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PREFACE.

TuE rapid spread of the Labbratory System of teaching Physics,
both in this country and abroad, seems to render imperative the
demand for a special text-book, to be used by the student. To
meet this want the present work has been prepared, based on
the experience gained in the Massachusetts Institute of Technol-
ogy during the past four years. The preliminary chapter is
devoted to general methods of investigation, and the more com-
mon applications of the mathematics to the discussion of results.
The graphical method does not seem to have attracted the atten-
tion it deserves; it is accordingly compared here with the
analytical method. Some new developments of it are moreover
inserted. It is of fundamental importance that the student should
clearly understand how to deal with his observations, and reduce
them, and that he should be familiar with the various kinds of
errors present in all physical experiments. A short description is
also given of the various methods of measuring distances, time
and weights, which, in fact, form the basis of all physical inves-
tigation. This chapter is intended as the ground-work of a short
course of lectures, given to the students before they begin their
work m the laboratory. ¥t should be so far extended by the
instructor, a3 to render them familiar with the general principles

on whichi all physical instruments are constructed, thus greatly
™)
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aiding them when they have occasion to devise apparatus for
their own work.

The remainder of the volume is devoted to a series of experi-
ments which it is intended that the student shall perform in the
laboratory. Each experiment is divided into two parts; the first
called Apparatus, giving a description of the instruments re-
quired, and designed to aid the instructor in preparing the labora-
tory for the class. The student should read this over, and with it
the second part, entitled Fuxperiment, which explains in detail
what he is to do.

Perhaps the greatest advantage to be derived from a course of
physical manipulation, is the means it affords of teaching a student
to think for himself. This should be encouraged by allowing him
to carry out any ideas that may occur to him, and so far as possible
devise and construct, with his own hands, the apparatus needed.
Many such investigations are suggested in connection with some of
the experiments, for instance Nos. 13, 37, 48, 69, 77, 93 and others.
To aid in this work, a room adjoining the laboratory should be fit-
ted up with a lathe and tools for working in metals and wood, as
most excellent results may sometimes be attained at very small
expense, by apparatus thus constructed by students.

The method of conducting a Physical Laboratory, for which this
book is especially designed, and which has been in daily use with
entire success at the Institute, is as follows. Each experiment is
assigned to a table, on which the necessary apparatus is kept, and
where it is always used. A board called an indicator is hung on
the wall of the room, and carries two sets of cards opposite each
other, one bearing the names of the experiments, the other those
of the students. When the class enters the laboratory, each
member goes to the indicator, sees what experiment is assigned
to him, then to the proper table where he finds the instruments
required, and by the aid of the book performs the experiment.
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Any additional directions needed are written on a card also placed
on the table. As soon as the experiment is completed, he reports
the results to the instructor, who furnishes him with a piece of
paper divided into squares if a curve is to be constructed, or with
a blank to be filled out, when single measurements only have been
taken. In either case a blank form is supplied, as a copy. New
work is then assigned to him by merely moving his card opposite
any unoccupied experiment. By following this plan an instructor
can readily superintend classes of about twenty at a time, and is
free to pass continually from one to another, answering questions
and seeing that no mistakes are made. He can also select such ex-
periments as are suited to the requirements or ability of each stu-
dent, the order in which they are performed being of little impor-
tance, as the class is supposed to have previously attained a
moderate familiarity with the general principles of physics. More-
over, the apparatus never being moved, the danger of injury or
breakage is thus greatly lessened and much time is saved. To
avoid delay, the number of experiments ready at any time should
be greater than that of the students, and the easier ones should be
gradually replaced by those of greater difficulty.

Among these experiments several novelties, here published for
the first time, have been introduced. For instance, the apparatus
for ruling scales, p. 59, the photometers, pp. 132 and 134, and the
polarimeter, p. 221. It is also believed that the directions for
weighing, p. 47, and the adjustments for the optical circle, p. 142, if
not new, at least present the subject in a more concise and practi-
cal form than that commonly given. In fact it has been the
object throughout to give definite directions, so far as possible, as
if addressing the student in person. KEnglish weights and measures
are occasionally used as well as French to familiarize the student
with both systems, as in many of the practical applications of phys-

ics the general prevalence of the foot and pound as units seems
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to render premature the exclusive introduction of the metric sys-
tem. The second volume of this work, including Heat, Electric-
ity, a list of books of reference, and other matters of general
interest to the physicist, will be issued at as early a date as pos-
sible.

It is difficult to give credit for all the aid rendered in preparing
this work, as the author has for years made it a practice to collect
for it information from all available sources. He is much indebted
to Mr. Alvan Clark for the method of testing telescope lenses, and
to Prof. F. E. Stimpson for advice and aid on photometry and
other matters. The course in photography is essentially that
given by Mr. Whipple to the students at the Institute. Iis
especial thanks are due to his friend Prof. Cross, whose careful
examination of the proof sheets, and whose excellent judgment
has been of great assistance. Finally, if this volume, notwith-
standing its shortcomings, aids in any way those engaged in
physical investigations, either the student in the laboratory or the
amateur experimenter, the object of the author will have been

accomplished.
E. C. P
April 29th, 1873.
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GENERAL METHODS

OF

PHYSICAL INVESTIGATION.

5

THE object of all Physical Investigation is to determine the
effects of certain natural forces, such as gravity, cohesion, heat,
light and electricity. For this purpose we subject various bodies
to the action of these forces, and note under what circumstances
the desired effect is produced ; this is called an experiment. In-
vestigations may be of several kinds. First, we may simply wish
to know whether a certain effect can be produced, and if so, what
are the necessary conditions. To take a familiar example, we find
that water when heated boils, and that this result is attained
whether the heat is caused by burning coal, wood or gas, or by
concentrating the sun’s rays; also whether the water is contained
in a vessel of metal or glass, and finally that the same effect
may be produced with almost all other liquids. Such work is
called Qualitative, since no measurements are needed, but only to
determine the quality or kind of conditions necessary for its fulfil-
ment. Secondly, we may wish to know the magnitude of the force
required, or the temperature necessary to produce ebullition.
This we should find to be about 100° C. or 212° F., but varying
slightly with the nature of the vessel and the pressure of the air.
Thirdly, we often find two quantities so related that any change
in one produces a corresponding change in the other, and we may
wish to find the law by which we can compute the second, having
given any value of the first. Thus by changing the pressure to
which the water is subjected, we may alter the temperature of
boiling, and to determine the law by which these two quantities
are connected, hundreds of experiments have been made by physi-
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cists in all parts of the world. The last two classes of experi-
ments are called Quantitative, since accurate measurements must
be made of the quantity or magnitude of the forces involved.
Most of the following experiments are of this nature, since they
require more skill in their performance, and we can test with more
certainty how accurately they have been done. Having obtained
a number of measurements, we next proceed to discuss them by
the aid of the mathematical principles deseribed below, and finally
to draw our conclusions from them. It is by this method that the
whole science of Physics has been built up step by step.

Errors. In comparing a number of measurements of the same
quantity, we always find that they differ slightly from one another,
however carefully they may be made, owing to the imperfection of
all human instruments, and of our own senses. These deviations
or errors must not be confounded with mistakes, or observations
where a number is recorded incorrectly, or the experiment improp-
erly performed; such results must be entirely rejected, and not
taken into consideration in drawing our conclusions.

If we knew the true value, and subtracted it from each of our
measurements, the differences would be the errors, and these may
be divided into two kinds. We have first, constant errors, such as
a wrong length of our scale, incorrect rate of our clock, or natural
tendency of the observer to always estimate certain quantities too
great, and others too small. When we change our variables
these errors often alter also, but generally according to some defi-
nite law. When they alternately increase and diminish the result
at regular intervals they are called periodic errors. If we know
their magnitude they do no harm, since we can allow for them,
and thus obtain a value as accurate as if they did not exist. The
second class of errors are those which are due to looseness of the
joints of our instruments, impossibility of reading very small dis-
tances by the eye, &c., which sometimes render the result too large,
sometimes too small. They are called accidental errors, and are
unavoidable ; they must be carefully distinguished from the mis-
takes referred to above.

Analytical and Graphical Methods. There are two ways of
discussing the results of our experiments mathematically. By the
first, or Analytical Method, we represent each quantity by a letter,
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and then by means of algebraic methods and the calculus draw
our conclusions. By the Graphical Method quantities are repre-
sented by lines or distances, and are then treated geometrically.

The former method is the most accurate, and would generally
be the best, were it not for the accidental errors, and were all
physical laws represented by simple equations. The Graphical
Method has, however, the advantage of quickness, and of enabling
us to see at a glance the accuracy of our results.

ANALYTICAL METHOD.

Mean. Suppose we have a number of observations, 4,, 4,, 4,,
A, &e., differing from one another only by the accidental errors,
and we wish to find what value A4 is most likely to be correct. If
A was the true value, A, — 4, A, — A, &c., would be the errors
of each observation, and it is proved by the Theory of Probabil-
ities that the most probable value of 4 is that which makes the
sum of the squares of the errors a minimum. Also that this prop-
erty is possessed by the arithmetical mean. Hence, when we
have 7 such observations, we take 4 = (4, + 4,1+ 4, &e.) +n,
or divide their sum by n. Thus the mean of 32, 33, 31, 30, 34, is
160 =- 5 = 32. It is often more convenient to subtract some even
number from all the observations, and add it to the mean of the re-
mainder; thus, to find the mean of 1582, 1581, 1583, 1581, 1582,
subtract 1580 from each, and we have the remainders 2, 1, 3, 1, 2.
Their mean is 9 = 5 = 1.8, which added to 1580 gives 1581.8.
Where many numbers are to be added, Webb’s Adder may be
used with advantage.

Probable Error. Having by the method just given, found the
most probable value of A4, we next wish to know how much reli-
ance we may place on it. If it is just an even chance that the
true value is greater or less than A by Z, then Eis called its
probable error. To find this quantity, subtract the mean from
each of the observed values, and place 4, — 4 = ¢, 4,— 4
= ¢,, & Now the theory of probabilities shows that Z =
6767 + e + &c., =+ n, from which we can compute £ in any
special case. As an example, suppose we have measured the
height of the barometer twenty-five times, and find the mean
929.526 with a probable error of .001 inches. Then it is an even
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chance that the true reading is more than 29.525, and less than
29.527. Now let us suppose that some other day we make a single’
reading, and wish to know its probable error. The theory of
probabilities shows that the accuracy is proportional to the square
root of the number of observations, or that the mean of four, is.
only twice as accurate as a single reading, the mean of a hundred,
ten times as accurate as one. Hence in our example we have
1 :.4/25=.001 : .005, the probable error of a single reading.
Substituting in the formula, we have the probable error of a single
reading, B/ = B X /n = .67J/¢? + &' + &c. = /n. It is gene-
rally best to compute £’ as well as %, and thus learn how much
dependence can be placed on a single reading of our instrument.

Weights. We have assumed in the above paragraph that all
our observations are subject to the same errors, and hence are
equally reliable. Frequently various methods are used to obtain
the same result, and some being more accurate than others are said
to have greater weight. Again, if one was obtained as the mean
of two, and the second of three similar observations, their weights
would be proportional to these numbers, and the simplest way to
allow for the weights of observations is to assume that each is
duplicated a number of times proportional ‘to its weight. From
this statement it evidently follows that instead of the mean of a
series of measurements, we should multiply each by its weight,
and divide by the sum of the weights. Calling 4,, 4,, &e., the
measurements, and 1w, w;, &c., their weights, the best value to use
will be 4 = (A0, + Ay, + &e.) = (w; 4+ w, - &e.). We may
always compute the weight of a series of n observations, if we
know the errors ¢,, ¢;, &c., using the formula w =7 =+ 2(¢? 4- ¢ +
¢ + &c.). Substituting this value in the equation for probable error,
we deduce & = 477 —— /nw if all the observations have the
same weight, or & = 477 <= Jw, + w, + &c., if their weights are
W, , Wy, &c.

