## UC-NRLF


†В 278 8.ヨ


Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

## ELEMENTS

OF

## PLANE GEOMETRY

BY<br>ALAN SANDERS<br>HUGHES HIGH SCHOOL, CINCINNATI, OHIO

NEW YORK $\cdot:$ - CINCINNATI $\because \cdot$ CHICAGO
AMERICAN BOOK COMPANY

Copyright, 1901, by
AMERICAN BOOK COMPANY.
Entered at Stationers' Hall, London.

```
BANDERS' PlaNE GEOM.
    E-P }
```


## QA 455 S2

## PURPOSE AND DISTINCTIVE FEATURES

This work has been prepared for the use of classes in high schools, academies, and preparatory schools. Its distinctive features are:-

1. The omission of parts of demonstrations.

By this expedient the student is forced to rely more on his own reasoning powers, and is prevented from acquiring the detrimental habit of memorizing the text.

As it is necessary for the beginner in Geometry to learn the form of a geometrical demonstration, the demonstrations of the first few propositions are given in full. In the succeeding propositions only the most obvious steps are omitted, the omission in each case being indicated by an interrogation mark (?). In no case is the student expected to originate the plan of proof.
2. The introduction, after each proposition, of exercises bearing directly upon the principle of the proposition.

As soon as a proposition has been mastered, the student is required to apply its principle in the solution of a series of easy exercises. Hints or suggestions are given to aid the pupil in the solution of the more difficult exercises.
3. All constructions, such as drawing parallels, erecting perpendiculars, etc., are given before they are required to be used in demonstrations.
4. Exercises in Modern Geometry.

Exercises involving the principles of Modern Geometry are given under their proper propositions. As the omission of these exercises cannot affect the sequence of propositions, they may be disregarded at the discretion of the teacher.
5. Propositions and converses.

Whenever possible, the converse of a proposition is given with the proposition itself.
6. Number of exercises.

Besides the exercises directly following each proposition, miscellaneous exercises are given at the end of each book. It may be found that there are more exercises given than can be covered by a class in the time allotted to the subject of Plane Geometry; in which case the teacher will have to select from the lists given.

While the exercises have been drawn from many sources, the author has availed himself in particular of the recent entrance examination papers of the best American colleges and scientific schools.

The author wishes to express his obligations to his colleagues in the Cincinnati High Schools for their criticism and encouragement, and especially to Miss Celia Doerner of Hughes High School for valuable suggestions and for her painstaking reading of the proof.

## CONTENTS

PAGE
Preliminary Definitions. ..... 9
Axioms ..... 12
Postulates ..... 13
Symbols and Abbreviations ..... 14
BOOK I
Rectilinear Figures ..... 15
Additional Exercises ..... 71
BOOK II
Circles ..... 79
Additional Exercises ..... 122
BOOK III
Proportions - Similar Polygons ..... 129
Additional Exercises ..... 173
BOOK IV
Areas of Polygons ..... 181
Additional Exercises ..... 213
BOOK V
Measurement of the Circle ..... 220
Additional Exercises ..... 243

## INDEX OF MATHEMATICAL TERMS

[The references are to articles]

Abbreviations, list of, 29
Acute angle, 17
Adjacent angles, 15
Alternate exterior angles, 113
Alternate interior angles, 113
Alternation, in proportion, 416
Altitude, of parallelogram, 561
of trapezoid, 561
of triangle, 194
Analysis, 246
Angle, 13
acute, 17
at center of a regular polygon, 716
degree of, 347
inscribed, 354
oblique, 17
obtuse, 17
right, 16
sides of, 13
vertex of, 13
Angles, adjacent, 15
alternate exterior, 113
alternate interior, 113
complementary, 66
corresponding, 113
exterior, 113
homologous, 544
interior, 113
opposite, 75
supplementary, 65
vertical, 75
Antecedents, in proportion, 404
Apothem, 716
Arc, 21
degree of, 347
Area, 561
Axiom, 27
Axioms, list of, 27

Base, of isosceles triangle, 50
of parallelogram, 561
of polygon, 561
of trapezoid, 561
Center, of circle, 19
of regular polygon, 716
of similitude, 556
Chord, 247
Circle, 19
angle inscribed in, 354
center of, 19
circumference of, 19
diameter of, 20
inscribed in polygon, 247
radius of, 20
sector of, 343
segment of, 354
tangent to, 306
Circumscribed circle, 247
polygon, 247
Commensurable quantities, 342
Complementary angles, 66
Composition and division, 430
Composition, in proportion, 421
Conclusion, 22
Concurrent lines, 601
Consequents, in proportion, 404
Constant, 340
Continued proportion, 442
Converse, 72
Corollary, 25
Corresponding angles, 113
Curved line, 7
Decagon, 152
Degree, of angle, 347
of arc, 347

Determination of straight line, 246
Diagonal, 152
Diameter, 20
Direct tangent, 556
Distance; from point to line, 223
from point to point, 223
Division, external, 506
in proportion, 427
internal, 506
Dodecagon, 152
Equiangular polygon, 152
triangle, 18
Equilateral polygon, 152
triangle, 18
Equivalent polygons, 561
Exterior angles, 113
External division, 506
Extreme and mean ratio, 551
Extremes, in proportion, 404
Fourth proportional, 404
Geometrical figures, 9
Geometry, 11
plane, 12
Harmonical division, 509
pencil, 512
Hexagon, 152
Homologous angles, 544
sides, 544
Hypotenuse, 43
Hypothesis, 22
Incommensurable quantities, 342
Indirect proof, 39
Inscribed angle, 354 circle, 395
Interior angles, 113
Inversion in proportion, 419
Isosceles triangle, 18
Isosceles triangle, base of, 50 vertex of, 50

Left side, of angle, 130
Legs, of right triangle, 43
Limit, 340
Line, 4
curved, 7
straight, 6
Lines, parallel, 107
perpendicular, 16
Locus, 233

Material body, 1
Mean proportional, 404
Means, of a proportion, 404
Median of a triangle, 173
Minutes, of arc, 347
Mutually equiangular triangles, 137

Oblique angle, 17
Obtuse angle, 17
Octagon, 152

Parallel lines, 107
Parallelogram, 194
altitude of, 561
bases of, 561
Pentagon, 152
Pentedecagon, 152
Perimeter of polygon, 152
Perpendicular lines, 16
Plane surface, 8
angle, 13
figure, 10
geometry, 12
Point, 5
Polar, 521
Pole, 521
Polygon, 152
circumscribed, 395
diagonal of, 152
inscribed, 247
perimeter of, 152
regular, 152
Polygons, similar, 477

Postulate, 28
Problem, 23
Projection, 657
Proportion, 404
antecedents of, 404
consequents of, 404
couplets, 404
extremes of, 404
means of, 404
Proportional, fourth, 404
mean, 404
third, 404
Proposition, 24
Quadrant, 346
Quadrilateral, 152
Quantities, commensurable, 342
constant, 340
incommensurable, 342
variable, 340
Radius, 20
Ratio, 340
extreme and mean, 551
Rays, of pencil, 512
Rectangle, 194
Regular polygon, 707
angle at center of, 716
apothem of, 716
center of, 716
Rhomboid, 194
Rhombus, 194
Right angle, 16
Right-angled triangle, 18
Right side of angle, 130
Scalene triangle, 18
Scholium, 26
Secant, 262
Seconds, of arc, 347
Sector, 343
Segment, 354
angle inscribed in, 354

Sides of angle, 13 of triangle, 18
Similar arcs, 787
polygons, 477
sectors, 787
segments, 787
Similitude, center of, 556
Solid, geometrical, 2
Square, 194
Straight line, 6
determined, 246
divided externally, 506
divided harmonically, 509
divided internally, 506
Supplementary angles, 65
Surface, 3
Symbols, list of, 29
Tangent circles and lines, 306
Tangent, direct, 556
transverse, 556
Theorem, 22
Third proportional, 404
Transversal, 113
Transverse tangent, 556
Trapezium, 194
Trapezoid, 194
altitude of, 561
bases of, 561
Triangle, 18
altitude of, 194
equiangular, 18
equilateral, 18
isosceles, 18
median of, 173
right-angled, 18
scalene, 18
Variable, 340
Vertex of angle, 13
Vertical angles, 75
in isosceles triangle, 50

## PLANE GEOMETRY

## DEFINITIONS

1. Every material body occupies a limited portion of space. If we conceive the body to be removed, the space that is left, which is identical in form and magnitude with the body, is a geometrical solid.
2. A geometrical solid, then, is a limited portion of space. It has three dimensions: length, breadth, and thickness.
3. The boundaries of a solid are surfaces. A surface has but two dimensions: length and breadth.
4. The boundaries of a surface are lines. A line has length only.
5. The ends of a line are points. A point has position, but no magnitude.
6. A straight line is one that does not change its direction at any point.
7. A curved line changes its direction at every point.
8. A plane surface is a surface, such that a straight line joining any two of its points will lie wholly in the surface.
9. Any combination of points, lines, surfaces, or solids, is a geometrical figure.
10. A figure formed by points and lines in a plane is a plane figure.
11. Geometry is the science that treats of the properties, the construction, and the measurement of geometrical figures.
12. Plane Geometry treats of plane figures.
13. A plane angle is the amount of divergence of two lines that meet. The lines are the sides of the angle, and their point of meeting is the vertex.

One way to indicate an angle is by the use of three letters. Thus, the angle in the accompanying figure is read angle $A B C$ or angle $C B A$, the letter at the vertex being in the middle.

If there is only one angle at the ver-
 tex $B$, it may be read angle $B$.

Another way is to place a small figure or letter within the angle near the vertex. The above angle may be read angle 3.

The size of an angle in no way depends upon the length of its sides, and is not altered by either increasing or diminishing their length.
14. Two angles are equal if they can be made to coincide. Thus, angles $A B C$ and $D E F$ are equal, whatever may be the length of each side, if angle $A B C$ can be placed upon angle $D E F$ so that the vertex $B$ shall fall upon vertex $E, B C$ fall upon $E F$, and $B A$ fall upon $E D$.
[It should be noticed that angle $A B C$ can be made to coincide with angle $D E F$ in another way,
 i.e. $A B C$ may be turned over and then placed upon $D E F, B C$ falling upon $E D$, and $B A$ upon EF.]
15. Two angles that have the same vertex and a common side are adjacent angles.

Angles 1 and 2 are adjacent angles.

16. If a straight line meets another straight line so as to make the adjacent angles that they form equal to each other, the angles formed are right angles. Angles $A B C$ and $A B D$ are right angles. In this case each line is perpendicular to the other.

17. An angle that is less than a right angle is acute, and one that is greater than a right angle is obtuse.

An angle that is not a right angle is oblique.
18. A triangle is a portion of a plane bounded by three straight lines. The lines are called the sides of the triangle, and their angles the angles of the triangle.

An equilateral triangle has three equal
 sides.

An isosceles triangle has two equal sides.
A scalene triangle has no two sides equal.
An equiangular triangle has three equal angles.
A right-angled triangle contains one right angle.
19. A circle is a portion of a plane bounded by a curved line, all points of which are equally distant from a point within, called the center. The bounding line is called the circumference.
20. The distance from the center to any point on the circumference is a radius.
21. Any portion of a circumference is an arc.

22. A theorem is a truth requiring demonstration. The statement of a theorem consists of two parts, the hypothesis and the conclusion. The hypothesis is that part which is assumed to be true; the conclusion is that which is to be proved.
23. A problem proposes to effect some geometrical construction, such as to draw some particular line, or to construct some required figure.
24. Theorems and problems are called propositions.
25. A corollary is a truth that may be readily deduced from one or more propositions.
26. A scholium is a remark made upon one or more propositions relating to their use, connection, limitation, or extension.
27. An axiom is a self-evident truth.

## Axions

1. Things that are equal to the same thing are equal to each other.
2. If equals are added to equals, the sums are equal.
3. If equals are subtracted from equals, the remainders are equal.
4. If equals are multiplied by equals, the products are equal.
5. If equals are divided by equals, the quotients are equal.
6. If equals are added to unequals, the sums are unequal in the same order.
7. If equals are subtracted from unequals, the remainders are unequal in the same order.
8. If unequals are multiplied by positive equals, the products are unequal in the same order.
9. If unequals are divided by positive equals, the quotients are unequal in the same order.
10. If unequals are added to unequals, the greater to the greater, and the less to the less, the sums are unequal in the same order.
11. The whole is greater than any of its parts.
12. The whole is equal to the sum of all its parts.
13. Only one straight line can be drawn joining two points.
[It follows from this axiom that two straight lines can intersect in only one point.]
14. The shortest distance from one point to another is measured on the straight line joining them.
15. Through a point only one line can be drawn parallel to another line.
16. Magnitudes that can be made to coincide with each other are equal.
[This axiom affords the ultimate test of the equality of geometrical magnitudes. It implies that a figure can be taken from its position, without change of form or size, and placed upon another figure for the purpose of comparison.]

Of the foregoing, the first twelve axioms are general in their nature, and the student has probably met with them before in his study of algebra. The last four are strictly geometrical axioms.
28. A postulate is a self-evident problem.

## Postulates

1. A straight line can be drawn joining two points.
2. A straight line can be prolonged to any length.
3. If two lines are unequal, the length of the smaller can be laid off on the larger.
4. A circumference can be described with any point as a center, and with a radius of any length.
5. SYMBOLS AND ABBREVIATIONS
$\angle$ Angle.
\& Angles.
R.A. Right angle.
R.A.'s. Right angles.
$\triangle$ Triangle.
© Triangles.
$\odot$ Circle.
(s) Circles.
$\perp$ Perpendicular.
Is Perpendiculars.
II Parallel.
Ils Parallels.
$\therefore$ Therefore.
$=$ Equals or equal.
$>$ Is (or are) greater than.
$<$ Is (or are) less than.
$\sim$ Is (or are) measured by.
Prop. Proposition.
Cor. Corollary.
Schol. Scholium.
Q.E.D. Quod erat demonstrandum, which was to be proved.
Q.E.F. Quod erat faciendum, which was to be done.

## B00K I

## Proposition I. Theorem

30. If two triangles have two sides and the included angle of one equal respectively. to two sides and the included angle of the other, the triangles are equal in all respects.


Let the $\triangle A B C$ and $D E F$ have $A B=D E, B C=E F$, and $\angle B=\angle E$.

To Prove the $\triangle A B C$ and $D E F$ equal in all respects.
Proof. Place the $\triangle A B C$ upon the $\triangle D E F$ so that $\angle B$ shall coincide with its equal $\angle E, B A$ falling upon $E D$, and $B C$ upon EF.

Since, by hypothesis, $B A=E D$, the vertex $A$ will fall upon the vertex $D$.

Since, by hypothesis, $B C=E F$, the vertex $C$ will fall upon the vertex $F$.

Since, by Axiom 13, only one straight line can be drawn joining two points, $A C$ will coincide with $D F . \therefore$ the $\mathbb{A}$ coincide throughout and are equal in all respects.
Q.E.D.
31. Scholium. By showing that the $\&$ coincide, we have not only proved that they are equal in area, but also that $\angle A=\angle D, \angle C=\angle F$, and $A C=D F$.

It should be noticed that the sides $A C$ and $D F$, which have been proved equal, lie opposite respectively to the equal angles $B$ and $E$.

Also, that the equal angles $A$ and $D$ lie opposite respectively to the equal sides $B C$ and $E F$, and that the equal angles $C$ and $F$ lie opposite respectively to the equal sides $A B$ and $D E$.

Principle. In triangles that have been proved equal in all respects, equal sides lie opposite equal angles, and equal angles lie opposite equal sides.
32. Exercise. Prove Prop. I., using this pair of triangles.

33. Exercise. In the triangle $A B C, A B=$ $A C$, and $A D$ bisects the angle $B A C$.

Prove that $A D$ also bisects $B C$.

Suggestion. Show by § 30 that the $A A B D$ and $A D C$ are equal in all respects. Then, by the principle of $\S 31, B D=D C$.

34. Exercise. $A B C$ is a triangle having $A B=B C . \quad B E$ is laid off equal to $B D$.

Prove

$$
A D=C E
$$

Suggestion. Show that

$$
\triangle A B D=\triangle E B C
$$



## Proposition II. Theorem

35. If two triangles have two angles and the included side of one equal respectively to two angles and the included side of the other, the triangles are equal in all respects.


Let the $\triangle A B C$ and $D E F$ have $\angle A=\angle D, \angle C=\angle F$, and $A C=D F$.

To Prove the $\mathbb{S} A B C$ and $D E F$ equal in all respects.
Proof. Place the $\triangle A B C$ upon the $\triangle D E F$, so that $\angle A$ shall coincide with its equal $\angle D, A B$ falling upon $D E$, and $A C$ falling upon $D F$.

Since, by hypothesis, $A C=D F$, the vertex $C$ will fall upon vertex $F$.

Since, by hypothesis, $\angle C=\angle F$, the side $C B$ will fall upon $F E$, and the vertex $B$ will be on $F E$ or its prolongation.

Since $A B$ falls upon $D E$, the vertex $B$ will be upon $D E$ or its prolongation.

The vertex $B$, being at the same time on $D E$ and $F E$, must be at their point of intersection; and since two straight lines have only one point of intersection (Axiom 13), the vertex $B$ must fall at $E$.
$\therefore$ the $\triangle A B C$ and $D E F$ coincide throughout, and are equal in all respects.
36. Exercise. Prove Prop. II., using this pair of triangles.

37. Exercise. In the $\triangle A B C, B D$ bisects $\angle A B C$ and is perpendicular to $A C$.

Prove that $B D$ bisects $A C$ and that $A B$ $=B C$.

38. Exercise. $A B C$ is a $\triangle$ having $\angle B A C$ $=B C A$. $A D$ bisects $\angle B A C$ and $C E$ bisects $\angle B C A$.

Prove $\quad A D=C E$.
Suggestion. Prove $\triangle A D C$ and $A E C$ equal in all respects by $\S 35$. Then by the Principle of $\S 31, A D=E C$.

39. The next proposition is an example of what is called the indirect proof.

The reasoning is based on the following Principle: If the direct consequences of a certain supposition are false, the supposition itself is false.

To prove a theorem by this plan, the following steps are necessary :

1. The theorem is supposed to be untrue.
2. The consequences of this supposition are shown to be false.
3. Then, by the above Principle, the supposition (that the theorem is untrue) is false.
4. The theorem is therefore true.

## Proposition III. Theorem

40. At a given point in a line only one perpendicular can be erected to that line.


Let $C D$ be $\perp$ to $A B$ at the point $D$.
To Prove $C D$ is the only $\perp$ that can be erected to $A B$ at $D$.
Proof. Suppose a second $\perp$, as $D E$, could be erected to $A B$ at $D$.

By hypothesis and § 16, $\angle C D A=\angle C D B$.
By supposition and § 16, $\angle E D A=\angle E D B$.
But $\quad \angle E D A>\angle C D A$, and $\angle E D B<\angle C D B$.
$\therefore \angle E D A$ cannot equal $\angle E D B$, and $D E$ cannot be $\perp$ to $A B$.

The supposition that a second $\perp$ could be erected to $A B$ at $D$ is therefore false, and only one $\perp$ can be erected to $A B$ at that point. Q.E.D.

Note. The points and lines of the above figure, and of all figures given in the first five books of this geometry, are understood to be in the same plane. The term "line" is used in this work for "straight line."
41. Corollary. All right angles are equal.


Let $\angle A B C$ and $\angle D E F$ be 2 R.A.'s.
To Prove $\angle A B C=\angle D E F$.
Proof. Suppose them to be unequal and that $\angle A B C$, when superimposed upon $\angle D E F$, takes the position $G E F$.

Then at $E$ there would be two perpendiculars to $E F$, which contradicts § 40 .

Therefore the supposition that the right angles $A B C$ and $D E F$ are unequal is false, and they are equal. Q.E.D.
42. Scholium. The right angle is the unit of measure for angles. An angle is generally expressed in terms of the right angle. Thus, $\angle A=\frac{2}{3}$ R.A., or $\angle B=1 \frac{1}{4}$ R.A., etc.
43. Definitions. In a right-angled triangle the side opposite the right angle is called the hypotenuse.

The other two sides are the legs of the triangle.

44. Exercise. If two $R$.A. \& have the legs of one equal respectively to the legs of the other, the $\$$ are equal in all respects.
45. Exercise. $A$ is 40 miles west of $B . ~ C$ is 30 miles north of $A$, and $D$ is 30 miles south of $A$. From $C$ to $B$ is 50 miles. How far is it from $D$ to $B$ ?
46. Exercise. $A$ is $m$ yards north of $B . \quad C$ is $n$ yards west of $A$, and $D$ is $n$ yards east of $B$. Prove that the distance from $B$ to $C$ is the same as the distance from $A$ to $D$.

## Proposition IV. Theorem

47. If a perpendicular is drawn to a line at its middle point,
I. Any point on the perpendicular is equally distant from the extremities of the line.
II. Any point without the perpendicular is unequally distant from the extremities of the line.

I. Let $C D$ be $\perp$ to $A B$ at its middle point $D$, and $P$ be any point on $C D$.

To Prove $P$ equally distant from $A$ and $B$.
Draw $P A$ and $P B$.
[It is required to prove $P A=P B$, for $P A$ and $P B$ measure the distance from $P$ to $A$ and $B$ respectively.]

Proof. The $\triangle P A D$ and $P B D$ have

$$
\begin{aligned}
& A D=D B(\text { Hypothesis }) \\
& \angle 1=\angle 2 \text { (Right Angles) } \\
& P D=P D \text { (Common) }
\end{aligned}
$$

The $\&$ are equal in all respects by $\S 30$.
$\therefore P A=P B$, and $P$ is equally distant from $A$ and $B$. Q.E.D.

II. Let $C D$ be $\perp$ to $A B$ at its middle point $D$, and $P$ be any point without $C D$.

To Prove $P$ unequally distant from $A$ and $B$.
Draw $P A$ and $P B$.
[It is required to prove $P A$ and $P B$ unequal.]
Proof. One of these lines, as $P A$, will intersect the perpendicular $C D$ in some point, as $E$.

Draw $E B$.

$$
\begin{gathered}
P B<P E+E B . \\
E B=E A .
\end{gathered}
$$

Axiom 14.
By Case I.

Substitute $E A$ for $E B$.

$$
\begin{gathered}
P B<P E+E A \\
P B<P A
\end{gathered}
$$

( $P E$ and $E A$ make up $P A$ ).
Since $P B$ and $P A$ are unequal, $P$ is unequally distant from $A$ and $B$.
48. Corollary I. A perpendicular erected to a line at its middle point contains all points that are equally distant from the extremities of the line.

For, by $\S 47$, all points on the perpendicular are equally distant from the extremities of the line, and all points without the perpendicular are unequally distant from the extremities of the line. Therefore all points that are equally distant from the extremities of the line must be on the perpendicular.
49. Corollary II. If a line has two of its points each equally distant from the extremities of another line, the first line is perpendicular to the second at its middle point.

Let $A B$ have two of its points $m$ and $n$ each equally distant from the extremities of $C D$.

To Prove $A B \perp$ to $C D$ at its middle point.

Proof. Suppose a line were drawn $\perp$ to $C D$ at its middle point.

By § 48 both $m$ and $n$ must be on
 this perpendicular.

By hypothesis both $m$ and $n$ are on $A B$.
So the perpendicular and $A B$ both pass through $m$ and $n$.
By Axiom 13 only one straight line can pass through two given points.
$\therefore A B$ must coincide with the perpendicular to $C D$ at its middle point.
Q.E.D.
50. Definitions. In an isosceles triangle the angle formed by the two equal sides is called the vertical angle. The side opposite this angle is usually called the base of the triangle.

51. Exercise. If a perpendicular is erected to the base of an isosceles $\Delta$ at its middle point, it passes through the vertex of the vertical angle.

Suggestion. Use § 48.
52. Exercise. If a line is drawn from the vertex of the vertical angle of an isosceles $\Delta$ to the middle point of the base, it is perpendicular to the base.

Suggestion. Use § 49.

## Proposition V. Problem

53. To erect a perpendicular to a line at a given point on that line.


Let $A B$ be the given line, and $C$ the given point on the line. Required to erect a perpendicular to $A B$ at $C$.
Lay off $C D=C E$.
With $D$ and $E$ as centers, and with a radius greater than $D C$ (one half of $D E$ ), describe two ares intersecting at $F$.

Join $F$ and $C$.
$F C$ is the required perpendicular. For, $F$ and $C$ are each equally distant from $D$ and $E$ (construction). $\therefore$ by $\S 49, F C$ is perpendicular to $D E$ or $A B$.
Q.E.F.
54. Exercise. To construct a R.A. $\Delta$, having given the two sides about the R.A.

Let $m$ and $n$ be the two given sides.
Required to construct a R.A. $\Delta$, having $m$ and $n$ as sides about the R.A.

Lay off the indefinite line $A B$.
At any point of it as $C$ erect $C D \perp A B$, and make $C D$ equal in length to $m$.

Lay off $C E$ equal to $n$.


Draw $D E$.
$\triangle C D E$ is the required $\triangle$ because it fulfills all the required conditions; i.e. it is right angled at $C$, and the sides about $C$ are equal respectively to $m$ and $n$.
Q.E.F

## Proposition VI. Problem

55. To bisect a given line.


Let $A B$ be the given line.
Required to bisect it.
With $A$ and $B$ as centers, and with any radius greater than one half of $A B$, describe arcs intersecting at $C$ and $D$.

Draw CD.
Then will $C D$ bisect $A B$.
For, the points $C$ and $D$ are each equally distant from the extremities of $A B$ (construction). $\therefore C D$ bisects $A B$ (§ 49).
Q.E.F.
56. Exercise. Divide a given line into quarters.
57. Exercise. If the radius used for describing the two ares that intersect at $C$ in the figure of Prop. VI is greater than the radius used for describing the two ares that intersect at $D$, will $C D$ bisect $A B$ ?
58. Exercise. When will the lines $A B$ and $C D$ bisect each other ?
59. Exercise. In a given line find a point that is equally distant from two given points. When is this problem impossible?

## Proposition VII. Theorem

60. The sum of the adjacent angles formed by one line meeting another, is two right angles.


Let $A B$ meet $C D$ at $B$.
To Prove $\angle A B C+\angle A B D=2$ R.A.'s.
Proof. Erect $B E$ perpendicular to $C D$ at $B$. (§ 53.)
By construction $\angle E B C$ and $\angle E B D$ are R. A.'s.

$$
\begin{align*}
& \angle A B C=1 \mathrm{R} . \mathrm{A} .+\angle E B A  \tag{1}\\
& \angle A B D=1 \text { R.A. }-\angle E B A \tag{2}
\end{align*}
$$

Adding (1) and (2), $\angle A B C+\angle A B D=2$ R.A's.
Q.E.D.
61. Corollary I. If one of two adjacent angles formed by one line meeting another is a right angle, the other is also a right angle.
62. Corollary II. If two straight lines intersect each other, and one of the angles formed is a right angle, the other three angles are also right angles.
63. Corollary III. The sum of all the angles formed at a point in a line, and on the same side of the line, is two right angles.

Suggestion. Show that the sum of all the angles at $C$ equals

$$
\begin{aligned}
& \angle F C A+\angle F C B \\
& \angle G C A+\angle G C B, \text { etc. }
\end{aligned}
$$


64. Corollary IV. The sum of all the angles formed about a point is four right angles.

Suggestion. Prolong one of the lines, as $O E$, to $G$. Then apply § 63 to the angles on each side of $G E$.
65. Definition. If two angles are together equal to two right angles, they are called supplementary angles. Each angle is the sup-
 plement of the other.

Adjacent angles formed by one line meeting another are supplementary adjacent angles.
66. Definition. If two angles are together equal to one right angle, they are called complementary angles. Each angle is the complement of the other.
67. Exercise. Find the supplement and also the complement of each of the following angles : $\frac{2}{3}$ R.A., $\frac{1}{6}$ R.A., $\frac{1}{2}$ R.A.

