on  a  portion 

of  a  "  hypersphere  "  in  space  of  four  dimensions,  or  the 
whole  of  elliptic  space  of  three  dimensions  could  be  repre- 

sented completely  on  a  hypersphere,  with  the  understanding 
that  a  point  in  elliptic  space  is  represented  by  a  pair  of 
antipodal  points  on  the  hypersphere. 

A  hypersphere  is  a  locus  of  constant  curvature,  just  as 
a  sphere  is  a  surface  of  constant  curvature.  Analogy  with 

the  geometry  of  surfaces  leads  to  the  conception  of  the 

curvature  of  a  three-dimensional  locus  in  space  of  four 
dimensions,  and  just  as  the  curvature  of  a  surface  can  be 
determined  at  any  point  by  intrinsic  considerations,  such 
as  by  measuring  the  angles  of  a  geodesic  triangle,  so  by 
similar  measurements  in  the  three-dimensional  locus  we 

could,  without  going  outside  that  locus,  obtain  a  notion  of 
its  curvature. 

N.-E.  Q.  N 
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3.  Application  of  differential  geometry. 

This  was  the  path  traversed  by  Riemann  in  his  cele- 
brated Dissertation.  Space,  he  teaches  us,  is  an  example 

of  a  "  manifold  "  of  three  dimensions,  distinguished  from 
other  manifolds  by  nature  of  its  homogeneity  and  the 

possibility  of  measurement.  Space  is  unbounded,  but  not 
necessarily  infinite.  Thereby  he  expresses  the  possibility 
that  the  straight  line  may  be  of  finite  length,  though  without 

end — a  conception  that  was  absent  from  the  minds  of  any 
of  his  predecessors.  The  position  of  a  point  P  can  be 
determined  by  three  numbers  or  coordinates,  x,  y,  z  ;  and 

if  x+dx,  y  +dy,  z  +  dz  are  the  values  of  the  coordinates  for 
a  neighbouring  point  Q,  then  the  length  of  the  small  element 

of  length  PQ,  =ds,  must  be  expressed  in  terms  of  the 
increments  dx,  dy,  dz.  If  the  increments  are  all  increased 
in  the  same  ratio,  ds  will  be  increased  in  the  same  ratio, 

and  if  all  the  increments  are  changed  in  sign  the  value  of  ds 

will  be  unaltered.  Hence  ds  must  be  an  even  root,  square, 
fourth,  etc.,  of  a  positive  homogeneous  function  of  dx,  dy,  dz 
of  the  second,  fourth,  etc.,  degree.  The  simplest  hypothesis 

is  that  ds^  is  a  homogeneous  function  of  dx,  dy,  dz  of  the 
second  degree,  or  by  proper  choice  of  coordinates  ds^=& 

homogeneous  linear  expression  in  dx^,  dy^,  dz^.  For 
example,  with  rectangular  coordinates  in  ordinary  space, 

ds^=dx^+dy^-\-dz^. 

By  taking  the  analogy  of  Gauss'  formulae  for  the  curva- 
ture of  a  surface,  Riemann  defines  a  certain  function  of  the 

differentials  as  the  measure  of  curvature  of  the  manifold. 

In  order  that  congruence  of  figures  may  be  possible,  it  is 

necessary  that  the  measure  of  curvature  should  be  every- 
where the  same  ;  but  it  may  be  positive  or  zero.  (Riemann 

had  no  conception  of  Lobachevsky's  geometry,  for  which 
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the  measure  of  curvature  is  negative.)  He  gives  without 

proof  the  following  expression  for  the  line- element.  If 
'/  denotes  the  measure  of  curvature,  then 

I     (Cf.  Chap.  V.  §  35.)    If  k  is  what  has  already  been  called 

the  space-constant,  a  =  1/P. 

4.  Free  mobility  of  rigid  bodies. 

About  the  same  time  that  Riemann's  Dissertation  was 

i  being  pubUshed,  Hermann  von  Helmholtz  (1821-1894) 
was  conducting  very  similar  investigations  from  the  point 
of  view  of  the  general  intuition  of  space,  being  incited 

thereto  by  his  interest  in  the  physiological  problem  of  the 
1  localisation  of  objects  in  the  field  of  vision. 

Helmholtz  ^  starts  from  the  idea  of  congruence,  and,  by 
lassuming  certain  principles  such  as  that  of  free  mobility  of 
{rigid  bodies,  and  fnonodromy ,  i.e.  that  a  body  returns 

lunchanged  to  its  original  position  after  rotation  about  an 

|axis,  he  proves^what  is  arbitrary  in  Riemann's  investiga- 
tion—that the  square  of  the  line-element  is  a  homogeneous 

function  of  the  second  degree  in  the  differentials. 
That  the  form  of  the  function  which  expresses  the 

listance  between  two  points  is  Hmited  by  the  possibiHty 
)f  the  existence  of  congruent  figures  in  different  positions 
s  shown  as  follows.  Suppose  we  have  five  points  in  space, 
i,B,C,  D,  E.  The  position  of  each  point  is  determined  by 

hree  coordinates,  and  connecting  each  pair  of  points  there 

8  a  certain  expression  involving  the  coordinates,  which 
orresponds  to  the  distance  between  the  two  points.     Let 

/  "  Ueber  die  Thatsachen,  die  der  Geometrie  zum  Grande  liegen," 
ottinger  Nachrichten,  1868.  An  abstract  of  this  paper  was  published 
1  180G. 
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us  try  to  construct  a  figure  A'B'C'D'E'  with  exactly  the 
same  distances  between  pairs  of  corresponding  points  ag 

the  figure  ABCDE.  A'  may  be  taken  arbitrarily.  Ther 
B'  must  lie  on  a  certain  surface,  since  its  coordinates  are' 
connected  by  one  equation.  C  has  to  satisfy  two  condi- 

tions, and  therefore  Hes  on  some  curve,  and  then  D'  is 

completely  determined  by  its  distances  from  A' ,  B'  and  C 

Similarly  E'  will  be  completely  determined  by  its  distance.' 
from  A' ,  B'  and  C",  but  we  cannot  now  guarantee  thai 
the  distance  D'E'  will  be  equal  to  DE.  The  distance 

function  is  thus  limited  by  one  condition.  And  with  mor(' 
than  five  points  a  still  greater  number  of  conditions  musi, 

be  satisfied.^  | 
It  is  customary  to  speak,  as  Helmholtz  does,  of  thr 

transformation  of  a  figure  into  another  congruent  figur( 

as  a  dis'placetnent  of  a  single  rigid  figure  from  one  positioi 
to  another.  This  language  often  enables  us  to  abbreviat«; 
our  statements. 

Thus,  employing  this  language,  we  may  argue  for  the  general  ca,.. 
as  follows.  If  there  are  n  points,  the  figure  has  ̂ n  degrees  of  freedoni 

and  there  are  \n{n-\)  equations  connecting  the  distances  of  pair 
of  points.  But  a  rigid  body  has  only  6  degrees  of  freedom  ;  therefor 

the  number  of  equations  determining  the  distance-function  i 

^n(n-l)-3n  +  6  =  |(ri-3)(7i-4). 

But  it  is  necessary  to  avoid  here  a  dangerous  confusion 

Points  in  space  are  fixed  objects  and  cannot  be  conceivec 

as  altering  their  positions.  When  we  speak  of  a  motioij 
of  a  rigid  figure  we  are  thinking  of  material  bodies.  Thi 

assumption  which  Helmholtz  makes,  which  is  expressetii 

by  the  phrase,  the  "  free  mobihty  of  rigid  bodies,"  is  thui 

*  This  method  was  employed  by  J.  M.  de  Tilly,  Bruxelles^  Mem.  Arr" 
Roy.  (8vo  collection),  47  (1893),  to  find  the  expression  for  the  distun 
function  without  using  infinitesimals. 
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mply  an  assumption  that  there  is  such  a  thing  as  absolute 
ipace. 

While,  psychologically,  the  idea  of  congruence  may  be 
ased  on  the  idea  of  rigid  bodies,  if  it  were  really  dependent 
pon  the  actual  existence  of  rigid  bodies  it  would  have  a 

ery  insecure  foundation.  Not  only  are  the  most  solid 
)odies  within  our  experience  elastic  and  deformable,  but 

nodern  researches  in  physics  have  given  a  high  degree  of 
)robability  to  the  conception  that  all  bodies  suffer  a  change 
n  their  dimensions  when  they  are  in  motion  relative  to 

the  aether.  As  all  bodies,  including  our  measuring  rods, 
suffer  equally  in  this  distortion,  however,  we  can  never  be 
conscious  of  it. 

5.  Continuous  groups  of  transformations. 

Helmholtz's  researches,  though  of  great  importance  in 
the  history  of  the  foundations  of  geometry,  lacked  the 
thoroughness  which  we  would  have  expected  had  the  author 
been  a  mathematician  by  profession. 

The  whole  question  was  considered  over  again  from  a 

severely  mathematical  point  of  view  by  Sophus  Lie^ 
(1842-1899),  who  reduced  the  idea  of  motions  to  trans- 

formations between  systems  of .  coordinates,  and  congruence 
to  in  variance  under  such  transformations.  The  underlying 

idea  is  that  of  a  group  of  transformations. 

Suppose  we  have  a  set  of  operations  R,  S,  T,  ...  such  that 
(1)  the  operation  R  followed  by  the  operation  S  is  again 
an  operation  (denoted  by  the  product  RS)  of  the  set,  and 

(2)  {RS)  T=^R {ST),  then  the  set  of  operations  is  said  to  form 

a  group.    The  operation,  if  it  exists^  which  leaves  the  operand 

1  S.  Lie,  Theorie  der  Transformationsgruppen,  vol.  iii.  (Leipzig,  1893), 

Abt.  V.  Kap.  20-24  ;  and  "  tjber  die  Grundlagen  der  Geometrie,"  Leipziger Berichte,  42  (1890). 
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unaltered,   is   called   the   identical  trmisformation,   and 
denoted  by  I. 

Thus,  if  R,  S,  T  are  the  operations  of  rotation  about  t 

fixed  point  through  1 ,  2  and  3  right  angles,  the  operations 

1,  R,  S,  T  form  a  group,  and  this  is  a  sub-group  of  the 
group  consisting  of  the  8  operations  of  rotation  through 

every  multiple  of  j . 

The  transformations  which  Lie  considers  are  infinitesimal 
transformations,  and  the  groups  are  continuous  groups, 

such  as  the  group  of  all  the  rotations  about  a  fixed  point. 
All  the  transformations  which  change  points  into  points, 
straight  lines  into  straight  lines,  and  planes  into  planes 

form  a  continuous  group  which  is  called  the  general  pro- 
jective group. 

The  assumption  from  which  Lie  starts  in  his  geometrical 

investigation  is  the  "  axiom  of  free  mobility  in  the  infini- 
tesimal "  : 

"  If,  at  least  within  a  certain  region,  a  point  P  and  a  line- 
element  through  P  are  fixed,  continuous  motion  is  still 

possible,  but  if,  in  addition,  a  plane-element  through  P  is 

fixed,  no  motion  is  possible." 
Starting  then  with  the  group  of  projective  transforma- 

tions, he  determines  the  character  of  the  transformations 

so  that  this  assumption  may  be  verified,  and  he  proves  that 

they  form  a  group  which  leaves  unaltered  either  a  non-ruled 
surface  of  the  second  degree  (real  or  imaginary  ellipsoid, 
hyperboloid  of  two  sheets  or  elliptic  paraboloid),  or  a  plane 
and  an  imaginary  conic  lying  on  this  plane.  This  invariant 

figure  is  just  the  Absolute.  The  motions  of  space,  therefore, 

form  a  sub-group  of  the  general  projective  group  of  point- 
transformations  which  leave  the  Absolute  invariant.     And 
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so,  without  Helmholtz's  axiom  of  monodromy,  but  using 
a  definite  assumption  of  free  mobility,  Lie  establishes  that 

the  only  possible  types  of  metrical  geometry  are  the  three 

m  which  the  absolute  is  a  real  non-ruled  quadric  (hyperbolic 
geometry),  an  imaginary  quadric  (elliptic  geometry),  and 
a  plane  with  an  imaginary  conic  (euclidean  geometry). 

6.  Assumption  of  coordinates. 

There  are  several  points  on  which  the  investigations  of 
Riemann,  Helmholtz  and  Lie  admit  of  criticism.  The 

outstanding  difl&culty  which  strikes  one  at  once  lies  in  the 
use  of  coordinates.  How  can  we  define  the  coordinates  of 

a  point  before  we  have  fixed  the  idea  of  congruence  ?  This 

question  has  been  settled  by  an  appeal  to  the  famous 

procedure  of  von  Staudt  (1798-1867),  the  founder  of 

projective  geometry.  He  has  shown ^  how,  by  means  of 
repeated  application  of  the  quadrilateral-construction  for 
a  harmonic  range  (see  Chap.  III.  §  5),  numbers  may  be 
assigned  to  all  the  points  of  a  line.  This,  and  other 
questions  involved,  have  now  been  solved  by  the  modern 

procedure  of  Pasch,  Hilbert  and  the  Italian  school  repre- 
sented by  Fieri.  This  procedure,  which  marks  a  return  to 

the  classical  method  of  Euclid,  consists  in  developing 
geometry  as  a  purely  logical  system  deduced  from  an 

appropriately  chosen  system  of  axioms  or  assumptions. 

7.  Space-curvature  and  the  fourth  dimension. 

A  misunderstanding,  which  is  especially  common  among 

philosophers,  has  grown  around  Riemann's  use  of  the 

term     "  curvature."       Helmholtz,     whose    philosophical 

1 G.  K.  Ch.  V.  Staudt,  Geometrie  der  Lage,  Niirnberg,  1847,  and  Beitrdge 
zur  Geometrie  der  Lage,  Niirnberg,  1856-57-60. 
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writings  ̂   are  much  better  known  than  his  mathematical 
researches,  has  unfortunately  contributed  largely  to  this 

error.  The  use  of  the  term  "  space-curvature  "  has  led 
to  the  idea  that  non-euclidean  geometry  of  three  dimensions 
necessarily  implies  space  of  four  dimensions,  for  curvature 

of  space  has  no  meaning  except  in  relation  to  a  fourth 
dimension.  But  when  we  assert  that  space  has  only  three 

dimensions,  we  thereby  deny  that  space  has  four  dimensions. 
The  geometry  of  this  space  of  three  dimensions,  whether 

it  is  euclidean  or  non-euclidean,  follows  logically  from 
certain  assumed  premises,  one  of  which  will  certainly  be 
equivalent  to  the  statement  that  space  has  not  more  than 

three  dimensions  (cf.  Chap.  II.  §  14,  footnote).  The  origin 
of  the  fallacy  lies  in  the  failure  to  recognise  that  the 

geometry  on  a  curved  surface  is  nothing  but  a  representa- 

tion of  the  non-euclidean  geometry. 
This  is  brought  out  still  more  clearly  by  the  fact  that, 

as  non-euclidean  geometry,  elhptic  or  hyperbohc,  can  be 
represented  on  certain  curved  surfaces  in  euclidean  space, 

the  converse  is  also  true,  that  euchdean  geometry  can  be 

represented  on  certain  curved  surfaces  in  elliptic  or  hyper- 
bolic space  ;  and,  of  course,  we  do  not  consider  the  euclidean 

plane  as  being  a  curved  surface. 

While,  therefore,  the  conception  of  non-euchdean  space 

of  three  dimensions  in  no  way  implies  necessarily  space- 
curvature  or  a  fourth  dimension,  it  is  still  an  interesting 

speculation  to  suppose  that  we  exist  really  in  a  space  of 
four  dimensions,  but  with  our  experience  confined  to  a 

certain  curved  locus  in  this  space,  just  as  Helmholtz's 
"  two-dimensional  beings  "  were  confined  to  the  surface 

*  H.  V.  Helmholtz,  "  The  origin  and  meaning  of  geometrical  axioms," 
Mind,  1  (IS7()),  3  (1878);  also  in  Popular  Scientific  Lectures  (London, 
1881),  vol.  ii. 
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of  a  sphere  in  space  of  three  dimensions,  and  acquired  in 

this  way  the  idea  that  their  geometry  is  non-eucUdean. 

W.  K.  Clifford  ̂   has  gone  further  than  this  and  imagined 
that  the  phenomena  of  electricity,  etc.,  might  be  explained 
by  periodic  variations  in  the  curvature  of  space.  But  we 

cannot  now  say  that  this  three-dimensional  universe  in 
which  we  have  our  experience  is  spaxie  in  the  old  sense,  for 

space,  as  distinct  from  matter,  consists  of  a  changeless  set 
of  terms  in  changeless  relations.  There  are  two  alternatives. 

We  must  either  conceive  that  space  is  really  of  four  dimen- 
sions and  our  universe  is  an  extended  sheet  of  matter 

existing  in  this  space,  the  aether  ̂   if  we  like  ;  and  then, 
just  as  a  plane  surface  is  to  our  three-dimensional  intelH- 
gence  a  pure  abstraction,  so  our  whole  universe  will  become 
an  ideal  abstraction  existing  only  in  a  mind  that  perceives 

space  of  four  dimensions — an  argument  which  has  been 

brought  to  the  support  of  Bishop  Berkeley  !  ̂  Or,  we  must 
resist  our  innate  tendencies  to  separate  out  space  and 

bodies  as  distinct  entities,  and  attempt  to  build  up  a 

monistic  theory  of  the  physical  world  in  terms  of  a  single 
set  of  entities,  material  points,  conceived  as  altering  their 

relations  with  time.*  In  either  case  it  is  not  space  that  is 
altering  its  qualities,  but  matter  which  is  changing  its  form 
or  relations  with  time. 

1  The  Common  Sense  of  the  Exact  Sciences  (London,  1885),  chap.  iv.  §  19. 

2  Cf.  W.  W.  Rouse  Ball,  "  A  hypothesis  relating  to  the  nature  of  the 
ether  and  gravity,''  Messenger  of  Math.,  21  (1891). 

"  See  C.  H.  Hinton,  Scientific  Romances,  First  Series,  p.  31  (London, 
1886).  For  other  four-dimensional  theories  of  physical  phenomena 
see  Hinton,  The  Fourth  Dimension  (London,  1904). 

^  Cf.  A.  N.  Whitehead,  "  On  mathematical  concepts  of  the  material 
world,"  Phil.  Trans.,  A  205  (1906). 
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8.  Proof  of  the  consistency  of  non-euclidean  geometry. 
The  characteristic  feature  of  the  second  period  in  the 

history  of  non-eucUdean  geometry  is  brought  out  for  the 

first  time  by  Beltrami  ^  (1835-1900),  who  showed  that 

Lobachevsky's  geometry  is  represented  upon  a  surface  of 
constant  curvature.  This  is  historically  the  first  euclidean 

representation  of  non-euclidean  geometry,  and  is  of  import- 
ance in  providing  a  proof  of  the  consistency  of  the  non- 

euclidean  systems.  While  the  development  of  hyperbolic 
geometry  in  the  hands  of  Lobachevsky  and  Bolyai  led  to 
no  apparent  internal  contradiction,  a  doubt  remained  that 

inconsistencies  might  yet  be  discovered  if  the  investigations 

were  pushed  far  enough.  This  doubt  was  removed  by 

Beltrami's  concrete  representation  by  means  of  the  pseudo- 
sphere,  which  reduced  the  consistency  of  non-euclidean 
geometry  to  depend  upon  that  of  euclidean  geometry, 

which  everyone  admits  to  be  self- consistent. 