Probable Error of Two or More Variables. Suppose we have
a number of observations of several quantities, &, ¥, 2, and know
that they are so connected that we shall always have 0 =1 + az
+ by + cz. If the first term of the equation does not equal 1, we
may make it so, by dividing each term by it. Call the various

values a assumes &/, &”, «'”, those of ¥, ¥/, ¥”, ¥/, and those
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of 2,2, 2", 2", and so on for any other variables which may enter.
If we have more observations than variables, it will not in general
be possible to find any values of @, & and ¢ which will satisfy them
all, but we shall always find the left hand side of our equation
instead of being zero will become some small quantity, ¢, ¢’, ¢/, so
that we shall have: — \

¢ =1 Llaett = hylsalle,

¢ =1 + ax’’ + by” + czu’

ol =11 + ax’” 'l" by’” + CZ/”,
and so on, one equation corresponding to each observation. These
are called equations of condition. Now we wish to know what
are the most probable values of a, b and ¢, that is, those which will
make the errors ¢, ¢”, ¢, as small as possible. As before, we must
have the sum of the squares of the errors a minimum. We there-
fore square each equation of condition, and take their sum; differ-
entiate this with regard to e, b and ¢, successively, and place each
differential coeflicient equal to zero. These last are called normal
equations, and correspond to each of the quantities «, b and ¢, re-
spectively. The practical rule for obtaining the normal equations
is as follows : — Multiply each equation of condition by its value
of x (or coefficient of a), take their sum and equate it to zero.
Thus «'(1 4 o’ 4 by’ 4 c&) + «”(A + ax” 4+ by” + ¢2”) + &e.
=0, is the first normal equation. Do the same with regard to y,
and each other variable in turn. We thus obtain as many equations
as there are quantities @, b and ¢ to be determined. Solving them
with regard to these last quantities, and substituting in the original
formula 0 =1 4 ax 4~ by + cz, we have the desired equation.

As an example, suppose we have the three points, Fig. 1, whose
codrdinates are ' =1,y =1, 2" =2, ¢y’ =2, 2’ = 38, y"' = 4,
and we wish to pass a straight line as nearly as possible through
them all. We have for our equations of condi-
tions: 0 =1+ a + 6 0=1-+2a+ 25 0=
1 4 3a -+ 4b. Applying our rule, we multiply
the first equation by 1, the second by 2, and the
third by 3, the three values of a, and take their /.
sum, which gives 1 +a+06 42440446+ 3
+ 9a + 120 =6 4 14a 4 176=10. For our sec- Fig. 1.
ond normal equation we multiply by 1, 2 and 4,

/N
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respectively, and obtain in the same way 7 -4 17a - 216 =0.
Solving, we find ¢ = —1.4, b = .8, and substituting in our original
equation 0 =1 + ax -+ by, we have 0 =1 — 14 + Sy, or y =
1.752 — 1.25. Constructing the line thus found, we obtain MK,
Fig. 1, which will be seen to agree very well with our original
conditions.

For a fuller description of the various applications of the Theory
of Probabilities to the discussion of observations, the reader is re-
ferred to the following works. Méthode des Moindres Carrées par
Ch. Fr. Gauss, trad. par J. Bertrand, Paris, 1855, Watson’s
Astronomy, 360, Chauvenet's Astronomy, II, 500, and Todhuni-
er's History of the Theory of Probabilities. A good brief de-
seription is given in Davies’ and Peck's Math. Dict., 454, 536 and
590, also in Mayer’s Lecture Notes on Physics, 29.

Peireds Criterion. It has already been stated that all observa-
tions affected by errors not accidental, or mistakes, should be at
once rejected. But it is generally difficult to detect them, and
hence various Criteria have been suggested to enable us to decide
whether to reject an observation which appears to differ consid-
erably from the rest. One of the best known of these is Peirce’s
Criterion, which may be defined as follows:— The proposed ob-
servations should be rejected when the probability of the system
of errors obtained by retaining them is less than that of the system
of errors obtained by their rejection, multiplied by the probability
of making so many and no more abnormal observations. Or, to
put it in a simpler but less accurate form, reject any observations
which increase the probable error, allowing for the chances of
making g0 many and no more erroneous measurements. Without
this last clause we might reject all but one, when the probable
error by the formula would become zero. See Gould’s Astron.
Journ., 1852, 11, 161; IV, 81, 137, 145,

Another ecriterion has been proposed by Chauvenet, which,
though less accurate than the above, is much more easily applied.
It is fully described in Watson's Astronomy, 410.

Differences. To determine the law by which a change in any
quantity 4 alters a second quantity B3, we frequently measure B
when A is allowed to alter continually by equal amounts. Thus
in the example of the boiling of water, we measure the pressure
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corresponding to temperatures of 0°, 10° 20°, 30°, &e. Writing
these numbers in a table, by placing the various values of 4 in
the first column, those of B in

the second, we form a third PARYS . Bisi- 0Dk DS AR ‘ A
column, in which each term is 0° 4.6

found by subtracting the value + 4.6

of B from that preceding it; 10° 9.2 482 + 3.6 7
the remainders are called the | 20° 17.4 . -+ 5.9 .
first differences 2. In the |, . . + 1441 403 +» 34
same way we obtain the sec- 3 + 234 -

ond differences D”, by sub- | 40° 54.9

tracting each first difference
from that which follows it, and so on.

Interpolation. One of the most common applications of differ-
ences is to determine the value of B for any intermediate value
of 4. This is done by the formula,

X ' —2 117
B=B,+nD,/+%2=Dp i 2o DO =N p iy g,

in which 23, is the measurement next preceding B; D/, D.”,
D % the 1st, 2d, 3d, differences, and n a fraction equal to (4 —
=+ (Apy — 4,), in which 4, 4, correspond to B, B,, and

_Am +1 18 the next term of the

series to A,. The use of this | 4. B D. D' D”.D™.
formula is best shown by an | 10 1000
example. 'Suppose, from t.he 11 1381 § A + 66
accompanying table, we wish -+ 397 A0
to find the value of B corre- |12 1728 60 + 72 y 0
sponding to 4 = 125. We A I i i 0
have B,, = 1728, D’ = 469, A + 547 ; SR g
_Dm// L 78, Dm/// ThY 6, Am = + 631 + + 6
12, 4, ,, = 13, 4 = 125 |15 3375 -+ 90

== AT 721
and n = (125 —12) = (18 | .. ,006 T
— 12) =.5. Hence,

B=1728 + 5(469) + 2=Drg) + H=D L 4,

B =1728 + 23456 — 9.75 - .375 + 0 = 1953.125.
In this particular case B is always the cube of 4, and it may be
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seen that our formula gives an exact vesult. The reason is that
the 4th, and all following differences, equal zero.

Inverse Interpolation. Next suppose that in the above example
we desired the value of A4 for some given value of B, as B3’; that
is, in the equation,

=B, tnD,/ 420D p  ta DB =D p uf g

we wish to find n. Evidently it is impossible to determine this
exactly, but an ‘approximate value may be found by the method
of successive corrections. Neglect all terms after the third, and
deduce n from the equation,

B'= B, + nD,/ +"(_n—_1)1)”v

which is a simple quadratic equation. Substitute this value of =

in the terms we have neglected, and call the result &V, tben
B=B, +n0, + "G50 + ¥,

from which again we may deduce a more accurate valne of n.

This again gives a new value of %V, and by continuing this process

we finally deduce » with any required degree of accuracy.

It is sometimes more convenient to neglect the third term, and
deduce » from the equation B’ = B, + nD,’/, which saves solv-
ing a quadratic equation, but requires more approximations. The
values of n(n — 1) = 1.2, n(n — 1) (n — 2) =~ 1. 2. 3, &c., may
be more readily obtained from Interpolation tables than by compu-
tation. A good explanation of this subject is given in the Assu-
rance Magazine, X1, 61, X1, 301, and XII, 136, by Woolhouse.

‘When the terms are not equidistant the method of interpolation
by differences cannot be applied. In this case, if we wish to find
values of B corresponding to known values of 4, we assume the
equation, B = a + 04 4 cA* 4 dA4® 4 &ec., and see what values
of a, b, c, &c., will best satisfy these equations. If we have a
great many corresponding values of 4 and B, the method of least
squares should be applied. In general, however, it is much more
convenient to solve this problem by the Graphical Method de-



NUMERICAL COMPUTATION. 9

scribed below. See Cauchy’s Calculus, 1, 513, and an article in
the Connaissance des Temps, for 1852, by Villarceau. -

Numerical Computation. Where much arithmetical work is
necessary to reduce a series of observations, a great saving of time
is effected by making the computation in a systematic form. In
general, measurements of the same quantity should be written in a
column, one below the other, instead of on the same line, and
plenty of room should always be allowed on the paper. When
the same computations must be made for several values of one of
the variables, instead of completing one before beginning the
next, it is better to carry all on together, as in the following
example. Suppose, as in the experiment of the Universal Joint,
we wish to compute the values of & in the formula, tan b = cos 4
tan @, in which 4 = 45° and @ in turn 5°, 10°, 15°, &c. Con-
struct a table thus:—

a 5° 10° 15° 20° 258 30°

log tan a 8.94195 | 9.24632 | 9.42805 | 9.56107 | 9.66867 | 9.76144
log cos 4 9.84948 | 9.84948 | 9.84948 | 9.84948 | 9.84948 | 9.84948
log tan & 8.79143 | 9.09580 | 9.27753 | 9.41055 | 9.41815 | 9.61092

b 3° 32 TSR 68 10° 44" |1 14° 26" | 14° 41° 15’

In the first line write the various values of @, in the second the
corresponding values of its log tan, and so on throughout the com-
putation. An error is purposely committed in the above table to
show how easily it may be detected. It will be noticed that
the values of b increase pretty regularly, except that when @ = 25°,
and that this is but little greater than that corresponding to @ =
20°. Following the column up we find that the same is the case for
log tan & but not for log tan «, hence the error is between the two.
In fact, in the addition of the logarithms we took 6 and 4 equal
to 10, and omitted to carry the 1; logtan & then really equals
9.51815, and b = 18° 15/. If the error is not found at once this
value of b should be recomputed. Besides these advantages, this
method is much quicker and less laborious. When we have to
multiply, or divide by, the same number 4 a great many times, it
is often shorter to obtain at once 14, 24, 34, 44, &e., and use
these numbers instead of making the multiplication each time.
This is useful in reducing metres to inches, &e. There are many
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other arithmetical devices, but their cons1derat10n would lead us
too far from our subject.

Significant Figures. One of the most common mistakes in
reducing observations is to retain more decimal places than the
experiment warrants. For instance, suppose we are measuring a
distance with a scale of millimetres, and dividing them into tenths
by the eye, we find it 32.7 mm. Now to reduce it to inches we
have 1 metre = 39.37 in., hence 32.7 mm. = 1.287399. But it is
absurd to retain the last three figures, since in our original meas-
urement, as we only read to tenths of a millimetre, we are always
liable to an error of one half this amount, or .002 of an inch.
Then we merely know that our distance lies between 1.2894 and
1.2854 inches, showing that even the thousandths are doubtful. It
is worse than useless to retain more figures, since they might mis-
lead a reader by making him think greater accuracy of measure-
ment had been attained.

