

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

THE

ELEMENTS OF OPTICS:

DESIGNED

FOR THE USE OF STUDENTS

IN THE

U N I V E R S I T Y.

By JAMES WOOD, B.D.

 FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE.
THE SECOND EDITION.

Cambriage,

PRINTED BY 3. BURGES, PRINTER TO THE UNIVERSITY;
AND SOLD BY J. DEIGHTON AND J. NICHOLSON, CAMBRIDGE; AND W. H. LUNN, OXFORDSTREET, LONDON.

$$
1801 .
$$

238 2.35

QC
38%
$\because 66$
1801

CONTENTS.

pace
On the Nature of Light. I
On the Laws of Reflection
On the Laws of Reflection 7 7
On the Reflection of Rays at plane and fphericalSurfaces- - -15
On Images formed by Reffection 3^{I}
On the Refraction of Rays at plane and fpherical Surfaces 46
On Images formed by Refraction 107
On the Eye 123
On Optical Inftruments 147
On Aberrations produced by the unequal Re- frangibility of different Rays 196
On Aberrations produced by the fpherical form of reflecting and refracting Surfaces. 209
On the Rainbow 225
On Cauftics 241

1

ก

$$
\pi
$$

$$
\text { 2 } \quad . \quad-
$$

Lin
-
-
*

- $-2+2$
Min
ane
17

$$
\frac{1}{2}
$$

$=\sqrt{4}$

$$
5
$$

7
4
(1)
(a)

2

THE

ELEMENTS of OPTICS.

SECTION 1.

ON THE NATURE OF LIGHT AND THE LAWS OF REFLECTION AND REFRACTION.

Art. 1. BY Optics we underfand that branch of Natural Philofophy which treats of the nature and properties of Light, and the Theory of Vifion.
2. Modern Philofophers have made two hypothefes to explain the manner in which vifion is produced by luminous objects. Des Cartes, Huygens and Euler, fuppofe that there is a fubtile, elaftic medium which penetrates all bodies, and fills all fpace; and that vibrations, excited in this fluid by the luminous body, are propagated thence to the eye, and produce the fenfation of vifion, in the fame manner that the vibrations of the air, friking againft the ear, produce the fenfation of found.

It has been objected to this hypothefis, and the objection has never been anfwered, that the vibrations of an elaftic fluid are propagated in every direction, and into every corner to which the fluid extends; on the fuppofition therefore that light is nothing more than
the effect of the vibrations of fuch a fluid, there could be no fhadow, or darknefs.
If it be faid that the fluid, by means of which vifion is excited, is different from all other elaftic fluids, the effect is afcribed to a caufe, the nature of which is unknown; and the hypothefis amounts to nothing more than a confeffion, that we are ignorant in what manner vifion is produced.

The other hypothefis, adopted by Sir I. Newton and his followers, is, that light confifts of very fmall particles of matter, which are conftantly thrown off from luminous bodies, and which produce the fenfation of vifion by actual impact upon the proper organ.

In favour of this hypothefis, it is obferved that the motion of light is conformable to the laws which regulate the motions of fmall bodies, under the fame circumftances: Thus, where it meets with no impediment, it moves uniformly forward in right lines *; and in it's paffage into, and reflection from different mediums, the direction of it's motion is changed as it would be, did it confift of fmall particles of matter, attracted towards, or repelled from the furfaces upon which they are incident \ddagger.

Whether light has other properties of matter or not, is a queftion which does not appear to have been fairly decided; we may however be allowed to confider it as material, and to fpeak of it as confifting of particles of matter, till a more fatisfactory hypothefis can be framed; efpecially, as we deduce no conclufions from the fuppofition; - we build no theory upon this foundation. Thofe properties of light from which our theory of vifion is derived, are difcovered by experiment, and
bere is this otjiction also ag! 'is. T. N' heleo neris, that there fertieler of matter of wt fht is ovid to consint: hafs iteno eles rowe substancer ad plafs, sisyet camnot afs thro' thore that are morre, ioroul wrod, briek wall te...

Rays of light are reprefented by lines, drawn in the directions in which the particles move.
6. Def. Whatever affords a paffage to the rays of light is called a Medium; as glafs, water, air, \&c. and in this fenfe, a vacuum is called a medium.
7. Def. The denfity of light is meafured by the number of parts, or particles uniformly diffufed over a given furface.

Cor. If the furface be not given, the denfity varies as the number of particles directly, and inverfely as the area over which they are diffufed.
8. Rays of light are not lines of contiguous particles.

For, rays proceed from every vifible point in the univerfe to every other point ; and, in their progrefs, pafs freely through torrents of light iffuing in all directions from different funs, and different fyitems ; but were the particles in each ray contiguous, one ray could not crofs another without producing fome confufion and irregularity in each; and thus vifion would be rendered indiftinct and precarious. Neither is fuch contiguity of the particles of light neceffary to produce conftant vifion; for, if a burning coal be made to defcribe a circle, with a fufficient velocity, the whole circumference appears luminous; which hews that the impreffion made by the light upon the fenforium, when the coal is in any one point of the circumference, remains till the coal returns again to the fame point*.
9. There

- It is obferved that if the revolution of the coal be performed in $7^{\prime \prime \prime}$, the whole circle appears luminous; that is, if the particles fucceed each other at an interval which does not exceed that time, conftant vifion is produced: and fince light paffes over rather more than 22,000 miles in $7^{\prime \prime \prime}$, if the diftance of the particles in a ray be not
(ans
\qquad

$$
+1, \ldots m
$$

9. There is fomething extremely fubtile in the nature of light ; and it's properties can with difficulty. be explained, either on the fuppofition of it's materiality, or on that of it's being only a quality of an elaftic medium. The facility and regularity with which it is tranfmitted through bodies of confiderable denfity, cannot be accounted for on either hypothefis. If it confift of particles of matter, which is much the more probable fuppofition, their minutenefs greatly exceeds the limits of our faculties, even the power of human imagination. Notwithftanding the aftonifhing velocity of thefe particles (Art. 3), their momentum is not fo great as to difcompofe the delicate texture of the eye; and when they are collected in the focus of a powerful burning glafs, it feems doubtful, whether they are capable of communicating motion to the thinneft lamina of metal that can be expofed to their impact.
Prop. I.
10. A ray of light, whilf it continues in the fame uniform medium *, proceeds in a firaight line.

For, objects cannot be feen through bent tubes; and the fhadows of bodies are terminated by ftraight lines. Alfo, the conclufions, drawn from calculations made on thisfuppofition, are found by experience to be true.
11. Cor. I. Hence it follows, that the denfity of . light varies inverfely as the fquare of the diftance from a luminous point; fuppofing no particles to be ftopped in their progrefs.

For, greater than 22,000 miles, they are fufficiently near to anfwer the purpofes of confant vifion. Sir Iface Newton fuppofes the im. prefion to continue about one fecond of time. Vid. Opt. Qu. 16.

- In fpeaking of a medium, we always fuppofe it to be uniform, unlefs the contrary be expreffed.

For, if the point from which the light proceeds be confidered as the common center of two fpherical furfaces, the fame particles, which are uniformly diffufed over the firt, will afterwards be diffufed, in the fame manner, over the latter; and fince the denfity of light varies, in general, as the number of particles directly, and inverfely as the face over which they are uniformly diffufed (Art. 7), in this cafe, it varies inverfely as the fpace over which they are diffufed, becaufe the number of particles is the fame; therefore the denfity at the firft furface : the denfity at the latter :: the area of the latter furface : the area of the former, that is, :: the fquare of the diftance in the latter cafe : the fquare of the diftance in the former *.
12. Def. When a ray of light, incident upon any furface, is turned back into the medium in which it was moving, it is faid to be reflected.
13. Def. When a ray of light paffes out of one medium into another, and has it's direction changed at the common furface of the two mediums, it is faid to be refracted.
14. Def. The angle contained between the incident ray and the perpendicular to the reflecting, or refracting furface at the point of incidence, is called the angle of incidence.
15. Def. The angle contained between the reflected ray and the perpendicular to the reflecting furface ar the point of incidence, is called the angle of reflection.
16. Def. The angle contained between the refracted ray and the perpendicular to the refracting furface, at the point of incidence, is called the angle of refraction.

I7. Def. The angle contained between the incident

- Bofthorong itu
to isuany
- S. were
torsuly idifturx
$A B C D$, wi: a squere
a - Litabed be an aren

"R.." Atsco \& letitt le so flaeed
\therefore : =ll tive light whe fell tofore
 ä́cil - The sivec the es! of karkiler
- ienn in hotre cared,

$$
\begin{aligned}
& \therefore \frac{A B}{} \quad \therefore \overline{a l}^{\prime}= \\
& \therefore \frac{1}{\operatorname{Cos} a}: \frac{P^{\prime}}{2}
\end{aligned}
$$

is sime honet applies to ate otum sin? bigenor.

$$
7+-1+5+1=
$$

$$
+81 \times 3+0+5,5+6
$$

$$
-\tan +8
$$

ik
ray produced and the reflected or refracted ray, is called the angle of deviation.

If $R S$ reprefent the reflecting futface, $A C$ a ray incident upon it, $G B$ the reflected ray, and $P C \Omega$ be

drawn, through C, perpendicular to $R S$, and $A C$ be produced to E; then $A C P$ is the angle of incidence, $P G B$ the angle of reflection, and $B C E$ the angle of deviation.

If $R S$ be a refracting furface, and $C D$ the refracted ray; then $2 C D$ is the angle of refraction, and $E C D$ the angle of deviation.

II"
Prop. II.
18. The angles of incidence and reflection are in the fame plane, and they are equal to each other.

Let a ray of light $A C$, admitted through a fmall hole

into a dark chamber, be incident upon the reflecting
furface $R S$ at the point C; and let $C B$ be the reflected ray; draw $C P$ perpendicular to the reflector. Then, if the plane furface of a board $T S$ be made to coincide with $C A$ and $C P$, the reflected ray $C B$ is found alfo to coincide with the plane $T S$; or the angles of incidence and reflection are in the fame plane.

Again, if from C as a center, with any radius $C A$, the circle RPS be defcribed, the arc $A P$ is found to be equal to the arc $P B$; therefore the angle of incidence, $A C P$, is equal to the angle of reflection, $B C P$.

The angles of incidence and reflection are alfo found to be equal when rays are reflected at a curve furface.
19. Cor. 1. The angles $A C R, B C S$, which are the complements of the angles of incidence and reflection, are alfo equal.
20. Cor. 2. If $B C$ be the incident ray, $C A$ will be the reflected ray. For, the angle $P C A$ is equal to the angle $P C B$, and in the fame plane; therefore $C A$ is the reflected ray.
21. Cor. 3. If the ray $P C$ be incident perpendicularly upon the reflecting furface, it will be reflected in the perpendicular $C P$.
22. Cor. 4. If $A C$ be produced to E, the angle $B C E$, which meafures the deviation of the ray $A C$ from it's original courfe, is $180^{\circ}-\angle A C B$; or $180^{\circ}-$ $2 \angle$ of incidence.
23. Cor. 5. A ray of light will be reflected at a curve furface, in the fame manner as at a plane which touches the curve at the point of incidence.

For, the angle of incidence, and confequently the angle of reflection is the fame, whether we fuppofe the reflection to take place at the curve, or at the plane.
?
-
*

$$
x^{2}+5 \quad 8=
$$

Prop. III.
24. The angles of incidence and refraction are in the fame plane; and, whilft the mediums are the fame, the fine of the angle of incidence is to the fine of the angle of refraction, in a given ratio*.

Upon the plane furface of a board $T V$, with the center C and any radius $C A$, defcribe a circle PRQ,

draw the diameters $R S, P \mathscr{Q}$ at right angles to each other, and immerfe the board into a veffel of water, in fuch a manner that $P \mathscr{Q}$ may be perpendicular to, and $R S$ coincide with the furface of the water. Then, if a ray of light, admitted through a fmall hole into a dark chamber, be incident upon the furface $R S$ in the direction $A C$, coincident with the plane of the board, $C B$,
*The latter part of this propofition is only to be underftood of rays of the fame kind. At prefent it is not neceflary to take into confideration the unequal refrangibility of differently coloured rays.
The fines of the angles of incidence and refraction are ufually, for the fake of concifenefs, called the jines of incidence and refration.
$C B$, the direction of the refracted ray, is found to coincide with that plane; that is, the angles of incidence and refraction are in the fame plane.

Alfo, if $A D$ and $B F$ be drawn at right angles to $P 2$, they are the fines of incidence and refraction, to the radius $C A$; and it is found that $A D$ has to $B F$ the fame ratio, whatever be the inclination of the incident ray to the refracting furface. That is, if $a C$ be any other incident ray, $C b$ the refracted ray, $a d$ and $b f$ the fines of incidence and refraction, then $A D: B F$:: ad : bf.

The ratio of the fines of incidence and refraction is the fame, when the refracting furface is curved.
25. Cor. 1. Hence, if the angles of incidence of two rays be equal, the angles of refraction are alfo equal.
26. Cor. 2. As the angle of incidence increafes, the angle of refraction increafes.

For, if the angle of incidence, which is always lefs than a right angle, increafe, it's fine increafes; and therefore the fine of refraction, which bears an invariable ratio to the fine of incidence, increafes; and confequently the angle of refraction increafes.
27. Cor. 3. When the angle of incidence vanifhes, the angle of refraction vanifhes alfo. In this cafe the ray fuffers no refraction.
28. Cor. 4. A ray of light is refracted at a curve furface, in the fame manner as at a plane which touches, the curve at the point of incidence.

For, the angle of incidence, and confequently the angle of refraction is the fame, whether we fuppofe the refraction to take place at the curve, or at the plane, fuppofing them to be mediums of the fame kind.

Prop. IV.

29. If a ray AC be refracted at the furface RS in the diredion CB , then a ray BC , coming the contrary way, will be refracted in the direction CA.

The conftruction being made as before, let a fmall object be placed upon the board at B; and when the board is immerfed perpendicularly in water, till $R S$ coincides with the furface, the object B will be feen

from A, in the direction $A C$; and fince the motion of light, in the fame medium, is rectilinear (Art. 10), the ray, by which the object is feen, is incident at C, and refracted in the direction $C A$.
30. Cor. r. The angle of deviation of the ray $A C$, is equal to the angle of deviation of the ray $B C$, which is incident in the contrary direction.
31. Cor. 2. When a ray of light paffes out of air into water, the fine of incidence : the fine of refraction :: $4: 3$; confequently, when a ray paffes out of water
into air, the fine of incidence : the fine of refraction : $3: 4^{\text {* }}$.

In the fame manner, out of air into glafs, the fine of incidence : the fine of refraction :: $3: 2$; therefore out of glafs into air, the fine of incidence : the fine of refraction :: $2: 3^{*}$.

SCHOLIUM.

32. The preceding propofitions, which are ufually called the Laws of Reflection and Refraction, are the principles upon which the theory of vifion is founded. They were difcovered, and their truth has been eftablifhed by repeated experiments, made exprefly for this purpofe; and it is alfo confirmed by the conftant agreement of the conclufions derived from them, with each other, and with experience.

The experiments we have mentioned, are rather chofen with a view to give a clear illuftration of there laws, than for practical application in proving, exactly, their truth. The laws of reflection are indeed eafily eftablifhed, but to determine with accuracy the proportion of the fines of incidence and refraction, in different cafes, recourfe muft be had to expedients which cannot, in this place, be explained. The learner, when a little farther advanced in the fubject, may confult on this head, Sir I. Newton's Optics, Sect. 2. and the Encyclopædia Britannica, Art. Telefcopes, p. 35^{6}.
33. When a ray of light paffes out of a rarer medium into a denfer, that is, out of one which is fpecifically

- Thefe numbers do not exprefs the exact proportions, as will be feen hereafter; but they are fufficiently accurate for our prefent purpofe.

$$
2
$$

Specifically lighter, into one which is \{pecifically heavier, it is, in general, turned towards the perpendicular; and the contrary.

Though this is not univerfally the cafe *, yet in the fublequent part of the work, when we have occafion to fpeak of a denfer medium, we fhall always fuppofe it to have a greater refracting power.
34. When light is reflected or refracted at a polifhed furface, the motion of the general body of the rays is conformable to the laws above laid down; fome are indeed thrown to the eye in whatever fituation it is placed; and confequently, a part of the light is difperfed, in all directions, by the irregularity of the medium upon which it is incident. This difperfion is, however, much lefs than would neceffarily be produced, were the rays reflected or refracted by the folid parts of bodies; becaufe, the moft polifhed furfaces, that human art.can produce, muft have inequalities incomparably greater than the particles of light. This, and other confiderations, led Sir I. Newron to conclude that thefe effects are produced by fome power, or medium, which is evenly diffufed over every furface, and extends to a fmall, though finise diftance from it $-\dot{-}$.

That bodies do act upon light before it comes into contact with them, is manifeft from the fhadows of hairs, fmall needles, \&c. which are much larger than they ought to be, on fuppofition that rays pafs by them in ftraight lines. In order to examine this phenomenon more minutely, Sir I. Newron admitted a fmall beam of light into a darkened chamber, and caufing it to pais near the edge of a harp knife, he found

- Newt. Opt. Book 2. Part 3. Prop. io.
+ Newt. Opt. Book 2. Prop. 8.
found that the rays were turned confiderably from their rectilinear courfe, and that thofe rays were more inflected, or bent, which paffed at a lefs diftance from the edge, than thofe which were more remote. He alfo obferved, that fome of the rays were turned towards the edge, and others from it; fo that rays of light, at different diftances from the furfaces of bodies, are apparently acted upon by two different powers, one of which attracts, and the other repels them*.

The laws, according to which thefe powers vary, have not yet been difcovered; but fuppofing the effects produced by them, at the fame diftance from a given furface, to be always the fame, Sir I. Newton has fhewn, that if fmall bodies were reflected and refracted by them, the angles of incidence and reflection would be equal; and the fines of the angles of incidence and refraction, in a given ratio to each other i. Thefe conclufions leave us little room to doubt but that reflection and refraction are produced by fuch powers; and they afford fome ground for prefuming that the particles of light are material.

- Newt. Opt. Book 3 .
† Princip. Prop. 94, 96. Opt. Book 1. Part 1. Prop. 6.
$+$
\qquad
$+$

$$
x+3=\operatorname{lin}=1
$$

$$
-\frac{\square}{1}
$$

- $x-2+2-2+0=$
+14x
$2-2+2$

[^0]\[

$$
\begin{aligned}
& 4=1-51 \text { y }
\end{aligned}
$$
\]

SECTION II.

ON THE REFLECTION OF RAYS AT PLANE AND SPHERICAL SURFACES.

DEFINITIONS.

35 BY a pencil of rays we undertand à number of rays taken collectively, and diftinct from the reft.

There pencils confift either of parallel, coiverging, or diverging rays.

Converging rays are fuch as approach to each other in their progrefs, and, if not intercepted, at length meet.

Diverging rays are fuch as recede from each other, and whofe directions meet if produced backwards.
36. The focus of a pencil of rays is that point towards which they converge, or from which they diverge.

If the rays in a pencil, after reflection, or refraction, do not meet exactly in the fame point, the pencil muft be diminifhed; and the focus is the limit of the interfections of the extreme rays, when they approach nearer and nearer to each orher, and at length coincide. In this cafe, the focus is ufually called the Geometrical focus.

The focus is real, when the rays actually meet in that point; and imaginary, or virtual, when their directions muft be produced to meet.
37. The axis of a pencil is that ray which is incident perpendicularly upon the reflecting or refracting furface.
38. The principal focus of a reflector, or refractor, is the geometrical focus of parallel rays incident nearly perpendicularly upon it.
Prop. V.
39. If a ray of light be reflected once by each of two plane jurfaces, and in a plane which is perpendicular to their common interfection, the angle contained between the fir β and laft directions of the ray, is equal to twice the angle at which the reflectors are inclined to each other.

Let $A B, C D$ be two plane reflectors, inclined at the angle $A G D ; S B, B D, D H$, the courfe of a ray

reflected by them. Produce $H D$ to O, and $S B$ till it meets $D H$ in H. Then, becaufe the $\angle H B G=$ the \angle

$A B S=$ the $\angle D B G$ (Art. 19), the whole angle $D B H=$ $2 \angle D B G$. In the fame manner, the $\angle B D O=2 \angle$ $B D C$. And fince the $\angle B G D=$ the $\angle B D C$ - the \angle $D B G^{*}$, we have $2 \angle B G D=2 \angle B D C-2 \angle D B G$ $=$ the $\angle B D O-$ the $\angle D B H=$ the $\angle B H D^{*}$.

Prop. VI.

40. Parallel rays, reflected at a plane furface, continue parallel.

Cafe 1. When the angles of incidence are in the fame plane.

Let $R S$ be the reflecting furface; $A B, C D$ the

incident, $B G, D H$ the reflected rays.
Then the $\angle A B R=$ the $\angle G B S$, and the $\angle C D R=$ the $\angle H D S$ (Art. 19); but, fince $A B$ and $C D$ are parallel, the $\angle A B R=$ the $\angle C D R$; therefore the \angle $G B S=$ the $\angle H D S$, and $B G, D H$ are parallel (Euc. 28. I).

Cafe 2. When the angles of incidence are in different planes.

Let $A B, C D$ be the incident rays; $B E, D F$ per-

pendiculars to the reflecting furface at the points of incidence;

[^1]incidence; join $B D$; and let $A B$ be reflected in the direction $B G$; alfo, let $D H$ be the interfection of the planes $C D F, G B D$.

Then, fince $B E, D F$, which are perpendicular to the fame plane, are parallel (Euc. 6. II), and $A B, C D$ are parallel, by the fuppofition, the angles of incidence $A B E, C D F$ are equal (Euc. 10.11); therefore the angles of reflection are equal. Again, fince $E B$ and $F D$ are parallel, as alfo $A B$ and $C D$, the planes $A B G$, $C D H$ are parallel (Euc. 15.11), and they are interfected by the plane $G B D H$; confequently, $D H$ is parallel to $B G$ (Euc. 16. II); therefore the angles $E B G, F D H$ are equal (Euc. 10. II); but the angle $E B G$ is the angle of reflection of the ray $A B$; therefore the angle $F D H$ is equal to the angle of reflection of the ray $C D$; and fince $D H$ is in the plane $C D F, C D$ is reflected in the direction $D H$ (Art. 18), which has before been fhewn to be parallel to $B G$.

Prop. VII.

41. If diverging or converging rays be reflected at a plane furface, the foci of incident and reflected rays are on contrary fides of the reflector, and equally diftant from it.

Let $2 A B$ be a pencil of rays diverging from 2,

and incident upon the plane reflector $A C B$; draw $2 C$
perpendicular
, ,
ern
perpendicular to the furface; then will $2 C$ be reflected in the direction C2 (Arr. 2I). Let $2 A$ be any other ray; and fince a perpendicular to the furface at A, is in the fame plane with $2 C$ and $2 A$ (Euc. 6. and 7. 11), $2 A$ will be reflected in this plane (Art. 18). Produce $C A$ to D, and make the angle $D A O$ equal to the angle $2 A C$, then will $A O$ be the reflected ray (Art. 19). Produce $O A, 2 G$ till they meet in q. Then, fince the $\angle q A C=$ the $\angle O A D=$ the $\angle \dot{2} A C$, and allo the \angle $q C A=$ the $\angle 2 C A$, and the fide $C A$ is common to the two triangles $2 C A, C A q$, the fide $2 C$ is equal to $C q$. In the fame manner it may be fhewn, that every other reflected ray in the pencil, will, if produced backwards, meet the axis in q; that is, the rays, after reflection, diverge from the focus q.

If $O A B E$ be a pencil of rays converging to q, they will, after reflection at the furface $A C B$, converge to 2 (Art. 20); therefore, in this cafe alfo, the foci of incident and reflected rays are on contrary fides of the reflector, and equally diftant from it.
42. Cor. 1. The divergency, or convergency of rays, is not altered by reflection at a plane furface.
43. Cor. 2. In the triangles $2 A C, C A q, A q$ is equal to $2 A$; if therefore any reflected ray $A O$ be produced backwards to q, making $A q=A \mathscr{2}, q$ is the focus of reflected rays.
44. Cor. 3. If the incident rays $\mathscr{2} A, 2 a$, be parallel, or the diftance of. \mathscr{Q}. from the reflector be increafed without limit with refpect to $A c$, the diftance of q is increafed without limit, or the reflected rays are parallel (Vid. Art. 40).

Prop. VIII:

45. If parallel rays be incident nearly perpendicularly upoin a fpherical reflector, the geometrical focus of reflected rays is the middle point in the axis between the furface and center.

Let $A C B$ be a fpherical reflector whofe center is E; $D A, E C$, two rays of a parallel pencil incident upon it,

of which, $E C$ paffes through the center, and is therefore reflected in the direction $C E$; join $E A$, and in the plane $D A C E$, make the angle $E A q$ equal to the angle $D A E$, and $D A$ will be reflected in the direction $A q$ (Art. 18); draw $G A T$, in the fame plane, touching the reflector in A, and let it meet $E C$ produced in T. Then, fince the $\angle E A q=$ the $\angle D A E=$ the $\angle A E q(E u c .29 . r), E q=$ $A q$; alfo, the $\angle q A T=$ the $\angle D A G$ (Art. 19) $=$ the \angle $A T q$ (Euc. 29. 1); therefore $A q=q T$; confequently $E q=q T$; that is, q bifects $E T$ the fecant of the arc $A C$. Now let $D A$ approach to $E C$, and the arc $A G$ will decreafe, and it's fecant, at length, become equal to the radius; confequently the limit of the interfections of $A q$ and $C E$ is F, the middle point between E and C †.

+ It is manifeft that the rays, incident nearly perpendicularly, do not meet accurately in F; but when the arc is fmall in comparion

$x+2-x+2+1$

\qquad 1

$$
\left.a \cos ---\frac{1-2}{2}--2\right)^{2}+2+\infty=x
$$

$$
11^{2}
$$

$$
\frac{1}{2}-\cos +2+x+\frac{x-1}{2}
$$

$$
8
$$

fix $12+\ln$

$$
\begin{aligned}
& 7 \\
& -20
\end{aligned}
$$

When the says fall on the convex side of the reflector \qquad deft DIt, NC C be the IV incident racerProduce EAt to e \& in the flume D te mater the $\angle e_{\text {At }}=\angle$ Dote os DA wile bu reflected in the direction Ats - Porduen n At to mut the axis in q - Then $\angle D A$ e $=$ cuts $B \angle D A=\angle q$ SA $\& \angle 1 A c=\angle q A E \therefore \angle q S A=\angle q A E$ and gAt $=q E-$ Atqain $\angle x A G=\angle D A F$ and $\angle 1 A G=\angle q A J$ s $\angle D A D=\angle q O A \therefore \angle q A F=\angle q I A$ and $\& A t=q D$ but $q A=q E \therefore q E \cdot q \cdot \operatorname{Ma}$

If the rays be incident upon the convex fide of the reflector, the reflected rays muft be produced backwards to meet the axis; and in this cafe, F, the middle point between E and G, may be fhewn to be the limit of the interfections of $C E$ and $A q$, as before.
46. Cor. 1. As the arc $A C$ decreafes, $E q$, or F_{q}, decreafes. Thus, when $A C$ is $60^{\circ}, E q=E C$; and when $A C$ is $45^{\circ}, A q$ is perpendicular to $E C$, and $E q$: $E C:: 1: \sqrt{2}$.

- 47. Cor. 2. If different pencils of parallel rays be refpectively incident, nearly perpendicularly, upon the

reflector, the foci of reflected rays will lie in the fpherical furface $S F V$, whofe center is E and radius $E F$.

48. Cor. 3. If the axes, $E A, E C, E B$, of thefe pencils, lie in the fame plane, the foci will lie in the circular arc SFV.
49. Cor. 4. If any point S, in the arc $S F V$, whofe radius $E F$ is one half of $E C$, be the focus of a pencil of
of the radius, in all calculations, made for the conftruction of optical inffruments, F and q may be confidered as coincident. Thus, if the arc $A C$ be 20^{\prime}, and the radius be divided into 100,000 equal parts, F_{q} is lefs than one of thofe parts; and all the rays which are incident upon the furface generated by the revolution of the are $A C$ about the axis $E C$, after reflection, cut the axis between F and q.
of rays incident nearly perpendicularly upon the reflector, thefe rays will be reflected parallel to each other, and to $E A$ the axis of that pencil (Art. 20).

Prop. IX.

50. When diverging or converging rays are incident nearly perpendicularly upon a Jpherical reflector, the dif-- tance of the focus of incident rays from the principal focus, meafured along the axis of the pencil, is to the diftance of. the principal focus from the center, as this diftance is to the diftance of the principal focus from the gecmetrical focus of reflected rays.

Let $A C B$ be the fpherical reflector, whofe center is $E ; 2$ the focus of incident rays; $2 A, 2 C$ two rays of

the pencil, of which $\mathscr{2}^{C}$ paffes through the center E, and is therefore reflected in the direction $C \mathscr{2}$; join $E A$; and, in the plane $\mathscr{Q}^{2} A C E$, make the angle $E A q$ equal to the angle $E A \mathscr{2}$; then the ray $2 A$ will be reflected in the direction $A q$.

Draw $D A$ parallel to $2 C$, and make the angle $E A e$ equal to the angle $E A D$; bifect $E C$ in F. Then, fince the $\angle D A E=$ the $\angle E A e$, and the $\angle \cong A E$ $=$ the $\angle E A q$, the $\angle D A Q$, or it's equal $A \mathscr{Q} e$, is equal to the $\angle e A q$; alro, the $\angle q e A$ is common to the two triangles $A \mathscr{Q}$, Aqe; therefore they are fimilar,
$2-2+2$
$=2=2$

en
 $-\square=\mathrm{Cl}$

$$
[=0
$$

(1)

 2
 0^{2} $+2$ $2-1+1$

1
+in \qquad

Pfhen odverping nage are incident on the connsere side of a phhericell aflectorn \qquad
Dis refleckelin the insititain tal, bes
 \therefore newt thi amisine, q - And \angle ARe = (LQAD $=\angle \varepsilon \cdot A_{d} \mid=\angle e A_{q}$ the medt at latore \qquad

Then cowneng? sayp tall one thin conver dinker

- Gore \angle LAE $=\left(\angle A A C=\angle D A q=1 \angle A Q C V_{c}\right.$ It hen conveng? ranp fabl in the coneme side, A and of chomge flacer on the asu.
fimilar, and $2 e: e A:: e A: e q$; or, fince $e A=e E$ (Art. 45), 2e:eE::eE:eq. Now let the arc $A C$ be diminifhed without limit, or the ray $2 A$ be incident nearly perpendicularly, then e coincides with F (Art. 45); and the limit of the interfections, of $C 2$ and $A q$, is determined by the proportion $2 F: F E:: F E: F q^{*}$.

The preceding figure is conftructed for the cafe in which diverging rays are incident upon a concave fpherical furface, and the fame demonftration is applicable when the incident rays converge, as is reprefented in the annexed figure.

If the lines $D A, 2 A, E A, e A, q A$ be produced, the figures ferve for thofe cafes in which the rays are incident upon the convex furface.
51. Cor. 1. If q be the focus of incident, 2 will be the focus of reflected rays (Art. 20); and 2 and q are called conjugate foci.
52. Cor. 2. If the diftance $2 F$ be very great when compared with $F E, F q$ is very fmall when compared with

- When $2 A$ is incident nearly perpendicularly upon the reflector, q may be confidered as coincident with that point which is determined by the proportion $\mathscr{Q}: F E: F E: F_{q}$ (Vid. note page 20); and all other rays, incident nearly perpendicularly, will, after reflection, cut the axis in the fame point; therefore that point is the focus of refiected rays.
with it. Thus, if the rays diverge from a point in the fun's difc, and fall upon a reflector whofe radius does not exceed a few feet, F and q may, for all practical purpofes, be confidered as coincident.

53. Cor. 3 When 2 coincides with E, all the rays are incident perpendicularly upon the reflector, and therefore they are reflected perpendicularly (Art. 21), or q, coincides with E.
54. Cor. 4. The point e bifects the fecant of the are AC (Art. 45).
55. Cor. 5. Since $2 e: e E:: e E_{A}: e q$, by compofition, or divifion, $2 e: 2 E:: e E: E q$; alternately, $2 e: e E:: 2 E: E q$; and, when $2 A$ is incident nearly perpendicularly, $2 F: F E:: \mathcal{Q} E: E q$.
56. Cor. 6. Since $E A$ bifects the angle $2 A q$ (or PAq), 2A:Aq::2E::Eq (Euc. 3.6); and, when $2 A$ is incident nearly perpendicularly, $2 C: C q::$ $2 E: E q$. That is, the diftances of the conjugate foci from the center, are proportional to their diftances from the furface.
57. Cor. 7. Since $2 E: E q:: 2 F: F E$ (Art. 55), and $2 E: E q:: 2 G: C q$ (Art. 56), we have, ultimately, 2F : FE :: 2C:Cq.
58. Cor. 8. As the arc $A C$ decreafes, $E q$, the diftance of the interfection of the reflected ray and the axis from the center, decreafes; unlefs $\mathscr{2}$ coincide with E, or lie between E and e.

For, $2 e:: e E:: \mathscr{2} E: E q$ (Art. 55), and as $A C$ decreafes $E e$ decreafes (Art. 54); therefore, when $\mathscr{2}$ is in e E produced, the terms of the ratio of greater inequality, $2 e: E e$, are equally diminihed, and that ratio, or it's equal $2 E: E q$, increafes (Alg. Art. 163); and, fince $2 E$ is invariable, $E q$ decreafes.

'nfix. whter-
Cit 7 be the fromeifial brens, Ret an oblijue incident hay S'soflected te q - 2 and q are alevays on theporme sielex of F, and triy hone in offloite diract lase.1. Lite lic to the lift of ε

$$
\begin{aligned}
& \text { Now } \angle O A E=\angle S A C \\
& \text { Bi } \angle O A O
\end{aligned}
$$

$$
\text { A } \angle \text { EAt }=\angle \varepsilon_{A} q \text {, but } \angle D A E \text { is } p \text { than }
$$

\angle RAS Aince Ris Lelow $D \therefore \angle$ SAk is fl tian $\angle S A_{2}$
\therefore I hied beliien Q andel e, i, bitioun Eandry
\therefore A and q are muasur't the pance way from 2
Case. 2. ditele
betucen \mathcal{E} and \nRightarrow
Then this care crinecides
witis the fomen exectut that o and 2 hank chanfex filaces \therefore as lifore,
A and o wile l_{c} mearmin' to the leff-of $\&$ case. 3. ist a bucheen $I_{\text {and }} C$ -

Man LQAS in f? theon \angle EAE
\angle AAE if finion $\angle J A E$
soflected prep is abrie DA orq is in He, iunducil.
\therefore A and of hi the panm way from f Care 4: Les-abe to then!

When $\mathscr{2}$ is in $E e$ produced, as $A C$ decreales \mathscr{Q}^{e} increafes, and $E e$ decreafes; therefore the ratio of $\mathscr{Q} e$: E_{e}, or of $\mathscr{\mathscr { E }}: E q$ increafes; and confequently, as before, $E q$ decreafes.

But when 2 lies between E and e, as $A C$ decreafes th: terms of a ratio of lefs inequality $\mathscr{2} e: E e$ are equally diminifhed; therefore that ratio, or it's equal $2 E: E q$, decreafes (Alg. Art. 163); and fince $2 E$ is invariable, $E q$ increafes. When 2 coincides with E, q alb coincides with it, whatever be the magnitude of the irc $A C$.

Prop. X.

59. The conjugate foci, Q and q , lie on the fame fide of the principal focus; they move in oppofite directions, and meet at the center and Jurface of the reflector.

Since $2 F: F E:: F E: F q$, we have $2 F \times F q=$ $\widehat{F E}{ }^{2}$; that is, \mathcal{Q} and q are fo fituated that the rectangle under $\mathscr{\mathscr { F }}$ and $F q$ is invariable. Alfo, when $\mathscr{2}$ coincides with E, q coincides with it (Art. 53); in

this care then, $2 F$ and $F q$ are meafured in the fame direction from F; and, fince their rectangle is invariable, they muft always be meafured in the fame direction (Alg. Art. 473).

That 2 and q move in oppofite directions may this be proved: the rectangle $2 F \times F q$ is invariable; and therefore as one of thefe quantities increafes,
increafes, the other decreafes; alfo, 2 and q lie the fame way from the fixed point F; they muft therefore move in oppofite directions.

Having given, the place of 2 , and $F E$ the focal length of the refleztor, to determine the place of the conjugate focus q, we muft take $2 F: \dot{F E}:: F E: F q$, and meafure $F \mathcal{Q}$ and $F q$ in the fame direction fron F.

Thus, when 2 , the focus of incident rays, is farther from the reflector than E, and on the fame fide of it, $F Q$ is greater than $F E$, therefore $F E$ is greater than $F q$; or q, the focus of reflected rays, lies between F and E.

When 2 is between E and F, q lies the other way from E; and whilft 2 moves from E to F, q moves in the oppofite direction from E to an infinite diftance.

When 2 is between F and $C, 2 F$ is lefs than $F E$ or $F C$; therefore $F C$ is lefs than $F q$; and, fince $F Q$

and $F q$ are meafured in the fame direction from F, q is on the convex fide of the reflector.

When 2 coincides with $C, 2 F$ is equal to $F G$; therefore $F C$ is equal to $F q$; or q coincides with C.

When converging rays are incident upon the concave furface of the reflector, $2 F$ is greater than $F C$; therefore $F C$ is greater than $F q$; or q lies between F and C. 60. Cor.
yain e and g suove in of ferite dercatirio.,
for $67: 7 \varepsilon:: 7 E: \mathcal{F q}_{q}$
id if a afifurnither to I the natio of $27:$ ZEci decriaré
\therefore The : If5: Fq i dierear' \& f\&ic curtur
\therefore Fq increarer or treceder from F -
Sales when escecder from F, \& Afforacher to it -

 $\cos ^{2}+2$

 1

 e 1 $1 \square \square$ -
 . . . 4 -

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
60. Cor. 1. A concave fpherical reflector leffens the divergency, or-increafes the convergency of all pencils of rays incident nearly perpendicularly upon it.

For, if the rays diverge from a point farther from the refiector than the principal focus, they are made to converge.

If they diverge from F, they are reflected parallel ${ }^{-}$ to $C E$.

If the focus of incidence lie between F and C, q is on the other fide of the furface; or the rays diverge after reflection; and becaufe $2 F: F E:: 2 C: C q$ (Art. 57), and $2 F$ is lefs than $F E, 2 G$ is lefs than $C q$; alfo, the fubtenfe $A C$ is common; therefore the angle contained between the incident rays $2 A, 2 C$, is greater than the angle contained between the reflefted rays $A P$, C2; or the reflected rays divergelefs than the incident rays.

If converging rays fall upon the reflector, $2 F$ (Fig. page 23) is greater than $F E$, therefore $2 C$ is greater than $C q$; or the reflected rays converge to a focus nearer to the reflector than the focus of incident rays; and their convergency is increafed.
61. Cor. 2. In the fame manner it may be fhewn, that a convex fpherical reflector increafes the divergency, or diminifhes the convergency of all rays incident nearly perpendicularly upon it.

SCHOLIUM.

62. It appears from Art. 58, that unlefs the focus coincide with the center, a fpherical reflector does not caufe all the rays in a pencil either to converge or diverge accurately. This circumftance produces fome confufion in vifion, when thefe reflectors are made ufe of; and, by increafing the breadth of each pencil,
or, which is the fame thing, by enlarging the aperture of the reflecting furface, in order to increafe the quantity of light, the indiftinctnefs thus produced is increafed; as we fhall have occafion to obferve hereafter.

To remedy this inconvenience, it has been propofed to make ufe of reflecting furfaces formed by the revolution of conic fections about their axes; and it may be proper to fhew that fuch furfaces will, in particular cafes, caufe rays to converge or diverge accurately.
63. Parallel rays may be made to converge, or diverge accurately; by means of a parabolic reftector.

Let $A C B$ be a paraboIa, by the revolution of which about it's axis ${ }^{2}(2$, a parabolic reflector is generated;

take F the focus; let $D A$, which is parallel to ${ }^{2} C$, be a ray of light incident upon the concave fide of this reflector; and join $A F$. Draw TAE in the plane $D A F$, and touching the paraboloid in A. Then fince the angle $T A D$ is equal to the angle $E A F$, from the nature of the parabola, the ray $D A$ will be reflected in the direction $A F$ (Art. 19). In the fame manner it may be fhewn, that any other ray, parallel to $\mathscr{2} C$, will be reflected to F; and therefore the reflected rays converge accurately to this point.

If $D A, F A$ be produced, it is manifeft that rays, incident upon the convex furface of the paraboloid, parallel
parallel to the axis, will, after reflection, diverge accurately from F.

The advantage, however, of a parabolic reflector is not fo great as might, at firt, be expected; for, if the pencil be inclined to the axis of the parabola, the rays will not be made to converge or diverge accurately; and the greater this inclination is, the greater will the error become.

Cor. If F be the focus of incidence, the rays will be reflected parallel to the axis.
64. Diverging or converging rays may be made to converge or diverge accurately, by a reflector in the form of a Spheroid; and to diverge or converge accurately, by one in the form of an hyperboloid.

