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PREFACE

THE heroic age of non-euclidean geometry is passed.

It is long since the days when Lobatchewsky timidly

referred to his system as an *

imaginary geometry',
and the new subject appeared as a dangerous lapse

from the orthodox doctrine of Euclid. The attempt to

prove the parallel axiom by means of the other usual

assumptions is now seldom undertaken, and those who
do undertake it, are considered in the class with

circle-squarers and searchers for perpetual motion sad

by-products of the creative activity of modern science.

In this, as in all other changes, there is subject both

for rejoicing and regret. It is a satisfaction to a writer

on non-euclidean geometry that he may proceed at

once to his subject, without feeling any need to justify

himself, or, at least, any more need than any other

who adds to our supply of books. On the other hand,
he will miss the stimulus that comes to one who feels

that he is bringing out something entirely new and

strange. The subject of non-euclidean geometry is, to

the mathematician, quite as well established as any
other branch of mathematical science

; and, in fact, it

may lay claim to a decidedly more solid basis than

some branches, such as the theory of assemblages, or

the analysis situs.

Recent books dealing with non-euclidean geometry
fall naturally into two classes. In the one we find

the works of Killing, Liebmann, and Manning,* who
* Detailed references given later.

A2
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wish to build up certain clearly conceived geometrical

systems, and are careless of the details of the founda-

tions on which all is to rest. In the other category
are Hilbert, Vahlen, Veronese, and the authors of

a goodly number of articles on the foundations of

geometry. These writers deal at length with the

consistency, significance, and logical independence of

their assumptions, but do not go very far towards

raising a superstructure on any one of the foundations

suggested.

The present work is, in a measure, an attempt to

unite the two tendencies. The author's own interest,

be it stated at the outset, lies mainly in the fruits,

rather than in the roots
;
but the day is past when the

matter of axioms may be dismissed with the remark

that we ' make all of Euclid's assumptions except the

one about parallels'. A subject like ours must be

built up from explicitly stated assumptions, and nothing

else. The author would have preferred, in the first

chapters, to start from some system of axioms already

published, had he been familiar with any that seemed to

him suitable to establish simultaneously the euclidean

and the principal noii-euclideaii systems in the way that

he wished. The system of axioms here used is decidedly

more cumbersome than some others, but leads to the

desired goal.

There are three natural approaches to non-euclidean

geometry. (1) The elementary geometry of point, line,

and distance. This method is developed in the open-

ing chapters and is the most obvious. (2) Projcctive

geometry, and the theory of transformation groups.

This method is not taken up until Chapter XVIII, not

because it is one whit less important than the first, but
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because it seemed better not to interrupt the natural

course of the narrative by interpolating an alternative

beginning. (3) Differential geometry, with the con-

cepts of distance-element, extremal, and space constant.

This method is explained in the last chapter, XIX.
The author has imposed upon himself one or two

very definite limitations. To begin with, he has not

gone beyond three dimensions. This is because of his

feeling that, at any rate in a first study of the subject, the

gain in generality obtained by studying the geometry
of ^-dimensions is more than offset by the loss of

clearness and naturalness. Secondly, he has confined

himself, almost exclusively, to what may be called the
'
classical

'

non-euclidean systems. These are much
more closely allied to the euclidean system than are

any others, and have by far the most historical impor-
tance. It is also evident that a system which gives

a simple and clear interpretation of ternary and qua-

ternary orthogonal substitutions, has a totally different

sort of mathematical significance from, let us say, one

whose points are determined by numerical values in

a non-archimedian number system. Or again, a non-

euclidean plane which may be interpreted as a surface

of constant total curvature, has a more lasting geo-

metrical importance than a non-desarguian plane that

cannot form part of a three-dimensional space.

The majority of material in the present work is,

naturally, old. A reader, new to the subject, may find

it wiser at the first reading to omit Chapters X, XV,
XVI, XVIII, and XIX. On the other hand, a reader

already somewhat familiar with non-euclidean geo-

metry, may find his greatest interest in Chapters X
and XVI, which contain the substance of a number of
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recent papers on the extraordinary line geometry of

rion-euclidean space. Mention may also be made

of Chapter XIV which contains a number of neat

formulae relative to areas and volumes published

many years ago by Professor d'Ovidio, which are not,

perhaps, very familiar to English-speaking readers,

and Chapter XIII, where Staude's string construction

of the ellipsoid is extended to non-euclidean space.

It is hoped that the introduction to non-euclidean

differential geometry in Chapter XV may prove to

be more comprehensive than that of Darboux, and

more comprehensible than that of Bianchi.

The author takes this opportunity to thank his

colleague, Assistant-Professor Whittemore, who has

read in manuscript Chapters XV and XIX. He would
also offer affectionate thanks to his former teachers,

Professor Eduard Study of Bonn and Professor Corrado

Segre of Turin, and all others who have aided and

encouraged (or shall we say abetted?) him in the

present work.
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CHAPTER I

FOUNDATION FOR METRICAL GEOMETRY
IN A LIMITED REGION

IN any system of geometry we must begin by assuming
the existence of certain fundamental objects, the raw material

with which we are to work. What names we choose to

attach to these objects is obviously a question quite apart
from the nature of the logical connexions which arise from
the various relations assumed to exist among them, and in

choosing these names we are guided principally by tradition,

and by a desire to make our mathematical edifice as well

adapted as possible to the needs of practical life. In the

present work we shall assume the existence of two sorts

of objects, called respectively points and distances.* Our

explicit assumptions shall be as follows :

* There is no logical or mathematical reason why the point should be taken
as undefined rather than the line or plane. This in, however, the invariable

custom in works on the foundations of geometry, and, considering the

weight of historical and psychological tradition in its favour, the point,

will probably continue to stand among the fundamental indefinables. With
regard to the others, there is no such unanimity. Veronese, Fondamenti di

geometria, Padua, 1891, takes the line, segment, and congruence of segments.
Schur,

t Ueber die Grundlagen dcr Geometrie,' Mathematische Annalen, vol.

Iv, 1902, uses segment and motion. Hilbert, Die Grundlagen der Geometric,

Leipzig, 1899, uses practically the same indefinables as Veronese. Moore,
' The projective Axioms of Geometry,* Transactions of the American Mathematical

Society, vol. iii, 1902, and Veblen,
*A System of Axioms for Geometry/ sanio

Journal, vol. v, 1904, use segment and order. Fieri,
* Bella geometria

elementare come sistema ipotetico deduttivo,' Memorie della E. Accadcmia dcllc

Scienze di Torino, Serie 2, vol. xlix, 1899, introduces motion alone, as does

Padoa,
* Uii nuovo sistema di definizioni per la geometria euclidea,' Periodico

di niatcmatica, Serie 3, vol. i, 1903. Vahlen, Abstrakte Geometric, Leipzig, 1905,
uses line and separation. Peano,

' La geometria basata sulle idee di punto

e di distanza,' Atti della R. Accademia di Torino, vol. xxxviii, 1902-8, and

Levy,
' I fondamenti della goometria metrica-proiettiva,

1

Memorie Accad.

Torino, Serie 2, vol. liv, 1904, use distance. I have made the same choice as

the last-named authors, as it seemed to me to give the best approach to the

problem in hand. I cannot but feel that the choice of segment or order

would be a mistake for our present purpose, in spite of the very condensed

system of axioms which Veblen has set up therefor. For to reach con-

gruence and measurement by this means, one is obliged to introduce the

six-parameter group of motions (as in Ch. XVIII of this work), i. o. base

metrical geometry on projective. It is, on the other hand, an inelegance to

base projective geometry on a non-projective conception such as ' between-
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AXIOM I. There exists a class of objects, containing at

least two members, called points.

It will be convenient to indicate points by large Roman
letters as A, B, G.

AXIOM II. The existence of any two points implies the

existence of a unique object called their distance.

If the points be A and B it will be convenient to indicate

their distance by AB or BA. We shall speak of this also

as the distance betiveen the two points, or from one to the

other.

We next assume that between two distances there may
exist a relation expressed by saying that the one is congruent
to the other. In place of the words *

is congruent to
' we

shall write the symbol
==

. The following assumptions shall

be made with regard to the congruent relation :

AXIOM III. AB = AB.

AXIOM IV. AA = KB.

AXIOM V. If AB = CD and CD = EF, then AB = EF.

These might have been put into purely logical form by
saying that we assumed that every distance was congruent
to itself, that the distances of any two pairs of identical

points are congruent, and that the congruent relation is

transitive.

Let us next assume that there may exist a triadic relation

connecting three distances which is expressed by a saying
that the first AB is congruent to the sum of the second CD
and the third PQ. This shall be written AB = CD + PQ.
AXIOM VI. If AB = CD + PQ, then AB = PQ + CD.

VII. If AB = CD +PQ and PQ = M, then

AS = CD + MS.

AXIOM VIII. If AB = CD + PQ and A'B* = AB, then

AXIOM IX. AB = AB + CO.

Definition. The distance of two identical points shall be
called a null distance.

ness', whereas writers like Vahlen require both projective and 'affine'

geometry, before reaching metrical geometry, a very roundabout way to

reach what is
7
after all, the fundamental part of the subject.



i IN A LIMITED REGION 15

Definition. If AB and CD be two such distances that there

exists a not null distance PQ fulfilling the condition that AB
is congruent to the sum of CD and PQ, then AB shall be said

to be greater than CD. This is written AB > CD.

Definition. If AB > CD} then CD shall be said to be less

than AB. This is written CD < AB.

AXIOM X. Between any two distances AB and CD there
exists one, and only one, of the three relations

= CD\ AB>CD, AB < CD.

Theorem 1. If AB = CD, then CD = AB. _
For we could not have ABCD + PQ where PQ was

not null. Nor could we have CD = AB -f PQ for then, by
VIII, AB = AB + PQ contrary to X.

Theorem 2. If AB = CD + PQ and <77/ = CD, then

The proof is immediate.

AXIOM XI. If A and C be any two points there exists

such a point B distinct from either that

This axiom is highly significant. In the first place it

clearly involves the existence of an infinite number of points.
In the second it removes the possibility of a maximum dis-

tance. In other words, there is no distance which may not
be extended in either direction. It is, however, fundamentally
important to notice that we have made no assumption as

to the magnitude of the amount by which a distance may
be so extended; we have merely premised the existence of

such extension. We shall make the concept of extension

more explicit by the following definitions.

Definition. The assemblage of all points C possessing the

property that AB == AC+CB shall be called the segment of

A and B, or of B and A, and written (AB) or (BA). The

points A and B shall be called the extremities of the segment,
all other points thereof shall be said to be within it.

Definition. The assemblage of all points 5 different from

A and C such that AB = AC + CB shall be called the extension

of (AC) beyond C.
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AXIOM XII. If AB = AC+ CB where AC = AD + DC,

then AB = AD +DB where DB = DC + CB.

The effect t)f this axiom is to establish a serial order among
the points of a segment and its extensions, as will be seen
from the following theorems. We shall also be able to show
that our distances are scalar magnitudes, and that addition of

distances is associative.

AXIOM XIII. If AB PQ + RS there is a single point

(7 of (AB) such that AC = PQ 9
CB = Bflf.

Theorem 3. If AB > CD and CD > EF9 then AB>JEF.
To begin with AB = EF is impossible._If then EF>A #,

let us put E~F=EG + GF, where EG = AB.

Then CD = CH + Hb', CH=EF.
Then CD-CK + KD-, OR = AB
which is against our hypothesis.
We see as a corollary, to this, that if C and D be_any two

points of (AB) 9
one at least being within it, AB > CD.

It will follow from XIII that two distinct points of a

segment cannot determine congruent distances from either end
thereof. We also see from XII that if C be a point of (AB),
and D a point of (AC), it is likewise a point of (AB). Let

the reader show further that every point of a segment, whose
extremities belong to a given segment, is, itself, a point of

that segment.

Theorem 4. If C be a point of (AB), then every point D of

(AB) is^either_a point of (AC) or of (CB). _
If AC = Ip we have C and J) identical. If AC > AD wo

may find a point of (AC) [and so of (A JS)] whose distance from

A is congruent to AD, and this will be identical with D. If

AC < AD we find C as a point of (AD), and hence, by XII,
D is a point of (CB).

Theorem 5. If AB =J&+CB and AB = AD + DB while

AC>AD
9
then CB < DB.

Theorem 6. If AB = PQ + Rti and A^W = PQ + RS, then

The proof is left to the reader.

Theorem 7. If AB = PQ + RS and A~B = PQ +W, then
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For if AB = AC + CB, and AC = PQ, then C5 =M = LM.

If ^B
~

it will be convenient to write

and say that PQ is the difference of the distances AB and RS.

When we are uncertain as to whether AB > RS or RS > AB,
we shall write their difference AB RS\.

Theorem 8. If AS = PQ +LM and AB =
while PQ = FQ',

then

Theorem 9. If 4JB = PQ + RS and 4JB = P'Q' + R'S'

while PQ > FQ',

then RS < WS7
.

Definition. The assemblage of all points of a segment and
its extensions shall be called a line.

Definition. Two lines having in common a single point are

said to cut or intersect in that point.
Notice that we have not as yet assumed the existence of

two such lines. We shall soon, however, make this assumption
explicitly.

AXIOM XIV. Two lines having two common distinct points
are identical.

The line determined by two points A and B shall be written
AB or BA.

Theorem 10. If C be a point of the extension of (AB)
beyond B and D another point of this same extension, then D
is a point of (BO) if C = TH) or EC > /)

; otherwise G is

a point of (BD).

AXIOM XV. All points do not lie in one line.

AXIOM XVI. If B be a point of (CD) and E a point of

(AB) where A is not a point of the line BO, then the line DE
contains a point F of (AC).
The first of these axioms is clearly nothing but an existence

theorem. The second specifies certain conditions under which
two lines, not given by means of common points, must, never-

theless, intersect. It is clear that some such assumption is

necessary in order to proceed beyond the geometry of a single

straight line.
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Theorem 11. If two distinct points A and B be given, there

is an infinite number of distinct points which belong to their

segment.
This theorem is an immediate consequence of the last two

axioms. It may be interpreted otherwise by saying that there

is no minimum distance, other than the null distance.

Theorem 12. The mainfold of all points of a segment is

dense.

Theorem 13. If A, B, (7, D, E form the configuration of

points described in Axiom XVI, the point E is a point of (DF).

Suppose that this were not the case. We should either

have -Fas a point of (DE) or D as a point of (EF). But then,
in the first case, G would be a point of (DE) and in the second
D would be a point of (BC), both of which are inconsistent

with our data.

Definition. Points which belong to the same line shall be

said to be on it or to be collinear. Lines which contain the

same point shall be said to pass through it, or to be con-

current.

Theorem 14, If A, B, C be three non-collinear points, andD
a point within (AB) while E is a point of the extension of

(BC) beyond C, then the line DE will contain a point F
of (AC).
Take (?, a point of

(ED),
different from E and D. Then AG

will contain a point L of (BE), while G belongs to (AL). If L
and G be identical, G will be the point required. If L be

a point of (CE) then EG goes through F within (AG) as

required. If L be within (BC), then EG goes through 11 of

(AC) and K of (AE) y so that, by 13, G and H are points
of (BK). H must then, by 4, either be a point of (BG) or of

(GK). But if // be a point of (BG), C is a point of (BL),
which is untrue. Hence H IB a point of (GK\ and (AH)
contains F of (EG). We see also that it is impossible that C
should belong to (AF) or A to (FC). Hence F belongs
to (AC).

Theorem 15. If A, B, G be three non-collinear points, no
three points, one within each of their three segments, are

collinear.

The proof is left to the reader.

Definition. If three non-collinear points be given, the locus

of all points of all segments determined by each of these, and
all points of the segment of the other two, shall be called

a Triangle. The points originally chosen shall be called the
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vertices, their segments the sides. Any point of the triangle,
not on one of its sides, shall be said to be within it. If the
three given points be A, J3, C their triangle shall be written
A ABC. Let the reader show that this triangle is completely
determined by all points of all segments having A as one

extremity, while the other belongs to (BO).
It is interesting to notice that XVI, and 13 and 14, may be

summed up as follows * :

Theorem 16. If a line contain a point of one side of a

triangle and one of either extension of a second side, it will

contain a point of the third side.

Definition. The assemblage of all points of all lines deter-

mined by the vertices of a triangle and all points of the

opposite sides shall be called a plane.
It should be noticed that in defining a plane in this manner,

the vertices of the triangle play a special rdle. It is our next
task to show that this specialization of function is only
apparent, and that any other three non-collinear points of the

plane might equally well have been chosen to define it.f

Theorem 17. If a plane be determined by the vertices of a

triangle, the following points lie therein :

(a) All points of every line determined by a vertex, and
a point of the line of the other two vertices.

(b) All points of every line which contains a point of each

of two sides of the triangle.

(c) All points of every line containing a point of one side

of the triangle and a point of the line of another side.

(d) All points of every line which contains a point of the

line of each of two sides.

The proof will come at once from 16, and from the con-

Jiideration that if we know two points of a line, every other

point thereof is either a point of their segment, or of one of its

extensions. The plane determined by three points as A, B, G
shall be written the plane ABC. We are thus led to the

following theorem.

Theorem 18. The plane determined by three vertices of a

triangle is identical with that determined by two of their

number and any other point of the line of either of the

remaining sides.

* Some writers, as Pasch, Neuere Geometric, Leipzig, 1882, p. 21, give Axiom
XVI in this form. I have followed Veblen, loc. cit., p. 351, in weakening the
axiom to the form given.
f The treatment of the plane and space which constitute the rest of this

chapter are taken largely from Schur, loc. cit. He in turn confesses his

indebtedness to Peano.

B2
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Theorem 19. Any one of the three points determining a plane

may be replaced by any other point of the plane, not collinear

with the two remaining determining points.

Theorem 20. A plane may be determined by any three of

its points which are not collinear.

Theorem 21. Two planes having three non-collinear points
in common are identical.

Theorem 22. If two points of a line lie in a plane, all points
thereof lie in that plane.

AXIOM XVII. All points do not lie in one plane.

Definition. Points or lines which lie in the same plane shall

be called coplanar. Planes which include the same line shall

be called coaxal. Planes, like lines, which include the same

point, shall be called concurrent.

Definition, If four non-coplanar points be given, the assem-

blage of all points of all segments having for one extremity
one of these points, and for the other, a point of the triangle
of the other three, shall be called a tetrahedron. The four

given points shall be called its vertices, their six segments its

edges, and the four triangles its faces. Edges having no
common vertex shall be called opposite. Let the reader show
that, as a matter of fact, the tetrahedron will be determined

completely by means of segments, all having a common
extremity at one vertex, while the other extremity is in the

face of the other three vertices. A vertex may also be said

to be opposite to a face, if it do not lie in that face.

Definition. The assemblage of all points of all lines which
contain either a vertex of a tetrahedron, and a point of the

opposite face, or two points of two opposite edges, shall be
called a space.

It will be seen that a space, as so defined, is made up of

fifteen regions, described as follows :

(a) The tetrahedron itself.

(h) Four regions composed of the extensions beyond each
vertex of segments having one extremity there, and the other

extremity in the opposite face.

(c) Four regions composed of the other extensions of the

segments mentioned in (6).

(d) Six regions composed of the extensions of segments
whose extremities are points of opposite edges.

Theorem 23. All points of each of the following figures
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will lie in the space defined by the vertices of a given
tetrahedron.

(a) A plane containing an edge, and a point of the opposite

edge.

(6) A line containing a vertex, and a point of the plane
of the opposite face.

(c) A line containing a point of one edge, and a point of the
line of the opposite edge.

(d) A line containing a point of the line of each of two

opposite edges.

(e) A line containing a point of one edge, and a point of the

plane of a face not containing that edge.

(/) A line containing a point of the lino of one edge, and
a point of the plane of a face not containing that edge.
The proof will come directly if we take the steps in the

order indicated, and hold fast to 16, and the definitions of

line, plane, and space.

Theorem 24. In determining a space, any vertex of a tetra-

hedron may be replaced by any other point, not a vertex, on
the line of an edge through the given vertex.

Theorem 25. In determining a space, any vertex of a tetra-

hedron may be replaced by any point of that space, not

coplanar with the other three vertices.

Theorem 26. A space may be determined by any four of its

points which are not coplanar.

Theorem 27. Two spaces which have four non-coplanar
points in common are identical.

Theorem 28. A space contains wholly every line whereof it

contains two distinct points.

Theorem 29. A space contains wholly every plane whereof
it contains three non-collinear points.
PRACTICAL LIMITATION. Points belonging to different spaces

shall not be considered simultaneously in the present work.*

Suppose that we have a plane containing the point E of the

segment (
AB) but no point of the segment (BC ).

Take F and
G two other points of the plane, not collinear with E

t
and

construct the including space by means of the tetrahedron

whose vertices are A
9 J3, F9 0. As C lies in this space, it

must lie in one of the fifteen regions individualized by the

* This means, of course, that we shall not consider geometry of more than
three dimensions. It would not, however, strictly speaking, be accurate to

say that we consider the geometry of a single space only, for we shall make
various mutually contradictory hypotheses about space.
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tetrahedron
; or, more specifically, it must lie in a plane con-

taining one edge, and a point of the opposite edge. Every
such plane will contain a line of the plane EFG> as may be

immediately proved, and 16 will show that in every case this

plane must contain either a point of (AC) or one of (BC).

Theorem 30. If a plane contain a point of one side of a

triangle, but no point of a second side, it must contain a point
of the third.

Theorem 31. If a line in the plane of a triangle contain

a point of one side of the triangle and no point of a second

side, it must contain a point of the third side.

Definition. If a point within the segment of two given

points be in a given plane, those points shall be said to be

on opposite sides of the plane ; otherwise, they shall be said to

be on the same side of the plane. Similarly, we may define

opposite sides of a line.

Theorem 32. If two points be on the same side of a plane,
a point opposite to one is on the same side as the other ; and
if two points be on the same side, a point opposite to one is

opposite to both.

The proof comes at once from 30.

Theorem 33. If two planes have a common point they have
a common line.

Let P be the common point. In the first plane take a line

through P. If this be also a line of the second plane, the

theorem is proved. If not, we may take two points of this

line on opposite sides of the second plane. Now any other

point of the first plane, not collinear with the three already
chosen, will be opposite to one of the last two points, and thus
determine another line of the first plane which intersects the

second one. We hereby reach a second point common to

the two planes, and the line connecting the two is common
to both.

It is immediately evident that all points common to the

two planes lie in this line.



CHAPTER II

CONGRUENT TRANSFORMATIONS

IN Chapter I we laid the foundation for the present work.
We made a number of explicit assumptions, and, building
thereon, we constructed that three-dimensional type of

space wherewith we shall, from now on, be occupied. An
essential point in our system of axioms is this. We have
taken as a fundamental indefinable, distance, and this, being
subject to the categories greater and less, is a magnitude.
In other words, we have laid the basis for a metrical geometry.
Yet, the principal use that we have made of these metrical

assumptions, has been to prove a number of descriptive
theorems. In order to complete our metrical system properly
we shall need two more assumptions, the one to give us the

concept of continuity, the other to establish the possibility of

congruent transformations.

AXIOM XVIII. If all points of a segment (AB) be
divided into two such classes that no point of the first

shall be at a greater distance from A than is any point
of the second; then there exists such a point C of the

segment, that no point of the first class is within (OS) and
none of the second within (AC).

It is manifest that A will belong to the first class, and B to

the second, while C may be ascribed to either. It is the

presence of this point common to both, that makes it

advisable to describe the two classes in a negative, rather

than in a positive manner.

Theorem 1. If AB and PQ be any two distances whereof
the second is not null, there will exist in the segment (AB)
a finite or null number n of points PJc possessing the following

properties :

Suppose, firstly, that AB < PQ then, clearly, n = 0. If,

however, AB == PQ then 11 = 1 and P
x

is identical with B.

There remains the third case where AB > PQ. Imagine the

theorem to be untrue. We shall arrive at a contradiction as

follows. Let us divide all points of the segment into two
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classes. A point // shall belong to the first class if we may
find such a positive integer n that

the succession of points P& being taken as above. All other

points of the segment shall be assigned to the second class. It

is clear that neither class will be empty. If H be a point
of the first class, and K one of the second, we cannot have

Ajmthin_(,4#), for then we should find AK = APn -}-PnK',

PnK < PQ contrary to the rule of dichotomy. We have
therefore a cut of the type demanded by Axiom XVIII, and
a point of division 0. Let D be such a point of (AC) that

l)d< PQ. Then, as we may find n so large that PnD < PQ,
we shall either have PnC < PQ or else we shall be able to

insert a point Pn+l within (AC) making PTO+1 6
f < PQ. If,

then, in the first case we construct PM+1 , or in the second

Pw+2 3
^ w^^ be a P ^ within (OB), as PnB > PQ, and this

involves a contradiction, for it would require Pn+ i
or Pn+2

to belong to both classes at once. The theorem is thus

proved.
It will be seen that this theorem is merely a variation of

the axiom ofArchimedes,*which says, in non-technical language,
that if a sufficient number of equal lengths be laid off on a

line, any point of that line may be surpassed. We arc not
able to state the principle in exactly this form, however, for

we cannot be sure that our space shall include points of the

type Pn in the extension of (AB) beyond B.

Theorem 2. In any segment there is a single point whose
distances from the extremities are congruent.
The proof is left to the reader.

The point so found shall be called the middle point of the

* A good deal of attention has been given in recent years to this axiom.
For an account of the connexion of Archimedes' axiom with the continuity
of the scale, see Stolz, 'Ueber das Axiom des Archimedes,' Mathematiscfie

Annalen, vol. xxxix, 1891. Halsted, Rational Geometry (New York, 1904), has
shown that a good deal of the subject of elementary geometry can be built

up without the Archimedian assumption, which accounts for the other-
wise somewhat obscure title of his book. Hilbert, loc. cit., Ch. IV, was
the first writer to set up the theory of area independent of continuity,
and Vahlen has shown, loc. cit., pp. 297-8, that volumes may be similarly
handled. These questions are of primary importance in any work that deals

principally with the significance and independence of the axioms. In our

present work we shall leave non-archimedian or discontinuous geometries
entirely aside, and that for the reason that their analytic treatment involves
either a mutilation of the number scale, or an adjunction of transfinite

elements thereto. We shall, in fact, make use of our axiom of continuity
XVIII wherever, and whenever, it is convenient to do so.
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segment. It will follow at once that if k be any positive

integer, we may find a set of points P
1
P

2 ...P2^ 1
of the

segment (AB) possessing the following properties

We may express the relation of any one of these congruent
. i

distances to AB by writing P-P- +1
= ^ AB.

Theorem 3. If a not null distance AB be given and a

positive integer m, it is possible to find m distinct points of

the segment (AB) possessing the properties

AP\ =

It is merely necessary to take Jc so that 2 7c > m -f 1 and

find

Theorem 4. When any segment (^^) and a positive integer
n are given, there exist n 1 points D

l
D

2 ...Dn_ l
of the

segment (AB) such that

If the distance ^L^ be null, the theorem is trivial. Other-

wise, suppose it to be untrue. Let us divide the points of

(AB) into two classes according to the following scheme.

A point P1
shall belong to the first class if we may construct

a congruent distances according to the method already

illustrated, reaching such a point Pn of (AB) that PnB> APl ;

all other points of (AB) shall be assigned to the second class.

B will clearly be a point of the second class, but every point
of (AB) at a lesser distance from A than a point of the first

class, will itself be a point of the first class. We have thus

once more a cut as demanded by Axiom XVIII, and a point
of division D

l ;
and this point is different from A.

Let us next assume that the number of successive distances

congruent to ADl which, by 1, may be marked in (AB) y
is &,

and let Dk be the last extremity of the resulting segments,

so that DkB < ADj_. Let D^-i be the other extremity of this

last segment. Suppose, first, that k < n. Let PQ bo such

a distance that AD
l >7Q > D-k B.__^AiP^ be such a point of

~ ^ __

(ADJ that ZP| >~PQ 9 kP^D^t < P^-S^B. Then, by mark-

ing k successive distances by our previous device, we reach
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Ph such a point of (ADk) that

But this is a contradiction, for 7c is at most equal to n 1
3

and as P
3
is a point of the first class, there should be at least

one more point of division Pk+r Hence k^.n. But k > n
leads to a similar contradiction. For we might then find Ql

of the second class so that (A 2) DlQi< ^AD\. Then mark
& 2 successive congruent distances, reaching Q&_ 2

such a

point of (ADj^) that Q&_ 2-^-i > ^-A- Hence,

and we may find a (&l)th point Qk _i. But i 1^ n and
this leads us to a contradiction with the assumption that

Ql should be a point of the second class ;
i. e. k = n. Lastly,

we shall find that Dk and B are identical. For otherwise

we might find Ql
of the second class so that nD^ < DnB

and marking n successive congruent distances reach Qn within

(DnB), impossible when Ql belongs to class two. Our theorem
is thus entirely proved, and D

v
is the point sought.

It will be convenient to write AD, = AB.
1 n

Theorem 5. If AB and PQ be given, whereof the latter is

I _ _
not null, we may find n so great that AB < PQ.

7i/

The proof is left to the reader.

We are at last in a position to introduce the concept of

number into our scale of distance magnitudes. Let AB and PQ
be two distances, whereof the latter is not null. It may be

possible to find such a distance fiti that qtiti
=

PQ, ; pR& = A K.

T)
In this case the number - shall be called the numerical

__ ?__
measure of AB in terms of P(^, or, more simply the wieasure.

It is clear that this measure may be equally well written

f) WO .
r --^

L or --- There may, however, be no such distance as HN.
q nq

J

Then, whatever positive integer q may be, we may find LM so

that qLM = PQ, and p so that TM>(AB-pLM). By this

process we have defined a cut in our number system of such

JD ft "4" 1
a nature that - and -- appear in the lower and upper

q q
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7?
divisions respectively. If - be a number of the lower, and

*-, one of the upper division, we shall see at once by
? > #/ -f 1

reducing to a lowest common denominator that - < .

? ?
Every rational number will fall into the one or the other

division. Lastly there is no largest number in the lower

division nor smallest in the upper. For suppose that - is the

largest number of the lower division. Then if

LM > (AB-pLM)>

we may find n so large that - LM < (ABpLM). Let us
__ _ __.

put L
l
M

l
= -LM. At the same time as PQ = nqL1

M
l we

may, by 1, find k so large that Ll
M

l > (AB(np-{-lc)Ll
M

l ).

Under these circumstances - is a number of the lower

p
n(J

division, yet larger than In the same way we may prove

that there is no smallest number in the upper. We have
therefore defined a unique irrational number, and this may be

taken as the measure of AB in terms of PQ.
7?

Suppose, conversely, that is any rational fraction, and

there exists such a distance AB' that qABf > pPQ. Then in

(AB') we may find such a point B that AB = - PQ, i.e. there
M -I _

will exist a distance having the measure - in terms of PQ. Next

let r be any irrational number, and let there be such a number
ry\

J ...
1

in the corresponding upper division of the rational

number system that a distance qAB' > ((p+l)PQ) may be

found. Then the cut in the number system will give us a cut

in the segment (AB'), as demanded by XVIII, and a point of

division B. The numerical measure of AB in terms of PQ
will clearly be r.

Theorem 6. If two distances, whereof the second is not null,

be given, there exists a unique numerical measure for the first

in terms of the second, and if a distance be given, and there

exist a distance having a given numerical measure in terms
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thereof, there will exist a distance having any chosen smaller

numerical measure.

Theorem 7. If two distances be congruent, their measures
in terms of any third distance are equal.

It will occasionally be convenient to write the measure of PQ
in the form MPQ.
Theorem 8. If r > n and if distances rPQ and nPQ exist,

then rPQ > nPQ.
When m and n are both rational, this comes immediately by

reducing to a common denominator. When one or both of

these numbers is irrational, we may find a number in the

lower class of the larger which is larger than one in the upper
class of the smaller, and then apply I, 3.

Theorem 9. If AB > CD, the measure of AB in terms of

any chosen not null distance is greater than that of CD in

terms of the same distance.

This comes at once by reduction ad absurdum.
It will hereafter be convenient to apply the categories,

congruent greater and less, to segments, when these apply

respectively to the distances of their extremities. We may
similarly speak of the measure of a segment in terms of

another one. Let us notice that in combining segments or

distances, the associative, commutative, and distributive laws
of multiplication hold good ; e. g.

r - nPQ = n - rPQ = rnPQ, n(AB + CD) = nAJt+ nOD.

Notice, in particular, that the measure of a sum is the sum of

the measures.

Definition. The assemblage of all points of a segment, or of

all possible extensions beyond one extremity, shall be called

a half-line. The other extremity of the segment shall be
called the bound of the half-line. A half-line bounded by A
and including a point B shall be written

|

AB. Notice that

every point of a line is the bound of two half-lines thereof.

Definition. A relation between two sets of points (P) and

(Q) such that there is a one to one correspondence of distinct

points, and the distances of corresponding pairs of points are

in every case congruent, while the sum of two distances is

carried into a congruent sum, is called a congruent trans-

formation. Notice that, by V, the assemblage of all congruent
transformations form a group. If, further, a congruent
transformation be possible (P) to (Q), and there be two sets

of points (P
/

)
and (Q') such that a congruent transformation
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is possible from the set (P) (P') to the set (Q) (Q') 9
then we

shall say that the congruent transformation from (P) to (Q)
has been enlarged to include the sets (P') and (Q').

It is evident that a congruent transformation will carry

points of a segment, line, or half-line, into points of a segment,
line, or half-line respectively. It will also carry coplanar
points into coplanar points, and be, in fact, a collineation,
or linear transformation as defined geometrically. In the

eighteenth chapter of the present work we shall see how the

properties of congruent figures may be reached by defining

congruent transformations as a certain six-parameter collinea-

tion group.

AXIOM XIX. If a congruent transformation exist between
two sets of points, to each half-line bounded by a point
of one set may be made to correspond a half-line bounded
by the corresponding point of the other set, in such wise that

the transformation may be enlarged to include all points
of these two half-lines at congruent distances from their

respective bounds.*

Theorem 10. If a congruent transformation carry two chosen

points into two other chosen points, it may be enlarged to

include all points of their segments.

Theorem 11. If a congruent transformation carry three

non-collinear points into three other such points, it may be

enlarged to include all points of their respective triangles.

Theorem 12. If a congruent transformation carry four non-

coplanar points into four other such points, it may be enlarged
to include all points of their respective tetrahedra.

Definition. Two figures which correspond in a congruent
transformation shall be said to be congruent.
We shall assume hereafter that every congruent transforma-

tion with which we deal has been enlarged to the greatest

possible extent. Under these circumstances :

Theorem 13. If two distinct points be invariant under a

congruent transformation, the same is true of all points of

their line.

Theorem 14. If three non-collinear points be invariant

* The idea of enlarging a congruent transformation to include additional

points is due to Pasch, loc. cit. He merely assumes that if any point be

adjoined to the one set, a corresponding point may be adjoined to the other.

We have to make a much clumsier assumption, and proceed more circum-

spectly, for fear of passing out of our limited region.
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under a congruent transformation, the same is true of all

points of their plane.

Theorem 15. If four non-coplanar points be invariant under
a congruent transformation the same is true of all points
of space.

Definition. The assemblage of all points of a plane on one
side of a given line, or on that given line, shall be called

a half-plane. The given line shall be called the bound of

the half-plane. Each line in a plane is thus the bound of two

half-planes thereof.

Suppose that we have two non-collinear half-lines with
a common bound A. Let B and C be two other points of

one-half-line, and B' and (7' two points of the other. Then

by Ch. I, 16, a half-line bounded by A which contains

a point of (BB') will also contain a point of (0(7'), and vice

versa. We may thus divide all half-lines of this plane,
bounded by this point, into two classes. The assemblage
of all half-lines which contain points of segments whose
extremities lie severally on the two given half-lines shall

be called the interior angle of, or between, the given half-

lines. The half-lines themselves shall be called the sides

of the angle. If the half-lines be
|
AB, \AC, their interior

angle may be indicated by %-.]BAC or $_ CAB. The point A
shall be called the vertex of the angle.

Definition. The assemblage of all half-lines coplanar with
two given non-coilinear half- lines, and bounded by the

common bound of the latter, but not belonging to their

interior angle, shall be called the exterior angle of the two
half-lines. The definitions for sides and vertex shall be as

before. If no mention be made of the words interior or
exterior we shall understand by the word angle, interior

angle. Notice that, by our definitions, the sides are a part of
the interior, but not of the exterior angle. Let the reader also

show that if a half-line of an interior angle be taken, the

other half-line, collinear therewith, and having the same bound

belongs to the exterior angle.

Definition. The assemblage of all half-lines identical with
two identical half-lines, shall be called their interior angle.
The given bound shall be the vertex, and the given half-lines

the sides of the angle. This angle shall also be called a null

angle. The assemblage of all half-lines with this bound, and

lying in any chosen plane through the identical half-lines,

shall be called their exterior angle in this plane. The defini-

tion of sides and vertex shall be as before.
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Definition. Two collinear, but not identical, half-lines of

common bound shall be said to be opposite.

Definition. The assemblage of all half-lines having as bound
the common bound of two opposite half-lines, and lying in

any half-plane bounded by the line of the latter, shall be

called an angle of the two half-lines in that plane. The
definitions of sides and vertex shall be as usual. We notice

that two opposite half-lines determine two angles in every
plane through their line.

We have thus defined the angles of any two half-lines of

common bound. The exterior angle of any two such half-

lines, when there is one, shall be called a re-entrant angle.

Any angle determined by two opposite half-lines shall be

called a straight angle. As, by definition, two half-lines form
an angle when, and only when, they have a common bound,
we shall in future cease to mention this fact. Two angles
will be congruent, by our definition of congruent figures,
if there exist a congruent transformation of the sides of one
into the sides of the other, in so far as corresponding distances

actually exist on the corresponding half-lines. Every half-

line of the interior or exterior angle will similarly be carried

into a corresponding half-line, or as much thereof as actually
exists and contains corresponding distances.

Definition. The angles of a triangle shall be those non-
re-entrant angles whose vertices are the vertices of the triangle,
and whose sides include the sides of the triangle.

Definition. The angle between a half-line including one
side of a triangle, and bounded at a chosen vertex, and the

opposite of the other half-line which goes to make the angle
of the triangle at that vertex, shall be called an exterior angle
of the triangle. Notice that there are six of these, and that

they are not to be confused with the exterior angles of their

respective sides.

Theorem 16. If two triangles be so related that the sides of

one are congruent to those of the other, the same holds for the

angles.
This is an immediate result of 11.

The meanings of the words opposite and adjacent as applied
to sides and angles of a triangle are immediately evident, and
need not be defined. There can also be no ambiguity in

speaking of sides including an angle.

Theorem 17. Two triangles are congruent if two sides and
the included angle of one be respectively congruent to two
sides and the included angle of the other.
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The truth of this is at once evident when we recall the

definition of congruent angles, and 12.

Theorem 18. If two sides of a triangle be congruent, the

opposite angles are congruent.
Such a triangle shall, naturally, be called isosceles.

Theorem 19. If three half-lines lie in the same half-plane
and have their common bound on the bound of this half-

plane; then one belongs to the interior angle of the other

two.

Let the half-lines be
|
AB,

\
AC,

\

AD. Connect B with H
and K, points of the opposite half-lines bounding this half-

plane. If
|

-4(7, AD contain points of the same two sides

of the triangle BHK the theorem is at once evident; if

one contain a point of (BH) and the other a point of (BK)<
then B belongs to _ GAD.

Theorem 20. If
|

AB be a half-line of the interior 4^0AD,
then

|

AC does not belong to the interior 4- BAD.

Definition. Two non-re-entrant angles of the same plane
with a common side, but no other common half-lines, shall be
said to be adjacent. The angle bounded by their remaining
sides, which includes the common side, shall be called their

sum. It is clear that this is, in fact, their logical sum,

containing all common points.

Definition. An angle shall be said to be congruent to the

sum of two non-re-entrant angles, when it is congruent to the

sum of two adjacent angles, respectively congruent to them.

Definition. Two angles congruent to two adjacent angles
whose sum is a straight angle shall be said to be supple-

mentary. Each shall be called the supplement of the other.

Definition. An angle which is congruent to its supplement
shall be called a right angle.

Definition. A triangle, one of whose angles is a right angle,
shall be called a right triangle.

Definition. The interior angle formed by two half-lines,

opposite to the half-lines which are the sides of a given
interior angle, shall be called the vertical of that angle. The
vertical of a straight angle will be the other half-plane,

coplanar therewith, and having the same bound.

Theorem 21. If two points be at congruent distances from
two points coplanar with them, all points of the line of the
first two are at congruent distances from the latter two.



IT CONGRUENT TRANSFORMATIONS 33

For we may find a congruent transformation keeping the

former points invariant, while the latter are interchanged.

Theorem 22. If AA{ be a half-line of the interior

$ BAA l9 then we cannot have a congruent transformation

keeping |

AB invariant and carrying |

AA
l into

| AA^.
We may suppose that A

l
and A are at congruent distances

from A. Let H be the point of the segment (A-^^A^) equi-
distant from A-, and J./. We may find a congruent trans-

formation carrying AA 1
HA

}

/

into AA
l
'HA

l
. Let this take

the half-line
|

AB into
|

AC (in the same plane). Then if

1

AA and
| AA{ be taken sufficiently small, AA{ will

meet AB or AC as we see by I. 16. This will involve a

contradiction, however, for if D be the intersection, it is easy
to see that we shall have simultaneously DA

l
== ZM/ and

/)A
l > DA^ or J^^i < -O^i'j for D is unaltered by the con-

gruent transformation, while A
l goes into A-[.

There is one case whore this reasoning has to be modified,

namely, when
|

AC and
|

AB are opposite half-lines, for here

I. 16 does not hold. Let us notice, however, that we may
enlarge our transformation to include the 4- BAA l

and

4-BAA^ respectively. If
|

AB
l
and

j

AC
l
be two half-lines

of the first angle, AC
l being in the interior angle of 4- BAB^ ,

to them will correspond | AB^ and
| AC^ the latter being in

the interior angle of 4-BAB^ while by definition, corre-

sponding half-lines always determine congruent angles with

|

AB. If, then, we choose any half-line
|

AL of the interior

4-BAA}, it may be shown that we may find two

corresponding half-lines
|

AL
V \

AL
{

'
so situated that

|

AL
l

belongs to the interior ^b^BAL^ and 4~L^AL is congruent
to . LALV The proof is tedious, and depends on

showing that as a result of our Axiom XVIII, if in any
segment the points be paired in such a way that the

extremities correspond, and the greater of two distances from
an extremity correspond to the greater of the two correspond-
ing distances from the other extremity, then there is one

self-corresponding point.* These corresponding half-lines

being found, we may apply the first part of our proof without
fear of mishap.

Theorem 23. If
|

AC be a half-line of the interior ^ BAD,
it is impossible to have 2_JMC' and 2(LlLiZ) mutually
congruent.

*
Cf. Enriques, Geometria proieUiva, Bologna, 1898, p. 80.

COOLIDQK C
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Theorem 24. An angle is congruent to its vertical.

We have merely to look at the congruent transformation

interchanging a side of one with a side of the other.

We see as a result of 24 that if a half-line
|

AB make right

angles with the opposite half-lines
| -4(7, |

AC', the verticals

obtained by extending (AB) beyond A will be right angles

congruent to the other two. We thus have four mutually

congruent right angles at the point A. Under these circum-

stances we shall say that they are mutually perpendicular
there.

Theorem 25. If two angles of a triangle be congruent, the

triangle is isosceles.

This is an immediate result of 18.

Given two non-re-entrant angles. The first shall be said to

be greater than the second, when it is congruent to the sum
of the second, and a not null angle. The second shall under
these circumstances, and these alone, be said to be less than
the first. As the assemblage of all congruent transformations

is a group, we see that the relations greater than, less than,

and congruent when applied to angles are mutually exclusive.

For if we had two angles whereof the first was both greater
than and less than the second, then we should have an angle
that would be both greater than and less than itself, an
absurd result, as we see from 23. We shall write > in place
of greater than, and < for less than, = means congruence.
Two angles between which there exists one of these three

relations shall be said to be comparable. We shall later see

that any two angles are comparable. The reason why we
cannot at once proceed to prove this fact, is that, so far,

we are not very clear as to just what can be done with our

congruent transformations. As for the a priori question of

comparableness, we have perfectly clear definitions of greater
than, less than, and equal as applied to infinite assemblages,
but are entirely in the dark as to whether when two such

assemblages are given, one of these relations must necessarily
hold.*

Theorem 26. An exterior angle of a triangle is comparable
with either of the opposite interior angles.

Let us take the triangle ABG, while D lies on the extension

of (BC) beyond C, Let E be the middle point of (AG) and

let Df^meet^AB) in F. If ~DE > RF find of (DE) so

that FE = EG. Then we have BAG congruent to 4-ECG

*
Cf. Borel, Lemons sur la theorie de$ functions, Paris, 1898, pp. 102-8.
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and less than 4-ECD. If RE < EF we have &.BAC
greater than an angle congruent to 4- EGD.

Theorem 27. Two angles of a triangle are comparable.
For they are comparable to the same exterior angle.

Theorem 28. If in any triangle one angle be greater than
a second, the side opposite the first is greater than that

opposite the second.

Evidently these sides cannot be congruent. Let us then
have the triangle ABG where .BAG > 2|L EGA. We may,
by the definition of congruence, find such a point G

1
of (BG)

that %-Cj^AG is congruent to %-C-^GA and hence (\A EE C^Cr.

It thus remains to show that AB < AG + G1
B. Were such

not the case, we might find D
l
of (AB) so that AD1

= AGV

and the problem reduces to comparing BC
l
and BJ\. Now

in A BD
1
C

1
we have ^.BD^O^ the supplement of ^AD1

C
1

which is congruent to 4^AG1
D

1
whose supplement is greater

than 4- B@iA We have therefore returned to our original

problem, this time, however, with a smaller triangle. Now
this reduction process may be continued indefinitely, and if

our original assumption be false, the inequalities must always
lie the same way. Next notice that, by our axiom of con-

tinuity, the points G^ of (BG) must tend to approach a point
G of that segment as a limit, and similarly the points D$ of

(AB) tend to approach a limiting point, D. If two points of

(AB) be taken indefinitely close to D the angle which they
determine at any point of (BG) other than B will become

indefinitely small. On the other hand as C
t
-

approaches Cf

,

2f_ APC$ will tend to increase, where P is any point of (AB)
other than J5, in which case the angle is constant This

shows that (7, and by the same reasoning D, cannot be other

than B ;
so that the difference between BG

t
and BD

i
can be

made as small as we please. But, on the other hand

(BA ~~BG) =
Our theorem comes at once from this contradiction,

Theorem 29. If two sides of a triangle be not congruent,
the angle opposite the greater side is greater than that opposite
the lesser.

Theorem 30. One side of a triangle cannot be greater than
the sum of the other two.

Tfieorem 31. The difference between two sides of a triangle
is less than the third side.

The proofs of these theorems are left to the reader.

c2
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Theorem 32. Two distinct lines cannot be coplanar with

a third, and perpendicular to it at the same point.

Suppose, in fact, that we have AC and AD perpendicular to

BR at A. We may assume AB = AB* so that by I. 31 AD
will contain a single point E either of (CB) or of (CB'). For

definiteness, let E belong to (Off). Then take F on (BO),

which is congruent to (-#'(7), so that BF==~JE. Hence

4~BB?F is congruent to %-B'BE and therefore congruent to

%-BffE\ which contradicts 23.*

Theorem 33. The locus of points in a plane at congruent
distances from two points thereof is the line through the middle

point of their segment perpendicular to their line.

Theorem 34. Two triangles are congruent if a side and two

adjacent angles of one be respectively congruent to a side and
two adjacent angles of the other.

Theorem 35. Through any point of a given line will pass
one line perpendicular to it lying in any given plane through
that line.

Let A be the chosen point, and C a point in the plane, not

on the chosen line. Let us take two such points B, B' on the

given line, that A is the middle point of (Bff) and 11B' < OB,
Bff< Off. If then CB =777?, AC is the line required. If

not, lot us suppose that CB > CB'. We may make a cut

in the points of (CB) according to the following principle.
A point P shall belong to the first class if no point of the

segment (PB) is at a distance from B greater than its distance

from B', all other points of (OB) shall belong to the second

class. It is clear that the requirements of Axiom XVIII are

fulfilled, and we have a point of division D. We could not

have J)B < DB'
t

for then we might, by 31, take E a point
of (DC) so very near to D that for all points P of DE
PB < PB\ and this would be contrary to the law of the cut.

In the same way we could not have DB > Dff. Hence AD is

the perpendicular required.

Theorem, 36. If a line be perpendicular to two others at

* This is substantially Hilbert's proof, loc. cit., p. 16. It is truly

astonishing how much geometers, ancient and modern, have worried over

this theorem. Euclid puts it as his eleventh axiom that all right angles
are equal. Many modern textbooks prove that all straight angles are equal ,

hence right angles are equal, as halves of equal things. This is not usually

sound, for it is not clear by definition why a right angle is half a straight

angle. Others observe the angle of a fixed and a rotating line, and either

appeal explicitly to intuition, or to a vague continuity axiom.
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their point of intersection, it is perpendicular to every line

in their plane through that point.
The proof given in the usual textbooks will hold.

Theorem 37. All lines perpendicular to a given line at

a given point are coplanar.

Definition. The plane of all perpendiculars to a line at a

point, shall be said to be perpendicular to that line at that

point.

Theorem 38. A congruent transformation which keeps all

points of a line invariant, will transform into itself every plane

perpendicular to that line.

It is also clear that the locus of all points at congruent
distances from two points is a plane.

Theorem 39. If P be a point within the triangle ABC and

there exist a distance congruent to AB + AC, then

To prove this let BP pass through D of (AC). Then as

AC > AD a distance exists congruent to AB + AD, and

AB + A~D>BP + PD. As AS + AD > PJD there exists a dis-

tance congruent to PD + DC, and hence PD + DC > PC,

1)0 > PC-PD-, AB + AL1 > RP + PC.

Theorem 40. Any two right angles are congruent.
Let these right angles be 4-AOC and .4'0'G". We

may assume to be the middle point of (AB) and 0' the

middle point of (A'B') y
where OA=0'A'._WQ may also

suppose that distances exist congruent to AC+CB and to

AW + CFW. Then^lC
Y > AO and AC/ > A*0'. Lastly,_we

may assume that AC = AC/. For if we had say, AC > A'C',

we might use our cut proceeding in
(0(7).

A point P shall

belong to the first class, if no point of (OP) determines with A
a distance greater then A'C', otherwise it shall belong to the

second class. We find a point of division D, and see at once

that AD = A'C'. Replacing the letter D by Cf

,
we have

AC^AW, A ABC congruent to bA'KC', hence .AO(!

congruent to %-A'O'C'.

Theorem 41. There exists a congruent transformation carry-

ing any segment (AB) into any congruent segment (A'B') and

any half-plane bounded by AB into any half-plane bounded

by A'B.
We have merely to find and 0' the middle points of (AB)
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and (A'E') respectively, and and G' on the perpendiculars
to AB and A'ff, at and 0' so that 00 = O'C".

Theorem 42. If J. be a given half-line, there will exist

in any chosen half-plane bounded by OA a unique half-line

OS making the ^.AOB congruent to any chosen angle.
The proof of this theorem depends immediately upon the

preceding one.

Several results follo^ from the last four theorems. To
begin with, any two angles are comparable, as we see at once
from 42. We see also that our Axioms III-XIII and XVIII,

may be at once translated into the geometry of the angle
if straight and re-entrant angles be excluded. We may then

apply to angles system of measurement entirely analogous
to that applied to distances. An angle may be represented

unequivocally by a single number, in terms of any chosen
not null angle. We may extend our system of comparison to

include straight and re-entrant angles as follows. A straight

angle shall be looked upon as greater than every non-re-entrant

angle, and less than every re-entrant one. Of two re-entrant

angles, that one shall be considered the less, whose corre-

sponding interior angle is the greater. A re-entrant angle
will be the logical sum of two non-re-entrant angles, and shall

have as a measure, the sum of their measures.

We have also found out a good deal about the congruent

group. The principal facts are as follows :

(a) A congruent transformation may be found to carry any
point into any other point.

(ft)
A congruent transformation may be found to leave any

chosen point invariant, and carry any chosen lino through
this point, into any other such line.

(c) A congruent transformation may be found to leave

invariant any point, and any line through it, but to carry

any plane through this line, into any other such plane.

(d) If a point, a line through it, and a plane through the

line be invariant, no further infinitesimal congruent trans-

formations are possible.
The last assertion has not been proved in full; let the

reader show that if a point and a line through it be invariant,
there is only one congruent transformation of the line possible,
besides the identical one, and so on. The essential thing
is this. We shall demonstrate at length in Ch. XVIII that

the congruent group is completely determined by the require-
ment that it shall be an analytic collineation group, satisfying
these four requirements.
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_ -^6 that we have two half-planes on opposite aides

of a plane a which contains their common bound I. Every
segment whose extremities are one in each of these half-planes
will have a point in a, and, in fact, all such points will lie

in one half-plane of a bounded by I, as may easily be shown
from the special case where two segments have a common
extremity.

Definition. Given two non-coplanar half-planes of common
bound. The assemblage of all half-planes with this bound,

containing points of segments whose extremities lie severally
in the two given half-planes, shall be called their interior

dihedral angle, or, more simply, their dihedral angle. The

assemblage of all other half-planes with this bound shall be
called their exterior dihedral angle. The two given half-planes
shall be called the faces, and their bound the edge of the

dihedral angle.
We may, by following the analogy of the plane, define null,

straight, and re-entrant dihedral angles. The definition of the

dihedral angles of a tetrahedron will also be immediately
evident.

A plane perpendicular to the edge of a dihedral angle will

cut the faces in two half-lines perpendicular to the edge.
The interior (exterior) angle of these two shall be called a

plane angle of the interior (exterior) dihedral angle.

Theorem 43. Two plane angles of a dihedral angle are con-

gruent.
We have merely to take the congruent transformation

which keeps invariant all points of the plane whose points
are equidistant from the vertices of the plane angles. Such
a transformation may properly be called a reflection in that

plane.

Theorem 44. If two dihedral angles be congruent, any two
of their plane angles will be congruent, and conversely.
The proof is immediate. Let us next notice that we may

measure any dihedral angle in terms of any other not null one,

and that its measure is the measure of its plane angle in

terms of the plane angle of the latter.

Definition. If the plane angle of a dihedral angle be a right

angle, the dihedral angle itself shall be called right, and the

planes shall be said to be mutually perpendicular.

Theorem, 45. If a plane be perpendicular to each of two
other planes, and the three be concurrent, then the first

plane is also perpendicular to the line of intersection of the

other two.



CHAPTER III

THE THREE HYPOTHESES

IN the last chapter we discussed at some length the problem
of comparing distances and angles, and of giving them
numerical measures in terms of known units. We did not

take up the question of the sum of the angles of a triangle,
and that shall be our next task. The axioms so far set up
are insufficient to determine whether this sum shall, or shall

not, be congruent to the sum of two right angles, as we shall

amply see by elaborating consistent systems of geometry
where this sum is greater than, equal to, or less than two

right angles. We must first, however, give one or two
theorems concerning the continuous change of distances and

angles.

Theorem 1. If a point P of a segment (AB) may be taken
at as small a distance from A as desired, and G be any other

point, the it^ACP may be made less than any given angle.
If C be a point of AB the theorem is trivial. If not, we

may, by III. 4, find
|

CD in the half-plane bounded by CA
which contains B, so that i-AQD is congruent to the given
angle. If then

|

AB belong to the internal l(^.AGD, we have

4-.ACB less than 4_ACD 9 and, a fortiori, 4_AGP<4-AGD.
If AD belong to the internal %-ACB, \

AD must contain a

point E of CAB, and if we take P within (AE), once more

4-AGP < 4_ACD.
Theorem 2. If, in any triangle, one side and an adjacent

angle remain fixed, while the other side including this angle

may be diminished at will, then the external angle opposite
to the fixed side will take and retain a value differing from
that of the fixed angle by less than any assigned value.

Let the fixed side be (AB), while G is the variable vertex

within a fixed segment (BD). We wish to show that if BG
be taken sufficiently small, tfLACD will necessarily differ from

4-ABD by less than any chosen angle.
Let B

l
be the middle point of (AB), and B

2 the middle

point of (Bj^B), while B
3 is a point of the extension of (AB)

beyond B. Through each of the points JS
1 ,
5

2 ,
J5

3 construct

a half-line bounded thereby, and lying in that half-plane.
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bounded by AB which contains D, and let the angles so
formed at J3

15
J?

2 ,
J5

3 all be congruent to i^ABD. We may
certainly take EG so small that AC contains a point of each
of these half-lines, say (7

15
(7

2 ,
C.

6 respectively. We may more-

over take BO so tiny that^it
is possible to extend (B^)

beyond C^ to D
l
so that J^C^ CjjDr AD^ will surely meet

B
2 2

in a point 7)
2 ,

when B^L\ is very small, and as AG^
differs infinitesimally from AB%, and hence exceeds AB by

FIG. 1.

a finite amount, it is greater than 2AGl which differs in-

finitesimally from 2AB19 or AB. We may thus find C" on

the extension of (ACJ beyond C^ so that AC^ = G^T'. G' will

be at a small distance from (7, and hence on the other side of

J?
2
D

2
from A and jD Let D^C' meet B2D<2 at H2 . We now

see that, with regard to the AAB
1
D

1
:
>
the external angle at

I)
l (i.e. one of the mutually vertical external angles) is

Dt congruent to (S1
l)

1
C' + 4LC'i>1

l)
s),

and
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is congruent to 4-ABl
D

l , and, hence congruent to ^ABD. The
^LC"jf)1 J?2 is the difference between ^S^D^ and %-B^H^
and as H

2 and D
2 approach B

2
as a limiting position, the

angles determined by J52 , D2 and D
2 , //2 at every point in

space decrease together towards a null angle as a limit.

Hence 1^-C'D^^ becomes infinitesimal, and the difference

between .B
1
D

1
D

2 and ^.ABD becomes and remains in-

finitesimal. But as ABl
= B^B, and 4-AB^ and 4-B^BD

are congruent, we see similarly that the difference between

^B^D and ^LJ.JSZ) will become, and remain infinitesimal.