If we are sure that our errors do not exceed one per cent. of the
quantity measured, we say that we have two significant figures, if
oune-tenth of a per cent. three, if one hundredth, four. Thus in the
example given above, if we are sure the distance is nearer 32.7
than 32.8 or 32.6, we have three significant figures, and it would
be the same if the number was 327,000, or .00827. In general,
count the figures, after cutting off the zeros at either end, unless
they are obtained by the measurement ; thus 300,000 has three sig-
nificant figures if we know that it is more correct than 301,000 or
299,000. In reducing results we should never retain but one more
significant figure than has been obtained in the first measurement,
and must remember that the last of these figures is sometimes
liable to an error of several units.

Successive Approximations. This method is also known as
that of trial and error. It consists in assuming an approximate
value of the maguitude to be constructed, measuring the error,
correcting by this amount as nearly as we can, measuring again,
and so on, until the error is too small-to do any harm. Asan
example, suppose we wish to cut a plate of brass so that its weight
shall be precisely 100 grammes. We first cut a piece somewhat
too large, weigh it and measure its area. If its thickness and
density were perfectly uniform we could at once, by the rule of
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three, determine the exact amount to be cut off. As, however, it
will not do to make it too light, we cut off a somewhat less quan-
tity and weigh again; by a few repetitions of this process we may
reduce the error to a very small amount.

This method is sometimes the only one available, but it should
not be too generally used, as it encourages guessing at results, and
tends to destroy habits of accuracy.

GRAPHICAL METHOD.

Suppose that we have any two quantities, 2 and v, so connected
that a change in one alters the other. Then we may construct a
curve, in which abscissas represent various values of «, and ordi-
nates the corresponding values of 7. Thus suppose we know that
y is always equal to twice .. Take a piece of paper divided into
squares by equidistant vertical and horizontal lines. Select one of
each of these lines to start from. The vertical one is called the
axis of Y, the other the axis of X, and their intersection, the ori-
gin. Make o =1, y will equal 2, since it is double 2; now con-
struct a point distant 1 space from the origin horizontally, and 2
vertically. Make @ = 2, ¥y = 4, and we have a second point;
x = —1, gives y = —2, &e., and & = 0, gives y = 0. Connecting
these points we get a straight line passing through the origin, as is
evident by analytical geometry from its equation, ¥ = 2x. Again,
let y always equal the square of @, and we have the corresponding
values ¢ = 0,y =0; ea=1l,y=1; a=—l,y=1; = = 2,
y = 4; connecting all the points thus found we obtain a par-
abola with its apex at the origin, and tangent to the axis of Xi°
As another example, suppose we have made a series of experiments
on the volumes of a given amount of air corresponding to different
pressures. Construct points making horizontal distances volumes,
and vertical distances pressures. It will be found that a smooth
curve drawn through these points approaches closely to an equi-
lateral hyperbola with the two axes as asymptotes. Now this
curve has the equation zy = @, or y = a - «, that is, the volume
is inversely proportional to the pressure, which is Mariotte’s law.
Owing to the accidental errors the points will not all lie on the
curve, but some will be above it and others below, and this will be
true however many points may be observed.
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In general, then, after observing any two quantities, 4 and B,
construct points such that their ordinates and abscissas shall be
these quantities respectively. Draw a smooth curve as nearly as
possible through them, and then see if it coincides with any com-
mon curve, or if its form can be defined in any simple way. To
acquire practice in using the Graphical Method it is well to con-
struct a number of curves representing familiar phenomena, as
the variation in the U. S. debt during the late war, the strength
of horses moving at different rates, and the alterations of the ther-
mometer during the day or year. It is by no means necessary that
the same scale should be used for vertical, as for horizontal dis-
tances, but this should depend on the size of paper, making the
curve as large as possible. The greatest accuracy is attained when
the latter is about equally inclined to both axes.

It is sometimes better when one of the variables is an angle to
use polar cooOrdinates. In this case paper must be used with a
graduated circle printed on it. The points are constructed by
drawing lines from the centre in the direction represented by one
variable, and measuring off on them distances equal to the other.
For ordinary purposes circles may easily be drawn, and divided
with sufficient accuracy by hand. Laying off the radius on the
circumference divides it to 60°; bisecting these spaces gives 30°,
and a second bisection 15° By trial these angles may be divided
into three equal parts, which is generally small enough, as the ob-
servations are usually taken at intervals of 5°.

Interpolation. All kinds of interpolation are very readily per-
formed by the Graphical Method. After constructing one curve
to find the value of y, for any given value of @ as «, we have only
to draw a line parallel to the axis of ¥, at a distance 2/, and note
the ordinate of the point where it meets the curve. Inverse inter-
polation is performed in the same manner, and this method is
equally applicable, whether the observations are at equal intervals
or not. Asby drawing a smooth curve the accidental errors are
in a great measure corrected, this method of interpolation is often
more accurate than that by differences.

Residual Curves. The principal objection to the Graphical
Method, as ordinarily used, is its inaccuracy, as by it we can rarely
obtain more than three significant figures, although Regnault, by
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using a large plate of copper and a dividing engine to construct
his points, attained a higher degree of precision.

It will be found, however, that in many of the most carefully
conducted researches the fourth figure is doubtful, as for example,
in Regnault’s measurements of the pressure of steam, and even in
Angstrom’s and Van der Willingen’s determinations of wave-
lengths. -

By the following device the accuracy of the Graphical Method
may be increased almost indefinitely. After constructing our
points, assume some simple curve passing nearly through them.
From its equation compute the value of ¥ for each observed value
of 2, and construct points whose ordinates shall equal the differ-
ence between the point and curve 6n an enlarged scale, while the
abscissas are unchanged. Thus let 2/, 4’ be the observed coordi-
nates, and y = f(), the assumed curve. Construet a new point,
whose coordinates .are 2" and @ [y — f(2)], in which @ equals 5,
10, or 100, according to the enlargement desired.

Do the same for all the other points, and a curve drawn through
them is called a residnal curve. In this way the accidental errors
are greatly enlarged, and any peculiarities in the form of the curve
rendered much more marked. If the points still fall pretty regu-
larly, we may construct a second residual curve, and thus keep on
until the accidental errors have attained such a size that they may
be easily observed. To find the value of y corresponding to any
given value of «, as a,, we add f(«,) to the ordinate of the cor-
responding point of the residual curve, first reducing them to the
same scale. Most of the singular poinis of a curve are very
readily found by the aid of a residual curve. See an article by the
author, Journal of the Franklin Institute, LXI, 272.

Maxima and Minima. To find the highest point of a curve,
use, as an approximation, a straight line parallel to the axis of X,
and nearly tangent to the curve. Construct a residual curve,
which will show in a marked manner the position of the required
point. The same plan is applicable to any other maximum or
minimum.

Points of Inflexion. Draw a line approximately tangent to
the curve at the required point. In the residual curve the change
of curvature becomes very marked.
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Asymptotes. Asymptotes present especial difficulties to the
Graphical Method, as ordinarily used. Suppose our curve asymp-
totic to the axis of X; construct a new curve with ordinates
unchanged, and abscissas the reciprocals of those previously used,
that is equal to 1 <~ «. It will contain between 0 and 1 all the
points in the original curve between 1 and . It will always pass
through the origin, and unless tangent to the axis of X at this
point the area included between the curve and its asymptote will
be infinite. 'When this space is finite, it may be measured by con-
structing another curve with abscissas as before equal to 1 =~
and ordinates equal to the area included between the curve and
axis, as far as the point under consideration. Find where this
curve meets the axis of Y, and its ordinate gives the required
area. A problem in Diffraction is solved by this device in the
Journal of the Franklin Institute, LIX, 264.

Curves of Error. This very fruitful application of the Graphi-
cal Method is best explained by an example. Suppose we wish to
draw a tangent to the curve 5’4, Fig. 2, at the point A. Describe

a circle with 4 as a centre, through which

pass a series of lines, as AB, AD, AFE.

Now construct €' by laying off BC equal

to A, the part of the curve cut off by
* the line. We thus get a curve CD),

called the curve of' error, intersecting the

circle at D, and the line 4D is the re-

quired tangent. This is evident, since if

we made our construction at this point we
should have no distance intercepted, or the line 4.D touching, but
not cutting, the curve. A similar method may be applied to a
great variety of problems, such as drawing a tangent parallel to a
given line, or through a point outside the curve.

Three Variables. The Graphical Method may also be applied
where we have three connected variables. If we construct points
whose coordinates in space equal these three variables, a surface is
generated whose properties show the laws by which they are con-
nected. To represent this surface the device known as contour
lines may be used, as in showing the irregularities of the ground
in a map. First, generate a surface by constructing points in which
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ordinates and abscissas shall correspond to two of the variables, and
mark near each in small letters the magnitude of the third varia-
ble, which represents its distance from the plane of the paper. If
now we pass a series of equidistant planes parallel to the paper,
their intersections with the surface will give the required contour
lines. To find these intersections, connect each pair of adjacent
points by a straight line, and mark on it its intersections with
the intervening parallel planes. Thus if two adjacent points have
elevations of 28 and 32, we may regard the point of the surface
midway between them, as at the height 30, or as lying on the 30
contour line. Construct in this way a number of points at the
same height, and draw a smooth curve approximately through
them; do the same for other heights, and we thus obtain as many
contours as we please.

They give an excellent idea of the general form of the surface,
and by descriptive geometry it is easy to construct sections passing
through the surface in any direction. An easy way to understand
the contours on a map is to imagine the country flooded with wa-
ter, when the contours will represent the shore lines when the
water stands at different. heights. This method is constantly used
in Meteorology to show what points have equal temperature, pres-
sure, magnetic variation, &e. Contour lines follow certain general
laws which are best explained by regarding them as shore lines, as
described above. Thus contour lines have no terminating points;
they must either be ovals, or extend to infinity. Two contours
never touch unless the surface becomes vertical, nor cross, unless it
overhangs. A single contour line cannot lie between two others,
both greater or both smaller, unless we have a ridge or gulley per-
fectly horizontal, and at precisely the height of the contour, In
general, such lines should be drawn either as a series of long ovals,
or as double throughout. There will be no angles in the contour
lines unless there are sharp edges in the original surface. A con-
tour line cannot cross itself, forming a loop, unless the highest
point between two valleys, or the lowest point between two hills,
is exactly at the height of the contour.

The value of contour lines in showing the relation between any
three connected variables, is well illustrated in a paper by Prof. J.
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Thomson, Proc. of the Royal Society, Nov., 1871, also in Nature,
V, 106. _

To acquire facility in using the Graphical Method, it is well to
apply it to some numerical examples. Thus take the equation
y = ax® 4 ba® — cx 4+ d, assume certain values of a, b, ¢ and d,
and compute the value of y for various values of #. We thus get
a curve with two maxima or minima, and a point of inflexion.
Find their position first by residual curves, and then by the calcu-
lus, and see if they agree. In the same way the curve ya? — 2ayx
+a%y = b, has the axis of X for an asymptote. Assume, as before,
positive values of @ and &, and determine the area between the
curve and asymptote, first by construction and then analytically.

PHYSICAL MEASUREMENTS.

The measurement of all physical constants may be divided into
the determination of time, of weight and of distance, the appara-
tus used varying with the magnitude of the quantity to be meas-
ured and the degree of accuracy required.