Any  concrete  representation  of  non-eucHdean  geometry 
in  euclidean  space  can  be  applied  with  the  same  object. 
In  fact,  the  Cayley  representation  is  more  suitable  for  this 

purpose,  since  it  affords  an  equally  good  representation  of 

three-dimensional  geometry.  The  advantage  of  Beltrami's 
representation  is  that  distances  and  angles  are  truly  repre- 

sented, and  the  arbitrariness  which  may  perhaps  be  felt 

in  the  logarithmic  expressions  for  distances  and  angles 
is  eliminated. 

At  the  present  time  no  absolute  test  of  consistency  is 

^  E.  Beltrami,  Saggio  di  interpretazione  della  geometria  non-euclidea, 
NaplcH,  18C8.  Beltrami  also  showed  that,  since  the  equation  of  a  geodesic 
in  geodesic  coordinates  is  linear,  the  surface  can  be  represented  on  a 
plane,  geodesies  being  represented  by  straight  lines,  and  real  points  being 
represented  by  points  lying  within  a  fixed  circle.  He  thus  gave  the  tran- 

sition from  the  geodesic  to  the  projective  representation  of  Cayley. 
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known  to  exist,  and  the  only  test  which  we  can  apply  is  to 
construct  a  concrete  representation  by  means  of  a  body 

of  propositions  whose  consistency  is  universally  granted. 

In  the  case  of  non-euclidean  geometry  the  test  which  has 
just  been  applied  suffices  to  prove  the  impossibility  of 

demonstrating  Euclid's  postulate.  For,  if  Euclid's  postu- 
late could  be  mathematically  or  logically  proved,  this 

would  establish  an  inconsistency  in  the  non-euclidean 
systems  ;  but  any  such  inconsistency  would  appear  again 
in  the  concrete  representation.  The  mathematical  truth 

of  the  euchdean  and  the  non-euclidean  geometries  is  equally 
strong. 

9.  Which  is  the  true  geometry? 
There  being  no  a  priori  means  of  deciding  from  the 

mathematical  or  logical  side  which  of  the  three  forms  of 

geometry  does  in  actual  fact  represent  the  true  relations 
of  things,  three  questions  arise  : 

(1)  Can  the  question  of  the  true  geometry  be  decided 

a  posteriori,  or  experimentally  ? 

(2)  Can  it  be  decided  on  philosophical  grounds  ? 

(3)  Is  it,  after  all,  a  proper  question  to  ask,  one  to  which 
an  answer  can  be  expected  ? 

10.  Attempts  to  determine  the  space-constant  by 
astronomical  measurements. 

Let  us  consider  what  form  of  experiment  we  can  contrive 

to  determine,  if  possible,  the  geometrical  character  of 

space.  Essentially  it  must  consist  in  the  measurements 
of  distances  and  angles,  the  sort  of  triangulation  which  is 

employed  to  determine  the  figure  of  the  earth,  but  on  a 
prodigiously  larger  scale.     If  we  could  measure  the  angles 
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[vi.  10 of  some  very  large  triangle,  the  difference  between  their 

sum  and  two  right  angles  might  give  us  the  necessary  data 

for  determining  the  value  of  the  space-constant.  We  do 
not  say  that  such  an  experiment  will  give  us  the  necessary 
data,  for,  as  we  shall  see  presently,  the  whole  argument  is 
destroyed  by  a  vicious  circle  (§  12)  ;  but  let  us  assume,  for 

the  sake  of  illustrating  the  argument,  that  the  experiment 
can  be  made,  and  see  to  what  conclusions  it  leads. 

The  largest  triangles,  whose  vertices  are  all  accessible 
and  whose  angles  we  can  measure  directly,  are  far  too  small 
to  allow  of  any  discrepancy  being  observed.  We  must 

turn  to  astronomy  to  provide  us  with  triangles  of  a  suitable 
size.  The  largest  triangles,  of  which  two  vertices  are 
accessible,  are  those  determined  by  a  star  and  the  observer 

in  two  different  positions. 

Let  /S  be  a  star  and  E^,  E.^  two  positions  of  the  earth  at 

opposite  ends  of  a  diameter  of  its  orbit,  C  the  sun  ;   and 

Fig.  103. 

let  CSLEiE^.  The  angle  E^SC,  subtended  by  the  earth's 
radius  R  at  the  star,  is  called  the  parallax  of  the  star ; 

knowing  this  angle  and  applying  euclidean  geometry,  we 

can  find  the  star's  distance. 
There  are  two  methods  of  determining  the  angle  E^SC. 

The  first,  or  direct  method,  is  to  measure  the  angle  SEfi  by 
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the  transit  circle.     Then  the  parallax  is,  by  assumption 

of  euclidean  geometry,  the  angle  -^  -  SE-fi.     The  second 

method,  that  of  Bessel,  is  to  compare  the  position  of  the 
star  S  with  those  of  neighbouring  stars  which,  from  their 
faintness  and  other  considerations,  are  believed  to  be  much 

farther  away  than  S.  Considering  S'  as  at  infinity,  and 

again  assuming  euchdean  geometry,  E^S'  \\  CS  and  the 
parallactic  angle  E^SC  =S'EiS. 

But  on  the  hypothesis  that  geometry  is  hyperbohc,  these 
two   methods   will   give  different  results,   and  the  angle 

SEjC  +S'EiS  is  in  fact  not  equal  to  ̂  ,  but  is  the  parallel- 

angle  corresponding  to  the  distance  jR.     Let  W  be  the  small 

difference  (|  -  SEfi)  -  S'E^S  ;  then 

2e=l-n(R), 
Also 

e~  A=tanm(-R)  =tan(^  -0)  =  {1  -tan  0)/(l  +tan  0) ; 
therefore 

R/k==\og,{(l  +  tan  e)/{l  -  tan  a)}  =  2  tan  0,  approx. 
Now  we  have  records  of  the  determination  of  the  star 

a  Centauri  by  both  methods.  An  early  measurement  by 

the  direct  method  yielded  the  value  I'M",  while  Bessel's 
method  gives  the  value  0-76"±0-01".  Taking  26  therefore 
equal  to  O'SS",  we  have  tan  ̂   =92  x  IQ-^,  and  k/R  =  bbOOOO 
approx.  The  direct  method  is  not  susceptible  of  very 

great  accuracy,  and  the  value  1*14"  for  the  parallax  is 
probably  much  too  large,  but  even  from  these  data,  if  we 
admit   the   soundness    of    our    argument,    we   should   be 



206  PHILOSOPHICAL  fvi.  10 

warranted  in  stating  that  the  space-constant  must  be  at 

least  half  a  million  times  the  radius  of  the  earth's  orbit. 
The  data,  so  far  as  they  go,  seem  to  favour  the  hypothesis 

of  hyperbolic  geometry  rather  than  that  of  elliptic,  since 
the  calculation  leads  to  a  real  value  for  k. 

The  hypothesis  of  elliptic  geometry,  however,  leads  to 
the  result  that  a  star  would  be  visible  in  opposite  directions 

imless  there  is  some  absorption  of  light  in  space.  ̂   If  we 
assume  that  the  Hght  from  a  star  which  is  at  a  distance  of 
hirh  (i.e.  half  the  total  length  of  the  straight  line  in  elliptic 

space)  is  so  diminished  by  absorption  that  the  star  becomes 
invisible,  then  the  parallax  of  the  farthest  visible  stars, 

^  measured  by  the  direct  method,  would,  as  on  the  euclidean 
hypothesis  without  absorption,  be  zero.  And  if  the  light 
is  totally  absorbed  in  a  distance  of  say  \irk,  the  case  would 

be  similar  to  that  on  the  hyperbolic  hypothesis,  or  on  the 

^  assumption  of  absorption  in  euclidean  space.  Thus,  if 
we  admit  the  hypothesis  of  absorption  of  light  in  free  space, 
it  becomes  impossible  to  draw  any  definite  conclusion  as 

to  the  nature  of  actual  space,  except  perhaps  that  the 

space- constant  is  very  large. 
The  direct  appeal  to  experiment  therefore  leads  only  to 

the  conclusion  that  the  space-constant,  if  not  infinite,  must 
be  very  large  compared  with  any  of  the  usual  units  of 

length,  and  is  very  large  in  comparison  with  the  distances 
which  we  have  ordinarily  to  deal  with.  These  experiments 

do  not  contradict  euclidean  geometry,  but  they  only  verify 
it  within  the  limits  of  experimental  error.     No  amount  of 

1  A  complication,  however,  arises  owing  to  the  finite  rate  of  propagation 
of  light.  The  two  images  of  the  star  seen  in  opposite  directions  will 
represent  the  star  at  different  times,  and  in  general  therefore  in  different 
positions,  so  that,  even  if  there  were  no  absorption  of  light,  the  appearance 
of  the  sky  would  not  necessarily  be  symmetrical.  (Cf.  W.  B.  Frankland, 
Math.  Gazette,  July  1913.) 
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experimental  evidence  of  this  kind  can  ever  prove  that  the 

geometry  of  space  is  strictly  euclidean,  for  there  will  always 
be  a  margin  of  error.  On  the  other  hand,  so  far  as  we  have 
gone,  it  remains  conceivable  that  further  refinements  in  our 

instruments  and  more  accurate  information  regarding  the 
laws  of  absorption  of  light  might  enable  us  to  establish  an 

U'pjper  limit  to  the  value  of  the  space-constant,  and  thus 
demonstrate  that  the  geometry  of  actual  space  is  non- 
euclidean. 

11.  Philosophy  of  space. 
This  way  of  regarding  experience  as  the  source  of  our 

spatial  ideas  is  in  striking  contrast  to  Kant's  attitude 
towards  space,  which  is  expressed  by  his  dicta  :  that  space 
is  not  an  empirical  concept  derived  from  external  experience, 
but  a  framework  already  existing  in  the  mind  without  which 

no  external  phenomena  would  be  possible. ^  From  the  new 
point  of  view,  geometry  applied  to  actual  space  has  become 

an  experimental  science,  or  a  branch  of  applied  mathe- 
matics. We  are  not  forced  to  accept  its  axioms,  but  shall 

only  do  so  when  we  find  them  convenient  and  in  sufficiently 

close  agreement  with  the  facts  of  experience.  Since  Kant's 
time  the  intuitive  has  become  discredited.  We  now  know 

that  there  are  things  which  formerly  appeared  to  be  intuitive 
which  are  in  fact  false.  Thus,  it  was  formerly  believed  that 

every  continuous  function  possessed  a  differential  co- 
efl&cient ;  the  proposition  appeared,  indeed,  to  be  intuitive. 
But  Weierstrass  gave  an  example  which  showed  that  the 
belief  was  false.  In  the  extreme  empiricist  view  the 

parallel-postulate  has  to  be  ranked  with  the  law  of  gravita- 
tion as  a  law  of  observation,  which  is  verified  within  the 

limits  of  experimental  error. 

^  I.  Kant,  Critique  of  Pure  Reason,  chap.  i. 
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As  regards  the  second  question,  therefore,  the  powers 
of  philosophy  have  been  narrowly  circumscribed  by  the 
stricture  laid  upon  intuition.  Obviously  the  fact  that  a 

coherent  mental  picture  can  be  formed  of  euclidean  space 
does  not  constitute  a  proof  that  this  is  the  form  of  actual 

space,  since  the  same  thing  applies  to  the  non-euclidean 
systems.  But  the  philosopher  may  say  he  has  an  intuition 
of  euclidean  space.  What  does  this  mean  ?  Has  he  an 

intuition  that  the  sum  of  the  angles  of  a  triangle  is  equal 
to  two  right  angles  ?  Does  he  perceive  intuitively  that 
two  straight  hues  which  are  both  perpendicular  to  a  third 
remain  equidistant  ?  What  intuitions  or  beliefs  would 

the  philosopher  have  had  if  he  had  been  deprived  of  powers 
of  locomotion  and  the  sense  of  touch,  and  been  provided 

with  only  one  eye  ?  He  would  believe,  because  his  eye 
told  him  so,  that  two  railway  Unes  converge  to  a  point,  that 

objects  change  their  shapes  when  they  are  moved  about ; 
and  he  would  perhaps  demonstrate  that  the  sum  of  the 

angles  of  a  triangle  is  greater  than  two  right  angles.  His 
intuitions  are  merely  beliefs,  and  perhaps  not  even  true 
ones. 

We  have  really  to  distinguish  between  different  kinds  of 

space.  The  space  of  experience  is  brought  to  our  knowledge 

through  the  senses  principally  of  sight  and  touch,  and  is  a 

composite  of  two  spaces,  "  visual  space  "  and  "  tactual 

space."  Pure  visual  space,  which  is  the  limited  field  of 
our  imaginary  one-eyed  sessile  philosopher,  is  a  crude 

elliptic  two-dimensional  space ;  ̂  the  three-dimensional 
form  of  tactual  space  is  conditioned  probably  in  part  by 

the  semi- circular  canals  of  the  ear.     From  this  composite 

^  Cf.  Thomas  Reid,  An  Inquiry  into  the  Human  Mind,  Edinburgh,  1764, 
chap.  vi.  "  On  Seeing,"  §  9  "  Of  the  geometry  of  visibles." 
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space,  which  is  far  from  being  the  beautiful  mathematical 
continuum  which  we  have  arrived  at  after  generations  of 

thought,  we  get  by  abstraction  a  conceptual  space  which  is 
conditioned  only  by  the  laws  of  logic,  but  to  which  we  find 
it  convenient  to  ascribe  the  particular  form  which  we  call 

euclidean  space,  for  the  reason  that  this  is  the  simplest  of 
the  logically  possible  forms  which  correspond  with  sufficient 
closeness  to  the  space  of  experience.  Whether  there  is, 

besides  these,  an  intuitional  space,  we  shall  leave  to  philo- 
sophy to  settle  if  it  can.  We  may,  perhaps,  leave  Kant  in 

possession  of  an  a  priori  space  as  the  framework  of  his 
external  intuitions,  but  this  space  is  amorphous,  and  only 
experience  can  lead  us  to  a  conception  of  its  geometrical 

properties. 

12.  The  inextricable  entanglement  of  space  and 
matter. 

A  further  point — and  this  is  the  "  vicious  circle  "  of  which 
we  spoke  above — arises  in  connection  with  the  astronomical 

attempts  to  determine  the  nature  of  space.  These  experi- 
ments are  based  upon  the  received  laws  of  astronomy  and 

optics,  which  are  themselves  based  upon  the  eucHdean 

assumption.  It  might  well  happen,  then,  that  a  discre- 
pancy observed  in  the  sum  of  the  angles  of  a  triangle  could 

admit  of  an  explanation  by  some  modification  of  these  laws, 

or  that  even  the  absence  of  any  such  discrepancy  might 

still  be  compatible  with  the  assumptions  of  non-euclidean 
geometry. 

"  All  measurement  involves  both  physical  and  geometrical 
assumptions,  and  the  two  things,  space  and  matter,  are  not  given 
separately,  but  analysed  out  of  a  common  experience.  Subject 
to  the  general  condition  that  space  is  to  be  changeless  and  matter 
to  move  about  in  space,  we  can  explain  the  same  observed  results 

N.-E.  G.  O 
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in  many  different  ways  by  making  compensatory  changes  in 
the  qualities  that  we  assign  to  space  and  the  qualities  we  assign 
to  matter.  Hence  it  seems  theoretically  impossible  to  decide  by 

any  experiment  what  are  the  qualities  of  one  of  them  in  distinction 

from  the  other."  ̂  

It  was  on  such  grounds  that  Poincare  ̂   maintained  the 

essential  impropriety  of  the  question,  "  Which  is  the  true 
geometry  ?  "  In  his  view  it  is  merely  a  matter  of  con- 

venience. Facts  are  and  always  will  be  most  simply 
described  on  the  euclidean  hypothesis,  but  they  can  still 

be  described  on  the  non-euclidean  hypothesis,  with  suitable 
modifications  of  the  physical  laws.  To  ask  which  is  the 

true  geometry  is  then  just  as  unmeaning  as  to  ask  whether 

the  old  or  the  metric  system  is  the  true  one.  The  con- 
clusion thus  arrived  at  by  Poincare  is  quite  akin  to  the 

modern  doctrine  in  physics  expressed  by  the  Principle  of 
Relativity.  Just  as,  according  to  this  doctrine,  it  is 

impossible  by  any  means  to  obtain  a  knowledge  of  absolute 
motion,  so,  according  to  Poincare,  it  is  beyond  our  power 

to  obtain  a  knowledge  of  absolute  space. 

1  Mr.  C.  D.  Broad,  with  whom  I  have  discussed  this  chapter,  has  put 
this  point  of  view  so  well  that  I  quote  his  words. 

2  H.  Poincare,  La  science  et  Vhypothese  (Paiis,  1902),  chap.  v. ;  EngUsh 
translation  by  W.  J.  Greenstreet,  London,  1905. 



CHAPTER  VII. 

RADICAL  AXES,   HOMOTHETIC  CENTRES  AND 
SYSTEMS   OF  CIRCLES. 

1.  Common  points  and  tangents  to  two  circles. 
Two  circles  intersect  in  four  points  and  have  four  common 

tangents.  Various  cases  arise  according  as  these  points 
and  Unes  are  coincident  or  imaginary  in  pairs. 

In  hyperboHc  geometry  two  equidistant-curves  whose 
axes  intersect  have  their  common  points  and  tangents 
all  real.  A  proper  circle  which  cuts  both  branches  of  an 

equidistant-curve  has  four  real  common  tangents  with  it. 
If  it  cuts  only  one  branch,  two  of  the  common  points  and 

two  of  the  common  tangents  are  imaginary.  Two  proper 
circles  cannot  have  more  than  two  of  their  common  points 
real ;  their  common  tangents  are  then  two  real  and  two 

imaginary.  If  two  proper  circles  do  not  intersect,  their 
common  tangents  are  all  real  or  all  imaginary.  The  case 

of  four  real  common  points  and  four  imaginary  common 
tangents  cannot  occur  in  hyperbolic  geometry ;  two  real 

and  two  imaginary  common  points  can  only  occur  along 
with  two  real  and  two  imaginary  common  tangents. 

In  elliptic  geometry,  if  two  circles  intersect  in  two  real 

and  two  imaginary  points,  they  have  two  real  and  two 
imaginary  common  tangents.  If  each  lies  entirely  outside 
the  other,  their  common  points  are  all  imaginary  and  their 
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common  tangents  are  all  real.  The  absolute  polars  of  two 
such  circles  have  four  real  common  points  and  their  common 

tangents  all  imaginary.  If  one  lies  entirely  within  the  other, 
their  common  points  and  tangents  are  all  imaginary.  The 
case  of  four  real  common  points  and  four  real  common 

tangents  cannot  occur  in  elliptic  geometry. 

2.  The  power  of  a  point  with  respect  to  a  circle. 

Let  0  be  a  fixed  point  in  the  plane  of  a  proper  circle  with 

centre  C  and  radius  a.     Through  0  draw  any  secant  cutting 

Fia.  104. 

the  circle  in  P,  Q.    Draw  CN lOPQ.     Let  OC=d  and 
COP  =  0,  OP=r,  OQ=r\  so  that 

ON  =  h{r'+r),PN  =  i(r'-r). 

Now  1  coad=  cos  CN  cos  h  (r'  +  r), 

cos  a  =  cos  CN  cos  J  {r'  -  r). 

^,       „         cos  d    cos  i  (/  +r)     1  -  tan  hr  tan  1/  . 
Thereiore       =      ~r^—, —  .  =  q — i — i — t — 1~/ ' 

cos  a    cos  h(r  -r)     1  +tan  Jr  tan  W 

therefore  tan  .Jr  tan  ̂ r'  =  const.  =  tan  \(d+  a)  tan  i {d  -  a). 