Find the value of each of two supplementary angles, if one is five times the other.
68. Exercise. Given an angle, construct its supplement and also its complement.
69. Exercise. Prove that the bisectors of two supplementary adjacent angles are perpendicular to each other.

70. Exercise. Through the vertex of a right angle a line is drawn outside of the angle. What is the sum of the two acute angles formed? $[\angle 1+\angle 2=$ ? ]

71. Exercise. Find the supplement of the complement of $\frac{2}{3}$ R.A., also the complement of the supplement of $1 \frac{2}{7}$ R.A.
72. Definition. One proposition is the converse of another, when the hypothesis and conclusion of one are respectively the conclusion and hypothesis of the other.

The converse of a proposition is not necessarily true.
We shall prove later (see § 85) that "if the sides of one triangle are equal respectively to the sides of another, the angles of the first triangle are equal respectively to those of the second."

Show, by drawing triangles, that the converse of this proposition, i.e. "if the angles of one triangle are equal respectively to the angles of another, the sides of the first triangle are equal respectively to those of the second," is not necessarily true.

## Proposition VIII. Theorem (Converse of Prop. VII.)

73. If the sum of two adjacent angles is two right angles, their exterior sides form a straight line.


Let $\angle C D A+\angle C D B=2$ R.A.'s.

To Prove $A D$ and $D B$ form a straight line.
Proof. Suppose $D B$ is not the prolongation of $A D$, and that some other line, as $D E$, is.

By $\S 60 \angle C D A+\angle C D E$ would equal 2 R.A.'s.
By hypothesis $\angle C D A+\angle C D B=2$ R.A.'s.
By Axiom 1., $\angle C D A+\angle C D E$ would equal $\angle C D A+\angle C D B$.
Whence $\angle C D E$ would equal $\angle C D B$.
This contradicts Axiom 11.
Therefore the supposition that $D B$ is not the prolongation of $A D$ is false, and $A D$ and $D B$ form a straight line.
Q.E.D.
74. Exercise. $A B C$ and $D E F$ are R.A. © equal in all respects, right angled at $B$ and $D$. Place $\triangle A B C$ in the
 position of $\triangle G E D$.

Prove that $G D$ and $D F$ form a straight line.
75. Definition. If two lines intersect each other, the opposite angles formed are called vertical angles. $\angle 1$ and $\angle 3$ are vertical angles, as are also $\angle 2$ and $\angle 4$.

76. Exercise. The bisectors of two opposite angles form a straight line.

Let $F E, H E, G E$, and $J E$ be the bisectors of $₫ A E C, C E B, B E D$, and $D E A$ respectively.

To Prove that $F E$ and $E G$ form a straight line, and $H E$ and $E J$ form a straight line.

Suggestion. Use $\S \S 69$ and 73.


Proposition IX. Theorem
77. If two straight lines intersect, the opposite or vertical angles are equal.

Let $A B$ and $C D$ intersect.
To Prove $\angle 1=\angle 3$
and $\quad \angle 2=\angle 4$.
Proof.

$$
\begin{align*}
\angle 1+\angle 2= & 2 \text { R.A.'s. } \\
& \text { (authority ?) } \\
\angle 2+\angle 3= & 2 \text { R.A.'s. }  \tag{?}\\
\angle 1+\angle 2= & \angle 2+\angle 3 .  \tag{?}\\
\angle 1= & \angle 3 .
\end{align*}
$$



In the same manner prove $\angle 2=\angle 4$.
78. Exercise. One angle formed by two intersecting lines is $\frac{2}{3}$ R.A. Find the other three.
79. Exercise. The bisector of an angle bisects its vertical angle.
80. Exercise. Two lines intersect, making the sum of one pair of vertical angles equal to five times the sum of the other pair of vertical angles. Find the values of the four angles.

## Proposition X. Theorem

81. In an isosceles triangle, the angles opposite the equal sides are equal.

Let $A B C$ be an isosceles $\triangle$, having $A B=B C$.
To Prove $\quad \angle A=\angle C$.
Proof. Draw $B D$ bisecting $A C$.
$B$ and $D$ are each equally distant from $A$ and $C ; \therefore \angle 1$ and $\angle 2$ are R.A.'s.


Show that $\triangle A B D$ and $B D C$ are equal in all respects.
Whence

$$
\angle A=\angle C .
$$

Q.E.D.
82. Corollary. An equilateral triangle is equiangular.
83. Exercise. $A B C$ is an isosceles triangle. $D$ is the middle point of the base $A C . E$ and $F$ are the middle points of the equal sides $A B$ and $B C$.

Prove
$D E=D F$.

84. Exercise. $A B C$ is an isosceles triangle having $A B=B C$.
$B D$ and $B E$ are drawn making $\angle 1=\angle 2$.
Prove

$$
\angle 3=\angle 4 .
$$



## Proposition XI. Theorem

85. If two triangles have three sides of the one equal respectively to three sides of the other, the triangles are equal in all respects.


Let $A B C$ and $D E F$ be two $\Delta$, having $A B=D E, B C=E F$, and $A C=D F$.

To Prove $\triangle A B C$ and $D E F$ equal in all respects.
Proof. Place $\triangle A B C$ so that $A C$ shall coincide with $D F, A$ falling on $D$ and $C$ on $F$, and the vertex $B$ falling at $G$, on the opposite side of the base from the vertex $E$.

Draw $E G$.
Prove

$$
\angle 1=\angle 2 \text { and } \angle 3=\angle 4
$$

Adding, $\angle 1+\angle 3=\angle 2+\angle 4$, or $\angle D E F=\angle D G F$.
Prove $\mathbb{S} D E F$ and $D G F$ equal in all respects.
$\therefore \triangle D E F$ and $A B C$ are equal in all respects.
86. Exercise. Construct a triangle having given its three sides.
87. Exercise. Construct a triangle equal to a given triangle.
88. Exercise. Construct a triangle whose sides are in the ratio of 3,4 , and 5 .

## Proposition XII. Problem

89. To draw a perpendicular to a line from a point without.


Let $A B$ be the given line and $P$ the point without.
Required to draw a perpendicular from $P$ to the line $A B$.
Let $s$ be any point on the opposite side of $A B$ from $P$.
With $P$ as a center, and $P s$ as a radius, describe an are intersecting $A B$ at $C$ and $D$.

With $C$ as a center, and with a radius greater than one half of $C D$, describe an are ; with $D$ as a center, and with the same radius, describe an arc intersecting the first are at $E$.

Draw $P E$.
Show that $P E$ is perpendicular to $C D$.
Q.E.F.
90. Exercise. Draw a perpendicular to $A B$ from the point $C$.
91. Exercise. If the line $A B$ (see § 89) were situated at the bottom of this page, and there were no room below it for the point $E$, how could the perpendicular be drawn?


## Proposition XIII. Theorem

92. From a point without a line only one perpendicular can be drawn to the line.


Let $C D$ be a $\perp$ from $C$ to $A B$.
To Prove that $C D$ is the only $\perp$ that can be drawn from $C$ to $A B$.

Proof. Suppose a second $\perp$, as $C E$, could be drawn.
Prolong $C D$ until $D F=C D$, and draw $E F$.
Prove $\triangle C D E$ and $F D E$ equal in all respects.
Whence

$$
\angle 1=\angle 2 .
$$

But $\angle 1=1$ R.A. by supposition.
Show that

$$
\angle 1+\angle 2=2 \text { R.A.'s. }
$$

If the sum of angles 1 and 2 is two R.A.'s, $C E$ and $E F$ form a straight line. (§ 73.)

The points $C$ and $F$ are therefore connected by two straight lines (CDF and $C E F$ ), which contradicts (?).

Therefore the supposition that a second $\perp$ could be drawn from $C$ to the line $A B$ is false, and only one $\perp$ can be drawn.

> Q.E.D.
93. Exercise. Show that a triangle cannot have two right angles.

## Proposition XIV. Problem

94. To bisect a given angle.


Let $A B C$ be any angle.
Required to bisect it.
With $B$ as a center, and with any convenient radius, describe an arc intersecting the sides of the angle at $D$ and $E$.

With $D$ as a center, and with a radius greater than one half of $D E$, describe an arc; with $E$ as a center, and with the same radius, describe an arc intersecting this arc at $F$.

Join $B$ and $F$.
Then will $B F$ bisect $\angle A B C$.
Draw $F E$ and $F D$.
Prove $\& B E F$ and $B D F$ equal in all respects.
Whence $\angle 1=\angle 2$, and $\angle A B C$ is bisected. Q.E.F.
95. Exercise. At a given point on a line construct an angle equal to $\frac{1}{2}$ R.A.
96. Exercise. Divide a given angle into quarters.
97. Exercise. At a given point on a line construct an angle equal to $1 \frac{1}{2}$ R.A.'s.
98. Exercise. Prove $\S 81$ by drawing $B D$ (see figure of $\S 81$ ) bisecting angle $A B C$.
99. Exercise. Construct a triangle $A B C$, making the side $A B$ two inches long, $\angle A=1$ R.A. and $\angle B=\frac{1}{4}$ R.A.

## Proposition XV. Problem

100. At a point on a line to construct an angle equal to a given angle.


Let $\angle A B C$ be the given angle, and $F$ the point on the line $D E$.

Required to construct an angle at $F$ on the line $D E$ that shall equal $\angle A B C$.

With $B$ as a center, and with any radius, describe the $\operatorname{arc} M G$.

With $F$ as a center, and with the same radius, describe the indefinite arc $L K$, intersecting $D E$ at $K$.

With $K$ as a center, and with the distance $M G$ as a radius, describe an arc intersecting the arc $L K$ at $H$.

Draw HF.
Then will

$$
\angle H F K=\angle A B C
$$

Draw MG and $H K$.
Prove $\triangle M B G$ and $H F K$ equal in all respects.
Whence

$$
\angle B=\angle F
$$

101. Exercise. Construct a triangle having given two sides and the included angle.
102. Exercise. Construct a triangle having given two angles and the included side.
103. Exercise. Construct an angle equal to the sum of two given angles.
104. Exercise. Construct an angle that is double a given angle.
105. Exercise. Construct an angle equal to the difference between two given angles.
106. Exercise. Draw any triangle. Construct an angle equal to the sum of the angles of this triangle.

From your drawing what do you infer the sum of the angles to be? See § 138.

10\%. Definition. Parallel lines are lines lying in the same plane, which do not meet, how far soever they may be prolonged.

## Proposition XVI. Theorem

108. If two lines are parallel to a third line, they are parallel to each other.


Let $A B$ and $C D$ be $\|$ to $E F$.
To Prove $A B$ and $C D \|$ to each other.
Proof. Since $A B$ and $C D$ are in the same plane, if they are not parallel they must meet.

If they do meet we should have two lines drawn through the same point parallel to $E F$.

This contradicts (?).
Therefore they cannot meet, and, by definition (§ 107), are parallel.
109. Exercise. If a line be drawn on this page parallel to the upper edge, show that it is also parallel to the lower edge.
110. Exercise. Give an example of two lines that never meet, how far soever they be prolonged, and yet are not parallel. [Note. - To do this the student must leave the province of plane geometry and think of lines in different planes.]

## Proposition XVII. Theorem

111. If two lines are perpendicular to the same line, they are parallel.


Let $A B$ and $C D$ be $\perp$ to $E F$.
To Prove $A B$ and $C D \|$ to each other.
Proof. If $A B$ and $C D$ are not parallel, they will meet at some point. (?)

Then we should have two perpendiculars drawn from that point to $E F$.

This contradicts (?).
$\therefore A B$ and $C D$ are parallel.
112. Problem. Through a given point to draw a line parallel to a given line.

Let $P$ be the given point and $A B$ the given line.

Required to draw through $P$ a parallel to $A B$.

Draw $P C \perp$ to $A B$.
Through $P$ draw $D E \perp$ to $P C$.

Prove $D E$ and $A B$ parallel. Q.E.F.

113. Definitions. A straight line that cuts two or more lines is called a transversal.

If two lines are cut by a transversal, eight angles are formed, which are named as follows:

The four angles [ $\angle 1, \angle 2, \angle 7$, and $\angle 8$ ], lying without the two lines, are called exterior angles.

The four angles $[\angle 3, \angle 4, \angle 5$, and $\angle 6$ ], lying within the two lines, are called interior angles.

The two pairs of exterior angles [ $\angle 1$ and $\angle 7, \angle 2$ and $\angle 8$ ], lying on the same side of the transversal, are called exterior angles on the same side.

The two pairs of interior angles [ $\angle 3$ and $\angle 5, \angle 4$ and $\angle 6$ ], lying
 on the same side of the transversal, are called interior angles on the same side.

The four pairs of angles [ $\angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 3$ and $\angle 7, \angle 4$ and $\angle 8$ ], lying on the same side of the transversal, one an exterior and the other an interior angle, are called corresponding angles.

The two pairs of exterior angles [ $\angle 1$ and $\angle 8, \angle 2$ and $\angle 7$ ], lying on opposite sides of the transversal, are called alternate exterior angles.

The two pairs of interior angles [ $\angle 3$ and $\angle 6, \angle 4$ and $\angle 5$ ], lying on opposite sides of the transversal, are called alternate interior angles.

The four pairs of angles [ $\angle 1$ and $\angle 6, \angle 2$ and $\angle 5, \angle 3$ and $\angle 8, \angle 4$ and $\angle 7$ ], lying on opposite sides of the transversal, one an exterior and the other an interior angle, are called alternate exterior and interior angles.
114. Exercise. Show that if any one of the following sixteen equations is true, the other fifteen equations are also true.


1. $\angle 3=\angle 6$.
2. $\angle 3+\angle 5=2$ R.A.'s.
3. $\angle 4=\angle 5$.
4. $\angle 4+\angle 6=2$ R.A.'s.
5. $\angle 1=\angle 8$.
6. $\angle 1+\angle 7$. $=2$ R.A.'s.
7. $\angle 2=\angle 7$.
8. $\angle 2+\angle 8=2$ R.A.'s.
9. $\angle 1=\angle 5$.
10. $\angle 1+\angle 6=2$ R.A.'s.
11. $\angle 2=\angle 6$.
12. $\angle 2+\angle 5=2$ R.A.'s.
13. $\angle 3=\angle 7$.
$15 \angle 3+\angle 8=2$ R.A.'s.
14. $\angle 4=\angle 8$.
15. $\angle 4+\angle 7=2$ R.A.'s.

## Proposition XVIII. Theorem

115. If two lines are cut by a transversal, making the alternate interior angles equal, the lines are parallel.


Let $A B$ and $C D$ be cut by the transversal $E F$, making $\angle 1=\angle 2$.

To Prove $A B$ and $C D$ parallel.
Proof. From $M$, the middle point of $S O$, draw $M H \perp$ to $C D$, and prolong $M H$ until it meets $A B$ in some point $G$.

Prove the $\triangle$ GMO and $M S H$ equal in all respects.
Whence

$$
\angle H=\angle G
$$

$\angle H$ is by construction a R.A.

$$
\therefore \angle G \text { is a R.A. }
$$

$A B$ and $C D$ are parallel.
116. Corollary. If two lines are cut by a transversal, making any one of the following six cases true, the lines are parallel.

1. The alternate interior angles equal.
2. The alternate exterior angles equal.
3. The corresponding angles equal.
4. The sum of the interior angles on the same side equal to two R.A.'s.
5. The sum of the exterior angles on the same side equal to two R.A.'s.
6. The sum of the alternate interior and exterior angles equal to two R.A.'s.
7. Exercise. $F E$ intersects $A B$ and $C D$, making $\angle m=\frac{2}{3}$ R.A.

What value must $\angle n$ have in order that $A B$ and $C D$ shall be parallel?
118. Exercise. Through a given
 point to draw a parallel to a given line. (This exercise is to be based on § 115. Another solution was given in § 112.)
[Through the given point $P$ draw any line $P M$ to the given line $A B$. Through $P$ draw $C D$, making $\angle 2=\angle 1$. Prove
 $C D$ parallel to $A B$.

Work this exercise by making the alternate exterior angles equal; also by making the corresponding angles equal.]
119. Exercise. The sum of two angles of a triangle cannot equal two right angles.
120. Exercise. The bisectors of the equal angles 1 and 2 in the figure of $\S 118$, are parallel.

## Proposition XIX. Theorem

121. If two parallels are cut by a transversal, the alternate interior angles are equat.


Let the parallel lines $A B$ and $C D$ be cut by the transversal $E F$.

To Prove $\angle A O S=\angle O S D$.
Proof. Suppose $\angle A O S$ is not equal to $\angle O S D$.
Draw $G H$ through $O$, making $\angle G O S=\angle O S D$.
$G H$ and $C D$ are parallel. (?)
$A B$ and $C D$ are parallel. (?)
Through $O$ there are two parallels to $C D$, which contradicts (?).
$\therefore$ The supposition that $\angle A O S$ and $\angle O S D$ are unequal, etc.
Q.E.D.
122. Corollary I. If two parallels are cut by a transversal, the six cases of § 116 are true.
123. Corollary II. If a line is perpendicular to one of two parallels, it is perpendicular to the other also.
124. Exercise. The bisectors of two alternate exterior angles, formed by a transversal cutting two parallel lines, are parallel.
125. Exercise. If a line joining two parallels is bisected, any other line through the point of bisection, and joining the parallels, is also bisected.
126. Exercise. If $A B$ and $C D$ are parallel (§ 117), and $\angle n=1 \frac{1}{5}$ R.A., find the values of the other seven angles.

## Proposition XX. Theorem

127. If two lines are cut by a transversal, making the sum of the interior angles on the same side less than two right angles, the lines will meet if sufficiently produced.


Let $A B$ and $C D$ be cut by $E F$, making $\angle 1+\angle 2<2$ R.A.'s.
To Prove that $A B$ and $C D$ will meet.
Proof. If $A B$ and $C D$ do not meet, they are parallel.
If they are parallel, $\angle 1+\angle 2=2$ R.A.'s.
This contradicts (?).
$\therefore$ they cannot be parallel and must meet.
Q.E. 1
128. Corollary. If two lines are cut by a transversal; making any one of the six cases of § 116 untrue, the lines will meet if sufficiently produced.
129. Exercise. The bisectors of any two exterior angles of a triangle will meet.

Prove that $D A$ and $F C$ meet.
Suggestion. $\angle E A B<2$ R.A.'s. (?)

$$
\begin{align*}
& \angle 1<1 \text { R.A. }  \tag{?}\\
& \angle 3<1 \text { R.A. }
\end{align*}
$$

(?)
Similarly, $\quad \angle 4<1$ R.A.


Whence, $\quad \angle 3+\angle 4<2$ R.A.'s.
130. Definition. Each angle, viewed from its vertex, has a right side and a left side.
$A B$ is the right side of $\angle A B C$, and $B C$ is its left side.


## Proposition XXI. Theorem

131. If two angles have their sides parallel, right side to right side, and left side to left side, the angles are equal.


Let $\angle 1$ and $\angle 2$ have their sides parallel, right side to right side, and left side to left side.

## To Prove <br> $$
\angle 1=\angle 2 .
$$

Proof. Prolong $A B$ and $E F$ until they intersect.

$$
\begin{align*}
& \angle 1=\angle 3 . \\
& \angle 3=\angle 2 \text { ? } \\
& \angle 1=\angle 2 \text { ? }
\end{align*}
$$

132. Corollary. If two angles have their sides parallel, right side to left side, and left side to right side, the angles are supplementary.

Let $\angle 1$ and $\angle 2$ have their sides parallel, right side to left side and left side to right side.

To Prove $\angle 1+\angle 2=2$ R.A.'s.

133. Exercise. $\angle 1$ and $\angle 2$ have their sides parallel, right side to right side, etc.
$\angle 2$ and $\angle 3$ have their sides parallel, right side to right, etc. Prove that $\angle 1=\angle 3$.


Proposition XXII. Theorem
134. If the sides of one angle are perpendicular to those of another, right side to right side and left side to left side, the angles are equal.


Let $\angle 1$ and $\angle 2$ have $D E \perp$ to $B C$ and $F E \perp$ to $A B$.
To Prove $\angle 1=\angle 2$.
Proof. Draw $B H \|$ to $E D$ and $B J \|$ to $F E . \quad \angle 3=\angle 2$. (?) $B H$ is $\perp$ to $B C$ (?) and $J B$ is $\perp$ to $A B$. (?) $\angle 3+\angle 4=1$ R.A. and $\angle 1+\angle 4=1$ R.A.

$$
\angle 3=\angle 1 . \quad(?) \quad \therefore \angle 2=\angle 1
$$

135. Corollary. If the sides of one angle are perpendicular. to those of another, right side to left side and left side to right side, the angles are supplementary.

To Prove $\angle 1+\angle 2=2$ R.A.'s.


Proof. Prolong $A B$ to $G$.
Show that $\angle 3=\angle 2$.

$$
\begin{aligned}
\angle 1+\angle 3 & =2 \text { R.A.'s. } \\
\therefore \angle 1+\angle 2 & =2 \text { R.A.'s. }
\end{aligned}
$$

136. Exercise. In $\triangle A B C, A D$ is $\perp$ to $B C$ and $C E \perp$ to $A B$. Compare $\angle 1$ and $\angle 2$.

13\%. Definition. Two triangles
 are mutually equiangular when the angles of one are equal respectively to the angles of the other.

## Proposition XXIII. Theorem

138. The sum of the interior angles of a triangle is two right angles.


Let $A B C$ be any $\triangle$.
To Prove

$$
\angle 1+\angle 2+\angle 3=2 \text { R.A.'s. }
$$

Proof. Draw $D E$ through the vertex $B$, parallel to $A C$.

$$
\begin{align*}
& \angle 4=\angle 2 \text { and } \angle 5=\angle 3  \tag{?}\\
& \angle 4+\angle 1+\angle 5=2 \text { R.A.'s }  \tag{?}\\
& \angle 2+\angle 1+\angle 3=2 \text { R.A.'s. } \tag{?}
\end{align*}
$$

139. Corollary I. If two angles of a triangle are known, the third can be found by subtracting their sum from two right angles.
140. Corollary II. If two angles of one triangle are equal respectively to two angles of another, the third angles are equal, and the triangles are mutually equiangular.
141. Corollary III. A triangle can contain only one right angle; and it can contain only one obtuse angle.
142. Corollary IV. In a right-angled triangle, the sum of the acute angles is one right angle.
143. Corollary V. Since an equilateral triangle is also equiangular, each angle is two thirds of a right angle.
144. Corollary VI. An exterior angle of a triangle (formed by prolonging a side) is equal to the sum of the two opposite interior angles of the triangle.
145. Exercise. One of the acute angles of a R.A. $\Delta$ is $\frac{3}{7}$ R.A. What is the other?
146. Exercise. Find the angles of a $\Delta$, if the second is twice the first, and the third is three times the second.
147. Exercise. Find the angles of an isosceles $\Delta$, if a base angle is one half the vertical angle.
148. Exercise. Given two angles of a triangle, construct the third.
149. Exercise. Prove that the bisectors of the acute angles of an isosceles right-angled triangle make with each other an angle equal to $1 \frac{1}{2}$ R.A.'s.
150. Exercise. Prove that the bisector of an exterior vertical angle of an isosceles triangle is parallel to the base.
151. Exercise. Prove § 138 , using these figures.

152. Definitions. A portion of a plane bounded by straight lines is called a polygon.

The bounding line of a polygon is its perimeter.
A diagonal of a polygon is a straight line joining any two of its vertices that are not consecutive.

A three-sided polygon is a triangle; a four-sided polygon is a quadrilateral; a
 five-sided polygon is a pentagon; a sixsided polygon is a hexagon; an eight-sided polygon is an octagon; a ten-sided polygon is a decagon; and a fifteen-sided polygon is a pentedecagon.

A polygon whose angles are equal is an equiangular polygon.
A polygon whose sides are equal is an equilateral polygon.
A polygon that is both equilateral and equiangular is a regular polygon.
153. Exercise. Show that an equilateral triangle is regular.
154. Exercise. Show, by drawings, that an equilateral quadrilateral is not necessarily regular.
155. Exercise. How many diagonals can be drawn in a triangle? In a quadrilateral? In a hexagon?
156. Exercise. How many diagonals can be drawn from one vertex in a polygon of $n$ sides? How many from all the vertices?

## Proposition XXIV. Theorem

157. The sum of the interior angles of a polygon is twice as many right angles as the polygon has sides, less four right angles


Let $A B C \ldots F$ be a polygon of $n$ sides.
To Prove that the sum of its interior angles is $(2 n-4)$ R.A.'s.
Proof. From any point within the polygon, as $O$, draw lines to all the vertices.

The polygon is now divided into $n$ ©. (?)
The sum of the angles of each $\triangle$ is 2 R.A.'s. (?)
The sum of the angles of the $n$ is $2 n$ R.A.'s. (?)
The sum of the angles of the polygon is equal to the sum of the angles of the $\mathbb{s}$, diminished by the sum of the angles about $O$; that is, by 4 R.A.'s.
$\therefore$ the sum of the angles of the polygon is $(2 n-4)$ R.A.'s.
158. Corollary. The value of each angle of an equiangular polygon of $n$ sides is $\frac{2 n-4}{n}$ R.A.'s.
159. Exercise. What is the sum of the interior angles of a quadrilateral? Of a pentagon? Of a hexagon? Of a polygon of 100 sides?
160. Exercise. How many sides has the polygon in which the sum of the interior angles is 20 R.A.'s? 26 R.A.'s? 98 R.A.'s? ( $2 s-4$ ) R.A.'s?
161. Exercise. How many sides has the equiangular polygon in which one angle is $\frac{3}{2}$ R.A. ? 1 R.A. ? $1 \frac{2}{3}$ R.A. ? $1 \frac{1}{15}$ R.A. ?
162. Exercise. How many sides has the equiangular polygon in which the sum of four angles is 6 R.A.'s?
163. Exercise. Prove § 157, using this figure. Show that the polygon is divided into $n-2$ triangles, the sum of the angles of which is equal to the sum of the angles of the polygon.


## Proposition XXV. Theorem

164. The sum of the exterior angles of a polygon, formed by prolonging one side at each vertex, is four R.A.'s.


Let $A B \ldots E$ be a polygon of $n$ sides.
To Prove that the sum of its exterior angles $1,2,3$, etc., is 4 R.A.'s.

Proof. The sum of each exterior angle and its adjacent. interior angle is 2 R.A.'s. (?)
$2 n$ R.A.'s is the sum of all exterior and interior angles.
$(2 n-4)$ R.A.'s is the sum of the interior angles. (?)
4 R.A.'s is the sum of the exterior angles. (?) Q.E.D. sanders' geom. -4
165. Scholium. It is indifferent which side is prolonged at any vertex, as the exterior angles formed at any vertex by prolonging both sides are equal.
166. Exercise. How many sides has the polygon in which the sum of the interior angles is five times the sum of the exterior angles?
167. Exercise. Complete the following table. The polygons are equiangular.

| No. of Sides. | Value of each Interior <br> Angle. | Value of each Exterior <br> Angle. |
| :---: | :---: | :---: |
|  | $\frac{2}{3}$ R.A. | $\frac{4}{8}$ R.A. |
| 4 | 1 R.A. | 1 R.A. |
| 5 | - | - |
| $\vdots$ | - | - |
| 12 | $1 \frac{1}{3}$ R.A. | $\frac{1}{3}$ R.A. |

Proposition XXVI. Theorem
168. The sum of two sides of a triangle is greater than the third side, but the difference of two sides of a triangle is less than the third side.


Let
$A B C$ be any $\triangle$.
To Prove
$A B+B C>A C$.
Proof. Apply axiom 14.
Q.E.D.

Let $D E F$ be any $\triangle$.
To Prove
$D E-E F<D F$.
Proof. $\quad D E<D F+E F$.
Subtract $E F$ from both members.

$$
\begin{equation*}
D E-E F<D F \tag{?}
\end{equation*}
$$

169. Exercise. Can a triangle have for its sides $6 \mathrm{in} ., 7 \mathrm{in}$., and 15 in.?
170. Exercise. Two sides of a triangle are 5 ft . and 7 ft . Between what limits must the third side lie?
171. Exercise. Each side of a triangle is less than the semiperimeter.
172. Exercise. The sum of the lines drawn from a point within a triangle to the three vertices is greater than the semi-perimeter.

