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PREFACE

FroM an educational standpoint, sciences are taught in
High Schools, and schools preparatory to Colleges, for two
quite distinct reasons : to train the student in powers of
observation and accurate description, and to cultivate habits
of exact thought and statement.

Certain sciences can be learned directly in the laboratory,
where the student himself performs the experiments, ob-
serves the phenomena, and draws his own conclusions.
Such are Chemistry, Botany and Biology; and for these
studies in their elementary stages a laboratory manual is
the form of text-book which is most helpful. Other sciences
must be studied in the open country where Nature herself
is performing or has performed the experiments. Such are
Geology and Physical Geography. But the phenomena
of Physics are too complicated to be described by any stu-
dent left unaided, or to be understood when demonstrated,
unless he is guided by a suitable text-book containing the
theory of the subject. In other words, Physics must first
be taught in the class room, where the student may see
demonstrated and explained those experiments on which
the science is based. To teach Physics without lecture
experiments is almost worse than useless. For a student
beginning the subject, laboratory instruction in Physics is
of secondary importance. It isextremely useful and a great

iii



iv PREFACE

aid to the student in understanding the subject; but he can
receive the mental training and learn the fundamental facts
and theories without himself performing the experiments.
If possible, however, laboratory work should be required of
all students; and the experiments should be in the main
quantitative. Those performed on the lecture table need
not be repeated by the student unless greater accuracy is
desired.

All the principal facts and theories of Physics shotld be
illustrated by lecture experiments; and attention should
constantly be directed to the proper understanding of a ‘‘law
of Nature ” and its ‘‘ verification.” A law is a statement of
our belief concerning certain phenomena; it is suggested by
a number of observations and measurements, and is, in fact,
a generalization of these. It is shown to be in accord
with all observations, to within the range of error inherent
in the experimental instruments used, but can never be
perfectly verified. The experiments shown the student in
the lecture room or performed by himself in the laboratory
are to be considered as illustrations of the laws, not as
attempts at verification.

In an elementary text-book designed for students unac-
quainted with Physics, the purpose should be to emphasize
the most important laws of the various branches—Mechanics,
Properties of Matter, Sound, etc. These laws should be
illustrated in as many ways as possible; but the general
principles should never be lost sight of. It seems a mistake
to include in the body of the text—the portion which must
be studied by the class—descriptions of all the demonstra-
tions for the lecture room and of the experiments for the
laboratory. The last should be the subject of a separate
laboratory manual; but, if it is necessary to give these
descriptions of class and laboratory experiments in the gen-
eral text-book, they should certainly be placed in a section
by themselves.
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The arrangement of matter in the present book is as
follows : Part I. Introduction, Mechanics, Properties of
Matter, Sound, Heat, Magnetism, Electricity and Light;
Part II. Suggestions to Teachers. In Part I. the subjects
mentioned are treated in an elementary manner; and the
amount given is no more than can easily be studied in the
course of one school year. In Part II., descriptions are
given of lecture demonstrations and laboratory experiments
which are suited to illustrate the text of Part I.; and a few
problems are added.

Our thanks are due to two of our former students, Dr. J. F.
Merrill and Dr. C. W. Waidner, for their kindness in read-
ing the manuscript and for many valuable suggestions.

J. S. Amss.
H. A. Rowranp.

Jouns HopkiNs UNIVERSITY, 1899.
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ELEMENTS OF PHYSICS

INTRODUCTION TO PHYSICS

1. Physics.—Each day we live, our attention is necessarily
drawn to the fact that there isa certain regularity in events,
that the same cause always produces the same effect. All
facts of experience justify this belief, and the conduct of our
lives is based upon it. We believe that if a stone is dropped
from the hand, it will fall in a definite way and reach the
earth in a deﬁmte time, depending upon the helght from
which it is dropped; we believe that day will succeed night,
and night day, in a certain definite manner. This belief of
ours is founded on our own experience and on that of past
ages. It is equivalent to the statement that all the phenom-
ena of nature take place according to fixed laws. To learn
these laws and to express them accurately is the aim of
NATURAL SCIENCE.

Physics is but a branch of Natural Science; and it is quite
impossible to define its limits exactly. It may be said to
include Astronomy; and in one direction it approaches
Geology, in another Physical Geography, in still another
Chemistry. In the main, such special subjects as Mechan-
ics, Sound, Heat, Electricity, Magnetism and Light are

included in Physics.
1 84170



2 INTRODUCTION

2. Matter and the Ether.—All things that appeal to
our senses, in particular to our ‘‘muscle sense,”* are called
‘‘matter,” e. g. a book, a stone, water, air, etc. As will be
shown later, we can prove the existence of something which
does not affect any of our senses directly, which is a medium
filling all the space in the universe around us and permeat-
ing all matter, and which has certain properties in common
with matter. It is called ‘‘the ether.” Physics is primarily
concerned with the properties of matter and the ether.

The difference .between the purposes of Physics and
Chemistry may be shown by an illustration. If two forms
of matter, e. g. two kinds of sand, black and white, are mixed
together, each keeping its individual properties unchanged,
so that it is possible to separate them again, the change is
called a ‘‘physical ” one; whereas, if, as the result of bring-
ing two things together, e. g. a piece of coal and the oxygen
of the air, the properties of each are lost and an entirely
new substance appears, it is called a ‘‘chemical ” change.
Physics is concerned mainly with physical changes. There
are, however, many chemical phenomena which are of the
greatest importance in the study of physms such as solution
and combustion.

3. Properties of Matter.—As stated above, the name
‘““matter ” is given to whatever our senses recognize. If we
analyze the sensations by means of which we learn the prop-
erties of matter, we see that they are in most cases due to
the ‘“muscle sense.” For instance, if a ball is stopped or
thrown, if a chair is lifted, if a stick is bent or twisted, it is
through our muscles that we receive the sensation. It
should be noted that these three illustrations are funda-
mentally different, and that they therefore indicate three
independent properties of matter.

* By *‘muscle sense” is meant a definite sense to which sensations
caused by the actions of the muscles are due.
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4. Inertia.—The first illustration, that of stopping or
throwing a ball, is one of a property called ‘‘inertia.” If
the motion of a piece of matter is changed in any way (in
particular if it be set in motion), we always connect this
change with our muscle sensations. Other illustrations are,
setting a grindstone in motion, opening a door, holding one’s
hand under an open water tap, blowing against one’s hand.
The intensity of the sensation is known by experience to
depend upon two things, the guantity of the substance and
the suddenness of the change of motion. For instance, to
tell which of two barrels or boxes is full and which empty,
one has but to attempt to push one, and then the other; and
a ball moving slowly is stopped with a sensation different in
degree from that felt when a swift ball is caught.

5. Weight.—The second illustration given above, that of
lifting a chair from the floor, has nothing in common with
the one just discussed. It is not a question of changing the
motion of the chair; for if the chair be held suspended by the
arms, or be raised at a uniform rate, the sensation is the same.
In this case the essential feature is the separation of the
chair from the earth. This property of matter is called
‘““weight;” and bodies are called ‘‘heavy” or *‘light”
according to the intensity of the sensation felt when they
are raised vertically away from the earth. The weight of
a body is but a particular case of a much more general prop-
erty of matter; viz. if our senses were more delicate, we
should feel a similar sensation if we separated any two por-
tions of matter, however small, e. g. two baseballs; and
this more general property of the action of one body upon
another has received the name ‘‘gravitation.”

6. Size and Shape.—The third illustration, that of bend-
ing or twisting a stick, is one of a most numerous class. It
includes such actions as stretching a rubber band or a spiral
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spring, plucking a stretched cord, squeezing out a lump of
putty, and compressing a rubber bag full of watér or inflated
with air. It is seen that they all involve changes or proper-
ties of the szze or the skape of the bodies concerned.

7. States of Matter.—Matter exists in many forms, which
differ greatly in character. They may be divided conve-
niently into three groups: solids, liquids and gases, although
it is sometimes difficult to tell in which group a body belongs.
A solid, as ordinarily considered, has a definite volume and
a definite shape; and in order to alter either volume or
shape considerable effort is required. A /JZquid, if left to
itself, forms spherical drops, but, if poured into a bottle or
flask, takes its shape, keeping, however, its own volume. It
requires great effort to change the volume of a liquid; but
it will yield to the slightest attempt to change its shape.
A gas distributes itself uniformly through the space offered
by the vessel which contains it; and so it assumes the shape
and volume of the vessel. A liquid, therefore, has a volume
of its own, but can take any shape; while a gas has neither
shape nor volume of its own. In general, a liquid only
partially fills a bottle or goblet; there is a ‘“‘free surface,”
separating the liquid from the air. Liquids and gases are
both called ¢‘fluids,” because they can be made to flow.

8. Mass and its Measurement.—The quantity of matter
which an object has is called its ‘““mass.” To measure this,
that is, to give a numerical value to it, several steps are
necessary: (1) to choose some property of matter as a basis
of comparison; (2) to define what is meant by saying ‘‘two
objects have equal masses;” (3) to choose some standard of
mass. Thus, it is possible to take as the basis of comparison
the property of inertia, and to define two objects as having
equal masses, if, when set in motion by the same cause,
they have identical motions. For instance, let, in succes-
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sion, the two objects be set in motion by means of the same
compressed spring (like that of a toy musket) along a smooth,
horizontal table, and if each receives the same velocity, that
is, goes the same distance in the same time, their masses
may be defined to be equal. Care would be necessary
to guard against the influence of friction, resistance of
air, etc.

Or, gravitation might be taken as the basis of comparison;
and two bodies might be defined as being of equal mass if
they had the same weight. Thus, if each body in turn is
suspended by a rubber band (or a spring-balance), and if
the elongation is the same in each case, they may be said to
have equal masses.

There is no @ priori reason why there should be any connec-
tion between these two definitions; but it is found by experi-
ments (see Articles 30 and 3r1) that two bodies which have
the same inertia also have the same weight. Consequently,
it is immaterial which of #/ese two properties is taken as.the
basis of comparison.

The next step is to choose some unit or standard. The
scientific world and most of the civilized governments have
agreed to accept as this standard a definite cylinder of
platinum, known as the ‘‘ Kilogramme des Archives,” which
is kept in Paris under the care of the French government.
Copies of this have been made and are distributed over the
world. Having accepted a standard, it is possible to make
another body of almost equal mass, testing the equality by
experiments as described above. (They can be made equal
to within the degree of accuracy of the instruments used;
or they may be slightly different, and the difference can be
determined.) Thus having two bodies of equal mass, it is
possible to make a third body whose mass shall be equal
that of the two equal ones combined; its mass is said to be
twice that of the standard. This process can evidently be
continued, so as to construct masses three, four, five, etc.,
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times that of the standard. Similarly, by repeated trials,
two bodies of equal masses may be made, which when put
together have the same mass as that of the standard; each
of these two bodies is said to have a mass equal to one half
that of the standard. This process of subdivision may be
continued as far as desired. A body whose mass is one
thousandth of that of the kilogram is said to have a mass
of one ‘‘gram;” and other subdivisions have received suit-
able names. Thus, a ‘‘set of masses” may be constructed,
extending from any great mass to any small one; and, if it
is desired to know the mass of any body, e. g. a stone, it is
possible by repeated trials to ascertain what combination of
the members of the set of known masses has the same mass
as that of the arbitrary body (the stone), to the desired
degree of accuracy. In this way, the mass of any body may
be measured. (In practice, masses are compared and meas-
ured by means of a balance, which is an instrument to
measure weight;, but, as said before, two objects which
have the same weight also have the same inertia.)

9. Conservation of Mass.—By measurements of this
kind, it may be proved that if two bodies are allowed to
react on each other in any way, e. g. if salt is dissolved in
water, the mass of the resulting substance equals the sum
of the separate masses. This is known as the ‘‘Principle
of the Conservation of Mass.” /

10. Molecules and Atoms.—All bodies are made up of
smaller portions which have received various names accord-
ing to their degree of smallness. If a piece of copper wire
is cut in two, each piece is still like the original piece in all
essential properties. We can imagine this process continued
until a piece of copper is reached which is so small that, if in
any way it is broken in two, its parts cease to have the
properties of copper. This last piece of copper is called a
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‘““molecule,” and its fragments are called ‘‘atoms.” Chem-
istry deals with methods of breaking down molecules into
atoms and re-forming other molecules. Physics is con-
cerned largely with groups of molecules, both those se small
as to escape all microscopic investigation, and those -so
large as to be evident to our senses. (As will be shown
later, these molecules and atoms are not at rest, even when
the body is a solid, but are both vibrating very rapidly, and
also moving about from point to point.)

1I. Matter in Motion.—Since in no natural phenomenon.
is it possible to create or destroy matter, every change in
nature must be one of position, for the minute, or for the
large portions of matter. In a body falling to the ground,
we have a large piece of matter moving; in heating bodies
by means of a fire, we have the motion of extremely small
portions of matter, as will be shown later. Matter in motion
is then our fundamental conception of all those phenomena
of Nature which involve only matter.

12. Motion.—Motion involves two ideas, a distance and
an interval of time; we wish to know how far a portion of
matter has moved in a definite time. To give a numerical
value to motion, then, we must have methods of measuring
distances and intervals of time. A distance has to our
minds but one property; and two lengths are equal if they
can.be superimposed. Our standard of length is that of a
platinum bar known as the ‘‘ Métre des Archives,” which is
kept in Paris, the length being measured when the bar is at
the temperature of melting ice, i. e. o® Centigrade. This
length can be considered subdivided into smaller parts; and,
in fact, one hundredth of a metre is called a ‘‘centimetre;”
one thousandth, a ‘“millimetre,” etc.

Intervals of time have to our minds but one property, that
of duration; and we have definite understanding as to what
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is meant by two ‘‘equal ” intervals of time. The standard
of time is the ‘“mean solar second;” that is, the second of
time which is referred to the average length of a solar day,
the average being taken of all the days in one year. (Mean
solar day = 24 mean solar hours = 1440 mean solar minutes
= 86,400 mean solar seconds.

13. The C. G. S. System.—By means of these units, or
by means of any other system, all the laws of motion of matter
may receive mathematical expression. If the centimetre,
the gram and the mean solar second form the system used,
the quantities are said to be expressed in terms of the
“C. G. S. System;” and this is used in all scientific writing
and by most governments, '

TABLE 1
1 centimetre =  o.3937 inch.
1 inch = 2.540 centimetres.
1 gram = o.002205 pound.
1 pound = 453.59 grams.

14. Density.—If the centimetre is the unit of length, the
square centimetre is the standard of area, and the cubic
centimetre that of volume. If a body is homogeneous, that
is, if all its parts are exactly alike, its ‘‘density ” is defined
to be its mass expressed in grams divided by its volume
stated in cubic centimetres, or the number of grams per
cubic centimetre. (If it is not homogeneous, it is possible to
find in the neighborhood of any point a small portion which
is homogeneous; and the ratio of the mass of this portion
to its volume is the ‘‘density at the point” considered.)
The kilogram was so constructed that its mass is almost
exactly that of 1ooo cubic centimetres of pure water at the
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’

temperature 4° Centigrade. The difference is, in fact, so
small that it can be observed only with the most delicate
instruments (1000 cubic centimetres of water at 4° C. have
a mass 999.998 grams). In all ordinary calculations, this
difference may therefore be neglected. Consequently, the
mass of 1 cubic centimetre of water at 4° C. is nearly 1 gram.
The density of water, therefore, at 4° C., i. e. the mass of a
definite quantity divided by its volume, is 1. (The density
"of mercury at o° C. is found to be about 13.6, i. e. the mass
of 1 cubic centimetre is 13.6 grams.) At higher tempera-
tures the density becomes less, because the volume occupied
by a given mass becomes greater.

TABLE 1II
DENSITIES
SoLiDs
Brass . (about) | 8.5 ead:. . . . iRAlESg
EoppeAIFHIEEE 8.92 Platinum . . . 2m5
e BiR e Cr i o i 0.91 Silvier S e ERoN G
ron M EastesitEay: 7.4 Thin| fhg=ral 4108 ) B 7.29
Liguips '
Alcohol at 20° C. 0.789 Sulphuric Acid . 1.85
Mercuny: - SFERIERNG Sea Waterat o°C. 1.03
Gasges AT 0°C. AND 76 cM. OF MERCURY PRESSURE
Air, Dry . . | oc.001293 Nitrogen . . | o.001257
Hydrogen . | 0.0000895 Oxygen . . | .0.001430







CHAPTER I

INTRODUCTION TO MECHANICS

THE science which is concerned with the laws of the
motion of material bodies is called Mechanics. Asan intro-
duction to it, one must study the different kinds of motion
which are possible.

15. Motion in General.—It should be recognized that
when a motion of any kind is described, it is always done
with reference to something which is considered as at rest.
Thus, a body falling from the mast of a moving vessel is
said to fall in a vertical straight line; but this is true only
with reference to the vessel; the path of the body with
reference to the earth is not vertical, but oblique. If, in
Fig. 1, A B is the position of the mast when . "
the body starts to fall from A4, and if 4" B’ /
is its position when the body reaches the deck J
at B', the path of the body with reference /
to the vessel is vertical, down the mast; but 4
with reference to the earth, it is the oblique g
line 4 B'. : /

Motions are divided into two classes, which |,
have received the names ‘‘translation” and g

‘rotation.” FI1G. 1.

Translation is motion such that all the points of the body
have the same or equal parallel motions; therefore, all lines
that can be imagined drawn in the body remain parallel

gt
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to themselves during the motion. Motion of translation is
that of a moving elevator or hoist, a body falling without
twisting, a train moving along a straight track.

Rotation is motion such that all the points of the body
are moving in circles which are in parallel planes, and whose
centres all lie on the same straight line perpendicular to
these parallel planes. This line is called the ‘‘axis” of rota-
tion. Motion of rotation is that of a swinging door, a
revolving fly wheel, a grindstone in motion.

Cases of pure translation or of pure rotation are uncom-
mon. Almost all actual cases of motion are combinations
of translation and rotation; for example, a stick thrown at
random into the air, the wheel of a moving wagon, a base-
ball in motion, etc. If, however, the elementary principles
of translation and rotation are understood, there is no diffi-
culty in applying them to more complicated motions.

TRANSLATION

16. Displacement; Velocity; Acceleration.—Since in
translation the motion of all points of the body is the same,
we need consider the motion of one point only. If at any
instant a point is at the position A4, and later on is at 5, the
straight line A4 B is called the
‘‘displacement.” It indicates
by its direction and length the
change in position of the body.
If the actual motion of the body
is such that the path traversed
is the straight line 4 B, and
if the motion is at a uniform
rate of speed, the line A 5 meas-
ured in centimetres, divided by
the time taken for the motion, measured in seconds, is called
the ‘‘linear velocity,” i. e. if the motion is uniform, the

. FIG. 2.
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linear velocity is the distance traversed in one second in
a particular direction. If the motion is not uniform, the
‘““velocity at any instant” is the displacement the body
would have in one second, 7f its motion were to remain
during that time exactly as it is at the instant taken.

Thus, if the velocity of a railway train at any instant is
said to be ‘‘ 40 miles an hour south,” it is meant that the
train is at that instant going in a southern direction at such
a rate that, if this should not change, the train would in the
next hour traverse forty miles. The linear velocity of a body
can therefore be represented by a straight line of a definite
length in a definite direction. Thus, in Fig. 3, the line 72 Q
may indicate that at any instant a moving body
has such a velocity that its motion is in the Q
direction Pto @, and that its rate of motion
is such that the length 2 Q equals, or is pro-
portional to, the distance which is (or would be)
traversed in the next second. The numerical
value of the linear velocity, the element of
direction being omitted, is called the ‘‘linear
speed.” Thus, velocity is speed-in-a-particu-
lar-direction.