1  Elliptic  geometry  is  taken  as  the  standard  case,  and  the  space -con- 
stant k  is  taken  as  the  unit  of  length. 
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In  hyperbolic  geometry  tan  is  replaced  by  i  tanh.  This 
product  may  be  called  tbe  poiver  of  the  point  0  with  respect 
to  the  circle.  It  is  positive  if  0  is  outside,  negative  if  0  is 
inside  the  circle.  In  the  former  case,  if  t  is  the  length  of 
the  tangent  from  0  to  the  circle,  the  power  of  0  is  equal 

to  tan^.U. 

3.  Power  of  a  point  with  respect  to  an  equidistant- 
curve. 

(1)  Let  the  secant  cut  one  branch  of  the  curve  in  P,  Q, 

i.e.  in  hyperbolic  geometry  the  secant  does  not  cut  the 

Fig.  105. 

axis  of  the  curve,   in    elliptic   geometry   neither  of   the 
finite  segments  OP,  OQ  cuts  the  axis. 

Let  M  be  the  middle  point  of  PQ,  and  draw  MN  _L  the 
axis  ;  then  MN  is  also  _L  PQ.  Draw  OH  ±  the  axis.  Let 

OH=d,  MN=x,OP=r,  OQ=r',  so  that  OM  =  i{r'+r), 
PM  =  |(/-r). 

Then,  from  the  trirectangular  quadrilaterals  OHNM, 
PKNM, 

cos  h  (r'  +  r)  sin  x,    sin  a  =  cos  J  (r'  -  r)  sin  x  ; 

sin  d  _  cos  J  (/  +  r)  _  1  -  tan  Jr  tan  Jr' . 
sin  a    cos  J  (r'  -r)     1  +  tan  |r  tan  J  r' ' 

therefore  tan  Jr  tan  Jr'  =  const.  =  tan  J  (a  -  (Z)/tan  ̂   (<^  +  ̂ )- 

sma 

therefore 
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[vn.  3 (2)  Let  the  secant  cut  both  branches  of  the  curve,  i.e. 

the  point  of  intersection  A  with  the  axis  is  real  and  one 

of  the  segments  OP,  OQ  cuts  the  axis. 

FIG.  106. 

Let  OAN  =  0,  ON  =d,  OP=r,  OQ  =r',  so  that 

OA  =  ̂ {r'+r),  PA  =  }^(r'  -r). 

sin  d=8m^  (r'  +  r)  sin  6, 

sin  a  =  sin  ̂   (/•'  -  r)  sin  0. 

sin  d    sin  hir'  +  r)    tan  hr'  +  tan  ir 

Then 

Therefore         -. —  = 

Therefore 

sin  a    sin  i  (r'  -  r)    tan  hr'  -  tan  ̂ r " 

tan  Jr  _  tan  ̂ {d-a) 

tan  .J/  ~  *  ~  tan  f(d  +  a)' 
Note.  Figs.  105  and  106  have  boen  drawn  for  tho  case  of 

hyperbolic  geometry.  In  elliptic  geometry  the  equidistant-curve 
is  convex  towards  the  axis.  In  Fig.  105,  in  this  case,  either 
OH  <  PK  or  O  lies  between  P  and  Q.     If  0  is  the  same  point  in  the 
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two  figures,  the  values  of  tan  |r /tan  ̂ r' and  tanirtan^r',  respec- 
tively for  the  secant  which  cuts  and  the  secant  which  does  not  cut 

the  axis,  are  equal. 

Hence,  if  a  variable  line  through  a  fixed  point  0  cuts  a  circle 
in  P,  Q  and  its  axis  in  A,  either  the  ratio  or  the  product  of 

the  tangents  of  half  the  segments  OP,  OQ  is  constant,  according 
as  {1)  one,  or  (2)  both  or  neither  of  the  segments  contains  the 
point  A.  If  OT  is  a  tangent  to  the  curve,  the  constant  is 

equal  to  tan^  lOT,  and  is  called  the  power  of  the  point  0  with 
respect  to  the  circle. 

The  two  cases  are  simply  explained  in  elliptic  geometry.  Let 

the  dotted  circle  A  A'  represent  the  axis  of  the  circle,  which  is 

Fig.  107. 

represented  in  the  diagram  by  a  pair  of  circles.  The  secant  cuts 

the  two  circles  in  P,  P' ;  Q,  Q' ;  and  the  axis  in  A,  A\  These  pairs 
of  course  represent  single  points. 

^^'  =  PP'=^^'  =  7r; 

therefore  OQ'  =  7r-0Q. 

Therefore     tan  lOP  tan  ̂ OQ  =  tan  ̂ OP  cot  WQ'  =  -^^"  ̂ ^, . 

tan  lOQ 
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4.  Reciprocally,  if  P  is  a  variable  point  on  a  fixed  line  PNy 

Fia.  108. 

and  the  tangents  PT,  PT  from  P  to  a  fixed  circle  make 

angles  6,  0'  with  PN,  we  have  in  Fig.  108, 
sin  d=smr  sin  ̂ {0'  +  0), 

sin  a  =  smr  sin  ̂ (0'  -  6), 

sin  ̂   _ sin  .1  {6'  +0)_  tan  W  +tar\hO  , 

sin  a  "sin  h  (6'  -  6)  "tan  ̂ 0'  -  tan  le  ' 
whence tan  ijO  _  tan  J  (d  -  a) 

y  —  const.  = 

tani^' tan  ̂ (d+a)' 
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This  result  is  true  also  in  euclidean  geometry,  the  constant 

reducing  to  {d  -a)/(d  +  a). 
For  an  equidistant-curve,  let  the  line  cut  the  axis  in  N 

at  an  angle  a  (Fig.  109). 

Then,  6  and  0'  being  taken  positively, 

cos  a  =  cos  X  sin  I  (0  -  0'), 
cos  a  =  cos  .T  sin  ̂   (^  +  6') ; 

whence,  as  before,  ,   ^  is  constant. tan  2^ 

If  the  angles  6,  0'  are  measured  in  the  same  sense,  then 
for  0'  we  must  put  tt  -0',  and  we  have 

tan  JO  tan  |6'  =  const. 

If,  the  angles  0,  0'  being  measured  in  the  same  sense, 
both  or  neither  of  them  contains  the  hne  joining  P  to  the 

centre,  then  we  have  (Fig.  110) 

LPC  =  h(0'  +  '^  +  0)=^  +  h{0'  +  0), 

NPC=~-h(e'+e), 

TPC=hTPr=U7r-e'+o)=Z'-i{0'-e), 

Fig.  110. 
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[vii.  5 Then  sin  d=smr  cos  h  {0'  +  0), 
sin  a  =  sin  r  cos  I  (^'  -  0), 

and  tan  h  0  tan  iO'  =  con  st . 

Hence,  if  from  a  variable  point  on  a  fixed  line  I  the 
tangents  to  a  circle  are  p,  q,  and  the  line  to  the  centre  is  a, 
either  the  ratio  or  the  product  of  the  tangents  of  half  the  angles 

(Ip),  (Iq)  is  constant,  according  as  (1)  one,  or  (2)  both  or 
neither  of  the  angles  contains  the  line  a. 

5.  Angles  of  intersection  of  two  circles. 
Since  two  circles  may  intersect  in  four  points,  there  are 

four  angles  of  intersection  to  consider. 

It  is  easy  to  show  geometrically  that  if  two  circles  have 

only  two  real  points  of  intersection,  the  two  angles  of 
intersection  are  equal. 

Suppose  a  circle  cuts  an  equidistant-curve  in  four  points, 

P,  P'  on  one  branch,  Q,  Q'  on  the  other  branch.     Then, 

drawing  PM,  P'M'  _L  the  axis  and  joining  P,  P'  to  C,  the 
centre  of  the  circle, 

Z  CPP'  =  CP'P,     L  MPP'  =  M'FP ; 

therefore  ^MPC  =  MT'C, 

and  the  angles  of  intersection  at  P,  P'  are  equal,  and  simi- 
larly the  angles  of  intersection  at  Q,  Q'  are  equal. 

i 
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But     L  CPM  +  CQN  =  2CPQ,  since  Z  MPQ  =  NQP  ; 
therefore   CPM   and  CQN   are   not  in  general  equal.     If 

CPM  ̂   CQN,  then  each  =CPQ  =  CQP;    M  and  N  then 

coincide,  and  C  lies  on  the  axis  of  the  equidistant-curve. 
Similarly,  it  may  be  shown  that  if  two  equidistant-curves 

intersect  in  four  points,  the  angles  at  the  points  of  inter- 
section which  are  on  diiferent  branches  are  equal,  but  all 

four  angles  cannot  be  equal  unless  the  axes  are  at  right 
angles. 
When  two  of  the  angles  of  intersection  are  right, 

the  circles  are  said  to  cut  orthogonally.  All  four  angles 
cannot  be  right,  for  then  the  centre  C  of  the  one  circle  must 

lie  on  the  axis  of  the  other,  and  if  CT,  CT  are  the  tangents 
to  the  second  circle,  CT  is  a  radius  of  the  first  circle. 

But  CT  is  a  quadrant ;  therefore  the  first  circle  must  reduce 
to  two  coincident  straight  lines. 

6.  Radical  axes. 

Let  P,  P',  Qy  Q'  be  the  points  of  intersection  of  two 
circles,  with  axes  a=0  and  /5=0.  Then,  if  >S  =  0  is  the 
equation  of  the  absolute,  the  equations  of  the  circles  can 

be  written  ^  _  ̂ ,2  _  0,     >S  -  /S^  =  0. 

The  equation  (S  -  a^)  -  (S  - ^^)  ̂ 0  represents  a  conic 
passing  through  their  common  points,  but  this  breaks  up 

into  the  two  straight  lines  a±:/5  =  0,  and  these  represent 
a  pair  of  common  chords  which  pass  through  the  point  of 

intersection  of  the  axes.  They  form  with  a  and  /3  a  har- 
monic pencil. 

If  y  is  the  polar  of  the  intersection  of  the  axes,  i.e.  the  Hne 
of  centres,  the  other  pairs  of  common  chords  pass  through 

ay  and  /3y. 
If  we  take  any  point  0  on  one  of  the  first  pair  of  common 
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[vii.  6 chords,  say  PP' ,  the  power  of  0  with  respect  to  either  circle 
is  tan  ̂ OP/ tan  \0P' .  These  two  hnes  are  therefore  the  locus 
of  points  from  which  equal  tangents  can  be  drawn  to  the 
two  circles. 

But  if  we  take  a  point  0  on  PQ,  the  power  with  respect  to 
one  circle  is  the  product,  and  with  respect  to  the  other 
circle  the  ratio  of  tan  \0P  and  tan  \0Q,  and  this  chord  does 

not  possess  the  property  of  equal  tangents. 

Fig.  112. 

Hence,  of  the  three  pairs  of  common  chords  of  two  circles, 

one  pair  pass  through  the  intersection  of  the  axes  and  are 

harmonically  separated  by  them,  and  possess  the  property 
that  the  tangents  from  any  point  on  either  to  the  two 
circles  are  equal. 

These  two  lines  are  called  the  radical  axes  of  the  two  circles. 
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7.  Homothetic  centres. 

Reciprocally,  two  circles  have  four  common  tangents, 
which  intersect  in  three  pairs  of  points.  One  pair  he  on 
the  Hne  joining  the  centres,  and  are  harmonically  separated 
by  them,  the  other  pairs  he  on  the  lines  joining  the  centres 
to  the  pole  of  the  line  of  centres.  The  first  pair  possess 
the  property  that  any  line  drawn  through  one  of  them  cuts 
the  two  circles  at  equal  angles.  These  two  points  are  called 
the  homotJietic  cefitres  of  the  two  circles. 

8.  Radical  centres  and  homothetic  axes. 

The  three  pairs  of  radical  axes  of  three  circles  taken  in  pairs 

pass  through  four  points,  the  radical  centres  of  the  three  circles. 
Let  ABC  be  the  triangle  formed  by  the  axes  a,  b,  c  of 

the  three  circles  ;  a  pair  of  radical  axes  aicx^,  /3i/32,  7172 
passes  through  each  of  these  points. 

Flu.  113. 

If  one  radical  axis  72  of  the  circles  A,  B,  and  one  radical 

axis  /^a  of  the  circles  A,  C  intersect  in  P,  then  the  tangents 
from  P  to  the  three  circles  are  all  equal.     Therefore  P  lies 
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on  a  radical  axis  ai  of  the  circles  B,  C.  We  have  then 

«i»  1^2^  72  concurrent  in  P.  Let  y^  cut  aj  in  S,  and  join  BS. 
Then,  since  (ab,  7172)  is  harmonic,  B(AC,  SP)  is  harmonic  . 

therefore  BS  is  ̂j,  ̂■.e.  aj,  /81,  71  pass  through  /S.  Similar^ 
«2>  ,^i»  72  ̂ re  concurrent  in  Q,  and  ̂ 2,  /Sg,  71  in  /?.  The 

quadrangle  PQRS  has  ̂ BC*  as  harmonic  triangle.  ■ 
Reciprocally,  the  three  pairs  of  homotJietic  centres  of  three 

circles  taken  in  pairs  lie  in  sets  of  three  on  four  lines,  the 
homothetic  axes  of  the  three  circles.  They  form  a  complete 

quadrilateral,  whose  harmonic  triangle  is  the  triangle  formed 
by  the  centres  of  the  circles. 

9.  Coaxal  circles  in  elliptic  geometry. 

The  locus  of  the  centre  of  a  circle  which  passes  through 

two  fixed  points  Z)j,  D^  on  a  hne  I  consists  of  the  tv/o 

perpendicular  bisectors  OL,  O'L  of  the  segments  D^D2  and 
D^D^  (Fig.  114).  All  the  circles  through  Dj,  D^  therefore 
fall  into  two  groups  ;  any  two  circles  belonging  to  the 

same  group  have  I  as  a  radical  axis.  Each  group  is  there- 
fore called  a  system  of  coaxal  circles  with  common  points 

D^,  Dg.  When  the  centre  is  at  0,  the  circle  is  a 

minimum,  and  it  increases  up  to  a  maximum,  which  is 
just  the  straight  Hne  I  itself,  when  the  centre  is  at  L. 

Let  (7i,  C2  on  OL  =  V  be  the  centres  of  two  circles  of  the 
one  system,  and  take  two  points  K^,  K2  on  I.  Draw  the 

tangents  KiU^,  K^V 2^  ̂ 2^1?  -^21^2  ̂ ^  the  circles  Ci,  Cg. 
Then  K^U^^K^J 2  and  K2V^=K2y2-  Hence  the  points 
U  He  on  a  circle  with  centre  K^,  and  F  on  a  circle  with 

centre  i?2-  Also,  since  KiUi  is  a  tangent  to  the  circle  C, 
and  a  radius  of  the  circle  K^,  CiUi  is  a  tangent  to  the 

circle  K^ :  and  since  CiU^  =C\Vi,  C^  lies  on  a  radical  axis 

of  the  circles  K^,  K2.     Hence  the  circles  K  have  l'  as  a 



VII.  9] COAXAL  CIRCLES 
223 

radical  axis.  We  get  then  a  system  of  coaxal  circles  K 
associated  with  the  system  C,  and  every  circle  of  the  one 

system  cuts  orthogonally  every  circle  of  the  other  system. 
As  KD^  diminishes  the  circle  tends  to  vanish.  D^,  D^ 

are  called  the  limiting  'points  of  the  K  system.     If  K  lies 

Fig.  114. 

in  the  segment  DfiD^,  the  circle  is  imaginary.  As  K 

approaches  0' ,  the  circle  becomes  the  straight  line  V, 
The  K  system  is  a  non-intersecting  system,  i.e.  it  has 
imaginary  common  points.  The  C  system  has  imaginary 
limiting  points. 

If  the  segment  BJ)^  vanishes  so  that  the  common  points 
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Dj,  Dg  coincide  at  0,  the  circles  C  all  touch  the  Hne  I  at  0. 
and  the  circles  K  all  touch  the  line  T  at  0. 

If  the  segment  D1D2  becomes  ir,  so  that  the  common 

points  coincide  at  0',  the  circles  C  all  reduce  to  straight 
lines  passing  through  0\  while  the  circles  K  become  con- 

centric circles  with  centre  0\ 

10.  Homocentric  circles. 

The  locus  of  the  centre  of  a  circle  which  touches  two 

fixed  lines  d^,  (^2  through  a  point  L  consists  of  the  two 

bisectors  0,  o'  of  the  angles  between  di,  (Zg  (Fig.  115).  All 
the  circles  touching  di,  d2  therefore  fall  into  two  groups; 

any  two  circles  belonging  to  the  same  group  have  L  as  a 
homothetic  centre.  Each  group  is  therefore  called  a  system 
of  homocentric  circles  with  common  tangents  di,  <^2-  When 
the  centre  is  at  L,  the  circle  is  a  minimum  and  reduces  to 

the  point  L  itself;  as  the  centre  moves  along  0',  the 
circle  increases  up  to  a  maximum  when  the  centre  is  at 

0,  the  pole  of  o. 

Let  Cj,  C2  through  L',  the  intersection  of  0  and  I,  be  the 
axes  of  two  circles  of  the  one  system.  Take  two  lines  k^ ,  k2 

through  L,  and  let  Ui,  u.^,  Vi,  v^  be  the  tangents  to  the  circles 

Oj,  C2  at  their  points  of  intersection  with  h-^^.k^-  Then  the 

angles  (k^u-^)={k-{a2J  and  (^2^1)  =(^2^'2)-  Hence  the  hues?/ 
are  tangents  to  a  circle  with  axis  k^,  and  v  are  tangents  to 
a  circle  with  axis  k.^.  Also,  since  {k{ii^  lies  on  the  circle  C\ 

and  on  the  axis  of  the  circle  A'l,  and  since  the  angle  (c-iii^) 
=  (Ci7;i),  Cj  passes  through  a  homothetic  centre  of  the  circles 

K^,  K2.  Hence  the  two  circles  K  have  L'  as  a  homotheti* 
centre.  We  get  then  a  system  of  homocentric  circles  A 

associated  with  the  system  0,  and  every  circle  of  the  one 

system  is  tangentially  distant  a  quadrant  from  every  circle 
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of  the  other  system.  As  k  approaches  d^  the  circle  K 

becomes  the  straight  Hne  d^.  d^,  d^  are  called  the  limiting 
lines  of  the  K  system.     If  k  lies  outside  the  angle  d^d^t 

Fig.  115. 

the  circle  becomes  imaginary.     As  k  approaches  o\  the 
circle  reduces  to  the  point  L.     The  K  system  has  imaginary 

common  tangents  ;    the  C  system  has  imaginary  limiting 
lines. 

If  the  angle  d^d^  vanishes,  so  that  the  common  tangents 
N.-E.  G.  p 
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d^,  (^2  coincide  with  o\  the  circles  C  all  reduce  to  points 

on  o',  while  the  circles  K  become  concentric  circles  with 
axis  o'. 

If  the  angle  d^d2  becomes  tt,  so  that  the  common  tangents 
di,  c?2  coincide  with  o,  the  circles  C  all  touch  o  at  L,  and  the 

circles  K  all  touch  o  at  X'. 

11.  In  euclidean  and  hyperbolic  geometry  this  duality 
does  not  hold,  since  in  euchdean  geometry  the  envelope 
of  a  system  of  lines  cutting  a  fixed  line  at  a  constant  angle 

is  a  point  at  infinity,  and  in  hyperbolic  geometry  it  is  an 

ideal  circle.  In  hyperbohc  geometry,  as  K  goes  to  infinity 
the  circle  becomes  a  horocycle.  Between  the  horocycle 

and  the  straight  hne  lies  a  system  of  branches  of  equidistant- 
curves.  The  other  branches  complicate  the  figure  as  they 
intersect  the  other  circles  of  the  system.  The  same  thing, 

of  course,  occurs  in  the  other  coaxal  system  passing  through 

In  euclidean  geometry  a  system  of  coaxal  circles  is  a  linear 

system,  i.e.  through  a  given  point  only  one  circle  of  the 

system  passes.  In  non-eucUdean  geometry,  through  three 
given  points  four  circles  pass,  i.e.  four  circles  can  be  drawn 

through  any  point  P  to  pass  through  two  fixed  points  X,  Y. 