Let F and D be the foci of the conic fection, by the

revolution of which, about it's axis, the reflecting furface is formed; F the focus of incident rays; then will D be the focus of reflected rays.

For, let $F A_{-}$be an incident ray; join $D A$, and produce it to d; draw TAE in the plane $D A F$, and

touching the reflector in A; then the angle $E A F$ is equal to the angle $D A T$, in the ellipre, and to $d A T$. in the hyperbola; therefore $A D$ is the reflected ray in the former cafe, and $A d$, in the latter; thus D is the focus of reflected rays.

If $F A$ be produced to f, the figures ferve for the cafes in which rays are incident upon the convex furfaces.

We may here remark, as in the preceding article, that if rays fall upon the reflector converging to, or diverging from any other point than one of the foci, they will not converge or diverge accurately after reflection.
$\left(\frac{1}{2}+\sqrt{2}+\right.$
$+$

$1 \cdot 7$

41 - HNOT-

8

-

SECTION III.

ON IMAGES FORMED BY REFLECTION.

65. THE rays of light which diverge from any point in an object, and fall upon the eye, excite a certain fenfation in the mind, correfponding to which, as we know by experience, there exifts an external fubftance in the place from which the rays proceed; and whenever the fame impreffion is made upon the organ of vifion, we expeet to find a fimilar object, and in a fimilar fituation. It is alfo evident, that if the rays belonging to any pencil, after reflection or refraction, converge to, or diverge from, a point, they will fall upon the eye, placed in a proper fituation, as if they came from a real object; and therefore the mind, infenfible of the change which the rays' may have undergone in their paffage, will conclude that there is a real object correfponding to that impreflion.

In fome cafes indeed, chiefly in reflections, the judg. ment is corrected by particular circumftances which have no place in naked vifion, as the diminution of light, or the prefence of the reflecting furface, and we are fenfible of the illufion; but ftill the impreffion is made, and a reprefentation, or image of the object, from which the rays originally proceeded, is formed.

Thus,

Thus, the rays which diverge from 2 , after reflection at the plane furface $A C B$, enter an eye, placed

at E, as if they came from q; or q is the image of 2.
If then the rays, which diverge from any vifible point in an object, fall upon a reflecting or refracting furface, the focus of the reflected or refracted rays is the image of that point.
66. The image is faid to be real, or imaginary, according as the foci of the rays by which it is formed are real, or imaginary.
67. The image of a phyfical line is determined by finding the images of all the points in the line; and of a furface, by finding the images of all the lines in the furface, or into which we may fuppofe the furface to be divided.

Prop. XI.

68. The image of a fraight line, formed by a plane reflector, is a fraight line, on the other fide of the reflector; the image and object are equally diftant from, and equally inclined to, the reflecting plane; and they are equal to each other.

Let $P R$ be a ftraight line *, placed before the plane reflector

- It is almof unneceffary to remind the reader that the lines, which are confidered as objects, muft be phyfical lines, of fufficient thicknefs to reflect as many rays as are neceflary for the purpofes of vifion.

Stin bother in there innofirectioner that inelate K, ineque of liver t_{2} not to take the entre ietir of the fojure but ony fonit in thewnThe contruetein ar in IFood. \qquad
2 it any formit 2 be taken in s/R \&s Res Le dinaun to At/s S' ins dweed to incelt in in
Sy $\triangle B B: B A: \therefore R C: C A$
and $\frac{B A: A B: C A: C Q}{B A \cdot+B: B C}$
escous R1B:ts $\therefore E C: C q$

$$
\begin{gathered}
\operatorname{tut} A B=+B \quad \therefore A C=C q \\
\therefore \& \text { i the inape of } Q
\end{gathered}
$$

at A wastaken anoy hovict in PR \therefore hqo is $\overline{\mathrm{C}}$ inage of $\mathrm{P}_{2} \mathrm{R}$
tgain, Simen $B C=B$, and ABL commeon to, ha
$-\triangle D$, ArR, $A B r$ and the bugler $A T B$ ane

- the ungter of inelination --
gain since B_{2} iff Re, AR is As As At

$$
\begin{aligned}
\text { hat } A R & =A N \cdots A p=A p \\
\therefore \tan A A R & =\sin \cdot h t \\
\text { m the } \sin x \text { Age } & =\text { diset }
\end{aligned}
$$

69. It hew the defiet ill murnor

Druen 隹 $B+1 \times A$
makn $3 r=1$ B

and druen $P D h+r o d / 3$ -
 in pretathe any posint \&
and deruen $\mathrm{EC}_{2}+$. Ats mentf. ofs in of -
Sun $C_{q}=B r=B A=Q C . \therefore q$ i Bin ina, B
FiQ and a is any frownt in b/2.
in is the mivefo tPre, and then ane/I
reflector $A B$; produce $R P$, if neceffary, till, it meets the fuiface in A; draw RBr at right angles to $A B$,

and make $B r$ equal to $R B$; join $A r$; and from P draw $P D_{p}$ perpendicular to $A B$, meeting $A r$ in p; then will $p r$ be the image of $P R$.

Since $R B r$ is perpendicular to $A B$, and $B r$ is equal to $B R, r$ is the image of R (Art. 4I).

Alfo, from the fimilar triangles $A B R, A D P, R B$: $A B:: P D: A D$; and from the fimilar triangles $A B r$, $A D p, A B: B r:: A D: D p$; ex æquo, $R B: B r::$ $P D: D p$; and fince $R B$ is equal to $B r, P D$ is equal to $D p$; or p is the image of P. In the fame manner it may be fhewn, that the image of every other point in $P Q R$ is the correfponding point in $p q r$; that is, $p r$ is the whole image of $P R$.

Again, fince $B R$ is equal to $B r$, and $A B$ common to the two triangles $A B R, A B r$, and alfo the angles at B are right angles, the angles of inclination $R A B, B A r$ are equal, and $A R$ is equal to $A r$. In the fame manner, $A P$ is equal to $A p$; therefore $P R$ is equal to $p r$.
69. Cor. 1. If the object $P R$ be parallel to the reflector, the image, $p r$ will alfo be parallel to it.
70. Cor. 2. If $P R$ be a curve, $p r$ will be a curve, fimilar and equal to $P R$, and fimilarly fituated on the other fide of the reflector.
71. Cor. 3. Whatever be the form of the object, the image will be fimilar and equal to it. For, the image of every line in the object is an equal and correfponding line, equally inclined to, and equally diftant from the reflector.
72. Cor. 4. If rays; converging to the feveral points in $p r$, be received upon the plane reflector, they will, after reflection, form the image $P R$ (Art. 20).
73. Cor. 5. Let $p r$ be the image of $P R$; and fuppole an eye to be placed at E; join $p E, r E$, cutting

the reflector in C and D; then, confidering the pupil as a point, the image will be feen in the part $C D$ of the reffector; and it will fubtend the angle CED at the eye; becaufe all the rays enter the eye as if they came from a real object pr (Art. 65).
74. Cor. 6. When $P R$ is parallel $n \cap A B$, and E is fituated in $P R, C D$ is the half of $p r$, or $P R$.

For, in this cale, $p r$ is parallel to $A B$ (Art. 69), and therefore $C D: p r:: E D: E r:: 1: 2$.

No rays enter the eye from any other part of the reflector.

Caring gwin' a flane cirle for the olicit, t conitruit the innag
1-EFGH b. ? the cirde orobicel -

1aSl be the internection of the jilaner ot minter aid civcle - Prim the flane of $0+$, In this intersution
Hen $\angle B E P=\angle$ imelinats of the flace ot ofict to the minnorn - Amen the cunto C
 cat the inaye \& C \qquad
wooppose a flam to foof theo riks the int e, Liwith centrec and he = 良 deveride iofer in thi flacu, then her is therivafu RCR - Inkeri - $0=0$ PCR - Mistundia
 =am of the minise ot $5 \angle h \hbar /=\angle \mathrm{hk} \beta$. \qquad

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

Prop. XII.

75. When an object is placed between two parallel plane reflectors, a row of images is formed which are gratually fainter as they are more remote, and at length they become invijible.

Let $A B, C D$ be two plane reflectors, parallel to each other; E an object placed between them; through

E draw the indefinite right line $N E I$ perpendicular to $A B$, or $C D$. Take $F G=F E ; K H=K G ; F I=$ $F H$, \&cc. Alfo, take $K L=K E ; F M=F L ; K N=$ $K M, \& c$.

Then, the rays which diverge from E and fall upon $A B$, will, after reflection, diverge from G (Art. 41); or G will be an image of E. Alfo, thefe rays, after reflection at $A B$, will fall upon $C D$ as if they proceeded from a real object at G, and after reflection at $C D$ they will diverge from H; that is, H will be an image of G; or a fecond image of $E, \& c$. In the fame manner, the rays which diverge from E, and fall upon $C D$, will form the images $L, M, N, \& c$.

It is found by experiment, that all the light incident upon any furface, however well polifhed, is not regularly reflected from it. A part is difperfed in all directions (Art. 34); and a confiderable portion enters the furface, and feems to be abforbed by the body.

In the paffage alfo of light through any uniform medium, fome rays are continually difperfed, or abforbed; and thus, as it is thrown backward and forward through the plate of air contained between the two reflectors $A B, C D$, it's quantity is diminifhed. On all thefe accounts, therefore, the fucceeding images become gradually fainter, and, at length, wholly invifible.
76. Cor. If E move towards F, the images G, H, $I, \& c$. move towards the reflectors, and $L, M, N, \& c$. from them; thus the images L and H, M and I, refpectively approach each other ; and when E coincides with F, thefe pairs refpectively coincide.

Prop. XIII.

77. If an object be placed between two plane reflectors inclined to each other, the images formed weill lie in the circumference of a circle, whofe center is the interfection of the two planes, and radius the diftance of the object from that interfection.

Let $A B, A C$ be two plane reflectors inclined at the

angle $B A C ; E$ an object placed between them. Draw

$E F$ perpendicular to $A B$, and produce it to G, making $F G=E F$; then the rays which diverge from E and fall upon $A B$, will, after reflection, diverge from G; or G will be an image of E. From G, draw $G H$ perpendicular to $A C$, and produce it to I, making $H I=G H$, and I will be a fecond image of $E, \& c$. Again, draw $E L M$ perpendicular to $A C$, and make $L M=E L$; alfo, draw $M N O$ perpendicular to $A B$, and make $N O=M N, \& c$. and $M, O, \& c$. will be images of E, formed on the fuppofition that it is placed before $A C$. Let $K, V ; P, 2$ be the other images, determined in the fame manner.

Then, fince $E F$ is equal to $F G$, and $A F$ common to the triangles $A F G, A F E$, and the angles at F are right angles, $A G$ is equal to $A E$ (Exc. 4. 1). In the fame manner it appears, that $A I, A K$, \&c. $A M, A O$, $A P$, \&c. are equal to each other, and to $A E$; that is? all the images lie in the circumference of the circle EMIK who fe center is A, and radius $A E$.
-78. Cor. If the angle $B A C$ be finite, the number of images is limited: For, $B A$ and $C A$ being prodiced to S and R, the rays which are reflected by either furface, diverging from any point 2 between S and R, will not meet the other reflector; that is, no image of $\mathscr{2}$ will be formed.

Prop. XIV.

79. Having given the inclination of two plane reflectors, and the fituation of an object between them, to find the number of images.

It appears from the conftruction in the last propofit ton, that the lines $E G, M O, I K, P Q, \& x$. are parallee, as alfo $E M, G I, O P, K V, \& c c$. Hence it follows, that the arcs $E G, M I, O K ; P V, \& c$. are equal; as
alfo, the arcs $E M, G O, I P, K 2, \& x$. Let $B C=a$, $E B=b, E C=c$; then, the arc $E G=2 b ; E M=2 c$;

$E O=E G+G O=E G+E M=2 b+2 c=2 a ; E K=$ $E O+O K=E O+E G=2 a+2 b ; E O 2=E K+K 2=$ $E K+E M=2 a+2 b+2 c=4 a$, \&c. Thus there is: one feries of images, formed by the reflections at $A B$, whofe diftances from E, meafured along the circular arc EOR, are $2 b, 2 a+2 b, 4 a+2 b, \ldots, 2 n a-2 a$ $+2 b(2 n a-2 c)$, where n is the number of images; this feries will be continued as long as $2 n a-2 a+2 b$, or $2 n a-2 c$ is lefs than the arc $E O R$, or $180^{\circ}+b$; and confequently n, the number of images in this feries, is that whole number which is next inferior to $\frac{180+b+2 c}{2 a}$, or to $\frac{180+a+c}{2 a}$. There is alfo a fecond feries of images, formed by reflections at the fame furface, whofe diftances from E are $2 a, 4 a, 6 a$,2ma, continued as long as $2 m a$ is lefs than $180+b$, and therefore m, the number of thefe images, is that whole number which is next inferior to $\frac{180+b}{2 a}$.

45

In the fame manner, the number of images formed by reflections at the furface $A C$, is found by taking the whole numbers next inferior to $\frac{180+a+b}{2 a}$, and $\frac{180+c}{2 a}$.
80. Cor. I. If a be a meafure of 180 , the number of images formed will be $\frac{360}{a}$.

For, if a be contained an even number of times in 180, or $2 a$ be a meafure of 180 , the number of images in each feries is $\frac{180}{2 a}$; and the number upon the whole is $4 \times \frac{180}{2 a}=\frac{360}{a}$. If a be contained an odd number of times in $180,2 a$ is a meafure of $180+a$, or $180-a$; and the number of images is $\frac{180+a}{2 a}+\frac{180-a \dot{\psi}}{2 a}+\frac{180+a}{2 a}+\frac{180-a}{2 a}=\frac{360}{a}$.
81. Cor. 2. When a is a meafure of 180 , two images coincide.

For, if a be contained an even number of times in 180, then the number of images in the fecond feries, formed by reflections at the furface $A B$, is $\frac{180}{2 a}$; and the diftance $E 02,(2 m a)$, of the laft image from E, is 180°. In the fame manner, the diftance $E I V$, of the laft image in the fecond feries formed by reflections
at

- $\frac{180+a+c}{2 a}=\frac{180}{2 a}+\frac{a+c}{2 a}$; the latter part, $\frac{a+c}{2 a}$, being lefs than unity, is neglected.
$+\frac{180+b}{2 a}=\frac{180-a+a+b}{2 a}=\frac{180-a}{2 a}+\frac{a+b}{2 a} ;$ the latter part, $\frac{a+b}{2 a}$, being lefs than unity, is neglected. coincide in $E A$ produced. If a be contained an odd number of times in 180 , then the number of images, in the firft feries, formed by reflections at $A B$, is $\frac{180+a}{2 a}$; and the diftance $E O K$, of the laft of thefe images from E; is $\frac{-180+a}{2 a} \times 2 a-2 c$; or $180^{\circ}+a-2 c$. Alfo, the diftance $E M P$, of the laft image in the firft feries formed by reflections at $A C$, is $180^{\circ}+a-2 b$; therefore $E O K+E M P=360^{\circ}+2 a-2 c-2 b=360^{\circ}$; that is, K and P coincide.

Prop. XV.

82. If the object placed before a spherical reflector be a circular arc concentric with it, the image will alfo be a circular arc concentric, zeith, and fimilar to the object.

Let $A C B$ be the fpherical reflector, $P \mathscr{R}$ the circular arc; E their common center. Take any points $P,{ }^{\prime 2}, R$, in the object; join $E P, E Q, E R$, and

produce thefe lines, if neceffary ; bifect $E C$ in F, and take $F \cong: F E:: F E: F q$, meafuring $F q$ and $F 2$ in the fame direction from F; with the center E and radii $E q, E F$, defcribe the circular arcs $p q r, S F V$,

The sume -ffect: may be made to ther rf ar in Ant: 6s ..
Ctoth be the oftherise surtaec. itit ens Ct itithriveifual fori lic in tu \log ibkiun Hipet itheed lufore it "Fatke
ps: Ps: f6: to, them of it the inenage of

E irad. E/V Mererile ma vhrot.Men
wall for bo the simage of PR -
․ in PR tate any forint is Sfanderen EQ E pet tiv $a=e$ fer in q-. Snen oince.

$$
\begin{aligned}
& F E=\Gamma \Sigma \quad R^{\prime} \varepsilon Q=\Sigma \beta \quad \therefore \varepsilon z=N B \text { and Dincec } \\
& \varepsilon_{y}=c, \quad \text { o } \varepsilon=\varepsilon y \quad \therefore z_{g}=\rho
\end{aligned}
$$

B Quar I athen any firint in squz
\therefore far \rightarrow the insay of PRR
(2)
cutting $E P, E R$, or thofe lines produced, in p, r, and

S, V; then will $p q r$ be the image of $P Q R$.
For, finče $F \mathscr{Q}: F E:: F E: F q$, and $F Q$ and $F q$ are meafured in the fame direction from $F ; q$ is the image of 2 (Art. 50). Alfo, fince $E P$, is equal to $E 2, E S$ to $E F$, and $E p$ to $E q, S P$ is equal to $F \mathscr{Q}$, and $S p$ to $\dot{F q}$; therefore $S P: S E:: S E: S p$, and p is the image of P. In the fame manner it may be proved, that the image of every other point in $P \mathscr{Q} R$, is the correfponding point in $p q r$; that is, $p q r$ is the image of $P Q R$.

Again, the image and object, fince their extremicies are determined by ftraight lines which pafs through the center E, fubtend the fame, or equal angles at that center; therefore they are fimilar arcs.
83. Cor. I. In the fame manner it appears that, if. pqr be the object, $P Q R$ will be it's image; and if rays are incident the contrary way, converging to the feveral points in $P Q R, p q r$ will be the image of $P Q R$.
84. Cor. 2. Becaufe fimilar arcs are proportional to their radii, $P R$: $p r:: \mathcal{Q} E: E q$.
85. Cor. 3. Since $2 F: F E:: \mathscr{2} E: E q$ (Art. 55), PR:pr :: $\mathcal{Q} F: F E$.
86. Cor. 4. If the object be placed any where between E and $C, \varrho F$ is lefs than $F E$; therefore the object is lefs than the image. If it be placed in $E C$ produced,
duced, or in $C E$ produced, the image is lefs than the object.
87. Cor. 5. When the object and image lie the fame way from the center, if P be moved fucceffively through the feveral points in the object, p will move in the fame direction, and trace out the image; or, the points in the image will have the fame relative fituation that the correfponding points in the object have; that is, the image will be erect. But if P and p be on contrary fides of E, they will move in oppofite directions; or the image will be inverted.
38. Cor. 6. When the object is in $F C$; or in $F C$ produced, the image is erect (Art. 87). When it is in $F E$, or $F E$ produced, the image is inverted (Vid. Art. 59).

8g. Cor. 7. Since $2 E: E q:: 2 C: C q$, the object and image are in the ratio of their diftances from the reflector.
90. Cor. 8. If $\mathscr{2} C$ and $q C$ be known, the radius of the reflector may be found. For, $2 F: F E::{ }_{2} C$: ${ }_{q} C$; therefore $2 F \mp F E: F E::$ 2 $C \mp q C: q C$, or ${ }_{2} C: F E::{ }_{2} C \mp q C: q C$; hence $F E$ is known, and ${ }_{2} F E$ is the radius fought.

The upper fign is to be ufed when 2 and q are on different fides of the reflector, and the lower, when they are on the faine fide.

9r. Cor. 9. If the object be' a fpherical furface, generated by the revolution of $P \mathscr{2}$ about the axis $E C$, the image will be a fimilar furface, and the magnitude of the object : the magnitude of the image :: $\overline{E Q})^{2}: \overline{E q}^{2}$.
9^{2}, Cor. 10. If O, the place of the eye, be given, the part of the object feen in a given portion $A B$, of the reflector, may be thus determined:

the image of R; in the line $P E D$ take $E D$ equal to $E P$, and draw $D H$ at right angles to $P D$; from \dot{r} draw $r H, r S$, refpectively parallel to $D N$, and $R P$.

Then, becaufe r is the image of $R, R F: F E::$ $E R: E r$ (Art. 55), alternately, $R F: E R:: F E$: Er. Alfo, in the fimilar triangles $E P R, E S r, E R$: $E r:: E P$: ES :: ED : ES, therefore $R F: F E$:: $E D: E S$, and by compofition, or divifion, $R F$: $R F \mp F E:: E D: E D \mp E S$; that is, $R F: E R::$ $E D: D S(H r)$; confequently, $E D: H r:: F E: E r$; alternately, $E D$: $F E:: H r: E r$; that is, Hr bears an invariable ratio to $E r$, and therefore r is a point in the conic fection whofe focus is E and directrix $D H$.
94. Cor. 1. When $E P$ is equal to $E F, \mathrm{Hr}$ is equal to $E r$, and the conic fection is a Parabola. It is an Ellipfe or Hyperbola, according as EP is greater or lefs than $E F$.
$95 \ldots$ Cor. 2. When the diftance of the object is fo great that the rays which come from any point in it may be confidered, as parallel, the image is a circle whofe radius is $E F$.
96. Cor. 3. If $E T$ be drawn perpendicular to $E N$, when r coincides with $T, H r$ becomes equal to $E D$; and fince $E D: E F:: H r: E r, E r$ becomes equal to $E F$. This is, $E T$, lialf the latus rectum of the conic fection, is equal to $E F$, half the radius of the reflector.
97. Cor. 4. Since the radius of curvature at the vercex of the figure is equal to half the latus rectum, the curvature of the image at N is the fame, wherever the object is placed.
-98. Cor. 5 . If the radius of the reflector be finite, the eranefcent $\operatorname{arc} r N$ is equal to the ordinate $r S$
(Newt.
$2 y-1$

+ $4=$
$1+2$

(an
,
(Newt. Lem. 7); and therefore $R P: r N:: E P$: $E S:=E P: E N$.

Alfo, whilf the angle $R E P$, which the ftraight line fubtends at the center of the reflector is fmall, though finite, the arc $r N$ will, as to fenfe, be a right line.
99. Cor. 6. In the preceding figure, where the objeat is fuppofed to lie between the principal focus and the furface $A C B, T N x$ is the erect image of the line $R P$ indefinitely produced both ways, and $T M x$ it's inverted image. The part $A N B$ is formed by reflection from the concave furface $A C B ; A T$ and $B x$, by reflection from the convex furfaces $A K, B L$; and $T M x$ by reflection from the concave furface $K G L$.

-

SECTION IV.

ON THE REFRACTION OF RAYS AT PLANE AND SPHERICAL SURFACES.

Prop. XVII.

100. WIVHEN a ray of light paffes out of one mediun into another, as the angle of incidence increafes, the angle of deviation alfo increafes.

Let A and B be the angles of incidence and refraction; and let fin. $A:$ fin. $B:: m: n$. Then by compofition and divifion, fin. $A+$ fin. $B:$ fin. $A \sim$ fin. $B::$ $m+n: m \sim n$; but fin. $A+$ fin. $B:$ fin. $A \sim$ fin. $B::$ tang. $\frac{A+B}{2}$: tang. $\frac{A-B}{2}$; therefore tang. $\frac{A+B}{2}$: tang. $\frac{A \sim B}{2}:: m+n: m \sim n$. Now let A increafe, then B alfo

- This is deducible from the common principles of trigonometry. The fides of a triangle are proportional to the fines of the oppofite angles; thercfore the fum of two fides : their difference :: the fum of the fines of the oppofite angles : the cifference of their fines; and the fum of the fides : their difference :: the tangent of half the fum of the oppofite angles : the tangent of half their difference; confequently, the fum of the fines of the angles: the difference of their fines: : the tangent of half their fum : the tangent of half their difference.

REFRACTION OF A SINGLE RAY.
alfo increales (Art. 26); therefore $\frac{A+B}{2}$ increales; and $\frac{A+B}{2}$ is lefs than a quadrant, therefore tang. $\frac{A+B}{2}$ increafes; bence, tang. $\frac{A \sim B}{2}$, and confequently $\frac{A \sim B}{2}$, and alfo, $A \sim B$, the angle of deviation, increafes.

Prnd XVIII.
Fill L_{0} the refiacting durface, Bcp+tothl - $\frac{0}{2}$ dereridíd ruCP, ACa, BCGimeid! nayd. C7 dirsetwin of C after nofriction, \& CSOt BC in $\angle P, G P, \& P, 7 P$, matk $\cup b_{c}=-a=$-join +18
 inerdence han a evintant pateo to the obic. refract:, Pa:AF:PL:PQ_Bpain wen the $L 0$ rue yual ares in equal circle. Lequal, the $\angle C D_{Y}=\angle c P Z B_{3}<P V_{y}=\angle D_{c} y$ the $\Delta 0 \mathrm{Ply}$, Pafare Din? $\therefore P l$ Pg $\because P_{c} \cdot P z$

$$
\begin{aligned}
& \therefore P Q P_{G} \\
& \Delta_{y}=P G-
\end{aligned}
$$

 PG i lef. than " $P_{x} \therefore$ the hoint 9 falle ha low t
 fyl it dutation of may BCi pt Pram dewiat!

SECTION IV.

ON THE REFRACTION OF RAYS AT

aldo increales (Art. 26); therefore $\frac{A+B}{2}$ increases; and $\frac{A+B}{2}$ is left than a quadrant, therefore tang. $\frac{A+B}{2}$ increales; hence, tang. $\frac{A \sim B}{2}$, and conlequently $\frac{A \sim B}{2}$, and alto, $A \sim B$, the angle of deviation, increates.

Prop. XVIII.

101. A ray of light cannot pals out of a denser into a rarer medium if the angle of incidence exceed a certain limit.

Let a ray of light $A B$ be incident upon the furface $E B F$ of a rarer medium, and refracted in the direction $B C$. Through B, draw $P B Q$ perpendicular to the furface; take $B C$ equal to $A B$, and draw $A P, C \mathscr{Q}$

at right angles to $P Q$. Then, fince the ray paffes out of a denfer medium into a rarer, the fine of refraction is greater than the fine of incidence (Art. 33); and thee fines are always in a given ratio (Art. 24); therefore the fine of refraction will become equal to the radius fooner than the fine of incidence; let the angle of
incidence be increafed till the fine of refraction is equal to the radius, and let the angle of incidence, and confequently the fine of incidence, be farther increafed; then, if the ray be refracted, the fine of refraction muft alfo be increafed, which is impoffible; therefore the ray cannot be refracted, when the angle of incidence exceeds this limit.

To determine the limit, let the fine of incidence be to the fine of refraction, out of the denfer medium into the rarer, :: $n: n$; and let x be the fine of incidence when the correfponding fine of refraction is r, the radius; then $n: m:: x: r$, and $x=\frac{n r}{m}$; and the fine of incidence being known, the corre!ponding angle may be found from a table of fines.

Thus, if the two mediums be water and air, n : $m:: 3: 4$; therefore $x=\frac{3 r}{4}$; and the angle, whofe fine is $\frac{3}{4}$ of the radius, is $48^{\circ} 36^{\prime}$, nearly.

If the mediums be glafs and air, $n: m: 2: 3$, and $x=\frac{2 r}{3}$; in this cafe, the angle is $41^{\circ} .49^{\prime}$; and the rays which fall upon the furface at a greater angle of incidence will be reflected *.

Prop. XIX.

102. When a ray of light paffes through a medium contained by two parallel plane furfices, the directions in zehich it is incident and emergent are paraliel to each other i.

Let $A B D C$ be the medium, $P \mathscr{2}, \mathscr{Q} R, R S$, the courfe

- The reffection thus made, is much fronger than can be produced by any polified metallic furface, or glafs fpeculum.
+ In this, and fimilar cafes, the ambient medium is fuppofed to be uniform.

,
of a ray refracted through it; $G \mathscr{2} H, K R L$ perpendiculars to $A B$ and $C D$ at the points $\mathscr{2}$ and R. .Now,

the effect of the refraction is the fame, whether $P Q R S$ be the courfe of the ray, or $2 R$ pafs both ways out of the medium (Art. 30); let the latter fuppofition be made; then, fince $A B$ is parallel to $C D$, the alternate angles $B Q R, Q R C$ are equal ; and therefore their complements $R \mathscr{2}, \mathscr{2} R K$, which are the angles of incidence, are equal; hence, the angles of refraction $P \mathscr{2} G$, $S R L$, are equal (Art. 25); therefore the angles $P 2 A$, $S R D$ are equal; and if to thefe the equal angles $A 2 R$, $\mathscr{2} R D$ be added, the whole angles $P \mathscr{Q} R, \mathscr{Q} R S$ are equal, and therefore $P 2, R S$ are parallel.

103. Cor. 1. Whatever be the form of the furfaces, if the planes which touch them at the points \mathscr{D} and R be parallel, $P \Omega$ and $R S$ will be parallel (Art. 28).
104. Cor.2. If $R T$ be drawn perpendicular to $P 2$ produced, $\mathscr{2} R: R T$:: rad. : fin. $R 2 T$; wherefore, when the angle of incidence $P \mathscr{Q}$, and confequently the angle of deviation $R 2 T$, is fmall, and the thicknefs of the medium alfo fmall, $P 2 R S$ may, without fenfible srror, be confidered as a ftraight line.

Prop. XX.

105. When a ray of light is refracted through two contiguous mediums, contained by parallel plane furfaces, it emerges in a direction parallel to that in which it is incident upon the fivt furface.

The truth of this propofition is derived from experiment.

Let a plate of glafs be placed parallel to the horizon, and covered with a lamina of water; then the furface of the water will become horizontal, and therefore parallel to the furfaces of the glafs plate; and if the fun's light be refracted through the two mediums, the incident and emergent rays are found to be parallel *.

Prop. XXI.

106. A ray of light is as much refrafted in pafing through one medium into another, when they are terminated by parallel plane furfaces, as it is in pafing immediately isto the latter medium.

Let $A B, C D$ be the mediums; $P Q R S T$ the courfe

of a ray refracted through them in the plane of the paper;

- Newt. Lectiones Optica, Par. I. Sect. II.
(anchen
paper; KLMN the courfe of a ray which is incident parallel to $P Q$, and refracted, in the fame plane, through the medium $C D$.

Then, fince $P Q$ and $S T$ are parallel (Art. 105), and alfo $K L$ and $M N$ (Art. 102), and $P Q$ is parallel to $K L$ by the fuppofition, $S T$ is parallel to $M N$; and if $T S$ and $N M$ be fuppofed to be the incident rays, $S R$ and ML will be the refracted rays (Art. 29) ; alfo, fince the angles of incidence, of the rays $T S, N M$, are equal, the angles of refraction are alfo equal (Art. 25) ; hence, the complements of thefe angles are equal, and $S R, M L$ are parallel ; that is, the fum, or difference, of the deviations at 2 and R, is equal to the deviation at L.
107. Cor. Hence it follows, that if a ray pafs through any number of mediums, contained by parallel plane furfaces, it will be as much bent from it's original courfe as if it paffed immediately out of the firft medium into the laft *.

Prop. XXII.

108. Having given the ratio of the fines of incidence and refraetion, when a ray paffes out of one medium into each of two others, to find the ratio of the fine of incidence to the fine of refraction out of one of the latter mediums into the other.

Let $A B, C D$ be two contiguous mediums contained by parallel plane furfaces; $P \mathscr{Q} R S T$ the courfe of a say refracted through them; through the points 2 , R, S, draw $G 2 H, K R L, M S N$ at right angles to the furfaces;

- Newton's Optics, Book II. Part IIl. Prop.X.
furfaces; and let $a: b::$ fin. incidence $:$ fin. refraction out of the furrounding medium into $A B ; c: d::$ fin.

incidence : fin. refraction out of the furrounding medium into $C D$.

Then, fince $P Q$ is parallel to $S T$ (Art. 10_{5}), and $G H$ to $M N$, the angles $P 2 G, N S T$ are equal ; alfo, the angles $H 2 R, L R S$, are refpectively equal to the angles $2 R K, R S M$. Now, from the hypothefis, fin. $P 2 G$: fin. $H 2 R$:: $a: b$; inverfely, fin. $H 2 R$: fin. $P \mathscr{Q} G:: b: a$; or
fin. $\mathscr{Q} R \mathrm{~K}:$ fin. NST : : $b: a$; alfo,
fin. NST : fin. RSM (SRL) :: $c: d$; by compofition, fin. $2 R K:$ fin. $S R L:: b_{6}: a d$.

Ex. When a ray paffes out of air into water, fin. incidence : fin. refraction :: $4: 3:: a: b$; out of air into glafs, fin. incidence : fin, refraction :: $3: 2$:: $c: d$; therefore, out of water into glafs, fin. incidence : fin. refraction :. $b c:$ ad $:: 9: 8$.

109. Def.

?
109. Def. A Prijm, in optics, is a folid terminated by three rectangular parallelograms, and two fimilar, equal and parallel triangles.
110. A line drawn through the center of gravity of the prifm, parallel to the interfections of the parallelograms, is called the axis of the prifm.

Prop. XXIII.

111. A ray of light which paffes through a prim, in a plane perpendicular to it's axis, is turned towards the thicker part, or from it, according as the prijm is denfer, or rarer, than the furrounding medium.

Let $A I C$ reprefent a fection of the prifm, made by a plane which is perpendicular to it's axis, and therefore

to it's furfaces (Euc. 8. and 18. in); 2 A a ray incident in the plane $A I C ; A C, C S$ the coarfe of the refracted ray, in that plane (Art. 24). Then, the effect of the refraction is the fame, whether, we fuppofe the ray to pals thus through the prifm, or $A C^{\prime}$ to pafs both ways out of the prifm (Art. 30); let this latter fuppofition be made, and the propofition refolves itfelf into the three following cares:

Cafe 1. When $A C$ makes two acute angles with the fides of the prifm.

Draw

Draw $A B, C D$ at right angles to $I A, I C$, and let them meet in E. Then, fince the $\angle C A I$ is lefs than the $\angle E A I, C A$ is nearer to the vertex I than $E A$; and as they crofs each other at $A, C A$ produced is farther from the vertex than $E A$ produced; alfo, the ray $C A$, when the prifin is denfer than the furrounding medium, is turned from the perpendicular; that is, from $E A$ produced, or towards the thicker part of the prifm. In the fame manner it may be proved, that the ray $A C$ is refracted at C towards the thicker part of the prifm ; confequently, the bending upon the whole is in that direction.

Cafe 2. When $A C$ makes a right angle with one fide of the prifm.

Let the angle at A be a right angle; then, fince there is no refraction at A (Art. 27), the whole

bending is at C, which may be fhewn, as before, to be towards the thicker part of the prifm.

Cafe 3. When $A C$ makes an obtufe angle with one fide of the prifn.

Let the angle $I A C$ be obtufe, and the conftruction being made as before, $C A$ lies nearer to the bafe of the prifm than $E A$; and $C A$ produced lies farther from the bafe than $E A$ produced; alfo, the ray $G A$, in paffing

 11

$\operatorname{la}+\cdots+2$
anc
paffing from a denfer medium into a rarer, is turned from the perpendicular; that is, from $E A$ produced,

or from the bafe. Thus then, the refraction at A is from the thicker part of the prifm, and the refraction at C, as appears from the firft cafe, is the contrary way; therefore the refraction, upon the whole, is the difference of the refractions at A and C. - Now, the angles $I A C, I C A$ being together lefs than two right angles, the angles $B A C, A C B$ are together lefs than one right angle; to thefe add the right angle $B C E$, and the angles $B A C, A C B, B C E$, or $B A C, A C E$, are together lefs than two right angles; therefore $A B$ and $C E$ will meet, if produced, above $A C$ (Euc. Ax. 12); let them meet in E. Then, fince the exterior angle $D C A$, of the triangle $C A E$, is greater than the interior and oppofite angle $C A E$, the angle of incidence of the ray $A C$ is greater than the angle of incidence of the ray $C A$, and therefore the deviation at C is greater than the deviation at A (Art. 100); or the excefs of the deviation is towards the thicker part of the prifm.

In the fame manner it may be proved, that a ray of light will be bent from the thicker part of a prifm which is rarer than the furrounding medium.

Prop. XXIV.

112. Evanefcent angles are proportional to their Jines, when the radius is given.

The limiting ratio of an evanefcent arc to it's fine is a ratio of equality (Newt. Lem. 7. Cor. 1) ; and fince angles are proportional to the arcs which fubtend them, when the radius is given, they are, in this cafe, alfo proportional to the fines of thofe arcs.

When the angles are fmall, though of finite magnitude, the fame propofition is nearly, true ; and fufficiently accurate, if the conclufions drawn from it be confidered in a practical light, and applied to the conftruction of optical inftruments, or the explanation of the phrnomena of refraction.

Prop. XXV.

113. When a ray of light paffes through a prifm, in a plane zoluich is perpendicular to it's axis, and the angles of incidence are fmall, the vertical angle of the prijm is to the angle of deviation, as the fine of incidence, out of the prifm into the ambient medium, is to the difference of the Sines of incidence and refraction.

The fame conftruction and fuppofition being made as in Art. 111, the propofition will in like manner refolve itfelf into three cafes.

Cafe I. When $A C$ makes two acute angles with the fides of the prifin.

Let $m: n::$ fin. incidence : fin. refraction, out of the prifm into the ambient medium; produce $\mathcal{Q} \dot{A}$, $S C$, to R and T; then the $\angle C A E$ is the angle of in-

cidence of the ray $C A$, and the $\angle E A R$ is equal to the angle of refraction of the fame ray; alfo the $\angle E C A$ is the angle of incidence, and the $\angle E C T$ equal to the angle of refraction of the ray $A C$; and fince the angles of incidence, and confequently the angles of refraction are fmall, they are proportional to their fines (Art. I12); therefore $E A C: E A R:: m: n$; and $E A C: E A C \sim E A R$ (CAR) :: $m: m \sim n$. In the fame manner, ECA : $A G T:: m: m \sim n$; hence $E A C: C A R:: E C A: A C T$, and $E A C+E C A: C A R+A C T:: E C A: A C T:: n:$ $m \sim n$ (Euc. 12. 5). Again, fince the four angles of the quadrilateral figure IAEC are equal to four right angles, and the angles $I A E, I C E$ are right angles, the two angles $A E C, A I C$ are together equal to two right angles, or to the two angles $A E C, A E D$; confequently, the angle $A I C$ is equal to the angle $A E D$; and $A E D$ is equal to the fum of the angles $E A G$, $E C A$; therefore the angle $A I C$ is equal to the fum of thofe angles; alfo, the fum of the angles $C A R$, $A C T$ is, in this cafe, the whole deviation (Prop. ${ }^{2} 3$. Cale 1); therefore, from the laft proportion, AIC : the whole deviation :: $m: m \sim n$.

Cafe

Cafe 2. When $A C$ is at right angles to one fide of the prifm.

Let the angle $C A I$ be a right angle; then the whole refraction is at C; and in this cafe, as before, $D C A: A C T:: n: m \sim n$. Alfo, fince the right angle

$D C I$ is equal to the fum of the two $A C I, A I C$, take away the common angle $A C I$, and the remaining angles $D C A, A I C$ are equal; confequently $A I C$: $A C T:: m: m \sim n$.

Cafe 3. When $A C$ makes an obtufe angle with one fide of the prifm.

It may be fhewn in the fame manner as in Cafe 1 , that

$A C D: A C T: m: m \sim n$; and $C A E: C A F:: m:$
$A=7+A C T>C A R+A C S \rightarrow A C D+A C S=2 I^{2} L O$
 ince alse $A C D$ is g^{2} ? than $C A F$
(x)
m-12. Hence, $A C D-C A E: A C T-C A F:: m:$ $m \sim n$ (Euc. 19. 5.) ; and fince $A C D$ is the exterior angle of the triangle $A C E$ (Prop. 23. Cafe 3), $A C D-$ $C A E=C E A$; alfo, $A C T-C A F$ is the whole deviation; therefore $C E A$: the deriation $:: m: m \propto \dot{\sim} s$ Again, fince the triangles $A I B, B C E$, have verical angles at B, and right angles $I A B, B C E$, the angles $A I B, B E C$ are equal; therefore, from the laft pro. portion, $A I B$: the whole deviation :: $m: m \sim n$.
i14. Cor. I. It appears fiom the demonftration of the foregoing propofition, that when the ray makes two acute angles with the fides of the prifm, the angie at the vertex is equal to the fum of the angles of incidence; and when it makes an olbtufe angle with one fide, the angle at the vertex is equal to the difference of the angles of incidence.

II5. Cor-2. Hence it follows, that the angles of incidence cannot be fmall, unnlefs the angle at she vertex of the prifin be alfo fmall.

Ex. 1, Let the angle at the rertex of a glass prifm, placed in air, be: 1°; then $m: n:: 2: 3$, and $m: m \sim n:: 2: 1:: 1^{\circ}: \frac{1^{\circ}}{}$, the angle of deviation when the angles of incidence are fmall.

Ex. 2. Let the fame prifm be placed in water, then $m: n:: S: 9$; and $m: m \sim n:: \delta: 1:: 1^{\circ}: \frac{10}{8}$, the angle of deviation in this cafe.
116. Cor. 3. When the angle at the vertex of the prifon vanifhes, or the fides become parallel, the angle of deviation alfo vanihhes (Vid. Art. 102.)
117. Cor.
117. Cor. 4. If the quantity and direction of the deviation, and the angle at the vertex of the prifm be known, the ratio of the fine of incidence to the fine of refraction may be determined.