Prove $O A+O B+O C>\frac{1}{2}(A B+B C+C A)$.

173. Definition. A medial line of a triangle (or simply a median) is a line drawn from any vertex of the triangle to the middle point of the opposite side.
174. Exercise. A median to one side of a triangle is less than one half the sum of the other two sides.

To prove $B D<\frac{1}{2}(A B+B C)$.
Prolong $B D$ until $D E=B D$.
Draw $C E$.
Prove $\triangle A B D$ and $D C E$ equal, whence $E C=A B$.

$$
\begin{equation*}
B C+C E>B E \tag{?}
\end{equation*}
$$

Divide both members by 2 , recol-
 lecting that $B D=D E$ and $E C=A B$.
175. Exercise. The sum of the three medians of a triangle is less than its perimeter.

Suggestion. Use the preceding exercise.
176. Exercise. The lines $A B$ and $C D$ have their extremities joined by $C B$ and $A D$.

Prove $C B+A D>A B+C D$.


## Proposition XXVII. Theorem

17\%. If from a point within a triangle two lines are drawn to the extremities of a side, their sum is less than that of the two remaining sides of the triangle.


Let $A B C$ be any $\triangle, O$ any point within, and $O A$ and $O C$ lines drawn to the extremities of $A C$.

To Prove

$$
O A+O C<A B+B C .
$$

Proof. Prolong $A O$ to $D$.

$$
\begin{gather*}
A B+B D>A O+O D .  \tag{?}\\
O D+D C>O C . \tag{?}
\end{gather*}
$$

Add these inequalities and show that $A B+B C>A O+O C$. Q.E.D.
178. Exercise. Prove $\angle A O C>\angle A B C$.

Suggestion. Show that $\angle A O C>\angle O D C$ and $\angle O D C>\angle A B C$. Give another proof for this exercise without prolonging $A O$.
179. Exercise. The sum of the lines drawn from a point within a triangle to the three vertices is less than the perimeter of the triangle.
180. Exercise. Prove that the perimeter of the star is greater than that of the polygon $A B C D E F$.


## Proposition XXVIII. Theorem

181. If two triangles have two sides of the one equal respectively to two sides of the other, and the included angles unequal, the third sides are unequal, and the greater third side belongs to the triangle having the greater included angle.


Let
the $\triangle A B C$ and $D E F$ have

$$
A B=D E, B C=E F
$$

and

$$
\angle B>\angle E .
$$

To Prove

$$
A C>D F .
$$

Proof. Of the two sides, $A B$ and $B C$, let $A B$ be the one which is not the larger.

Draw $B G$, making $\angle A B G=\angle E$; prolong $B G$, making $B G=E F$.
Draw $A G$.
Prove $\quad \triangle A B G=\triangle D E F$, whence $A G=D F$.
Draw $B H$ bisecting $\angle G B C$.
Draw $G H$.
Prove $\triangle G B H=\triangle H B C$. Whence $H G=H C$.

$$
\begin{gather*}
A H+H G>A G  \tag{?}\\
A C>A G  \tag{?}\\
A C>D F \tag{?}
\end{gather*}
$$

182. Converse. If two triangles have two sides of the one equal respectively to two sides of the other, and the third sides unequal, the included angles are unequal, and the greater included angle belongs to the triangle having the greater third side.


Let © $A B C$ and $D E F$ have

$$
A B=D E, B C=E F,
$$

and

$$
A C>D F
$$

To Prove

$$
\angle B>E .
$$

Proof. $\quad \angle B=\angle E$, or $\angle B<\angle E$, or $\angle B>\angle E$.
Show that $\angle B$ cannot equal $\angle E$.
Show that $\angle B$ cannot be less than $\angle E$.

$$
\therefore \angle B>\angle E .
$$

183. Exercise. $B$ is fifty miles west of $A . \quad C$ is forty miles north of $B$, and $D$ is forty miles southeast of $B$. Show that $C$ is a greater distance from $A$ than $D$ is.
184. Exercise. In the isosceles triangle $A B C$, $B D$ is drawn to a point $D$ on the base $A C$ so that $A D>D C$.

Prove $\quad \angle A D B>\angle B D C$.
Suggestion. Compare $\measuredangle A B D$ and $D B C$, using $\S$ 182. Then compare $\S A D B$ and $D B C$, using § 144.


## Proposition XXIX. Theorem

185. If two angles of a triangle are equal, the sides opposite them are equal.


Let
$A B C$ be a $\triangle$ having $\angle A=\angle C$.
To Prove

$$
A B=B C .
$$

Proof. Draw $B D$ bisecting $\angle B$.
Prove $\triangle A B D$ and $B D C$ mutually equiangular.
Prove $\triangle A B D$ and $B D C$ equal in all respects.
Whence $A B=B C$. Q.E.D.
186. Corollary. An equiangular triangle is equilateral.

18\%. Exercise. $A B C$ is an isosceles triangle having $A B=B C$.
$A D$ and $D C$ bisect $\angle A$ and $\angle C$ respectively.
Prove
$A D=D C$.
188. Exercise. If the bisector of an angle of a triangle bisects the opposite side, it is also perpendicular to that side, and the triangle is isosceles.

Let $B D$ bisect $\angle B$ and also bisect $A C$.
To Prove $B D \perp$ to $A C$, and $\triangle A B C$ isosceles.
Suggestion. Prolong $B D$ until $D E=B D$.
Prove $\quad \triangle A B D=\triangle D E C$.
Whence $\angle 1=\angle 6$.
Prove $\triangle B C E$ isosceles.


## Propositign XXX. Theorem

189. If two sides of a triangle are unequal, the angles opposite to them are unequal, the greater angle being opposite the greater side; and conversely, if two angles of a triangle are unequal, the sides opposite them are unequal, the greater side lying opposite the greater angle.


Let
$A B C$ be a $\triangle$ having $A B>B C$.
To Prove

$$
\angle C>\angle A .
$$

Proof. On $A B$ lay off $B D=B C$ and draw $D C$.

$$
\begin{array}{ll}
\angle 1=\angle 2 \text {. } & \text { (?) } \\
\angle 1>\angle A . & \text { (?) } \\
\angle 2>\angle A . & \text { (?) } \\
\angle C>\angle A . & \text { (?) }
\end{array}
$$

Q.E.D.

Let $E F G$ be a $\triangle$ having $\angle G\rangle \angle E$.
To Prove

$$
E F>F G
$$

Proof. Draw $C D$ making $\angle 1=\angle E$.

$$
\begin{align*}
& H G+H F>F G  \tag{?}\\
& H G=E H  \tag{?}\\
& E F>F G \tag{?}
\end{align*}
$$

Q.E.D.
190. Exercise. Prove the converse to this proposition indirectly.

Show that $E F$ can neither be equal to $F G$ nor less than $F G$, and must consequently be greater than $F G$.
191. Exercise. $A B C$ is a triangle having $A C>B C$.
$A D$ bisects $\angle A$ and $B D$ bisects $\angle B$.
Prove $\quad A D>B D$.


## Proposition XXXI. Theorem

192. If two right-angled triangles have the hypotenuse and a side of one equal respectively to the hypotenuse and $a$ side of the other, the triangles are equal in all respects.


Let $A B C$ and $D E F$ be two R.A. © having hypotenuse $A B=$ hypotenuse $D E$, and $A C=D F$.

To Prove the $\triangle A B C$ and $D E F$ equal in all respects.
Proof. Place $\triangle A B C$ so that $\triangle C$ coincides with its equal $D F$, $A$ falling at $D$, and $C$ at $F$, and the vertex $B$ falling at some point $G$ on the opposite side of the base $D F$ from $E$.

Show that $E F$ and $F G$ form a straight line.
Show (in the $\triangle G D E$ ) that $\angle G=\angle E$.

$$
\begin{equation*}
\angle 3=\angle 4 . \quad(?) \tag{?}
\end{equation*}
$$

$\triangle D F G$ and $D F E$ are equal in all respects.
$\triangle A B C$ and $D F E$ are equal in all respects.
Q.E.D.
193. Exercise. If a line is drawn from the vertex of an isosceles triangle $\perp$ to the base, it bisects the base and the vertical angle.
194. Definitions. A quadrilateral having its opposite sides parallel is called a parallelogram.

A quadrilateral with one pair of parallel sides is a trapezoid.

A quadrilateral with no two of its sides parallel is a trapezium.

A parallelogram whose angles are right angles is a rectangle.
A parallelogram whose angles are oblique angles is a rhomboid.
A square is an equilateral rectangle; and a rhombus is an equilateral rhomboid.

## Proposition XXXII. Theorem

195. The opposite sides of a parallelogram are equal; and conversely, if the opposite sides of a quadrilateral are equal, the figure is a parallelogram.


Let $A B C D$ be a parallelogram.
To prove $\quad A B=C D$ and $B C=A D$.
Proof. Draw the diagonal $B D$.

$$
\begin{align*}
& \angle 1=\angle 2 .  \tag{?}\\
& \angle 3=\angle 4 \text {. }  \tag{?}\\
& \text { (?) }
\end{align*}
$$

Show that

$$
\triangle A B D=\triangle B C D .
$$

Whence

$$
A B=C D \text { and } B C=A D .
$$

Let $E F G H$ be a quadrilateral having $E F=G H$ and $F G=E H$.
To prove EFGH a parallelogram.
Proof. Draw the diagonal $F H$.
Prove $\quad \triangle E F H=\triangle F G H$.
Whence $\quad \angle 1=\angle 2$ and $\angle 3=\angle 4$.
Since $\angle 1=\angle 2, F G$ and $E I I$ are parallel.
Similarly $E F$ is parallel to $G H$.
$E F G H$ is a parallelogram.
Q.E.D.
196. Corollary I. A diagonal of a parallelogram divides it into two triangles equal in all respects.
197. Corollary II. Two parallelograms are equal if they have two adjacent sides and the included angle of one equal respectively to two adjacent sides and the included angle of the other.
198. Corollary III. Parallels included between two parallels and limited by them, are equal.

## Proposition XXXIII. Theorem

199. The opposite angles of a parallelogram are equal; and conversely, if the opposite angles of a quadrilateral are equal, the figure is a parallelogram.


Let $A B C D$ be a parallelogram.
To Prove

$$
\angle A=\angle C \text { and } \angle B=\angle D
$$

Proof. Show by $£ 131$ that $\angle A=\angle C$ and $\angle B=\angle D$.
Q.E.D.

Conversely. In the quadrilateral $A B C D$ let $\angle A=\angle C$ and $\angle B=\angle D$.

To Prove $A B C D$ a parallelogram.
Proof. $\quad \angle A+\angle B+\angle C+\angle D=4$ R.A.'s.

$$
\begin{gather*}
\angle A=\angle C \text { and } \angle B=\angle D  \tag{?}\\
2 \angle A+2 \angle B=4 \text { R.A.'s. }  \tag{?}\\
\angle A+\angle B=2 \text { R.A.'s. }
\end{gather*}
$$

$B C$ and $A D$ are parallel. (?)
Similarly prove $A B$ and $C D$ parallel.
$A B C D$ is a parallelogram.
Q.E.D.
200. Corollary. The adjacent angles of a parallelogram are supplementary; and conversely, if the adjacent angles of a quadrilateral are supplementary, the figure is a parallelogram.
201. Exercise. If one of the angles of a parallelogram is a right angle, the other three are also right angles.
202. Exercise. If one angle of a parallelogram is $\frac{5}{6}$ R.A., how large are the others?
203. Exercise. If two sides of a quadrilateral are parallel, and a pair of opposite angles are equal, the figure is a parallelogram.
204. Exercise. If an angle in one parallelogram is equal to an angle in another, the remaining angles are equal each to each.

## Proposition XXXIV. Theorem

205. If two sides of a quadrilateral are equal and parallel, the figure is a parallelogram.


Let $A B C D$ be a quadrilateral having $B C$ and $A D$ equal and parallel.

To Prove $A B C D$ a parallelogram.
Proof. Draw the diagonal $B D$.

$$
\begin{align*}
\triangle A B D & =\triangle B C D  \tag{?}\\
A B & =C D
\end{align*}
$$

Whence
Prove $A B C D$ a parallelogram. [§ 195. Converse.] Q.E.D.
206. Exercise. The line joining the middle points of two opposite sides of a parallelogram is parallel to each of the other two sides and equal to either of them.

## Proposition XXXV. Theorem

207. The diagonals of a parallelogram bisect each other; and conversely, if the diagonals of a quadrilateral bisect each other, the figure is a parallelogram.


Let $A B C D$ be a parallelogram, $D B$ and $A C$ its diagonals.
To Prove $\quad B O=O D$ and $A O=O C$.
Proof. Prove $\triangle B O C=\triangle A O D$, whence $B O=O D$ and $A O=O C$. Q.E.D.

Conversely. In the quadrilateral $A B C D$,
Let

$$
A O=O C \text { and } B O=O D .
$$

To Prove $A B C D$ a parallelogram.
Proof. Prove $\triangle B O C=\triangle A O D$,
whence $\quad \angle 1=\angle 2$ and $B C=A D$.
Prove $A B C D$ a parallelogram. (§ 205.)
Q.E.D.
208. Corollary I. The diagonals of a square

1. Are equal.
2. Bisect each other.
3. Are perpendicular to each other.
4. Bisect the angles of the square.

5. Corollary II. The diagonals of a rhombus
6. Are unequal.
7. Bisect each other.
8. Are perpendicular to each other.
9. Bisect the angles of the rhombus. To prove the diagonals unequal,

first show that $\angle A$ and $\angle D$ of the rhombus are unequal. (They are supplementary and oblique.)

Then apply § 181 to $\subseteq A B D$ and $A C D$.
210. Corollary III. The diagonals of a rectangle that is not a square

1. Are equal.
2. Bisect each other.
3. Are not perpendicular to each other.
4. Do not bisect the angles of the rec-
 tangle.

To prove that the diagonals are not perpendicular to each other, apply § 182 to $\triangle B O C$ and $C O D$. ( $B C$ and $C D$ are unequal because the rectangle is not a square.)

To prove that the diagonals do not bisect the angles of the rectangle, show that $\measuredangle 4$ and 5 of $\triangle A C D$ are unequal, but $\angle 3=\angle 4$. (?) $\therefore \angle 3$ and $\angle 5$ are unequal.
211. Corollary IV. The diagonals of a rhomboid that is not a rhombus

1. Are unequal.
2. Bisect each other.
3. Are not perpendicular to each other.
4. Do not bisect the angles of the
 rhomboid.
5. Exercise. Any line drawn through the point of intersection of the diagonals of a parallelogram and limited by the sides is bisected at the point.
6. Exercise. If the diagonals of a parallelogram are equal, the figure is a rectangle.
7. Exercise. Given a diagonal, construct a square.
8. Exercise. Given the diagonals of a rhombus, construct the rhombus.

## Proposition XXXVI. Theorem

216. If from a point without a line a perpendicular is drawn to the line, and oblique lines are drawn to different points of it,
I. The perpendicular is shorter than any oblique line.
II. Two oblique lines that meet the given line at points equally distant. from the foot of the perpendicular are equal.
III. Of two oblique lines that meet the given line at points unequally distant from the foot of the perpendicular, the one at the greater distance is the longer.

I. Let $A B$ be the given line and $P$ the point without, $P C$ the $\perp$, and $P D$ any oblique line.

## To Prove

$$
P C<P D
$$

Suggestion. Apply § 189, converse, to $\triangle P C D$.
II. Let $P D$ and $P E$ be oblique lines meeting $A B$ at points equally distant from $C$.

To Prove

$$
P D=P E .
$$

III. Let $P F$ and $P D$ be oblique lines, $F$ being at a greater distance from $C$ than is the point $D$.

## To Prove

$$
P F>P D .
$$

Suggestion. Show that $\angle 1$ is obtuse. Then apply $\S 189$, converse, to $\triangle P E F$, recollecting that $P E=P D$.
217. Corollary I. The perpendicular is the shortest distance from a point to a line, and conversely.
218. Corollary II. From a point without a line only two equal lines can be drawn to the line.

Note. The number of pairs of equal lines that can be drawn from a point to a line is of course infinite.
219. Corollary III. If from a point without a line a perpendicular and two equal oblique lines be drawn, the oblique lines meet the given line at points equally distant from the foot of the perpendicular.

Suggestion. Use § 192.
220. Definition. An altitude of a triangle is a perpendicular drawn from the vertex of any angle to the opposite side.
221. Exercise. The sum of the altitudes of a triangle is less than the perimeter.

## Proposition XXXVII. Theorem

222. Two parallels are everywhere equally distant.


Let $A B$ and $C D$ be two ll's.
To Prove that they are everywhere equally distant.
Proof. From any two points on $A B$, as $E$ and $F$, draw $E G$ and $F H \perp$ to $C D$.

They are also $\perp$ to $A B$ (?), and they measure the distance between the parallels at $E$ and $F$.
$E G$ and $F H$ are parallel.
$E G$ and $F H$ are equal.
Therefore the parallels are equally distant at $E$ and $F$.
Since $\boldsymbol{E}$ and $\boldsymbol{F}$ are any points on $A B$, the parallels are everywhere equally distant. Q.E.D.
223. Scholium. The term distance in geometry means shortest distance.

The distance from one point to another is measured on the straight line joining them. (Axiom 14.)

The distance from a point to a line is the perpendicular drawn from that point to the line. (§ 216.)

The distance between two parallels is measured on a line perpendicular to both. (§222.)

The distance between two lines in the same plane that are not parallel is zero; for distance means shortest distance, and the lines will meet if sufficiently produced.
224. Corollary. If two points are on the same side of a given line and equally distant from it, the line joining the points is parallel to the given line.
225. Exercise. If the two angles at the extremities of one base of a trapezoid are equal, the two non-parallel sides are equal.

Suggestion. Draw $B E$ and $C F \perp$ to $A D$. $B E=C F$ (?). Prove $A A B E$ and $C D F$ equal. Whence $A B=C D$.

226. Exercise. If the two non-parallel sides of a trapezoid are equal, the angles at the extremities of either base are equal.

Suggestion. In the figure of the preceding exercise, prove \& $A B E$ and $C F D$ equal. Whence $\angle A=\angle D$.
227. Exercise. If a quadrilateral has one pair of opposite sides equal and not parallel, and the angles made by these sides with the base equal, the quadrilateral is a trapezoid.

Suggestion. In the figure of $\S 225$, let $A B=C D$ and $\angle A=\angle D$. Prove $\mathbb{A} A B E$ and $C F D$ equal, and then use § 224.
228. Exercise. If two points are on opposite sides of a line, and are equally distant from the line, the line joining them is bisected by the given line.
229. Exercise. If a rectangle and a rhomboid have equal bases and equal altitudes, the perimeter of the rectangle is less than that of the rhomboid.

## Proposition XXXVIII. Theorem

230. Any point on the bisector of an angle is equally distant from the sides of the angle; and any point not on the bisector is unequally distant from the sides.



Let $A B C$ be any angle, $B D$ its bisector, and $P$ any point on $B D$.
To Prove $P$ equally distant from $A B$ and $B C$.
Proof. Draw $P E$ and $P F$ perpendicular to $A B$ and $B C$ respectively.

Prove $\triangle E P B=\triangle P B F$.
Whence $P E=P F$.
Q.E.D.

Let $A B C$ be any angle, $B D$ its bisector, and $P$ any point without $B D$.

To Prove $P$ unequally distant from $A B$ and $B C$.
Proof. Draw $P E$ and $P H \perp$ to $A B$ and $B C$ respectively.
From $F$ (where $P E$ intersects $B D$ ) draw $F G \perp$ to $B C$.
Draw, $\begin{gathered}\text { : }: ~\end{gathered}$

$$
\begin{aligned}
& F P+F G>P G . \\
& P G>P H . \text { (?) } \\
& F P+F G>P H . \\
& F E=F G . \\
& F P+F E>P H . \\
& P E>P H .
\end{aligned}
$$

231. Corollary. Any point that is equally distant from the sides of an angle is on the bisector.
232. Exercise. Prove the second part of $\S 230$ indirectly.

Suppose $P E=P G$. Draw $P B$.
Prove $\quad \triangle P E B=\triangle P B G$.
Whence $\quad \angle P B E=\angle P B G$.
$\therefore P B$ must bisect $\angle A B C$.
233. Definition. The locus of a point satisfying a certain condition is the line, lines, or part of a line to which it is thereby restricted ; provided, however, that the con-
 dition is satisfied by every point of such line or lines, and by no other point.

The bisector of an angle is the locus of points that are equally distant from its sides; for by $\S 230$, all the points on the bisector are equally distant from the sides, and all points without the bisector are unequally distant from the sides.
234. Exercise. What is the locus of points that are equally distant from a given point? From two given points?
235. Exercise. What is the locus of points that are equally distant from a given line?
236. Exercise. What is the locus of points that are equally distant from a given circumference ?
237. Exercise. The bisectors of the interior angles of a triangle meet in a common point.

To Prove that the bisectors $A D, B F$, and $E C$ meet in a common point.

Prove tuat $A D$ and $E C$ meet. (§ 127.)
Call their point of meeting $O$.
$O$ is equally distant from $A B$ and $A C$. (?)
$O$ is equally distant from $A C$ and $B C$. (?)

$\therefore O$ is equally distant from $A B$ and $B C$.
$O$ is on the bisector BF. ( $\$ 231$.)
Q.E. D.

## Proposition XXXIX. Theorem

238. The line joining the middle points of two sides of a triangle is parallel to the third side, and equal to one half of $i t$.


Let $D E$ join the middle points of $A B$ and $B C$.
To Prove $D E \|$ to $A C$, and $D E=\frac{1}{2} A C$.
Proof. Prolong $D E$ until $E F=D E$. Draw $F C$.
Prove \& $B D E$ and $E F C$ equal in all respects.
Whence $\quad D B=F C$ and $\angle 3=\angle 4$.

$$
\begin{gather*}
F C=A D . \quad(?) \quad F C \text { is } \| \text { to } A D .  \tag{?}\\
A D F C \text { is a parallelogram. }  \tag{?}\\
\therefore D E \text { is } \| \text { to } A C . \tag{?}
\end{gather*}
$$

Prove that

$$
D E=\frac{1}{2} A C
$$

Q.E.D.
239. Corollary I. If a line is drawn through the middle point of one side of a triangle parallel to the base, it bisects the other side, and is equal to one half the base.

Let $D E$ be drawn from the middle point of $B C \|$ to $A C$.

To Prove $D E$ bisects $A B$, and $D E$ $=\frac{1}{2} A C$.

Proof. Draw $E F \|$ to $A B$.
Prove $\quad \triangle D B E=\triangle F E C$.


Whence

$$
\begin{gather*}
E F=D B \text { and } D E=F C \\
E F=A D . \quad(?) \tag{?}
\end{gather*}
$$

$D$ is the middle point of $A B$. (?) $D E=\frac{1}{2} A C$. (?) Q.E.D.
240. Corollary II. To divide a line into any number of equal parts.

Let $A B$ be the given line.

Required to divide it into any number, say five, equal parts.

Draw $A C$, making any convenient angle with $A B$.
On $A C$ lay off five equal distances, $A D, D E, E F, F G$, and $G H$.
Draw $H B$.
Draw $G S, F R, E N$, and $D M$ parallel to $H B$.
$A B$ is divided into five equal parts.
Prove $A M=M N(\S 239)$.
Draw $M T \|$ to $A C$.
Prove $M N=N R(\S 239)$.
In a similar manner prove $N R=R S$, and $R S=S B$.
Q.E.F.
241. Exercise. The lines joining the middle points of the three sides of a triangle, divide it into four triangles equal in all respects.

Prove $\quad \triangle 1=\triangle 2=\triangle 3=\triangle 4$.

242. Exercise. Perpendiculars drawn from the middle points of two sides of a triangle to the third side are equal.

Prove $\quad D F=E G$.

243. Exercise. The lines joining the middle points of the sides of a quadrilateral form a parallelogram, equal in area to one half the quadrilateral.

Use $\S 238$ to prove $E F G H$ a parallelogram.

Use § 241 to prove $E F G H=\frac{1}{2} A B C D$.

244. Exercise. The medial lines of a triangle intersect in a common point.

Draw two medial lines $A E$ and $C D$.
Prove that they meet (§ 127) in some point $O$.

Draw $B O$ and prolong it.
It is required to show that $F$ is the middle point of $A C$.

Draw $A H \|$ to $D C$, and prolong $B F$ until it meets $A H$.


Draw HC.
Prove

$$
B O=O H, \text { by using } \triangle A B H .
$$

In $\triangle H B C$, prove $O E$ parallel to $H C$.
$A O C H$ is a parallelogram. $\therefore F$ is the middle point of $A C$. Q.E.d.
245. Exercise. The point of intersection of the medial lines divides each median into two segments that are to each other as two is to one.
246. Exercise. Given the middle points of the sides of a triangle, to construct the triangle.

As the variety of exercises in Geometry is practically unlimited, it is impossible to give for their solution any general rules, as may usually be done for problems in Elementary Algebra or Arithmetic. Yet the following hints may be of use to the beginner:

1. Thoroughly digest all the facts of the statement, separating clearly the hypothesis from the conclusion.
2. Draw a diagram expressing all of these facts, including what is to be proved.
3. Draw any auxiliary lines that may seem to be necessary in the proof. ${ }^{1}$
4. Assuming the conclusion to be true, try to deduce from it simpler relations existing between the parts of the figure, and finally some relation that can be established. (This is the Analysis of the Proposition.)
${ }^{1}$ The student should remember in drawing auxiliary lines that a straight line may be drawn fulfilling only two conditions. Two conditions are said to determine a straight line.
5. Then, starting with the relation established, reverse the analysis, tracing it back, step by step, until the conclusion is reached.

## EXERCISES

1. If two angles of a quadrilateral are supplementary, the other two are also supplementary.
2. Two parallels are cut by a transversal. Prove that the bisectors of two interior angles on the same side are perpendicular to each other.

3. An exterior base angle of an isosceles triangle is $1 \frac{1}{6}$ R.A.'s. Find the angles of the triangle.
4. If the angles adjacent to one base of a trapezoid are equal, the angles adjacent to the other base are also equal. [§ 122.]

5. In the parallelogram $A B C D, A E$ and $C F$ are drawn perpendicular to the diagonal $B D$. Prove $A E=C F$.

6. $A B C$ and $C B D$ are two supplementary adjacent angles. $E B$ bisects $\angle A B C$, and $B F$ is perpendicular to $E B$. Prove that $B F$ bisects $\angle C B D$.

7. Construct a right-angled triangle, having given the hypotenuse and one of the acute angles.
8. Trisect a right angle.
9. Construct an isosceles triangle, having given the base and the vertical angle.

Suggestion. Find the base angles.

10. $A B C$ is an isosceles triangle, and $B E$ is parallel to $A C$. Prove that $B E$ bisects the exterior angle $C B D$.

11. The lines joining the middle points of the opposite sides of a quadrilateral bisect each other. [§ 243.]

12. From any point $D$ on the base of the isosceles triangle $A B C, D E$ and $D F$ are drawn parallel to the equal sides $B C$ and $A B$ respectively. Prove that the perimeter of $D E B F$ is constant and equals $A B+B C$.

13. The angle formed by the bisectors of two consecutive angles of a quadrilateral is equal to one half the sum of the other two angles.
[ $\$ \S 138$ and 157.]

14. How many sides has the polygon the sum of whose interior angles exceeds the sum of its exterior angles by 12 right angles?
15. On the sides of the square $A B C D$, the equal distances $A E, B F, C G$, and $D H$ are laid off. Prove that the quadrilateral $E F G H$ is also a square.

16. The perpendiculars erected to the sides of a triangle at their middle points meet in a common point.

Suggestion. Show that two of the $\perp$ 's meet. Then show that the third $\perp$ passes through their
 point of meeting. [§ 48.]
17. The middle point of the hypotenuse of a right-angled triangle is equally distant from the three vertices.