Denote  these  circles  by  PX  Y,  P'X  Y,  etc. ;  then  of  the  four 
circles,  PXY,  P'XY  have  their  centres  on  the  one  per- 

pendicular bisector  of  XY ,  and  belong  to  the  one  coaxal 

system,  while  PX'Y,PXY'  belong  to  the  other.  Hence, 
through  a  given  point  there  pass  only  two  circles  of  a  given 
coaxal  system. 

In  euclidean  geometry  a  system  of  coaxal  circles  is  equivalent  to 
a  system  of  conies  through  four  points  ;  in  non-euclidean  geometry 
it  is  equivalent  to  a  system  of  conies  through  two  points  and  having 
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double  contact  with  a  fixed  conic.^  The  reciprocal  system,  i.e.  a 
system  of  circles  touching  two  lines,  is  equivalent  in  non-euclidean 
geometry,  to  a  system  of  conies  touching  two  lines  and  having 
double  contact  with  a  fixed  conic  ;  and  in  euclidean  geometry  to 
a  system  of  conies  passing  through  two  points  and  touching  two 
hnes.  Hence  the  complexity  of  the  latter  system  compared  with 
a  system  of  coaxal  circles. 

The  analytical  treatment  of  systems  of  coaxal  circles  in  non- 
euclidean  geometry  can  be  reduced  to  the  consideration  of  linear 
systems  in  the  following  way. 

12.  Linear  equation  of  a  circle. 

If  {x,  y,  z)  are  the  actual  Weierstrass  coordinates,  the  equation 

of  a  circle,  with  centre  {x-^,  yi,  z^)  and  radius  r,  is 

xxy  +  yyi  +  k^zzi  =  ¥  cos  - . h 

Let  a  =  Xxy,  h  =  Xyi,  c  =  \k^Zi,  d=  -  A/j^cos-,  so  that k 

k^a^  +  m^  +  c2  =  \^B  {x,^  +  yj"  +  Bzi")  =  X^k"^ =p\  say. 

Then  the  equation  reduces  to 

ax  +  by  +  cz  +  d=0. 

The  non-homogeneous  linear  equation,  with  real  coefficients,  in 
actual  Weierstrass  coordinates,  therefore  represents  a  circle  with 

centre  (a,  b,  cjB),  axis  ax  +  hy  +  cz={),  and  radius  r,  such  that 
r  d 

cos  -  =the  positive  value  of  -, Ic  p 

where  p^  =  k'^a^  +  B¥  +  c\ 
In  elliptic  geometry  P  jg  positive  and  pP"  is  always  positive.  The 

centre  is  always  real,  and  the  radius  is  real  if  d^—k^a^  +  k%'^  +  c^.  If 
d=0  the  circle  becomes  a  straight  line,  and  if  d  =  'p  it  reduces  to  a 
point. 

In  hyperbolic  geometry,  changing  the  sign  of  k^,  we  have 
r  d 

'p^=c^-k^o? -k'%'^,  and  cosh  r  =  the  positive  value  of  -. ^  V 

^  It  is  therefore  exactly  equivalent  to  a  system  of  circles  in  euclidean 
geometry  having  double  contact  with  a  fixed  conic.  The  limiting  points 
are  represented  by  the  foci  of  the  conic. 
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The  centre  is  real,  ideal  or  at  infinity,  according  us  p^>,  =  or  <0, 
The  curve  is  therefore 

A  real   circle  if  (P>c^-k^a^-Bb^>0,   reducing   to   a   point   if 

An  imaginary  circle  if  c^  ~  J<^a^  -  k^V^>d^>0. 

An  equidistant-curve  if  c^<:B{a^  +  b^),  reducing  to  a  straight  line 
ifcZ^O. 

A  horocycle  if  c^  =  B  {a^  +  ¥). 
The  two  equations  ax  +  by  +  cz±d=0  represent  the  same  circle. 

In  elliptic  geometry  this  is  verified,  since  {x,  y,  z)  and  {-x,  -y,  -z) 
represent  the  same  point.  In  hyperbolic  geometry,  for  a  proper 
circle  or  a  horocycle  only  one  of  these  equations  can  be  satisfied, 

since  z  must  be  positive ;  for  an  equidistant- curve  the  two 
equations  represent  the  two  branches. 

The  points  of  intersection  of  two  circles  aiX  +  hiy  +  CjZ±di=0  and 

a2X  +  l)^  +  C2Z±d2=0  are  found  by  solving  these  equations  simul- 

taneously with  the  equation  x^  +  y^  +  kh^  =  B.  These  give  four  sets 
of  values  of  a^,  y^,  z^,  and  therefore  four  points  of  intersection. 

13.  Systems  of  circles. 
ItSi=0  and  S^—O  are  equations  of  circles  in  this  form,  S^  +  X82  =0 

represents  a  circle,  and  for  all  values  of  A  represents  a  pencil  of  circles 

passing  through  two  fixed  points.  If  di=d2,  the  circle  81-82=0  oi 
the  system  reduces  to  a  straight  line,  and  if  di  +  d2=0  the  circle 
81  +  82=0  is  another  straight  line.  These  are  the  radical  axes  of 
the  two  circles. 

8i  +  X82  +  iJ-83=0  represents  a  Hnear  two-parameter  system  or 
bundle  of  circles.   If  a  circle  of  the  system  passes  through  the  point  x\ 

8i'  +  \82'  +  fJi8^'=0, 

and  we  have        {8^8/  - 8i'8s)  +  MS2SS  -  828^,)  =0, 
which  represents  a  linear  one  parameter  system  or  pencil  of  circles. 
Hence  all  circles  of  a  bundle  which  pass  through  one  fixed  point 
form  a  coaxal  system  and  pass  through  another  fixed  point. 

If  di  +  Xdi  +  fjdz  =0,  we  get  a  pencil  of  straight  lines  If  the  vertex 
of  this  pencil  is  real,  choose  it  as  origin  ;  then  the  linear  system  can 

be  reduced  to  the  form  x  +  ky  +  ix{z  +  c)  =0 .  Then  one  radical  axis 
of  every  pair  of  circles  of  the  system  passes  through  the  origin, 
i.e.  the  circles  have  a  common  radical  centre  at  the  origin.  If 
tangents  are  drawn  from  this  point  to  the  circles  of  the  system  they 

are  all  equal,  and  hence  all  circles  of  a  bundle  cut  orthogonally  a 
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fixed  circle.  In  hyperbolic  geometry  the  orthogonal  circle  may  be 

a  proper  circle,  real  or  imaginary,  an  equidistant-curve  or  a  horo- 
cycle.  If  the  orthogonal  circle  reduces  to  a  point,  all  the  circles  pass 
through  this  point. 

All  these  results  admit,  in  the  case  of  elHptic  geometry, 
of  a  simple  interpretation  by  means  of  the  central  projection 
of  the  sphere.  To  a  plane  corresponds  a  circle,  to  an  axial 
pencil  of  planes  corresponds  a  pencil  of  circles,  and  to  a 

bundle  of  planes  through  a  fixed  point  0  corresponds  a 
bundle  of  circles,  the  orthogonal  circle  of  which  corresponds 
to  the  polar  plane  of  0  v^ith  respect  to  the  sphere. 

This  representation  fails  in  hyperbolic  geometry,  since 
the  sphere  becomes  imaginary,  but  there  is  a  correspondence 
between  the  circles  of  the  hyperbolic  plane  and  the  planes 
of  hyperbolic  space. 

14.  Correspondence  between  circles  and  planes  in 
hyperbolic  geometry.    Marginal  images. ^ 

Consider  a  fixed  plane  F  and  a  plane  E.  From  any 

point  P  on  E  drop  a  perpendicular  PQ  on  F.     The  assem- 

FIG.  116. 

^  This  theory  is  due,  analytically,  to  F.  Hausdorfif.  "  Analytische 
Beitrage  zur  nichteuklidischen  Geometrie,"  Leipziger  Berichte,  51 
(1899),  p.  177,  and  geometrically  to  H.  Liebmann,  "  Synf-hetische 
Ableitung  der  Kreisverwandtschaften  in  der  Lobatschefskijschen 

Geometrie,"  Leipziger  Berichte,  54  (1902),  p.  250.  Cf.  also  Liebmann, 
Nichteuklidische  Geometrie,  2nd  ed.,  Leipzig,  1912,  p.  63. 
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blage  of  all  points  Q  lie  within  a  curve  called  the  marginal 

image  of  the  plane  E  on  the  plane  F. 

(1)  Let  E  and  F  be  non-intersecting,  and  have  a  common 
perpendicular  AB  (Fig.  116).  Through  A  in  the  plane 
E  draw  any  line  AP,  and  in  the  plane  PAB,  which  cuts  F 
in  BQ,  draw  QP±BQ  and  \\AP.  Then  Q  hes  on  the 

marginal  image  of  E. 

If  AB=p  and  BQ=p',  then  sinh  j9  sinh  ̂   =  1.  Hence 

p'  is  constant,  and  the  marginal  image  is  a  circle  with  centre 

B  and  radius  p'  given  by  sinh  p  sinh  p'  =  1. 

(2)  Let  E  cut  i^  at  an  angle  a  in  the  line  MN  (Fig.  117). 
Draw  a  plane  ±  IfA^  cutting  E  in  MP  and  J  in  MQ. 

Fig.  117. 

Draw  QP  ±  MQ  and  1 1  MP.  Then  a  =  n  (MQ).  Hence  MQ 

is  constant,  and  the  locus  of  Q  is  an  equidistant-curve 
with  axis  MN  and  distance  a  such  that  H  (a)  =  a. 

(3)  Let  E  be  parallel  to  F.  Then  the  line  MiV  goes  to 

infinity,  and  the  equidistant-curve  becomes  a  horocycle. 
Hence  there  is  a  (1,  1)  correspondence  between  the 

circles  in  a  plane  and  the  planes  in  space. 
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15.  When  the  planes  E,  E'  intersect  in  a  straight  line  I, 
their  marginal  images  intersect  in  two  points  which  form  the 
marginal  image  of  the  line  I. 

Let  the  planes  E,  E'  cut  the  absolute  in  conies  C,  C , 
and  let  0  be  the  absolute  pole  of  the  plane  F.  Then  the 

marginal  images  /,  Z'  of  E,  E'  are  the  projections  of  C,  C 
on  the  plane  F  with  centre  of  projection  0.  The  conies 

C,  C  intersect  only  in  two  points  P,  Q,  the  points  of  inter- 
section of  I  with  the  absolute.  The  cones  OC,  OC  cut  the 

absolute  each  in  a  second  conic  C^,  Cj'. 
Now    C,  C  cut  in  P,  Q  ;     Cj,  C/  cut  in  Pi,  ft  ; 

C,  Ci      ,,     R,  S  ',    C  ,  Ci        ,,     Ri,  Oj, 
and  the  points  P,  P^  give  the  same  projection  on  F,  and  so 
also  do  the  other  pairs.     Hence  the  marginal  images  cut 

in  four  points,  two  of  which  form  the  marginal  image  of  the 
line  of  intersection  I. 

16.  The  angle  between  two  planes  is  equal  to  the  angle  of 
intersection  of  their  marginal  images. 

Let  El,  E2  be  two  planes  cutting  in  TT'.    Let  P^Q^  be 

Fig.  118. 
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the  common  perpendicular  of  E^  and  F,  P2Q2  ̂ bat  of  E2 
and  F.  The  plane  P^Q.QJP^  -L  F  cuts  TT  in  T.  Draw 

PiP/,  P2P2'  in  the  planes  £^1.  iE'allTr,  and  SS'  L  F 
and  II  TT.  The  planes  Pi^jS  ̂   R^  and  P202'Sf  =  ̂2  are  L  F. 
The  marginal  images  r^,  r^  oiE^,  E^  are  circles  with  centres 
Qi,  §2  and  intersecting  in  S. 

We  have  then  four  planes  E^,  E^,  R2,  Ri  whose  lines  of 

intersection  TT,  P2P2',  SS',  PiP^'  are  parallel. 

Therefore  Z  (£'1^2)  +  (^2^2)  +  (^2^1)  +  (^1^1)  =  Stt. 

But  (R,E,)=^  =  {E2R2)  and  (R,R2)  =  7r -{r.r^}. 

Therefore  {E^E2)  =  {r^r2). 

17.  Systems  of  circles. 
A  pencil  of  planes  through  a  line  I  is  represented  on  F\ 

by  a  system  of  circles  through  two  fixed  points,  the  marginal! 

image  of  I.  The  planes  perpendicular  to  I  form  a  pencil] 
of  planes  with  ideal  axis  V ,  the  absolute  polar  of  I.  These 

are  represented  on  P  by  a  system  of  circles  through  twoj 

imaginary  fixed  points,  the  marginal  image  of  V ,  and  every] 
circle  of  the  first  system  cuts  orthogonally  every  circle  ofj 
the  second  system.  These  form  therefore  conjugate  systemsj 
of  coaxal  circles. 

A  bundle  of  planes  through  a  point  P  is  represented  by  a 
system  of  circles  any  two  of  which  intersect  in  a  pair  of 

points  which  are  the  marginal  image  of  a  line  through  P. 

If  0  is  the  foot  of  the  perpendicular  from  P  on  P,  the  two 

points  of  each  pair  lie  on  a  line  through  0  and  are  equi- 
distant from  0.  0  is  the  radical  centre  of  the  system,  and 

all  the  circles  cut  orthogonally  the  circle  which  is  the 

marginal  image  of  the  polar  plane  of  P. 
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18.  Types  of  pencils  of  circles. 

(1)  Let  the  axis  I  of  the  pencil  of  planes  be  a  non-intersector  of 
the  plane  F^  and  let  PO  be  the  common  perpendicular  of  I  and  F. 
Let  ̂ ,  J5  be  the  marginal  image  of  Z ;  O  is  the  middle  point  of  AB, 
Then  the  marginal  images  of  the  planes  through  I  are  circles  through 
the  real  points  A ,  B.  One  of  these  is  the  line  A  B ;  then,  as  the  plane  E 

is  tilted,  we  get  branches  of  equidistant-curves,  then  a  horocycJe,  and 
lastly  circles,  ending  with  the  circle  on  ̂ 4^  as  diameter,  the  circle 
of  least  diameter. 

(T)  In  the  conjugate  system  the  planes  E  are  all  perpendicular 
to  a  fixed  line  I,  and  the  axis  V  is  ideal.  The  marginal  images  are 

first  a  straight  line  through  OJ.AB,  then  a  series  of  equidistant- 
curves  with  axes  L  AB  and  increasing  distances,  then  a  horocycle, 
and  lastly  a  series  of  circles  mth  diminishing  radii  tending  to  the 
limiting  point  A  ;  and  a  similar  series  tending  to  the  other  limiting 
point  B. 

(2)  Let  the  axis  I  cut  F  in  0.  The  marginal  images  are  first  the 

straight  line  AB,  then  a  series  of  equidistant-curves  with  axes 
through  O,  one  branch  passing  through  each  of  the  points  A,  B, 

ending  with  the  equidistant- curve  of  greatest  distance  whose  axis 
±AB. 

(2a)  If  IA_F,  A  and  B  coincide,  and  the  marginal  images  are 
concurrent  straight  lines  through  0. 

(26)  If  I  lies  in  F,  A  and  B  are  at  infinity  in  opposite  senses.  The 

marginal  images  are  equidistant-curves  with  common  axis  AB. 

(2')  The  conjugate  system  to  (2)  is  similar  to  {V),  but  instead  of 
starting  with  a  straight  line  we  have  first  an  equidistant-curve  with 
a  minimum  distance 

{2' a)  When  l^_F  the  limiting  points  coincide  and  the  marginal 
images  become  concentric  circles. 

(2'6)  When  I  lies  in  F  the  limiting  points  are  at  infinity  in  opposite 
senses,  and  the  marginal  images  are  straight  lines  ̂ .  AB. 

(3)  Let  l\\F,  then  one  of  the  points,  B  say,  is  at  infinity.  The 

marginal  images  are  equidistant- curves  through  A  with  axes  parallel 
to  AB,  one  being  the  straight  line  AB  and  one  the  horocycle  ±AB. 

(3')  In  the  conjugate  system  the  limiting  point  B  is  at  infinity. 
We  have  first  a  series  of  equidistant-curves  with  increasing  distances. 



234  SYSTEMS   OF  CIRCLES  [vii.  18 

then  a  horocycle,  and  lastly  a  series  of  circles  with  diminishing  radii 
ending  with  the  hmiting  point  A, 

(4)  Let  I  be  at  infinity  with  P  as  point  at  infinity,  and  suppose 
P  is  not  on  F.  The  planes  E  are  all  parallel.  The  marginal  image 

of  Z  is  a  point  A,  i.e.  A,  B  coincide.  A  is  the  orthogonal  projec- 
tion of  P  on  F.  There  is  a  real  plane  through  l^.F  cutting  F  in 

aline  t.  We  have  then,  as  the  marginal  images  of  the  planes  E^ 
first  the  straight  line  ̂ ,  then  a  series  of  equidistant  curves,  then 
a  horocycle,  and  finally  a  series  of  circles,  all  touching  t  aA.  A, 
which  is  both  a  limiting  point  and  a  common  point. 

(4')  The  conjugate  system  is  of  exactly  the  same  form,  since  the 
absolute  polar  of  the  line  I  at  infinity  touching  the  absolute  at  P 
is  also  a  fine  touching  the  absolute  at  P.  The  marginal  images  all 
touch  a  line  ±  t,  A  being  the  point  of  contact. 

(5)  In  (4)  let  P  be  on  F_  so  that  A  coincides  with  P  at  infinity. 
The  parallel  planes  E  make  a  constant  angle  a  with  F.  We  have 
then,  as  marginal  images,  a  series  of  equidistant-curves  with  axes 
parallel  to  the  direction  through  A,  and  constant  distance  a,  such 
that  n  (a)  =  a. 

(5a)  If  the  conjugate  axis  l'  hes  in  F,  a=^7r  and  the  equidistant- 
curves  reduce  to  a  system  of  parallel  straight  lines. 

(56)  If  I  hes  in  F,  a  =  0,  and  the  marginal  images  are  a  system  of 
concentric  horocycles. 

(5')  The  conjugate  system  to  (5)  is  a  system  of  exactly  the  same 

form  with  the  angle  a'  =  -  -  a. 

(5'a)  is  the  same  as  (56)  and  (5'6)  the  same  as  {fi'a). 

Note. — In  (2a)  we  appear  to  have  a  pencil  of  circles  with  coincident 
common  points,  but  we  must  consider  this  actually  as  a  pencil  with 
one  real  common  point,  and  an  ideal  common  point  which  is  the 
inverse  of  O  with  respect  to  the  absolute.  Similarly  in  (2)  we  should 
regard  the  two  branches  of  the  equidistant-curves  separately,  .and 

regard  the  whole  system  as  consisting  of  two  pencils,  each  with  on(^ 
actual  and  one  ideal  common  point.  (Cf.  Ex.  VIII.  19,  20.)  This 
is  rendered  clearer  if,  in  finding  the  marginal  images,  we  confine 
our  attention  to  the  parts  of  the  planes  and  lines  which  lie  on  one 
side  of  the  plane  F. 
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EXAMPLES    Vn. 