Thus, if the deviation be $\frac{7}{3}$ of the angle at the vertex, and towards the thicker part of the prifm, m : $n-m:: 3: 1$; and by compofition, $m: \kappa:: 3: 4$.

If the deviation be towards the thinner part of the prifin, $m: m-n:: 3: 1$; therefore $m: n:: 3: 2$. In thefe, as in the former cafes, the angles of incidence and refraction are fuppofed to be proportional to their fines.

Prop. XXVI.

118. When tzeo rays are refracted through a prijm, in the fame plane, and the angles of incidence on each furface are fmall, the emergent rays are inclined to each other at ant angle equal to that which is contained between the incident rays.

Let $2 A, 2 G$ be the incident rays; $A B, C D$ the directions of the refracted rays; ${ }^{\text {and }}$, if pofible, let

$A B, C D$ be parallel. Produce $2 C$ till it meets $F A B$ in H; then fince $2 H$ falls upon the parallel lines $A B$, $E D$, the angles $E C Q$ and $A H C$ are equal; and the exterior angle $F A E$, of the triangle $A H \cap$, is greater than the interior and oppofite angle $A H \stackrel{\circ}{\circ}$; therefore
alcter-

St 2 be the tows of incid!'trays-iIACE, 2/30z
 roduce $E C, \not \subset C$ tow'red q i isoduce 2At incel Ein G - S frorduce 213 te nuent q Fin H - Picu iee tho vertial \angle of the minm, S the \angle of ine i.:
 $S \angle G A B$ ion whole aw $A T B=\frac{m i n}{m}$

$$
\begin{aligned}
& \therefore \angle G A=\angle D H A K \angle G A G=\angle 2 A H \\
& \therefore \angle G G A+\angle E A G=\angle 2 H A+\angle 2 A H
\end{aligned}
$$

is in huo lattes ane iff thens tion Nibanyer
 EC, 70 mut in oonve foritt, q) it hroducedtho two \angle sin each of the $\triangle 0$ g A G, I, Ats have on oheren to bsepal? the Δ osarsicen? $\therefore \angle G Q A=\angle H Q A-\quad$ SOD
it is alfo greater than the argle $E C \cong$; but, becaufe the angle at the rertex of the prifm is invariable, the angles $F A E, E C \odot$, which are equal to the angles of deviation of the rays $2 A, \mathscr{\cong} C$, are equal to each other (Art. II 3), which is abfurd; therefore $A B$, and $C D$ are not parallel ${ }^{*}$. Let them meet in F; then fince the vertical angles $F E A, 2 E C$ are equal, and alfo the angles $F A E, E C \cap$, the remaining angles $A F E, E Q C$ are equal.

11g. Def. A Lens is a thin piece of glafs, or other tranfparent fubitance, whofe furfaces are either both Spherical, or one plane and the other fpherical.

This definition comprifes the fix following forts of lenfes : the double convex, the double concave, the plano convex, the plano concave, the menifus, and the concavoconvex lens.

1. A double convex lens is bounded by two conrex Spherical furfaces.

Let R and r be the centers of two circular arcs $C A D, C B D$ which are concave towards each other,

and which meet in C and D; join $R r$, and fuppofe the figure $C D$ to revolve about $R r$ as an axis; the folid, thus generated, is called a double convex lens.

The line $R r$ is called the axis of the lens.
The

[^2]The figure $C A D B$ reprefents a fection of the lens, made by a plane which paffes through the axis.

If $C D$ be joined, this line is called the diameter, or Linear aperture of the lens.
2. A double concave lens has both it's furfaces concave.

Let R and r be the centers of two circular arcs which are convex towards each other; join $R r$; draw

$E C, F D$ parallel to $R r$, and equally diftant from it; then the folid generated by the revolution of the figure $E C D F$, about the axis $R r$, is called a double concave lens.
3. A plano-convex lens is bounded by a plane, and a convex fpherical furface.

Let $C B D$ be a circular are whofe center is r, and chord $C D$; draw $r A B$ at right angles to $C D$; and the

folid generated by the revolution of the figure $C D$, about the axis $r B$, is called a plano-convex lens.
6. A concavo-comvex lens has alfo one furface concave and the other convex, but the convex furface, which has the lefs curvature, does not, if continued, meet the concave furface.

The manner in which the lens is generated is fuffir

ciently evident from the preceding defcriptions.
The thicknefs of thefe lenfes is fuppofed to be inconfiderable, unlefs the contrary be fpecified.

Prop. XXVII.

120. If the radii RA, ra, of the furface of a lens, be drawn parallel to each other, the incident and emergent parts of a ray of light which paffes through the lens in the direction A a , will be parallel.

Join $A a$, and fuppofe two rays $A a, a A$ to pafs out

of the lens, in the directions aq, $A \mathscr{2}$ (Art. 29), which
11. Thereir a hovition eweng lever theno es if a y of kight hafied, the incident \&s everpencix irts ohall be II - Thi foint is called the eentres the lewr; \& it is therer determinid- oraw the \leq pradii BA, ra, Pin ta is the fersitt in w. At a msheied if necefiary!' usto the asci is the centro Dist, Pt=0 be the lews - on aw ther xdic $E t_{1}+x$ - Finis to cutef axis in E - thon Exicullí cuitre of the learwivteta leaf, thino' the ecutre,en sincunt is $\|$ rex, $\angle a A R=\angle$ Aar Itilit: the 'of incidemen att, ta ansequal. The Lof - A are equal $\therefore f_{g} \div / 172$
 equat rayp thall L_{c} II
-GHfaf! thas E, ASk the inecdt ray, Hethe
 by पolztE, maE, BAt. 令E: anars

$$
\begin{aligned}
& \text { all: } B A: \text { Ra } \because \text { RE:AE } \\
& \text { n } \\
& \text { alt: RG:AH: RE: } \mathcal{E} \\
& \text { alt RE: AH:-E }
\end{aligned}
$$

$$
\alpha \angle R \varepsilon G=\angle H E H \therefore \triangle O R G E, a S H \text { ara sim? }
$$

E\&R $=\angle E H \mu$, that it the \angle of he t and equal.
$-\angle$ oof dew \leqslant er equal $\therefore \angle m G E=\angle \angle H E \therefore$
. Lillma lratistsistte are ll -
are on oppofite fides of $A a$ produced (Art. 33), and in the plane which paffes through $R A, r a$ (Art. 24). Then,

the angles of incidence at A and a being equal, the angles of deviation are equal; therefore the angles

${ }_{2} A a, A a q$, which are the fupplements of the angles of

deviation, are equal ; and thefe are alternate angles; confequently, $A 2$ and $a q$ are parallel.
121. Def. The point E, where $A a$, or $A a$ produced, cuts the axis, is called the center of the lens.
122. Cor. I. The center E, of the fame lens, is a fixed point.

In the fimilar triangles $R A E, r a E, R A$: ra:: $R E: r E$; therefore, by compofition or divifion, $R A \mp r a: r a:: R E \mp r E(R r): r E$; the three firft terms in which proportion being invariable, the fourth, $r E$, is alfo invariable. Thus it appears, that in whatever manner the parallel radii are drawn, $A a$, or $A a$ produced, cuts the axis in the fame point.
123. Cor. 2. In the fame triangles, $A E: a E:=$ $R A: r a$; and when A and a coincide with the axis in B and $b, B E: b E:: R B: r b$.
124. Cor. 3. The center of the lens is nearer to that furface which has the lefs radius, or which is the more curved.

For, in the preceding proportion, if $r b$ be lefs than $R B, b E$ is lefs than $B E$.
125. Cor. 4. If one radius be increafed without limit, the furface to which it belongs becomes plane; and the center of the lens lies in the other furface.

For, if $R B$ be indefinitely greater than $r b, B E$ becomes indefinitely greater than $b E$, or E coincides with b.
126. Cor. 5. The center lies within the double convex and double concave lenfes, and without the menifcúus and concavo convex lens.

In the two former cafés, the parallel radii $R A, r a$, lie on oppofite fides of the axis; therefore the line which joins the points A and a, cuts the axis. In the two latter cales, the centers R, r, are on the fame fide of the lens; therefore the parallel radii $R A, r a$ lie on
3. RA: $R E: \because r A: r E$
$R \beta: R E \therefore+6: r \varepsilon$
RB:r $\because \therefore$ R $\varepsilon: r \varepsilon$
$R B:$ H: $\because B-R E) E B:(r G \sim+E): E C$
127. al. By art. $123,1 R B: 16:: E B: E C$
$R B: R B+L \therefore E B:(S B-E C) B$
\therefore if R/B be infinities, ff compared win the the diff: of the radio, EM i infinitely S? com = pare with 136 -
the fame fide of the axis; confequently $A a$ mult be produced to meet the axis.
127. Cor. 6. The center of a menifcus may be at any diftance from it's furface.

In the fimilar triangles $R A E, r a E, R A: r a:: A \dot{E}$: $a E$; and by divifion, $R A: R A-r a:: A E: A E-a E$

(Aa); confequently, when A and a coincide with B and $b, R B: R B-r b:: B E: B b$. If, then, the difference of the radii decreafe with refpect to one of them $R B$, the diftance $B E$ increafes with refpect to the thicknefs of the lens; and when $R B$ and $r b$ are equal, $B E$ is indefinitely great.

In the concavo convex lens, when R and r coincide, E coincides with them.

128. Cor. 7. When the lens is thin, and the ray $2 A$ is incident nearly in the direction of the axis,

2 Aaq may, without fenfible error, be confidered as a ftraight line.

From A draw $A x$ perpendicular to $q a$ produced; then, $A x: A a::$ fin. Aax: rad. and when the angle

of incidence at a is fmall, the angle of deviation, $x a A_{2}$ is alfo fmall ; therefore fin. $x a A$ is fmall with refpect to the radius; and confequently, $A x$ is fmall when compared with the thicknefs of the lens.
129. Cor. 8. The ray 2Aaq may alfo be confidered as coincident with a line drawn through E, parallel to $2 A$, when E is within, or very near to the lens.

Prop. XXVIII.

130. Parallel rays, refracted at a plane furface, continue parallel *.

Cafe 1. When the angles of incidence are in the fame plane.

Let $R S$ be the plane refracting furface ; $A B, C D$ the incident, $B G, D H$ the refracted rays. Then, fince $A B, C D$ are parallel, the angles $A B R, C D R$ are equal ; and therefore the complements of thefe, or the angles

[^3](an
angles of incidence are equal; hence, the angles of refraction are equal, and confequently the complements

of the angles of refraction, that is, the angles $S B G$, $S D H$ are equal; and therefore $B G$ and $D H$ are parallel.

Cafe 2. When the angles of incidence are not in the fame plane.

Let $A B, C D$ be the incident rays; $E B F, K D L$ perpendiculars to the refracting furface $R S$, at the points of incidence B and D; join $B D$; and let $A B$ be refracted in the direction $B G$, which lies in the plane $A B F$ (Art. 24); alfo, let $D H$ be the interfection of the planes $G B D, C D L$.

Then, fince $E F, K L$ are parallel (Euc. 6. 11), as alfo $A B, C D$, by the fuppofition, the angles of incidence $A B E, C D K$ are equal (Euc. 10. II); confe- quently the angles of refraction are equal. Again, becaufe $E F$ and $K L$ are parallel, and alfo $A B$ and $C D$, the planes $A B F, C D L$ are parallel (Euc. I5. II); and the plane $G B D$ interfects them ; hence it follows, that $B G$ and $D H$ are parallel (Euc. 16. II); and therefore the angles $G B F$ and $H D L$ are equal (Euc. 10. II); but the angle $G B F$ is the angle of refraction of the ray $A B$; therefore $H D L$ is equal to the angle of refraction of the ray $C D$; and fince $D H$ is in the plane $C D L, C D$ is refracted in the direction D 1 IT (Art. 24), which has before been fhewn to be parallel to $B G$.

Prop. XXIX.

${ }^{1} 31$. When diverging or converging rays are incident nearly perpendicularly upon a plane refracting furface, the diftance of the focus of incident rays from the furface, is to the diftance of the geometrical focus of refracted rays from the furface, as the fine of refraction to the fine of incidence.

Let $A C$ be the plane refracting furface; $2 A, 2 C$ two of a pencil of rays diverging from 2 , of which $2 C$ is perpendicular to the furface, and therefore fuffers no

refraction. Through A, draw $E A F$ parallel to $2 C$; and let $2 A$ be refrasted in the direction $A B$; produce $B A$ till it meets $C थ$, or $C \mathscr{2}$ produced, in q^{*}. Then, the

* If they do not meet, $A B$ coincides with $A F$; that iss, the angle of refraction vanifhes with refpect to the angle of incidence; or the refracting power is infinite.

Wh. 29 . He thes there are 4 caler -.
Then diverging rays tall on the flome smface of a duser undium. Fci. I-

When eon C. rays fall 1. Fij. 2 .

Phem divery. rayp are meident on the fan surfeer of a paren mediuns$F_{L_{g}} \cdot 3$ -

- Whan conver
iy ray, are dent on the / laner

saer of a rarer midimen 7 ij. 4

REFRACTION OF A PENCIL OF RAYS.
the $\angle E A 2$ is the angle of incidence of the ray $2 A$, and the $\angle B A F$ the angle of refraction; alfo, the \angle

$E A \mathscr{2}$ is equal to the alternate angle $A \mathscr{O} C$, and the \angle $B A F$ is equal to the interior and oppofite angle $A q C$; therefore, fin. $E A \mathscr{2}$, or fin. incidence, $=$ fin. $A \mathscr{C}=$ fin. $A 2 q$; and fin. $B A F$, or fin. refraction; $=$ fin. $A q C=$ fin. $A q 2$; hence, $2 A: q A::(f i n . A q 2:$ fin. $A Q_{q}::$) fin. refraction : fin. incidence. Now, let A approximate to C, and $2 A$ is ultimately equal to $2 C$, and $q A$ to $q C$; therefore, the proportion becomes, $2 C: q C$:: fin. refraction : fin, incidence *.

Let q be the focus of rays incident the contrary way; then $B A F$ is the angle of incidence, and $E A 2$ the angle of refraction (Art. 29); and it may be proved as before, that, when 2 is the limit of the interfections of the refracted rays and the axis, $q C$ i $2 C$:: fin. refraction : fin. incidence.

Ex. 1. When diverging rays pafs out of air intō water, according to the hypothefis made in the propofition, $2 C: q C:: 3: 4$; and $2 C: 2 q:: 3: 1$.

Ex. 2. When diverging rays pafs out of water into air, $2 C: q C:: 4: 3$; and $2 C: \mathscr{2}_{q}:: 4: 1$.

Ex. 3.

- Vid. Note, page 20.

Ex. 3. When converging rays pafs, in the fame manner, out of air into glafs, $2 C: q C:: 2: 3$; when they pais out of glafs into air, $2 C: q C:: 3: 2$.
132. Cor. I. A plane refracting furface of a denfer medium, diminifhes the divergency of diverging rays, and the convergency of converging rays, incident nearly perpendicularly upon it. A^{*} plane refracting furface of a rarer medium produces the contrary effect.
133. Cor. 2. As the point A approaches to C, q approaches to 2.

Let fin. incidence : fin. refraction :: $m: u$; then $2 A: q A:: n: m$; and $2 A^{2}: q A^{2}:: n^{2}: m^{2}$; or $2 C^{2}+C A^{2}: q C^{2}+C A^{2}:: n^{2}: m^{2}$; hence $2 C^{2}+C A^{2}:$ $2 C^{2} \sim q C^{2}:: n^{2}: n^{2} \sim m^{2}$; and fince the point 2 is fixed, and $2 C$ invariable, as alfo the ratio of n^{2} : $n^{2} \sim m^{2}$, when $C A$ decreafes, $2 C^{2}+C A^{2}$ decreafes; and therefore $2 C^{2} \sim q C^{2}$ decreafes; confequently $2 q$ decreafes.

Prop. XXX.

134. When diverging or converging rays pass, nearly perpendicularly, through a medium contained by parallel plane furfaces, the diffance of the foci of incident and emergent rays, is to the thickness of the medium, as the difference of the fines of incidence and refraction, to the fine of incidence upon the firft furface.

Let $A C c B$ be the medium, $2 A, 2 C$ two rays of a pencil incident upon it, of which $2 C$ is perpendicular to the furface $A C$, and therefore paffes through the medium without fuffering any refraction; let $2 A$ be refracted

(134). He thin inop.' also there are quases

1. Ithen diveryl. Rays are incidentwhon the snoface of a denser medscom.
2. Hhen
converping

Razp are imeident on it

$$
f i g \cdot 2
$$

3. Hhem diving? Mays are incidunt whon the flam Duspace if a

raner mioimu- 7ie. 3 -
4. Ithen
bowery ing rays

are uncidents on ith -

refracted in the direction $A B$, and emergent in the

direction $B D$. Produe $B A$ and $D B$, till they mect the axis in T and q.

Then, becaufe $2 A$ and $q B$ are parallel (Art. 102), $T A: A B:: T 2: 2 q$ (Euc. 2. 6); and becaufe $A C$ is parallel to $B c, T A: A B:: T C: C c$; therefore $T \mathcal{Q}$: $2 q:: T C: C c$; and alternately, T2 : TC :: $2 q: C c$. Now let A approximate to C, and T is, ultimately, the geometrical focus of the rays after the firft refraction; therefore ${ }^{2} C: T C::$ fin. refraction : fin. incidence (Art. 131); and by divifion, $2 T: T C::$ fin. incidence \sim fin. refraction: fin. incidence ; confequently, $2 q$: $C c::$ fin. incidence \sim fin. refraction : fin. incidence.

If rays, incident the contrary way, converge to q, they will, after borh refractions, converge to 2 (Art. 29) ; therefore, as before, $2 q: C c::$ fin. incidence~ fin. refraction : fin. incidence on the firt furface.

Ex. If the medium be glafs, placed in air, $2 q$: $C c:: 1: 3$; if water, placed in air, $\mathscr{Q}_{q}: C c:: 1: 4$.
135. Cor. 1. When the incident rays diverge, the geometrical focus of emergent rays is nearer to c, or farther from it than the focus of incident rays, according as $A C c B$ is denfer, or rarer than the ambient medium.

Let $A C c B$ be denfer than the ambient medium; and let fin. incidence : fin. refraction $:: m: n$. Then, $T C: \mathscr{Q}^{C}:: m: n$; therefore T_{c} has to $2 c$ a lefs ratio than that of $m: n$ (Alg. Art. 162). Alfo, $T c: q i::$ $m: n$ (Art. 131); confequently, T_{c} has a lefs ratio to $2 c$ than to $q c$; of $q c$ is lefs than $2 c$. In the fame manner it appears, that if $A C c B$ be rarer than the ambient medium, $q c$ is greater than $2 c$.
136. Cor. 2. Since $C T$ is greater, or lefs than $C 2$, according as $A C c B$ is denfer, or rarer than the ambient medium (Art. 131), it is manifeft that T and q lie on oppofite fides of 2.
137. Cor. 3. When $A C_{c} B$ is denfer than the furrounding medium, as A approaches to C, T approaches to 2 (Art. 133) ; and in confequence of this motion of T, q approaches to c. Again, as A approaches to C, B approaches to c; and on this account q approaches to T (Art. 133), or recedes from c. Thus the two motions of q are in oppofite directions, and the aberration of oblique rays, from the geometrical focus, is lefs than when the rays are refracted at a fingle furface. The fame may be fhewn when $A G c B$ is rarer than the ambient medium.

Prop. XXXI.

138. Having given the focus of incidence of a pencil of rays which pafes nearly perpendicularly through the fides of a prijm, and alfo the ratio of the fine of incidence to the fine of refraction, out of the ambient medium into the prijm, to find the focus of emergent rays.

Let $C I B$ be the prifm; 2 the focus of incident rays; take $m: n::$ fin. incidence : fin. refraction out

(

 0

$x+2+1+2+2+2$ of the ambient medium into the prifm. From $\mathbf{2}$, draw $\stackrel{2}{2} C$ perpendicular to $I C$; and in $C \mathscr{2}$, or $C \mathscr{2}$

produced, take $T C: 2 C:: m: n$; then will T be the focus after refraction at the furface $I C$ (Art. I \mathcal{I}^{1}), or the focus of rays incident upon the furface $I B$. From T, draw $T c$ perpendicular to $I B$, and in $c T$, or $c T$ produced, take $q c: T c:: n: m$; and q will be the focus of emergent rays (Art. i3i).
139. Cor. Since ${ }_{2} C: T C:: n: m:: q c: T c$, if $C c$ and $2 q$ be joined, thefe lines are parallel (Euc. 2.6); and therefore $\mathscr{Q}^{q}: C c:: T \mathscr{2}: T C:: m \sim n: m$.

Prop. XXXII.

140. Parallel rajs, refracied at a convex Jpherical furface of a denfer, or a concave of a rarer medium, into which they pafs, are made to converge; and refracted at a concave spherical furface of a denjer, or convex of a rarer medium, they are made to diverge.
141. Let $D A, G C$ be two rays of a parallel pencil, paffing out of a rarer medium into a denfer, and incident upon the convex fpherical furface $A C B$, whofe center is E. Let $G C E$ pals through the center of the furface, and it fuffers no refraction. Join $E A$, and produce it to H; allo, produce $D A$ to K; and let $D A$ be refracted in the direction $A F$; then, $D A H$
is the angle of incidence, and $E A F$ the angle of refraction of this ray; and fince it paffes out of a rarer

medium into a denfer, the $\angle E A F$ is lefs than the \angle $H A D$, and therefore it is lefs than the $\angle K A E$; add to each the $\angle A E F$, and the two angles $F A E, A E F$ are together lefs than the two $K A E, A E F$; and therefore they are lefs than two right angles (Euc. 29. I) ; confequently, $A F$, and GE, if produced, will meet.
142. When the rays pafs out of a denfer medium into a rarer, and the furface of the medium into which they are refracted is fpherically concave.

The conftruction being made as before, fince the ray $D A$ paffes out of a denfer medium into a rarer,

the angle of incidence $D A E$, or it's equal $A E C$, is lefs than the angle of refraction $H A F$; add to each the angle $E A F$, and the two $E A F, A E F$, are together lefs than the two $E A F, H A F$; that is, they are together lefs than two right angles; therefore $A F$ and $E C$, if produced, will meet.
3. When
3. When the rays pafs out of a rarer medium into a denfer, and the furface of the medium into which they are refracted is fpherically concave.

The fame conftruction being made, let $D A$ be refracted in the direction $A L$, and produce $L A$ to F.

Then, fince the ray $D A$ paffes out of a rarer medium into a denfer, the $\angle D A E$ is greater than the $\angle H A L$,

or $F A E$; add to each the $\angle A E G$, and the two $F A E$, $A E G$, are together lefs than the two $D A E, A E G$; that is, they are lefs than two right angles; therefore $A F$ and $E G$ will meet.
4. When the rays pafs out of a denfer medium into a rarer, and the furface of the medium into which they are refracted is fpherically convex.

In this cafe, as before, the $\angle D A H$, or it's equal $A E C$, is lefs than the $\angle E A L$; add to each the \angle

$E A F$, and the two $E A F, A E C$, are together lefs than the two $E A F, E A L$; that is, they are lefs than two right angles; therefore $A F$ and $E C$, if produced, will meet.

In the two laft cafes, the refracted rays meet if produced backwards; that is, they diverge.

Prop.

Prop. XXXIII.

141. When parallel rays are incident nearly perpendicularly upon a Jpherical refracting furface, the diftance of the geometrical focus of refracted rays from the surface, is to it's diffance from the center, as the fine of incidence to the fine of refraEtion.

The conftruction being made as in the laft propofition, the angle $A E F$, in each of the four cafes, is

either equal to the angle of incidence of the ray $D A$, or to it's fupplement; therefore fin. $\angle A E F=$ fin. in-

cidence. In the fame manner, fin. $\angle E A F=$ fin. refraction; and fince the fides of a triangle are pro-

portional to the fines of the oppofite angles, $F A: F E:$: fin. $\angle A E F$: fin. $\angle E A F::$ fin. incidence : fin. refraction. Now let the point A approximate to C, and
(

REFRACTION OF A PENCIL OF RAYS.
$F A$ is, ultimately, equal to $F C$; therefore, the pro-

portion becomes $F C$: $F E$:: fin. incidence : fin. refraction.
142. Cor. I. Since $F C: F E::$ fin. incidence : fin. refraction, by divifion, $F C: C E:$ fin. incidence : fin. incidence \sim fin. refraction. Alfo, $F E: C E::$ fin. refraction : fin. incidence \sim fin. refraction.

Ex. I. If parallel rays pals out of air into the medium $A B M N$ of glass, $F C: F E:: 3: 2$; alfo, $F C: E C:: 3: 1$; and $F E: E C:: 2: 1$.

Ex. 2. When the rays pals out of glass into air, $F C: F E:: 2: 3$; alfo, $F C: E C:: 2: 1$; and $F E:$ $E C:: 3: 1$.

Cor. 2. If $E C$ be diminifhed whilft the refracting power remains unaltered, $F C$ is alfo diminifhed.
143. Cor. 3. If the axes of feveral pencils of parallel

rays be inclined to each other, in the fame plane,
the foci of refracted rays' will lie in the circumference of a circle, $H F I$, whofe center is E, and radius $E F$. If the axes be in different planes, the foci will lie in the furface of a fphere, whofe center is E, and radius $E F$.
144. Cor. 4. If any point H, in the arc $H F I$, be the focus of rays incident the contrary way, join $H E$, and thofe rays of the pencil which are incident nearly perpendicularly, will be refracted parallel to each other, and to HE (Art, 29).
145. Cor. 5. The diftance $E F$, of the interfection of the refracted ray and the axis, from the center, is, the greateft, when the are $A C$ is evanefcent.

Let f be the geometrical focus; $m: n$ the ratio of the fine of incidence to the fine of refraction.

Then, Ef : EC $:: n: m \sim n$; alfo, EF: $A F:: n: m$; therefore $E F: E F \sim A F:: n: m \sim n$; hence $E f: E C:: E F: E F \sim A F$; but $E F \sim A F$ is lefs than $E A$, or $E C$ (Euc. 20. 1); confequently, $E F$ is lefs than $E f$.

Prop. XXXIV.

146. If parallel rays be incident, nearly perperdicularly, in oppofite directions, upon a Jpherical refracting furface, the diffance of one of the foci of refracted rays from the furface, is equal to the diftance of the other from the center of the refractor.

$$
10+20020
$$

新的

$\cdots+$ $2-2+0$

$$
-1+2+2+2
$$

$$
5
$$

147. Psep.35- She nust useful fiophort wi th contanid in the 3 ". lon of thas Prof. iee
The deitance of the foeus of incident say frow the princifual foen of rays cons. in the evintrary divectir: the dish of thei foens from thi centre of the nefractor \because distawee of the centres of the peforectin from the frincifual foeus of rayp in the B wne Nirectar: to the darts of the four frow the gevmetrical foous of ofo = tedr rayp, or $17: 7 \Sigma:$ Ef:Fg-

- QA will be refracted in the sanue manuer whetren itfuroude from Q or G-on the latter oufpoicts it wile uerfracted /IGE. Aty il GE-A Aim bitte fo the prineifal foeuror raup incid? in the sause direct' with OA. Hith cutro $\&$ and ratel: If deremibe the are $f g$. join $q \varepsilon$. Then the ray q ot will be refractice in the semu unanver whather it frroued from q orf - on the Later sulfor: it wile un refracted $/ / q E \therefore a A$ ir $/ / q E$. Heme $\angle G Q E=\angle g E q \times \angle G E Q=\angle q q E \therefore \triangle Q Q Q E, G \varepsilon_{q}$

Let F be the focus when the rays pafs out of the denfer medium into the rarer, and f the focus when

they parfs out of the rarer into the denfer; then $F C$: $C E:: n: m-n$ (Art. 142); alfo, $f E: C E:: n:$ $m-n$; therefore $F C: C E:: f E: C E$; or $F C=f E$. By adding $E C$ to, or fubtracting it from each of thefe equal quantities, $F E=f C$.

Prop. XXXV.

147. When diverging or converging rays are incidest. nearly perpendicularly upon a Jpherical refraEting furface, the diftance of the focus of incident rays from the principal focus of rays coming in the contrary direction, is to it's. diftance from the center of, the refractor, as it's diftance from the furface, to it's diftance from the geometrical focus of refracted rays.

Let $A C B$ be the refracting furface ; E it's center; 2 the focus of incident rays; $2 A$ and $2 C$ two rays of

the pencil, of which 2CE paffes through the center, and therefore fuffers no refraction. Take F the prin-
cipal focus of rays incident in the contrary direction, parallel to $E C$; and from the center E, with the

radius $E F$, defcribe the arc $F G$, cutting $2 A$, or $2 A$ produced, in G; join $E G$; draw $A q$ parallel to $E G$, and let it meet the axis in q.

1. When diverging rays are incident upon a convex fpherical refractor of a denfer medium.

The ray $2 A$ will be refracted at A, in the fame manner and degree, whether it be confidered as one of a pencil of rays diverging from 2 , or as one of a pencil diverging from G; and, on the latter fuppofition, it will be refracted parallel to $G E$ (Art. 144); therefore $A q$ is the refracted ray *. And fince the triangles $2 G E, 2 A q$ are fimilar, $2 G: 2 E::, 2 A: 2 q$; let the point A approximate to C, that the ray $2 A$ may be incident nearly perpendicularly upon the refracting furface, and the point G approximates to F; therefore ultimately, $2 F:{ }^{2} E:: 2 C: 2 q$.
2. When diverging rays are incident upon a convex fpherical furface of a rarer medium.

In this cafe, $\mathscr{2}$ and F are on contrary fides of the refracting furface (Arr. 140); and the ray $2 A$ will be refracted in the fame manner and degree, whether it be confidered as one of a pencil of rays diverging from \mathcal{Q}, or, as one of a pencil converging to G; confequently,
*This is only true when $G A$ is incident nearly perpendicularly upon $A C$; and therefore the interfection of the refracted ray and the axis is only determined in that cafe.

In thi frofe. Hure are sight-eases-
(151). The ituations of 2 and y may k then detomin'd.
Care.1. Let Q hi in 7 il indef. Y Anod. Cow.

DA alfray, Af the refrocted ray, QA. Q two of e hencil of diverying rayo, An the dirvet' of QA after refract'. . The $\angle Q A_{R}$ of ine. of QAA isf? than Dite the cofine. of $A A \therefore \angle$ of afract: "qAE is $>f A E$ the \angle of repreact. of DA \therefore g his to the of of. Care 2 .

Hhen Q. is Vetween F and C - Sim hicid. IQA i,e sin. of LQAe ig? than in of hreid. of $7 A, i, e$ than $\sin , \angle F A e \therefore \angle$ of ofrant! of $Q A$ if? than L of refo . $\Rightarrow \exists A, i, e<$ gAt $i\rangle\langle d A$
\therefore 'sineu d A is //aE) gA frord' hackewands
quently, $q A$, produced, is the refracted ray (Art. 144). Hence, as before, $2 G: 2 E:: 2 A: 2 q$; and ultimately, $2 F: 2 E:: 2 C: 2 q$. A fimilar proof is applicable in all the other cafes *.
148. Cor. 1. From the fame triangles, $2 G: G E::$ 2A: $A q$; therefore, ultimately, $\mathscr{2} \overline{\mathcal{E}}: F E:: \mathcal{2} G: C q$.
149. Cor. 2. Since $G E$ is parallel to $A q$ one fide of the triangle $2 A q$, the other fides $2 A, 2 q$, or thofe fides produced, are cut proportionally (Euc. 2. 6); therefore $2 G: G A:: 2 E: E q$; and ultimately, $\mathscr{Q} F: F C:: \mathcal{Q E}: E q$.
150. Cor. 3. If f be the other principal focus, and q the focus of incident rays, 2 is the focus of refracted rays (Art. 29); therefore, qf: $f E:: q C: 2 C$ (Art. 148); invertendo, $f E: q f:: 2 G: C q:: ~ Q F:$ $F E$; hence, $2 F: F E:: E f: f q$.

Prop. XXXVI.

151. The diftances QF and Qq muft be meajured in the fame, or oppofite directions from Q , according as QC and QE are meafured in the fame, or oppofite direetions from that point.

Since $2 F: 2 E:: 2 C: 2 q$, we have $2 F \times 2 q$ $=2 E \times \mathscr{2} C$; and, meafuring thefe lines from 2 , if the rectangles have the fame fign in any one cafe, they will always have the fame fign. Now, if $\propto F$ be very great when compared with $F E$ or $E C$, $q f$ is very fmall (Art. 150); therefore all the lines $2 F$, $2 C, 2 E, 2 q$, are meafured the fame way from 2 ,

* Since the incident rays may either converge or diverge, and fall upon a convex or concave furface of a rater or denfer medium, the propofition admits of eight cafes.

84 REFRACTION OF A PENCIL OF RAYg. and the rectangles $2 F \times 2 q$, and $2 E \times 2 C$, in this cafe, have the fame fign; confequently, they will always be either both pofitive, or both negative; and according as $2 C$ and $2 E$ have the fame, or different figns, $2 F$ and $2 q$ muft have the fame, or different figns; that is, $2 F$ and $2 q$ muft be meafured, from 2 , in the fame, or different directions, according as $2 C$ and $2 E$ are meafured in the fame, or different directions (Alg. Art. 473).
152. Nearly in the fame manner, it may be fhewn that $2 F$ and $f q$ mult always be meafured in oppofite directions from F and f.

Prop. XXXVII.

153. The conjugate foci, Q and q , move in the fame direction upon the indefinite line QCq , and they coincide at the furface and center of the refractor.

Let the rays be incident nearly perpendicularly on $A C B$, a convex fpherical refracting furface of a denfer,

medium; take f the principal focus of rays, thus incident, and F the other principal focus.

When the incident rays are parallel, the refracted rays converge to f.

As 2 approachés towards F, fince $2 F: F E:: 2 C$: $C q$ (Art. 148), and the ratio of $2 F: 2 C$ decreafes (Alg. Art. 163), the ratio of $F E: C q$ decreales; therefore $C q$ increafes.
ale
3. Int a le bitwen CS'E

$=\angle$ of refract: $q A E$ nusibe lefs tram \angle of inciduner QAE and be itir lic on sanne side of tio $1,-\varepsilon \therefore 9$ hier lotive. nd ε, ro q his to tin left of f.
Lark. 4 . Wit o lie any where whin

inew $A 2 \mathrm{kis}$ ahove $A E$ AQ'kir below Ate iso \angle 'QAc wile be akwayp ble than $\angle D, A C$ - of rofract: qو $A \leqslant \angle$ of mefract: f $A E$, hishteren Egf $\therefore 9$ his to tro leff 1 T- Suwis, 2 and q ki on difl: co of 7 if
Kowing lim sitwations of 2 an αq wits lect to : andif is may be shewin hat esp wore in the same direct? by mean of tire kont:- $27: 7 \varepsilon:: \varepsilon f: f_{4}$

When 2 coincides with F, the diftance $C q$ is indefinitely great.

When 2 is between F and $C, 2 F$ and $2 q$ are meafured in the fame direction from 2 (Art. 15ヶ); and as

the ratio of $2 F$ to $2 C$ increales, the ratio of $F E$ to $C q$ increafes, or $C q$ decreafes.

When 2 coincides with C, the ratio of $2 F: F E$ is finite ; therefore the ratio of $2 C: C q$ is finite, and fince $2 C$ vanifhes, $q C$ alfo vanifhes; that is, q coincides with C.

When 2 is between C and $E, 2 q$ muft be meafured from 2 towards E (Art. 15 I) ; and fince $2 F: 2 E::$

$2 C: 2 q$ (Art. 147), and $2 F$ is greater than $2 C, 2 E$ is greater thian $2 q$; confequently, q lies between 2 and E.

When 2 coincides with E, fince $\mathscr{2} F$ is equal to $F E, 2 C$ is equal to $C q$; or, q coincides with E.

When 2 is in $C E$ produced, $2 q$ mult be meafured from 2 towards C; and fince $2 F: 2 E:: 2 C: 2 q$, and $2 F$ is greater than $2 C, 2 E$ is greater than $2 q$; that is, q lies between 2 and E. Alfo, fince $2 F: F E::$

$$
F 3
$$

2C:

2C: $C q$ (Art. 184), and as $2 C$ or $2 F$ increafes, the ratio of $2 F$ to $2 C$ decreafes (Alg. Art. 162), the

ratio of $F E$ to $C q$ alfo decreafes; that is, $C q$ increales.

The fame demonftration, mutatis mutandis, may be applied to all the other cafes.

Prop. XXXVIII.

154. A convex spherical refracting furface of a denfer, and a concave of a rarer medium, diminifh the divergency, or increafe the convergency of all pencils of rays incident. nearly perpendicularly upon them, unlefs the focus of incident rays be in the Jurface or center of the refractor, or between thofe two points; a concave spherical furface of a denfer, and convex of a rarer medium, have a contrary effect.

It appears from the laft propofition, that when rays are incident upon a convex fpherical furface of a denfer

medium diverging from 2 , a point farther from the furface than F, they are made to converge.

When the incident rays diverge from F, the refracted rays are parallel.

When \mathscr{Q} is between F and C, the refracted rays diverge from a point which is farther from the furface than 2 ; therefore the divergency of the rays is diminifhed *.

When the incident rays converge to any point in $C E$ produced, the refracted rays converge to a point which is nearer to the furface than the focus of incident rays; or the convergency is increafed.

But when the incident rays converge to a point between C and E, the refracted rays converge to a point farther from the furface than the focus of incident rays ; or the convergency is diminifhed.

When 2 coincides with C or E, the convergency, or divergency, is not alrered.

In the fame manner, the propofition may be proved in the other cafes.

Prop. XXXIX.

155. If E be the center of a spherical refractor ACB, and, in CE produced, QE be taken to EC :: fin. incidence : fin. refraction, all the rays converging to Q , when the refracting furface is convex, and diverging from Q , when that furface is concave, will, after refraction, converge to, or diverge from, one point.

When the refracting furface is convex, let $D A$ and

$H C$ be two rays of the pencil, of which $H C$ paffes through

- Vid. Art. 6Q.
through the center, and therefore fuffers no refraction; and let $D A$ be refracted in the direction $A q$; join $E A$.

Then, fince fin. incidence : fin. refraction :: $2 E$: $E A::$ fin. $\angle 2 A E:$ fin. $\angle A 2 E$, and the $\angle 2 A E$ is equal to the angle of incidence, the angle $A 2 E$ is equal to the angle of refraction, that is, to the $\angle E A q$; alfo, the $\angle A E 2$ is common to the two triangles $2 A E, A q E$; therefore thefe triangles are fimilar, and $2 E: E A:: E A: E q$, the three firf terms of which proportion being invariable, the fourth, $E q$, is alfo invariable; that is, all the refracted rays meet the axis in the fame point.

The propofition may be proved in the fame manner when the refracting furface is concave.

Prop. XL.

- 156. To find the principal focus of a Sphere.

Let a pencil of parallel rays be incident upon the

fphere $A C D$, whofe center is E; and let P be that

ray which paffes through the center, and therefore - fuffers
,
fuffers no refraction at either furface (Art. 27); alfo, let $2 A$, any other ray of the pencil, be refracted in the direction $A G$, and emergent in the direction $G T$, or $G V$, which, produced backwards, or forwards, as the cafe may require, cuts the axis in T. Produce $2 A$, and $T G$, or $V G$, till they meet in H; join $E A$, EG.

Then, if two rays $G A, A G$ pafs out of the fphere at A and G, the angles of incidence $E A G, E G A$ are equal, and therefore the angles of deviation are equal; but the deviation at A is the fame, whether $G A$ or $2 A$ be the incident ray (Art. 30); confequently, when the ray $2 A$ is refracted through the fphere, the deviation at A is equal to the deviation at G; or, the $\angle H A G=$ the $\angle F G T$. Alfo, the $\angle H A G=$ the $\angle G F T$; therefore the $\angle G F T=$ the $\angle F G T$, and $F T$ $=T G$. Now, let the point A approximate to C, and F is, ultimately, the principal focus of rays after the firft refraction; alfo, the point G approximates to D^{*}; confequently, $T G$ is ultimately equal to $T D$, and therefore $F T=T D$; that is, the principal focus bifects the diftance between the focus after the firft refraction, and the farther extremity of the diameter in the direction of which the rays are incident.
157. Cor. 1. Since $2 T D=F D$, and $2 D E=C D$, we have $2 T D \mp 2 D E=F D \mp C D$; that is, $2 T E \neq$ $F C$.
158. Cor. 2. Since $F C: C E:$ fin incidence : fin. incidence \sim fin. refraction (Art. 142), we have $2 T E: C E::$ fin. incidence $:$ fin. incidence \sim fin. refraction;

* Otherwife, F would coincide with C, which cannot be the cafe fo long as the refracting power is finite (Art. 141).
refraction; or, $T E: C E::$ fin. incidence $: 2$ fin. incidence \sim e fin. refraction.

The diftance $T E$ is called the focal length of the fphere.

Ex. 1. If the fphere be glafs, placed in air, fin. incidence : fin. refraction :: $3: 2$; therefore $T E: C E:=$ 3:2.

Ex. 2. If the fphere be water, placed in air, fin. incidence : fin. refraction :: 4:3; and TE : CE :: 4: 2 :: 2 : 1 .