Suggestion. Draw $C D$, making $\angle 1=\angle A$. Prove $\angle 2=\angle B$, and $A D=D C=D B$.
18. The lines joining the middle points of the consecutive sides of a rhombus form a rectangle, which is not a square.
19. From two points on the same side of a line draw two lines meeting in the line and making equal angles with it.

20. Prove that the sum of $A C$ and $B C$ (the lines that make equal angles with $x y$ ) is less than the sum of any other pair of lines drawn from $A$ and $B$ and meeting in $x y$.

Prolong $B C$ until $C E=A C$. Prove $A D$ $=D E$. Then apply § 168 to $\triangle B D E$.

21. If the base of an isosceles triangle is prolonged, twice the exterior angle $=2$ R.A.'s + the vertical angle of the triangle.
22. In the triangle $A B C, B D$ is drawn perpendicular to $A C$. Prove that the difference between $\angle 2$ and $\angle 1$ equals the difference between $\angle A$ and $\angle C$.

23. Given the sum of the diagonal and a side of a square, construct the square.
24. If $B E$ is parallel to the base $A C$ of the triangle $A B C$, and also bisects the exterior angle $C B D$, prove that the triangle $A B C$ is isosceles.

25. Given the difference between the diagonal and a side of a square, construct the square.
26. Draw $D E$ parallel to the base of the triangle $A B C$ so that $D E=D A+E C$.

Two constructions. $D E$ may cut the prolonged sides.
27. $A B C D$ is a trapezoid. Through $E$, the middle of $C D$, draw $F G$ parallel to $B A$ and meeting $B C$ produced at $F$.

Prove the parallelogram $A B F G$ equal in area to the trapezoid $A B C D$.

28. The angle formed by the bisectors of two angles of an equilateral triangle is double the third angle.
29. In the isosceles triangle $A B C$ draw $D E$ parallel to the base $A C$, so that $D A=D E=E C$.
30. If the diagonals of a parallelogram are equal
 and perpendicular to each other, the figure is a square.
31. If from a point on the base of an isosceles triangle perpendiculars are drawn to the two equal sides, their sum is equal to a perpendicular drawn from either extremity of the base to the opposite side.

Suggestion. Draw PG II to BC. Prove $\$ A E P$ and $A G P$ equal.

32. If from a point on the prolonged base of an isosceles triangle perpendiculars are drawn to the two equal sides, their difference is equal to a perpendicular drawn from either extremity of the base to the opposite side.

33. In the triangle $A B C, A E$ and $C E$ are the bisectors of $\angle A$ and the exterior angle $B C D$ respectively.

Prove $\quad \angle E=\frac{1}{2} \angle B$.

34. If one angle of a right-angled triangle is double the other, the hypotenuse is double the shorter leg.
[See Exercise 17.]

35. Construct an equilateral triangle, having given its altitude.
36. The quadrilateral formed by the bisectors of the angles of a quadrilateral has its opposite angles supplementary.
[See Exercise 13.]

37. If the quadrilateral $A B C D$ (see figure of Ex. 36) is a parallelogram, $E F G H$ is a rectangle.
38. If the quadrilateral $A B C D$ (see figure of Ex. 36) is a rectangle, $E F G H$ is a square.
39. The bisectors of the exterior angles of a quadrilateral form a second quadrilateral whose opposite angles are supplementary.
40. The altitudes of a triangle meet in a common point.

Suggestion. Through the three vertices of the $\triangle A B C$ draw parallels to the opposite sides, forming $\triangle G H I$. Show that the altitudes of $\triangle A B C$ are $1 s$ to the sides of $\triangle G H I$, at their middle points.

41. If the number of sides of an equiangular polygon is increased by four, each angle is increased by $\frac{1}{6}$ of a right angle. How many sides has the polygon? [§ 158.]
42. In the parallelogram $A B C D, B E$ bisects $A D$ and $D F$ bisects $B C$. Prove that $B E$ and $D F$ trisect the diagonal $A C$.
[§ 239.]
43. In the equilateral triangle $A B C$, the distances $A D, C F$, and $B E$ are equal. Prove the triangle $D E F$ equilateral.

44. $A F$ and $H C$ bisect the exterior angles $D A C$ and $A C E$, and $B G$ bisects the interior angle $B$ of the triangle $A B C$. Prove that $A F, C H$, and $B G$ meet in a common point.
[See § 233.]

45. If two lines that are on opposite sides of a third line meet at a point of that third line, making the non-adjacent angles equal, the two lines form one and the same line.

46. What is the greatest number of acute angles a convex polygon can have?

Suggestion. Show that if there were more than three acute angles the sum of the exterior angles of the polygon would exceed 4 R.A.'s.
47. Given two lines that would meet if sufficiently produced, draw the bisector of their angle, without prolonging the lines.
48. Construct a triangle, having given one angle, one of its including sides, and the sum of the other two sides.

49. Construct a triangle, having given one angle, one of its including sides, and the difference of the other two sides.

(1)

(2)

The side opposite the given angle may be less than the other unknown side (see Fig. 1), or it may be greater than the other unknown side (see Fig. 2).
50. $B E$ is the bisector of $\angle A B C$, and $B D$ is an altitude of the triangle $A B C$. Prove that $\angle 1$ is one half the difference between the base angles $A$ and $C$.

51. Through a point draw a line that shall be equally distant from two given points. [Two ways.]
52. The line joining the middle points of two opposite sides of a quadrilateral bisects the line joining the middle points of the diagonals.

Suggestion. Prove that $E G F H$ is a parallelogram.

53. Of all triangles having the same base and equal altitudes the isosceles triangle has the least perimeter. [See Ex. 20.]
54. Construct a triangle, having given the perimeter and the two base angles.

55. Construct a triangle, having given the lengths of the three medians. [§§ 244 and 245.]
56. If the diagonals of a trapezoid are equal, the non-parallel sides are equal.
$B M$ and $C N$ are each $\perp$ to $A D$.
Prove $\triangle A C N=\triangle D B M$,
and $\quad \triangle A B M=\triangle D C N$.

57. In the equilateral triangle $A B C, A D$ and $D C$ bisect the angles at $A$ and $C$. $D E$ is drawn $\|$ to $A B$, and $D F \|$ to $B C$. Prove that $A C$ is trisected.

58. $A E$ and $C D$ are perpendiculars drawn from the extremities of $A C$ to the bisector of $\angle B$. $F D$ and $F E$ join the feet of these perpendiculars with the middle point of $A C$.

Prove $F D=F E=\frac{1}{2}(A B-B C)$.

59. $A B C$ is a R.A. $\triangle, A D$ is perpendicular to $B C$, and $A E$ is the median to $B C$. $A F$ bisects angle $D A E$.

Prove that $A F$ also bisects angle $B A C$.


## BOOK II

247. Definitions. A circle is a portion of a plane bounded by a curved line, all the points of which are equally distant from a point within called the center.
The bounding line is called the circumference.

A straight line from the center to any point in the circumference is a radius. It follows from the definition of circle that all radii of the same circle are equal.

A straight line passing through the center and limited by the circumference is a diameter.
Every diameter is composed of two radii ; therefore all diameters of the same circle are equal.

An arc is any portion of a circumference.
A chord is a straight line joining the extremities of an arc.
A chord is said to subtend the are whose extremities it joins, and the are is said to be subtended by the chord.

Every chord subtends two different ares; thus the chord $A B$ subtends the arc $A N B$, and also the are $A M B$. Unless the contrary is specially stated, we shall assume the chord to belong to the smaller arc.


An inscribed polygon is a polygon whose vertices are in the circumference and whose sides are chords.
[The polygon $A B C D$ is inscribed in the circle; the circle is also said to be circumscribed about the polygon.]

## Proposition I. Problem

248. To find the center of a given circle.


Let $x y z$ be the given circle.
Required to find its center.
Join any two points on the circumference, as $A$ and $B$, by the line $A B$.

Bisect $A B$ by the perpendicular $D C$.
Bisect $D C$.
Then is $o$ the center of the circle.
By definition, the center of the circle is equally distant from $A$ and $B$.

By § 48 the center is on $D C$.
By definition the center of the circle is equally distant from $D$ and $C$.

Since the center is on $D C$, and is also equally distant from $D$ and $C$, it must be at the middle point of $D C$, that is, at 0 .

Therefore, $O$ is the center of the circle $x y z$.
Q.E.F.
249. Corollary. A line that is perpendicular to a chord and bisects it, passes through the center of the circle.

Note. It follows from $\$ 249$ that the only chords in a circle that can bisect each other are diameters.
250. Exercise. Describe a circumference passing through two given points.

How many different circumferences can be described passing through two given points?
251. Exercise. Describe a circumference, with a given radius, and passing through two given points.

How many circumferences can be described in this case?
What limit is there to the length of the given radius?

## Proposition II. Theorem

252. A diameter divides a circle and also its circumference into two equal parts.


Let $A B$ be a diameter of the circle whose center is 0 .
To Prove that $A B$ divides the circle and also its circumference into two equal parts.

Proof. Place $A C B$ upon $A D B$ so that $A B$ is common.
Then will the curves $A C B$ and $A D B$ coincide, for if they do not there would be points in the two ares unequally distant from the center, which contradicts the definition of circle.

Therefore $A B$ divides the circle and also its circumference into two equal parts.
Q.E.D.
253. Exercise. Through a given point draw a line bisecting a given circle.

When can an infinite number of such lines be drawn?

## Proposition III. Theorem

254. A diameter of a circle is greater than any other chord.


Let $A B$ be a diameter of the $\odot$ whose center is $O$, and $C D$ be any other chord.

To Prove $\quad A B>C D$.
Proof. Draw the radii $O C$ and $O D$.
Apply § 168 to $\triangle O C D$, recollecting that $A B=O C+O D$. Q.E.D.
255. Exercise. Prove this Proposition (§ 254), using a figure in which the given chord $C D$ intersects the diameter $A B$.
256. Exercise. Through a point within a circle draw the longest possible chord.
257. Exercise. The side $A C$ of an inscribed triangle $A B C^{\prime}$ is a diameter of the circle. Compare the angle $B$ with angles $A$ and $C$.
258. Exercise. $A B$ is perpendicular to the chord $C D$, and bisects it.

Prove $\quad A B>C D$.

259. Exercise. The diameter $A B$ and the chord $C D$ are prolonged until they meet at $E$.

| $\quad$ Prove | $E A<E C$ |
| :--- | :--- |
| and | $E B>E D$. |



## Proposition IV. Theorem

260. A straight line cannot intersect a circumference in more than two points.


Let $C D R$ be a circumference and $A B$ a line intersecting it at $C$ and $D$.

To Prove that $A B$ cannot intersect the circumference at any other point.

Proof. Suppose that $A B$ did intersect the circumference in a third point $E$.

Draw the radii to the three points.
Now we have three equal lines (why equal ?) drawn from the point $O$ to the line $A B$, which contradicts (?).

Therefore the supposition that $A B$ could intersect the circumference in more than two points is false.
Q.E.D.
261. Exercise. Show by $\S \S 249$ and 92 that $A B$ cannot intersect the circumference in three points ( $C, D$, and $E$ ).
262. Definition. A secant is a straight line that cuts a circumference.


## Proposition V. Theorem

263. Circles having equal radii are equal; and conversely, equal circles have equal radii.


Let the © ${ }^{\text {© }}$ whose centers are $O$ and $C$ have equal radii.
To Prove the (5) equal.
Proof. Place the $\odot$ whose center is $O$ upon the $\odot$ whose center is $C$, so that their centers coincide.

Then will their circumferences also coincide, for if they do not, they would have unequal radii, which contradicts the hypothesis.

Since the circumferences coincide throughout, the circles are equal.
Q.E.D.

Conversely. Let the circles be equal.
To Prove that their radii are equal.
Proof. Since the circles are equal, they can be made to coincide.
Therefore their radii are equal. Q.E.D.
264. Exercise. Circles having equal diameters are equal ; and conversely, equal circles have equal diameters.
265. Exercise. Two circles are described on the diagonals of a rectangle as diameters. How do the circles compare in size ?
266. Exercise. If the circle described on the hypotenuse of a rightangled triangle as a diameter is equal to the circle described with one of the legs as a radius, prove that one of the acute angles of the triangle is double the other.

## Proposition VI. Theorem

267. In the same circle or in equal circles, radii forming equal angles at the center intercept equal arcs of the circumference; and conversely, radii intercepting equal arcs of the circumference form equal angles at the center.


Let $A B C$ and $D E F$ be two equal angles at the centers of equal circles.

To Prove $\operatorname{arc} C A=\operatorname{arc} D F$.

Proof. Place the circle whose center is $B$ upon the circle whose center is $E$, so that $\angle B$ shall coincide with its equal $\angle E$.

Since the radii are equal, $A$ will fall upon $D$ and $C$ upon $F$.
The arc $A C$ will coincide with the arc $D F$. (Why?)
Therefore the arc $A C=\operatorname{arc} D F$.
Q.E.D.

Conversely. Let $\quad \operatorname{arc} C A=\operatorname{arc} D F$.
To Prove $\quad \angle A B C=\angle D E F$.
Proof. Place the circle whose center is $B$ upon the circle whose center is $E$, so that the circles coincide, and the arc $A C$ coincides with its equal are $D F$.
$B C$ will then coincide with $E F$ (?) and $A B$ with $D E$. (?)
Consequently the angles $A B C$ and $D E F$ coincide and are equal.
Q.E.D.
268. Exercise. Two intersecting diameters divide a circumference into four ares which are equal, two and two.

## Proposition VII. Theorem

269. In the same circle, or in equal circles, if two arcs are equal, the chords that subtend them are also equal; and conversely, if two chords are equal, the arcs that are subtended by them are equal.


Let $A B C$ and $D E F$ be two equal ares in the equal (c) whose centers are $x$ and $y$.

To Prove chord $A C=$ chord $D F$.
Proof. Draw the radii $x A, x C, y D$, and $y F$.
Show that $\angle 1=\angle 2$.
Prove $\triangle A x C$ and $D y F$ equal.
Whence

$$
A C=D F .
$$

Q.E.D.

Conversely. Let chord $A C=$ chord $D F$.
To Prove arc $A B C=\operatorname{arc} D E F$.
Proof. Draw the radii $x A, x C, y D$, and $y F$.
Prove \& $A x C$ and $D y F$ equal.
Whence

$$
\angle 1=\angle 2 .
$$

$$
\therefore \text { arc } A B C=\operatorname{arc} D E F
$$

Q.E.D.
270. Exercise. If the circumference of a circle is divided into four equal parts and their extremities are joined by chords, the resulting quadrilateral is an equilateral parallelogram.

## Proposition VIII. Theorem

271. In the same circle, or in equal circles, if two ares are unequal and each is less than a semi-circumference, the greater arc is subtended by the greater chord; and conversely, the greater chord subtends the greater. arc.


Let $M$ and $N$ be the centers of equal circles in which are $A B C>\operatorname{arc} D E F$.

To Prove chord $A C>$ chord $D F$.
Proof. Draw the diameters $A G$ and $D H$.
Place the semicircle $A C G$ so that it shall coincide with the semicircle $D F H, A$ falling on $D$ and $G$ on $H$.

Because the arc $A B C$ is greater than the arc $D E F$, the point $C$ will fall beyond $F$ at some point $R$, the chord $A C$ taking the position $D R$.

Draw the radii $N F$ and $N R$.
Apply § 181 to $₫ D N F$ and $D N R$, proving

$$
D R>D F . \quad \therefore A C>D F .
$$

Q.E.D.

Conversely. Let chord $A C>$ chord $D F$.
To Prove arc $A B C>$ arc $D E F$.
Proof. Show that the arc $A B C$ can neither be equal to the arc $D E F$ nor less than it, $\therefore$ the arc $A B C$ must be greater than the are $D E F$.
Q.E.D.
272. Exercise. $A B C$ is a scalene triangle. How do the arcs $A B, B C$, and $A C$ compare?


2\%3. Exercise. Give a direct proof for the converse of Prop. VIII.
[Draw the radii and show that $\angle A M C$ is less than $\angle R N D$. Then place one circle upon the other, etc.]


## Proposition IX. Theorem

274. A diameter that is perpendicular to a chord bisects the chord and also the arc subtended by it.


Let $A B$ be a diameter $\perp$ to $C D$.
To Prove $C E=E D$ and arc $C B=\operatorname{arc} B D$.
Proof. Draw the radii $O C$ and $O D$.
Prove $\triangle C O E$ and $O E D$ equal.
Whence

$$
C E=E D \text { and } \angle 3=\angle 4
$$

Show that arc $C B=\operatorname{arc} B D$.
275. Corollary I. The diameter $A B$ also bisects the arc $C A D$.
276. Corollary II. Prove the six propositions that can be formulated from the following. data, using any two for the hypothesis and the remaining two for the conclusion.

A line that

1. Passes through the center of the $\odot$.
2. Bisects the chord.
3. Is perpendicular to the chord.
4. Bisects the arc.
[Prop. IX. itself is one of the six proposi-
 tions, and is formed by using 1 and 3 as hypothesis, and 2 and 4 as conclusion; and the statement of $\S 249$ uses 2 and 3 for its hypothesis and 1 for its conclusion.]

## 277. Corollary III. Bisect a given arc.

278. Exercise. What is the locus of the centers of parallel chnrds in a circle?
279. Exercise. Perpendiculars erected at the middle points of the sides of a quadrilateral inscribed in a circle pass through a common point. Is this true for inscribed polygons of more than four sides?

280. Exercise. Through a given point in a circle draw a chord that shall be bisected at the point.
281. Exercise. If the line joining the middle points of two chords in a circle passes through the center of the circle, prove that the chords are parallel.
282. Exercise. The chord $A B$ divides the circumference into two $\operatorname{arcs} A C B$ and $A D B$. (See figure of §276.) If $C D$ is drawn connecting the middle points of these arcs, prove that it is perpendicular to $A B$ and bisects it.

## Proposition X. Theorem

283. In the same circle or in equal circles equal chords are equally distant from the center; and conversely, chords that are equally distant from the center are equal.


Let $A B$ and $C D$ be equal chords in the equal circles whose centers are $M$ and $N$.

To Prove $A B$ and $C D$ equally distant from the centers.
Proof. Draw $M R$ and $N S \perp$ to $A B$ and $C D$ respectively.
$M R$ and NS measure the distance of the chords from the centers. (§223.)

Draw the radii $M B$ and $N D$.
Prove the $\mathbb{B} M R B$ and $N S D$ equal.
Whence
$M R=N S$.
Q.E.D.

Conversely. Let $A B$ and $C D$ be equally distant from the centers ( $M R=N S$ ).

To Prove

$$
A B=C D .
$$

Proof. Prove © $M R B$ and NSD equal.
Whence $\quad R B=S D$.
Therefore

$$
A B=C D . \quad(?)
$$

Q.E.D.
284. Exercise. What is the locus of the centers of equal chords in a circle ?
285. Exercise. $A B$ and $C D$ are two intersecting chords, and they make equal angles with the line joining their point of intersection with the center of the circle. How do $A B$ and $C D$ compare in length ?

286. Exercise. If two equal chords intersect in a circle, the segments of one chord are equal respectively to those of the other.
287. Exercise. If from a point without a circle two secants are drawn terminating in the concave are, and if the line joining the center of the circle with the given point bisects the angle formed by the secants, the secants are equal.
288. Exercise. If two chords intersect in a circle and a segment of one of them is equal to a segment of the other, the chords are equal.
289. Exercise. The line joining the center of a circle with the point of intersection of two equal chords, bisects the angle formed by the chords.
290. Exercise. Through a given point of a chord to draw another chord equal to the given chord.
[Suggestion. - Apply § 285.]
291. Exercise. Through a given point in a circle only two equal chords can be drawn.

For what point in the circle is this statement untrue?
292. Exercise. If two equal chords be prolonged until they meet at a point without the circle, the secants formed are equal.
293. Exercise. Given three points $A, B$, and $C$ on a circumference, to determine a fourth point $X$ on that circumference, such, that if the chords $A B$ and $C X$ be prolonged until they meet at a point without the circle, the secants formed are equal.
294. Exercise. An inscribed quadrilateral $A B C D$ has its sides $A B$ and $C D$ parallel, and angles $D$ and $C$ equal.

Prove that the sides $A D$ and $B C$ are equally distant from the center of the circle.

## Proposition XI. Theorem

295. In the same circle or in equal circles, the smatler of two unequal chords is at the greater distance from the center; and conversely, of two unequal chords, the one at the greater distance from the center is the smaller.


Let $M$ and $N$ be the centers of equal ©, and let $A B<C D$.
To Prove that $A B$ is at a greater distance from $M$ than $C D$ is from $N$.

Proof. Place $\bigodot_{x A B}$ so that it coincides with $\bigodot_{y C D, B}$ falling on $C$ and the chord $A B$ taking the position $C G$.

Draw $N S$ and $N F \perp$ to $G C$ and $C D$ respectively.
Draw $S F$.
Prove

$$
\angle 1>\angle 2 .
$$

Whence
$\angle 3<\angle 4$. (?)
Whence
$N S>N F$. (?)
Q.E.D.

Conversely. Let $N S>N F$.
To Prove $\quad G C<C D$.
Proof.

$$
\begin{array}{cc}
\angle 3<\angle 4 . & \text { (?) } \\
\angle 1>\angle 2 . & \text { (?) } \\
C F>S C . & \text { (?) } \\
C D>G C . & \text { (?) } \tag{?}
\end{array}
$$

296. Exercise. Prove the converse to Prop. XI. indirectly. [Show that AI] can neither be equal to nor greater than $C D$.]
297. Exercise. Through a point within a circle draw the smallest possible chord.

## Proposition XII. Theorem

298. Through three points not in the same straight line, one circumference, and only one, can be passed.


Let $A, B$, and $C$ be three points not in the same straight line.
To Prove that a circumference, and only one, can be passed through $A, B$, and $C$.

Proof. Draw $A B$ and $B C$.
Bisect $A B$ and $B C$ by the ${ }^{s} D E$ and $F G$.
Draw $D F$.
Show that $\angle 1+\angle 2<2$ R.A.'s.
Whence $D E$ and $F G$ meet. (?)
$O$ is equally distant from $A$ and $B$. (?)
$O$ is equally distant from $B$ and $C$. (?)
Therefore $O$ is equally distant from $A, B$, and $C$.
Therefore a circumference described with $O$ as a center, and with $O A, O B$, or $O C$ as a radius, will pass through $A, B$, and $C$.

The line $D E$ contains all the points that are equally distant from $A$ and $B$. (?)

The line $G F$ contains all the points that are equally distant from $B$ and $C$.

Therefore their point of intersection is the only point that is equally distant from $A, B$, and $C$.

Therefore only one circumference can be passed through $A$, $B$, and $C$.
299. Corollary. Two circumferences can intersect in only two points.
300. Exercise. Why cannot a circumference be passed through three points that are in a straight line?
301. Exercise. Circumscribe a circle about a given triangle.
302. Exercise. Show, by using $\S \S 298$ and 249 , that the perpendiculars erected to the sides of a triangle at their middle points pass through a common point.
303. Exercise. Find the center of a given circle by using $\S 298$.
304. Exercise. From a given point without a circle only two equal secants, terminating in the circumference, can be drawn.

Suggestion.-Suppose that three equal secants could be drawn. Using the given point as a center and the length of the secant as a radius, describe a circle. Apply § 299.
305. Exercise. Circumscribe a circle about a right-angled triangle. Show that the center of the circle lies on the hypotenuse.
306. Definitions. A straight line is tangent to a circle when it touches the circumference at one point only. The point at which the straight line meets the circumference is called the point of tangency. All other points of the straight line lie without the circumference. .The circle is also said
 to be tangent to the line.

Two circles are tangent to each other when their circumferences touch at one point only. If one circle lies outside of the

other, they are tangent externally; if one circle is within the other, they are tangent internally.

## Proposition XIII. Theorem

307. If a line is perpendicular to a radius at its outer extremity it is tangent to the circle at that point; and conversely, a tangent to a circle is perpendicular to the radius drawn to the point of tangency.


Let $A B$ be $\perp$ to the radius $C D$ at $D$.
To Prove $A B$ tangent to the circle.
Proof. Connect $C$ with any other point of $A B$ as $E$.

$$
\begin{equation*}
C E>C D \tag{?}
\end{equation*}
$$

Since $C E$ is longer than a radius, $E$ lies without the circumference.
$E$ is any point on $A B$ (except $D$ ).
Therefore every point on $A B$ (except $D$ ) lies without the circumference, and $A B$ touches the circumference at $D$ only.
Q.E.D.

Conversely. Let $A B$ be tangent to the $\odot$ at $D$.
To Prove

$$
A B \perp \text { to } C D
$$

Proof. Connect $C$ with any other point of $A B$ as $E$.
Since $A B$ is tangent to the circle at $D, E$ lies without the circumference.

$$
C E>C D
$$

$C E$ is the distance from $C$ to any point of $A B$ (except $D$ ).
$C D$ is therefore the shortest distance from $C^{\prime}$ to $A B$.
$\therefore C D$ is perpendicular to $A B$.

Corollary I. At a given point on a circumference draw a tangent to the circle.

Corollary II. At a point on a circumference only one tangent can be drawn to the circle.
308. Exercise. A perpendicular erected to a tangent at the point of tangency will pass through the center of the circle.
309. Exercise. If two tangents are drawn to a circle at the extremities of a diameter, they are parallel.
310. Exercise. The line joining the points of tangency of two parallel tangents passes through the center of the circle.
311. Exercise. If two unequal circles have the same center, a line that is tangent to the inner circle, and is a chord of the outer, is bisected at the point of tangency.
312. Exercise. Draw a line tangent to a circle and parallel to a given line.
313. Exercise. Draw a line tangent to a circle and perpendicular to a given line.
314. Exercise. If an equilateral polygon is inscribed in a circle, prove that a second circle can be inscribed in the polygon.
315. Exercise. Circumscribe about a given circle a triangle whose sides are parallel to the sides of a given triangle.
316. Exercise. To construct a triangle having given two sides and an angle opposite one of them.

Let $m$ and $n$ be the two given sides, and $\angle s$ the angle opposite side $n$.

Required to construct the $\triangle$.
Lay off an indefinite line $A D . \operatorname{At} A$ construct $\angle A=\angle s$. Make $A B=m$. With $B$ as a center, and $n$ as a radius, describe an arc intersecting $A D$ at $C$. Draw $B C$. Show that $\triangle A B C$ is the required $\triangle$.


Scholium. When the given angle is acute, and the side opposite the given angle is less than the perpendicular from $B$ to $A D$, there is no construction.

When the given angle is acute, and the side opposite the given angle is equal to the perpendicular from $B$ to $A D$, there is one construction, and the $\triangle$ is right-angled.

When the given angle is acute, and the side opposite the given angle is greater than the perpendicular from $B$ to $A D$ and is less than $A B$, there are two constructions.

Both $\triangle A B C$ and $\triangle A B C^{\prime}$ fulfill the
 required conditions.

When the given angle is acute, and the side opposite the given angle is equal to $A B$, there is one construction.

When the given angle is acute, and the side opposite the given angle is
 greater than $A B$, there is one construction.
$\triangle A B C$ fulfills the required conditions, but $\triangle A B C^{\prime}$ does not.

If the given angle is obtuse, the opposite side must
 be greater than $A B($ ?), and there never can le more than one construction.
317. Exercise. Construct a triangle $A B C$ in which $A B=5$ inches, $\angle A=\frac{1}{3} R A$, and side $B C=1,2,3,4$, and 5 inches in turn.

State the number of solutions in each case.
How long must $B C$ be in order to form a right-angled triangle ?

## Proposition XIV. Theorem

318. Parallel lines intercept equal arcs of a circumference; and conversely, lines intercepting equal arcs of a circumference are parallel.