Lastly, the difference between 4-B^D and ^AGI) is 4-B^A
which will, by our previous reasoning, become infinitesimal

with B&. The difference between ^.ABD and 4-ACD will

therefore become and remain less than any assigned angle.
Several corollaries follow immediately from this theorem.

Theorems. If in any triangle one side and an adjacent
angle remain fixed, while the other side including this angle
becomes infinitesimal, the sum of the angles of this triangle
will differ infinitesimally from a straight angle.

Theorem 4. If in any triangle one side and an adjacent
angle remain fixed, while the other side including this angle
varies, then the measures of the third side, and of the variable

angles will be continuous functions of tho measure of the
variable side first mentioned.
Of course a constant is here included as a special case of

a continuous function.

Theorem 5. Iftwo lines AB,AG be perpendicular to HG
9 then

all lines which contain .4 and points of BO are perpendicular
to BC\ and all points of BC are at congruent distances from A.
To prove this let us first notice that our A A BC is isosceles,

and AB will be congruent to every other perpendicular
distance from A to BC. Such a distance will be the distance
from A to the middle point of (BC) and, in fact, to every
point of BC whose distance from B may be expressed in the

77L ..

form ~ BG where m and n are integers. Now such points

will lie as close as we please to every point of BC, hence

by II. 31, no distance from A can differ from AB
y
and no

angle so formed can, by III. 2, differ from a right angle.

Theorem 6. If a set of lines perpendicular to a line I, meet
a line m, the distances of these points from a fixed point of m ,

and the angles so formed with m, will vary continuously with
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the distances from a fixed point of I to the intersections with
these perpendiculars.
The proof comes easily from 2 and 5.

Definition. Given four coplanar points A, B, (7, 1) so situated

that no segment may contain points within three of the

segments (AB), (BO), (CD), (DA). The assemblage of all points
of all segments whose extremities lie on these segments shall

be called a quadrilateral. The given points shall be called

its vertices, and the given segments its sides. The foul-

internal angles 4- DAB, 4_ ABC, 4- BCD, 4- CDA shall be

called its angles. The definitions of opposite sides and

opposite vertices are obvious, as are the definitions for

adjacent sides and vertices.

Definition. A quadrilateral with right angles at two

adjacent vertices shall be called birectangular. If it have
three right angles it shall be called trirectangular, and four

right angles it shall be called a rectangle. Let the reader

convince himself that, under our hypotheses, birectangular
and trirectangular quadrilaterals necessarily e^dst.

Definition. A birectangular quadrilateral whose opposite
sides adjacent to the right angles are congruent, shall be said

to be isosceles.

Theorem 7. Saccheri's.* In an isosceles birectangular quad-
rilateral a line through the middle point of the side adjacent
to both right angles, which is perpendicular to the line of

that side, will be perpendicular to the line of the opposite
side and pass through its middle point. The other two angles
of the quadrilateral are mutually congruent.

Let the quadrilateral be ABCD, the right angles having
their vertices at A and B. Then the perpendicular to Att
at E the middle point of (AB) will surely contain F point of

(CD). It will be easy to pass a plane through this line

perpendicular to the plane of the quadrilateral, and by taking
a reflection in this latter plane, the quadrilateral will be

transformed into itself, the opposite sides being interchanged.
This theorem may be more briefly stated by saying that

*
Saccheri, Eudides ab omni naevo rindicatus, Milan, 1732. Accessible in

Engel und Staeckel, Thcorie der Parallellinien von Euldid bis auf Gams, Leipzig,
1895. The theorem given above covers Sacckeri's theorems 1 and 2 on p. 50

of the last-named work. Saccheri's is the first systematic attempt of which
we have a record to prove Euclid's parallel postulate, and proceeds according
to the modern method of assuming the postulate untrue. He builded better

than he knew, however, for the system so constructed is self-consistent, and
not inconsistent, as he attempted to show.
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this line divides the quadrilateral into two mutually congruent

trirectangular ones.

Theorem 8. In a rectangle the opposite sides are mutually

congruent, and any isosceles birectangular quadrilateral whose

opposite sides are mutually congruent is necessarily a rectangle.

TJteorewi 9. If there exist a single rectangle, every isosceles

birectangular quadrilateral is a rectangle.
Let ABCD be the rectangle. The line perpendicular to

AB at the middle point of (AB) will divide it into two
smaller rectangles. Continuing this process we see that we
can construct a rectangle whose adjacent sides may have any_ __ -

measures that can be indicated in the form AB, ~
t

- AC,
i < *

provided, of course, that the distances so called for exist

simultaneously on the sides of a birectangular isosceles

quadrilateral. Distances so indicated will be everywhere
dense on any line, hence, by 6 we may construct a rectangle

having as one of its sides one of the congruent sides of any
isosceles birectangular quadrilateral, and hence, by a repetition
of the .same process, a rectangle which is identical with this

quadrilateral. All isosceles birectangular quadrilaterals, and
all trirectangular quadrilaterals are under the present circum-
stances rectangles.

Be it noticed that, under the present hypothesis, Theorem 5

is superfluous.

Theorem 10. If there exist a single right triangle the sum
of whose angles is congruent to a straight angle, the same is

true of every right triangle.
Let AABC be the given triangle, the right angle being

2jL ACB so that the sum of the other two angles is congruent
to a right angle. Let A A'B'G' be any other right triangle,
the right angle being ^.^I'C'JB'. We have to prove that the

sum of its remaining angles also is congruent to a right angle.
We see that both it^ABC and ll^BAG are less than right

angles, hence there will exist such a point E of (AB) that

.EAC and 4. EGA are congruent. Then . EBC = . ECU
since 4- ACB is congruent to the sum of i^EAG and 4- EBC.
If D and F be the middle points of (BC) and (AC) respec-

tively, as &EAG and AEBC are isosceles, we have, in the

quadrilateral EDGF right angles at D, 0, and F. The angle
at E is also a right angle, for it is one half the straight angle,

4-AEB, hence 4-EDGF is a rectangle. Passing now to the

we see that the perpendicular to A'C' at F' the
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middle point of (A'C'), will meet (A'B') in E\ and the per-

pendicular to ETF' at E' will meet (_S'C") in D'. But, by
an easy modification of 9, as there exists one rectangle, the

trirectangular quadrilateral E'F'D'C' is also a rectangle. It

is clear that 4-D'E
fBf = 4-D'E'C' since 4-F'E'D' is a right

angle and 4-F'R'A' = j-FE'C'. Then kC'E'R is isosceles

like &A'ECf
. From this conies immediately that the sum

of i^E'R'C' and i^E'A
fC r

is congruent to a right angle, as

we wished to show.

Thewem 11. If there exist any right triangle where the

sum of the angles is less than a straight angle, the same is

true of all right triangles.
We see the truth of this by continuity. For we may pass

from any right triangle to any other by means of a continuous

change of first the one, and then the other of the sides which
include the right angle. In this change, by 2, the sum of the

angles will either remain constant, or change continuously,
but may never become congruent to the sum of two right

angles, hence it must always remain less than that sum.

Theorem 12. If there exist a right triangle where the sum
of the angles is greater than two right angles, the same is

true of every right triangle.
This comes immediately by reductlo ad absurditm.

Theorem 13. If there exist any triangle where the sum of

the angles is less than (congruent to) a straight angle, then in

every triangle the sum of the angles is less than (congruent

to) a straight angle.
Let us notice, to begin with, that our given AABd

must have at least two angles, say 4-ABC and ^.BAO which
are less than right angles. At each point of (AB) there will

be a perpendicular to AB (in the plane BO). If two of

these perpendiculars intersect, all will, by 5, pass through
this point, and a line hence to C will surely be perpendicular
to AB. If no two of the perpendiculars intersect, then,

clearly, some will meet (AC) and some (BG). A cut will

thus be determined among the points of (AB), and, by XVIII,
we shall find a point of division D. It is at once evident

that the perpendicular to AB at D will pass through 0. In

every case we may, therefore, divide our 19

triangle into two

right triangles. In one of these the sum of the angles must

surely be less than (congruent to) a straight angle, and the

same will hold for every right triangle. Next observe that

there can, under our present circumstances, exist no triangle
with two angles congruent to, or greater than right angles.
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Hence every triangle can be divided into two right triangles
as we have just done. In each of these triangles, the sum of

the angles is less than (congruent to) a straight angle, hence
in the triangle chosen, the sum of the angles is less than

(congruent to) a straight angle.

Theorem 14. If there exist any triangle where the sum
of the angles is greater than a straight angle, the same will

be true of every triangle.
This comes at once by reductio ad absurdum.
We have now reached the fundamental fact that the sum of

the angles of a single triangle will determine the nature
of the sum of the angles of every triangle. Let us set the

various possible assumptions in evidence.

The assumption that there exists a single triangle, the sum
of whose angles is congruent to a straight angle is called the

Euclidean or Parabolic hypothesis.*
The assumption that there exists a triangle, the sum of

whose angles is less than a straight angle is called the

Lobatcheiuskian or hyperbolic, hypothesis, f
The assumption that there exists a triangle, the sum of

whose angles is greater than a straight angle, is called the

Riemannian or elliptic hypothesis.^

Only under the elliptic hypothesis can two intersecting
lines be perpendicular to a third line coplanar with them.

Definition. The difference between the sum of the angles of

a triangle, and a straight angle shall be called the discrepancy
of the triangle.

Theorem 15. If in any triangle a line be drawn from one
vertex to a point of the opposite side, the sum of the dis-

crepancies of the resulting triangles is congruent to the

discrepancy of the given triangle.

* There will exist, of course, numerous geometries, other than those which
we give in the following pages, where the sum of the angles of a triangle is

still congruent to a straight angle, e. g. those lacking our strong axiom of

continuity. Cf. Dohii,
' Die Legondro'schen Satze iiber die Winkelsumme im

Dreiecke,' Mathematische Annalen, vol. liii, 1900, and R. L. Moore,
*

Geometry
in which the sum of the angles of a triangle is two right angles/ Transactions

of the American Mathematical Society, vol. viii, 1907.

*(
The three hypotheses were certainly familiar to Saccheri (loc. cit.

), though
the credit for discovering the hyperbolic system is generally given to Gauss,
who speaks of it in a letter to Bolyai written in 1799. Lobatchewsky'g first

work was published in Russian in Kaaan, in 1829. This was followed by an
article ' Geome"trie imaginaire ',

Crelle's Journal, vol. xvii, 1887. All spellings
of Ix>batchewsky*s name in Latin or Germanic languages are phonetic. The
author has seen eight or ten different ones.

$ Riemann, Ueber die Hypothesen, wdche der Geometrie zu Grunde liegen, first read
in 1854

; see p. 272 of the second edition of his Gesammelte Werke, with

explanations in the appendix by Weber.
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The proof is immediate. Notice, hence, that if in any
triangle, one angle remain constant, while one or both of the

other vertices tend to approach the vertex of the fixed angle,

along fixed lines, the discrepancy of the triangle, when not

zero, will diminish towards zero as a limit. We shall make
this more clear by saying

Theorem 16. If, in any triangle, one vertex remain fixed,

the other vertices lying on fixed lines through it, and if a
second vertex may be made to come as near to the fixed vertex

as may be desired, while the third vertex does not tend to

recede indefinitely, then the discrepancy may be made less

than any assigned angle.

Theorem 17. If in any triangle one side may be made less

than any assigned segment, while neither of the other sides

becomes indefinitely large, the discrepancy may be made less

than any assigned angle.
If neither angle adjacent to the diminishing side tend to

approach a straight angle as a limit, it will remain less than

some non-re-entrant angle, and 16 will apply to all such

angles simultaneously. If it do tend to approach a straight

angle, let the diminishing side be (AB), while .#4(7 tends

to approach a straight angle. Then, as neither BO nor AC
becomes indefinitely great, we see that A must be very close

to some point of the extension of (AB) beyond A, or to A
itself. If C do not approach A, we may apply 1 to show that

^AGB becomes infinitesimal. If C do aroachpproach A we may
take I) the middle point of (AC) and extend (BD) to E beyond
D so that DE == EB. Then we may apply Euclid's own

proof* that the exterior angle of a triangle is greater than

either opposite interior one, so that the exterior angle at A
which is infinitesimal, is yet greater than 4-ACB.

Theorem 18. If, in any system of triangles, one side of each

may be made less than any assigned segment, all thus

diminishing together, while no side becomes indefinitely

great, the geometry of these triangles may be made to differ

from the geometry of the euclidean hypothesis by as little as

may be desired.

A specious, if loose, way of stating this theorem is to say
that in the infinitesimal domain, we have euclidean geometry.f

*
Euclid, Book I, Proposition 16.

(
This theorem, loosely proved, is taken as the basis of a number of works

on non-euclidean geometry, which start in the infinitesimal domain, and
work to the finite by integration. Cf. e. g. Flye Ste-Marie, Etudes analytiques
surla theorie ties paralleksy Paris, 1871.



CHAPTER [V

THE INTRODUCTION OF TRIGONOMETRIC
FORMULAE

THE first fundamental question with which we shall have
to deal in this chapter is the following. Suppose that we
have an isosceles, birectangular quadrilateral A BCD, whose

right angles are at A and B. Suppose, further, that AB
becomes infinitesimally small, AD remaining constant ; what

will be the limit of the fraction J^ where M XT means the
MAB

measure of XY in terms of some convenient unit.* But, first

of all, we must convince ourselves, that, when AD is given
we may always construct a suitable quadrilateral ; secondly,
and most important, we must show that a definite limit does

necessarily exist for this ratio, as AB decreases towards the
null distance.

Theorem 1. If AD and AX be two mutually perpendicular
lines we may find such a point B on either half of AX bounded

by A, that, a line being drawn perpendicular to AB at any
point P of (AB) we may find on the half thereof bounded by
P, which lies in the same half-plane bounded by AB as does D,
a point whose distance from P is greater than AD.

Let E be a point of the extension of
(
A D) beyond D. Draw

a line there perpendicular to AD. If B be a point of AX
very close to -4, and if a line perpendicular to AB at P
of (AB), meet the perpendicular at E at a point Q, PQ differs

but little from AE> and, hence, is greater than AD.

* The general treatment, and several of the actual proofs in this chapter
are taken directly from G<3rard

?
La geometric non-cuclidienne, Paris, 1892. It has

been possible to shorten some of his work by the consideration that we have
euclidean geometry in the infinitesimal domain. On the other hand, several

important points are omitted by him. There is no proof that the required
limit does actually exist, and worse still, he gives no proof that the resulting

function of MAD is necessarily continuous, thereby rendering valueless his

solution of its functional equation.
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The net result of theorem 1 is this. If AD be given, and
the right 2jLDAXy any point of AX very near to A may be

taken as the vertex of a second right angle of an isosceles

birectangular quadrilateral, having A as the vertex of one

right angle, and (AD) as one of the congruent sides.

Definition. We
v
shall say that a distance may be made

infinitesimal compared with a second distance, if the ratio

of the measure of the first to that of the second may be made
less than any assigned value.

Theorem 2. If in a triangle whereof one angle is constant,

a second angle may be made as small as desired, the side

opposite this angle will be infinitesimal compared to the other

sides of the triangle.

Suppose that we have, in fact, A PQR with ^LPQjR fixed,

while 4-PRQ becomes infinitesimal. It is clear that one
of the angles &.PQR or 2(LQPR must be greater than a right

angle. Suppose it be ^QPR. Then, by hypothesis, no
matter how large a positive integer n may be, I may find such

positions for P and R, that n points Qi may be found on
j
PQ

so that $-PRQ~4-QRQi = 4-QkRQk+i> yet t-QRQn is less

than any chosen angle. Now if RQ remain constantly greater
than a given not null distance, the theorem is perfectly

evident. If, on the other hand, RQ decrease indefinitely, we

may find S on
|
PQ but not in (PQ), so that QR = QS. Then,

as geometry in the infinitesimal domain obeys the euclidean

hypothesis, tf^QRS will differ infinitesimally from one half

4-PQR. If, then, we require 4-QRQn ^ ^e ^css ^nan

named amount, Qn will be within (Q$), and PQ <
__

^
__

and PQ < - QR. A similar proof holds when $~PQR is

greater than a right angle.

It will follow, as a corollary, that if in any triangle, one

angle become infinitesimal, and neither of the other angles

approaches a straight angle as a limit, then the side opposite
the infinitesimal angle becomes infinitesimal as compared
with either of the other sides.

Theorem 3. If in an isosceles birectangular quadrilateral,
the congruent sides remain constant in value, while the side

adjacent to the two right angles decreases indefinitely, the

ratio of the measures of this and the opposite side approaches
a definite limit.

It will save circumlocution and involve no serious confusion

if, during the rest of this chapter, we speak of the ratio of two
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distances, instead of the ratio of their measures, and write

such a ratio simply
~

. Let us then take the isosceles
XY

birectangular quadrilateral A'ABB', the right angles having
their vertices at A and B. Let us imagine that A and A' are
fixed points, while B is on a fixed line at a very small distance
from A. Let G be the middle point of (AB), and let the

perpendicular to AB at G meet (A'B') at C", which, by
Saccheri's theorem, is the middle point of (AB). Now, by
III.

6^ 4-C'AA differs infinitesimally from a right angle,

as AC becomes infinitesimal, so that if 6\ be the point
of (?'), or (CG') extended beyond C", for which C^ = ZZ7

,

Csv'/
-L \77ir -rt i

A LJ jA. ./> TT Ji. G-, A. Jj
,0 < -AC . But -= =-=r - Hence ^=^ - < 5n AC AB AC AB

where 8 may be made less than any assigned number. By a re-

peated use ofthis process we see that ifD be such a point of (AB)_
/, _

that AD = -- AB and D
l
such a point of the perpendicular

at D that AA' = DD
19 then, however small e may be,

A^I) A'B' _
l

-=r- <
, and, what is more, we may take AB so

AD AB
small that this inequality shall hold for all such points D_ jFyT
at once, for, as AB decreases, every ratio '.-

1

gets nearer and

nearer to -r=-r- Lastly, ifP be any point of (AB)> and Pl
lie

AB
on the perpendicular at P so that AA' == PP19

we may find

one of our points recently called D of such a nature that DP
1

and JDjPj are infinitesimal as compared with AB. Hence

A'P A 7
!? _

_ l --zrrrr < where e is infinitesimal with AB. This
AP AB_

ft _
shows that ----

approaches a definite limit, as AB approaches

the null distance.

This limit is constantly equal to 1 in the euclidean case.

In the other cases it is a variable depending on the measure

of AA'. If this measure be a?, we may call our limit < (x).

Let us next show that the function < is continuous. Take
A!ABE' as before, while A l

and B
1
are respectively on the
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extensions of (AA'), beyond A',
and of (BB') beyond B

f
. Let

the measure of AA' be x, while that of A'A
l is A#,

~A
rBt A B

- --1

Now

and, however great m may be, we may take A^A' so small

that A*A' < K AB>1 2m

then A d> (#) < ---h S,v ' m
and, hence, < is a continuous function.

We shall find the actual form of
<j>

from its functional

equation. Let x be the measure of AC, (x y) that of AO^
and (x + y) that of AG^ ; where (7 and (7

T are points within

(AC2). Take a corresponding set of distances upon a line near

by, BD = AC; SS
1
= Z^; BD.,

= AL\ while
|

J.C and
|

J5D
are in the same half-plane bounded by AB and perpendicular
thereto. We know, by 1, that this construction is possible.

We shall presently suppose AB to be infinitesimal. The

perpendicular to CD at C will meet CZD2 and G^D^ in P and R
respectively, while the perpendicular to CD at D will meet
these lines at Q and &

;
the four last-named points wilJ surely

exist, if AB be very tiny. 4-CC2
P and ^LC^jR will differ

infmitesimally from right angles, so that by 2

This infinitesimal 6 is, in fact, of the second order. For,
let us compare ACf

(7
t>P and AOC^jR. ^LC^CJt EE ^L02

OP
;

C^ = <7<7
2 . Also -CC

2
P and ^.(7(7^ differ infinitesimally.

Hence, if, on (GP) or" (GP) extended beyond P, we take

we have 0^=0^; C^P-C^R <F. But

- < 8 as the angle opposite (PP') is infinitesimal.
(7P
2 ___ 2_
~CoP = - C'1 J? + 2e where c is infinitesimal, as compared with
V ^__. V _
M(7

2
P meaning thereby the measure of 2

P. Lastly, let us

D 2
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use letters of the type 8, e, 7?, to indicate infinitesimals, and

remember that AB is an infinitesimal distance.

But GP > (TO,-OP and 0~P is infinitesimal.

_ __
Substitute in the first equation connecting G

2
P and C\R

Hence <(#-f 7/) + </)(iC y) 2(t)(x)(t>(y) < 77 where ?/ may be

made less than any assigned value

This well-known equation may be easily solved. Let us

assume that the unit of measure of distance is well fixed

Let x
1
be a value for x in the interval to which the equation

applies, i. e. the measure of an actual distance. We may find

/yi

k so that
<f> (x^ = cos -r- - We have immediately

k/

^= cos ~
,

</>
= cos

/j\

We also know that $(&) cos-r is a continuous function.

If, then, a; be any value of the argument, we may find u and
"7?

f
JTm such large integers that x ^~ is infinitesimal. Hence

x .

^)(aj) cos j will be less than any assigned quantity, or



iv TRIGONOMETRIC FORMULAE 53

The function cosine has, of course, a purely analytical
meaning, i.e. we write

Of fundamental importance is the constant k. We shall

find that it gives the radius of a sphere (in our usual
euclidean geometry) upon which the non-euclidean plane
may be developed. We shall, therefore, define the constant

p as the Medsure of Curvature of Space* To find the

nature of the value of k, we see immediately that in the

parabolic case ^ ; in the elliptic < is, at most, equal
/L-"

1

to 1, hence
-p,

is positive. In the hyperbolic case, 1 con-

. . 1
stitutes a minimum value for < and r% is negative, or k a pure

fa

imaginary. Under these circumstances, we may, if we choose,
remove all signs of imaginary values from (2) by writing
k' = ik, ^ v

</> (x)
= cosh

(^,)
-

As a matter of fact, however, there is little or no gain in

doing this.

It is now necessary to calculate another limit, that of the

ratio of two simultaneously diminishing Hides of a right

triangle. Let us, then, suppose that we have a right
A ABC whose right angle is 4-AC\ We shall imagine that

AB becomes infinitesimal while ^.BAC is constant. We
AB

seek the limit of -.f That such a limit will actually
AC

exist may be proved by considerations similar to those which
established the existence of

</>(#).
We leave the details to

the reader. The limit is a function of the angle ^jLjEMC*, and
if & be the measure of the latter, we may write our function

/(#) ; including therein, of course, the possibility that this

function should be a constant.

First of all it is incumbent upon us to show that this

function is continuous. Take C' on the extension of (BC)
beyond (7, and let A# be the measure of .CAC'. If A0 be

* This fundamental concept is due to Riemann, loc. cit. We shall

consider it more fully in subsequent chapters, notably XIX.
f It is strange that Gerard, loc. eit., assumes this ratio from the euclidean

ease.
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infinitesimal, then, by 2 CCf
is infinitesimal as compared

___
with AC. Hence -=rr r=r will become and remain less

AB AB
than any assigned number, and f(B) is continuous.

Suppose, now, that we have two half-lines
| OF, \OZ lying

in a half-plane bounded by \OX. Let XOF and .XOZ
be each less than a right angle, and have the measures 0, + $ ;

<f><0. Take JF on
| OZ, and find J3, so that

OF=~OB 4-YOF =

|

OB is within the interior angle .XOF; these points will

certainly exist if OF be very small. Connect F and B by a line

meeting |

OF in /), and through F, D, B draw three lines per-

pendicular to
|
OX, and meeting it in E,C,A respectively, which

points also are sure to exist, if OF be small enough. C will

be separated from the middle point of (EA) by a distance

infinitesimal compared with EA, for the perpendicular to OX
at such a point would meet (BF) at a point whose distance

from D was infinitesimal as compared with OF.

OB 01) OB

UK

*
- - =8, infinitesimal.

This is the functional equation that we had before, so that

B
f = cos y and I must be real. If, then, we so choose it that the

_
measure of a right angle shall be

^
*

f(9) = cos<9.
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Let us not fail to notice that since ^L-4jB(7 is a right angle
we have, by III. 17,

lim.= = cos (~ 6
)
= sin 9. (3)

The extension of these functions to angles whose measures

are greater than ~ will afford no difficulty, for, on the one

hand, the defining series remains convergent, and, on the

other, the geometric extension may be effected as in the

elementary books.

Our next task is a most serious and fundamental one, to

find the relations which connect the measures and sides and

angles of a right triangle. Let this be the A ABC with
-ABC as its right angle. Let the measure of ^.BAG be

\(r

while that of 4-BGA is 0. We shall assume that both ^ and

are less than ~, an obvious necessity under the euclidean

or hyperbolic hypothesis, while under the elliptic, such will

still be the case if the sides of the triangle be not large, and
the case where the inequalities do not hold may be easily
treated from the cases where they do. Let us also call a, b, c

the measures of BC, GA, AB respectively.
We now make rather an elaborate construction.* Take B

1

in (AB) as near to B as desired, and J^ on the extension

of (AB) beyond A, so that A^A = B^B, and construct

AA
1
B

1
G

I
= AABC, G

1 lying not far from (7; a construction

which, by 1, is surely possible if BB
1
be small enough. Let

B
l
C

l
meet (AC) at <7

2 . 4-C&C will differ but little from

$-.BCA, and we may draw G
1
C3 perpendicular to CC%, where

C
a
is a point of (CG^). Let us next find A2 on the extension

of (AC) beyond A so that A%A = G
Z
C and B2 on the extension

of (Cj^Bt) beyond B% so that B^2
=

CjC/g, which is certainly

possible as 6^6^ is very small. Draw A^B2 . We saw that

^_(71 (72 (7 will differ from i^EGA by an infinitesimal (as Bt
B

decreases) and &-CCl
B

l
will approach a right angle as a limit.

We thus get two approximate expressions for sin# whose

comparison yields a
/T7T 7v77 cos T^l
6^3 CG

l
k l

^^^Z ^ZZ, -
'

-j- I;- Zm ~ "" -

"^- (f

O-|Oo OO.i \J\J n

for CC1 cos
y-
BB

l
is infinitesimal in comparison to BB

1
or

* See figure on next page.
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CC
l

. Again, we see that a line through the middle point,
of (AAi) perpendicular to AA% will also be perpendicular
to A

l
C

l ,
and the distance of the intersections will differ in-

finitesimally from Qin\lsAAv We see that C
{ G^ differs by

a higher infinitesimal from sin^cos rAA^ so that
fc

COS T
k

7 JTT
b .

,
AA,

COST sm\//- ^~- -f- 6 = -----
k r

00,
u 6U

FIG. 2.

Next we see that AA^ = BB^ and hence

COSy =
/L'

COS
k

Moreover, by construction C\U2
=

JBjJSg,
OGY

2 B ^^4
2

- 4 per
"

pendicular to AA
l
from the middle point of (AA 2)

will be

perpendicular to A^B2 ,
and the distance of the intersections

will differ infinitesimally from each of these expressions

cos
k
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Hence 6 a c
cos T cos Y cos 7 < ,K 1C 1C

I) a c
COS T = COS y COS -

(4)
1C A/ A/'

To get the special formula for the euclidean case, we should

develop all cosines in power series, multiply through by fe
2

,

and then put p = 0, getting

the usual Pythagorean formula.
We have now a sufficient basis for trigonometry, the

development whereof merely requires a little analytic skill.

It may not perhaps be entirely a waste of time to work out
some of the fundamental formulae. Let A, B, C be the
vertices of a triangle, and let us use these same letters, as
is usual in elementary work, to indicate the measures of the

corresponding angles, while the measures of the sides shall bo
a, 6, c respectively. Begin by assuming that ^AJBC is a right

angle so that B = . Let D be such a point of (AC) that BD
,w

is perpendicular to AG\ the measures of AD and CD being
b
l
and 6

2 ,
while the measure of BD is </a .

(t G
-, COS 7 , COSy
6, k 60 k

COS T = - ---
3 COS

2 =- 3

fc a, k a,
cos ~r cos -~

A; K

/-i + bn\
COS I

-*
)
= COS y = COS y COS y y

^ k '

a
y y y
k k k

a C /l 9 ai\ / 9^1 0<^ / ,> ^1
OS r COS y ( 1 COS2 T ) /

COS "7
~ COS T A / COS

2 ~~ CO
A* A?

v K' \J h k\j k

O a 9.
C

f 2 a
'l rt \ 9

a
i o f</ 9 C

COS*
7 COS2

y ( COS"
5 -~ 2 )

= COS2
-y

1

COS2 7 COS2
T 3

k k ^ k ' k k k

. a-, . b . a . c
sin -y-

1 sm y = sm T sm T 3

fc Ic k fc

.a .a,
sin T sin

k k
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Now proceeding with the AADB as we did with the A ABC
we shall reach two more sines whose ratio is

%
A*

and so forth. Continuing thus we have in (AB) and (AC)
two infinite series of points. Let the reader show that the

limit for each series cannot be other than the point A itself.

Now we have just seen in (3) that the limit of this ratio

is sin .4, hence

a . b . M ,.
sin r = sin j sin A. (5)

A/ A/

Let the reader deduce from (4) and (5) that

tan r = tan r cos A. (6)
A/ A/

cos B = cos f sin A. (7)
A*

Let us next suppose that AABC is any triangle. If none

of the angles be greater than a right angle, we may connect

any vertex with a point of the opposite side by a line

perpendicular to the line of that side, and we see at once that

. a . b . c A n n
sin

j-
: sin y : sin r = sinA : sin B : sm 0.

1C tv It

Let us show that this formula holds universally, even when

this construction is not possible. Let us assume that B > ^

We may legitimately assume that A and C are less than

for the extreme case under the elliptic hypothesis where such
is not the fact may easily be treated after the simpler case

has been taken up. We shall still have

. a . c . . .

sm -r : sm T = sin A : sin C.
K A/

Let E be that point of (AC) which makes BE perpendicular

to AC. Let the measures of AE, BE, and CE be a'
', b', c',

while the measure of $~ABE is A' and that of 4-CBE
is C'
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cos A' =. -.
-

> cos C' =
, c

, a
tan T tan =-

rC 1C

. a' . c'
sm

y- 8m
7:

fo

, sinC" = ,

. c . a
sm -y- sin y-

/c /c

tan r , ,

. ^ . . A . ~, x
k / c . c a . a x

sin B sin (A + (;
)
=

(^
cos y sin r- + cos T sin r-

j
>

sin y sin y
/o K

c of V a c' V
COS T = COS

y;
COS -,- 9 COS r = COS y COS y-

/C /C IV l\j A/ /C

. 6'
sm

j ,

. a . c ^ k k'
sin y sin y

A; A'

a' + c' = 6
;

sin y- = sin y- sin (7 = sin y sin ^4,

. a .6 . c
sin -r sm y sm yIn // / /Q \

/^ _____ ' (O)

sin jl
"~

sin sinG

Once more let us suppose that no angle of our triangle

is greater than a right angle, and let D be such a point of

(BO) that AD is perpendicular to BG :

COS =- COS y
b k k

COST =-

cos

C
008

Jfc r a M&D . a .

a c . a . c D= cos T cos 7 + sm y sin T cos i5.

k k k /c
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If B > - this proof is invalid. Here, however, following
<l

our previous notation

, Jf a c . a' . c'
tan"5

y cos -r cos j sin
y-

sin y
_, / < / ,r-*/\ A?

cos J5 = cos (A
r

4- C") =x '
. a . c

sin r sin T
k k

a V c' c V a'
7 , ,

cos -r = cos T cos T > COS T = cos 7 cos 7-?
= a + c

,

/c /c A /o A; k

. ,V a' (' . a' . c'

sin2 -r cos j- cos r sm r- sm r
rC rC K> i\> \\j

. a . c
sin T sin T

jfc yfc

6 a c
cos 7 cos Y cos T

fc k k

. a . c
sin - sin -

A! A*

b a c . a , c
cos T- = cos 7 cos 7 + sm T sin T cos B. (9)

k k k k k v 7

A correlative formula may be deduced as follows :
*

T . a . 6 . c
Let sm T sin T sm r

-, = -,
- r= =r X db

sin.4 sinjB sinC'
'

cos2 7 -f-A
4
sin2

^! sin2Ocos2
-B 2A 2 sin-4 sin C cos 5 cos T =

A: /c

o a (;_ COS2 C0g2
^

A' A;

^
=

= 1 - A2 sinM - A2 sin2 6f+ A4 sinMsin2
0,

sin24 + sin2(7- sin25

= sin2A sin26f

sin2
T + 2 sin ^1 sinG cos5 cos 7 ,

k k
1 sin2A sin2

G'+ sin2A sin2 (7

= sin2A sin26r

cos
2
7 2 sin .4 sin C cos 7 cos 1? + cos2

5,
/c /c

* I owe this ingenious trigonometric analysis to my former pupil Dr. Otto
Dunkel.
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cosA cosG = cos T sinA sin (7 cos B,
rC

cosJS = cos -A cosC -f sin4 sin cos
7
-.* (10)

A*

If ABCD be an isosceles birectangular quadrilateral, the

right angles being at A and J?,

MAC wRD wAB . ivtZTJ .

cos = cos j cos 7 cos
7
--h sin = sin

k K lc Ic k

The proof of this is left to the reader, as well as the task of

showing that the formulae which we have here established

are identical with those for a euclidean sphere of radius k.

Let him also show that when =0, our formulae pass over
Ic

into those for the euclidean plane.

* Iu finding this formula wo have extracted a square root. To he sure
that wo have taken the right sign, we have but to consider the limiting
case A = 0, B = ir C.



CHAPTER V

ANALYTIC FORMULAE

AT the beginning of Chapter I we posited the existence

of two undefined objects, points and distances. Between the

two existed the relation that the existence of two points

implied the existence of a single object, their distance. In
this relation the two points entered symmetrically.

These concepts may be further sharpened as follows.

Leaving aside the trivial case of the null distance, let us

imagine that a distinction is made between the two points,
the one being called the initial and the other the terminal

point. The concept distance, where this distinction is made
between the two points shall be called a directed distance,

or, more specifically, the directed distance from the initial

to the terminal point. Any not null distance will, thus,
determine two directed distances. The directed distance from

A to 5 shall be written AB. The relations congruent to

greater than, and less than, when applied to directed dis-

tances, shall mean that the corresponding distances have these

relations.

Suppose that we have two congruent segments (AB) and

(A'B') of the same line. It may be that a congruent trans-

formation which carries the line into itself, and transforms
A and B into A' and B', also transforms A f

into A. In this

case the middle point of (AA
f

)
will remain invariant, the

extremities of every segment having this middle point will

be interchanged. Such a transformation shall be called a

reflection in this middle point. Conversely, we easily see

that a congruent transformation whereby A goes into A
',

and one other point of (A A') also goes into a point of that

segment, is a reflection in the middle point of the segment.
There are, however, other congruent transformations of the

line into itself besides reflections. For if A go into A\ and

any point of (AA
f

) go into a point not of (AA')> then A will

be the only point of (AA') which goes into a point thereof,
there will be no invariant point on the line, and we have
a different form of congruent transformation called a transla-

tion. It is at once evident that every congruent transformation
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of the line into itself is either a reflection or a translation.

The inverse of a translation is another translation ;
the inverse

of a reflection is the reflection itself.

Theorem 1. The product of two translations is a translation.

The assemblage of all translations is a group.
We see, to begin with, that every congruent transformation

has an inverse. This premised, suppose that we have a
translation whereby A goes into A', and a second whereby
A' goes into A". We wish to show that the product of

these two is not a reflection. Suppose, in fact, that it were.

A point Pl
of (AA'

f

)
close to A must then go into another

point P3 of (AA") close to A". If A' be a point of (AA"), the

first translation will carry Pl
into P

3
a point of (A'A") y

and
as P3 is also a point of (A'A") the second transformation

would be a reflection, and not a translation. If A were
a point of (A'A"), P2 would be a point of (AA'), and hence
of (A'A")> leading to the same fallacy. If A" were a point of

(AA') i
P

2
would belong to the extension of (A'A") beyond A',

and P3 would belong to (A'A") and not to (AA").
Let the reader show that the product of a reflection and

a translation is a reflection, and that the product of two
reflections is a translation.

Definition. Two congruent directed distances of the same
line shall be said to have the same sense, if the congruent
transformation which carries the initial and terminal points
of the one into the initial and terminal points of the other be

a translation. They shall be said to have opposite senses

if this transformation be a reflection. The following theorem
is obvious

Theorem 2. The two directed distances determined by a

given distance have opposite senses.

Suppose, next, that we have two non-congruent directed

distances AB, A'C' upon the same line, so that A'C' > AB.
There will then (XIII) be a single such point ff of (A'C') that

AB = A'Bf

. If then, AB and A B' have the same sense, we

shall also say that AB and A'C' have the same sense, or

like senses. Otherwise, they shall be said to have opposite
senses. The group theorem for translations gives at once

Theorem 3. Two directed distances which have like or

opposite senses to a third, have like senses to one another,
and if two directed distances have like senses, a sense like

(opposite) to that of one is like (opposite) to that of the other,
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while if they have opposite senses, a sense like (opposite)
to that of one is opposite (like) to that of the other.

Let us now make suitable conventions for the measurement
of directed distances. We shall take for the absolute value

of the measure of a directed distance, the measure of the

corresponding distance. Opposite directed distances of the

same line shall have measures with opposite algebraic signs.

If, then, we assign the measure for a single directed distance

of a line, that of every other directed distance thereof is

uniquely determined. If, further, we choose a fixed origin D
upon a line and a fixed unit for directed distances, every

point P of the line will be completely determined by a single
coordinate >

. MOP
x = sin

j
1C

In an entirely similar spirit we may enlarge our concepts of

angle, and dihedral angle, to directed angle. We choose an
initial and a terminal side or face, and define as rotations

a certain one parameter, group of congruent transformation

which keep the vertex or edge invariant. We thus arrive

at the concept for sense of an angle, and set up a coordinate

system for half-lines or half-planes of common bound. If in

the %~ABO, AH be taken as initial side, the resulting directed

angle shall be written 4-ABC.
We have at last elaborated all of the machinery necessary

to set up a coordinate system in the plane, and nearly all that

is necessary to set up coordinates in space. Let us begin with
the plane, and choose two half-lines

|
OJT,

|

OF making a right

angle. Their lines shall naturally be called the coordinate

axes, while is the origin. Let P be any point of the plane,

the measure of OP being p, while those of _XOP and . YOP
are a and ft respectively. Wo may then put

= k sin y cos a,
/c

j
r\
= ksm

j
cos/3, (1)

P
CO = COS T ,

with the further equation
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In practice it is better to use in place of f, 77, ( homogeneous
coordinates defined as follows :

-

. n%Cj
~ =

What shall we say as to the signs to be attached to the

radicals appearing in these denominators ? In the hyperbolic
case co is essentially positive, so that the radical must have the

same sign as X
Q

. In the elliptic case it is not possible to have
two points, one with the coordinates , ?;, co and the other with
the coordinates , ?, -co, for their distance would be /CTT,

and the opposite angle of every triangle containing them both

would be straight, i.e. they might be connected by many
straight lines. On the other hand, it is not possible that

7;, co and f, 77, -co should refer to the same point, for

then that point would determine with itself two distinct

distances, which is contrary to Axiom II. Hence, in every
case, the radical must have a well-defined sign in order that

equations should give a point of our space.
In the limiting parabolic case

= p cos a, 77
= p cos /3, CD = 1.

The formula for the distance of two points P and P' with
coordinates (#), (of) is

cos
j
tc

p p' . p . p' ,= cos y cos j- 4- sin j-
sin

-y cos (a a)
fc ic fc /c

C03 . _ o _ _
,

(4)

The signs of the radicals in the denominators are, as we
have seen, well determined. The sign of the radical in the

numerator of (4), should be so taken as to give a positive
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value to the whole. Should we seek the measures of directed

distances on the line PP', then, after the adjunction of the

value o'f the sign of a single directed distance, that of every
other is completely determined. In the euclidean case

MPP7 =

Returning to (4) and putting or-' x^ + dx^ we get for the

infinitesimal element of arc

dx
l
dx<2

-n A i '
, 7 /rut x -

, y = -
3 x x + dx> y =

ds* = -

In the limiting euclidean case
-^
= 0>

ds2 = dx2 + dy
2
.

Returning to the general case, we may improve our formula

(5) as follows :

let z = VFT^T^/^ dz = -
V k* H-^ -f T/^

If d

,
----

3 y
-

A: A; z

u' + v 1 -2z

+ 2 (fc
-

0) (xc?cc + ydy) dz + (x
2 + y

2

v2 = ds2
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[

Comparing this with the usual distance formula

Now if K be the measure of curvature of the surface having
this distance formula

1 S^lVVE

=[' 4F~J
rt

1

2/fc

V*.

Theorem 4. The non-euclidean plane may be developed upon

a surface of constant curvature p in euclidean space.

We shall return to questions of this sort in Chapters XV
and XIX * of this work.

Let us now take up coordinates in three dimensions. Wo
must make some preliminary remarks about the direction

cosines of a half-line. Suppose, in fact, that we have three

mutually perpendicular half-lines,
|

OX,
| OF, | OZ, and a

fourth half-line
|

OP. The angles 4-XOP, 4-YOP, 4-.ZOP
whose measures shall be a, p, y respectively, sHall be called

the direction angles of the half-line
|

OP. These angles are

not directed, but this will cause no inconvenience, as we shall

introduce them merely through the expressions cos a, cos/3,

cos y. These shall be called the direction cosines of the half-

line, shall be the origin, and OX, OF, OZ the coordinate

axes, while the planes determined by them are the coordinate

planes. Take a second half-line
|
OP', with direction cosines

cos a', cos /3', cos y'. We shall imagine that OP and OP' are

* The idea of interpreting the non-euclidean piano as a surface of constant

curvature in euclidean spare must certainly have been present to Riemann's

mind, loc. cit. The credit for first setting the matter in a clear light is,

however, due to Beltrami. See his 'Teoria fondamentalo degli spazii di

curvatura costante', Annali di Matematica, Serie 2, vol. ii, 1868, and '

Saggio

d'interpretazione della geometria non-euclidca ', Giornale di Matematichc,
vol. vi, 1868.

E2
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infinitesimal. Under these circumstances, we may find

A, .B, G where perpendiculars to the axes through P meet

them, and A', B', C' bearing the same relation to Pf
. Let Q' be

that point of
|

OP' which makes %-PQ'O a right angle, and let

4_POP' have a measure 0. Now we know that geometry
in the infinitesimal domain obeys the euclidean hypothesis,
hence we have

= MOPcos0-f *,

the c is infinitesimal as compared with MOP. In the same
sPint

But clearly MOA = MOP cos a -f , &c.

Hence

MOPcosfl = MOP [cos a cos a' -f cos p cos/3' -f cosy cosy'] + T/,

or dividing out M OP,

cos0 = cosetcosa'-f cos/3 cos /3'-f- cosy cosy'. (7)

In particular we shall have

1 = cos2 a + cos2 /3 + cos2 y- (8)

We now set up our coordinate system as follows :

0> = COS

7
. MOP= k sin , cos a,

7 -

rj
= Ic sin

^
cos ^3, (9)

fc

, .= K am
j

- cos y,
A/

From these we pass, as before, to homogeneous coordinates
x : x

l
: X2 : <#

3
. But first we shall introduce a new symbol :

(xy) = x y + x
lyl + x2y2 + x.^ . (10)

We then write

(ll)
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Here, as in the case of the plane, there is no ambiguity arising
from the double sign of the radical. There is, however, one

modification which we shall occasionally make. We see,

in fact, that in the hyperbolic case, since &2 < ; , ?/, a> are

real, we must have (xx) < 0, and x is a pure imaginary. To

remedy this let us write

KXQ
=

XQ, X^ = &
15 X% = #

2 J ^3 == ^V
A point will now have real coordinates. This distinction

between coordinates (x) and coordinates (x) shall be con-

sistently maintained in the hyperbolic case.

The cosine of the measure of distance of two points (x) and

(y) is easily found. We see at once that we shall have

*
V(xx) V(yy)

Let us now see what effect a congruent transformation will

have upon our coordinates. First take a congruent trans-

formation keeping the origin invariant. We see at once that

the new direction cosines, and so the new coordinates
(x'),

will

be linear functions of the old ones ;
for a plane through the

origin will be characterized by a linear relation connecting
the direction cosines of the half-lines with that bound. The
variables

, 17, f are thus linearly transformed in such a way
that 2

4- 77

2
-f f

2 has a constant value, while o> is unaltered,

Hence x
Q9
x

l ,
oc
2 , #3 are linearly transformed so that (xx) is an

invariant (relative), i.e. they are subjected to an orthogonal
substitution.

Let us next suppose that we have a congruent transforma-

tion which carries the planes = and r;
= into themselves,

and every half-plane with this axis as bound into itself.

The assemblage of all such transformations will form a one-

parameter group, and this group may be represented by
, d . d

a) = o> cos - -f fsin r >

. d .. d
sm-r +CCOS-T*

We see, in fact, that by this transformation every point
receives just the coordinates that it would obtain by a

translation of the axis OZ into itself through a distance d,

so enlarged as to carry into itself every half-plane through
that axis. Once more wo find that, in the coordinates (x),
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this will be an orthogonal substitution. Now, lastly, every

congruent transformation of space may be compounded out

of transformations of these two types. Hence :

Theorem 5. Every congruent transformation of space is

represented by an orthogonal substitution in the homogeneous
variables # : x

l
: x2

: x
3

.

In Chapter VIII we shall make a detailed study of these

congruent transformations. For the present, lot us begin by
noticing that the coordinate planes have linear equations, and
as we may pass from one of these to any other plane by
linear transformations, so the equation of any plane may
be written

We see that (xy), (ux), (uv) are concomitants of every

congruent transformation, and we shall use them to find

expressions for the distance from a point to a plane and the

angle between two planes. The existence of the former of

these quantities is contingent upon the existence of a point
in the plane determining with the given point a line perpen-
dicular to the plane.

Let the plane (u) be that which connects the axis xl
= x2

=
with the point (y). Its equation is y2

x
i 2/1^2

= 0. The
cosines of the angles which this makes with the plane v

1
x

1
=

are the x% direction cosines of the two half-lines of OP. If

then, the measure of the angle be 0, we have

COS =
-fJiL==

= ^ = -JL^.
But both sides of this equation are absolute invariants for all

congruent transformations. Hence, we may write, in general :

~~

V(uu) V(yv)
'

We find the distance from a point to a plane in the same

way. Let the point be (x) and d the distance thence to the

point where a perpendicular to the plane ul
x

1
= meets it,

this being, by definition, the distance from the point to the

plane.
d V n <r

sin- = - = + V uii .

* *
~~

V(xx) V(xx) V(uu)
Once more we have an invariant form, so that, in general :

. d (ux)
sin 7

= L '
T (14)

'J
v(uu) v(xx)
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The sign of </(xx) is determined. As for that of -v/(uu), by
reversing it, we get opposite directed distances of the same line.

We have now reached the end of the first stage of our

journey. Our system of axioms has given us a large body
of elementary doctrine, a system of trigonometry, and a

system of analytic geometry wherein the fundamental metrical

invariants are easily expressed. All of these things will be of

use later. At present our task is different. We must show
that the system of axioms which has carried us safely so far,

will not break down later; i.e. that these axioms are essen-

tially compatible. We must also grapple with a disadvantage
which has weighed heavily upon us from the start, rendering

trebly difficult many a proof and definition. In Axiom XI we
assumed that any segment might be extended beyond either

extremity. Yes, but how far may it be so extended ? This

question we have not attempted to answer, but have dealt

with the geometry of such a region as the inside of a sphere,
not including the surface. In fact, had we assumed that every

segment might be extended a given amount, we should have
run into a difficulty, for in elliptic space no distance may have
a measure kir under our axioms.

The matter may be otherwise stated. Every point will

have a set of coordinates in our system. What is the extreme
limit of possibility for making points correspond to coordinate

sets, and what meaning shall we attach to coordinates to

which no point corresponds? We must also adjoin the com-

plex domain for coordinates, and give a new interpretation to

our fundamental formulae (12), (13), (14) covering the most

general case. Then only shall we be able to continue our

subject in the broadest and most scientific spirit.



CHAPTER VI

CONSISTENCY A SIGNIFICANCE OF THE AXIOMS

THE first fundamental question suggested at the close of

the last chapter was this. How shall we show that those

assumptions which we made at the outset are, in truth,

mutually consistent ? We need not here go into that elusive

question which bothers the modern student of pure logic,

namely, whether any set of assumptions can ever be shown
to be consistent, All that we shall undertake to do is to

point to familiar sets of objects which do actually fulfil our
fundamental laws.

Let us begin with the geometry of the euclidean hypothesis,
and take as points any class of objects which may be put into

one to one correspondence with all triads of values of three

real independent variables x, y> z. By the distance of two

points we shall mean the positive value of the expression

The sum of two distances shall be defined in the arithmetical

sense. It is a perfectly straightforward piece of algebra to

bhow that such a system of objects will obey all of our axioms
and the euclidean hypothesis ;

hence the consistency of our
axioms rests upon the consistency of the number system,
and that we may take as indubitable. Be it noticed that

we have another system of objects which obey all of our
axioms if we make the further assumption that

The net result, so far, is this. If we take our fundamental

assumptions and the euclidean hypothesis, points and dis-

tances may be put into one to one correspondence with

expressions of the above types ; and, conversely, any system
of geometry corresponding to these formulae will be of the

euclidean type. The elementary geometry of Euclid fulfils

these conditions. In what immediately follows we shall

assume this geometry as known, and employ its terminology.
Let us now exhibit the existence of a system of geometry

obeying the hyperbolic hypothesis. We shall take as our
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class of points the assemblage of all points in euclidean space
which lie within, but not upon, a sphere of radius unity.
We shall mean by the distance of two points one half the

real logarithm of the numerically larger of the two cross ratios

which they make with the intersections of their line with
the sphere. The reader familiar with projective geometry
will see that the segment of two points in the non-euclidean
sense will be coextensive with their segment in the euclidean

sense, and the congruent group will be the group of collinea-

tions which carry this sphere into itself. Lastly, we see that

we must be under the hyperbolic hypothesis, for a line is

infinitely long, yet there is an infinite number of lines through
a given point, coplanar with a given line, which yet do not
meet it.

The elliptic case is treated similarly. We take as points
the assemblage of all points within a euclidean sphere of

small radius, and as the distance of two points . times, the
x5 'I/

natural logarithm of a cross ratio which they determine with
the intersection of their line with the imaginary surface

By a proper choice of the cross ratio and logarithm, this

expression may be made positive, as before. The congruent
group will bo so much of the orthogonal group as carries

at least one point within our sphere into another such point.
The elliptic hypothesis will prevail, for two coplanar lines

perpendicular to a third will tend to approach one another.

We may obtain a simultaneous bird's-eye view of our three

systems in two dimensions as follows. Let us take for out-

class of points the assemblage of all points of a euclidean

sphere which are south of the equatorial circle. We shall

define the distance of two points in three successive different

ways :

(a) The distance of two points shall be defined as the

distance which the lines connecting them with the north pole
cut on the equatorial plane. A line will be a circle which

passes through the north pole. If we interpret the equatorial

plane as the Gauss plane, we see that the congruent group
will be ^=as + /3, aa=l,
or rather so much of this group as will carry at least one

Eoint

of the southern hemisphere into another such point.
b is evident from the conforinal nature of the transformation

from sphere to equatorial plane, that we are under the

euclidean hypothesis.
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(6) The distance of two points shall be defined as one half

the logarithm of the cross ratio on the circle through them
in a vertical plane which they determine with the two
intersections of this circle and the equator. A line here will

be the arc of such a circle. The congruent group will be
that group of (euclidean) collineations which carries into

itself the southern hemisphere. A line will be infinitely

long, yet there will be an infinite number of others through

any chosen point failing to meet it ; i. e. we are under
the hyperbolic hypothesis.

(c) The distance of two points shall be defined as the length
of the arc of their great circle. Non-euclidean lines will be

arcs of great circles. Congruent transformations will be

rotations of the* sphere, and it is easy to see that the sum
of the angles of a triangle is greater than a straight angle ;

we are under the elliptic hypothesis.
We have now shown that our system of axioms is sufficient,

for we have been able to introduce coordinates for our points,
and analytic expressions for distances and angles. The axioms
are also compatible, for we have found actual systems of

objects obeying them. Compared with these virtues, all other

qualities of a system of axioms are of small import. It will,

however, throw considerable light upon the significance of

these our axioms, if we examine in part, their mutual

independence, by examining the nature of those geometrical

systems where first one, and then another of our assumptions
is supposed not to hold.

Axiom XIX is popularly known as the axiom of free

mobility, or rather, it is the residue of that axiom when we
are confined to a limited space. It puts into precise shape
the statement that figures may be moved about freely without

suffering an alteration either in size or form. We have defined

congruent transformations by means of the relation congruent
which is itself defined in the logical sense, but not de-

scriptively. We might, of course, have proceeded in the

reverse order.* The ordinary conception in the elementary
textbooks seems to be that two figures are congruent if they
may be superposed ; superposed means that they may be
carried from place to place without losing size or shape, and
this in turn implies that throughout the transference, each
remains congruent to itself, f
With regard to the independence of this axiom, we have but

* Cf. Fieri, loc. cit.

t Cf. Veronese, loc. cit., p. 259, note 1, and Russell, The Principles of Mathe-

matics, vol. i, Cambridge, 1903, p. 405.
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to look at any system where the measure of distance in one

piano is double that of all the rest of space. A triangle having
two vertices in this plane, and one elsewhere, could not be

congruently transformed into a triangle of a different sort.

Axiom XVIII is the axiom of continuity. We have laid

special stress on it in the course of our work, although the

subject of elementary geometry may be pushed very far

without its aid.* We are not here concerned with the

question of the wisdom of such attempts, considered from
the didactic point of view. Systems of geometry where this

axiom does not hold will occur to every reader; e.g. the

Cartesian euclidean system where all points whose coordinates

are non-algebraic are omitted. It is interesting to note that

whereas the omission of XIX runs directly counter to our
sense experience, no amount of observation could tell us

whether or no our geometry were continuous, f
Axiom XVII is an existence theorem, not holding where

the geometry of the plane is alone considered. It is a very
curious fact that the projective geometry of the plane is not

entirely independent of that of space, for Desargues' theorem
that copolar triangles are also coaxal cannot be proved
without the aid either of a third dimension, or of the con-

gruent group. J
Axiom XVI gives a criterion for circumstances under which

two lines must necessarily intersect. It is evident that

without some such criterion we should have difficulty in

proceeding any distance at all among the descriptive pro-

perties of a plane. It is difficult to show the independence
of this axiom. The only dense system of geometry known
to the writer where it is untrue is the following.

Let us denote by R the class of all rational numbers whose
denominators are of the form

where a. and b+ are integers or one may be zero. Let us

take as points the assemblage of all points of the euclidean

plane whose Cartesian coordinates are rational numbers
of the class E. The whole field will be transported into

itself by a parallel translation from any one point to any
other. Moreover, let #, y and x\ y

f
be the coordinates of two

* Cf. Halsted, loc. cit.

f Cf. K. L. Moore, loc. cit.

t Cf. Hilbert, loc. cit, p. 70
; Moulton,

' A simple non-desarguesian plane

geometry,' Transactions of the American Mathematical Society, vol. iii, 1902
;

Yahlen, loc. cit., p. 67.

Cf. Levy, loc. cit., p. 32.
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points of the class, where x2
-f y

2 = #'2 4- 2/'
2
. We may imagine

in fact that

Then the cosine and sine of the angle which the two points
subtend at the origin will be respectively

pp' 4- qq' pq' p'q

p2
-f q*

and these are numbers of the class R. The whole field will

go into itself by a rotation about the origin. Our system
will, therefore, obey XIX. It is of course two-dimensional
and not continuous. Moreover XVI will not hold, as the

reader will see by easily devised numerical experiments.
There are, also, plenty of geometries of a finite number

of points where this axiom does not hold.*

Axiom XV is, of course, an existence theorem, untrue in the

geometry of a single lino.

Axiom XIV gives the fundamental property of straight
lines. As an example of a geometry where it does not hold,
let us consider the assemblage of all points within a sphere
of radius one, and define as the distance of two points the

length of an arc of a circle of radius two which connects them.
The segment of two points is thus a cigar-shaped region

connecting them. We see that the extensions of such a seg-
ment and the segment itself do not comprise the segment
of two points within the original, and the extensions of the

latter. Axioms XII and XIII are also in abeyance, and ifc

seems possible that these three axioms are not mutually
independent. The present writer is unable to answer this

question.
Axiom XI implies that space has no boundary, and will be

untrue of the geometry within and on a sphere.
The first ten axioms amount to saying that distances are

magnitudes among which subtraction is always possible, but
addition only under restriction.

*
Veblon, loc. cit., pp. 850-51.



CHAPTER VII

THE GEOMETRIC AND ANALYTIC EXTENSION
OF SPACE

WE are now in a position to take up the second of those

fundamental questions which we proposed at the close of

Chapter V, namely, to determine what degree of precision

may be given to Axiom XI. This axiom tells us that,

popularly speaking, any segment may be extended beyond
either end. How far may it be so extended? Are we able

to state that there exists a system of geometry, consistent

with our axioms, where any segment may be extended by

any chosen amount? Or, in more precise language, if AB
and PQ be given, can we always find C so that

We are already able to answer this question in the euclidean

case, and answer it affirmatively. We have seen that there

is no inconsistency in that system of geometry, where points
are in one to one correspondence with all triads of (real and

finite) values of three coordinates #, y, 0, and where distances

are given by the positive values of expressions of the form

Here, if, as we have said, we restrict the values of x, y, z

merely to be real and finite, we have a space under the

euclidean hypothesis, where any segment may be extended

beyond either extremity by any desired amount. Such a

space shall be called euclidean space.
The same result will hold in the hyperbolic case. We shall

have a consistent geometrical system if we assume that our

points are in one to one correspondence with values

XQ'.^-.X^IX^ &2
<0,

Wxf + xf + xf + x* <0.