If the velocity is changing, either in direction or in speed,
the motion is no longer uniform. If the change, however,
is uniform, the amount of change in one second is called the
““linear acceleration;” while if the change is not-uniform,
the ‘‘linear acceleration at any instant” is the change
in the linear velocity which wou/d take place in the next
second, zf the change were to be uniform during that time.
(It should be noticed that ‘‘acceleration ” does not imply an
increase in speed necessarily, but any change in the velocity.)
Since linear acceleration is a change in the velocity, there
are two types: 1. When the direction is unchanged, but the
speed altered, e. g. an elevator, a falling body. 2. When
the speed is unchanged, but the direction altered, e. g. a

FIG. 3.
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stone whirled in a horizontal circle by means of a sling, a
point on the rim of a fly wheel.

17. Composition and Resolution.—If a bodyis given in
succession two displacements, 4 B and B C (Fig. 4), it is
---------------- c equivalent to the single dis-
placement A C. The line 4 C
is called the ‘‘geometric sum”
of the lines 4 B and B C; or the
line A C is said to be ““resolved
into” the lines 4 B and A C.
B (It should be noted that it is
DICRE " immaterial which displacement

comes first, 4 B or B C. For,if B C comes first, the broken
line giving the displacement is the opposite half of the paral-
lelogram, viz. A D and DC.) Similarly, any broken line,
made up of two lines, starting from A and ending at C, is
equivalent to 4 C. Of these broken lines, however, those
are the most important which are made up of two lines at
right angles to each other, e. g. 4 D and D C in Fig. 44, or

Fi1G. 4a.

AD and D'C. This is-due to the fact that motion along
A D has nothing in common with motion along D C. (A man
walking due north does not get to the east; but if he walks
northeast, he goes both north and east.) A 2 is called the
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““comporient ” of A C in the direction A £ ; A D' is the com-
ponent in the direction A £'. It follows from geometry
that

AC =AD" L DC =T ¥+DC

In a similar manner, velocities can be compounded. If in
Fig. 4 B C represents the velocity of a railway carriage, and
A B that of a man walking across it, A4 C is the velocity of
the man with reference to the tracks; or, if B C is the
velocity of a river current, and A B that which a boat would
have if there were no current, 4 C will be the actual velocity
of the boat. (Other illustrations are given by the path of a
raindrop when it first strikes the window pane of a railway
carriage in motion, by the direction in which the trail of
smoke follows a steamer.) As before, A4 C is called the
geometric sumof A Band BC. Referring to Fig. 4a, if AC
is a velocity, 4 D is called the component in the direction
AE.

18. Acceleration.—Linear acceleration is the rate of
change of linear velocity; thatis, it is the difference between
two velocities, and can therefore be repre- , c
sented by a straight line. Thus, in the ( ““““
case of a falling body, let 4 B, in Fig. s,
be the velocity at any instant, and let C D
be the velocity ¢“¢” seconds later. The y
change in the velocity, C D — A B, is the
line BD; the acceleration has therefore B
the same direction as the two velocities, VNI S

if the

and has the numerical value —B—tg,

change in velocity is uniform; otherwise
the acceleration at the instant is the limit-

ing value of this fraction as the interval of Do diay D
time ¢ is made smaller and smaller. Fic. s.
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In the case of a point on the rim of a fly wheel in steady
motion (see Fig. 6), the velocity at the instant when it is
at  may be represented by
the line O 4 which is paral-

lel to the tangent at A;

when # seconds later the

point is at (, its velocity

will be O B, a line which is
parallel to the tangent at O,

and whose length equals

B that of O A, since the
speeds are the same. The

A change in the velocity, that
is, the difference between

FIG. 6. the lines O B and O 4, is

the line A 5, because A 5 added by geometry to O 4 gives
O B. The linear acceleration at 7, therefore, is the limit-

; 3 AB 3 :
ing ratio of - when # is made so small that Q is the

point on the circle consecutive to Z. In the limit, then, the
direction of A B (and, consequently, that of the acceleration)
is perpendicular to O 4, i. e. to the direction of the tangent
at £, and hence is along the radius of the circle at 2 and
towards the centre. .
Accelerations being represented, as shown, by lines of
definite lengths and in definite directions, can be com-
pounded or resolved, just like displace-
ments and velocities. Thus, if a body is
free to fall vertically towards the earth,
it will have a vertical acceleration which
may be represented by the line O 7,
Fig. 7; but, if the body is compelled to
move down a smooth inclined plane, it FIG. 7.
will have the acceleration O R, which is the component of
O Pin the direction down the plane, the angle (O R P) being
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a right angle. The other component, O @, is neutralized
by the plane down which the body falls.

SpeciaL Casgs

19. Direction of Motion Unchanged, Acceleration
Constant.—Let the numerical value of the acceleration be
‘“a,” and let the velocity of the body at any instant be *‘s,”;
then, since the acceleration is the change of velocity in one
second, the velocity # seconds later will be s, + a¢ Call
this s. Then,

s=s,+eat. . . . . .0 (1)

Since the acceleration is constant, the average* velocity
; 3 | s+ ; ’

during these ¢ seconds will be _iz_ *; and this being the

average distance traversed in one second, the distance trav-

ersed in the ¢ seconds will’ be ¢ X #". Call thisx. Then

5 S
r—1 __?o.

or, substituting for s its value,
=t ba L e Vel ()

*To prove this statement, lay off a horizontal straight line LE of
length # (# being a number); from A4 erect a perpendicular 4 4" of
length s,; and from A a perpen- g
dicular B B’ of length s. Draw the
straight line 4’ B’ (Fig. 74). Since
the velocity changes at a wniform p
rate from s, to s during the ¢ sec- [,
onds, the velocity at any instant !
during these # seconds is given by , S\J C B
the vertical distance between 4 B
and 4’ 7' at the proper point. The
average velocity is thus the length of the line which is the average
of all the lines drawn to A’ B’ perpendicular to 4 B. If Cis the mid-

T . Sl So+ §
dle point of 4 B, the average velocity is C C', or 0—2—

FIG. 7a.
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¢ 5,7 is the distance the body would have gone if there had
been no acceleration, i. e. if the velocity had remained con-
stant; $a ¢ is the additional distance traversed, owing to
the acceleration.

If the seconds are counted from the instant when the body
starts from rest, i. e. if 5, = o,

s=atl
SR 3)

If, therefore, it is found by experiment that the distance
from rest which a body goes in # seconds varies as #*, it fol-
lows that the acceleration is constant.

Illustrations of this motion are bodies falling freely,
bodies falling down inclined planes, a train being brought to
rest by means of friction (in which case ‘‘a” is negative),
bodies thrown vertically upward, etc.

20. Projectiles.—If a body is projected from a height in

a horizontal direction with a velocity 7, it will in # seconds
go in this direction a dis-

>~ tance ¢ v, if there is nothing
to retard or hasten its hori-
zontal motion; but, while it

is traversing this distance,

it is also falling a vertical
distance 4 a#. Let the
horizontal velocity be repre-
sented by O A in Fig. 8 and

the vertical acceleration be
““g,” where } gis represented

by Oa. Then at the end of

T T At R e R the first second the body will
FIG. 8. be at P; at the end of the

second at Q, where O B is twice O A, and B Q is four times




UNIFORM MOTION IN A CIRCLE 19

O a, etc. The actual path is seen to be a parabola. Simi-
larly, a body thrown into the air from the earth will describe
a parabola, e. g. path of jet of water, of a ball, of a bullet,
etc. (This statement presupposes that the effect of the
resistance of the air can be neglected. In all actual cases
there is an effect due to the air, and the curve is not exactly
a parabola.)

21. Uniform Motion in a Circle.—It has been shown
(Article 18) that, when a point is moving in a circle with
constant speed, the acceleration at any point is along the
radius drawn to that point, and has
for its numerical value the limiting

value of #, where O A is the veloc-

ity at P, O B that at , and ¢ is the
time taken to traverse the path 2 (. Q
(See Figs. 6 and 9.) Let the radius P
CP be called 7; the linear speed,

IR ther, "acceleration,isiay " ‘Then A
OA = OBFB = s, because the numeri-
cal value of the velocity is the speed;

2

ANS . i s
and a = e the limit, i. e. when

¢t is a very small fraction of a S
-second. In the limit also, the arc 2 is a straight line,
and, since the radii C 2 and C Q are perpendicular to the
lines O A and O B, which are parallel to the tangents at
Pand Q, the triangles C 2 Q and O A B are similar.

|

5

Hence

04~

0
v

But 04 =s5; CP=r; and P, the path traversed in ¢
seconds, equals s ¢
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BN

Therefore =—
s r
and so Al = ¥

The numerical value of the acceleration follows at once:

T A e S et

It is seen to be independent of the position of the moving
point. Its direction is, however, as shown above, towards
the centre of the circle as the point moves.

Another method of proof is this: At 2, in Fig. 10, the acceleration
a is towards the centre (as shown above); therefore, in the # seconds
taken to go to @, the body would, if
at rest in P, have fallen towards C a dis-
tance P %, which equals } @#. Since,
however, the body has at 2 the speed s
along the tangent, it will at the end
of the #seconds be at () if 7 is extremely
small, where 2 (Q = s#; and where
‘O R is perpendicular to the radius C 2.
(Compare the motion of a projectile.)
If the radius C' 2 is prolonged into a di-
ameter S 2P, the triangle SQ 2P is a
right-angled one; and by similar tri-
angles

PO =PRXSP.

In the limit the straight line P O = s¢; further, PR =4 a #, and
SEPI=2 7

Hence S =a
or @ = —.
22, Angles,—The difference in direction between two straight lines

which lie in one plane is called the ‘‘angle” between them. The
numerical value to be given an angle is d¢fined as follows: Let 2 () and
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P Q' be the two straight lines; prolong them till they meet at O;
with O as a centre and with any radius O & describe an arc of a circle
intercepted by the two lines O Q) and O 7' Q'; then the ratio of the
length of the arc R R'to the radius O R is the value of the angle (Fig. 11).

'

This ratio 1;1;; is independent of the - R Q
radius chosen, as is evident from /\/
geometry. Applying this to a point e 3
moving in a circle (Fig. ), the angle e !
- !
_2Q_=st 3 ;
Pco=gp=7% e
Hence
s R <
> = angle traversed in one second. FIG. 11.

This is called the ‘“angular speed,” and may be written o.

Then - = w,
7

S?
and a=—=ruw
7

Since the circumference of a circle is 2 w 7, one quarter of a circum-
AT q . N T

ference is = Hence the numerical value of a right angle is = r/r =

and, when a radius of a circle makes one complete revolution, it passes

2mr

through an angle =2m The angle ;ﬂ- is often called go°; that of

2 m, 360°; but these figures are perfectly arbitrary.

RoraTion

23. Angular Velocity, etc.—The characteristic property
of rotation is angular motion around a certain axis, e. g. a
fly wheel in motion, a swinging door, a barrel rolling down
an inclined plane, a top spinning, etc. These illustrations
may be classified as follows:

1. Constant angular speed around a fixed axis. This is
the case of a fly wheel in uniform motion.

2. Varying angular speed around a fixed axis. This is
the case of a fly wheel when it is being set in motion or
being stopped. (A barrel rolling down an inclined plane is
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also an illustration, because its axis, although not fixed, is
moving parallel to itself.)

3. Constant angular speed around an axis whose direction
is varying. This is the case of the spinning top, if its axis
of figure is not vertical. As every one knows who has
played with tops, the axis under these conditions slowly
changes its direction and describes a cone.

It should be noted that these three classes are perfectly
analogous to the three classes of translation: 1. Constant
linear velocity; 2. Varying speed, direction of motion
unchanged, e. g. a falling body; 3. Constant speed, direc-
tion varying, e. g. a stone whirled in a horizontal circle by
a sling. Thus there is complete analogy between ‘‘dis-
tances” and ‘‘direction of motion” in Translation, and
‘““angles ” and ‘‘direction of axis” in Rotation.



CHAPTER II

DYNAMICS

24. The fundamental properties of matter were discussed
briefly in the Introduction, Articles 3-6; and'methods were
described for the measurement of quantity of matter or
‘““mass.” It remains, however, to express in mathematical
language the properties of matter in motion, and to discuss
the methods by which various motions may be produced.
. This branch of mechanics is called Dynamics.

TRANSLATION

25. Mutual Action of Two Bodies.—The motion of a
single body is a special case of that of two bodies; and to
have any change in the motion of a body, the presence of a
second body is necessary. The commonest illustration of
motion of matter in which only two bodies are concerned is
a body falling towards the earth. Since the body falls
towards the earth, the latter might be expected to move
towards the body; and, therefore, to describe the phenom-
enon, it would be necessary to know the mass of the body
and its velocity at any instant, and, in addition, the mass
of the earth and its velocity. This shows that this case
of motion is not by any means simple. A better illustra-
tion would be given by two balls rolling on a smooth table,
colliding and rebounding; for here both masses and both
velocities before and after impact may be measured. If
the two balls are moving in the same straight line, and the

23
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faster overtakes the slower, it is known that the faster will go
more slowly after impact, and the slower will go faster
—one loses velocity, the other gains. Another simple illus-
tration would be given by a man jumping horizontally off
a chair which rests on rollers; the man would gain velocity
in one direction; the chair, in the opposite. It is evident
from experience that the heavier the chair, the less will be
its velocity. Thus there is some connection between the
masses and the velocities. ‘

The general law which applies to two bodies may be stated
as follows: If two bodies whose masses are s, and z, are
moving in the same line with the linear velocities v, and v,,
and if they are free from all external influences, the sum
m, v, + m, v, remains unchanged, no matter in what way one
body influences the other. (It should be remembered that
a velocity has the idea of direction; so that if two velocities,
are in opposite directions, one is 4, the other is —.)

The following illustrations may be given:

1. Consider a rifle and its bullet. They are both at rest
before the powder explodes, and therefore at that instant
v, and v, are both zero. Consequently, the sum
m, v, + m,v, = o. After the explosion, the bullet whose
mass may be called », will have a velocity v,; the rifle
whose mass may be called », will have a velocity z, in
the gpposite direction, if it is suspended by cords so as to be
free to move; and it is known that the numerical value

Nt PH=-D,
of v, is —1-2,
3
m, v
Hence , = — ——1
m,
or m, v, + m, v, = o; hence the sum is unchanged.

2. The common lawn sprinkler (a simple model of which
is shown in Fig. 12), in which water issues horizontally in
one direction and the wheel rotates in the opposite, is still
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another illustration. This same apparatus may be used
with air or any gas, as well as with liquids.

3. The law may be illus-
trated also by means of an
‘‘impact apparatus,” a par-
ticular form of which is
shown in Fig. 13. In this
apparatus, bodies of differ-
ent masses are put on the
two swinging platforms,
which are then drawn back
and allowed to swing to-
gether and collide along
a horizontal line. The

FIG. 12,

velocities before and after impact may.be measured; and it

is found that the sum 7z, v,

—

%ﬂf

+ m, v, remains unchanged.

g 2o|5|a51£5||;||;20|

FIG. 13.
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4. If a magnet and a piece of iron are floated on the sur-
face of water, or are so suspended as to have freedom of
motion, they will approach each other, their speeds at any
instant being such that

Tl s s

TRk
Hence, since they are moving in opposite directions,
m, v, + m, v, is unchanged.

5. Similarly, as a body falls towards the earth, the earth
rises towards the body, but with a velocity so small that it
is inappreciable.

It should be noted that in all these illustrations the
velocities of both bodies are in the same straight line. If
the velocities were in different directions, the law would be
that the geometric sum of the products remains unchanged.
Illustrations of this more general law are afforded by the
impact of billiard balls.

26. Momentum.—Owing to the importance of this prod-
uct m v, mass X linear velocity, it has been given a name,
““linear momentum.” A special case of the general law
as stated above is when only one body is supposed to be
present, i.e. m = 0. Then s v = constant; and, since the
mass of a body is not subject to change, the velocity itself,
7, must remain constant. This may be stated in words as
follows: If a single body moving with a velocity v is free
from all external influences, it will continue to move in a
straight line and with a constant speed, i. e. with the
velocity z. It is impossible to verify this principle by direct
experiment; for no body can be freed entirely from exter-
nal influences; but by making friction and resistance of the
air as small as possible, it is seen that a body will maintain
its velocity practically unchanged, e. g. a ball moving along
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a smooth horizontal table; a railway train, with steam off,
moving on a level track.

27. General Law of Momentum.—A more general case
than that stated in the above law is when more than two
bodies are considered in the action. The principle in that case
is as follows: If bodies whose masses are mz,, mz,, m,, etc.,
and whose linear velocities at any instant are v,, 7,, 7,, etc.,
form a system free from external influences, the geometri-
cal sum wm, v, + m, v, 4 m, v, 4 etc., remains unchanged,
regardless of what impacts, motions, explosions, etc., go on
inside the system itself. Illustrations are afforded by
billiard balls, by the planets forming the solar system, etc.
This general principle may be shown by géometric consider-
ations (see Ames’s ‘‘ Theory of Physics,” p. 42) to be identi-
cal with the following: In any system of bodies free from
external influences there is a point which moves in a straight
line with a constant speed, no matter how the parts of the
system move, impinge on each other, or affect each ether.
This point is known as the ‘‘ centre of inertia” or the ‘‘cen-
tre of mass,” and it coincides with the point commonly called
the ‘‘centre of gravity.” Thus, if a stick is sent whirling
along a smooth table, there is one point which will describe
a straight line on the table; this is the centre of inertia.
In the case of any regular figure, the centre of inertia is the
centre of figure, e. g. a sphere, cylinder, stick.

It should be noted that a single large body is a particular case of a
system of small bodies; and, further, that the centre of inertia is not
necessarily a point in the body itself, but isa point fixed with reference

to it—thus the centre of inertia of a circular hoop is the centre of the
circle.

28. Kinetic Reaction.—In the case of two bodies, the law
under discussion states that the a/gebraic sum

me, v, -+ m, v, = constant

if the bodies are moving in the same straight line, There-
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fore, if v, changes in any way, v, must change so that
m, X change in v, is equal and opposite to #2; X changeinz,;
otherwise the above sum would not remain unchanged. If
the change in velocities in one second is considered, i. e. if
the linear accelerations are concerned, this statement is,

that
moa, = —m,a,

if @, and a, are the accelerations of #z, and z,, respectively.

This product, mass X linear acceleration, mz a, is called
the ‘‘kinetic reaction” or the ‘‘inertia” of s with reference
to the action of the other body. It in a way measures the
opposition which a body of mass sz offers to being given an
acceleration a.

The above equation is sometimes expressed in words by
saying that ‘‘action and reaction are equal and opposite;”
for the reaction of #z, as measured by 2 «a,, is equal and
opposite to that of 7z, as measured by 7, «,.

If a body whose mass is 7z is under the influence of several
other bodies which separately would produce accelerations
in m of values a,, 4, ¢, etc., the acceleration would be the
geometric sum of @, &, ¢, etc. If this sum is «, the total
kinetic reaction of m against all these actions is m @. This
product measures what is called the ‘‘external force,” imply-
ing that, owing to causes outside itself, the body whose mass
is 72 is given an acceleration @, and that the proper measure
of the effect of these causes is 7z a. Illustrations of external
forces are given by magnets when near pieces of iron, elec-
trically charged bodies, the action of weight, a man pulling
or pushing, etc.