I. Let $A B$ and $C D$ be parallel chords.

To Prove

$$
\operatorname{arc} A C=\operatorname{arc} B D .
$$

Proof. Draw the diameter $E F \perp$ to $A B$.

$$
\begin{gather*}
E F \text { is } \perp \text { to } C D .  \tag{?}\\
E A=E B \text { and } E C=E D . \tag{?}
\end{gather*}
$$

Whence

$$
A C=B D .
$$

Q.E.D.

Conversely. Let $A C=B D$.
To Prove $\quad A B$ and $C D$ parallel.
Draw the diameter $E F \perp$ to $A B$.

$$
\begin{align*}
& A E=E B . \\
& A C=B D .  \tag{?}\\
& E C=E D .  \tag{?}\\
& E F \tag{?}
\end{align*}
$$

$A B$ and $C D$ are parallel. (?)

II. Let the tangent $A B$ and the chord $C D$ be parallel.

To Prove

$$
C E=E D
$$

Proof. Draw the diameter $F E$ to the point of tangency $E$.

$$
\begin{array}{cc}
F E \text { is } \perp \text { to } A B . & (?) \\
F E \text { is } \perp \text { to } C D . & (?) \\
C E=E D . & (?)
\end{array}
$$

Conversely. Let $C E=E D$.
To Prove $\quad A B$ and $C D$ parallel.
Proof. Draw the diameter $F E$ to the point of tangency $E$.
Prove $A B$ and $C D$ each $\perp$ to $E F$.
Q.E.D.
III. Let the tangents $A B$ and $C^{\prime} D$ be parallel.

To Prove $E M F=E N F$.
Proof.
Draw the chord $X Y \|$ to $A B$.
$X Y$ is $\|$ to $C D$.
$E X=E Y$ and $X F=Y F$.

$$
\begin{equation*}
E M F=E N F . \quad \text { Q.E.D. } \tag{?}
\end{equation*}
$$

Conversely.
Let $\quad E M F=E N F$.
To Prove the tangents $A B$ and $C D$ parallel. [The proof
 is left to the student.]
319. Exercise. $A B C D$ is a trapezoid inscribed in the circle whose center is 0 .

Prove that the non-parallel sides $A B$ and $C D$ are equal.
320. Exercise. Prove the converse of the preceding exercise, i.e. if two opposite sides of an inscribed quadrilateral are equal, the quadrilateral is a trapezoid.
321. Exercise. The diagonals of an inscribed trapezoid are equal.
322. Exercise. The side $A B$ of the inscribed angle $A B C$ is in diameter. Prove that the diameter $D E$ drawn parallel to $B C$ bisects the arc $A C$.


## Proposition XV. Theorem

323. If two circumferences intersect each other, the line joining their centers bisects at right angles their common chord.


Let $A B$ be the line joining the centers of two circumferences intersecting at $C$ and $D$.

To Prove $A B$ bisects $C D$ at right angles.
Proof. Use § 49.
324. Exercise. Prove § 323, using this figure.
325. Exercise. The centers of all circles that
 pass through $C$ and $D$ (figure of $\S 323$ ) are on $A B$ or its prolongation.

## Proposition XVI. Theorem

326. If two circles are tangent, either externally or internally, their centers and the point of tangency are in the same straight line.


Let $A$ and $B$ be the centers of two (5) tangent externally at $C$. To Prove that $A, C$, and $B$ are in the same straight line.
Proof. Draw the radii $A C$ and $B C$ to the point of tangency. It is required to prove that $A C B$ is a straight line.
If it can be shown that $A C B$ is shorter than any other line joining $A$ and $B$, then, by Axiom 14, $A C B$ is a straight line.
I. To show that $A C B$ is shorter than any other line joining $A$ and $B$ and passing through $C$.

Let $A m n B$ be any other line joining $A$ and $B$ and passing through $C$.

$$
A C+C B<A m C+C n B
$$

$A C B<A m n B$.
II. To show that $A C B$ is shorter than any line joining $A$ and $B$ and not passing through $C$.

Join $A$ and $B$ by any line $A D B$ not passing through $C$.
Since the circies touch at $C$ only, any line joining the centers and not passing through $C$ must pass outside of the circles, and must be greater than the sum of the radii.

$$
\therefore A C B<A D B .
$$

$A C B$ is the shortest distance between $A$ and $B$.
$\therefore A C B$ is a straight line.

Let $A$ and $B$ be the centers of two circles tangent internally at $C$.

To Prove that $A, B$, and $C$ are in a straight line.

Proof. At $C$ draw $D E$ tangent to the outer circle. (?)

All the points of $D E$ except $C$ lie entirely without the outer circle, and consequently entirely without the inner circle.
$D E$ touches the inner circle at $C$ only, and is tangent to it also.

Draw the radii $A C$ and $B C$ to the point of tangency. $A C$ and $B C$ are each $\perp$ to $D E$.
$A, B$, and $C$ are in a straight line. (?)
Q.E.D.

327. Corollary. If two circles are tangent, either externally or internally, and if at their point of tangency a line is drawn tangent to one of the circles, it is tangent to the other also.
328. Exercise. Two circles are tangent, and the distance between their centers is 10 in . The radius of one circle is 4 in . What is the radius of the other? (Two solutions.)
329. Exercise. Draw a common tangent to two circles tangent to each other. (§ 327.)

How many common tangents can be drawn to two circles that are tangent internally? Tangent externally? [In the latter case the student is expected at present to draw only one of the three common tangents.]

## Proposition XVII. Theorem

330. a. If two circles are entirely without each other and are not tangent, the distance between their centers is greater than the sum of their radii.
b. If two circles are tangent externally, the distance between their centers is equal to the sum of their radii.
c. If two circles intersect, the distance between their centers is less than the sum and greater than the difference of their radii.
d. If two circles are tangent internally, the distance between their centers is equal to the difference of their radii.
$e$. If one circle lies wholly within another, and is not tangent to it, the distance between their centers is less than the difference of their radii.
$a$
$A B>$ sum of radii.

## b

$A B$ passes through $C$. $A B=$ sum of radii.

## c

Draw the radii $A C$ and $B C$. $A B<$ sum of radii. $A B>$ difference of radii.


## $d$

$A B$ prolonged passes through $C$. $A B=$ difference of radii. (?)

## $e$

$A D$ is the radius of the large $\odot$. $B C$ is the radius of the small $\odot$. What is the difference of the radii? $\Delta B<$ difference of radii.

[If two circles are concentric (i.e. have the same center) the distance between their centers is, of course, zero. This position manifestly comes under Case e.]
331. Corollary. State and prove the converse of each case of Prop. XVII. [Indirect proof.]
332. Exercise. If the centers of two circles are on a certain line, and their circumferences pass through a point of that line, the circles are tangent to each other.
333. Exercise. Two circles whose radii are 6 in . and 8 in . respectively, intersect. Between what limits does the length of the line joining their centers lie?
334. Exercise. With a given radius describe a circle tangent to a given circle at a given point. [Two solutions.]
335. Exercise. What is the locus of the centers of circles having a given radius and tangent to a given circle?
336. Exercise. Describe a circle having a given radius and tangent to two given circles.

Draw the figures for the next three constructions accurately and to scale. $\quad\left[1 \mathrm{ft} .=\frac{1}{2} \mathrm{in}.\right]$
337. Exercise. $A$ and $B$ are the centers of two circles. $A B=7 \mathrm{ft}$., radius of $\odot A=2 \mathrm{ft}$., and radius of $\odot B=3 \mathrm{ft}$. Describe a circle, with radius $2 \frac{1}{2} \mathrm{ft}$., tangent to both.
338. Exercise. $A$ and $B$ are the centers of two circles. $A B=1 \frac{1}{2} \mathrm{ft}$., radius of $\odot A=5 \mathrm{ft}$., and radius of $\odot B=2 \frac{1}{2} \mathrm{ft}$. Describe a circle, with radius $1 \frac{1}{2} \mathrm{ft}$., tangent to both.
339. Exercise. Describe three circles, with radii 1 ft ., 2 ft ., and 3 ft . respectively, and each tangent externally to both of the others.
340. Definition. The ratio of one quantity to another of the same kind is the quotient obtained by dividing the numerical measure of the first by the numerical measure of the second.

The ratio of 5 ft . to 7 ft . is $\frac{5}{7}$. The ratio of 7 lb . to 4 lb . is $\frac{7}{4}$, or $1 \frac{3}{4}$. The ratio of the diagonal of a square to a side is $\sqrt{2}$ (as will be shown).

It is necessary that the two quantities be of the same kind; thus, it is impossible to express the ratio of 5 ft . to 7 lb .

Definitions. A constant is a quantity whose value remains unchanged throughout the same discussion.

A variable is a quantity whose value may undergo an indefinite number of successive changes in the same discussion.

The limit of a variable is a constant, from which the variable may be made to differ by less than any assignable quantity, but which it can never equal.

Suppose a point to move
 from $A$ toward $B$, under the condition that in the first unit of time it shall pass over one half the distance from $A$ to $B$; and in the next equal unit of time, one half of the remaining distance; and in each successive equal unit of time, one half the remaining distance.

It is plain that the point would never reach $B$, as there would always remain half of some distance to be covered.

The distance from $A$ to the moving point is a variable, which is approaching the constant distance $A B$ as a limit. The difference between the variable distance and the constant distance $A B$ can be made less than any assignable quantity, but never can be made equal to zero.

## Proposition XVIII. Theorem

341. If two variables are always equal, and are each approaching a limit, their limits are equal.


Let $A M$ and $C N$ be two variables that are always equal, and let $A B$ and $C D$ be their respective limits.

To Prove $A B=C D$.

Proof. Suppose $A B$ and $C D$ to be unequal, and $A B>C D$.
Lay off $A E=C D$.
Now, by the definition of limit, $A M$ can be made to differ from $A B$ by less than any assignable quantity, and therefore by less than $E B$.

So $A M$ may be greater than $A E$.
By the definition of limit, $C N<C D$. But since $A E=C D$, $C N<A E$.

Now $A M .>A E$ and $C N<A E$; but by hypothesis $A M$ and $C N$ are always equal.

The result being absurd, the supposition that $A B$ and $C D$ are unequal is false.

Therefore $A B$ and $C D$ are equal.
Q.E.D.
342. Definition. Two magnitudes are commensurable when they have a common unit of measure; i.e. when they each contain a third magnitude a whole number of times.

Two magnitudes are incommensurable when they have no common unit of measure; i.e. when there exists no third magnitude, however small, that is contained in each a whole number of times.
343. Definition. A sector is that part of a circle included between two radii and their intercepted arc.


## Proposition XIX. Theorem

344. In the same circle or in equal circles, two angles at the center have the same ratio as their intercepted arcs.


Case I
When the angles are commensurable.
Let $A B C$ and $D E F$ be commensurable angles at the centers of equal ©.

$$
\text { To Prove } \quad \frac{\angle A B C}{\angle D E F}=\frac{A C}{D F} \text {. }
$$

Proof. Since $\triangle A B C$ and $D E F$ are commensurable, they have a common unit of measure.

Let $\angle x$ be this unit, and suppose it is contained in $\angle A B C$ $m$ times, and in $\angle D E F n$ times.

Whence

$$
\begin{equation*}
\frac{\angle A B C}{\angle D E F}=\frac{m}{n} . \tag{1}
\end{equation*}
$$

The small angles into which $\triangle A B C$ and $D E F$ are divided are equal, since each equals $\angle x$.

By $\S 267$, the ares into which $A C$ and $D F$ are divided by the radii are equal.

Since $A C$ is composed of $m$ of these equal arcs, and $D F$ of $n$ of these equal ares,

$$
\begin{equation*}
\frac{A C}{D F}=\frac{m}{n} \tag{2}
\end{equation*}
$$

Apply Axiom 1 to (1) and (2).

$$
\frac{\angle A B C}{\angle D E F}=\frac{A C}{D F} .
$$



Case II
When the angles are incommensurable.
Let $A B C$ and $D E F$ be two incommensurable angles at the centers of equal (®).

To Prove

$$
\frac{\angle A B C}{\angle D E F}=\frac{A C}{D F} .
$$

Proof. Let $\angle D E F$ be divided into a number of equal angles, and let one of these be applied to $\angle A B C$ as a unit of measure.

Since $\angle A B C$ and $D E F$ are incommensurable, $A B C$ will not contain this unit of measure exactly, but a certain number of these angles will extend as far as, say, $A B G$, leaving a remainder $\angle G B C$, smaller than the unit of measure.

Since $\angle A B G$ and $D E F$ are commensurable, (?)

$$
\frac{\angle A B G}{\angle D E F}=\frac{A G}{D F} \text { by Case I. }
$$

By increasing indefinitely the number of parts into which $\angle D E F$ is divided, the parts will become smaller and smaller, and the remainder $\angle G B C$ will also diminish indefinitely.

Now $\frac{\angle A B G}{\angle D E F}$ is evidently a variable, as is also $\frac{A G}{D F}$, and these variables are always equal to each other. (Case I.)

The limit of the variable $\frac{\angle A B G}{\angle D E F}$ is $\frac{\angle A B C}{\angle D E F}$.
The limit of the variable $\frac{A G}{D F}$ is $\frac{A C}{D F}$.
By § 341,

$$
\frac{\angle A B C}{\angle D E F}=\frac{A C}{D F} .
$$

Q.E.D.
345. Corollary. In the same circle, or in equal circles, sectors are to each other as their arcs. [The proof is analogous to that of the Proposition, substituting sector for angle.]
346. Scholium. If two diameters are drawn perpendicular to each other, four right angles are formed at the center of the circle. By § 267, the circumference is divided into four equal arcs called quadrants.

If one of these right angles were divided into any number of equal parts, it could
 be shown by $\S 267$, that the quadrant subtending the right angle is also divided into the same number of equal parts. If, for example, the right angle at the center were divided into four equal parts, the arcs intercepted by the sides of these angles would each be one fourth of a quadrant; and conversely, radii intercepting an arc that is one fourth of a quadrant, form an angle at the center which is one fourth of a right angle.

If any angle as $\angle D O M$ be taken at random and compared with a right angle,

By § 344,

$$
\frac{\angle D O M}{\text { R. A. }}=\frac{D M}{\text { quadrant }}
$$

i.e. the angle $D O M$ is the same part of a right angle that its intercepted arc is of a quadrant.

In this sense an angle at the center is said to be measured by its intercepted arc.
347. Scholium. A quadrant is usually conceived to be divided into ninety equal parts, each part called a degree of arc.

The angle at the center that is measured by a degree of are is called a degree of angle.

The degree is divided into sixty equal parts called minutes, and each minute is again subdivided into sixty equal parts called seconds.

Degrees, minutes, and seconds are designated by the symbols ○, ', " respectively. Thus, 49 degrees, 27 minutes, and 35 seconds, is written $49^{\circ} 27^{\prime} 35^{\prime \prime}$.
348. Exercise. Add $23^{\circ} 46^{\prime} 27^{\prime \prime}$ and $19^{\circ} 21^{\prime} 36^{\prime \prime}$.
349. Exercise. Subtract $15^{\circ} 42^{\prime} 39^{\prime \prime}$ from $93^{\circ} 16^{\prime} 25^{\prime \prime}$.
350. Exercise. How many degrees in an angle of an equilateral triangle ?
351. Exercise. Multiply $13^{\circ} 27^{\prime} 35^{\prime \prime}$ by 3 , and add the product to one half of $12^{\circ} 15^{\prime} 10^{\prime \prime}$.
352. Exercise. How many degrees are there in each angle of an isosceles right-angled triangle?
353. Exercise. Express in degrees, minutes, and seconds the value of one angle of a regular heptagon.
354. Definition. An inscribed angle is an angle whose vertex is in the circumference and whose sides are chords.


The symbol $\sim$ is used for the phrase is measured by. Thus, $\angle A B C \sim \operatorname{arc} A C$ is read: The angle $A B C$ is measured by the are $A C$.


A segment is that part of a circle which is included between an are and its chord.
[ $A C B$ and $A D B$ are both segments.]


An angle is inscribed in a segment when its vertex is in the arc of the segment and its sides terminate in the extremities of that arc.
[ $\angle A B C$ and $\angle A D C$ are inscribed in the segment $A m C$.]


## Proposition XX. Theorem

355. An inscribed angle is measured by one half of the arc intercepted by its sides.

## Case I



Let $\angle A B C$ be an inscribed angle having a diameter for one of its sides.

To Prove $\quad \angle A B C \sim \frac{1}{2} A C$.
Proof. Draw the radius oc.
Prove $\angle 1=2 \angle B$.
$\angle 1 \sim A C$. (§ 346.)
$\therefore \angle B$, which is one half $\angle 1$, is measured by one half the are $A C$.

## Case II

Let $\angle A B C$ be an inscribed angle having the center between its sides.

To Prove $\angle A B C \sim \frac{1}{2} A C$.
Draw the diameter $B D$.

$$
\begin{array}{ll}
\angle A B D \sim \frac{1}{2} A D . & \text { (Case I.) } \\
\angle D B C \sim \frac{1}{2} D C . & \text { (Case I.) }
\end{array}
$$

$\angle A B C$, which is the sum of $\angle A B D$ and $D B C$, is measured by the sum of their measures $\left(\frac{1}{2} A D+\frac{1}{2} D C\right)$, that is,
 by $\frac{1}{2} A C$.
Q.E.D.

## Case III

Let $\angle A B C$ be an inscribed angle having the center without its sides.

To Prove $\angle A B C \sim \frac{1}{2} A C$.
Proof. Draw the diameter $B D$.

$$
\begin{aligned}
& \angle D B C \sim \frac{1}{2} D C .(?) \\
& \angle D B A \sim \frac{1}{2} D A .(?)
\end{aligned}
$$

$\angle A B C$, which is the difference between $\angle D B C$ and $D B A$, is measured
 by the difference of their measures $\left(\frac{1}{2} D C-\frac{1}{2} D A\right)$, that is, by $\frac{1}{2} A C$. Q.E.D.
356. Corollary I. Angles inscriberl in the same segment are equal.
357. Corollary II. Angles inscribed in a semicircle are right angles.
[ $\angle 1 \sim \frac{1}{2} A B C$. But $\frac{1}{2}$ of the $\operatorname{arc} A B C$ is a quadrant. Therefore, by $\S 346, \angle 1$ is a right angle.]

358. Corollary III. An angle inscribed in a segment that is greater than a semicircle is acute.
359. Corollary IV. An angle inscribed in a segment that is less than a semicircle is obtuse.

360. Corollary V. The opposite angles of an inscribed quadrilateral are supplementary.
[Show that the sum of the measures of $\measuredangle 1$ and 2 is a semicircumference, or two quadrants.]

361. Exercise. The sides of an inscribed angle intercept an arc of $50^{\circ}$. What is the size of the angle ?
362. Exercise. How many degrees in an arc intercepted by the sides of an inscribed angle of $40^{\circ}$ ?
363. Exercise. If the opposite angles of a quadrilateral are supplementary, a circle may be circumscribed about it. (Converse of Cor. V.)
[Pass a circumference through three of the vertices. Then show that the fourth vertex can fall neither without nor within the circumference.]
364. Exercise. Show by $\S 355$ that the sum of the angles of a triangle is two right angles.
365. Exercise. Any parallelogram inscribed in a circle is a rectangle.
366. Exercise. Two circles are tangent at $\boldsymbol{A}$. $A D$ and $A E$ are drawn through the extremities of a diameter $B C$.

Prove that $D E$ is also a diameter.
367. Exercise. Prove the preceding exercise when the two circles are tangent externally.

368. Exercise. The angles of an inscribed trapezoid are equal two and two.
369. Exercise. Prove $\S 355$, Case I, using the figure of $\S 322$.
370. Exercise. Two chords $A B$ and $C D$ intersect in a circle at the point $E$. Their extremities are joined by the lines $A C$ and $D B$. Prove the $\mathbb{\triangle} A C E$ and $B D E$ mutually equiangular.
371. Exercise. The sum of one set of alternate angles of an inscribed octagon is equal to the sum of the other set.

$$
\text { SANDERS' GEOM. - } 8
$$

## Proposition XXI. Theorem

372. An angle formed by two intersecting chords is measured by one half the sum of the arc intercepted by the sides of the angle and the arc intercepted by the sides of its vertical angle.

Let $\angle 1$ be an angle formed by the intersecting chords $A B$ and $C D$.

To Prove $\angle 1 \sim \frac{1}{2}(A D+B C)$.
Proof. Draw the chord $A C$.

$$
\begin{aligned}
& \angle 1=\angle 2+\angle 3 . \\
& \angle 2 \sim \frac{1}{2} B C . \\
& \angle 3 \sim \frac{1}{2} A D .
\end{aligned}
$$

Since $\angle 1$ is the sum of $\angle 2$ and 3 , it is measured by the sum of their measures,


$$
\therefore \angle 1 \sim \frac{1}{2}(A D+B C) .
$$

Q.E.D.
373. Exercise. Derive the measure of $\angle 4$ in the above figure.
374. Exercise. If in the above figure the arc $B C$ contains $124^{\circ}$ and the arc $A D$ contains $172^{\circ}$, how many degrees in $\angle 1$ ?
375. Exercise. Prove $\angle 1 \sim \frac{1}{2}(A C+B D)$, using this figure.
[ $D E$ is drawn parallel to $A B$.]

376. Exercise. If angle 1 (figure § 375) contains $85^{\circ}$ and arc $B C$ contains $55^{\circ}$, how many degrees in the arc $A D$ ?
377. Exercise. Four points $A, B, C$, and $D$ are so taken in a circumference that the arcs $A B, B C, C D$, and $D A$ form a geometrical progression ( $A B=2 B C, B C=2 C D$, etc.). Find the values of each of the angles formed by the intersection of the chords $A C$ and $B D$.

## Proposition XXII. Theorem

378. An angle formed by a chord meeting a tangent at the point of tangency is measured by one half the arc intercepted by its sides.

Let $\angle 1$ be an angle formed by the chord $A B$ and the tangent $C D$.

To Prove $\angle 1 \sim \frac{1}{2} A M B$.
Proof. Draw the diameter $E B$ to the point of tangency.

$$
\begin{equation*}
\angle E B C=1 \text { R.A. } \tag{?}
\end{equation*}
$$

A right angle is measured by a quadrant.
$\frac{1}{2}$ arc $E M B$ is a quadrant. (?)


$$
\begin{align*}
& \angle E B C \sim \frac{1}{2} E M B . \\
& \angle E B A \sim \frac{1}{2} A E . \tag{?}
\end{align*}
$$

$\angle 1$, which is the difference between $\angle E B C$ and $\angle E B A$, is measured by the difference of their measures.

$$
\begin{align*}
& \angle 1 \sim \frac{1}{2} E M B-\frac{1}{2} E A . \\
& \angle 1 \sim \frac{1}{2} A M B .
\end{align*}
$$

Similarly, it may be shown that $\angle A B D$, which is the sum of R.A. $E B D$ and $\angle E B A$, is measured by the sum of their measures, which is $\frac{1}{2}$ arc $A E B$.
379. Exercise. A chord that divides a circumference into arcs containing $80^{\circ}$ and $280^{\circ}$, respectively, is met at one extremity by a tangent. What are the angles formed by the lines?
380. Exercise. A chord is met at one extremity by a tangent, making with it an angle of $55^{\circ}$. Into what arcs does the chord divide the circumference?
381. Exercise. If two circles are tangent either externally or internally, and through the point of contact two lines are drawn meeting one circumference in $B$ and $D$ and the other in $E$ and $C, B D$ and $E C$ are parallel.

[Draw the common tangent $m n$. Show that $\angle 3$ and $\angle 2$ each equals $\angle 1$.
382. Exercise. If tangents be drawn to the two circles at the points $B$ and $C$ (see the figures of the preceding exercise), prove they are parallel.

## Proposition XXIII. Theorem

383. An angle formed by two secants meeting without the circle is measured by one half the difference of the arcs intercepted by its sides.


Let $\angle 1$ be an angle formed by the two secants $A B$ and $C B$.
To Prove

$$
\angle 1 \sim \frac{1}{2}(A C-D E)
$$

Proof. Draw the chord $C E$.

$$
\begin{equation*}
\angle 1=\angle 2-\angle 3 \tag{?}
\end{equation*}
$$

$\angle 1$ is therefore measured by the difference of the measures of $\angle S 2$ and 3 , i.e. by $\frac{1}{2}(A C-D E)$.
Q.E.D.
384. Exercise. If the secants $A B$ and $C B$ in the figure of $\S 383$ intercept ares of $70^{\circ}$ and $42^{\circ}$, what is the size of $\angle B$ ?
385. Exercise. Prove § 383, using this figure. [ $D F$ is $\|$ to $B C$.]


## Proposition XXIV. Theorem

386. An angle formed by a tangent and a secant meeting without the circle is measured by one half the difference of the arcs intercepted by its sides.


Let $\angle 1$ be an angle formed by the tangent $A B$ and the secant $C B$.

To Prove $\quad \angle 1 \sim \frac{1}{2}(A C-A D)$.
Proof. Similar to that of $\S 383$.
Exercise. Prove § 386, using this figure. [ $E A$ is $\|$ to $B C$.]
387. Exercise. A tångent and a secant meeting without a circle form an angle of $35^{\circ}$. One of the arcs intercepted by them is $15^{\circ}$. How many degrees in
 the other?
388. A triangle $A B C$ is inscribed in a circle. The angle $B$ is equal to $50^{\circ}$, and the angle $C$ is equal to $60^{\circ}$. What angle does a tangent at $A$ make with $B C$ produced to meet it?

## Proposition XXV. Theorem

389. An angle formed by two tangents is measured by one half the difference of the arcs intercepted by its sides.


Let $\angle 1$ be an angle formed by the tangents $A B$ and $C B$.
To Prove

$$
\angle 1 \sim \frac{1}{2}(A N C-A M C) .
$$

Proof. Similar to that of §§ 383 and 386 .

Exercise. Prove § 389, using this figure.
[ $A D$ is drawn parallel to $B C$.]


Exercise. Prove § 389, using this figure.
[ $B D$ is any secant drawn from $B$.]

390. Exercise. The angle formed by two tangents is $74^{\circ}$. How many degrees in each of the two arcs intercepted by them?

## Proposition XXVI. Problem

391. Through a given point to draw a tangent to a given circle.
Case I


When the given point is on the circumference.
Let $A$ be the given point on the circumference of the circie whose center is 0 .

Required to draw a tangent to the circle through $A$.
See § 307 .

## Case II

When the given point is without the circumference.

Let $A$ be the given point without the circle whose center is 0 .

Required to draw a tangent to the circle through $A$.

Draw OA.


On $O A$ as a diameter, describe a circumference, cutting the given circumference at $B$ and $C$.

Draw $A B$ and $A C$.
$A B$ and $A C$ are the required tangents.
Draw the radii $O B$ and $O C$.
$\angle 1$ is a right angle. (?)
$A B$ is tangent to the circle. (?)
Similarly, $A C$ is tangent to the circle,

## Case II. Second Method

392. With $A$ as center and $A O$ as a radius, describe the arc $D E$.

With $O$ as a center and the diameter of the given circle as a radius, describe an arc cutting $D E$ at $B$.

Draw $O B$ intersecting the given circle at $C$.

Draw $A C$. Then $A C$ is the required tangent.
[The proof is left for
 the student.]
393. Corollary. The two tangents drawn from a point to a circle are equal; and the line joining the point with the center of the circle bisects the angle between the tangents, and also bisects the chord of contact ( $B C$ in the figure to first method) at right angles.
394. Scholium. When the given point is without the circle, two tangents can be drawn; when it is on the circumference, one, and when it is within the circle, none.
395. Definition. A polygon is circumscribed about a circle when each of its sides is tangent to the circle. In this case the circle is said to be inscribed in the polygon.
396. Exercise. If a quadrilateral is circumscribed about a circle, the sum of one pair of opposite sides is equal to the sum of the other pair.

Suggestion. Use § 393.
397. Exercise. From the point $A$ two tangents $A B$ and $A C$ are drawn to the circle whose center is $O$.

At any point $D$ on the included arc $B C$, a third tangent $F E$ is drawn.

I'rove that the perimeter of the $\triangle A E F$ is constant, and equal to the sum of the tangents $A B$ and $A C$.