Here, also, there will exist on every line distances whose
measures will be as large as we please. The space under the
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hyperbolic hypothesis, where any segment may be extended

by any chosen amount shall be called hyperbolic space. To

put the matter otherwise, we shall have euclidean or hyper-
bolic geometry if we replace Axiom XII by :

AXIOM Xir. If the parabolic or hyperbolic hypothesis be

true, and if AB and PQ be any two distances, then there

will exist a single point (7, such that

When we turn to the elliptic case, we find a decidedly
different state of affairs. Suppose, in fact, that there is a one
to one correspondence between the assemblage of all points,
and all sets of real values X

Q
: x

l
: &

2
: x.r The distance of two

points will depend upon the periodic function

cos _ .

V(xx) V(yy)

If, to avoid ambiguity, we assume that the minimum positive
value should be taken for this expression, we should easily
find two not null distances, whose sum was a null distance,

which would be in disagreement with Axiom X.

The desideratum is this. To find a system of geometry
where each point belongs to a sub-class subject toAxioms I-XIX,
and the elliptic hypothesis, and where each segment may still

be extended by any chosen amount, beyond either end.

AXIOM I. There exists a class of objects, containing at

least two members, called points.

AXIOM II'. Every point belongs to a sub-class obeying
Axioms I-XIX.

Definition. Any such sub-class shall be called a consistent

region.

AXIOM III'. Any two consistent regions which have a

common point, have a common consistent region including
this point and all others determining therewith a sufficiently

small, not null, distance.

AXIOM IV. If P and Pn+l be any two points there may
be found a finite number n of points Plf

P
2 ,
P

3 . . .Pn possessing
the property that each set of three successive ones belong to

a consistent region, and P^ is within the segment (Pjc ~i JPfc+i)

Definition. The assemblage of all points of such segments,
and all possible successive extensions thereof shall be called

a line.
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An important implication of the last axiom is that any two

points may be connected (conceivably in many ways) by
a chain of consistent regions, where each successive pair
have a consistent sub-region in common. This shows that

if we set up a coordinate system like that of Chapter V in

any consistent region, we may, by a process of analytic ex-

tension, reach a set of coordinates for every point in space.
We may also compare any two distances. We have merely
to take as unit of measure for one, a distance so small, that

a distance congruent therewith shall exist in the first three

overlapping consistent regions ;
a distance congruent with

this in the second three and so on to the last region, and then

compare the measures of the two distances in terms of the

first unit of measure, and the unit obtained from this by the

series of congruent transformations. Let the reader show that

>
if once we find AB == PQ the same relation will hold if wo

<
proceed by any other string of overlapping regions. Having
thus defined the congruence of any two distances, we may
state our axiom for the extension of a segment, as follows :

AXIOM V. If AB and PQ be any two distances, there

exists a single point G such that EC = PQ, while B is

within a segment whose extremities are C and a point

of(AB).
An important corollary from this axiom is that there

must exist in the elliptic case a point having any chosen set

of homogeneous coordinates (x) not all zero. For, let (y) be

the coordinates of any known point. Consider the line

through it whose points have coordinates of the form

\(y)+(ji(x). As we proceed along this line, the ratio - will

always change in the same sense, for such will be the case

in any particular consistent region. Moreover we may, by
our last axiom, find a number of successive points such that

the sum of the measures of their distances shall be kir.

Between the first and last of these points the value of - will
M

have run continuously through all values from -co to oo
,

and hence have passed through the value 0, giving a point
with the required coordinates.

The preceding paragraph suggests two interesting questions.
Is it possible that, by varying the method of analytic ex-

tension, we might give to any point two different sets of
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homogeneous coordinates in the same system ? Is it possible
that two different points should have the same homogeneous
coordinates'? With regard to the first of these questions, it

is a fact that under our hypotheses a point may have several

different sets of coordinates, as we shall see at more length
in Chapter XVII. For the present it is, however, wiser to limit

ourselves to the classical non-euclidean systems, where a point
has a unique set of coordinates. We reach the desired

limitation by means of the following considerations.

A sufficiently small congruent transformation of any con-

sistent region will effect a congruent transformation of any
chosen sub-region, and so of any consistent region including
this latter. It thus appears that if two consistent regions
have a common sub-region, a sufficiently small congruent
transformation of the one may be enlarged to be a congruent
transformation of the other. Proceeding thus, if we take any
two consistent regions of space, and connect them by a series

of overlapping consistent regions, then a small congruent
transformation of the one may be analytically extended to

operate a congruent transformation in the other. Will the

original transformation give rise to the same transformation

in the second space, if the connexion be made by means of

a different succession of overlapping consistent regions ? It

is impossible to answer this question a priori ; we therefore

make the following explicit assumption :

AXIOM VI'. A congruent transformation of any consistent

region may be enlarged in a single way to be a congruent
transformation of every point.

Evidently, as a result of this, a congruent transformation
of one consistent region can be enlarged in only one way
to be a congruent transformation of any other. Let us next
observe that it is impossible that two points of the same
consistent region should have the same coordinates in any
system. Suppose, on the contrary, that P and Q of a con-
sistent region have the coordinates (x). There will be no
limitation involved in assuming that the coordinate axes were
set up in this consistent region, and the coordinates of P found

directly as inChapterV, while those ofQ are found byan analytic
extension through a chain of overlapping consistent regions.
Now it is not possible that every infinitesimal congruent
transformation which keeps P invariant shall also keep Q
invariant, so that a transformation of this sort may be found

transforming each overlapping consistent region infinitesiinally,
and carrying Q to an infinitesiinally near point Q'. But in
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the analytic expression of this transformation, in the form
of an orthogonal substitution (in the non-euclidean cases)
the values (x) will be invariant, so that Q" will also have
the coordinates (x), and by the same chain of extensions as

gave these coordinates to Q. Hence, reversing the order of

extensions, when we set up a coordinate system in the last

consistent region, that which includes Q and (/, these two

points will have the same coordinates. But this is impossible
for the coordinate system explained in Chapter V, for a con-

sistent region gives distinct coordinates to distinct points.
This proof is independent of Axiom VI'.

Our desired uniqueness of coordinate sets will follow at

once from the foregoing. For, suppose that a point P have
two sets of coordinate values (x) and (a/), not proportional
to one another. Every infinitesimal transformation which

keeps the values (x) invariant, will either keep (x') invariant,
or transform them infinitesimally, let us say, to a set of

values (#"). But there is a point distinct from P and close to

it which has the coordinates (x"), and this gives two points
of a consistent region with these coordinates, which we have

just seen to be impossible. Hence, the ratios of the coordinates

(XQ) must be unaltered by every infinitesimal orthogonal
substitution which leaves (x) invariant, i.e. ir '= px$. It is

evident, conversely, that if each point have but one set of

coordinates, Axiom VI' must surely hold.

It is time to attack the other question proposed above,

by supposing that two distinct points shall have the same

homogeneous coordinates. They may not lie in the same
consistent region, and every congruent transformation which
leaves one invariant, will leave the other unmoved also.

Let us call two such points equivalent. Every line through
one of these points will pass through the other. For let

a point Q on a line through one of the points have coor-

dinates (y). We may connect it with the other by a line,

and the two lines through (Q) lie in part in a consistent

region, the coordinates of points on each being represented
in the form \yi + fjLXi

. The two lines are identical.

Let us consider the assemblage of all points whose coor-

dinates are linearly dependent on those of three non-collinear

points. This assemblage of points may properly be called

a plane, for those points thereof which lie in any consistent

region will lie in a plane as defined in Chapter II. It is

clearly a connex assemblage, and will contain every line

whereof it contains two non-equivalent points. Let (?/), (s), (t)

be the coordinates of three points, no two of which are



82 THE GEOMETRIC AND ANALYTIC CH.

equivalent. Let us consider the point (x) whose coordinates

are
(ux) = \uyzt\.

In the elliptic case, as we have seen, such a point surely
exists. In the hyperbolic or parabolic cases, there might not
be any such point. It is clear, however, that in these cases,
there can be no equivalent points. Suppose, in fact, P and
Pn+l were equivalent. Connect them by a line whereon are

Pj, P2 ...PW . Move this line slightly so that the connecting
string of points are P/, P/ . . . Pw', very near to the former

points. We have constructed two triangles, and (n 1)

quadrilaterals, and as we are under the hyperbolic or euclidean

hypothesis, the sum of the measures of the angles of all the

triangles and quadrilaterals will be less than, or equal to

TT -t- (71
1
)
2 TT -f- TT. But clearly the sum of the measures of

the angles at points P^ and P/ is 2nir, so that the sum of the

two angles which the two lines make at P and Pw+1 is null

or negative ;
an absurd result. Equivalent points can then

occur only under the elliptic hypothesis, and there will surely
be a point P with the coordinates (x) above.

Let us next make a congruent transformation whereby P
goes into an equivalent point P ', the plane of (y) (z) (t) goes
into itself congruently, for it constitutes the assemblage of all

points satisfying the condition (xX) 0, and (xX) is an
invariant under every orthogonal substitution. After P has
been carried to P', each point of the plane may be returned
to its original position by means of a series of congruent
transformations, each too small to change P' to an equivalent
point, yet keeping the values (x) invariant, coupled, at the

end, with a reflection in a plane perpendicular to the given
one, in case the determinant of the original orthogonal
substitution is negative, and this too will leave P' unchanged.
We may therefore pass from P to any equivalent point by
a transformation which leaves in place every point of a plane.
But there is only one congruent transformation of space
which leaves every point of a plane invariant, besides, of

course, the identical one. Hence every point in space can
have but one equivalent at most.

Our results are, then, as follows. Under the euclidean and

hyperbolic hypotheses, there is but one point for each set

of coordinates, and our new Axioms I-VI' will yield us

nothing more than euclidean or hyperbolic space. Under the

elliptic hypothesis there are two possibilities :

Elliptic space. This is a space obeying Axioms I-VI', and
the elliptic hypothesis. If n successive segments whose
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measures are - be taken upon a lino as indicated in V' then r

last extremity of the last segment will be identical with
the first extremity of the first. Two lines of the same plane
will have one and only one common point, so that no point
has an equivalent. We may take as a consistent region the

assemblage of all points whose distances from a given point

are of measure less than -
. If two points be of such a

4
nature that the expression for the cosine of the measure of
the fcth part of their distance vanishes, we shall say that the

measure of their distance is ~. Two points will always

have a determinate distance and a single segment, unless the

measure of their distance is
,
in which case they determine

&
two segments with the same extremities. These last two
segments may also, with propriety, be called half-lines. The
definition of an interior angle given in Chapter II may be

retained, but the concept of half-plane is illusory, for a line

will not divide the plane. It may, however, be modified
much as we have modified the definition of a half-line, and
from it a definition built up for a dihedral angle. We leave
the details to the reader. An example of elliptic geometry
will be furnished by any set of points in one to one corre-

spondence with all sets of homogeneous values x
{)

: xl
: a"2 : x

:i

where also cos . = --r^=~ =^ For instance, let us take as

points concurrent lines of a four dimensional space (euclidean,
for example) and mean by distance the measure of the angle

^ ^ formed by two lines.

Spherical space. This is also a space obeying Axioms I-VF
and the elliptic hypothesis. Each point will have one equiva-
lent. If n successive congruent distances bo taken upon

a line whose measures are - - the last extremity of the last

will be equivalent to the first extremity of the first. We
may take as a consistent region the assemblage of all points
the measures of whose distances from a given point are less

than . The measure of the distance of two equivalent

points shall be defined as the number kir. Any two noiv



84 THE GEOMETRIC AND ANALYTIC OH.

equivalent points will have a well-defined segment. We may
find a definition for a half-line analogous to that given in

the elliptic case, and so for half-plane, internal angle, and
dihedral angle.
An example of spherical geometry will be furnished by the

geometry of a hypersphere in four dimensional eucHdean

space, meaning by the distance of two points, the length
of the shorter arc of a great circle connecting them.

A simple example of a two dimensional elliptic geometry
is offered by the euclidean hemisphere, where opposite points
of the limiting great circle are considered as identical. A two
dimensional spherical geometry is clearly offered by the

euclidean sphere.
The elliptic and spherical spaces which we have thus built

up are, in one respect, more complete than euclidean or

hyperbolic space, in that there is in the first two cases always
a point to correspond with every set of real values, not all

zero, that may be attached to our four homogeneous coor-

dinates #, while in the latter cases this is not so. We bring
our euclidean and hyperbolic geometries up to an equality
with the others by extending our concept paint. Let us begin
with the euclidean case where there is a point corresponding
to every real set of homogeneous values a? : x

l
: #2 : #3 , pro-

vided that x
() 9^ 0. Now a set of values : yl

: y2 : ?/3 will

determine at each real point (x) a line, the coordinates of

whose points are of the form Xy^ + ^x^ and if (x) be varied

off of this line, we get a second line coplanar with the first.

Our coordinates : y^ : y% : ?/3 will thus serve to determine

a bundle of lines, and this will have exactly the same

descriptive properties as a bundle of concurrent lines. We
may therefore call the bundle an ideal point, and assign to

it the coordinates (y). Two ideal points will determine a

pencil of planes having the same descriptive properties as

a pencil of planes through a common line. We shall there-

fore say that they determine, or have in common, an ideal

line. Two lines whose intersection is ideal shall be said

to be parallel, as also, two planes which meet in an ideal

line. These definitions of parallel are for euclidean space

only. The assemblage of all ideal points will be characterized

by the equation t ___ n& u.

This we shall call the equation of the ideal plane which is

supposed to consist of the assemblage of all ideal points.
Ideal points and lines shall also be called infinitely distant,

while the ideal plane is called the plane at infinity. We shall
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in future use the words point, line, and plane to cover both
ideal elements and those previously denned, which latter may
be called, in distinction, actual. Actual and ideal elements

stand on exactly the same footing with regard to purely
descriptive properties. No congruent transformation can

interchange actual and ideal elements. We shall later return

to the meaning of such words as distance where ideal elements

enter.

In the hyperbolic case we may apply the same principles
with slight modification. There will be a real point corre-

sponding to each set of real homogeneous coordinates (x) for

Which
J2^2 + ^2 +^ + ^2 < 0>

A set of real homogeneous values for (#), for which this

inequality does not hold, will determine a bundle of lines,

one through every actual point, any two of which are

coplanar; a bundle with the same descriptive properties as

a bundle of concurrent lines. We shall therefore say that

this bundle determines an ideal point having the coordinates

(4 If k2 x* +^ + x? + x* = 0,

the ideal point shall be said to be infinitely distant. If

the ideal point shall be said to be ultra-infinite. Two lines

having an infinitely distant point in common shall be called

parallel. Through each actual point will pass two lines

parallel to a given line. An equation of the type

(ux) 0, 7^ u
2 + u? + u^ + ?V > 0,

will give a plane. If the inequality be not fulfilled, the assem-

blage of all ideal points whose coordinates fulfil the equation
(and there can be no actual points which meet the requirement)
shall be called an ideal plane, the coefficients (in) being its

coordinates. There will thus be a plane corresponding to

each set of real homogeneous coordinates (u) not all zero.

An ideal line shall be defined as in the euclidean case, and
the distinction between actual and ideal shall be the same
as there given. No congruent transformation, as defined so

far, can interchange actual and ideal elements.

Let us take account of stock. By the introduction of ideal

elements we "have made each of our spaces a real analytic
continuum. In all but the spherical case there is a one to

one correspondence between points and sets of real homo-

geneous values not all zero, in spherical space there is a one
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to one correspondence of coordinate set and pair of equivalent

points. Each of our spaces will fulfil the fundamental

postulates of project!ve geometry, as we shall develop them
in Chapter XVIII, or as they have already been developed
elsewhere.* Let us show hurriedly, how to find figures to

correspond to imaginary coordinate values. Four distinct

points will determine six numbers called their cross ratios,

which have a geometrical significance quite apart from all

concepts of distance or measurement.f An involution will

arise when the points of a line are paired in such a reciprocal
manner that the cross ratios of any four are equal to the

corresponding cross ratios of their four mates. If there be

no self-corresponding points, the involution is said to be

elliptic. If the points of a line be located by means of

homogeneous coordinates A : ju, it may be shown that every
involution may be expressed in the form

AM +B (A// + XV) + Vw'= 0.

In particular if
(?/)

arid (2) be the coordinates of two points,
there will exist an involution on their line determined by the

equations
(a .)

= X
(j,) + M (*), ()'= M(y)-A(*),

and by a proper choice of running coordinates any elliptic
involution may be put into this form. Did we seek the

coordinates of self-corresponding points in this involution,
we should get

(x)
= (y)i(z).

Conversely, every set of homogeneous complex values (y) + i(z)
will lead us in this way to a definite elliptic involution.

The involution may be taken to represent the two sets of

conjugate imaginary homogeneous values. We may separate
the conjugate values by the following device. It is not difficult

to show that if a directed distance be determined by two

points, it will have the same sense as the corresponding
directed distance determined by their mates in an elliptic
involution. To an elliptic involution may thus be assigned
either one of two senses of description, and we shall define

as an imaginary point an elliptic involution to which such
a sense has been attached. Had we taken the other sense,
we should have said that we had the conjugate imaginary

* Cf. Fieri, 'I principi della geometria di posizione.' Momorie della

R. Accademia della Scienze di Torino, vol. xlviii, 1899.

f Cf. Pasch, loc. cit., p. 164, and Chapter XVIII of the present work.
The idea of assigning to four collinear points a protectively invariant
number originated with Von Staudt, Beitmge zur Geometric der Lage, Part 2,

19-22, Erlangen, 1858-66.
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point. An imaginary plane may similarly be defined as an

elliptic involution among the planes of a pencil, with a

particular sense of description; an imaginary line as the

intersection of two imaginary planes. It may be shown

geometrically that by introducing imaginary elements under
these definitions we have a system of points, lines, and planes,

obeying the same descriptive laws of combination as do the

real points of lines and planes of protective geometry, or

the assemblage of all real homogeneous coordinate sets, which
do not vanish simultaneously.* Introducing these imaginary
expressions, and the corresponding complex values for their

homogeneous coordinates, we extend our space to be a perfect

analytic continuum.
We must now see what extension must be given to the

concept distance, in order to fit the extended space with
which we are, henceforth, to deal. To begin with, we shall

from this time forth identify the two concepts distance and
measure of distance. In other words, as the concept distance

comes into our work effectively only in terms of its measure,
i. e. as a number, so we shall save circumlocution by replacing
the words measure of distance by distance throughout. The
distance of two points is thus dependent upon the two points,
and on the unit. In any particular investigation, however,
we assume that the unit is well known from the start, and

disregard its existence. We therefore give as the definition

of the distance of two points under the euclidean hypothesis

d =
>

This is, at worst, a two valued function. When it takes

a real value, we give the positive root as the distance, when
it is imaginary we may make any one of several simple
conventions as to which root to take. If one or both of the

points considered be ideal, the expression for distance becomes

infinite, unless also the radical vanishes when no distance is

determined. Under these circumstances we shall leave the

concept of distance undefined, thus getting pairs of points

disobeying Axiom II'. Notice also that whenever the radical

vanishes for non-ideal points we have points which are

distinct, yet have a null distance, and when such points
are included, Axiom XIII may fail.

We shall in like manner identify the concepts angle and

* Cf. Von Stfmdt, loc. cit.
, 7, and Liiroth,

l Das Imaginare in der Geometrie
und das Reclmen mit Wurfen,' Mathematische Annalen, vol. ix.
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measure of angle in terms of the unit which gives to a right

angle the measure -
&

We may proceed in a similar manner in the non-euclidean

cases. If (x) and (y) be the coordinates of two points, we
shall define as their distance d, the solution of

COB ^ = <W) /oi
/ /7 v // \"

^ *
*-

V(j'x) V(yy)

This equation in d has, of course, an infinite number of

solutions. Before taking up the question of which shall be
called the distance of the two points, let us approach the

matter in a different, and highly interesting fashion due to

Cayley.* This theory is of absolutely fundamental impor-
tance in all that follows.

The assemblage of points whose coordinates satisfy the

equation / \ __ A /Q\
(CC>^) vJ.

V /

shall be called the Absolute. This is a quadric surface, real

in the hyperbolic case, surrounding, so to speak, the actual

domain ; imaginary in the elliptic and spherical cases ;
in the

last-named, it is the locus of points which coincide with their

equivalents. Every congruent transformation is an orthogonal
substitution, i.e. a linear transformation carrying the Absolute
into itself. Let us, by definition, enlarge our congruent group
so that every such transformation shall be called congruent;
certainly it carries a point into a point, and leaves distances

unaltered. In the euclidean case we take as Absolute the

conic
a; = 0, x* + x* + x.*=Q, (4)

and define as congruent transformations a certain six-parameter

sub-group of the seven-parameter collineation group which
carries it into itself. We shall return to the study of the

congruent group in the next chapter.

Returning to the non-euclidean cases, let us take two

points Pj, P2 with coordinates (x) and (y), and let the line

connecting them meet the Absolute in two points Q19 Q2
. We

obtain the coordinates of these by putting \(x) + ^(y) into

the equation of the Absolute. The ratio of the roots of this

equation will give one of the two cross ratios formed by
the pair of points PX

P
2 and the pair Q^o', interchanging

*
Cayloy,

l A sixth memoir on Qualities/ Philosophical Transactions of the

Royal Society of London, 1859.
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the roots we get the other cross ratio of the two pairs of

points *. The value of such a cross ratio will thus be

(xy) +

*~(xx) (yy)

By interchanging the signs of the radicals we change this

cross ratio into its reciprocal, and this amounts to inter-

changing the members of one of the two point pairs. Let us
2)<t

denote this expression by eT -

^. (5)k
</(xx) V(yy)

If we write the cross ratios of the pair of points P3
P

2 and
the pair QT Q^ as (PjP2 > QiQ^> we may re-define our non-
euclidean distance by the following theorem :

Theorem. If d be the distance of two points I\ and P.,

whose line meets the Absolute in Q1
and Q2 ,

The great beauty of this definition is that it brings into

clear relief the connexion between distance and the congruent
group, for the cross ratio in question is, of course, invariant
under all linear transformation which carry the Absolute
into itself, i.e. under ail congruent transformations. Let the

reader show that a corresponding protective definition may
be given for an angle.
Our distances, as so far defined, are infinitely multiple

valued functions. There is no great practical utility in

rendering them single valued by definition. It is, however,

perhaps worth while to carry it through in one case.

If we have two real points of the actual domain, the

expression (1\P*, QiQ2) will have two values, real in the

hyperbolic, pure imaginary in the elliptic and spherical case,

and these two are reciprocals, so that the resulting expressions
for d will differ only in sign, for each determination of the

logarithm. We may therefore take the distance as positive.

* For the geometrical interpretation of a cross ratio when some of the
elements are imaginary, see Vori Staudt, loc. cit., 28, and Luroth, loc. cit.
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Did we seek, not for a distance, but a directed distance, then
it would be necessary to distinguish once for all between

Ql
and Q% and in each particular case between the pair PX

P
2 ,

and the pair P2Pi 5
^e directed distance will have a definite

value sometimes positive, sometimes negative.
Let us specialize by confining ourselves to the hyperbolic

case. We have defined the distance of two actual points.
Still restricting ourselves to the real domain, suppose that

we have an actual and an ultra-infinite point. Let us choose
such a unit of measure that A:

2 = 1. Our cross ratio is here

negative, with an absolute value r let us say, so that the distance

expression takes the form ^[log?* (2m + !)TT ].
Let us choose

in particular

Next consider two ultra-infinite points. If the line con-

necting them meet the Absolute in real points, we shall have
a real cross ratio as before, and hence a real positive distance.

If, however, this real line meet the Absolute in conjugate
imaginary points, the expression for the cross ratio becomes

imaginary, and the simplest expression for their distance is

pure imaginary. The absolute value of this expression will

run between and , for the roots of ^logA = X differ

by 7i i. We may, hence, represent all of these cross ratios in

the Gauss plane by points of the axis of pure imaginaries

between and
9

If the line connecting two ultra-infinite points be tangent
to the Absolute, the cross ratio is unity, and we may take
the distance as zero. The distance from a point of the

Absolute to a point not on its tangent will be infinite ;

the distance to a point on the tangent is absolutely inde-

terminate, for the cross ratio is indeterminate. We may,
in fact, consider the cross ratios of three coincident points
and a fourth, as the limiting case of any cross ratio which
we please.

Leaving aside the indeterminate case, we are thus able to

represent the distance of any two real points of hyperbolic
space in the Gauss plane by a point on the positive half

of the axis of reals, by a point of the segment of the origin

and - i
y
or by a point of the horizontal half-line i oo

;
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and as two points move continuously in the real domain of the

hyperbolic plane, the points which represent their distance

will move continuously on the lines described.

Let us now take two points of the hyperbolic plane, real or

imaginary. We see that the roots of ^ log A = X differ by
multiples of iri, so that we may assign to (/ an imaginary

part whose Absolute value - Moreover, by choosing

properly between the two reciprocal values of the cross ratio,

we may ensure that the real part of d shall not be negative.
If two points be conjugate imaginaries, while their line cuts

the Absolute in real points, the cross ratio is imaginary, and
the expression for distance is pure imaginary, which we may
represent by a point of the segment of the origin and

i. If both pairs of points be conjugate imaginaries, the
2>

^

cross ratio is real and negative, so that the distance may

be represented in the form X -i. We shall define as the

distance of two points that value of the logarithm of a cross

ratio which they form with the intersection of their line and
the Absolute, which in the Gauss plane is represented by

a point of the infinite triangle whose vertices are cc
, + ~ I >

- i. The possible ambiguities for points on the sides of

this triangle have already been removed by definition.

We have already seen that when euclidean space has been

enlarged to be a perfect analytic continuum, imaginary points
and distances come in which do not obey all of our axioms.

In the hyperbolic case we shall find real, though ultra-infinite,

points which do not at all obey the principles laid down
for a consistent region.* Let us take three points of the

ultra-infinite region of the actual hyperbolic plane x% = 0,

say (x), (2;), (%) As these points are supposed to be real we

may assume that xl9 x% are real, while x is a pure imaginary,
and that a like state of affairs exists for (y) and (z). We
shall further assume that the lines connecting them shall

intersect the Absolute in real, distinct points. We have then

(y*Y
- dm) (**) > > M > >

(zxf
-

(zz) (xx) > 0, (yy) > 0, (7)

(xy)*-(sM)(yy)>0, (zz) > 0.

* The developments which follow are taken from Study,
'

Beitr&ge zur
nicht-euklidischen Q-eometrie/ American Journal of Mathematics, vol. xxix, 1907.
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Let us, for the moment, indicate the distance from (x) to (y)

by ~xy, and assume 7p ^ zx ^ xy.

We shall also take

/
<f u /

// rr: > , COS j = COsh O/.

A*

Under what circumstances shall we have ?

yz^>.2x + xy,

cosh (2/5 zx) ^ cosh j;//,

/ (yrf IJ^f I T^) 2

V (20K^) V RT^T)
~~

V farftyy)

^ llyW^iyWs) /MM ^^)" V ''(yy)(n)~ V ~(sz)(ra)

The terms on the left are essentially positive as they repre-
sent hyperbolic cosines, those on the right are positive, beino-

hyperbolic sines ; we may therefore square the inequality

(,nr) (M) (zz) + 2 \{yz) (;,r) (xy) \ ~^x) (yz)*

-(yy)(~xY~(zz)(xy)*<(). (8)
We see that if

(?p)(::,)(^)>(), (9)

we are at liberty to drop the absolute value signs in the

second term, and the whole expression is the square of the

determinant
| xyz \

which is zero or negative. We see, there-

fore, that under these circumstances,

\yz\ ^ \zx\ + \j'y\.

To see what region of the ultra-infinite domain is determined

by (9), let us sketch the Absolute as a conic, and draw tangents
thereunto from (y) and

(z).
X must lie within the quadri-

lateral of these tangents or the vertical angle at (y) or (z).

The conic and tangents determine four quasi-triangles with
two rectilinear and one curvilinear side each. Since (yy) >
our inequality (9) will hold within the quasi-triangles whose
vertices are (y) and (z) and within the verticals of these

two angles.
Let us now assume, on the contrary, that we are in the

< )ther quasi-triangles

(yz) (zx) (xy) < 0.

Our original inequality (8) will still hold if

|
ocyz

* 4 (yz) (zx) (xy) < 0, (10)
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and, conversely, this inequality certainly holds if
(7) does.

If we look on (y) and
(z) as fixed, and (x) as variable, the

curve
| xyz |2_ 4 (yz) (

zx
) (xy)

_
0)

in so far as it lies in the two quasi-triangles we are now

FIG. ^.

considering, will play the part of the segment of (y) and (z)*

In a region where (8) holds, a rectilinear path is the longest

from (y)
to (z).

* For a complete discussion, see Study, loc. cit., pp. 103-8. Fig, 3 is taken

direct.



CHAPTER VIII

THE GROUPS OF CONGRUENT TRANSFORMATIONS

THE most significant idea introduced in the last chapter
was that of the Absolute, and its connexion with the concept
of distance. Every collineation of non-euclidean space which

keeps the Absolute in place was defined as a congruent
transformation ;

we had already seen in Chapter V that every

congruent transformation was such a collineation. We may
go one step further, and say that every analytic transforma-

tion which carries the Absolute into itself alone is a congruent
transformation. Suppose that we have

V= /o (
X
o
x

i
x
2) <, x

i
= fi (Vi^A)> <= /a (^1^3),

#3 r=
JT3 (Xg ij X%$3 J ,

(xfx')
= P (xx).

P must be a constant, for were it a function of (x) the

Absolute would be carried into itself, and into some other

surface P = 0, which is contrary to hypothesis. Replacing
(x) by A

(.?;)
4- & (y) we see that we shall also have

(x'y')
= P(xy),

whence we may easily show that the transformation is a
collineation.

It is, of course, evident, that in the complex domain, the

congruent groups of elliptic and hyperbolic space are identical,

as they are merely the quaternary orthogonal group. In
the real domain, however, the structure of the two is quite
different, and our present task shall be the actual formation
of those groups, pointing out besides certain interesting sub-

groups. We shall incidentally treat the euclidean group as

a limiting case where j^
= 0.

A/

The group of translations of the hyperbolic line will depend
on one parameter, and may be written, if A2 = 1,

i
(
'= coshd + #! sin d,

x{ x^ sinh d+x^ cosh d. ^ '

We get a reflection by reversing the signs in the second
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equation. In the elliptic or spherical case we shall have

similarly
x

'= x cos d + ajj
sin d, .

Xi = # sin c + #
x
cos c?.

* '

To pass to the euclideaii case, replace #
, #

'

by kxQ , kx^

and cZ by -r > divide out fc, and then put 7^
= 0.

Ic l\'

^ = ^=x-d. (3)
^0

The ternary domain is more interesting. Let us express
the Absolute in the hyperbolic plane in the following para-
metric form

j. / 2 / 2
,;,
_ / 2 / 2 A, O / f~~"~

1 "^ 2 ' 1 1 2 ' 2 <*"i/^c/ 2

As the Absolute must be projectively transformed into itself,

we may put

and this will lead to the general ternary transformation

+ 2(an a 12
-a

2l a,2)a;2 , (4)

p /= 2 (au a21 + a, 2
a
22) * + 2 (au a 21

~a
]2
a
22 ) ^

+ 2(au a
22 + a

21
a
12)i2

.

If we view the matter geometrically, we see that there are

three distinct possibilities. First the two fixed points of the

Absolute conic are conjugate imaginaries. The real line con-

necting them is ultra-infinite, and has an actual pole with

regard to the Absolute. This will give a rotation about this

point, and we shall have

(
a
il + a

22)
2 -4A =

(
ail- a

22)
2 + 4c(

l2
a
21 < 0*

If the fixed points of the Absolute conic be real, the trans-

formation, in the actual domain, will appear as a sliding along
a real line, if A > 0, or a sliding combined with a reflection

in a perpendicular plane through this line if A < 0. In the

third case the two fixed points of the Absolute conic fall

together, and the third fixed point of the plane falls there

too. The transformation carries a pencil of parallel lines into

itself.
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The elliptic case is treated similarly, by a judicious intro-

duction of imaginaries. We may write the Absolute

Let us now take the binary substitution

We come thus to the general group of congruent trans-

formations

+ x
l + --yaXv

^
1 + (a

2 +^~y2
-6^),/'2 .

l j

These forms remind us at once of like forms occurring in

the theory of functions. Suppose, in fact, that we have the

euclidean sphere jf2 ^ y 2 + Z'2 1

The geometry thereof will be exactly our spherical geometry,
and we wish for the group of congruent transformations of

this sphere into itself. Let us project the sphere stereo-

graphically from the north pole upon the equatorial plane,

and, considering this as the Gauss plane, take the linear

transformation

' ~
(y- dij~3 + (a~j3i)'

" ~
(y + bi)&~+ (a + pi)

'

These equations are seen at once to be transformable into

the others by a simple change of variables.

To pass over to the euclidean case, put

, ,

l ;

f + B* = ^
2
2 + 52

2 = 1.

Notice that here the group

y=
is an invariant sub-group.
The congruent groups in three dimensions are of the same

general form as those in two, albeit the structure is a trifle
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more complicated. We wish for the six-parameter groups
leaving invariant respectively a real, non-ruled quadric, an

imaginary quadric of real equation, and an imaginary conic
with two real equations. The solution has of course, long
been known.*
The Absolute of hyperbolic space may be interpreted as

a euclidean sphere of radius one, and the problem of finding
all congruent transformations of hyperbolic space, is the same
as that of finding all collineations carrying such a sphere into
itself. Let us represent this sphere parametrically in terms
of its rectilinear generators

'/ ~>^y ,\ 1*t ** -t- i
,

#
a 5 + 2,

x.
}

= i (z 0).

Let us now take the linear transformation

ys + 5 yz +

The six-parameter group of congruent transformations of

positive modulus will be

pxt = (au + )3jS 4- yy + 85) + (ad -/3/3 + yy - 68)^
+ (a^8 + a/3 + y -f 78) x2 + i(ap a/3 + y6-y6) 3 ,

p&/ = (aa-f f$p + yy 6g)i' + (au-^ yy -f 82)^
+ (a^ + a/J~yS-y8)u;2 -hi(a)3-a/3-yS + y8)^3 , (7)

p^/ = (ay + ay + ^36 + pb) x + (ay + ay- /^S
-

^6) ^
+ (aS -f ab + /3y + /3y) i2 + i(ag

- d6 - /3y 4- )Sy) i3 ,

dy

This sub-group might properly be called the group of

motions. The total group is made up of these and the

six-parameter assemblage of transformations of negative

* The literature of this subject is large. The first writer to express tho

general orthogonal substitution in terms of independent parameters was

Cayley, 'Sur quolques propriety's des determinants gauchcs,' Crelles Journal,

vol. xxxii, 1846. Tho treatment here given follows broadly Chapters VI and
VII of Klein's ' Nieht-euklidischo Geometric', lithographed notes,

1893.

COOUDQK 0-
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discriminant called symmetry transformations. We reach
these latter by writing

,_ a'z + p' _, _ u'
+_*'^

-/5 + jf"
* ~

y'c-fg"

The distinction between motions and symmetry transforma-

tions stands out in clear relief when we consider the effect

upon the Absolute. The sub-group of motions includes the

identical transformation, and any motion may be reached by
a continuous change in the six essential parameters from the

values which give the identical transformation, without ever

causing the modulus to vanish. This shows that as, under
the identical transformation, each generator of the Absolute

stays in place, so, under the most general motion, the generators
of each set are permuted among one another. On the con-

trary, the most general symmetry transformation will arise

from the combination of the most general motion with a

reflection, and it is easy to see that a reflection will inter-

change the two sets of generators.
In the elliptic case we shall have the group of all real

quaternary orthogonal substitutions. An extremely elegant

way of expressing these is offered by the calculus of

quaternions.
Let us, following the Hamiltonian notation, assume three

new symbols i, j, k :

i
2 =/ = /*= ijlc= -1.

We assume that they obey the associative and commutative
laws of addition, the associative and distributive laws of

multiplication. An expression of the type

is called a quaternion, whereof

is called the Tensor. It is easy to show that the tensor of

the product of two quaternions is the product of their tensors.

Let us next write

where P and Q are quaternions. Multiplying out the right-
hand side, and identifying the real parts and the coefficients

of i,j, k, we have x^x^x^x^ expressed as linear homogeneous
functions of x^x^x^ The modulus of the transformation

will be different from zero, and we shall have
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These equations will give the six-parameter group of

motions, the group of symmetry transformations will arise

fr m X ' +< ; + X.;j + X3
'l: = P'

(.f
- <V -xj- X.k) Q',

the distinction between motions and symmetry transformations

being as in the hyperbolic case.

Our group of motions is half-simple, being made up of two
invariant sub-groups G3G3

'
obtained severally by assuming

that Q or P reduces to a real number. We obtain their

geometrical significance as follows :

The group of motions GG can be divided into two in-

variant three-parameter sub-groups r/3 <j.^ by resolving it into

the two groups which keep invariant all generators of the

one or the other set on the Absolute. Now were it possible
to divide 6r

(;
into invariant three-parameter sub-groups in

two different ways, the highest common factor of
<r/3 or #./

with G
?t
would be an invariant sub-group, not only of G6

but of
(f/3 . This may not be, for

f/a
is nothing but the binary

projective group which has no invariant sub-groups. Hence
the groups //3 <// are identical with G

:] G.J, arid the latter keep
the one or the other set of generators all in place.

It is well worth our while to look more deeply into the

properties of these sub-groups. Let us distinguish the two
sots of generators of the Absolute by calling the one left,

and the other rlyld. This may be done analytically by
adjoining a number I to our domain of rationals. Two lines

which cut the same left (right) generators of the Absolute
shall be called Left (right) paratactic.* As the conjugate
imaginary to each generator of the Absolute belongs to the

same set as itself, we see that through each real point will

pass a real left and real right paratactic to each real line ; and
the same will hold for each real plane. Of course there are

possible complications in the imaginary domain, but these

need not concern us here.

Let us now look at a real congruent transformation which

keeps all right generators invariant. Two conjugate imaginary
left generators will also be invariant,andevery line meeting these

* The more common name for such lines is 'Clifford parallels'. The
word paratactic is taken from Study,

* Zur Nicht-euklidischen und Linien-

geometrie,' Ja/iresbericht der deutschen Mathematikcrvereinigung, xi, 1902. We
have already donned parallels as lines intersecting on the Absolute, and
although in the present case such lines cannot both be real, yet it is better to

be consistent in our terminology, especially since we shall find in Chapter XVI
a transformation carrying parallelism into parataxy. Clifford's discussion
is in his *

Preliminary Sketch of Biquaternions ', Proceedings of the London
Mathematical Society, vol. iv, 1873.
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two will be carried into itself, every other line will be carried

into a line right paratactic to itself. Such a transformation
shall be called a left translation, since the path curves of all

points will be a congruence of left paratactic lines. In fact

this congruence will give the path curves for a whole one-

parameter family of left translations. Let the reader show
that under a translation, any two points will be transported

through congruent distances.

Before leaving the elliptic case, let us notice that in the

elliptic plane a reflection in a line is identical with a reflection

in a point, or a rotation through an angle ir, in a spherical

plane they are different, and a reflection in a line is the same
as a rotation through an angle TT coupled with an interchange
of each point with its equivalent. In three dimensions, there

is never any identity between a rotation and a reflection, on
the other hand nothing new is brought in by interchanging
each point with its equivalent, for as each plane is hereby
transformed into self, we may split up the transformation

into a reflection in a plane, a reflection in a second plane
perpendicular to the first, and a rotation through an angle TT

about a line perpendicular to both planes.
To pass to the limiting euclidean case

^x 4- A 2y 4- A,z,

, (9)

where \\A 1 B^G.3 \\
is the matrix of a ternary orthogonal sub-

stitution.

There will be a three-parameter invariant sub-group ; that

of all translations x'~ A + x

?/=/* + y,
'

(/ _i~
-/ w^ -p -'.

In like manner we may find the six-parameter assemblage
of symmetry transformations.



CHAPTER IX

POINT, LINE, AND PLANE TREATED

ANALYTICALLY

THE object of the present chapter is to return, as promised
in Chapter VI, to the problems of elementary non-euclidean

geometry, from the higher point of view gained by extending
space to be a perfect analytic continuum. We shall find in

the Absolute a Dens ex Mdchina to relieve us from many an
embarrassment. We shall leave aside the euclidean case,

and, for the most part, handle all of our non-euclidean cases

together, leaving to the reader the simple task of making
the distinction between the elliptic and the spherical cases.

Otherwise stated, our present task is to express the funda-
mental metrical theorems of point, line, and plane, in terms
of the invariants of the congruent group.

Let us notice, at the outset, that the principle of duality

plays a fundamental role. The distance of two points is

. x logarithm of the cross ratio that they form with the

points where their line meets the Absolute, the angle of two

planes is -

. x logarithm of the cross ratio which they form
& 'i/

with two pianos through their intersection, tangent to tho

Absolute ;
the distance from a point to a plane is minus its

distance to the pole of that plane with regard to the Absolute.

Two intersecting lines or planes which are conjugate with

regard to the Absolute are mutually perpendicular. Two
points which are conjugate with regard to the Absolute shall

be said to be mutually orthogonal. In the real domain of

hyperbolic space, if one of two such points be actual, the other

must be ideal ; the converse is not necessarily true.

Let us begin in the non-euclidean plane, say x3 0. Let

us take two points A, B with coordinates (x) and (y) respec-

tively, and find the two points of their line which are at
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congruent distances from them. These shall be called the

centres of gravity of the two points, and are, in fact, the two

points which divide harmonically the given points, and the

intersections of their line with the Absolute. We purposely
exclude the spherical case, where the centres of gravity will

be equivalent points.
The necessary and sufficient condition that the point

A.
(.r) + n (y) should be at congruent distances from (x) and

(?/) thatw/

The coordinates of the centres of gravity will thus be

(
--

v '

Let the reader discover what complications may arise in the

ideal domain.
Let us next take three non-collinear points A, B, G with

the coordinates (a?), (?/), (z). A line connecting (x) with a

centre of gravity of (y) and (z) will be

v/^7) \

Xxz
\

+ V^T) i XMJ |

- 0.

It is clear that such lines are concurrent by threes, in four

points which may be called the centres of gravity of the three

given points. On the other hand the centres of gravity of
our pairs of points are collinear in threes. Lastly, notice that

a dual theorem might be reached by interchanging the objects,

point and line, distance and angle ; by taking, in fact, a polar
reciprocation in the Absolute:

Theorem 1 . The centres of Theorem Y. The bisectors of

gravity of the pairs formed the angles formed by three

from three given points are coplanar but not concurrent
collinear by threes on four lines are concurrent by threes

lines. The. lines from the in four points. The points

given points to the centres where these bisectors meet
of gravity of their pairs are the given lines are collinear

concurrent by threes in four by threes on four lines.

points.

The centres of gravity of the points (x), (//), (z) are easily
seen to be

(-*-- + -?' - +
~

V OZ)M^)- s$j)- v&)>
v;

Returning to the line BO we see that the coordinates of its
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pole with regard to the Absolute will have the coordinates (s),

where for every value of (r)

(rs)
=

\ryz\.

The equation of the line connecting this point with A, i.e. the

line through A perpendicular to J5C, will be

If we permute the letters #, y, - cyclically twice, we get two
other equations of the same type, and the sum of the three
is identically zero, so that

Theoreiib '2. The lines Theorem !2'. The points on

through each of three given each of three coplanar but not
non-collinear points, perpen- concurrent lines, orthogonal
dicular to the line of the other to the intersection of the other

two, are concurrent. two, are collinear.

Returning to a centre of gravity of the two points BU, we
see that a Jine through it perpendicular to the line BO will

have the equation
(xy) (.<*)

!

dp] z/) (-) - o,

r -Jij^-^ -ii f-^L - H 1=0
LA) ** J L j) 'j~3 J

The first factor will vanish (in the real domain) only when

(y) and (:) are identical, the equation will then be

We sec immediately from the form of this equation, that

all points of this line are at congruent distances from
(?/)

and

(z), thus confirming II. 33.

The&rem 3. If three non- Theorem 3'. If three co-

collinear points be given, the planar but not concurrent

perpendiculars to the lines of lines be given, the points
their pairs at the centres of orthogonal to their intersee-

gravity of these pairs are tions on the bisectors of the

concurrent by threes in four corresponding angles are col-

points, each at congruent dis- linear by threes on four lines,

tances from all three of the making congruent angles with

given points, all three of the given lines.

Let us now suppose that besides our three original points,
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we have three others lying one on each of the lines of the

first set as follows

G'= (rx -f $y).

Let us, for the moment, suppose that we are restricted to

a consistent region of the plane. Then we shall easily see

from Axiom XVI that if A A', BB', CC
f
be concurrent

. BA' . CB' . AC'
sin sin

y
sin -

i- ~-~ >.

CA' . AB' . BC'
sm sm

A' A,*

sin
A*

On the other hand, if A', B', G' be collinear,

EA' Off AC'
sin sin . sin

GA'
sm

AB'

-
z^ >-
BC'

,sm~ sin
7

-

/' A;

Now, more specifically, we see that

BA'
2 __L

whence

rv

. CA' . AB' . BC'
Q\Y\ QITI - si ri

A/ A* to

The equation of the line AA' will be

I
\ Xxy 4- ??i

|

Xzx
|

= 0.

And the condition for concurrence for the three lines

(Ipr -f mqs) a;2/0 1

2 = 0,

and this will give mqs _

On the other hand, we easily see that if A', R, C' be collinear

Ipr mqs = 0.

Theorem 4. If A\ B\ G f
be three points lying respectively
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on the lines BC, CA, AB, all six points being in a consistent

region, then the expression

. BA' . Cl
sm r~ sin r sm

. CA' . AB' . AC*
sin 7- sin -. sm 7

k k k

will be equal to 1 when, and only when, AA', BB', GC'
are concurrent, while it will be equal to 1, when, and only
when, A', B',

G' are collinear.

These are, of course, merely the analoga of the theorems
of Menelaus and Ceva, It is worth noticing also, that they
will afford a sufficient ground for a metrical theory of cross

ratios.

Let us next suppose that A' is a point where a bisector

of an angle formed by the lines BA, CA, meets BC. We
find I and m easily in this case, by noticing that A r must be
at congruent distances from AB and AC, thus getting

(y

sin - -
: sin

k,

GA'
sin

BA CA
: sm -.

k

Theorem 5. If three non-
collinear points be given, each
bisector of an angle formed by
the lines connecting two of

the points with the third will

meet the line of the two points
in such a point that the ratio

of the sines of the kth parts
of its distances from the two

points, is equal to the corre-

sponding ratio for these two
with the third point.

Theorem 6. The locus of

a pointwhich moves in a plane,
in such a way that the ratio

of the sines of the &th parts
of its distances from two points
is constant, is a curve of the

second order.

Theorem 5'. If three co-

planar but non-concurrent
lines be given, each centre of

gravity of a pair of points
where two of the lines meet
a third determines with the

intersection of this pair of

lines such a line, that the ratio

of the sines of the angles which
it makes with these two lines,

is equal to the corresponding
ratio for the two lines with

the third.

Theorem 6'. The envelope of

a line which moves in such a

way in a plane, that the ratio

of the sines of its angles with
two fixed lines is constant, is

an envelope of the second class.
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It would be quite erroneous to suppose that either of these

curves would be, in general, a circle. Let the reader show
that if an angle inscribed in a semicircle be a right angle, the

euclidean hypothesis holds.

Our next investigation shall be connected with parallel
lines. We suppose, for the moment, that we are in the

hyperbolic plane, and that k = i. We shall hunt for the

expression for the angle which a parallel to a given line /

passing through a point P makes with the perpendicular
to I through P. This shall be called the parallel angle of

the distance from the point to the line, and if the latter be d
the parallel angle shall be written *

n (d).

Let us give to the point P the coordinates
(;//),

while the

given line has the coordinates (u). Let (v) be the coordinates

of a parallel to (u) through (y). Let D be the point where
the perpendicular to (u) through (y) meets (n). We seek

Since (u) and (v) intersect on the Absolute

(uu) (vv) (uv)
2 = 0.

The equation of the line PD will be

| xyu |

= 0.

The cosine of the angle formed by v and PD will be

.__.
V(vv) V(uu) (yy) (

squaring, and remembering that

(vy)
- 0,

(lf!f)(uy)

cos2 n (d) (ny) (uu) (uv)

(ur) (vv)

(vv) [(uu) (yy)
-

(uy)
2
]

'

. (3)

From these we easily see

sin n(rf) = sech (d) ; tan U(d) = csch (d). (4)

Furthermore, if ^.ACB be a right angle

. Ann . y ADn /K
.

cos 4-ABC = ------ v
_i^l srn2LABC= (5)

cosll(47y) einU(AB)
* The concept parallel angle, and the notation n (d) are due to Lobatchowsky.
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, . nn sn ^ _.
cos 4-A BG = T"--,

- -

(6)sin v '

I
= sinn(J?6>inn(6^) = tan^G'A.Btan^LABC, (7)

Let the reader prove the correctness of the following con-

struction for the parallels to P through I :

Drop a perpendicular from P on meeting it in Q. Take S
a convenient point on the perpendicular to PQ at P, and let

the perpendicular to PS at S meet I at R. Then with P as

a centre, and a radius equal to (QR), construct an arc meeting
-ff$ in T. PT will be the parallel required.*

Be it noticed that, as we should expect,

limit cos FT (d)

d
'

d
=

Let us now find the equations of the two parallels to the

line ('&) which pass through the point (y). These two cannot,

naturally, be rationally separated one from the other, so that

we shall find the equations of both at once. Let the coordinates

of the line which connects the other intersections of the parallels
and the Absolute be (w). The general form for an equation
of a curve of the second order through the intersections of

(u) and (w) with the Absolute will be

/ (ux) (ivx) m (xx) 0,

and this will pass through (y) if

/ : m =
(yy) : (uy) (vy).

Since this curve is a pair of lines meeting in (y) the polar
of (//) with regard to it will be illusory, i.e. the coefficients of

(x) will vanish in

(yy) (uy) (w) + (yy) (wy) (^)- 2 (uy) (uy) (.*%)
= o.

This last equation may be written

\U'f/) I / I ~f* (''-''/)
'

' ~ ^
I ( V1 '') ( W/ f

'

'

('/ i^') iW)

Now, by the harmonic theory of a quadrangle inscribed in

a curve of the second order, w will pass through the inter-

section of (u) with the polar of y with regard to the Absolute,
so that wo may write ,

u:

Substituting rrt .
^b

[2A(uy) +

* The formulae given may be used as the basis for the whole trigonometric
structure. Of. Manning, Non-euclidean Geometry, Boston, 1901. Manning'*
reasoning is open to very grave question on the score of rigour.

(ux)(uy)\
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The coefficients of x^\x^ will vanish if

Under these circumstances

(wx) = -
(2/y) (UB) -f 2

Which leads to the required equation

(uyY (M) +M 3
(?/?/)

-2M (wj) (xy)
- 0. (8)

To get the euclidean formula, replace # by /k
c# and divide

by k. We get the square of the usual expression

[(uj/K-M^J^O. (9)

The principles which we have followed in studying the

metrical invariants of the plane may be extended with ease

to three dimensions. We have merely to adjoin the fourth

homogeneous point or line coordinate.

Let us have four points, not in one plane, with the coor-

dinates (x), (?/), (2), (/) respectively. We easily see that the

eight points

4- -= +~ ~ -
), (10)

will be points of concurrence, four by four, of lines from each

of the given points to the centres of gravity of the other three.

These eight may, in fact, be called the centres of gravity of the

four points. The centres of gravity will form with the given

points a desmic configuration* The meaning of this phrase
is as follows. Let us indicate the centres of gravity by the

signs prefixed to their radicals, giving always to the first

radical a positive sign. We may then divide our twelve

points into three lots as follows:

H (y) (z) (0

(+ + + +)(+ + __)(+_ + _)(+__+) (ii)

We see that a line connecting a point of one lot, with any
point of a second, will pass through a point of the third. The
twelve points will thus lie by threes on sixteen lines, four

* The desmic configuration was first studied by Stephanos, 'Sur la con-

figuration dosmique de trois tetraodres,' Bulletin den Sciences mathematiques,
s6rie 2, vol. in, 1878.
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passing through each. In like manner we shall find that if

we take the twelve planes obtained by omitting in turn one

point of each lot, two planes of different lots are always coaxal
with one of the third. Let the reader who is unfamiliar with
the desmic configuration, study the particular case (in euclidean

space) of the vertices of a cube, its centre, and the ideal points
of concurrence of its parallel edges.

Theorem 7 . If four non-

coplanar points be given, the

lines from each to the four

centres of gravity of the other

three will pass by fours

through eight points which

form, with the original ones,

a desmie configuration.

Theorem i, 7
f

. If four non-
concurrent planes be given,
the lines where each meets
the planes which severally are

coaxal with each of the three

remaining planes and a plane

bisecting a dihedral angle of

the two still left, lie by fours

in eight planes which, with
the original ones, form a

desmic configuration.

Let the reader show that the centres of gravity of the six

pairs formed from the given points will determine a second

desmic configuration, and dually for the planes bisecting the

dihedral angles.
Let us seek for a point which is at congruent distances

from our four given points. It is easy to see that there cannot
be more than eight such points. Their coordinates are found
to be

(,s) where, for all values of r,

(Vs)
~

Theorem 8. If four non-

coplanar points be given, the

eight points which are sever-

ally at congruent distances

from them form, with the

original four, a desmic con-

figuration.

i rztx i +

(12)

Theorem
concurrent

8'. If four non-

planes be given,
the eight planes which sever-

ally meet them in congruent
dihedral angles, form, with the

original four, a desmic con-

figuration.

As there are eight points at congruent distances from the

four given points, so there will be eight planes at congruent
distances from them, we have but to take the polars of the

eight points with regard to the Absolute. In like manner,
if we consider not the points (#), (y), (z), (t) but their four
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planes, there will be eight points at congruent distances from

them. The coordinates of these latter eight will be

Theorem 9. If four non-

coplanar points be given, the

eight points which, severally,
arc at congruent distances

from the planes of the first

four, form, with the first four

points, a desmic configura-
tion.

Theorem 9'. If four non-
concurrent planes be given, the

eight planes which, severally,
are at congruent distances

from the points of concur-
rence of the first four, form,
with the first four planes, a
desmic configuration.

The parallel angle of a point with regard to a plane can be

defined as its parallel angle with regard to any line of the

plane through the foot of the perpendicular. If the distance

from the point to the plane be x, we shall have for the parallel

cos FI
(.*)
= k tan '-

(13)

Definition. A line shall be said to be parallel to a plane,
if the point common to the two be on the Absolute. The
cone of parallels to a plane (u) through a point (y) will have
the equation

(wy)* (xj:) + (uxf (yy)
-
2(ux) (wj) (xy)

= 0. (14)

We now pass to certain metrical invariants of non-euclidean

space expressed in line coordinates. We take as coordinates

for the line joining (x) and (y) the usual Plueckerian form

The coordinates of the polar of this line with regard to the

Absolute, the Absolute polar let us say, will be

<lij
= 1>W

The condition for the intersection of two lines (p) and (_//)

will be, naturally
(jt> , /} = 2 ^ = . (15)
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Each will meet the Absolute of polar of the other if

2p<jl>'ij
= 0- (16)

Notice that (p \p') is an invariant under the general group of

collineations, while 2 p^ p'}- is invariant under the congruent
group only.
We shall mean by the distance of two lines the distance

of their intersections with a third line perpendicular to them
both. It is easy to see that if two lines be not paratactic,
there will be two lines meeting both at right angles, and these

are indistinguishable in the rational domain, that is, in the

general case. If, thus, d be taken to indicate the distance

of two lines, sin2
_ will be a root of an irreducible quadratic
IV

equation, whose coefficients are rational invariants under the

congruent group. Let us seek for this equation.
Let one of our lines be p given by the points (a?), (y), while

the other is (//) given by (j/) and (?/).
For the sake of

simplifying our calculations we shall make the obviously
legitimate assumptions

The distances which we wish to find are

We have
(yy)

(xx) (yy}
_

(ajy)2
= v^

and this will vanish only when (p) is tangent to the Absolute,
a possibility which we now explicitly exclude both for (p]

(aw:) (yy)
= 2 Pif, (.',/) (y'y')

= 2 p'J,

(p

(xx) (xx
f

)

(yy) (yy
f

)

(xx') (x'x')

(2/2/0 (s/Y)

V)-(a^)
8
]|.(W)(^--(j^)l,

sin-

(18)
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,- coa'

(FO (2/2/0

, ,,^ - + cos
2 T

' =
k k

., ._!sm
"I

+8m
fc-

1

The square roots of the products of the roots of these two

equations are well-known metrical invariants, and have been

studied under the names of moment and commoment of the

two lines.* We shall return to the moment presently, attach-

ing a particular value to the signs of the radicals in the

denominator. If two lines intersect the moment must be zero,

and if each intersect the absolute polar of the other, the

commornent must vanish, thus bringing us back to equa-
tions (15), (16).

To reach the limiting euclidean case we replace, as usual,

x by kx
,
divide out k*, and put -^

= *> Then, since

lira
, . d

}
k, sin T = d.

k
'

oo A-

We have

the usual formula. ^
*

With regard to the signs of the roots in (19) we see that in

the hyperbolic case, where the two lines are actual, one of

* See D'Ovidio,
( Studio suIla geometria proiettiva,' Annah di Matematica,

vi, 1873, and ( Le funzioni metriche fondamentali negli spazii di quantesi-

vogliono dimensioni
',
Memorie <ki Lincei, i,

1877.
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the points chosen to determine each line will be actual and the

other ideal, so that

.

k k

The square of the moment of the two lines is negative, so that

one distance will be real and the other pure imaginary. In

the elliptic case the two distances will be real.

We shall mean by the angle of two non-intersecting lines

the angles of the plane, one through each, which contain the

same common perpendicular. This will be k times the corre-

sponding distance of the absolute polars of the lines. We
thus get for the angles of the two lines (p),

To get the euclidean formula we make the usual substitu-

tions and divisions, and put j-
= 0, thus getting the well-

lc

known formula

(X* + ffj + X*) (X* + X* + X.^)

' ~

The coordinates of the line q cutting p and jf at right angles
will bo given by

(/>!?) = (/ 1 ?)
=
spy iij

= 2
PtfVij

=
(s I ?)