Measurement of Time. A good clock with a second hand, and
beating seconds, should be placed in the laboratory, where it can
be used in all experiments in which the time is to be recorded.
Watches with second-hands do not answer as well, as they gener-
ally give five ticks in two seconds, or some other ratio which ren-
ders a determination of the exact time difficult. The trune time
may be measured by a sextant or transit, as described in Experi-
ment 16. This should be done, if possible, every clear day by
different students, and a curve constructed, in which abscissas
represent days, and ordinates errors of the clock, or its deviations
from true time. Short intervals of time may be roughly measured
by a pendulum, made by tying a stone to a siring, or better, by a
tape-measure drawn out to a fixed mark. We can thus measure |
such intervals as the time of flight of a rocket or bomb-shell, the
distance of a cannon or of lightning, by the time required by
sound to traverse the intervening space, or the velocity of waves,
by the time they occupy in passing over a known distance. After
the experiment we reduce the vibrations to seconds by swinging
our pendulum, and counting the number of oscillations per minute.
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By graduating the tape properly, we may readily construct a very
serviceable metronome.

Where the greatest accuracy is required, as in astronomical ob-
servations, a chronograph is used. A cylinder covered with paper
is made to revolve with perfect uniformity once in a minute. A
pen passes against this, and receives a motion in the direction of
the axis of the cylinder, of about a tenth of an inch a minute,
causing it to draw a long helical line. An electro-magnet also acts
on the pen, so that when the circuit is made and broken, the latter
is drawn sideways, making a jog in the line. To use this appara-
tus a battery is connected with the electro-magnet, and the pendu-
lum of the observatory clock included in the cireuit, so that every
second, or more commonly every alternate second, the circuit is
made for an instant and then broken. Wires are carried to the
observer, who may be in any part of the building, or even at a
distance of many miles, and whenever he wishes to mark the time
of any event, as the transit of a star, he has merely, by a finger
key (such as is used in a telegraph office), to close the circuit,
when it is instantly recorded on the cylinder. When the observa-
tions are completed the paper is unrolled from the cylinder, and is
found to be traversed by a series of parallel straight lines, Fig. 3,
one corresponding to each minute, with indentations corresponding
to every two seconds. The time

may be taken directly from it, the 45_3::"" 3"2” 3{
fractions of a second being meas- g—rna fac
ured by a graduated scale. One g o o hoT
great difficulty in making this ap- °" ¥y "3 AN

paratus was to render the motion
of the cylinder perfectly uniform, as if driven by clock-work it
would go with a jerk each second. Thisis avoided by a device known
as Bond’s spring governor, in which a spring alternately retards
and accelerates a revolving axle when it moves faster or slower
than the desired rate. The seconds marks form a very delicate
test for the regularity of this motion, since in consecutive minutes
they should lie precisely in line, and the least variation is very
marked in the finished sheet. It is a very simple matter by this
apparatus to measure the difference in longitude of two points. It is

merely necessary that an observer should be placed at each station,
2
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with a transit and finger key, a telegraph connecting them with
the chronograph. They watch the same star as it approaches their
meridian, and each taps on his finger key the instant it crosses the
vertical line of his transit. Two marks are thus made on the chro-
nograph, and the interval between them gives the difference in
longitude. The advantage of this method of taking transits is not
so much its accuracy, as the ease and rapidity with which it is used.
Observers can work much longer with it without fatigue, and can
use many more transit wires, thus greatly increasing the number
of their observations. It is called the American or telegraphic
method, in distinction from the old, or “eye and ear” method of
observing transits, where the fractions of a second were estimated,
as described in Experiment 15.

The chronograph is exceedingly convenient in all physical in-
vestigations where time is to be measured, and nothing but its
expense prevents its more general application.

A simple means of measuring small intervals of time with acecu-
racy, is to allow a fine stream of mercury to flow from a small
orifice, and collect and weigh the amount passed during the time
to be measured. Comparing this with the flow per minute we
obtain the time. A less accurate, but much more convenient,
liquid for this purpose is water, using, in fact, a kind of clepsydra.
‘Where very minute intervals of time are to be measured they
are commonly compared with the vibrations of a tuning-fork in-
stead of a pendulum. A fine brass point is attached to the fork
which is kept vibrating by an electro-magnet. If a plate of glass
or piece of paper covered with lampblack, is drawn rapidly past
the brass point, a sinuous line is drawn, the sinuosities denoting
equal intervals of time, whose magnitude is readily determined
when we know the pitch of the fork. A second brass point is
placed by the side of the fork and depressed from the beginning to
the end of the time to be measured. The length of the line thus
drawn, compared with the sinuosities, gives the time with great
accuracy. Recently a clock has been constructed, in which the
pendulum is replaced by a reed vibrating one thousand times a
second. The clock is started and stopped, so that it is going only
during the time to be measured, and the hands record the number
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!

of vibrations made. The reed produces a musical note, and any
irregularity is at once detected by a change in its pitch.

Measurement of Weight. This is done almost exclusively by
the ordinary balance, whose principle is so fully explained in any
good text-book of Physics that a detailed deseription is unneces-
sary here. We test the equality in length of its arms by double
weighing, that is, placing any heavy body first in one pan and then
in the other, and seeing if the same weights are required to coun-
terpoise it in each case. The center of gravity should be very
slightly below the knife-edges. If too low the sensibility is dimin-
ished, if too high the balance will overturn, and if coincident with
them the beam, if inclined, will not return to a horizontal position
The three knife-edges must be in line, otherwise the centre ot :
gravity will vary with the weight in the scale pans, and of course
the friction must be reduced to a minimum. A high degree of
accuracy may be obtained with even an ordinary balance by first
counterpoising the body to be weighed, then removing it and not-
ing what weights are necessary to bring the beam again to a hori-
zontal position. A spring balance is sometimes convenient for
rough work, from the rapidity with which it can be used. It may
be rendered quite accurate, though wanting in delicacy, by noting
the weight required to bring its index to a certain point, first when
the body to be weighed is on the scale pan, and then when it is
removed.

Measurement of Length. Distances are most commonly meas-
ured by a scale of equal parts, that is, one with divisions at regular
intervals, as millimetres, tenths of an inch, &c. This scale is then
placed opposite the distance to be measured, and the reading taken
directly. To obtain greater accuracy than within a single division,
we may divide them into tenths by the eye, as in Experiment 1.
The steel scales of Brown & Sharpe are good for common measure-
ments, and may be obtained with either English or French gradua-
tion. Instead of dividing into tenths by the eye, a vernier is
frequently used. Thus to read a millimetre scale to tenths, nine
spaces are divided into ten equal parts, each of which will be a
tenth of a millimetre less than the divisions of the scale, as in Ex
periment 2.

One of the best devices for measuring very minute quantities is
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the micrometer screw.” A divided circle is attached to the head of
a carefully made screw, so that a large motion of the former cor-
responds to a very minute motion of the latter. Thus if the pitch
of the screw is one millimetre, and the circle is divided into one
hundred parts, turning it completely around will move the screw
but one millimetre, or turning it through one division only one
hundredth of a millimetre. One of the best examples of this in-
strument is the dividing engine, which consists of a long and very
perfect micrometer screw with a movable nut. See Experiment 21,
also Jamin's Physics, I, 25. Tt is much used in engraving scales,
but it has certain defects which are unavoidable, and have caused
some of our best mechanicians to give it up. For example, it is
impossible to make a serew perfectly accurate, and every joint, of
which there are several, is a source of constantly varying error.
For these reasons, and owing to its expense, the instrument de-
seribed in Experiment 22 is for many purposes preferable. Two
blocks of wood are drawn forward alternately step by step, through
distances regulated by the play of a peg between a plate of brass
and the end of a screw. As all joints are thus avoided, and the
interval is determined by the direct contact of two pieces of metal,
great accuracy is attainable by it. :

‘Where several scales are to be made with the utmost accuracy,
one should first be divided as correctly as possible, and its errors
carefully studied by comparing the different parts with one an-
other, or with a standard. It may then be copied by laying it on
the same support with one of the other scales, and moving both so
that one shall pass under a reading microscope, the other under a
graver. We may thus copy any scale with great accuracy, but the
process is very laborious. A good way to construct the first scale
is by continual bisection with beam compasses, as is done in grad-
uating circles. The finest scales are ruled with a diamond on
glass. M. Nobert has succeeded in making them with divisions
of less than a hundred thousandth of an inch. The intervals
are so minute that until within a few years no microscope could
separate the lines. The method of making them is kept a secret.
Mr. Peters, by a combination of levers, has succeeded in reducing
writings or drawings to less than one six thousandth their original
size. He exhibited some writing done by this machine, which
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was 8o minute that the whole Bible might be written twenty-seven
times in a square inch. Finally, it is claimed that Mr. Whitworth
was able to detect differences of one millionth of an inch with a
micrometer screw he has constructed.

To measure very minute distances a microscope is often used
with a scale inserted in its eyepiece, which is used like a common
rule. The absolute size of the divisions must be determined be-
forehand by measuring with it a standard millimetre, or hundredth
of an inch. A more accurate method, however, is the spider-line
micrometer, in which a fine thread is moved across the field of view
by a micrometer screw, and small distances thus measured with
the greatest precision. By using two of these instruments, which
are then called reading microscopes, larger distances may be meas-
ured, or standards of length compared, as in Experiment 20.

Small distances are also sometimes measured by a lever, with
one arm much longer than the other, so that a slight motion of the
latter is shown on a greatly magnified scale. Instead of a long
arm it is better to use a mirror, and view in it the image of a scale
by a telescope. An exceedingly small deviation is thus readily
perceptible, and this arrangement, sometimes known as Saxton’s
pyrometer, has been applied to a great variety of uses. Where we
wish to bring the lever always into the same position a level may
be substituted for the mirror, forming the instrument called the
contact level. Small distances are also sometimes measured by a
wedge with very slight taper, but this plan is objectionable on
many accounts. In geodesy all the measurements are dependent
on the accurate determination in the first place of a distance of
five or ten miles, called a base line. Most of the above devices
have been tried on such lines; thus the reading microscope was
used by Colby in the Irish survey, the wedge in Hanover, and by
Bessel in Prussia, the lever by Struvé in Russia, and the contact
level is now in use on our Coast Survey. The principle in all is to
use two long bars alternately, which are either brought in contact,
or the distance between their ends measured each time they are
laid down.

Many other physical constants are really determined by a meas-
ure of length. Thus temperatures are determined by a scale of
equal parts in the thermometer, and here sufficient accuracy is ob-
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tained by reading with the unaided eye. Pressures of air and
water are also measured by the height of a column of mercury or
water. Where great accuracy is required, as in the barometer, a
vernier is commonly used.

The instrument known as the cathetometer is so much used for
measuring heights that it needs a notice here. It consists of a
small telescope, capable of sliding up and down a vertical rod
to which a scale is attached. The difference in height of any two
objects is readily obtained by bringing the telescope first on a level
with one, and then with the other, and taking the difference in the
readings. A level should be attached to the telescope to keep it
always horizontal, but the great objection to the instrument is that
a very slight deviation in its position, which may be caused by
focussing or turning it, is greatly magnified‘in a distant object. A
good substitute for this instrument may be made by attaching a
common telescope to a vertical brass tube, the scale being placed
near the object to be measured instead of on the tube, as in Ex-
periment 12.

Although the measurement of the following quantities is directly
dependent on the above, yet their importance justifies a separate
notice.

Measurement of Areas. It is difficult in general to determine
an area with accuracy, especially where it forms the boundary of a
curved surface. If plane, any of the methods of mensuration used
in surveying may be adopted. Of these the best are division into
triangles, Simpson’s rule, and drawing the figure on rectangular
paper and counting the number of enclosed squares, allowing for
the fractions. Another method sometimes useful is to cut the figure
out of sheet lead, tin foil, or even card board, and compare its
weight with that of a square decimetre of the same material.