398. Exercise. To inscribe a circle in a given triangle.

Bisect two of the angles. Show that their point of meeting is equally distant from the three sides.
$\therefore$ the three perpendiculars 01 , 02 , and 03 are equal.

With $O$ as a center and with 01 as a radius, describe the required
 circle.

## Proposition XXVII. Problem

399. On a given line to construct a segment that shall contain a given angle.


Let $A B$ be the given line and $\angle M$ the given angle.
Required to construct on $A B$ a segment that shall contain $\angle M$.
Draw $C D$ through $B$, making $\angle 1=\angle M$.
Erect $B E \perp$ to $C D$ and bisect $A B$ by the $\perp F G$.
Prove that $B E$ and $F G$ meet at some point $O$.
Show that $O$ is equally distant from $A$ and $B$.
With $O$ as a center describe a circle passing through $A$ and $B$.

$$
\begin{equation*}
D C \text { is tangent to this circle. (?) } \quad \angle 1 \sim \frac{1}{2} A B \tag{?}
\end{equation*}
$$

Inscribe any angle as $\angle A S B$ in the segment $A R B$.

$$
\begin{equation*}
\angle A S B \sim \frac{1}{2} A B . \quad \text { (?) } \quad \angle A S B=\angle 1=\angle M . \tag{?}
\end{equation*}
$$

The segment $A R B$ is the required segment, since any angle inscribed in it is equal to $\angle M$.
400. Exercise. On a given line construct a segment that shall contain an angle of $135^{\circ}$.
401. Exercise. What is the locus of the vertices of the vertical angles of the triangles having a common base and equal vertical angles?
402. Exercise. Construct a triangle, having given the base, the vertical angle, and the altitude.
403. Exercise. Construct a triangle, having given the base, the vertical angle, and the medial line to the base.

## EXERCISES

1. Two secants, $A B$ and $A C$, are drawn to the circle, and $A B$ passes through the center.

Prove $A B>A C$.

2. One angle of an inscribed triangle is $42^{\circ}$, and one of its sides subtends an arc of $110^{\circ}$.

Find the angles of the triangle.
3. Two chords drawn perpendicular to a third chord at its extremities are equal. [Show that $B C$ and $A D$ are diameters, and that $\triangle A B C$ and $A D B$ are equal.]

4. $A B$ and $C D$ are two chords intersecting at $E$, and $C E=B E$.

Prove

$$
A B=C D
$$


5. $A B C$ is a triangle inscribed in the circle, whose center is $O$.
$O D$ is drawn perpendicular to $A C$.
Prove $\quad \angle D O C=\angle B$.

6. What is the locus of the centers of circles tangent to a line at a given point?
7. $P$ is any point within the circle whose center is $O$. Prove that $P A$ is the shortest line and $P B$ the longest line from $P$ to the circumference.
8. If a circle is described on the radius of another circle as a diameter, any chord of the greater circle drawn from the point of contact is bisected by the circumference of the smaller circle.

9. If from a point on a circumference a number of chords are drawn, find the locus of their middle points. (Ex. 8.)
10. From two points on opposite sides of a given line, draw two lines meeting in the given line, and making a given angle with each other. (§ 399.)
11. Work Ex. 10, taking the two points on the same side of the given line.

When is the problem impossible?
12. One of the equal sides of an isosceles triangle is the diameter of a circle.

Prove that the circumference bisects the base.
[Show that $B D$ is $\perp$ to $A C$.]
13. What is the locus of the centers of circles having a given radius and tangent to a given line?

14. Describe a circle having a given radius and tangent to two nonparallel lines.

How many circles can be drawn ?
15. What is the locus of the centers of circles having a given radius and tangent to a given circle?
16. Describe a circle having a given radius and tangent to two given circles.
17. Describe a circle having a given radius and tangent to a given line and also to a given circle.
18. The base $A B$ of the isosceles triangle $A B C$ is a chord of a circle, the circumference of which intersects the two equal sides at $D$ and $E$.

Prove
$C D=C E$.
[ $\angle A$ and $\angle B$ are measured by equal arcs.]

19. If an isosceles triangle is inscribed in a circle, prove that the bisector of the vertical angle passes through the center of the circle.

20. The altitude of an equilateral triangle is one and a half times the radius of the circumscribed circle.
[Use the preceding Exercise and § 245.]

21. If a triangle is circumscribed about a circle, the bisectors of its angles pass through the center of the circle. [§230.]

22. The altitude of an equilateral triangle is three times the radius of the inscribed circle.
[Use Ex. 21 and § 245.]
23. The angle between two tangents to a circle is $30^{\circ}$. Find the number of degrees in each of the intercepted arcs.
24. From a given point draw a line cutting a circle and making the chord equal to a given line.
[The chord $R S$ is equal to the given line. The dotted circle is tangent to $R S$.]

25. Find the angle formed by two tangents to a circle, drawn from a point the distance of which from the center of the circle is equal to the diameter.

26. With a given radius describe a circle that shall pass through a given point and be tangent to a given line.
27. With a given radius describe a circle that shall pass through a given point and be tangent to a given circle.
28. From a point without a circle draw the shortest line to the circumference.
29. $A B C$ is an inscribed equilateral triangle. $D E$ joins the middle points of the arcs $B C$ and $C A$. Prove that $D E$ is trisected by the sides of the triangle.

30. Find a point within a triangle such that the angles formed by drawing lines from it to the three vertices of the triangle shall be equal to each other. (§ 399.)

31. A median $B D$ is drawn from angle $B$ in the triangle $A B C$. Show that angle $B$ is a right angle when $B D$ is equal to one half of the base $A C$, an acute angle when $B D$ is greater than one half of $A C$, and an obtuse angle when $B D$ is less than one half of $A C$.

32. In any right-angled triangle, the sum of the two legs is equal to the sum of the hypotenuse and the diameter of the inscribed circle.
[Tangents drawn from a point to a $\odot$ are equal.]

33. Tangents $C A$ and $D B$ drawn at the extremities of the diameter $A B$ meet a third tangent $C D$ at $C$ and $D$. Draw $C O$ and $D O$.

Prove $C D=C A+D B$ and $\angle C O D=1 \mathrm{R}$. A.

34. If from one point of intersection of two circles two diameters are drawn, the other extremities of the diameters and the other point of intersection of the circles are in a straight line.
[Draw $D E$ and EF. Show that $\angle D E C+\angle C E F=2$ R.A.'s.]

35. Through the points of intersection of two circles two parallel secants are drawn, terminating in the curves. Prove the secants equal.
[Show that the quadrilateral $E C D F$ has its opposite angles equal, each to each.]

36. In a given circle draw a chord the length of which shall be twice its distance from the center.
37. Three equal circles are tangent to each other. Through their points of contact three common tangents are drawn.

Prove. 1. The three tangents meet in a common point.
2. The point of meeting is equally distant from the three points of contact.
38. The sum of the angles subtended at the center of a circle by two opposite sides of a circumscribed quadrilateral is equal to two right angles.
[To prove $\angle A O B+\angle C O D=2$ R.A.'s.]
39. Find the locus of points such that tangents drawn from them to a given circle shall equal a given
 line.
40. Inscribe a circle in a given quadrant.
[ $O D$ bisects $\angle A O B . D E$ is $\perp$ to $O B . D F$ bisects $\angle O D E$.]
41. If the tangents to a circle at the four vertices of an inscribed rectangle (not a square) be prolonged, they form a rhombus.

42. From any point (not the center) within a circle only two equal straight lines can be drawn to the circumference.
43. Given a circle and a point within or without (not the center), using the given point as a center to describe a circle, the circumference of which shall bisect the circumference of the given circle.
44. In a given circle inscribe a triangle, the angles of which are respectively equal to the angles of a given triangle.
[Draw a tangent to the $\odot$, and from the point of contact draw two chords, making the three $\leftarrow$ at the point of contact equal to the $\leftarrow$ of the $\Delta$.]
45. Circumscribe about a given circle a triangle, the angles of which are respectively equal to the angles of a given triangle.
[Inscribe a $\odot$ in the given $\triangle$.]
46. Of all triangles having a common base and an equal altitude, the isosceles triangle has the greatest vertical angle.
47. Given the base, the vertical angle, and the foot of the altitude, construct the triangle.

48. If the sum of one pair of opposite sides of a quadrilateral is equal to the sum of the other pair, a circle can be inscribed in the quadrilateral.
[Describe a $\odot$ tangent to three of the sides. Show, by § 396 , that the fourth side can neither cut this circle nor lie without it.]
49. Any point on the circumference circumscribing an equilateral triangle is joined with the three vertices.

Prove that the greatest of the three lines is equal to the sum of the other two.
[Lay off $D E=D C$. Prove $\triangle A E C$ and $B D C$ equal in all respects.]
50. Two equal circles intersect at $A$ and $B$. On the common chord $A B$ as a diameter a third circle is described. Through $A$ any line $C D$ is drawn terminating in the circumferences and intersecting the third circumference at $E$.

Prove that $C D$ is bisected at $E$.
[Show that $\triangle B C D$ is isosceles, and that $B E$ is $\perp$ to the base $C D$.]
51. Two equal circles intersect at $A$ and $B$. With $B$ as a center, any circle is described cutting the two equal circumferences at $C$ and $D$.

Prove that $A, C$, and $D$ are in a straight line.
[Draw $A C . \angle B A C \sim \frac{1}{2} B C$. But $B C=B D$. Draw $A D . \angle B A D \sim \frac{1}{2} B D$. $\therefore \angle B A C=\angle B A D$.]
52. If two circles intersect, the longest common secant that can be drawn through either point of intersection is parallel to the line joining their centers.
rShow that $C D=2 A B$, and that any other secani inrough $E$ is less than $2 A B$.]

## BOOK III

404. Definitions. A proportion is the equality of ratios. $\frac{a}{b}=\frac{c}{d}$ is a proportion, and expresses the fact that the ratio of $a$ to $b$ is equal to the ratio of $c$ to $d$. The proportion $\frac{a}{b}=\frac{c}{d}$ may also be written $a: b=c: d$ and $a: b:: c: d$.

In the proportion $\frac{a}{b}=\frac{c}{d}$, the first and fourth terms ( $a$ and $d$ ) are called the extremes, and the second and third terms ( $b$ and $c)$ are called the means. The first and third terms ( $a$ and $c$ ) are the antecedents, and the second and fourth terms ( $b$ and $d$ ) are the consequents.

In the proportion $\frac{a}{b}=\frac{c}{d}$, $d$ is called a fourth proportional to the three quantities $a, b$, and $c$.

If the means of a proportion are equal, either mean is a mean proportional or a geometrical mean between the extremes. Thus in the proportion $\frac{a}{b}=\frac{b}{c}, b$ is a mean proportional between $a$ and $c$. In this same proportion, $c$ is called a third proportional to $a$ and $b$.

## Proposition I. Theorem

405. In a proportion, the product of the extremes is equal to the product of the means.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} . \tag{1}
\end{equation*}
$$

To Prove

$$
a d=b c .
$$

Proof. [Clear fractions in (1) by multiplying both members by $b d$.]
406. Corollary. The mean proportional between two quantities is equal to the square root of their product.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{b}{c} \tag{1}
\end{equation*}
$$

To Prove
$b=\sqrt{a c}$.
Proof. [Apply $\S 405$ to (1), and extract the square root of both members.]
Q.E.D.
407. Exercise. Find $x$ in $\frac{7}{12}=\frac{14}{x}$.
408. Exercise. What is the geometrical mean or mean proportional between 9 and 4 ?
409. Exercise. 12 is the geometrical mean between two numbers. One of them is 16 . What is the other?
410. Exercise. Find the mean proportional between $a^{2}+2 a b+b^{2}$ and $a^{2}-2 a b+b^{2}$.

Proposition II. Theorem. (Converse of Prop. I.)
411. If the product of two factors is equal to the product of two other factors, the factors of either product may be made the means, and the factors of the other product the extremes of a proportion.

Let

$$
\begin{equation*}
a d=b c \tag{1}
\end{equation*}
$$

To Prove

$$
\frac{a}{b}=\frac{c}{d}
$$

Q.E.D.
412. Exercise. From the equation $a d=b c$, derive the following eight proportions.

$$
\begin{array}{llll}
\frac{a}{b}=\frac{c}{d}, & \frac{a}{c}=\frac{b}{d}, & \frac{c}{d}=\frac{a}{b}, & \frac{c}{a}=\frac{d}{b}, \\
\frac{b}{a}=\frac{d}{c}, & \frac{b}{d}=\frac{a}{c}, & \frac{d}{c}=\frac{b}{a}, & \frac{d}{b}=\frac{c}{a},
\end{array}
$$

413. Exercise. Form different proportions from

$$
x y=a^{2}-b^{2} .
$$

414. Exercise. Form a proportion from

$$
a^{2}+2 a b+b^{2}=m y .
$$

What is $a+b$ called in this proportion?
415. Exercise. Form a proportion from $a^{3}+b^{3}=x^{2}-y^{2}$.
416. Definition. A proportion is arranged by alternation when antecedent is compared with antecedent and consequent with consequent.

If the proportion $\frac{a}{b}=\frac{c}{d}$ is arranged by alternation, it becomes $\frac{a}{c}=\frac{b}{d}$.

## Proposition III. Theorem.

417. If four quantities are in proportion, they are in proportion by alternation.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} \tag{1}
\end{equation*}
$$

To Prove

$$
\frac{a}{c}=\frac{b}{d} .
$$

Proof. Apply § 405 to (1) $a d=b c$.

$$
\begin{equation*}
\text { Apply § } 411 \text { to (2) } \quad \frac{a}{c}=\frac{b}{d} \tag{2}
\end{equation*}
$$

418. Exercise. Write a proportion that will not be altered when arranged by alternation.
419. Definition. A proportion is arranged by inversion when the antecedents are made consequents, and the consequents are made antecedents.

If the proportion $\frac{a}{b}=\frac{c}{d}$ is arranged by inversion, it becomes $\frac{b}{a}=\frac{d}{c}$.

## Proposition IV. Theorem

420. If four quantities are in proportion, they are in proportion by inversion.

Let

$$
\begin{align*}
& \frac{a}{b}=\frac{c}{d} .  \tag{1}\\
& \frac{b}{a}=\frac{d}{c} .
\end{align*}
$$

To Prove

$$
\begin{equation*}
\text { Apply § } 411 \text { to (2) } \frac{b}{a}=\frac{d}{c} . \tag{2}
\end{equation*}
$$

421. Definition. A proportion is arranged by composition when the sum of antecedent and consequent is compared with either antecedent or consequent.

The proportion $\frac{a}{b}=\frac{c}{d}$ arranged by composition becomes

$$
\frac{a+b}{a^{n}}=\frac{c+d}{c} \text { or } \frac{a+b}{b}=\frac{c+d}{d} .
$$

## Proposition V. Theorem

422. If four quantities are in proportion, they are in proportion by composition.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} . \tag{1}
\end{equation*}
$$

To Prove

$$
\frac{a+b}{a}=\frac{c+d}{c} .
$$

Proof. Apply § 405 to (1)

$$
\begin{equation*}
a d=b c . \tag{2}
\end{equation*}
$$

Add $a c$ to both members of (2)

$$
\begin{align*}
a c+a d & =a c+b c  \tag{3}\\
a(c+d) & =c(a+b) \tag{4}
\end{align*}
$$

Apply § 411 to (4)

$$
\frac{a+b}{a}=\frac{c+d}{c}
$$

423. Note. The student may discover for himself the steps of the solution of this and the succeeding propositions by studying the analysis of the theorem.

In the analysis we assume the conclusion (the part to be proved) to be a true equation. Working upon this conclusion by algebraic transformations, we produce the hypothesis.

The solution of the theorem begins with the last step of the analysis and reverses the work, step by step, until the first step or conclusion is reached.

In § 422 we have given $\quad \frac{a}{b}=\frac{c}{d}$.
We are to prove

$$
\begin{equation*}
\frac{a+b}{a}=\frac{c+d}{c} . \tag{1}
\end{equation*}
$$

Analysis
Clear fractions in (2) $\quad c(a+b)=a(c+d)$.
Expand (3)

$$
\begin{equation*}
a c+b c=a c+a d \tag{3}
\end{equation*}
$$

Subtract ac from both members of (4).

$$
\begin{equation*}
b c=a d \tag{5}
\end{equation*}
$$

Apply § 411 to (5)

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} . \tag{6}
\end{equation*}
$$

Let the student show that the solution of Prop. V. as given on the preceding page may be obtained by reversing the steps of this analysis.
424. Exercise. Let $\quad \frac{a}{b}=\frac{c}{d}$.

To Prove

$$
\frac{a+b}{b}=\frac{c+d}{d} .
$$

425. Exercise. Arrange $\frac{a-b}{b}=\frac{c-d}{d}$ by composition.
426. Exercise. Arrange $\frac{2 x-4}{4}=\frac{8-x}{x}$ by composition and then find the value of $x$.
427. Definition. A proportion is arranged by division when the difference between antecedent and consequent is compared with either antecedent or consequent.

The proportion $\frac{a}{b}=\frac{c}{d}$ arranged by division becomes $\frac{a-b}{a}=\frac{c-d}{c}$ or $\frac{a-b}{b}=\frac{c-d}{d}$ or $\frac{b-a}{a}=\frac{d-c}{c}$ or $\frac{b-a}{b}=\frac{d-c}{d}$.

## Proposition VI. Theorem

428. If four quantities are in proportion, they are in proportion by division.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} . \tag{1}
\end{equation*}
$$

To Prove

$$
\begin{equation*}
\frac{a-b}{a}=\frac{c-d}{c} . \tag{2}
\end{equation*}
$$

Proof. [Analysis. Clear fractions in (2)

$$
\begin{equation*}
c(a-b)=a(c-d) . \tag{3}
\end{equation*}
$$

Expand (3)

$$
\begin{equation*}
a c-b c=a c-a d . \tag{4}
\end{equation*}
$$

Subtract $a c$ from both members of (4)

$$
\begin{equation*}
-b c=-a d \tag{5}
\end{equation*}
$$

Divide both members of (5) by -1

$$
\begin{equation*}
b c=a d . \tag{6}
\end{equation*}
$$

Apply $\S 411$ to (6) $\left.\quad \frac{a}{b}=\frac{c}{d}\right]$.
Q.E.D.

Let the student derive the solution of Prop. VI. from the analysis.
429. Exercise. If $\frac{a+b-c}{c+d+a}=\frac{a-c}{2 d}$,
then

$$
\frac{b}{a-c}=\frac{a+\mathrm{c}-d}{2 d} .
$$

430. Definition. A proportion is arranged by composition and division, when the sum of antecedent and consequent is compared with the difference of antecedent and consequent.

The proportion $\frac{a}{b}=\frac{c}{d}$, arranged by composition and division, becomes

$$
\frac{a+b}{a-b}=\frac{c+d}{c-d}
$$

## Proposition VII. Theorem

431. If four quantities are in proportion, they are in proportion by composition and division.

Let

$$
\frac{a}{b}=\frac{c}{d} .
$$

To Prove

$$
\frac{a+b}{a-b}=\frac{c+d}{c-d}
$$

Proof. [Analyze and solve.]
432. Exercise. If

$$
\frac{a}{b}=\frac{c}{d},
$$

$$
\text { prove } \frac{c-a}{a+c}=\frac{d-b}{b+d}
$$

## Proposition VIII. Theorem

433. If four quantities are in proportion, like powers of those quantities are proportional.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} . \tag{1}
\end{equation*}
$$

To Prove

$$
\frac{a^{n}}{b^{n}}=\frac{c^{n}}{d^{n}} .
$$

Proof. [Raise both members of (1) to the $n$th power.] Q.E.D.
434. Corollary. If four quantities are in proportion, like roots of those quantities are proportional.
435. Exercise. If

$$
\frac{a}{b}=\frac{c}{d},
$$

$$
\text { show that } \frac{a^{2}}{c^{2}}=\frac{a^{2}-b^{2}}{c^{2}-d^{2}} .
$$

436. Exercise. If

$$
\frac{a}{b}=\frac{c}{d},
$$

$$
\text { show that } \frac{a^{3}+b^{3}}{a^{3}-b^{8}}=\frac{c^{8}+d^{3}}{c^{3}-d^{3}} .
$$

Proposition IX. Theorem
437. If four quantities are in proportion, equimultiples of the untecedents are proportional to equimultiples of the consequents.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} . \tag{1}
\end{equation*}
$$

To Prove

$$
\frac{a x}{b y}=\frac{c x}{d y}
$$

Proof. Multiply both members of (1) by $\frac{x}{y}$.
Q.E.D.
438. Exercise. Let

$$
\frac{a}{b}=\frac{c}{d} .
$$

To Prove

$$
\frac{a c}{b d}=\frac{c^{2}}{d^{2}}
$$

439. Exercise. Let $\quad \frac{a}{b}=\frac{c}{d}$.

To Prove

$$
\frac{a b+c d}{a b-c d}=\frac{a^{2}+c^{2}}{a^{2}-c^{2}} .
$$

440. Exercise. Let

$$
\frac{a}{b}=\frac{b}{c} .
$$

To Prove

$$
\frac{a+c}{a-c}=\frac{b^{2}+c^{2}}{b^{2}-c^{2}}
$$

441. Exercise. Let

$$
\frac{a}{b}=\frac{c}{d}
$$

To Prove

$$
\frac{m a^{2}+n c^{2}}{m b^{2}+n d^{2}}=\frac{a^{2}}{b^{2}}
$$

442. Definition. A continued proportion is a proportion made up of several ratios that are successively equal to each other. Example:

$$
\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{h} \text {, etc. }
$$

## Proposition X. Theorem

443. In a continued proportion the sum of the antecedents is to the sum of the consequents as any antecedent is to its consequent.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{h} . \tag{1}
\end{equation*}
$$

To Prove

$$
\frac{a+c+e+g}{b+d+f+h}=\frac{e}{f}
$$

Proof

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\frac{a}{b}=\frac{e}{f} & (2) \\
\frac{c}{d}=\frac{e}{f} & (3) \\
\frac{e}{f}=\frac{e}{f} & (4) \\
\frac{g}{h}=\frac{e}{f} & (5)
\end{array}\right\} \text { From (1). } \\
\left.\begin{array}{ll}
a f=b e & (6) \\
c f=d e & (7) \\
e f=f e & (8) \\
g f=h e & (9)
\end{array}\right\} \text { From (2), (3), (4), and (5). }
\end{array}
$$

Add (6), (7), (8), and (9), and factor.

$$
\begin{equation*}
f(a+c+e+g)=e(b+d+f+h) . \tag{10}
\end{equation*}
$$

Apply § 411 to (10).

$$
\frac{a+c+e+g}{b+d+f+h}=\frac{e}{f} .
$$

444. Exercise. If

$$
\frac{x}{a}=\frac{y}{b}=\frac{z}{c},
$$

then will

$$
\frac{x+y}{a+b}=\frac{y+z}{b+c}=\frac{z+x}{c+a} .
$$

445. Exercise. Let $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{h}$.

To Prove

$$
\frac{a-c+e-g}{b-d+f-h}=\frac{c}{d} .
$$

## Proposition XI. Theorem

446. If the terms of one proportion are multiplied by the corresponding terms' of another proportion, the products are proportional.

Let

$$
\frac{a}{b}=\frac{c}{d} \quad \text { (1) } \quad \text { and } \quad \frac{x}{y}=\frac{m}{n}
$$

To Prove $\quad \frac{a x}{b y}=\frac{c m}{d n}$.
Proof. [The proof is left to the student.]
447. Exercise. If the terms of one proportion are divided by the corresponding terms of another proportion, the quotients are proportional.
448. Exercise. If $\quad \frac{a}{b}=\frac{c}{d}$,

$$
\text { show that } \frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}=\frac{c^{2}+c d+d^{2}}{c^{2}-c d+d^{2}} .
$$

## Proposition XII. Theorem

449. If a number of parallels intercept equal distances on one of two transversals, they will intercept equal distances on the other also.


Let $A B, C D, E F$, and $G I I$ be a number of parallels cut by the transversals $x y$ and $z r$, making

$$
A C=C E=E G .
$$

To Prove

$$
B D=D F=F H .
$$

Proof. [Proof similar to that of § 240.]
Q.E.D.
450. Corollary I. A line drawn from the middle point of one of the inclined sides of a trapezoid parallel to either base, bisects the other inclined side.

451. Corollary II. A line joining the middle points of the inclined sides of a trapezoid is parallel to the bases.

Suggestion. Draw $F G \| A B$. Prove $\triangle C F n=\triangle G D n$ whence $F n=n G$. Prove $F G=A B$ and $n G=A m$. Prove $A m n G$ a parallelogram.
452. Exercise. A line joining the middle points of two opposite sides of a parallelogram, is parallel to the two remaining sides and passes through the point of intersection of the diagonals.
453. Exercise. A line joining the middle points of the inclined sides of a trapezoid is equal to one half the sum of the parallel sides.
[In the figure of $\S 451$ show $m n=\frac{1}{2}(B F$ $+A G)$ and $C F=G D]$.
454. Exercise. If from the extremities of a diameter perpendiculars are drawn to a line cutting the circle, the parts intercepted between the feet of the perpendiculars and the curve are equal.
[To prove $C E=F D$.]

455. Exercise. If perpendiculars are drawn from the extremities of a diameter of a circle to a line lying without the circle, the feet of these perpendiculars are equally distant from the center of the circle.
456. Exercise. A line joining the middle points of the inclined sides of a trapezoid bisects the diagonals of the trapezoid, and also bisects any line whose extremities are in the parallel bases.
457. Exercise. The inclined sides of a trapezoid are 9 ft . and 15 ft . respectively. If on the shorter of these sides a point is taken 3 ft . from one end, and through that point a parallel to either base is drawn, where does the parallel intersect the other inclined side?

Proposition XIII. Theorem.
458. $A$ line drawn parallel to one side of a triangle divides the other two sides proportionally.


Let $D E$ be parallel to $B C$.

To Prove

$$
\frac{A D}{D B}=\frac{A E}{E C} .
$$

Proof. Case I. When the segments $A D$ and $D B$ are commensurable.

Let the common unit of measure be contained in $A D \mathrm{~m}$ times, and in $D B n$ times.

Whence

$$
\begin{equation*}
\frac{A D}{D B}=\frac{m}{n} . \tag{1}
\end{equation*}
$$

Divide $A D$ into $m$ equal parts, each equal to the unit of measure, and $D B$ into $n$ equal parts, and through the points of division draw parallels to $B C$.

These parallels intercept equal distances on $A C$ (?). Consequently $A E$ is divided into $m$ equal parts, and $E C$ into $n$ equal parts.

Whence

$$
\begin{equation*}
\frac{A E}{E C}=\frac{m}{n} . \tag{2}
\end{equation*}
$$

Compare (1) and (2).

$$
\frac{A D}{D B}=\frac{A E}{E C} .
$$

Case II. When the segments $A D$ and $D B$ are incommensurable.


Let $D E$ be parallel to $B C$.

## To Prove

$$
\frac{A D}{D B}=\frac{A E}{E C} .
$$

Proof. Divide $A D$ into a number of equal parts, and let one of these parts be applied to $D B$ as a unit of measure.

Since $A D$ and $D B$ are incommensurable, this unit of measure will not be exactly contained in $D B$, but there will remain over some distance $M B$ smaller than the unit of measure.

Draw $M N$ parallel to $B C$.
Since $A D$ and $D M$ are commensurable (why?),

$$
\frac{A D}{D M}=\frac{A E}{E N} \text { by Case I. }
$$

This proportion is true, no matter how many equal divisions are made in $A D$.

If the number of divisions is increased, the size of each division is diminished, and $M B$ is also diminished.

As the number of divisions is increased, the ratio $\frac{A D}{D M}$ is approaching $\frac{A D}{D B}$ as its limit, and the ratio $\frac{A E}{E N}$ is approaching $\frac{A E}{E C}$ as its limit.

Since the variables $\frac{A D}{D M}$ and $\frac{A E}{E N}$ are always equal, and are each approaching a limit, their limits are equal (?).