= o-

We have defined as a parallel, two lines whose intersection

is on the Absolute ; let us now give the name pseudoparalld
to two coplanar lines whose plane touches the Absolute. The

necessary and sufficient condition that two lines should bo

either parallel or pseudoparallel is that they should intersect,

and that there should be but a single line of their pencil

tangent to the Absolute. These conditions will be expressed

by the equations

(P I P')
=

[2ft/ Zpf-ppijPi/r] = 0. (23)

Let the reader notice that when we pass to the limit in the

usual way for the euclidean case, our equations (23) become

(p\p
f

)
= sin = 0. (24)

Let us now look at paratactic lines, i.e. lines which meet
the same two generators of one set of the Absolute. Of course

COOLIDOE H
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it is in the elliptic case only that two such lines can be real.

It is immediately evident that two paratactic lines have an
infinite number of common perpendiculars whereon they

always determine congruent distances, we have, in fact,

merely to look at the one-parameter group of translations

of space which carry these two lines into themselves. Con-

versely, suppose that the distances of two lines be congruent.
Besides our previous equations connecting (x) (y) (x') (y'), we
have / MO / /vo

__^]!__ _ _jf|W)L_.

(xx)(tfaf)~(yy)(y'y'y

The lines p, p' meet the Absolute respectively in the points

(x </(yy) iy V(xx)) (x' V(y'y') iy'V(xx')).

It is clear, however, that every point of the line

(x V(yy) + iyV(xx)} (x V(y'y
r
) + i

and of the line

(xV~(yy)-- iyV(xx)) (

belongs to the Absolute
;
the lines are paratactic. Lastly,

the absolute polars of paratactic lines are, themselves, para-
tactic. Hence

Theorem 10. The necessary and sufficient condition that

two lines should be paratactic is that their distances or angles
should be congruent.

This condition may be expressed analytically by equating
to zero the discriminant of either of our equations (19), (20).

i/spij'
2
} {[(PM-
-S^/2^."}=0. (25)

This puts in evidence that intersecting lines cannot be

paratactic unless they be parallel, or pseudoparallel.
In conclusion, let us return for an instant to the moment of

two real lines. , 7 .
,

rf, . d2 (P\P)-~ -~sin sin ~ ==-~===
k Ssp..* </2

PiJ
'*

We shall assume that the radicals in the denominator
are taken positively, so that the sign of the moment is

that of (p \ //). We now proceed to replace our concept of

a line by the sharper concept of a ray as follows. Let us,
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in the hyperbolic case assume always
elliptic case XQ > 0. The coordinates

> 0, and in the

Vi

*j
Pij

= Vi V

shall be called the coordinates of the ray from (y) to (2), and
this shall be considered equivalent to any other ray whose
coordinates differ therefrom by a positive factor. Inter-

changing (y) and (z) will give a second ray, said to be opposite
to this. The relative moment of two rays is thus determined,
both in magnitude and sign. We shall later see various

applications of this concept.

H2



CHAPTER X

THE HIGHER LINE-GEOMETRY

IN Chapter IX we took some first steps in non-euclidean

line-geometry. The object of the present chapter is to

continue the subject in the special direction where the

fundamental element is not, in general, a line, but a pair
of lines invariantly connected.*

Let us start in the real domain of hyperbolic space and
consider a linear complex whose equation is

<&!$ = <>.

The dots indicate that the coordinates of a point aro

,
x
lt

x
2 ,

#a ,
and choosing such a unit of measure that

k* = 1 , we have for the Absolute

The polar of the given complex will have the coordinates

doi
= rl>

jk ,
a
jk
= -

rfitf, i, j, k = 1, 2, 3,

and the congruence, whose equations are

(a | p) = 2 atfprt
- 2 d

jk j>Jk
= 0,

will be composed of all lines of our complex and its absolute

polar, or common to all complexes of the pencil

(ldol w 23) . . . (Zdjja -fm&01).

These complexes shall be said to form a coaxal pencil, and
the two mutually absolute polar lines, which are the directrices

of the congruence, shall be called axes of the pencil. We get
their pllickerian coordinates by giving to I : m such values
that the complex shall be special. Let us now write

= pXi>
= pX2J (1)

*
Practically the whole of this chapter is sketched, without proofs, by

Study in his article, 'Zur nicht-euklidichen etc./ loc. cit. The elliptic case
is developed at length in the author's dissertation,

' Tho dual projective
geometry of elliptic and spherical space,' Greifswald, 1904. For the hyper-
bolic case, see the dissertation of Beck, *Die Strahlenkotten im hyperbolischen
Raume,' Hannover, 1905.
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A complex coaxal with the given line will be obtained by
multiplying the numbers (X) by (i + mi).
A pair of real lines which are mutually absolute polar,

neither of which is tangent to the Absolute, shall be called

a proper cross. They will determine a pencil of coaxal

complexes. If either of the lines have the pllickerian coor-

dinates (a), then the three numbers (X) given by equations (1)

may be taken to represent the cross. These coordinates (X)
are homogeneous in the complex (i.e. imaginary) domain, for

the result of multiplying them through by (l + mi) is to

replace the complex (a) by a coaxal complex, and therefore

to leave the axes of the pencil unaltered.

Conversely, suppose that we have a triad of coordinates (X)
which are homogeneous in the imaginary domain. The coor-

dinates of the lines of the corresponding cross will be found
from (1) by assigning to p such a value that the coordinates

(a) shall satisfy the fundamental pluckerian identity. For
this it is necessary and sufficient that the imaginary part of

P
2
(XX) should vanish, i.e.

X, X,

To get the other line of the cross, i.e. the Absolute polar
of the line (d), we merely have to reverse the sign of one

of our radicals.

There is one, and only one case, where our equations (2)

become illusory, namely where

(XX) = 0.

This will arise when

(aW^ZaJ-Zatf^Q,
i.e. when the directrices of the congruence are tangent to the

Absolute. All complexes of the pencil will here be special,
and will be determined severally by lines intersecting the

various tangents to the Absolute at this
point. Any mutually

polar lines of the pencil of tangents, will, conversely, serve to

determine the coaxal system. We may then represent such

a pencil of tangent lines by a set of homogeneous values (X )

where (XX) = 0, and, conversely, every such set of homo-

geneous values will determine a pencil of tangents to the

Absolute. We shall therefore define such a pencil of tangents
as an improper cross.
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Theorem 1. There exists a perfect one to one correspondence
between the assemblage of all crosses in hyperbolic space, and
the assemblage of all points of the complex plane of elliptic

space. Improper crosses will correspond to points of the

elliptic Absolute.

We shall say that two crosses intersect if their lines inter-

sect. The N. S. condition for this in the case of two proper
crosses will be

(XY) (XY)
*

Geometrically a line may intersect either member of a cross.

This ambiguity disappears in the case of perpendicular inter-

section.

Theorem 2. Two intersecting crosses will correspond to

points, the cosine of whose distance is real, or pure imaginary ;

crosses intersecting orthogonally will correspond to orthogonal

points of the elliptic plane.

The assemblage of crosses which intersect a given cross

orthogonally will be given by means of a linear equation.
A linear equation will be transformed linearly into another

linear equation, if the variables and coefficients be treated

contragrediently. Geometrically we shall imagine that our

assemblage of crosses, cross space let us say, is doubly over-

laid, the crosses of one layer being represented by points and
those of the other by lines in the complex plane, we have then

Theorem 3. The necessary and sufficient condition that two
crosses of different layers should intersect orthogonally is that

the corresponding line and point of the complex plane should

be in united position.

If a cross be improper, the assemblage of all crosses cutting
it orthogonally will be made up of all lines through the point
of contact, and all lines in the plane of contact. This assem-

blage, reducible in point space, is irreducible in cross space.

The collineation group of cross space, is the general group
depending on eight complex, or sixteen real parameters

,z/=2 </**, K-l^o. (3)

i

When will this indicate a transformation of point space?
It is certainly necessary that improper crosses should go into

improper crosses, hence the substitution must be of the ortho-,
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gonal type. Moreover, the Absolute of hyperbolic space
be transformed into itself, so that our transformation of point
space must be a congruent one. Conversely, it is immediately
evident that a congruent transformation will transform cross

space linearly into itself. Also, an orthogonal substitution in

cross coordinates will carry an improper cross into an im-

proper cross, and will carry intersecting crosses into other

intersecting crosses. The corresponding transformation in

point space is not completely determined, for a polar recipro-
cation in the Absolute of point space appears as the identical

transformation of cross space. A transformation which
carries intersecting crosses into intersecting crosses may thus
be interpreted either as a collineation, or a correlation of

point space.

Theorem 4. Every collineation or correlation of hyperbolic
space which leaves the Absolute invariant will be equivalent
to an orthogonal substitution in cross space, and every such

orthogonal substitution may be interpreted either as a con-

gruent transformation of hyperbolic space, or a congruent
transformation coupled with a polar reciprocation in the
Absolute;

Let us now inquire as to what are the simplest figures of

cross space. The simplest one dimensional figure is the chain

composed of all crosses whose coordinates are linearly depen-
dent, by means of real coefficients, on those of two given
crosses,

pX{
= aY^ bZ

t ,
i = 1, 2, 3. (4)

Interpreting these equations in the complex plane we see

that we have oo 1
points of a line so related that the cross ratio

of any four is real. If this line be repre&ented in the Gauss

plane, the chain will be represented by a circle. If the line

be imaginary, the real lines, one through each point of the

chain, will generate a linear pencil or a regulus.*

The crosses of the chain will cut orthogonally another cross

(of the other layer) called the axis of the chain. The axis

being proper, the chain will contain two improper crosses,

namely, the pencils of tangents to the Absolute where it

meets the actual line of the chain.

There is a theorem of very great generality connected with

chains, which we shall now give. Suppose that we have a

* The concept
* chain of imaginary points

'

is duo to Von Staudfc. See his
1

Beitrage', loc. cit., pp. 137-42. For an extension, see Segre,
' Su un nuovo

campo di ricerche geometriche/ Atti della E. Accademia delle Sciense di Torino,

vol. xxv, 1890.
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congruence of lines of such a nature that the corresponding
cross coordinates (U) are analytic functions of two real

parameters u, v. The cross of common perpendiculars to the

cross (U) and the adjacent cross (U+dU) will be given by

U
J

dv.

There are two sharply distinct sub-cases, (a)

U ^ ~ = 0.

(5)

(6)

Here there is but one common perpendicular to (U) and all

adjacent crosses. Such a congruence shall be called synectlc.

Let us exclude this case for the moment and pass to the other,

+~

We shall mean by the general position of a line in such a con-

gruence, one where this determinant does not vanish. We
have then the theorem :

*

Theorem 5. The common perpendiculars to a line, in the

general position, of a non-synectic congruence, and each

adjacent line will generate a chain.

Let us find, in point coordinates, the equation of the surface

obtained by splitting off from a chain its improper crosses.

We easily see that there will be two crosses of the chain
which intersect orthogonally ; taking these and the axes to

determine the coordinate system, we may express our chain
in the simple form

JSfj
= a (p + qi), X

2
= b(r+ si)^ JT

3
= 0.

Eliminating a/ b we get

This gives the equation of the chain surface in point coor-

dinates

(ps qr)( xQ
2
-f x%) *i ^2 + (Pr + ?s) (^i

2 + *2
2
)Va = - (8)

* The analogous theorem for euclidean space is due to Hamilton, se
his paper on *

Systems of Kays', Transactions of the Royal Irish Academy, vol. xv,
1829.
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If (psqr) = or (pr + qs) = 0,

we have two real and two imaginary linear pencils ; the con-

ditions for this in cross coordinates will be invariant under
the orthogonal, but not under the general group. The general
form of our surface is a ruled quartic, having a strong simi-

larity to the euclidean cylindroid.
The simplest two dimensional system of crosses is the chain

congruence. This is made up of all crosses which have coor-

dinates linearly dependent with real coefficients on those of

three given crosses which do not cut a fourth orthogonally

\XYZ\^0, i = l, 2, 3. (9)

Theorem 6. The crosses which correspond to the assemblage
of all points of the real domain of a plane will generate
a chain congruence.

Theorem 7. The common perpendiculars to pairs of crosses

of a chain congruence will generate a second chain congruence
in the other layer. Each congruence is the locus of the axes

of the GO
2 chains of the other ; the two are said to be reciprocal

to one another.

The reciprocal to the chain congruence (9) will have equa-
tions

z
i

T

T,.
+ r *i ^'

. (10)
,j,

TTTT TT- \ '

*J

Let the reader show that the chain congruence may be

reduced to the canonical form

If

where a, b, c are real homogeneous variables.

There are various sub-cases under the congruent group.

the congruence will be transformed into itself by a one-

parameter group of rotations.

Again, let Qw_ qr)
_

, (pr_ qt)
= 0.

Here we see that (XX')

is real for any two crosses of the congruence, i.e. the con-

gruence consists in all crosses through the point (1, 0, 0, 0).

Leaving aside the special cases the following theorems may
be proved for the general case.

Theorem 8. The chain congruence, considered as an assem-
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blage of lines in point space, is of the third order and class.

It is generated by common perpendiculars to the pairs of lines

of a regulus. Those lines of the congruence which meet a line

of the reciprocal congruence, orthogonally generate a quartic

surface, those which meet such a line obliquely generate a

regulus whose conjugate belongs to the reciprocal congruence.
The two congruences have the same focal surface of order and

class eight.

Another simple two-parameter system of crosses is the

following

pY{ + qZ{
+ sTi ^ 0,

|

YZT = 0, (abcpqr) real.

All these crosses cut orthogonally the cross

Y
J

Conversely, let us show that every cross orthogonally inter-

secting (U) may be expressed in this form. As such a form
as this is invariant for all linear transformations, we may
suppose Y = Z = T = 0.

We have then the equations

aY
1 + bZ

l + c2\ = (r -f tr') A\,

aF
2 + bZ

2 + cT2
=

(r + ir') A
r

2 ,

which amount to four linear homogeneous equations in five

unknowns a, b, c, r, / and these may always be solved. There
will be found to be one singular case where the same cross

has oo
'
determinations.

The assemblage of crosses cutting a cross orthogonally is

but a special case of what we have already defined as a

synectic congruence. If

there will be but one common perpendicular to a cross and its

adjacent crosses. This corresponds to the fact that there will

exist an equation
j> (Xl X z X,) = 0,

so that our congruence is represented by a curve, the tangent
at any point representing the common perpendicular just
mentioned (in the other layer), and, conversely, every curve
will be represented by a synectic congruence. The points and

tangents will be represented by two synectic congruences so



x THE HIGHER LINE-GEOMETRY 123

related that each cross of one is a cross of striction of a cross
of the other, and all its adjacent crosses. We may reach
a still clearer idea of these congruences by anticipating some
of the results of differential geometry to be proved in later"

chapters. For, if we look upon the congruence of lines

generated by our crosses, we see that the two focal points
on each are orthogonal and the two focal planes mutually
perpendicular. From this we shall conclude that our line-

congruence is one of normals, and the characteristics of the

developable surfaces of the congruence will be geodesies of
the focal surface, to which the lines of the other congruence
are binormals. We shall, moreover, show in a later chapter
that if r

x
and r

2
be the radii of curvature of normal sections of

a surface in planes of curvature, then the Gaussian expression
for the curvature of the surface at that point will be

1 1
J^

7
, r, ,

,
r
2 &a

k tan -r k tan -~

k k

In the present instance as the two focal points are orthogonal

1 , 1 ,
r

k tan ~ k tan -~

A; k

Our congruence is made up of normals to surfaces of Gaussian
curvature zero, i.e. to surfaces whose distance element may
be written

Theorem 9.* A synectic congruence will represent the points
of a curve of the complex plane. It will be made up of crosses
whose lines are normals to a series of surfaces of Gaussian
curvature zero. The characteristics of the developable surfaces
are geodesies of the focal surfaces. Their orthogonal trajec-
tories are a second set of geodesies whose tangents will

generate a like congruence.
In conclusion, let us emphasize the distinction between

these congruences and the non-syneetic onevS, where the
common perpendiculars to a cross and its adjacent ones

generate a chain.

Did we wish to represent the imaginary as well as the
real members of a synectic or non-synectic congruence, we
should be obliged to introduce into our representing plane,
points with hypercomplex coordinates. We shall not enter
into this extension, for, after all, the real point of interest of

*
Cf. Study,

< Zur nicht-euklidischeji otc./ cit., p. 328.
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the subject lies merely in this, namely, to give a real inter-

pretation for the geometry of the complex plane.
As we identify the geometry of the cross in hyperbolic

space with that of a point of the complex plane, so we may
relate a cross of elliptic (or spherical) space to a pair of real

points of two plane. The modus operandi is as follows :

We start, as before, with a pencil of coaxal linear complexes
defined by , v va

ol + a23
=

piA ! ,
a
01

a23
= <r

r
A

l ,

If we replace our complex by another coaxal therewith, we
shall merely multiply dX) (rX) by two different constants.

Conversely, when we wish to move back from the indepen-

dently homogeneous sets of coordinates (}X) (rX) to the

degenerate complexes of the pencil, i.e. to the lines of the

cross defined thereby, we have to take for p and a such values

that the fundamental pliickerian identity is satisfied,

raoi
= v()+ 7

.
iv,

The two separately homogeneous coordinate triads faX) (rX)
may be taken to represent this proper cross, and, conversely,
as all quantities involved so far are supposed to be real, every
real pair of triads will correspond to a single cross.

Tfoorem 10. The assemblage of all real crosses of elliptic

or spherical space may be put into one to one correspondence
with the assemblage of all pairs of points one in each of two
real planes.

Our doubly homogeneous coordinates have a second inter-

pretation which is of the highest interest. Let us write the

coordinates of a point of the Absolute in terms of two inde-

pendent parameters, i.e. of the parameters determining the

one and the other set of linear generators

vn v/-t *o

The pliickerian coordinates of a generator of the left or right

system will thus be

Pol = -P23
= 2V2 > Sfol

= -?23 =
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The parameter (X) of a left generator which meets a given
line (a) will satisfy

Similarly, for a right generator we have

2Mlf*2Kl- <%) + i (Ml
2 + M2

2
) (02

~ tt3l)
-

(f*l
2~

/V) K>3
- tt12)

= 0-

We thus get as a necessary and sufficient condition that

two lines should be right (left) paratactic, that the differences

(sums) of complementary pairs of pllickerian coordinates in

the one shall be proportional to the corresponding differences

(sums) in the other. If the lines be (p) and (p'), the first of

these conditions will be

[(P I P') + IPijPijT-S Pij* Spy* = 0,

while the second is

[(pM-SpijPijT-Spif Zpij'
2 = 0.

If these equations be multiplied together, we get (25) of

Chapter IX.

If a line pass through the point (1, 0, 0, 0) its last three

pliickerian coordinates will vanish, while the first three are

proportional to those of its intersections with x = 0. It thus

appears that in (11) the coordinates dX) and (rX) are nothing
more nor less than the coordinates of the points, where the

plane # = is met respectively by the left and the right

paratactic through the point (1, 0, 0, 0) to the two lines of the

cross, for a line paratactic to the one is also paratactic to

the other. It will, however, be more convenient to consider

(lX) and (rX) as standing for points in two different planes,

called, respectively, the left and rigfit representing planes.
We shall speak of two crosses as being paratactic, when their

lines are so, and the necessary and sufficient condition there-

fore, invariant under the group of cross space, is that they
should be represented by identical points in the one or the

other plane.*
As in the hyperbolic case, so here, we shall look upon cross

space as doubly overlaid, and assign a cross to the upper layer
if it be determined by two points in the representing planes,
while it shall be assigned to the lower layer if it be determined

by two lines. Under these circumstances we may say :

Theorem 11. In order that two crosses of different layers
should intersect orthogonally, it is necessary and sufficient

* The whole question of left and right is considered most carefully in

Study's
<

Beitrage ', cit., pp. 126, 156.
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that they should be represented by line elements in the two

planes.

We may go still further in this same direction. We shall

mean by the right and left Clifford angles of two crosses, the

angles of right and loft paratactics to them through any chosen

point. Let the reader show that the magnitude of these angles
is independent of the choice of the last-named point. If, thus,

we choose the point (1, 0, 0, 0), the cosines of the Clifford

angles will be

fcXjF) (TXrY)

iYiY) V( r
X

rX]

Now, from equations (19) and (20) of Chapter IX, we see that

d - d' . .

sin T sm -7-
= sin sin& = ,

cos cos ~ = cos0 cos0'=_"

hence, we easily find

V(rX rX) V( r
YT Y) (13)

/d d'

or else

/d d
COS

/
( T + -=-

)
=

\k kJ

The ambiguity can be removed by establishing certain con-

ventions with regard to the signs of the radicals, into which
we shall not enter.* We may, however, state the following
theorem :

Theorem 12. The Clifford angles of two lines have the same-

measures as the sums and differences of the kth parts of their

distances, or the sums and differences of their angles. The

necessary and sufficient condition that two lines should inter-

sect is that their Clifford angles should be equal or supple-

mentary.

* For an elaborate discussion, see Study, 'Beitrage,' cit., especially p. 130.
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When we adjoin the imaginary domain to the real one,
serious complications will arise which can only bo removed

by careful definition. Without going into a complete dis-

cussion, wo merely give the facts.*

If dXfi) = 0, (r
X

rX) ^ 0, we shall say that we have
a left improper cross, and denote thereby a left generator
of the Absolute, conjoined to a non-parabolic involution

among the right generators. There will be co 3 such improper
crosses, and oo 3

right improper crosses, whose definition is

obvious. Left and right improper crosses together will con-

stitute what shall be called ivnproper crosses of the first sort.

Improper crosses of the second sort shall be defined, as in

hyperbolic space, as pencils of tangents to the Absolute,

corresponding to sets of values for which (jX }X) = (r
X

rX)= 0.

The definitions of parataxy and orthogonal intersection may
be extended to all cases, their analytic expression being as

in the real domain.
The general group of linear transformations of cross space

will depend upon sixteen essential parameters. It will be
made up of the sixteen-parameter sub-group (?16 of all trans-

formations of the type

PlXi^aijlXj, <^/=2%-r*/. K-M%|*0, (14)
3 J

and the sixteen-parameter assemblage J/16 of all transforma-

tions of the type

Notice that under G1Q left and right parataxy of crosses of

the same layer are invariant, while under H1Q the two sorts

of parataxy are interchanged.
The group Cr16 will contain, as a sub-group, the group of all

motions, while Hu includes the assemblage of all symmetry
transformations. Let the reader show that there can be no
collineations of point space under G16 , except congruent trans-

formations, and that the necessary and sufficient condition

that (14) should represent a motion of point space is that

the transformations of the two representing planes should
be of the orthogonal type.
The group G?16 is half-simple, being composed entirely of

two invariant sub-groups j(?8 , r (?8 ,
of which the former is

made up of the general linear transformation for dX) with

* Cf. the author's ' Dual projective Geometry ',
loc. cit., 3.
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the identical transformation for (rX), while in the latter, the

roles of (iX) and (rX) are interchanged. The highest common
factors of the group of motions with j(?8 and rGs respectively,
will be the groups of left and right translations (cf.

Chapter IX).
The simplest assemblages of crosses in elliptic space bear

a close analogy to those of hyperbolic space, although pos-

sessing more variety in the real domain. Let

The assemblage of crosses so defined shall be called a chain.

The properties of these chains are entirely analogous to those

in the hyperbolic case. For instance, take a congruence of

crosses whose coordinates are analytic functions of two essential

parameters (u), (v). Let us further assume that (jF) (TT)
being crosses of the system

Y- Y *

r r
~ 0.

The meaning of this restriction is that neither (jF) nor
(rF)

can be expressed as functions of a single parameter, so that

the crosses of the congruence cannot be assembled into the

generators of oo 1
surfaces, those of each surface being para-

tactic. Let the reader then show that for every such

congruence, the common perpendiculars to a line in the

general position, and its immediate neighbours, will generate
a chain.

The chains of elliptic cross space will have the same sub-

classifications under the congruent group, as in the hyperbolic

plane. Let the reader show that the general chain may be

represented by means of a homographic relation between the

points of two linear ranges in the representing planes, and
that the special chain, composed of two pencils, arises, when
the relation is a congruent one.

Suppose, next, that we have

This is a new one-parameter family of crosses called a strip,

or, more exactly, a left strip. The common perpendiculars
to pairs of crosses of the left strip will generate a right strip

(whereof the definition is obvious), and each strip shall be said

to be reciprocal to the other. A left strip of the upper layer
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will be represented by a point of the left plane, and a linear

range of the right plane. The reciprocal strip in the lower

layer will be represented by the pencil through the point
in the left plane, and the line of the range in the right.

In point space, the lines of a strip are generators of a

quadric, whose other generators belong to the reciprocal strip.

Owing to the parataxy of the generators of such a quadric,
it will intersect the Absolute in two generators of each set.

We shall call our quadric a Clifford surface, when we wish
to refer to it as a figure of point space. We shall show in

Chapter XV, that these surfaces have Gaussian curvature zero,

since they are generated by paratactic lines, and are minimal

surfaces, since their asymptotic lines form an orthogonal
system.*
The simplest two dimensional system of crosses will be, as

before, the chain congruence

\ 1
Y

1
Z

1
T x

\ rYr
Z

r
T =0.

We may solve the first three equations for a, b, c, and sub-

stitute in the last

This, again, may easily be reduced to the canonical form

r
X

t
=

UtlXt
. (16)

The reciprocal congruence will be given by

lU{
=airU{

.

There are various sub-classes under the congruent group.
If the squares of no two of our quantities a^ in (16) be equal,
we have the general congruence, if we have one such equality,
the congruence will be transformed into itself by a one-

parameter group of rotations. If all three squares be equal,
we have a bundle of crosses through a point. The general

congruence will have all of the properties mentioned in
(8).

A different sort of congruence will arise in the case where

\ 1
T

1
Z

1T\=^ rYr
ZrT\^0. (17)

This congruence will contain oo 1

strips, whose reciprocals

generate the reciprocal congruence. The common perpen-
diculars to all non-paratactic crosses of the congruence will

generate a bundle, those to paratactic crosses, the reciprocal

* Cf. Kloin,
' Zur nicht-euklidischen Geometric,' Mathematische Annalen,

vol. xxxvii, 1890.

COOLIDQE I
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congruence. Such a congruence will be generated by the

common perpendiculars to the paratactic lines of two pencils
which have different centres and planes, but a common line

and paratactic axes. In point space the line congruence will

be of order and class two. The canonical form will be *

1
X

1
= alrX19

If, in addition to (17), we require the first minors of

all to vanish, we shall have a bundle of paratactic crosses.

If, on the other hand, we have

|,WI = ,Frz/r =o,
without the vanishing of the first minors of either determinant,
we have oo

2
crosses cutting a given cross orthogonally. The

equations of the congruence may be reduced to the canonical

fonn
PlXl

= a, <r r
X

l
== 6,

PlX2
= 6, cr

rX,2 c, (18)

PlX3
=

; V^3 = '

The cross (1, 0, 0) (0, 1, 0) will be singular, having oo 1 deter-

minations,

In general, if we have

F( l
X

ll
X

2l
X

3)
= Q, <}>(rXlr

X2rX3)
= 0,

the line-congruence can be assembled into oo 1 surfaces with

left, and oo l surfaces with right paratactic generators. Such
surfaces will have Gaussian curvature zero. We shall show
also in Chapter XVI that the lines of such a congruence are

normals to a series of surfaces of Gaussian curvature zero.

*
Apparently nothing has ever been published concerning this type of

congruence. The theorems here given are taken from an unpublished section

of the author's dissertation, cit.



CHAPTER XI

THE CIRCLE AND THE SPHERE

THE simplest curvilinear figures in non-euclidean geometry
are circles, and it is now time to study their properties.*

Definition. The locus of all points of a plane at a constant
distance from a given point which is not on the Absolute
is called a circle. The given point shall be called the centre

of the circle, its absolute polar, which will also turn out to

be its polar with regard to the circle, shall be called the axis
of the circle. A line through the centre of the circle shall be
called a diameter. Let the reader show that all points of

a circle are at constant distances from the axis, a distance

whose measure becomes infinite in the limiting euclidean case.

To get the equation of the circle whose centre is (a) and
whose radius is r, i.e. this shall be the measure of the distance
of all points from the centre, we have

(ax) r- -- = COS 5
,-

- _
V (aa) V(xx)

cos2 (aa) (xx)
-

(ax)
2 = 0. (1 )*

r
It is evident that when cos2

T =0, this curve has double
K

contact with the Absolute, the secant of contact being the

axis, and, conversely, every such curve of the second order

will be a circle. The absolute polar of a circle will, hence,
be another circle, so that the circle is self-dual :

Theorem \. Definition. The Theorem 1'. The envelope
locus of all points of a plane of all lines of a plane which
at a constant distance from make a constant angle with
a given point thereof is a a given line is a circle having
circle whose centre is the given the given line as axis.

point.*
-j

Note that a circle of radius -~- is a line, and that circle of

radius is two lines.

* For a very simple treatment of this subject by means of pure Geometry,
see Riccordi,

' I cercoli nella geometria non-cuclidea," Giornale di Matematica.

xviii, 1880. Riccordi's results had previously been reached analytically by
Battaglini,

' Sul rapporto anarmonico sezionale e tangenziale delle coniche,'

ibid.,xii, 1874.

12
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Restricting ourselves, for the moment, to the real domain
of the hyperbolic plane, we see that if the centre be ideal,

the axis will be actual, and the curve will appear in the actual

domain as the locus of points at a constant distance from the

axis, an actual line. In this case the circle is sometimes
called an equidistant curve. If the centre be actual we shall

have what may be more properly called a proper circle.

Notice that to a dweller in a small region of the hyperbolic

space, a proper circle would appear much as does a euclidean

circle to a euclidean dweller, while an equidistant curve would

appear like two parallel lines. These distinctions will,

naturally, disappear in the elliptic case ;
in the spherical, the

circle will have two centres, which are equivalent points.
If the point (a) tend to approach the Absolute (analytically

speaking) the equation (1) will tend to approach an inde-

terminate form. The limiting form for the curve will bo
a conic having four-point contact with the Absolute. Such a
curve shall be called a horocycle^ the point of contact being
called the centre, and the common tangent the axis. If (u) be
the coordinates of the axis, we have

(uu) = 0,

and the equation of the horocycle takes the form

(V + u2
2
) (xx) + C (uxf = 0.

Theorem 2. A tangent to Theorem 2'. A point on a
a circle is perpendicular to the circle is orthogonal to the

diameter through the point of point where the tangent there-

contact, at meets the axis.

These simple theorems may be proved in a variety of ways.
For instance every circle will be transformed into itself by
a reflection in any diameter, hence the tangent where the

diameter meets the curve must be perpendicular to the diameter.

Or, again, if AB == AC, a line from A to one centre of gravity
of B, G will be perpendicular to BG'; then let B and G close

up on this centre of gravity. Or, lastly, the equation of the

tangent to the circle (1) at a point (y) will be

(xy) (aa) N(ax) (ay) = 0.

The diameter through (y) will have the equation

|
xya

|

= 0.

If we indicate these two lines by (u) and (v), then

(uv) = (aa) | yay \

-N (ay) \aya\.
Let the reader show that these theorems hold also in the

case of the horocycle.
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Theorem 3. The locus of

the centres of gravity of pairs
of points of a circle whose
lines are concurrent on the

axis, is the point of concur-

rence, and the diameter per-

pendicular to these lines.

Theorem 4. If two tangents
to a circle (horocycle) make
a constant angle, the locus of

their point of intersection is

a concentric circle (horocycle).

Theorem^'. The envelope
of the bisectors of the angles
of tangents to a circle from

points of a diameter, is this

diameter, and its absolute

pole.

Theorem 4'. If two points of

a circle (horocycle) are at a
constant distance,theenvelope
of their line is a coaxal circle

(horocycle).

The element of arc of a circle of radius (r) will be, by
Chapter IV (5),

r
dx = ksin. T dO.

Ic

The circumference of the circle is thus

r C"2ir r
k sin 7 dO = 277/0 sin 7

KjQ Iv

Let the tangents at P and P' meet at Q, the centre of the

circle being A. Let A</> be the angle between the tangents,
and let P" be the point on the tangent at P whose distance

from P equals PP', or, in the infinitesimal, equals ds.

APAP' and AP'PP" are isosceles, hence
The

Fp
tan

T)/,

. PP' ^
sin T~ tan ~

k 4

But

A *
P'P"

4 tan =
-i ;

,. . A0 .. . 2/o _, . 2P'Pf

limit -
7
= limit --^i=- = limit-=-<

pp' pptA
PP'dn -jr

PQ . r A , 7 d
tan -r5

' = sin y tan ^ (W = - v
/O /O / fv

, ,

by IV (6),

PO r
limit tan- = |tan T A0.
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Hence

v .. r ..

limit -~- = limit
ds pp'z , L r

k tan
j
IV

We shall subsequently define this expression as the curva-
ture of the circle at the point (P). We see that, as we should

expect, it is constant.

We shall next take up simple systems of circles. We leave
to the reader the task of making the slight modifications in
what follows necessary to adapt it to the case of spherical
geometry. In the general case two circles, neither of which
is a line, will intersect in four points, real, or imaginary, in

pairs. If two circles lie completely without one another they
will have four real common tangents, the absolute polars of
such circles will intersect in four real points. The difficulty
of visualization disappears in the hyperbolic case where we
take one at least of the circles as an equidistant curve. If we
identify the euclidean hemisphere, where opposite points of
the equator are considered identical, with the elliptic plane,
we see how two circles there also can intersect in four real

points. In the spherical case, by Chapter VIII, the Absolute is

the locus of all points which are identical with their equiva-
lents. A point will have one absolute polar, a line two
equivalent absolute poles. The absolute polar of a circle is

two equivalent circles, which are also the absolute polars of
the equivalent circle. Two real circles cannot intersect in
more than two real points.
Two circles which intersect in four points will have three

pairs of common secants. The problem of finding the common
secants of two conies will, in general, lead to an irreducible

equation of the third degree. When, however, the two conies
have double contact with a third, the equation is reducible,
and one pair of secants appears which intersect on the chords
of contact, and are harmonically separated by them.* In the
case of two circles these secants shall be called the radical
axes. They will

Theorem 5. If two circles Theorem 5'. If two circles

intersect in four points, two have four common tangents,
common secants called radical two intersections of these,
axes are concurrent with the called centres of similitude, lie

axes of the circles and har- on the line of centres, are

* This theorem is, of course, well known. Cf. Salmon, Conic Sections,
sixth edition. London, 1879, p. 242.
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monically separated by them, harmonically separated by the

They are perpendicular to one centres and are mutually
another and to the line of cen- orthogonal. The bisectors of
tres. The centres of gravity angles of the tangents at a
of the intersections of the centre of similitude are the
circles with a radical axis are line of centres and the line to

the intersections with the the other centre of similitude,
other radical axis and with
the line of centres.

If the equations of the two circles be

cos2

^ (aa) (xx)
-

(ax)
2 = 0, cos2

^ (66) (xx)
-

(bx)* = 0,

the equations of the radical axes will be

( cos ~~ V (66) (ax) -f cos
~

V(aa) (bx))

(ty*
_____ r~i ______

cos- V(bb) (ax) cos ~r V(aa) (I
1C

The last factor equated to zero will give

(ax) (bx)

= 0. (3)

_ V(bb)
?\

COS-y
1

AC

?

cos-~
k

and the two sides of this equation will, by Ch. IV (4), be the

cosines, of the kth parts of the distances from (x) to the points
of contact of tangents, thence to the two circles.

Theorem 6. If a set of circles

through two points have the

line ofthese points as a radical

axis, the points of contact of

tangents to all of them from
a point of the line lie on a
circle whose centre is this

point.

Theorem 6'. Ifa set of circles

tangent to two given lines

have the intersection of the

lines as a centre of similitude,
the envelope of tangents to

them at the points where they
meet a line through this

centre of similitude will be
a circle with this line as axis.

Consider the assemblage of all circles through two given

points. If the line connecting the two points be a radical

axis for two of these circles it will be perpendicular to their

line of centres at one centre of gravity of the two points, and
in every case a perpendicular from the centre of a circle on
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a secant will meet it at a centre of gravity of the two points
of the circle on that line. We thus see

Theorem 7. The assemblage
of all circles through two
common points will fall into

two families according as the

perpendicular from the centre

on the line of these points

passes through the one or the

other of their centres of

gravity. Two circles of the

same family,andthey only, will
have the line as a radical axis.

Let us now take a third point, and consider the circles that

pass through all three.

Theorem 7'. The assemblage
of all circles tangent to two
lines will fall into two families

according as the centres lie on
the one or the other bisector

of the angles of the lines.

Two circles of the same

family, and they only, will

have the intersection of the

lines as a centre of similitude.

Theorem 8. Four circles will

pass through three given
points. Each line connecting
two of the given points will

be a radical axis for two pairs
of circles.

Theorem 8'. Four circles will

touch three given lines. Each
intersection of two lines will

be a centre of similitude for

two pairs of circles.

Theorem 9. The radical axes Theorem 9'. The centres of

of three circles pass by threes similitude of three circles lie

through four points. by threes on four lines.

Of course when two circles touch one another, their common
tangent replaces one radical axis, and the point of contact one
centre of similitude. Two circles will have double contact

when, and only when, they are concentric. We get at once
from (6) and (9)

Theorem 10'. Four circles

may be constructed so that

the points of contact of tan-

gents common to them and to

each of three given circles

form two pairs of orthogonal
points.

It is here assumed that no two of the given circles are con-

centric. There is no reason to expect that because two circles .

intersect at right angles in two points they will in the other

two. Let the circles be

Theorem 10. Four circles

may be constructed to cut

each of three circles at right

angles twice.

cos2
r
] (aa) (xx)

-
(cuf= 0, cos2^ (66) (*)- (

= 0.



xi THE CIRCLE AND THE SPHERE 137

Let (y) be a point of intersection ; the lines thence to the

centres are

j xya \

= 0,
| xyb |

= 0.

The cosine of the angle formed by them will be

COS0 =
(yy) (

(ty)

(by) (ab)

V(yy) (aa)-(ayf V(yy) (bb)
-

(by)*

T T / / (4)
(a6) cos-~ cos -~

V(aa) V(bb)

sin / sin -~
V(aa) V(bb)

A/ ic

This gives two values for the angle which will be equal when,
and only when , 7 ,J

(ab) = 0.

The condition of contact will be

cos = }
9 cos (^ -f V

2

) = -

=J?---^===. ; (5)
\ A;

~
/c / *J (n<i\ \/ (hl>\

and of orthogonal intersection

r
l

r 9 (ab)
cos T} cos -- = ^L --.= , (6)

these last two facts being, also, geometrically evident. We
see that two circles cannot have four rectangular intersections,
for if

(a&) = 0, cos 5 = 0, (7)
K>

the circle is a line.

Theorem 11. The necessary Theorem 11'. The necessary
and sufficient condition that and sufficient condition that

two circles should cut at the two circles should determine
same angle at all points is by their points of contact,
that their centres should be congruent distances on all four

mutually orthogonal. common tangents, is that their

axes should be mutually per-

pendicular.

Notice that these two conditions are really identical.



138 THE CIRCLE AND THE SPHERE CH.

We shall define as a sphere that surface which is the locus

of all points of space at congruent distances from a point not

on the Absolute.

Theorem 12. A sphere is

the locus of all points at a
constant distance from a given
point not on the Absolute.

It is, when not a plane, a

quadric with conical contact

with the Absolute.

Theorem 12'. A sphere is

the envelope of planes meeting
at a constant angle a plane
which is not tangent to the

Absolute. It is, when not a

point, a quadric with conical

contact with the Absolute.

Note that a plane and point are special cases of the sphere.
The fixed point shall be called the centre, the plane of conical

contact the axial plane of the sphere. A line connecting any
point with the centre of a sphere is perpendicular to the polar

plane of the point, a tangent plane is perpendicular to the line

from the point of contact to the centre, to the diameter through
the point of contact let us say.

Theorem 13. Two spheres
will intersect in two circles

whose planes are perpen-
dicular to the line of centres

and to one another, and are

harmonically separated by the

axial planes.

Theorem 14. Three spheres
not containing a common
circle will meet in three pairs
of circles whose planes are

collinear by threes in four

lines.

Theorem 15. Four spheres
whose centres are not co-

planar intersect in twelve
circles whose planes pass by
sixes through eight points
which, with the centres of the

spheres, form a desmic con-

figuration.

Theorem 16. The necessary
and sufficient condition that

two spheres should cut at the

same angle along their two

Theorem, 13'. The common
tangent planes to two spheres

envelop two cones of revolu-

tion whose vertices are

mutually orthogonal and

harmonically separated by
the centres.

Theorem 14'. Three spheres
not tangent to a cone of re-

volution have three such

pairs ofcommon tangent cones

whose vertices are collinear in

threes on four lines.

Theorem 15'. Four spheres
whose axial planes are not

concurrent are enveloped in

pairs by twelve cones of re-

volution whose vertices lie

by sixes in eight planes which,
with the axial planes, deter-

mine a desmic configuration.

Theorem 16'. The necessary
and sufficient condition that

two spheres should, by their

contact, determine congruent
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circles is that their centres distances on the generators of

should be mutually ortho- the two circumscribed cones,

gonal. is that their axial planes
should be mutually perpen-
dicular.

We shall terminate this chapter by giving an unusually
elegant transformation from euclidean to non-euclidean space.*
Let us assume that we have a euclidean space where a point
has the homogeneous coordinates #, y, 0, t and a hyperbolic
space for which k* = 1, a point being given by our usual (x)
coordinates. Let us then write

px x^ py= &2 , pz Vx*~x*--x*'-x*, p = # &J. (8)

To each point of hyperbolic space will correspond two

points of euclidean space. Let us choose that for which the

real part of Vx^x^ x^ x^ is greater than zero. When
the real part vanishes, we may, by adjoining to our domain of

rationality a square root of minus one, distinguish between the

imaginary roots, and so choose one in particular. We may
thus say that to every point of hyperbolic space, not on the

Absolute, will correspond a point of euclidean space above
the plane z = 0, and to each points of the Absolute will

correspond points of this plane. The transformation is real,

so that real and actual points will correspond to real ones.

Conversely, we get from (8)

<T#O
= x* + y

2
4-

2
-r

2
, a&i = 2xt, crx

2
= 2yt,

*xz = a* + y* + z*-t*
9 (9)

and to each point of euclidean space, above, or on the z plane,
will correspond a point of hyperbolic space, not on, or on the

Absolute.

Suppose that we have a euclidean sphere of centre (a, b, c, d)
and radius r. If we write for short

((6
2 + &2 + c

2 -cZ2r2)=p2
,

the equation of this sphere may be written

= 0. (10)

* This transformation seems to have been first given in the second edition

of Wissenschaft und ffypothese, by Poincare, translated by F. and L. Lindemann,
Leipzig, 1906, p. 258. This is fruitfully used in the dissertation of Munich,
' Nicht-euklidische Cykliden/ Munich, 1906. We have adapted the notation
to conform to our own usage.
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Transforming we get, after splitting off a factor #3 d; which

corresponds to the euclidean plane at infinity,

(XQ + #3) 2 rf (ax {
+ Ix

2 -f c

This is a sphere of hyperbolic space whose centre is

((P+y>
2

,
2 ad, 26d, j^-d

a

),

and whose radius r
x
is given by

i
c

cosh t\ =- -^-- -.
-

1

^/-a2 -6-

Conversely, if we have the hyperbolic sphere

(a J'
(6j| ii'j a,,il'.> ^-j^a)

2

= coshv^rc-w'j
2-v- 3

2
) (*

2
-*i

2 -*
a

a-*A
we get from (9)

[(fl
- a3) (^'

2 + //
2

-I- s
a
)
-2^^ -2(i

2^+ (fi^
+
aa)^]_

= 2 cosh rj -v/V~V-V- A3
2
c^ ( 13 )

We have here two spheres which differ merely in the coor-

dinate of their centre, i.e. two spheres which are reflections

of one another in the plane. If the hyperbolic sphere were
real and actual, one of th6 euclidean spheres would lie wholly
above the o plane, and the other wholly below it. We may
say that (leaving aside special cases) a hyperbolic sphere will

correspond to so much of a euclidean sphere as is above or

in the plane, and to the reflection in the plane of so much
of the sphere as is below it.

A euclidean sphere for which c = 0, that is, one whose
centre is in the plane will correspond to a plane in hyperbolic

space, a hyperbolic sphere for which

that is, one whose centre is in the plane which corresponds
to the euclidean piano at infinity, will correspond to a plane
in euclidean space. A euclidean circle perpendicular to the

s plane will correspond to a hyperbolic line, a hyperbolic circle

which is perpendicular to the plane (i <i3
= 0, will correspond

to a euclidean line.

We may go a step further in this direction. Suppose that

we have two euclidean spheres given by an equation of the
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type (13), and the condition that they shall be mutually ortho-

gonal is that

%%' + Cti&i + A
2A.2

'

cosh rl
cosh r/ A/ei

2

A^ A/ A./ */A '*
<i/

2

cr/
2

<i 3
/2

-f(W = 0,

cosh rj cosh r/
*

But this gives immediately that the corresponding hyperbolic

spheres are also mutually orthogonal; and conversely. We
thus have a correspondence of orthogonal spheres to orthogonal

spheres. We see next that the lines of curvature of any
surface will go into any lines of curvature of the corresponding
surface, and hence the Darboux-Dupin theorem must hold in

hyperbolic space, namely, in any triply orthogonal system
of surfaces, the intersections are lines of curvature.

Were we willing to sacrifice the real domain, we might in

a similar manner establish a correspondence between spheres
of euclidean and of elliptic space.



CHAPTER XII

CONIC SECTIONS

THE study of the metrical properties of conies in the non-

euclidean plane, is, in the last analysis, nothing more nor less

than a study of the invariants and covariants of two conies.

We shall not, however, go into general questions of invariant

theory here, but rather try to pick out those metrical pro-

perties of non-euclidean conies which bear the closest analogy
to the corresponding euclidean properties.*

First of all, let us classify our conies under the real con-

gruent group ;
that is, in relation to their intersections with

the Absolute. This may be done analytically by means of

Weierstrass's elementary divisors, but the geometric question
is so easy that we give the results merely. We shall begin
with the real conies in the actual domain of hyperbolic space.

(1) Convex hyperbolas. Four real absolute points, no real

absolute tangents.

Jl)
Concave hyperbolas. Four real absolute points, four

absolute tangents.

(3) Semi-hyperbolas. Two real and two imaginary absolute

points and tangents.

(4) Ellipses. Four imaginary absolute points and tangents.

(5) Concave hyperbolic parabolas. Two coincident, and
two real and distinct absolute points and tangents.

(6) Convex hyperbolic parabolas. Two coincident, and two
real and distinct absolute points. Two coincident, and two

conjugate imaginary absolute tangents.

(7) Elliptic parabolas. Two coincident, and two conjugate
imaginary absolute points and tangents.

(8) Osculating parabolas. Three real coincident, and one
real distinct absolute point, and the same for absolute tangents.

* The treatment of conies in the present chapter is in close accord with
three articles by D'Ovidio, 'Le proprieta focali delle coniche,'

' Sulle coniche

confocali,' and 'Teoremi sulle coniche*, all in the Atti deUa R. Accademia delle

Scienze di Torino, vol. xxvi, 1891. These articles suffer from the curious

blemish, not uncommon in Italian mathematical publications, that the
theorems are not given in distinctive type. See also Story ,

* On the non-
euclidean Properties of Conies,' American Journal of Mathematics, vol. v, 1882;
Killing,

* Die nicht-euklidische Geometrie in analytischer Behandlung,"
Leipzig, 1885, and Liebmann,

' Nicht-euklidische Geometrie/ in the Sammlunft
Schubert^ xlix, Leipzig, 1904.
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(9) Equidistant curves,

(10) Proper circles.

(11) Horocycles.

In the real elliptic, or spherical, plane, we shall have

merely
(1) Ellipses;

(2) Circles.

In what follows we shall limit ourselves to central conies,

i.e. to those which cut the Absolute in four distinct points.
A real central conic in the actual domain of the hyperbolic

plane will have a common self-conjugate triangle with the

Absolute which is real, except in the case of the semi-hyper-
bola. In the elliptic case it will surely be real. Taking this

as the coordinate triangle we may write the equation of the

Absolute in typical form, while that of the conic is

We assume that no two of our c's are equal,, and that none
of them are equal to zero.

Our plane being x.3 Q, we shall use the letters h, k
y

I as

a circular permutation of the numbers 0, 1, 2, and define the

vertices of the common self-conjugate triangles as centres of

the conic, while its sides are called the axes. Be it noticed

that in speaking of triangle in this sense we are using the

terminology of projective geometry where a triangle is a figure
of three coplanar, but not concurrent lines, and not the exact

definition of Chapter I, which is meaningless except in a re-

stricted domain. There will, however, arise no confusion

from this.

Theorem 1. Each centre of Theorem I'. Each axis of

a central conic is a centre a central conic is a bisector

of gravity for every pair of of an angle of each pair of

points of the conic collinear tangents to the conic con-

therewith. current thereon.

The three pairs of lines which connect the pairs of intersec-

tions of a central conic with the Absolute shall be called

its pairs of focal lines. The three pairs of intersections

of its absolute tangents shall be called its pairs of foci.

Theorem 2. Conjugate points Theorem 2'. Conj ugate lines

of a focal line of a conic are through a focus of a conic are

mutually orthogonal. mutually perpendicular.
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Theorem 3. Two focal lines Theorem 3'. Two foci of a
of a central conic pass through central quadric lie on each

each vertex, and are perpen- axis, and are orthogonal to

dicular to the opposite axis. the opposite centre.

The coordinates of the focal lines /////, through the centre

u
jt

= 0, will be

uh : uk : Ui = : Vch
- ck : Vl^-7h . (2)

The coordinates of the foci F^ Fk on the opposite axis

will be ___ _____ ____ -

xh : xk : x
t
= : Vc

{ (ch
- ck)

: Vck (ty- <?,,). (3)

The polars of the foci with regard to the conic shall be called

directrices, the poles of the focal lines its director points.
A directrix dh perpendicular to the axis xh will have the

equation y^_^ +^3^ = Q (4}

Let (x) be a point of the conic. Eliminating xh by means

f(1)weget

C h ( h

We then have

If dfr be the corresponding directrix

rfa-^H-fa-^
( h <h

the signs of the radicals in the numerators of the two ex-

pressions being the same

. PFl

- J!l"~^) + c
l (

cl- (
'k
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Theorem 4.- The ratio of the

sines of the &th parts of the

distances from a point of a
central conic to a focus and
to the corresponding directrix

is constant.

Theorem 4'. The ratio of

the sines of the angles which
a tangent to a central conic

makes with a focal line and
the absolute polar of the

corresponding director point
is constant.

T7T 7JT f TX

**-** tan^

(9)

V f> 2 ^ 2

. . . PF~k . PfY . Pf] . T{
sin -y-^ sin ,

ft
: sin

j-**
sin 7^- : sin -y-

1 sm ^
1C A/ rC rC lv K

PF
csc r- esc -~- + csc -r-2 csc r^- + csc r1 esc ,

(10)

(11)

COS
ck -c,

= 1. (13)

With regard to the ambiguity of signs : the upper sign in

(12) will go with the upper sign throughout in (13), and so

for the lower sign. It is also geometrically evident that

in the case of an ellipse we must take the upper, and in

the case of a hyperbola the lower sign (when in the real

domain).
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Theorem 5. The sum of the

distances from real points of

an ellipse and the difference

of the distances from real

points of a hyperbola or semi-

hyperbola to two real foci on
the same axis is constant.

Theorem 5'. The sum of the

angles which the real tangents
to an ellipse or convex hyper-
bola, or the difference of the

angles which the real tangents
to a concave hyperbola or a

semi-hyperbola make with
two real focal lines through
a centre is constant.

Reverting to our point (x) we see

/^V ch

Pf Pf '
c

sin -y-^ sin ^ = -f
k K

~~
CT. (

Theorem 6. The product of

the sines of the ith parts
of the distances from a point
of a central conic to two focal

lines through the same centre

is constant.

Theorem 6'. The product of

the sines of the &th parts
of the distances to a tangent
from two foci of a central

conic on the same axis is

constant.

Let us now recall Desargues' theorem, whereby a transversal

meets the conies of a pencil in pairs of points of an involution.

This will apply to a central conic, the Absolute, and the pairs
of focal lines. A dual theorem will of course hold for a central

conic, the Absolute, and the pairs of foci.

Theorem 7. The intersec-

tions of a line with a central

conic, and with its pairs of

correspooding focal lines, all

have the same centres of

gravity.

Theorem 8. The polar of a

point with regard to a central

conic passes through one
centre of gravity of the inter-

sections of each focal line with
the tangents from the point to

the conic.

Theorem 7'. The tangents
from a point to a central

conic, and the pairs of lines

thence to its pairs of corre-

sponding foci, form angles
with the same two bisectors.

Theorem 8'. The pole of a
line with regard to a central

conic lies on one bisector of

the angle determined at each

focus by the lines thence to

the intersections of the given
line with the conic.
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A variable point of a conic will determine projective pencils
at any two fixed points thereof, and these will meet any line

in projective ranges, hence

Theorem 9. If a variable Theorem 9'. If a variable

point of a central conic be tangent to a central conic be
connected with two fixed brought to intersect two fixed

points thereof, the distance tangents thereof, the angle of

which these lines cut on any the lines from a chosen focus

focal line is constant. to the two intersections is

constant.

Recalling the properties of the eleven-point conic of two

given conies and a line :

Theorem 10. If a line and Theorem 10'. If a point and
a central conic be given, the a central conic be given, the

two mutually conjugate and two lines through the point
orthogonal points of the line, which are mutually conjugate
the points of the focal lines and perpendicular, the perpen-
orthogonal to their inter- diculars on the line from the

sections with the line, and the foci, and the three axes all

three centres lie on a conic. touch a conic.

It is a well-known theorem that the locus of points, whence

tangents to two coiiics form a harmonic set, is a conic passing
through the points of contact with the common tangents.

Theorem 11. The locus of Theorem II'. The envelope
points whence tangents to a of lines which meet a central

central conic are mutually conic in pairs of mutually
perpendicular is a conic meet- orthogonal points is a conic

ing the given conic where it touching the tangents to the
meets its directrices. given circle from its director

points.

It is clear that neither of these conies will, in general, be
a circle, as in the euclidean case. If the mutually perpen-
dicular tangents from the point (y) be

(ux) = 0, (vx)
= 0.

" 2 u.2 " 2
?<.

2 " 2

^ ^ = ^ = =^ ^ ^

2 (W) + 2 M -22 (uv) = 0,
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0..2

h

CH.

(14)

Let the reader show that the equation of the other conic

will be 0..2

We may extend the usual euclidean proof to the first of the

following theorems -

Theorem 12. The locus of

the reflection of a real focus

of an ellipse in a variable

tangent, is a circle whose
centre is the corresponding
focus.

Theorem 12'. The envelope
of the reflection in a variable

point of an ellipse, of a real

focal line, is a circle whose
axis is the corresponding focal

line.

Let (y) be the coordinates of a point P of our conic. The

equation of a line through the centre O h conjugate to the line
n P will hp> rx\J

1
.J. W J.1J- ILJC si ft I

/y
I st ni

f-j,i

- II

This will meet the conic in two points P' having the coor-

dinates
. _ yTT,

, 2
OP

, 9 ,^
tanz

~T- -f tan" -y =
/I* /V

(15)

Theorem 13. The sum of

the squares of the tangents
of the &th parts of the dis-

tances from a centre of a

central conic to any pair of

intersections with two con-

jugate lines through this

centre is constant.

We shall call two such diameters as 0;,P, Ojt
P' conjugate

diameters.

Theorem 13'. The sum of

the squares of the tangents
of the angles which an axis of

a central conic makes with a

pair of tangents to the curve
from two conjugate points of

this axis is constant.

snSin

<y/ (



XII CONIC SECTIONS 149

Theorem 14. The product
of the tangents of the /cbh

parts of the distances from a

centre of a central conic to

two intersections with a pair
of conjugate diametersthrough
that centre, multiplied by the

sine of the angle of these

diameters is constant.

Theorem 14'. The product
of the tangents of the angles
which an axis of a central

conic makes with two tangents
to it from a pair of conjugate
points of this axis, multiplied
by the sine of the &th part of

the distance of these points is

constant.

The equation of a line through the centre Oh perpendicular

This will meet the conic in points P" having coordinates

- .---- .

*
(
cu
-

(
CH
-

, 2 2cur , h CM r
A; k (16)

Theorem 15. The sum of

the squares of the cotangents
of the fcth parts of the dis-

tances from a centre of a

central conic to two inter-

sections of the curve with

mutually perpendicular dia-

meters through this centre is

constant.

Theorem 15'. The sum of

the squares of the cotangents
of the angles which an axis of

a central conic makes with
two tangents from a pair of

orthogonal points of this axis

is constant.

The equation of the tangent t' at the point P' is

From this we get

sin 2
- :

tan
OhP tan (17)
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Theorem 16. The product Theorem 16'. The product
of the tangents of the &th of the tangents of the angles

parts of the distances from which an axis of a central

a centre of a central conic conic makes with a tangent
to a point of the curve and and with the absolute polar
to the tangent where the curve of a point of contact with
meets a diameter conjugate to a tangent from a point of this

that from the centre to the axis conjugate to the inter-

point of the curve, is con- section with the given tan-

stant. gent, is constant.

The equations of two conjugate diameters through 0^ have

already been written

The product of the tangents of the angles which they make
with the Xj. axis is

y G y c~

Theorem 17. The product Theorem 17'. The product
of the tangents of the angles of the tangents of the &th

which two conjugate dia- parts of the distances of two
meters through a centre make conjugate points of an axis

with either axis through this from either centre on this

centre is constant. axis is constant.

Let Ph , Pfr be the intersections of the x
h
axis with the conic

^VY <

cos
* fl =

p
'

jjT* W P '

tan 2
f i^j-A

. tan- 1
-*-* . tan2

\
~ = - L (18)

Theorem 18. The product Theorem 18'. The product
of the squares of the tangents of the squares of the tan-

of the 2 /cth parts of the gents of the half-angles of the
distances determined by a pairs of tangents to a central

central conic on the axes is conic from its centres is con-

equal to 1. stant.

If a circle have double contact with a conic, we have, with
the Absolute, the figure of two conies having double contact

with a third, already studied in the last chapter.