Measurement of Volumes. These are generally determined by
the weight of an equal bulk of water or mercury, using the latter
if the space is small. The interior capacity of a vessel is meas-
ured by weighing it first when empty, and then when filled with
the liquid, as in Experiment 19. The difference in grammes
gives the volume in cubic centimetres when water is used, but
with mercury we must divide by 13.6, its specific gravity. In the
same way we may determine the exterior volume of any body by
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immersing it and measuring its loss of weight, as when determin-
ing its specific gravity.

An easier, but less accurate, method is by a graduated vessel.
These are made by adding equal weights or volumes of liquid,
successively, and marking the height to which it rises after each
addition. The volume of any space may then be found by filling
it with water, emptying it into the graduated vessel and reading
the scale attached to the side of the latter.

Measurement of Angles. Angles are measured by a circle di-
vided into equal parts, the small divisions being determined by
verniers or reading microscopes, as in measuring lengths. A
great difficulty arises from the centre of the graduation not coin-
ciding with that of the circle, and on this account it is best to
have two or more at equal intervals around the circumference. By
taking their mean we eliminate the eccentricity.

The precision of modern astronomy is almost entirely due to
the methods of determining angles with accuracy. This is de-
pendent on two things; first, a good graduated circle, and sec-
ondly, a means of pointing a telescope in a given direction, as
towards a star, with great exactness. The latter is accomplished
by placing cross-hairs at the common focus of the object glass
and eye-piece, so that they may be distinctly seen in the centre of
the field at the same time-as the object. Most commonly two
cross-hairs are used at right angles, one being horizontal, the other
vertical. When, however, we are to bring them to coincide with
a straight line, as in the spectroscope, or in a reading microscope,
they are sometimes inclined at an angle of about 60°, that is, each
making an angle of 30° with the line to be observed. The latter
is then brought to the point of the V formed by their intersection.
Still another method is to use two parallel lines very near together,
the line to be observed being brought midway between them.
The lines may be made of the thread of a spider, of filaments of
silk, of platinum wire, or better for most purposes, by ruling fine
lines on a plate of thin glass with a diamond, and inserting it at
the focus.

There are two methods of graduating circles with accuracy.
The first, which is used in Germany, consists in a direct compari-
son with an accurately divided circle, as when copying scales as
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described above. That is, both circles are mounted on the same
axis, and the divisions of the first being successively brought un-
der the cross-hairs of a microscope, the graver cuts lines on the
second at precisely the same angular intervals. In the second
method, which is much quicker but less accurate, the circle is laid
on a toothed wheel which is turned through equal intervals by
a tangent screw. Both methods are really only means of copy-
ing an originally divided circle, as it is called, and the con-
struction of this with accuracy is a matter of extreme difficulty.
It is dependent on the following principles. Any arc or distance
may be accurately bisected by beam compasses; the chord of 60°
equals the radius, and the angle 85° 20, whose chord is 1.3554, by
ten bisections is reduced to 5. By constructing an accurate scale,
laying off 1.3564 times the radius on the circumference, and
repeatedly bisecting the are, we finally divide the circle into
5" divisions. Where great accuracy is not required we may
divide circles approximately by hand, as described under the
Graphical Method, or more accurately by a table of chords and a
pair of beam compasses. When the divisions of the circle are

very large we may subdivide them by

o L 2 s 4 g scale instead of a vernier. Thus if
alosd s As | 4BFig 4, is part of a cirele divided

Spie. o, into degrees, we may attach a scale
CD, divided to ten minutes, and sub-
divide these into single minutes by
the eye. Thus in Fig. 4 the reading is 2° 35’. Much labor is thus
saved where the circles have to be divided by hand.

Saxton’s pyrometer, described above, is of the utmost value in
measuring small angular changes. As the reflected beam moves
twice as fast as the mirror, the accuracy is doubled on this account.
If the scale is flat, allowance must be made for the greater distance
of its ends than the centre. To reduce the reading to degrees and
minutes, the formula, tan 2a = s+ d is used, or ¢ = .5 tan—!
s =~ d, in which « is the angle through which the mirror turns, s
the reading, and o the distance of the scale taken in the same
units. Instead of a telescope a light shining through a narrow slit
is sometimes used, and an image projected on the scale by a lens,
or the mirror itself may be made concave. This plan is adopted

Fig. 4.
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in the Thomson’s Galvanometer, and other instruments for meas-
uring the deviations of the magnetic needle.

Very small angles may also be measured by a spider line mi-
crometer attached to the eye-piece of a telescope. This is used to
determine the distance apart of the double stars, and other minute
astronomical magnitudes. There are other methods, such as di-
vided lenses, double image prisms, &e., but they will be considered
in connection with the particular experiments which serve to illus-
trate them.

Measurement of Curvature. To measure the radius of a sphere,
as the surface of a lens, an instrument called the spherometer is
used. It consists of a micrometer screw at the centre of a tripod,
whose three legs and central point are brought in contact with the
surface. By noting the position of the screw, the radius is readily
computed, as in Experiment 14.

When the surface is of glass, and the curvature very slight, a
much more delicate method is as follows: Focus a telescope on a
distant object, and then view the image reflected in the surface to
be tested. If the latter is concave, it will render the ray less di-
vergent, and hence the eye-piece will have to be pushed in. The
opposite effect is produced by a convex mirror. The amount of
change affords a rough measure of the curvature. This method is
so delicate as to show a curvature whose radius is several miles.
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GENERAL EXPERIMENTS.

1. Estmvation or TENTHS.

Apparatus. 'Two scales, N and I, are placed side by side, one
being divided into millimetres, the other into tenths of an inch.
Also a steel rule 4, Fig. 5, divided into millimetres, and so ar-
ranged that it may be pushed past a fixed index B, by a microm-
eter screw, (. A spring, D, is used to bring it back, when the
screw is turned the other way. '

Ezxperiment. Read the position of each tenth of an inch mark
of scale M, in tenths of a millimetre, estimating the fractions by
the eye. Thus if the interval is one half; call it .5, if a little less,
4, if not quite a third, .3, and so on for the other fractions. The
.3 and .7 are the hardest to estimate correctly, as we are liable to
imagine the former too great, the latter too small. They should
always be compared with the fractions one and two thirds. Re-
cord your observations in five columns, placing in the first the
readings of the scale A
in the second the corre-
sponding readings of IV,
and in the third the first
differences of N. Next,
subtract the first from the
last number in column two,
and divide the difference
by ‘the number of spaces
measured, that is, the num- ,
ber of readings minus one.
This gives the average dif-
ference, and should be equal to each number of golumn three.
Subtract it from these numbers, and place the results or errors,
with proper signs, in column four. Next, compute the probable .
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error (see page 3) of a single observation, using the fifth column
for the squares of column four. In this way you can read any
scale much more accurately than by its single divisions, and your
computed probable error shows how closely you may rely on the
result.

Next bring one of the millimetre marks of 4, Fig. 5, opposite
the index B. IRead its position, as described on page 20. The
scale Z gives units, or number of revolutions, and the divided
circle hundredths. Move the screw, set again, and repeat several
times. Take the mean and compute the probable error of a single
observation. Do the same with the next millimetre mark. Now
move the scale until the reading shall be in turn .1, .2, .3, &e.,
of a millimetre, taking care to move the screw after each, so that
you will not be biassed by your previous reading. Next compute
what should be the true readings in these various positions. Thus
let 2’ be the mean for the first millimetre, m” for the second ; the
reading for one tenth would be m’ 4 (m” — m') =~ 10, for two
tenths m’ + 2(m” — m') =10, and so on. See how these read-
ings agree with those previously found. If any differ by a consid-
erable amount repeat them until you can estimate any fraction
with accuracy. This work must be carefully distinguished from
guessing, since there should be no element of chance in it, but an
accurate division of the spaces by the eye. By practice one can
read these fractions almost as accurately as by a vernier.

2. VERNIERS.

Apparatus. A number of verniers and scales along which they
slide are made of large size. The best material is metal or wood,
although cardboard will do. By making them on a large scale, as
a foot or more in length, there 1s no trouble in attaining sufficient
accuracy. Several different forms are given in Gillespie’s Land
Surveying, p. 228, from which the following may be selected.

1st, Fig. 225, Scale divided to .1, Vernier reads to .01; 2d, Fig.
227, Same Vernier retrograde; 8d, Fig. 228, Scale .05; Vernier
002; 4th, Fig. 229, Scale 1°, Vernier 5’; 5th, Fig. 230, Scale 80/,
Vernier 1’; .6th, Fig. 233, scale 20/, Vernier 80”; 7th, Fig. 239,
Scale 30, Vernier 1’; Double Compass Vernier.

Fzperiment. A vernier may be regarded as a simple enlarge-
‘ment of one division of the scale. Thus if the scale is divided
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into tenths of an inch, and the vernier into ten parts, it will read
to hundredths of an inch. Always read approximately by the
zero of the vernier, taking the division of the scale next below it.
‘The fraction to be added is found by seeing what line of the vernier
coincides most nearly with some line of the scale. Thus in the
first example, we obtain inches and tenths by seeing what division
of the scale falls next below the zero of the vernier. If this is 8.6,
and the division marked 7 of the vernier coincides with a line of
the scale, the true reading is 8.6 - .07 = 8.67. To prove this, set
the zero of the vernier at 8.6 exactly. Nine divisions of the scale
equal ten of the vernier. Hence each division of the latter equals
.09, or is shorter by .01 than one division of the scale. Accord-
ingly the line marked 1 of the vernier falls short by .01 of the
scale-division, the 2 line .02, and so on. If we move the vernier
forward by these amounts these lines will coincide in turn. Hence
when the 7 line coincides, as in the above example, it denotes that
the vernier has been pushed forward .07 beyond the 8.6 mark.
This method may be applied to reading any vernier. To find the
magnitude of the divisions of the latter, divide one division of the
scale by the number of parts contained in the vernier.

Read and record the verniers as now set. Then set them as
follows: 1st, 8.03; 2d, 29.9; 3d, 30.866; 4th, 4° 10”; 5th, 0° 17;
6th, 2° 58 30”; Tth, 2° 51",

The last vernier is a double one, reading either way, the left
hand upper figures being the continuation of those on the lower
- right hand. This is best understood by moving it 5" at a time and
noting what lines coincide.

After each exercise the instructor should set all the verniers, and
compare the record of the student with his own.

3. IxseErtioN oF Cross-HArrs.

Apparatus. Some common sewing silk, card-board and muci-
lage, also a pair of dividers, ruler and triangle.

FEixperiment. A great portion of the accuracy attained in mod-
ern astronomical work is dependent on the exactness with which
we can point a telescope, or other similar instrument, in a given
direction. This is accomplished by inserting two filaments of silk
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or spider’s web at right angles to each other, at the point within
the telescope where the image of the object is formed. In the
astronomical telescope, where a positive eye-piece is used, this
point lies just beyond the eye-piece, that is between it and the
object-glass. A ring is placed at this point on which the lines are
stretched. In telescopes rendering objects upright, as in most
surveyor’s transits, the lines are commonly placed between the
object-glass and erecting lenses, and close to the latter. In the
microscope, and other instruments where a negative eye-piece only
is used, the lines have to be placed on the diaphragm between the
field- and eye-lenses. This plan is objectionable, since the lines
should be very accurately focussed, which can then only be done
by screwing the eye-lens in or out. In the other cases the whole
eye-piece may be slid in or out until the lines are perfectly distinet,
and do not appear to move over the object when the eye is moved
from side to side.