»

29. External Force.—The fact that m «, i. e. the prod-
uct of the acceleration and the mass of the matter which
is given the acceleration, is a proper measure of these ex-
ternal causes may be shown by various experiments. One
simple form js as follows; Let a body whose mass is 72, lie on
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a smooth* horizontal table and be joined by an inextensible
cord running over a pulley to a body whose mass is 7, and
which hangs vertically. There
will be motion, owing to the
weight of 7z ; the weight of mz,
has no influence on the motion,
since it rests on the table. Call
the acceleration . The mass
which has this acceleration is
m, + m,; hence the external
force equals (2, + m,) a. Now
replace s, by a different mass
m,; there will be a different Bleheg:
acceleration; call it 4. The external force now equals
(72,4 m,) b. But these two quantities should be the same,
since the motion is due to the same external conditions, viz.
the weight of 72,. And experiments show that they are equal.
Therefore 722 @ is the right measure of external influences.

If the numerical value of m a is f, there is said to be an
external force of f ‘“dynes;” that is, under the influence of
1 dyne a mass of 1 gram would have an acceleration of r cm.
per second given to it in each second.

SpeciarL CASEs

30. 1. Falling Bodies.—If a body of any size, shape or
mass is allowed to fall free/y in a vertical direction towards
the earth, it is found by experiment to have a constant
acceleration of about 980 cm. per second in each second.
(The motion must take place in a vacuum, so as to avoid
the resistance of the air.) This acceleration is com-
monly called ““g;” it is thus proved to be independent of
the mass or material of the body, and to be constant at any

*By a ‘“smooth” table is meant one whose surface offers no resist-
ance to a body sliding over it, i. e. there is no friction. -
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one place on the earth’s surface. Its value, though, varies
with the latitude and with the height above sea level, and is
affected by the neighborhood of mountains, etc. Conse-
quently, the kinetic reaction of a body of mass sz grams
against the influence of the earth (or the ‘‘weight” of )
is 7 g dynes. Thus, the weight of 1 gram is 98o dynes; and
so 1 dyne is nearly the same as the weight of 1 milligram.
Since a dyne is so small, a larger unit is convenient; and
a ““kilodyne ” or 1ooo dynes may be used.

If the body whose mass is m is prevented from moving
by any cause, e. g. by resting on a table or by being sus-
pended by a cord, this cause, i. e. the table or the cord,
must have an effect equal and opposite to the weight of the
body. There is said to be a ‘‘pressure” on the table, or a
““‘tension” in the cord. If the cord is hung from a peg
or nail which is at rest, its action on the cord must be equal
and opposite to that of the cord on it; that is, the peg expe-
riences a downward pull # ¢ dynes, and in turn produces
an upward pull 772 g dynes. Thus, the cord simply transmits
the action of the peg to the hanging body. This method
is one of the simplest ways of producing a force.

31. Pendulums.—The fact that the acceleration *“ g” is the same for
all kinds and quantities of matter is best shown by experiments on
pendulums. A “‘simple pendulum” consists of a small,
heavy bob suspended by a very fine cord in such a way
that it can make vibrations in a vertical plane. The
length of path traversed by the bob from the extreme
position on one side to that on the other is called the
*‘amplitude;” and the ‘‘ period” of one complete vibra-
tion is the time required to swing from the extreme
position on one side to the opposite extreme position,
and back again to the original position. If the ampli-
—— tude is small, e. g. less than one hundredth of the length
" of the supporting cord, the period is

/2 :

FIG. 15.
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where 7 is the number 3.1416, the ratio of the circumference of a circle
to its diameter; / is the length of the pendulum; and g is the accelera-
tion of a body falling freely. (See Ames's “ Theory of Physics,”

page s9.) :

It is seen that the period of a pendulum varies directly as the square
root of its length, and so it may be altered as desired. Further, since
both the period and the length can be measured, this gives a method
for the determination of the acceleration g. By swinging pendulums
of all kinds of matter and measuring their periods, it has been shown
that g is a constant, as stated above.

Vibrations like those of a pendulum are called *“harmonic.” One of
their properties is that the period does not depend upon the amplitude,
provided it is small. Tuning-forks, vibrating spiral springs, watch-
springs, etc., make harmonic vibrations. (See Article 60, Elastic
Properties of Solids.)

32. 2. An Elevator.—Let the mass of the elevator be 7,
and let it be supported by a rope whose upper end may be
supposed to be wound over a windlass. There are two
external causes affecting the motion, the weight mz g acting
down and the cord whose tension may be called 7, acting
up. Let the acceleration upward be called @. Then the
external force upward is 7—m g, the kinetic reaction is » a.

Hence
ma=71—mg,

or T=mg—+4 ma.

Therefore, if the elevator has acceleration upward, the ten-
sion in the cord is greater than the weight of the elevator;
if there is an acceleration downward, i. e. if @ is negative,
the tension is less than the weight; if the elevator is mov-
ing with a constant velocity, either upward or downward;
that is, if the acceleration is zero, the tension equals the
weight.

It is evident, then, that if the elevator were to be jerked
upward too suddenly, the required tension might be greater
than the material of the supporting rope could stand, and it
would break.
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33. 3. Motion in a Circle.—If a body of mass m is made
to move in a circle of radius » with a linear speed s, e. g. by
means of a cord, as in a sling, or by being made to follow
the inner side of a circular hoop, the acceleration is s*/7
and is always directed in towards the centre of the circle.
(See Art. 21.) The kinetic reaction is therefore m s'/7;
and this must be the tension of the cord, or the pressure of
the rim of the hoop, the direction being always towards the
centre. If the cord is broken or the hoop removed, there
will no longer be any acceleration, and the body will move
with a constant speed s in the direction of its motion at the
instant the restraint was removed; that is, along the tan-
gent to the circle. Illustrations are afforded by a stone
thrown from a sling; the sparks thrown off by a revolving
emery wheel; the drying of clothes or of sugar by *‘ centrifu-
gals,” which consist of cylinders revolving rapidly around
their axes and having openings in their walls, thus allowing
the water to escape when the speed is such that the cloth or
the sugar no longer produces sufficient constraint to equal
ms’/r. When a bicycle rider passes rapidly around a curve,
he leans in towards the centre of the curve so that his weight
may exert the necessary force to keep moving in a circle.
For a similar reason, the outer rail of the track of a railway
is elevated at the curves, so as to make the train lean inward.

If the body is whirled by a cord whose other end is fast-
ened to a peg at the centre, the external force on the mov-
ing body is ms®/r dynes, and this is towards the centre;
similarly the peg experiences an equal and opposite pull
outward. Thus the peg is pulled outward by the cord, but
pulls the moving body inward, the action being transmitted
by the cord.

34. Universal Gravitation.—Another illustration of this motion in
a circle is the revolution of the moon around the earth, and, in fact, the
revolution of any of the planets or their satellites. If 7 is the mass of
the moon, s its linear speed, and » the radius of its path, there must be
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a force m s /7 acting towards the centre, i. e. the centre of the earth.
Consequently, if the moon were stopped for an instant, it would begin
to fall directly towards the earth with an acceleration s?/7, s being the
speed necessary to keep the moon moving in its orbit, in spite of the
tendency to fall towards the earth. sis known; because, if 7is the
time of one complete revolution of the moon around the earth, s =
27 7/7T; and »is known from astronomical calculations; consequently,
s?/r can be calculated. If this acceleration at the distance » from
the centre of the earth is compared with g, the acceleration at
the surface of the earth, i. e. at a distance from the centre of the earth
of R, the radius of the earth, it is found that their ratio is equal to
the inverse ratio of 7?and R?. That is, acceleration at »: acceleration
atsii= ;1_2 8 .]IT‘"

Therefore, it may be asswmed, asa general law applving to all bodies
and to all distances, that the external force on a small body of mass
whose centre is at a distance 7 from the centre of a second small body
of mass ', owing to the action of this body, varies directly as the
product of the masses and inversely as the square of their distance
apart, i. e. Fvaries as 21;’;1,
or F=c——o

where ¢ is a constant; it is called the ‘ gravitation constant.” (A
spherical body, if homogeneous, acts as if all its mass were concen-
trated at its centre.) This law is known as ‘“ Newton’s Law of Uni-
versal Gravitation,” and accounts for all observed facts concerning the
motions of the planets, satellites, double stars, etc.

35. 4. System of Bodies.—If a system of bodies, in par-
ticular if a single large body, is subject to external influ-
ences, it may be proved (see Ames’s,‘ Theory of Physics,”
p. 42) that the centre of inertia (see Article 27) will move
with an acceleration exactly the same as that which a
minute body would have whose mass was equal to that of
the entire system and which was subjected to the same
external force. Illustrations are afforded by the fact that
when a beam falls from a building, its centre of inertia falls
vertically with the acceleration ¢ ; when a man jumps over
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a fence, his centre of inertia describes a parabola; when a
bombshell explodes, the fragments move in such a way that
their centre of inertia fol-

/ lows the same path which

the shell would have fol-

lowed if it had not exploded.

</ If a stick lying on a smooth

\ table is struck a blow per-

4 pendicular to its length,
% X the centre of inertia will
/ move in a straight line

FIG. 16. in the direction of the blow,

entirely independently of the point where the blow was
struck (naturally, the rotation is different for different
points of striking, but the translation is not). Fig. 16 repre-

sents the motion of a stick thrown upward obliquely.

36. 5. Composition of Forces.—Forces can be added
and resolved, since they are measured by accelerations. Let
a body be so situated that there is a force /| in one direc
tion and a force /,in a different one.

(These forces may be produced by e
cords pulling on the body.) The _,./‘
numerical value of 7, is ma, whereBy
a, is the acceleration which the body
of mass 72 would have if the second
force were absent. In particular, if
Fis produced by the weight of M
grams, its numerical value is M g.
Lay off a straight line OA4 in the B
direction of this acceleration, and of a length propor-
portional to 7, (i. e. to ma)). See Fig. 17. Similarly lay off
a line O B proportional to 7, Their geometric sum is the
line O C, the diagonal of the parallelogram O 4 C B ; and
this represents the combined action of 7, and 7,. It gives

e S

f
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the actual acceleration of the body whose mass is 2, and is
called the ‘‘ resultant.”

This may be shown in a slightly different way (see Fig. 18).
The force £, represented by O 4, may be resolved into two
components (see Article 17), O % along c
the diagonal and £ A4 at right angles T
to it.  Similarly, the force #,, repre- '
sented by O B, may be resolved into
the two components ‘OMD along the
diagonal and D B at right angles to it.
But by principles of plane geometry,
the lines £A4 and D A are equal and
opposite, and therefore these two com-
ponents neutralize each other; further, =
OE equals D C; hence the two components O £ and O D
are equivalent to O D and D C, that is, to O C, the diagonal.
In a similar manner three and more forces may be com-
pounded.

F1G. 18.

RoraTion

37. Moment of a Force.—It has heen shown that in
translation the proper measure of an external force is ma;
but this says nothing about the rotation. The rotation
depends evidently upon two things, the force and its line of
application. Thus, a push near the hinges of an open door
produces comparatively little effect; but, if delivered near
the edge of the door, rotation is produced. The exact law
may be found by considering a simple case: Let a board be
pivoted by a peg at 2, and let two forces, #, and Z,, be ap-
plied at points /V, and /V, in the plane of the board. Let
the forces be so chosen that there is no rotation of the
board. The action of the force /), (e. g. a string pulling on
a nail fastened in the board) is exactly the same as if it
were applied at any point in its ‘“line of action,” i. e. in the
line NV, O; similarly, /, may be considered as applied at
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any point in its line of action &V, 0. If these lines when
prolonged meet at the point O, lay off from it O A, and
‘O A, proportional to
F, and F,, Let OB
be their geometric
sum. Since there is
no rotation of the
board, this line must
pass through 2, the
axis of rotation,
(otherwise there
would be rotation, as
in the case of a push
to a door). Draw
perpendiculars from P

FIG. 19. to the lines O IV, and
ON, Call them PQ, and PQ, Then, by a well-known
theorem of geometry,

0AxPQ, =04, x PO.

That is, the condition that the rotating effect of /7|
should be neutralized by that of Z, is that 7, x PQ, =
F,x PQ, PQ, and PQ, are called the ‘‘lever arms” of
the forces /, and #, around the axis through 2. The prod-
uct of a force by the perpendicular distance between its
line of action and the direction of the axis is called thef
““moment of the force around the axis.” Therefore the|
measure of the rotating power of an external force about |
any axis is the moment of the force around that axis.

The moment of a force around an axis is necessary in order to pro-
duce any change in the existing rotation; just as a force is necessary
to produce a change in the existing translation. Therefore, if there is
no moment, there is no change in the rotation;a ‘‘/w#s¢” of some
kind is required to change either the angular speed or the direction of
the axis of rotation. Thus, a quoit or a book, set spinning in its own



EQUILIBRIUM 37

plane when it is thrown, keeps its axis of rotation parallel to itself as it
moves, the same side stays up; a projectile fired from a rifled-gun is
set spinning and maintains the direction of its axis, because in neither
of these cases does the action of the earth do anything but p#// the body
down; it does not produce rotation of any kind. (The action of the
resistance of the air is neglected.) But, if a brake is applied to a fly
wheel, or if the crank of the driving wheel of a locomotive is set in
motion, there is a moment around the axis, and consequently a change
in the rotation. Similarly, if a top were not spinning, it would turn
over and fall on the ground; i. e. the action of gravity in this case
produces a twist around an axis at right angles to the axis of figure
of the top; so, when the top is set spinning, the direction of its axis is
constantly changing. (See Article 23.)

The ‘‘curves” of a baseball are due to the fact that, as it spins
through the air, there is a difference in the friction and pressure of the
air on opposite sides; and so a ‘“push” is given sidewise or up or down,
according to the way in which the ball is thrown. There is also a
‘“twist” which alters the angular speed and the direction of the axis
of rotation.

38. Equilibrium.—Since in the case of the pivoted board
there is no translation, it is evident that the resultant of
£, and F,, i. e. the force
represented by O 5, must
| be equal and opposite to the
action of the peg on the
board. Consequently,
the peg could be replaced
by a force equal in amount
to the geometric sum of /|
and F,, in a direction oppo-
site to O B, and applied at
any point in the line O B.
Thus, if a body has neither
translation nor rotation FIG. 2o,

(that is, if it is at rest) under the action of three forces,
F, F, F, the following conditions are satisfied:
1. Their lines of action lie in the same plane;
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2. These lines intersect in a common point;

3. One force is equal and opposite to the geometric sum
of the other two, i. e. the geometric sum of all three is
Zero.

There is no difficulty in seeing that the effect of having the moment
of one force balance that of another is not necessarily to stop all rota-
tion, but is to leave any existing rotation unaltered; and, if one force
neutralizes another, the result is not necessarily no translation, but no
change in the existing translation. Hence the conditions just given
are true of a state where there is no alteration either of translation or
of rotation; this state is called ‘ equilibrium;” restis a particular
case.

SpeciaL Cases oF EQUILIBRIUM

39. I. A Single Small Body.—If a pointisinequilibrium
under the influence of the three forces /7, F,, F,; F, must
be equal and opposite to the geometric sum of /) and 7,
(or, what is the same thing, #, must be equal and opposite
to the geometric sum of Z, and 7, etc.).

FIG. 21. F1G. 22.

40. 2. Non-parallel Forces; Large Body.—This is the
general case which has just been considered in Article 38.
An illustration is offered by three men pulling at a stick.

If the stick does not move, F,, F,, F, must all lie in a
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plane, must meet, if prolonged, in a point O, and must,
if added geometrically, equal zero, i. e. they must form a
closed triangle. All kinds of levers are illustrations of
this. (See Article 48.)

41. 3. Parallel Forces.—Let three parallel forces, /|, F,,
F,, be applied at points 4,, 4, A,; and let them be in
equilibrium. They must lie
in a plane; they must meet
in a point (at infinity); and
their geometric sum must be
zero; that is, since they are
parallel, any one force, e. g.
F,, must be equal and oppo-
site to the algebraic sum of
the other two, 7, + F, i. e
F, 4+ F,= —F,, But these
conditions do not determine
the relation between the
points ef application. These
must be so chosen that the
moments of any two forces
around any axis must be
equal and opposite to the
moment of the third, because
there is no rotation. Prolong the line of action of /7, and
draw a line, B B, B,, perpendicular to the parallel lines.
Imagine an axis drawn through the point A, perpendicular
to the plane of the three forces. The moment of 7, about
this axis is zero; that of 7, is Z, X B, B,; that of F, is
F, x B B, but in an opposite sense. Hence

F, X B, B, is equal numerically to #, X B, B,,
B, 5, _F,
Bl w7
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or, in words, #, must be so placed that B, divides the line
B, B, into two portions inversely proportional to #, and 7,

As an illustration, let £ = 20,000 dynes, F; = 10,000 dynes, B; By =
30 cm.; then /3 must equal 30,000 dynes and must be in an opposite
direction to 7, and 5, and Bs must be such that B, Bs = 1ocm. Or,
let /1 = 40,000 dynes, /3 = 60,000 dynes and be opposite to Fi; and
By By = 20 cm. ; then /; must equal 40,000 — 60,000, i. e. 20,000 dynes,
and must be in the same direction as #;; and 5, must be such that

Fia X Bs Ba = F, X By By, i. e. By B3y = 40 cm.

Similarly, if there are four or more parallel forces in equi-
librium, their algebraic sum must equal zero; and their
moments around any axis must balance each other.

42. 4. Forces Dueto Gravity.—It hasbeen noted(Article
30) that a body of mass m is subject, owing to its weight,
to a force m g, vertically
down; therefore any
large body considered
made up of smaller parts
is under the action of a
great number of parallel
forces. Consequently, if
such a body is suspended
at rest by a cord or on a
knife-edge, the support-
ing force must be vertical
and must be so placed,
i. e. its point of attach-
ment must be such, that
the moments of all the
gravity forces around an

Lt i) axis through it shall bal-
ance each other. Imagine a line marked in the body so as
to coincide with the line of action of the suspending force;




FORCES DUE TO GRAVITY 41

then attach the cord to another point of the body and sus-
pend it, marking again a line in the body, which coincides
with the new line of action of the suspending force. These
two lines in the body will meet in a point, which is the
same for all points of suspension, and which is called the
‘““centre of gravity.” The action of gravity is therefore
just the same as if all the matter were concentrated at this
point, because the entire action is neutralized by an upward
force through it. This point is identical with the ‘‘centre
of inertia.”

This may be illustrated by the following experiment: By means of a
cord suspend a rod (or a broom) in such a manner that there is cqui-
librium. The centre of gravity is in the rod at the point of support.
Strike the rod an upward blow by means of a hammer or stick. The
point of support will move wer#Zcally up, regardless of where the blow
is struck. If the blow is struck at the point itself, there will be trans-
lation, no rotation. Therefore this point is the centre of inertia also.
(See Articles 27 and 335.)

In certain simple cases, the position of the centre of gravity is known.
It is the centre of figure of a sphere, a cylinder or a rod. If arod of
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FIG. 25.

mass », is loaded with heavy bobs of mass 7, and m, (as in Fig. 25),
the position of the centre of gravity of the system may be calculated;
for, if the rod is suspended by a cord through its centre of gravity,
the upward force must be (14 + 3+ mta) &, and its moment around
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any axis—e. g. one through the end of the rod—must exactly balance
the sum of the moments of the separate weights around this same
axis, as there is no rotation. If x, is the distance of the centre of
figure of the rod from its end (that is, one half the length of the rod);
x; the distance of the centre of the bob whose mass is #; from the
end of the bar; x; the distance of the other bob from the same end;
the moments of the weights are »2, g a1 + 72 g X2 + ms g 23,

If x be the distance of the centre of gravity from this same end, the
moment the upward force is (721 + 725 + #25) g .

Hence (mty + ma + m3) g X =my £ X1+ Mg £ Xg + Ms s,

5. My Xy + Mg X9 + My X
= My + Mg + 1ty

and

and may be calculated.