Theorem 19. If a circle have Theorem 19'. Ifa circle have
double contact with a conic, double contact with a conic,
its axis and the lines connect- its centre and the intersections
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ing the points of contact are of the common tangents are

harmonically separated by a harmonically separated by a

pair of focal lines. pair of foci.

Of course we mean by foci and focal lines of any conic what
we mean in the special case of the central conic.

A circle which has double contact with a central conic
where the latter meets an axis is called an auxiliary circle.

There will clearly be six such circles, their centres being the
centres of the conic. Consider the circle having its centre

at O k while it has double contact with our central conic at

the intersections with x = 0.

P

0..2

-

This will meet the line (u) through Oh in points Q, Q', having
coordinates

The same line will meet the conic in points P, P', having
coordinates

.
( h

------
T,
---~~~

<>

1
U

J:

Let us remark, finally, that the tangent of the kih part of the

distance from a point to a line, is the cotangent of the /cth part
of its distance to the pole of the line, and that if the tangents
of two distances bear a constant ratio, so do their cotangents :

Theorem 20. If the tangents Theorem 20'. If the tangents
of the /cth parts of the dis- of the angles which the tan-

tances from the points of a gents to a circle make with a

circle to any diameter be diameter be altered in a con-
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altered in a constant ratio, the stant ratio, the envelope of the

locus of the resulting points resulting lines will be a conic

will be a conic having the having the given circle as an

given circle as an auxiliary. auxiliary circle.

The normal at any point of a conic is the line connecting
it with the absolute pole of its tangent. This line is also

perpendicular to the absolute polar of the given point, so that

the conic and its absolute polar conic are geodesically parallel
curves. The equation of the normal to our conic (1) will be

0..2 __

*y ^-^,. =0. (20)J-*1 II. V '

The tangents to a central conic from a centre shall be called

asymptotes. The equation of the pair of asymptotes through
the centre (0;t)

will evidently be

0. (21)

The tangent at the point P with coordinates (y) will meet
them in two points jR, R\ whose coordinates are

tan tan =
k k

Theorem 21. The product of Theorem 21'. The product
the tangents of the &bh parts of the tangents of the angles
of the distances from a centre which an axis of a central

of a central conic to the in- conic makes with the lines

tersection with the asymptotes from a point of the curve to

through that centre of a tan- the intersections of the curve

gent is constant. with this axis is constant.

A sot of conies which meet the Absolute in the same four

points shall be said to be homothetic. If they have the same
four absolute tangents they shall be called confocal. We get
at once from Desargues' involution theorem :

Theorem 22. One conic Theorem 22'. One conic con-
homothetic to a given conic focal with a given conic will

will pass through every point touch every line, and two
of space, and two will touch will pass through every point
#very line, not through a point not on the common tangents
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common to all the conies, in to all. The tangents to these

the centres of gravity of all two will bisect the angles of

pairs of intersections of the the pairs of tangents from that

homothetic conies with this point to all of the confocal

line. conies.

Concentric circles are a special case both of homothetic and
of confocal conies. The general form for the equations of conies

homothetic and confocal respectively to our conic (1) will be

(23);

It is sometimes useful to modify the second of these

equations, in order to introduce the elliptic coordinates of

a point, i.e. the two parameters giving the conies of the

confocal system which pass through it. Let us write in
c
i

place of a/. X} _ y
V(xx)

Our confocal conies have, then, the general equation

(25)
- = 0.

If Aj and A2 be the parameter values of the conic through (X)
we have

(
ck- cl)( ch-*i)(Ch-*2)

. (2Q\
0..2

"

* '

^n^h-ci)
h

0..2

(27)

With the aid of these coordinates, we may easily prove for

the non-euclidean case Graves' theorem, namely, if a loop
of thread be cast about an extremely thin elliptic disk, and

pulled taut at a point, that point will trace a confocal ellipse.
We shall not give the details here, however, for in the next

chapter we shall work at length the more interesting corre-

sponding problem in three dimensions, and the calculations

are too fatiguing to make it advisable to carry them through
twice.



CHAPTER XIII

QUADRIC SURFACES

THE discussion of non-euclidean quadric surfaces may be

carried on in the same spirit as that of conic sections in the

preceding chapter. There is not, however, the same wealth
of easy and interesting theorems, owing to the greater com-

plication in the formation of the simultaneous covariants

of two quadrics.
Let us begin by classifying non-euclidean quadrics under

the group of real congruent transformations.*" We begin
in the actual domain of hyperbolic space, giving only those

surfaces which have a real part in that domain and a non-

vanishing discriminant. The names adopted are intended to

give a certain idea of the shape of the surface. We shall

mean by curve, the curve of intersection of the surface and
Absolute, while developable is the developable of common
tangent planes.

A. Central Quadrics.

(1) Ellipsoid. Imaginary quartic curve and developable.

(2) Concave, non-ruled hyperboloid. Real quartic curve
and developable.

(3) Convex non-ruled hyperboloid. Real quartic curve,

imaginary developable.

(4) Two-sheeted ruled hyperboloid. Real quartic curve
and developable.

(5) One-sheeted ruled hyperboloid. Real quartic curve,

imaginary developable.

(6) Non-ruled semi-hyperboloid. Real quartic curve and

developable.

(7) Ruled semi-hyperboloid. Real quartic curve and de-

velopable.
The last two surfaces differ from the preceding ones in that

* The classification here given is that which appears in the author's
article '

Quadric Surfaces in Hyperbolic Space
'

,
Transactions of the American

Mathematical Societyj vol. iv, J903. This classification was simplified and
put into better shape by Bromwich, ' The Classification of Quadratic Loci/
ibid., vol. vi, 1905. The latter, however, makes use of Weierstrassian

Elementary Divisors, and it seemed wiser to avoid the introduction of these
into the present work. Both Professor Bromwich and the author wrote in

ignorance of the, fact that they had been preceded by rather a crude article

by Barbarin,
' Etude de ge*ome"trie non-euclidienno,' Memozrcs couronnes par

1'Academie de Belgique, vol. vi, 1900.
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here two vertices of the common self-conjugate tetrahedron

(in the sense of projective geometry) of the surface and
Absolute arc conjugate imagiiiaries, while in the first five

cases all four are real.

B.

(8) Elliptic paraboloid. Imaginary quartic curve with real

acnode, imaginary developable.

(9) Tubular non-ruled hyperbolic paraboloid. Real quartic
with acnode, real developable.

(10) Cup-shaped non-ruled hyperbolic paraboloid. Real

quartic with acnode, imaginary developable.

(11) Open ruled hyperbolic paraboloid. Real acnodal

quartic, real developable.

(12) Gathered ruled hyperbolic paraboloid. Real crunodal

quartic, imaginary developable.

(13) Cuspidal non-ruled hyperbolic paraboloid. Real cus-

pidal quartic curve, real developable.

(14) Cuspidal ruled hyperbolic paraboloid. Real cuspidal

quartic curve, real developable.

(15) Horocyclic non-ruled hyperbolic paraboloid. The curve

is two mutually tangent conies, developable real.

(16) Horocyclic elliptic paraboloid. Curve is two mutually
tangent imaginary conies, developable imaginary.

(17) Horocyclic ruled hyperbolic paraboloid. Curve is two
real mutually tangent conies, developable imaginary.

(18) Non-ruled osculating semi-hyperbolic paraboloid. The
curve is a real conic and two conjugate imaginary generators

meeting on it. The developable is a real cone, and two

imaginary lines.

C. Surfaces of Revolution.

(19) Prolate spheroid. Curve is two imaginary conies in

real ultra-infinite planes, imaginary developable.

(20) Oblate spheroid. Curve is two imaginary conies in

conjugate imaginary planes meeting in an ultra-infinite line,

imaginary developable.

(21) Concave non-ruled hyperboloid of revolution. Curve
is two real conies whose planes meet in an ideal line, real

developable.

(22) Convex non-ruled hyperboloid of revolution. Absolute
curve two real conies whose planes meet in an ideal line,

imaginary developable.

(23) Ruled hyperboloid of revolution. Curve two real

conies whose planes meet in an ideal line, imaginary de-

velopable.
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(24) Semi-hyperboloid of revolution. The curve is a leal

conic, and an imaginary one in a real plane, the developable
is a real cone and an imaginary one.

(25) Elliptic paraboloid of revolution. The absolute curve

is an imaginary conic in an ultra-infinite plane, and two

imaginary generators not intersecting on the conic. The de-

velopable is an imaginary cone, and the same two generators.

(26) Tubular semi-hyperbolic paraboloid of revolution.

The curve is a real conic and two imaginary generators not

intersecting on it
;
the developable is the same two lines and

a real cone.

(27) Cup-shaped semi-hyperbolic paraboloid of revolution.

Real conic and two imaginary lines not meeting on it. Develop-
able same two lines and imaginary cone.

(28) Clifford surface. Curve and developable two generators
of each set.

D. Canal Surfaces.*

(29) Elliptic canal surface. Curve is two imaginary conies

whose planes meet in an actual line, developable imaginary.

(30) Non-ruled hyperbolic canal surface. Two real conies

whose planes meet in an actual line, developable two real

cones.

(31) Ruled hyperbolic canal surface. Curve two real conies

whose planes meet in an actual line, imaginary developable.

E. Spheres.

(32) Proper sphere. Curve is two coincident imaginary
conies, developable imaginary.

(33) Equidistant surface. Curve two real coincident conies,

developable two real coincident cones.

(34) Horocyclic surface. Curve and developable two con-

jugate imaginary intersecting generators, each counted twice.

In elliptic or spherical space the number of real varieties

will, of course, be much smaller. We have

(1) Non-ruled ellipsoid.

(2) Ruled ellipsoid.

(3) Prolate spheroid.

(4) Oblate spheroid.

(5) Ruled ellipsoid of revolution.

(6) Clifford surface.

(7) Sphere.
* Called Surfaces of Translation in the author's article '

Quadric Surfaces ',

loc. cit.
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It is worth mentioning that the Clifford surface of elliptic

space has real linear generators, while that in hyperbolic space
has not.

Let us next turn our attention to that class of quadrics
which we have termed central, and which are distinguished

by the existence of a non-degenerate tetrahedron (in the

protective vsense) self-conjugate with regard both to the surface

and the Absolute. The vertices of this tetrahedron shall be
called the centres of the surface, and its planes the axial planes.
When this tetrahedron is chosen as the basis of the coordinate

system, the Absolute may be written in the typical form
while the equation of the surface involves none but squared
terms.

Theorem 1. A centre of a Theorem I'. An axial plane
central quadric is equidistant of a central quadric bisects

from the intersections with a dihedral angle of every two
the surface of every line tangent planes to the surface

through this centre. which meet in a line of this

axial plane.

We obtain a good deal of information about our central

quadrics by enumerating the Cayleyan characteristics of their

curves of intersection with the Absolute, and the corresponding
developables. The curve is a twisted quartic of deficiency
one. Its osculating developable is of order eight and class

twelve. It has sixteen stationary tangent planes, thirty-eight
lines in every plane lie in two osculating planes, two secants,
i.e. two lines meeting the curve twice, pass every point not on
the curve, sixteen points in every plane are the intersection of

two tangents, eight double tangent planes pass through every

point. The developable will, of course, possess the dual

characteristics.

Theorem 2. Through an Theorem 2'. In an arbitrary

arbitrary point in space will plane there will be twelve

pass twelve planes cutting a points, vertices of cones cir-

central quadric in osculating cumscribed to a central

parabolas, eight planes of quadric which have stationary

parabolic section will pass contact with the cone of tan-

through an arbitrary line. An gents to the Absolute, eight

arbitrary point will be the points on an arbitrary line

centre of one section. Sixteen are vertices of circumscribed

planes cut the surface in horo- cones which touch the Abso-

cycles, sixteen points in an lute. An arbitrary plane will
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arbitrary plane are the centres be a plane of symmetry for
of circular sections, eight one circumscribed cone. Six-

planes of circular section pass teen points are vertices of

through an arbitrary point. circumscribed cones which
have four-plane contact with
the Absolute. Sixteen planes

through an arbitrary point are

perpendicular to the axes of

revolution of circumscribed
cones of revolution.

The planes of circular section are those which touch the
cones whose vertices are the centres of the quadric, and which

pass through the Absolute curve. It may be shown that not
more than six real planes of circular section will pass through
an actual point, and that only two of those will cut the surface
in proper circles.*

Let us write as the equation of a typical quadric

No two of the <;'s shall be equal, and none shall equal
zero.

The cones whose vertices are the centres and which pass
through the Absolute curves shall be called the focal cone*.

In like manner there will be four focal conies in the axial

planes. The equation of the focal cone whose vertex is O h

will be

2(c,-* fc)*<
a = 0. (2)

/

The focal conic in the corresponding axial plane will be

Let the reader show that each of these conies passes through
two foci of each other one.

We next seek the locus of points whence three mutually
tangent planes may be drawn to the surface. Let these be the

planes (v) 9 (w), (o>), and let the equation of the surface and

* See the author's '

Quadric Surfaces ', loc. cit., p. 164.
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the Absolute in plane coordinates be, in the Clebsch-Aronhold
notation ,.,uy

* = 0, ua
^

u>a = ^

vawu = wa o>a = a>nva = 0,

j Vy Wy (Dy
' = 0,

where (x) is the point of concurrence of the planes (v), (itf), (co).

Returning to actual coefficients, the coefficients of
x$Xj

will

vanish, for they involve y^y- or a
;

. a^ which are zero. We
shall find eventually

0..3

2 ch (Wl +Wm + (tm<'k)V = 0. (4)

//

This quadric is also the locus of points whence triads of

tangents to the Absolute are conjugate with regard to the

given quadric, hence interchanging y and a, we get the locus

of points whence triads of mutually perpendicular tangents

may be drawn to the quadric (1)

(5)

If the quadric be ruled, the former of these loci will intersect

it along a curve where generators of different sets intersect

at right angles.

Theorem 3. A line will meet Theorem 3'. The tangent
a central quadric and its focal planes to a central quadric
cones in five pairs of points and its focal conies through
with the same centres of a line form five sets of dihedral

gravity. angles with the same bisectors.

The proof of these two theorems is immediate.
If we mean by a diameter of a quadric, a line through

a centre, we see that we may pass from any set of three

concurrent conjugate diameters to any other such set through
that same centre by changing two diameters at a time, and

keeping the third one fixed. We may thus continually apply
Theorem 14, of Chapter XII. In the same way we may pass
from any set of three mutually perpendicular diameters to
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any other such set, and apply Theorem 15 of the same

chapter.

Theorem 4. The sum of the

squares of the tangents of the

/jth parts of the distances

from a centre of a central

quadric to three intersections

of the surface with three con-

jugate diameters through that

centre is constant.

Theorem 5. The sum of the

squares of the cotangents of

the /jth parts of the distances

from a centre of a central

quadric to three intersections

with the surface of three

mutually perpendicular lines

through that centre is con-

stant.

Theorem 4'. The sum of the

squares of the tangents of the

angles which an axial plane
.of a central quadric makes
with three tangent planes

through three conjugate lines

in that axial plane is con-

stant.

Theorem 5'. The sum of the

squares of the cotangents of

the angles which an axial

plane of a central quadric
makes with three tangent

planes through three mutually
perpendicular lines in that

axial plane is constant.

To find the values of the constants referred to in Theorems 4
and 5, we have but to choose a particular set of diameters,

say the intersections of the axial planes through Ojr We
thus get

c
i

)

K K 1C

A set of quadrics having the same absolute focal curve, and,

hence, the same focal cones, shall be called homothetic. I A set

inscribed in the same absolute developable, and possessing,
in consequence the same focal conies shall be called confocal.

Theorem 6. An arbitrary
line will meet a set of con-

focal quadrics in pairs of

points with the same centres

of gravity.

Theorem 7. Three homo-
thetic quadrics will touch an

arbitrary plane in three

mutually orthogonal points.

Theorem 6'. The tangent

planes to a set of confocal

quadrics through an arbitrary

line, form dihedral angles with
the same bisectors,

Theorem 7'. Three confocal

quadrics will pass through an

arbitrary point, and intersect

orthogonally.
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Let us now set up our system of elliptic coordinates as we
did in the plane

l. (8)

These coordinates (X) are inapplicable to points of the

Absolute ; we imagine that all such points are excluded from
consideration. The general equation for the system of quadrics

confocal with that given by (1) will be,* if we replace c^ by - >

c
i

0.,3 xr 2

2 = - W
If the roots be A

x ,
A2 ,

A
3 , we have

Y - /^- Ai)(^- A2)fa-^)
h " V (C*-Cfc) (CA -C|) (cA-Cm)

'

For the differential of distance we have

*2
(xx)(dxdx)-(xdx)* (flYrlY\ m\=

(^)2

- = (dXdZ). (11)

We wish to express this in terms of our elliptic coordinates.

It will be found that the coefficients of cZA d\
q
will vanish,

and, indeed, this is a priori evident if we have in mind that

our coordinate system is a triply orthogonal one, and the

general formulae for orthogonal curves, as will be shown in

Chapter XV, are the same for euclidean as for non-euclidean

space. We thus get

cfo* 1 frfr-

~V
If we give to ch each of its four values, divide the terms into

partial fractions and reconibine, we got

The analogy to the corresponding formula in euclidean space
is striking.

* The residue of the present chapter is closely analogous to the treatment
of the corresponding euclidean problem given by Klein in his *

Einleitung in

COOLIDQE L
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The cones whose vertices are all at an arbitrary point, anc

which are circumscribed to a set of confocal quadrics, wil
themselves be confocal, i.e. they will have four cornmoi

tangent planes which touch the Absolute. Any two of thes<

cones will intersect orthogonally. This shows that the con

gruence of lines tangent to two confocal quadrics will b<

a normal one, the edges of regression of their developabl<
surfaces being geodesies of the quadrics. These facts, wel
known in the euclidean case, will be proved for the non
euclidean one in Chapter XVI. Notice that we get th<

system of geodesies of a quadric by means of its oo3 commor

tangents with confocal quadrics. The difficulties which aris<

for special positions, as umbilical points, need not conceri

us here.

The equation of the cone whose vertex is (Y) and whicl
circumscribes the quadric (1) will be

0..3 y 2 0..3 -jrg p " 3

2* i *S? ^i *S?

'-A C-A

Putting X = Y+dY we get the differential form

_

Let us change this also to the elliptic form. We notice

that the coefficients of the expressions d\
p dK^ will be

for the axial planes of the cones will be given by tan

gents to

A
p
= 0, A

g
= 0, A

r
= 0.

The QO l confocal cones form a one-parameter family all

touching the same tangent planes to the cone ds2 = 0. The

die hdhere Geometric
1

, lithographed notes, GOttingen, 1893, pp. 38-78, and

Staude,
' Fadenconstruktion des Ellipsoids/ Mathematiscke Anncden, vol. xx,

1882. Staude returns to the subject in his Die Fokaleigenschaften der Fldchefi

zweiter Qrdnung t Leipzig, 1896. This book is intended as a supplement to tlu

usual textbooks on analytic geometry, and is somewhat prolix in its attempts
at simplicity.
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equation of one cone of the family may be thrown into

the form

where L is a function of A. Hence the general form will be

2

It remains to find the value of Lp -~p. It is clearly a poly-

nomial in powers of X, which vanishes only when A =
A^,

for then only shall we have d\p
* 0. We thus get

^-fi^VV-X)",
where A

p
is a constant. Again, as two of these confocal

quadrics contain every line through the vertex, we must

have m = 1. Lastly, our expression is symmetrical in p, q, r,

hence A A A
^p A-q

== ^r*

We finally get for our cone

-

For progress along an arc of a geodesic of A r
= const, we

have

rfA,,
/ .__.V^r_

(\,-*)II(c -V

A, / 22Z2L =0,

so that the problem of finding the geodesies of a quadric

depends merely upon elliptic integrals. If we take Af
= A,

L2
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we have double tangents to the surface, i.e. rectilinear

generators,

(iX^ (tXn

0..3

The general differential of arc on a surface X
r
= const, is

\>-\iHAp- x
r) 7% . (\7~ AJ(x<7--

X
r) 7V o

0..3

we have, then, for a distance along a generator

k

This expression is independent of Xr> whence

Theorem 8. If from a set of

confocal centralquadricsaone-

parameter set of linear genera-
tors be so chosen that all

intersect the same oo 1 lines of

curvature of oo
1 confocal quad-

rics of the system, then any
two of these lines of curvature

will cut congruent distances

on all of these linear

generators.

Theorem 8'. If from a set of

homothotic central quadrics
a one-parameter set of linear

generators be so chosen that

all touch oo 1
developables

circumscribed to pairs of

quadrics of the homothetic

system, then the tangent

planes to any two of these

developables will determine

congruent dihedral angles
whose edges are the given
linear generators.

Theorem 8 may also be easily proved by showing that the

generators of a set of confocal quadrics form an isotropic

congruence, whereof much more later.*

* The general theorem concerning isotropic congruences upon wjiich this

depends will be proved in Chapter XVI, where also will be found a biblio-

graphy of the subject.
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We now seek for the expression for the element of distance

upon a common tangent to two confocal quadrics \, \'.

0..3

0..3

(14)

A/ rri (c<-
V *-

i

L- X

X

^,
A
? A,.

1 1 1

VA -Ar
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ds

2

Multiplying through by (A-A ), (x'-A ), and summing for

p = 1, 2, 3

ds 1

. (15)

For a geodesic on \ =
Xj,

whose tangent touches A' we have

7r
=

2

For a line of curvature common to X = A
1? A'= A

2

77
=

2 (17)

It is now necessary to look more closely into the signs
of the radicals in (15). We know that, at least in a restricted

domain, three confocal quadrics will pass through each point.
In elliptic space one of these will be ruled, and the other two

not ruled
; assuming, of course, that we are dealing with the

case of central quadrics. In hyperbolic space, two possible
cases can arise in the actual domain. If the developable be
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real, two ruled, and one non-ruled hyperboloid will pass

through each point. If it be imaginary we shall have an

ellipsoid, a ruled, and a not-ruled hyperboloid.* Let us

confine ourselves to this case, taking A
3 as the parameter of

the non-ruled hyperboloid, A
2 as that of the ruled one, while Aj

gives the ellipsoid. The elliptic case will follow immediately
if we suppress the word hyperboloid substituting ellipsoid,
In (15) let us assume that A refers to an ellipsoid, and A'

to a ruled hyperboloid. In two of the three actual axial

planes we shall have real focal conies. There will be a real

focal ellipse which, looked upon as an envelope, constitutes

the transition between the ellipsoid and the ruled hyperboloid.
It will be surrounded by all ellipsoids, and surround all ruled

hyperboloids. If we take a point in this axial plane, without
the focal ellipse, the ellipsoid and non-ruled hyperboloid will

subsist, the ruled hyperboloid, looked upon as a point locus,
will shrink into the plane counted doubly. The other real

focal conic will be a hyperbola, and will serve as a transition

between the two sorts of hyperboloids, looked upon as

envelopes. It will surround the non-ruled hyperboloids, but
be surrounded by the ruled ones. The plane counted doubly,
will replace a non-ruled hyperboloid for each point without
the hyperbola. If a point be taken in the remaining axial

plane, this plane, counted doubly, will replace a non-ruled

hyperboloid for each of its points. Similar considerations

will hold in the elliptic case.

Once more, let us look at the signs of the terms in (15).
d\

i will change sign as a point passes through an axial plane
that counts doubly in the A

?: family, or when passing along
a tangent to one of these surfaces, the point of contact is

traversed. On the other hand we see from (14) that when

d\i changes sign, the radical associated with it in (15) changes

sign also, and vice versa. The radical associated with d\
?t

will change sign, as we pass through a point of the axial plane
with an imaginary focal conic (which we shall call 7r3), and
for a point of the axial plane 7r2 of the focal hyperbola, which
is without this hyperbola. The radical with d\% will change
sign for points of TT

I
the plane of the focal ellipse without this

curve, or points of ?r2
within the focal hyperbola. The radical

with d!A, will change sign for points of TTI within the focal

ellipse.
We next suppose that a loop of inextensible thread is slung

about an ellipsoid A, and a confocal, ruled, one-sheeted hyper-
boloid A', and pulled taut at a point P. The loop is supposed

* See the Author's l

Quadric Surfaces', p. 1C5.
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to surround the ellipsoid, so that it winds partly on each of

the portions of the hyperboloid, which, in a restricted domain,
are separated by the ellipsoid. The form for the element of

length throughout the whole string will be that given by (15).
For when we pass from the ellipsoid to the hyperboloid we
pass along a geodesic whose tangent touches both surfaces,

and this will be true throughout the continuation of that

geodesic, for a geodesic is traced by a line rolling on a quadric,
and touching a confocal one. The same form of distance

element will hold for the rectilinear parts of the loop. We
see, moreover, that two, and only two surfaces, of a confocal

system will touch any line
;
hence A and A' are the only two

which will touch the rectilinear parts of the loop. Lastly,
Jet us limit ourselves to those regions of the plane where the

various portions of the loop may be named in order : straight,

hyperboloidal, ellipsoidal, hyperboloidal, ellipsoidal, straight.
The constant length of the thread may be written

p
A

i p*2= F^^ +
JA, JA2

We see that F3 can never vanish, for A and X
7
are the para-

meters of an ellipsoid and ruled hyperboloid respectively,
while A3

refers to a non-ruled hyperboloid. It will become
infinite four times, twice when the loop passes 7r2

the plane
of the focal hyperbola, and twice when it passes 7r3

. We may,
however, integrate right up to these limits, and, as we have

seen, cZA3 changes sign with the radical. We thus have

pA 3 pr3

^3=
JA3

JA3

= 4 *\d\* = const,

We may approach the second integral in the same spirit.

F% will become infinite twice when the loop passes the plane
of the focal ellipse ir

lt
It will vanish throughout those two

portions of the loop that lie on the ruled hyperboloid A2
= A',

and these two are separated by an intersection with TTV We
have then

pX 2 p\' pr, pA' PC! pA
F

2d\2 =\ F
2d\2 \

F2
d\

2 + \ f\d\s\ F
2
d\2 + \

JA2 JA2 JA' Jc, JV Jc,

r
v

= 4 F
2
d\2

=
Jc,

const.
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We must, in conclusion, consider the first integral. It will

never become infinite, but will vanish along those two portions

of the loop which lie on the ellipsoid A = Ar We have

therefore :

f

A

>
1
cZx

1
=

f

X

J^dXt
-

fV^ =
af J^A! =

JA, JA, JA A
We have therefore, since the first two integrals and the

sum are constant,
= const.,

and the locus of the moving point is an ellipsoid. Lastly, let

the ellipsoid and hyperboloid shrink down to the focal ellipse

and focal hyperbola respectively, we have in the limiting case :

Theorem 9. If an ellipse and hyperbola in mutually perpen-
dicular planes pass each through two foci of the other, and

if a loop of inextensible thread be slung around the ellipse

and pulled taut at a point P in such a way that it meets

the two curves alternately, then the locus of P will be an

ellipsoid confocal with the given ellipse and hyperbola.



CHAPTER XIV

AREAS AND VOLUMES

THE subjects urea and volume offer some of the most

striking points of disparity between euclidean and non-

euclidean geometry.* A first notable difference arises from
the fact that, in the non-euclidean cases, two different func-

tions of a triangle appear to play the role of the euclidean

area. The first is present in the analoga of those formulae
which give the area in terms of the sides and angles ;

the

second appears when the area is defined as the limit of a

sum, i. e. as a definite integral. We shall reserve the name
area for the second of these, giving to the first the name

amplitude.^
Let us, as in elementary geometry, use the letters A, B, C

to indicate, either the vertices of a triangle, or the measures
of its angles. We assume that these points are real, and,
in the hyperbolic case, situated in the actual domain. We
shall define triangle as in Chapter II. We might carry

through the same sort of work for any three points, but.

as we saw in the closing pages of Chapter VII, we should

thereby be compelled, in the hyperbolic case at least, to

introduce certain very delicate considerations as to algebraic

sign, not only in our analytic expressions, but even in the

trigonometric formulae first introduced in Chapter IV.

We begin by rewriting IV. 9

. l> . <'
A be a

sin
j
sin r cos A = cos T cos y cos 7

1C 1C K 1C iC

This formula, established for one region, is seen at once to

hold for all the others.

* For a bibliographical account of fcho subject-matter of the present chapter
see the dissertation of Darinmoyer, Die Oberjldchen- itnd Volumeriberechnu'ny fur
Lobatschefskijsche Rdumo, Gbttingen, 1904.

delle Science di Torino, vol. xxviii, 1893. Unfortunately the author gives, p. 20
?

.an incorrect formula for the volume of a tetrahedron.
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. b . c . A
sin T sin 7 sm A

k k

= sin2 7 sin2 -
7

cos2 T cos2 7 + 2 cos T cos T cos r cos2
7 r

L k k k k k k k k\

1 cos2
r cos2

7 cos2 7 + 2 cos r cos ,- cos
j

The right-hand side is symmetrical in the three letters a, 6, r,

so that we may write

. 6 . c . . . c . a . . a . .

sin 7 sin 7 sin ^1 = sin 7 sin
7
sin B = sm 7 sin 7 sm (7

fi/ rC A/ A/ /i/ A/

1 COS 7 COS 7

COS 7 1 COS
a

COS 7 COS 7 1
& K

Iii the real domain, if the measures of sides and angles be
taken positively, the left side is essentially negative in the

hyperbolic case, and positive in the elliptic, so that the
radical on the right must be chosen accordingly. It will

vanish only when the three points are collinear (under the

restrictions made at the outset of this chapter), and shall bo
called the Sine Amplitude of the triangle, written sin (ABC).

Let the reader show that if the coordinates of A, B, C be

(,'), (y), (z) respectively

(xx)(xy)(xz)

* (ABC) = . MJfo) M - xy
(2)

We may rewrite (1) in the form

sin A sin B sin G sin (ABO)

sin ~

. h
sm 7-

a --; - (3)

sin T sm T sm -

k k k

If -4', B', C' be the points where the sides of the triangle
meet the perpendiculars from the vertices, we have

. a . AA' . ft . Bff . o . CC' .
, A

-n . ...

in 7 sm ~ sm 7 sm - ~ sm r sm = sm (ABC). (4)k k k k k k
sin
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We see at once the close analogy of the sine amplitude of a

non-euclidean triangle to double area of a euclidean triangle.

Let the reader show that

Lim. p = 0, k2 sin (ABC) = 2 Area A ABC.

A function correlative to the sine amplitude may be

obtained from the correlative formula

sin B i^in G cos r = cos B cos (7+ cos A.
k

sin B sin C sin 7 = sin C sin A sin T = sin A sin J5 sin T
if if /fIV A/ ft/

1 cos (7 cos B
cos 1 cos A
cos 5 cos .A 1

= sin (ale). (5)

This > in the elliptic case, pure imaginary in the hyper-
bolic

6 .

L T sin 7 . / i \
k k sm (abc) /f.

(t>j

. a
sin r

sin A sin B sin G sin J. sinB sin (7

GO'
sin A sin r- = sin B sin -r- = sin G sin r- sin (ale). (7)

A/ A/ A/

C

sin (A ftd\

(*)

. a
sin T

k

. 6
sm r

yfc

sm-

sin

sinA
sin

sn
_ k - sin (^-^g)

sin6Y sin (a6c)

-sin^sin-
/C A /u

^
sin sin (7

'

If

COS^. =

sin
-|
J. =

= 2s,

a I e
cos v cos -r cos 7

/{/ A/ A/

. 6 . r
'

sin T sin 7
/c fc

s

. b . c
sm r sin r
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cos =

ctn fA =

. s . s~a
sm sm

~ir
. 6 . c

sin T sin T
k tc

. s . 8
sm 7- sin -7

k k

sm .. sm
A;

^n i A pr\ 9 I . s . s a . s 6 .sin (.4.00) ^
/ am y sm 7 sin - -v si

\J k k k

In like manner, let us put

)l
^

J

. SC
sin j

.
, a r cos o- cos (a- -

v
sin

r=
L

:
-

.

sm ^ sin (7

COS -k -=- =

i
a _ fCOS (vB) COS ((rc)"!

-jy y - I 7 I

A; L cos <r cos((t a) J

(10)

sin (abc)
= 2 >/ cos a- cos (o- A) cos

(a- B) cos
(<r (7), (11)

: i

T
sin ^ -4 sin

-|
J? sin ^ (7 =

asinl^ sinV)_^
. a . b . e

sin r sm r sin T

. 8'

sm-j =
sin (a&c)

cos o- =

k 4 sin ^ J. sin J? sin

sin

A t ^ .6 , c
4 cos

-| j cos f T cos ^ r

(12)

(13)

It should be noticed that the denominator on the right of

equation (13) is essentially positive. The numerator is

negative in the hyperbolic caso, as we have already seen,
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but here also <r < - and cos o- > 0. In the elliptic case the
&

numerator is positive but a- > ^, cos or < 0.
A

In Chapter III we defined as the discrepancy of a triangle,
the absolute value of the difference between the sum of the

measures of the angles and TT. Let us now define as the

excess of our triangle the expression

This will have the same sign as
p-

> the measure of curvature

of space. We have

- e sin (ABC) n ..

sin- = cos o- = -
x-

i-^
--- (14)

2 a
,
b t c

^ '

4 cos ^ r:
cos ^ T:

cos 2 T

Passing to the limiting case where the triangle becomes

infinitesimal, we have

T . BUI (ABC) / a ,6 , c\Lim. - ^ = 4 lim. (cos f cos ^ T cos | r )

Bin|
= 4

lim. e = 4 lim. (ABC)

Theorem 1. In an infinitesimal triangle the limit of the

ratio of the excess to the product of the euclidean area and
the measure of curvature of space is unity.

Let us next examine the infinitesimal quadrilateral, whose
vertices are A,B,C, D. AB and CD shall intersect in // (actual
or ideal) while AC and BD intersect in K ; the latter two

points remaining at a finite distance from A, J5, (7, D.

.15 .CD
Bin, . sin-jr- .

A;
__ sin /t & sin A

sinl7
'

sin 5-- sin
fc

sin .4 , -,.
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. IS . AC . A
tn A r\ sm ~T~ sm T~ sm A

,. sin(CM.JB) v k k
lim. -7 ;^-,

' = lira.^-, .
-^~.-- - --

(DAB) . DB . DC . nsm -r- sm -y sm Z>
/C K

r AB.AC.swA
. DC. sin D

= 1.

We shall define as the area of an infinitesimal triangle
the common value of k2 times its excess, its half-amplitude,
and the euclidean expression for its area.

Theorem 2. If the opposite sides of an infinitesimal

quadrilateral do not intersect in points infinitesimally near
the vertices, the limit of the ratio of the areas of the triangles
into which it is divided by a diagonal is unity.

The sum of these two infinitesimal areas shall be called

the area of the infinitesimal quadrilateral ;
it will be equal

(always neglecting infinitesimals of
higher order) to the

product of two adjacent sides multiplied into the sine of the

included angle.

Suppose now that we have a region of the plane, connex

right up to the boundary, which is limited by one or more
closed curves, and let this be covered by a network of in-

finitesimal quadrilaterals of the sort just described. Let the

area of each of these be multiplied by the value for a point
therein of a continuous function of the coordinates of the

point. The limit of this sum as the individual areas tend

uniformly toward zero shall be called the surface integral of

the given function for the given area. The proof of the

existence of such a limit, and its independence of network

employed will be identical with that used in the correspond-

ing euclidean case, and need not detain us here.*

Definition. When the surface integral of the function 1

exists over a region of the plane, that integral shall be defined

as the area of the region.

Theorem 3. The area of a region of a plane is the sum of

the areas of any two regions into which it may be divided

provided that these two have no common area.

This follows immediately from the definition given above.

As an application of these principles let us determine the

* Conf. e.g. Picard, Traite cCAnalyse, first ed., Paris, 1891, vol. i, pp. 83-102.
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area of a triangle* It is the limit of the sum of the areas of

a network of infinitesimal triangles, or by (1) the limit

of the sum of k2 times their excesses. Now it is perfectly
clear that if a triangle be divided in two by a segment whose
extremities are a vertex and a point of the opposite side, the

excess of the original triangle is the sum of the excesses of

the parts, and we may establish our network by a repetition
of this process or division, hence *

Theorem 4, The area of a triangle is the quotient of the

excess divided by the measure of curvature of space,

Let us give a second demonstration of this fundamental
theorem with the aid of integration. It will be sufficient to

do so in the case of a right triangle, and we shall take a right

triangle with one angle at C the intersection of x
l
= 0, x% = 0,

the right angle being at B a point of the axis x2
= 0. We

may introduce polar coordinates

/* M
rf> M

- k tan
j-
cos

</>,
= k tan

j-
sin

</>,

the elements of arc along <j>
= const, and r = const, will be

be

(15)

T
dr and k sin

7
d

<f> respectively. The element of area will be
rC

C R r /
k / sin -.- dr = /c

2
( 1 cos

Jo k \ k

R\
) ,

/

tan
j
= tan~ sec

</>. (Ch. IV. (6).)

R cos rf>

COS -r =
k
~

r

y
c

Remembering that the limits for
</>

are and G

r

cos 2
</> + tan2 ^

k

* It is surprising to see how unsatisfactory are the proofs usually given for

this, the best-known theorem of non-euclidean geometry. In Friachauf,
Ekmente der absoluten Geometric, Leipzig, 1876, will be found a geometrical proof
applicable to the hyperbolic case but not, so far as I can see, to the elliptic,
and the same remark will apply to the book of Liebmann, cit. Manning,
loc. cit., makes an attempt at a general proof, but the use of intuition is

scarcely disguised. In Clebsch-Lendemann, Vorlesungen iiber Geometrie, Leipzig,

1891, vol. ii, p. 49, is a proof by integration, but the analysis is unnecessarily
complicated owing to the fact that, apparently, the author overlooked the
consideration that it is sufficient to prove the theorem for a right triangle.
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A 72 f
c'^ iArea = k2 I d$

/o /
/cos2

</>

\r

The first integral is k2C. If, further, we put sin <j>-=x,

<fa
. .r 55i

i $cT~^
= sm r cos T J

const

Hence our second integral will be

- A8

|
sin- 1

[sin
cos^1 \

c
.

This vanishes at the lower limit. On the other hand by
Chapter IV. (7) __

HC1

cos A sin C cos ,

k

our second integral becomes

Area = i2
(J. -ffi + C-w). (16)

Two regions with the same area may, naturally, have very
different shapes. There are, however, three simple cases

where the equivalence of area is immediately evident. First,

where the two figures are congruent ; second, when they are

composed of the same number of non-overlapping sub-regions

(i. e. sub-regions no two of which have in common a region
which has an area) congruent in pairs ; third, where by the

adjunction of pairs of mutually congruent non-overlapping

sub-regions to them, they may be transformed into congruent
regions. In this latter case they may be said to be equivalent

by completion.*

Definition. Given n successive coplanar segments (^A,),
(4&-4fc +1), (-4-i^i) so situated that no line other than one

through a point A i
can contain points of more than two of the

segments ;
the assemblage of all points of all segments whose

* The term equivalent by completion is borrowed from Halstd, loc. cit., p. 109.

The distinction between equivalent and equivalent by completion is, I believe, due

to Hilbert, loc. cit., p. 40. For an admirable discussion of the question of

area see Amaldi, in the fifth article in Enriques, Questioni riguardanti la geome-

tria elementare, Bologna, 1900.

COOLIDGE M
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extremities are points of the given segments shall be called a
convex polygon or, more simply, a polygon. The definition

of sides, vertices, and angles is immediate. If one vertex, say
A 19 be connected with all the others, the polygon will be
divided into 71 2 triangles, no two of which have in common
any area. The area of the polygon will thus be the sum of

the areas of these triangles. We may convince ourselves of

the compatibility of these statements as follows. A triangle
is certainly a polygon, and if a polygon of n 1 sides exist,

we may easily enlarge it to have n sides by taking an addi-

tional vertex near one side. On the other hand, if a polygon
of ?i-~l sides may be divided up in the manner suggested,
it is immediately evident that one of n sides may be so

divided also.

Theorem 5. The area of a convex polygon is the quotient of
the excess of the sum of its angles over (71 2)71 divided by
the measure of curvature of Space.

Let the reader show that the area of a proper circle is

(17)

The total areas of the elliptic and the spherical planes will be

respectively
2 77&2

,

In the hyperbolic plane regions may be found haviug any
desired area.

Our next undertaking shall be to see how far the methods
which we have established for studying areas are applicable
in three dimensions. We shall begin, as before, with ampli-
tudes, following, however, an analytical rather than a trigono-
metric method.

Let the vertices of a tetrahedron, as defined in Chapter II r

be A
s B, (7, D with the coordinates (&), (y), (z), (t) respectively.

The opposite faces shall be a, /3, y, 6 with coordinates (u), (v),

(w), (co),
so that, e. g.

r(coZ)
=

(Xxyz),

We shall define as sine amplitude of the tetrahedron

i

AA SB GO DD
COS -j COS -7 COS -5- COS ,

-

K K K K
sin (ABCD) =

| (axe) (yy) (zz) (tt) \
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_
V(zz)

We shall give to the radicals involved such signs that
k sine amplitude shall have the sign of k2

. Recalling the

concept of the moment of two lines introduced in Chapter IX,
we get

sin
-j~

sin
j~ (Moment AB, CD) = sin (ABCD). (19)

sin (ABC) =
V(xx) V(yy) v(zz)

Let A', B', C', Df
be the points where perpendiculars from

the vertices of a tetrahedron meet the opposite faces. Then

__
A A~r ry Ti/

sin (BCD) sin -r~ = sin (CDA) sin -y- = sin (DBA) sin

= sin (ABC) sin^- = sin (ABCD). (20)

If we mean by %-a/3 the dihedral angle of these two faces

^ a ^
cos 4_ a/3 = ""

xz) (xt)

(zy) (zz) (zt)

(ty) (tz) (tt)

I *\(xx)(yy)(zz)(tt)\ I ^\(xx}(yy)(zz)(tt}\

V *(x) v
A ft

sin (ABCD) sin ~
sin

sin (BCD) sin (4C7D) = sin (ABCD). (21)
-O..O

The geometry of lines through a point is an example of the

M 2
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geometry of the elliptic plane, -where k2 = 1. We may thus

speak of the sine amplitude of a trihedral angle

sin (45, 4C?, 4D) =

sin sin sin sin (45, 4C
Y

, AD) = sin (45CD). (22)

The reader will not fail to notice in formulae (19), (20), and

(22) the striking analogy between the sine amplitude and six

times the euclidean volume. There will be a function cor-

relative to sin (ABCD) which we shall call sin

sn sn (Moment 45, CD) = sin (aj3y5). (23)

sin (a/3y) sin sin
(a/3y5).

sm-

sin (ay6) sin

sin^_a6sin^_/38sin

mn(BCD) s

.

Sill ^

sin

= sin (a/3y8).

56, y6) = sin (a

(25)

(26)

sin (a/3y)

sin

sin (a/3y5)"

_ _
sin(/3y5)

"~

sin(y8a)

""
sin (8/3a j

Our two tetrahedral functions are connected by the relations

^ ^

sin (5CD) sin (CDA) sin (554) sin (45)

sin3

(a/3y5)

sin (/3y8) sin (y6a) sin (6j8a) sin (a/3y)
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The analogy between the sine amplitude and the sextuple
of the euclidean expression for the volume appears even more
distinctly in the infinitesimal domain.

Lim. sin (ABC) = ^IS . AC. sin . BAG
\\j

= ~-Area A ABC.
fc

2

Lim. sin (ABCD) = Km. (ABCD)

= ^ Vol. tetrahedron ABCD. (28)
A/

Following our previous analogy, suppose that we have six

planes, no three coaxal, passing by fours through four actual

or ideal, but not collinear points. Let the remaining inter-

sections be at a finite distance from the three chosen points,
but infinitesimally near one another. An infinitesimal

region will thus be formed, on the analogy of a euclidean

parallelepiped, which may be divided into six tctrahedra of

such sort that the limit 01 the ratio of the sine amplitudes, or

of the euclidean volumes, of any two is unity. Six times the

euclidean volume of any one of these tetrahedra may be defined

as the euclidean volume of the region.
So far the analogy between two and three dimensions has

been sufficiently good. Each time we have had a function

called sine amplitude corresponding in many particulars to

a simple multiple of the euclidean area or volume, and ap
proaching a multiple of the area or volume as a limit,

when the figure becomes infinitesimal. In the plane there

appeared, besides half the sine amplitude and the euclidean

area, a third expression, namely, the discrepancy or excess.

In three dimensions this function is, sad to relate, entirely

lacking ; that is to say, there is no simple function of the

measures of a tetrahedron which possesses the property that

when one tetrahedron is the logical sum of two others, the

function of the sum is the sum of the functions. It is the

lack of this function that renders the problem of non-
euclidean volumes difficult.*

Suppose, in general, that we have a three dimensional

region connex up to the boundary, and that we divide it

* It is highly interesting that in four dimensions a function playing the
role of the discrepancy appears once more. See Dehn, * Die eulersche Formel
in Zusammenhang mit dem Inhalt in der nicht-euklidischen Oeometrie,

1

Mathematische Annalen
f
vol. Ixi, 1906.
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into a number of extremely tiny tetrahedra. The limit of

the sum of the euclidean volume of each, multiplied by the

value for a point therein of a continuous function of the

coordinates of that point, as all the volumes approach zero

uniformly, shall be called the volume integral for that region
of that function. The proofs for the existence of that volume

integral, and its independence of the method of subdivision,
are analogous to those already referred to for the surface

integral. In particular, the volume integral of the function

unity shall be called the volume of the region. Two regions
will have the same volume if they be congruent, made up
of the same number of parts, mutually congruent in pairs,
or if by the adjunction of such pairs they may be completed
to be congruent.

If the limiting surface of a region be made up of a series of

plane surfaces, and if no line, not lying in a plane of the

surface, can contain more than two points of the surface, then

it is easy to show that the region may be divided up into a
number of tetrahedra, and the problem of finding the volume of

any such region reduces to the problem of finding the volume
of a tetrahedron. This problem may, in turn, be reduced
to that of finding the volume of a tetrahedron of particularly

simple structure. To begin with, we may assume that there

is one face which makes with the three others dihedral angles

whose measures are less than -> for the bisectors of the

dihedral angles of the original tetrahedron will always divide

it into smaller tetrahedra possessing this property. The per-

pendicular on the plane of this face, from the opposite vertex,

will, then, pass through a point within the face, and, with the

help of this perpendicular, we may subdivide into three

smaller tetrahedra, for each of which the line of one edge is

perpendicular to the plane of one face.

Consider, next, a tetrahedron where the line of one edge
is indeed perpendicular to the plane of a face. There are

two possibilities. First, in the plane of this face neither of

the face angles whose vertex is not at the foot of the

perpendicular is obtuse ; secondly, one of these angles is

obtuse. (The case where both were obtuse could not occur
in a small region.) In the first case we might draw a line

from the foot of the perpendicular to a point of the opposite

edge in this particular face, perpendicular to the line of

that edge, and thus, by a familiar theorem in elementary
geometry, which holds equally in the non-euclidean case,

divide the tetrahedron into two others, each of which possesses
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the property that the lines of two opposite edges are per-

pendicular to two of the faces. These we shall for the moment
all simplest type. In the second case, from the vertex of the

obtuse angle mentioned, draw a line perpendicular to the line

of the opposite edge in this particular face (and passing

through a point within this edge), and connect the intersection

with the vertex opposite this face. The tetrahedron will be
divided up into a tetrahedron of the simplest type, and one
of the sort considered in case 1. We have, then, merely to

consider the volume of a tetrahedron of the simplest type.
Let the vertices of the tetrahedron be J., J5, (7, 7), where AB

is perpendicular to BCD and DC perpendicular to ABC. Let a

plane perpendicular to AB contain a point Bl of (AB) whose
distance from A shall have the measure x

;
while this plane

meets (AC) and (AD) in C
l
and Dl respectively. The volume

of the region bounded by this plane, and an adjacent one of

the same type and the three faces through J., will be dx, mul-

tiplied by the surface integral over the A Bl
C

l
D

l
of the cosine

of the fc
th

part of the distance of a point from Blt (Cf. Ch.
IV. (2).) This integral takes a striking form.*

Let the distance from B
l

to a variable point P of the

triangle be r, while $ is the measure of 2jL Cl
B

l
P. We wish

to find

r r T v
k sin T cos r dr d<j>.

Let B^ meet (C1
D

1)
in EY The limits of integration for T

are and B
l
E

l ;
hence wo have merely to find

2 r
-

Jo
-.
k

Now C
1
D

1
is perpendicular to B^Cly hence

* The integration which follows is a very special case of a much more
general one for n dimensions given by Schlafli, Tfieoric der vietfachen Kontinuitat,

Zurich, 1901, p. 64t>. This paper of Schlaiii's is posthumous ;
it was originally

written in 1855, when the science of non-euciidean geometry had not reached
*

its present recognition. It is very general, extremely difficult reading, and
hampered by a fearful and wonderful terminology, e. g. our tetrahedron of the

simplest type is a special case of an Artiothoscheme. It is, however, a striking

piece of geometrical work. Schlafli gives a shorter account of his work in
his ' Reduction d'une integrate multiple qui comprend Tare d'un cercle et

1'aire d'un triangle spherique comme cas particuliers ', Lionville's Journal, vol.

xxii, 1855.



184 AKEAS AND VOLUMES CH.

.E. B,C\ E.G. . B& ^
B

l
G

l
,

= cos 7 cos ,

1 tan, 1 = tan \ sec
k k k k k

(Ch. IV. (5), (6).)

^ ___ kjo.j_i. . ^i/ -fJ/i VX

A/ A/ A/

Our required integral is then

/ P p rt /. T> rt
/I/

I . JJi\Ji 7 TTT x-y
A^ . JJjOj

Let the reader note the astonishing feature of this result,

namely, that it involves one side of a triangle directly, and
another trigonometrically.

Let the measure of the dihedral angle whose edge is (C^Z^)
be 0, this will also be the measure of %-AC^^ which is^the

plane angle of the dihedral one.

AB
cos = cos -

l
si

1
sin OdQ = r sin -

-.
-^ sin

/c ic

. B~C\sm ~

sm

* '=
,
sm sm

A;

We thus get for our volume the strange formula *

VoL = *- fc^da. (29)

We can easily express this integral in terms of 0,

tan i = sin
i tan ^ DAG = a sin '-

,

-r- = cn - cn = b ctn ^.
A/

Z.3
( ____

Vol. = j tan-1
[a v'l - 62 ctn2

]
d 0. (30)

* See Schlilfli, Reduction, p. 381, where it is stated that this integral cannot
be evaluated by integration by parts. This same integral was discovered,

apparently independently, by Richmond,
* The Volume of a Tetrahedron in

Elliptic Space/ Quarterly Journal of Mathematics, vol. xxxiv, 1902, p. 175.
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This formula apparently represents about as close an

approach as can be made towards finding the volume of this

tetrahedron, for, in the general case,* it does not seem possible
to effect the quadrature in terms of elementary functions.

If a right triangle be rotated completely about one of the
sides adjacent to the right angle, the figure so generated shall

be called a cone of revolution. The volume within the surface

may be found as follows. Let the vertex of the cone be A
and the centre of the base 0, while P is a point within the

cone. Let Q be the intersection of (AO) with a perpendicular
from P, while the base circle meets the plane AOP in B.

(AB) shall meet PQ in R. Let us also write

AB = s, ZK = r, = k, 4-0AB = 0.

P^K rh pan- op (T
.
= /v am^-coa^f-

Jo Jo Jo & A;

nv~
R OP OP
mn^eo&^-

)
'f* &

AO r
tan ~ = tan T cos 0.

1C K (Oh. V. (6).)

dAQ =
cos sec2

7 dr
k

1 + cos2 tan2
\

sin - = sin r sin 0.
A/

Vol. = 7T&
2 sin2 ^ cos 6

tan2

1 4- cos
2 tan2

-dr.

Put tan = x.

*
Schlafli, Vielfache Kontinuitcit, p. 95

; gives a formula for tho special case

whore the sum of the squares of the cosines of the dihedral angles is equal
to unity. The proof is highly intricate, and not suitable to reproduce here.
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tan-*

Vol. = 7r&
3 cos sin2 -

2\7T^~2 ^m

= 7T/0
3 COS

r"**-
Jo

[1
~l

*

tan" 1 te cos 0) tan" 1#
COS0 Jo

]* (31)

To find the volume within a proper sphere, where the

distance from the centre to every point of the surface has the

constant value R,
PR

pTT
P27T O

Vol. = Jc
2

\

sin2

f sin dr d
Jo Jo Jo

f
/lf

sin 2

Jo

(82)

Let the reader show that the total volumes of elliptic and
of spherical space, where k = 1 will be, respectively,

7T
2

, 27T
2

.

* This formula is given without sufficiently detailed proof by Frischauf,
loc. cit., p. 99. A tedious demonstration was subsequently worked out by
Von Frank,

* Der Ktfrperinhalt des senkrechteii Cylinders und.Kegels in rler

absoluten Geometrie,* Grunerts Archioen, vol. lix, 1876.



CHAPTER XV

INTRODUCTION TO DIFFERENTIAL GEOMETRY

THE task which we shall undertake in the present chapter
is to develop the differential geometry of curves and surfaces

in non-euclidean space.* We shall introduce a notable sim-

plification in our work by abandoning homogeneous coor-

dinates, and assuming that

(xx) = W. (1)

In the elliptic case we shall take XQ ^ ; in the hyperbolic,

X Q
= , XQ j> for all real points.

Of course in exceptional cases, where we wish to include

points of the Absolute or beyond, this proceeding is not

legitimate ;
we shall therefore assume, unless we specifically

state the contrary, that we are limiting ourselves to a real

region, where no absolute or ultra infinite points are included

in the hyperbolic case. We shall, further, have for the

distance of two points (#), (#').

d _ (xx
f

)
COS ~=T

"

; ..
~

9 UJLJUL -T- -, . I W /
/* /'*^ /* //**
/I/ A/ /o /l/

When ai/= x,^ -f dx^ we have for the square of the differential

of distance

, ,, tth'" -, n \XX) \CtXCtX) \XCvX)
l* _ y/ow ^_ > / \ / \ r

,
x + dx) = k^

y (xdx) = \ (dxdx),

ds2 = (dxdx). (3)

We shall mean by an analytic curve, such a curve that the

coordinates of its points are analytic functions of a single
variable. The formulae developed in this chapter will hold

* The developments of this chapter follow the general scheme worked out
for the euclidoan case in Biarichi-Lukat, Vorlesungen uber Diffirentialgeometrie,

Leipzig, 1899, Chapters I, III, IV, and VI. In Chapters XXI and XXII of the
same work will be found a different development of the non-euclidean case.

It is, however, so general, yet so concise, as to be scarcely suitable to serve

as an introduction to the subject.
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equally well under the supposition that the functions and
their first three partial derivatives exist and are finite in our

region, but the gain in generality is of little interest to the

geometer, and we shall assume from here on that when we
speak of curve we mean analytic curve.

Let us imagine that at a chosen point of a curve, say P, a

tangent is drawn. We shall take two near points P' and P"
on the curve and tangent respectively, so situated near P and

on the same side of the normal plane that PP' = PP". Then
we shall define *

,.

lim. ------- 5

PP"
as the curvature of the given curve at that point. If we
compare with Chapter XI. (2), and define as the osculating
circle to a curve at a point, the limit of the circle through
that and two adjacent points, we shall have

Theorem 1. The curvature of a curve at any point is equal
to that of its osculating circle, and is equal to the absolute

value of the product of the square root of the curvature of

space and the cotangent of the /c
th

part of the distance of each

point of the circle from its centre.

Let us now suppose that the equations of our curve are

written in the form

Then for a point on the tangent we shall have coordinates

To get the value of X

(XX) = xx = k\ (xti)
= 0,

Ar

,
=

Developing by the binomial theorem, and rejecting powers
of (t )

above the second

* This definition is taken from Bianchi, loc. cit., p. 603. It is there
ascribed to Voss.
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Subtracting from the series development of x^ t
we get for

our curvature - *

P

r2 1
(rr"<Y"\ 4- (v<r

n
\('r''r'\ 4- If'w\* (v\vU \h ) "i T tt \ >*J\fj j \ *AS \fj j "T" ~-j~i \vU vU t \vU

\ / i& \ > / yu* \ / N

A/ A/

P
2
~

(x'xj

1
__ (a'VQ _ ^ ^

Theorem 2. The square of the curvature of a curve is the

square of its curvature treated as a curve in a four-dimensional

euclidean space, minus the measure of curvature of the non-
euclidean space.

It will be convenient to consider, besides our point (x),

three other points allied to it. (t) shall be orthogonal to (x)
and on the tangent, (0) orthogonal to (x) on the principal

normal, and () orthogonal to (x) on the binormal. These

three will replace the direction cosines of tangent, principal
normal, and binormal, which figure so prominently in the

euclidean theory. In hyperbolic space these points lie without
the actual domain to which we suppose (x) confined.

(f\ /^,-\ (r\ (t*\ (t\ (r\
\tAjlif \JU^J V^C/ "~~*

\ ^/ \ / Y**/

If a point trace an infinitesimal arc tfo, the angle of the

/d s

corresponding absolute polar planes is /
-^-

*

^\/ A/

We shall, hereafter, take as our parameter on the given
curve s, the length of arc, so that

*
~~

da
' ~~

As (t) lies on the tangent, its coordinates will be of the form

(tt)
= (xx) = /c

2
, (to)

= 0, (^/) = 0,

ti
- /< (5)

For the point (z) we shall have

(zx)
=

(zx'}
=

(xx')
=

(x'x')+ (xx") = 0,

(zz)
= (xx)=tf, (x'x')=l.
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)- (6)

To determine we shall have the conditions

^ = P ~\yxx'x"\. (7)

We shall define the torsion of our curve as the limit of the
ratio of the angle of two successive osculating planes to the
differential of arc. We thus get

1
. .

k 3T"
'

(8)

Reverting to our formulae (5) and (6)

<**<_** S. /9^
da
~

P

~
k (y)

(atf = (off)
= (a"0 = )

= ('O = (&') = 0.