Ex. 3. If fin. incidence : fin. refraction :: $2: 1$, $T E: C E:: 2: 2$; or T coincides with D.

Ex. 4. If the fine of incidence be to the fine of refraction in a greater ratio than that of $2: 1, T$ falls

within the fphere; and the rays, after the fecond refraction, diverge from T.
159. Cor. 3. If the axes of different pencils of parallel rays, incident upon the fphere, lie in the fame plane, the foci will lie in the circumference of a circle whofe center is E, and radius $E T$.
:

160. Cor. 4. If T be the focus of rays incident nearly perpendicularly upon the fphere, in the contrary direction, thefe rays will be refracted parallel to each other, and to TE.
161. Cor. 5. If the radius of the fphere, and it's focal length be known, the ratio of the fine of incidence to the fine of refraction may be determined.

Let $m: n::$ fin. incidence : fin, refraction; then, ${ }_{2} T E: E C:: m: m \sim n$; therefore $2 T E:{ }_{2} T E \mp$ $E C:: m: n$; where the negative fign is to be ufed when the rays converge after the firft refraction, and the pofitive fign, when they diverge.

> Prop. XLI.
162. To find the principal focus of a lens whofe thickne/s is inconfiderable.

Let $A B$ be a lens, whofe axis is $r T$, and center E;

R and r the centers of the furfaces A and $B ; P A, 2 E$,

MS a pencil of parallel rays incident upon it; of which
which, $2 E$ paffes through the center, and may therefore be confidered as proceeding in that direction after

the fecond refraction (Art. 129); confequently, the focus of emergent rays will be in $2 E$, or $2 E$ produced.

Let $P A$ be that ray of the pencil which is incident perpendicularly upon the furface A; and in $P A$, or $P A$ produced, which paffes through R, take $A V: R V::$ the fine of incidence : the fine of refraction; join $V r$, and produce it, if neceffary, till it cuts $2 E$ in G, and the furface $C B$ in B. Then, all the rays in the pencil $M S A P$, which are incident nearly perpendicularly upon the furface $A S$, will, after the firft refraction, converge to, or diverge from V (Art. 14 I), and in this ftate they will fall upon the furface B; of this pencil, that ray which is incident at B coincides with the direction of the radius $r B$, and is thercfore incident perpendicularly upon the furface B; confequently, it will proceed in the direction $S B$ (Art. 27); and the focus of emergent rays will be

 romewh:ere in the line $B S V$, or $B S V$ produced. The focus will alfo, as was before obrerved, be fomewhere in ${ }^{2} E G$; therefore G, the interfection of the two lines, $2 E G$ and $B S V$, is the focus of emergent rays.

Now, fince $R V$ is parallel to $E G$, the triangles $R V_{r}^{r}$ and $E G r$ are fimilar ; and $R r: R V:: E r: E G$; alternately, $R r: E r:: R V: E G$, the diftance of the principal focus afrom the center, or the foral length of the lens *.
163. Cor. r. Since $R A \widetilde{\mp} r B: r B:: R_{r}: E_{r}$ (Art. 122), we have alfo, $R A \mp r B: r B:: R V: E G$.
164. Cor. 2. If the inclination of the pencil, to the axis of the lens, be continually diminilhed, the principal focus G will defcribe the circular arc $G F$, whofe center is E, and radius $E G$.

For, fince $A V: R V::$ fin. incidence : fin. refraction :: $m: n$, we have $A R: R V:: m \sim n: n$; and, becaufe $A R, n$ and n are invariable, $R V$ is alfo invariable. Again, $R r: E r:: R V: E G$; and, fince the three firft terms in this proportion are invariable, the fourth, $E G$, is alfo invariable.
165. Cor. 3. If any point G, in the arc $F G$, be the focus of rays incident in the contrary direction, thefe rays will emerge parallel to each other and to GE (Art. 29).
166. Cor.

- It is neceflary to obferve, that we only determine the ultimate interfection of the rays, when they are incident nearly perpendicularly on each furface; that is, when their inclination to the axis of she lens is diminimed without limit. The conclufion is, however, nearly true, when they are inclined at a fmall, though frite a:gle to that axis.

2EG is alfo fuppofed to be a ftraight line, pafing through E; this cannot be allowed, unlefs E be within, or very rear to the lens. Vid. Arts. 127.128 .
166. Cor. 4. It appears from the conftruction of the figures, that parallel rays are made to converge, by a double convex lens, a plano convex lens, and a menifcus, of greater denfity than the furrounding medium. And that they are made to diverge, by a double concave, a plano concave, and a concavo convex lens, of the fame defcription*.
167. Cor. 5. If R and r be the adii of the furfaces, $m: n$ the ratio of the fine of incidence to the fine of refraction at the firf furface, the focal length of the lens is $\frac{R r}{R \not \mp^{r}} \times \frac{n}{m-n}$.

For, $R \mp r: r:: R V: E G\left(\operatorname{Art} .16_{3}\right)$; and $m-n:$ $n:: R: R V$ (Art. 142); therefore, by compounding
 and $E G=\frac{R r}{R \mp r} \times \frac{n}{m-n}$.
168. Cor. 6. The diftance of the principal focus from the center is the fame on each fide of the lens.

Let F be the principal focus when the rays are inci-

dent in the direction $t A$; f the principal focus when they are incident in the contrary direction.

Then,

* Lenfes are always fuppofed to be denfer than the furrounding medium, unlefs the contrary be fpecified.
(2)
 $2-14$ (exper 0 $+5$
 2
 2 2 $=$
$2+20+2$
418
18 $1-$
a)
\square $+8$ $2+2+2$
\qquad

4

$$
\sqrt{6}
$$

$$
y=1 \operatorname{lig}_{2}
$$

\qquad

$+8$
\qquad +

Then, fince m and n are the fame in both cales, and R and r are alike concerned in the expreffion $\frac{R r}{R \not{ }^{r} r}$, the value of $\frac{R r}{R \not \mp^{r}} \times \frac{n}{m-n}$ is the fame, whether the rays are firft incident on the furface A, or on ϵ; that is, $E F=E f$.
169. Cor. 7. If the radii of the furfaces be given, the focal length varies as $\frac{n}{m-n}$.
170. Cor. S. If one furface be plane, the focal length of the lens is equal to the focal length of the other furface.

When the diftance of r is indefinitely increafed, $V r$

is parallel to $E R$, and the figure $G E R V$ becomes a parallelogram; therefore $E G=R V=R \times \frac{n}{m-n}$.
171. Ex. у. The focal length of a double convex, or double concave glafs lens, whofe furfaces are equally curved, is equal to the radius of either furface.

In this cafe, $m: n:: 3: 2$; and $m-n: n:: 1: 2::$ $A R: R V$ (Fig. Art. 162); hence $R V=2 A R$. Alfo, $R A+r B: r B:: 2: 1::(R V: E G::) 2 A R:$ $E G$; confequently, $E G=A R$.
$9{ }^{\circ}$ REFRACTION OF A PENCIL OF RAYS.
Ex. 2. If one furface of a glafs lens be plane, the focal length is equal to the diameter of the other furface.

Here, $E G=R V$ (Art. 170); that is, $E G=2 A R$.
Prop. XLII.
172. To deternine the focal length of a lens whofe thicknefs is confiderable.

Find the focus after the firft refraction by Prop. 33, and this point being the focus of rays incident upon the fecond furface, the focus of emergent rays may be found by Prop. 29. or 35 .

Ex. To find the focal length of a glafs hemifphere, when the rays are firft incident upon the convex furface.

Let E be the center of the hemifphere, T the focus

after the firt refraction, F the focus of emergent rays.
Then, $T E: E G:: 2: 1$ (Art. 142);
and $F E: T E:: 2: 3$ (Art. 131);
hence, $F E: E C:: 4: 3$.

174. Cor. 1. From the fame fimilar triangles, ${ }_{2} G: G E:$: $2 H: H q$; therefore, ultimately, $2 F$: FE: 2E: Eq.
175. Cor. 2. If \dot{f} be the principal focus of rays incident in the direction $2 C$, then, $2 F: F E:: E f: f q$.

For, if q be the focus of incident rays, 2 is the focus of refracted rays (Art. 29) ; therefore $q f: f E:: q E$: $E 2$ (Art. 174); invertendo, $E f: f q$:: $2 E: E q$:: $\mathscr{Q F}: F E$; that is, $\mathscr{Q}: F E:: E f: f q$.

Prop. XLIV.

176. When diverging or converging rays are incident nearly perpendicularly upon a lens, whofe thicknefs is inconfiderable, the diftances of the focus of incident rays from the principal focus of rays coming in the contrary direction, from the center of the lens, and from the geometrical focus of emergent rays, are in continual proportion.

Let $A E$ be the lens; E its center; 2 the focus of incident rays; $\mathscr{L}^{2} A, \mathscr{Q}^{2} E$ two rays of the pencil, of which $\mathscr{2} E$ is coincident, or nearly coincident with the axis of the lens, and therefore fuffers no refraction (Art. 128); let $2 A$ be emergent in the direction $A H$; produce $A H$ backwards or forwards as the cafe requires, till it meets the axis in q; take F the principal focus of

rays incident the contrary way; and from the center E, with the radius $E F$, defcribe the circular arc $F G$, meeting
in two infur tand- /eno urtions are

$$
Q 7: 7 \varepsilon: \varepsilon f o r f: f q \quad \text { 27 } \quad 7 \varepsilon \therefore 2 \varepsilon: \varepsilon q
$$ meetıng $2 A$, or $2 A$ produced, in G; join $G E$. Then, fince the ray $2 A$ will be refracted in the fame manner,

and degree, whether it be confidered as belonging to the focus 2 , or to the focus $G, A H$ is parallel to $G E$ (Art. 165). Hence, the triangles $2 G E,{ }_{2} A q$ are fimilar, and $2 G: 2 E:: 2 A: 2 q$; therefore, ultimately, ๑F: $2 E:: 2 E: \Omega^{2}$ *.
177. Cor. 1. In the fame triangles, ${ }^{2} G: G E::$ 2A:Aq;'and ultimately, $2 F: F E:: 2 E: E q$.
178. Cor. 2. Since $2 F=2 E \pm F E$, we have $2 E$ $\pm F E: F E:: \mathscr{} E: E q$; therefore $E q=\frac{\mathscr{2} E \times F E}{\mathscr{2} E \pm F E}$; and $\frac{\mathrm{I}}{E q}=\frac{\mathrm{I}}{F E} \pm \frac{\mathrm{I}}{2 E}$. From this equation, if the nature of the lens be known, any two of the three quantities $F E, 2 E$, and Eq being given, the third may be found.
${ }^{\text {1 79. }}$. Cor. 3. If f be the orher principal focus, $2 F: F E:: E f: f q$.

For, if q be the focus of incident rays, 2 is the focus of refracted rays (Art. 29); therefore $q f: f E:: q E$: EQ (Art. 177); invertendo, $E f: f q:: \Omega E: E q::$ $\mathscr{2 F}: F E$; that is, $\mathscr{Q}: F E::, E f: f q$.

Prop. XLV.

180. The diftances QF and Qq muft always be meafured in the fame direction from Q .

Since

* In this demonftration we fuppofe E to be within the lens, or very near to it, Vid. Note, p. 93.

Since $2 F: 2 E:: 2 E: 2 q$ (Art. 176), we have $2 F \times 2 q=2 E^{3}$; therefore the fign of the rectangle $\mathscr{2} F \times \mathscr{Q} q$ is invariable; and, when the diftance of $\mathscr{2}$ from F is very great, the diftance of q from f is very fmall (Vid. Art. 179) ; meafuring, therefore, the lines $\mathscr{2} F$ and $\mathscr{2} q$ from 2 , their rectangle, in this cafe, is pofirive, confequently it is always pofitive, or $\mathscr{2} F$ and $2 q$ muft always be meafured the fame way from 2. (Alg. Art. 473).
181. Nearly in the fame manner, it may be proved that $E \mathscr{Q}$ and $E q$ muft be meafured in the fame, or oppofite directions from E, according as $F \mathscr{Q}$ and $F E$ are meafured in the fame, or oppofite directions from F. As alfo, that $2 F$ and $f q$ nuuf be meafured in oppofite directions from F and f.
182. Cor. Becaufe $2 F \times f q=F E \times E f($ Ait. 179), $2 F$ varies inverfely as $f q$; and fince thefe diftances are meafured in oppofite directions from F and f, it is manifeft that the conjugate foci, \mathscr{Q}_{2} and q, move in the fame direction upon the indefinite line $\stackrel{\mathscr{O}}{ }$ E q.

Prop. XLVI.

183. A convex lens increafes the convergenvy, or dimisiffes the divergency of rays incident nearly perpendicularly upon it, unlefs they converge to, or diverge from the center.

Parallel rays are refracted converging to the principat focus.

When the incident rays diverge from a point farthes

From the lens than it's principal focus, fince $\stackrel{\text { er }}{2} F$: 2E:
1
\qquad
\qquad 4
$-$
1 14 $-2+2$

11

REFRACTION OF A PENCIL OF RAYS. IOI $\mathscr{2} E:=2 E: 2 q$, and $2 F$ is lefs than $2 E, 2 E$ is lefs than $2 q$; alfo, $2 F$ and $2 q$ are always meafured the fame way from 2 ; therefore q is beyond the lens; or the refracted rays converge.

When 2 coincides with F, the refracted rays are parallel.

When 2 is between F and E, q is on the fame fide of the lens, and farther from E than 2 is (Art. 180);

therefore, the refracted rays diverge lefs than the incident rays.

When 2 coincides with E, q alfo coincides with it, and the convergency, or divergency, is not altered.

When converging rays are incident upon the lens, $\mathscr{2} F$ is greater than $\mathscr{\mathscr { L }}$; therefore $\mathscr{2} E$ is greater than

$2 q$; and q lies between 2 and E; confequently, the refracted rays converge more than the incident rays.
184. In the fame manner it may alfo be proved, that a concave lens increafes the divergency, or diminithes the convergency of rays incident nearly perpendicularly upon it ; except when the focus of incident rays coincides with the center of the lens.

Prop. XLVII.

185. To find the focal lengti of a compound lens.

Let the two lenfes A and C be placed clofe together, in fuch a manner that their axes may coincide; and

let $2 A$ and $D E$ be two rays of a parallel pencil incident upon them, of which $D E$ is coincident with their common axis. Take f the principal focus of rays incident upon the lens A, in the direction $D E$; and F the principal focus of rays incident, the contrary way, upon the lens C. Then, after refraction at the lens A, the rays converge to f, and are thus incident upon the lens C; if, therefore, we take $f F: F C:: C f$: $C q$, and meafure $C q$ and $C f$ in the fame, or oppofite directions from C, according as $F f$ and $F C$ are meafured in the fame, or oppofite directions from F (Art. I81), q is the focus of emergent rays, and $C q$ the focal length of the compound lens.

By proceeding in the fame manner, we may determine the focal length, when any number of lenfes are combined together.

Cor. When F and f are coincident, the emergen ε rays are parallel.

(
4
.

SCHOLIUM.

186. It is evident from the 33 d and following propofitions, that fpherical furfaces do not caufe all the rays in any pencil to converge to, or diverge from the fame point, except in one particular cafe; and this will be fhewn more diftinctly in the 7 th fection.

To remedy the imperfection of optical inftruments arifing from this caufe, it has been propofed to adopt fuch refractors as are generated by the revolution of the ellipre or hyperbola. But as thefe are never reforted to in practice, on account of the great difficulty of giving them the exact form, and becaule the fame effect may, in a great meafure, be produced by the proper adjuftment of the furfaces of fpherical refractors, it will be fufficient to explain the geometrical principles upon which the properties of the propofed refractors depend.
187. If a prolate fpheroid be generated by an ellipfe whofe major axis is to the diffance between it's foci, as the Jine of incidence to the jime of- refraction out of the ambient medium into the folid, a pencil of parallel rays, incident in the direction of it's axis, will be refrailed, coiverging accurately, to the farther focus.

Let $-B D K$ be the ellipfe, by the revolution of which, about it's major axis $D K$, the fpheroid is generated; H and I it's foci ; then, by the fuppofition, $D K: H I$:: fin. incidence : fin. refraction. Let. $A B$, which is parallel to $D K$, be-a ray of light incident upon the
fpheroid; join $H B, I B$; draw $E B C$ touching the generating ellipfe in B; through B and H, draw $G B L$ and

$H C O$ at right angles to $E B C$; let $G B L$ meet $D K$ in $N_{\text {; }}$ and produce $I B$ till it meets $H C O$ in O.

Then, fince the $\angle H B C$ is equal to the $\angle I B E$, by the nature of the ellipfe, and the $\angle O B C$ to the \angle $I B E$, the angles $H B C, O B C$ are equal; alfo, the angles $B C H, B C O$ are right angles, and $B C$ is common to the two triangles $B C H, B C O$; therefore, $B O=B H$ (Euc. 26. 1), and $I O=D K$; confequently, 10 : $I H$:: fin. incidence : fin. refraction; and, becaufe $B N$ is parallel to $O H, I B: I N:: I O: I H::$ fin. incidence : fin. refraction; alfo, $I B: I N::$ fin. $I N B$: fin. $I B N$:: fin. $B N H$, or fin. $A B G$: fin. $I B L$; therefore, fin $A B G:$ fin. $I B L::$ fin. incidence : fin. refraction; and, fince fin. $A B G$ is the fine of incidence, fin. $I B L$ is the fine of refraction; and becaufe the angle $L B I$ is lefs than a right angle, $B I$ is the refracted ray. In the fame manner it may be fhewn, that every other ray in the pencil will be refracted to I.
188. Cor. 1. If from the center I, with any radius lefs than $I D$, a circular arc $P 2$ be defrribed, the folid

generated by the revolution of $P D \mathscr{2}$ about the axis

$D I$, will refract all the rays, incident parallel to $D I$, accurately to I.

For, after refraction at the furface $P D Q$ the rays converge to I; and they fuffer no refraction at the furface $P Q$, becaufe they are incident perpendicularly upon it.
189. Cor. 2. Rays diverging from I will be refracted parallel to $I D$.
190. If an hyperboloid, whofe major axis is to the diffance between the foci as the fine of incidence to the fine of refraction out of the folid into the ambient medium, be generated in a fimilar manner, parallel rays, incident in the direction of the axis, and refracted out of the hyperboloid, will converge to the farther focus.

The former proof may be applied to this cafe, and

nearly in the fame words.
2g1. Cor.

106 SCHOLIUM.
191. Cor. 1. If $-P Q$ be drawn perpendicular to tha axis of the hyperbola, and meet the curve in P and \mathscr{Q},

the folid generated by the revolution of $P D 2$, about the axis $M D I$, will refract all the rays, incident parallel to $M I$, accurately to I.

For, the rays will fuffer no refraction at the plane furface P Q.
192. Cor. 2. Rays diverging from I, and incident upon the furface $P D \mathscr{2}$, will be refracted parallel to ID.
－解

SECTIONV.

ON THE IMAGES FORMED BY PLANE AND SPHERICAL REFRACTORS.

Prop. XLVIII.

193. THE image of a Araight line, formed by a plane refracting furface, is a fraight line.
Cafe 1. Let $P Q R$ be a ftraight line, parallel to the plane refracting furface $A C B$; from P and R, draw

$P A, R B$, at right angles to $A B$; and in $A P$, or $A P$ produced, take $P A: p A::$ fin. refraction : fin. incidence; and p is the image of P (Art. $1_{3} 1$). Draw pr parallel to $A B$, or $P R$, and let it meet $B R$, or $B R$ produced in r; then, fince the figures $A R, A r$, are parallelograms, $R B=P A$, and $r B$ $=p A$; therefore $R B: r B:: P A: p A::$ fin. refraction :
fraction : fin. incidence; confequently r is the image of R. In the fame manner it may be fhewn, that the image of any other point $\mathscr{2}$, is q, the correfponding point in $p r$; determined by drawing $\mathscr{}(G$ perpendicular to $A B$, and producing it, if neceflary, till it meets $p r$; confequently, $p r$ is the whole image of $P R$.

In this cafe, fince $p R$ is a parallelogram, the image is equal and parallel to the object.

Cafe 2. When $P Q R$ is inclined to the refracting furface.

Produce $P R$, if neceffary, till it meets the furface in D; from P and R, draw $P A, R B$, at right angles

to $A D$; and in $A P$, or $A P$ produced, take $P A: p A::$ fin. refraction : fin. incidence; then is p the image of P. Join $D p$, cutting $B R$, or $B R$ produced in r; and in the fimilar triangles $D B R, D A P, R B: B D::$ $P A: A D$; alfo, in the fimilar triangles $D B r, D A P$, $B D: r B:: A D: p A$; and ex æquo, $R B: r B:: P A:$ $p A::$ fin. refraction : fin. incidence ; therefore r is the image of R (Art. I31). In the fame manner it may be fhewn, that the image of any other point 2 , in $P R$, is q, the correfponding point in $p r$, found by drawing $\cong_{2} C$ perpendicular to $A D$, and producing $C 2$ if neceffary; that is, $p r$ is the whole image of $P R$.

lientl
 1 1

\qquad
$+$ nadt
$4+$ $4-2$ $4-\frac{1}{4}+2+2$ $4+2+2+2$电
\qquad
(
(40
0

(1a)
(2)

In this cafe, $p \mathscr{\sim}: p q:: \mathscr{2}: q D:: 2 R: q r$ (Euc. 2.6); that is, the correfponding parts of the image and object are proportional.
194. Cor. 1. The image and object are on the fame fide of the refracting furface; and the image is nearer to, or farther from the furface than the object, according as the rays pafs out of a denfer into a rarer, or out of a rarer into a denfer medium.

Ex. If the medium $S T$ be water, contiguous to air, $P A: p A:: 4: 3$; and $P A: P p:: 4: 1$. Thus, the image of the bed of a river is nearer to the furface than the bed itfelf, by one fourth part of the whole depth.
195. Cor. 2. Any two points p, r, in the image, have the fame relative fituation that the correfponding points P, R, of the object have; therefore the image is erect.
196. Cor. 3. If $P R$, the $\angle P D A$, and the ratio of the fines of incidence and refraction, be known, the $\angle p D A$, and $p r$ may be found.

For, $D A$ being made the radius, tang. $P D A$: tang. $p D A:: P A: p A::$ fin. refraction : fin. incidence; therefore the $\angle p D A$ may be found from the tables. Again, $P R$: pr :: $P D: p D::$ fec. $P D A:$ fec. $p D A$.
197. Cor, 4. The image of a ftraight line inclined to the furface, is greater, or lefs than the object, according as the rays pafs out of a rarer into a denfer, or out, of a denfer into a rarer medium.
198. Cor. 5. If the figure $S T$ move parallel to itfelf, on a line which is perpendicular to it's plane, $P 2 R$, and pqr, will generate planes, the latter of. which is the image of the former.
199. Cor. 6. When the object is a plane, parallel to the refracting furface, the image is equal and parallel to the object.
200. Cor. 7. If the object be a plane, inclined to the refracting furface, the breadths of the object and image, meafured by correfponding lines which are parallel to their common interfection, are equal; but their breadths $P R, p_{r}$, meafured by correfponding lines perpendicular to that interfection, are unequal. In this cafe, the image and object are not fimilar.
201. Cor. 8. If $p r$ be the image of $P R$, and the eye be fo placed as to receive the rays which are incident nearly perpendicularly upon the furface $A B$, they will enter the eye as if they came from a real object in the fituation $p r$.

Cor. 9. If the rays be refracted at a fecond furface, pr may be confidered as an object placed before that furface, and it's image determined in the fame manner.

Prop. XLIX.

202. The image of a fraight line, formed by a mediunn sontained by parallel -plane furfaces, is a ftraight lint, equal and paraliel to the object.

Let $A B b a$ be the medium, $P Q R$ the object placed before it. From P, and R, draw $P A a, R B b$ at right

angles to $A B$; and in $A P$, or $A P$ produced, according as $A b$ is denfer, or rarer than the furrounding medium, take $P_{P}: A a::$ fin. incidence \sim fin. refraction : fin.
$+1+4$
 1 - 8 (19) 7 $\square-$ $x-2$ 404-2
\qquad incidence; and p is the image of P (Art. 134). Draw pr parallel to $P R$, and let it meet $B R$, or $B R$ produced, in r. Then, fince $P r$ and $A b$ are parallelograms, $R r=P_{p}$, and $B b=A a$; therefore $R r: B b:: P_{p}:$ $A a::$ fin. incidence \sim fin. refraction : fin. incidence, or r is the image of R. In the fame manner it may be Thewn, that the image of any other point $\mathscr{2}$ in the object, is q, the correfponding point in $p r$, determined by drawing $\mathscr{2} C$ perpendicular to $A B$, and producing it, if neceffary, till it meets $p r$. It appears, from the conftruction, that $p r$ is equal and paraliel to $P R$.

Ex. If the medium $A b$ be glafs, furrounded by air, Pp:Aa:: $1: 3$.
203. Cor. Whatever be the form of the object, the image will be fimilar and equal to it (Vid. Art. 71).
PRop. L.
204. If the object placed before a lens, or Jphere', be a circular are concentric with it, the image will alfo be a circular arc* concentric weith, and smilar to the object.

Let $A B$ be the refractor, E it's center; $P Q R$ a circular arc whofe center is E; in $P Q R$ take any

point 2 , and join $2 E$; let F be the principal focus

- In the cafe of the lens, the propofition is not accarately true, as appears by the obfervation contained in the next note.
of rays incident in the oppofite direction to $2 E$. In $\mathscr{2 E}$, or $2 E$ produced, take $2 F: F E:: 2 E: E q$, $E \cong$ and $E q$ being meafured in the fame, or oppofite

directions from E, according as 2 and E lie in the fame, or oppofite directions from F; and q will be the image of $\mathscr{2}$ (Art. 181). From the center E, with the radii $E F, E q$, defcribe the circular arcs $V F T$, pqr; and from the points P and R, in the object, draw $P E$, and $R E$, producing them, if neceflary, till they meet $p q r$ in p and r; then will $p r$ be the image of $P R$. For, fince $E P=E 2$, and $E V=E F$, the fum, or difference of $E P$ and $E V$, is equal to the fum, or difference of $\mathscr{2} E$ and $E F$; that is, $P V=2 F$; alfo, $E p=E q$, by the conftruction; and $2 F: F E::, 2 E: E q$; therefore $P V: V E:: P E: E p$, or p is the image of P^{*}. 'In the fame manner it may be fliewn, that the image of every other point in $P Q R$, is the correfponding point in $p q r$; that is, $p q r$ is the whole image of $p Q R$.

The image and object are fimilar arcs, becaufe they fubtend the fame, or equal angles at E.
205. If

* Here it is fuppofed that the foci q, p of direct, and oblique pencils, are equally diftant from E. This is not accurately true in the cafe of the lens, and confequently, the image is not a circular arc; it does not, however, fenfibly differ from that form, when the angle which $P 2 R$ fubtends at E is fmall.

205 . If the refractor be a fpherical furface with

which the object is concentric, it may be fhewn, nearly in the fame manner, from the r49th article, that the image is fimilar to, and concentric with the object.
206. Cor. I. Since $P R$ and pr are fimilar arcs, $P R: p r:: E 2: E q$; hençe, in the lens, or fphere, $P R: p r: \mathscr{2 F}: F E$ (Arts. 174. 177).
207. Cor. 2. If the figure be fuppofed to revolve about the axis $2 q, P Q R$ and $p q r$ will generate fimilar fpherical furfaces, the latter of which is the image of the former.
208. Cor. 3. In this cafe, the magnitude of the object : the magnitude of the image :: $\overline{E 2})^{2}: \overline{E q}^{2}$.
209. Cor. 4. If the half of a lens, cut off by a plane paffing through the axis, be remored, the image formed by the remaining part will be of the fame magnitude, and in the fame fituation as before; the only alteration produced will be a diminution of the brightnefs.

The fame may be faid, if a part of the lens be cut off by any plane which is parallel to the former.

Prop. LI.

210. When the image and object are on the fame fide of the center of the refractor, the image is erect with reftect to the objeet; when they are on oppofite fides of the center, it is inverted.

If the line $P_{p} E$ revolve round E, and the point P trace out the object, P will trace out the image. Alfo, when P and p are on the fame fide of E, they

move in the fame direction, during the rotation of the line $P_{p} E$; thus, the feveral points in the image have the fame relative pofition that the correfponding points in the object have, or the image is erect. But,

when P and p are on oppofite fides of the center, they move in oppofite directions, and the fituation of any two points in the image is inverted, if compared with the fituation of the correfponding points in the object ; confequently the whole image is inverted.
211. Cor. 1. When the object is placed before a convex lens, and $2 E$ is greater than $F E$, the image is inverted. For, $2 F$ and $F E$, in this cafe, are meafured in oppofite directions from F; therefore 2 and q are on oppofite fides of E (Art. 18i) When the object is between F and E, the image is erect.

In the former cafe, $2 F$ may be greater than, equal to, or lefs than $F E$; therefore the image may be lefs than,

than, equal to, or greater than the object (Art. 206). In the latter cafe, the image is always greater than the object.

2i2. Cor. 2. When the refracted rays actually meet, if a fcreen be placed at their concourfe, an image or picture of the object will be formed upon it. If the fcreen be placed nearer to the lens, or farther from it, than the focus of refracted rays, the image will be indiftinct; becaufe the rays, which proceed from a fingle point, will be diffufed over fome fpace upon the fcreen, and mixed with the rays which diverge from other points in the object; and this indiftinetnefs will increale as the diftance of the fcreen, from the focus of refracted rays, increafes.
213. Cor. 3. When converging rays, which tend to form an image $P \mathscr{Q}$, are received by a convex lens

which is concentric with $P Q R$, another image pqr will be formed, nearer to the lens, and erect with refpect to the firt image.

Let rays, converging to the feveral points in $P Q R$, be intercepted by the convex lens $A B$; take F the principal focus of rays incident in the contrary direction.

Then, fince $2 F$ is greater than $F E, 2 E$ is greater than $E q$; confequently, $P \mathscr{R}$ is greater than $p q r$. Alfo, fince 2 and E are on the fame fide of $F, 2$ and q are on the fame fide of the center E; and therefore, $p q r$ is erect with refpect to $P Q R$.
214. Cor.

214 Cor. 4. When the object is placed before a double concave lens, fince $2 F$ and $F E$ are meafured

the fame way from F, \mathscr{L}^{2} and q are on the fame fide of E; that is, the image is erect. Alfo, fince $2 F$ is greater than $F E$, the object is greater than the image.
215. Cor. 5. If converging rays, which tend to form the image $P Q R$, be intercepted by a double con-

cave lens concentric with $P Q R$, the fecond image $p q r$ will be erect, or inverted, with refpect to the firt, according as 2 is nearer to, or farther from, the lens than F, the principal focus of rays incident in the contrary direction.

When $\mathscr{2}$ is between F and $E, E \mathscr{Q}$ and $E q$ are meafured in the fame direction from E (Art. 181); confequently, $p q r$ is erect with refpect to $P Q R$. When F is between 2 and $E, P 2 R$ and $p q r$ are on oppofite fides of the center ; and therefore the image $p q r$ is inverted.
216. Cor. 6. When 2 lies between F and E, or $p q$ r is crect, $\mathscr{Q} F$ is lefs than $F E$, and confequently $E \mathscr{Q}$ is
1

(2)
lefs than $E q$, or $P Q R$ is lefs than $p q r$. In other cafes, $P Q R$ may be greater than, equal to, or lefs than $p q r$.
217. Cor. 7. When 2 coincides with F, the emergent rays, in each pencil, are parallel.

> Prop. LII.
218. The image of a fraight line, formed by a lens or Sphere, is the arc of a conic Jection.

Let $A B$ be a lens, or fphere, whofe center is E; $P D$ a ftraight line placed before it; through E, draw 2E q at right angles to $P 2$; in $P D$ take any point P;

join $P E$, and produce it. Let F be the principal focus of rays incident in the direction $q E$; with the center E, and radius $E F$, defcribe the circular are $F V$, cutting $P E$ in V. In $P E p$, take $P V: P E:$: $P E: P p$, meafuring $P V$ and P_{p} in the fame direction from P; then p is the image of P (Art. 180*). Draw $p D$ parallel to $q 2$. Then, fince the triangles $P E Q, P_{p} D$ are fimilar, $P E: P_{p}:: 2 E: D_{p}$; confequertly, $P V: P E:: 2 E: D p$. Alfo, $P V: V E::$ $P E: E p$ (Arts. 174. 177); alternately, $P V: P E::$ $V E(F E): E p$; therefore $2 E: D p: F E: E p$; and alternately, $2 E:: F E:: D_{p}: E p$; confequently the

- Vid. Note, p. 93.
the locus of the point p, is a conic fection, whofe focus is E, and directrix $P D$ *.

219. Cor. i. The curve is an ellipfe, parabola, or hyperbola, according as $2 E$ is greater than, equal to, or le/s than FE.
220. Cor. 2. When $E p$ coincides with $E L$, that ordinate to the axis which paffes through the focus, $D p$ becomes equal to $2 E$, and therefore $E L=E F$; that is, half the latus rectum of the conic fection is equal to the focal length of the glars.

22 I . Cor. 3 . The curvature of the image, at it's vertex, is the fame, wherever the object is placed.
222. Cor. 4. If $x q$ be the major axis of the conic fection, $2 q: E q:: 2 E: F E$; and by divifion, or compofition, $2 E: E q: \therefore 2 F: F E$; therefore $E q=$ $\frac{2 E \times F E}{2 F}=\frac{2 E \times F E}{2 E \mp F E}$. In the fame manner, $E x=$ $\frac{2 E \times F E}{2 E \pm F E}$; confequently, $x q=\frac{2 E \times F E}{2 E \sim F E} \pm \frac{2 E \times F E}{2 E+F E}$ $=\frac{2 \mathscr{2} E^{2} \times F E}{2 E^{2}-F E^{2}}$. Alfo, $x E \times E q$, the quare of the femi axis minor, $=\frac{2 E^{2} \times F E^{2}}{2 E^{2} \sim F^{2}}$.
223. Cor. 5 . If the focal length of the refractor be finite, and $p r$ be drawn perpendicular to the axis, the evanefcent arc $p q$ is equal to $p r$; and $2 p: q p::$ E2 : Eq.

Alfo, whilft the angle $2 E P$, which $2 P$ fubtends at the center of the glafs, is fmall, though finite, the image $p q$, when formed at a finite diftance from the refractor, will, as to fenfe, be a right line, and $2 P: q p::$ E2: Eq.

Prop,

- Vid. Art. 93°
y= inan mian

Prop. LIII.

224. The furi's image, formed by a fpherical refracting furface, lens or fphere, is a circle, and nearly in the principal focus of the refractor.

Let E be the center of the refractor; F and f it's principal foci; $2 P$ a radius of the fun's difc: Then,

fince $F E$ is inconfiderable with refpect to $2 F$, the image of 2 , may, for all practical purpofes, be confidered as coincident with the principal focus f of the refractor (Arts. 150. 175. 179); alfo, fince $2 P$ fubtends a fmall angle at E^{*}, it's image, $f p$, may be confidered as a ftraight line (Art. 223). Now, let the figure revolve about $2 f$ as an axis, and whilft $2 P$ generates the circle which reprefents the fun's difc, $f p$ will generate it's image, which is, therefore, a circle.

In the fame manner it may be fhewn, that the fun's image, formed by a fpherical reflector, is a circle, and in the principal focus of the reflector.
225. Cor. I. Since the angle $f E p$ is given, $f p$ the radius of the image, is proportional to $E f_{2}$ the focal length of the glafs.
226. Cor. 2. The area of the image varies as the fquare of it's radius; and therefore as the fquare of the focal length of the reflector, or refractor.
227. Def. By the reflecting, or refracting powers of different fubftances, we underftand the ratio of the number of rays reflected, or tranfmitted by them, if the number of incident rays be the fame.

Thus, if one furface reflect two thirds, and another one third of the incident rays, the reflecting powers are faid to be ás $2: \mathrm{I}$.
228. Cor. The number of ray's reflected, or tranfmitted, varies as the number incident, and the reflecting, or refracting power, jointly.

For, if the number of incident rays be given, the number reflected, or tranfmitted, varies as the power; if the power be the fame, the number of rays reflected, or tranfmitted, varies as the number incident; therefore, when both vary, the number of rays reflected, or tranfmitted, varies as the number incident, and the reflecting, or refracting power, jointly.

Prop. LIV.

229. The denfity of rays in the fun's image varies diveelly as the area of the aperture of the reftictor, or refractor by which it is formed, and the reflecting, or refracting power, jointly; and inverfely as the square of the focal lemgoth of the refiector, or refractor.

The denfity of rays in the image varies directly as their number, and inverfely as the fpace over which they are diffufed *; that is, directly as the number, and inyerfely as the fquare of the focal length of the reflector,

- Here we fuppofe the rays to be uniformly diffufed over the image, which is nọt the cafe; it is, however, true at points fimilarly fituated in images formed by rays which are diffufed according to the fame law.

reflector, or refractor (Art. 226). Alfo, the number of rays reflected, or tranfmitted, varies as the number incident, and the reflecting, or refracting power, jointly; that is, as the area of the aperture through which the incident rays pafs, and the power, jointly; confequently, the denfity of rays in the image, varies, directly, in the compound ratio of the aperture and power; and, inverfely, as the fquare of the focal length of the reflector, or refractor *.

230. Cor. I. When the apertures are circular, the denfity varies, directly, in the compound ratio of the fquare of the linear aperture and power; and inverfely as the fquare of the focal length of the reflector, or refractor.
231. Cor. 2. If the radii of the furfaces of a concave reflector, and a double convex lens of glafs, be equal, as well as their apertures and powers, fince the focal length of the reflector : the focal length of the lens :: $1: 2$ (Arts. 45.171), the denfity of rays in the image formed by the reflector : the denfity in the image formed by the lens $:: 4$: 1 .
232. Cor. 3. The focal length of a glafs fphere, is three times as great as the focal length of a reflector of the fame radius (Art. 158); therefore, on the former fuppofition, the denfity of rays in the image formed by the reflector : the denfity in the image formed by the fphere :: $9: 1$.
233. Cor. 4. If the rays which tend to form the fun's image, be received by a double convex lens, another

* The rays loft in faffig through the air, are not taken into the account.
another image, nearer to the lens, and confequently lefs than the former, will be produced (Art. 213). Hence it appears, that independent of the rays loft in their paffage through the lens thus employed, the burning power of a reflector, or refractor may be increafed.

SECTION VI.

ON THE EYE AND THEORY OF VISION.

${ }^{334}$ THE annexed figure reprefents a fection of the human eye, made by a plane which is perpendicular to the furfaces of the coats which contain it's feveral humours, and alfo to the nofe.

It's form is nearly fpherical, and would be exactly fo, were not the forepart a little more convex than the remainder; the parts $B F B, B A B$, are, in reality, fegments of a greater and a lefs fphere.

The humours of the cye are contained in a firm coat $B F B A$, called the fclerotica; the more convex, or protuberant part of which, $B A B$, is tranfparent, and from it's confiftency, and horny appearance, it is called the coritea. This coat is reprefented by the fpace contained between the two exterior circles $B F B A$.

Contiguous to the fclerotica is a fecond coat of a fofter fubftance, called the choroeides. This coat is reprefented by the next white fpace, and extends, along the back part of the fclerotica, to the cornea.

From the junetion of the choroeides and cornea arifes the wea, $B a, B a$, a flat, opaque membrane, in the forepart of which, and nearly in it's center *, is a circular aperture called the pupil.

The pupil is capable of being enlarged, or contracted with great readinefs \dagger; by which means, a greater or lefs number of rays may be admitted into the eye, as the circumftances of vifion require. In weak light, too few rays might render objects indiftinct; and in ftrong light, too many might injure the organ. Whilf the pupil is thus enlarged, or contracted, it's figure remains unaltered. This remarkable effect is thought to be produced by means of fmall fibres which arife from the outer circumference of the uvea, and tend towards it's center; this circumference is alfo fuppofed to be mufcular, and by it's equal action upon the fibres; on each fide, the form of the pupil is preferwed, whilft it's diameter is enlarged, or contracted.

[^4]
S.

,

At the back part of the eye, a little nearer to the nofe than the point which is oppofite to the pupil, enters the oftic nerve V, which fpreads itfelf over the whole of the choroeides like a fine net; and from this circumftance is called the retina. It is immerfed in a dark mucus which adheres to the choroeides.

Thefe three coats, the fclerotica, the choroeides, and the retina, enter the focket of the eye at the fame place. The fclerotica is a continuation of the diva mater, a thick membrane which lies immediately under the fcull. The choroeides is a continuation of the pia mater, a fine thin membrane which adheres clofely to the brain. The retina proceeds from the brain.

Within the eye, a little behind the pupil, is a foft ungnfarent fubftance $E D E$, nearly of the form of a double convex lens, the anterior furface of which is lefs curved than the pofterior, and rounded off at the edges, E, E, as the figure reprefents. This humour, which is nearly of the confiftency of hard jelly, decreafing gradually in denfity from the center to the circumference, is called the cryfalline humour It is kept in it's place by a mufcle, called the ligamentum ciliare, which takes it's rife from the junction of the choroeides and cornea, and is a little convex towards the uvea *.