1.  Prove  that  if  the  common  tangents  to  two  circles  are  all  real, 
the  distances  between  the  points  of  contact  are  equal  in  pairs,  and 
that  all  four  distances  Avill  be  equal  only  if  the  axes  of  the  circles  are 
orthogonal. 

2.  Prove  that  the  second  radical  axis  of  two  circles  which  pass 

through  A,  B  passes  through  the  middle  point  of  one  of  the  segments 
AB,  BA. 

3.  Prove  that  x  +  X.y-Tcz=0  represents,  for  parameter  A,  a  pencil 
of  lines  parallel  to  the  positive  axis  of  x. 

4.  In  elliptic  geometry,  prove  that  the  circles  a<^x-{\y  +  c-^z±dt—i) 

and  ag-r  +  etc.  =  0  will  cut  orthogonally  if  !<?■  {a^a^  +  &162)  +  <^x<^9  ±  ̂1^2 = 0. 

5.  If  a  bundle  of  circles  contains  a  pencil  of  lines  parallel  to  the 

positive  axis  of  x,  show  that  the  equation  of  the  bundle  can  be 

written  in  the  form  {x  +  'pk)  +  \y  +  iii{z+p)=0. 

6.  If  a  bundle  of  circles  contains  a  pencil  of  lines  perpendicular 
to  the  axis  of  x,  show  that  the  equation  of  the  bundle  can  be  written 

X  +  \{y +  h)  +  [xz  =0. 

7  Prove  that  the  orthogonal  circle  of  the  bundle  of  circles 

x-\-\y  +  fx{z  +  c)  —  0  is  cz  =  \. 

8.  Prove  that  every  circle  of  the  system  [x  -  pk)  +  \y  +  ii{z  -  ̂p)  =0 
cuts  orthogonally  the  horocycle  p{x  -  kz)  =  k. 

9.  If  the  orthogonal  circle  of  the  bundle  of  circles 

x  +  Xy  +  fJL{z+c)=0 

is  imaginary,  prove  that  every  circle  of  the  system  passes  through 
the  ends  of  a  diameter  of  the  fixed  circle  z  +  c=0. 

10.  Prove  that  the  locus  of  the  centres  of  point-circles  of  the 

bundle  x  +  k{y  +  b)+iJiZ=0  is  the  equidistant-curve  by=  ±  P. 

11.  If  sinhpsinhyj'^l,  prove  that 

n{p)  +  U{p')='^,    and    :p'  =  logcoth|. 

12.  Given  a  circle,  equidistant- curve  or  horocycle  in  a  plane  F, 
show  how  to  construct  the  plane  E  of  which  it  is  the  marginal  image 
on  the  plane  F. 



CHAPTER  VIII. 

INVERSION  AND  ALLIED  TRANSFORMATIONS.* 

1.  In  euclidean  geometry,  Inversion,  or  the  transformation 

by  reciprocal  radii,  is  a  transformation  which  changes  any 

point  P  into  a  point  P\  and  P'  into  P  ;  the  line  PP'  passes 
through  a  fixed  point  0,  the  centre  of  inversion,  and  the 

segments  OP,  OP'  are  connected  by  the  relation  OP  \  OP 
=  constant.  This  transformation  has  the  properties  that  it 
changes  circles  into  circles  and  transforms  angles  unaltered 

in  magnitude.  It  is  a  special  case  of  a  conformal  trans- 
formation which  preserves  angles,  and  of  the  more  special 

type  of  conformal  transformation,  the  circular  transformation 
which  changes  circles  into  circles. 

We  shall  consider  in  this  chapter  the  circular  trans- 

formations in  the  non-euclidean  plane,  and  first  we  shall 
prove  the  following  theorem. 

2.  Any  point-transformation  which  ohanges  circles  into 
circles  is  conformal. 

Two  circles  which  intersect  at  equal  angles  at  A,  B  are 
transformed  into  two  circles  which  intersect  at  equal  angles 

at  A\  B',  i.e.  certain  pairs  of  equal  angles  are  transformed 
into  pairs  of  equal  angles.  We  shall  show  that  this  holds 

for  all  pairs  of  equal  angles. 

*  See  the  references  to  Hausdorff  and  Liebraann  in  chap.  vii.  §  14. 

I 
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Let  the  lines  aj,  61  through  S^  and  a2,  b^  through  S2 
make  equal  angles  in  the  same  sense.     Let  %,  0^2  meet  in  0, 

Fig.  119. 

and  let  SiS^  make  equal  angles  with  a^  and  a 2-     Draw 
A  A  A  A 

b  through  ̂ 3  making  ajj^^ba^,  then  ba^^ajj^- 
Two  circles  A,  B  can  be  drawn  with  their  centres  on  the 

bisector  of  the  angle  at  0,  passing  through  S^  and  /S3  and 

having  a^,  ag  ̂ ^^  bi,b  as  tangents  ;  and  similarly  a  circle  C 
can  be  drawn  with  its  centre  on  the  perpendicular  bisector 

of  8^82  and  having  6,  63  ̂s  tangents. 
A  A 

The  equal  angles  ajbi  and  6^2  ̂ ^^  transformed  into  equal 
A  A 

angles,  and  the  equal  angles  60^2  ̂ ^^  ̂ 2^2  ̂ ^^  ̂ ^so  trans- 
formed into  equal  angles,  i.e.  a  pair  of  equal  angles  in  any 

position  are  transformed  into  a  pair  of  equal  angles. 

Hence  two  adjacent  right  angles  are  transformed  into  two 
adjacent  right  angles,  half  a  right  angle  is  transformed  into 
half  a  right  angle,  and  so  on.     Hence  angles  are  unchanged. 

3.  Consider  two  planes  F^,  F^-  All  the  planes  in  space 
are  represented  on  each  of  these  by  circles,  and  we  have  a 
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correspondence  between  the  circles  of  F^  and  the  circles 

of  F2  through  the  medium  of  the  planes  of  space.  Then,  if 

F2  is  made  to  coincide  with  F^,  we  have  established  a  corre- 
spondence between  the  circles  of  F^  itself,  i.e.  we  have 

effected  a  transformation  of  F^,  changing  circles  into  circles. 

Instead  of  supposing  the  plane  Fzto  move,  we  may  suppose 
jP  to  be  a  fixed  plane  and  let  the  whole  of  space  move  rigidly, 
with  the  exception  of  F.  To  a  circle  C  corresponds  a  plane 

E.  This  plane  is  moved  to  E'  and  gives  another  circle  C. 
To  a  pencil  of  circles  corresponds  an  axial  pencil  of  planes, 

and  this  gives  again  a  pencil  of  circles.  To  a  bundle  of 
circles  with  common  radical  centre  0  corresponds  a  bundle 

of  planes  through  a  point  P  ;  P  is  moved  to  P',  and  we  get 
another  bundle  of  circles  with  common  radical  centre  0'. 
Hence  this  effects  a  transformation  of  the  plane  F,  changing 

a  point  into  a  point,  and  a  circle  into  a  circle.  It  does 
not  change  a  straight  line  into  a  straight  line,  but  in  general 
into  a  circle. 

The  motion  of  space  which  has  just  been  considered  is 
a  kind  of  congruent  transformation,  i.e.  it  does  not  alter 

distances  or  angles.  But  a  congruent  transformation 

considered  more  generally  may  reverse  the  order  of  objects, 

changing,  for  example,  a  right-hand  glove  into  a  left-hand 
glove.  Such  a  transformation  is  produced  by  a  reflexion  in 
a  plane.     A  motion  is  equivalent  to  two  reflexions. 
We  may  extend  the  above  result,  therefore,  and  say  : 

Every  congruent  transforynation  of  space  gives  rise  to  a  circular 

transformation  of  a  'plane. 

4.  Conversely :  Every  point-transformation  of  the  plane 
which  changes  circles  into  circles  can  he  represented  by  a 

congruent  transformation  of  space. 
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To  a  circle  C  corresponds  a  plane  E,  and  to  the  corre- 

sponding circle  C  corresponds  a  plane  E'.  Hence  a  plane 
is  transformed  into  a  plane,  and  the  angle  between  two 
planes  is  equal  to  the  angle  between  the  corresponding 
planes.  Further,  a  pencil  of  circles  is  transformed  into  a 

pencil  of  circles  (since  the  transformation  is  a  point-trans- 
formation) ;  hence  a  straight  line,  the  axis  of  a  pencil  of 

planes,  is  transformed  into  a  straight  Hne.  Also  a  bundle 
of  circles  is  transformed  into  a  similar  system ;  hence  a 
point,  the  vertex  of  a  bundle  of  planes,  is  transformed  into 

a  point.  The  transformation  of  space  therefore  changes 
points,  lines  and  planes  into  points,  lines  and  planes, 

and  leaves  angles  unaltered,  i.e.  it  is  a  congruent  trans- 
formation.^ 

5.  The  general  circular  transformation  which  we  have 

been  considering  is  more  general  than  inversion,  for  in- 
version leaves  unaltered  a  point  0,  the  centre  of  inversion, 

and  also  all  straight  lines  through  0. 

In  general  a  system  of  lines  through  a  point  is  trans- 
formed into  a  pencil  of  circles.  In  a  pencil  of  circles  through 

two  points  A,  B  there  is  always  one  straight  line,  the 
straight  line  AB  ;  and  if  a  pencil  of  circles  contains  two 

straight  lines  it  must  consist  entirely  of  straight  lines ; 
for  the  planes  corresponding  to  the  two  lines  are  both 

perpendicular  to  F,  and  any  plane  through  their  line  of 
intersection  is  also  perpendicular  to  F. 

Now  a  pencil  of  lines  through  a  point  A  is  transformed 

into  a  pencil  of  circles  through  A',  B'.  Hence  one  line  of 
the  pencil  is  transformed  into  the  straight  line  A'B\     Hence 

^  In  euclidean  space  these  conditions  would  specify  only  a  similar 
transformation.  In  non-euclidean  geometry,  when  the  angles  of  a 
triangle  are  given,  its  sides  are  also  determined. 
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through  any  point  A  there  is  one  straight  hne  g  which  is 
transformed  into  a  straight  Hne  g\  Let  h  be  another  line 

which  is  transformed  into  a  straight  line  h'.  Then  the 
pencil  (gh),  which  consists  entirely  of  straight  lines,  is  trans- 

formed into  a  pencil  (g'h'),  which  consists  entirely  of  straight 
lines,     li  g,  h  intersect  in  0,  then  g',  h'  intersect  in  0',  and 

Fig.  120. 

the  corresponding  angles  at  0  and  0'  are  equal.  Let  0 
be  moved  into  coincidence  with  0'  and  g  with  g' .  Then 

either  h  and  h'  coincide  or  can  be  brought  into  coincidence 
by  flapping  the  whole  plane  over  about  ̂ ',  i.e.  by  a  reflexion 

in  g' .  Then  all  the  other  hues  of  the  first  pencil  will  coincide 
with  their  correspondents,  since  angles  are  unaltered. 

Hence,  the  general  circular  transformation  is  compounded 
of  a  congruent  transformation  of  the  plane  and  a  circular 

transformation  which  leaves  unaltered  all  the  straight  lines 
through  a  fixed  point. 

6.  Of  this  simpler  form  of  circular  transformation,  which 

keeps  one  point  fixed,  there  are  three  types,  according  as 
the  fixed  point  is  real,  ideal  or  at  infinity.  These  are  called 

the  hyperbolic,  elliptic  and  parabolic  types. 
And  further,  there  are  two  forms  of  each,  according  as 
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the  corresponding  congruent  transformation  of  space  is 
a  reflexion  or  a  motion. 

In  the  first  case  points  are  connected  in  pairs,  since  the 
relation  between  a  point  and  its  image  is  symmetrical. 
If  P  is  transformed  into  P\  then  by  the  same  transformation 

P'  is  transformed  into  P.  A  repetition  of  the  transforma- 
tion will  reproduce  the  status  quo.  The  transformation  is 

therefore  periodic  with  period  2,  or,  as  it  is  called,  involu- 
tory.     This  form  of  transformation  is  called  an  inversion. 

In  the  other  case,  by  repeated  transformation  the  trans- 
formed points  on  a  fixed  Ime  always  go  in  the  same  direction. 

This  form  is  called  a  radiation. 

7.  We  shall  now  determine  the  metrical  relations  which 
define  inversion. 

(1)  Hyperbolic  Inversion,  with  real  centre  0.  Draw  a 

line  OD=d  perpendicular  to  the  plane  F,  and  through  D 

draw  a  plane  K±OD.  We  shall  obtain  a  hyperbolic 
inversion  by  a  reflexion  of  space  in  the  plane  K.  Take 

any  point  P  in  P  and  draw  P^_LP,  and  QA±OD 

and  II  PA.  Let  Q'  be  the  reflexion  of  Q,  so  that  DQ'  =QD, 

and  in  the  plane  POQ  draw  Q'A'LOD,   and  P'A'1.F Q N.-E.  G. 
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and  II  Q'A'.  Then  P'  is  the  point  which  corresponds  to  P. 
Construct  the  point  C  which  corresponds  to  D.  Let 

OC=^c,  QD=DQ'=y,  OP=x,  OF  =x\ 
Then 

sinh  c  sinh  d  =  l=  sinh  x  sinh  (d+y)=  sinh  x'  sinh  (d-y); 
therefore    sinh  ic  =  cosech  (t^  +  2/)  and  cos,hx  =  coth{d+y). 

tanh  Jx  =  coth  x  -  cosech  x 

=  cosh (d+y)-  sinh (d+y)=e- ('^+y>. 

Similarly  tanh  |ic'  =  e  "  ('^ "  '^^    and    tanh  ̂ 0=6"^^, 

Hence        tanh|a;  tanh|aj'=e"2'^  =  tanh2Jc. 
This  is  the  formula  for  inversion  in  a  circle  of  radius  c. 

(2)  Elliptic  Inversion,  with  ideal  centre  0,     The  fixed 

lines  are  all  perpendicular  to  a  fixed  Hne  I.    Draw  a  plane 

K  through  I  making  an  angle  a  with  F,  and  take  this  as  the 
plane  of  reflexion.     Then  in  Fig.  122,  where 

AOD=DOA'==e, 

PA  LOP  and  II  OA,  P'A'LOP'  and  ||  0A\  OP==x,  OF  ==x\ 
OC  =  c,  we  have 

n(x)=a  +  0,     Il(x')=a-e. 
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Therefore        U(x)+I[  (x')  =2a  =  2U  (c). 
This  is  the  formula  for  inversion  in  an  equidistant-curve 

of  distance  c. 

If  a=-^,  this  gives  x' =  -x,  a  reflexion  in  a  straight line. 

If  a=-^,  we  have  n(a7)+n(cc')=^,   or   sinha;sinha:;'  =  l, 
a  form  of  transformation  which  was  frequently  used  by 
Lobachevsky  in  establishing  the  trigonometrical  formulae. 

(3)  Parabolic  Inversion,  with  centre  Q  at  infinity.  The 
corresponding  congruent  transformation  of  space  consists 
of  a  reflexion  in  a  plane  K\\F. 

In  Fig.  123  XD  is  the  trace  of  the  fixed  plane  K,  C  the 

marginal  image  of  D  ;  UA  is  the  trace  of  a  plane  ||  F,  U'A' 

the  trace  of  the  reflexion  of  UA  in  K,  and  P,  P'  the  marginal 

images  of  A  and  A'. 

Draw  the  horocyclic  arcs  PU,  OF,  P'V.  Let  CP=x, 
CP'  =x\  X  being  positive  and  x'  negative. 

Then  PU  =CX=FU' =k  =  l,  since  each  is  the  arc  of  a 



244    INVERSION  AND  TRANSFORMATIONS      [vin.  8 

horocycle  having  the  tangent  at  one  end  parallel  to  the 
radius  at  the  other  end. 

XV=XV\    CV=PU.e^    Cr=FU'.e^'; 
also  CV  +  Cr=2CX. 

Therefore  e^+e^'  =  2. 
This  is  the  formula  for  inversion  in  a  horocycle. 

8.  There  is  one  property  in  which  non-euclidean  inversion 
differs  from  euclidean.  In  euclidean  inversion  the  inverse 

P'  of  a  point  P  with  respect  to  a  circle  of  radius  OA  is  the 

Fig.  124. 

point  of  intersection  of  the  radius  OP  with  the  polar  of  Pi 

This  does  not  hold  in  non-euclidean  geometry. 

If  P'T  is  a  tangent  to  the  circle,  and  OP  =r,  OF  =r\ 
we  have 

cos  TOP'  =  coth  OP'  tanh  a  =  tanh  OP  coth  a. 
Hence  tanh  r  tanh  /  =  tanh^a, 

whereas  the  distances  of  the  inverse  points  are  connecte 

by  the  relation    ̂ ^^^  i^  ̂ ^^^  i^.  ̂   tanh^la. 
In  euclidean  geometry  these  both  reduce  to  the  sam( 

rr'  =  a^. 
The  transformation  which  is  called  in  euclidean  geometi 

"  quadric  inversion,"  and  which  is  obtained  by  the  abovi 
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construction  with  the  circle  replaced  by  any  conic,  is,  there- 

fore, in  non-euclidean  geometry,  not  a  generalization  of 
inversion. 

9.  Congruent  transformations.  Transformation  of 
coordinates. 

The  equations  which  determine  a  congruent  transforma- 
tion of  the  plane  are  given  at  once  by  the  equations  for 

transformation  of  coordinates. 

Let  the  rectangular  axes  Ox,  Oy  be  moved  into  the 

position  O'x',  O'y' ,  still  remaining  rectangular.     Let  the 

Fig.  125. 

coordinates  of  0'  be  (a^,  b^,  Cq),  and  the  equations  of 
0'x\  0'y\ 

a-^x  +  6i2/  +  ̂ 2;  =  0. 

Then,  the  geometry  being  hyperbohc, 

ai  +  h^^-cilk^  =  l,      \   (1) 
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Also,  since  the  new  axes  are  rectangular  and  pass 
through  0\ 

a^a^,  +  6162  -  CiCg/^^  ̂   ̂'  1 
ai^o  +  Mo  +C1C0      =0,  I     (2) 

«2^o  + ^2^0  +  ̂ 260     =0;J 
whence 

0^0  :  60  :  Cq  :  1  =6iC2  -  62^1  •  ̂1^2  ~  ̂ 2%  •  %^2  ~  ̂ 2^1  •  ̂' 

To  determine  the  factor  i2,  we  have 

-  l^W-  =  (ftjCg  -  62^1)^  +  (^^2  ~  <^2<^i)^  ~  ̂^(%&2  -  ̂ 2^1)^ 

=   -  A;2(ai2  +  6^2  -  Ci2/^2)  (^^2  +  5^2  _  ̂ ^2/^2) 

+  A;2(aia2  +  M2  -  G\<^Jk^Y' 
=  -¥-. 

Therefore  2?  =  ±1. 

There  are  two  cases  in  the  transformation,  according  as 
the  new  axes  follow  the  same  order  as  the  old,  or  are 

reversed.  The  second  case  is  obtained  from  the  first  by 

interchanging  x  and  y.  If  the  axes  are  supposed  to  be 
j&xed  while  the  whole  plane  moves,  we  call  these  two  cases 

respectively  a  motion  and  a  reflexion  of  the  plane.  A 
reflexion  may  be  produced  by  flapping  the  plane  over  about 
a  line  in  it. 

If  the  axes  are  unchanged  we  have  a2  =  0,  62  =  !'  ̂i  =  l» 

bi  =  0,  Cq  =  1,  and  therefore  ai62-a2^i  =  l-  If  ̂ ^^  axes 
are  interchanged  0^2  =  !»  ̂ 2=^5  %  =  0,  61  =  1,  Cq  =  1,  and 
therefore  aib2-ajbi=  -1.  Hence  for  a  motion  i?=+l, 
for  a  reflexion  R=  -1. 