Hence rff

7 /x , ,
. , ,. ..= (xz) (xz) = (^0 )

= 0,

or, more specifically

We have also , ,

The reader will see at once that (9), (10), (11) ai^e the

analoga of Frenet's formulae for euclidean curves. Y

We have, so far, overlooked the question of the sign of the

torsion, but that is well determined from the above formulae,
and it is important now to find the geometric difference

between the case where the torsion is negative, and that

where it is positive. We shall carry through the work for

the elliptic case only, the hyperbolic may be treated in the

same way, but it is wiser there to replace the coordinates

(x) by (x).

As before we shall choose s as the independent variable,
so that

(aiVO = 0, (0V) =
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The sign of t
{ (which may be ideal) will be found from (5),

that of z$ from (6), and that of
$ from (7), while the sign

of T will be given by (10).
The equation of the plane of the tangent and binomial

wil1 be
\Xxt\=(Xx) + k2

(Xx") = 0.

Putting in the coordinates of a near-by point of the curve,

1C ~"
As2__ &2

(As)
2

and this is essentially positive, so that, in general, the curve
will not cross this plane here. Again, we see by (6) that

we may give to a point on the principal normal close to (x)
the coordinates

Substituting in the equation of the plane we get

so that this will lie on the same side as the curve if e > 0.

Let us call positive that part of the curve near our point for

which As > 0. The positive part of the tangent shall be that

which lies on the same side of the normal plane as the

positive part of the curve, while that part of the principal
normal shall be called positive which lies on the same side of

the plane of tangent and binormal as does the curve. Let us
find the Plueckerian coordinates of a ray from x

i
+ x/^s on

the positive part of the tangent to # + #/' on the positive

part of the principal normal. We get

Pit
= e

Xi

X
i Xj'

4- As
x

:i

6 AS
X*

In like manner for a ray from (x) to a point on the positive

part of the curve

we get

?/rf
=

8 <**"*"

The relative moment of these two rays, as defined at the

close of Chapter IX, will be
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The factors outside of the determinant are all, by hypothesis,

positive, so that the sign depends merely upon that of the

determinant, and this by (7) is equal to
. ,

'

Ic

Now

Hence the relative moment will have the sign of

= -

Theorem 3. The torsion at a general point of a curve is

positive when the relative moment of a ray thence to a point
on the positive part of the curve, and a ray from a point on
the positive part of the tangent to one on the positive part of

the principal normal is negative ; when the latter product is

positive, the torsion is negative.

Intuitively stated this means that the torsion is positive
when the curve resembles a left-hand screw, otherwise

negative.
We shall next take up the evolutes of a curve. Let (x)

be a point of an evolute. Then

Xi .

-jJ = sm T -= -

as It p

flrp ,

Remembering that ^~ = kt^ while ^ is on the principal
tts

normal of the evolute.

Theorem 4. A tangent to an analytic curve at a general

point will be in the osculating plane at the corresponding
point of any evolute.

Since (x) lies in the normal plane at (x), we may write

dw tf Z:

^ +
fc
+U -

.. du dv

Now -y^ is linearly dependent on (x) and (x),
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and, for the same reason, the assemblage of all terms in ()
and (z) must be a linear combination of (x) and (#), and so

proportional to wo} Xj = u^
du
3?-

du p

~cte

~~

kT
u 1 dp p

T +
k

~

i t /

tan-1 /

To get (w) we have
&2
K,

,

< + 0,- 1-)
cos

( + C) + | ^ sin (a +

The coordinates of the point of the line (x) (x) orthogonal
to (x) will be

_^

,

A AC -f"
-~"--.rrr-r=irrrr-==.-r=i-- = U,

= . _
, x _ C_^L.?)

JL

~~

JL
k k

The point in question will therefore have the coordinates

(i sin (o- + C) + t cos (o- -f- (7).
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This gives us the significance of <r, namely (<r + C) is the kih

part of the distance from this point to (z), i. e.
(a- 4- C) repre-

sents the angle which this normal makes with the principal
normal. If, then, we take two evolutes of our curve the

angle between their corresponding tangents, i. e. those which
meet on the involute, is

Theorem 5. Corresponding tangents to two evolutes of

a curve meet at a constant angle.

Theorem 6. If the generators of a developable surface be

turned through a constant angle about the tangents to one
of their orthogonal trajectories, the resulting surface is

developable.

Theorem 7. The tangents to an evolute of a plane curve
make a constant angle with the plane of the curve.

The foregoing theorems and formulae exhibit sufficiently
the close analogy between tho differential theory of curves

in euclidean and in non-euclidean space. It is our next task

to take up the theory of surfaces, and we shall find a no
less striking analogy there. We shall mean by an analytic

surface the locus of a point whose coordinates are analytic
functions of two independent parameters. We shall exclude

from consideration all singular points of such surfaces. If

the parameters be (u) and (v), we shall have for the squared
distance element

ds2 = Edu2 + 2Fdudv + Gdv2
,

'<)X <>Xrr /# <^

F=(r-

(13)

This is a positive definite form in the elliptic case, and in

the actual domain of hyperbolic space, to which we shall

restrict ourselves. The discriminant, under this same restric-

tion, will always be greater than zero, for it will vanish only
when the tangent plane to the surface is also tangent to the

Absolute.

The equation of the tangent plane at (x) will be

CV
= 0.
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The Absolute pole of this plane will be

^
rx-.

(14)

We shall consistently use the letter (y) throughout the

present chapter to indicate this point. The equation of the

plane through the normal, and the point (x + dx), will be

(Xx) (xx) (x~

E F

0..

The cosine of the angle which this plane makes with that

through the normal and the point (x + bx), or the cosine of
the angle of the two arcs from (x) to (x + dx) and (x + b x),
will be

Edit, bu + F(du bv + udv) + Odv bv
(15)

The two will be mutually perpendicular if

= 0.

The condition for perpendicularity between the parameter
curves will be

The equation of the tangent plane at (x -f dx) is

= 0.

Neglecting differentials of higher order than the first, we
have

TT < <

XX --
;-

U e V "ev

[i

7du

^x <)
2x

I

~l .,

<y t6 dv2
1 J

N2
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The line of intersection with the tangent plane at (x) will be

found by equating to zero separately the first and the last

four terms. This line will contain the point (x -f- bx) if

Ddu bu + D'(du bv + dvbu) -f D"dvbv = 0.

D = - -^L^r.^-
,

D' =

"\ "\ "\ >.

D" = (17)

The signs of D, Z)', D" to be determined presently.
These are the equations for tangents to conjugate systems

of curves, or, briefly put, the equations determining differ-

entials in conjugate directions. The parameter curves will

be mutually conjugate if

V = 0. (18)

The differential equation for self-conjugate, or asymptotic
lines, will be

Ddu2 + Zlfdu.dv -f D"dv* = 0. (19)

Returning to the point (y), the pole of the tangent plane,
we have

(an/)
=

(ycfa)
= (xdy) = 0,

fix
\*v d

= DcZu2
-f 2D'dwdv -f J9"c?v8 . (20)

These equations will determine the signs of Z>, J/, D".
Under what circumstances will the normals at two adjacent

points intersect, i.e. when will their minimum distance be
an infinitesimal of higher order than the element of arc?

Geometrically we see that the characteristic of the two

adjacent tangent planes must be perpendicular to its conjugate.

Conversely, when we do progress along such an infinitesimal

arc, the tangent plane may be said to rotate about a line
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perpendicular to the element of progression, and adjacent
normals are coplanar. At any general point of the surface,

except at an umbilical point where the involution of conjugate

tangents is made up of mutually perpendicular tangents,
there will be just two tangents which are mutually conjugate
and mutually perpendicular, and these give the elements
desired.

This fairly plausible geometrical reasoning may easily be

put on a sound analytical basis. The necessary and sufficient

condition that the four points (03), (y), (x + dx), (y + dy) should
be coplanar is

| yxdxdy \

= 0,

(xx) (xdx)

x

(xdy)

x ,

Edtt + Fdv Ddu+D'dv
Fdu+Gdv J)'d

= 0.

= 0.

by (14)

(21)

This is the Jacobian of the binary homogeneous forms (13)
and (20), and gives the two tangents which are both mutually
perpendicular and mutually conjugate ; the indeterminatiou

mentioned above occurs in the case where

Theorem 8. The normals to a surface may be assembled
into two families of developable surfaces. Each normal, with
the exception of those at umbilical points, lies in one surface

of each family.

The integral curves of the differential equation (20) are

called lilies of curvature. We see at once that

Theorem 9. If two surfaces intersect along a line which is

a line of curvature for each, they intersect at a constant

angle, and if two surfaces intersect at a constant angle along
a curve which is a line of curvature for one it is a line of

curvature for the other.

This is the theorem of Joachimsthal, well known in the

euclidean case. No less celebrated is the beautiful theorem

of Dupin.

Theorem 10. In any triply orthogonal system of surfaces,

the curves of intersection are lines of curvature.
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Let the three families of surfaces be given by the equations

As the parameter lines are, in every case, mutually per-

pendicular

(oX

o X \ /oX v X \ /uX o X \ /dx u*
1X *\

__
) -f ( I

= (
~'

I + I

_ /_^ ^
")
+ ( ")

= O t

/ ^^\ /^fl/ <^^\ /^^ ^^'\ / ^x ^x\ n
( x J = (^ )= ( )

=
( )

== 0,

X r

The vanishing of D' and ^ proves our theorem. Our state-

ment in Chapter XIII that confocal quadrics intersect in lines

of curvature is hereby justified.
A surface all of whose curves are lines of curvature must

be a sphere. The normal at any point P will determine, with

any other point Q of the surface, a plane. The normals to

the surface along this curve, will, by hypothesis, generate an
evolute, and hence, by (7) make a fixed angle with the plane ;

and this angle must be null, since, by hypothesis, one normal
lies in the plane. Hence the normals at P and Q intersect, or

all normals must pass through one point. Evidently the

orthogonal surface to a bundle of concurrent lines is a
sphere.

Let us suppose that we have a conformal transformation of

space. It will carry a triply orthogonal system of surfaces

into another such system, hence a line of curvature into a line

of curvature. It will, therefore, carry any surface all of

whose curves are lines of curvature into another such surface,

hence

Theorem 11. Every conformal transformation of space
carries a sphere into a sphere.

Of course a plane is here regarded as a special case of a

sphere.
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Let us now examine the normals along a line of curvature.

Let r be the distance from the point (x) to the intersection

of the normal there with the adjacent normal, a point whose
coordinates shall be called (x).

r . r
x = x cos T sm ri T lli

sm r 5

daT* dx: r dy,- . r r . r r~\ dr= _^ COS --p sin-_ XiSm-r ^COSy -yds ds k ds k \_ k * l
k] d$

Now, by hypothesis, (-T;)
is linearly dependent on (x)

and (y).
T . T

dxi cos r dy$ sin , = \(xi -f fxy^).

But (xdx) = (aJcZy)
=

(y^fe)
= (yc%) = (ajy)

= 0,

A =
fx
= 0,

cfa^
=

cZ^ tan y >

In particular, let us take as parameter lines the lines of

curvature
^xi r

i ^y<> ^x
<; *.

r* <>yi
r-* = tan -f ^ >

~~^ = tan-/ ^p ,

Oit A; au (3v /c 0?;

y

(dxdy) =---
rf-it

2
4-

tan -,- tan-,-

A/

du* + ~-^~~~ dv*. (22)

In the general case,

Edu+Fdv= -

Fdu 4- Gdv = - tan
j

7*

Eliminating tan r we get our previous differential equation
A/

for the lines of curvature. On the other hand, if we eliminate

du, dv we get
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(DD"- D' 2
) tan

2 + [ED"+ GD- 2FD'] tan j + (EG- F-) = 0.
A/ 1C

(23)
1 1 ED"+GD-2FD'

; ; r ,

+
: . r

g

~
& tan ,

; i tan -/
k K

These last two expressions shall be called the mean relative

curvature and the total relative curvature, respectively.

They are, by XL (2),
the sum and the product of the curva-

tures of normal sections through the tangents to the lines of

curvature. Notice that they are absolute simultaneous
invariants of the two binary forms (13), (20).

Let us now look at the more general question of the

curvature of a curve on our surface. As, by (4), this does not
involve derivatives of higher order than the second, the

curvature at any point of a curve of the surface is identical

with that of the curve of intersection of the osculating plane
with the surface. Along our curve u and v will be functions

of s the parameter of length of arc, so that, using our previous
notation,

7 f^* du c)' dv~]/ .
/ I *

I I - I .L
'l

IV
I N / ' ^v 7 IL<w 668 dv ds_\

The cosine of the angle which the principal normal to this

curve makes with the normal to the surface may be written

(yz)COS (r = -f 'T<>~ >

Of dtj X% COS or=
"7 r 7 '

"

p ds K p

^ Vi _ ,
j

- MI /du^ 9
c)
2
i/^ du dv

t
^*

I \ ~6 I ~7 I "t" <w

+ 2Fdudv +
The indetermination of sign may be used to make the

curvature essentially positive.
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Theorem 12. Meunier's. The curvature of a curve on a
surface at any point is equal to the curvature of the normal
section with the same tangent divided by the cosine of the

angle which the principal normal makes with the normal to

the surface.

Reverting to our previous expressions r
15

r
2 and taking the

lines of curvature as parameter lines, the curvature of the

normal sections through the tangents to the lines of curvature

1
_

,

i
,

/,;tanj fctan^

dj.-
{
= tan dy{ , bx{

= tan byh

r_^_A3

+ _j_An.
7x r\ds)

*
7 . rMs) V

k tan .

- k tan -~
I

or, if be the angle which the chosen tangent makes with
that to v = cons.

1 - cos2
sin 2

f) k tan / k tan -

A* k

Theorem 13. The normal sections of a surface at any point

having the greatest and the least curvature are those deter-

mined by the tangents to the lines of curvature.

Theorem 14. If on each tangent to a surface at a point
a distance be laid off' equal to the square root of the reciprocal
of the measure of curvature of the normal section with that

tangent, the locus of the points so formed will be a central

conic.

We leave to the reader the task of filling in the details of

the proof of the last theorem, they will come very easily from

considering the equation of a central conic as given in

Chapter XII. Of course the theorem is untrue at a point
where the tangents to the two lines of curvature coincide.

This central conic is called Dupin's Indicatrix in the

euclidean case, and we may well use the same name in

the non-euclidean case also.
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The curvature of a surface bears a close relation to the

element of arc of the point (y).

-(dxdy) =

(dydy)

_~
'

EG-F'1

EG-F*

\<)V<>V,

-(edu
2 + 2fdudv + gdv

= l
~~

^ r
i i

' >

tan -y
1 tan -^

/u

(-c^
2 + 2JW, ofw+ Grfy2

) +

7*

tanÂ >

. (25)

An asymptotic curve has the property that as a point moves

along it, the tangent plane to the surface tends to rotate

about the tangent to this curve, i. e. the tangent plane to the

surface is the osculating plane to the curve, and the normal
to the surface is the binormal to the curve. In dealing with
such a curve the point (y) on the normal will replace the

point we previously called (). The torsion of any asymptotic
line will be, by (8),

kds

But, in the case of an asymptotic curve, the second part
of the right-hand side of (25) will be zero, while the paren-
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thesis in the first part is equal to (its
2

, hence, for an asymptotic

It is not difficult to see that the two asymptotic lines at a

point, when real, have torsion with opposite signs, we have
but to look at the special case of a ruled quadric, hence :

Theorem 15. The two asymptotic lines at a point, when
real, have torsions equal to the two square roots of the

negative of the total relative curvature of the surface.

Theorem 16. In any surface of constant total relative

curvature, the torsion of every asymptotic line is constant

and equal to a square root of the total relative curvature, and
the necessary and sufficient condition that a surface should

have constant total relative curvature is that the asymptotic
lines of one set should have constant torsion. Under these

circumstances the asymptotic lines of the other set will have a

constant torsion equal to the negative of that already given,
and the square of either torsion will be the total relative

curvature.

In speaking of the total curvature of a surface we have
used the word relative. It is now time to explain why that

adjective is chosen. Let us try to express our total relative

curvature in terms of E, F, G and their derivatives. We have

ZP
B

* V '

72* ^u. rs
7c

2 tan y1 tan -f-k k

For the sake of simplicity we shall take as parameter lines

u, v the isotropic curves of the surface, i. e. those whose

tangents also touch the Absolute. We assume that our

surmce is not a developable circumscribed to the Absolute,
and that in the region considered no tangent plane to the

surface touches the Absolute. The isotropic curves at every

point will therefore be distinct. We shall have

E=.G = 0, (xx)
= P,
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*F

OH.

1

A:
2

F
F

_jF

A;
2

F
^~

F

~
f

t> n \o n" c t}~.

-U* i r

-F*
~

F* I

i

F (
"

'

The fii\st expression on the right is the Gaussian curvature
of a two-dimensional manifold whose squared distance element
is 2Fdudv*

Theorem 17.f The total relative curvature of a surface is

equal to the difference between its total Gaussian curvature
and the measure of curvature of space.

The Gaussian curvature may also be called the total

absolute curvature. Notice that this theorem remains true
in euclidean space where the measure of curvature is 0.

The problem of finding all surfaces of total relative curva-
ture zero is quickly solved. Let us assume that

r t

tan = GO .

1C

Then, by an equation just preceding (22), as

and there will be the same tangent plane all along u = const.

Theorem 18. A surface of total relative curvature zero is

a developable.
*

Cf. Bianchi, loc. cit., p. C8. f Cf. Bianchi, loc. cit., p. 609.
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Clearly every developable has total relative curvature zero.

Much more interest attaches to the surfaces of total Gaussian
curvature zero, i.e. those which are developable upon the

euclidean plane. The total relative curvature will be
Â/

There is an advantage in considering the hyperbolic and

elliptic cases separately.
In the hyperbolic case let (y) be the centre of a sphere, the

constant distance thence to points of the surface being r

If the surface is to be actual (xx) k2
. If the sphere be

a proper one (yy) = k2
, the total relative curvature will be

> -.-n- , In the case of a horocyclic surface we may not
/b

assume (yy) k2
,
but must treat (y) as homogeneous co-

ordinates where (yy) = 0. We get then

1__ _ _ 1

7 9 , o r
~~

k*
'

k2 tan2
T

Theorem 19.* The horocyclic surface of hyperbolic space is

developable on the euclidean plane.

In elliptic space there is a peculiarly notable class of

surfaces of Gaussian curvature zero, ruled surfaces. We have

already seen one example, the Clifford Surface of Chapter X.
This quadric, be it remembered, cuts the Absolute in two

generators of each set, and its own generators form an or-

thogonal system. Now Dupin's indicatrix shows that the

normal sections of greatest and of least curvature will be

determined by tangents bisecting the angles of the two

generators, and the planes of these normal sections will cut

the surface in two circles whose axes are the axes of revolution

of the surface, and whose centres lie on these axes. The
centres are thus mutually orthogonal points, hence the total

relative curvature is
7 2

> and the Gaussian curvature is zero.
/c*

4

This statement was given without proof in Chapter X. We
notice also that the generators of either set are paratactic,
and the question arises, will not this fact alone constitute

a sufficient condition that a surface should have Gaussian
curvature zero ?

* Cf. Manning, loc. cit., p. 52
; Killing, Lie Grundlagen der Geometric, Pader-

born, 1898, p. 33.
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Let us imagine that we have a surface generated by co 1

paratactic lines.* The parameter v shall give the actual dis-

tance measured on each line from an orthogonal trajectory
v = const. We have for our distance element

We know, moreover, by Chapter IX that if two lines be

paratactic they have an infinite number of common per-

pendiculars on which they determine congruent distances.

Hence E is a function of u alone, and we may choose 11 so

that it shall be equal to unity

ds2 =du2 + dv*, (27)

and the Gaussian curvature is zero.

Conversely, suppose that we have a ruled surface of

Gaussian curvature zero. The square of the element of arc

may be written

Since the Gaussian curvature is zero

On the other hand we may write our surface parametrically
in the form

v*
'i
= /<() cos *- + <t>i(u)

sin

with the additional conditions

kF=
(</>/')

cos2 -
(/*') sin^ = 0, (ft') = (tf>)

= 0.

These are identical with previous

E = [*

only when

We may, then, take

* For an interesting treatment of these surfaces see Bianchi,
' Le superficie

a, curvatura nulla nella geometria ellitica/ Annali di Matematica, Serie 2,

Tomo 24, 1896.



xv DIFFERENTIAL GEOMETRY 207

and this shows that two adjacent generators determine equal
distances on all their orthogonal trajectories, and so are

paratactic.

Theorem 20. The necessary and sufficient condition that

a ruled surface in elliptic space should have Gaussian curva-

ture zero is that its generators should be paratactic.

Another highly interesting criterion for a surface of constant

Gaussian curvature zero is obtained as follows :

^x x \ __ /x <)x\ __ fix <*x\
__

/ x\ __

*u dudt;/
~

V5tT2 ^v)
~

Vdu aW ~
'

\
X
^u2)

The coordinates of the absolute pole of the tangent plane
are

The coordinates of the absolute pole of the osculating plane
to the orthogonal trajectory of the generators, i. e. to a curve

v = const, are
a

rx

This shows that the generators are binormals to their

orthogonal trajectories. Our given surface may be written

in the form
v v= xu cos

= dv2
4- cos2 T 4-

jf^
^ L ^u2 *

This reduces to

when, and only when

difi + dv2
,

Theorem 21. The necessary and sufficient condition that a
ruled surface should have Gaussian curvature zero is that it

should be generated by the binormals to a curve whose

squared torsion is equal to the measure of curvature of space.

The proof given holds equally in hyperbolic space ; the

surface is, however, in that case imaginary. If we compare
theorems 16 and 21, we get



208 INTKODUCTION TO CH.

Theorem 22. The necessary and sufficient condition that

it should be possible to assemble the normals to a surface into

one parameter families of left (right) paratactics, is that the

given surface should have Gaussian curvature zero. It will,

then, be possible to assemble the normals into families of

right (left) paratactics also. The intersections of the given
surface with the various families of paratactics will be the

asymptotic lines of the former.

We shall, as in euclidean space, define as the geodesic
curvature at any point of a curve on our surface, the curvature

of its orthogonal projection on the tangent plane at that point.

Let us denote this by >, while o- is the angle which the
p
q

osculating plane makes with the tangent plane to the surface.

Then, applying Meunier's theorem to the projecting cone

! = C09<T
.

(28)
Pg P

As a first exercise, assuming F = 0, let us find the geodesic
curvature of one of our parameter lines

dsv = </~G dv,

_
' =

~ -
P d* k </GU>v\Jd c

To find cos <r we must determine the distance of (z) from
the point orthogonal to (x) on the curve v = const., i. e. to the

o- 1 fix
cos - = i

1

(29)
f) / 1.1 t 1 r\fll \ f

Pg

For the other parameter line

Let us now, more generally, find the geodesic curvature of

the curve . .

V = V (U).
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Once more we shall make use of the isotropic parameters,
so that

ds =
,' du

9 ' '2"
1
"

*u*v
v + ^"^ + "^

I;

For an orthogonal trajectory to this curve

cv
~

~7 == V .

What will be the nature of those curves whose geodesic
curvature vanishes, i. e. those curves whose osculating planes

pass through the normal? These shall be called geodesic
lines, and, evidently, we shall have

dv VJ *

This merely tells us that our given curve is an extremal,
i. e. the first variation of the length between two fixed points
is zero. If we assume that two sufficiently near points can

always be connected by a curve of minimum length
* we

shall get

* For a proof of tlie existence of this curve, see Bolzn, Lectures on the Calculus

of Variations, Chicago, 1904, Ch. VIII.
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Theorem 23. The curve of shortest length between two

points of a surface is a geodesic line.

Remembering 21, we have further

Theorem 24. The orthogonal trajectories of a family of

paratactic lines are geodesies of the surface generated by
these lines.

If we consider the two planes through the normal to a

surface and the two tangents to the lines of curvature, we
see that they are mutually perpendicular, and that each

touches the focal surface of the congruence of normals at the

point of intersection of the two adjacent normals in the other

plane.*

Theorem 25. In any congruence of normals, the edges of

regression of the developable surfaces are geodesies of the

focal surfaces of the congruence.
The osculating plane to any straight line is indeterminate ;

the line is, therefore, a geodesic for all space ; a result also

evident from Chapter II. 30. It is also clear that as the

expressions for the geodesic curvature of a parameter line in

terms of E, F, G and their derivatives are the same in cuclidean

and in non-euclidean space, and the formula for the distance

element is written in the same shape, so will the formula for

the geodesic curvature of any curve be the same. We might,
for instance, have given this formula in terms of the Beltrami
invariants. We have, however, purposely avoided the intro-

duction of these into the present work, and will therefore

merely refer the reader to the current textbooks in differential

geometry,f
As a last problem in the differential geometry of surfaces

let us take up that of minimal surfaces. To begin with, what
will be the element of area ? It is perfectly clear that the

expression for this will be the same as that in the euclidean

case. The sine of the angle formed by the parameter lines

will be, by (15) _
and the area of the elementary quadrilateral

* For a simple proof of this general theorem see Picard, loc. cit., vol. i,

pp 307, 308.

f e. g. Blanch i, Differentialgeometrie, cit. p. 253.
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Let us, in particular, take the lines of curvature as para-
meter lines. The formula for the area enclosed by a given
curve will be

N^EGdudv.

Let us compare this with the area enclosed by this curve

upon a surface reached by laying off on each normal an

extremely small distance w (uv).

_ . w . w

7__dx = w
--

w
-j

i r w . w~\ j

-r a^cos-, 7/^sm-r mo.

The squared element of arc for this surface will be by (22)

w sin
. w

sin -j-W 1C

COS -7- -f-

1C
.

T
2

I

This becomes, when we neglect powers of w above the first,

For the surface element we have

"fc

X

VEO +
F

, ' 1 .
* 9

tan -
7
- tan -

7
~

Ic k
tan ,* tan -

7

~

dudv.

Developing by the binomial theorem, and neglecting higher

powers of w we have

VEO

IVt M
^tan / + tan '

wIk k
M tV\

tan -r tan 7

2

k k

dudv.
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If wo define as a minimal surface one where the first

variation of the area is zero, certainly a necessary condition,
we have

Theorem 26. The necessary and sufficient condition that a

surface should be minimal is that the mean relative curvature
should be zero.

We see from (23) that the numerator of the expression for

the relative mean curvature is the simultaneous invariant

of (13) and (20), and vanishes when, and only when, the

tangents to the asymptotic lines are harmonically separated

by those to the isotropic ones, hence

Theorem 27. The necessary and sufficient condition that a
surface should be minimal is that the asymptotic lines should
form an orthogonal system.

This theorem justifies our statement in Chapter X that a

Clifford surface is a minimal surface. It is very interesting
that in non-euclidean space we should have an algebraic
minimal surface (other than the plane) whose order is as low
as two.

We may go one long step further towards the solution of

the problem of minimal surfaces, namely, exhibit the differ-

ential equations on which they depend.*
We shall once more take as parameter lines the isotropic

ones. These will form a conjugate system, since they are

harmonically separated by the asymptotic lines, hence

-n
JO

It is merely necessary to find F and take for (x) four

solutions of (3) subject to the restriction (ocx)
= k2

.

Let us put

* Cf. Darboux, Lemons sur la theoric generate des surfaces, vol. iii, ch. xiv, Paris,
1894. The reader is strongly urged to read this interesting chapter in con-

nection with the present work.
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which is certainly possible, since

xii~ ~
ou c

We easily find

3Px$ 1 <>F ^Xi ~

Now

<$v \<)u
2
<H

Hence

If

The total relative curvature is zero, and the surface is

developable. In a developable surface the asymptotic lines

fall together, by (24); hence a minimal developable must be

circumscribed to the Absolute, and cannot be real in the

actual domain. Conversely it is clear that every developable
circumscribed to the Absolute is a minimal surface in that its

asymptotic lines are mutually perpendicular, even though it

lie in a region of our space where the concept area has not

been defined.

In the second case let us suppose (/> (u) ^ 0.

Let us replace u by H(u) so that ( - - ~
j
=

; Then

replace the letter Tb by the letter u once more.

In like manner

=
* F ^v Zv k*

<x>
Multiplying through by -^-~2

and adding

1 1 *F_DF
k2 * F^ Yv
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On the other hand

yFL - (^ *J?\ fa~~
2

(~<Px

^2X\ 1 /^X ^

^?^Tv" k*(^u^

_ /^ ^,x _ 1
2"~

2 2 '

F *H Zv'

*F. (32)F ^ J

Lastly, let us put p - #iw

tf-^~ + sin2w = 0. (33)
%u<*v

'

When F has been found we may, as already noted, find (x)
from (31).



CHAPTER XVI

DIFFERENTIAL LINE-GEOMETRY

IN Chapter IX we gave the foundations of the Pluckerian

line-geometry, and the fundamental invariants of a metrical

character ; in Chapter X we saw what advantages arose from

taking the cross instead of the line as element, and intro-

ducing suitable coordinates. Chapter XV was given to the

differential geometry of curves and surfaces. It is the object
of the present chapter to draw all of these threads together
into a theory of differential line-geometry, and, in particular,
a theory of two-parameter line systems or congruences.*
We shall define as an analytic line-congruence a system

whose Pluckerian coordinates are analytic functions of two

independent parameters, say u and v. This is equivalent to

supposing that our lines are determined by two points, which
we may assume mutually orthogonal, whose coordinates aro

analytic functions of the two independent parameters in

question.

XJ^K^UV), yi
=

yi(u>v), (xx) = (yy) = lc\ (xy)
= (\ (I)

Following Rummer's classical method, we shall write the

following fundamental quadratic expression :

= Edit? + 2Fdndv + Qdv*,

&(dydy)-(xdy)* =

+ 2F'dudv + G'dv*. (2)

k*(dxdy) = edu* + (f+f)du,dv + gdv\

* The first part of the present chapter follows, with slight modifications,
a rather inaccessible memoir by Fibbi,

' I sistemi doppiamente infiniti di

raggi negli spazii di curvatura costante/ Annali della R. Scuola Normale Su-

periore, Pisa, 1891.
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(3)

(4)

(5)

(6)

The following relations will subsist between these various

expressions :

since

A2 y^

E = -~
2 [G'e* -2F'ef + E'f*].

~

(8)

1

(9)
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Notice that A and A' being square roots of positive definite

forms cannot vanish in the real domain.

We remember from Chapter IX, that two lines which are

not paratactic have two common perpendiculars meeting them
in pairs of mutually orthogonal points. Let us, as a first

problem, find where the common perpendicular to a line of

our congruence and an adjacent line meets the given line.

The coordinates of an arbitrary point of our line may be

written (#cos- + y sin -
j
while an arbitrary point of an

adjacent line will be X(x + dx) + ^(y + dy).

Let us begin by writing that the second of these points is

(7*
7*\

x sin r 2/ cos T.)
the point of the first line

orthogonal to the first point, while, on the other hand, the first

point lies in the absolute polar plane of p.(x + dx) \(y + dy).
There will result two linear homogeneous equations in A. and

/ut

whose determinant must be equated to zero. When this is

simplified in view of the identities

(xdx)= - (dxdx), (ydy) = - % (dydy),

(xdy) + (ydx) = -
(dxdy),

we shall have

/y> ryi

[k
2

%(dxdx)"\ sin -
(ydx) cos -=-

fC fC

M
ryt

- [P \(dy dy)] sin - (xdy) cos -
rC K>

(xdy) sin -
[!c

2- %(dydy)] cos

; t
=0- (10)

(ydx) sin =- + [k
2

| (dxdx)] cos
j

Casting aside infinitesimals above the second order

-
[k*(dxdx)

-
(ydx)

2
-k*(dydy) + (xdy)

2
] sin

r
cos ~ = 0,

fc fa

(edu
2 + (f+f)dudv + gdv

2
) ^cos

2

^
sin2

-}

+ [(E- E')du
2 + 2(F- F')dudv + (G- G')dv

2
]
sin ~ cos = 0. (11)
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This will give oo1 determinations for r in the general case

where

e :

(
f
~f) :

<J $ (E-E') : (F-F') : (G- G'), (12)

and, as we saw in Chapter X, Theorem 5, with the corre-

sponding elliptic case, these common perpendiculars will

generate a surface of the fourth order, analogous to the

euclidean cylindroid. We shall call a congruence where

inequality (12) holds a general
'

congruence.
Let us now ask what are the maximum and minimum

values for r in (11). Equating to zero the partial derivatives

to du and dv we get

= 0,
A/

P du+ gdv\ (tan
2 - 1

)

[(F- F')du + (G- G')dv] tan = 0.
A/

Eliminating r we have

\e(G-G')-fj(E-E')]dudv

V* = 0. (13)

Each root of this will give two values to tan - correspondingK

to two mutually orthogonal points. On the other hand, if we
eliminate duidv we get

- (F~ F') (/+/) + g (E-E')] (tan"
-

l)
tan

+ [(E-E') (G-G')-(F-F')*] t&n* = 0. (14)
fc

The left-hand side of this equation is the discriminant

of (11) looked upon as an equation in du : dv. It gives,

therefore, those points of the given line where the two per-

pendiculars coalesce. Such points shall be called 'limiting
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points '. They will determine two regions (when real) point
by point mutually orthogonal, which contain the intersections

of the line with the real common perpendiculars. In the

same way we might find limiting planes through the line

determining two dihedral angles whose faces are, in pairs,

mutually perpendicular, and which when real, with their

verticals, determine all planes wherein lie all real common
perpendiculars to the given line and its immediate neighbours.

Theorem 1. A line of a Theorem 1'. Through a

general analytic congruence line of a general analytic con-

contains four limiting points, gruence will pass four limiting

mutually orthogonal in pairs, planes, mutually perpendicu-
and these,when real, determine lar in pairs, and these, when
two real regions of the line real, determine two real re-

where it meets the real com- gions of the axial pencil
mon perpendiculars with ad- through the line which con-

jacent lines of the congruence, tain all planes wherein are

They are also the points where real common perpendiculars
the two perpendiculars coin- to the line and adjacent lines

cide. of the congruence. They are

also the planes in which the

two perpendiculars coincide.

We shall now look more closely into the question of the

reality of limiting points and places. We may so choose our

coordinate system that the equations of the line in question
shall be x

1
= x<z

= 0. Reverting to equation (8) of Chapter
X the equation of the ruled quartic surface will be, in the

hyberbolic case

a(^xQ
2 + x^)xI

x
2 + b(x1

z + x^)a
t

x.A
= 0. (15)

Let the reader show * that in the elliptic case we shall have

fo-aa) (X
2 + x^)xlx^(al + a2)(x^ + x/)x()

x.3
= 0. (15')

To find the limiting points on the line x
1

x
t 0, equate

to zero the discriminant of this looked upon as an equation in

#! : X2 or x
l

: x.A .

vV = 0. (16')

In like manner for the limiting planes we shall have

2(^2 + ^2)2 + 4a*x*X* = 0. (17)

a2 )
2
(x* + x*)- 4 fa

- atfx*x* = 0. (17')

* See the author's Dual Projectore Geometry, cit., p. 26.
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Notice that the centres of gravity of the limiting points
are (1, 0, 0, 0) (0, 0, 0, 1) ;

while the bisectors of the dihedral

angles of the limiting planes are (0, 1, 0, 0) (0, 0, 1, 0).

If we look more closely into the roots of the last four

equations we see that the roots of (16) are all real, those of

(17) all imaginary. As for the two equations (16') and (17')
the one will have real roots, the other imaginary ones, whence

TJieorem 2. In hyperbolic space the limiting points of an
actual line are real, and the limiting planes imaginary. In

elliptic space this may occur, or the planes may be all real

and the points all imaginary.

Giving to # : #3 one of the values from (16') we see that

Substituting in (15') we have

The four limiting points will yield but these two planes,
hence

Theorem 3. The perpen- Theorem 3'. The perpen-
diculars at the limiting points diculars in the limiting planes
line in two planes called meet the line in two points

'principal planes' whose di- called '

principal points
'

whose
hedral angles have the same centres of gravity are those of

bisectors as pairs of limiting two pairs of limiting points.

planes.

Reverting to (16') we see that we may also write

xo : X3
=

( v'ttj Va2) : ( A/% + Va2).

Let us pick out a pair of limiting points which are not

mutually orthogonal, say

2 , 0, 0, A/C^ A/a2) (v^-f Va2 , 0, 0,

The perpendicular from the point (x) to the line x
1
= #

2
=

meets it in the point (x^ 0, 0, x%). Calling d^ d2 the distances

thence to the limiting points just chosen we have

tan =
k

ttj -f-

(^- ^2)^0 +
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Further, let
(co)

be the angle which the plane through
ojj
= x^

= and (x) makes with the principal plane

x
l -f x.j,

== 0.

2 . 2cos 2
co = -y-

1
^ ^ , sin 2

co =

tan ^ cos2
co + tan^ sin 2

co = 0. (18)

This is, of course, the direct analog of Hamilton's well-

known formula for the cylindroid.*

Returning to the notations wherewith we opened the

present chapter, let us find the focal points of our line, i. e.

the points where it intersects adjacent lines of the congruence,
or rather, the points where the distance becomes infinitesimal

to a higher order. Here, if the focal point be

/ r
(x COST

we shall have

. , 7 x .

,/V
cos -f yi

sin
^
=

(xi + dx{)
cos -f- (yi + dy4)

sm
&
-

dx
i
cos T -f dyi

sin
j- j- (x-

sin y J/^
cos

-,-)
d?' = 0,

)tc/,r = (xdy),

r~

-f /^
2

L

c)'?/

Multiplying through by - : and adding, then multiplying

through by
- and adding again

/v /v

cos r + [-ff'cJttr + F'dv] sin T = 0,

+ gdv\ cos r -f [J^'cJu + Gr'dv] sin T = 0.
1C 1C

* For the Hamiltonian equation see Bianchi, Differentialgeometrie, cit., p. 26] .

For the non-euclidean form here given, cf. Fibbi, loc. cit., p. 57. Fibbi's work
is burdened with many long formulae

;
one cannot help admiring his skill

in handling such cumbersome expressions at all.
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Replacing (ydx) by (xdy) we have, similarly

[edu + fdv] sin ~ + \_Edw + Fdv] cos j = 0,

(19)A*
/y

x '

[/CM, + r/cfo;]
sin

j
+ [.FeZiH- Gdv] COST = 0.

Eliminating r

(E'f- Fe)du.* + [E'g
- F'(f-f) - G'e]du dv

+ (F<j-Gf)dv
2=0.

Eliminating du : dv

(E'G'
-FJ tan- J + [E'g

- F'(f+f) + G'e] tan ?'

/^ /c

ff) = Q
l

(21)
(/-.//') tan* + [JS<j-F(f+f) + Ge]

+ (EG-F2
)

Subtracting one of these equations from the other

-F*)-(<!g-fffl = 0. (22)

We see at once that the middle coefficients are identical in

(14) and (22), and these will vanish when, and only when, we
are measuring from a centre of gravity of the roots.

Theorem 4. The centres of Theorem 4'. The bisectors

gravity of the focal points are of the dihedral angles of two
identical with those of two focal planes are ideutical with

pairs of limiting points. those of two pairs of limiting

planes.

The focal properties of a congruence of normals are espe-

cially interesting. Here we may suppose that (y) is the

Absolute pole of the tangent plane to the surface described

by (x). We have then
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Suppose, conversely, that

/=/'
T . T

Let us put X}
= x$ cos ^ -f y$ sin ^ and show that we may

find T so that our lino is normal to the surface traced by (x).

For this it is necessary and sufficient that the point of the

line orthogonal to (x) should be orthogonal to every displace-

(7*
7*\

x sin r y cosy), we must
fc A//

have
7* _ 7*

sin j (xdx) cos T- (ydx)
= 0,

/V A/

(?/<rte)
= kdr,

and (ycfe) must be an exact differential, i. e.

,
,, /oox

/=/'

(23)

This condition can be put into a more geometrical form.

Lot us, in fact, find the necessary and sufficient condition that

the focal planes should be mutually perpendicular. Writing
their equations in the form

| Xxydx |

= 0,
| Xxybx \

= 0,

the numerator of the expression for the cosine of their angle
will be

k2
(ybx)

2
-*(bxbx) = /c

2

[k?(dxbx) (ydx) (ybx)].

(ydx) ^(dxdx) (dxbx)

For perpendicularity,

Edubn -f F(du bv + bu dv) -f Gdv bv = 0.

Now, by (20),

- fc5_ Fg-Gf rdw 5ul _ G
~~

Tllf^Pe
'

Idv
+

bv]
~~ ~

dvbv
~~

Tlf^e Idv bv
~~ ~

Ef-Fe
Hence

Let us give the name pseudo-normal to the absolute polar
of a normal congruence. We thus get
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Theorem 5. The necessary Theorem 5'* The necessary
and sufficient condition that and sufficient condition that a
a congruence should be normal congruence should be pseudo-
is that the focal planes through normal is that the focal points
each line should be mutually on each line should be mu-

perpendicular. tually orthogonal.

If we subtract one of the equivalent equations (20) from the

other, we get an equation which reduces to (13) when, and

only when
/=/.

Theorem 6. The necessary and sufficient condition that

a general congruence should be composed of normals is that

the focal points should coincide with a pair of limiting points.

In a normal congruence let us suppose that (x) traces a
surface to which the given lines are normal so that

(ydx) = -
(xdy) = 0.

Let us then put

sin ,
2ft
= a*sin- 2ft cos ,

~

where y is constant. We see at once that

(ydx) = -
(xdy) = 0.

Theorem 7. If a constant distance be laid off on each normal
to a surface from the foot, in such a way that the points
on adjacent normals are on the same side of the tangent

plane corresponding to either, the locus of the points so found

is a surface with the same normals as the original one.

Let us suppose that we have a normal congruence deter-

mined by mutually orthogonal points (x) and
(?/),

where

x$~Xi(uv) traces a surface, not one of the orthogonal tra-

jectories of the congruence. We shall choose as parameter
lines in this surface the isotropic curves, so that

x
__
"~"

\&

__

The sine of the angle which our given line makes with the

normal to this surface is
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Let all the lines of our congruence be reflected or refracted

in this surface in such a way that

sin 6 = n sin 0.

We must replace y by y where

- _ ^
4-

^ X ^X
I

1

^^{ ^ ^' ^ ^ '

It is easily seen that for the new congruence also

/=/'.
Theorem 8. If a normal congruence be subjected to any

finite number of reflections or refractions, the resulting con-

gruence is normal.

We shall now abandon the general congruence and assume

that, contrary to

There are two sharply distinct sub-cases which must not
be confused :

In either case, as we readily see, (11) is illusory, and there

is no ruled quartic determined by the common perpendiculars
to a line and its neighbours ; these perpendiculars will either

all meet the given line at one of two mutually orthogonal
points, or two adjacent lines will be paratactic, and have oo

l

common perpendiculars.
Our condition for focal points expressed in (23) was inde-

pendent of (12), and this shows that our two sub-cases just
mentioned differ in this, that the first is a normal congruence,
while the second is not. Let (x) be a point where our line

meets a set of perpendiculars, (y) being thus the other such

point. Then under our first hypothesis, we shall have

=/ =/= </
= <>.

We see that the focal points will fall into (x) and (y) likewise.

These are mutually orthogonal, and so by equation (26) of the

last Chapter, that the total relative curvature of the surface

will be
j- or the Gaussian curvature zero. We see also byk

theorem (22) of that chapter that it is possible to assemble the

lines of our congruence into families of left or right paratactics

according as we assemble them by means of the one or the

other set of asymptotic lines of the given surface. Conversely,
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if we have given a congruence of normals to a surface of

Gaussian curvature zero, two normals adjacent to a given one

are paratactic thereunto. There must be, then, two values of

du : do for which (11), looked upon as an equation in r, becomes

entirely illusory. Hence (24) must hold, and as we have
normal congruence (23) is also true.

We now make the second assumption

We shall still take (x) as a point where the line meets the

various common perpendiculars, so that we may put

We may take as coordinates of a focal plane

(uu) =
But by (20) this expression vanishes. Hence the focal

planes all touch the Absolute, and the focal surface must be

a developable circumscribed thereunto. It is clear that the

lines of such a congruence cannot bo assembled into paratactic
families.

This type of congruence shall be called
c

isotropic
'*

Let us take an isotropic congruence, or congruence of

normals to a surface of Gaussian curvature zero, and choose

(x) and (?/) so that

e = *(/+/) = g = 0,

T . T
Xj = x cos 7 -f y sin r >

k iv

ij* fy*

(dxdx) = cos2

Y (dxdx) -h sin
2 T

* The earliest discussion of these interesting congruences in non-euclidoaii

space will be found in the author's article ' Les congruences isotropes qui
servont a representer les fonctions d'une variable complexe*, Atti delict li.

Accademia ddle Scienze di Torino, xxxix, 1903, and xl, 1904. In the same
number of the same journal as the first of these will be found an article

by Biancht,
' Sulla rappresentazione di Clifford delle congruen/o rettilinee

nolle spazio ellitico.' Professor Bianchi uses the word '

isotropic
*
to cover

both what we have here denned as isotropic congruences, and also congruences
of normals to surfaces of Gaussian curvature zero, distinguishing the latter

by the name of * normal '. The author, on the other hand, included in his
definition of isotropic congruences those which, later, we shall define as
*

pseudo-isotropic '. A discussion of these definitions will be found in a note
at the beginning of the second of the author's articles.
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This expression will be unaltered if we change r into /.

Conversely, when such is the case, we must have (dxdy) = 0.

and the congruence will be either isotropic, or composed of

normals to a surface of Gaussian curvature zero.

Theorem 9. The necessary and sufficient condition that a

congruence should be either isotropic, or composed of normals
to a surface of Gaussian curvature zero, is that it should consist

of lines connecting corresponding points of two mutually
applicable surfaces, which pairs of points determine always
the same distance. The centres of gravity of these pairs of

points will be the points where the various lines meet the

common perpendiculars to themselves and the adjacent lines.

In elliptic (or spherical) space, there is advantage in study-

ing our last two types of congruence from a different point
of view, suggested by the developments of Chapter X.

Let us rewrite the equations (11) there given.

(WJi-^o) - (
x
j VU

- xk Vj) = r
X

i (
25

)

These equations were originally written under the supposi-
tion that (x) and (y) were homogeneous. At present if we so

choose the unit of measure that k = 1 we have

GA>Y) - (r
X

rX) = 1. (26)

These coordinates (jX), ( rX) were formerly looked upon
as giving the lines through the origin (1, 0, 0, 0) respectively
left and right paratactic to the given line. They may now be
looked upon as coordinates of two points of two unit spheres
of euclidean space, called, respectively, the left and right

representing spheres.* The representation is not, however,

unique. On the one hand the two lines of a cross will be

represented by the same points, on the other, we get the same
line if we replace either representing point by its diametrical

opposite. We shall avoid ambiguity by assuming that each
line is doubly overlaid with two opposite

4

rays ', meaning
thereby a line with a sense or sequence attached to its points,
as indicated in the beginning of Chapter V or end of Chapter
IX. We shall assume that by reversing the signs in one triad

of coordinates we replace our ray by a ray on the absolute

* This representation was first published independently by Study,
4 Zur

nichteuklidischen etc. ,'
and Fubini,

' II parallelismo di Clifford negli spazii

ellitici,' Annali della K. Scuola Normale di Pisa, Vol. ix, 1900. The latter writer
does not, however, distinguish with sufficient clearness between rays and
lines,

p 2
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polar of its line, while by reversing both sets of signs, we
replace the ray by its opposite.

Theorem 10. There is a perfect one to one correspondence
between the assemblage of all real rays of elliptic or spherical

space, and that of pairs of real points of two euclidean spheres.

Opposite rays of the same line will be represented by dia-

metrically opposite pairs of points, rays on mutually absolute

polar lines by identical points on one sphere and opposite

points of the other. Rays on left (right) paratactic lines will

be represented by identical or opposite points of the left (right)

sphere.

Two rays shall be said to be paratactic when their lines are.

Reverting to Theorem 12 of Chapter X.

Tlieorem 11. The perpendicular distances of the lines of two

rays or the angles of these rays are half the difference and
half the sum of the pairs of spherical distances of their repre-

senting points.

Theorem 12. The necessary and .sufficient condition that the

lines of two rays should intersect is that the spherical distances

of the pairs of representing points shoiild be equal ; each will

intersect the absolute polar of the other if these spherical
distances be supplementary.

Theorem 13. Each ray of a common perpendicular to the

lines of two rays will be represented by a pair of poles of two

great circles which connect the pairs of representing points.

It is clear that an analytic congruence may be represented
in the form

i
x

i
= zi't-M, r

x
i
= r^*M>

or else, in general,

l^i l
Xi(rXl fX-2 A)'

Two adjacent rays will intersect, or intersect one another's

polars if

)
= (d rXd rX).

The common perpendicular to two adjacent rays will have
coordinates

JL
i frXdtX |, rXi = ~ |

ZrXdX .rrr
The condition that a congruence should be either normal or

pseudo-normal is

= (d rXd rX),
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(r
Xd

rX)(d rXb rX)

from these

(dtfbtX) = (d rXb rX). (27)

Let us determine the significance of the double sign. If, in

particular, we take the congruence of normals to a sphere
whose centre is (1, 0, 0, 0) we shall get the equations

and this transformation keeps areas invariant in value and

sign. On the other hand, the congruence of rays in the

absolute polar of this plane will be

a transformation which changes the signs of all areas. Lastly,
we may pass from one normal congruence to another by a

continuous change, wherein the sign in equation (27) will not
be changed, hence *

Theorem 14. A normal con- Theorem 14'. A pseudo-

gruence will be represented normal congruence will be

by a relation between the two represented by a relation bc-

spheres which keeps areas in- tween the two spheres where
variant in actual value and the sum of correspond]"Dg areas

sign, and every such relation on the two is zero, and every
will give a normal congruence, such relation will give a

pseudo-normal congruence.

Let us next take an isotropic congruence. Here two
common perpendiculars to two adjacent lines necessarily
intersect, or each intersects the absolute polar of the other.

The same will hold for the absolute polar of an isotropic

congruence, a '

pseudo-isotropic
'

congruence, let us say. Such
a congruence will not have a focal surface at all, but a focal

curve, which lies on the Absolute. On the representing

spheres, in the case of either of these congruences, two inter-

secting arcs of one will make the same angle, in absolute

value, as the corresponding arcs on the other. In the par-
ticular case of the isotropic congruence of all lines through
the point (1, 0, 0, 0) the relation between the two representing

spheres is a directly conformal one, while in the case of the

pseudo-isotropic congruence of all lines in the plane (1, 0, 0, 0)
we have an inversely conformal relation. We may now repeat

* Cf. Study, loc. cit., p. 321 ; Fubini, p, 40.
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the reasoning by continuity used in the case of the normal

congruence, and get
*

Theorem 15. The necessary Theorem 15'. The neces-

and sufficient condition that a sary and sufficient condition

congruence should be isotropic that a congruence should be
is that the corresponding re- pseudo-isotropic is that the

lation between the represent- corresponding relation be-

ing spheres should be directly tweenthe representing spheres
conformal. should be inversely conformal.

Let us take up the isotropic case more fully. Any directly
conformal relation between the real domains of two euclidean

spheres of radius unity may be represented by an analytic
function of the complex variable. Let us give the coordinates

of points of our representing spheres in the following para-
metric form :

-U
7A .;>==--

'

L - 1^2+
A I>
= --

* -

YA o

We shall get a real ray when

In order to have a real directly conformal relation between
the two spheres, our transformation must be such as to carry
a rectilinear generator into another generator, i. e.

i i
'

ry \ ft l 7i7 i n> \ /OO\

For an inversely conformal transformation

1
~"~

1\ 2/' 2 IV I/* \ /

All will thus depend on the single analytic function u^z).
The opposite of the ray (u) (z) will be

>_ l ~>- l

t&j
'

9 ^i t

U.^ 3
?_

1
,

1
u2

= - -
, a/ = - -

.

w-t & \

* First given in the Author's first article on isotropic congruences, recently
cited.
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Let us now inquire under what circumstances the fol-

lowing equation will hold :

._ - ~
1V

*l
}

"ifa)

If this hold identically, the opposite of every ray of the

congruence will belong thereto. If not, there will still be

certain rays of the congruence for which it is true. To begin
with it will be satisfied by all rays of the congruence for

which
U

i
u2 -f 1 = 0, z^+1=0.

This amounts to putting

We saw in Chapter X that, interpreted in cross coordinates,
those are the equations which characterize an improper cross

of the second sort, which is made up of a pencil of tangents
to the Absolute. Such a pencil we may also call an improper
ray of the second sort. Let us see under what circumstances

such a ray (uz) will intersect a proper ray (uV) orthogonally.

Geometrically, we see that either the proper ray must pass

through the vertex of the pencil, or lie in the plane thereof,

and analytically we shall have

Uji62 4- 1 = %iZ2 + 1=0.

There are four solutions to these equations. By considering
a special case we are able to pick out those two where the ray
lies in the plane of the pencil

= u'1 J

1

or else

The proper ray (u
f

) (z') was supposed to belong to our

congruence. The condition that the improper one (u) (z) shall

also belong thereto will be
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Theorem 16.* The necessary and sufficient condition that

the opposite of a real ray of an isotropic congruence should

also belong thereunto is that the ray should be coplanar with

an improper ray of the second sort belonging to the con-

gruence. When the latter are present in infinite number in an
irreducible congruence, the congruence contains the opposite
of each of its rays.

The two cases here given may be still more sharply dis-

tinguished by geometrical considerations. The focal surface

of an isotropic congruence is a developable circumscribed to

the Absolute, and will have a real equation when the con-

gruence is real. There are two distinct possibilities ; first, the

equation of this surface is reducible in the rational domain ;

second, it is not. In the first case the surface is made up of

two conjugate imaginary portions ;
in the second there is one

portion which is its own conjugate imaginary. In the first

case there will be a finite number of planes which touch the

Absolute and also each of the two portions of the focal surface

at the same point, namely, those which touch the Absolute
at the points of intersection of the two curves of contact with
the two portions of the focal surface. In these planes only
shall we have improper rays of the second sort belonging to

the congruence. If, on the other hand, the focal surface be

irreducible, every point of the curve of contact may bo looked

upon as being in the intersection of two adjacent planes

tangent to the Absolute, and the focal surface which is its

own conjugate imaginary. The tangents at each of these

points will be improper rays of the second sort of the con-

gruence. Theorem 17 may now be given in a better form.

Theorem 17. The necessary and sufficient condition that

an isotropic congruence should contain the opposite of each
of its rays is that the focal surface should be irreducible.

It is very easy to observe the distinction between the two
cases in the case of the linear function

If (3 y, 8 = a, (29) is identically satisfied. But here
it will be seen that if we write

a = a + bi, y c + dl,

our congruence is nought else than the assemblage of all rays
through the point (a, o, c, d). The focal surface is the cone of

* Sec the Author's second note on isotropic congruences, p. 13.
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tangents thence to the Absolute, clearly its own conjugate

imaginary. On the other hand, when a, /3, y, b are not con-

nected by these relations, we shall have a line congruence of

the fourth order, and second class, as is easily verified. It is

well known * that a congruence of the second order and fourth

class has no focal surface, but a focal curve composed of two

conies, so our present congruence has as focal surface two

conjugate imaginary quadric cones which are circumscribed
to the Absolute. When their conjugate imaginary centres fall

together in a real point, we revert to the previous case.

When (u) and (z) are connected by the vanishing of a

polynomial of order m in i^ and order n in zv in the general
case where (31) does not hold identically, we shall have
a line-congruence of order (m-f w)

2
. When, however, (31) does

hold, we must subtract from this the order of the curve of

contact of the focal surface and Absolute, and then divide by
2 to allow for the fact that there are two opposite rays on
each line.

If
tt-j

be a function of ^
l
that possesses an essential singu-

larity corresponding to a certain value of zl} we see that as u^
takes all possible values (except at most two) in the immediate

neighbourhood, there will be a whole bundle of right paratactic
lines in the congruence. If % be periodic, there will be an
infinite number of lines of the congruence left paratactic to

each line thereof. If it
1
be one of the functions of the regular

bodies, we have a congruence which is transformed into itself

by a group of orthogonal substitutions in ( r
Ar

),
i. e. by a group

of left translations.

We have still to consider the congruence of normals to a

surface of Gaussian curvature zero in ray coordinates. Here
there will be oo

1

paratactics of each sort to each line. We
may therefore express faX) and

( rX) each as functions of one

independent variable, or merely write

tdX^XJ = t(,XlrXtrX.J = 0. (32)

All our work here developed for the elliptic case may be

brought into immediate relation with the hyperbolic case, and
in so doing we shall get to the inmost kernel of the whole
matter. The parameters u

l
v 2 will determine generators of

the left representing sphere. They have, however, a more
direct significance. For if it2 remain constant while t^ varies,

the left paratactics to the ray in question passing through the

point (1, 0, 0, 0) will trace a pencil, and this pencil will lie in

* Cf. Sturm, Gebilde ct'ster und zweiter Ordnung der Liniengcometrie, Leipzig,

1892-6, Vol. ii, p. 320.
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a plane tangent to the Absolute, for there is only one value

for Uj, namely,
--

,
which will make the moving ray tangent

'1^2

to the Absolute. When, therefore, u2 is fixed, one of the left

generators of the Absolute met by the ray in question is fixed,
and this shows that u

l
u2 are the parameters determining the

left generators which the ray intersects, while z
l z2 in like

manner determine the right generators.
If two rays meet the same two generators of one set they

are paratactic, i. e. their lines are. If they meet the same two

generators of different sets, they are either parallel or pseudo-
parallel. The conditions for parallelism or pseudo-parallelism
will be that two rays shall have the same value for one (u)
and for one (z). Let us, in fact, assume that the subscripts
are assigned to the letters u^u^ z^2

in such a way that a
direct conformal transformation, or isotropic congruence, is

given by equations (29). Such a congruence will contain cc
1

rays pseudo-parallel to a given ray, but only a finite number

parallel to it. The conditions for pseudo-parallelism will

thus be

On the other hand a pseudo-isotropic congruence will be

given by (30), and the conditions for parallelism will be

v^= uv 2
'= z^ or u/= 'U 2 , z{ = zv (34)

To pass to the hyperbolic case, let us now assume that

(lX) (rX) are two points of the hyperbolic Absolute, and that,

taken in order, they give a ray from dX) to (rX). Two rays
will be parallel if

(,Z) = OZ') or (rX]i
=

(rX').