43. 5. Chemical Balance.—A chemical balance is an
instrument designed to measure the mass of a body. It con-
sists essentially of a light, rigid metal beam so supported on
a knife-edge as to be free
to turn around a hori-
zontal axis perpendicu-
lar to its length, and of
two pans of equal mass,
which hang one from
each end of the beam.
The distances from the
points of support of the
pans to the knife-edge
of the beam, i. e. the

FIG. 26, ““arms” of the balance,
are made as nearly equal as possible, and the centre of
gravity of the whole balance—pans and beam—is made to
lie vertically below the knife-edge when the beam is horizon-
tal. The body of unknown mass = is placed on one pan,
and bodies selected from a set of standard masses are placed
on the other until the beam is again horizontal. Let the
mass of the standards be 72, There will now be three forces
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acting on the balance-beam. The force down on one pan is
m g ; the force down on the other panism, g ; theseare neu-
tralized by the force from the knife-edge. (The weight of
the beam and pans is of no effect, because the centre of
gravity lies vertically below the knife-edge.) Since there is
equilibrium, the moments, around the knife-edge, of the
forces on the two pans must be equal; but the balance-arms
are of equal length; hence the two forces must be equal.

Therefore mg=1m g, Or m=in,.

Consequently, owing to the fact that g is a constant at any
one place for all kinds and amounts of matter, a chemical
balance measures masses.

FI1G. 27.

44. Stability of Equilibrium.—Systems of bodies which
are in equilibrium behave differently when subjected to
slight displacements. Thus, a cone resting on its base will,
if slightly tipped, return to its previous position; but, if
balanced on its point, it will, if touched, fall over on its
side; and if, while resting on its side, it is tapped, it will
roll with constant speed.
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Equilibrium is called ‘“stable ” if the system is in such a
condition that, after a slight velocity is given it by a sudden
blow, the velocity decreases quickly, becomes zero, and is
then reversed, the system continuing to make oscillations
about its position of equilibrium until brought to rest by
friction. Illustrations are afforded by all solid bodies piv-
oted around axes above their centres of gravity, or by those
whose centres of gravity rise when the blow is struck, e. g.
an ordinary pendulum, an elastic solid considered by itself,
a spiral spring carrying a weight.

Equilibrium is called ‘‘unstable” if the system is in
such a condition that, when a slight velocity is given it by a
blow, the velocity increases. Illustrations are afforded by
all solid bodies pivoted around axes belozw their centres of
gravity, e. g. the cone balanced on its point.

Equilibrium is called ‘‘neutral” if the velocity given by
a blow remains unchanged. It is illustrated by solid
bodies pivoted around axes passing
through their centres of gravity, and
by solid bodies whose centres of gravity
remain at the same horizontal level,
e. g. a cone or a sphere rolling on a
table.

In connection with this, attention may be
called to the fact that unless a vertical line
through the centre of gravity of a body passes
through the point of support, if it is suspended,
or falls within the area of support, if it rests
on the table or on the earth, the body will be
under the action of a moment and will rotate.

If the body is pivoted around a horizontal axis, there will be a
moment as shown in Fig. 28; and the body will rotate unless C, the
centre of gravity, lies vertically above or below the pivot.

If the body rests on a table as shown in Fig. 29, and if the ver-
tical line through G, its centre of gravity, falls outside the base, it will
topple over; while if the line passes inside, it will be in stable equi-
librium.,
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The degree of stability of a body is measured by the displacement
which must be given it in order to make it pass from stable into
unstable equilibrium.

1727 ,54/ 7 ;
W w
FIG. 29.

Work AND ENERGY

45. Definition of Work and Energy; Conservation
of Energy.—If a body of mass 7 is mo¥ing with a speed s,
and is met by a resistance in its line of motion equivalent to
a force F, the speed will decrease, and there will be a nega-
tive acceleration equal to //m (for ¥ =ma). Therefore,
the body will continue to move for # seconds only, where

Ry mSs
:F =%

m

Ky
= —

because « is the decrease of s in one second. :
And the distance it will go before it comes to rest is
xr=1%a?. (See Article 19, equation 2.)

But = ST = Gl

52 m s*

Thus, for example, the distance a trolley-car in motion

goes, after brakes are applied, before stopping is 7}%; the

time taken to come to rest is 77——, where 7 is the resistance

due to the friction of the brakes.
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The momentum, 7z s, therefore, is a measure of the time-
resisting quality of a given motion; } 2 s® is a measure of
the space-resisting quality. %ms® is called the ‘‘kinetic
" energy ” of the body whose mass is 7z when its speed is s.

As just shown, §m s = ['x, where F is the resistance
overcome for a distance x in the direction of /. This
product / x is called the ‘‘ work; ” and if a force of /dynes
acts over a distance x centimetres, the work done is called /" »
‘‘ergs;” e.g. aforce of 1 dyne acting over 1 cm. does the work
of 1erg. The equation may then be stated: owing to the work
F x expended in overcoming opposition to its motion,the body
whose mass is » is brought to rest and loses kinetic energy
3 m s*, the quantities / x and § 72 s* being numerically equal.

Similarly, if a body whose mass is »z is set in motion by a
constant force /| at the end of 7 seconds the speed will be s,
where

and the distance it takes to secure this speed is x, where

m s

7
Consequently, 7x = } ms*; and the equation may be stated:
owing to the work /71 done on the body whose mass is 7, it
is given acceleration and gains kinetic energy } 72 s, where
the quantities /' x and } m2s* are equal.

It is seen, therefore, that work can be done in two ways:
in overcoming a resistance. due to the opposition of a force,
and in producing acceleration, i. e. in overcoming the inertia
of matter. As illustrations, consider a body thrown ver-
tically upward from the earth by means of the release of a
compressed spiral spring; or this same body falling from a
height upon a spiral spring, thus compressing it and being
finally brought to rest itself. In the first case, the spring
does work upon the body in giving it kinetic energy; in the

L ==t
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second case, the body does work upon the spring in com-
pressing it. It isseen that the body in motion has the power
of doing work; sohas the compressed spring. The spring is
said to have ¢‘ potential energy.” Thus, ‘‘energy ” may be
defined as the power of doing work; and, if the body owes
its energy to its being in motion, its energy is kinetic, and
its numerical value is 4 7 s*; while if it owes its energy to the
fact that work has been done upon it in overcoming some
opposing resistance, its energy is called pofential, and its
numerical value is /x, the work done. Thus, in the first
of the above cases the spring loses potential energy, and the
body thrown upward gains kinetic energy. As it rises, it
goes more and more slowly, and thus loses kinetic energy;
but it gains potential energy, because the force of gravity
which opposes its motion is being overcome; and, when it
comes to rest at its highest point, its energy is entirely
potential. As it falls, it loses potential energy and gains
kinetic; and, when it strikes the compressed spring, it does
work upon it, loses its energy, and the spring gains potential
energy. Two things should be noted: (1) When work is
done, one body loses energy and another gains energy;
(2) the amount of energy lost by one equals that gained by
the other, i. e. work is a transfer of energy. Thisis equiva-
lent to stating that no energy is lost; and the statement is
called the *‘ Principle of the Conservation of Energy.”
ILLusTRATIONS.—A body whose mass is m is raised
through a vertical height % from the floor to a table; it
gains potential energy, mg/h. A swinging pendulum loses
kinetic energy as it swings out to the end of its path, but
gains potential; then, as it swings back, it loses potential,
but gains kinetic, etc. If a piece of iron is drawn away
from a magnet, work is done; there is potential energy,
which is changed into kinetic when the iron is allowed to
move back towards the magnet. In some cases where work
is done against a resisting force, there is apparently no gain

’
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of energy by the body which offers this resistance; for
instance, when one board is pushed over another, work
being done against ‘‘friction.” In these cases of the
apparent violation of the conservation of energy, the energy
is gained, not by the body as a whole, but by its minute
parts. This increase in energy of the smallest parts is
rendered evident to our senses by some heat-effect, such as
rise in temperature, melting, etc. Thus, if a bullet enters
a target, it loses kinetic energy, and the molecules of the
target gain energy, as is shown by the rise of temperature;
the hammer of a pile-driver falling on a pile loses kinetic
energy, work is done in overcoming the friction of the earth
into which the pile is driven, energy is gained by the minute
portions of the matter; if two pieces of ice are rubbed
together, thus overcoming friction, the ice melts. (See
Article 99.)

46. Potential Energy.—As was explained in Article 45,
work is defined as the product of force and the distance
through which it acts, both being measured in the same di-
rection. Thus, if a body whose mass is #2 is raised through
a vertical height %, the work done is, as shown above, m ¢ 4,
because the distance % is in the direction of the force. If
the body is raised along an oblique line, 4 & (see Fig. 30),
through the same vertica/ height
%, the work done is also mg/k.
b This may be shown as follows:
In moving along A B, the force
overcome is the component of m g
along 4 B; therefore, if 2 repre-
sents m g, P R is this component;
FIG." 30, and the work done is 4 B X PR;

2
XPQ=mgh

O

B

St S g
©

[y
N
(S
It
|

but
hence A

|

&
X
K
=
I

hN
N



MACHINES 49

Similarly, if the body had been carried from A4 to € and
then to B, no work would be done in going from C to B,
because this motion is at right angles to the force of gravity;
but in being raised from A4 to C, the work m g/ is done.
Hence the amount of work required to raise the body from
A to B is the same along both paths, and therefore the same
along all paths.

Conversely, if the body falls from B vertically down a
height /%, or along B A, or along any path through the ver-
tical height /£, it loses potential energy to the amount m g/
and gains an equal amount of kinetic energy § 5. Con-
sequently, the speed which a body has after falling through
a vertical distance /% is 4/ 2 g /%, and is independent of the
path traversed.

It should be noticed that if a system has potential energy,
it will tend to lose it, if left to itself; a body will, if free to
move, fall towards the earth; a compressed spring will relax;
a clock-spring if wound up will tend to unwind; a piece of
iron separated from a magnet tends to approach it, etc. A
system does not come into stable equilibrium until its
potential energy is as small as it can possibly become; e. g.
a system suspended near the earth is not in stable
equilibrium unless its centre of gravity is as low as is possi-
ble, consistent with the restraints; thus, a pendulum comes
to rest finally in its lowest position.

47. Machines.—Since work is product of force by dis-
tance moved in the direction of the force, it is evident that
the same work may be done by different forces, if the dis-
tances moved are different; and various mechanisms known
as ‘‘“machines” have been devised to allow a small force to
be transformed into a large one (or wice versa), and to
change the direction in which motion is produced. Such
machines are levers, pulleys, screws, wedges, windlasses,
etc. Machines do not create energy. The work done by a
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machine can never be greater than that done on it; in fact,
it is always less, for there is friction to overcome if there is
motion.

48. Levers.—Consider a rigid beam in equilibrium under
the action of three forces, F,, F,, F, applied at points
An Az) As‘

If the beam is pivoted around an
axis at A, the moment of 7 around
this axis must be equal and opposite
to that of /, around the same axis.
Call the perpendicular distances from
A, to the lines of action of #, and

e Wi e ST A 1 d SIS LAY o WA
then
FIG, 31.
F] ll = '[r‘l 11’
or Fﬂ = Fl ll / lﬂ'

Thus, if —l/—’ is large, #, is much greater than #. But, if

2
F is increased by an extremely small amount, equilibrium
will be destroyed and motion will be produced in the direc-
tion of /), (provided there is no friction); and, after this
motion is begun, it will continue, owing to inertia, even if
the small increase in #, is removed. Work will thus be done
by F, against F,. Let the motion be considered for a very
" small interval of time; let x, be the distance ‘which 25,
moves; and let x, be thé distance that 5B, moves. Then, by
geometry, -
TR I ea=—i/m: £k
Hence Vi

or the work done by /, equals that done against /.
Illustrations of this kind of lever, in which the pivot is

between the points of application of the two forces, are

furnished by a steelyard, a crowbar, a pump handle, etc.
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Similarly, if the axis of rotation passes through A, the
moment of / around it must be equal and opposite to that
of F,, and if £, and %, are the perpendicular distances from
A, upon the lines of action of #, and 7,

Fb,=F,k,

Further, if there is motion, the work done by one force
must equal that done against the other. Illustrations of
this kind of lever, where the
pivot is beyond the points of
application of the two forces,
are given by a lemon-squeezer,
tongs, nut-crackers, a shovel,
sheep-shears, etc.

A good illustration of levers
is furnished by the muscles of
thearm, asis shown in the draw-
ing (Fig. 32), which is copied
roughly from the treatise on
‘“The Motion of Animals,” by
Borelli, 1685. The pull in the
muscle 7 has a lever-arm O7
around O; while the weight R
hasthe lever-arm X Oaround O. FIG. 32.

.

49. Pulleys.—A pulley consists
of a circular wheel pivoted on an
axle through its centre, and with
a groove cut in its edge, so as to
receive a cord. It is used to
change the direction of the line of
action of a force. Thus, if a cord
is passed over a single pulley and
a force 7 applied to one end, it
FIG. 33. will be balanced by a force of an




52 DYNAMICS

equal amount applied at the other, no matter what the
direction is, because the moments around the axle will

; be equal, as the wheel is circular. (See
C/////////// _

Fig. 33.)

If two pulleys are arranged as in
Fig. 34, the upper fixed and the lower
movable in the bight of the cord
which passes over them both, a force
of 2 / applied in a vertical direction
to the axle of the free pulley wiil bal-
ance a force / ap- . y
plied to the free T
end of the cord
passing over the
fixed pulley (neg-

st 1% [Chtxign poigthie
weight of the lower pulley and friction
of the wheels). For, in the right-hand
branch, A, there is a force #; also in
the left-hand branch, B, since pulleys
simply change the direction of a force;
hence, if the two
branches are par-
allel, a force 2 ¥
acts upon the lower pulley; and to
balance it a force 2z / must be applied
downward. Or, if a slight motion is
produced and the free end of the rope
moves a distance x, the force # thus
doing a work /' x, the movable pulley
will rise a distance } x, and the work
. done against 2 / is again / x.

Another form of combination of pulleys is shown in
Fig. 35. The principle may be extended to any combina-
tion of pulleys.

e 7= [ERNERR =5

Fi16G. 35.

F1G. 36.
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50. Screws.—Screws, as used in jack-screws (see Fig.
36), book-presses, elevators, vises, etc., are machines by
which a small force moving a long distance in turning the
screw makes it advance through its nut a small distance,
and thus overcome a large force.

A screw isin reality a special case of an ‘‘inclined plane,” the princi-
ple of which was discussed in Article 18. To raise a body along an in-
clined plane against the force of gravity—weight—the same work is
required for a definite vertical height #, viz. 2 g %; but, if the plane is +
very inclined, the actual path is very long, and hence the force which is
overcome is small. 1

51. Power.—The usefulness of a machine or ‘‘motive
power ” depends largely upon how fast it can do work; a
child can do any amount of work, however large, if time
enough is given for it; but to have a large amount of work
done quickly a powerful engine is necessary. The rate at
which work is done, i. e. the number of ergs done in one
second, is called the ‘power.” A power of 10000000, Or
10’, ergs per second is called a ¢ watt;” thus, a ‘kilo-
watt ”” machine does 1000 X 10’ or 10" ergs per second. One
‘““horse-power ” is the power equivalent to raising 33,000
pounds 1 foot in a minute, and is therefore equal to 746

watts.
TABLE III

ForcE

Weight of 1 gram = ¢80 dynes
4\ ““ 1 pound = 44,518 dynes

Work

1 Foot-pound = 1.383 X 10" ergs
= 0.1383 kilogram-metres

PowER

1 Horse-power = 746 watts
1 Watt = o0.0013406 horse-power




CHAPTER III
PROPERTIES OF MATTER

SIZE AND SHAPE

General Properties of Size and Shape.—As stated
in the Introduction, Article 7, names are given to certain
forms of matter; viz. solids, liquids and gases.

52. Solids.—A solid body has a definite volume and
shape, which can, however, be changed by suitable forces;
thus, solids may be compressed, twisted, bent, squeezed, etc.
Different solids vary greatly in the way they yield to these
forces. Some solids, e. g. iron, copper, platinum, are ‘‘duc-
tile,” that is, can be drawn out into wires; some are
‘““malleable,” that is, can be beaten out into thin sheets, e. g.
gold, silver, aluminium; some are ¢ plastic,” that is, yield
easily to forces which change their shape, and do not spring
back into their previous shape, e. g. putty, soft plaster,
lead; some are easily compressible, e. g. rubber, cork; some
are almost incompressible, e. g. glass, steel; some are rigid
and do not suffer a change in shape, except under a great
force, e. g. glass, steel, blocks of wood, etc. Most solids
return to their original volume and shape when the applied
forces are removed, unless these forces are too great; that
is, for small deformations such solids are ‘‘elastic.” A solid
may thus have two kinds of elasticity, one corresponding to
a change in volume, the other to a change in shape. Cer-

54
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tain solids slowly diffuse into each other; in particular, such
soft metals as gold and lead diffuse, so that if a piece of
gold is placed under a piece of lead, traces of gold may
soon be found throughout the lead.

53. Liquids.—A liquid, if left to itself, takes the shape of
a spherical drop; but, when placed in a hollow vessel, it as-
sumes the shape of the latter, keeping its own volume.
Liquids differ greatly in their power of flowing; e. g. water,
alcohol, etc., flow easily; but molasses, oils, etc., flow slowly
and with considerable friction—they are called ‘‘viscous.”
Some liqulds are more compressible than others; water
suffers hardly any change in volume unless the compressing
force is enormous. (To produce a change of one ten thou-
sandth of its volume, a pressure of two atmospheres is re-
quired, i. e. a force of nearly 3o pounds to the square inch.
See Article 79.) A liquid will yield to any force, no matter
how small, which tends to change its shape, that is, to pro-
duce a ‘‘shear” or slipping sidewise of one layer over
another; thus, pitch is a liquid, but a most viscous one, so is
shoemaker’s wax. Therefore, a liquid which is not viscous
has no elasticity corresponding to a change in shape; but
for a change in volume it is perfectly elastic.

If two liquids are put in contact, there is, in gencral, a
gradual intermixture at the surface of contact, they are
said to ‘‘diffuse ;” but some liquids diffuse easily, e. g.
water and alcohol, while others do so only slightly, e. g.
water and kerosene oil, and still others practically not at
all, e. g. mercury and water.

54. Gases.—A gas distributes itself uniformly through
the vessel that contains it, and so has no shape or size of its
own. If the volume of a gas is changed, it tends to return
to its previous volume, and is perfectly elastic in this sense;
thus, if a hollow rubber ball is compressed, the enclosed
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gas tends to oppose the compression and to restore the ball
to its original volume.

All gases are more or' less viscous, although less so than
liquids. Two gases, if put together, diffuse rapidly through
each other until the mixture is uniform throughout.

We picture to ourselves, therefore, the parts of a solid as
held together more or less rigidly, so that the minute parts
can oscillate, but cannot move about, in general, from one
position of the solid to another. In a non-viscous liquid, we
consider that these restraints which hold the parts fixed
together do not exist, and that therefore the parts can
move about with a moderate degree of freedom.” In a gas
we imagine the particles moving around rapidly, and being
so far apart with reference to their own size.that they are
practically unaffected by each other except when they
collide. If by suitable air-pumps the gas is so exhausted
from a closed vessel (like a glass bulb) that the average dis-
tance apart of the minute portions of matter is one or two
centimetres, the matter no longer has the properties of a
gas; and this condition is sometimes called the ‘‘ Fourth
State of Matter.”

In all forms of matter, the individual molecules and atoms
are making rapid vibrations (many million a second), besides
having these varying degrees of freedom of motion from
one part to another of the body; that is, each molecule
is, during its motion as a whole, vibrating, owing to the
motion of its parts, just like a bell or tuning-fork. This
statement will be discussed more fully in Article 103.