It is comparatively easy to insert the lines on their ring, where
a positive eye-piece is used. The following experiment therefore
includes the others. Take a negative eye-piece,
Fig. 6, from a microscope or telescope, and unscrew
the eye-lens 4. (C is the diaphragm which limits
the field of view, and on which the lines should be
» -c placed. Cut from the cardboard a ring, Fig. 7,
whose inner diameter is a little greater than the
opening of the diaphragm, and the outer diameter
such that it will easily rest on €. Mark on it two
lines at right angles to each other passing through its centre. Un-
ravel a short piece of the silk thread until you have separated a
single filament. This is best done by holding
the thread with the forceps over a sheet of white
paper. We now wish to stretch two of these
filaments over the lines marked on the card-
board circle. Put a little mucilage on the lat-
ter, dip one end of the silk into it, and press it
down with one of the radial strips of paper
shown in Fig. 7. When this is nearly dry fasten the other end in
the same way, taking care to stretch it so that it shall be straight,
or the twist in the thread will give it a sinuous form. Attach the

A

Fig. 6.

Fig. 7.
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other thread in the same way, and bending the four strips of paper
down lay the cardboard on the diaphragm. To hold it in place
cut a strip of cardboard or brass, and bending it into a circle push
it into the tube. By its elasticity it will hold the paper strips
firmly against the sides of the tube. If the experiment has been
well performed, on replacing the eye-lens we see two straight lines
at right angles, dividing the field of view into four equal parts,
The cardboard should not project beyond the diaphragm, or it will
give a rough edge to the field of view, and we must be careful that
no mucilage adheres to the visible portions of the threads.

4. SvuspexsioN BY Stk FIBres.

Apparatus. The best method of suspending a light object so
that it shall move very freely is by a single filament of silk. The
only apparatus needed is a stand seven or eight inches high, some
unspun silk (common silk thread will do, but is not so good) and
some fine copper wire. We also need two pairs of forceps, such as
come with cheap microscopes, some bees-wax and a sheet of white

paper.
ZLixperiment. Lay the silk on the paper and pick out a single
fibre a little over six inches long. Bend pieces of the wire into
the shapes 4 and B, Fig. 8. Pass one end of the
filament through the ring of B, and fasten it with g E—i—,,
a little wax, twisting or tying it to prevent slip-
ping. Fasten the other end to 4 in the same way,
making the distance from 4 to B just six inches.
Hook 4 into the stand, and lay the object to be suspended, as a
needle on B. '

A4 B
Fig 8.

5. TrMPErRATURE CURVE.

Apparatus. A beaker, stand and burner, by which water can
be heated, a Centigrade thermometer, and a clock or watch giving
seconds.

Lixperiment. Place the thermometer in the water and record
the temperature, dividing the degrees to tenths, as described in
Experiment 1. Place the burner under the beaker at the begin-
ning of a minute, and at the end record the temperature; repeat
at the end of each minute, as the water is warmed, until the ther-
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mometer stands at 95°; at the end of the next minute remove
the burner and the temperature will at first continue to rise, and
will then fall rapidly. Record the time (in minutes and seconds)
of attaining 95°, 90°, 85°, &e., taking shorter intervals as the tem-
perature becomes lower, and the cooling less rapid. Record your
results in two columns, one giving times, the second temperatures.
Finally construct a curve in which abscissas represent times, and
ordinates temperatures, making in the former case, one space equal
one minute, in the latter, one degree.

When two students, 4 and B, are engaged in this experiment,
the following system should be used. 4 observes the watch and
records, while B attends to the thermometer. Five seconds be-
fore the minute begins A says, Ready! and at the exact begin-
ning, Now/! B then gives the reading which 4 records. This
plan saves much trouble, and greatly increases the accuracy of any
observations which must be made at regular intervals of time.

6. TestiN¢ THERMOMETERS.

Apparatus. An accurate Centigrade thermometer is hung upon
a stand, and close to it a Fahrenheit thermometer, which is to be
tested, their bulbs being at the same height, and close together.
A telescope with which they can be read more accurately is placed
on a stand at a short distance, and their temperature may be al-
tered at will by immersing their bulbs in a beaker of water, which
may be either cooled by ice, or heated by a Bunsen burner. Some
arrangement is desirable for stirring the water to keep it at a uni-
form temperature. One way is to use a circular disk of tin with
holes cut in it, which may be raised or lowered in the beaker by a
cord passing over a pulley, so that the observer, while looking
-through the telescope, can stir the water by alternately tightening
and loosening the cord. A simple glass stirring rod may be used
instead, if preferred.

KExperiment. The problem is to determine the error of the
Fahrenheit thermometer at different temperatures, by comparing
it with the Centigrade thermometer, which is regarded as a stand-
ard. By means of the telescope read them as they hang in the
air, estimating the fractions of a degree in tenths. Do the same
when their bulbs are immersed in water, then cool them with ice
and read again. This observation is important, as it shows the
absoiute error of each instrument. Next heat the water a few
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degrees with the burner, and then remove the latter. The tem-
perature will still rise for a short time, then become stationary and
fall. Read each thermometer at its highest point, stirring the wa-
ter meanwhile. Repeat at intervals of about 10° until the water
boils, and finally immerse again in the ice water, and see if the
reading is the same as before.

‘We have now two columns of figures, the ﬁrst giving the tem-
perature of the Centigrade, the second that of the Fahrenheit,
thermometer. Reduce the first to the second, recollecting that
0° C.=32° F., and 100° C. = 212° F.; hence F. = $ C. - 32°,
calling ¢ and F the corresponding temperatures on the Centi-
grade and Fahrenheit scales respectively. Write the numbers
thus found in a third column, and the errors will equal the differ-
ences between them and the readings given in column two. If
the Centigrade thermometer does not stand at zero when im-
mersed in ice water, all its readings should be corrected by the
amount of the deviation, taking care to retain the proper sign.
Now construct a curve whose ordinates shall represent the errors
on an enlarged scale, and abscissas the temperatures.

7. EcceExTrRICITY OF GRADUATED CIRCLES.

Apparatus. A circle divided into degrees carries a pointer
with an index at each end, which turns eccentrically, that is, the
centres of the pointer and circle do not coincide. It may be made
in a variety of ways. One of the simplest is to place a pivot on
one side of the centre of the circle, and on it a rod with a needle
projecting from each end. Another way is to let the circle turn
and cover it with a plate of glass, on which are marked two fine
lines, with a diamond or India ink. The indices may also be made
of fine wire, or horsehair. Lines of consid-
erable length must be used, since the edge
of the circle advances and recedes as it is
tunied. If greater accuracy is desired the
plan shown in Fig. 9 may be adopted. The
two.indices (which. may have verniers) are
connected with the centre by the arms AC
and CB. The circle turns around the pin
D, and a rod passing through the guides
L'F keeps the verniers in the proper posi-
tion. Another good instrument for this experiment is the form of
compass described under Magnetism in'the latter part of the pres-
ent work.

Fig. 9.

8
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Faperiment. Set the index A4 at 0° by turning the circle, and
read B. Repeat moving 4 10° at a time, until a complete revo-
lution has been made. We have now two columns, giving the
corresponding readings of 4 and B. Subtract 180° from the lat-
ter, and 1(4 4 B — 180°), or (4 + B) — 90° will be the true
reading ; write this in column three ; in the same way the error of
each index is }(4 —B) — 90° which should be written in the
fourth column. Construct a curve with abscissas equal to the
numbers in column three, and ordinates equal to those in column
four, enlarged. At the highest and lowest parts of the curve the
indices differ most from their true position, or the absolute error,
if we read one only, is here greatest. Find these points by Curves
of Error, p. 14. On the other hand, where the curve cuts the axis
the two indices are opposite each other, and the abscissa gives the
azimuth of the line UD. As the ordinates alter most rapidly at
these points, the error, when reading a small angle by one index, is
here a maximum. Draw tangents, as before, by Curves of Error,
and from their direction we can compute the amount of variation.
It is a very good exercise to deduce by trigonometry the theoreti-
cal curve, and constructing it on the same sheet of paper to com-
pare the results with those obtained by your measurement.

We have heretofore supposed that the line connecting the in-
dices passed through the axis around which they turned, or that
D lies on ZF. If, as often happens in practice, this is not the
case, a second correction is necessary.

8. Contour Links.

Apparatus. No apparatus is needed for this experiment, except
ordinary writing materials. It is, in fact, an exercise rather than
an experiment. 5

Faperiment. Mark in your note book nine rows of six points
each, so as to form forty squares of about one inch on a side.
Mark them with numbers taken from the adjoining table 4.  Now
suppose these nunibers represent the heights of the points to which
they are attached, and we wish to draw contour lines to show the
form of the surface passing through them. As the points are
pretty near together we may assume that a line connecting any
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two that are adjacent will lie nearly in the surface. Now regard
your drawing as a map, as on p. 15, and suppose the ground

A B c

837973 79| 79|74)46|56]|67|84)|86(|84]|65)76|68)|57|40]28
82|78 (70 (81|84 |76)29|52|73|94(86|73]73]|72/50]|29]|28]|52
78 (76|66 (83|88 |73[39|31|65|82|.70|56]66 4831|1127 |41
74| 73158 |78 |82|63}60|62|68[72]57|49]59]29|29|42|38]|29
70161150 73182|74}69|73(81|81[65|48|38|46|38|72|61]|39
7115861 [82(96|75]|80|94|80|81|{73|50]27 8570997028
70(59]70!83({84|72]|80|58|58|65|70|49])21|46]|87|(96|60]29
67 |65|72|79[73]69|67(58]58|67|62|46]33 |63 (9581|4931
66671727669 |75]|74{68|72|80|49({37]|44|71|86|64([47]27

flooded with water to a height of 80. Evidently all the points in
the upper line will be submerged except that on the left, and the
shore line will come between 79 and 83, about a fourth way from
the former. Also midway between 82 and 78 in the second line,
two fifths of the way from 78 to 83, and a third way from 79 to
82. Several points are thus obtained in each square through which
the contour line passes. After obtaining as many as possible,
draw a smooth curve nearly coinciding with them all, paying
special attention to the rules given under the Graphical Method.
Construct in the same way other contours at intervals of ten units.
Do the same with the numbers in table B or C.

This work is very well supplemented by procuring from the
U. S. Signal Bureau at Washington, some of their blank maps
(issued at $2.75 per 100), and filling them out from the weather
reports for the day, according to their published directions. These
maps may also be used for drawing isothermals, isogonals, &e., if a
list is prepared in the first place of the temperature, magnetic
variation, &c., of a large number of stations in the United States.
The method adopted for drawing these lines is essentially the same
as that given above, only the points are irregularly spaced.

9. CreaNiNg MERCURY.

Apparatus. But little apparatus is needed for this experiment,
except such as is found in every chemical laboratory. Some bot-
tles, funnels, &e., should be placed on the table, and the student
should try as many of the following methods of purification as he
can, and record in his note-book his opinion of their comparative
value,
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FExperiment. Mercury is so much used in physical experiments
that every student should know how to clean it. The impurities
may be divided into three classes: first, mixture with metals, es-
- pecially lead, zinc and tin ; secondly, common dust and dirt; and
thirdly, water or other liquids.

Redistillation is almost the only way to remove the metals, and
even this is not perfectly effectual, especially in the case of zine.
Moreover, by long boiling a small amount of oxide is formed,
which is dissolved by the metal. The mercury used for amal-
gamating battery plates should therefore be kept separate from the
rest and used for this purpose only. If but little of the metal is
present it may be removed by agitating with dilute nitric acid.
The best way to do this is to fill a long vertical tube with the acid
and allow the mercury to flow into it from a funnel, in which is a
paper filter with a fine hole in the bottom. The mercury falls
through the long column of liquid in minute globules, and is thus
readily and thoroughly cleaned. It may be drawn out below by
a glass stopeock, or by a bent tube in which a short column of
mercury shall balance a long column of acid. As the mercury
collects it flows out of the end of the tube into a vessel placed to
receive it. Instead of nitric acid a solution of nitrate of mercury
may be used, if preferred. Another method is to fill a bottle
about a quarter full of mercury, add a quantity of finely powdered
loaf sugar, and shake violently. The metallic impurities are ox-
idized at the expense of the air, which must be renewed by a pair
of bellows. .