Equations (33) will give the conditions for parataxy, while

(34) give those for pseudo-parallelism. We might push the

matter still further by distinguishing between syntaxy and

anti-taxy, synparallelism and anti-parallelism, but we shall

not enter into such questions here. Equations (29) will give
a congruence whose rays can be assembled into surfaces with

paratactic generators, i. e. a congruence of normals to a surface

of Gaussian curvature zero
; (30) will give an isotropic con-

gruence, while (32) will give a pseudo-isotropic congruence.
We may tabulate our results as follows.*

* The Author's attention was first called to this remarkable correspondence
by Professor Study in a letter in the summer of 1905. It is developed, without

proof, but in detail, in his second memoir,
* Ueber nichteuklidische und

Liniengeometrie,' Jahresbericht der deutschen Mathematikervereinigung, xv, 1906.
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Hyperbolic Space.

Ray.
Real ray in actual domain, or

pencil of tangents to Abso-
lute.

Real parallelism.

Imaginarypseudo-parallelism.
Imaginary parataxy.
Real congruence of normals to

a surface of Gaussian cur-

vature zero.

Real isotropic congruence.

Real pseudo-isotropic con-

Elliptic Space.

Ray.
Real ray.

Real parataxy.

Imaginary parallelism.

Imaginary pseudo-parallelism.
Real isotropic congruence.

Real pseudo-isotropic con-

gruence.
Real congruence of normals to

a surface of Gaussian cur-

vature zero.



CHAPTEK XVII

MULTIPLY CONNECTED SPACES

IN Chapters I and II we laid down a system of axioms
for our fundamental objects points and distances, and showed

how, thereby, we might build up the geometry of a restricted

region. We also saw that with the addition of an assumption
concerning the sum of the angles of a single triangle, we
were in a position to develop fully the elliptic, hyperbolic,
or euclidean geometry of the restricted region in question.
Our spaces so defined were not, however, perfect analytic
continua, even in the real domain. To reach such continua

it was necessary to assume that any chosen segment might
be extended beyond either extremity by a chosen amount.
We saw in the beginning of Chapter VII that this assump-
tion, though allowable in the euclidean and hyperbolic cases,

will involve a contradiction when added to the assumptions
already made for elliptic space. The difficulty was overcome

by assuming the existence of a space which contained as

sub-regions (called c,onsisteut reyious) spaces where our

previous axioms held good. For this new type of space we
set up our Axioms I'-VI'.

Our next task was to show that under Axioms I'-V each

point will surely have one set of homogeneous coordinates (#),

and conversely, to each set of real coordinates subject to the

restriction that in hyperbolic space

IPx* + x^ -f x./ H- 3
2 < 0,

in elliptic space (,cx) > 0,

and in euclidean space x ^ 0,

there will surely correspond one real point. Under the

euclidean or hyperbolic hypotheses each set of real coor-

dinates can correspond to one real point, at most
;
under the

elliptic hypothesis, on the contrary, we found it necessary
to distinguish between elliptic space where but one point
goes with each coordinate set, and the spherical case where
two equivalent points necessarily

have the same coordinates.

One further point was established in connexion with these

developments ; to each point there will correspond but a single
set of homogeneous coordinates (x). The proof of this depended
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upon Axiom VI', which required that a congruent transforma-
tion of one consistent region should produce one definite

transformation of space as a whole. Of course such an

assumption, when applied to our space of experience, can
neither be proved nor disproved empirically. In the present

chapter we shall set ourselves the task of examining whether,
under Axioms I'-V of Chapter VII, it be possible to have
a space where each point shall correspond to several sets of

coordinate values.* For simplicity we shall assume that no
two different points can have the same coordinates.

What will be the meaning of the statement that under our
net of axioms two sets of coordinate values (#), (x

f

) belong
to the same point? Let a coordinate system be set up, as

in Chapter V, in some consistent region; let this region be
connected with the given point by two different sets of over-

lapping consistent regions ;
then (x) and (x') shall be two

different sets of coordinate values for this point, obtained by
two different sets of analytic extension of the original coor-

dinate system.
Let us first assume that there is a consistent region which

is reached by each chain of overlapping consistent regions,
a statement which will always hold true when there is a single

point so reached. We may set up a coordinate system in

this region, and then make successive analytic extensions for

the change of axes from one to another of the overlapping
consistent regions, until we have run through the whole

circuit, and come back to the region in which we started.

If, then, one point of the region have different values for its

coordinates from what it had at the start, the same will be

true of all, or all but a finite number of points of the region,
and the new coordinate values will be obtained from the old

ones (in the non-euclidean cases) by means of an orthogonal
substitution. If (x) and (x} be two sets of coordinates for

one point we shall have

0..3

Conversely, if these equations hold for any point, they will

represent an identical transformation of the region, and give
two sets of coordinate values for every point of the region.

* The present chapter is in close accord with Killing, Die Orundlagen der

Geometric, Paderborn, 1898, Part iv. Another account will be found in Woods'
'Forms of Non-Euclidean-Space', published in Lectures on Mathematics, Woods,
Van Vlock, and White, New York, 1905.
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We see also by analytic extension that these equations will

give two sets of coordinate values for every point in space.
There is one possible variation in our axioms which should

be mentioned at this point. It is entirely possible to build

up a geometrical system where IV holds in general only,
and there are special points, called singular points, which
can lie in two consistent regions which have no sub-region
in common. In two dimensions we have a simple example
in the case of the geometry of the euclidean cone with
a singular line. We shall, however, exclude this possibility

by sticking closely to our axioms.

Let us suppose that we have two overlapping systems of

consistent regions going from the one wherein our coordinate

axes were set up to a chosen point P. We may connect P
with a chosen point A of the original region by two con-

tinuous curves, thus making, in all, a continuous loop. If

now, PJ be a point which will have two different sets of

coordinate values, according as we arrive at it by the one
or the other set of extensions, we see that our loop is of a sort

which cannot be reduced in size beyond a definite amount
without losing its characteristic property. This shows that,

in the sense of analysis situs, our space is multiply connected.

In speaking of spaces which obey Axioms I'-V, but where
each point can have several sets of coordinate values, we
shall use the term 'multiply connected spaces.

Suppose that we have a third set of coordinate values for

a point of our consistent region. These will be connected
with the second set by a relation

0..3

t

We see that (x") and (x) are also connected by a relation

of this type, hence

Theorem 1. The assemblage of all coordinate transformations

which represent the identical transformation of a multiply
connected space form a group.

If (x) and (;') be two sets of coordinates for the same point
the expression

, (xx')cos-1 --

cannot sink below a definite minimum value greater than

zero, for then we should have two different points of the same
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consistent region with the same coordinate values, which we
have seen is impossible (Chapter VII).

For the sake of clearness in our subsequent work let us

introduce, besides our multiply connected space $, a space 2,

having the same value for the constant k as our space S,

and giving to each point one set of coordinate values only.
The group of identical transformations of 8 will appear
in 2 as a group of congruent transformations, a group which
has the property that none of its transformations can leave
a real point of the actual domain invariant, nor produce an
infinitesimal transformation of that domain. We lay stress

upon the actual domain of 2, for in 8 we are interested in

actual points only. Let us further define as fundamental
such a region of 2, that every point of 2 has an equivalent
in this region under the congruent sub-group which we are
now considering, yet no two points of a fundamental region
are equivalent to one another. The points of 8 may be

put into one to one correspondence with those of a funda-
mental region of this sort or of a portion thereof, and,

conversely, such a fundamental region will furnish an example
of a multiply connected space obeying Axioms I'-V.

Theorem 2. Every real group of congruent transformations
of euclidean, hyperbolic, or elliptic space, which carries the
actual domain into itself, and none of whose members leave
an actual point invariant, nor transport such a point an
infinitesimal amount, may be taken as the group of identical

transformations of a multiply connected space whose points
may be put into one to one correspondence with the points
of a portion of any fundamental domain of the given space
for that group.

Our interest will, from now on, centre in the space 2. We
shall also find it advisable to treat the euclidean and the two
non-euclidean cases separately.
We shall begin by asking what groups of congruent trans-

formations of the euclidean plane fulfil the requirements of
Theorem 2. Every congruent transformation of the euclidean

plane is either a translation or a rotation, but the latter type
is inadmissible for our present purpose. What then are the

groups of translations of the euclidean plane ? The simplest
is evidently composed of the repetitions of a single translation.

If the amplitude of the translation be I, while n is an integer,

positive or negative, this group may be expressed in the form

x'~x + nl
t 2/=2/.

The fundamental regions will be strips bounded by lines
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parallel to the y axis, each strip including one of the bounding
lines. A corresponding space 8 will be furnished by a euclidean

cylinder of circumference I.

What translation groups can be compounded from two given
translations ? It is clear that the lines of motion of the two
should not be parallel. For if, in that case, their amplitudes
were commensurable, we should fall back upon the preceding

system; but if the amplitudes were incommensurable, the

group would contain infinitesimal transformations
;
and these

we must exclude. On the other hand, the group compounded
from repetitions of two non-parallel translations will suit our

purpose very well. If the amplitudes of the two be I and A,

while m and n are integers, we may write our group in the

form tf=x + nl, 2/=7/-fmA.

The fundamental regions are parallelograms, each including
two adjacent sides, excepting two extremities. The Clifford

surface discussed in Chapters X and XV offers an excellent

example of a multiply connected surface of this type.
It is interesting to notice that with these two examples

we exhaust the possibilities of the euclidean plane. Suppose,
in fact, that P is any point of this plane, that is to say,

any point in the finite domain. The points equivalent to it

under the congruent group in question may not cluster any-
where, hence there is one equivalent, or a finite number of

such, nearer to it than any other. If these nearest equivalents
do not all lie on a line with P, we may pick out two of them,
non-collinear with P, thus determining one-half of a funda-

mental parallelogram. If the nearest equivalents are collinear

with P (and, hence, two only in number), we may pick out

one of them and one of the next nearest (which will be oft*

that line, unless we are under our previous first case), and
thus construct a parallelogram within which there is no

equivalent to P, for every point within such a parallelogram
is nearer to one vortex than any two vertices are to one

another. This parallelogram, including two adjacent sides,

except the vertices which are not common, will constitute

a fundamental region, and we are back on the second previous
case. Let the reader notice an exactly similar line of reasoning
will show that there cannot exist any single valued continuous

function of the complex variable which possesses more than
two independent periods.

In a three-dimensional euclidean space we shall find suitable

groups compounded of one, two, or three independent trans-

lations. The fundamental regions will be respectively layers
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between parallel planes, four-faced prismatic spaces, and

parallelepipeds. It is easy to determine how much of the

bounding surface should be included in each case. It is also

evident that there can be no other groups composed of

translations only, which fulfil the requirements.
Let us glance for a moment at the various forms of straight

line which will exist in a multiply connected euclidean space /S',

which corresponds to a euclidean parallelepiped in 2. The

corresponding lines in 2 shall all pass through one vertex
of the fundamental parallelepiped. If the line in 2 be one

edge of the parallelepiped, the line in 8 will be a simple loop
of length equal to one period. If the line in 2 connect the

vertex with any other equivalent point, the line in 8 will still

be a loop, but of greater length. If, lastly, the line in 2 do
not contain any other point equivalent to the vertex, the line

in S will be open, but, if followed sufficiently far, will pass

again as close as desired to the chosen point.
There are other groups of motions of euclidean space,

besides translations which give rise to multiply connected

spaces. An obvious example is furnished by the repetitions
of a single screw motion. This may be expressed, -n being
an integer, in the form

x'= x cos nO y sin nd, y'
= x&mnO + yeosnO, z'= z + nd.

The fundamental regions in 2 will be layers bounded by
parallel planes. In S we shall have various types of straight
lines. The Z axis will be a simple closed loop of length d.

Will there be any other closed lines in $ 1 The corresponding
lines in 2 must be parallel to the axis, there being an infinite

number of points of each at the same distance from that axis.

When 6 and 2 IT are commensurable, we see that every parallel
to the Z axis will go into a closed lino of the typo required,
when and 2?r are incommensurable, the Z axis is the only
closed line.

Let us now take two points of 2 separated by a distance r

= # -frees a,

f = z -f T cos y.

The necessary and sufficient condition that they should be

equivalent is x cos n Q __ y s [n n Q _. x + r cos a?

x sin nO + y cos n6 = ?/ + rcos/3,

nd = T cos y.

The last of these equations shows that a line in 2 per-
COOLIDGK Q
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pendicular to the Z axis (i.e. parallel to a line meeting it

perpendicularly) cannot return to itself. On the other hand, if

cos a = cos ft
=

; nO = 2 7/177,

and we have a closed loop of the type just discussed. If

a, /3, y, n be given, r may be determined by the last equation,
and x, y from the two preceding, since the determinant of

the coefficients will not, in general, vanish. We thus see that

in S the lines with direction angles a, /3, y, and possessing
double points, will form an infinite discontinuous assemblage.
If, on the other hand, x, y y 0, -ti be given, a, /3, y, r may be

determined from the given equations, coupled with the fact

that the sum of the squares of the direction cosines is unity ;

through each point in $, not on the Z axis, will pass an infinite

number of straight lines, having this as a double point.
The planes in & will be of three sorts. Those which are

perpendicular to the Z axis will contain open lines only, those

whose equations lack the Z term will contain till sorts of lines.

Other planes will contain no lines which are simple loops.
Another type of multiply connected space will be deter-

mined by x'=~l

/, m, n being integers.
The fundamental regions in 2 will be triangular right

prisms. Lines in 2 parallel to the Z axis will appear in $
as simple closed loops of length 20. To find lines which cross

themselves, let us write

x -f r cos a =
( l)

lx + ma ,

y + r cos j3
=

(
-

1)
7

// + lib,

Z -f T COS y = '^ + If.

For each even integral value of I, and each integral value
of m and 7i, we get a bundle of loop lines in /S

y

with direction

cosines ma
cos a --_-_-^=__--=_-, &c.

* 22 2

When I is odd, we shall have through each point an infinite

number of lines which have a double point there, the direction

cosines being
2x + 'ftia

cos a = -
z___:^_^ .=^=_ . _____-_.____ .

, c.

</(
- 2x + ma)* + (

- 2

Such lines will, in general, be open. We see, however, that
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whereas the length of a loop perpendicular to the x, ij plane

is 2c, if the point -^-
,

~
happen to be on such a loop, this

& &

point is reached again after a distance C. This loop has,

therefore, the general form of a lernniscate.*

When we turn from the euclidean to the hyperbolic
hypothesis, we find a less satisfactory state of affairs. The
real congruent group of the hyperbolic plane was shown in

Chapter VIII to depend upon the real binary group

the homogeneous coordinates (t) being .supposed to define

a point of the absolute conic. The two fixed points must
be real, in order that the line joining them shall be actual,
and its pole, the fixed point, ideal. In other words, we wish
for groups of binary linear substitutions which contain
members of the hyperbolic type exclusively. Apparently
such groups have not, as yet, been found. It might seem,
at first, that parabolic transformations where the two fixed

points of the conic fall together, would also answer, but
such is not the case. We may show, in fact, that in such
a substitution there will be points of the plane which are

transformed by as small a distance as wo please. The path
curves are horocycles touching the absolute conic at the fixed

point : having in fact, four-point contact with it. It is merely
necessary to show that a horocycle of the family may be found
which cuts two lines through the fixed point in two points
as near together as we please. Let this fixed point be (0, 0, 1)
while the absolute conic has an equation of the form

xf +x^ = 0.

The general type for the equation of a horocycle tangent
at (0, 0, 1) will be

This will intersect the two lines

# &#!
=

(), x m&'j == 0,

in the points (Z, 1, (P + p)} (m, 1, (m
2
-f>)). The cosine of

the &bh part of their distance will be

* These and the preceding example are taken from Killing, Giundlagen,
loc. cit. The last is not, however, worked out.
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an expression which will approach unity as a limit, as -

approaches zero. P
The group of hyperbolic motions in three dimensions will,

as we saw in Chapter VIII, depend upon the linear function

of the complex variable a ? -f #

The group which we require must not contain rotations

about a line tangent to the Absolute, for the reason which
we have just seen, hence the complex substitution must not
be parabolic. Again, we may not have rotations about actual

lines, hence the path curves on the Absolute may not be conies

in planes through an ideal line (the absolute polar of the axis

of rotation) ; the substitutions may not be elliptic. The only
allowable motions of hyperbolic space are rotations about
ideal lines, which give hyperbolic substitutions, and screw

motions, which give loxodromic ones. There does not seem
to be any general theory of groups of linear transformations

of the complex variable, which include merely hyperbolic
and loxodromic members only.*
The group of repetitions of a single rotation about an ideal

line may be put into the form (IcP
=

1),

x '= XQ cosh n XA sin n 0,

x,^
= x sinh -f- &3 cosh 0.

The fundamental regions in 2 will be bounded by pairs
of planes through the line

a; = x,t

= 0.

The orthogonal trajectories of planes through this line will

be equidistant curves whose centres lie thereon. A line in E

connecting two points which are equivalent under the group
will appear in $ as a lino crossing itself once.

We may, in like manner, write the group of repetitions
of a single screw motion

&/= 'j\
cos n

(f>
x
2
sin n $,

B
2
'= X

L
sin n<f) + x.2 cos n<f>,

tf3
'= XQ

sinh nO 4- #3 cosh n0.
* For the general theory of discontinuous groups of linear substitutions,

seo Fricke- Klein, Vorksungen uber die Thcoric dcr automorphen Funktionen, vol. i,

Leipzig, 1807.
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In elliptic space we obtain rather more satisfactory results.

Every congruent transformation of the real elliptic plane is

a rotation about an actual point, there being no ideal points.

Hence, there are no two-dimensional multiply connected

elliptic spaces. In three dimensions the case is different. Let
us assume that k = 1, and consider the group of repetitions
of a single screw motion. The angle of rotation about one
axis is equal to the distance of translation along the other,
and the two distances or angles of rotation must be of the

form > T in order that there shall be no infinitesimal
v v

transformations in the group. Moreover, these two fractions

must have the same denominator, for otherwise the group
would contain rotations. We may therefore write the general
equations

, ATT . ATT
XQ

,r cos n %i sm n 9

, . ATT ATT
.T = .r

ft
sm'H -fa?, cos 7i >

1 v v

, IJLTT . HIT
x9 x9 cos n -- x., sm n - -

>

v v

f . U7T U7T
x # sin n 4 x cos n ?

V V

where A, /m, v are constant integers, and n a variable integer.
It will be found that the cosine of the distance of the points

(x), (x'] will be equal to unity only when n is divisible by v,

i.e. we have the identical transformation, so that there are no
real fixed pointy nor points moved an infinitesimal distance.

If A = \L we have a translation (cf. Chapter VIII), for our
transformation may be written in the quaternion form :

*

(ATT
. ATT A . . .

,
.

cos n ----h sm n i\ (,r 4- or^, 4- x$j 4- o?3 A").

The path-curves in 2 will be lines paratactic to either axis

of rotation, and they will appear in 8 as simple closed loops

of length
-

. Notice the close analogy of this case to the

simplest case in cuclidean space.

*
Killing, Grundlagen, cit. p. 342, erroneously states that these translations

are the only motions along one fixed line yielding a group of the desired

type. The mistake is corrected by Woods, loc. cit., p. 68.
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There is another translation group of elliptic space giving
rise to a multiply connected space of a simple and interesting

description. Let A
a

: A
2
be homogeneous parameters, locating

the generators of one set on the Absolute. Each linear trans-

formation of these will determine a translation. In particular,
if we put Jr +/,r1

= \
1 , x,-ix,^\^

then the translation

(jcj -f a?/ i + a'
2'j + s^k) == (a + bi + cj + dk) (XQ + xi 4- xj + #3 &),

may also be written

A
t
'=

( + hi) A!
-

(c + di) A2 ,

A2

' =
(c
-

rfi) A! + (a
-

bi) A, .

Now this is precisely the formula for the rotation of the

euclidean sphere. The cosine of the distance traversed by
the point (x) will be

which becomes equal to unity only when 6 = c = rf = 0, i.e.

when we have the identical transformation. The groups of

elliptic translations which contain no iniinitesimal trans-

formations, are therefore identical with those of euclidean

rotations about a fixed point which contain no infinitesimal

members, whence

Theorem 3.* If a multiply connected elliptic space be

transformed identically by a group of translations, that group
is isomorphic with one of the groups of the regular solids.

Conversely each group of the regular solids gives rise to a

group of right or left elliptic translations, suitable to define

a multiply connected space of elliptic type.

Of course the inner reason for thi.s identity is that a real

line meets the elliptic Absolute in conjugate imaginary points,

corresponding to diametral imaginary values of the parameter
for either set of generators, and a real point of a euclidean

sphere is given by the value of its coordinate as a point of

the Gauss sphere, while diametrically opposite points will be

given by diametral values of the complex variable. The

problem of finding elliptic translations, or euclidean rotations,

depend therefore, merely on the problem of finding linear

transformations of the complex variable which transport
diametral values into diametral values.

* Cf. Woods, loc. cit., p. 08.



CHAPTER XVIII

THE PROJECTIVE BASIS OF NON-EUCLIDEAN
GEOMETRY

OUR non-euelidean system of metrics, as developed in

Chapter VII and subsequently, rests in the last analysis,

upon a projective concept, namely, the cross ratio. The group
of congruent transformations appeared in Chapter VII as

a six-parameter collineation group, which left invariant a
certain quadric called the Absolute. An exception must be
made in the cuclidcan case where the congruent group was
a six-parameter sub-group of the seven-parameter group which
left a conic in place. We thus come naturally to the idea

that a basis for our whole edifice may be found in project!ve

geometry, and that non-euclidean metrical geometry may be

built up by positing the Absolute, and defining distance as

in Chapter VII. It is the object of the present chapter to

show precisely how this may be done, starting once more
at the very beginning.*

AXIOM I. There exists a class of objects, containing at

least two distinct members, called points.

AXIOM II. Each pair of distinct points belongs to a single
sub-class called a line.

The points shall also be said to be on the line, the line

to pass through the points. A point common to two lines

shall be called their intersection. It is evident from Axiom II

that two lines with two common points are identical. We
have thus ruled out the possibility of building up spherical

geometry upon the present basis.

AXIOM III. Two distinct points determine among the

remaining points of their line two mutually exclusive sub-

classes, neither of which is empty.

If the given points be A and .#, two points belonging to

* The first writer to set up a suitable set of axioms for projective geometry
was Fieri, in his Ptincipii detta geometria di posisione, cit. He has had many
successors, as Enriques, Lezioni digeometria proiettiva, Bologna, 1898, or Vahlen,
Abstrakte Geometric, cit., Parts II and III. Voblen and Young,

' A system of

axioms for projective geometry,' American Journal of Mafhcttiatics, Vol. xxx,
1908.
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different classes according to Axiom III shall be said to be

separated by them, two belonging to the same class not

separated* We shall call such classes separation classes.

AXIOM IV. If P and Q be separated by A and 2?, then

Q and P are separated by A and B.

AXIOM V. If P and Q be separated by A and J?, then

A and B are separated by P and Q.

We shall write this relation PQ fAB or 4B fpQ. If PQ
J J

be not separated by A and B, though on a line, or collinear,

with them, we shall write PQ^AB.

AXIOM VI. If four distinct collinear points be given there

is a single way in which they may be divided into two
mutually separating pairs.

Theorem 1. AB fCD and AE
[

CD, then EB^CD.U u J

For C and D determine but two separation classes on the

line, and both B and E belong to that class which does not
include A.

Theorem 2. If five collinear points be given, a chosen pair
of them will either separate two of the pairs formed by the
other three or none of them.

Let the five points be A, B, C, D, E. Let AC \DE. Then, if

EC f 7)7?, AB^DE, and if AB \DE, BC^DE. But if we had
^ J J J

BC^DE and AB^DE, ABC would belong to the same
j j

separation class with regard to DE, and hence AC^DE.
<j

Theorem 3. If AC\BD and AE^CD, then AE\BD.
j \j j

To begin with BC&AD, EC^AD] hence
BE^AD. Again,

if we had AB
J

ED, we should have AB^EC, i.e.
AE^JBC.

But we have AE \CD
y
hence AE \BD a contradiction with

J J

* The axioms of separation were first given by Vailati, 'Sulle proprictk
caratteristiche delle varieta a una dimensione,' Rivista di Matematica, v, 1895.
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AB\ED. As a result, since BE^AD and AB^ED, we must

have AE\BD.

It will be clear that this theorem includes as a special case

Theorem 3 of Chapter I. We have but to take A at a great
distance.

Theorem 4 If PA fcD, PB fcD, PQ ^AB,
then PQ fC7).

The proof is left to the reader.

It will follow from the fact that neither of our separation
classes is empty that the assemblage of all points of a line

is infinite and dense. We have but to choose one point of

the line, and say that a point is between two others when
it be separated thereby from the chosen point.

AXIOM VII. If all points of either separation class deter-

mined by two points A, B, be so divided into two sub-classes

that no point of the first is separated from A by B and
a point of the second, there will exist a single point C of

this separation class of such a nature that no point of the
first sub-class is separated from A by B and C, and none
of the second is separated from B by A and C.

It is clear that C may be reckoned as belonging to either

sub-class, but that no other point enjoys this property.
This axiom is one of continuity, let the reader make a careful

comparison with XVIII of Chapter II.

AXIOM VIII. All points do not belong to one line.

Definition. The assemblage of all points of all lines deter-

mined by a given point and all points of a line not containing
the first shall be called a plane. Points or lines in the same

plane shall be called coplaixcr.

AXIOM IX. A line intersecting in distinct points two of

the three lines determined by three non-collinear points,
intersects the third line.

Let the reader compare this with the weaker Axiom XVI
of Chapter I.

Theorem 5. A plane will contain completely every line

whereof it contains two points.

Let the plane be determined by the point A and the line

BG. If the two given points of the given line belong to BC
or be A and a point of BC, the theorem is immediate. If not,
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let the line contain the points B' and C' of AB and AC
respectively. Let P be any other point of the given line.

Then BP will intersect AC, hence AP will intersect BC or

will lie in the given plane.

Theorem 6. If A, By
C be three non-collinear points, then

the planes determined by A and J?(7, by B and CA, and by
C and AB are identical.

We have but to notice that the lines generating each plane
lie wholly in each of the others.

Theorem 7. If A'
', ,6', C' be three non-collinear points of the

plane determined by ABC, then the planes determined by
A'E'C' and ABC are identical.

This will come immediately from the two preceding.

Theorem 8. Two lines in the same plane always intersect.

Let B and C be two points of the one line, and A a point
of the other, If A be also a point of BG the theorem is proved.
If not, we may use the point A and the line BC to determine

the plane, and our second line must be identical with a line

through A meeting EC.

AXIOM X. All points do not lie in one plane.

Definition. The assemblage of all points of all lines which
arc determined by a chosen point, and all points of a plane
not containing the first point shall be called a space.

We leave to the reader the proofs of the following very

simple theorems.

Theorem 9. A space contains completely every line whereof
it contains two points.

Theorem 10. A space contains completely every plane
whereof it contains three non-collinear points.

Theorem 11. The space determined by a point A and the

plane BCD is identical with that determined by B and the

plane CDA.
Theorem 12. If A', B', C', D' be four non-coplanar points of

the space determined by A, B, C, D, then the two spaces deter-

mined by the two sets of four points are identical.

With regard to the last theorem it is clear that all points of

the space determined by A', B\ 0', Df

lie in that determined by
A, B, (7, D. Let us assume that $', C', D' are points of AB, AC,
AD respectively. The planes BCD and B'C/D' have a common
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line I, which naturally belongs to both spaces. Let us first

assume that AA' does not intersect this line. Let A" be the
intersection of AA' with BCD. Then A"R meets both A fEr

and Z, hence, has two points in each space, or lies in each.
Then the plane BCD lies in both spaces, as do the line A'A"
and the point A

; the two spaces are identical. If, on the
other hand, AA' meet I in A"

,
then A lies in both spaces.

Furthermore A fB will meet A"B' in a point of both spaces,
so that B will lie in both, and, by similar reasoning, C and D
lie in both.

Theorem 13. Two planes in the same space have a common
line.

Theorem 14. Three planes in the same space have a common
line or a common point.

Practical limitation. All points, lines, and planes herein-
after considered are supposed to belong to one space.

Theorem- 15. If three lines A A', BB\ 0(7 be concurrent,
then the intersections of AB and A'B', of SO and B'G', of CA
and C' A' are collinear, and conversely.

This is Desargues' theorem of two triangles. The following
is the usual proof. To begin with, let us suppose that the

planes ABC and A'B'C' are distinct. The lines AA', BB\
and CC' will be concurrent in outside of both planes. Then
as AB and A'B' arc coplanar, they intersect in a point which
must lie 011 the line I of intersection of the two planes ABO
and A'B'C'

,
and a similar remark applies to the intersections

of BC and B'G\ of CA and G'A' . Conversely, when these
last-named three pairs of lines intersect, the intersections
must be on L Considering the lines AA', BB'

',
and CO', we

see that each two are coplanar, and must intersect, but all

three are not coplanar. Hence the three are concurrent.
The second case occurs where A fB'C f

are three non-collinear

points of the plane determined by ABC. Let V and V be
two points without this plane collinear with the point of
concurrence of AA f

, BB, CO'. Then VA will meet VA' in

A", VB will meet V ff in JT, and VC will meet V'V in C".
The planes ABC and A"R"G" will meet in a line I, and
J3"<7" will meet both BO and Bf

C/ in a point of /. In the
same way CA will meet G'A' on I, and AB will meet A'J3'

on L Conversely, if the last-named three pairs of lines meet
in points of a line I in their plane, we may find A"Bf'C"
non-collinear points in another plane through I, so that R"C' r

meets BC and B'G' in a point of I, and similarly for C"A",
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CA, C fA f and for A"B", AB, A'B'. Then by the converse

of the first part of our theorem AA"\ BB", CC" will be

concurrent in F, and A'A"
9 B'B", C'C" concurrent in V.

Lastly, the three coaxal planes VV'A", VV'B", VV'C" will

meet the plane ABC in three concurrent lines AA', BB', CO'.

We have already remarked in Chapter VI on the dependence
of this theorem for the plane either on the assumption of the

existence of a third dimension, or of a congruent group.

Definition. If four coplanar points, no three of which are

collinear, be given, the figure formed by the three pairs of

lines determined by them is called a complete quadrangle.
The original points are called the vertices, the pairs of lines

the sides. Two sides which do not contain a common vertex

shall be said to be opposite. The intersections of pairs of

opposite sides shall be called diagonal points.

Theorem 16. If two complete quadrangles be so situated

that five sides of one meet five sides of the other in points
of a line, the sixth side of the first meets the sixth side of the

second in a point of that line.

The figure formed by four coplanar lines, no three of which
are concurrent, shall be called a complete quadrilateral.
Their six intersections shall be called the vertices

;
two vertices

being said to be opposite when they are not on the same side.

The three lines which connect opposite pairs of vertices shall

be called diagonals.

Definition. If A and C be two opposite vertices of a com-

plete quadrilateral, while the diagonal which connects them
meets the other two in B and 7), then A and E shall be said

to be harmonically separated by C and /).

Theorem 17. If A and C be harmonically separated by
B and D, then B and D are harmonically separated by A
and C.

The proof will come immediately from 15, after drawing
two or three lines; we leave the details to the reader.

Definition. If A and C be harmonically separated by
B and D, each is said to be the harmonic conjugate of the

other with regard to these two points ; the four points may
also be said to form a harmonic set.

Theorem 18. A given point has a unique harmonic conjugate
with regard to any two points collinear with it.

This is an immediate result of 16.
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Theorem 19. If a point be connected with four points
A, B, C', D not collincar with it by lines OA, OB, 0(7, OD, and
if these lines meet another line in A\ Bf

, C", D' respectively,
and, lastly, if A and C be harmonic conjugates with regard
to B and J5, then A' and C' are harmonic conjugates with

regard to Bf

and D'.

We may legitimately assume that the quadrilateral con-
struction which yielded A, B, (7, D was in a plane which did
not contain 0, for this construction may be effected in any
plane which contains AD. Then radiating lines through
will transfer this quadrilateral construction into another

giving A', B\ C', D'.

Definition. If a, 6, c, d be four concurrent lines which pass
through A ,

B
y 0, D respectively, and if A and C be harmonically

separated by B and /), then a and c may properly be said
to be harmonically separated by 6 and d, and 6 and d
harmonically separated by a and c. We may also speak of
a and c as harmonic conjugates with regard to 6 and d, or

say that the four lines form a harmonic set.

Theorem 20. If four planes a, & y, 6 determined by a line I

and four points A, B, G, D meet another line in four points
A', B', C', 7)' respectively, and if A and C be harmonically
separated by B and D, then A f

and C' are harmonically
separated by J3' and /)'.

It is sufficient to draw the line AD f

and apply 19.

Definition. If four coaxal planes a, /3, y, 6 pass respectively

through four points A, B> C, D where A and C are harmonically
separated by B and -D; then we may speak of a and y as

harmonically separated by ft and 8, or /3 and 5 as harmonically
separated by a and y. We shall also say that a and y are
harmonic conjugates with regard to ft and <5, or that the four

planes form a harmonic set.

We shall understand by projection the transformation

(recently used) whereby coplanar points and lines are carried,

by means of concurrent lines, into other coplanar points and
lines. With this in mind, we have the theorem.

Theorem 21. Any finite number of projections and inter-

sections will carry a harmonic set into a harmonic set.

AXIOM XI. If four coaxal planes meet two lines respec-

tively in A, B, (7, D and A'
y B\ C'

',
D' distinct points, and

if AG{BD then A'c f

\Biy.
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f
Definition. If AC BD and / be any line not intersecting

j

AD, we shall say that the planes IA and 1C separate the

planes IB and ID.

Definition. If the planes a and y separate the planes /3

and 8, and if a fifth plane meet the four in a, b, c, d respec-

tively, then we shall say that a and c separate b and d.

A complete justification for this terminology will be found
in Axiom XI and in the two theorems which now follow.

Theorem 22. The laws of separation laid down for points
in Axioms III-VII hold equally for coplaiiar concurrent lines,

and coaxal planes.

We have merely to bring the four lines or planes to intersect

another line in distinct points, and apply XI.

Theorem 23. The relation of separation is unaltered by any
finite number of projections and intersections.

Theorem 24. If J., B, C, D be four collinear points, and A

and C be harmonically separated by B and D, then AC BD.

We have merely to observe that our quadrilateral con-
struction for harmonic separation permits us to pass by
two projections from A, B, (7, D to C\ B, A, D respectively, so

f f
that if we had AB CD we should also have CB AD, and

j j

vice versa. Hence our theorem.

Before proceeding further, let us glance for a moment at the

question of the independence of our axioms.

The author is not familiar with any system of projective

geometry where XI is lacking. X naturally fails in plane

geometry. Here IX must be suitably modified, and Desargues'
theorem, our 15, must be assumed as an axiom. IX is lack-

ing in the projective euclidean geometry where the ideal

plane is excluded. VIII fails in the geometry of the single

line, while VII is untrue in the system of all points with
rational Cartesian coordinates. Ill, IV, V, VI may be shown
to be serially independent.* II is lacking in the geometry
of four points,

Besides being independent, our axioms possess the far more

important characteristic of being consistent. They will be
satisfied by any class of objects

1 in one to one correspon-

*
Vailati, loc. cit., note quoting Padoa.
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deuce with all sets of real homogeneous coordinate values
;/' : x : x.2 : #3 not all simultaneously zero. A line may be
defined as the assemblage of all objects whose coordinates
are linearly dependent on those of two. If A and have
the coordinates (x) any (y) respectively, while # and D have
the coordinates A (x) + JLI (y) and \'(x) + pf (?/), then A and C
shall be said to be separated by B and D if

When this is not the case, they shall be said to be not

separated by B and D.

As a next step in our development of the science of pro-
ject!ve geometry, let us take up the concept of cross ratio.

Suppose that we have three distinct collinear points 7^ , 7fJ5 I\.
Construct the harmonic conjugate of jP with regard to P,
and 74, and call it JF>, that of I\ with regard to P, and 7^,
and call it P,, that of 7^ with regard to 7^ and 7^, and
call it P 15 and so, in general, construct Pn+1 and Pn^
harmonic conjugates with regard to Pn and 7^. The con-
struction is very rapidly performed as follows. Take and V
collinear with 7^, while our given points lie on the line 1 .

Let l
l
be the line from the intersection of OP

l
and VPQ to 7^ .

Then OPn +1 and VPn will always intersect on l
ly

the generic
name for such a point being Qn+l :Y

~

Theorem 25. P^Pn+l \Pu /J, if 11 > 0.

The theorem certainly holds when //, = 1. Suppose that

^o^J^-i^-
We also know that Pn^Pn^Pn P^ Hence,

clearly PQ Fn+l $Pn Pn . We notice also that fQ Pn+Apn /^
r j

and, in general P P
n+l6 -^P,- A similar proof may be found

for the case where negative subscripts are involved.

Theorem "6. If P be any point which satisfies the condition

7<J
P LfJ JP, ,

then such a positive integer -/*- may be found

Let us divide all points of the separation class determined

by 7^7^ which include P1 and P the positive separation class
let us say, into two sub-classes as follows. A point A shall

be assigned to the first class if we may find such a positive
* See Fig. 4 on page following.
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integer n that P$Pn+i \AP^> otherwise it shall be assigned

to the second class, i.e. for every point of the second class

and every positive integral value of 7?., ^7? \Pn+iP^^ Then,

by 3, as long as A and B are distinct we shall have

P
Q B\AP^ y giving a dichotomy of the sort demanded by

Axiom VII, and a point of division D. Let us further assume

that OD meets ^ in T)
y
and VD meets l

{}
in (7. We know that

Hence lines from P
{}

to V and D are not
i

separated by those to and P^ . Hence lines from 7) to 7^

and V, are not separated by those to and J^, so that

or G is a point of the first sub-class. We may,

then, find n so great that PQ PU \C2^ ,. hence Q^^ADP^
and P^+JW;.

But PQ P^DP^ ; hence PQPn+lJDPw
. This,

however, is absurd, for a point separated from ]^ by D and
lj

n+1 would have to belong to both classes. Our theorem

results from this contradiction.

We might treat the case where P P P^P^ in exactly the

same way. Our net result is that if P be any point of the

line lQt
it is either a point of the system we have constructed,
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or else we may find two such successive integers (calling an

integer) n, n + 1 that Pn Pn+l PP^ .

Our next care shall be to find points of the line to which we
may properly assign fractional subscripts. Let lk be the line

from P^ to the intersection of OPk with VP . Then I say
that VPm and OPm+k meet on lk . This is certainly true when
k = 1. Let us assume it to be true in the case of lk^ 9 so

that VP^ and OPk meet on lk_v Then lk is constructed with

regard to lk_ l as was l with regard to Z
, for we take a point

of lk_u connect it with and find where that line meets

V!Q. In like manner VP2 meets OPk+l on lk^ and OJF^.+2
on lk and so on; VPm meets OPm+k on lk , which was to be

proved.
As an application of this we observe that ln meets VPn

on the line OP% n , hence we easily see that Pn and P^ are

harmonically separated by T^J
and P% n . Secondly, find the

points into which the points P^,Pk ,Pl
are projected from on

the line VPm . These points lie on the lines I^m9 ^-m> h-m*
Find the intersections of the latter with VPn and project back
from on

;
we get the points Pn+h_m ,

Pn+k. m ,
Pn+ i-m .

A particular result of thia will be that Pk Pk+n Pk+2n^> f rm
a harmonic set.

Let us now draw a line from JJ to the intersection of VPQ
and ln , and let this meet P^ V in V

t . Then if 7J ,
Pk ,

P
t ,
Pa be

n

projected from upon TjjV and then projected back from V\

upon Z
,
we get points which we may call JP,P^,Pj, Jf^, where

Pn P^ Connect P^ with the intersection of VPQ and OPl by
n n

a line lr We may use this line to find Pk as formerly we
'71

ti

used ^ to find Pk . We shall thus find that P^ and P2n are

harmonically separated by Pn and 7^, or P^ n is identical
w. IT

with ^, and similarly Jfjlw is identical with 7^. Subdividing
IT

still further we shall find that Pr is identical with P
l
or 7Jm

rn n ~r7t

identical with 7^. We have thus found a single definite

n

point to correspond to each positive rational subscript.

Negative rational subscripts might be treated in the same

way, and eventually we shall find a single point whose sub-
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script is any chosen rational number. We shall also find,

by reducing to a common denominator, that if

^ Poo>
with a similar rule for negative numbers.

It remains to take up the irrational case. Let P be any
point of the positive separation class determined by P^ and P^ .

Then either it is a point with a rational subscript, according
to our scheme, or else, however great soever n may be, we

may find m so that J^P f^Z., P,Pm^{PP^. We thus
I

**' u _ r I

J n it J

have a dichotomy of the positive rational number system
of such a nature that a number of the lower class will

correspond to a point separated from P^ by P{]
and P while

one of the upper class will correspond to a point separated
from PQ by P and P^. There will be no largest number in

the lower class. We know, in fact, that wherever R may
be in the positive separation class of P^P^ we may find /*/

r
so great that P

Q
In,\RP^. We may express this by saying

that Pn, approaches P^ as a limit as n' increases. Hence,
as separation is invariant under projection, ln, approaches QO
as a limit and P

L approaches P as a limit, or Pm j approaches
w n +

w/

P
nti

as a limit. We can thus find ?&' so large that Ptn l
is also

n n W

a number of the first class, and surely
- H 7 > In the

7i ll> 'tb

same way we show that there can be no smallest number
in the upper class. Finally each number of the upper is

greater than each of the lower. Hence a perfect dichotomy
is effected in the system of positive rationals defining a precise
irrational number, and this may be assigned as a subscript
to P. A similar proceeding will assign a definite subscript to

each point of the other negative separation class of I^P^.
Conversely, suppose that we have given a positive irrational

number. This will be given by a dichotomy in the system of

positive rationals, and corresponding thereto we may establish

<a classification among the points of the positive separation
class of P P^ according to the requirement of Axiom VII.

We shall, in fact, assign a point A of this separation class

to the lower sub-class if we may find such a number in the

lower number class that the point with the corresponding
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subscript is separated from PQ by P^ and A ; otherwise a point
shall be assigned to the upper Hub-class. If thus A and B
be any two points of the lower and upper sub-classes respec-

tively, we can find in the lower number class so that

P Pm \AP^ whereas P B fPw P^ , and, hence, by 3, P B f
riJ J n J

This shows that all of the requirements of Axiom VII are

fulfilled, we may assign as subscript to the resulting point
of division the irrational in question. In the same way we
may assign a definite point to any negative irrational. The
one to one correspondence between points of a line and the real

number system including oo is thus complete.

Definition. If A, 5, G, D be four collinear points, whereof
the first three are necessarily distinct, the subscript which
should be attached to D, when A, B, G are made to play
respectively the roles of P^ ,

P
,
P

l
in the preceding discussion,

shall be called a cross ratio of the four given points, and
indicated by the symbol (AB, CD). Four points which are

distinct would thus seem to have twenty-four different cross

ratios, as a matter of fact they have but six.

We know that the harmonic relation is unaltered by any
finite number of projections and intersections. We may there-

fore define the cross ratios of four concurrent coplanar lines,

or four coaxal planes, by the corresponding cross ratios of

the points where they meet any other line.

Theorem 27. Cross ratios are unaltered by any finite

number of projections and intersections.

Definition. The range of all collinear points, the pencil
of all concurrent coplanar lines, and the pencil of coaxal

planes shall be called fundamental one-dimensional forms.

Definition. Two fundamental one-dimensional forms shall

be said to \>e protective if they may be put into such a one to one

correspondence that corresponding cross ratios are equal.

Theorem 28. If in two project!ve one-dimensional forms
three elements of one lie in the corresponding elements of

the other, then every element of the first lies in the corre-

sponding element of the second.

For we may use these three elements in each case as GO, 0, 1,

and then, remembering the definition of cross ratio, make use
of the fact that the construction of the harmonic conjugate

R2
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of a point with regard to two others is unique. This theorem
is known as the fundamental one of projective geometry.*

Theorem 29. If two fundamental one-dimensional forms be
connected by a finite number of projections and intersections

they are projective.

This comes immediately from 27.

Theorem 30. If two fundamental one-dimensional forms be

projective, they may be connected by a finite number of

projections and intersections.

It is, in fact, easy to connect them with two other projective
forms whereof one contains three, and hence all corresponding
members of the other.

Let us now turn back for a moment to our cross ratio scale.

We have already seen that in the case of integers, and, hence,

by reducing to least common denominator, in the case of

all rational numbers /c, I, m, n.

By letting k, I, m, n become irrational, one at a time, and

applying a limiting process, we see that this equation is

always true.

In like manner we see that P
,
P
q ,
P
2q , P^ form a harmonic

set, as do Pu ,
P
q + k , ^ q + /. , P^ . In general, therefore,

__ /p p p
V/oo -*to -Ln

= V.

Putting

We next remark that the cross ratio of four points is that

of their harmonic conjugates with regard to two fixed points.

Reverting to our previous construction for I{ we see that it is

u

collinear with Vl and Qr VQ^P.1 are also on a line. If,
n

then, we compare the triads of points VPQ Q ,
V

1
P
1 Q1) since

n
lines connecting corresponding points are concurrent in P^,
the intersections of corresponding lines are collinear. But

* For an interesting historical note concerning this theorem, see Vahlen,
loo. cit., p. 161.
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the line from to the intersection of V
l
P

l
with VPQ (or FQX)

n

is, by construction, the line OPn . Hence VP_ Jt which is

identical with FQ , meets V1 I^ on OPn . Furthermore and
n n

<?! are harmonically separated by the intersections of their

line with FPj and TJ^; i.e. by J^ and the intersection with
n

VQQ . Project these four upon 1 from the intersection of OPn
and F/ij. We shall find Pn and P

l
are harmonic conjugates

with regard to P
l
and P

x . Let the reader show that this last

relation holds equally when n is a rational fraction, and,

hence, when it takes any real value.

The preceding considerations will enable us to find the

cross ratio of four points which do not include P^ in their

number. To begin with

78
__y /3-a

~0
x

y'

Let us project our four points from V upon Zu ,
then back

upon Z from 0. This will add a to each subscript. Then

replace y + a by y, &c.

P P\-- xx

Theorem 31. Four elements of a fundamental one-dimen-
sional form determine six cross ratios which bear to one
another the relations of the six numbers

1 1 X~l X
*

X
5 '

1-x' \
'

X^l'

The proof is perfectly straightforward, and is left to the

reader.

If three points be taken as fundamental upon a straight
line, any other point thereon may be located by a pair of

homogeneous coordinates whose ratio is a definite cross ratio

of the four points. We shall assign to the fundamental points
the coordinates (1, 0), (0, 1), (1, 1).

A cross ratio of four points

(x), (y), (z), (t) will then be

2/o*o

Mi
(2)



262 THE PROJECTIVE BASIS OF OH.

Any project!ve transformation of the line into itself, i.e. any
point to point transformation which leaves cross ratios un-

altered, will thus take the form

Px '- a 0' 4-tf sr./
*t/2 ^10^0 ' ^11^1

To demonstrate this we have merely to point out that surely
this transformation is a protective one, and that we may so

dispose of our arbitrary constants as to carry any three distinct

points into any other three, the maximum amount of freedom
for any protective transformation of a fundamental one-

dimensional form. Let the reader show that the necessary
and sufficient condition that there should be two real self-

corresponding points which separate each pair of corresponding

points is
! a;

_
, <

Two projective sets on the same fundamental one-dimen-
sional form whose elements correspond interchangeably, are

said to form an involution. By this is meant that each

element of the form has the same corresponding element

whether it be assigned to the first or to the second set.

It will be found that the necessary and sufficient condition

for an involution in the case of equation (3) will be

When the determinant
| a^ \

> 0, there will be no self-

corresponding points, and the involution is said to be elliptic.

Let the reader show that under these circumstances each pair
of the involution separates each other pair.
Our next task shall be to set up a suitable coordinate

system for the plane and for space. Let us take in the plane
four points A, B, C\ D, no three being collinear. We shall

assign to these respectively the coordinates (1, 0, 0), (0, 1, 0),

(0, 0, 1), (1, 1, 1). Let AD meet BG in A^ BD meet GA
in .Sp and CD meet AB in Cr The intersections of AB, A l l ,

of BC, 5j6\, and of CA, O
l
A

ly are, by 15, on a line d. Now
let P be any other point in the plane

(ABAC, ADAP) = (P(\PC, PDPA) = (PCPC,, PAPD)
(BCBA, BDBP) = (PCPCv PDPB)

(CACB, CDCP) = (POlP0 9 PAPB) =

From this it is clear that the product of the three is equal
to unity, and we may represent them by three numbers of the
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type
1

5
2

5
- We may therefore take x

()
:x

1
:x2 as three

XQ X} 3?2

homogeneous coordinates for the point P. One coordinate

will vanish for a point lying on one of the lines AB, SO, CA.
Let the reader convince himself that the usual cartesian

system is but a special cane of this homogeneous coordinate

system where two of the four given points are ideal, and

x^ XQ

The equations of the lines connecting two of the points
A, B, C are of the form

___
OUn 'J.

Those which connect each of these with the point D are

similarly x .- x . = .

If (y) and (z) be two points, not collinear with A, B y
or G,

while P is a variable point with coordinates \(y)-f /x(0), the

lines connecting it with A and B will meet BG and (CA)
respectively in the points

(0, X^ + fxCp Ay2 + f*s2 ) (A?/ + ^0 , 0, Av/, + f/.32).

It is easy to HOC that the expressions for corresponding cross

ratios in these two ranges are identical, hence the ranges are

projective. The pencils which they determine at A and B
are therefore projective, and have the line AB self-correspond-

ing, for this will correspond to the parameter value

\:/* = V-2fe-
But it will follow immediately from 28, that if two pencils

be coplanar and projective, with a self-corresponding line,

the locus of the intersection of their corresponding members
is also a line. Hence the locus of the point P with the

coordinates A(y) + ^(s) is the line connecting (y) and (z).

Conversely, it is evident that every point of the line from

(y) to (z) will have coordinates linearly dependent on those

of (y) and (z). If, then, we put

and eliminate X : p, we have as equation of the line

| xyz |

= (ux) = 0.

Conversely, it is evident that such an equation will always
represent a line, except, of course, in the trivial case where
the u's are all zero. Let the reader show that the coefficients
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U} have a geometrical interpretation dual to that of the

coordinates ^ ; for this purpose the line which we have above

called d will be found useful.

Our system of homogeneous coordinates may be extended

with great ease to space. Suppose that we have given five

points A, J3, (7, D, no four being coplanar. Let P be any
other point in space. We may write

(ABCABD, ABOABP) = ^ , (ACDACB, ACOACP) = ^,

(ADBADC, ADOADP) = --2 .

x
i

We shall then be able to write also

(CDA CDS, CDO CDP) = X
*

, (DBA DEC, DBO DBF) = ^ >

XQ XQ

(BCD BOA, SCO BCP) =
X
*

In other words, we may give to a point four homogeneous
coordinates x :x

l
:xz :xz

. Two points collinear with A, B,

C, or D will differ (or may be made to differ) in one coordinate

only. An equation of the first degree in three coordinates

will represent a plane through one of these four points.

Every line will be the intersection of two such planes, and
will be represented by the combination of two linear equations
one of which lacks x.i

while the other lacks x>. The coor-

dinates of all points of a line may therefore be expressed as

a linear combination of the coordinates of any two points
thereof. A plane may be represented as the assemblage of

all points whose coordinates are linearly dependent on those

of three non-collinear points. Eliminating the variable para-
meters from the four equations for the coordinates of a point
in a plane, we see that a plane may also be given by an

equation of the type / \ n /*\H Jr
(use)

= 0. (5)

Conversely, the assemblage of all points whose coordinates

satisfy an equation such as (5) will be of such a nature that

it will contain all points of a line whereof it contains two
distinct points, yet will meet a chosen line, not in it, but
once. Let the reader show that such an assemblage must
be a plane. The homogeneous parameters (u) which, naturally,

may not all vanish together, may be called the coordinates
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of the plane. They will have a significance dual to that

of the coordinates of a point.*
If we have four collinear points

(y), (*), %)+?(*), *'(</) +/*'(*),

one cross ratio will be A//

The proof will consist in finding the points where four
coaxal planes through these four points meet the line

and then applying (2).

Suppose that we have a transformation of the type

0..3

3

This shall be called a collineation. We shall restrict

ourselves to those collineations for which

The transformation is, clearly, one to one, with no ex-

ceptional points. It will carry a plane into a plane, a line

into a line, a complete quadrilateral into a complete quadri-
lateral, and a harmonic set into a harmonic set. It will

therefore leave cross ratios invariant. Moreover, every point
to point and plane to plane transformation will be a
collineation. For every such transformation will enjoy all

of the properties which we have mentioned with regard to

a collineation, and will, therefore, be completely determined
when once we know the fate of five points, no four of which
are coplanar. But we easily see that we may dispose of the

arbitrary constants in (6), to carry any such five points into

any other five.

It is worth while to pause for a moment at this point in

order to see what geometrical meaning may be attached to

coordinate sets which have imaginary values. This question

* The treatment of cross ratios in the present chapter is based on that of

Pasch, loc. cit. The development of the coordinate system is also taken from
the same source, though it has been possible to introduce notable simplifica-

tion, especially in three dimensions. This method of procedure seemed to

the. author more direct and natural than the more modern method of
*

Streckenrechnung
'
of Hilbert or Vahlen, loc. cit.
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has already been discussed in Chapter VII. Every set of

complex coordinates / \

^/z \

may be taken to define the elliptic involution

0. (7)

To verify this statement we have merely to notice that an

involution will, by definition, be carried into an involution

by any number of projections and intersections, and that

equations such as (7) will go into other such equations. But
in the case of the line __ , __ n

M/O "" '*' >
~~"~

*')

these equations will give an involution, for the relation

between (x) and (#') may readily be reduced to the type of (3)

and (4).
Did we seek the analytic expression for the coor-

dinates of a self-corresponding point in (7) we should get
the values

(y) + i(s)-

Conversely, it is eas}^ to show that any elliptic involution

may be reduced to the type of (7). There is, therefore, a one
to one correspondence between the assemblage of all elliptic

point involutions, and all sets of pairs of conjugate imaginary
coordinate values.

The correspondence between coordinate sets and elliptic
involutions may be made more precise in the following fashion.

Two triads of collinear points ABC, A'R'G' shall be said to

have the same sense when the projective transformation which
carries the one set, taken in order, into the other, has a positive
determinant

;
when the determinant is negative they shall be

said to have opposite senses. In this latter case alone, as we
have already seen, will there be two real self-corresponding

points which separate each distinct pair of corresponding

points. Two triads which have like or opposite senses to

a third, have like senses to one another, for the determinant

of the product of two projective transformations of the line

into itself is the product of the determinants. We shall also

find that the triads ABC, BGA^ GAB have like senses, while
each has the sense opposite to that of either of the triads

ACB) GBA) BAG. We may thus say that three points given
in order will determine a sense of description for the whole

range of points on the line, in that the cyclic order of any
other three points which are to have the same sense as the

first three is completely determined. It is immediately
evident that any triad of points and their mates in an

elliptic involution have the same sense. We may therefore



xviii NON-EUCLIDEAN GEOMETRY 267

attach to such an elliptic involution either the one or the

other sense of description for the whole range of points.

Definition. An elliptic involution of points to which is

attached a particular sense of description of the line on which

they are situated shall be defined as an imaginary point.
The same involution considered in connexion with the other

sense shall be called the conjugate imaginary point.

Starting with this, we may define an imaginary plane as

an elliptic involution in an axial pencil, in connexion with

a sense of description for the pencil; when the other sense

is taken in connexion with this involution we shall say that

we have the conjugate imaginary plane. An imaginary point
shall be said to be in an imaginary plane if the pairs of the

involution which determine the point lie in pairs of planes
of the involution determining the plane, and if the sense of

description of the line associated with the point engenders

among the planes the same sense as is associated with the

imaginary plane. Analytically let us assume that besides

the involution of points given by (7) we have the following
involution of planes.

(u)
= I (v) +m (w), (u) V (v) + m' (w), IV 4- mm'= 0,

(vy)
=- (wz) = 0. (8)

The plane (u) will contain the point I (vz) (y) m (ivy) (2)

while its mate in the involution contains the point

These points will be mates in the point involution, if

and these equations tell us that the imaginary plane (v) -f i (w)
will contain either the point (y) + i (z), or the point (y) i(z).
An imaginary line may be defined as the assemblage of all

points common to two imaginary planes. Imaginary points,
lines, and planes obey the same laws of connexion as do
real ones. A geometric proof may be found based upon the

definitions given, but it is immediately evident analytically.*

Theorem 32. If a fundamental one-dimensional form be

projectively transformed into itself there will be two distinct

or coincident self-corresponding elements.

We have merely to put (px) for (x) in (3), and solve the

* See von Staudt, loc. cit., and Luroth, loc. cit. It is to be noted that in

these works the idea of sense of description is taken intuitively, and not given
by precise definitions.
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quadratic equation in p obtained by equating to zero the deter-

minant of the two linear homogeneous equations in # , xr
The assemblage of all points whose coordinates satisfy an

equation of the type

shall be called a quadrie. We should find no difficulty in

proving all of the well-known theorems of a descriptive sort

connected with quadrics in terms of our present coordinates.

We have now, at length, reached the point where we may
profitably introduce metrical concepts. Let us recall that the

group of congruent transformations which we considered in

Chapter II, and, more fully, in Chapter VIII, is a group of

collineations which leaves invariant either a quadric or a

conic, and depends upon six parameters. We also saw in

Chapter II, that the congruent group may be characterized

as follows (cf. p. 38) :

(a) Any real point of a certain domain may be carried into

any other such point.

(b) Any chosen real point may be left invariant, and any
chosen real line through it carried into any other such line.

(c) Any real point and line through it may be left invariant,
and any real plane through this line may be carried into any
other such plane.

(d) If a real point, a line through it, and a plane through
the line be invariant, no further infinitesimal congruent
transformations are possible.

It shall be our present task to show that these assumptions,
or rather the last three, joined to the ones already made in

the present chapter, will serve to define hyperbolic elliptic
and euclidean geometry.