55. Elasticity.—All bodies are elastic in one sense or
another, but to different degrees; and it has been shown
that, if the deformation, whatever it is, is small, its amount
is proportional to the force which produces it; i. e. ‘‘strain
is proportional to stress,” or ¢ Ut tensio sic vis,” as Robert
Hooke expressed it in 1676. This is called‘‘ Hooke’s law.”
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It requires work to produce these deformations, and there-
fore a body which is deformed (or strained) gains energy
from the agency which has produced the strain; thus, a
stretched wire, a bent rod, a twisted wire, or a compressed
liquid has potential energy. (In the case of inelastic defor-
mations, e. g. change of shape of putty, of lead, of water, of
a gas as involved in flowing, the work done is spent in
giving energy to the smallest parts of the bodies, i. e. in
internal friction; and heat-effects such as rise in tempera-
ture are produced.)

56. Waves Due to Elasticity.—If one end of a rope or
stretched cord is vibrated sidewise rapidly, a series of dis-
turbances or ‘‘pulses” pass along the rope or cord; if the
vibrations are regular and if the cord islong, thisisa “train
of waves.” (These disturbances are reflected when they
reach the further end of the cord, and thus interfere with
the advancing waves if
the cord is short.)
Similarly, if one end of
a long wire is twisted
quickly, first in one di-
rection, theninanother,
there will be waves of a
torsional kind. If a OamOmOnm(Bfuer
series of balls be sus-
pended by long cords © FIG. 37.
and be separated by spiral springs, as shown in Fig. 37, the
apparatus can be made to carry waves of two different kinds.
If the end ball is vibrated sidewise, there will be a train of
waves like that in the rope; thisis calleda ‘‘transverse” train,
because the vibrations of the balls are at right angles to the
direction in which the train of waves is advancing. If the
end ball is vibrated rapidly in the line joining the balls and

* springs, there will be a train of waves, owing to the alter-
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nate compression and extension of the springs; this is called
a “‘longitudinal ” train, because the vibrations of the balls are
in the line of advance of the train of waves. It isevident that
both kind of waves are due to the elastic nature of the
springs or connections of the system; and, since a solid, e. g.
a long rubber cord, has two kinds of elasticity, corresponding
to change of shape and volume, it can carry the two kinds of
trains of waves. Whereas a fluid, either a liquid or a gas,
which has only one kind of elasticity, viz. that corresponding
to change in volume, can carry only those waves which are
due to compressions and extensions, viz. longitudinal trains.
Thus, a tuning-fork vibrating under water or in air will
produce compressional waves. (It is evident that, in order
to produce waves in this way in water or air, the vibrations
must be so rapid that the water or the air is actually com-
pressed, and does not simply fow around the vibrating body,
as it does when an ordinary pendulum vibrates.) Further,
it is evident that the velocity of any train of waves, that is,
the distance the disturbance advances in one second, must
increase if the ‘‘stiffness” of the medium increases, while
it will decrease if the density increases. (See Ames’s
‘““Theory of Physics,” p. 153.)

It requires work to produce waves, both because the
medium through which waves are advancing is in motion
and because the parts are strained with reference to each
other, twisted, bent, compressed, etc. As the waves
advance, energy is carried on; and the body producing the
waves must supply it.

57. Intensity.—If the source of the waves is a vibrating
point, e.g. a tuning-fork vibrating in air, the waves spread
out in all ‘directions; if the medium is ‘‘isotropic,”
i. e. has the same properties in all directions, the ¢ wave-
front ” is spherical. If two spheres are drawn around the
vibrating point with radii 7, and »,, the energy going through
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each sphere is the same (unless there is absorption—see
Article 103); but the amount per square centimetre of sur-
face is different. The area of the spherical surface of radius 7,
is 4 m 7*; that of the surface of radius », is 4 7 »,>. Hence,
if £ is the total energy, the energy per sq. cm. at the sphere

of radius 7, is 5; that at the sphere of radius 7,18 ——.
Sz 477,
The amount of energy which passes through one square
centimetre in one second is called the ‘‘intensity” of the
waves. So, if 7, is the intensity at 7,, and 7, the intensity
a7
15 I
EyN— A 3 Z,-;
or, the intensity of waves radiating from a point varies

inversely as the square of the distance.

58. Wave-Length.—The ‘‘wave-length” of a train of
waves is the distance from any point in the medium which
is carrying the waves to the next point in the direction of
the waves at which the condition of motion is identically

the same. Thus, if Fig. 38 represents the advance towards
the right of a transverse wave in a cord, the distance from
Pto Qor from Rto S is a wave-length (1). The number
of wave-lengths which pass a given point in one second is
called the ‘‘wave-number” (#) or the ‘frequency.” Itis
evidently equal to the number of the vibrations per second
of the end of the rope, or, in general, of the ‘‘centre of dis-
turbance.” Further, if # wave-lengths pass in one second,
and each has the length A, the distance the disturbance goes
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in one second, i. e. the velocity of the waves, is 7 times A;
or v=nA. If the medium carrying the waves is homo-
geneous, the velocity is the same for all trains of waves, of
long or of short wave-lengths; but, if it is irregular, e. g. a
cord having knots in it, the velocity is different for trains
of waves of different wave-length.

59. Stationary Vibrations.—When waves reach the end
of a medium or reach a new medium, r¢flected waves are
produced in general. These, passing back through the
medium, are superimposed upon the advancing waves, and
thus alter the nature of the motion. Consider a rope
fastened at one end to a wall, and carrying transverse waves,
these will be reflected; and the motion of any point of the

rope will be the algebraic
| sum of the motions which

Py Py Q it would have due to the two
waves separately. It will
FIG. 39. happen that, at some point,

P (Fig. 39), near the wall, the action of one wave would
be to make the point move down at a particular instant,
while the other wave would produce the opposite effect;
and, as the two waves have the same velocity, they will
continue to neutralize each other at 2~; it will be at
rest. Such a point is called a ‘“node.” The distance from
P, to the fixed end Q must be such that the wave goes from
P, to Q and returns to P, reaching there just as a second
wave comes up to 7, from the other direction, i. e. 2, Q +
¢ P, equals the wave-length. Hence

m:l/z.

Since £, i5 at rest, it may be regarded as held 1d clamped,
and so there will be another node at 7, where P N — P Q

A
2 Consequently, the whole rope, if it is of suitable
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length, will be divided into vibrating sections. It is then
said to make ‘‘stationary vibrations.” A point half way
between two nodes is called a ‘‘loop.”

If there are /V vibrating sections in a distance Z,

2

but A = v /#n, where v is the velocity of the component
waves and #z is the wave-number (or the frequency of the
vibrating source). Hence

N 2nl

L="—"or N= s
2n v

If the rope is fastened at both ends, e. g. one end to a wall,
the other in the hand of the person maintaining the waves,
the length of the rope must

be a whole number of half- _----—--__
wave-lengths. That is, if L e P e 2
is fixed, # must be so chosen '
as to make V a whole num- FIG. 4o.

ber; for v depends upon the properties of the rope, its ten
sion, etc. Further, if v is constant, /V varies directly as L;
while, if # is constant, /V varies inversely as v and directly
as the distance L.

Sorips AND FLUIDS

60. Elastic Properties of Solids.—A solid, as distinct
from a fluid, may be defined to be a body which requires a
force exceeding a certain limit in order permanently to
change its shape. Solids also, as explained before, have e¢astic
properties corresponding to changes in both size and shape;
they may be stretched, compressed, bent, twisted, etc.; and
to all these strains the same law applies: the deformation
is proportional to the force. Illustrations are given by
stretching a steel wire, twisting a shaft, bending a beam,
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compressing a pillar or rod, stretching a spiral spring, as in
a spring-balance (see Fig. 41), which therefore gives read-

FIG. 41.

force produced by it against the walls. Thus,
let the fluid be in a cylinder (Fig. 43) closed
by a piston which is pressed in with a force #
until there is equilibrium, and let there be no
flowing or currents.
the walls due to two things: to this force of

ings proportional to the weight hanging
on the hook. If the force producing
these deformations is suddenly re-
moved, the body will proceed to make
vibrations which are exactly analogous
to those of a pendulum. (See Article
31.) Thus, there are vibrations of a
piano or guitar cord, of a tuning-fork, of
a spiral spring, of a flat coiled spring, like
a watch-spring, etc. These all vibrate
with a constant period. Any body
which obeys Hooke’s law (see Article
55) will make theseharmonic, pendulum-
like vibrations (Fig. 42.)

61. Fluidsat Rest.—
A fluid yields to any
force, however small,
which tends to make
one portion slide over
another, i. e. to ‘“ flow.”
If a fluid, either liquid or
gas, is enclosed in a ves-
sel of any kind, thereisa

There is a force against

the piston, 7, and to the weight of the fluid. FIG. 42.

62. Fluid Pressure.—At any point on the wall of the
cylinder the fluid tends to push the wall outward; and, if
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there is no flowing, the force must be perpendicular to the
wall. If it were oblique, there would be a component along
the wall, which would cause the fluid to flow. If
a small area drawn around any point on the
wall be considered, this perpendicular force, or
““thrust,” is uniform over it; and the value of
the force divided by the area in square centi-
metres is called the ‘‘ pressure” at that point of
the wall; i. e. pressure is force per unit area, if
the force is uniform over the area. LD

Again, if any small volume of the fluid be considered as
distinct from the rest of the fluid, e. g. if a minute cube is
imagined described around some point in the midst of the
fluid, the action of the surrounding fluid is to press in this
cubical volume on all sides, a tendency resisted by the mat-
ter inside the cube. The pressure at'this point around
which the cube is taken is the force on any side divided by
the area of that side; and the pressure is the same in all
directions, up, down, sidewise, etc.; for, if it were not,
there would be a flowing of the fluid.

This pressure on the wall, and the pressure in the fluid
also, is due, as said before, to two causes, the force of con-
traction of the containing walls (e. g. piston, as above; rub-
ber bag, etc.) and the force of gravity.

Consider each separately. If one imagines the cylinder
carried far away from the earth, so that there is no weight,
there is still the pressure due to the contraction of the walls,
i.e. to the force / in the’case of the piston already described.
This pressure must, moreover, be the same at all points
throughout the fluid and on the walls; for, if there were a
- difference of pressure between two points, the fluid would
flow from high to low pressure, since in a fluid there is
nothing to prevent flowing, as there is in the case of a
solid. Hence, if A is the area of the piston on which the
force F is acting, there will be an equal force on an area 4
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everywhere through the fluid; in other words, there will be
a pressure equal to //A4 at every point of the fluid.

But, when the cylinder enclosing the fluid is on the sur-
face of the earth, there is an additional pressure in the fluid
due to weight. Consider two horizontal planes, each of area
a sq. cm., one vertically above the other at
a distance 4. If pis the density of the fluid,
the mass of the fluid included between
these two areas is the product of p and the
volume, i. e. pa /2. Therefore the weight is
£times this, i. e. g pa /; and this weight, in
addition to the downward force on the
upper area, must be borne by the upward
force of the fluid against the lower plane.
If the upward pressure required to balance .
this is p,, the force is p, @; therefore, if the downward pres-
sure on the upper area is g, (and hence the force g, a),

t.a=patpgahk

Therefore, p, — p, = p g %, or the difference in pressure due
to a vertical height 2 is p g /.

Thus, in the bottle shown in Fig. 45 the
pressure at a point Z cm. below the piston is

1D

FI1G. 4.

F
P=Z+prgh;

and this is, therefore, the same at all points
in a horizontal plane at this level. Simi-
larly, in a vessel of any shape, the pressure FIG. 4s.

is the same at all points in a horizonal plane; otherwise there
would be flowing of the fluid. This applies equally to con-
necting tubes. The pressure is the same at all points of
the plane at a depth % below the piston, viz.

F.
P =G pEs
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and hence, at points in any other plane %' cm. above it (see
Fig. 46), the pressures must be the same, viz. less by an
amount p g /' than at the depth 4.

63. Hydraulic Press.—Again, as
an illustration of the fact that the
pressure due to the walls is the same
throughout, let a fluid be enclosed in --
a vessel which is closed by two pistons,
of areas A, and A,. Let a force, 7,
be applied to the piston whose area Blc s,
is 4,; then, in order to keep the piston 4, from being pressed
out, a force /7, must be applied, such that

4,
[7121-‘12:

i For, the pressure on the two pistons is
- 4 the same (if the pistons are at the same

level, so as to do away with considerations
of pressures due to weight), and hence
FRETpRAR Iie—vprd b ahdsthernes
FIG. 47. fOre, FQ/AQ = FI/AI’
A great pressure cannot be produced easily if the fluid is
a gas; because it is compressed so readily, and the volume

Fi1G. 48.
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is diminished so much; but, if a liquid (e. g. water, which is
nearly incompressible) is used, as great a pressure as is
desired can readily be produced. This may be done by
applying a moderate force over a small area, and may be
balanced by a large force over a large area. Thus, in the
case of the ‘‘hydraulic press” (Fig. 48), the small piston is
pressed down by a small force, and there is produced over
the large area of the large piston an enormous force, the
relation being as given above, F,/4, = F,/A,. The work
done by the smaller piston is, however, equal to that done
by the large one.

64. Principle of Archimedes.—An illustration of fluid
pressure is afforded by the case of a solid entirely immersed
in a fluid, e. g. a piece of iron suspended under water, or
surrounded by air. Imagine it replaced by a portion of
the fluid of exactly the same size and shape, which is sepa-
rated from the rest of the fluid by a massless envelope.
Since there is no flowing of the fluid, this
enclosed portion must be buoyed up with
a force equal to its weight; this buoyant
force being due to minute pressures exerted
by the surrounding fluid on the envelope.
(See Fig. 49.) These minute pressures de-
pend simply on the shape and size of the
envelope and not on what is inside. Con-

FIG. 49. sequently, if the solid is restored to its
former position, it will be buoyed by these same pressures,
which have just been shown to be equivalent to the weight
of the fluid displaced by the solid. In other words, a body
entirely surrounded by a fluid is buoyed up with a force
equal to the weight of the fluid which the body displaces.
If p, is the density of the body and p, that of the fluid,
the weight of the body is p, vg; that of the fluid dis-
placed, p, v g; hence the ‘‘apparent loss in weight” of the
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body is p,7v g, and the entire downward force on it is
(o, — p) £

This is known as the ‘‘ Principle of Archimedes,” and is
illustrated by the ‘‘loss in weight” of bodies immersed in
liquids, by the floating of soap-bubbles and balloons in the
air, etc. If p, = p,, the downward force is zero; so that
in this case the immersed body just floats. '

This principle also leads to a method of measuring the densities of
bodies. Neglecting the buoyancy of the air, let , be the weight of a
solid in the air, let @, be its ‘“apparent” weight when suspended in
water at 4° Centigrade; then, if p is the density of the solid, and v its
volume, w, =pv g, wa=pv g — v &, because the density of the water

is 1 (see Article 14); therefore,%l = 3 £ o and so p may be calculated.
5 =

If the water used has a temperature different from 4° C., a slight cor-
rection must be applied in order to obtain accurate results. Similarly,
in refined weighing, a correction is made for the buoyancy of the air
when the solid is weighed in it.

65. Motion of a Solid in a Fluid.—If the solid is moving through the
fluid, it meets with opposition, the nature of which depends upon its
shape, etc. Thus, if a board is moving obliquely through a fluid, the
direction of the flow of the fluid past it is such as to be equivalent to a
force applied near the end which is in advance, and opposite in
direction to that of the motion of the board. This force will therefore
tend to make the board turn and place
itself at right angles to the direction of
motion.  Thus, an oyster-shell falling
through the water or a piece of paper fall-
ing through the air always tends to fall
with its plane face horizontal;. a boat
set adrift on a lake will place itself at right
angles to the wind which is driving it.

Fig. so represents the flowing of a fluid past ——
a board which is moving towards the left.

66. Fluids in Motion.—A difference of pressure is nec-
essary to produce the flow of a fluid, and the direction of
flow is from high to low pressure. If the flow continues tor
some time, it may become *‘steady;” that is, it no longer
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changes its character. If such a flow takes place through
a tube of decreasing cross-section, there will be a uniform
fall of pressure from one end to the other, the pressure being
greatest at the end where the fluid enters. If the tube
has a varying cross-section, the velocity will, in general
terms, be greatest where the tube is narrowest and least
where it is widest, if the flow is uniform ; because the volume
which goes past any section of area 4 in 1 sec. is A v, if v is
the velocity at that area. The mass flowing by is therefore
Awvp; and, if this remains constant throughout the tube,
v must vary inversely as A. This is therefore true for a
liquid, and approximately so for a gas flowing slowly. But,
if the velocity is greater at one point than another, there
must be a force acting in the direction from the point of
low velocity to that of high (because to produce an increase
in velocity a force is necessary); therefore the fal// of
pressure must be in this same direction (because the force
producing flow is always from high to low pressure); hence
the direction of fa// of pressure is that of rzse of velocity.
It follows that, if the velocity is varying, the pressure is
greatest where the velocity is least, and vice versa.

Illustrations are afforded by the ‘‘atomizer” or ‘‘injector,” and by
the ‘‘ball-nozzle.” In theformer a blast of air or gas is blown across
the opening of a tube which dips in a vessel
of water or other liquid. Owing to the great
velocity of the blast, the

pressure is diminished over

the mouth of the tube, and

the liquid will rise up in the

tube. In the * ball-nozzle”’

(Fig. 52) a blast of air or \/
water is forced out into a

cuplike opening containing

a solid ball held loosely. [

After the motion becomes
Fi16. s1. steady, the velocity of the F1G. s2.
stream is greater at the side where the fluid first meets the ball than
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on the opposite side; hence the pressure is less there, and so the ball
is kept pressed into the cup by the fluid flowing around it. Still
another simple illustration is furnished when a piece of writing-paper
about 3 cm. square is placed in the palm of one’s hand, so as to cover
the narrow opening between the first two fingers when they are closed,
and an attempt is made, by blowing with one’s mouth through the
opening froimn the other side, to force the paper away. It will stick
tight, because the pressure between it and the hand is so diminished
by the current of air.

If a fluid issues from a vessel through a small opening in
a thin wall, e. g. water running out from a small hole in the
bottom of a tank, or gas escaping from an elastic rubber
bag through a pin-hole, the velocity of ‘‘efflux” (v) is
greatest for fluids which have the least density (p), and
varies directly as the difference of pressure (p) producing
the flow; the approximate relation being v* = 2 p/p. (See
Ames’s ¢ Theory of Physics,” p. 121.)

The fact that the rate of efflux of lighter gases is greater than that
of heavier ones can be shown by a simple lecture experiment, in which
hydrogen, the lightest known gas, is made to flow
through small openings faster than does air. A
long glass tube is fitted, by means of a tight-fit-
ting cork, into an unglazed porcelain jar (such
as is used in making Daniell's cells); the tube is
now placed vertical, with its open end dipping
in a glass of water. The porcelain jar is,
of course, full of air; but, if an inverted bell-jar
filled with Zydrogen is lowered quickly over the
porcelain jar, the hydrogen will rush into the
latter through the minute pores faster than
the air inside can pass out. Therefore, the pres-
sure of the gas inside is increased, and bubbles
of air will be forced out through the lower end
of the tube which is under the water. If the
bell-jar is now removed, the hydrogen inside
will pass out quickly, leaving a diminished pres- FIG. s3.
sure, and water will rise in the glass tube. (This
experiment succeeds with gases, but not with liquids; for, when the
bell-jar of hydrogen is lowered over the porous jar, the pressure of
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the hydrogen inside the latter is zero, and hence the hydrogen is forced
in; similarly, the air inside is forced out, because there is no air
outside in the bell-jar, and the two gases thus diffuse into each other;
while, if liquids were inside and out, each would prevent the other
from flowing out, but there might be a slow diffusion.)