The cavity of the eye, between the cornea and the cryftalline humour, is filled with a tranfparent fluid like water, called the aqueous humour. The cavity between the cryftalline humour and the back part of the
eye,

- The anterior furface of this mufcle, and the pofterior furface of the urea, are covered with a black mucus, evidentlydefignedto abforb any of the extreme rays which may happen to reach fo far, and which might be refested to the retina; and produce confufion in the vifion.
eye, is alfo filled with a tranfparent fluid, rather more vifcous than the former, called the vitreous humour.

235. It is not eafy to afcertain, with great accuracy, the refracting powers of the feveral humours; the refracting powers of the aqueous and vitreous humours, are nearly equal to that of water; the refracting power of the cryftalline humour is fomewhat greater *.
236. The furfaces of the feveral humours of the eye are fo fituated as to have one line perpendicular to them all. This line $A D F$ is called the axis of the eye, or the optic axis + .
237. The focal center of the eye is that point in the axis at which the image upon the retina, and the object, fubtend equal angles.

This point is not far diftant from the pofterior furface of the cryftalline lens \downarrow, though it's fituation is probably fubject to a fmall change, as the figure of the eye, or the diftance of the object is changed.
${ }_{23}{ }^{8}$. From the confideration of the ftructure of the eye, we may eafily underftand how the notices of external objects are conveyed to the brain.

Let $P Q R$ be an object, towards which the axis of the eye is directed; then, the rays which diverge from any point \mathscr{Q}, and fall upon the convex furface of the aqueous humour \S, have a degree of conver-

> gency

- This is manifeft from the figure of the cryftalline humour, and the circumftance that perfons couched, (in which cafe the cryftalline lens is taken out) are obliged to ufe convex glafes.
+ The dimenfions of the feveral parts of the eye may be feen in Harris's Optics, page 94.
\ddagger Harris, \ddagger. 97.
§ The furfaces of the cornea are nearly parallel to each other, and therefore it produces little alteration in the divergency of rays which pals through it.

,
gency given them; they are then refracted by a double convex lens, denfer than the ambient mediums, which

increales the convergency; and if the extreme rays $2 \mathrm{H}, 2 \mathrm{I}$, have a proper degree of divergency before incidence, the pencil will he again collected upon the retina, at q, and there form an image of 2 . In the fame manner, the rays which diverge from any other points, P, R, in the object, will be collected at the correfponding points p, r, of the retina, and a complete image, $p q r$, of the object $P Q R$, will be formed there. The impreffion, thus made, is conveyed to the brain by the optic nerve, which originates there, and is evidently calculated to anfwer this purpofe.

239. Since the axes of the feveral pencils crofs each other at O, the focal center of the eye, the image upon the retina is inverted with refpect to the object *; and if, by any means, the image of an erect object, be erect upon the retina, that object appears inverted.
240. It has been objected, that if the images upon the retina be inverted, external objects ought to appear inverted. To which it may be anfwered, that experience alone

- If the outer coat be taken from an ox's eye, whilf it is warm, the images of external objects are obferved to be inverted upon the retina.
alone teaches us, what fituation of the external object correfponds to a particular impreffion upon the retina; nor is it of any confequence what that impreffion is, or in what manner it is made; but whenever the fame effect is produced upon the organ, we expect to find the fame external object, and in the fituation to which our former experience directs us.

241. If the point P move along the line $P \mathscr{2} R$, from the right to the left, the image p moves from the left to the right, upon the retina. And in general, whenever the image, upon the retina, moves from the left to the-right, we are led, by experience, to conclude that the object really moves from the right to the left.
242. If the form of the eye, the fituation of the feveral humours, and their refpective furfaces, remain unaltered, it is manifeft that thofe rays only, which diverge from points at a particular diftance, can be collected upon the retina. Thus, if the image of 2 be formed exactly upon the retina, the image of S, a

point farther from the eye than \mathscr{Q}, will be formed within the eye; therefore, the rays which proceed from this point, will be diffufed over fome fpace upon the retina; and, if they are mixed with the rays which diverge from other points in the object, neceffary to be diftinguifhed from the former, the vifion will be indiftinct.
?
indiftinct *. The rays which diverge from T, a point nearer to the eye than $\mathscr{\mathscr { L }}$, will, after refraction, con-

verge to t, a point behind the retina; in this cale alfo, they will be diffufed over fome face upon the retina, and the vifion, as before, will be indiftinct.
243. By what change in the conformation of the eye, we are enabled to fee objects diftinctly at different diftances, is not fully afcertained. The fact itfelf is fufficiently manifeft; but authors differ as to the manner in which the effect is produced. It is fuppofed by fome, that the general figure of the eye is altered; that, when the object to be viewed is near, the length of the eye, meafured along the axis, is increafed by the lateral preffure of external mufcles; and, on the contrary, when the object is remote, that the length of the eye is diminifhed, by the relaxation of that preffure. Others fuppofe the effect to be produced by a change in the place, or figure of the cryftalline humour. Others, by an alteration in the diameter of the pupil. Others afcribe the effect to a change in the curvature of the cornea.

Much itrefs cannot be laid upon the firft of thefe Saufes, as diftinguifhed from the laft, fince it's exiftence

* In many cafes it is not neceffary to diftinguifh very nicely the idjacent parts of objects; as in reading large print, viewing trees, houfes, mountains, \&.c. and though the rays are not exactly collected pon the retina, the image is fufficiently well defined for the purpofe.
is not proved by experiment; and there is no neceflity for recurring to a bare hypothefis of this kind. With refpect to the fecond, the ligamentum ciliare does not appear fufficiently ftrong to produce any confiderable change in the form, or fituation of the cryftalline humour. And as it is clearly afcertained ${ }^{*}$, that perfons couched can fee diftinclly at different diftances, we muft conclude that the effect is not to be afcribed to any change in this humour.

A change in the aperture of the pupil has fome effect in rendering objects diftinct at different diftances.

If the eye of a fpectator be directed, firf to a diftant object, and then to one which is nearer, the diameter of the pupil is obferved to decreafe. Let $H I$ be the diameter of the pupil; $2 \mathrm{H}, 2 I$, the extreme rays of 2

pencil, diverging from ${ }^{2}$; and which the humours of the eye are capable of collecting upon the retina. Then, when 2 is at a lefs diftance, $2 /$, from the eye than before, if $h i$, the diameter of the pupil, be equal to $H I$, the extreme rays $2 h, \mathscr{2}$, of the pencil which now enters the pupil, diverge more than $2 H, 2 I$; and therefore, they will not be collefted upon the retina (Art. 242); but if $2 H, 2 I$, cut $h i$ in m and n, and the diameter of the pupil be contracted to $m n$, then the extreme rays $2 m, 2 n$, coincide with $2 H, 2 I$, and will, as thofe rays are, be collected upon the retina Thus, if the diameter of the pupil, $m n$, be proportional
Pane

rlx

\square
to the diftance $2 m$, and the object be feen diftinctly at any one diftance, it will be feen diftinctly at all other diftances, by the variation of the pupil alone, as far as this variation extends (Vid. note, page 124)*. The diameter of the pupil, however, appears to be much more affected by the quantity of light, than by the diftance of an object from it ; therefore, though. it's variation tends to correft the different degrees of divergency of the extreme rays, when objects are at different diftances, it will not produce the effect fo conftantly and regularly as is neceffary for diftinct vifion.

The principal change by which the effect is produced, feems to be an alteration in the curvature of the cornea. In order to fhew that fuch a change takes place, Mr. Ramsden fixed the head of a fpectator fo fecurely, that no deception could arife from it's motion, and directed him to look at a diftant object; whilft the eye was in this fituation, he placed a microfcope, in fuch a manner, that the wire, with which it was furnifhed, apparently coincided with the outer furface of the cornea; and then directing the fpectator to look at a nearer object, he found that the cornea immediately projected beyond the wire of the microfcope + .

Now, when the diftance of an object is diminifhed, fuppofing

- It is on this account that a fmall hole in a thin plate enables us to view objects at a lefs diftance than we could with the naked eye, as it anfwers the purpofe of a farther contraction of the pupil, and excludes thofe rays in each pencil, which diverge too mach. This affiftance cannot be made ufe of to any great extent, becaufe the image upon the retina will foon become inditinct for want of light; and the inflection of rays at the fides of the hole, will render it confured.
+ This experiment is defcribed in a very ingenious paper by Mr: Hous, Philofoph. Tranf. Vol. LXXXV. p. 16.
fuppofing no alteration to take place in the eye, the divergency of the extreme rays of the pencil incident upon the pupil, is increafed; and therefore, if the image of the object in the firft fituation, be formed upon the retina, in the latter it will be formed behind it (Art. 242); but an increafe in the curvature of the cornea will increafe the convergency of the refracted rays, or bring them fooner to a focus; and thus, by a proper change in this coat of the eye, the rays will again be brought to a focus upon the retina, and the object be ftill feen diftinctly.

244. The leaft diftance at which objects can be feen diftinctly by common eyes, is about 7 or 8 inches*. The greateft diftance cannot be fo eafily, or accurately afcertained. It feems that the generality of eyes are capable of collecting parallel rays upon the retina, or fo near to it as to produce diftinct vifion; and thus, the greateft diftance at which objects can be diftinctly viewed, is unlimited. For this reafon, in adapting optical inftruments to common eyes, and calculating their powers, we fuppofe the parts to be fo arranged, that the rays in each pencil may, when they fall upon the cornea, be parallel.
245. If the humours of the eye be too convex, parallel rays, and fuch pencils as diverge from points at any confiderable diftance, are collected before they reach the retina (Art. 242); and objects, to be feen diftinetly, muft be brought nearer to the eye. This inconvenience may be remedied by a concave glafs whofe focal length is fo adjufled as to give the rays, proceeding from a diftant object, fuch a degree of divergency as the eye requires.

Prop. LV.

246. Having given the difance at which a fiort fighted perfon can fee diftinctly, to find the focal length of a gla/s which will enable him to fee difinctly at any other given difance.

If $q E$ be the diftance at which he can fee diftinctly, and $2 E$ a greater diftance, at which he wifhes to view

objects, let $A B$ be a concave lens, whofe focal length is fuch, that the rays which are incident upon it, diverging from 2 , may, after refraction, diverge from q; then they will have a proper degree of divergency for the eye of this fpectator. Take F the principal focus of rays incident in the contrary direction; then, fince 2 and q are conjugate foci, $2 F: 2 E:: 2 E: 2 q$ (Art. 176); dividendo, $F E: \mathscr{2} E:: E q: 2 q$; therefore $F E=\frac{2 E \times E q}{2 q}$.
247. Cor. If $2 E$ be indefinitely great, $F E=E q$.
248. When the humours of the eye are too flat, the rays which diverge from a point near the eye, converge to a point behind the retina. This imperfection may be remedied by a convex lens, whofe focal length is adjufted to the diftance at which objects are to be viewed, and the degree of convergency in the rays of each pencil, which the eye requires.

Prop. LVI.

249. Having given the diftance at which a long fighted perfon can fee difinctly, to find the focal length of a glafs which, will enable him to fee difinctly at any other given diffance.

If $q E$ be the diftance at which he can fee diftinctly, and $2 E$ the diftance at which he wifhes to view

objects, let $A B$ be a convex lens whofe focal length $F E$, is fuch, that the rays which diverge from 2 , may, after refraction, diverge from q. Take F the principal focus of raysincident in the contrary direction; and fince 2 and q are conjugate foci, $2 F: 2 E:: 2 E$: $2 q$; componendo, $F E: 2 E:: E q: 2 q$; and $F E=$ $\frac{2 E \times E q}{2 q}$.
250. Cor. I. If $q E$ be indefinitely great, or the eye require parallel rays, $F E=2 E$.
251. Cor. 2. If the eye require converging rays, ? falls on the other fide of the lens; in this cafe, $F E$ is lefs than $2 E$.
252. In the choice of glaffes for long, or thort fighted perfons, care fhould be taken to felect fuch as have the leaft refracting power that will anfwer the purpofe. For, the eje has a tendency to retain that conformation
conformation to which it is accuftomed; and therefore, by the ufe of improper glaffes, it's imperfection may be increafed.

Prop. LVII.

253. If the apparent diffance of an object be given, and the angle which it Jubtends at the center of the eye be fmall, it's apparent linear magnitude is nearly proportional to that angle

When objects are at the fame diftance from the eye, and appear to be fo, we learn by experience to form an eftimate of their linear magnitudes with confiderable accuracy. That is; the apparent magnitudes are nearly proportional to the real magnitudes, and the real magnitudes are proportional to the angles which the objects fubtend at the center of the eye, when thofe angles are fmall; therefore their apparent magnitudes are nearly in that ratio.
254. An object, and it's image upon the retina, fubtend equal angles at the center of the eye; and fuppofing the center fixed, and the angles fmall, the linear magnitude of the image is nearly proportional to the angle which it fubtends at that center; therefore the linear magnitude of an object at a given diftance from the eye, is nearly proportional to the linear magnitude of it's picture upon the retina *.

- On this account, perhaps, we learn to eftimate the magnitudes of objects, at a given diftance, more readily than we fhould otherwife be able to do ; but, did the magnitude of the picture upon the retina vary according to any other law, we fhould ftill learn by experience to eftimate magnitudes by the fight; that is, the apparent and real magnitudes would ftill be proportional.

255. The judgment we form of the magnitude of an object, depends very much upon the notion we have of it's diftance ; and fince the apparent diftance depends upon a variety of caufes, which are fubject to no calculation, in fpeaking of apparent magnitude authors generally fuppofe the apparent diftance to be given.
256. Def. By the vifual angle of an object, we underftand the angle which the axes of the extreme pencils coming from it, contain at the center of the eye; whether the object is viewed with the naked eye, or with the affiftance of reflecting furfaces, or refracting mediums.

Prop. LVIII.

257. When a given object is vierved with the raked eye, the denfity of light in the image upon the retina, fuppufing none to be loft in it's pafage through the ait, and the diameter of the pupil to be invariable, is nearly the fame at all diftances of the eye from the object.

The denfity of light, in the image of a fmall portion of the object, varies directly as the number of rays, and inverfely as the fpace over which they are diffufed. The number of rays which pafs through the pupil, fuppofing it's diameter given, and that none are ftopped in their progrefs, varies, inverfely as the fquare of the diftance of the object from the eye (Art. in).

Alfo,
When objects fubtend confiderable angles at the center of the eye, we judge of their magnitudes by carrying the optic axes over their feveral parts; and in this cafe alfo, the apparent, and real magnitudes are nearly proportional, if we have had fufficient experience in eftimating magnitudes of this defeription.
\cdots

Alfo, the linear magnitude of the picture upon the retina, varies as the angle which the object fubtends at the center of the eje, nearly (Art. 254); that is, nearly in the inverfe ratio of the diftance of the object from the eye; confequently, the area of the picture upon the retina, or fpace over which the rays are diffufed, varies inverfely as the fquare of that diftance, nearly. Hence it follows, that the denfity of ray's in the image, varies inverfely as the fquare of the diftance of the object from the eye, on one account, and directly as the fquare of that diftance on the other; therefore, upon the whole, the denfity is invariable.

What has been proved of the image of one fmall portion of the object, may be proved of every other; confequently, the denfity, in every part of the image upon the retina, is invariable.

SCHOLIUM.

258. It may here be obferved, that a confiderable quantity of light is loft, or abforbed, in it's paffage through the air; and that the quantity thus loft, cæteris paribus, increafes as the diftance between the object and the eye increafes, though not in that ratio*.

* If the fpaces, through which the light paffes, increare in arithmetical progreffion, the quantity of light will decreafe in geometrical progreffion.

Let the fpace be divided into equal portions; and let A, B, C, D, \&cc. reprefent the quantity of light which enters the $1 \mathrm{ft}, 2 \mathrm{~d}, 3 \mathrm{~d}, 4$ th, \&ic. portion, refpectively; alfo, fuppofe $\frac{1}{m}$ th part of the whole light to be loft, or abforbed in it's paffage through the ift portion of fpace; then $\frac{1}{w}$ th part of the remainder will be loft in paffing

On this account, therefore, the brightnefs of an object decreafes, as it's diftance from the eye increafes. As the diftance of the object increafes, however, the aperture of the pupil is enlarged; and therefore more rays are, by this means, received into the eye; and thus the former effect is, in fome degree counteracted.

Did the denfity of rays in the picture upon the retina decreafe confiderably, as the diftance of the object increafes, bodies in the neighbourhood of the fpectator would, by their fuperior brightnefs, overpower the impreffions made by thofe which are more remote: and the latter would be difeerned with great difficulty, or not at all. We, are indeed able to diftinguilh objects in exceedingly different degrees of light, at different times; thus we are able to read a fmall print by moon light, though it's intenfity does not exceed 9. $\frac{\mathrm{T}}{0.00}$ th part of the intenfity of common day-light *. But this quantity of light is not fufficient to render fuch objects difcernible as are furrounded by others much more luminous; for, the ftrong light proceeding from the latter bodies, by the powerful impreffion it makes upon the retina, overcomes the effect produced by the more delicate pencils which flow from the former, as weaker founds aie not diftinguifhable in a
hurricane.
throught the ad. and fo on. Thus $A-\frac{A}{m i}$, or $\frac{m-1}{m i n} \times A=B$. In the fame manner, $\frac{m-1}{m} \times B=C ; \stackrel{m-1}{m} \times C=D, \& c$. That is, A, B, $C, D, S c$. form a decreafing geometrical progreffion, whofe common ratio is $\frac{m-1}{m}$.

- This is Dr. Smith's calculation; M. Bouguer concludes from experiment, that the ferength of moon-light is about צरण,णन्टth part of that of day-light.

.
(1)

hurricane. This feems to be the reafon that the flame of a candle is fcarcely difcernible in broad day light; and that fars become vifible at different times after fun-fet, according to their different degrees of brightnefs.

259. The impreffions made by rays of light upon the retina continue fome time after the impulfes ceafe, as appears by the experiment of a burning coal, whirled round in a circle, which was mentioned on a former occafion (Art. 8). Sir Isaac Newton accounts for this phenomenon by fuppofing that the impreffions of light are conveyed to the brain by vibrations excited in the retina, and propagated, through the optic nerve, to the fenforium *; and that the vibrations once produced, continue fome time, perhaps about $\mathrm{I}^{\prime \prime}$, after the exciting caufe has ceafed to act.
260. In explaining the nature and circumftances of vifion, we have only to attend to the ftructure of one eye; for, in whatever manner rays are refracted, and images formed by the humours of one eye, in the fame manner will the fame effects be produced by the humours of the other. The only queftion that can arife is, how it happens that in vifion with both eyes, objects appear fingle. It is not eafy to decide, whether this effect is produced by the fimilarity of correfponding parts of the optic nerves, and their union in the brain $\dot{\gamma}$, or by habit. In fupport of the latter opinion, we may be allowed to alledge the following fact, related by Mr. Chesselden: A perfon had one of his eyes diftorted by a blow; and, for fome time, every object, to him, appeared double; but by degrees
degrees the moft familiar ones became fingle, and in time, aH objects became fo, though the diftortion continued*. To this we may add, that children fometimes learn to fquint; and by proper attention, this habit may again, in a great meafure, be corrected. Under both circumftances, objects appear fingle, and it is manifeft that the images cannot, in both cafes, fall upon correfponding points of the retinas.
261. But, whatever be the caufe of fingle vifion, when an object is viewed attentively, the axes of both eyes are, in general \uparrow, directed to it. Thus, if P be the object, the eyes are moved till the optic axes, $A P$,

$a P$, meet in P; and the images, A, a, are formed on correfponding points of the retinas \ddagger. In this pofition

- Smith's Optics, Art. 137.
\dagger Perfons who fquint do not direct the optic axes to the object they are looking at.
\ddagger The retina may perhaps be mof fufceptible of the impreffions of light where the optic axis meets it; and the images formed near that part of the retina, will be lefs diftorted and more regularly and dittinctly defined, than when the rays pafs more obliquely through

of the images, whether from the correfpondence of the nerves, or from experience, the idea of a fingle object is fuggefted to the mind; fcarcely differing from the idea excited by one of the images alone, excepting that the object appears fomewhat brighter when feen with both eyes, than when feen with one. Alfo, whilft the eyes remain in the fame pofition, the images, B, b, of 2 , an object near to P, and at the fame diftance from the eyes, will be formed on the retinas; the eyes having affumed a proper conformation for diftinct vifion at that diftance; and B, b, which are both on the right, or both on the left of the refpective axes, are correfponding points, and fuggeft the idea of a fingle object, as in the former cafe.

Bur, if an object 2 lie between the optic axes, or thole

axes produced, it's images will be formed at B, b, on
points
the humours of the eye. For one or both of thefe reafons, we direct the axis of each eye to an objedt, when we wifh to view it to the greateft advantage.
points upon the retinas which do not correfpond; and thu's they will excite the fenfations, ufually produced

by different objects, D, E, at that diftance to which the eyes are adapted for vifion. However, when the attention is more particularly called to the object $\mathscr{2}$, the optic axes are directed to it, and the points, D, E, coincide.
262. Of apparent diftance, meafured in a direct line from the fpectator, nothing has been faid in the foregoing fection. It is fubject to no calculation, and therefore, does not immediately fall in with the plan of the prefent work. It may not however be improper to enumerate the caufes upon which it depends, as they are given by Mr. Harris in his Optics, referring the reader, for farther information on the fubject, to that work *.

- I. The change of conformaticn in the cye, is one of the means whereby we are enabled to judlye of fmeil difiances.

In viewing near objects, or fuch as are within about an arm's length of us, at every fenfible change of diftance, the eye muft alfo change it's conformation for procuring diftinct vifion. And thus, if we were accuftomed to look attentively at objects with one eye only, it is very likely that the changes made on thefe occafions, would be fenfible enough, after repeated trials, to enable us to judge pretty accurately of the different degrees of fmall diftances.

This method, however, will not ferve us to a greater extent than, perhaps, about 20 or 30 inches. Beyond which limit, the different degrees of divergency of rays in the different pencils which enter the eye, bear no fenfible proportion to the different diftances of the points from which they diverge.
2. Inclination of the optic axes, is another more certain mean of difingruifing degrees of Small diftances.

When an object is viewed attentively with both eyes, the axis of each is directed towards it; and as the diftance of the object is increafed or diminifhed, there is a correfponding diminution or increafe in the angle at which thefe axes are inclined to each other. The fenfations which accompany thefe different inclinations, enable us to determine with confiderable accuracy, the places of objects which are not above five or fix feet from us. As the diftance becomes greater, we begin to be more uncertain in our eftimations of it; and beyond three or four yards, the means, hitherto confidered, feem to be of little or no ufe. For, beyond that extent, the differences of the optic

$$
\text { angles }_{3}
$$

angles, arifing from the different diftances, are fo very fmall as to become in a manner infenfible.
3. The lengtle of the ground plane, or the number of intervening parts perceived in it, is another mean, by which we eftimate diftance.

When the floor, or ground on which we ftand, is uniformly extended before us, in a line produced directly from us on this plane, we can diftinguifh, that fuch fucceffive parts as form fenfible angles at the eye, are fucceffive, or one behind the other; and the greater the number of vifible parts which the line contains, the greater, confequently, is the vifible extent of the whole.

Again, a row of houfes, columns, or trees regularly planted, appears longer than a plain wall of the fame extent. For, the more vifible and remarkable parts in the former ca.e, enable us to correct the eftimate we make when fuch objects do not intervene ; and alfo, our previous knowledge that the feveral intermediate objects are difpofed at equal intervals, tends to protract the apparent length of the whole chain fill farther. A river, at firft, looks not fo broad, as after we have had a fide view of the bridge acrofs it : and indeed, a given extent of water, does not appear fo long as the fame extent of land; as it is more difficult to diftinguifh parts in the furface of the one, than it is in the furface of the other.
4. Different degrees of apparent difance are fuggeffed by the different appearances of known objests, or by the knozen magnitudes of their leaft vifible parts.

A building, none of whofe parts are difcernible, appears much farther off than another, whofe windows and doors are vifible; and this latter appears farther off than a houfe having vifible parts which are known to be fill fmaller; as the bricks in the wall, tiles on the roof, \&c. Objects of unufual magnitudes, detached as it were, from others, miflead us in our judgement of diftances; the greater magnitude ufually fuggefting to the mind, the idea of lefs diftance.
5. All other things being the fame, different colour's and degrees of brightness of objects, caufe a difference of apparent diffance.

As objects become nore and more remote, the light ${ }_{3}$ which arrives at the eye from their leaft vifible parts, is continual!y diminifhed (Art. 25^{8}) ; and they appear more faint, languid, and obfcure. Alfo, their colours not only gradually lofe their luftre, but likewife degenerate from their native hue, and participate more of the blueifh colour of the fky, as the rays have paffed through ${ }^{2}$ greater body of air, or as the images upon the retina are tinged with a greater proportion of fky light.

Thefe different appearances are of ufe to us in udging of the real diftances of known objects; and onfequently affect the ideas of apparent diftances; thofe bjects that are brighteft, and whofe colours are moft ivid, appearing neareft. Thus, in foggy weather all bjects appear farther off than ordinary; the diminuon of light, in this cafe, producing the effect of that iminution which arifes from greater diftance.
263. When objects, which fubtend fmall angles at the center of the eye, are of the fame colour and brightnefs, and at the fame diflance, their apparent magnitudes are proportional to thofe angles (Art. 253). And when they are at different diftances, and fubtend equal angles at the center of the eye, fince their real magnitudes are proportional to their real diftances, it is probable that their apparent magnitudes are nearly proportional to their apparent diftances *. And thus, in general, the apparent magnitudes are as the vifual angles, and apparent diftances, jointly.

Hence it follows, that any error in our eftimate of apparent diftance, will produce a proportional error in our eftimate of magnitude. Thus, in foggy weather, at the fame time that objects appear farther off, they appear larger ; and the diameter of the fun, or moon, appears greater, or lefs, according as we are led by circumftances to fuppofe it's diftance greater or lefs at one time than at another.

[^5].
$$
\frac{1}{2}+\frac{1}{i}
$$

1
$2 \pi \sqrt{2}$

SECTION VII.

ON OPTICAL INSTRUMENTS.

On Hadley's 2uadrant.
264. TPON the radii $D C, E C$, of the quadrant $O E G$, and at right angles to it's plane, are fixed two plane reflectors A, B, whofe furfaces are

parallel when the index D, on the moveable radius $C D$, is brought to O; and confequently, the arc $O D$ will

$$
\text { K } 2
$$

meafure
meafure their inclination when the moveable radius $C D$ is in any other fituation. The whole furface of the glafs B is not quickfilvered, a part of it being left tranfparent that objects may be feen directly through it, and by rays which pafs clofe to the quickfilvered, or reflecting part.

When the angular diftance of two objects, $S, 2$, is to be taken, the quadrant is held in fuch a pofition that it's plane paffes through them both; and the radius $C D$ is moved till one of them S is feen, after two reflections of the incident ray $S A_{3}$ in the direftion $H 2$; and the other 2 , by the direct ray $2 H$, in the fame line; that is, till the objects apparently coincide. Then, if $S A$ be produced till it meets $2 H$ in H, the angle $S H 2$, contained between the firt incident, and laft reflected ray, is equal to twice the angle of inclination of the two reflectors (Arr. 39); therefore, the angular diftance of the two objects is meafured by twice the are DO*.

On the Magic Lautern.

265. The figure $A B C D$ reprefents a tin box, or lantern, in the fore part of which is a nliding tube, furnifhed with a double convex lens $E F$. Between the lantern and the lens, a finall fpace, $q p$, is left to admit a thin plate of glafs, upon which inverted figures are painted in tranfparent colours.

When this inftrument is ufed, the lamp K being lighted, and the room darkened, the tube is moved,

- The method of adjufting this inftrument may be feer in Mr. Vines's Praktical Aftronomy, p. \&

till $q p$ is farther from the lens than it's principal focus f; and confequently $P Q$, an inverted image of $p q$, or an

crect image of the figure intended to be reprefented, is formed at fome diftance from the lens (Art. 211), and painted in it's proper colours upon a fereen placed at the concourfe of the refracted rays.

Sometimes a reflector is placed behind the lamp, or a convex lens before it, for the purpofe of throwing a greater quantity of light upon $p q$.
266. Cor. If the fcreen and lantern be fixed, and their diftance exceed four times the focal length of the lens, the image may be thrown upon the fereen, by moving the lens nearer to, or farther from $p q$, as the cafe requires.

For, $q f: q E:: q E: q 2($ Art 176$)$, or $q E-f E:$ $q E:: q E:, q^{2}$; in which proportion there is only one unknown quantity, $q E$, which may be determined by the folution of a quadratic equation whofe roots are poffible, except the diftance $q \mathscr{2}$ be lefs than four times the focal length of the lens $E F^{*}$.

Let $a E=x ; f E=a ; q 2=b$. Then, $x-a: x:: x: b$;
therefore $x^{2}=b x-b a ;$ or, $x^{2}-b x=-b a ;$ hence, $x^{2}-b x+$
$\frac{b^{2}}{4}=\frac{b^{2}-4 b a}{4}$; and $x=\frac{b}{2} \pm \frac{\sqrt{b^{2}-4 b a}}{2}$. If $b=4 a$, we have
$x=2 a$. If b be lefs than $4 a$, the expreffion is impofible, which.
fhews that the image cannot, in this cafe, be formed upon the fcreen.

Oin the Camera Obfcura.

267. If light be admitted, through a convex lens, into a darkened chamber, or into a box from which all extraneous light is excluded, and the refracted rays be received upon a fcreen, placed at a proper diftance, inverted images of external objects will be formed upon it. And if the lens" be fixed in a fliding tube, the images of objects at different diftances may fucceffively be thrown upon the fcreen, by moving the lens backwards or forwards, as in the magic lantern.

Let $P Q R$ be an object at a confiderable diftance from the lens, and at right angles to it's axis; the image $p q r$, will be formed, nearly in the principal

focus of the glafs, and may be received upon a fcreen placed there. But, in general, the rays are intercepted before they form the image, by a plane reflector, $A C$, inclined at an angle of 45° to the axis of the lens; or, which is the fame thing, at an angle of 45° to the image $p q r$; by this means, an image $a b c$ is formed, fimilar and equal to $p q r$, and inclined at an equal angle to the reflector (Art. 72), and confequently, parallel to the axis of the lens. If the lens be moved towards the reflector, the image $p q r$, (which is in the principa!

**

$$
4-2+\frac{1}{4}+\frac{1}{4}
$$

$=$

$$
\frac{11}{2}
$$

$+2$
1

$$
3,-1+2
$$

2

$$
\square
$$

\square

$$
4 x-\frac{1}{4}
$$

\square
$\sin +2$
\square
-
\qquad
 principal focus of the lens,) and confequently, $a b c$, will move from the reflector; and the contrary. Thus, the image $a b c$, may, by a proper adjuftment of the lens, be thrown upon a table, or any furface prepared to receive it.
268. Cor. I. When the image is thrown downwards, it will appear erect to a fpectator between $D F$ and the reflector $A B C$; fince the point a, which correfponds to p, or to P in the object, is neareft to the reflector. Alfo, the axis of a pencil of rays which flows from a point to the right of 2 , will crofs the axis $2 q$ at the center of the lens, and the rays will form an image which, to this fpectator, is to the right of b.
269. Cor. 2. When the image is thrown upwards, if it be viewed by a fpectator whofe face is curned towards the object, it will appear erect as to the top and

the bottom ; for the point a, which correfponds to p, or to P in the object, is the fartheft point in the image from the reflector; and therefore, the fartheft point from the fpectator. But, with refpect to the right and the left, the image will be inverted. For, the axis of a pencil of rays which flows from a point in the object to the right of 2 , will crofs the axis $2 q$ at the center
of the lens, and the rays will be collected at a point which, to this fpectator, is to the left of b.

Prop. LIX.

270. An object may be feen diftinetly through a convex lens.

Let $A E$ be a convex lens*; E it's center; $P Q$ an object placed in it's principal focus. Then, the rays

which diverge from any point P will be refracted parallel to each other, and to PE (Art. 165); and therefore, they will be proper for vifion to common eyes. In the fame manner, the rays diverging from any other point will be refracted parallel to each other, and the whole object will be feen diftinctly (Art. 244).

If the eye require diverging rays, the object mult be placed between the lens and it's principal focus; for then, the rays which diverge from P, a point between the principal focus and the glafs, will, after refraction diverge (Art. 182); and therefore be proper for diftinet vifion in this cafe.

If the eye require converging rays, the object muft be placed beyond the principal focus; for then, the rays in each pencil will, after refraction, converge.
Prop,

[^6]
Prop. LX.

271. When an object is placed in the principal focus of a convex lens through which it is viewed, it appears erect.

For, if $A O$ be drawn parallel to $P E$ (Fig. Art. 270), the rays which diverge from P, and are received by the eye, enter the pupil in the direction $A O$; and the rays which diverge from 2 , enter the pupil in the diredion EO. Thus, the rays which flow from the extreme points $P, 2$, of the object, crofs each other at O, and therefore the picture upon the retina is inverted ; or, the object appears erect (Art. 239).
272. Cor. In the fame manner, if the object be' near to the principal focus, and the eye not very diftant from the glafs, the image upon the retina will be inverted; and confequently, the object will appear erect.

Prop. LXI.

273. To determine the variation of the angle selich a given object fubtends at the center of the eje, when criewed through a convex lens.

Let E be the center of the lens; F and f it's principal foci; P2 the given object; $p q$ it's image; 0

the place of the eye ; join $O p$, and let it meet the lens in A. Then, the rays which diverge from P, enter the
the eye in the direction $A O$; and thofe which diverge from 2 , enter the eye in the direction $E O$; therefore, the $\angle A O E$, or $p O q$, is the angle which the objent, tlius feen, fubtends at the center of the eye; and this angle varies as $\frac{p q^{*}}{O q}$. Now, $2 F: F E(:: 2 E: E q):: 2 P$: $q p$, therefore $q p=\frac{F E \times 2 P}{2 F}$. Alfo, $2 F: F E:: E f$:
$f q$ (Art. 179); therefore, $f q=\frac{F E \times E f}{2 F}$, and, when 2 is between F and E, and O beyond $f, O q=f \dot{q}+$ $O f=\frac{F E \times E f}{2 E}+O f=\frac{F E \times E f+\mathscr{2} F \times O f}{2 F}=$ $\frac{F E \times E f+\overline{\overline{E E}-2 E} \times O f}{2 F}=\frac{F E \times \overline{E f+O f}-2 E \times O f}{2 F}$ $=\frac{F E \times O E-2 E \times O f}{2 F}$. Confequently, $\frac{p q}{O q}=$

$$
F E \times 2 P
$$

$\overline{F E \times O E-2 E \times O f}$; therefore, the vifual angle varies as $\frac{F E \times 2 P}{F E \times O E}$ are invariable, inverfely as $F E \times O E-2 E \times O f$.

When O is between E and $f, O f$ is negative, and the vifual angle varies inverfely as $F E \times E O+2 E \times O f$.

When the inage $p q$ is between O and f, the expreffion, $F E \times E O-2 E \times O f$, becomes negative; for, $O q=O f-f q=\frac{2 E \times O f-F E \times E O}{2 F}$; and therefore

* In thefe, and other calculations of the fame kind, the angles. contained by the axes of the extreme pencils, at the center of the eye, are fuppofed to be frall; and our conclufions, though not fricily true, are fufficiently accurate for the purpofes to which they are applied.
20

$\frac{p q}{O q}=\frac{F E \times 2 P}{2 E \times O f-F E \times E O}$; and the vifual angle varies inverfely as $2 E \times O f-F E \times E O$. This thews that the angle $p O q$ lies on the other fide of the

axis 20 ; and the image upon the retina, which was before inverted, will now be erect.

274. Cor. I. When the eye is placed clofe to the glafs, the expreffion, $-F E \times E O+2 E \times O f$, becomes $\mathscr{Q} E \times E f$; therefore the vifual angle varies inverfely as $2 E$. In this cafe, the $\angle p O q=$ the $\angle P E 2$.
275. Cor. 2. When O coincides with f, the expreffion becomes $F E \times E f$, which is invariable. That is, when the eye is in the principal focus of the glafs, the vifual angle is the fame, whatever be the diftance of the object from the lens.
276. Cor. 3. When 2 coincides with F, the expreffion becomes $F E \times E O \pm F E \times O f$, or $F E \times E f$.

That is, the vifual angle is the fame, whatever be the diftance of the eye from the glafs; and it is equal to the vifual angle when the eye is in the principal focus, and to the angle which the object fubtends att the center of the lens.
277. Cor. 4. When the eye is farther from the glafs than the principal focus f, as $2 E$ decreafes, $F E \times E O-2 E \times O f$ increafes; and, therefore, the vifual angle decreafes, unlefs the image fall between the eye and the glafs; in which cafe the vifual angle varies inverfely as $\mathscr{2} E \times O f-F E \times E O$; and therefore it increafes as $2 E$ decreafes.
278. Cor. 5. When the eye is between the principal focus and the lens, as $2 E$ decreafes, the expreffion $F E \times E O+2 E \times O f$ decreafes; and, therefore, the vifuàl angle increafes.
279. Cor. 6. When the rays, tending to form the inage $\mathscr{Q} P$, are intercepted by the glafs, and afterwards

seceived by the cye, $2 E$ becomes negative; and the vifual angle, when $E O$ is greater than $E f$, varies inverfely as $F E \times E O+2 E \times O f$. When $E O$ is lefs than $E f$, the vifual angle varies inverfely as $F E \times E O$ $-2 E \times O f$, or $2 E \times O f-F E \times E O$, according as $E O$ is greater, or lefs than $E q$.

Prop. LXII.

280. The rays which, after reflection or refraction, tend to form an image, may be refracted to the eye by a concave lens, in fuch a manner as to form a difinct image upon the retina.

Let the rays which tend to form the image $P Q$, be received upon the concave lens $A E *$, whofe focal

length is $E 2$. Then, fince P is the principal focus of

* Of this defcription are the double concave, the plano concave, and the cencavo convex lenfes.
+ (2x)

 $2-1+2$
-

$$
\operatorname{Lec}
$$

$$
5-2
$$

\square0
of the lens, the rays which converge to P will, after refraction, be parallel to each other (Art. 165), and therefore proper for vifion to common eyes; that is, a diftinct image of P will be formed upon the retina. In the fame manner it appears, that a diftinct image of every other point in $P 2$ will be formed upon the retina; and thus a complete, and diftinct image of the whole object will be formed there.

If the eye require diverging rays, the glafs muft be moved farther fror the image $P \mathscr{2}$. For, then the rays in each penci. converge to a point farther from the glafs than the principal focus; and therefore, after refraction they will diverge (Art. 215), and be proper for vifion in this care.

If the eye require converging rays, the lens muft be moved the contrary way.

Prop. LXIII.

281. When the image QP is in the principal focus of the concave lens, the picture upon the retina is ereit with refpect to QP.

Let E be the center of the lens*; O the place of the eye ; P the loweft point in the image; join $P E$; and draw $A O$ parallel to $E P$. Then, thofe rays of the pencil belonging to P, which are received by the eye, enter the pupil in the direction $A O$, and proceed to the lower part of the resina; and thofe which belong to $\mathscr{2}$, enter the pupil in the direction $E O$, and proceed to the upper part; confequently, the picture upon the rerina is erect with refpect to $2 P$.
282. Cor.

[^7]282. Cor. In the fame manner it appears, that when $\mathscr{2} P$ is nearly in the principal focus, and the eye not very diftant from the glafs, the image upon the retina is erect.

Prop. LXIV.

2S3. To find how the vifual angle varies, when rays, which tend to form an image in the axis of a concave lens; are refracted to an eye fituate in that axis.

Let rays which tend to form the image $2 P$ be intercepted by the concave lens $A E$, whole center is E, and axis $q F \mathscr{2}$; and after refraction let them be received

by an eye placed at O. Take $q p$ the image of $2 P_{\text {, }}$, and join $p O$. Then, the vifual angle $p O q$ varies as $\frac{q p}{O q}$. Now, $2 F: F E(:: 2 E: E q):: 2 P: q p ;$ therefore, $q p=\frac{2 P \times F E}{2 F} . \quad \mathrm{Alfo}, 2 F: F E:: E f:$ $f q$; whence, $f q=\frac{F E \times E f}{2 F}$; and, when $E Q$ is greater than

$$
\begin{aligned}
& E F, O q=f q+O f(\text { Art. } 181)=\frac{F E \times E f+2 F \times O f}{2 F}= \\
& \frac{F E \times E f+\frac{2 E-F E}{2 F} \times O f}{2 F}=\frac{F E \times \frac{E f-O f+2 E \times O f}{2 F}}{2 F}
\end{aligned}
$$

$=\frac{2 E \times O f-F E \times E O}{2 F} ;$ therefore, $\frac{q p}{O q}=$
?
?

$2 P \times F E$

$\overline{2 E \times O F-F E \times E O}$; and fince $2 P$ and $F E$ are given, the vifual angle varies inverfely as $2 E \times O f$ $F E \times E O$.
284. Cor. I. When the eye is placed clufe to the glafs, $E O$ vanifhes; therefore the vifual angle varies inverfely as $2 E \times O f$; that is, inverfely as $2 E$. In this cafe, the angle $q O p$ becomes equal to $\mathscr{2 E P}$.
285. Cor. 2. When 2 coincides with F, the expreffion, $2 E \times O f-F E \times E O$, becomes $F E \times \overline{O f-E O}$ $=F E \times E f$, which is invariable; in this cafe, therefore, the vifual angle is the fame, whatever be the diftance of the eye from the glafs.
286. Cor. 3. When the expreffion, $2 E \times O f-$ $F E \times E O$, becomes negative, the image upon the retina, which was before erect, will be inverted with refpect to $\mathscr{2} P$.