We  have  then 

biC2-b2Ci=RaQ,  Cia2~C2<^i=-^^o>  ai62~<^2^i=^^o» 

b^o  +  bocjk^  =  Ra^ ,     ctgCo  +  (^o^^J^^  =  -Rb^,  a^^  -  a  J)  2  =  ̂^i  • 
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10.  Let  P  be  any  point,  whose  coordinates  referred  to 

the  old  and  the  new  axes  are  {x,  y,  z)  and  {x',  y',  z').  Then, 
expressing  the  distances  of  P  from  0'x\  O'y'  and  0' ,  we 
have  x'=hdn}iM'PITc,  y' =^Jc  sinh.  NT /k,  2' =  cosh  O'P/yfc ; 
hence  x'  =a^x+biy+CiZ,     \ 

y'  ̂a^+b^+c^z,     I   (a) 
-  k'^z'  =  a(fc  +  6o2/  ~  ̂̂ Co2;,  J 

where  the  nine  coefficients  are  connected  by  the  six  relations 
(1)  and  (2). 

Further,  since  x'^ +y'^  -kH'^^  -k^,  we  have 
tti^  +  a^  -  a^lk^  =  1,  biCi  +  b^c^  +  60^0  =^5 

b-^  +  b^  -  b^jk^  =  1,  Ci^i  +  02^2  +  ̂ 0^0  =  0> 
^  2    I  ̂   2  _  l,2p  2     _  _  Z.2 

ttjbi  +  ap<^  -  aj)jk'^  =  0. 
Multiplying    the  equations   (a)   respectively  by  %,  ̂ 3, 

-  aQ/k^  and  adding,  we  get 

x^a^x'  +a^'  +aQz\    "j 

Similarly  y=bix'+b^'+bQz',     \   (a') 
-  k'^z  =Cix'  +  c<^'  -  k^c^' ,  J 

from  which  we  see  that  the  coordinates  of  Oy\  Ox\  0 
referred  to  the  new  axes  are 

(%,  0^2,  a^,  (61,  b^,  bo),  (cj,  C2,  Co). 

(a')  is  the  inverse  transformation  to  (a).     Both  can  be 
represented  by  the  scheme 

X  y         ikz 

x' 

a^         bi        cjik 

y'
 

«2        ̂ 2        ̂ 2/*^ 

ikz' 

ajik    bjik    Cq 

which  may  be  read  either  horizontally  or  vertically. 
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The  determinant  of  the  substitution  =  + 1  for  a  motion, 
-  1  for  a  reflexion. 

11.  The  transformation  admits  of  a  very  simple  repre- 
sentation. 

Since  x^  ̂ y^  -  kh^  =  -h^,  we  can  write 

{x+iy){x  -iy)=k^(z-l){z  +  \). 

Let     x  =  ̂y-J±Z^,    x  =  ̂JLj±Z^. 

's^  z+  i  z-\- 1 

,  ,  X+X  .,  X-X  1+XX 
and  x  =  k   =,    y=ik   =^,    z  =   =-. 

1_XX'    ̂          1-XX  1-XX 
The  coordinates  of  a  point  are  then  expressed  in  terms  of 

the  complex  parameter  X,  just  as  in  Argand's  diagram. 

12.  Let  X'  be  the  parameter  of  P  referred  to  the  new 

axes.     We  have  to  express  X'  in  terms  of  X. 

x'  +  iy'  =  (%  +  ia^x  +  (6i  +  ih^^y  +  (Ci  +  iCg)^, 
k(z'  + 1)  =  [b  -a^-h^  +  k^Qzyk. 

Multiplying  these  by  1-XX,  we  get 

N  =  k(ai  +  ia2)(\+\)+ik(bi  +ib2)(\  -X) 
+  (Ci+ic2)(l+XX) 

=k\[(ai  +  ia^  -  i(h^  +  ih^'\ 

-\-k\[(a^+ia^-\-i(h^  -\-ih^'\->r{\  +XX)(Ci  +  iC2). 
D=k(\  -XX)  -ao(X  +X)  -ih^iX  -X)  +A:Co(l  +XX). 

Now  (gq  -  i6o)[(ai  +  ia^  +  ̂ (6l  +  ih^'\ 
=  a^a^  +  hjbi  -  ajb2  +  60^2  +  ̂(ofo«2  +  ̂0^2  +  ̂0^1  ~ ^0%) 

=  -  c^^  +Rci+i{-CQC2  +  Rc2)=  -  {Cq  -  R)  (Ci  +  ̂ C2), 

and        («o+^^o)[(^i+^2) -*(^i +^^2)]=  -(co  +  R)(cj+io2). 
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Let  Xq  be  the  parameter  of  0',  so  that 

Then,  for  a  motion,  R=  +1,  and 

iVAo  =  (Ci+^C2)(Xo-X)(l-XoX), 

Z)  =  A;(Co  +  l)(l-XXo)(l-XoX). 

Now  Ci2  +  C22  =  A;2(c^2_l). 

therefore  c^  +  iCg  =  -  kJcQ^  -  le"^,     where  0  =  tt  +  tan "  ̂  -, 

and  ao^+6o'=^Mco'-l); 

therefore    Xo(co  +  l)  =\/co^ -le"^,    where  \/^=  tan" i—. 

Therefore    N=k(Co  +  l)(\  -Xo)(l  -XoX)e^<* -«/'). 

Hence  X'  =  ̂ ^  = ^  =  All^ei(^-^). 
J5     1-XX 

Let  e^<* -*''>  =  a/a,  and  Xoa=  -)8,  Xoa=  -,/8;  then 

^,_aX+i8 ^"SxT^' 

i.e.  ̂ /ie  general  transformation  of  coordinates,  or  the  general 

motion  in  the  plane,  can  be  represented  by  a  type  of  homo- 
graphic  transformation  of  a  complex  parameter. 

13.  If  S  denotes  the  operation  which  changes  X  into  X' 
by  the  above  equation,  then  the  product  of  two  such 
operations  S^  and  S2  leads  to 

_a2(aiX+/gi)+;82(giX+ai)     a\+/3 

/§2(ai^  +  A)  +a2(Bi\  +  ai)     i§X  +a' 
where  a  =  aia2  +  A/32,     /3  =  a2j5i  +  ai/32; 
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therefore  8^82  is  an  operation  of  the  same  form.  The 

operations  S  have  therefore  the  property  that  the  product 
of  any  two  of  them  is  again  an  operation  S. 

Further,  it  can  be  proved  that  {8^82)8^=81(828^),  and 

the  operations  are  associative.  A  set  of  operations  satisfy- 
ing these  two  conditions  is  called  a  group.  This  group  is 

called  the  group  of  non-euclidean  motions. 
The  homographic  transformation  which  represents  a 

motion  is  a  particular  case  of  the  general  homographic 
transformation  ^     a\  +  8 

where  a,  /?,  y,  S  are  any  complex  numbers.  This  trans- 
formation belongs  to  a  more  general  group,  the  group  of 

homographic  transformations,  and  the  group  of  motions  is 

a  sub-group  of  this  larger  group. 

14.  In  elliptic  geometry  a  motion  is  represented  by  the 
transformation  ^     aX-B A   =-=   .  ■ 

If  8  is  the  product  of  two  operations  81,  /Sg,  we  have 

a=aia2-/3i/^25  ^  =  012/^1 +  «i^2- 
Put  a=d  +  ia,  ̂ =b-ic,  where  a,  b,  c,  d  are  real   and 

1=%/  -1;  then  we  have 

a=  aiC?2+^1^2  "~^1^2+<^1^2j 
6=  -aiC2+6iC?2  +  ̂ 1^2+^1^2> 

C=       ̂ 162 -61^2  + ^1^2  + ^1^2' 
d=  -aia2  ~^i^2  ~^i^2+^i^2' 

Now  these  relations  are  exactly  the  same  as  those  which 

we  obtain  from  the  equation 

ai+bj-\-ck+d  =  (a^i  +  b^j  +  c-Jc  -f  c?i)(a2*  +  ̂2^  +  ̂ 2^  +  ̂2)' 

where  i^=ji=.k^=  -\, 

jk  =  i=  -kj,        ki=j=  -ik,        ij  =  k=  -ji. 
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Here   ai  +  bj  +  ck+d  {=q)  is  a  quaternion.      Hence  the 
rule  for  compounding  operations  of  the  group 

\'^(a\-l3)/(8\  +  a) 
is  exactly  the  same  as  that  for  quaternions.     The  meaning 

of  this  can  be  explained  as  follows.     The  operation  q{   )q~^ 
performed  upon  a  vector  (    )  has  the  effect  of  a  rotation 
about  a  definite  Hue.     The  product  of  two  such  operations 

q2{qi(  )5'rM5'2"'=<725'i(  )<ii~\2~^=q{  )?"'» 
where  q=q2qi,  and  is  therefore  another  operation  of  the 
same  form.  These  operations  form  the  group  of  rotations 

about  a  fixed  point,  or  the  group  of  motions  on  the  sphere. 

15.  If  we  take  polar  coordinates  (r,  0), 
T  T    • 

x+iy=Jc  sinh  7.(cos  0+isin6)=k sinh  tC'^, 

T  T 

z+l  =  cosh  y  + 1  =  2  cosh^^ry . k  2k 

Therefore  X=tanh^e*^, ZfC 

XX=tanh2^,  Jwe'^  =\^  coshT=-   =-,  sinhY=- — ^. ZfC  fc     I  —  w  fc     1  —  XX 

The  equation  of  a  straight  fine  ax+by  +cz  =  0  becomes, 
when  expressed  in  terms  of  X, 

a^(X +X)  +ibk(\  - X)  +c(l  +XX)  =0, 

I.e.  c(\X  +  l)+k{a+ib)\+k{a-ib)\=0, 
which  is  of  the  form 

XX-aX-aX+l=0. 

If  the   line  passes  through  the  origin,  c  =  0,   and  the 
equation  reduces  to 

aX+aX=0. 
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The  equation  of  a  circle, 
d  Q  V  C  T 

cosh  T  =  cosh  T  cosh  t  - sinh  t  sinh  y  cos  (0  -  a), K  K  K  K  K 

with  centre  (c,  a)  and  radius  a,  becomes 
  /  ft  /j\  /^    

XX  ( cosh  Y  +  cosh  T )  -  sinh  r(Xe  ~  '*  +  Xe'*") 

+  cosh  T  -  cosh  7=0. 

In  general,  therefore,  the  equation 

XX-aX-aX+6=0 

represents  a  circle  (equidistant-curve  or  horocycle)  which 
reduces  to  a  straight  hne  when  6  =  1. 

16.  The  general  homographic  transformation  of  X  leaves 

the  form  of  the  equation  of  a  circle  unaltered,  and  is  there- 
fore a  circular  transformation.  The  transformation  of 

inversion  is  included  in  this.  Inversion  is  characterised 

by  connecting  points  in  pairs.  The  parameters  X,  X'  of 
a  pair  of  inverse  points  must  therefore  be  connected  by  a 

lineo-linear  equation  of  one  of  the  forms 

y\+6  yX+(5 

,     aX  +  /3      ~,     aX+0  ,,^. 
A   =-^=   1,      A  =  —   ~   [^) 
yX+o  yX+o 

The  first  form  characterises  motions,  the  second  re- 

flexions, when  y=y8  and  S  =  a.  Inversion  belongs  to  the 
second  form  and  is  a  symmetrical  transformation,  i.e. 

X'  is  expressed  in  terms  of  X  by  exactly  the  same  equation 

as  that  which  expresses  X  in  terms  of  X'. 
aX+/3 

If  y=/=0,  we  can  take  X'  = X+^ 
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Then         X=^^^     and    X=^J^^. 

Hence  S=  -a  and  /3=S,  i.e.  /3  is  a  real  number  =  -b. 
The  transformation  for  inversion  is  therefore  of  the  form 

x'=€4   (I) \~  a 

If  the  points  X,  X'  coincide,  so  that  X'  =X, 
XX -aX-aX +6=0,     (c) 

which  is  the  equation  of  the  circle  of  inversion.     If  X,  X' 
are  a  pair  of  corresponding  points,  equation  (i)  gives 

X'X-aV-aX+6=0. 

If  y  =  0,  we  can  take  X'=aX+)8.  Proceeding  as  before 
we  find  aa  =  l  and  /3=  -a^.  The  transformation  then 
reduces  to  the  form 

a\'  +a\=b. 

In  this '  case  the  circle  of  inversion  is  the  inverse  with 
regard  to  the  absolute  of  a  circle  which  passes  through  the 
origin. 

These  results  should  be  compared  with  the  corresponding 

formulae  for  euchdean  geometry  in  Chapter  V.  §§  31,  32. 

EXAMPLES    Vm. 

1.  In  elliptic  geometry,  show  that  the  general  transformation  of 

^,    ici  +  ib)X-{c  +  id)      ,  ,         , 
coordmates  is  expressed  by  a'  =  ̂   r~ — 7   t\'  where  a,  b,  c,  d ^  (c-id)A  +  (a-ib) are  real. 

2.  Prove  that  the  general  homographic  transformation  '^'=— r — ^ 
changes  circles  into  circles. 

.,    ak  +  B  . 
3.  Show  that  the  transformations  A  =-^r — ^,  torm  a  group. 

yA  +  o 
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4.  Show  that  the  general  reflexion  of  the  plane  in  hyperbolic 

geometry  is  represented  by  X'  =  = — . 3k  +  a 

6.  Show  that  the  reflexions  of  the  pjane  do  not  form  a  group,  but 
that  the  product  of  two  reflexions  is  a  motion. 

6.  Show  that  the  operations  of  the  group  X' =—   z  leave  un- 

altered the  equation  AA  =  1                                         p  A  +  a 

7.  Show  that  the  equation  y=0  is  unaltered  by  the  operations  of 

the  group  A'  =  -t   -,  where  a,  b,  c,  d  are  real. *      ̂   c\+d 

8.  Show  that  the  equation  a:=0  is  unaltered  by  the  operations  of 

the  group  A'  =  — r   ,  where  a,  6,  c,  d  are  real. icA  +  d 

9.  If  the  points  Aj,  Ag,  A3  are  collinear,  prove  that 

1  +  AiAi     Aj     Ai    =0. 

1  +  A2A2     A2     Ag 

I  +  A3A3    A3    As 

10.  Verify  that  if  • 

Ai  Ag  (  cosh  -  +  cosh  -  j  -  sinh  -  ( A^e  -  ̂*  +  Age^**)  +  cosh  -  -  cosh  7=0, 

the  points  A^,  Ag  are  collinear  with  the  point  whose  polar  coordi- 
nates are  (c,  a). 

11.  Prove  that  the  formula  for  a  hyperboUc  radiation,  correspond- 

ing to  a  translation  in  space  through  distance  d,  is  sinh  x'=e^  sinh  x. 

12.  Prove  that  the  transformation  tanli  r  tanh  r'  =  const,  changes 
a  straight  line  into  a  curve  of  the  second  degree. 

13.  Prove  that  the  inverse  of  the  absolute  in  a  circle  of  radius  c 

is  a  circle  of  radius  equal  to  k  log  cosh  c/k.  (This  circle  is  called  the 
vanishing  circle  ;   cf.  vanishing  plane  in  the  theory  of  perspective. ) 

14.  Prove  that  the  inverse  of  a  straight  line  is  a  circle  cutting  the 
vanishing  circle  orthogonally. 

15.  Prove  that  the  inverse  of  a  horocycle  is  a  circle  touching  the 
vanishing  circle. 
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16.  Prove  that  any  circle  which  cuts  the  circle  of  inversion  ortho- 
gonally is  unaltered  by  inversion. 

17.  Prove  that  the  inverse  of  a  system  of  parallel  lines  is  a  system 
of  circles  all  touching  at  the  same  point. 

18.  Prove  that  a  horosphere  which  cuts  the  vanishing  sphere 
orthogonally  is  inverted  into  a  plane  touching  the  vanishing  sphere  ; 
and  that  a  horocycle  traced  on  the  horosphere  is  inverted  into  a 
circle  lying  in  this  plane  and  passing  through  the  point  of  contact. 
Hence  deduce  that  the  geometry  on  the  horosphere  is  euclidean. 

19.  Show  that  the  equations  x  +  ixy  =  kt{z-l)  and  x  +  fJiy  =  kt{z+l), 
where  t  =  tanh  a/k,  represent  two  pencils  of  branches  of  equidistant- 
curves,  the  first  passing  through  the  origin,  the  second  through  the 
point  on  the  axis  of  x  at  distance  2a  from  the  origin.  Prove  that  the 
inverses  of  these  systems  with  respect  to  a  circle  with  centre  0  and 

radius  2a  are  respectively  x  +  fj-y  —  kt^iz  +  l)  and  t{x  +  ixy)=k{z-l). 

20.  Prove  that  the  inverse  of  the  pencil  of  straight  hnes  x  +  fxy=  ktz, 
where  t  =tanh  a/k,  with  respect  to  a  circle  with  centre  0  and  radius  a, 

is  the  pencil  of  circles  2p^{x  +  ixy)=ktl{p*+l)z  +  {p*-l)],  where 
p  =  tanh  ̂ a/k.  Show  that  the  common  points  of  this  pencil  are  on 
the  axis  of  x  at  distances  from  the  origin  equal  to  a  and  b,  where 
tanh  ̂ b/k  =p\ 

21.  Prove  that  inversion  with  regard  to  the  absolute  is  represented 

by  A,'A  =  1.  Show  that  this  transformation  leaves  every  straight 
line  unaltered,  and  changes  the  circle  ax  +  by  +  cz  +  d=0  into 
ax  +  by  +  cz-d  =  0,  i.e.  interchanges  the  two  branches  of  an  equi- 
distant-curve. 

22.  Prove  that  two  successive  inversions  in  the  two  branches  of 

an  equidistant- curve  of  distance  k  sinh~^l,  followed  by  a  reflexion 
in  its  axis,  are  equivalent  to  an  inversion  in  the  absolute. 



CHAPTER  IX. 

THE   CONIC. 

1.  A  conic  is  a  curve  of  the  second  degree,  i.e.  one  which 

is  cut  by  any  straight  Hne  in  two  points.  Since  the  equation 

of  a  straight  Hne  in  Weierstrass'  coordinates  is  homogeneous 
and  of  the  first  degree,  the  equation  of  the  conic  will  be  a 

homogeneous  equation  of  the  second  degree.  In  Cayley's 
representation  a  conic  will  be  represented  by  a  conic.  This 

is  the  chief  beauty  of  Cayley's  representation,  that  the 
degree  of  a  curve  is  kept  unaltered. 

The  projective  properties  of  a  conic  are  the  same  as  in 

ordinary  geometry,  and  it  is  only  m  metrical  properties 
that  there  is  any  distinction.  Since  metrical  geometry  is 

reduced  to  projective  geometry  in  relation  to  the  absolute 

conic,  the  metrical  geometry  of  a  conic  in  non-euclidean 
space  reduces  to  the  projective  geometry  of  a  pair  of  conies. 

The  metrical  properties  are  those  which  are  not  altered  b}' 
any  projective  transformation  which  transforms  the 
absolute  into  itself  The  metrical  geometry  of  a  conic 

therefore  reduces  to  a  study  of  the  invariants  and  co- 
variants  of  a  pair  of  conies. 

We  shall  confine  ourselves  here  to  an  enumeration  of  the 

different  types  of  conies,  and  a  few  theorems  relating  to 
the  focal  properties  of  the  central  conies  which  bear  the 

closest  resemblance  to  those  in  ordinary  geometry. 
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2.  Classification  of  conies. 