1L1QUIDS

67. Free Surface of Liquids.—That property of a liquid
which distinguishes it from a gas is the fact that it keepsa
definite volume; if left to itself,
it assumes the shape of a sphere,
e. g. rain-drops; if contained in an
open, hollow vessel, it has a free
surface in contact with the air.
If there is equilibrium, this free
surface must be perpendicular to
the forces acting on the liquid;
for, if it were not, these forces
would have components along the surface, and the liquid
would flow in that direction. Thus, on the surface of the
earth, all free surfaces of liquids are horizontal unless
disturbed (except near solids dipping into them; see
Article 73).

F1G. 54.

If a liquid is contained in a cylindrical vessel which is made torotate
around a vertical axle coinciding with the axis of the cylinder, the free
surface will assume a parabolic form, so as to be at right angles to the
force acting, which is the resultant of the force of gravity and the
¢ centrifugal” forces owing to the motion of each portion in a circle.
(See Article 33.)

If the free surface of a liquid is disturbed in any way, waves are
produced on the surface and a short distance down. These waves are
not due to any elastic force, as in the case of the waves discussed in
Article 56. These are due to the fact that the force of gravity tends
to bring the disturbed liquid back to its horizontal level: but, owing
to its momentum, it goes further than this, and thus oscillates and
spreads the disturbance to the neighboring portions of the surface.
The velocity of the surface-waves varies as the square-root of the
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wave-length if the liquid is deep; therefore, long waves on the sea go
faster than short ones. Very minute waves or ‘‘ripples” are not due
to gravity, but to capillarity, and have properties different from those
of the long ‘‘surface-waves.”

68. Liquid Pressure.—The pressure in a liquid is, as*
shown in Article 62, due to two causes, the pressure of the
walls of the containing vessel, and the weight of the liquid.
The pressure due to the walls is felt everywhere through
the liquid and is the same at all points. In particular, if a
vessel containing a liquid is open to the atmosphere, there
is a force pressing on the free surface due to the weight of

R ;. i . Ty
z ki . e Jas

FIG. ss.

the atmosphere. If the pressure in the air above the surface
is 7, this same pressure is felt throughout the liquid.

In addition to this pressure, there is that due to the weight
of the liquid, which amounts to p g/ for a vertical depth /4.
Thus, at a depth 2 in a liquid below the free surface, the
pressure is P4 pgh If Ais the area of the surface
against which there is this pressure, the force is (P +p g /) 4.

Since the pressure at all points of a liquid which are in
the same horizontal plane is the same (see Article 62); the
height above the earth to which a liquid will rise in wide,
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open, connecting tubes isthesame; for, ifany horizontal plane
be taken through the tubes, the pressure at each point is as
shown, P4 pgh, where / is the vertical depth below the
free surface; hence, since the pressure is the same at each
‘point, % is the same for each. This fact is sometimes
expressed, ‘‘ water seeks
_its level,” and is illus-
trated by springs,
artesian wells, systems
of water distribution in
cities, etc.
The principle is used,
too, in the measurement
~lamll- -t of gaseous pressure. A
U-shaped tube, contain-
ing some liquid, e. g.
mercury, is .joined, as
shown in Fig. 56, to the vessel containing the gas whose
pressure is desired. If / is the difference in height of the
two surfaces of the liquid, and p its density, the pressure of
the gas is P+ pg/t(where P is the atmospheric pressure), if
the liquid stands lower in the arm entering the vessel than
in the open arm. For, in the liquid in the open arm at the
level of the free surface in the other,
the pressureis P+ p g /. Similarly,
if the surface in the open armis the
lower, the pressure in the gas is
P—pgh Such an apparatus for
measuring pressure is called an
‘‘ open manometer.”

|

e

FIG. s6.
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69. ‘Balancing Columns.”—If ~~ /@™
two liquids which do not mix are
poured into a U-tube, so that they
stand as shown in Fig. 57, they have FIG. 5.
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a free surface in common. Let a horizontal plane be drawn
through this surface, and measure the vertical heights /,
and /, of the other two free surfaces above this. The pres-
sure at the common free surface due to the liquid above it
is P4 p,gh, if its density is p,; this is balanced by a
pressure P+ p, g/, due to the second liquid, whose density
is p,.

Hence Pipgh =P+ p,gh,

or PRS0, Fs

Therefore, the heights at which the liquids stand vary
inversely as their densities. This gives a method of com-
paring the densities of two liquids which do not mix, e. g.
mercury and water. (For other methods see Ames’s
““Theory of Physics,” p. 116.)

70. Thrust.—This pressure of liquids is exerted against
the surfaces of the solids which contain them, and is illus-
trated by the thrust against dams, tanks, etc. The pressure
at the free surface is 7, the atmospheric pressure; that at
the bottom is P+ pg/, if % is the depth. The average
pressure from top to bottom depends upon the shape of the
wall which receives the thrust; if it is rectangular (or
pgh

2

cylindrical), the average pressure is P4 , and so the

total thrust sidewise is (£ -+ %ﬁ) A, if A4 is the area of the

wall. Similarly, the force over the bottom of the tank is
(P4 pgl) A if its area is 4.

71. Floating Bodies.—1f a body floats on the surface of
a liquid, e. g. a block of wood on water, it displaces a certain
volume of the liquid; and there is, therefore, a buoyant
force (see Article 64) equal to the weight of the liquid
displaced. The force down is the weight of the floating
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body; hence, since the body is in equilibrium, these two
forces must be equal; that is, a floating body displaces its
own weight of liquid.

The equilibrium of a floating body is not necessarily stable. A long
stick floating on its side is stable; but, when set floating in an upright
position, it is unstable. A boat with a heavy ballast is stable, etc.

#2. Properties of a Liquid Surface.—As has been noted
several times, a portion of a liquid if left to itself assumes a
spherical shape, as is shown by rain-drops, lead shot, etc.
* The surface of a sphere has the least area for any geometric
figure of an equal volume; so this proves that the surface
of a liquid tends to become as small as it can. There is

thus a contracting force in a liquid surface,

which is in this respect analogous to the

properties of a stretched rubber sheet. This

is shown also by the following illustrations:

If a soap-bubble is blown on the end of a

glass tube (see Iig. 58), work is required to

overcome the contracting tendency; and, if

the bubble be given the chance, it will con-

tract, expelling the air through the tube.

FIG. 58. Many animals, if light enough, can move over

the surface of water, being held up by the surface-‘‘skin.”
If a soap-film is blown-on any wire
frame, it will assume the smallest

area possible; if such a film is,
placed between a frame and a thread
in its plane, as shown in Fig. 59, it
will require force to keep the film
from contracting. This contract-
ing force is due to the fact that the
molecules of liquid in or near the
free surface are not acted upon by ‘‘forces of cohesion” on

all sides—as are the molecules in the interior of the liquid—

FIG. s9.
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but only on the lower side. There is thus a tension in the
surface. If the surface is made larger, e. g. by pouring the
liquid into a wider vessel, the surface is not stretched—as
in the case of a rubber sheet which is made larger—there is
simply more surface, some liquid comes up from the interior
to the surface.

73. Surface-Tension.—This ‘surface-tension,” as it is
called, is illustrated, too, by the rise of liquid in tubes of
small bore—so-called ‘‘capillary” tubes—if the liquid wets
the solid, e. g. water and clean glass; and by the sinking of
the liquid, if it does not wet the solid, e. g. mercury and
glass. Thus, if a glass tube whose inner surface is
moistened with water is lowered
into a vessel of water, the
shape of the surface of the
water inside the tube is like the
inside of the finger of a glove,
having its end in the water of
the vessel and its side in the
film adhering to the walls of
the tube. (See Fig. 60.) This
surface contracts, pulling the
liquid in the vessel up the tube.
The smaller the bore, the further will the liquid rise. For
a similar reason, water rises up along the surface of a plate
of glass which dips in it. Expressed in terms of pressure,
this fact may be stated: There is a pressure in a liquid if its
surface is curved, due to the tendency of this surface to
contract; if the surface is convex, as in a drop or bubble,
the pressure is balanced by the fluid or gas inside; if it is
concave, as in water rising in a glass tube, it makes the
pressure at the surface less than it would be naturally, and
less than at the same level elsewhere in the liquid. (It may
be proved that this pressure due to the surface forces varies
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inversely as the radius of the curved surface. (See Ames’s
““Theory of Physics,” p. 125.) Thisdiminution of pressure
due to a concave surface is shown in the familiar experiment
of pressing together two wet plates of
glass and then trying to separate them;
at the edges of the plates the liquid sur-
face is concave, and therefore the pressure
between the plates is less than in the
atmosphere outside; and so the two plates are held together,
owing to the atmospheric pressure. The rise of liquids in
capillary tubes is shown by the action of blotting-paper,
lumps of sugar, thread, etc.

FIG. 61.

The sinking of mercury in glass tubes is explained
in a perfectly similar way. The mercury does not wet
the glass; therefore its free surface inside the tube is
like the outside of the finger of a glove; and by its con-
traction it draws the surface down. (See Fig. 62.)

74. Effect of Points and Nuclei.—Drops
and bubbles require nuclei for their formation,
because, to produce a surface of such great
curvature, i. e. of such a small radius, as would
be necessary to start a drop or bubble, would
require an infinite force; butlayers of liquid can be deposited
on solid nuclei, and thus form drops. Bubbles are generally
started around fine points; or, in the case of bubbles of steam
formed in boiling, they start from nuclei of minute bubbles
of dissolved gases. Illustrations are given by the following
facts: Dew forms on points of grass, etc., more readily than
on plain surfaces; rain-drops practically always have
particles of dust inside them; the process of boiling is
assisted by the presence of fine points, such as broken glass,
and by the introduction of a lump of sugar, which always
contains a great deal of air; bubbles are formed in efferves-
cent liquids at those places in the bottles or glasses where
the surface is roughened,

Fi1G.62.
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#5. Effect of Impurities, etc.—This tendency of the sur-
face of a liquid to contract is different for different liquids, as
is shown by several simple experiments. If a drop of alcohol
is placed on a glass plate which has been previously wet
with water, the edge of contact of the alcohol and water
will be rapidly dragged away from the drop, thus spreading
the drop over the surface (or perhaps leaving the plate dry).
This shows that the surface-tension of pure water is greater
than that of a mixture of alcohol and water. In a similar
way, a drop of oil is spread over the surface of water. (The
quieting action of oil upon waves comes from the fact that
the film of oil destroys the ‘‘ripples,” which are due to sur-
face-tension; and there are thus no little ridges for the
wind to catch and blow up into spray or magnify into large
waves.) If a piece of camphor is put on a c/ean surface of
water, it will make a number of erratic to-and-fro motions
over the surface, because it dissolves irregularly, and thus
weakens the surface-tension of the water more at one side
than at another; it is therefore pulled towards the side of
greater tension.

Increase in temperature diminishes the surface-tension.
Thus, if a grease-spot is to be removed from a piece of
cloth, a hot iron should be applied on the under side, and a
piece of absorbent paper on the grease-spot side; the heat
makes the tension so small on the under side that the grease
gathers in a drop on the upper side, being pulled there by
the surface forces.

GASES

76. Gaseous Pressure.—A gas is distinguished from a
liquid in that it has no volume or shape of its own, but
assumes those of the contéining vessel. The pressure in a
gas is due (see Article 62) to the pressure of the walls and to
weight; but since the density of all gases is so very small,
the main pressure in a gas enclosed in any receiver is that
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corresponding to the walls. The gas presses against the walls;
and when the two pressures are equal, that of the gas pressing
out and that of the wall pressing in, there is equilibrium.

77. Mixture of Gases —If more than one gas is placed
in a receiver, each acts as if the others were absent; and so
the total pressure is the sum of the pressures which each by
itself would exert. This is known as Dalton’s Law.

v8. Boyle's Law.—If the gas is compressed, and its
volume thus diminished, it is found that the pressure
increases. The experiment was first tried in the
following way: A glass tube, closed at one end,
was bent into the form of a J and placed vertical;
mercury was poured into the open end, so as to
trap some air in the shorter closed brancl}./ (See
Fig. 63.) The pressure of the air was P+ p g/,
where P was the atmospheric pressure, /£ the dif-
ference in level of the two free surfaces of the
mercury, and p the density of the mercury; and
the volume of the air could be measured easily.
More mercury was poured in slowly, the new
pressure and corresponding volume were meas-
ured; and it was seen that, 7f the temperature of
the air in the tube was ke¢pt constant, the connec-
tion between pressure (2 ) and volume () could be expressed
by saying that the product pv remains constant. 'This is
known as Boyle’s Law, and was first stated by Robert
Boyle in 1662. It is equivalent to saying that the pressure
of airyaries directly W, if the temperature is
kept constant; for the density is mass divided by volume.
That is, if p is the density of air,

F1G. 63.

p = kp, temperature constant.

This law holds true for air and other gases to a consider-
able degree of accuracy for great ranges of pressure.
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79. Atmospheric Pressure; Barometer.—In order to
have any appreciable pressure due to weight (p = pg /), it

is necessary to have
great heights of a gas,
because the density is
so small. The best
illustration of such a
condition is given by
the pressure due to
the atmosphere itself.
The fact that there
is such a pressure
is shown by the fol-
lowing experiment: If
a long (over 8o cm.)
glass tube, closed at
one end, is filled with
mercury, and then
carefully .inverted, al-
lowing no mercury to
escape; and, if the
open end is placed
beneath the surface
of mercury in a wide
open vessel, and then
left to itself, the mer-
cury in the tube will
not run out, but will
stand at a certain

FIG. 64.

height in the tube. There is no gas in the space above
the mercury column; so, if the free surface in the tube is
/ cm. above the free surface in the basin, and if p is
the density of the mercury, the pressure required to balance
the mercury column, i. e. the atmospheric pressure, is p g /4.
(It is evident that, since fluid pressure depends only upon the
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vertical height of the fluid, not upon the cross-section of

the tube, this height 2 would be the same for wide’

tubes of any cross-section, or any shape.) Such an instru-

) ment is called a ‘‘barometer,” and measures
any fluctuations of the atmospheric pressure.
(If a barometer is carried up one or more

. flights of stairs of a building, it will indicate
differences in pressure, owing to the varying
depths of air. If p' is the average density
of the air, 7/ the vertical height through
which the barometer is carried, the change
in pressure is p’' g /', which would be shown
by a change in the barometer.)

The pressure of the atmosphere at sea-level
is about that of 76 cm. of mercury; that is,
P(=pgh) =136 X 980 X 76 = 1,013,000
dynes per square centimetre,

T
}
B i e ¥l

444,518 dynes = weight of 1 pound,

I sq. cm. = o.1550 sq. inches.

Hence P = 14.%7 pounds per sq. in.

FIG. 65.
Similarly, if any other liquid than mercury was used, its
height (%,) in a barometer would be given by the same for-
mula P = p, g/, where p, is its density. Hence, if pand %
are the density and barometric height of mercury,
=i =0 s o et i— plz

If air is exhausted from a hollow metal sphere which is
divided into two hemispheres, it requires a great force to
pull them apart; if air is exhausted from a glass bulb, it
may break, etc.

80. Siphon.—If a glass tube, open at both ends, is bent
into the form of a J, is filled with water, and then in-



PUMPS 81

verted, so that its shorter arm dips into a basin of water,
no water being allowed to escape in the process, the ap-
paratus is called a ‘‘siphon.” The end of the longer arm
must have been held closed by a
stopper of some kind, e. g. the finger.
Remove this, and the water from
the vessel will continue to flow out
until its level is below that of the
end of the tube. Before the stop-
per is removed from the opening A4,
the pressure of the water there is
equal to that at 2 plus p g/, where 7,
is the height of the longer arm; but
that at 5 equals that at C, and is
therefore equal to that at D minus pg/k, where /%, is
the length of the shorter arm. The
pressure at [ is the atmospheric pres-
sure (7), and therefore the pressure

o

iy
%- ez 2 at 4 is
% == \§\?\\‘\\\\ P_pg/lg-i—pg/ln
7 W — 7
é ' or P+ rL (/Zl /la)’
VA

which is greater than £  Conse-
quently, when the stopper is removed,
the atmospheric pressure is not suffi-
cient to keep the water in the tube;
and so it runs out; and the velocity of
outflow will vary directly.as (%, — 4,).

TS

81. Pumps.— The action of the

F16. 67. ordinary lift-pump depends upon the
pressure of the atmosphere. A cylinder is connected at
one end, A, with the well or cistern by means of a pipe
which must not be over a certain length (viz. that height
to which the liquid would stand in a barometer in which
it was used in place of mercury). At the end where
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the pipe enters the cylinder there is a valve opening
upward.

In the cylinder there works a piston, 5, driven by the
pump handle; the piston has openings through it con-
taining valves, also opening upward. The process is as
follows: Let the piston be at the bottom of its path; as it
is raised, the pressure below it is diminished; the water in
the well or cistern, being under atmospheric pressure, is
forced up through the pipe, raising the valve at A, into the
cylinder; when the piston reaches its highest point, the
valve at A drops and closes; then, as the piston is lowered,
the water in the cylinder raises the valves in the piston and
flows through; so, when the piston gets to the bottom of
the cylinder and begins to rise
again, the valves in the piston
close, that at A opens, water
enters again through A4, but the
water on top the piston is lifted
and may be made to flow out a
spout. (The atmospheric pres-
sure at sea-level is equivalent to
a height 76 cm. of mercury whose
density is 13.6 times that of
water; hence, it is equivalent to
a height of 76 X 13.6, i.e. 1034 cm.
of water, or about 34 feet; conse-
quently, the length of the pipe
) connecting a cistern of water to

the cylinder is limited by this
consideration. There is always

o\ o
.//////////////W////// // also a certain amount of leakage

FIG. 68. of air.)
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A pump of this same nature can be used to exhaust a gas out of a
closed vessel. The only alteration is made necessary by the fact that
the pressure of the gas soon becomes too small to lift the valves; and
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so automatic devices must be used to open and close them. These are
apparent from the details of Fig. 68.

A cut is given of a so-called force-pump, consisting, as shown, of a
piston working in a cylinder, out of which go two pipes, one to the cis-
tern, the other to a bell-shaped receiver, into which enters from the top
a pipe long enough to nearly reach
the bottom. At the upper end of
the cistern pipe, and at the entrance
of the side pipe into the receiver,
there are valves opening upward.
The action is as follows: As the pis-
ton rises from the bottom of the
cylinder, the cistern-valve opens
and water enters; when the piston
descends, the cistern-valve closes,
the water is forced into the receiver;
as the process continues, enough
water enters the receiver to reach
the open end of the pipe which
cothes in through the top; and, as
more and more water is forced in, :
the air in the receiver is compressed
and forces water up the tube to
practically any height. The chief advantage of the air-receiver is to
render the output of water continuous instead of intermittent, be-
cause the compressed air acts like a kind of spring or cushion.

FiIG. 6g.