On the aftronomical Telefcope.

287. The aftronomical telefcope confifts of two convex lenfes, whofe axes are in the fame right line, and whofe diftance is equal to the fum of their focal lengths.
288. The common axis of the two lenfes is called the axis of the telefcope.
289. The lens which is turned towards the object to be viewed, and which has the greater focal length, is called the object glafs. The lens to which the eye is applied, is called the eye gla/s.

$\dot{\text { Pr }}_{\text {rop. }}$ LXV.

290. A diftant object may be feen diffinctly through the aftronomical telefcope; and the angle which it fubtends at the center of the eye, when thus feen, is to the angle which it fubtends at the naked eye, as the focal length of the object glafs, to the focal length of the eye glafs.

Let L and E be the centers of the two glaffes; 2P an object, towards which the axis of the telefcope is directed; and fo diftant, that the rays which flow from any one point in it, and fall upon the object glafs L,

may be confidered as parallel. Then $q p$, an inverted image of $Q P$, will be formed in the principal focus of the glafs L, and contained between the lines $\mathscr{2} L q$, and $P L p$ (Art. 204); and, becaufe $L E$ is equal to the fum of the focal lengths of the two glaffes, $p q$ is in the principal focus of the glafs $A B$; confequently, $p q$ may be feen diftinctlythrough this glafs, if the eye of the obferver be able to collect parallel rays upon the retina (Art. 270). Produce $P L_{p}$ till it meets the ejeglafs in B; join $p E$; and draw $B O$ parallel to $p E$. Then, the rays which flow from P in the object, or p it's image, enter the eye, placed at O, in the direction $B O$. Alfo, the rays which flow from 2 , enter the cye in the direction $E O$; thus, the angle which $\mathscr{2}$ P fubtends at the center of the eye, when viewed through the telefcope, is the angle
\cdots

angle $B O E$, which is equal to $p E q$. The angle which $2 P$ fubtends, when viewed with the naked eye from L, is $P L 2$, which is equal to $p L q$. And, fince the $\angle p E q$: the $\angle p L q$ (when thefe angles are fmall)*:: $L q: E q$, the angle which the object fubtends at the center of the eye, when feen through the telefcope : the angle which it fubtends at the center of the naked eye :: $L q$: Eq.
291. Cor. I. If the angle which the object fubtends at the center of the naked eye be given, the angle which it fubtends at the center of the eye, when feen through the telefcope, varies as $\frac{L \dot{q}}{E q}$. This quantity is ufually called the magnifying pozver of the telefcope.
292. Cor. 2. If the telefcope be inverted, the object may be feen diftinctly; and the vifual angle will be as much diminithed as it was magnified in the former cafe.
293. Cor. 3. To adapt the telefcope to a nearer object, the eye glafs muft be moved farther from the object glafs.

For, if $2 P$ be brought nearer to the glafs L, the image $q p$ will be formed at a greater diftance from it (Art. 182); and therefore, in order that $q p$ may ftill be in the principa! focus of the glafs E, this glafs mult be moved farther from L.
294. Cor. 4. When 2P is brought nearer to L, the magnifying power is increafed. For, $L q$ is increafed, and $E q$ remains the fame; therefore $\frac{L q}{E q}$ is increafed.
295. Cor. 5. To adjuft the telefcope to the eye of

- Proportions of this kind are to be confidered only as appioxima. tions, which become more accurate as the angle decreafe.
a Thort fighted perfon, the eye glafs mult be moved nearer to the object glals. If the eye require converging rays, the eye glafs muft, be moved the contrary way (Art. 270).

296. Cor. 6. If we fuppofe the eye to be placed between the glafs $A B$ and it's principal focus, the vifual angle is increafed by adjufting the telefcope to the eye of a fhort fighted perfon (Art. 278). If the eye be farther from the glafs than it's principal focus, that angle is diminifhed (Art. 277). The contrary effects are produced when the telefcope is adjufted to the eye of a long fighted perfon.

Prop. LXVI.

297. Objects, feen through the aftronomical telefcope, appear inverted.

The image of $p q r$ is inverted upon the retina (Art. 271); and pqr is inverted with refpect to $P Q R$ (Art. 211); therefore the image upon the retina is erect with refpect to $P \mathscr{2} R$; and confequently the object appears inverted (Art. 239).
298. Cor. An object moving acrofs the field of the telefcope from the right to the left, appears to move from the left to the right.

Prop. LXVII.

299. In the aftronomical tclefcope, the field of viere is the greatef, when the eye is placed between the eye gla/s and it's principal focus.

The field of view is the greatef, when the eye is fo placed as to receive the extreme rays, refracted from
?

1.2
lic^{2}

the object glafs to the eye glafs. Let $M N$ be the diameter of the objeit glafs; $A B$, the diamerer of the

eye glafs; join N, B, , the correfponding extremities of the glaffes, and let $N B$ cut the image $p q r$ in p; join $p L$, and fuppofe $p L, E L$ to be produced till they meet the object $2 P$, in P and 2 ; join alfo, $p E, N P$; and draw $B O$ parallel to $p E$. Then, if the eye be placed at O, it will receive the ray $N B O$. And this is the ray which comes from a point in the object, at the greateft vifible diftance from the axis of the telefcope ; for, the rays which flow from any point in the object, above P, will, after the firft refraction, converge to a point below p, and all of them fall below the glafs $A B$; therefore P is the extreme point vifible in the object, and $\mathscr{2} P$ is half the linear magnitude of the vifible area. Now, when the diameter of the object glafs is greater than that of the eye glafs, which is the cafe in the aftronomical telefcope, the rays $N B, L E$ converge to fome point x beyond the eye glafs; and therefore, the point O to which they converge after the fecond refraction, and where the eye muft be placed to receive them, is between the glafs E and it's principal focus (Vid. Arts. 179. 181.)
300. Cor. I. If $N B$ and $L E$ be parallel, O is the principal focus of the glafs E; and if they diverge, 0 lies beyond the principal focus.

3or. Cor. 2. It appears from the preceding figure, that $N B O$ is the only ray which comes to the eye from P; for, any other ray of the pencil, as $P L p$, after refraction at the object glafs, croffes $N B$ in p, and falls below the eye glafs. Hence it follows, that the extremity of the vifible area is very faint. If a point be taken in the object, nearer to the center of the field of view, more of the rays which flow from it will'be refracted to the eye; and thus, the brightnefs will continually increafe till all the rays in each pencil, incident upon $M N$, are received by the glafs $A B$; when this takes place, the brightnefs will become uniform; becaufe the fame number of rays, or very nearly fo, is received by the glafs $M N$ from every point in the object *.
302. Cor. 3. To determine the bright part of the field of view, join $M B$, cutting $p q r$ in s, and the axis $L E$ in x; join alfo $s L$, and produce it till it meets

the object in S. Then, if $x E$ be greater than $q E$, all the rays which flow from S, and fall upon $M N$, will be refracted to the eye glafs; for, $S M$ is refracted in the direction $M s B$; and any other ray of the pencil, as $S L$, croffes $M B$ at s, and falls fomewhere between A and

* Here it is fuppofed that the pupil is properly placed, and fo large as to receive all the rays refracted by the lens $A B$,
(2)
A and B. In the fame manner, the rays which flow from any point between S and 2 , and fall upon $M N$, will be refracted to the eye glafs $A B$.

303. Cor. 4. If q and x coincide, that is, if the linear apertures, $M N, A B$, of the glaffes, be proportional to their focal lengths, the brightnefs of the field increafes to the center.
304. Cor. 5. If q fall between L and x, the whole of the rays belonging to any one pencil incident upon $M N$, will not be received by the eye glafs. In this cafe, a lefs aperture of the object glafs would produce the fame brightners, with lefs aberration *.

Prop. LXVIII.

305. The linear magnitude of the greateft vifible area is meafired by the angle which the diameter of the eye glafs fubtends at the center of the object glafs, increajed by the difference between the angles wohich the diameter of the object glafs fubtends at the image, and at the eye glafs.

Let $p q r$, as in the preceding propofitions, be the image formed by the object glafs. Join $N B$, cutting

pqrin p; join alfo, $L B, L p$; and fuppofe $p L, E L$ to be produced till they meet the objeet in P and 2. Then, $2 P$, which is half the linear magnitude of the greateft vifible

- Vid. Sect. ViII.
vifible arca (Art. 299), is meafured by the angle $P L 2$, or it's equal $p L q$; that is, by $B L E+B L p$; or; $B L E+L p N-L B N$; therefore, $22 P$ is meafured by $2 B L E+2 L p N-2 L B N$.

306. Cor. In the fame manner it may be fhewn, that the linear magnitude of the brighteft part of the vifible area, is meafured by the argle which the diameter of the eye glafs fubtends at the center of the object glafs, diminifhed by the difference between the angles which the diameter of the object glafs fubtends at the image, and at the eye glas.

Prop. LXIX.

307. If two convex: lenfes be added to the former, and placed in a fimilar manner, a diftant objeet may be feen diftinctly throught the telefcope, and the vifual angle will be altered in the ratio of the focal lengths of the additional glafes.

Let $C D, H K$, be the additional glaffes, whofe axes coincide with the line $L E$ produced, and the diftance of whofe centers, $F G$, is equal to the fum of their focal lengths; alfo, let $C D$ be fo placed as to receive the extreme rays refracted by $A B$:

Then, fince the rays in each pencil, after refraction at the glafs E, are parallel (Art. 290), they will be collected in the principal focus of the glars $C D$; that is, in the principal focus of the glafs $H K$; and an image, $a b c$, will be formed there, which rnay be feen diftinctly through the lens $H K$ (Art. 270).

Again,
?

Again, let $B C$ be the extreme pencil of rays refracted by $A B$; draw $F a$ parallel to $B C$, and let it meet $a b c$

in a; join $a G, G a$; and produce $C a$ till it meets the lens $H K$ in H; draw $H V$ parallel to $a G$; and at V let the eye be placed. Then, NBCHV being the courfe of the pencil of ray's which flows from P; and $L E F G V$
the courfe of the pencil which flows from 2 , the angle which $2 P$ fubtends at the center of the eye, when feen through the four glaffes: the angle which it fubtends there, when feen through the firft two :: the $\angle H V G$; the $\angle E O B$:: the $\angle a G b$: the $\angle a F b:: F b: G b$.
308. Cor. I. Since the angle which $2 P$ fubtends at the center of the eye, when it is feen through the two firft glaffes : the angle which it fubtends at the center of the naked eye :: $L q^{\prime}: E q$ (Art. 290), by compounding this proportion with the laft, we have, the angle which the object fubtends at the center of the eye, when viewed through the four glaffes: the angle which it fubtends at the naked eye :: $L q \times F b$: $\boldsymbol{E} q \times G b$.
309. Cor. 2. If $G b$ and $F b$ be equal, the vifual angle is not altered.
310. Cor, 3: The object, when viewed through the glaffes thus combined, appears erect. For, the axes of the feveral pencils of rays which flow from the image $p q r$, crofs each other at O; therefore, the image $a b c$ is inverted with refpect to $p q r$; or, erect with refpect to the object $P Q R$; and confequently, the image upon the retina is inverted (Art. 271); that is, the object appears erect *.

3II. Cor.4. If the apertures of the additional glaffes be properly adjufted, the field of view will not be altered. For, the extreme rays, refracted by $A B$, may be received by $C D$, and refracted to $H K$.
3^{12}, Cor:
-This is one advantage gained by the additional glaffes. The inconvenience with which they are attended is, that they render objects

 2
 ,
$\therefore \quad$?

Wu

 an a
 $120+2$

 $+\pi=6$
$2+\cos$
$(120-2+0$
+ix

(1)
 2 $-1+2+1+2$
$4+2$

312. Cor. 5. This telefcope may be adjufted to the eye of a hort fighted perfon, by moving the glafs $H K$ nearer to $C D$ (Art. 270); or, if E, F, G, be connected, by moving thefe three glaffes nearer to L. If the eye of the obferver require converging rays, the glaffes muft be moved the contrary way.
3^{13}. Sometimes a convex lens is interpofed between the object glafs and it's principal focus, in the aftronomical telefcope, for the purpofe of increafing the field of view, and diminifhing the aberration of the lateral rays (Sect. 8).

Let $F G H$ be fuch a lens, whofe axis is coincident with the axis of the telefcope. Then, the rays which

tend to form the image $q p$, after refraction at the glafs $F H$, form the image $a b$, between G and q (Art. 213); and this image is viewed through the eye glafs E, whofe focal length is $\dot{b} E^{*}$.
objects more faint, by increafing the quantity of the refracting medium through which the rays mult pafs, before they arrive at the eye (Vid. note, p. 137.)

* Other conftructions, with the explanation of their advantages, may be feen in the Encyclogradia Britannica, Article Telefrope.

On Galileo's Telefcope.

314. Galieo's telefcope confits of a convex and a concave lens, whofe axes are in the fame line, and whofe diftance is equal to the difference of their focal lengths.

Prop. LXX.

315. A diftant object may be feen difincily through Galileo's telefcope; and the angle which it Jubtends at the center of the eye when thus feen, is to the angle which it subtends at the center of the naked eye, as the focal length of the object glafs, to the focal length of the eye glafs.

Let L and E be the centers of the glaffes; $P 2 R$ a diftant object, towards which the axis of the telefcope

is directed; pqr it's image in the principal focus of the glafs L, and therefore in the principal focus of the glafs E; then, fince the rays tend to form an image in the principal focus of the concave lens E, after refraction at that lens, they will be proper for vifion (Art. 284) ; or, a diftinct image of the object $P 2 R$, will be formed upon the retina of a common eye.

Alfo,
$2-2+2$

$2-2080$
(
(1)

Alfo, the angle under which the object $2 P$ is feen through the telefcope, is equal to the angle $q E_{p} p$ (Arr. 284); and the angle under which it is' feen with the naked eye from L, is $2 L P$, which is equal to $q L p$; therefore, the vifual angle in the former cafe : the vifual angle in the latter :: $L q: E q$.
316. Cor. 1. The magnifying power of the telefcope is meafured by $\frac{L q}{E q}$ (Vid. Art. 291).
317. Cor. 2. To adapt this telefcope to a nearer object, the eye glafs muft be moved to a greater diftance from the object glafs.

For, as $2 L$ decreafes, L_{q} increafes (Art. 182); therefore, in order that the principal focus of the glafs E may coincide with $q, L E$ muft be increafed.

This is the conftruction of a common opera glafs.
318. Cor. 3. When the telefcope is adjufted to a nearer object, the magnifying power is increafed; for $L q$ is increafed, and $E q$ remains the fame; therefore $\frac{L q}{E q}$ is increafed.
319. Cor. 4. To adjuft this telefcope to the eye of a fhort fighted perfon, the eye glafs muft be moved nearer to the object glafs; if the eye require converging rays, the eye glafs muft be moyed the contrary way (Art. 280).
320. Cor. 5. To take in the greateft field of view, the eye mult be placed clofe to the glafs $A B$, as will be thewn in a fubfequent article; and therefore, by adjufting the telefcope to the eye of a fhort fighted perfon, the vifual angle of a given object is diminifhed (Art, 284); and on the contrary, by adjulting it to the eye of a long fighted perfon, this angle is increafed.

> Prop:

Prop. LXXI.

321. Objects, feen through Galileo's telefcope, appear crect.

For, the image upon the retina is erect, with refpect to $p q r$ (Art. 281) ; therefore it is inverted with refpect to the object ; or the object appears erect (Art. 239).

Prop. LXXII.

322. The linear magnitude of the field of view, when the eye is placed clofe to the concave lens in Galileo's telefcope, is meafured by the angle which the diameter of the pupil fubtends: at the center of the object glafs, increafed by the difference between the angles which the diameter of the object glafs fubtends at the pupil, and at the image.

Let $M N$ be the diameter of the object glafs; $A B$, the diameter of the pupil, whofe center is in the axis of

the telefcope; join M, B, the oppofite extremities of thefe diameters; and let $M B$ meet the axis in x, and the image in p; join $L B, L p$; and fuppofe $p L, q L$ to be produced till they meet the object in P and 2 ; alfo, fuppofe $M P$ to be joined. Then will $P M$ be refracted
?
refracted to the pupil in the direction $M B$; kut any other ray in the pencil, as $P L$, and every ray which flows from a point more diftant from the axis of the telefcope, and is refracled by $M N$, will fall below the pupil; therefore $2 P$ is half the linear magnitude of the greateft vifible area. Alfo, $2 P$ is meafured by the angle $2 L P$, or it's equal $p L q=E L B+B L p=E L B+L B M-$ $L_{p} M$; and by doubling thefe quantities, $2 \mathscr{2}$ is meafured by $2 E L B+2 L B M-2 L p M$.
323. Cor. I. The rays $M x B, L x E$, which are incident upon the glafs E, diverging, from x, after refraction will diverge more (Art. 183) ; therefore if the eye be moved to any other point in the axis of the telefcope, the ray $x B y$ will not enter the pupil; and confequently the vifible area will be diminifhed.
324. Cor. 2. To determine the brighteft. part of the vifible area, join $N B$, and let it meet the image in s; join $B L, s L$, and produce $s L$ till it meets the

object in S. Then, all the rays which flow from S, or from any point between S and $\mathscr{2}$, and fall upon the object glafs, will be refracted to the eye*; and $2 S$ will be the linear magnitude of half the bright part of the field of view. Alfo, $2 S$ is meafured by the angle $S L 2$, which is equal to $s L q=B L E-B L s=B L E-$ ${ }_{2} L B N+2 L s N$.

On Sir Is a ac 'Newton's Telefcope.

325. I. et $A C B$ be a concave pherical reflector, whofe middle point is C, and center E. Join $C E$,

this is called the axis of the refleior, or of the telefcope. Let $G E$ be directed to the point 2 , in the diftant object $2 P$; then, $q P$, an inverted image of $2 P$, would be formed in the principal focus of the reflector, at right angles to $C E$ (Art. 47), and terminated by the lines $P E p, 2 E q$, were the reflected rays fuffered to proceed thither; but, before they arrrive at the focus, they are received upon a plane reflector $a c b$, inclined at an angle of 45° to the axis $C E$; and thus an image, $m n$, is formed, fimilar and equal to $p q$, and equally inclined to the plane reflector (Art. 72); and confequently, $m n$ is parallel to EC. This image is viewed through a

-

$+2$
$=$

* $-4+4=$
\cdots
$+\frac{1}{2}$
$1+2+2$
\qquad

$$
\cdot(+10+2
$$

\qquad

 (2ntatas? -1
,

 2.

çonvex eye glafs $k l r$, whofe axis is perpendicular to $E C$, and whofe diftance from the image $m n$, is equal to it's focal length *.

If the reflection be made at c, by a right angled prifm whofe fides are perpendicular to the incident and emergent rays, much lefs light will be loft, than if the reflection be made by a plane fpeculum (Vid. Art. 101).
326. Dr. Herschel has fo far increafed the focal lengths and apertures of his reflectors, that the image qp can be viewed directly, through an eye glafs placed between q and E. The axis of the telefcope is inclined a little from the object, that the image $q p$ may be formed near the fide of the tube which contains the reflector; and the head of the obferver does not intercept fo many rays as materially to affect the brightnefs of the image. By this conftruction, one reflection of the rays is avoided; and the ftrongeft, and moft effective pencils are preferved, which, in the Newtonian telefcope, are flopped by the plane reflector.

Prop. LXXIII.

327. When a diftant object is viewed with Sir Is anc Newton's refiecting telefcope, the angle selhich it Jubtends at the center of the eye, is to the angle wohich it Jubtends at the naked cye, as the focal length of the reflector, to the focal length of the eye glafs.

Let $2 P$ be the object; $q P$ it's image, in the principal focus of the reflector; $n m$ the image formed by reflection at the plane furface $a c b ; 2 E C$ the axis of the telefcope, cutting acb in c. Draw cnlO perpendicular

[^8]pendicular to $C E$; and at l let a convex eye glafs $k l r$ be placed, whofe focal length is $l n$, and whofe axis coincides

with that line; join $m l$. Then the image $n m$, which is equal to $q P$; and correfponds to $2 P$ in the object, is feen through the glafs $k l r$, under an angle which is equal to $m l n$; and $2 P$ is feen, with the naked eye placed at E, under an angle which is equal to $q E p$; and fince thefe angles have equal fubtenfes $n m$, and $q p$, they are to each other inverfely as the radii $l n$, $q E$; therefore the angle which the object fubtends at the center of the eye, when viewed with the telefcope : the angle which it fubtends at the naked ese : : Eq: ln.
328. Cor. I. The magnifying power of this telefcope is meafured by $\frac{E_{\eta}}{l_{n}}$.
329. Cor. 2. To adapt the telefcope to nearer objects, the reflector $a c b$, to which the eye glars is attached, muft be moved towards E. For, as $2 E$ decreafes, $q E$ decreafes (Art. 59) ; and therefore, that
?
(2)
$q c$, or cit may remain of the fame magnitude, $a c b$ mult be moved nearer to E.
330. Cor. 3. When the telefcope is adjufted to hearer objects, it's magnifying power is diminifhed. For, Eq decreafes, and I_{n} is invariable; therefore $\frac{E q}{l_{n}}$ decreafes.
331. Cor. 4. To adjuft the telefcope to the eyt: of fhort fighted perfon, the reflector $a c b$ mult be moved owards G. For then the image $n n$ will be at a reater diftance from c; or nearer to the eye glafs; and herefore, the rays in each pencil, after refraction at the glafs klr , will diverge. If the eye require conerging rays, the reflector acb muft be moved the ontrary way.

Prop. LXXIV:

332. Objects, viewed with Sir Isaac Newron's lefrope, appear inverted.

Let $2 P$ lie in the plane of the paper; and, when le eye of the obferver is applied to the glafs $k r$, let ie plane which paffes through both his eyes, alfo Dincide with the plane of the paper. Then, the rays hich flow from P, the right fide of the object, conrge to m, the left fide of the image. Alfo, the ys which flow from a point in the object, above le plane of the paper, converge to a point in the nage, below that plane; thus, the image $m n$ is inrrted; and fince it is in, or near to, the principal tcus of the convex lens through which it is viewed, iappears inverted (Art. 27I).

Prop. LXXV.

333. To determine the field of view in Sir Isaac Newton's telefcope.

Join b, k, the correfponding extremities of the plane reflector and the eye glafs; and let $b k$ cut the image

$m n$ in m; take $q p$ equal to $n m$; draw $p E$, and produc it till it meets the object in P.

Then, a fmall pencil of rays flowing from P, will, $a c b$ be not fo large as to intercept them before the are incident upon the reflector $A C B$, be reflected at to the extremity of the eye glafs, and refracted thence the eye at O; the point P will therefore be vifibl Alfo, this point is the extremity of the field of viel For, if a point be taken in $n \mathrm{~m}$, farther from t axis of the lens than m, any fraight line drav through it, will either fall without $a b$, or without k that is, no ray, belonging to a point in the obje $Q P$, beyond P, can be reflected from $a c b$ to the e glafs.

$$
334 . \mathrm{C}
$$

334. Cor. In order that the field of view may be circular, $a c b$ muft be the tranfverfe fection of a cone, or cylinder, generated by the revolution of $b k$, about the axis cl ; and therefore it mult be an ellipfe, whofe major and minor axes depend upon the nature of this folid.

On the Gregorian Telejcope.

335. In the annexed figure, $A C B, a c b$ reprefent swo concave fpherical reflectors, a greater and a

fmaller, whofe axes are coincident, and whofe concave furfaces are turned towards each other; E and e, their centers; T, t, their principal foci, of which, T lies between e and t. In the middle of the larger reflector is an opening, nearly of the fame dimenfions with the aperture of the fmaller, to admit a moveable tube containing a convex eje glafs $F G H$.

When the axis of the telefcope is directed to the point 2 in a diftant object $2 P$, an inverted image $T V$, of this object, terminated by the lines $2 E T$, $P E V$, is. formed in the principal focus of the reflector
$A B$. The rays which diverge thence, and fall upon the concave reflector $a c b$, after reflection, form an image $q p$, terminated by the lines $T e q, V e p$; which, becaufe T is between e and t, is inverted with refpect to.$T V$ (Art. 88) ; or erect, with refpect to $2 P$.

The rays are then received by the eye glafs $F G H$, whofe axis coincides with the axis of the telefcope, and whofe focal length is $G q$; and therefore the image $q p$ may be feen diftinctly.
336. If the diftance C_{c} be diminifhed, the diftance $t q$ will be increafed.

For, as $C c$ decreafes, Tt decreafes, and $T t: t e::$ te :tq, in which proportion te is invariable; therefore $t q$ increafes *. By a proper adjuftment then, of the reflectors and eye glafs, the image $q p$ may be formed in the principal focus of the lens $F G H$; or in fuch a fituation as may be neceffary for diftinct vifion (Vid. Art. 270).
337. This telefcope may be adapted to nearer objects, by increafing the diftance Cc. For, as $2 P$ approaches towards $E, T V$ alfo approaches towards E, or towards t; therefore the diftance $t q$ increafes; or q is nearer to the eye glafs than before; which inconvenience may be remedied by increafing the diftance Gc (Art. 336).
338. Objects feen through this telefcope, appear crect. For, $q p$ is an erect image of $2 P$, and in, or near

[^9]1

[^10]
}
near to the principal focus of the convex lens through which it is viewed ; therefore it appears erect (Art. 271).
339. As fo much has been faid upon the field of view in other telefcopes, the reader will find no difficulty in determining it in this cafe. Join F, a, correfponding extremities of the fmall reflector, and the eye glafs; let $F a$ cut $q p$, in p. Draw $p e$, and produce it till it meets $T V$ in V; join $V E$, and produce this line till it meets the object $\mathscr{Q} P$ in P; then is P the extremity of the field of view. For, if $a V B$ be drawn, the rays which flow from P, and fall upon the large mirror at B, after reflection converge to V, and fall upon the reflector $a c b$ at a; thence they proceed in the direction $a p F$, and are refracted to the eye in the direction $F O$, which is parallel to $p G^{*}$. But no ray, which belongs to a point in the object above P, can be reflected from $a c b$ to the eye glafs $F H$.

Since $q p$ is much nearer to the eye glafs than to the reflector $a c b$, the field of view will depend more upon the aperture of the former, than of the latter.

Prop. LXXVI.

340. To determine the angle which an object fubtends at the center of the eye, when Seent through Gregorie's telefcope.

The conftruction being made as before, the anglè under which $2 P$ is feen through the telefcope, is equal

- This is on fuppofition that a $V B$ meets the reffector $A B$; and that the ray $P B$, which is parallel to $E V$, is not intercepted by the reffector $a b$.
equal to $p G q$; and the angle under which it is feen with the naked eye, is equal to TEV. Now, when the angles

are finall, the $\angle p G q:$ the $\angle p e q(T e V):: e q: q G$; and alfo, the $\angle T e V:$ the $\angle T E V:: E T: e T$; by comp. the $\angle p G \dot{q}$: the $\angle T E V:: e q \times E T: q G \times$ $e T$; that is, the vifual angle, when the object is feen through the telefcope : the vifual angle, when it is feen with the naked eye :: $e q \times E T: q G \times e T$.

341. Cor. Since $T t:$ te :: eT:cq (Art. 54) ; inverfely, te : Tt :: $\varepsilon q: e T$; therefore $t e \times E T: T t \times$ $q G:: e q \times E T: q G \times e T$ (Alg. Art. 184); and the vifual angle, when the object is feen through the telefcope : the vifual angle, when it is feen with the naked eye $:: t e \times E T: T t \times q G:: \frac{t e \times E T}{q^{G}}: T$.

On Cassegrain's Telefoope.

342. In this telefcope, the fmaller reflector, $a c b$, is convex, and fo placed, that T falls between t and c. In other, refpects, it is fimilar to the Gregorian telefcope (See Art. 335).

Let GCE, the axis of this telefcope, be directed to the point \mathscr{Q} in a diftant object $\mathscr{2} P$; then, an inverted

image TV, of this object, would be formed in the principal focus of the large reflector, and terminated by the lines $2 E T, P E V$, if the rays were fuffered to proceed thither. But, before they reach the focus, they are received upon the convex reflector $b c a$; and fince, by the conftruction, $T V$ falls between the furface c, and principal focus t, of this reflector, an erect image $q p$, of $T V$, is formed, and terminated by the lines $e T q$, $e V p$. This image is viewed through the lens $F G H$, whofe axis coincides with the axis of the telefcope, and whofe focal length is $G q$.
343. The diftance of the image $q p$, from t, may be determined by the proportion $T t:$ et :: et $: t q$. Alfo, by diminifhing the diftance $C c$, the diftance $T t$ is diminifhed, and fince $t e$ is given, $t q$ is increafed.

Hence it is manifeft, that by a proper adjuftment of the reflectors and the eye glafs, the image $q p$ may be formed in the principal focus of the lens $F G H$; or M 4
in fuch a fituation, that the emergent rays may have a proper degree of divergency, or convergency, for the eye of the obferver.
344. Objects viewed through this telefcope appear inverted. For, the image $q p$ is erect with refpect to $T V$, or inverted with refpect to the object ; and it is in, or near to the principal focus of the convex glafs through which it is viewed; therefore the inage upon the retina is erect, or, the object appears inverted (Art. 271).
345. The field of view may be determined exactly in the fame manner as in the Gregorian telefcope; and the demonftration given in Art. 339, may be applied, in the fame words, to the preceding figure.

This telefcope may alfo be adapted, in the fame manner, to nearer objects; and the vifual angle is expreffed in the fame terms (Sce Arts. 337. 340).

On the divided object glafs Micrometer.

346. This micrometer confifts of a convex lens divided into two equal parts, C, D, by a plane which paffes through it's axis; and the fegments

are moveable on a graduated line $C D$, perpendicular to that axis. Let C, D, be the centers of the fegments ; and $P, 2$, two remote objects, images of which

395
817

which will be formed in the lines $P C E, 2 D E$, and alfo in the principal foci. of the fegments (Art. 209). Let the glaffes be moved till thefe images coincide*, as at E; then, the angle $P E \curvearrowright$, which the objects fubtend at E the principal focus of C, or D, is equal to the angle which $C D$, the diftance of the centers of the two fegments, fubtends at the f. ne point ${ }^{\prime}$; and therefore, by'calculating this angle, we may determine the angular diftance of the bodies P and 2 , as feen from E. Draw $E G$ perpendicular to $C D$; and, becaufe the triangle $C E D$ is ifofceles, $C G=G D$, and the \angle $C E G=$ the $\angle G E D$; alfo, $G D$ is the fine of the angle $G E D$, to the radius $E D$; therefore, knowing $E D$, and $G D$, the angle $G E D$ may be found by the tables; and confequently $2 G E D$, or $C E D$ may be determined.
347. The angle $C E D$ is in general fo fmall, that it may, without fenfible error, be confidered as proportional to the fubtenfe $C D$. And being determined in one cafe by obfervation, it may be found in any other, by a fingle proportion.
348. If the objects be at a given finite diftance, the angle $P E Q$ will ftill be proportional to $C D$; for, on this fuppofition, the diftance $C E$, or $D E$, of either image from the correfponding glafs, will be invariable; therefore, the angle $C E D$ will be proportional to $C D$.

The divided object glafs is applied both to reflecting and refrating telefcopes; and thus fmall angular diftances in the heavens, are meafured with great accuracy.

- Two other images are formed, an image of P by the fegment D, and an image of 2 by the fegment C; but, as $C D$ increafes, there images always recede from each other.

On fingle Microfcopes.

349. If the angle which an object fubtends at the center of the eye, when at a proper diftance for diftinet vifion, be diminilhed beyond a certain limit, the image upon the retina is fo fmall as to convey to the mind only the idea of a fingle phyfical point, not diftinguifhable into parts; refpecting which, therefore, no judgment can be formed by the fight, except what selates to it's colour *. If we endeavour to increafe the image upon the retina by bringing the object nearer to the eye, the extreme rays which enter the pupil will diverge too much, and the image become confufed. If the extreme rays be ftopped, to leffen the divergency of the pencils which are received by the eye, the image will be indiftinct for want of lightw. But if the object be placed in the principal focus of a glafs fpherule, or lens whofe focal length is fhort, it may be feen diftinctly; the vifual angle, as well as the quantity of light admitted into the eye; will be increafed; and thus, the feveral parts, of what before appeared only as a fingle point, will be fubjected to examination.

Thefe glaffes are cailed fingle Microfoopes.

Prop.

- The leaft vifible part of an object does not fubtend at the center of the eye, an angle much lefs than 4^{\prime}. A fingle, detached object is perceivable under an angle of about 2'. Harris's Opt p. 121. Jurin's Eflay, in Smith's Optics, Art. 164.
\dagger Vid. note, p. 131.

14
.

 . $4.4+5$ 1
-

Prop. LXXVII.

350. The vifual angle of an object when feen through a fingle microfoope, is to it's vifual angle when viezved. with the naked eye at the leaft difance of difinct vifon, as that leaft diffance, to the focal length of the glafs.

Let $2 P$ be an object placed in the principal focus of the lens, or fpherule $A E$, whofe center is E; L2

the leaft diftance at which it can be feen diftinctly with the naked eye. Join LP, PE. Then, the angle under which the object is feen through the glafs, is equal to $P E 2$; and the angle under which it is feen with the naked eye, is $2 L P$; alfo, when thefe angles are fmall, fince they have a common fubtenfe $2 P$, they are nearly in the inverfe ratio of the radii $E \underset{\sim}{\mathcal{L}}, L \stackrel{\sim}{\sim}$; that is, the vifual angle when the object is feen through the glafs : the vifual angle when it is feen with the naked eye at the diftance $L \mathscr{Q}:: L$ Q $: E \mathcal{Q}$.

Ex. If the focal length of the glais be $\frac{7}{30}$ of an inch, and the leaft diftance of diftinct vifion, 8 inches, the vifual angle of the object when tiewed through the glafs : the vifual angle when it is feen with the naked eye :: $8: \frac{\mathrm{T}}{30}: 1400: \mathrm{I}$.

In this microfcope, the object appears erect (Art. 271).
351. The folar microfcope is a fingle convex lens, ufed in the fame manner as in the magic lantern (Art. 265). The moveable tube is adjufted to a hole in a window fhutter; and the object to be examined, is ftrongly illuminated, and placed a little farther from the lens than it's principal focus; an inverted image of the object is thus formed, at a confiderable diftance from the lens, and received upon a fcreen placed at the concourle of the refracted rays.

The angles which the image and object fubtend at the center of the cye, when viewed at the leaft diftance of diftinct vifion, are proportional to their linear magnitudes, that is, to their diftances from the center of the glafs *.

Out the double Microfcope.

$35 z$. The aftronomical telefcope, when adapted to wear objects, becomes a double microfcope.
$2 P$ is an object, placed a little farther from the lens $M N$ than it's principal focus F; $q p$ the image of $2 P$,

formed on the other fide of the lens, and at a confiderable diftance from L it's center. $A E B$ is a conyex eye glafs, whofe axis coincides with the axis of the

[^11]

the lens $M N$, and whofe diftance from L is equal to the fum of $L q$, and it's own focal length $q E$; confequently, the image $q p$ is in the principal focus of the eye glafs, and it may therefore be feen diftinctly by a fpectator whofe eyes are able to collect parallel rays.
353. Since the conjugate foci, 2 and q, move in the fame direction upon the indefinite line $2 L O$ (Art. 182), if the glaffes be fixed in a tube, or attached to each other in any other way, by moving the object $\mathscr{2} P$, the image $q p$ may be brought into the principal focus of the eye glafs; or into fuch a fituation, that the rays may, after the latter refraction, have a proper degree of divergency, or convergency for the eye of the frectator (Vid. Art 270).

Prop. LXXVIII.

354. To compare the angle which an object fubtends at the center of the gre zothen feen through the double microfcope, with the angle which it fubtends at the naked eye when viewed at the leaft diffauce of difinct vijion.

Let $q p$ (Fig. Art. 352) be the inage of $2 P$, formed in the principal focus of the lens $A B$, and terminated by the lines $2 L q, P L p$. Then, the vifual angle will be increafed by the microfcope on two accounts; firft, becaufe the image $q 力$ is greater than the object; and fecondly, becaufe this image is feen under a greater angle when viewed through the glafs, than when viewed with the naked eye. Now, fuppofing $2 P$ and $q p$ to be viewed with the naked eye, at the leaft diffance of diftinct vifion, the vifual angle of $\mathscr{P} P$: the
vifual angle of $q p(:: 2 P: q p):: \hat{2} L: L q$. Alfo, the vifual angle of $q p$, when thus viewed, : it's vifual angle when feen through the glafs $A B:$: $^{2} E$: the leaft diftance of diftinct vifion (Art. 350) ; therefore, by compounding thefe two proportions, the vifual angle of $2 P$, when viewed with the naked eye at the leaft diftance of diftinct vifion, : the vifual angle, when it is viewed with the microfcope, :: $2 L \times q E$: $L q \times$ the leaft diftance of diftinct vifion.
355. When the glaffes are thus combined, the object appears inverted (Art. 297).
356. When a great magnifying power is not required, the object is placed between the glafs $M N$

and it's principal focus; thus an erect image $q p$ is formed, on the fame fide of the lens with the object; and if $E q$ be the focal length of the eye glafs $A B$, the image may be feen diftinctly.

The vifual angle may be determined as in the preceding cafe.

One advantage of this conftruction is a greater field of view. The object alfo appears erect; and lefs confufion is produced by the fpherical furfaces of the glaffes, than would be caufed by a fingle glats with the fame magnifying power.

Prop. LXXIX.

357. The denfity of rays in thie bright part of the image of a given object, formed upon the retina by a refraEting telefcope, or double microfcope, varies, nearly, as the aperture of the objest glafs directly, and the area of the picture upon the retiza inverJely.

The denfity of rays in the image, varies directly as their number and inverfely as the area over which they are diffufed (Art. 7) ; that is, fuppofing the tranfmitting power to be given, and all the rays refracted at the object glafs to be received by the eye, as the area of the aperture of the object glafs directly, and the area of the image upon the retina inverfely.

35 ${ }^{8}$. Cor. 1: The denfity alfo varies according to the fame law, when rellectors are ufed; but the effects of reflectors and refractors are not here compared, becaufe a much greater quantity of light is loft in reflection than in refraction.
359. Cor. 2. If F and f be the focal lengths of the object glafs and eye glafs, and A the linear aperture of the object glafs, the denfity of rays in the pifture upon the retina varies as $\frac{A^{2} f^{2}}{F^{2}}$.

For, the vifual angle of the object when feen with the naked eye : it's yifual angle when feen through the telefcope :: $f: F$; and fince the object is given, the firft term in the proportion is invariable ; therefore the vifual angle when the objeft is feen through the telercope, or the linear magnitude of the image upon the
retina, varies as $\frac{F}{f}$; and the area of the image, as $\frac{F^{2}}{f^{2}}$; therefore, the denfity of rays in that image, varies $\operatorname{as} \frac{A^{2} f^{i}}{F^{2}}$.
360. Cor. 3. In the fame manner, if F be the focal length of the object metal in the Newtonian telefcope, A it's linear aperture, and f the focal length of the eye glafs, the denfity of rays in the picture upon the retina, varies as $\frac{A^{2} f^{2}}{F^{2}}$.
361. The denfity of rays in the picture upon the retina is ufually taken as a meafure of the apparent brightnefs ; though ftrietly fpeaking, apparent brightnefs has no numerical meafure.

SCHOLIUM.

362. In explaining the conftruction and effects of optical inftruments, we have fuppofed the images to be fimilar to the objects, and accurately formed in the geometrical foci of refracted or reflected rays. Were there fuppofitions true, telefcopes and microfcopes would be perfeet ; no limit could be fet to their magnifying powers, but fuch as arife from the difficulty of forming fpherical furfaces of proper dimenfions; and by their affiftance, objects might be feen as diftinctly as if they were viewed in plane refleetors. The imperfections to which they are fubjeet, arife fiom two caufes; The fpherical figure of the reflecting and refracting furfaces; and the unequal refrangibility

frangibility of the different rays which conftitute the ody of light by which objects are feen.
363. When any points in an object are feen by oblique encils, that is, by fuch pencils as are not nearly perendicular to the reflecting, or refracting furfaces, rofe points do not appear in the places determined by he conftructions and calculations, hitherto given *.
This will be eafily underfood by confidering the moft mple cafe of refraction. Suppofe $A B$ to be a plane

fracting furface; $P Q R$ a ftraight line parallel to it; Ir the geometrical image of $P 2 R$, as determined rt. 193; O the place of the eye. Then, the rays hich flow from P, after refraction at the furface $A B$, e diffufed through all parts of the medium in which e eye is placed; and if thofe rays of the pencil, which ifs through O, diverge accurately from p, they enter e eye as if they came from a real object there; and is the vifible image of P; but, when the eye is at y confiderable diftance from the perpendicular $A Z$, the point P is feen by an oblique portion of the general

- The cafe of objef̂s feen by rays reflected at plane furfaces is cepted.
general pencil, as $P V O$. Thofe oblique rays do not diverge accurately, from any point ; and therefore the vifible image will be indiftinct. , But, if x be the place where, if produced backwards, they occupy the fmalleft fpace, we may fuppofe this to be the vifible image of P; and the curve which is the locus of x, to be the vifible image of the whole line $P R^{*}$. Again, if a diftorted image be formed by the object glafs, or reflector of a telefcope, different parts of it lie at different diftances from the principal focus of the eye glafs; and, if one part can be feen diftinctly, the reft will appear confufed. Inftead of fpherical 'furfaces, it has been propofed to adopt fuch as are generated by the revolution of the ellipfe, parabola, or hyperbola; bur, independent of the difficulty of grinding thefe furfaces little advantage can be expected from them, as eact furface, will only reflect, or refract, thofe rays accu rately, which belong to one particular focus, and the aberrations, in other cafes, will generally be greate than thofe produced by fuch furfaces as are of a lphe fical form.