In  euclidean  geometry,  leaving  out  degenerate  forms, 
there  are  three  species  of  conies,  according  as  they  cut  the 

line  at  infinity  in  real,  coincident  or  imaginary  points. 
These  are  the  hyperbola,  the  parabola  and  the  ellipse. 
Also,  as  a  special  case  of  the  ellipse,  we  have  the  circle, 
whose  imaginary  intersections  with  the  line  at  infinity 
are  the  two  circular  points. 

In  non-euclidean  geometry  conies  are  classified  similarly 
with  reference  to  their  intersections  with  the  absolute. 

Two  conies  cut  in  four  points,  and  reciprocally  they  have 

four  common  tangents.  The  points  and  lines  which  a 
conic  has  in  common  with  the  absolute  are  called  the 

absolute  points  and  tangents.  These  elements  may  be  all 
real,  or  imaginary  or  coincident  in  pairs.  When  two 
absolute  points  are  coincident,  two  absolute  tangents  are 

also  coincident.  When  two  points  are  real  and  two  ima- 
ginary, the  same  is  true  for  the  tangents.  When  the 

points  are  all  real,  the  tangents  may  be  all  real  or  all 
imaginary.  When  the  points  are  all  imaginary,  the  conic 
must  be  within  the  absolute  (for  we  need  not  notice  a  conic 

which  is  wholly  ideal),  and  the  tangents  are  all  imaginary. 

Conies  are  therefore  classified  as  follows  : 

(1)  Absolute  points  and  tangents  all  real. 
Concave  hyperbola,  with  two  real  branches  concave  towards 

a  point  between  them. 

(2)  Absolute  points  all  real,  absolute  tangents  all  imaginary. 
Convex  hyperbola,  with  two  real  branches,  resembling  an 

ordinary  hyperbola. 

(3)  Absolute  points  and  tangents  all  imaginary. 
Ellipse,  a  closed  curve. 

(4)  Absolute  points  and  tangents  two  real  and  two  imaginary. 
Semi-hyperbola,  with  one  real  branch. 

N.-E.  G.  R 
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(5)  Absolute  points  and  tangents  two  coincident  and  two  real. 
Concave  hyperbolic  parabola,   two  real   branches,  touching 

the  absolute  at  the  same  point. 

(6)  Absolute   points   two   coincident   and   two   real,   absolute 
tangents  two  coincident  and  two  imaginary. 

Convex  hyperbolic  parabola,  one  real  branch  and  an  ideal 
branch  touching  the  absolute. 

(7)  Absolute   points   and    tangents   two    coincident   and    two 
imaginary. 

Elliptic  parabola,  resembling  an  ordinary  parabola. 

(8)  Absolute  points  and  tangents  three  coincident  and  one  real. 
Osculating  parabola,  one  real  branch  osculating  the  absolute 

at  one  end. 

(9)  Absolute  points  and  tangents,  two  pairs  of  each  real  and 
coincident. 

Equidistant-curve. 

(10)  Absolute  points  and  tangents  all  imaginary  and  coincident 
in  pairs. 

Proper  circle. 

(11)  Absolute  points  and  tangents  all  coincident. 
Horocycle. 

In  elliptic  geometry  the  absolute  points  and  tangents  are  all 
imaginary,  and  we  have  only  ellipses  and  proper  circles. 

3.  The  four  absolute  points  form  a  complete  quadrangle. 

The  diagonal  points  form  a  triangle  C-fijJ^  which  is  self- 
conjugate  with  regard  to  the  conic  and  the  absolute.  Every 

chord  through  any  of  these  points  is  bisected  at  the  point. 
The  points  Cfi^^^  ̂ .re  therefore  centres  of  the  conic,  and 
their  joins  are  the  axes. 

The  four  absolute  tangents  form  a  complete  quadrilateral. 
Its  diagonal  triangle  is  formed  by  the  three  axes.  In 
euclidean  geometry  the  foci  of  a  conic  are  the  intersections 

of  the  tangents  from  the  circular  points.  These  are  the 
absolute  tangents,  and  we  call  therefore  the  three  pairs  of 
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intersections  of  the  absolute  tangents  the  foci  of  the  conic. 

Similarly  the  three  pairs  of  joints  of  the  absolute  points  are 
caWed  focal  lines. 

The  polars  of  the  foci  with  regard  to  the  conic  are  called 

directrices.  Two  pass  through  each  centre  and  are  per- 
pendicular to  the  opposite  axis. 

"03 

Fig.  126. 

The  poles  of  the  focal  lines  with  regard  to  the  conic  are 
called  director  points.     Two  lie  on  each  axis. 

In  euclidean  geometry  the  focal  hues  degenerate  in  two 
pairs  to  the  line  at  infinity.  The  third  pair  become  the 
asymptotes.  Four  of  the  director  points  coincide  with 
the  centre,  and  the  other  pair  coincide  with  the  points  at 

infinity  on  the  conic.  In  euchdean  geometry  the  asymptotes 

are  the  tangents  to  the  conic  at  the  points  where  it  cuts  the 

absolute ;    but  in  non-euclidean  geometry  the  Hues  which 
N.-E.  G.  r2 
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most  closely  resemble  the  euclidean  asymptotes  are  the 

tangents  to  the  conic  from  a  centre,  and  are  therefore  six 
in  number. 

4.  By  taking  the  triangle  formed  by  the  centres  as  triangle  of 
reference,  the  equations  of  the  absolute  and  the  conic  can  be  taken 

in  the  form  ^  +  ̂ ^+,.=0,    u^^h,f+cz^=0, 
or  in  line-coordinates 

^       '  a      h      c 

The  coordinates  of  the  common  points  are  given  by 

and  the  coordinates  of  the  common  tangents 

^2 .  ̂ 2 .  ̂ ^a.\h-c) :  h{c-a) :  c{a-h). 

The  focus  F^  is  the  intersection  of  two  absolute  tangents 

'JaQ)-c)x-\-slh{c  - a)y  - \lc{a -h)z=Oy 

Ja{b  - c)x -Jh{c- a)y-\-sJc{a  - b)z  =0 ; 

therefore  its  coordinates  are 

0,     Jc{a-h)y    \/b{c-a). 

Fi   is  the  intersection  of  the  other  pair  of  absolute  tangents,  and 

its  coordinates  are       _        r—.   7;  /-n   : 
0,     sJc{a-o)y     -\Jo{G-a). 

If  d,  d'  are  the  distances  of  a  point  P{x,  y,  z)  from  F^,  JP/, 

ys/c{a'l))  +  zsfb{c-a) 
cos  a=' — .  — — .  » 

•Ja^  +  y^  +  z^s/aic-b) 

•    J    .yjb{a  -b)  +  zjc{c-a) 

\/ar'+i/2  +  22v/a(c-6) 

Hence   cos(.Z  +  ̂-)  J^^"-^^^'-^^^-^^^'H{
^(a  -  W- 0(0-.).^ 

_c  +  6    {si-b)y^-{fi-a)z^    c  +  6 
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i.e.  either  the  sum  or  the  difference  of  the  distances  of  any 

point  on  a  conic  from  a  pair  of  foci  is  constant. 

Reciprocally,  either  the  sum  or  the  difference  of  the  angles 
which  any  tangent  to  a  conic  makes  iviih  a  pair  of  focal  lines 
is  constant. 

A  tangent  makes  a  triangle  with  a  pair  of  focal  lines. 

In  the  case  in  which  the  sum  of  the  interior  angles  is  con- 
stant the  sum  of  the  angles  of  the  triangle  is  constant,  and 

hence  the  area  is  constant,  This  result  may  be  compared 

with  the  property  of  a  hyperbola  in  euclidean  geometry,  a 

tangent  to  which  makes  with  the  asymptotes  a  triangle  of 
constant  area. 

5.  The  conic,  the  absolute,  and  a  pair  of  focal  hues  form 

three  conies  passing  through  the  same  four  points.  Any 
line  is  cut  by  these  three  conies  in  involution.  Let  the  line 
cut  the  conic  in  P,  Q,  the  absolute  in  Z,  Y,  and  the  focal 

lines  in  M,  N.  Then  (XY,  PQ,  MN)  is  an  involution. 

Let  G,  G'  be  the  middle  points  of  PQ,  so  that 

{XY,PG)i^{XY,GQ)    and    {XY,PG')y^{XY,G'Q). 

Then  G,  G'  are  the  double  points  of  the  involution,  and 

(XY,  MG)y^(YX,  NG)7^{XY,  GN); 

therefore  G,  G'  are  also  the  middle  points  of  MN,  i.e.  the 
segments  determined  by  the  points  of  intersection  of  any  line 

I  with  a  conic  and  the  points  in  which  I  cuts  a  pair  of  focal 
lines  have  the  same  two  middle  points. 

Reciprocally,  the  tangents  from  any  point  P  to  a  conic  and 

the  lines  joining  P  to  a  pair  of  foci  have  the  same  two  bisectors. 

If  P  lies  on  the  conic,  the  tangent  and  normal  to  the  conic 

at  P  are  the  bisectors  of  PF,  PF' . 
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6.  Take  a  focus  F  with  coordinates 

0,      slc{a-h),     slh{c~a). 

The  equation  of  the  corresponding  directrix  is 

y\lh{a  -b)  +  zjc{c-a)=0. 

Let  d  be  the  distance  of  any  point  P  on  the  conic  from  the 
directrix  and  r  its  distance  from  the  focus ;  then 

.     ,         yslh{a-h)-\-zsJc{c-a) 
sm.g—  7 '  -    ■  , 

slx^  +  y^  +  z^sj(h-  c){a-b-c) 

Therefore 
sin 

y-jh{a-h)  +  zsjcic-a) 
sm  r  =     ■  _    ,  -  . 

s/x^  +  7/  +  z^s/a(b-c) 

sin 
r  _      a-h -c 

i.e.  the  ratio  of  the  sines  of  the  distances  of  a  point  cm  a  conic 

from  a  focus  and  the  corresponding  directrix  is  constant. 

Reciprocally,  the  ratio  of  the  sine  of  the  angle  which  a 
tangent  to  a  conic  snakes  with  a  focal  line  to  the  sine  of  its 
distance  from  the  corresponding  director  point  is  constant. 

7.  It  is  interesting  to  obtain  a  geometrical  proof  of  the  focal 

distance  property.^ 
Let  12  be  the  absolute  and  C  any  conic  having  four  real  common 

tangents  with  12.  Let  two  pairs  of  the  common  tangents  intersect 

in  the  pair  of  foci  F,  F'.  Let  P  be  any  point  on  C.  Join  PF  and 

PF\  cutting  12  in  X,  Y  and  X'y  Y'.     Then  we  have  to  prove  that 

dist.  (Pi?')  ±dist.  (Pi?")  =  const., 
or,  in  terms  of  cross-ratios, 

log  (PP,  ZF)±Iog  {PF',  Z'F')  =  const., 
i.e.  either  the  product  or  the  quotient  of  the  cross-ratios  is  constant. 

Let  XX',  YY'  cut  FF'  in  A  and  B,  X'Y  and  XY'  cut  FF'  in 
A'  and  B'. 

Then  {PF,  XY)7^xiF'F,  AA') 

and  {PF',  X'Y')t:y{FF',  A'B)-K{F'F,  BA'). 

*  For  part  of  this  proof  I  am  indebted  to  Dr.  W.  P.  Milne. 
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Therefore 

{PF,  XY)^{PF\  X'Y')  =  {F'F,  AA')^{F'F,  BA')  =  {F'F,  AB). 

Similarly        {PF,  XY) .  {PF\  X'Y')  =  {FF',  A'B'). 

We  have  therefore  to  prove  one  of  these  cross-ratios  constant. 

Four  conies  through  the  points  X,  X\  Y,  Y'  are  12  ;  Z7,  X'Y' ; 
XX\  77';  XY\X'Y.     Let  12  cut  FF'  in  C7,  F.     We  have  then  an 

A    .  F  B\U 

FIG.  127. 

involution  determined  by  (C/F,  FF'),  and  this  contains  also  the  pairs 
A,  B  and  A',  B\  If  therefore  {FF',  AB)  is  a  given  cross-ratio, 
A,  B  must  be  fixed  points. 

Now,  supposing  that  A,  B  are  fixed  points,  the  point  P  is  con- 

structed thus  :  12  is  a  fixed  conic  and  F,  F'  two  fixed  points.  FF' 
cuts  12  in  fixed  points  U,  V,  and  A,  B  are  a  pair  of  fixed  points  in 

the  involution  determined  by  {FF',  UV). 
Through  F  any  line  u  is  drawn  cutting  12  in  X,  7.  XA  cuts  12 

again  in  X',  and  we  get  the  line  X'F'=u'  corresponding  to  u.     P  is 
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the  point  of  intersection  of  u,  u\  If  F'X'  cuts  12  again  in  Y\  then 
YY'  cuts  FF'  in  B,  the  point  corresponding  to  A  in  the  involution 
{FF\  UV). 

Since  u  cuts  12  in  two  points,  there  are  two  lines  u'  corresponding 
to  u,  and  similarly  there  are  two  lines  u  corresponding  to  u\  The 

rays  u,  u'  are  therefore  connected  by  a  (2,  2)  correspondence.  The 
locus  of  P  is  therefore  a  curve  of  the  fourth  degree.  But  when 
u  coincides  with  FF\  so  also  do  both  the  corresponding  lines  u\  and 

vice  versa;  therefore  the  locus  contains  the  line  FF'  twice.  It 
therefore  consists  of  this  line  doubled  and  a  conic. 

Also,  if  i*  is  a  tangent  to  12  the  two  lines  w'  coincide,  and  P  is  a 
double  point  on  u.  Therefore  2^  is  a  tangent  to  the  locus  of  P. 
Hence  the  conic  which  is  the  locus  of  P  touches  the  four  tangents 

drawn  from  F,  F'  to  12. 

Further,  if  P  is  taken  on  12,  X  and  X'  coincide  with  P  ;  hence  the 
tangents  to  12  at  its  points  of  intersection  with  C  pass  through 
either  A  or  B. 

A,  B  are  therefore  the  fixed  points  in  which  the  tangents  to  12  at 
its  intersections  with  C  cut  FF\  and  therefore 

{PF,  XY)^{PF\  X'Y')  is  constant. 

The  foci  F,  F'  are  real  only  when  the  absolute  tangents  are 
imaginary. 

In  the  case  of  the  convex  hyperbola  the  order  of  the  points 

P,  F,  X,  Y  and  P,  F\  X\  Y'  is  the  same,  and  the  difference  of  the 
focal  distances  is  constant  (Fig.  128). 

Fio.  128. 
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In  the  case  of  the  ellifse  the  points  P,  F,  X,  Y  and  P,  F',  Y\  X' 
have  the  same  order,  and  the  sum  of  the  focal  distances  is  constant 
(Fig.  129). 

Fig.  129. 

EXAMPLES    IX. 

1»  If  the  equation  of  the  absolute  is  x^  +  y^  + 1(^^=0,  prove  that 
the  coordinates  of  the  three  pairs  of  foci  of  the  conic 

a^/a  +  if/b  +  k^z^/c=0 

where [4 o.  =  b 
±k 

p- 

,    0 

y 

y=a-'b. 
2.  In  hyperboMc  geometry,  where  the  equation  of  the  absolute 

is  x^  +  if-kh^=0,  show  that  the  equation  x^/a  +  yyb-Jchyc=0 
represents  (1)  an  imaginary  conic  if  a>0,  6>0-  c<0,  (2)  a  real  ellipse 
if  a,  b,  c  are  positive  and  c  does  not  lie  between  a  and  6,  (3)  an  ideal 
ellipse  if  a<0,  6>c>0  or  6<0,  o>c>0,  (4)  a  concave  hyperbola 
if  a,  b,  c  are  all  positive  and  c  lies  between  a  and  b,  (5)  a  convex 
hyperbola  if  a<0,  c>6>0  or  6<0,  c>a>0. 
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3.  In  elliptic  geometry,  prove  that  an  ellipse,  real  or  imaginary, 
has  always  one  pair  of  real  and  two  pairs  of  imaginary  foci. 

4.  In  hyperbolic  geometry,  prove  that  the  three  pairs  of  foci  are 
(1)  one  real  and  two  imaginary  for  a  real  or  imaginary  ellipse  or  a 
convex  hyperbola,  (2)  all  ideal  for  an  ideal  ellipse  or  a  concave 
hyperbola. 

5.  A,  B  are  fixed  points  and  APB  is  a  right  angle  ;  show  that  the 
locus  of  P  is  an  ellipse.  If  AB=2a,  prove  that  the  real  foci  are  on 
A  B  Sit  a,  distance  from  0,  the  middle  point  of  AB,  such  that 

tai,nhx/k=t8inh^a/%  or  x=^k  log  cosh  2a/k. 

Hence  prove  the  following  construction  for  the  foci  :  Draw  OR 
making  the  angle  AOR=II{a)  and  cutting  the  circle  on  AB  as 

diameter  in  R,  R'.  Then  F,  F'  are  the  feet  of  the  perpendiculars 
on  AB  from  R,  R'. 

6.  Ay  B  are  fixed  points  and  P  is  a  variable  point,  such  that  the 
angle  APB  is  constant ;  prove  that  the  locus  of  P  is  a  curve  of  the 
fourth  degree. 

I.  A,  B  are  fixed  points  and  P  is  a  variable  point,  such  that 

.AP       ,BP 
cosh   cosh  — 

k  k 

is  constant ;  prove  that  the  locus  of  P  is  an  ellipse. 

8.  Prove  that  the  locus  of  a  point,  such  that  the  ratio  of  the  sines 
of  its  distances  from  two  fixed  points  is  constant,  is  a  conic. 

9.  A,  B  are  fixed  points  and  P  is  a  variable  point,  such  that  the 
sum  or  the  difference  of  the  angles  ABP,  BAP  is  constant ;  prove 
that  in  each  case  the  locus  of  P  is  a  conic  passing  through  A  and  B. 

10.  A  variable  line  cuts  off  on  two  fixed  axes  intercepts  whose 
sum  or  difference  is  constant ;  prove  that  in  each  case  the  envelope 
of  the  line  is  a  conic  touching  the  axes. 

II.  Prove  that  the  product  of  the  sines  of  the  distances  from  a 
pair  of  foci  to  a  tangent  is  constant.     State  the  reciprocal  theorem. 

12.  Prove  that  the  locus  of  points  from  which  tangents  to  a  central 
conic  are  at  right  angles  is  a  conic  meeting  the  given  conic  where 
it  meets  its  directrices.     State  the  reciprocal  theorem. 
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13.  Prove  that  the  locus  of  a  point  which  makes  with  two  given 
points  a  triangle,  whose  perimeter  is  constant,  is  a  conic  with  the 
two  given  points  as  foci.  Show  that  the  locus  is  also  a  conic  if  the 
excess  of  the  sum  of  two  sides  over  the  third  side  is  constant. 

14.  Prove  that  the  envelope  of  a  line  which  makes  with  two  given 
lines  a  triangle  of  constant  area  is  a  conic.  Show  that  the  envelope 
is  also  a  conic  if  the  excess  of  the  sum  of  two  angles  of  the  triangle 
over  the  third  is  constant. 

X^  V/2  Z2 
15.  Prove    that    ^  +  , — r  +  — r  =0  represents,  for  all   values a  +  A    6  +  A    c  +  A 

of  A,  a  system  of  confocal  conies. 

16.  Show  that  in  the  conformal  representation,  in  which  straight 
lines  are  represented  by  circles,  a  conic  is  represented  by  a  quartic 
curve  having  two  nodes  at  the  circular  points,  i.e.  a  bicircular 
quartic. 