CHAPTER 1V
NATURE OF SOUND

82. Introductory.—A ‘‘sound” is the name given to a
particular sensation which is familiar to every one who is
not deaf. Its physical cause can be traced in every case to
some elastic substance which is making vibrations. = Thus,
the blow of a hammer, the rolling of a cart over cobble-
stones, the blowing of a horn, the plucking of a guitar-
string, etc., all producé vibrations, and our ears, in general,
hear sounds. If the vibrating body is in a vacuum, e. g. in
a large bell-jar from which the air has been exhausted, no
sound is heard. Consequently, the presence of matter be-
tween the vibrating body and the ear is necessary as a
medium of transfer. The loudness of the sound depends
largely upon the medium connecting the ear and the
vibrating body. (This is known to any one who has held
his head under water and listened to the sound produced by
knocking two stones together below the surface.) If the
vibrations of the elastic body exceed in number a certain
limit (see Art. 56), compressional waves, i. e. longi-
tudinal ones, are produced in the surrounding material
medium, if this is a fluid; these then spread out, and the
wave-fronts advance with a velocity depending upon the
elasticity and density of the medium, but not upon the
wave-length. (See Art. 56.) If the vibrating body makes a

series of regular vibrations at the rate of /V per second, i. e.
if its ‘‘frequency " is Vor its period —, and if the velocity of

84

y
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the waves in the medium is # and A is the wave-length of
this particular train of waves, v = /VA. When the waves
reach the ear, a sound is heard as a result of the vibrations
of the ear-drum, provided that /V, the frequency of these
vibrations, lies between certain limits which vary with
different people. 20 and 40,000 vibrations per second are
about the extreme limits; but in music, frequencies from
40 to go00 only are used in general. i

These compressional waves have other properties, natur-
ally, than that of causing certain sensations in the human ear.
They affect the senses of most animals throughout va-
rious ranges of frequencies, which are probably different
from the ranges audible to man. They produce mechanical
motions if they fall on a thin disc, such as a telephone dia-
phragm. They affect a so-called*‘sensitive " flame, which is
simply a flame of gas issuing from a circular opening under
high pressure. The flame is thus a narrow, long one; but,
if waves of great frequency, i. e. of short wave-length,
strike it, it collapses into a broad, short one.

83. Simple and Complex Vibrations.—One simple
method of studying the nature of the vibrations of an elas-

FI1G. 70.

tic solid is to fasten a stiff light pointer to it; and, as the
solid vibrates, to draw under the pointer a piece of smoked
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glass, so that the pointer leaves a trace on the glass. (See
Figs. 70 and 71.) By this means it is found that, when the
ear perceives a ‘‘musical ”’ note, the vibrations are continu-
ous and regular; but, when a ‘‘noise” is heard, the vibra-
tions are discontinuous and abrupt. The simplest kind of
vibration is that called ‘‘harmonic” or pendulumlike. (See
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Article 31.) Tuning-forks and most musical instruments
can be made to give harmonic vibrations. Such a vibration
has a definite amplitude and a definite frequency, which
may be studied by the smoked-glass methods. (See Fig. 71.)
Different vibrations may have different amplitudes and fre-
quencies, and may pass through their positions of equi-
=== librium at different instants, i. e. may
differ in ‘‘phase.” It is evident that
the energy of the vibration must in-
crease with the amplitude, for, with a
large amplitude, the strain is greater
(and therefore the velocity of the vi-
brating parts of the medium—uof that
of the waves) than with a small ampli-
tude. If a vibrating system is con-
structed, as shown in Fig. 72, of three
pendulums suspended in series, it is
called a ‘‘complex” pendulum; and
the vibration is complex. Each pendulum of itself, if its
point of support were fixed, would make harmonic vibra-
tions; but, as it is, the motion is more complicated. The
motion of all musical instruments is of this nature, unless
special precautions are taken.

FIG. 72.
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To analyze a complex vibration, therefore, it is necessary
to learn what harmonic vibrations compose it, and then to
determine the amplitude, frequency and phase of each of
these component vibrations.

84. Resonance.—To learn what harmonic vibrations are
present in any complex vibration, the simplest method is to
make use of the principle of ‘‘resonance.” If one wishes to
set in vibration a boy sitting in a swing, he has but to give
the swing a series of pushes which are so timed as to be at
intervals equal to the natural period of vibration of the
swing; that is, the swing is set in vibration if the force
applied has the same period as it itself has. In general, if a
small periodic force is applied to an elastic body whose
period of vibration is the same as that of the force, the
body will be set in intense vibrations; while, if the two
periods differ, even slightly,
this will not occur—there
will be forced vibrations,
but they will be compara-
tively feeble. 1f a man
sings a note near a piano,
he will set in vibration that
particular string of the in-
strument which has the
same frequency as the note.
If a tuning-fork is held over
the mouth of a suitable bot-
tle, and, if water is poured in
slowly, it will be noticed that for a given depth of water the
sound of the fork will be greatly increased. This is because
the air in the bottle can now vibrate with the same frequency
as that of the fork ; consequently, it is set in vibration, and the
sound is due to both the vibrating bodies. The air in a bot-
tle like this vibrates in a harmonic manner with a definite

FI1G. 73.
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frequency. It forms what is called a ‘‘resonator.” (In

Fig. 73 is shown a common form of resonator.) If a series
of such resonators, of different frequencies, is made, and,
if the body which is making complex vibrations is brought
near the resonators, each one that has a frequency equal to
one of those of the components of the complex vibration
will respond. In this manner, the vibration may be analyzed.
(The sound heard on putting a sea-shell or bottle to the ear
is due to the strengthening of some sound in the room which
has the same frequency as that of the air in the shell or
bottle.) It is thus found that in many cases, e. g. with
stretched cords, organ-pipes, etc., the complex vibration is
made up of harmonic vibrations which have frequencies
n, 21, 31, 4n, etc. The vibration of frequency # is called
the ¢‘fundamental;” the others, the ¢‘partials.” This is not
true in general; for, with most instruments the frequencies .
of the partials do not bear any simple numerical relation
with the fundamental.

85. Harmonic and Complex Waves.—The waves pro-
duced in the surrounding fluid medium by the vibrating
body are longitudinal ones, consisting of compressions and
rarefactions. An attempt is made in Fig. 74 to represent
the advance of such a train of waves towards the right.
Each individual particle makes harmonic vibration, and such
a train of waves is called a harmonic train. The wave-
length (1) and wave-number (7) are connected by the relation
v = n A, where v is the velocity of the train. The ampli-
tude of the waves is that of each individual particle, and
may vary with different waves; but the greater the ampli-
tude, so much the more is the energy which is being carried
by the waves. The velocity of the waves is, however, inde-
pendent of the wave-length or amplitude. The characteris-
tics of a train of harmonic waves are therefore amplitude and
wave-number (or wave-length, since A = v/#). A harmonic
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vibration of the vibrating body will send out a harmonic
train of waves; while a complex vibration will emit a com-
plex train, corresponding
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to each other. As these component waves travel with the
same velocity—if the medium is homogeneous—the com-
plex wave maintains the same ‘‘form ” as it advances.

F1G. 75.

These compres-
sional waves *which
produce sound when
they reach the ear
are generally in the
air; and they can be
reflected like water-
waves and other
kinds of waves.
This is shown by
echoes which are
caused by the re-
flection of the waves
from some large ob-
ject, such as ‘the
side of a building or
a rocky ledge.

The velocity of these
waves in air is 332.5
metres per second at
0° C. At higher tem-
peratures, it is greater,
increasing about 7o
cm. for a degree centi-
grade. The frequen-
cy of ‘“middle C” on
a piano is 256 vibra-
tions per second;
therefore, the wave-
length in this case is
130 cm.

86. Characteristics of a Sound.—When these com-
pressional waves reach the ear, a sound is heard, if the fre-



CHARACTERISTICS OF A SOUND 91

quency falls within certain limits, viz. 20 and 40,000 ap-
proximately. (The limits of audibility vary greatly with
different people, entirely apart from deafness. Some peo-
ple can hear the shrill sounds made by the wings of certain
insects, while others cannot.) The ear recognizes cer-
tain sounds as noises, and others as musical, as noted in
Article 83. It also recognizes certain musical tones as being
simple, others as being complex. Thus, the sound due to
a tuning-fork is simple; that due to a banjo-string very
complex. A simple musical sensation has a certain loudness
and a certain ‘‘pitch” or shrillness; and different simple
sounds vary greatly, both in loudness and in pitch. By
means of proper attention, a trained musician can detect in
a complex note the presence of certain component simple
tones, of different pitch and loudness. This complex char-
acter of most musical notes is said to be their ‘‘quality,”
and is different for different musical instruments. Thus,
almost any one can tell if a sound is due to a horn, to an
organ-pipe, to a violin, to a druimn, etc. The characteristics
of a complex musical tone are, therefore, its quality, and
- the pitch and loudness of the component simple tones. If
the attempt is made to identify these characteristics of a
musical note with those of the vibrations of the elastic
body, the following facts are discovered:

1. A harmonic vibration causes a simple tone; a complex
vibration, a complex note.

2. The quality of a note depends upon the components of
the complex vibration; if there are many of these, the quality
of the tone is harsh and ‘‘twangy.” (The quality, however,
does not vary with the phase of the component vibrations.)

3. The pitch of a simple tone varies directly as the fre-
quency of the harmonic vibration.

If the vibrating body is approaching the ear, the pitch is raised,
because more waves enter the ear in one second than would if the
body were at rest; if the body is receding from the ear, the pitch is
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lowered. (This is illustrated by the increased shrillness of the whistle
of an approaching locomotive, etc.)

4. The loudness of the note increases with the ampli-
tude of the vibration.

87. Beats.—If two bodies whose frequencies differ only
three or four a second are set: in vibration, a pulsating
sound is heard. The loudness rises and falls at regular
intervals, thus producing so-called ¢ beats;” the number
of beats in a second being equal to the.difference of the
frequencies of the two vibrating bodies. For, this ‘‘ beat-
ing” is due to the interference of the two trains of waves
which are sent out by the two bodies; and, since they are
of different wave-iength, it will happen at regular dis-
tances that one wave neutralizes the other, while at points
half way between, each reinforces the other. Conse-
quently, in a distance equal to v, the velocity of the
waves, one train of waves will have #, wave-lengths, the
other will have #,; and therefore in this distance there will
be 7, — n, points, where one wave will neutralize the other,
if they have the same amplitude.

88. Harmony and Musical Scales.—If the number of beats in a
second exceeds in number about twenty, the sensation becomes dis-
agreeable to the ear, just as a twinkling light is unpleasant to the eye,
or the tickling of a feather to the skin. If two bodies, then, make
complex vibrations which are so chosen that there are no beats between
any of the many component vibrations, the two tones should be
pleasant to the ear or in harmony; and, conversely, if there are
beats between any of the partial vibrations, there should be discord.
Such is observed to be the case. Musical scales and compositions are
based upon groupings of notes which are in harmony.

A body which makes, when vibrating at its lowest fundamental rate,
n vibrations per second, will have in many cases, as stated above, par-
tial vibrations of frequencies 2 #, 3 #, 4 n, etc. If two bodies have the
fundamentals ~ and 2, they will have the partials 2, 32, etc., 47,
67, etc. There will be no beats, and the two complex nodes are in
harmony. They form in this case what is called the ‘ octave.,”
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Similarly, two bodies whose fundamentals are in the ratios of
1:3; 2:3; I:4; 3:4; giverise to two notes which are more or less in
harmony. Thus, frequencies may be chosen which are suited for
musical composition. One particular scale, called the ‘‘diatonic,” con-
sists of a series of frequencies, such that in the interval of an octave
there are seven notes so chosen that they are given by the following
ratios:

1st note, C, 24 » vibrations per second.

iy, 400 D, 27n & 2
AR LS E son 4 g Jp
4th ¢ Fo32n Ll s s
oo LR G, 367 X g3 £
6th “ A4, 40n . s £
7th ¢  Bqs»n £ £ g
8th ¢ 2C, 482 - £ S8 setc,

The value of 7z is arbitrary. At the present time, it is so chosen that
A (40 ) equals 435; hence, 2 = 10}.

This ‘‘diatonic” scale is not, however, used extensively at the
present time; a ‘‘tempered” scale has been adopted by most instrument-
makers, in which in the interval of an octave twelve notes are intro-
duced, at equal intervals apart, i. e. the ratio of one frequency to the
next is the same throughout the scale. Thus, if A is the starting-point
of both scales, the notes C on the two would have slightly dif-
ferent frequencies.



CHAPTER V

SOUNDING BODIES

89. Nodes and Loops; Frequency.—It has been shown
in Article 59 that, if transverse waves are sent along a
stretched string and reflected at a fixed end, there will
be a ‘‘stationary vibration” of the cord, if its length bears
a certain relation to the frequency; it will be divided
into vibrating sections limited by ‘‘nodes” or points of
no motion. The wave-length (1) of the wawves is equal
to twice the distance (&) between two nodes; A = 24. Ifv
is the velocity of the waves (transverse in this case), and
»n is their wave-number, v =n A. Therefore, v =2nd or
n=1v[2d. The wave-number of the waves is the frequency
of the vibration of each particle of the medium carrying
the waves, and is, therefore, the frequency of the stationary
vibration caused by the waves. The sections between the
nodes vibrate transversely like a cord whose length is that
of the section. Consequently, the string is divided by the
nodes into vibrating sections of equal length; and half
way between the nodes are the points of greatest motion,
called ‘“loops.”

In a perfectly similar manner, stationary vibrations may
be set up in an elastic wire or in a column of air by
compressional or longitudinal waves. In this case, the nodes
are the points where the motion is least, and the fluctua-
tions of pressure the greatest; the loops are the points

94
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where the pressure remains constant. (See Fig. 76.) As
before, A = 24, and 2 = v/ 2 &, where v is the velocity of the
compresstonal waves.
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Stationary vibration in a column of gas. Vertical lines represent positions of
layers of gas. Curves represent by their vertical displacements the korizontal
displacements of the layers of gas trom their positions of equilibrium. Arrows
represent the directions of motion of the layers of gas.

90. Transverse Vibrations of a Stretched String.—
One mode of vibration is when the string vibrates as a
whole, as shown in Fig. 77 2. The only nodes are at the
ends 4 and B; therefore, if /is the length of the string,
d =/ ; and the frequency (#) is given by the formula

A= 2R s
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where v is the velocity of Zransverse waves in the string.
This is the fundamental vibration.
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F1G. 77.

In this case, the waves are rendered possible by the fact
that the string is held stretched by external tension.

It may be proved that if the string is perfectly uniform and flexible,
v? = T/ap, where 7 is the tension in the string,i. e. the stretching
force, a is the area of the cross-section of the string, and p its density.
Thus, if the tension of the string is increased, or if one of smaller
cros§-section or of less density is substituted, the velocity (v) is
increased; and hence the frequency (#) is increased.

Another mode of vibration is when the string vibrates
in two sections, as shown in Fig. 77 4. There are thus
three nodes, one in the middle C and one at each end,
A and B; d =//2; and, consequently, the frequency

e Ugfals

or the frequency is twice that of the previous mode of
vibration.

Another mode is when the string vibrates in three
sections (see Fig. 77 ¢); there are then four nodes; 4 =//3;
and, consequently,

s=—03 0 fae U

or the frequency is three times that of the first mode of
vibration.

Other simple methods are evidently possible, with frequen-
cies, 4, 5, 6, etc., times that of the first node. If the string
is set vibrating by a random blow, the vibration will not
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be one of these simple nodes, but a complex one, made
up of two or more of them. In Fig. 78 the superposition of
two modes, one and three, is shown.

Fi16G. 78.

Pianos, violins, and all stringed instruments give illustra-
tions of these vibrating cords.

91. Longitudinal Vibrations of Wires.—If a wire
stretched between two fixed supports is rubbed lengthwise,
it is set in vibration; and the individual portions of the
wire move to and fro along the direction of the wire. There
is a node at each end; & = /; and the frequency

n=uv/fz24

where v is the velocity of compressional waves in the wire,
and has no connection with the velocity of fransverse waves.

92. Vibrations of Rods.—If a solid rod is held clamped
at its middle point and set in vibration, there is a node at
that point and a loop at each end. Since i
the distance between a node and loop is half |
the distance between the two nodes, 4 in this l'l

]
|
[l

case is the length of the rod (/). Therefore,
the frequency
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n=uv/zl,

where v is the velocity of transverse waves,
if the vibrations are transverse, and that of
compressional waves, if the vibrations are
longitudinal. (These vibrations are due to
the elastic properties of the solid itself; be-
cause it is not stretched.) Another illustra-

tion of transverse vibrations is given by a FIG. 79.
tuning-fork (Fig. 79), which is a rod bent into the form
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of a U, and having a heavy shank attached at its middle
point. The vibrations are exactly analogous to those shown
” in Fig. 80, which repre-
== = sents the vibrations of a
s i “>.  straight rod having two
EIC 180 nodes. In' the tuning-
fork the two nodes are closer together, owing to the weight
at the middle of the rod, which can be imagined —
bent into the shape of a U.

93. Vibrations of a Column of Air—If a
tuning-fork is held over a bottle or tube of
suitable size (see Article 84), the column of air
will be set in longitudinal vibrations; similarly, if
one blows across the mouth of the bottle or
tube, the air is set in vibration. This is illus-
trated by whistles, horns, flutes, organ-pipes, and
all wind instruments. In the common organ-
pipe, which is open at both ends, the air is forced
across an opening by means of a bellows and sets
the air in the pipe vibrating. (See Fig. 81, which
shows a section of one.) The column of air may
vibrate in many ways. The simplest is when .
there is but one node; for there are loops at the
ends, as each is open to the air. (See Fig. 82 a.)
In this case,d =/, and » = v/ 2 /, where v is the velocity of

a
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FiG. 82a.

waves in the air in the pipe. The next simplest case is when
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FiG. 824.
there are two nodes. (See Fig. 824.) Then,d=//2,and
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n=v//; that is, the frequency is twice that of the previous
or fundamental vibration. If there are three nodes,d =17/ 3,
and n=3v/2/; etc. etc. If an opening is made in the side
of the pipe, there must be a loop there; and so the fre-
quency is changed, as in a flute or flageolet.

““Reed-pipes ” have a stiff metal lip closing the opening
between the bellows and the column of air; and, as the lip
vibrates, it admits puffs of air which maintain the vibra-
tions of the column of air in the pipe. In the playing of
horns the human lips take the part of the metal lip.

04. Vibrations of Plates, Bells, etc.—The vibrations
of metal plates, drum-heads, etc.,, may be studied by
sprinkling light sand over the surfaces. It will gather
into certain lines—called *‘nodal lines "—-where there is no
motion of the plate or membrane. The vibrations of a
bell may be studied by suspending pith-balls in contact
with different points; there will be found to be nodes and
loops at regular intervals.

95. Human Voice.—The human voice is due to vibrations
of various portions of the mouth and throat, and of the air in
the cavity of the mouth. Vowel sounds, such as ‘“a,” ‘‘ah,”
‘‘ee,” etc., are due in the main to vibrations of the air in
the cavity of the mouth, as is evident when these sounds
are whispered; but, if spoken or sung, the sound is modi-
fied by the vibrations of the membranes of the larynx,
which impress upon the sound a definite pitch. This pitch
may be regulated at will, by making the membranes of the
larynx more or less rigid by means of the muscles in the
throat.

96. Velocity of Compressional Waves.—The velocity of
"the waves, which produce sound when they reach the ear,
may be measured in many ways. If the waves are in air,
there are two good methods. One is the direct one of hav-
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ing the observers stationed a known distance apart, and
then measuring the time required for the waves to pass
from one to the other. For instance, one observer may
fire a pistol at a noted time; the other may observe the
time when he hears it. (Or the waves may be reflected
by a wall, and the time of return of the'echo noted.) The
other method is to measure the frequency of the vibrations”
of air in an open organ-pipe. Then, since, as was shown,
‘n =w /2 /if the vibration is the fundamental, v, the velocity,
can be deduced. A known frequency can be obtained by
altering the length of the column of air until the pitch of
the sound is the same as that of a standard tuning-fork
whose frequency is known; for, if two sounds have the
same pitch, the frequencies of the two vibrating bodies are
the same. (This'experiment must be slightly modified in
practice, owing to the fact that the loop at the end of an
open organ-pipe is not exactly at the end, but slightly out-
side.) .

The velocity of compressional waves in other gases may
be found by a modification of the second method just
described; and their velocity in solids and liquids may
also be easily determined. (See Ames’s ‘‘ Theory of Phy-
sics,” p. 183.)