2. Another, and more confiderable caufe of imper fection in optical inftruments, is the unequal refrang bility of differently coloured rays. We have, in a

[^12]

\qquad

$+2+2+20$

n in

-

$$
\text { Win }+\frac{1}{2}
$$

\qquad

$$
\frac{1}{4}
$$

$$
\text { * } 9
$$

our calculations, fuppofed light to be homogeneal; that, whilft it paffes out of one given medium into another, the fine of incidence bears the fame invariable ratio to the fine of refraction. But, Sir Isaiac Newton difcovered that the common light by which objects are viewed, confifts of rays which differ both in colour and refrangibility; and, that thofe rays which differ in colour, always differ in refrangibility ; that is, if the fines of incidence be equal, the fines of refraction are different, though the mediums remain the fame. Hence it follows, that if the image of an object be diftinetly formed by the red, which are the leaft refrangible rays, at one parricular diftance from a refractor, a diftinct image will be formed by rays which have a different degree of refrangibility, as the blue rays, at a different diftance from it ; thus, the rays of different colours, which flow from the fame point, being collected at different diftances from the refractors, a confufed, and coloured image of that point, is neceffarily produced upon the retina; or upon any fcreen which receires the refracted rays.

We are now to confider, in what manner thefe imperfections may, in fome degree, be remedied. And we Thall begin with the latter, which is of greater importance, as the errors it produces are much more confiderable than thofe which arife from the fpherical form of the furfaces; we may add moreover, that it's theory is more eafily explained, and it's effects more likely to be corrected in practice.

S E C TION.VIII.

ON THE ABERRATIONS PRODUCED BY THE UNEQUAL REFRANGIBILITY OF THE RAYS OF LIGHT; AND BY THE SPHERICAL FORM OF REFLECTING AND REFRACTING SURFACES.

Prop. LXXX.

363. THE fun's light confits of rays which differ iu refrangibility and colour.

This important difcovery was made by Sir Isaac Newton, who defcribes the experiment by which it is eftablifhed, in the following words*.
"In a very dark chamber, at a round hole, about one third part of an inch broad, made in the fhut of a window, I placed a glafs prifm, whereby the beam of the fun's light which came in at the hole, might be refracted upwards toward, the oppofite wall of the chamber, and there form a coloured image of the fun. The

- Opt. B. I. P. I. Prop. II.

4.

 Kurfer sheatrane avo Cmbe E

The axis of the prifm was perpendicular to the incident rays. About this axis I turned the prifm flowly, and faw the refracted light on the wall, or coloured image of the fun, firft to defcend, and then to afcend. Between the defcent and afcent, when the image feemed ftationary, I ftopped the prifm, and fixed it in that pofture, that it hould be moved no more. For in that pofture, the refractions of the light at the two fides of the refracting angle, that is, at the entrance of the rays into the prifm, and at their going out of it, were equal to one another *. The prifm therefore being placed in this pofture, I let the refracted light fall perpendicularly upon a theet of white paper at the oppofite wall of the chamber, and obferved the figure and dimenfions of the folar image formed on the paper by that light. This image was oblong and not oval, but terminated with two rectilinear and parallel fides, and two femicircular ends. On it's fides it was bounded pretty diftinctly, but on it's ends very confufedly and indiftinctly, the light there decaying and vanifhing by degrees. The breadth of this image anfwered to the fun's diameter, and was about two inches and the eighth part of an inch, including the penumbra. For the image was eighteen feet and an half diftant from the prifm, and at this diftance, that breadth, if diminifhed by the diameter of the hole in the window-fhut, that is by a quarter of an inch, fubtended an angle at the prifm of about half a degree, which is the fun's apparent diameter. But the length of the image was about ten inches and a quarter, and the length of the rectilinear fides about eight inches;

[^13]198
and the refracting angle of the prifm, whereby fo grear a length was made, was 64 degrees. With a lefs angle the length of the image was lefs, the breadth remaining the fame. Jt is*farther to be obferved, that the rays went on in right lines from the prifm to the image ; and therefore, at thair very going out of the prifm, had all that inclination to one another from which the length of the image proceeded, that is the inclination of more than two degrees and an half. And yet, according to the laws of optics vulgarly received, they could not poffibly be fo much inclined to one another.
"For let F reprefent the hole made in the windowfhut, through which a beam of the fun's light was tranfmitted into the darkened chamber, and $A B C$ a

triangular imaginary plane, whereby the prim is feigned to be cut tranfverfely through the middle of the light ; and let $x y$ be the fun, $M N$ the paper upon which the folar image or fpectrum is caft, and $P T$ the image itfelf; whofe fides, towards v and w, are rectilinear and parallel, and ends, toward, P and T, femicircular. $y K H P$, and $x L I T$ are two rays; the firt of which comes from the lower part of the furi to

thie higher part of the image, and is refracted in the prifm at K and H; and the latter comes from the higher part of the fun to the lower part of the image, and is refracted at L and I. Since the refractions on both fides the prifm are equal to one another, that is the refraction at K equal to the refraction at I, and the refraction at L equal to the refraction at H, fo that the refractions of the incident rays at K and L taken together, are equal to the refractions of the emergent rays at H and I taken together; it follows, by adding equal things to equal things, that the refractions at K and H taken tozether, are equal to the refractions at I and L taken together; and therefore the two rays, being equally refracted, have the fame inclination to one another after refraction, which they had before; that is, the inclination of half a degree, anfwering to the fun's diameter. So then, the length of the image $P T$ would, by the rules of vulgar optics, fubtend an angle of half a degree at the prifm, and by confequence be equal to the breadth $v w$; and therefore the image would be round *. Since then it is found by experience that the image is not round, but about five times longer than broad, the rays which, going to the upper end P of the image, fuffer the greateft refraction, moft be more refrangible than thofe which go to the lower end T.
"The image or fpectrum $P T$ was coloured, being red at it's leaft refracted end T, and violet at it's moft refracted end P, and yellow, green and blue in the intermediate fpaces."
364. To flew that the unequal refrangibility of the rays in this experiment, is not accidental, or owing to any new modification produced by the medium through which they pafs, Sir Isaac. Newton refracted the rays of each colour feparately, and found that they - ever after retained both their colour and peculiar degree of refrangibility *.
365. By an experiment fimilar to the former, it may be fhewn that common day light confifts of rays which differ in colour and refrangibility.

For, if the round hole in the fhutter receive only light from the clouds, it's image, formed by the prifm, will be oblong, and coloured as in the former cafe.
366. Sir Isaac Newton, with the affiftance of a perfon who had a more critical eye than himfelf, diftinguifhed the fpectrum into feven principal colours, proceeding from the lefs to the more refrangible rays, in the following order; red, orange, yellow, green, blue, indigo, violet; of which the yellow and orange were found to be the moft luminous, and the next in ftrength were the red and green; the darker colours, efpecially the indigo and violet, affected the eye much lefs fenfibly.
367. If, by any method, the prifmatic colours be again united in the proportion which they have in the fpectrum, they compound a white fun light; and by the mixture of different forts of rays, in different proportions, various colours are produced, 'according to the quantity and nature of the rays united

glinex

?

Thus, a mixture of red and yellow produces an orange; yellow and blue form a green *, \&cc.
368. From the former part of the laft article we may conclude, that if a ray of white light be refracted through a medium contained by parallel planes whofe diftance is inconfiderable, it will not, as to fenfe, be feparated into diftinct colours.

For, the ray of each particular colour emerges parallel to the incident white ray; confequently, the emergent rays of different colours are parallel to each other; and fince the thicknefs of the medium is inconfiderable, they emerge nearly at the fame point, and therefore excite only the fenfation of whitenefs.

Thus it happens, that objects feen through common window glafs do not appear coloured \uparrow.
369. The fame may be faid, if the emergent rays, after feveral refractions, be parallel to the incident white ray, and the points of emergence nearly coincide:

Prop. LXXXI.

370. The more refrangible rays are more reflexible.

A ray of light cannot, confiftently with the general law of refraction, pals out of a denfer mediuns into a rarer when the fine of incidence exceeds the limit determined by this proportion, fin, refraftion : fin. incidence :: radius : fin. incidence, which is the limit fought (Art. JO1); therefore, the greater the ratio of the fine of refraction to the fine of incidence,

- Newt. Opt. P. I. Prop. IV.
+ Vid. Newt. Lear. Op. P. II. Seet. IV.
the lefs will this limit be; and, confequently, the fooner will the rays be reflected *.

Prop. LXXXII.

371. If a finall cylindrical beam of white light pa/s searly perpendicularly out of cominon glafs into air, the difperfion of the differently coloured rays is about $5^{2} 5$ of the mean refraction.

Let a fmall beam of the fun's light be refracted by a glafs prifm, in the manner defribed (Art. 363); and let $P T$ reprefent the fpectrum, divided by lines which

are perpendicular to it's parallel fides, and drawn through the confines of the feveral colours. Alfo, let $a b, b c, c d, d e$, ef, $f g, g h$, be the fpaces occupied by the red, orange, yellow, green, blue, indigo and violet rays, refpectively; then if the whole length $a / 2$ be reprefented by unity, $a b$ is found to be $\frac{7}{8} ; a c=\frac{1}{5}$; $a d=\frac{1}{3} ; a e=\frac{7}{2} ; a f=\frac{2}{3} ; a g=\frac{7}{9} ;$ and thefe are nearly proportional
*This propofition may alfo be proved by experiment. NEWT. Opt. B. I. P. I. Prop. III.

min

$$
\frac{2}{2}
$$

$$
3
$$

\qquad
\qquad

$$
e^{-1}+
$$

$$
y
$$

4

$$
5
$$

$$
+
$$

$$
=
$$

$x-1$

$1+$
\qquad
\qquad
$+$
\square
$+2$

$$
=1+2
$$

\qquad

$$
y^{7}
$$

$$
\min
$$

$-$
proportional to the differences of the fines of refraction of the differently coloured rays, to a common fine of incidence.

Now, when the rays pals out of glafs into air, if the common fine of incidence be reprefented by 50 , the fines of refraction of the extreme red and violet rays are found to be 77 and 75 refpectively*; therefore the fines of refraction of the other rays, are $77 \frac{1}{5}, 77 \frac{1}{5}, 77 \frac{1}{5}, 77 \frac{1}{2}$, $77 \frac{3}{3}, 77 \frac{7}{9}$. That is, the fine of incidence of any red ray, is to the fine of refraction, in a ratio not greater than that of $50: 77$, nor lefs than that of $50: 77 \frac{1}{5}$; but varying, in different hades of red, through all the intermediate ratios. In the fame manner, the fines of refraction of all the orange rays extend from $77 \frac{\pi}{5}$ to $77 \frac{1}{3}$, \&c. the rays which are in the confines of the green and blue, have a mean degree of refrangibility, and the fine of incidence of thefe rays, is to the fine of refraction, as 50 to $77 \frac{\pi}{2}$.

When the angles of incidence and refraction are fmall, they are nearly proportional to their fines; and confequently, if the common angle of incidence be reprefented by 50 , the deviation of the violet rays is $78-50$, or 28 ; the deviation of the red rays is $77-$ 50 , or 27 ; therefore the difference of thefe, or the angle through which the rays of different colours are difperfed, is $\frac{1}{2 T}$ of the deviation of the red rays, $\frac{1}{25}$ of the deviation of the violet rays, and $\frac{1}{27 \frac{1}{2}}$, or $\frac{2}{3} \frac{2}{3}$ of the deviation of the rays of mean refrangibility, from their original courfe.
372. The

* Newt. Opt. P. I. Prop. VII.

372. The angle through which all the red rays are difperfed is $\frac{x}{3}$ of $\frac{2}{53}$, or $\frac{1}{2} \frac{1}{20}$ of the mean refraction, \&c.
373. In general, if the fines of refraction of the red and violet. rays, in their paffage out of any given medium into air, be $1+m$ and $I+n$, to the common fine of incidence 1 , then, when the angles of incidence and refraction are fmall, the difperfion of the rays is an $\frac{n-m}{m}$ ih part of the refraction of the red rays; and fince m and n are invariable, this exprefion may be properly taken as the meafure of the dijperfing power of the medium.
374. Whilft the refracting mediums are the fame, a given refraction of the mean rays is always attended with the fame difperfion, which may be deftroyed by an equal refraction in the oppofite direction (Art. 29). But if the latter refraction fall thort of the former, the difperfion will not be wholly corrected; if it exceed the former, the difperfion will be the contrary way; that is, the order of the colours will be changed; and no refraction can finally be produced by mediums of the fame kind, without colour.
375. Mr. Dolland, an eminent optician in London, difcovered*, about the year I757, that different fubfances have different difperfing powers; that the fame difperfion may be produced, or corrected, by a lefs refraction of the mean rays in one cafe, than in another; and thus refraction may, upon the whole, be produced without colour.

Prop.

- The difcovery has been afcribed to others; Mr. Dolyána was the firft who made it public.

HEx \square

$$
\cdots \quad t=1
$$

a
*
$-$
(1)

Prop. LXXXIII.

376. Having given the refracting powers of two mediums, to find the ratio of the focal lengths of a convex: and concave lenis, formed of thefe fubfances, which, when anited, produce images nearly free from colour.

Let $1+m: 1$, and $1+n$: 1 be the ratios of the fines of incidence and refraction of the red and violet rays out of air into the convex lens; $1+p: 1$, and $1+q^{0}: 1$, the ratios of thofe fines, out of air into the concave lens; F and f the focal lengths of the lenfes, for red rays. Then $\frac{1}{m}: \frac{1}{n}:: F$: the focal length of the convex lens for violet rays (Art. 169); therefore,

the focal length of the convex lens for violet rays is $\frac{m F}{n}$; in the fame manner it appears, that $\frac{p f}{q}$ is the focal length of the concave lens for violet rays. Let $A C$ be the compound lens; $E q$ it's focal length for red rays; Ev it's focal length for violet rays. Then f $F: f:: F: E q$; and $\frac{p f}{q}-\frac{m F}{n}: \frac{p f}{q}:: \frac{m F}{n}: E v$ (Art.
is4); hence $E q=\frac{F f}{f-F}$, and $E v=\frac{m p F f}{n p f-m q F}$; and when $E v=E q$, the red and violet jays, after both refractions,
sefraftions, are collected at q, or ε. In this cafe, $\frac{F f}{f-F}=\frac{m p F f}{n p f-m q F} ;$ or $n p f-m q F=m p f-m p F$; whence $p \cdot \overline{n-m} \cdot f=m \cdot \overline{q-p} \cdot F$; and $F: f::$
$p \cdot \overline{n-m}: m \cdot \overline{q-p}:: \frac{n-m}{m}: \frac{q-p}{p}$. That is, the focal lengths are proportional to the difperfing powers of the two mediums. If the intermediate rays be difperfed according to the fame law by the two mediums, it is manifeft that the focal length of the compound lens, for thefe colours, will be $E q$ or $E v$; and thus the image of a diftant object will be formed in q or v, free from colour (Art. 367).

When the rays of different colours proceed from a point at a finite diftance from this compound lens, after: refraction they will converge to, or diverge from a common focus. For, the diftance of the focus of refracted rays of any colour from the lens, depends upon the focal length of the lens, and the diftance of the focus of incident rays from it (Art. 177); and fince the latter quantities, by the fuppofition, are the fame for rays of all colours, the diftance of the focus of refracted rays from the lens, is the fame; and thus, the image of an object at any finite diftance from the compound lens, will be free from colour.
377. Ex. In crown, or common glafs, $1+m=$ 1. 54 ; and $1+n=1 \cdot 56$. In flint glafs, $1+p=$ 1.565 ; and $1+q=1 \cdot 595^{*}$; therefore the difperfing

* The refracting and difpering powers of different kinds of glafs are exceedingly various; and the caufes upon which they depend are but imperfeclly underfood. See Dr. Blarr's experiments on this fubject, in the Edinburgh Tranfactions, Vol. III.

difperfing power of common glafs : the difperfing power of flint glafs $:: \frac{.02}{.54}: \frac{.03}{.565}:: 2 \times 565: 3 \times 540$. To form a compound lens of thefe fubftances which Shall produce a real image of a diftant object, nearly free from colour, the convex lens muft have the greater refrasting power; and therefore it muft be made of common olafs, which has the lefs difperfing power. In this cafe, $F: f:: 2 \times 565: 3 \times 540:: 7: 10$, nearly.

The focal length of the compound lens, $\frac{F f}{f-F}$ $=\frac{10 F}{3}$.
378. Cor. I. If the greater refraction be produced by the concave lens, it's focal length : the focal length of the convex lens :: 7: 10 , nearly; and the refracting power of the compound lens correfponds to that of a fingle concave glafs.
379. Cor. 2. It is found by experience, that the extreme and intermediate rays are not difperfed by crown and flint glafs, according to the fame law; therefore, though the red and violet rays are united by the compound lens above defcribed, yet the intermediate rays are not collected at the fame point; and confequently, the images formed are not entirely free from colour.

The difcovery of two forts of glafs, which fhall difperfe the extreme and intermediate rays in the fame proportion, is ftill a defideratum in optics.

To form the moft diftinct image, the lenfes ought to be fo adjufted as to collect the brighteft, and ftrongeft colours, the yeilow and orange.
380. Cor.
380. Cor. 3. By a method fimilar to that employed in the propofition, two compound lenfes, which collect the extreme rays, but difperfe the intermediate rays in different proportions, might be fo adjufted as to collect rays of three different colours, exactly; but the advantage thus gained, would probably not compenfate for the lofs of light.
${ }_{3} 8 \mathrm{I}$. Cor. 4. Inftead of a fingle convex lens, two are frequently employed, one on each fide of the concave lens, which, when combined, have the fame focal length with the fingle lens for which they are fubftituted. This conftruction leffens the aberration arifing from the fpherical form of the refracting furfaces.

Prop. LXXXIV.

382. Hiving given the aperture of any lens, fingle or compound, and the foci to which rays of different colours, belonging to the fame pencil, converge, to find the leaft circle of aberration through which the fe rays pafs.

Let $2 C v$ be the axis of the lens; $A B$, or $2 A C$ it's linear aperture; q and v the foci of differently coloured rays. Draw $A v, B v ; A q b, B q a$; join a, b the points of their interfection, and let $a b$ cut the axis $2 C v$, in c_{0}

Then, in the fimilar and equal triangles $A C v, B C v$, $A v=B v$; and the $\angle A v C=$ the $\angle C v B$. In the

fame manner, the $\angle A q C=$ the $\angle B q C$, or the $\angle b q c=$
,

(
2

[^14]\qquad $4+\square+1+2$

$+-$

$$
\pm
$$
\square

1
正
14
~ 1

the $\angle a q c$; therefore, in the triangles $a q v, b q v$, the angles $a v q$, $a q v$ are refpectively equal to the angles $b v q, b q v$, and $q v$ is common to both triangles, conrequently $a q$ is equal to $b q$. Hence it follows, that the triangles $A q B, a q b$, as alfo the triangles $A q C, b q c$, are fimilar, and that $a b$ is perpendicular to $2 c v$; herefore $a b$ is the diameter of the leaft circle of aberation, into which the rays converging to q and v are :ollected.

Now, from the fimilar triangles $A q B, a q b, A B:-$ $b:: A q: q b$; and from the fimilar triangles $A C q$, $q c, A q: b q:: C q: c q$; therefore $A B: a b:: C q: c q$. n the fame manner, $A B: a b:: C v: c v$; therefore $1 B: a b:: C v+C q: c v+c q(C v-C q)$.
383. Cor. r. When the ratio of $C v$ to $C q$ is given, b varies as $A B$; and the area of the leaft circle of berration varies as $A B^{2}$.
384. Cor. 2. Let parallel rays fall upon a fingle ins of crown glafs, to compare the linear aperture of e lens, with the diameter of the leaft circle into hich all the rays, of different colours, are collected.
Here $\mathrm{I}+m: \mathrm{I}:: \mathrm{I} \cdot 54: \mathrm{I} ;$ and $\mathrm{I}+n: \mathrm{I}:: \mathrm{I} .56$ 1 (Art. 377); and Cv:Cq:: $5^{6: 54 \text { (Art. 169); }}$ erefore, $C v+C q: C v-C q:: 110: 2$:: $55: 1$; hat is, $A B: a b:: 55: \mathrm{I}$; or the diameter of the aft circle of aberration into which the extreme rays, ad confequently all the intermediare rays, are collected, $\frac{1}{53}$ part of the linear aperture.

Prop. LXXXV.

385. When a ray of light is incident obliquely upon a herical reflector, to determint the interfection of the refeled ray and the axis of the pencil to which it belongs.

Let $A C B$ be the fpherical reflector; E it's center $2 A$ a ray incident obliquely upon it; $2 E T$ the ax

of the pencil to which the ray belongs. Draw 17 touching the arc $A C B$ in A, and let it meet $\mathscr{Q} T$ in I bifect $E T, E C$, in e and F; take q the geometric: focus, conjugate to 2 ; and let $2 A$ be reflected in th direction $A x$.

Then, $2 F: F E:: 2 E: E q$;
and $2 F+F e: F E+F e:: 2 E: E x$ (Art. 54) therefore $E_{q}=\frac{2 E \times F E}{2 F}$; and $E_{x}=\frac{2 E \times \overline{F E+F e}}{2 F+F e}$ whence, by actual divifion, $E_{x}=\frac{2 E \times F E}{2 F}+$ $\frac{2 E^{2} \times F e}{2 F \times 2 F+F e}=\frac{2 E \times F E}{2 F}+\frac{2 E^{2}}{2 F^{2}} \times F e$, nearly therefore $E_{x}-E_{q}=q x=\frac{2 E^{2}}{2 F^{2}} \times F e$, nearly.

Alfo, fince $E T=2 E e$, and $E G=2 E F, C T$, $E T-E C=2 F e ;$ confequently, $q x=\frac{2 E^{2}}{2 F^{2}} \times \frac{C}{2}$ nearly.
386. This quantity, $q x$, is called the longitudim aberration of the oblique ray $\curvearrowleft A$.
(2)
387. Cor 1. Since the expreffion $\frac{\mathscr{D E}}{2 F^{2}} \times F e$ has always the fame fign, $E x$ is always greater than $E q$.
388. Cor. 2. Draw $A D$ perpendicular to $2 C$, and produce it till it meets the furface in B; join $A C, C B$. Then, the $\angle T A C=$ the $\angle C B A=$ the $\angle D A C$, and $C D: C T:: A D: A T$ (Euc. 3.6); and when the arc $A C$ is evanefcent, $A D$ is equal to $A T$; therefore, $C D=C T$; and the longitudinal aberration $q x=$ $\frac{2 E^{2}}{2 F^{2}} \times \frac{C D}{2}$.
389. Cor. 3. When $2 A$ is parallel to 2C, 2E becomes equal to $2 F$, and $q x=\frac{C D}{2}$.
390. Cor. 4. If 2 , when in $F E$, or in $F E$ produced, approach to E, the ratio of $\mathscr{2}$ to $\mathscr{2} F$ decreafes; and therefore, if $C D$ be given, the aberration decreafes. If 2 be in $F C$, or $F C$ produced, as $2 F$ decreafes, the aberration increafes.
391. Cor. 5. If the diftances $2 E$ and $2 F$ be invariable, the aberration varies as $C D$.
392. Cor. 6. Let $C M$ be the diameter of the reflector; then, by the property of the circle, $C D$: $D A:: D A: D M$, and $C D=\frac{D A^{2}}{D M}$; therefore, when $C D$ is very fmall, or $D M$ nearly equal to the diameter of the given reflector, $C D$ varies as $D A^{2}$, nearly; and confequently, when $2 E, 2 F$ are given, and the arc $A C$ is very fmall, the longitudinal aberration varies as $D A^{2}$.
393. Cor. 7. When parallel rays are incident upon the reflector, the longitudinal aberration is ultimately
equal to $\frac{C D}{2}=\frac{D A^{2}}{2 D M}=\frac{D A^{2}}{4 E C}=\frac{D A^{2}}{8 E F}$; and therefore it varies as $\frac{D A^{2}}{E F}$.

Prop. LXXXVI.

394. If parallel rays be reflected at a concave, and afterwards fall upon a convex fpherical reflector, converging to a point between it's furface and principal focus, as in Cassegrain's telefoope, the aberration of the lateral rays produced by the firt reflection, will, in fome meafure, be correetted by the latter.

Let ec C be the axis of the telefcope; x the interfection of the axis and lateral ray after the firft reflec-

tion; y their interfection after the fecond reflection; q the geometrical focus after both reflections.

The place of y, with refpect to q, will be affected by two caufes: Ift. x is nearer to c than F, the geometrical focus after the firft reflection (Art. 387); and therefore, on this account, $y c$ is lefs than $q c$ (Art. 59); 2 dly . in confequence of the aberration arifing from

the form of the reflector $a c b, y c$ is greater than $q c$ (Art. 387); therefore thefe caufes counteract_each other ; and, by a proper adjuftmen't of the refiectors, the aberration $q y$ may, in a great meafure, be deftroyed.
395. Cor. 1.' Though the aberration $9 y$, of the extreme ray $D A$, fhould be wholly deftroyed, the aberration of the intermediate rays will not be entirely corrected; and this feems to be an infuperable obftacle to the perfection of reflecting telefcopes.
396. Cor. 2. If the reflectors be both concave, as in Gregorie's telefcope, the aberrations produced by the two reflections are in the fame direction; that is, the fecond reflection increafes the aberration produced by the firft.

Prop. LXXXVII.

397. When a ray of homoreneal light is incident obliguely upon a Jpherical refraEting furface, to determine the interfection of the refracted ray and the axis of the pencil to which it belongs.

Let $A C B$ be the refractor; E it's center; $2 A$ a ray incident obliquely upon it; $2 C q$ the axis of the

pencil to which $2 A$ belongs; $A x$ the refracted ray; 03
q the
q the geometrical focus, conjugate to 2. Draw $A D$ perpendicular to the axis; and from the centers $2, x$, with the radii $2 A, x A$, defcribe the circular arcs $A V$, $A P$, cutting the axis in V and P. Take $m+1: 1::$ fin. incidence : fin. refraction.

Then, in the triangle $\mathscr{2} A E, 2 E: 2 A$:: fin. incidence : fin. $\angle A E 2$; alfo, in the iriangle $A E x, A x$: $E x::$ fin. $\angle A E x$ (fin. $\angle A E Q$) : fin. refraction; therefore, by compounding thefe two proportions, $\mathscr{2} E \times A x: 2 A \times E x::$ fin. incidence : fin. refraction $:: m+1: 1$; hence $\overline{m+1} \cdot 2 A: 2 E:: A x:$ $E x$; by divifion, $\overline{m+1} \cdot 2 A-2 E: 2 E:: A x-E x$: $E x^{*}$; that is, $\overline{m+1} \cdot 2 V-2 E: 2 E:: E P: E x$; or $\overline{m+1} \cdot 2 C+\overline{m+1}, C V-2 E: \mathscr{Q}^{2} E:: E C-C P$: $E x$; or $m \cdot 2 C-E C+\overline{m+1} \cdot C V: 2 E:: E C-C P$: Ex.

Now, $D G: D V:: 2 V: E C:: 2 C: E C$, nearly; and by compofition, $D C: C V:: 2 C: 2 E$; therefore, when the arc $A C$ is fmall, $C V=\frac{2 E \times D C}{2 C}$. Alfo, $D G: D P:: A x: E C$; by divifion, $D C: C P:: A x$: $A x-E C:: A x: E x:: \overline{m+1} \cdot 2 C: 2 E$, nearly; therefore $C P=\frac{2 E \times D C}{m+1.2 C}$, nearly. And, by fubftituting thefe values of $C V$ and $C P$ in the former proportion, we obtain $m .2 C-E C+\frac{\overline{m+1} \cdot 2 E \times D C}{2 C}$:

[^15]
- 1

(2)

4
4
-

$$
=
$$

A

$4-2+0$

$$
=\frac{1}{2}=\frac{1}{4}+\frac{1}{0}
$$

$$
+\frac{1}{2}+\frac{1}{1}+2
$$

$$
14
$$

$2 E:: E C-\frac{2 E \times D C}{m+1.2 C}: E x$; hence, $E x=2 E \times$.

$$
E C-\frac{2 E \times D C}{m+1 \cdot 2 C}
$$

$m \cdot 2 C-E C+\frac{\overline{m+1} \cdot 2 E \times D C}{2 C}$; and by actually dividing, and taking the remainder, $E x=$ $\frac{2 E \times E C}{m \cdot 2 G-E C}-\frac{m \cdot 2 E^{2}}{m+1 \cdot 2 G} \times \frac{2 C+\overline{m+2} \cdot E C}{m \cdot 2 G-E a^{2}} \times D C$, nearly. When $D C$ vanithes, $E x=E q=\frac{2 E \times E C}{m \cdot 2 C-E G}$; therefore the aberration $q x=\frac{m \cdot 2 E^{2}}{m+1 \cdot 2 G} \times$, $\frac{2 C+\overline{m+2} \cdot E C}{\overline{m \cdot 2 C-E G})^{2}} \times D C$.
398. Cor. I. If the refractor be given, and the fituation of the focus of incident rays, the aberration varies as $D C$, the verfed fine of the arc $A C$.
399. Cor. 2. When the incident rays are parallel, $2 C$ becomes equal to $2 E$; and $q x=\frac{D C}{m \cdot m+1}$
400. Cor. 3. When diverging rays are incident upon a concave fpherical refracting furface of a denfer

medium, the conftruction being made as before, EC 04
and
and $D C$ are negative ; whence, $E x=-\frac{2 E \times E C}{m \cdot 2 C+E C}+$. $\frac{m \cdot 2 E^{2}}{\overline{m+1} \cdot 2 C} \times \frac{2 C-\overline{m+2} \cdot E C}{m \cdot 2 C+E C)^{2}} \times D C ;$ and $q x=-$ $\frac{m \cdot 2 E^{2}}{\overline{m+1} \cdot 2 C} \times \frac{2 C-\overline{m+2} \cdot E C}{m \cdot 2 C+E C T^{2}} \times D C$; this aberration, therefore, is to be meafured in an oppofite direction to the former.
401. Cor. 4. In this laft cafe, if $2 C=\overline{m+2} \cdot E C$, the aberration vanifhes; that is, if $2 C: E C:: m+2$: 1 , or $2 E: E C:: m+1: 1::$ fin. incidence : fin. refraction (Art. 155).
402. Cor. 5. When converging rays are incident upon a concave fpherical furface of a rarer medium,

$2 C, 2 E, E C$ and $D C$ are negative. Alfo, if $\mathrm{s}-\mu$: I :: fin. incidence : fin. refraction, $-\mu$ muft be fubftituted for m, and $E x=\frac{2 E \times E C}{\mu \cdot 2 C+E C}-\frac{\mu \cdot 2}{1-\mu \cdot 2 C}$
$\times \frac{2 C+\overline{2-\mu} \cdot E C}{\mu \cdot 2 \overline{C+E})^{2}} \times D C$; hence, $q x=\frac{\mu \cdot 2 E^{2}}{1-\mu \cdot 2 C} \times$
$\frac{2 C+2-\mu \cdot E C}{\mu \cdot 2 C+E C)^{2}} \times D C$.
403. Cor.

> a
403. Cor. 6. When diverging ray's are incident upon a convex fpherical furface of a rarer medium,

$E x=-\frac{2 E \times E C}{\mu \cdot 2 C+E G}+\frac{\mu \cdot 2 E^{2}}{1-\mu \cdot 2 C} \times \frac{\mathscr{2 C}+\overline{2-\mu} \cdot E C}{\overline{\mu \cdot 2 C+E C_{1}^{2}}} \times$
$D C$; therefore the aberration $q x=-\frac{\mu \cdot \mathscr{Q} E^{2}}{1-\mu \cdot \mathscr{O}} \times$ $\frac{2 C+\overline{2-\mu} \cdot E C}{\mu \cdot 2 C+E C)^{2}} \times D C$.

In the fame manner, the aberration may be found in the other cafes.
404. Cor. 7. Since $D C=\frac{D A^{2}}{2 E C}$, nearly (Art. 392), by fubftituting this value of $D C$ in the foregoing expreffions, we obtain the aberration in terms of the femi-aperture.
405. Cor. 8. Since $E q=\frac{2 E \times E C}{m \cdot 2 C-E C}$, if $\mathscr{Q} E$ be diminifhed by the fmall quantity $x, E q$ will be increafed by the quantity $\frac{\overline{m+1} \cdot E C^{2} \times x}{\overline{m \cdot 2 C-E C)^{2}}}$. For on this fuppofition, E_{q} becomes $\frac{\overline{2 E-x} \cdot E C}{m^{\prime} \cdot \overline{2 C-x}-E C}=$ $\frac{\overline{2 E-x} \cdot E C}{m \cdot 2 G-E C-m x}=\frac{2 E \times E C}{m \cdot 2 C-E C}+\frac{\overline{m+1} \cdot E C^{2} \times x}{m \cdot 2 C-E C)^{2}}$, nearly;
nearly; and therefore $\frac{\overline{m+1} \cdot E C^{2} \times x}{\overline{m \cdot 2 C-E C)^{2}}}$, where x is the decrement of $2 E$, is the increment of $E q$, nearly. 406. Cor. 9. If x vary as $D C$, the increment of $E q$, when the radius of the refractor and the fituation of the focus of incident rays are given, will alfo vary as $D C$.
407. Cor. 10. By a proper application of the foregoing rules, the longitudinal aberration, arifing from the fpherical form of refracting furfaces, may be found in all cafes where the apertures are fmall.

Ex. Let $2 q$ be the axis of a lens; 2 the focus of incident rays; q the geometrical focus after the firft refraction, determined by Art. 147 ; v the geometrical

focus of emergent rays (Art. 176). Alfo, let $2 A$ be refracted, at the firft furface, in the direction $A x$, and emergent in the direction $A y$. Then, the aberration vy arifes from two caufes; ift. x does not coincide with the geometrical focus q (Art. 397); and fince v is determined on fuppofition that q is the focus of rays incident upon the fecond furface, an aberration will be produced, which may be determined by Art. 405° ${ }_{2}$ dly. $A x$ is incident obliquely. upon the latter furface,
?
and the aberration arifing from this caufe may be determined by Art. 402; therefore the whole aberration vy may be found.
408. Cor. II. If the lens and place of the focus of incident rays be given, the aberration arifing from each of thefe caufes will vary nearly as $A D^{2}$ (Arts. 397.406. 404); and therefore the final aberration $v y$, which is the fum or difference of the former, will alfo vary nearly as $A D^{2}$.
409. It is not confiftent with the plan of this work to enter farther into thefe calculations; perhaps too much has been faid already. The reader will find little difficulty in the application of the principles, if he wifh to deduce practical rules for the conftruction of object glaffes. Thus much it may be proper. to obferve, that the aberrations produced by a convex and concave lens are of contrary affections, and tend to correct each other ; by a proper adjuftment therefore, of the radii of the furfaces, a compound lens may be conftructed, which will entirely deftroy the aberration of the extreme rays *.

We may alfo obferve, that the aberration is lefs, when two furfaces, or two lenfes of the fame kind are employed, than when the fame refraction is produced by a fingle furface, or lens of the fame defcription, and equal aperture.

$$
P_{\text {ROP }}
$$

- This fubject is treated with great ability in the Encyclopædia Britannica, under the head Telefcopes.

Prop. LXXXVIII.

410. To find the leaft circle of aberration into whiich all the homogeneal rays of the fame pencil, refracted by a lens or fingle furface, are collected.

Let $A B$ be the refractor; ${ }^{2} G q$ it's axis; 2 the focus of incident rays; T the interfection of the ex-

treme ray $\mathscr{2} A T$, and the axis; t the interfection of any other, ray $2 a t$, on the other fide of $2 C$, and the axis; y the interfection of $A T y$ and at. Draw $A D$, $a d$, and $y x$ at right angles to $2 C q$; then, if the point a move from C towards B, the perpendicular $x y$ will vary on two accounts; the increafe of the angle Cta, and the decreafe of the diftance $T t$; and when $x y$ is a maximum, all the rays incident upon the fame fide of $2 C$ with $2 a$, will pafs through it; and if the figure revolve about the axis $2 q$, all the rays incident upon the lens will pafs through the circle generated by $x y$. It is alfo manifeft, that the circle thus generated, is lefs than any other circle through which all the refracted rays pafs. To find when $x y$ is the greateft poffible, let $T x=x ; a d=v ; A D=a ; D T=f$; $T q=b$. Then, fince $A D, a d$, when the lens is thin, are the femi-apertures through which the rays 2AT, 2at pafs, $A D^{2}: a d^{2}:: q T: q t$ (Art. 408);

45
.

$$
\begin{aligned}
& \sum_{2}^{2}+1 \\
& + \\
& 1
\end{aligned}
$$

or, $a^{2}: v^{2}:: b: q t$; whence $q t=\frac{b v^{2}}{a^{2}}$; therefore $T q$ $q t=T t=b=\frac{b v^{2}}{a^{2}}=\frac{b}{a^{2}} \times \overline{a^{2}-v^{2}}$. Again, $D T: D A::$ $T_{x}: x y ;$ or, $f: a:: x: x y$; confequently, $x y=\frac{a x}{f}$; alfo, $d a: d t:: x y: t x ;$ or, $v: f:: \frac{a x}{f}: t x$; therefore $t x=\frac{a x}{v}$; hence, $T x+x t=T t=x+\frac{a x}{v}=\frac{b}{a^{2}} x$ $\overline{a^{2}-v^{2}}$; or, $\frac{x}{v} \times \overline{a+v}=\frac{b}{a^{2}} \times \overline{a+v} \times \overline{a-v}$; and $x=$ $\frac{b}{a^{2}} \times v \times \overline{a-v}$; confequently, x is the greateft poffible, and therefore $x y$ is the greateft poffible, when $v \times \overline{a-v}$ is the greateft poffible; or when $v=\frac{x}{2} a$. Hence it follows, that the greateft value of x is $\frac{b}{4}$; and the correfponding value of $x y=\frac{a b}{4 f} \doteq \frac{D A \times q T}{4 D T}$.

4Ir. Cor. i. If the focal length of the refractor, and the focus of incidence, be given, $D T$ is given, and $x y \propto q T \times D A \propto D A^{3}$ (Art. 40S).
412. Cor. 2. On the fame fuppofition, the area of the leaft circle of aberration varies as $D . A^{6}$.
413. Cor. 3. Exactly in the fame manner, we may find the leaft circle into which a pencil of rays, reflected by a fpherical furface, is collected.
414. Cor. 4. When parallel rays are incident. upon a fpherical reflector, the longitudinal aberration varies directly as the fquare of the femi-aperture, and
inverfely as the focal length (Art. 393); therefore, $x y$, the radius of the leaft circle of aberration, varies directly as the cube of the femi-aperture, and inverfely as the fquare of the focal length of the reflector.

Prop. LXXXIX.

415. The area of a circle of aberration in the image formed upon the retina by a telefcope, or double microfoope, varies directly as the area of the circle of aberration in the forus of the eye glafs, and inverfely as the Square of the focal length of the eye glafs.

When the circle of aberration is in the principal focus of the glars through which it is viewed, it's vifual angle is equal to the angle which it fubtends at the center of the glafs; and therefore, the linear magnitude of the circle of aberration upon the retina, varies as this angle (Art. 254); that is, it varies directly as the linear magnitude of the circle of aberration in the principal focus of the glafs, and inverfely as the focal length of the glafs; confequently, the area of the circle of aberration on the retina, varies directly as the area of the circle of aberration in the focus of the eye glafs, and inverfely as the fquare of the focal length of the eye glafs.

4i6. Cor. i. In a reflecting telefc̣ope of Sir Isaac Newron's conftruction, if F be the focal length of the reflector, A it's femi-aperture, f the focal length of the eye glafs, the radius of the circle of aberration in it's principal focus, varies as $\frac{A^{3}}{F^{2}}$ (Art. 414); and there-

41
fore the area of this circle varies as $\frac{A^{6}}{F^{4}}$; confequently, the area of the circle of aberration on the retina, varies as $\frac{A^{6}}{F^{4} f^{2}}$.
417. Cor. 2. The area of the circle of aberration on the retina, has ufually been confidered as a meafure of the apparent indiftinctnefs of vifion. And, though it is manifeft that indiftinctnefs admits of no numerical reprefentation *, yet if the circle of aberration be the fame in two cafes, cæteris paribus, the indiftinctnefs will be the fame; and if the circle of aberration be greater in one cafe than in another, the indiftinctnefs will alfo, cæteris paribus, be greater. For, the rays which proceed from one point in the object, are diffufed over the circle of aberration, and confequently they are mixed with the rays which belong to as many different foci as there are fenfible points in that circle; therefore, the greater the area of the circle, the greater muft be the confufion, or indiftinctnefs arifing from this difperfion of the rays.