Therefore

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

459. Corollary I. De is parallel to $B C$.

To Prove $\frac{A D}{A B}=\frac{A E}{A C}$ and $\frac{D B}{A B}=\frac{E C}{A C}$.
Suggestion. Apply § 422 to $\frac{A D}{D B}=\frac{A E}{E C}$.

460. Corollary II. If two lines are cut by any number of parallels, they are divided proportionally.

Case I. When the two lines are parallel.

To Prove $\frac{M R}{N S}=\frac{R W}{S X}=\frac{W Y}{X Z}$.


Case II. When the two lines are oblique to each other.

To Prove $\frac{A M}{A N}=\frac{M R}{N S}=\frac{R W}{S X}=\frac{W Y}{X Z}$.
Use § 458 and § 459.

461. Corollary III. To construct a fourth proportional to three given lines.

Let $a, b$, and $c$ be the three given lines.

Required to construct a fourth proportional to them.

- Construct any convenient angle, XYZ.

Lay off $Y D=a, D E=b$, and $Y F=c$.


Draw $D F$. Draw $E G \|$ to $D F$.
$F G$ is the required fourth proportional.

$$
\frac{Y D}{D E}=\frac{Y F}{F G}(?) \text { or } \frac{a}{b}=\frac{c}{F G}
$$

Note. If $b$ and $c$ are equal, $F G$ is a third proportional to $a$ and $b$.
462. Corollary IV. To divide a line into parts proportional to given lines.

Let $A B$ be the given line.
Required to divide it into parts proportional to the lines $1,2,3$, and 4.

Draw $A C$, making any convenient angle with $A B$. Lay off $A D=1, D E=2$, $E F=3$, and $F G=4$.

Connect $G$ and $B$.
Through $F, E$, and $D$ draw parallels to $G B$.


Then
or

$$
\begin{aligned}
& \frac{A H}{A D}=\frac{H I}{D E}=\frac{I J}{E F}=\frac{J B}{F G}, \\
& \frac{A H}{1}=\frac{H I}{2}=\frac{I J}{3}=\frac{J B}{4} .
\end{aligned}
$$

Q.E.F.
463. Exercise. In the triangle $A B C, A B$ is 10 in . and $A C$ is 8 in . From a point $D$ on the line $A B, D E$ is drawn parallel to $B C$, making $A D=3 \mathrm{in}$. Find the lengths of $A E$ and $E C$.
464. Exercise. Through the point of intersection of the medians of a triangle, a line is drawn parallel to any side of the triangle. How does it divide each of the other two sides of the triangle?

Suggestion. Use § 245.
465. Exercise. Through a point within an angle draw a line limited by the sides of the angle and bisected by the point.

Through the given point, $P$, draw $P D \|$ to $B C$, and lay off $D E=D B$.

466. Exercise. $A B C$ is any angle and $P$ a point within. To draw through $P$ a line limited by the sides of the angle, and cutting off a triangle whose area is a minimum.

Draw $H D$ so that $H P=P D$.
$\triangle H B D$ is the minimum $\triangle$.
Draw any other line through $P$, as $E F$.
Draw $D G \|$ to $B A$.
$\triangle P E H=\triangle P G D . \quad \therefore \triangle E B F$ exceeds area of $\triangle H B D$ by $\triangle D G F$.
467. Exercise. Construct a fourth pro-
 portional to three lines in the ratio of 2,3 , and 4.
468. Exercise. Construct a third proportional to two lines whose lengths are 1 in . and 3 in . respectively.
469. Exercise. Through a point $P$ without an angle $A B C$, draw $P E$ so that $P D=D E$.

470. Exercise. In the triangle $A B C, D$ is the middle point of $B C$ and $G$ is any other point on $B C$. Prove that the parallelogram $D E A F$ is greater than the parallelogram $G H A J$.

Suggestion. Draw LK so that $L G=G K$.

$$
\begin{equation*}
\triangle A B C>\triangle A L K, \tag{?}
\end{equation*}
$$


$D E A F=\frac{1}{2} \triangle A B C$,
and

$$
G H A J=\frac{1}{2} \triangle A L K
$$

471. Exercise. Divide a line into any number of equal parts, using the principle of this proposition. Compare the method with that used in § 240.
472. Exercise. Prove § 239, using the principle established in this proposition.
473. Exercise. If an equilateral triangle is inscribed in a circle, and through the center of the circle lines are drawn parallel to the sides of the triangle, these lines trisect the sides of the triangle.

Proposition XIV. Theorem (Converse of Prop. XIII.)
474. If a line divides two sides of a triangle proportionally, it is parallel to the third side.


Let

$$
\frac{A D}{D B}=\frac{A E}{E C} .
$$

To Prove
$D E$ parallel to $B C$.
Proof. Suppose $D E$ is not parallel to $B C$ and that any other line through $D$, as $D M$, is parallel to $B C$.

$$
\begin{align*}
& \frac{A D}{D B}=\frac{A M}{M C} .  \tag{?}\\
& \frac{A D}{D B}=\frac{A E}{\dot{E C}} .  \tag{?}\\
& \frac{A M}{M C}=\frac{A E}{E C} . \tag{?}
\end{align*}
$$

Show that this last proportion is absurd.
Therefore the supposition that $D E$ is not parallel to $B C$ is false.
475. Corollary. If $\frac{A D}{A B}=\frac{A E}{A C}, D E$ and $B C$ are parallel.
476. Exercise. $D E$ is drawn, cutting the sides $A B$ and $A C$ of a triangle $A B C$ at $D$ and $E$. The segment $B D$ is $\frac{1}{4}$ of $A B$, and $A E$ is $\frac{8}{4}$ of $A C$. Show that $D E$ and $B C$ are parallel.
477. Definition. Two polygons are similar when they are mutually equiangular, and have their sides about the equal angles taken in the same order proportional.

## Proposition XV. Theorem

478. Triangles that are mutually equiangular are similar.


Let $A B C$ and $D E F$ be two $\mathbb{Q}$ having $\angle A=\angle D, \angle B=\angle E$, and $\angle C=\angle F$.

To Prove $\quad \triangle A B C$ and $D E F$ similar.
Proof. Lay off $E M=B A, E N=B C$. Draw $M N$.
Prove $\mathbb{\triangle} A B C$ and $D E F$ equal in all respects.
Whence

$$
\angle M=\angle D .
$$

$M N$ and $D F$ are ll.

$$
\begin{equation*}
\frac{E M}{E D}=\frac{E N}{E F} \quad \text { (?) or } \frac{A B}{D E}=\frac{B C}{E F} . \tag{?}
\end{equation*}
$$

In a similar manner prove $\frac{A B}{D E}=\frac{A C}{D F}$, and $\frac{B C}{E F}=\frac{A C}{D F}$.
The triangles are by hypothesis mutually equiangular, and we have proved their sides proportional, therefore by definition they are similar.
Q.E.D.
479. Corollary. Two triangles are similar if they have two angles of one equal respectively to two angles of the other.
480. Exercise. All equilateral triangles are similar.
481.. Exercise. Are all isosceles triangles similar? Are right-angled isosceles triangles similar?
482. Exercise. If the sides of a triangle $A B C$ be cut by any transversal, in the points $D, E$, and $F$, to prove

$$
\frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A}=1 .
$$

[From $A, B$, and $C$, draw perpendic-
 ulars to the transversal. Show that S $A x D$ and $D y B$ are similar, whence

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A x}{B y} . \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& \frac{B E}{E C}=\frac{B y}{C z}  \tag{2}\\
& \frac{C F}{F A}=\frac{C z}{A x} \tag{3}
\end{align*}
$$

Multiply (1), (2), and (3) together, member by member.]
Note. Prove this exercise when the points $D, E$, and $F$ are all external, i.e. are all on the prolonged sides of the triangle. (If the figure be lettered as above, the proportions in the proof of this case will be precisely like the foregoing.)
483. Exercise. If $D, E$ and $F$ are three points on the sides of a triangle, either all external, or two internal and one external, such that

$$
\frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A}=1,
$$


the three points are in the same line.
[Draw $D E$ and $E F$. Let any other line than $E F$ as $E G$ be the prolongation of $D E$. By the preceding exercise

$$
\begin{align*}
& \frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C G}{G A}=1 \\
& \frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A}=1 \tag{2}
\end{align*}
$$

By hypothesis
From (1) and (2) we derive

$$
\begin{equation*}
\frac{C G}{G A}=\frac{F C}{F A} . \tag{3}
\end{equation*}
$$

Arrange (3) by division,

$$
\frac{C G}{G A-C G}=\frac{F C}{F A-F C} \text {, or } C G=\frac{F C}{A C} \text {. }
$$

Whence $C G=F C$ which is absurd.
$\therefore$ the supposition that any other line than $E F$ is the prolongation of $D E$ is absurd.]
484. Exercise. If from any point on the circumference of a circle circumscribed about a triangle perpendiculars be drawn to the three sides of the triangle, the feet of these perpendiculars are in the same straight line.
[To prove $x, y$, and $z$ are in a straight line.
Connect $P$ with the three vertices.
By means of similar triangles, show :


$$
\begin{align*}
& \frac{A z}{C x}=\frac{P z}{P x}  \tag{1}\\
& \frac{C y}{B z}=\frac{P y}{P z}  \tag{2}\\
& \frac{B x}{A y}=\frac{P x}{P y} \tag{3}
\end{align*}
$$

Multiply (1), (2), and (3) together, member by member,
or

$$
\begin{aligned}
& \frac{A z}{C x} \times \frac{C y}{B z} \times \frac{B x}{A y}=1 \\
& \frac{A z}{z B} \times \frac{B x}{x C} \times \frac{C y}{y A}=1 .
\end{aligned}
$$

By the preceding exercise, $x, y$, and $z$ are in the same straight line.]
485. Exercise. If a triangle $A B C$ be inscribed in a circle, tangents to this circle at $A, B$, and $C$ meet $B C, C A$, and $A B$ respectively in three points that are in the same straight line.
[Let the tangents meet $B C, C A$, and $A B$ in the points $x, y$, and $z$ respectively. Prove \& $A z C$ and $B z C$ similar.

Whence

$$
\begin{equation*}
\frac{A z}{A C}=\frac{z C}{B C}, \text { (1) and } \frac{B C}{B z}=\frac{A C}{C z} \tag{2}
\end{equation*}
$$

Combining (1) and (2), $\quad \frac{A z}{z B}=\frac{\overline{A C}^{2}}{\overline{B C}^{2}}$.
Similarly,

$$
\left.\frac{B x}{x C}=\frac{\overline{A B}^{2}}{\overline{A C}^{2}}, \text { and } \frac{C y}{y A}=\frac{\overline{B C}^{2}}{\overline{A B}^{2}} \cdot\right]
$$

## Proposition XVI. Theorem

486. Triangles that have their corresponding sides proportional are similar.


Let $A B C$ and $D E F$ be two $\triangle$ having

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} .
$$

To Prove \& $A B C$ and $D E F$ similar.
Proof. Lay off $E M=B A$ and $E N=B C$. Draw $M N$.

Show that

$$
\begin{equation*}
\frac{E M}{E D}=\frac{E N}{E F} \tag{?}
\end{equation*}
$$

$M N$ is parallel to $D F$.
Prove $\triangle E M N$ and EDF similar.

Whence

$$
\begin{equation*}
\frac{E N}{E F}=\frac{M N}{D F} \tag{1}
\end{equation*}
$$

By hypothesis

$$
\begin{equation*}
\frac{B C}{E F}=\frac{A C}{D F} . \tag{2}
\end{equation*}
$$

Compare (1) and (2), remembering that $B C=E N$, and show that $A C=M N$.

Prove $\triangle A B C$ and $M E N$ equal in all respects.
$\triangle D E F$ and $M E N$ have been proved similar, and since $\triangle A B C$ and $M E N$ are equal in all respects, $S D F F$ and $A B C$ are similar.
487. Exercise. The sides of a triangle are 6 in ., 8 in ., and 12 in . respectively. The sides of a second triangle are 6 in ., 3 in , and 4 in . respectively. Are they similar?
488. Scholium. Polygons must fulfill two conditions in order to be similar, i.e. they must be mutually equiangular, and must have their corresponding sides proportional. Propositions XV. and XVI. show that in the case of triangles, either of these conditions involves the other. Hence to prove triangles similar, it will be sufficient to show either that they are mutually equiangular, or that their corresponding sides are proportional.
489. Exercise. A piece of cardboard 8 in . square is cut into 4 pieces, $A, B, C$, and $D$, as shown in the first figure. These pieces, as placed in the second figure, apparently, form a rectangle whose area is 65 sq . in.

Explain the fallacy by means of similar triangles.

490. Exercise. The sides of a triangle are 12,16 , and 24 ft . respectively. A similar triangle has one side 8 ft . in length. What is the length of the other two sides? (Three solutions.)
491. Exercise. On a given line as a side construct a triangle similar to a given triangle. [Construct in two ways. Use § 478 and also § 486.]
492. Exercise. Construct a triangle that shall have a given perimeter, and shall be similar to a given triangle.
493. Exercise. If the sides of one triangle are inversely proportional to the sides of a second triangle, the triangles are not necessarily similar.
[Let the sides of the first triangle be in the ratio of 2,3 , and 4 . Then the sides of the second triangle are in the ratio of $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$, or $\frac{6}{12}, \frac{4}{12}$, and $\frac{3}{12}$; and these fractions are in the ratio of the integers 6,4 , and 3 . Therefore the triangles are not similar.]
494. Exercise. Any, two altitudes of a triangle are inversely proportional to the sides to which they are respectively perpendicular.

Proposition XVII. Theorem.
495. Triangles that have an angle in each equal, and the including sides proportional, are similar.


Let $\triangle A B C$ and $D E F$ have $\angle A=\angle D$ and $\frac{A B}{D E}=\frac{A C}{D F}$.
To Prove $\mathbb{\triangle} A B C$ and $D E F$ similar.
Proof. Lay off $D M=A B$ and $D N=A C$. Draw $M N$.
Prove $\triangle A B C$ and $D M N$ equal in all respects.

$$
\begin{equation*}
\frac{D M}{D E}=\frac{D N}{D F} \tag{?}
\end{equation*}
$$

$M N$ and $E F$ are parallel.
$\angle 1=\angle 2$ and $\angle 3=\angle 4$.
$\triangle D M N$ and $D E F$ are similar. (?)
SS $A B C$ and $D E F$ are similar. (?) Q.E.D.
496. Exercise. If a line is drawn parallel to the base of a triangle, and lines are drawn from the vertex to different points of the base, these lines divide the base and the parallel proportionally.
$\triangle D B I$ and $A B F$ are similar. (?)

$$
\therefore \frac{D I}{A F}=\frac{B I}{B F} \text {. }
$$

$\triangle I B J$ and $F B G$ are similar.

$$
\begin{aligned}
& \therefore \frac{I J}{F G}=\frac{B I}{B F} . \\
& \therefore \frac{D I}{A F}=\frac{I J}{F G},
\end{aligned}
$$



## Proposition XVIII. Theorem.

497. Triangles that have their sides parallel, each to each, or perpendicular, each to each, are similar.


Let $\triangle A B C$ and $D E F$ have $A B \|$ to $D E, B C \|$ to $E F$, and $A C \|$ to $D F$.

To Prove \& $A B C$ and $D E F$ similar.
Proof. The angles of the $\triangle A B C$ are either equal to the angles of $\triangle D E F$, or are their supplements. (§ 131 and § 132.)

There are four possible cases :

1. The three angles of $\triangle A B C$ may be supplements of the angles of $\triangle D E F$.
2. Two angles of $\triangle A B C$ may be supplements of two angles of $\triangle D E F$, and the third angle of $\triangle A B C$ equal the third angle of $\triangle D E F$.
3. One angle of $\triangle A B C$ may be the supplement of an angle of $\triangle D E F$, and the two remaining angles of $\triangle A B C$ be equal to the two remaining angles of $\triangle D E F$.
4. The three angles of $\triangle A B C$ may equal the three angles of $\triangle D E F$.

Show that in the first case the sum of the angles of $\triangle A B C$ would be four right angles.

Show that in the second case the sum of the angles of $\triangle A B C$ would be greater than two right angles.

Show, by means of $\S 140$, that the third case is impossible
unless the angles that are supplementary are right angles, in which case they would also be equal, and the triangles would have three angles of the one equal to three angles of the other.

Therefore if two triangles have their sides parallel, each to each, the triangles are mutually equiangular, and consequently similar.

Let $\triangle A B C$ and $D E F$ have $A B \perp D E, B C \perp E F$, and $A C$ $\perp D F_{0}^{\prime}$

To Prove $\triangle A B C$ and $D E F$ similar.

Proof. The angles of $\triangle A B C$
 are either equal to the angles of $\triangle D E F$, or are their supplements.
[Show, as was done in the first part of this proposition, that the angles of $\triangle A B C$ are equal to those of $\triangle D E F$, and consequently $\triangle A B C$ and $D E F$ are similar.]
Q.E.D.

Note. The equal angles are those that are included between sides that are respectively parallel or perpendicular to each other.
498. Exercise. The bases of a trapezoid are 8 in . and 12 in ., and the altitude is 6 in . Find the altitudes of the two triangles formed by producing the non-parallel sides until they meet.
499. Exercise. The angles $A B C, D A E$, and $D B E$ are right angles.

Prove that two triangles in the diagram aro similar.
500. Exercise. The lines joining the middle points of the sides of a given triangle form a second triangle that is similar to the given triangle.

501. Exercise. The bisectors of the exterior angles of an equilateral triangle form by their intersection a triangle that is also equilateral.

## Proposition XIX. Theorem.

502. The bisector of an angle of a triangle divides the opposite side into segments that are proportional to the adjacent sides of the angle.


Let $B D$ be the bisector of $\angle B$ of the $\triangle A B C$.

To Prove

$$
\frac{A D}{D C}=\frac{A B}{B C} .
$$

Proof. Prolong $A B$ until $B E=B C$. Draw $C E$.

$$
\begin{gather*}
\angle 3+\angle 4=\angle 1+\angle 2  \tag{?}\\
\angle 3=\angle 4 \text { and } \angle 1=\angle 2  \tag{?}\\
\angle 4=\angle 2 \tag{?}
\end{gather*}
$$

$B D$ and $E C$ are parallel.

$$
\begin{align*}
& \frac{A B}{B E}=\frac{A D}{D C}  \tag{?}\\
& \frac{A B}{B C}=\frac{A D}{D C}
\end{align*}
$$

Q.E.D.

Conversely. A line drawn through the vertex of an angle of a triangle, dividing the opposite side into segments pro-
portional to the adjacent sides of the angle, bisects the angle.

Let $A B C$ be a $\triangle$ in which $B D$ is drawn making $\frac{A D}{D C}=\frac{A B}{B C}$.

To Prove that $B D$ bisects $\angle B$.
Proof. Prolong $A B$ until $B E$ $=B C$. Draw $E C$.


$$
\begin{align*}
& \frac{A D}{D C}=\frac{A B}{B C} .  \tag{?}\\
& \frac{A D}{D C}=\frac{A B}{B E} . \tag{?}
\end{align*}
$$

$B D$ is parallel to $E C$. (?)

$$
\begin{equation*}
\angle 3=\angle 1 \text {, and } \angle 4=\angle 2 \text {. } \tag{?}
\end{equation*}
$$

Since

$$
\begin{array}{ll}
\angle 1=\angle 2 . & \text { (?) } \\
\angle 3=\angle 4 . & \text { (?) }
\end{array}
$$

Q.E.D.
503. Exercise. The triangle $A B C$ has $A B=8$ in., $B C=6$ in., and $A C=12 \mathrm{in} . B D$ bisects $\angle B$. What are the lengths of the segments into which it divides $A C$ ?
504. Exercise. $B D$ is the bisector of $\angle B$ in the triangle $A B C$. The segments of $A C$ are $A D=5 \mathrm{in}$. and $D C=2 \mathrm{in}$. The sum of the sides $A B$ and $B C$ is 14 in . Find the lengths of $A B$ and $B C$.
505. Exercise. Construct a triangle having given two sides and one of the two segments into which the third side is divided by the bisector of the opposite angle. (Two constructions.)
506. Definition. A point $C$, taken on the line $A B$ between the points $A$ and $B$, is said to divide the line $A B$ internally into two segments, $C A$ and $C B$.
A point $C^{\prime}$, taken on $A B$ pro- $\xrightarrow[A]{C_{B}} \mathbf{C l}^{\prime}$ duced, is said to divide $A B$ externally into two segments, $C^{\prime} A$ and $C^{\prime} B$. In each case, the segments are the distances from $C$ (or $C^{\prime}$ ) to the extremities of $A B$.

Proposition XX. Theorem

50\%. The bisector of an exterior angle of a triangle divides the opposite side externally into two segments that are proportional to the adjacent sides of the angle.


Let $B D$ bisect the exterior $\angle C B F$ of the $\triangle A B C$.

To Prove

$$
\frac{A D}{D C}=\frac{A B}{B C}
$$

Proof. Lay off $B E=B C$. Draw $E C$.

$$
\begin{align*}
& \angle 3+\angle 4=\angle 1+\angle 2 \text {. (?) }  \tag{?}\\
& \angle 3=\angle 4 \text {, and } \angle 1=\angle 2 \text {. (?) }  \tag{?}\\
& \angle 4=\angle 2 \text {. (?) } \\
& E C \text { and } B D \text { are parallel. (?) }  \tag{?}\\
& \angle \frac{A B}{B E}=\frac{A D}{D C} .  \tag{?}\\
& \quad \frac{A B}{B C}=\frac{A D}{D C} \text {. } \tag{?}
\end{align*}
$$

508. Exercise. The lengths of the sides of a triangle are 4,5 , and 6 yards, respectively. Find the lengths of the segments into which the bisector of the angle exterior to the largest angle of the triangle divides the opposite side externally.

Conversely. A line drawn through the vertex of an angle of a triangle dividing the opposite side externally into segments proportional to the adjacent sides of the angle, bisects the exterior angle.

Let $B D$ be drawn so that $\frac{A D}{D C}=\frac{A B}{B C}$.
To Prove that $B D$ bisects $\angle C B F$.


Proof. Lay off $B E=B C$. Draw $C E$.

$$
\begin{gather*}
\frac{A D}{D C}=\frac{A B}{B C}  \tag{?}\\
E C \text { is parallel to } B D  \tag{?}\\
\angle 4=\angle 1, \text { and } \angle 3=\angle 2  \tag{?}\\
\angle 1=\angle 2 \\
\angle 3=\angle 4 \\
\angle 4
\end{gather*}
$$

Q.E.D.
509. Definition. A line is divided harmonically when it is divided internally and externally in the same ratio. If, in this figure,

$$
\frac{A C}{C B}=\frac{A D}{D B},
$$

then $A B$ is divided harmonically.
510. Exercise. The bisector of an angle of a triangle and the bisector of its adjacent exterior angle divide the opposite side harmonically. (§§502, 507.)
511. Exercise. To divide a line internally and externally so that its segments shall have a given ratio, i.e. to divide a line harmonically.

Let $A B$ be the given line, and $m$ and $n$ lines in the given ratio.
Required to divide $A B$ internally and externally into segments having the ratio $\frac{m}{n}$.

Draw $A E$ making any angle with $A B$, and equal to $m$.

Draw $B C$ parallel to $A E$, and equal to $n$.

Prolong $C B$ until $B D$

$=n$. Draw ED.
Draw $E C$ and prolong it until it meets $A B$ prolonged at some point $F$.
By means of similar triangles, show

$$
\frac{A G}{G B}=\frac{m}{n}, \text { and } \frac{A F}{B F}=\frac{m}{n} ; \text { whence } \frac{A G}{G B}=\frac{A F}{B F} .
$$

Q.E.F.
512. Definition. If the line $A B$ is divided harmonically at $C$ and $D$, and the four points $A, B, C$, and $D$ are connected with any other point $O$, the resulting figure is called a harmonic pericil. The point $O$ is called the vertex of the pencil, and the four lines $O A, O C, O B$, and $O D$ are called rays.

513. Exercise. $O-A C B D$ is a harmonic pencil. $E F$ is drawn through $C$ parallel to $O D$, and limited by $O B$ produced. Prove that $E F$ is bisected at $C$.

$$
\begin{align*}
& \frac{O D}{C F}=\frac{D B}{B C}  \tag{1}\\
& \frac{E C}{O D}=\frac{A C}{A D}  \tag{?}\\
& \frac{A C}{C B}=\frac{A D}{D B} \tag{?}
\end{align*}
$$



Multiply (1), (2), and (3) together member by member.
Q.E.D.
514. Exercise. $O-A C B D$ is a harmonic pencil, and $E F$ any transversal cutting the rays at $E, G, H$, and $F$. Prove that the transversal $E H$ is divided harmonically, that is,

$$
\frac{E G}{G H}=\frac{E F}{F H} .
$$

Through $C$ draw $I J \|$ to $O D$. Through $G$ draw $M N \|$ to $I J$.

$$
\begin{gathered}
I C=C J \\
\therefore M G=G N \\
\frac{E G}{G M}=\frac{E F}{O F}
\end{gathered}
$$



$$
\begin{align*}
& \frac{E G}{G N}=\frac{E F}{O F} .  \tag{?}\\
\therefore & \frac{E G}{G H}=\frac{E F}{F H} . \tag{?}
\end{align*}
$$

Q.E.D.
515. Exercise. $A B C$ is an inscribed triangle, $D E$ is a diameter perpendicular to $A C$. The vertex $B$ is connected with the extremities of the diameter. Prove that $B E$ and $D B$ (prolonged) divide the base $A C$ harmonically.


Suggestion. Show that $B E$ and $B G$ are the bisectors of $\angle B$ and the exterior angle at $B$ respectively.
516. Exercise. Any triangle having $A C$ for its base (see figure of $\S 515$ ), and its other two sides in the ratio $\frac{A B}{B C}$, will have its vertex in the circumference described on $F G$ as a diameter.
517. Exercise. The bisectors of the exterior angles of a triangle meet the opposite sides produced in three points that are in the same straight line.
[Let the bisectors of the exterior angles at $A, B$, and $C$, of the triangle $A B C$, meet the opposite sides $B C, A C$, and $A B$ in the points $X$, $Y$, and $Z$, respectively.

$$
\begin{equation*}
\frac{A Y}{Y C}=\frac{A B}{B C} . \quad \text { (?) } \quad \frac{C X}{X B}=\frac{A C}{A B} \tag{?}
\end{equation*}
$$

Whence

$$
\left.\frac{A Y}{\Gamma C} \times \frac{C X}{X B} \times \frac{B Z}{Z A}=1 .\right]
$$

## Proposition XXI. Theorem

518. In a right-angled triangle, if a perpendicular is drawn from the vertex of the right angle to the hypotenuse,
I. The triangles on each side of the perpendicular are similar to the original triangle, and to each other.
II. The perpendicular is a mean proportional between the segments of the hypotenuse.
III. Either side about the perpendicular is a mean proportional between the hypotenuse and the adjacent segment of the hypotenuse.


Let $A B C$ be a R.A. $\triangle, A C$ its hypotenuse, and $B D \perp$ to $A C$.
I. To Prove $\triangle A B D$ and $B D C$ similar to $\triangle A B C$ and to each other.

Proof. Show that $\triangle A B D$ and $A B C$ are mutually equiangular, and consequently similar. In the same manner show that $\triangle B D C$ and $A B C$ are similar.
$\triangle A B D$ and $B D C$ are also mutually equiangular and similar.

$$
\text { II. To Prove } \quad \frac{A D}{B D}=\frac{B D}{D C} \text {. }
$$

Use the similar $\triangle A B D$ and $B D C$.
III. To Prove $\frac{A C}{A B}=\frac{A B}{A D}$, and $\frac{A C}{B C}=\frac{B C}{D C}$.

Use the similar $\triangle A B C$ and $A B D$, and also $\triangle A B C$ and $B D C$. Q.E.D.
519. Corollary. To construct a mean proportional between two given lines.