TABLE IV

VELOCITY OF SOUND
CM. PER SEC.

AT 0 24EH Wkl tio Brass, 350,000
Hydrogen, o° C., 128,600 Glass, 506,000
Water, 4° C., 140,000 Iron, 509,000




CHAPTER VI
NATURE OF HEAT

97. Sources of Heat.—If one exposes his hand to the
sun’s rays, or puts it near a fire, a definite sensation is felt,
known as the ‘‘sensation of heat,” whereas, if the hand is put
near a block of ice, there is a different sensation, known as
the ‘‘sensation of cold.” One knows from experience, too,
that under conditions such that the hand would receive sen-
sations of heat or cold, material bodies would experience
certain effects—such as change in volume, melting, freezing,
etc. These are called ‘‘heat-effects.” Further, the name
““source of heat” is given the object or operation which pro-
duces heat-effects: the sun, a fire, friction, sudden compres-
sion of a gas, etc., are ‘“sources of heat.”

98. Temperature.—The hot and cold sensations which our
hands experience are due to what is called our ‘‘ temperature ”
sense. If we put a hand in succession into two vessels of
water, we can probably notice a difference of sensation; and
we say that ‘‘one is warmer than the other,” or that ‘the
temperature of one is higher than that of the other.” The
heat-effect which is most easily noticeable to us depends
upon our temperature sense; viz. if a material body is
exposed to a ‘“‘source of heat,” it becomes ¢ warmer,” in the
sense just explained, or, in other words, its ¢‘ temperature
becomes higher.” In studying heat-effects, it is important
for us to have some method of giving a numerical value to

101
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the temperature, so that we can express changes in tem-
perature numerically, and compare these quantities with
other changes, such as those of volume. The method of
giving a number to temperature depends upon the following
facts: If a glass bulb with a capillary stem is placed with its
tube horizontal, and if a small drop of mercury is inserted
in the tube, we have an

instrument which re-

sponds immediately to any

source of heat or cold,

owing to the change in

volume of the air in the

FARNC bulb as indicated by the

motion of the drop of mercury. (The pressure of the enclosed
air equals that of the atmosphere outside, which is supposed
to remain constant during the experiment; and the instru-
ment is called a ‘‘constant-pressure air-thermometer.”) The
volume of the bulb and of each centimetre along the stem
can be considered known from previous measurements. If
this thermometer is placed in a mixture of ice and water, the
air in the bulb will assume a definite volume (7,), which is
found, by repeated experiments with the same instrument, to
be always the same. This is equivalent to saying that the
temperature of a mixture of ice and water is always the
same. If the thermometer is placed next in a bath of steam
boiling off from water, the air in the bulb will assume a
greater volume (7,); and by repeated trials, it is found that
this volume is always the same with the same instrument
if the atmospheric pressure is the same, e. g. if it is equiva-
lent to 76 cm. of mercury. Let the volume v, be measured,
then, under this condition of pressure. Now place the ther-
mometer in the space for whose temperature a number is
desired, e. g. a vessel of water; measure the volume of the
air in the bulb, and call it . We can agree to choose num-
bers for temperatures, such that changes in temperatures are
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proportional to these changes in volume of the air-thermom-
eter. Thus, call, for a moment,

¢, the temperature of ice and water;
¢,, the temperature of steam at 76 cm. pressure;
¢, the temperature of the vessel of water.

Then L=t il —t =v, -V, UV — 7,
or t = l‘“ + (’U = vo) (tl - ln)
v, — 7,

We can give any arbitrary numbers we wish to 7, and ¢;
and then we have a definite number for # corresponding to
a definite volume (7) of the air in the bulb of the
thermometer. Cn the Celsius or Centigrade scale, [}
¢, is put o; and #, 10o. Hence
t =100 u,
v, — 7,

and the temperature of the vessel of water is called

¢t degrees Centigrade. 100°
On the Fahrenheit scale 7, is put 32; £, 212;
hence ! =32 + 180 xd _ﬂ.
Uy — Vo

On the Réaumur scale #, is o; 7, is 8o;

v — Vo

hence =80 5
Uy — Vs

If some other fluid than air had been used in the thermom-
eter, a different numerical value for 7/ would, in general,
have been obtained; and there is no fundamental reason why
one fluid should be preferred to another. There is, however,
one particular advantage in favor of a gas. (See Article 103,
Gasges.) Only, if one system based on the use of a definite
substance is adopted, it must be used always in stating FIG. 8.
comparative results. Mercury-in-glass-thermometers (see Fig. 84) are
used for ordinary measurements, because they have so many practical
advantages. Their readings do not give, however, the true numerical
values for the temperature, but only approximate ones, meaning by the
‘‘true” values those given by a constant pressure air-thermometer.
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We are thus able, not to measure temperature, but to give
it a numerical value.

09. Connection Between Heat-Effects and Energy.—
If we consider various heat-effects and the methods by
which they are produced, it is at once evident that in
every case energy is given the minute portions, the molecules,
of the body which undergoes the change. Thus, if two
pieces of metal are rubbed together, or if a paddle is turned
rapidly in water so as to make currents in the water and
thus cause friction, work is done, and heat-effects, viz. rise
of temperature, are produced. If two pieces of ice are
rubbed together, work is done, and the ice melts. If a gas
is suddenly compressed, work has to be done, and the tem-
perature is raised. If a piece of lead is hammered, it is
deformed permanently, work has been done, and the tem-
perature is raised, etc., etc. In a flame or fire there are
energy changes of the molecules of the burning gas; they
‘‘combine ” with the oxygen of the air,and, as a result,
the temperature is raised. These heat-effects are all due to
the transfer of the energy to the minute portions of
matter which make up the body showing the heat-effect.
This is equivalent to saying that heat-effects are due to
the minute portions of matter receiving energy; and we
should expect, therefore, that the work done in producing
the heat-effect was proportional to the quantity of matter
which undergoes the change. All experiments are in
accord with this idea. It is, therefore, important to know
how much work is required to cause a definite amount
of matter to experience a given heat-effect, e. g. melting
from the solid to the liquid state. This experiment can-
not be performed directly with any accuracy; but it can
be indirectly. It is first determined that to make one
gram of the substance melt requires an amount of heat-
energy which if spent in raising the temperature of water






CHAPTER VII
TRANSFER OF HEAT-ENERGY.

100. Introductory.—If two bodies of different tempera-
tures are placed in contact or near each other, it will be
noticed that in time they will be at the same temperature;
the one at the higher temperature will have had its temper-
ature fall, the other will have had its temperature rise.
Since rise in temperature is due to the addition of energy
(unless there are internal redistributions of energy), and fall
in temperature to loss of energy, thisshows that, if two bodies
atdifferent temperaturesare left to themselves,the one at high
temperature loses energy, the other gainsit. (This is per-
fectly analogous to the fact that a fluid flows from high to
low pressure.) There are several ways in which bodies gain
or lose energy, as shown by heat-effects. These arc called
Convection, Conduction, and Radiation.

101. Convection.—An illustration of convection is given
when a pail of water is placed over a fire. The temperature
of the water at the bottom of the pail is raised, the water
expands, i. e. its density becomes less, and, consequently, it
rises towards the top, owing to the action of gravity, which
always makes the less dense liquid float above a denser
liquid. As the hot water rises, it sets up currents, warms
the upper portions of the liquid by contact, and also drives
them down mnear the bottom, where they, in turn, are
warmed. It will be seen that convection can take place

106
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only in a fuid which is warmed at the dotfomz, and that the
direct cause of the process is gravity. Winds are largely
due to convection currents in the atmosphere; the draught of
chimneys and systems of hot-water heating depend upon
convection.

102. Conduction.—An illustration of conduction is given
when one end of an iron poker is put into a fire. The tem-
perature of that end is raised rapidly; and, after some time,
it may be noticed that the temperature of points some dis-
tance from the fire is rising. The rate at which this rise
takes place measures the conducting power of the body.
Silver is the best conductor, then come copper and alumi-
nium; woods, woollen cloths, paper and glass are very poor
conductors. The conduction in fluids (except liquid metals)
is very small.

The process of conduction consists in the passing on of
energy from the hot end of the body to the neighboring
portions. One can picture the molecules at the hot end
vibrating faster and with increased amplitude, and so caus-
ing the molecules next them to vibrate faster, etc.

If a piece of wire gauze is lowered over a flame, the tem-
perature of the gas is so lowered by the conduction away of
the energy that it falls below the temperature of combus-
tion, and so there is no flame above the gauze, only cold
gases rising. A piece of metal often appears colder to the
touch than a piece of wood, even though they are at the
same temperature, because the metal conducts away the
heat from the hand or body so rapidly.

103. Radiation.—An illustration of radiation will be given
if a mercury thermometer, sealed in a glass bulb, out of
which all the air was exhausted, is brought near a block of
ice. The temperature of the thermometer will be observed
to fall; hence, energy has left it. But by what process has
this taken place? There can be no question of convection .
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or conduction, for all ordinary matter has been removed
from the bulb surrounding the thermometer. There must,
therefore, be some sedium in the bulb which carries energy

i

&

FIG. 8s.

—this is called ‘‘the ether "—and the pro-
cess by which the energy is carried through
it is called radiation, and will be shown
later (see Art. 135) to be wave-motion.
In order to have waves, a vibrating centre
is necessary. We can therefore picture
the process as follows: The particles of
matter making up the thermometer are
making minute and very rapid vibrations;
these cause waves in the ether, which pass
across the space to the glass walls of the
bulb; a certain proportion of these waves
are reflected, some are transmitted, and
the others are ‘‘absorbed” by the walls.
By ¢“absorption ” is meant that the energy
is taken away from the ether-waves, and

is gained by the molecules of the body which absorbs the
waves—the ether-waves will set in vibration those molecules
of the body whose frequency of vibration is the same as
that of the waves, on the general principle of resonance

(see Art. 84).

It is evident that the amount of energy radiated by a
body—and all bodies do radiate energy—depends on the
body itself, not on what becomes of the energy. Thus, if
two bodies are put near each other, and radiation takes
place, each will lose energy by emission, and each will gain
energy by absorption; and the reason why the one at higher
temperature has its temperature fall is because it loses more
energy than it gains. There is thus seen to be some con-
nection between radiation and temperature. The higher
the temperature of a given body, so much the more intense
is the radiation, Further, the waves emitted by a body
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are of different wave-numbers depending on the frequencies
of the molecules of the body, which are vibrating; and it is
found by experiment that, as the temperature is raised,
there are waves of greater and greater wave-number emitted
(i. e. of shorter and shorter wave-length). This is shown
roughly by the fact that, if the temperature of a piece of
iron is raised, it will finally appear colored to our eyes; and,
as will be shown later (see Art. 136), the immediate cause
of the sensation of color is the presence of ether-waves of
immensely great wave-number.

To measure the energy carried by these ether-waves, some instru-
ment like a thermometer must be used, which will absorb the energy
of the waves. But, of course, heat-effects are not the only things
which these ether-waves can cause. When they fall upon the human
eye, they produce color-sensations, if their wave-number lies between
certain limits. If they fall upon certain chemicals, changes are pro-
duced, e. g. photographic action. If the waves are very long, they
produce electrical effects. In other words, ¢ heat-waves,” ‘light-
waves,” ‘chemical waves, electrical waves,” are all names for the
same thing, viz. ether-waves, and are used to emphasize one feature of
the various effects which are produced when the waves are absorbed.
These waves—of all lengths—may be reflected, refracted, etc., as will
be shown more fully in treating Light.

”oce

104. Absorption.—As shown above, absorption of the
energy from ether-waves takes place when the vibrations of
the matter have the same frequency as the waves. In other
words, a body absorbs waves of the same frequency as those
it would emit. (This energy which is thus absorbed is not
all spent in increasing the vibrations of the molecules—as
would be the case if it were simply a phenomenon of reso-
nance; the energy is spread by conduction, etc., through
the whole mass, and there are various internal changes.
The energy in time becomes associated with the parss of
the molecules, i. e. the ‘‘atoms.”) Thus the word ‘‘ trans-
parent” has no definite meaning unless it is stated what the
frequency of the waves is which pass through the body.



110 TRANSFER OF HEAT-ENERGY

Ordinary glass is transparent to waves which produce
sensations of color, but non-transparent to longer waves.

This explains the action of a ‘‘greenhouse” or ‘‘conservatory.”
The waves from the sun fall upon the glass roof, and the shorter waves
—those which produce the sensation of light—are transmitted; these
reach the ground and are-absorbed. The temperature of the ground
rises slightly; but the waves it emits are so long that they cannot pass
through the glass; they are reflected and absorbed by the ground, ete.
Thus, the energy which comes through the glass roof is trapped " and
cannot escape.

Similarly, on a cloudy night the energy stored up in the ground
during the day is radiated from the surface, but is reflected by the
clouds; or absorbed by them, in which case they emit radiation back
towards the earth. Consequently, the temperature does not fall so
rapidly as on a clear night.

The air absorbs some of the energy of the waves from the sun as they
pass through it; but the rarer the air, the less the absorption. Thus,
if a person is exposed to the sun’s rays at a high altitude, the heat is
intense; but, if he is in the shade, the cold is intense, because there are
no large bodies near, which have absorbed the energy from the rays
and are in a condition to emit radiation.

A body which is polished absorbs but very little radiation
and reflects most of it; whereas, if it is blackened, e. g. with
lampblack, it absorbs most of the radiation of short wave-
lengths and reflects little. A blackened body must there-
fore emit a greater amount of radiation at a given tempera-
ture than a polished one. This fact is illustrated by the
blackening of stoves, boilers, etc.
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HEAT-EFFECTS

105. Change of Volume.—If, as the result of trans-
ferring energy to the molecules of a body, i. e. by warming
it, its temperature rises, the volume in general will also
change—it will increase, except in a very few cases.

If the volume is measured at o° C., and again at #° C. (as
determined on a constant-pressure air-thermometer), it is
found (except in certain cases) that the change in volume is
proportional to the change in temperature, to within a fair
degree of exactness. Thus, if v, is the volume at o° C.; v at
¢° C.; it is found that v — v, = B, ¢, or v = v, (1 + B7),
where *“” is a constant for any one kind of matter (e. g.
iron), and is called the ‘‘coefficient of cubical expansion;”
or, it is the change in volume which one cubic centimetre of
the substance would experience if its temperature were
raised from o® to 1° C. For solids £ is small; for liquids it
is larger; and for gases still larger.

If the body expanding is a cube, each of whose edges has the length
lyato®° C.,and Zat £°; vo= /3, v =103,

hence 13 — 13 =p3173¢,
or : I3 =103(1+B%)
Hence =4La+p t)é

=1/ (1 +§t),

if B is very small in comparison with 1, as it is in the case of solids.
Hence the ‘coefficient of /zmear expansion” is one-third that of
cubical expansion.

shll
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Different solids expand at different rates, i. e. g is differ-
ent; and the fact may be made use of in constructing
‘‘compensating pendulums” (see Fig. 86), in which, as the

pendulum lengthens with rise of temperature,
E there is an expansion produced upward of
some bar fastened to the bottom of the pendu-
T lum, so that the centre of gravity remains
unchanged. Illustrations of expansions of
solids are given by the cracking of tumblers
when dipped in hot water, the change in length
of metal bridges and rails, by the fact that
wagon-tires are always raised to a high tem-
perature and then shrunk on the wooden parts,
etc:

Liquids.—Different liquids expand differ-
ently also; and one liquid—water—behaves
irregularly as the temperature is raised.

F16. 86. Starting with a definite quantity of water at
0° C., its volume decreases as the temperature 7zses, until 4° C.
is reached; after which the volume increases with rise in
temperature. Inother words, the density of water is greater
at 4° C. than at any other temperature.

This fact is most importanf in the economy of Nature, because it is
the direct cause of the formation of ice on the surface of a lake or
pond instead of on the bottom. As the temperature of the water in
the lake falls, the densest water goes to the bottom, the lightest to the
top; hence water at o° C. will float on that at 4° C.; and so, when the
ice is formed, it is on the surface.

The fact that the volume of a liquid, and therefore its
density, changes shows that a barometer (see Article 79) re-
sponds to changes of temperature as well asto those of pres-
sure. Consequently, if an exact knowledge of the change in
pressure is desired, it is necessary to make correction for
the effect of change in temperature.
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Gases.—In measuring the expansion of gases when the
temperature is raised, it must be noticed that the change
in volume depends also upon conditions of pressure. If the
pressure is kept constant, it is found that the change in
volume obeys a most simple law: if a certain quantity of
gas has the volume 7, at o° C. (the temperature of a mix-
ture of ice and water), and v at 100° C. (the temperature
of steam coming off a surface of water at a pressure of

v—T, .
0 is the same for all gases,

76 cm. of mercury), the ratio

v,
and for all quantities of the gas. (The apparatus by
which this was proved is shown in Fig. 87.) Expressed in

FI1G. 87.

terms of the previous formula v =19, (1 4 £¢), we have

v = 7, (1 -+ 100 ) ; hence = T % — 100 B. Consequently, g is
v,

the same for all gases. (The formula v =7, (1 4 £¢) is not

exactly true; but the deviations from truth are very small

for a gas.) The value of # for all gases is very nearly

0.003663, or %5 (The gas must be perfectly dry.)
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If the pressure and temperature both change, the result-
ing change in volume may be determined thus: Let the
gas be at pressure p and temperature o°, and let its
volume be called 7,; keep the pressure constant, and
change the temperature to z°, the resulting volume will be
v, where v = v, (1 + f#¢); now keep the temperature con-
stant, and change the pressure from p to Z, the volume
will change from v to V, where PV =pwv. (Boyle's law.
See Article 78.) Hence

PV=po, (1 +A1),
or ‘ V:%(I—]—ﬂt).

If the volume ( 77) of a gas is measured at #° C., and at
a pressure of 2 cm. of mercury, the volume it would have
at o® and at a pressure of 76 cm. of mercury is seen on sub-
stitution in the above formula to be

Vs V

w= % 1+ 0.003663 ¢

This is known as the ‘‘corrected” volume of the gas, or
its ¢‘ volume under standard conditions.”

If the volume of a gas is kept constant while the temperature is
changed, the pressure will change. Thus, if in the above formula
V.= Vo, .
P=p(1+82),

Mt

or .B t= ‘ﬁ ’
i. e. the coefficient of increase of pressure, the volume being con-
stant, is the same as that of expansion at constant pressure. An in-
strument, therefore, which measures the pressure of a gas at constant
volume, as the temperature changes, can be used to determine the
value of ¢, the temperature, if the pressure is known at o° and 100° C.
Such an instrument is called a ** constani-volume air-thermometer,” and
one form is shown in Fig. 88.
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If t:—ﬂi,i.e.iff:——273°C.,P=0,
if the volume is constant; or J =o, if the pressure is constant,
Neither statement has any meaning; as, in fact, all gases would be
liquefied at temperatures as low
as —273° C. But this number,
273, is sometimes called ‘‘absolute
zero” on the Centigrade scale.
Thus, o° C. is called ‘‘273° abso-
lute;” 100° C., 373° absolute, etc.

106. Change in State.—
One class of heat-effects of
most common occurrence is
that of change from solid to
the liquid state; liquid to
the gaseous state, etc. II-
lustrations of this are melt-
ing, solidifying, boiling, con-
densation, etc.

Fusion.—‘‘ Fusion” is the
process of passing from a & Nl O =
solid into a liquid state. If
a piece of lead is warmed
continuously over a fire, its temperature will slowly rise
until it begins to melt; but, as long as the melting goes on,
the temperature remains unchanged; then, after it is all
melted, the temperature will again rise. (Some bodies do
not melt at a fixed temperature, but melt gradually, becom-
ing soft, as the temperature rises, e. g. various waxes,
plumber’s solder.) This temperature at which a solid melts
is, in general, the 