It is assumed that there exists an assemblage of transforma-

tions, called congruent transformations, obeying the following
laws:

AXIOM XII. The assemblage of all congruent transforma-
tions is a group of collineations, including the inverse of

each member.*

* It is highly remarkable that this axiom is superfluous. Cf. Lie-Engcl,
Theorie der Transformationsgrupptn, Leipzig, 1888-93, vol. iii, Ch. XXII, 98.
The assumption that our congruent transformations are collineations, does,
however, save an incredible amount of labour, and, lor that reason, is in-
cluded here.
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AXIOM XIII. The group of congruent transformations may
be expressed by means of analytic relations among the

parameters of the general collineation group.

Definition. The assemblage of all real points whose co-

ordinates satisfy three inequalities of the type

& < "' < X{ , i = I, 2, 3,
^0

shall be called a restricted region.

AXIOM XIV. A congruent transformation may be found
leaving invariant any point of a restricted region, and
transforming any real line through that point into any other
such line.

AXIOM XV. A congruent transformation may be found

leaving invariant any point of a restricted region, and any
real line through that point; yet carrying any real plane
through that line into any other such plane.

AXIOM XVI. There exists no continuous assemblage of

congruent transformations which leave invariant a point of

a restricted region, a real line through that point, and a real

plane through that line.

Theorem 33. The congruent group is transitive for a suffi-

ciently small restricted region.

This comes at once by reductio ad absurdum. For the

tangents to all possible paths which a chosen point might
follow would, if 33 were untrue, generate a surface or set

of surfaces, or a line or set of lines, and this assemblage of

surfaces or lines would be carried into itself by every con-

gruent transformation which left this point invariant. The

tangent planes to the surfaces, or the lines in question, could

not, then, be freely interchanged with other planes or lines

through the point.

Theorem 34. The congruent group depends on six essential

parameters.

The number of parameters is certainly finite since the

congruent group arises from analytic relations among the

fifteen essential parameters of the general collineation group.
Tho transference from a point to a point imposes three

restrictions, necessarily distinct, as three independent para-
meters are needed to determine a point. A fixed point being
chosen, two more independent restrictions are imposed by
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determining the fate of any chosen real line through it.

When a point and line through it are chosen, one more
restriction is imposed by determining what shall become of

any assigned plane through the line. When, however, a real

plane, a real line therein, and a real point in the line are

fixed, there can be no independent parameter remaining, as no
further infinitesimal transformations are possible.

Let us now look more closely at the one-parameter family
of project!ve transformations of the axial pencil through
a fixed line of the chosen restricted region.* Let us deter-

mine any plane through this line by two homogeneous
parameters A

1
:A2 ,

and take an infinitesimal transformation

of the group

The product of two such infinitesimal transformations will

belong to our group, hence also, as none but analytic functions

are involved, the limit of the product of an infinite number
of such transformations as dt approaches zero ;

that is to say,
the transformation obtained by integrating this equation

belongs to the group. Now this integral will involve one

arbitrary constant, which may be used to make the transfor-

mation transitive, and for all transformations obtained by
this integration, that pair of planes will be invariant which
was invariant for the infinitesimal transformation. Our

one-parameter group has thus a transitive one-parameter sub-

group with a single pair of planes invariant. These planes
are surely conjugate imaginary, for otherwise there would
be infinitesimal congruent transformations which left a point,

line, and real plane invariant; contrary to our last axiom.
The question of whether our whole one-parameter group is

generated by this integration or not, need not detain us here.

What is essential is that this pair of planes will be invariant

for the whole group. For suppose that S^ indicate a generic
transformation of the sub-group which leaves invariant the
two planes a, a', and the transformation T carries the two

planes a, a' into two planes /3, j3'. Then all transformations
of the type TS-T~^

will belong to our group, and leave the planes /3, /3' invariant,
and combining these with the transformations $^ we have
a two-parameter sub-group of our one-parameter group ; an
absurd result.

* Cf. Lie-Scheffers, Vorlesungen uber continuierliche Gruppen, Leipzig, 1893,
p. 125.
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Let us next consider the three-parameter congruent group
composed of all transformations which have a fixed point.
If a real line I bo carried into a real line l\ then the two

planes which were invariant with I will go into those which
are invariant with V. To prove this we have but to repeat
the reasoning which lately showed that the two planes which
were invariant for a sub-group, are invariant for the total

one-parameter group. The envelope of all these invariant

planes which pass through a point will thus depend upon
one parameter, for if it depended on two it would include

real planes, and this is not the case. It is well known that

this system of planes must envelope lines or a quadric cone.*

The first case is surely excluded for such lines would have
to appear in conjugate imaginary pairs, giving rise to in-

variant real planes through this point, and there are no such
in the three-parameter group. The envelope is therefore

a cone with no real tangent planes. Each pair of conjugate

imaginary tangent planes must touch it along two conjugate

imaginary lines
;

the plane connecting these is real, and
invariant for the one-parameter congruent group associated

with the line of intersection of the two imaginary planes.
Let us fix our attention upon one such one-parameter group
and choose our coordinate system in such a way that the

non-homogeneous coordinates u, v, 1 of our three fixed planes
are proportional respectively to

(0, 0, 1), (1, i, 0), (1, -i, 0).

The general linear transformation keeping these three

invariant is

yf= r cos Ou r sin Ov, v'= r sin Ou + r cos Ov.

Here r must be a constant, as otherwise we should have

congruent transformations of the type

u'= ru, v
f'= TV,

which kept a point, a line, and all planes through that line

invariant, yet depended on an arbitrary parameter. In order

to see what sort of cones are carried into themselves by this

group, the cone we are seeking for being necessarily of the

number, let us take an infinitesimal transformation

Au = vdO, Ai? = udO.

Integrating u* + v2 ^C.

The cone we seek is therefore a quadric cone.

* Cf. Lie-Scheffers, loc. cit, p. 289.
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We see by a repetition of the sort of reasoning given above
that if we take a congruent transformation that carries

a point P into a point P', it will carry the invariant quadric
cone whose vertex is P into that whose vertex is P . The

envelope of these quadric cones is, thus, invariant under the

whole congruent group. The envelope of these cones must
be a quadric or conic. This theorem is simpler when put
into the dual form, i.e. a surface which meets every plane
in a conic is a quadric or quadric cone. For it has just the

same points in every plane as the quadric or cone through
two of its conies and one other of its points. In our present
case our quadric must have a real equation, since it touches

the conjugate to each imaginary plane tangent thereto. There

are, hence, three possibilities :

(a) The quadric is real, but the restricted region in question
is within it.

(6) The quadric is imaginary.

(c) The quadric is an imaginary conic in a real plane.

Theorem 35. The congruent group is a six-parameter colli-

neation group which leaves invariant a quadric or a conic.

It remains for us to find the expression for distance. We
make the following assumptions.

AXIOM XVII. The distance of two points of a restricted

region is a real value of an analytic function of their

coordinates.

AXIOM XVIII. If ABC be three collinear real points, and
if B be separated by A and G from a point of their line not

belonging to this restricted region ; then the distance from
A to O is the sum of the distance from A to B and the

distance from B to G.

Let the reader show that this definition is legitimate as all

points separated from A by B and (7, or from by A and B
will belong to the restricted region.

Let us first take cases (a) and (6) together. The distance

must be a continuous function of each cross ratio determined by
the two points and the intersections of their line with the

quadric. If we call a distance d, and the corresponding cross

ratio of this type c, we must have

e=f(d).

Moreover, from equation (1) and Axiom XIII,
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Now this functional equation is well known, and the only
continuous solution is *

d

c = e^.

d 1 .

If, in particular, the two points be J^P2 while their line

meets the quadric in Q^2 , we shall have for our distance,

equation (5) of Chapter VII

From this we may easily work back to the familiar ex-

pressions for the cosine of the fcth part of the distance.

The case of an invariant conic is handled somewhat
differently. Let the equations of the invariant conic be

# = 0, or^ + x^ + x^ = 0.

These are unaltered by a seven-parameter group

where
||
a

xl
a

2
.

2
a

:i3 1|
is the matrix of a ternary orthogonal

substitution. For our congruent group we must have the

six-parameter sub-group where the determinant of this ortho-

gonal substitution has the value a^
3
, for then only will there

be no further infinitesimal transformations possible when
a point, a line through it, and a plane through the line are

fixed. We shall find that, under the present circumstances
the expression

is an absolute invariant. If the distance of two points (x), (>])

be rf, we shall have ^ _ f (])\

This function is continuous and real, and satisfies the

functional equation

f(D)+f(D')=f(D + V).

* Cf. e.g. Tannery, Theorie des fonctions d'unc variable, -second edition, Pari^,

1904, p. 275.

COOLIDQE S
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The solution of this equation is easily thrown back upon
the preceding one. Let us put

/(a?)
= log ^(a),

(x)
= e

r

We thus get finally

d = r

Theorem 36. Axioms I-XVTII are compatible with the

hyperbolic, elliptic, or euclidean hypotheses, and with these

-only.



CHAPTER XIX

THE DIFFERENTIAL BASIS FOR EUCLIDEAN

AND NON-EUCLIDEAN GEOMETRY

WE saw in Chapter XV, Theorem 17, that the Gaussian
curvature of a surface is equal to the sum of the total relative

curvature, and the measure of curvature of space. A noii-

euclidean plane is thus a surface of Gaussian curvature equal

to -

7v>
This fact was also brought out in Chapter V, Theorem 3,

A/"
1

and we there promised to return in the present chapter to

a more extensive examination of this aspect of our non-
euclidean geometry.

In Chapter II, Theorem 30, we saw that the sum of the

distances from a point to any other two, not collinear with

it, when such a sum exists, is greater than the distance of

these latter. We thus come naturally to look upon a straight
line as a geodesic, or curve of minimum length between two

points. A plane may be generated by a pencil of geodesies

through a point ;
the geometrical simplicity of the plane may

be said to arise from the fact that it is capable of oo 2 such

generations. The task which we now undertake is as

follows : to determine the nature of a three-dimensiona]

point-manifold which possesses the property that every sur-

face generated by a pencil of geodesies has constant Gaussian
curvature. We must begin, as in previous chapters, with
a sufficient set of axioms.*

Definition. Any set of objects which may be put into one
to one correspondence with sets of real values of three inde-

pendent coordinates z^ z^ z% shall be called points.

Definition. An assemblage of points shall be said to form
a restricted region^ when their coordinates are limited merely
by inequalities of the type

6 <,<<, = 1,2,8.

* The first writer to approach the subject from this point of view was

Riomann, loc. cit. The best presentation of the problem in its general form,
and in a space of n-dimensions, will be fcmnd in Schur,

* Ueber den Zusam-

menhang der Raume constanten Riemannscheii Kriimmungsmasses mit den

projectiven Raumen,' Mathematische Annakn, vol. 27, 1886,

s2
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AXIOM I. There exists a restricted region.

AXIOM II. There exist nine functions
a^, i, j = 1, 2, 3

of 0j, 2
2 , s3 real and analytic throughout the restricted region,

and possessing the following properties

is a positive definite form for all real values of dz
L , dz^ dz^

and all values of z^ 2 , 3 corresponding to points of the given
restricted region.

Limitation. We shall restrict ourselves to such a portion
of the original restricted region that for no point thereof shall

the discriminant of our quadratic form be zero. This amounts
to confining ourselves to the original region, or to a smaller

restricted region within the original one.

Definition. The expression

shall be called the didaive element.

Definition. The assemblage of all points whose coordinates

are analytic functions of a single parameter shall be called an

analytic curve, or, more simply, a curve. As we have defined

only those points whose coordinates are real, it is evident that

the functions involved in the definition of a curve must be
real also. The definite integral of the distance element
between two chosen points along a curve shall be called the

length of the corresponding portion or arc of the curve. If

the curve pass many times through the chosen points, the

expression length must be applied to that portion along which
the integration was performed.

Definition. An arc of a curve between two fixed points
which possesses the property that the first variation of its

length is zero, shall be called geodesic arc. The curve whereon
this arc lies shall be called a geodesic connecting the two

points.
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Let us begin by setting up the differential equations for

a geodesic. Let us write

It is clear that s is an analytic function of t with no

singularities in our region, hence t is an analytic function of s.

We may, then, by taking our restricted region sufficiently

small, express a^ as functions of s, and write

, '

Replacing
-~

temporarily by z/, we have

P /1,2,3

*= A/ 2 *<'*/
*'

J V U
We have now a simple problem in the calculus of

variations.

^l,2, 3 1,2,3 >,
f

288
=J 2 2 (^ *//'** + 2^ '/a*/)*-

^1,2,3 T
'
2 ' 3cZ^..^/^ 1

'
S

'
3

5 2 , /j = 2^%^ H- + 2 ^*//
'

i ^' 0' y

hence, since Sz,- vanishes at the extremities of the interval

the increments bz- are arbitrary, hence the coefficients of each

must vanish, or

These three equations are of the second order. There will

exist a single set of solutions corresponding to a single set

of initial values for (z) and (/).* Let these be (0) and (Q
* Cf. e.g. Jordan, Cours d^Analyse^ Paris, 1893-6, vol. iii, p. 88.
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respectively. Any point of such a geodesic will be determined

by <fj > (3
and r the length of the arc connecting it with (z).

e have thus
'

byW

D (z z z )

Now the expression n /^"T'V has the value unity whenu (T^l r^^r^)
r = 0. We may therefore revert our series, and write

We shall take our restricted region so small that (4) shall

be uniformly convergent therein, for all values for (z) and (z)
in the region. Hence two points of the region may be con-

nected by a single geodesic arc lying entirely therein.*

Theorem 1. Two points of a restricted region whose coor-

dinates differ by a sufficiently small amount may be connected

by a single geodesic arc lying wholly in a sufficiently small

restricted region which includes the two points.

We shall from now on, suppose that we have limited

ourselves to such a small restricted region that any two

points may be so connected by a single geodesic arc.

Definition. A real analytic transformation of a restricted

region which leaves the distance element absolutely invariant

shall be called a congruent transformation.

Definition. Given a geodesic through a point (5). The
three expressions

shall be called the direction cosines of the geodesic at that

point. Notice that

1, -*,
3

1,2,3

= 2 ("#-
ij

* Cf. Darboux, loc. cit.
,
vol. ii, p. 408.
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This is a positive definite form, for the coefficients are the
minors of a positive definite form. Hence

This expression shall be defined as the cosine of the angle
formed by the two geodesies. When it vanishes, the geodesies
shall be said to be 'mutually perpendicular or to cut at right

angles.

Theorem 2. The angle of two intersecting geodesies is au
absolute invariant for all congruent transformations.

This comes at once from the fact that

1,2,3

_ __ _
ds bs

is obviously an absolute invariant for all congruent trans-

formations.

Definition. A set of geodesies through a chosen point whose
direction cosines there, are linearly dependent upon those

of two of their number, shall be said to form a pencil. The
surface which they trace shall be called a geodesic surface.
We shall later show that the choice of the name geodesic

surface is entirely justified, for each surface of this sort

may be generated in oo 2
ways by means of pencils of

geodesies.

AXIOM III. There exists a congruent transformation

which carries two sufficiently small arcs of two intersecting

geodesies whose lengths are measured from the common
point, into two arcs of equal length on any two inter-

secting geodesies whose angle is equal to the angle of the

original two.*

It is clear that a congruent transformation will carry an
arc whose variation is zero into another such, hence a geodesic

* Our Axioms I-III, are, with slight verbal alterations, those used by
Woods, loc. cit. His article, though vitiated by a certain haziness of defini-

tion, leaves nothing to be desired from the point of view of simplicity. In
the present chapter we shall use a different coordinate system from his, in

order to avoid too close plagiarism. It is also noteworthy that ho uses k

where we conformably to our previous practice use -
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into a geodesic. It will also transform a geodesic surface

into a geodesic surface, for it is immediately evident that

we might have defined a geodesic surface as generated by
those geodesies through a point which are perpendicular to

a chosen geodesic through that point.
It is now necessary to choose a particular coordinate system,

and we shall make use of one which will turn out to be
identical with the polar coordinate system of elementary
geometry. Let us choose a fixed point (z) 9

and a fixed

geodesic through it with direction cosines (). Finally, we
choose a geodesic surface determined by our given geodesic,
and another through (z). Let $ be the angle which a geodesic
through (0) makes with the geodesic (f), while 6 is the angle
which a geodesic perpendicular to the last chosen geodesic
and to (C) makes with a geodesic perpendicular to the given
geodesic surface, i.e. perpendicular to the geodesies of the

generating pencil. Let r be the length of the geodesic arc of

() from (2) to a chosen point. We may take <, 0, r as coor-

dinates of this point. The square of the distance element
will take the form

(5)

We see, in fact, that there will be no term in drd<t> or drdO.
For if we take = const, we have a geodesic surface, and
the geodesic lines of space radiating from (z) and lying in
this surface will be geodesies of the surface. The curves
r = const, will be orthogonal to these radiating geodesies.*
The surfaces

<f>
= const, are not geodesic surfaces, but the

curves = const, and r = const, form an orthogonal system for

the same reason as before. The coefficients E, F, are indepen-
dent of 0, for, by Axiom III, we may transform congruently
from one surface = const, into another such. The coefficient

G is independent of $ also, for in any surface = const.

we may transform congruently from a,ny two geodesies
through (2) into any other two making the same angle.
We may, in fact, write

for the square of any distance element can be put into the

where fa is a function of
<f>
and 0.

*
Bianchi, Differentlalgeometrie, cit., p. 160.
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Let us at this point rewrite our differential equations (2)
in terms of our present coordinates

A [
dri- 1r^ (

dd
\
2

2 ^(c
\ cQ\ **?/^2

1

ds LdsJ 2 LD r (ds)
+

dr Vds/ \~ds)
+

*r Vds/ J
'

d
-L1 . __

dsj

d
JL r - j 4.0

ds
"*"

dsJ
~~

2 Lty Vds/
"*" "

d0 Vds/ V ds

Consider the geodesic surface $ = ~
5 which may, indeed,

be taken to stand for any geodesic surface. Here we must
have E = cG,

where c is constant. The differential equations for a geodesic
cxirve on this surface will be *

dsdsJ 2r Vds

-

ds

These are exactly equivalent to the combination of (6) and
</>
= const. Lastly, if we remember that two near points of

a surface can be connected by a single geodesic arc lying
therein.

Theorem 2. The geodesic connecting two near points of

a geodesic surface lies wholly in that surface, and is identical

with the geodesic of the surface which connects those two

points.

Theorem, 3. There is a group of oc
3
congruent transforma-

tions which carry a geodesic surface transitively into itself.

Theorem, 4. All geodesic surfaces have the same constant

Gaussian curvature.

These theorems enable us to solve completely our differential

equations (6). The Gaussian curvature of each geodesic
surface is an invariant of space which we may call its

measure of curvature. We shall denote this constant by p ,

and distinguish with care the two following cases

p*0,
1 = 0.

*
Bianchi, ibid., p. 153.
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The determination of our coefficients J5, F, G is now an

easy task. The square of the distance element for a geodesic
surface = const., will be ^6

2 _ dr2
+6(r) d!</>

2
.

Writing that this shall have Gaussian curvature
7
-,-

> Are get
rC"

V 6 = A sin y -f B cos ,

The determination of the constants A, B requires a little

care. It is clear to begin with that when

Hence J? = 0.

Again 1,2,3 ^ ^

1,2,3

But, from (1)

It 2, 3 1, 2, 3

<^^k
e. t. *<r^

cos

cosT = 1 -2

. d<f>_d<t,_d$8mT ~ T ~
2

giving eventually

=1; ^=*.

Hence, by the equations preceding (6)

cfo
2 = rfr

2 + k* sin
2
y
rC
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We proceed to calculate F. The differential equations for

a geodesic curve of the surface 6 = const., will be

d /d/dr\ _ 1 ^0 /cZ(/>\
2

Vrfs/ 2*r\ds) '

d

ds

These must be equivalent to those obtained from (6), when= const., i.e. we must have

(IS

Fr
=. const.,

and as F' is not a function of it is a constant everywhere.
Now when = 0, there is no dO term in ds2

,
so that E =

;

E
but ~

> which is the cosine of the angle which curves
v FQ-

= const, and
<f>
= const., make on the surface r = const.,

is surely Jess than unity. Hence

Lastly, we must find E'. The surfaces r = const, have
constant Gaussian curvature, for each is capable of oo 3 con-

gruent transformations into itself. Hence

ds* = /^sin2
'

= const,

= A sin l<f) + B cos

As we saw a moment ago 5 = 0, for E vanishes with
On the other hand, when

But also A sin ^?r = 0.

Hence I is an old integer, and

sin2
^ [sin

2
<^>
d O2 + d^8

]. (7)
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This is our ultimate form for the square of the distance

element. Let the reader show that under the second case

~ = 0, we have

<U* = dr2 + v* [sin
2
4> dO* + d<f>*]. (7')

It is now time to return to coordinates of a more familiar

sort. Let us write

x ~k cos r s

7*

#j = k sin v cos cos 0,

2
= & sin Y si

(8)-i v '

(dxdx) = cits
2

.

To find the differential equation of a geodesic, we have
a problem in relative minima

s (

To determine A

(icr)
= fc

2
,

(^cZ
2
o;) + ds*= d

(
-

%ds*) = 0.

But from our equations

We thus get for the final form for our differential equation

^+-0 (9)
cZs

a +
i>
~

' (y^

Let the reader show that in the other case we have
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Integrating s . s6 6
-

k* = (xx) = (yy) = (zz),

(yz) = 0.

We have then for the length of the geodesic arc from (y)
to (x) ci

jfe
2 cos = (xy) 9

or, if we replace our coordinates by homogeneous ones pro-
portional to them

ci (Xy\
COS --.- ^^

~pr~i~ :

"

/
~
~"~~-

'

\ )k
V(xx) V(yy)

Let the reader show that when
.^
= 0,

d = S(x-z )*+ (y-y )*+(Z-z )*.

Theorem 5. Axioms I, II, III are compatible with the

euclidean hyperbolic and elliptic hypotheses, and with these

alone.

Our task is now completed. At bottom, the essential

feature of a geometrical system where the elements are points
is the expression for distance, for the protective theory is

the same for a limited domain in all restricted regions. We
have established our distance formulae three several times,
each time approaching the subject from a new point of view.
In Chapters I-IV we took as fundamental the concepts point,

distance, and sum of distances. We reached our analytic
formulae by proceeding from elementary geometry to trigono-

metry, and then introducing a simple coordinate system, such

as we do when we first take up the study of elementary
analytic geometry. The Chapters VI-XVII were devoted to

erecting a superstructure upon the foundation which we had
established. In Chapter XVIII we took a fresh start, laid

down point line and separation as fundamental, constructed

the common project!ve geometry for all of our systems (except
the spherical, which would involve slight modifications), and
established the system of projective coordinates. We then

introduced certain collineations called conyruent transforma-
tions, and worked around to our previous distance formulae

through group-theory. In the present chapter we took as

fundamental the concepts point and correspondence of point
and coordinate set. The essentials in our development were
the distance element, the geodesic curve, and the space con-
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stant, or measure of curvature. We reached our familiar

formulae by means of surface theory, integration, and the

calculus of variations.

Which of the three methods of approach is the best ? To
this question no definite answer may be given, for that method
which is best for one purpose is not, necessarily, best for

another. The first method depended upon the simplest and
most natural fundamental conceptions, and presupposed a
minimum of mathematical knowledge. It also corresponded
most closely to the line of historical development. On the

other hand it is the longest, even after cutting out a number
of theorems, interesting in themselves, but not essential as

steps towards the ultimate goal. The second method possessed
the advantage of beginning with the assumptions which serve

as a basis for the important subject of projective geometry ;

metrical ideas were grafted upon this stem as a natural

development. Moreover, the fundamental importance of the

six-parameter collineation group which keeps a conic or

quaclric invariant was brought into the clearest light. On
the other hand, we were obliged to develop a coordinate

system, which to some readers might seem a trifle unnatural

or forced, and exposed ourselves to being put down among
those whom the late Professor Tait has stigmatized as ' That
section of mathematicians for whom transversals and an-

harmonic pencils have a, to us, incomprehensible charm
3

.* Our
third and last method is, beyond a peradventure, the quickest
and most direct ;

and has the advantage of bringing out the

full significance of the space constant. It may, however,
be urged with some justice, that too high a price has been

paid lor this directness, by assuming at the outset that space
is something whose elements depend in a definite manner on
three independent parameters. The modern tendency is to

take a more abstract view, to look upon space, in the last

analysis, as a set of objects which can be arranged in multiple
series.f The battle is more than half over when the coor-

dinate system has been set up.

No, there is no answer to the question which method of

approach is the best. The determining choice among the

three, will, in the end, be a matter of personal aesthetic

preference. And this is well. Let us not forget that, in

large measure, we study pure mathematics to satisfy an
aesthetic need. We are fortunate when, as in the present case,

we are free at the outset to choose our line of approach.
*

Tait, An Elementary Treatise on Quaternions, third edition, Cambridge, 1890,
p. 309.

f Cf. Russell, loc. cit., p. 372.
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Absolute, 88, 94, 95, 97, 98, 99, 101,

102, 103, 106, 107, 110, 111, 113,

116, 117, 118, 119, 124, 127, 129,

132, 134, 138, 142, 143, 146, 152,

154, 155, 157, 161, 162, 187, 205,
226, 231, 232, 233, 234, 244, 246.

Actual elements, 85.

Amaldi, 177.

Amplitude of tetrahedron, 179, 180,
181.

Amplitude of triangle, 170, 171,

172, 173.

Angle, interior and exterior, 30. 87,

88, 279.
- -

null, 30.

right, 32.

straight, 31.

re-entrant, 31.

dihedral, 39.

plane, of dihedral, 39.

of skew lines, 113.

measure of, 38, 87.

of two planes, cosine, 70.

parallel, 106, 107.

Angles of a triangle, 31.

exterior of a triangle, 31.

Clifford, 126.

Archimedes, 24.

Area, 170, 175, 178, 211.

of a circle, 178.

of a plane, 178.
- of a polygon, 178.
-- of a triangle, 175, 176, 177.

Aronhold, 159.

Asymptotes, 152.

Asymptotic lines, 196, 202, 203,
212 213

Author, 116, 127, 130, 154, 156,

158, 167, 226, 230, 232, 234.

Axes, co-ordinate, 64, 67.

Axial plane of sphere, 138.

Axis of a circle, 131, 134, 135, 150.
- radical of two circles, 134, 135,

136.
- of a conic, 143.

Axis of a chain, 119.

of a pencil of complexes, 116.

Barbarin, 154.

Battaglini, 131.

Beck, 116.

Beltrami, 67, 210.

Bianchi, 6, 187, 188, 204, 206, 210,
226, 280, 281.

Birectangular quadrilateral, 43, 44,
49.

Bisector of an angle, 102, 103, 109,
133, 135, 136, 143, 146, 153, 157,

159, 220, 222.

Bolza, 209.

Borel, 34.

Bound of half-line, 28.

Bound of half-plane, 30.

Bromwich, 154.

Canal surface, 156.

Cayley, 88, 97, 157.

Central conic, 143-153.

Central quadric, 157-60.

Centre of a circle, 135, 136, 137.
- of a conic, 143, 148, 149, 150.

of gravity of points, 102, 103,

109, 133, 135, 136, 143, 146, 153,

159, 220, 222.

Centre of quadric, 157.

of similitude, 134, 135, 136.

Ceva, 105.

Chain congruence, 121, 129.
- -of crosses, 119, 120, 128.

Circle, 131-137, 143, 151, 178, 188.

auxiliary to conic, 152.

Clebsch, 159, 176.

Clifford, 99, 126, 129, 156, 157, 205,

212, 240.

Coaxal pencil of complexes, 116,
124.

Coaxality, 20.

Collinearity, 18, 102, 103, 104, 105,

134, 136, 251.



288 INDEX

Collineations, 29, 38, 69, 70, 94, 119,
127, 239, 265, 266, 268.

Comparableness of angles, 34, 35.

Complex of lines, 116.

Concurrence, 18, 102, 103, 105, 134,

136, 251.

Cone of revolution, 185.

Confocal conies, 153.

Confocal quadrics, 160, 164.

Conformal transformations, 198.

Congruence of distances, 14, 15, 16,

17, 28, 36, 79.

of segments, 28.

of angles, 31, 33, 34, 36, 38, 39.

of triangles, 31, 32.

synectic, 120, 122.

chain, 121, 129.

of lines, analytic, 215-235.
- of lines, general, 218.

of normals, 162, 208, 210, 222,

223, 224, 225, 226, 227, 229, 235.

of normals, to surfaces of Gaus-
sian curvature zero, 123, 208, 226,

227, 235.

isotropic, 164, 226, 227, 230, 232,

234, 235.

Congruent figures, 28.

Congruent transformations, 29, 37,

38, 69, 70, 73, 74, 80, 82, 92-100,
239, 268, 269, 270, 271, 278, 279,
280.

Conic, 142-53, 272.

Conic, eleven-point or line, 147.

Conjugate diameters ofa conic, 148.

directions on a surface, 195, 196.

harmonic, 252, 253, 254, 257,
259, 261.

Connectivity of space, 238.
Consistent region, 78, 79, 80, 83,

236, 237, 238.

Continuity, axiom of, 23, 24, 75, 249.
- in change of angles and sides of
a triangle, 40, 41, 42.

Co-ordinates of a line, 110, 264.

of a point, 64, 68, 176, 187, 188,

194, 236, 237, 263, 264, 275.
-- of a plane, 264.

Coplanarity, 109, 138.

Cosine of angle, 54, 70, 279.

of distance, 52, 285.

Cosines, direction, 67, 69, 278.

law of, 57.

Cross, 117, 118, 119, 124, 125, 231.

Cross ratios, 73, 86, 88, 89, 90,' 91,

247, 259, 260, 261, 262, 264, 265.

Cross space, 118.

Curvature of a curve, 133, 188, 189 T

200, 201.

Gaussian, 67, 123, 130, 204, 205,

206, 207, 208, 275, 281, 282, 283.

-geodesic, 208, 209.

mean relative, 200, 212.

total relative, 200, 203, 204, 205.

of space, 53, 176, 189, 204, 275,
281.

lines of, 198, 199.

surfaces of zero, 123, 204, 205,

206, 207, 208, 226, 227, 235.

Dannmeyer, 170.

Darboux, 141, 212, 278.

Dehn, 46, 181.

Density of segment, 16.

Desargues, 75, 146, 251.

Desmic configuration, 108, 109, 110,

138.

Diagonal points of quadrangle, 252.

Diagonals of quadrilateral, 252.

Diameters of conic, 148, 149, 150,
151.

ofquadric, 159, 160.

Difference of distances, 17, 35.

Director points and directrices, 144 T

145, 146.

Discrepancy of a triangle, 46, 174.

Distance, 13, 72, 73, 74, 76, 78, 87,

89, 90, 91, 272, 273, 285.

Distance, directed, 62, 66, 90.

Distance of two points, cosine, 52 r

69, 78, 285.
- from point to plane, 70.
- of skew lines, 111, 112, 114.

element, 66, 67, 187, 194,276-84.
Division of segment, 24, 25. 26, 27.

Dunkel, 60.

Dupin, 141, 197, 201, 205.

Edge of tetrahedron, 20.

Ellipse, 142, 143, 146, 153, 167, 168 r

169.

Ellipsoid, 154, 156, 167, 16, 169.

Elliptic co-ordinates, 153, 161.

hypothesis, 46, 73, 74, 274, 285.

space, 82, 83, 245.

Engel, 43.

Enlargement of congruent trans-

formation, 29.

Enriques, 33, 177, 247.

Equidistant curves, 132, 143.

surfaces, 156.
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Equivalent points, 81, 82, 236.

Euclid, 47, 72.

Euclidean hypothesis, 46, 72, 73,

274, 285.

space, 77, 91, 239, 240, 241, 242.

Evolutes, 192, 193, 194.

Excess of a triangle, 174, 175, 176,
177.

Extension of segment, 15, 79.

of space, 77, 78, 79, 80.

Extremity of segment, 15.

Face of tetrahedron, 20.

Fibbi, 215, 221.

Focal cones, 158, 159.

conies, 158, 159, 167, 168, 169.

lines, 144, 145, 146, 147, 151.

points and planes, 221, 222, 223,
224
surfaces, 210, 226, 232.

Foci, 144, 145, 146, 147, 151.

Forms, fundamental one-dimen-

sional, 259, 260, 261, 267.

Von Frank, 186.

Frenet, 190.

Fricke, 244.

Frischauf, 176, 186.

Fubini, 227, 229.

Fundamental region, 239-46.

one-dimensional forms, 259, 260,

261, 267.

Geodesic curvature, 208, 209.
-

lines, 163, 209, 210, 274-81, 284,
285.

surfaces, 279, 280, 281.

Gerard, 48, 53.

Graves, 153.

Greater than, 15, 16, 17, 34, 35,

37, 92.

Half-line, 28-33, 38, 64, 67.

Half-plane, 30, 37, 38, 39.

Halsted, 24, 75, 177.

Hamilton, 98, 120, 221.

Harmonic conjugate, 252, 253, 255,
261.

separation, 252, 253, 254, 257.
g<a 252 253

Hilbert, 'l3, 24,*36, 75, 177, 265.

Homothetic conies, 152, 153.

quadrics, 160.

Horocycle, 132, 143, 243.

Horocyclic surface, 156, 205.

Hyperbola, 142, 146, 167, 168, 169.

Hyperbolic hypothesis, 46, 72, 73,

78, 274, 285.

space, 78, 236.

Hyperboloid, 155, 167, 168, 169.

Ideal elements, 84, 85.

Imaginary elements, 86, 87, 266,
267.

Improper cross, 117, 118, 127, 231.

ray, 231, 232.

Indicatrix of Dupin, 201, 205.

Infinitely distant elements, 84, 85.

Infinitesimal domain, 42, 47, 68,

174, 175.

Initial point, 62.

Intersection of lines, 17, 249.
of planes, 22, 251.

Involution, 86, 87, 266, 267.

Isosceles quadrilateral, 43, 50.

triangle, 32, 34.

Isotropic curves, 203, 209.

congruence, 164, 226, 227, 230,

232, 234, 235.

Joachimsthal, 197.

Jordan, 277.

p-
measure of curvature of space,

53, 176, 189, 204, 275, 281.

Killing, 142, 237, 245.

Klein, 97, 129, 161, 244.

Kummer, 215.

Layer of cross space, 118, 119, 125.

Left and right generators of Abso-

lute, 99, 124, 125, 234.

Left and right translations, 99, 100,
245.

Left and right parataxy, 99, 208, 225.

Length of arc, 276.

Less than, 15, 16, 17, 34, 35, 37, 92.

Levy, 13, 75.

Lie, 268, 270, 271.

Liebmann, 142.

Limiting points and planes, 219

220, 222.

Lindemann, 139, 176.

Line, 17, 78, 248, 249.

Lobatchewsky, 46, 106.

Lobatchewskian hypothesis, 46.

Luroth, 87, 89, 267.

Manning, 107, 176, 205.

Marie, Ste-, 47.
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Measure of distance, 27, 28, 87.

of curvature of space, 33, 176,

189, 204, 207, 275, 281.

Menelaus, 105.

Meunier, 201, 208.

Middle point of segment, 24.

Minimal surfaces, 129, 210-14.

Moment, relative of two lines, 112.

relative of two rays, 115, 192.

Moore, 13, 46, 75.

Motions, 97, 98, 99.

Multiply connected space, 238-46

Munich, 139.

Normals to curve, 192, 193, 194.

to surface, 162, 197, 208, 210, 222,

223, 224, 225, 226, 227, 229, 235.

Null angle, 30.

distance, 14.

Opposite edges of tetrahedon, 20.

half-lines, 31.

senses, 63, 86, 266.

sides of plane, 22.

Origin, 64.

Orthogonal points, 101, 103, 118,

132, 135, 136, 137, 138, 139, 143,

189,205,215,217,219,224.
Orthogonal substitutions, 69, 70, 73,

Q7 Q&
J/l, 7O.

system of surfaces, 197, 198.

d'Ovidio, 112, 142, 170,

Padoa, 13, 254.

Parabola, 142, 143.

Parabolic hypothesis, 46.

Paraboloid, 155, 157.

Parallel angle, 106, 107, 110.

Parallelism, 85, 99, 106, 113, 234,
235.

Parataxy, 99, 114, 125, 129, 206,

207, 208, 225, 233, 234, 235.

Pasch, 13, 29, 86, 265.

Peanp, 13.

Pencil of complexes, 116.

of geodesies, 279.

Perpendicularity, 34, 36, 37, 39,

101, 103, 118, 132, 135, 136, 137,

138, 139, 143, 182, 183, 193, 197,

217, 219, 220, 224, 279.

Phi function, 50, 51, 52.

Picard, 175, 210.

Pieri, 13, 74, 86, 247.

Plane, 20, 21, 22, 38, 67, 70, 81, 82,

95, 109, 110, 118, 224, 242, 243,

249, 250, 251, 253, 259, 264, 265,

268, 269.

Poincare, 139.

Point, 13, 78, 84, 86, 247, 266,
275.

Polygon, 178.

Principal points and planes, 220.

Products connected with a conic,

145, 149, 150.

Projection, 253, 260.

Projectivity, 259, 260, 262, 267.

Pseudo-isotropic congruence, 229,

230, 234, 235.

Pseudo-normal congruence, 224,
229.

Pseudo-parallelism of lines, 113,

234, 235.

Pythagorean theorem, 55, 57.

Quadrangle, complete, 252.

Quadrilateral, 43, 44, 49, 174.

complete, 252, 253, 266.

Quaternions, 98, 245.

Ratio of opposite sides of quadri-

lateral, 49, 50, 51, 52, 53.

Ratios, constant connected with

conies, 144, 151.

Ray, 114, 115, 191, 192, 227, 228,

234, 235.

Rectangle, 43, 44, 45, 46.

Reflection in plane, 39, 82.

in point, 62.

Region consistent, 78, 79, 80, 81,

83, 236, 237, 238.

Region, fundamental, 239 46.

restricted, 269, 276, 277, 278.

Revolution, surfaces of, 155, 156.

Riccordi, 131.

Richmond, 184.

Riemann, 46, 53, 67, 275.

Riemannian hypothesis, 46.

Right angle, 32, 34, 39, 279.

triangle, 32, 44, 45, 55.

Right and left generators of Abso-

lute, 94, 124, 125, 234.

Right and left parataxy, 99, 208,

Right and left translations, 99, 100,

245.

Russell, 74.

Saccheri, 43, 50.

Salmon, 134.

Scalene triangles, 34, 35.
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Schlafli, 183, 184, 185.

Schur, 13, 275.

Segment, 15, 16, 17, 18, 23, 24, 25,

26, 28.

Segre, 119.

Semi-hyperbola, 142.

Semi-hyperboloid, 154.

Sense of directed distances, 63, 64.

of description of involution, 86,

266.

Separation, 248, 249, 255, 256, 257,

258, 259, 262.

classes, 247, 249, 255, 257, 258.

harmonic, 252, 253, 254, 257.

Sides of angle, 30,31.
of quadrangle, 252.

of quadrilateral, 43, 252.

of triangle, 19, 31, 32, 35, 36.

Similitude, centres of, 134, 135,

136.

Sine of distance from point to plane,
70.

Sines, law of, 58, 59.

Singular region, 238.

Space, 20, 21, 22, 78, 238-46, 250,

251.

Sphere, 73, 74, 138-41, 156, 227,

228.

Spheres, representing, 227, 228.

Spherical space, 83.

Spheroid, 155, 156.

Stackel, 43.

Staude, 162.

Von Staudt, 86, 87, 89, 267.

Stephanos, 108.

Stolz, 24.

Story, 142.

Strip, 128, 129.

Study, 91, 93, 99, 116, 123, 125, 126,

229, 234.

Sturm, 233.

Sum of angles, 32, 34.

of angles of a triangle, 45, 46.

Sum of distances, 14-17, 92, 93.

Sum of distances connected with a

conic, 145, 148, 149.

Sum of distances connected with a

quadric, 160.

Sum of two sides of triangle, 35.

Supplementary angles, 32.

Surface integral, 175.

Symmetry transformations, 98, 99,

127.

Synectic congruence, 120, 122.

Tait, 286.

Tangent plane to surface, 194, 195.

Tannery, 273.

Terminal point, 62.

Tetrahedron, 20, 21, 181, 182, 183.

Tensor, 98.

Thread construction, 169.

Torsion, 190, 191, 192, 203, 207.

Transformations, congruent, 29, 37,

38, 69, 70, 73, 74, 80, 82, 92-100,
239, 268, 269, 270, 271, 278, 279,
280.

Translations, 62, 63, 100, 128, 239,

240, 245, 246.

Triangle, 18, 19, 31-5, 170, 172,

174, 175, 176, 177.

Triangles, congruent, 31.

Trirectangular quadrilateral, 43.

Ultra-infinite elements, 85, 187.

Umbilical points, 162.

Vahlen, 13, 24, 75, 247, 260, 265.

Vailati, 248, 254.

Veblen, 13, 19, 76, 247.

Veronese, 13, 74.

Vertex of angle, 30, 31.

of quadrangle, 252.

of quadrilateral, 252.

of tetrahedron, 20.

of triangle, 19.

Vertical angles, 32, 34.
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under the patronage of His Majesty's Secretary of State for India in Council.)

Three Vols., 1618-21, 1622-3, 1624-9. 12s. 6d. net each.

(The six previous volumes of Letters received by the East India Company
from its Servants in the East (1602-1617) may also be obtained, price
15s. each volume.)

Court Minutes of the East India Company. By E. B.

SAINSBUHY. Introduction by W. FOSTER. Med. 8vo. 12s. 6d. net each.

Two Vols., 1635-39, 1640-43.
The Court Minutes previous to 163,5 have been calendared in the Calendars
of State Papers, East Indies, published by the Public Record Office.

Wellesley's Despatches, Treaties, and other Papers relating to his

Government of India. Selection edited by S. J. OWEN. 8vo. 1 4s.

Wellington's Despatches, Treaties, and other Papers relating to

India. Selection edited by S. J. OWEN. Bvo. 1 4s.

Hastings and the Rohilla War. By Sir J. STRACHEY. 8vo. 10s. 6d.



GEOGRAPHY
Historical Atlas Of Modern Europe, from the Decline of the

Roman Empire. 90 maps, with
letterpress

to each : the maps printed by
W. & A. K. JOHNSTON, Ltd., and the whole edited by R. L. POOLE.

In one volume, imperial 4to, half-persian, 5 15s. 6d. net ; or in selected
sets British Empire, etc, at various prices from 30s. to 35s. net each ;

or in single maps, Is. 6d. net each. Prospectus on application.

The Dawn of Modern Geography. By C. R. BEAZLEY. In three

volumes. 2 10s. net. Vol. 1 (to A.I>. 900). Not sold separately. Vol. II

(A.D. 900-1260). 15s. net. Vol. III. 20s. net.

Regions Of the World. Geographical Memoirs under the general

editorship of H. J. MACKINDER. Medium 8vo. 7s. 6d. net per volume.

Britain and the British Seas. Ed. 2. By H. J. MACKINDER.

Central Europe. By JOHN PARTSCH.

Nearer East. By D. G. HOGARTH.

North America. By J. RUSSELL.

India. By Sir THOMAS HOLDICH.

The Far East. By ARCHIBALD LITTLE.

Frontiers: Romanes Lecture(l907) by LordCURZON OF KEDLESTON. 8vo. 2s. n.

The Face Of the Earth. By EDUARD SUESS. See p. 92.

The Oxford Geographies
The Oxford Geographies. By A. J. HERBERTSON. Crown 8vo.

Vol. I. The Preliminary Geography. Ed. 3, 72 maps and

diagrams, Is. 6d.

Vol. II. The Junior Geography. Ed. 2, 166 maps and dia-

grams, 2s. With Physiographk-al Introduction, 3s. With Questions
and Statistical Appendix, 2s. (id. (In preparation..)

Vol. in. The Senior Geography. Ed. 3, 117 maps and

diagrams, 2s. 6d. With Physiographical Introduction, 3s. 6d. With
Questions and Statistical Appendix, 3s.

Physiographical Introduction to Vois. u and in. is. <>d.

(In the press.}

Questions on the Senior Geography. By F. M. KIHK,
with Statistical Appendix by E. G. R, TAYLOR. Is.

The Elementary Geographies. By F. D. HERBERTSON. with
maps and illustrations from photographs. Crown 8vo. I : Physiography. lOd.
II : In and About our Islands. Is. Ill : Europe. Is. IV : Asia. Is. tfd.

VII : The British Isles. Is. 6d. Others in preparation.

Practical Geography. By J. F. UNSTEAB. Crown 8vo. Part I,

27 maps and diagrams, Part II, 21 maps and diagrams, each Is. 6'd. ;

together 2s. 6'd.

Relations of Geography and History. By H. B. GEORGE.
With two maps. Crown 8vo. Fourth edition. 4s. 6d.

Geography for Schools, by A. HUGHES. Crown 8vo. 2s. 6d.

School Economic Atlas. By J. E. BARTHOLOMEW. Introduction

by L. W. LYBE. 4to. 2s. 6d. net.



Anthropology

Transactions of the Third (1908) International Congress
for the History of Religions. Royal 8vo. 2 vois. 25s. net.

Anthropological Essays presented to EDWARD BURNETT TYLOR in

honour of his seventy-fifth birthday. Imperial 8vo. 21s. net.

The Evolution of Culture, and other Essays, by the late

Lieut-Gen. A. LANE-FOX PITT-RIVERS; edited by J. L. MYRES, with an

Introduction by H. BALFOUR. Hvo, with 21 plates, 7s. 6
%

d. net.

Anthropology and the Classics, six lectures by A. EVANS,

A. LANG, G. G. A. MURRAY, F. B. JEVONS, J. L. MYRES, W. W. FOWLER.
Edited by R. I\. MARETT. Hvo. Illustrated. 6s. net.

Folk-Memory. By WALTER JOHNSON. 8vo. Illustrated. 12s. 6d. net.

Celtic Folklore: Welsh and Manx. By J. RHYS, svois. 8vo. i is.

Studies in the Arthurian Legend. By J. RHYS. 8vo. i2s. (Jd.

Iceland and the Faroes. By N. ANNANDALE. With an appendix
on the Celtic Pony, by F. H. A. MARSHALL. Crown Bvo. 4s. 6d. net.

is' Hindu Manners. Translated and edited by H. K. BEAU-

CHAJVJP. Third edition. Crown 8vo. 6's. net. On India Paper, 7s. fid. net.

The Melanesians, studies in their Anthropology and Folk-Lore. By
R. H. CODRINGTON. 8vo. 16s. net.

The Masai, their Language and Folk-lore. By A. c. HOLUS.
With introduction by Sir CHARLES ELTOT. Bvo. Illustrated. 14s. net.

The Nandi, their Language and Folk-lore. By A. c. HOLLIS.

With introduction by Sir CHARLES ELIOT. 8vo. Illustrated. 16s. net.

The Ancient llaces of the Thebaid : an anthropometrieal study.

By ARTHUR THOMSON and D. RANDALL-MAC:!VEII. Imperial 4to, with 6 collo-

types, 6 lithographic charts, and many other illustrations. 49s. net.

The Earliest Inhabitants of Abydos. (A cranioiogicai study.;

By D. RANDALL-MAC!VEK. Portfolio. 10s. 6d. net.

Bushman Paintings. Copied by M. H. TOKGUE, and printed in colour.

With a preface by H. BALFOUR. In a box, 3 3s. net.



LAW
Jurisprudence

Bentham's Fragment on Government. Edited by K. c.

MONTAGUE. Hvo. 7s. 6d.

Bentham's Introduction to the Principles of Morals and

Legislation. Second edition. Crown 8vo. 6s. 6d.

Studies in History and Jurisprudence. By the Right Hon.

JAMES BRYCE. 1901. Two volumes. Hvo. 1 5s. net.

The Elements of Jurisprudence. By T. E. HOLLAND. Tenth

edition. 1906. Hvo. 10s. 6d.

Elements Of Law, considered with reference to Principles of General

Jurisprudence. By Sir W. MARKBY, K.C.I. E. Sixth edition revised, 190,5.

Svo. 12s. 6d.

Roman Law

Imperatoris lustiniani Institutionum Libri Quattuor;
with introductions, commentary, and translation, by J. B. MOYLK, Two
volumes. 8vo. Vol. I (fourth edition, 1903), l(>s. ; Vol. II, Translation

(fourth edition, 1906), 6s.

The Institutes of Justinian, edited as a recension of the Institutes

of Gaius. By T. E. HOLLAND. Second edition. Extra fcap Hvo. 5s.

Select Titles from the Digest of Justinian. By T. E. HOLLAND
and C. L. SHARWELL. Hvo. 11s.

Also, sold in parts, in paper covers : Part I. Introductory Titles. 2s. 6d.

Part II. Family Law. Is. Part III. Property Law. 2s. 6d. Part IV.
Law of Obligations. No. 1. 3s. 6d. No. 2. 4s. 6d.

Gai Institutionum luris Civilis Commentarii Quattuor :

with a translation and commentary by the late E. POSTE. Fourth edition.

Revised and enlarged by E. A. WHITTITCK, with an historical introduction

by A. H. J, GREE^IDGE. Bvo. 16s. net.

Institutes of Roman Law, by R. Soira. Translated by J. C.

LEDLIE : with an introductory essay by E. GRUEBER. Third edition. 1907.

Svo. 16s. net.

its place in Roman Public and Private Law. By A. H. J.

GREENIDGE. Svo. 10s. 6d.

Legal Procedure in Cicero's Time. By A. H. J. GREENTDGE.

8vo. 2os. net.

The Roman Law ofDamage to Property : being a commentary
on the title of the Digest

* Ad Legern Aquiliam
'

(ix.
L

2), with an introduction

to the study of the Corpus luris Civilis. By E. GIUTETJER. 8vo. 10s. O'd,

Contract of Sale in the Civil Law. By J. B. MOYLE. 8vo. los.ed.

The Principles of German Civil Law. By EHNEST J. SCHUSTER.

1907. Svo. I2s. 6d. net.



English Law

Principles of the English Law of Contract, and of Agency in

its relation to Contract. By Sir W. R. ANSOK. Twelfth edition. 1910, revised

by M. L. GWYER. 8vo. 10s. net.

Law and Custom of the Constitution. By Sir w. R. ANSON.

In two volumes. 8vo.

Vol. I. Parliament. Fourth edition. 1909. 12s. 6d. net.

Vol. II. The Crown. Third edition. Parti, 1907. 10s.6d.net Part II,

1908. 8s. 6d. net.

Introduction to the History of the Law of Real Property.
By Sir K. E. DIGBY. Fifth edition. 8vo. 12s. 6d.

Legislative Methods and Forms. By sir c. P. ILBERT, K.C.S.L

1901. 8vo. 16s.

Modern Land Law. By E. JENKS. 8vo. i5s.

Essay on Possession in the Common Law. By Sir F.

POLLOCK and Sir R. S. WRIGHT. 8vo. 8s. 6d.

Outline of the Law of Property. By T. RALEIGH. 8vo. TS. ea.

Law in Daily Life. By RUD. VON JHERWG. Translated with Notes

and Additions by H. GOUDY. Crown 8vo. 3s, 6d. net.

Cases illustrating the Principles of the Law of Torts,
with table of all Cases cited. By F. K. Y. RADCLIFFE and J. C. MILES. 8vo.

1904. 12s. 6d. net.

The Management of Private Affairs. By JOSEPH KING, F. T. R.

BlC.HAM, M. L. GWYEK, EDWIN CANNAN, J. S. C. BllIDGE, A. M. LATTER.
Crown Hvo. I

2s. Od. net.

Calendar of Charters and Rolls, containing those preserved in the

Bodleian Library. Hvo. 1 Ms. 6'd. net.

Handbook to the Land-Charters, and other Saxonic Documents.

By J. EARLE. Crown Hvo. 16s.

Fortescue's Difference between an Absolute and aLimited

Monarchy. Text revised and edited, with introduction, etc, by C.

PLUMMER. Hvo, leather back, 12s. 6d. net.

Villainage in England. By P. VINOGRADOFF. 8vo. 16s. net

Welsh Mediaeval Law : the Laws of Howel the Good. Text,

translation, etc, by A. W. WADE EVANS. Crown 8vo. Hs. Gd. net.

Constitutional Documents
Select Charters and other Illustrations of English Constitutional History,

from the earliest times to Edward I. Arranged and edited by W. STUBBS.

Eighth edition. 1900. Crown 8vo. Hs. 6d.

Select Statutes and other Constitutional Documents,
illustrative of the reigns of Elizabeth and James I. Edited by G. W.
PROTHERO. Third edition. Crown 8vo. 10s. 6d.

Constitutional Documents of the Puritan Revolution, selected and
edited by S, R. GARDINER. Third edition. Crown 8vo. 10s. 6d.



International Law
International Law. By W. E. HALL. Sixth edition by J. B. ATLAY.

1909. 8vo. 1 Is. net.

Treatise on the Foreign Powers and Jurisdiction of the

British Crown. By W. E. HALL. 8vo. 10s. 6d.

The European Concert in the Eastern Question, a collection

of treaties and other public acts. Edited, with introductions and notes, by
T. E. HOLLAND. 1885. 8vo. 12s. 6d.

Studies in International Law. ByT.E. HOLLAND. 1898. 8vo. ios.ed.

The LaWS Of War On Land. ByT. E. HOLLAND. 1908. 8vo. 6s. net.

Gentilis Alberici de lure Belli Libri Tres edidit T. E.

HOLLAND. 1877. Small quarto, half-morocco. 1 Is.

The Law of Nations. By Sir T. Twiss. Part I. In time of peace.
New edition, revised and enlarged. 8vo. 15s.

Pacific Blockade. By A. E. HOG AN. 1908. 8vo. 6s. net.

Colonial and Indian Law
The Government of India, being a Digest of the Statute Law relating

thereto, with historical introduction and illustrative documents. By Sir C. P.

ILBERT, K. C.S.I. Second edition. 1907. Hvo, cloth. 10s. 6'd. net.

British Rule and Jurisdiction beyond the Seas. By the late

Sir H. JENKYNS, K.C.B., with a preface by Sir C. P. ILHERT, and a portrait
of the author. 1902. Hvo, leather back, 15s. net.

Cornewall-Lewis's Essay on the Government of Depen-
dencies. Edited by Sir C. P. LUCAS, K.C.M.G. 8vo, leather back, 14s.

An Introduction to Hindu and Mahommedan Law for

the use of students. 1906. By Sir W. MARKBY, K.C.I.E. 6s. net.

Land-Revenue and Tenure in British India. By B. H.

BADEN-POWELL, C.I.E. With map. Second edition, revised by T. W.
HOLDERNESS, C.S.I. (1907.) Crown Hvo. 5s. net.

Land-Systems Of British India, being a manual of the Land-

Tenures, and of the systems of Land-Revenue administration. By the same.
Three volumes. 8vo, with map. 3 3s.

Anglo-Indian Codes, by WHITLEY STOKES. 8vo.

vol. I. Substantive Law. 1 10s. Vol. II. Adjective Law. 1 15s.

1st supplement, 2s. 6d. 2nd supplement, to 1891, 4s. Gd. In one vol., Cs. 6d.

The Indian Evidence Act, with notes by Sir W. MAHKBY, K.C.I.K.

8vo. 3s. Gd. net (published by Mr. Frowde).

Corps de Droit Ottoman : u Recueil des Codes, Lois, R&glements,

Ordonnances et Actes les plus importants du Droit Interieur, et d'Etudes sur

ie Droit Coutumier de 1'Empire Ottoman. Par GEORGE YOUNG. 1905. Seven
vols. 8vo. Cloth, 4 14s. 6d. net; paper covers, 4 4s. net. Parts I (Vols*
I -III) and II (Vols. IV-VII) can be obtained

separately; price per part,
in cloth, 2 17s. 6d. net, in paper covers, '2 12s. 6d. net.



Political Science and Economy
For Bryee's Studies and other books on general jurisprudence and political

science, see p. 61.

Industrial Organization in the 16th and 17th Centuries.
By G. UNWIN. 8vo. 7s. 6d. net.

Relations of the Advanced and Backward Races of

Mankind, the Romanes Lecture for 1902. By J. BRYCE. 8vo. 2s. net.

Cornewall-Lewis's Remarks on the Use and Abuse
Of SOme Political Terms. New edition, with introduction by
T. RALEIGH. Crown 8vo, paper, 3s. 6d. ; cloth, 4s. 6d.

Adam Smith's Lectures on Justice, Police, Revenue and Arras.
Edited with introduction and notes by E. CANNAN. 8vo. 10s. 6d. net.

BhmtSChli's Theory of the State. Translated from the sixth

German edition. Third edition. 1901. Crown 8vo. 8s. 6d. net.

A Geometrical Political Economy. Being an elementary
Treatise on the method of explaining some Theories of Pure Economic
Science by diagrams. By H. CUNYNGHAME, C.B. Cr. 8vo. 2s. (Jd. net.

The Elements of Railway Economics. By w. M. ACWORTH.
Crown 8vo. Second impression. 2s. net.

Elementary Political Economy. By E. CANNAN. Third edition.

Extra fcap 8vo, Is. net.

Elementary Politics. By Sir T. RALEIGH. Sixth edition revised. Extra

fcap 8vo, stiff covers, Is. net.

The Study of Economic History. By L. L. PUKE. is. net.

Economic Documents
Ricardo's Letters to Malthus (isio-isas). Edited by j. BONAK.

8vo. 7s. ed. Letters to Trower and others (isn-isss). Edited

by J. BONAR and J. H. HOLLANDER. 8vo. 7s. 6d.

Lloyd's Prices of Corn in Oxford, 1583-1830. 8vo. is.

First Nine Years of the Bank of England. By j. E. THOHOUJ
ROGERS. 8vo. 8s. 6'd.

History of Agriculture
The History of Agriculture and Prices in England,

A. D. 1259-1793. By J. K THOBOLD ROGERS. 8vo. Vols. I and II (1259-14001
8ks.nct. Vols. Ill and IV (14.01-1582). 32s. net. Vols. V and VI (1583-1702).
3s. net. Vol. VII. In two Parts (1702-1798). 32s. net.

History of English Agriculture. By w. H. R. CURTLEH.
Crown 8vo. 6s. Gd. net.

The Disappearance of the Small Landowner. By A. H.
JOHNSON. Crown 8vo. 5s. net.


