A great variety of devices are used to remove the mechanical
impurities of mercury. For example, pouring it into a bag of
chamois leather and squeezing the latter until the mercury comes
through in fine globules. Or, making a needle hole in the point,
of a paper filter, placing it in a funnel and letting the mercury run
through. The mercury may be washed directly with water, by
shaking them together in a bottle, or better, filling a jar half full
of mercury and letting the water from the hydrant bubble up
through it. This is an excellent way to remove most liquids.

Next, to remove the water, pour the mixture into a small bottle,
when the mercury will settle to the bottom, and the water over-
flow from the top. When the mercury fills the bottle transfer it
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- to another vessel and repeat. If there is only mercury enough to
half fill the bottle the second time, pour back some of the mercury
already dried to displace the remaining water. Another way is to
close the end of a funnel with the finger and pour in the mixture,
drawing off the mercury below and leaving the water above. Care
must be taken that the mercury does not spurt out on one side
and escape. An inverted bottle, or better, a vessel with a tube
and stopcock below, is more convenient for this purpose.

When only a few drops of water are present they may be re-
moved by blotting paper, or a camel’s hair brush. Also by apply-
ing heat; but in this case a stain will be left when the water evap-
orates, unless it has been previously distilled.

To see if the mercury is pure pour it into a porcelain evaporat-
ing dish. If lead is present it will tarnish the sides. A thin film
will also, after a short time, form on its surface, due to oxidation ;
zine and tin produce a similar effect. The surface when at rest
should be very bright and almost invisible, and small globules, if
detached, should be perfectly spherical, and not adhere to the glass
but roll over it when the surface is inclined.

10. CArLBRATION BY MERCURY.

Apparatus. The best way to perform this experiment is that
given by Bunsen in his Gasometry, p. 27. This method is sub-
stantially as follows: Select a glass tube, about 2 em. in diameter,
and 40 cm. long, closed at one end. Fasten to it a paper mil-
limetre scale. This is placed upright in a stand, at a short dis-
tance from a small telescope, by which the scale may be read with
accuracy. On another stand is placed a vessel containing about
two kilogrammes of pure mercury, covered with a layer of concen-
trated sulphuric acid, with a stopcock below, by which it may be
drawn off. A small glass tube, also closed at one end, is used to
receive it, which should contain, when filled, about 10 em2 Its
open end is ground flat, and it may be closed with a plate of
ground glass, which is fastened to the thumb by a piece of rubber.

Erperiment. Both mercury and tube should be perfectly clean,
but if not, a few drops of water may be placed in the longer tube,
provided great accuracy is not required. Fill the small tube with
mercury, holding it with the fingers of the left hand, and remove
the surplus by pressing the glass plate, which should be attached
to the left thunb, down on to it. Take care that no air bubbles

.
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are imprisoned. Empty the mercury into the large tube, and read -
its height on the scale by the telescope, measuring from the top
of the curved surface of the liquid. A clean wooden rod may be
used to remove any bubbles of air or globules of mercury which
adhere to the sides of the tube. Repeat this operation until the
large tube is full of mercury. 'We now wish to know the volume
of the small tube, as this is the unit in terms of which the larger
one has been calibrated. The most accurate way to do this is to
weigh the whole amount of mercury transferred, and divide by
the number of times the smaller tube has been filled. But as it is
generally diffieult to weigh so heavy a body accurately, the con-
tents of the smaller tube had better be weighed alone, repeating
two or three times to see how muech the quantity used will vary in
consecutive fillings. The volume is then obtained by dividing the
weight by 13.6, the specific gravity of mercury. DMultiplying the
quotient by 1, 2, 3, 4, &ec., we obtain the volumes corresponding to
our observed readings of the mereury column in the long tube.
Represent the results by a residual curve, as follows: Let s be
the scale reading when the small tube has been emptied once into
the long tube, and §" when the latter is full, or has received n times
this volume of mereury, which we will call v. Then (n — 1)v of
mercury will fill the space s’ — s, and the average volume per unit
of length will equal (n — 1)v = (s — s) == @. If the tube was
perfectly cylindrieal we could find the volume V for any scale
reading S by the formula, V = @ (8§ —s) 4+ v. In reality the
tube is probably a little larger in some places than in others,
it is therefore better to retain only two significant figures in a,
and then compute by the formula the volumes corresponding to
the various scale readings that have been observed. Subtract
each of these from the corresponding volumes 1, 2, 3, &e., times v,
and construet a residual curve in which ordinates equal these dif-
ferences on an enlarged scale, and abscissas the scale readings.
We can now obtain the volume with the gredtest accuracy for any
scale reading by adding to the value of V7 given by the formula,
the ordinate of the corresponding point of the curve. A table
may thus be constructed, giving the volume corresponding to each
millimetre mark of the scale. But it is generally sufficiently accu-
rate to make a simple interpolation from the original measurements,
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using only the first differences, as when employing logarithmic
tables.

11. CavriBRATION BY WATER.

\

Apparatus. A Mohr’s burette B, Fig. 10, on a stand, and the
vessel to be graduated .4, which should be about six inches high,
and an inch and a half in diameter. A paper scale divided into
tenths of an inch should be attached to 4 with gum tragacanth,
although shellac, or even mucilage, answers tolerably. A long
string wound spirally around the vessel will keep the scale in place
until the gum is dry.

Erperiment. Fill the burette B to the zero mark. This is
done by adding a little too much water, and
drawing it off by the stopcock C' into another
vessel, until it stands at precisely the right level.
Next, let the water flow into 4 until it reaches
the one tenth of an inch mark, and read B. Do
the same for each tenth of an inch, until the one
inch mark is reached, and then for every half
inch to the top. Do not let the water level in Z oE
fall below the 100 cm.? mark, but when it
reaches this point refill as before, and add 100 to Fig. 10,
the volume measured. Care should be taken not to get too much
water into 4 ; should this happen, a little may be drawn out with
a pipette and replaced in B, but a slight error is thus introduced.

We have now a series of volumes corresponding to various scale
readings. Construct a curve with these two quantities as co-
ordinates. Find the point of the curve for which the volume is in
turn 10, 20, 30, &c., cm.®, and record the corresponding scale-
reading. If the vessel is to be used for the measurement of vol-
umes cover it with wax and draw horizontal lines on the latter,
having the seale readings just found. Subject it to the fumes of
fuorhydric acid, formed by mixing powdered fluor spar and con-
centrated sulphuric acid. The lines will thus be permanently
etchied on the glass.

A
[

12. CATHETOMETER.

Apparatus. A Cathetometer may be made by using as a base
the tripod of a music stand or photographer’s head-rest, and screw-
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ing into it a tube or solid rod of brass. To this is attached a small
telescope with a clamp and set screw, and some form of slow
motion. The latter may be obtained by placing the telescope on
a hinge and raising and lowering one end by a screw. The slight
deviation from a horizontal position will not affect the results, as
the instrument is here used.

At a distance of five or ten feet is placed a U tube, open at both
ends, with one arm about ten inches long, the other forty. The
bend in the tube is filled with mercury, and water is poured into
the long arm. We then have a long column of water sustaining a
short column of mercury, the heights being inversely as the densi-
ties. By the side of this tube is a barometer, made by closing a
common glass tube at one end, filling with mercury, and inverting
over a cistern containing the same liquid. The precautions and
details will be found under Experiment No. 55. By the side of
this tube is placed a rod about ten inches long, sharply pointed at
both ends, and capable of moving up and down so as to touch the
surface of the mercury in the barometer cistern. A steel scale
divided into millimetres is adjacent to both tubes, so that it can be
read at the same time as thg mercury columns.

Experiment. Focus the telescope so that both scale and mer-
cury are distinetly visible,
Then raise it until it is
nearly on a level with 4,
the top of the column of
water, and bring its hori-
zontal cross-hair exactly to
coincide by the slow mo-
tion. Read the scale, di-
viding the millimetres into
tenths by the eye. Do the
same at B and C; then the
difference in height of A
and O, divided by that of
C and B, will equal the
specific gravity of the mer-
cury, which should be compared with its true value. As the sur-
face of mercury is curved upwards, that of water downwards, the
cross-hairs should be brought to the top of the former, and to the
bottom of the latter. If great accuracy is required in this experi-
ment, allow for the meniscus, or curved portion at the top of the
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water, by adding one half its thickness to the height of the water
column.

Next raise the rod ZZ), and read the height, first of the top
and then of the bottom. The difference will be its length.
It is safer to test the result by moving it and repeating. Then
bring the rod so that it shall just touch the surface of the mercury,
that is, so that the point and its reflection shall coincide, and read
the height of D, and of the top of the rod. Their difference
added to the length of the rod gives the height of the column.
Read the height of the standard barometer placed among the
meteorological instruments. Reduce this to millimetres, and sub-
tract from it the other measurement. The difference will be the
depression caused by air and the other errors in the barometer .

13. Hoox GAUGE.

Apparatus. A stand, Fig. 12, on which may be placed a vessel
of water 4, and a micrometer screw .3, by which we can raise or
lower a rod carrying two points, one turned upwards, the other
downwards.

Frperiment. Fill up the vessel until the water just covers the
point of the hook. Then turn the screw so that
upon looking at the reflection on the surface of %
some object as a window sash, a slight distortion is %
produced by the elevation of the water above the
hook. Make ten measurements, moving the
screw after each, take their mean and compute the
probable error of a single observation. When
the point is raised it draws the liquid with it.
Screw it down until it touches the liquid, and
read the micrometer, then raise it until the liqnid ;
separates, and take ten readings in each position. Compute, as be-
fore, the probable error, and reduce to fractions of a millimetre,
which is easily done if the pitch of the screw is known. This
gives a measure of the comparative accuracy of the hook and
simple point. Both are used for determining the exact height of
any liquid surface, the hook being employed most frequently in
this country, the point abroad. When the surface of a liquid is

Fig.12.
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rising or falling, and we wish to know the exact time when it
reaches a given level, we should use the hook when it descends,
otherwise the point; because the former should always be brought
up to the surface, the latter down to it.

This instrument is so extremely delicate that it will show the
lowering of a surface of water in a few minutes by evaporation.
A variety of interesting researches may be conducted with it, by
the different students of a class. Thus its comparative accuracy
with water, mercury and other liquids, may be measured, their
rate of evaporation, and the effect of impurities, such as a drop of
oil. The height to which a liquid may be raised by the point, is

also a test of its viscosity.
1

14. SPHEROMETER.

Apparatus. Two lenses, one convex, the other concave, a piece
of thick plate glass and a spherometer. The latter consists of a
tripod, with a micrometer screw in the centre, whose point may be
moved to any desired distance above or below the plane of the
three legs on which it rests. The most important qualities are
lightness and stiffhess, and on this account a very cheap, and quite
efficient spherometer may be made with the nut and tripod of
wood, using for legs, pieces of knitting needles.