( 
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Absolute,  the,  46,  98,  154,  198. 
its  equation,  127,  129,  174. 
in  Euc.  Geom.,  47,  155,  164. 

Absolute  Geometry,  22. 
polar  system,  92. 
space,  197,  210. 

Absolute  unit,  of  angle,  28. 
of  length,  13,  15,  58,  162. 

Absorption  of  light,  206. 
Actual  points,  46. 
Aether,  197,  201. 

Alembert,  d',  3. 
Altitudes  of  a  triangle,  54,  141. 

of  a  tetrahedron,  Ex.  iv.  24. 
Anchor-ring,  105  n. 
Angle,  28,  121. 

dihedral,  42. 
flat,  28. 
formula,  131. 
logarithmic  expression,  157. 
of  parallelism,  30,  35,  58. 
right,  28. 
in  a  semicircle,  Ex.  i.  1  ;  ix.  5. 

Angle-sum  of  a  triangle,  5,  10,  12, 
15,  16,  18,  21. 

and  area,  13,  20,  77,  82,  104. 
Antipodal  points,  55,  89,  130, 176. 
Applicable  surfaces,  166. 
Archimedes,  axiom  of,  17. 
Area,  of  circle,  80  ;    Ex.  ii.  23  ; 

iii.  3. 

of   equidistant-curve,    Ex.    ii. 
22  ;  iii.  4. 

of  plane,  19  ;   Ex.  iii.  5. 
of  polygon,  83,  104. 
of  triangle,   13,  20,  77-79,  81, 

82,  103-104. 

Area,  of  triangle, maximum,  7,81. 
infinite,  7-9,  19,  20. 
unit  of,  79. 

Argarid's  diagram,  181,  248. Aristotle,  2. 
Astral  geometry,  15. 
Astronomy,  203-207. 
Asymptotes,  259. 
Asymptotic  lines,  10,  39,  42. 
Axioms,  2,  27. 

of  Archimedes,  17. 
of  Pasch,  29. 

Axis  of  a  circle,  52,  104,  136. 
of  a  conic,  258. 
of  a  pencil  of  lines,  48. 
radical,  219,  228. 

Ball,  W.  W.  Rouse,  201  n. 
Baltzer,  H.  R.,  24. 
Beltrami,  E.,  202. 
Berkeley,  G.,  201. 
Bertrand,  L.,  7. 
Bicircular  quartic,  Ex.  ix.  16. 
Bisectors  of  angles,  Ex.  iii.  1 ;  139. 
BoLYAi,  J.,  14,  15,  21-24. 
BoLYAi,  W.,  7,  14,  21-24. 
BoNOLA,  R.,  24  w. 
Broad,  C.  D.,  210??. 
Bundle  of  circles,  228. 

of  lines,  45,  55,  90. 

Camerer,  J.  W.,  15. 
Carslaw,  H.  S.,  24:  n. 
Cayley,  a.,  158,  192. 
Centre  of  circle,  51,  104. 

of  conic,  258. 
homothetic,  221. 
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Centre,  radical,  221. 
Centroid,  139. 

Ceva's  theorem,   145. 
Circle,  51,  104. 

circumference,  76,  114. 
equation,  136,  227,  252. 
in  relation  to  Absolute,    136, 

258. 
in  Euc.  Geom.,  47,  140. 
of  infinite  radius,  51  {see  also 

Horocycle). 
through  three  points,  53,  189, 

Circle  at  infinity,  164. 
Circular  functions,  57,  114?i. 

measure  of  angle,  57,  81. 
points,  47,  156. 
transformations,    181  ;    Chap, 

viii. 
Circumcentre  of  triangle,  54. 
Circumcircles  of  triangle,  53,  189  ; 

Ex.  ii.  1,  13  ;  iv.  16,  21,  22. 
of  regular  polygon,  Ex.  ii.  17. 

Circumscribed  quadrilateral,  Ex. 
ii.  3. 

sphere,  Ex.  iii.  7,  12. 
Clifford,  W.  K.,  25  n,  201. 

Clifford's  parallels,  108. 
surface,  106,  112. 

Coaxal  circles,  222,  232. 
Collinearity,  135,  145  ;  Ex.  viii.  9. 
Collineation,  180. 
Compass  bearings,  7. 
Complementary  segments,  63. 
Complex  numbers,  181,  248. 
Concurrency,  135,  145  ;    Ex.  iv. 

12. 
Configurations,  143. 
Confocal  conies,  Ex.  ix.  15. 
Conformal    representation,    172- 

191. 
transformation,  182;  Chap.  viii. 

Congruence,  28,  194-197. 
of  infinite  areas,  8. 

Congruent   transformation,    158, 
238,  245. 

Conies,  46  n,  98 ;  Chap.  ix. ;  Ex. 
viii.  12. 

Conjugate  coaxal  circles,  232. 
harmonic,  95,  148. 
isogonal,  147. 
points,  89. 

Consistency  of  N.-E.  G.,  202. 
Continuity,  17,  29,  96. 
Convergent  lines,  42. 
COOLIDGE,  J.  L.,  27  71. 
Coordinates,  125,  199. 

homogeneous,  135. 
line,  128,  172. 

polar,  125. trilinear,  172. 

Weierstrass',     127,     129,    171, 
227. 

Corresponding  points,  32  ;  Ex.  ii. 

8. Cross-ratio,  147. 
Cube,  Ex.  iii.  8. 
Curvature,  measure  of,  166. 

of  space,  193,  199. 
surfaces  of  constant,  168. 

Cyclic  quadrilateral,  Ex.  ii.  2. 
Cylinder,  105. 

Defect  of  triangle,   20,  78. 

Definitions,  Euclid's,  2. 
Degenerate  cases  in  Euc.  Geom., 

11,  47,  75,  92,  139-141,  155- 
156,  161-162,  217,  226,  244, 
259,  261. 

Desargues'  theorem,  142. 
Desmic  system,  144  ;  Ex.  iv.  23. 
Developable  surfaces,  166. 
Dihedral  angles,  42. 
Dimensions  of  space,  208. 
Direction  fallacy,  6,  20. 
Director  points,  259. 
Directrix,  259. 
Displacement,  179,  196. 
Distance,  absolute  unit  of,  13,  15. 

in  Euc.  Geom.,  75,  156,  161. 
formula,  129,  132,  158,  186. 

Divergent  lines,  42. 
Duality,  50,  100,  226. 

Egypt,  1. Element  of  length,  187,  194  ;  Ex. iv.  6. 

Ellipse,  257. 
Elliptic   geometry,    25,    29,    55 ; 

Chap.  iii.  ;  206,  208  {sec  also 
Spherical  geometry), 

inversion  or  radiation,  240. 
involution,  97. 



INDEX 271 

Empiricism,  207. 
Engel,  F.,  1 1  n,  13  n,  21  n,  68  n. 
Engel-Napier  rules,  67. 
Envelopes,  104,  129  ;  Ex.  iv.  17; 

ix.  10,  14. 
Equidistance,  10,  42. 
Equidistant-curve,    12,   52,    105, 

258. 
equation,  136,  228. 
length  of  arc,  Ex.  ii.  7,  iii.  2. 

Equidistant-surface,  53,  105. 
Escribed  circles,  Ex.  ii.  13. 
Euclid,  1,  2. 
Euclidean  geometry,  30,  47,  75, 

79,  90,  92,  134,  139-141,  155- 
157,  161,  175,  226,  259,  261. 

Excess  of  a  triangle,  104. 
Exterior  angle,  theorem,  17,  19, 

29,  34-35. 

Focal  distance  property,  260,  262. 
Focal  lines,  259. 
Foci,  259  ;   Ex.  ix.  1,  3,  4,  5 
Focus-directrix  property,  262. 
Four  dimensions  of  space,  42  n, 

193    199 
Frankland,  W.  B.,  4  n,  206  n. 
Free  mobility,  167,  168,  195-199. 
Fundamental  theorem  of  projec- 

tive geometry,  96. 

Gauss,  C.  F.,  on  area  of  triangle, 
7,  82-83. 

on  curved  surfaces,  168. 
on  parallels,  14,  22,  24. 
pentagram,  68  n. 

Geodesies,  166. 
Geometry,  Absolute,  22. 

Analytical,  Chap,  iv. 
Astral,  15. 
Bizarre,  162,  164. 
Differential,  194. 
Elliptic,  Chap.  iii. 
Euclidean,  q.v. 
Hyperbolic,  Chap.  ii. 
Imaginary,  21. 
in  the  infinitesimal,  76,  1 14. 
Log. -spherical,  15. 
Non-Euclidean,  14,  20. 
of  a  bundle,  55,  90. 

on  Clifford's  surface,  113. 

Geometry  on  curved  surface,  166, 
on  equidistant-surface,  56. 
on  horosphere,  15,  56,  84,  165  ; 

Ex.  viii.  18. 

on  imaginary  sphere,    13,    15, 165. 

on  plane  at  infinity,  135,  165. 
on  sphere,  56,  165. 
origins,  1. 
Parabolic,  25. 

Projective,  93-98. 
Spherical,  25,  89,  130,  138  n. 
with    hyperbolic    or   parabolic 

measure  of  angle,  162,  164. 
with  projective  metric,  160. 

Gergonne,  J.  D.,  Ex.  i.  5. 
Greek  geometry,  1. 
Greenstreet,  W.  J.,  210  n. 
Gronau,  K.  T.  E.,  Ex.  i.  7. 
Groups,  197,  250. 

Halsted,  G.  B.,  U  n,  21  n,  23  n. 
Harmonic  range,  95. 

Hart's  circle,  Ex.  iv.  25. 
Hauff,  J.  K.  F.,  Ex.  i.  6. 
Hausdorff,  F,  229  n. 
Heath,  T.  L.,  2. 
Heiberg,  J.  L.,  2. 

Helmholtz,    H.    von,    195-197, 
199. 

Herodotus,  1. 
HiLBERT,  D.,  27,  41,  193, 
HiNTON,  C.  H.,  201  n. 
Hippocrates,  1. 
HOLGATE,  T.  F.,  94. 
Homocentric  circles,  224. 
nomographic     transformation, 

182,  249. 
Homography,  94. 
nomothetic    centres    and    axes, 

221. 
Horocycle,  51,  258. 

equation,  137,  228. 
length  of  arc,  57  ;    Ex.  ii.  4. 

Horosphere,  52. 
geometry  on,  15,  56,  84,  165  ; 

Ex.  viii.  18. 
HouEL,  J.,  24. 

Hyperbolas,  257. 
Hyperbolic  functions,  15,  63. 

geometry,  Chap.  ii. ;  25,  30. 
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HyperboKc   inversion    or    radia- 
tion, 240. 

involution,  97. 

Ideal  elements,  47,  154. 
Imaginary  points,  97,  133,  154. 
Indefinables,  2,  27. 
Inequalities,  28. 
Infinite  vs.  unbounded,  194. 
Infinite  areas,  7-9,  19,  20. 
Infinitesimal  domain,  7(5,  114. 

transformation,  198. 
Infinity,  points  at,  40. 
Inscribed  circles  of  a  triangle,  54, 

139  ;    Ex.  ii.   10,  13;  iv.  15, 
19,  20. 

of  a  regular  polygon,  Ex.  ii.  17. 
Inscribed  quadrilateral,  Ex.  ii.  2. 
Intersection  of  lines,  132. 

of  circles,  211,  228. 
angle  of,  of  circles,  218. 

Intuition,  2,  207. 
Inversion,  241,  252 

in  Euc.  Gcom.,  180,  183,  244. 
quadric,  244  ;  Ex.  viii.  12. 

Involution,  97. 
Involutory  transformation,  241. 
Isogonal  conjugates,  147. 
Isosceles  triangle,  28. 

Kaestner,  a.  G.,  21. 
Kant,  I.,  14,  207. 
Klein,  F.,  25,  159,  192. 
Klugel,  G.  S.,  22. 

Laguerre,  E.,  156  n. 
Lambert,  J.  H.,  13-14,  15,  20. 
Leqendre,  a.  M.,  16-19,  20  ;  Ex. 

i.  4. 
Leslie,  J.,  19. 
Lie,  S.,  197. 
Liebmann,  H.,  24  n,  229  n. 
Limiting  points,  223. 

lines,  225. 
Line-coordinates,  128. 
Linear  systems  of  circles,  226. 
Line-element,  187,  194  ;  Ex.  iv.  5. 
LOBACHEVSKY,  N.   I.,   15,  20-21, 

23,  24,  68  n,  243. 
Loci,  Ex.  iv.  14;  ix.  5-9,  12,  13. 

Logarithmic  expression  for  dis- 
tance and  angle,  157. 

Logarithmic-spherical  geometry, 
15. 

LUDLAM,  W.,  4. 

Manifold,  194. 
Marginal  images,  229. 
Maximum  triangle,  7,  81  ;  Ex.  ii. 

10. 

quadrilateral,  Ex.  ii.  11,  12. 
Medians,  139. 
Meikle,  H.,  19,  22. 

Menelaus'  theorem,  145. 
Middle  point  of  segment,  1 38, 159. 
Milne,  W.  P.,  262  n. 
Minimal  hues,  134  ;   Ex.  iv.  2. 

Mobius'  sheet,  91. 
Monodromy,  195. 
Motions,  28,  179,  185,  196,  246. 

Napier,  J.,  68  n. 
rules,  68,  74,  119,  122. 

Net  of  rationality,  96. 
Networks,  Ex.  ii.   14,  15,  18-20; 

iii.  9. 

Nine-point  circle,  Ex.  iv.  25,  26. 
Non-euclidean  geometry,  14,  20. 
Non-intersectors,  12,  31,  40. 
Normal  to  conic,  261. 

One-sided  surface,  92. 
Order,  27. 
Orthaxis,  54,  141. 
Orthocentre,  54,  141. 
Orthogonal  points,  89. 

circles,  219  ;  Ex.  vii,  4. 
trajectory,  51. 

Orthopole,  Ex.  iv.  13. 

IT  28,  76. 

IT,  (p),  30,  35,  59;  Ex.  vii.  11. 
Parabolas,  258. 
Parebolic  geometry,  25. 

inversion  or  radiation,  240. 
involution,  97. 

Parallax,  204. 
Parallel  angle,  30,  35,  68. 

lines,  29,  30  ;  Ex.  ii.  9  ;   133. 

planes,  50. 
postulate,  Chap.  i.  ;  27,  203. 
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Parataxy,  108. 
Pasch,  M.,  193. 

axiom,  29. 
Peano,  G.,  193. 
Pencil  of  circles,  228,  233. 

of  lines,  45,  176. 
Pentagramma      mirificum,      65, 

68  n,  118. 
Perimeter  of  triangle,  104,  163. 
Perpendicular  to  a  line,  28. 

to  plane,  43. 
to  coplanar  lines,  12,  40. 
to  two  lines  in  space,  106,  109. 

Perspective  triangles,  142. 
Perspectivity,  95. 
PiERi,  M.,  193. 
Planes,  42. 
Platonists,  1. 
Playfair,  J.,  19. 

axiom,  4,  30. 
POINCARE,  H.,  210. 
Polar  system,  92,  98. 

triangles,  102,  141. 
Pole  and  polar,  51,  89,  130  ;   Ex. 

iv.  1. 

Polygon,  area,  83,  104. 
regular,  80  w  ;    Ex.  ii.   16-20. 

Polyhedra,  Ex.  iii.  7,  8,  12-15. 
Position-ratio,   147. 
Postulates,  2,  3,  27. 
Power  of  a  point,  212. 

of  a  line,  216 
Projection,  95,  148. 

gnomonic,  170. 
stereographic,  172. 

Projective  geometry,  93-98,  135. 
group,  198. 
metric,  158. 

Pseudosphere,  168. 
Pythagoras,  1. 

Quadrangle-quadrilateral    con- 
figuration, 143. 

Quadrant,  89,  116. 
Quadrilateral,  circumscribed,  Ex. 

ii.  3. 

complete,  148. 
inscribed,  Ex.  ii.  2. 
of  maximum  area,  Ex.  ii.   11, 

12. 

trirectangular,  70,  121. 

Quadrilateral -construction,     96, 
199. 

Quaternions,  251. 

Radian,  28. 
Radiation    and    inversion,    241  ; 

Ex.  viii.  11. 
Radical  axes,  219,  228. 

centres,  221. 
Radius  of  circle,  51. 
Rationality,  net  of,  96. 
Reciprocity  of  parallelism,  32. 
Rectangle,  9,  79,  112. 
Reflexions,  238,  246. 

in  Euc.  Geom.,  180. 
Reid,  T.,  208  n. 
Relativity-principle,   197,  210. 
Reye,  T.,  94. 
RiEMANN,  B.,  25,  194. 

Rigid  figure,  167,  195. 
Rotation  proof  of  parallel-postu 

late,  6. 
Rotations,  185. 
Russell,  B.,  193. 

Saccheri,  G.,  11-13,  15,  18,  24. 
Savile,  H.,  3. 
Schweikart,  F.  K.,  14. 
Sections  of  sphere,  etc.,  53. 
Segments,  congruence  of,  27. 
Self-corresponding  elements,  96. 
Semi-circular  canals  of  the  ear, 

208. 
Semi-hyperbola,  257. 
Similar  figures,  7,  13. 

transformation,  239  n. 
SiMSON,  R.,  42. 
SOMMERVILLE,  D.  M.  Y.,  24  n. 

Space-constant,  58. 
construction  for,  77. 
physical  measurement  of,  203. 

Space-fillings,  Ex.  ii.   14,  15,  18- 
21;  iii.  14,  15. 

Sphere,  52,  105. 
of  infinite  radius,  15  {see  Horo- 

sphere). 
volume,  Ex.  ii.  24;  iii.  6. 

Spherical  geometry,  25,  89,  130, 
138  n. 

triangles,  63. 
trigonometry,  69,  70,  120. 
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Square,  2. 
Stackel,  p.,  11  w,  13  n,  23  n. 
Staudt,  G.  K.  Ch.  von,  193,  199. 
Stereographic  projection,  172. 

Straight  line,  Euclid's  def.,  2. 
as  shortest  path,  17. 
re-entrant,  17,  19,  194. 

Superposition,  8,  27. 
Symmetry  of  space,  28. 
Systems  of  circles,  228,  232. 

Tactual  space,  208. 
Tangents  to  two  circles,  211. 

to  a  conic,  261. 
Taurinus,  F.  a.,  15. 
Tetrahedron,  Ex.  iv.  7,  8. 

desmic,  144. 
radius  of  circumsphere,  Ex.  iii. 

7. 
with  concurrent  altitudes,  Ex. 

iv.  24. 
Thales,  1. 
Thibaut,  B.  F.,  6. 
Thompson,  T.  Perronet,  19,  22. 
Tilly,  J.  M.  de,  196  n. 
TowNSBND,  E.  J.,  27  n. 
Transformations,    circular,    181  ; 

Chap.  viii. 
conformal,  182;  Chap.  viii. 
congruent,  158,  238,  245. 
homographic,  182,  249. 
infinitesimal,  198. 
of  coordinates,  245. 
of  inversion,  180,  183,  241,  252. 

Transitivity   of   parallelism,    32, 
43. 

Transmissibility    of    parallelism, 
31. 

Transversal  theorem,  33. 
Triangle,  angle-sum,  5,  10,  12,  13, 

15,  16,  18,  20,  21,  77,  104. 
area,  13,  20,  77-79,  81,  82,  103- 

104. 
associated,  65,  74,  117. 
exterior  angle,  17,  19,  29,  34- 

35. of  maximum  area,  7,  81. 
perimeter,  104,  163. 
perspective,  142. 
points  connected  with,  139. 
rectilinear  and  spherical,  63. 
right-angled,  63,  116. 
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