Prop. XC.

418. To find on what fuppofition a given difant object appears equally bright, and equally difinct, when viewed wilh different reflecting telefcopes of Sir Is anc Newton's confruction.

The notation in the 416 th article being retained; fince the

- One degree of indiftinctnefs can no more be faid to be a multiple or part of another, than one degree of tafte, or fmell can be faid to be the double, or half of another.

224 ABERRATIONS PRODUCED, \&C.
the brightnefs is given, $\frac{4 A^{2} f^{2}}{F^{2}} \propto I$ (Art. 360); or, $\frac{A^{6} f^{6}}{F^{6}} \propto 1 . \quad$ Alfo, fince the indifinctnefs is given, $\frac{A^{6}}{F^{4} f^{2}}$ $\propto I$; therefore $\frac{A^{6} f^{6}}{F^{6}} \propto \frac{A^{6}}{F^{4} f^{2}}$; and $f^{8} \propto F^{2} ;$ or, $f \propto F^{\frac{1}{4}}$. Again, $\frac{A^{4} f^{4}}{F^{4}} \propto \mathrm{I}$; that is, $\frac{A^{4} F}{F^{4}} \propto \mathrm{I}$; or, $A^{4} \propto F^{3}$; and $A \propto F^{\frac{3}{4}}$.
419. Cor. The magnifying power $\propto \frac{F}{f}($ Art. 328); that is, as $F^{\frac{3}{4}}$.

?

SECTION IX.

ON THE RAINBOW.

420. IF two quantities bear an invariable ratio to each other, their correfponding increments are in the fame ratio.

Let X and Y be the two quantities; x and y their correfponding increments. Then, by the fuppofition, $X: \Upsilon:: X+x: \Upsilon+y$; and alternately, $X: X+x::$ $\Upsilon: \Upsilon+y$; by divifion, $X: x:: \Upsilon: y$; therefore, alternately, $X: \Upsilon:: x: y$.

Prop. XCII.

421. If the fines of two arcs be always in a given ratio, the evanefcent increments of the arcs are proportional to their tangents.

Let $A B$ be a circular are whofe radius is $C A$, fine $B D$, and tangent $A T$; draw $E G$ parallel, and indefinitely near to $B D, B F$ parallel to $D G$, and join $E B$.

Then, the triangle $C B D$ is fimilar to the triangle $E B F$, formed by $E F, F B$, and the chord $B E$; for, the angles $C D B, B F E$ are right angles; and the

$\angle E B C$ is a right angle (Newr. Princip. Lem. 6), and therefore equal to the $\angle F B D$; take away the common angle $F B C$, and the remaining angles, $C B D$ and $F B E$ are equal. Hence, $F E: B E:: C D: C B$; and in the fimilar triangles $G D B, C A T, C D: C A$ $(C B):: D B: A T$; therefore, $F E: B E:: D B: A T$; whence $B E=\frac{F E \times A T}{D B}$; and $B E$ is ultimately equal to the increment of the arc $A B$ (Newt. Princip. Lem. 7); confequently, $B E$, the increment of the arc, $=$ $F E \times A T$
varies as $D B$ the fine (Art. 420), BE varies as $A T$.

Prop. XCIII.

422. If a ray of light refrailed into a splecre, emerge from it after any given number of reftections, to determine the deviation of the ray, and the angle contained between the directions in which it is incident and emergent.

Let a ray of light $R A$, incident upon the fphere $A B C D$ at A, be refracted in the direction $A B$; at B
?

[^16](
an 7
\qquad
-
$$
4
$$
a
$4+=187$

+

let it be reflected in the direction $B C$; and at C, in the direction $C D$; at D let it be refracted out of the fphere, in the direction $D R$; produce $R A, R D$, to $M, 2$.

Take O the center of the fphere; join $O A, O B$, $O C, O D$; and let A be the angle of incidence of the ray $R A ; B$ the angle of refraction; R, a righf angle,

Then the $\angle O A M=A$; the $\angle O A B=$ the $\angle O B A$ (Euc. 5. 1) $=$ the $\angle O B C($ Art. 18) $=$ the $\angle O C B=$ the $\angle O C D=$ the $\angle O D C=B$. Alfo, the angles of deviation at A and D are equal ; for if $B A$ be fuppofed to be incident at A, the angle of incidence $B A O$, is equal to the angle of incidence $C D O$, of the ray $C D$; therefore the angles of deviation are equal *; and fince the angle of deviation at A, is $A-B$, the whole deviation arifing from the two refractions, is $2 A-2 B$. Again, the angle of deviation at B is $2 R-2 B$; and the angle of deviation, at every other reflection, is the fame; therefore, if there be p reflections, the whole deviation, arifing from this caufe, is $2 p R-2 p B^{\prime}$. To this,

$$
\text { . Vid. Art. } 2 \xi \text {. }
$$

this, let the deviation arifing from the refractions be added, and the whole deviation of the ray from it's, original direction, is $2 p R-2 \cdot \overline{p+1} \cdot B+2 A$.

Alfo, a deviation through the angle $2 p R$, which is a multiple of 180°, produces no inclination of the emergent to the incidentray; therefore, the inclination is reprefented by $2 A-2 \cdot \overline{p+1} \cdot B$; or $2 \cdot \overline{p+1} \cdot B-2 A$.

Prop. XCIV.

423. If a fmall pencil of parallel homogeneal rays be refracted into a sphere, and the ratio of the fine of incidence to the fine of refraction be known, to find at what angle the rays muft be incident, that they may emerge parallel after any given number of reflections within the Sphere.

Let $R A M$, ram, be the directions of the incident, $D N, d n$, the directions of the emergent rays; produce $N D, n d$, if neceffary, till they meet $R M, r m$, in M and m.

Then, fince $A M$, a n, as alfo $D N, d n$, are parallel

by the fuppofition, the angles at M, and m are equal ; therefore,

therefore, when the rays are incident at, or near to A, the angle $R M N$, contained between the incident and emergent ray, ceafes to increafe, or decreafe; and therefore, the notation in the laft article being retained, $2 \cdot \overline{p+1} \cdot B-2 A$, and confequently $\overline{p+1} \cdot B-A$, ceafes to increafe, or decreafe; that is, the increment of $\overline{p+1} . B$, is equal to the correfponding increment of A. Alfo, fince fin. A is in a given ratio to fin. B, the increment of B : the increment of $A::$ tang. B : tang. A (Art. 42I); or, multiplying the firft and third terms by $p+1, \overline{p+1} \times$ increment of $B:$ increment of $A:: \overline{p+1}$. tang. $B:$ tang. A; and $\overline{p+1} \times$ increment of $B=$ increment of $\overline{p+1} \cdot B$ (Art. 420); therefore, the increment of $\overline{p+1}, B$: the increment of $A::$ $\overline{p+1}$. tang. B : tang. A; and fince the increment of $\overline{p+1} . B$ is equal to the increment of A, when the rays emerge parallel, $\overline{p+1}$. tang. $B=$ tang. A; or, tang. $A:$ tang. $B:: p+1: 1$.

To determine the angles A and B, fuppofe x and y to be their cofines, the radius being unity; and let fin. $A:$ fin. $B:: m: n$.

Then, $\sqrt{1-x^{2}}=$ fin. $A ; \sqrt{1-y^{2}}=$ fin. $B ; \frac{\sqrt{1-x^{2}}}{x}$ $=$ tang. $A ; \frac{\sqrt{1-y^{2}}}{y}=$ tang. B. And, from the relation of the required angles, we have the following proportions $; \frac{\sqrt{1-x^{2}}}{x}: \frac{\sqrt{1-y^{2}}}{\sqrt{y}}:: p+1: 1 ;$
\quad and $\sqrt{1-y^{2}}: \sqrt{1-x^{2}}:: n: m ;$
by compofition, $\frac{1}{x}: \frac{1}{y}:: n \cdot \widetilde{p+1}: m$; hence, $y=$ $\frac{\overline{p+1} \cdot n x}{m} ;$ and $y^{2}=\frac{\overline{p+1})^{2} \cdot n^{2} x^{2}}{m^{2}}$; therefore, $1-y^{2}$: $1-x^{2}:: 1-\frac{\overline{p+1})^{2} \cdot n^{2} x^{2}}{m^{2}}: 1-x^{2}:: n^{2}: m^{2}$; and by multiplying extremes and means, $n^{2}-n^{2} x^{2}=m^{2} \rightarrow$ $\overline{p+1}{ }^{2} \cdot n^{2} x^{2}$; hence, $\overline{p+1}{ }^{2}-1 \cdot n^{2} x^{2}=m^{2}-n^{2}$; or $\sqrt{p^{2}+2 p}, n x=\sqrt{m^{2}-n^{2}}$; confequently, $\mathrm{I}: x::$ $\sqrt{p^{2}+2 p} \cdot n: \sqrt{m^{2}-n^{2}}$. The cofine of A being determined by this proportion, the angle itfelf may be found from the tables.

Alfo, $m: n::$ fin. $A:$ fin. B; and the three firft terms in the proportion being known, the fourth is known; that is, fin. B is known; and therefore the angle B may alfo be found from the tables.

The angles A and B may alfo be determined by the following conftruction :

In the ftraight line $C E D A$, take $C A$ to $C D$ as m to n, and $C A$ to $C E$ as $p+1$ to 1 ; with the center C and

radius $C D$, defcribe an $\operatorname{arc} D B$, cutting the circle $A B E$ whofe diameter is $A E$, in B; draw $A B F$; and join $B C$; then, the fine of the $\angle C B F$ will be to the fine of the $\angle C A F$ as m to n; and the tangent of $C B F$ to the tangent of $C A F$ as $p+1$ to 1 ; and confequently $C B F, C A F$ will be the angles required.
(20)

$2+2$

$$
=
$$

$2+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$ lic^{2}

$$
-
$$

Join $B E$, and complete the parallelogram $C E B G$ produce $C G$ till it meets $A B F$ in F. Then, in the triangle $C A B$, fin. $C B A(\mathrm{fin}, C B F)$: fin. $C A B:: C A$: $C B:: C A: C D:: m: n$. Again, fince $C F$ is parallel to $E B$, the $\angle B F G$, is equal to the $\angle E B A$, and is therefore a right angle; confequently, the lines $F C$, $F G$ are tangents of the angles $C B F, G B F(C A F)$ to the radius $B F$; and, in the fimilar triangles $F C A$, $F G B, F C: F G:=C A: G B:: C A: C E:: p+1: 1$.
424. Ex. I. If a fmall pencil of parallel red rays be incident upon a fphere of water, at an angle of about $59^{\circ} \cdot 23^{\prime}$, and fuffer two refractions and one reflection, the rays will emerge parallel.

Here, $p=1$; and $m: 12: 108: 81:: 4: 3$; therefore, $1: x:: \sqrt{27}: \sqrt{7}$; or $x=\sqrt{\frac{7}{27}}$; and theangle whofe cofine, to the radius unity, is $\sqrt{\frac{7}{27}}$, is $59^{\circ} \cdot 23^{\prime}$, nearly.

The angle of refraction B, whofe fine is to the fine of $59^{\circ} \cdot 23^{\prime}:: 3: 4$, is $40^{\circ} \geqslant 12^{\prime}$. Hence, the whole deviation, $2 R-4 B+2 A$ (Art. 422), is $137^{\circ} \cdot 58^{\prime}$; which fubtracted from 180°, gives the inclination of the incident, to the emergent pencil, $42^{\circ} .2^{\prime}$.

When violet rays are thus incident and emergent, $m: n:: 109: 81$, and in this cafe, $A=58^{\circ} .40^{\prime} ; B=$ $39^{\circ} .24^{\prime}$; hence, $2 R-4 B+2 A$ is $139^{\circ} \cdot 44^{\prime}$, and the inclination of the emergent, to the incident pencil, $40^{\circ} .16^{\prime}$.
425. Ex. 2. If parallel red rays fall upon a fphere of water, they will emerge parallel, after two refrac-
tions and two intermediate reflections, when the angle of incidence is about $71^{\circ} .50^{\prime}$.

In this cafe, $p=2$; and $\mathrm{I}: x:: \sqrt{7^{2}}: \sqrt{7}$; therefore the cofine of the angle of incidence is $\sqrt{\frac{7}{7^{2}}}$, which correfponds to an angle of $71^{\circ} \cdot 50^{\prime}$, nearly.

Alfo, $B=45^{\circ} \cdot 27^{\prime}$; and the whole deviation, $4 R$ $6 . B+2 A,=230^{\circ} \cdot 58^{\prime}$; hence, the inclination of the emergent, to the incident pencil, which is the excefs of the whole deviation above $180^{\circ},=50^{\circ} \cdot 58^{\prime}$, nearly.

When violet rays are thus incident and emergent, $A=71^{\circ} \cdot 26^{\prime} ; B=44^{\circ} \cdot 47^{\prime} ; 4 R-6 B+2 A=234^{\circ} \cdot 10^{\prime}$; and the inclination of the emergent, to the incident pencil $=54^{\circ} \cdot 10^{\prime}$, nearly.

On the formation of the Rainbowe.

426. It has long been known that the rainbow is owing to the refraction and reflection of the fun's light by drops of rain. Antonius de Dominis firft difcovered that the interior, or primary bow, is caufed by two refractions of the rays of light at each drop of water, and one reflection between them; and the exterior, or fecondary bow, by two refractions and two reflections between them. This difcovery he confirmed by experiments, which have been fuccefffully repeated by more modern writers. If glafs globes, filled with water, be placed in the fun's light, they may be elevated or depreffed till they fucceffively tranfmit to the eye, the colours of each bow, in their proper order *:
$427: T p$
*. Nzwr. Opt. Book I. Prop. IX:
\square

$$
5
$$

427. To underftand how the interior bow is formed, let O be the eye of a fpectator; SOP a line paffing through the eye and the fun. At the point O,

in the line $P O$, make the angle $P O E=42^{\circ}, 2^{\prime}$; then, when a drop of rain, $F E$, is in fuch a fituation that the angle which $O E$ makes with a perpendicular to it's furface at E is $59^{\circ} .23^{\prime}$, a fmall pencil of parallel red rays will emerge from it at E, and enter the eye in the direction $E O$. For, if $O E$ be confidered as the incident pencil, it will emerge, after two refractions and one reflection, in the direction $F S$, which makes an angle of $137^{\circ} \cdot 58^{\prime}$ with $O E$ produced (Art. 424), or, an angle of $42^{\circ} \cdot 2^{\prime}$ with $O E$, and is therefore parallel to OS; thus FS will pafs through the fun*. Converfely, out of the beam of fun-light which falls upon the drop, the red rays incident at, and near to F, will, after two refractions and one reflection, emerge parallel, and entering the eye in the direction EO (Art. 29), will excite the fenfation of their proper colour.

- The diftance of the fun is fo great, that two lines drawn from any points upon the furface of the earth, to a point in his dife, may be confidered as parallel, in thefe calculations.

In the fame manner, if $O E$ revolve about the axis $O P$, every drop of water in the furface of the cone thus defcribed, will tranfmit to the eye a fmall parallel pencil of red rays; and thus a red are, whole radius, meafured by the angle which it fubtends at the eye, is $42^{\circ} .2^{\prime}$, will appear in the falling rain, oppofite to the fun.

The other red rays of the beam which falls upon the $\operatorname{drop} F E$, will, at their emergence, be inclined at different angles to the direction of the incident rays, and be fo much difperfed before they reach the eye, and enter it in fo weak a ftate, mixed with other rays, as to produce no diftinct effect.

The parallel pencils of red rays, which emerge from other drops, fall above, or below the eye.

If the angle $P O D$ be $40^{\circ} .16^{\prime}$, and $O D$ revolve about the axis $O P$, every drop of rain in the furface of the cone thus defcribed, will tranfmit to the eye a parallel pencil of violet rays; and thus a violet arc will be formed, whofe radius is $40^{\circ} 16^{\prime}$.

The drops between E and D will tranfmit to the eye parallel pencils of rays of different colours, orange, yellow, green, blue, indigo, in the order which they have in the prifmatic fpectrum (Art. 366); and the radii of the arcs of thefe refpective colours may be calculated by the method employed in the $4^{2} 4^{\text {th }}$ Article.
428. Again, let the angle $P O I=50^{\circ} \cdot 5^{\prime}$; and the angle $P O L=54^{\circ} \cdot 10^{\prime}$. Alfo, let $O I, O L$ revolve about the axis $O P$. Then, it may be fhewn as in the preceding cafe, that every drop of rain in the conical furface generated by $O I$, will tranfinit to the eye a
$1+2+2$

 \square
 $+$
迤
ernele

[^17]?
fmall parallel pencil of red rays, which has fuffered

two refractions and two reflections, but fufficiently ftrong to excite the fenfation of it's proper colour.

Alfo, every drop in the conical furface generated by $O L$ will tranfmit to the eye a fmall pencil of parallel violet rays; and the intermediate drops, parallel pencils of rays of the intermediate colours. Thus the exterior bow is formed, in which the radii of the red and violet arcs are, refpectively, $50^{\circ} \cdot 58^{\prime}$, and $54^{\circ} \cdot 10^{\prime}$.

The radii of the intermediate arcs may be determined by the method employed in the 425 th Article.
429. Cor. I. The colours in the two bows lie in a contrary order; the red forming the exterior ring of the primary, and the interior ring of the fecondary bow.
430. Cor. 2. Were the pencils fufficiently ftrong, a third bow, formed by two refractions and three reflections of the fun's rays in draps of rain, might be
feen. But, when the rays which are refracted into a drop of water, reach the farther furface, fome of them pals' out of the drop, and others are reflected within it. When thefe reflected rays again meet the furface, fome of them pafs out of the drop, and others fuffer another reffection; and fo on *. Thus the pencil becomes weaker at every reflection; and at length it contains fo few rays as not to make a diftinct impreffion upon the retina.

> Prop. XCV.
431. To find the altitude, and breadth of the rainbow.

The conftruction being made as in the 42 th Article, through O draw $H O R$ parallel to the horizon.

Then the angle $R O S$, or $H O P$, meafures the altitude of the point S above the horizon; and the altitude

- This is a fact, the caufe of which has not been fatisfactorily explained. Sir Isaac Newton fuppofes that rays of light, when they arrive at the furface of a medium, are fometimes in a ftate to le reflected, and fometimes to be tranfmitted; thefe ftates he calls

of the higheft point of the red arc above the horizon, in the primary bow, is meafured by $E O H$, or $E O P$ $H O P$, which is equal to $42^{\circ} .2^{\prime}-H O P$. Alfo, the altitude of the higheft point of the violet arc is meafured by $D O P-H O P$, or $40^{\circ} .16^{\prime}-H O P$. Hence it follows, that the breadth of the bow, fuppofing it to be formed by the rays which come from one point S, in the fun's dife, is $42^{\circ} .2^{\prime}-40^{\circ} .16^{\prime}$, or, $1^{\circ} .46^{\prime}$.

The breadth, thus determined, mult be increafed by 30^{\prime}, the fun's apparent diameter; for, the higheft red arc is produced by the rays which flow from the loweft point in the fun's difc, and if ROS, or HOP, meafure the altitude of the fun's center, the altitude of the higheft red arc is $42^{\circ} \cdot 2^{\prime}-H O P+15^{\prime} ;$ alfo, the loweft violet arc is produced by the rays which flow from the higheft point in the fun's difc, and therefore the altitude of this arc, is $40^{\circ} .16^{\prime}-H O P-15^{\prime}$; confequently, the breadth of the bow is $1^{\circ} \cdot 46^{\prime}+30^{\prime}$, or $2^{\circ} .16^{\prime}$.

In the fame manner it appears, that the altitude of. the violet arc, in the exterior bow, is $54^{\circ} \cdot 10^{\prime}-S O R$; and the altitude of the red arc, $50^{\circ} \cdot 5^{\prime}-S O R$; therefore, the breadth of the bow, formed by rays which proceed from any one point in the fun's difc, is $3^{\circ} .12^{\prime}$.
fits of eafy refiection, and tranfmifion ; and accounts for them in the following manner: "Nothing more is requifite for putting the rays of light into fits of eafy reflection, and eafy tranfmifion, than that they be fmall bodies, which by their attractive powers, or fome other force, fir up vibrations in what they act upon; which vibrations being fwifter than the rays, overtake them fucceflively, and agitate them, fo as by turns to increafe and diminifh their velocities, and thereby put them into thofe fits." Opt. Query 29.

If to this we add 30^{\prime}, the fun's apparent diameter,

we have the actual breadth of the exterior bow $=$ $3^{\circ} \cdot 42^{\prime}$.
432. Cor. I. Since the altitude of an are of any colour in the bow is equal to the radius of this are diminifhed by the fun's altitude, when the fun is in the horizon, the altitude of the are is equal to it's radius,
433. Cor. 2. The radius of any are in the rainbow is equal to the altitude of the arc above the horizon, together with the fun's altitude.
434. Cor. 3. When the fun's altitude above' the horizon, is equal to, or exceeds $42^{\circ} \cdot 2^{\prime}$, the primary bow cannot be feen; nor the fecondary, when his altitude is equal to, or exceeds $54^{\circ} \cdot 10^{\prime}$.
?

Prop. XCVI.

435. Having given the radius of an arc of any colour in the primary rainbore, to find the ratio of the fine of incidence to the fine of refraction when rays of that colour pa/s out of air into zeater.

If A be the angle of incidence of the effective rays, B the angle of refraction, the radius of the arc is $4 B-2 A$ (Art. 422); let the tangent of $2 B-A$, half this angle, to the radius unity, be $a ; z$ the tangent of B. Then $2 z=$ tang. A (Art. 423). Alfo, from the principles of trigonometry, tang. $2 B: 2 \times$ tang. $B(2 z): 1^{2}$: $1^{2}-z^{2}$; therefore tang. $2 B=\frac{2 z}{1-z^{2}}$. Again, tang. $\overline{2 B-A}(a):$ tang. $2 B-\operatorname{tang} . A\left(\frac{2 z}{1-z^{2}}-2 z\right)::$ $I^{2}: I^{2}+\frac{4 z^{2} *}{1-z^{2}}$; hence, $\frac{2 \tilde{z}}{1-z^{2}}-2 z=a+\frac{4 a z^{2}}{1-z^{2}}$; and by reduction, $2 z^{3}-3 a z^{2}-a=0$. The value of z being obtained \dagger from this equation, the angles B and A, and confequently their fines, may be found from the tables.
436. Cor. In the fame manner, if p be the number of reflections within the drop, z the tangent of $B, 2$

the

- The propofitions here referred to are the following;
ift. The tangent of the fum of two arcs, is to the fum of their tangents, as the fquare of radins, is to the fquare of radius diminifhed by the refangle under the two tangents. 2d. The tangent of the difference of two arcs, is to the difference of their tangents, as the fquare of radius, to the fquare of radius increafed by the reftangle under the two tangents. Mr. Vixce's Trig. Art. 117.
t This equation has two impoffible roots. Vid. Alg. Art. $35^{8 .}$
the tangent of $\overline{p+1} \cdot B, a$ the tangent of $\overline{p+1} \cdot B-A$, then $\overline{p+1}, z=$ tang. $A ;$ and $a: 2-\overline{p+1} \cdot z:: 1^{2}:$ $1^{2}+\overline{p+1} \cdot 2 z$; therefore $\mathscr{Q}-\overline{p+1} \cdot z=a+\overline{p+1} \cdot a 2 z$. From which equation, the value of z being found, the angles A and B, and confequently their fines, may be determined by the tables.

?
,

SECTION X.

ON CAUSTICS.

Prop. XCVII.

437. When a finall pencil of diverging, or converging rays is incident obliquely upon a Spherical reflecior, in a plane which paffes through it's center, to find the geometrical focus of reflected rays.

Let $B C$ be a fpherical reflector whofe center is E; $2 A, 2 B$ two rays of a fmall pencil incident obliquely

upon it, in the plane $2 A E ; A G, B g$ the reflected rays, or thofe rays produced backwards; q their interfection. From E, draw $E D d, E G g$ at right angles to $\mathscr{2} A, A G$; and when the arc $A B$ is diminifhed without limit, they are alfo at right angles to $2 B$, $B g$; join $E A, A B$; from A, draw $A b, A a$ at right angles to $2 B, q B$, produced if neceffary; bifect $A D$,
$A G$ in F, f. Then, the angles $E A D, E A G$ are the angles of incidence and reflection of the ray $2 A$, or

equal to them; therefore they are equal to each other; the angles $E D A, E G A$ are right angles; and the fide $E A$ is common to the two triangles $E A D$, $E A G$; confequently $A D=A G$; and $E D=E G$. In the fame manner, $E d=E g$; whence, $D d=G g$. Again, in the evanefcent triangles $A B a, A B b$, the angles $A B b$, $A B a$ are complements to the angles of incidence and reflection of the ray $2 B$, or equal to thofe complements'; therefore they are equal to each other; alfo, the angles $A b B, A a B$ are right angles; and $A B$ is common to the two triangles; confequently, $A b=A a$.

Now, in the fimilar triangles $2 D d, 2 A b, 2 A$: $2 D:: A b: D d:: A a: G g$; and in the fimilar triangles $q A a, q G g, A a: G g:: A q: q G$; therefore, $2 A: 2 D:: A q: q G$; whence, by compofition, and divifion, $\mathscr{2} A+\mathscr{2} D: \mathscr{2} A \sim 2 D:: A q+q G: A q \sim q G$;
that is, $22 F: 2 F A:: 2 A f: \overline{A f+f q}-\overline{A f-f q}$ (2qf)*; or, $2 F: F A:: A f: f q$.
43^{8}. Cor. I. In the care reprefented by the firft figure, $\mathscr{2 F}$ and $F A$ are meafured in oppofite directions from F; and fince $2 A: 2 D:: A q: q G$, and $2 A$ is greater than $2 D, A q$ is greater than $q G$; and therefore $A f$ and $f q$ are meafured in oppofite directions from f; hence it follows, that the equal rectangles $\mathscr{2} F \times f q$ and $F A \times A f$ have, in this cafe, the fame fign; therefore they will always have the fame fign; that is, whenever $2 F$ and $2 A$ are meafured in oppofite directions from $F, A f$ and $f q$ are meafured in oppofite directions from f; and the contrary.
439. Cor. 2. When the incident rays are parallel, $F A$ is evanefcent with refpect to $2 F$; therefore $f q$ is evanefcent with refpect to $A f$; or, q coincides with f. Here, $A q=\frac{1}{2} A G=\frac{1}{2} A D$.
440. Cor. 3. If D beethe focus of incident rays, G will be the focus of reflected rays. In this cafe, $\bumpeq F=F A$; therefore $A f=f q$; and fince $2 F$ and $F A$ are meafured in oppofite directions from $F, A f$ and $f q$ mult be meafured in oppofite directions from f; confequently, q coincides with G.
441. Cor.

Abstract

* This conclufion depends upon the fuppofition that when 24 and $2 D$ are meafured in the fame direction from $2, q A$ and $q \cdot G$ are meafured in oppofite directions from q. If this be not the cafe, $A q+q G=2 q f$; and $A q \sim q G=2 f A=2 F A$; therefore $2 q f=$ $22 F$, and $q f=2 F$. Now let the rays be incident nearly perpendicularly upon the reflector, and F and f coincide with the principal focus; therefore 2 and q are always equally diftant from the principal focus, which is abfurd (Vid. Art. 50).

441. Cor. 4. If 2 be a point in the circumference of the circle $B C, F A=\frac{1}{3} 2 F$; therefore $f q=\frac{1}{3} A f=$ $\frac{1}{T_{2}} 2 A$; hence, $A q=\frac{1}{4} 2 A+\frac{1}{12} 2 A=\frac{1}{3} 2 A$.
442. Cor. 5 . The fame propofitions are true of any other reflecting curve, if E be the center of curvature of the evanefcent arc $A B$.
443. Def. If an indefinite number of fmall pencils belonging to the focus $\mathscr{2}$, be incident, in the fame manner, upon the reflecting furface $B C$, the curve which is the locus of the geometrical foci of reflected rays, is called the cauftic by reflection.

Prop. XCVIII.

444. To determine the form of the cauffic, when the reflecting curve is a circular arc, and parallel rays are incident in the plane of the circle.

Let C be the center of the propofed are ; $C B$, that radius of the circle which is parallel to the incident

rays; and $A C M$ the diameter which is perpendicular to $C B$. Suppofe $G H$, one of the incident rays, to be reflected in the direction $H D$; join $C H$; bifect $C H$

$$
\operatorname{lom}_{1} 1=
$$

$$
+=
$$

in I, and $H I$ in O; with the centers C, O and radii $C I, O H$, defcribe the circles $E I F, H K I$; and let K be the interfection of $H K I$ and $H D$; join $O K, I K$; and from C draw $C D$ perpendicular to $H D$.

Then, fince the angle $H K I$, in a femi-circle, is a right angle, the triangles $H K I, H D C$ are fimilar; whence, $H D: H K:: H C: H I:: 2: 1$; therefore K is a point in the cauftic (Art. 439). Alfo, the \angle $K O I=2 \angle I H K=2 \angle C H G($ Art. 18 $)=2 \angle I C E$ (Euc. 29. 1) ; and fince circular arcs are as the angles which they fubtend at their refpective centers, and their radii jointly, the arc $E I$: the arc $I K:: \mathrm{I} \times 2$: 2×1. Hence it follows, that the locus of the point K is an epicycloid, generated by the rotation of the circle $H K I$ upon the circle $E I F$, in the plane of incidence $A H M$.

Prop: XCIX.

445. To find the nature of the cauftic, when the refiecting curve is a circular arc, and the focus of incident rays is in the circumference of the circle.

Let $A H M$ be the reflecting circle, C it's center, A the focus of incident rays; draw the diameter $A M$;

and let the ray $A H$ be reflected in the direction $H K$; join CH , and divide it into three equal parts $C I, I O$,

OH ; with the centers C and O, and radii $C I, O I$, defcribe the circles $E I F, I K H$; let K be the interfection of the reflected ray $H K$, and the circle $H K I$; join $O K$. Then, fince the $\angle O K H=$ the $\angle O H K=$ the $\angle C H A=$ the $\angle C A H$, the triangles $H C A, H O K$ are fimilar, and $H A: H C:: H K: H O$; alternately, $H A: H K:: H C: H O:: 3: 1$; therefore K is a point in the cauftic (Art. 441). Alfo, fince the \angle $H O K=$ the $\angle H C A$, the $\angle I C E=$ the $\angle K O I$; and the radii $C I, O I$ are equal; therefore the arcs $E I, I K$, are equal; and the locus of the point K is an epicycloid, generated by the rotation of the circle HKI upon the circle $E I F$, in the plane of the reflecting $\operatorname{arc} A H M$.

> Prop. C.
446. To find the nature of the cauffic, whien the reflecting curve is a common cycloid, and the rays are incident parallel to it's axis. \because..

Let $A H M$ be the reflecting femi-cycloid, whofe bafe is $A D$, and axis $D M ; G H$ a ray of light incident

upon it at H; BHI the fituation of the generating circle,

circle, when the point which traces out the cycloid is at H; and let I be the point in contact with the bafe. Take O the center of this circle, and draw the diameter $H O N$; join $O I$; bifect the line $O I$ in C, and with the center C and radius $C I$, defcribe the circle $O K I$, cutting $H N$ in K; join $l K, C K$. Then, fince $O I$ is perpendicular to $A D$, or parallel to $H G$, the $\angle O I H=$ the $\angle G H I$; and the $\angle O I H=$ the $\angle O H I^{\prime}$; therefore, the $\angle O H I=$ the $\angle G H I$, and the ray $G H$ is reflected in the direction $H O K$ Alfo, fince $I K$ is perpendicular to $H K$, and $I H$ is half the radius of curvature of the cycloid at H (Mech. Art. 287), HK is one fourth part of the chord of curvature in the direction of the reflected ray; and therefore K is a point in the cauftic (Art. 439). Again, fince the \angle $K C I=2 \angle N O I$, and $O I=2 I C$, the arc $I K=$ the $\operatorname{arc} I N=I D$; therefore, the locus of the point K is a common cycloid, whofe bafe is $A D$, and generating circle $O K I$.

Prop. CI.

447. When a finall pencil of homogeneal rays falls obliquely upon a plane refracting furface, and in a plane which is perpendicular to that furface, having given the focus of incident rays, and the angles of incidence and refraction, to find the geometrical focus of refractea rays.

Let $B A C$ be the refracting furface; $2 A, 2 B$, the extreme rays of the oblique pencil, incident in the plane of the paper; $q A, q B$ produced, the directions in which they are refracted; q the interfection of the refracted
rays. From 2 and q draw $2 C, q c$ at right angles to $B C$; and from A, draw, $A a, A b$, at right angles to

$2 B, q B$. Take S and s to reprefent the fines of incidence and refraction of the ray $2 A ; C$ and c their cofines; T and t their tangents. Then, fince the angles $A \mathscr{2} C, B \mathscr{2} C$, are equal to the angles of incidence, and $A q c, B q c$, to the angles of refraction of the rays $2 A, 2 B, B 2 A$ and $B q A$ are contemporaneous increments of she angles of incidence and refraction of the ray $2 A$; and therefore, the $\angle B \mathscr{2} A$: the $\angle B q A: T: t^{*}:: \frac{S}{E}: \frac{s}{c}$. Alfo, the $\angle B 2 A$: the $\angle \vec{B} q A+\frac{A a}{2 A}: \frac{A b}{q A}$; and fince $A a, A b$ are the cofines of the angles of incidence and refraction, to the radius $B A, \frac{C}{2 A}: \frac{c}{q A}:$ the $\angle B \mathscr{2} A$: the $\angle B q A:: T$: $t:: \frac{S}{C}: \frac{s}{c}$; whence, $q A: 2 A:: \frac{T}{C}: \frac{t}{c}:: \frac{S}{C^{2}}: \frac{s}{c^{2}}$.
448. Cor. 1. Since $2 A: \mathscr{2}:: r$ (radius) $: C$, we have $2 A=\frac{r \times 2 C}{C}$. In the fame manner, $q A=$

$$
r \times q c
$$

- Art. 421.

:

er
$\frac{r \times q c}{c}$; therefore $\frac{r \times q c}{c}: \frac{r \times 2 C}{C}:: \frac{T}{C}: \frac{t}{c}$; whence, $q c: 2 C:: \frac{T}{C^{2}}: \frac{t}{c^{2}}$.

449. Cor. 2. In the fame manner it may be proved, that $2 A=\frac{r \times A C}{s}$; and $q A=\frac{r \times A c}{s}$; whence, $\frac{r \times A c}{s}$: $\frac{r \times A C}{S}:: \frac{T}{C}: \frac{t}{c} ;$ confequently, $A s: A C:: \frac{T}{S \times C}:$ $\frac{t}{s \times c}:: \frac{1}{C^{2}}: \frac{1}{c^{2}}:: c^{2}: C^{2}$.

Prop. CII.

450. When a fmall pencil of homogeneal rays falls obliquely upon a Spherical refleitor, in a plane which pafles through it's center, having given the focus of incident rays, and the angles of incidence and refraction, to determitre the geometrical focus of refracted rays.

Let $2 A, 2 B$, be the extreme rays of a fmall pencil incident obliquely upon the ferical refractor $A B C$,

in a plane which paffes through it's center E; and let $A q, B q$, be the refracted rays. Draw $E d D, E g G$, and $B a, B b$, at right angles to $2 A, q A$, or to thofe lines
produced; and when the arc $A B$ is diminifhed without limit, $E d$ and $E g$, are at right angles to $2 d, B q$. Take I and R to reprefent the angles of nicidence and refraction of the ray $2 A$. Then, fince $E D: E G::$ fin. $I:$ fin. $R:: E d: E g$, we have $D d: G g::$ fin. I : fin. R (Euc. 19. 5). Alfo, $B a, B b$ are the cofines of I and R, to the radius $A B$.

From thefe two confiderations, and the fimilarity of the triangles $2 D d, 2 a B$; and $q b B, q G g$; we obtain the following proportions;

$$
\begin{aligned}
& D d: G g:: \text { fin. } I: \text { fin. } R ; \\
& G g: B b:: G q: b q(A q) ; \\
& B b: B a:: \cos . R: \cos . I ; \\
& B a: D d:: 2 a(2 A): 2 D ;
\end{aligned}
$$

by compounding which proportions, we have fin. $I \times$ $G q \times \cos . R \times 2 A=$ fin. $R \times A q \times \cos . I \times 2 D$; and therefore, $A q: G q: \frac{\mathrm{fn} . I}{\cos . I} \times 2 A: \frac{\mathrm{fin} . R}{\cos . R} \times 2 D::$ tang. $I \times \mathscr{2} A$: tang. $R \times \mathscr{2} D$.
457. Cor. I. The diftances $q, A, q G$, mult be meafured in the fame, or oppofite directions from q, according as $2 A, 2 D$, are meafured in the fame, or oppofite directions from ${ }^{2}$.
452. Cor. 2. When the incident rays are parallel, $2 A=2 D$, and therefore $A q: G q::$ tang. I : tang, R.
453. Cor. 3. On the foregoing fuppofition, when the rays pafs out of a rarer medium into a denfer, and the angle of incidence becomes nearly a right angle,
tang,

- Vid. Art. 438, and Note, p. 243.
tang. I is indefinitely greater than tang. R; therefore.

$q G$ vanifhes; or q bifects the chord of the arc, cut off by the refracted ray.

454. Cor. 4. When the rays are incident nearly perpendicularly upon the refracting furface, tang. I :

tang. R :: fin. I : fin. R; alfo, D and G coincide with E; therefore $q C: q E:: \operatorname{fin}, I \times 2 C:$ fin. $R \times$ $2 E$.
455. Cor. 5. Similar conclufions may be drawn refpecting the refraction of a fmall pencil of rays at any other furface, if E be the center of curvature of the refractor at the point of incidence.

On this fubject, the reader may confult Hayes's Fluxions, Sect. IX, X. Smith's Optics, Book II, Chap, IX.
*

DING SECT.

PLEASE DO NOT REMOVE

CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

```
QC Wood, James
    \(t\)
4
II






```

 \%
    ```




```

$$
1 . \quad 05^{4}
$$

\square

$$
0-2
$$

```

```4
```

mi mat it is

```
\(1 \%\)
```



```
\[
=\pi
\]
\(8 \times 8\)
```



```
y
\(=\)
\(=\)
\(=\)
```





```
\[
\operatorname{ci}^{7}-4
\]
```






[^0]:    -18

[^1]:    - Euc. ${ }_{B}^{\text {32. }}$.

[^2]:    - See alro Prop. 3 I.

[^3]:    - In this, and the following propofitions, the rays are fuppofed to be equally refrangible.

[^4]:    * In fome eyes, the pupil is - 2 little nearer to the nofe than the center of the uvea.
    + The limit of it's aperture, in the eyès of adult perfons, appears to be from about $\frac{1}{4}$ to $\frac{1}{1} \frac{1}{C}$ or $\mathrm{I}^{\frac{1}{2}}$ of an inch. Harris's Optics, p. 94*

[^5]:    * Any error in this propofition muft arife from the limited experience we have of the truth of the former. The magnitude of which we are here fpeaking, is the linear magnitude.

[^6]:    - Of this defcription are the double convex lens, the plano con: wece, and the menifcus:

[^7]:    - See the laft figure.

[^8]:    - Seẹ Art. 270.

[^9]:    * Having given the focal lengths of the reflectors, and the diftance of $q$ from $T$, the diftance of the reflectors may be found.

    Let $T_{t}=x ; t c=b ; T C=a ; T_{q}=c$. Then, $x: b:: b:$ $x+c$; therefore, $x^{2}+c x=b^{2}$; from which equation we obtain $x=\frac{\sqrt{4 b^{2}+c^{2}}-c}{2}$; and $C c=a+b+x$.

[^10]:    $\qquad$

    ```
 Pr
 31
 3
    ```

    $\qquad$
    

[^11]:    * On the conftruction, and ufe of the folar microfcope, the reader may confult Mr. Adam's work, entitled 'Effays on the microfcope.'

[^12]:    - There is confiderable difficulty in determining the vifible imay of an object, when feen by refleEted, or refracted rays. In t] preceding cafe; if we fuppofe the impreffion to be made by the rays which are incident in the plane perpendicular to the refracii furface, the equation to the curve which is the locus of $x$, rifes eight dimenfions. If we fuppofe the impreffion to be made thofe rays which are equally inclined to the refracting furface, 1 equation rifes to four dimenfions. Vid, Newt. Lee. Op. P. Prop. VILI.

[^13]:    - Leê. Opt. P. I. Prop. XXV.

[^14]:    4 Ineinl

[^15]:    - In this inveftigation of the aberration, diverging rays are fuppofed to fall upon a convex fpherical furface of a denfer medium, and to converge after'refraction. The other cafes may be derived from this, by a proper attention to the fymbols.

[^16]:    

[^17]:    (4)