Lixperiment. Stand the spherometer on the sheet of plate glass
and turn the serew until its point is in contact with it. There are
three ways of determining the exact position of contact. The first
method is dependent on the fact that if the point of the screw is
too low the spherometer will stand unsteadily, like a table with
one leg too short. The screw is therefore depressed until the in-
strument rattles, when its top is moved gently from side to side.
An exceedingly small motion of this kind is perceptible to the
hand. The screw is then turned up and down until the exact
point of contact is found. The second, and probably the best
method, is to turn the screw slowly, taking care that no greater
pressure is exerted on one leg than on the other; as soon as the
point touches the glass the pressure is removed from the legs, and
the friction of the nut at once makes the whole instrument revolve.
Care must be taken not to press on the top of the screw, or the
tripod will be bent, and an incorrect reading obtained. The
third method of determining contact depends on the sound pro-
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duced when the instrument slides over the glass, which changes
when the screw touches the surface. It should be moved but a
short distance and without pressure, for fear of scratching the glass.

Having determined this point with accuracy, read the position
of the screw, taking the mumber of revolutions from the index on
one side, and the fraction from the divided circle.

Place the spherometer on each face of the two lenses and meas-
ure the position of the point of contact as before. Of course the
screw must be raised when the surface is convex, and depressed
when it is concave. Subtract each of these readings from that
taken on the plate glass, and the difference gives the height of a
segment of the sphere to be measured, whose base is a circle pass-
ing through the three feet of the spherometer. Call this height A
the radius of the circle 7, and the radius of
the sphere Z%; then we have, Fig. 13, AB
=h, BD =r,and AC = R. But by sim-
ilar triangles AB : DB = DB : BE, or

72 h
R =" 2R—-h,orR=ﬁ + 5 Com-
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pute in this way the radius of each surface
of the lenses, remembering that a negative
radius denotes a concave surface. To de-
termine 7, measure the distance of each leg of the spherometer
from the axis of the screw, and take their mean. Measure also the
distances of the three legs from each other and take their mean.
They form the three sides of an equilateral triangle; compute by
geometry the radius of the circumscribed circle, and see if this
value of r agrees with that previously found. Both » and 2 must
be taken in the same unit, as millimetres or inches, and great care
should be taken to make no mistake in the position of the decimal
point. The reduction of % is effected by multiplying it by the pitch
of the screw.

Finally, compute the principal focal distance, Z7, by the formula
%, = (n—1) [21? aF 1%], in which R and R’ are the radii of
the two surfaces, as computed above, and » the index of refraction
of the glass. The latter varies in different specimens, but in com-
mon lenses is about 1.53.

Fig. 13.
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15. EstiMation oF TENTHS OF A SECOND.

Apparatus. A heavy body carrying a small vertical mirror-is
suspended by a wire, so that it will swing by torsion, about once
in half a minute. A small telescope with cross hairs in its eye-
piece, is pointed towards the mirror, and a plate with a pin hole in
it is placed in such a position that when the mirror swings, the
image of the hole will pass slowly across the field of view of the
telescope, like a star. It may be made bright by placing a mirror
behind it and reflecting the light of the window. The whole ap-
paratus should be enclosed so as to cut off stray light. A good
clock beating seconds is also needed.

LErperiment. Twist the mirror slightly, so that it shall turn
slowly. On looking through the telescope a point of light or star
will be seen to cross the field of view, at equal intervals of about
half a minute. Note the hour and minute, and as the star ap-
proaches the vertical line take the seconds from the clock and
count the ticks of the pendulum. Fix the eye on the star and
note its position the second before, and that after, it passes the
wire. Subdividing the interval by the eye we may estimate the
true time of transit within a tenth of a second. Take twenty or
thirty such observations and write them in a column, and in a sec-
ond column give their first differences. = Take their mean and
compute the probable error. It will show how accurately you can
estimate these fractions of seconds.

This is called the eye and ear method of taking transits, which
form the basis of our knowledge of almost all the motions of the
heavenly bodies. It is still much used abroad, although in this
country superseded in a great measure by the electric chronograph
described on p. 16.

16. RaTin¢ CHRONOMETERS.

Apparatus. Two timekeepers giving seconds, one, which may
be the laboratory clock, to be taken as a standard, and a second to
be compared with it. For the latter a cheap watch may be kept
expressly for the purpose, or the student may use his own. If the
true time is also to be obtained, a transit or sextant is needed in
addition.

FEaxperiment. First, to obtain the true time. As this problem
belongs to astronomy rather than physics, a brief description only
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will be given. It may be done in two ways, with a transit or a
sextant; the former being used in astronomical observations, the
latter at sea. A transit is a telescope, mounted so that it will
move only in the meridian. With it note by the clock the
minute and second when the eastern and western edges of the sun
cross its vertical wire, and take their mean. Correct this by the
amount that the sun is slow or fast, as given in the Nautical Al-
manac, and we have the instant of true noon. The interval be-
tween this and twelve, as given by the clock, is the error of the
latter.

The sextant may be used at any time when the sun is not too
near either the meridian or the horizon. A vessel containing mer-
cury is used, called an artificial horizon, and the distance between
the sun and its image in this is measured. Since the surface of the
mercury is perfectly horizontal, this distance evidently equals ex-
actly twice the sun’s altitude. If the observation is made in the
morning, when the sun is ascending, the sextant is set at somewhat
too great an angle, if after noon at too small an angle, and the
precise instant when the two images touch is noted by the clock.
The sun’s altitude, after allowing for its diameter, is thus obtained.
We then have a spherical triangle, formed by the zenith Z the
pole P, and the sun §. In this, PZ is given, being the comple-
ment of the latitude; .S, the sun’s north polar distance, is ob-
tained from the Nautical Almanac, and ZS is the complement of
the altitude just measured. From these data we can compute the
angle ZP 8, which corrected as before and reduced to hours, min-
utes and seconds, gives the time before or after noon. The practi-
cal directions for doing this will be found given in full in Bow-
ditch’'s Navigator.

By these methods we obtain the mean solar time, which is that
used in every day life. For astronomical purposes sidereal time,
or that given by the apparent motion of the stars, is preferable.
It is found by similar methods, using a star instead of the sun.

In an astronomical observatory it is found best not to attempt to
make the clock keep perfect time, but only to make sure that its
rate, or the amount it gains or loses per day, shall be as nearly as
possible constant. We can then compute the error £ at any given
time very easily by the formula Z = £’ 4 ¢r, in which %’ was the
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error ¢ days ago, and r the rate. By transposing we may also ob-
tain 7, when we know the errors Z and £, at two times separated
by an interval ¢, Take the last. two observations of the clock-
error, which should be recorded in a book kept for the purpose,
and compute the error at the time of your observation, and see
how it agrees with your measurement.

If the day is cloudy, or no instruments are provided for determ-
ining the true time, the experiment may be performed as follows.
Compute, as above, the rate and error of the clock. Next take
the difference in minutes and seconds between the clock and the
watch to be compared. To obtain the exact interval, a few sec-
onds before the beginning of the minute by the watch, note the
time given by the clock, and "begin counting seconds by the ticks
of the pendulum. Then fixing your eyes on the watch, mark the
number counted when the seconds’ hand is at zero. Repeat two
or three times, until you get the interval within a single second.
Now correcting this by the error of the clock, taking care to give
the proper signs, we get the error of the watch. The next thing
is to set the watch so that it shall be correct within a second. For
this purpose it must be stopped, by opening it and touching the
rim of the balance wheel very carefully with a piece of paper, or
other similar object. Set the minute hand a few minutes ahead to
allow for the following computation. Subtract the clock-error from
the time now given by the watch. It will give the time by the
clock, at which if the watch is started it will be exactly right. A
few seconds before this time hold the watch horizontally, with the
fingers around the rim, and at the precise second turn to the right
and then back. The impulse starts the balance-wheel, and the
watch will now go, differing from the clock by an amount just
equal to the error of the latter.

17. Maxixe WEIGHTS.

Apparatus. A very delicate balance and set of weights, some
sheet metal, a pair of scissors, a millimetre scale, and a small piece
of brass, 4, weighing about 18.4 grammes. The weights are best
made of platinum and aluminium foil; but where expense is a
consideration, sheet brass may be used for the heavier, and tin foil
for the lighter weights. To improve the appearance of the brass
and prevent its rusting it may be tinned, or dipped in a silvering
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solution, or perhaps better still, coated with nickel. Some steel
punches for marking the numbers 0,1, 2 and 5, a mallet and sheet
of lead should also be provided.

PROPER METHOD OF WEIGHING.

A good balance is so delicate an instrument that the utmost care
is needed in using it. The student should thoroughly understand
its principle, and know how to test both its accuracy and delicacy.
See Measurement of Weights, p. 19. The beam should never be
left resting on its knife-edges, or they will become dulled. It is
therefore commonly made so that it may be lifted off of them by
turning a milled head in front of the ‘balance. A second milled
head is also added to raise supports under each scale-pan. To
weigh any object the following plan must be pursued. * To see if
the balance is in good order, lower the supports under the seale-
pans, then those under the beam, by turning the two milled heads.
The long pointer attached to the beam should now swing very
slowly from side to side, and finally come to rest at the zero. Re-
place the supports, and open the glass case which protects the bal-
ance from currents of air. The object to be weighed, if metallic
and perfectly dry, may be placed directly on the scale-pan, other-
wise it should be weighed in a watch-glass whose weight is after-
wards determined separately. Now place one of the weights in
the opposite scale-pan, and remove the supports first from the pans
and then from the beam. This must be done very slowly and
carefully. Students are liable to let the beam fall with a jerk
on the knife-edges, by which the latter are soon dulled and ruined.
An accurate weighing is necessarily a slow process and should
never be attempted when one is in a hurry. Moreover, by re-
moving the supports quickly the scale-pans are set swinging, and
the beam itself vibrating through a large are, so that it will
not come to rest for a long time. It is better while using the
larger weights to lower the supports a very small amount only,
and notice which way the index moves. As it is below the beam
it always moves towards the lighter side. The smaller weights
must be touched only with a pair of forceps, as the moisture of the
fingers would soon rust them. Those over 100 grms. may be taken
up in the hand by the knob, but no other part of them should be
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touched. Weights should never be laid down except on the scale-
pans, or in their places in the box. Now try weighing the piece
of brass 4. Lay it on one scale-pan, and a 10 gr. weight on the
opposite side. The index moves towards the latter when the sup-
ports are removed, as described above. Replace the 10 grs. by
20 grs. This is too heavy, and the index moves the other way.,
Try the 10 grs. and 5 grs.—too light; "add 2 grs.—still too light;
another 2 grs.—too heavy; replace the latter by 1 gr.— too light.
The weight evidently lies between 18 and 19 grammes.. Add the
.5 gr, or 500 mgr.—too heavy; substitute the 200 mgr.—too
light, and so go on, always following the rule of taking the weights
in the order of their sizes, and never adding small weights by
guess, or much time will be lost. Having determined the weight
within .01 gr., the milligrammes are most easily found by a rider.
This consists of a small wire whose weight is just 10 mgr. Itis
placed on different parts of the beam, which is divided like a steel-
yard into ten equal parts, which represent milligrammes. Thus if
the rider is placed at the point marked 6, or at a distance of .6
the length of one arm of the balance, it produces the same effect
as'if 6 mgrs. were placed in the scale-pan. It is generally arranged
so that it can be moved along the beam without opening the glass
case, which protects the latter from dust and currents of air. By
taking care to lower the supports of the beam slowly, as recom-
mended above, the swing of the index is made very small; it is
sufficient to see if it moves an equal distance on each side of the
zero, instead of waiting for it to come absolutely to rest. To make
sure that no errror is made in counting the weights, their sum
should be taken as they lie in the scale-pan, and also from their
vacant places in the box.

Decimal weights are made in the ratio of 1, 2 and 5, and their
multiples by 10, and its powers. To obtain the 4 and the 9 it is
necessary to duplicate either the 1 or the 2. The English adopt
the former method, the French the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>