Let $m$ and $n$ be two given lines.

Required to construct a mean proportional between them.

On the indefinite line $A D$ lay off $A B=m$ and $B C=n$.
On $A C$ as a diameter describe a semicircle.
Erect $B E \perp$ to $A C$.
Draw $A E$ and $E C$.
Show that $A E C$ is a R.A. $\triangle$, and that

$$
\frac{A B}{B E}=\frac{B E}{B C}, \text { or } \frac{m}{B E}=\frac{B E}{n} .
$$

$\therefore B E$ is the required mean proportional. Q.E.F.
520. Exercise. Construct a third proportional to two given lines by means of Prop. XXI.
521. Definition. If the radius $O G$ is divided internally and externally at $A$ and $B$, so that

$$
O A \times O B=\overline{O G}^{2},
$$

and through $A$ and $B$ perpendiculars are drawn to $O G$, each perpendicular is called the polar of the other point, which is called in relation to the perpendicular its pole.

[ $E F$ is the polar of $A$, and $A$ is the pole of $E F$.
$C D$ is the polar of $B$, and $B$ is the pole of $C D$.
Notice that $O B$ is a third proportional to $O A$ and the radius, and $O A$ is a third proportional to $O B$ and the radius.]
522. Exercise. Given a point, within or without a circle, draw its polar.
523. Exercise. Given a line, find its pole with respect to a given circle.
524. Exercise. If from a point without a circle two tangents are drawn to the circle, their chord of contact is the polar of the point.
[To prove $B C$ the polar of $A$.
$O A$ is $\perp$ to $B C$. (?) $\triangle O B A$ is a R.A. $\Delta$. (?)

By Case III. of this Proposition,

$$
\frac{O D}{O B}=\frac{O B}{O A}, \text { or } O D \times O A=\widehat{O B}^{2} \text {.] }
$$

525. Exercise. Any line through the pole is divided harmonically by the pole, its polar, and the circumference.
[Let $A$ be the pole of $C F$, and $E C$ be any line through $A$.

To Prove $\quad \frac{E A}{A D}=\frac{E C}{C D}$.

$$
\begin{equation*}
\frac{A O}{O D}=\frac{O D}{O B} \text {. (?) } \quad \frac{A O}{O E}=\frac{O E}{O B} \text {. } \tag{?}
\end{equation*}
$$


$\therefore \triangle A O D$ and $O D B$ are similar, as are also \& $O A E$ and $O B E$.

$$
\begin{equation*}
\frac{A D}{O D}=\frac{D B}{O B} \text {. (?) } \quad \frac{O E}{A E}=\frac{O B}{E B} \text {. (?) } \quad \frac{A D}{A E}=\frac{D B}{E B} \text {. } \tag{?}
\end{equation*}
$$

$\therefore B A$ bisects $\angle D B E$.
Since $C B$ is $\perp$ to $A B, C B$ bisects the exterior angle at $B$. Now apply § 510.]
526. Exercise. If two circles are tangent externally, the portion of their common tangent included between the points of contact is a mean proportional between the diameters of the circles.
[Show that $A E B$ is a R.A. $\triangle$, and that $E F$ (the half of $C D$ ) is a mean proportional between the radii.]
527. Exercise. If two tangents are drawn to a circle at the extremities of a diameter, the portion of any third tangent intercepted between them is divided at the point of contact into segments whose product is equal to the square of the radius.
[Show that $O A B$ is a R.A. $\triangle$.]


## Proposition XXII. Theorem

528. If two chords intersect within a circle, the product of the segments of one is equal to the product of the segments of the other.


Let the chords $A B$ and $C D$ intersect at $E$.
To Prove

$$
A E \cdot E B=C E \cdot E D
$$

Proof. Draw $A C$ and $D B$.
Prove $\triangle A E C$ and $E D B$ mutually equiangular and therefore similar.

Whence

$$
\begin{aligned}
\frac{A E}{C E} & =\frac{E D}{E B} . \\
\therefore A E \cdot E B & =C E \cdot E D . \quad \text { (?) }
\end{aligned}
$$

Conversely. If two lines $A B$ and $C D$ intersect at $E$, so that $A E \cdot E B=C E \cdot E D$, then can a circumference be passed through the four points $A, B, C$, and $D$.
[Pass a circumference through the three points $A, B$, and $C$. Then show that the point $D$ cannot lie without this circumference, nor within it.]
529. Exercise. $C$ and $D$ are respectively the middle points of a chord $A B$ and its subtended arc. If $A C$ is 8 , and $C D$ is 4 , what is the radius of the circle ?
530. Exercise. Two chords $A B$ and $C D$ intersect at the point $E$. $A E$ is $8, E B$ is 6 , and $C D$ is 19 . Find the segments of $C D$.
531. Exercise. If a chord is drawn through a fixed point within a circle, prove that the product of its segments is constant in whatever direction the chord is drawn.

## Proposition XXIII. Theorem

532. If from a point without a circle two secants be drawn terminating in the concave arc, the product of one secant and its external segment is equal to the product of the other secant and its external segment.


Let $A B$ and $B C$ be two secants drawn from $B$ te the circle whose center is 0 .

To Prove $\quad A B \cdot D B=C B \cdot E B$.
Proof. Draw $A E$ and $D C$.
Prove $\triangle A E B$ and $C D B$ mutually equiangular and similar.

$$
\begin{equation*}
\frac{A B}{B C}=\frac{E B}{D B} \tag{?}
\end{equation*}
$$

$$
\therefore A B \cdot D B=B C \cdot E B
$$

Converse. If on two intersecting lines $A B$ and $C B$, four points, $A, D, C$, and $E$, be taken, so that $A B \times \nu B=B C \times E B$, then can a circumference be passed through the four points.
[Pass a circumference through three of the points, $A, D$, and $E$. Show by means of Prop. XXIII. and the hypoth-
 esis of the converse, that $C$ can lie neither without nor within the circumference.]
533. Exercise. One of two secants meeting without a circle is 18 in ., and its external segment is 4 in . long. The other secant is divided into two equal parts by the circumference. Find the length of the second secant.
534. Exercise. Two secants intersect without the circle. The external segment of the first is 5 ft ., and the internal segment 19 ft . long. The internal segment of the second is 7 ft . long. Find the length of each secant.
535. Exercise. If $A$ and $B$ are two points such that the polar of $A$ passes through $B$, then the polar of $B$ passes through $A$.

Let $C S$, the polar of $A$, pass through $B$.

To Prove that the polar of $B$ passes through $A$.

Proof. [Draw $A D \perp$ to $O B$.
The quadrilateral $A D B C$ has its opposite angles supplementary, $\therefore$ a circle can be circumscribed about it.

$$
O D \times O B=O A \times O C=\overline{O G}^{2} .
$$

$\therefore A D$ is the polar of $B$.]

536. Exercise. The locus of the intersection of tangents to a circle, at the extremities of any chord that passes through a given point, is the polar of the point.

Let $C D$ be any chord passing through $A$, and $B$ be the point of intersection of the tangents at $C$ and $D$.

To Prove that $B$ is a point of the polar of $A$. [ $C D$ is the polar of $B$. (§524.)
The polar of $B$ therefore passes through $A$. By § 535, the polar of $A$ passes through $B$.]

537. Exercise. If from any point on a given line two tangents are drawn to a circle, their chord of contact passes through the pole of the line. [Apply § 535.]
538. Exercise. If from different points on a given straight line pairs of tangents are drawn to a circle, their chords of contact all pass through a common point.

## Proposition XXIV. Theorem

539. If from a point without a circle $a$ secant and $a$ tangent are drawn, the secant terminating in the concave arc, the square of the tangent is equal to the product of the secant and its external segment.


Let $A B$ be a tangent and $B C$ a secant drawn from $B$ to the circle whose center is 0 .

To Prove

$$
\overline{A B}^{2}=B C \times D B
$$

Proof. Draw $A C$ and $A D$.
Prove $\triangle C A B$ and $D A B$ similar.
Whence $\quad \frac{B C}{A B}=\frac{A B}{D B}$.
$\therefore \overline{A B}^{2}=B C \times D B . \quad$ Q.E.D.
540. Exercise. Tangents drawn to two intersecting circles from a point on their common chord produced, are equal.
541. Exercise. Given two circles, to find a point such that the tangents drawn from it to the two circles are equal.
[Describe any circle intersecting the two given circles.

Draw the two common chords.
Prove that tangents drawn to the two circles from $C$, the point of intersection of the common chords (prolonged), are equal.]


## Proposition XXV. Theorem

542. Two polygons are similar if they are composed of the same number of triangles; similar each to each, and similarly placed.


Let the $\triangle A B C, A D C, D E C$, and $E F C$ be similar respectively to the $\&$ GHI, GJI, JLI, and LMI, and be similarly placed.

To Prove polygons $A B C F E D$ and GHIMLJ similar.
Proof. Show that the angles of $A B C F E D$ are equal respectively to the corresponding angles of GHIMLJ.

$$
\begin{align*}
& \frac{A B}{G H}=\frac{A C}{G I}  \tag{?}\\
& \frac{A D}{G J}=\frac{A C}{G I} \tag{?}
\end{align*}
$$

Whence

Similarly prove

$$
\begin{equation*}
\frac{A B}{G H}=\frac{A D}{G J} \tag{?}
\end{equation*}
$$

$$
\frac{A D}{G J}=\frac{D E}{J L}, \text { etc. }
$$

$$
\therefore \frac{A B}{G H}=\frac{A D}{G J}=\frac{D E}{J L}=\frac{E F}{L M}=\frac{F C}{M I}=\frac{C B}{I H} .
$$

The polygons are mutually equiangular and have their corresponding sides proportional. They are therefore similar by definition.
543. Corollary. On a given line to construct a polygon similar to a given polygon.
544. Definition. In.similar polygons the corresponding sides are called homologous sides, and the equal angles are called homologous angles.

## Proposition XXVI. Theorem

545. Two similar polygons can be divided into the same number of similar triangles, similarly placed.


Let $A B C D E F$ and GHIJLM be two similar polygons.
To Prove that they can be divided into the same number of similar triangles, similarly placed.

Proof. From the vertex $F$ draw all the possible diagonals.
From $M$, homologous with $F$, draw all the possible diagonals.
Prove $\triangle F A B$ and $M G H$ similar (§ 495).
Whence

$$
\begin{align*}
& \angle 3=\angle t \\
& \angle 5=\angle 6 \tag{?}
\end{align*}
$$

$$
\begin{gather*}
\frac{A B}{G H}=\frac{B F}{H M} . \quad \frac{A B}{G H}=\frac{B C}{H I} .  \tag{?}\\
\frac{B F}{H M}=\frac{B C}{H I} . \tag{?}
\end{gather*}
$$

© $F B C$ and $M H I$ are similar. (?)
Show that $\triangle F C D$ and MIJ are similar, and also $\triangle F D E$ and M.JL.
Q.E.D.

## Proposition XXVII. Theorem

546. The perimeters of similar polygons are to each other as any two homologous sides.


Let $A B C D E$ and $F G H I J$ be two similar polygons.

To Prove

$$
\frac{A B+B C+C D+\text { etc. }}{F G+G H+H I+\text { etc. }}=\frac{C D}{H I}
$$

Proof. By definition

$$
\frac{A B}{G F}=\frac{B C}{G I I}=\frac{C D}{H I}=\frac{D E}{I J}=\frac{A E}{F J} .
$$

[Apply § 443.]
547. Corollary. The perimeters of similar polygons are to each other as any two homologous diagonals.
548. Exercise. The perimeters of similar triangles are to each other as any homologous altitudes.
549. Exercise. The perimeters of similar triangles are to each other as any homologous medians.
550. Exercise. The perimeters of two similar polygons are 78 and 65 ; a side of the first is 9 , find the homologous side of the second.
551. Definition. A line is divided into extreme and mean ratio when it is divided into two parts so that one segment is a mean proportional between the whole line and the other segment.

## Proposition XXVIII. Problem

552. To divide a line into extreme and mean ratio.


Let $A B$ be the given line.
Required to divide $A B$ into extreme and mean ratio.
Draw $B C \perp$ to $A B$ and equal to one half of $A B$. Draw $A C$.
With $C$ as a center and $C B$ as a radius describe a circle cutting $A C$ at $D$, and $A C$ prolonged at $E$. Lay off $A F=A D$.

$$
\begin{aligned}
& \text { - } \frac{A E}{A B}=\frac{A B}{A D} . \quad(\S 539 .) \quad \frac{A E-A B}{A B}=\frac{A B-A D}{A D} . \\
& \frac{A D}{A B}=\frac{A B-A F}{A D} \text {. (?) } \frac{A F}{A B}=\frac{F B}{A F} \text {. (?) } \quad \frac{A B}{A F}=\frac{A F}{F B} \text {. (?) Q.E.F. }
\end{aligned}
$$

553. Exercise. To determine the values of the segments of a line that has been divided into extreme and mean ratio.

In the figure of $\S 552$, let the length of $A B$ be $a ; A F=x$, then $F B=a-x$.

Substituting these values in the last proportion, we get

$$
\frac{a}{x}=\frac{x}{a-x}, \text { whence } a^{2}-a x=x^{2} \text {. }
$$

Solving the equation,

$$
\begin{aligned}
& x=\frac{1}{2} a \sqrt{5}-\frac{1}{2} a \\
&=\frac{a}{2}(\sqrt{5}-1), \\
& a-x=\frac{3}{2} a-\frac{1}{2} a \sqrt{5}=\frac{a}{2}(3-\sqrt{5}) .
\end{aligned}
$$

554. Exercise. Divide a line 5 in . long into extreme and mean ratio, and calculate the value of the segments.

## Proposition XXIX. Problem

555. To draw a common tangent to two given circles.


Let $A$ and $B$ be the centers of the two given circles.
Required to draw a common tangent to the two circles.
Let $R$ stand for the radius of circle $A$, and $r$ for the radius of circle $B$.

Draw $A B$. Divide $A B$ (internally and externally) at $C$ so that $\frac{A C}{B C}=\frac{R}{r}$.

Draw $C D$ tangent to circle $B$. Draw the radius $B D$.
Draw $A E \perp$ to $D C$ prolonged.
[It is required to show that $A E=R$.]
$\triangle A E C$ and $C B D$ are similar (?), whence $\frac{A C}{B C}=\frac{A E}{B D}$.
$\therefore \frac{R}{r}=\frac{A E}{r}$, and $A E=R$, and $E D$ is a common tangent. Q.E.F.
556. Definition. The two tangents that pass through the internal point of division of $A B$ are called the transverse tangents. The two tangents that pass through the external point of division are called the direct tangents.

The points of division are called the centers of similitude of the two circles.
557. Exercise. The line joining the centers of two circles is divided harmonically by the centers of similitude.
558. Exercise. The line joining the extremities of parallel radii of two circles passes through their external center of similitude if the radii are turned in the same direction ; but through their internal center if they are turned in opposite directions.
559. Exercise. All lines passing through a center of similitude of two circles and intersecting the circles are divided by the circumferences in the same ratio.

Draw the radius $A D$.

Draw a line $B E$ parallel to $A D$, and by means of similar
 triangles prove that $B E$ is a radius. Then

$$
\frac{C E}{C D}=\frac{r}{R}
$$

Similarly,

$$
\frac{C E^{\prime}}{C D^{\prime}}=\frac{r}{R} .
$$

560. Exercise. $A, B$, and $C$ are the centers of three circles ; $a, b$, and $c$ their respective radii ; $D, E$, and $F$ their external centers of similitude ; and $D^{\prime}, E^{\prime}$, and $F^{\prime}$ their internal centers
 of similitude.

Prove that $D, E$, and $F$ are in a straight line.

$$
\left[\frac{A F}{F B}=\frac{a}{b}, \frac{B D}{D C}=\frac{b}{c}, \text { and } \frac{C E}{E A}=\frac{c}{a}, \text { whence } \frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=1 .\right]
$$

Similarly, show that $D, E^{\prime}$, and $F^{\prime}$ are in a straight line, also $E, D^{\prime}$, and $F^{\prime}$, and also $F, D^{\prime}$, and $E^{\prime}$.

## EXERCISES

1. If

$$
\frac{a}{b}=\frac{c}{d}
$$

Prove $\frac{b-a}{a}=\frac{d-c}{c}, \frac{b-a}{b}=\frac{d-c}{d}, \frac{a}{b}=\frac{c-a}{d-b}, \frac{a}{3 a+b}=\frac{c}{3 c+d}$.
2. If

$$
\frac{a}{b}=\frac{c}{d}=\frac{e}{f},
$$

prove

$$
\frac{x a-y e+z c}{x b-y f+z d}=\frac{e}{f} .
$$

3. If

$$
\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{h}
$$

prove

$$
\frac{a c+c g}{b d+f h}=\frac{c^{2}}{d^{2}} .
$$

4. If

$$
\frac{a}{b}=\frac{b}{c},
$$

prove

$$
\frac{a^{2}+a b}{b^{2}+b c}=\frac{a}{c} .
$$

5. If

$$
\frac{a}{b}=\frac{b}{c},
$$

prove

$$
\frac{a}{c}=\frac{(a+b)^{2}}{(b+c)^{2}}
$$

6. If

$$
\frac{a}{x^{2}}=\frac{b}{y^{2}}=\frac{c}{z^{2}}, \text { and } a+b=c
$$

prove

$$
x^{2}+y^{2}=z^{2} .
$$

7. The shadow cast by a church steeple on level ground is 27 yd ., while that cast by a 5 - ft . vertical rod is 3 ft . long. How high is the steeple?
8. The line joining the middle points of the non-parallel sides of a trapezoid circumscribed about a circle is equal to one fourth the perimeter of the trapezoid.
[See § 396.]

9. Two circles intersect at $B$ and $C$. $B A$ and $B D$ are drawn tangent to the circles.

Prove that $B C$ is a mean proportional between $A C$ and $C D$. [Prove \& $A B C$ and $B C D$ similar.]
10. Find the lengths of the longest and
 the shortest chords that can be drawn through a point 10 in . from the center of a circle having a radius 26 in .
11. Tangents are drawn to a circle at the extremities of the diameters $A B$. Secants are drawn from $A$ and $B$, meeting the tangents at $D$ and $E$ and intersecting at $C$ on the circumference.

Prove the diameter a mean proportional between the tangents $A D$ and $B E$.
 [ $\$ A B D$ and $A B C$ are similar. (?)]
12. If two circles are tangent internally, chords of the greater drawn from the point of tangency are divided proportionally by the circumference of the less.
13. If two circles are tangent externally, secants drawn through their point of contact and terminating in the circumferences are divided proportionally at the point of contact.
14. Given the two segments of the base of a triangle made by the bisector of the vertical triangle, and the sum of the other two sides, to construct the triangle. [§502.]
15. Determine a point $P$ in the circumference, from which chords drawn to two given points $A$ and $B$ shall have the ratio $\frac{m}{n}$.
[Divide $A B$ so that $\frac{A C}{C B}=\frac{m}{n}$. Join $C$ with the middle point of the arc $A D B$.]

16. In the triangle $A B C, B D$ is a medial line, and $D E$ and $D F$ bisect angles $A D B$ and $B D C$ respectively. Prove that $E F$ is parallel to $A C$.

17. $D$ is the point of intersection of the medians ; $E$ is the point of intersection of the perpendiculars at the middle points of the sides; $D E$ is prolonged to meet the altitude $B I$ at $F$. Prove $E D=\frac{1}{2} D F$.
[ $\triangle E D G$ and $D B F$ are similar, and $B D=2 D G$.]

18. The point of intersection of the medians, the point of intersection of the perpendiculars at the middle points of the sides, and the point of intersection of the altitudes of a triangle are in the same straight line. [See Ex. 17.]
19. The triangles $A B C$ and $A D C$ have the same base and lie between the same parallels. $E F$ is drawn parallel to $A C$.


Prove $E G=H F$.
20. Two tangents are drawn at the extremities of the diameter $A B$. At any other point $C$ on the circumference a third tangent $D E$ is drawn. Prove that $O D$ is a mean proportional between $A D$ and $D E$, and that $O E$ is a mean proportional between $B E$ and $D E$.
[Prove $\angle D O E$ a R.A., and use § 518.]

21. The prolongation of the common chord of two intersecting circles bisects their common tangent. [§539.]

22. To draw a line $A C$ intersecting two given circles so that the chords $A D$ and $B C$ shall be of given lengths.
[See Ex. 24, p. 125.]

23. $x y$ is any line drawn through the vertex $A$ of the parallelogram $A B C D$ and lying without the parallelogram. Prove that the perpendicular to $x y$ from the opposite angle $C$ is equal to the sum of the perpendiculars from $B$ and $D$ to $x y$. [§ 453.]

24. The sum of the perpendiculars from the vertices of one pair of opposite angles to a line lying without a parallelogram is equal to the sum of the perpendiculars from the vertices of the other pair of opposite angles.
25. Two circles are tangent externally at $C$. $D E$ and $C F$ are common tangents. Prove that $\angle D C E=1$ R.A., and also that $\angle A F B=1$ R.A.
26. Prove that $\triangle D F C$ and $C B E$ (see figure of Ex. 25) are similar, as are also $\triangle D A C$ and $F C E$.

27. Describe a circle passing through two given points and tangent to a given line.

[The line joining the two given points $A$ and $B$ may be parallel to the given line $C D$ (see Fig. 1), or its prolongation may meet the given line (see Fig. 2). In the second case $D E^{2}=D A \times D B$. (?) $D E$ may be laid off on either side of $D, \therefore$ two (©) can be described fulfilling the conditions of the problem.]
28. Describe a circle tangent to two given lines and passing through a given point. [ $P$ is the given point. Find another point $D$ through which the circumference must pass. Then solve as in Ex. 27.]

29. Describe a circle tangent to two given lines and tangent to a given circle. [ $D E$ and $B C$ are the lines, and $A$ the center of the given circle. Use Ex. 28.]

30. Through a given point $P$ draw a line cutting a triangle so that the sum of the perpendiculars to the line from the two vertices on one side of the line shall equal the perpendicular from the vertex on the other side of the line.
[ $O$ is the point of intersection of
 the medians.]
31. In the triangle $A B C, D E$ is drawn parallel to $A C$. $F G$ connects the middle points of $A C$ and $D E$. Prove that $F G$ prolonged passes through $B$.

32. The line joining the middle point of the lower base of a trapezoid with the point of intersection of the diagonals bisects the upper base.

33. In the triangle $A B C$, let two lines drawn from the extremities of the base $A C$ and intersecting at any point $D$ on the median through $B$, meet the opposite sides in $E$ and $F$. Show that $E F$ is parallel to $A C$.
34. $A B C$ is an acute-angled triangle. $D E F$ (called the pedal triangle) is formed by joining the feet of the altitudes of triangle $A B C$. Prove that the altitudes of triangle $A B C$ bisect the angles of the pedal triangle $\dot{D E F}$. [A $\odot$ can be described passing through $F, O, D$, and B. (?) $\angle 1=\angle 2$. (?)]
35. Prove the triangles $A F E, B F D$, and $D C E$ similar to triangle $A B C$ and to each other. [See figure of Ex. 34.]
 [To prove $\triangle F B D$ and $A B C$ similar. Show that $\angle A=\angle 2$.]
36. Prove that the sides of the triangle $A B C$ [see Ex. 34] bisect the exterior angles of the pedal triangle $D E F$.
37. The three circles that pass through two vertices of a triangle and the point of intersection of the altitudes are equal to each other. [Show that each is equal to the circle circumscribed about the triangle.]
38. Describe a circle passing through two given points and tangent to a given circle. [ $A$ and $B$ are the given points and $C$ the given circle. $D E A B$ is any $\odot$ passing through $A$ and $B$ and cutting the given $\odot C$. The common chord $E D$ meets $A B$ at $G . G F$ is tangent to $\odot C$. $A F B$ is the required $\odot$.]

39. If one leg of a right-angled triangle is double the other, a perpendicular from the right angle to the hypotenuse divides it into segments having the ratio of 1 to 4 .
40. The triangle $A B C$ is inscribed in a circle, and the bisector of angle $B$ intersects $A C$ at $D$ and the circumference at $E$. Prove

$$
\frac{A B}{B D}=\frac{B E}{B C} .
$$


41. The perpendicular drawn to a chord from any point in the circumference is a mean proportional between the perpendiculars from that point to the tangents drawn at the extremities of the chord.

42. The perpendicular drawn from the point of intersection of the medians of a triangle to a line without the triangle is equal to one third the sum of the perpendiculars from the vertices of the triangle to that line. [§ 453.]
43. Construct a right-angled triangle, having given an acute angle and the perimeter.
44. Inscribe in a given triangle another triangle, the sides of which are parallel to the sides of a second given triangle.

45. $C D$ is a line perpendicular to the diameter $A B . \quad A E$ is drawn from $A$ to any point on $C D$. Prove that $A E \times A F$ is constant. [A circle can be passed through $F, B, G$, and $E$. (?)]

46. Given the vertical angle, the medial line to the base, and the angle that the medial line makes with the base, to construct the triangle.

47. Given the base of a triangle and the ratio of the other two sides, to find the locus of its vertex.
[Divide the given base $A B$ harmonically at $D$ and $E$, in the ratio of the two given sides. On $D E$ as a diameter construct a $\odot$.

48. In the parallelogram $A B C D, B F$ is drawn cutting the diagonal $A C$ in $E, C D$ in $G$, and $A D$ prolonged in $F$.

Prove that $\overline{B E}^{2}=G E \times E F$.

49. If three circles intersect each other, their common chords intersect in the same point. [§528.]
50. In any inscribed quadrilateral, the product of the diagonals is equal to the sum of the products of the opposite sides.
51. To inscribe a square in a given semicircle.

52. To inscribe a square in a given triangle.

53. $A B C D$ is a parallelogram, $E$ a point on $B C$ such that $B E$ is one fourth of $B C$. $A E$ cuts the diagonal $B D$ in $F$. Show that $B F$ is one fifth of $B D$.
54. Two chords of a circle drawn from a common point $A$ on the circumference and cut by a line parallel to a tangent through $A$, are divided proportionally. [Suggestion. Join the extremities of the chords and prove the triangles similar.]

## B00K IV

561. Definitions. We measure a magnitude by comparing it with a similar magnitude that is taken as the unit of measure. If we wish to find the length of a line, we find how many times a linear unit of measure, say a foot, is contained in the line. This number, with the proper denomination, is called the length of the line.

Similarly, we measure any portion of a surface by comparing it with some unit of surface measure. We find how many times this unit, say a square yard, is contained in the portion of surface. This number, with the denomination square yards, we call the area or superficial content of the surface measured.

Polygons that have the same areas are equivalent polygons. Equivalent polygons are not necessarily equal in all respects. They need not even have the same number of sides. For example, a triangle, a square, and a hexagon may be equivalent.

The base of a polygon is primarily the side upon which the figure stands; but usage has sanctioned a more extended application of the term. Any side of a polygon may be considered the base. In a parallelogram, if two opposite sides are horizontal lines, they are frequently called the upper and lower bases of the parallelogram. In a trapezoid, the two parallel sides are called its bases.

The altitude of a parallelogram is the perpendicular distance between two opposite sides. A parallelogram may therefore have two different altitudes.

The altitude of a trapezoid is the perpendicular distance between its bases.

## Proposition I. Theorem

562. Parallelograms having equal bases and equal altitudes are equivalent.


Let $A B C D$ and $E F G H$ be two parallelograms having equal bases and equal altitudes.

To Prove $A B C D$ and $E F G H$ equal in area.
Proof. Place EFGH upon $A B C D$ so that their lower bases shall coincide. Because they have equal altitudes their upper bases are in the same line.

Prove $\triangle A I B$ and $D J C$ equal.
The parallelogram $A I J D$ is composed of the quadrilateral $A B J D$ and the $\triangle A I B$.

The parallelogram $A B C D$ is composed of the quadrilateral $A B J D$ and the $\triangle D J C$.

$$
\begin{aligned}
& A B C D=A I J D \\
& A B C D=E F G H
\end{aligned}
$$

Q.E.D.
563. Exercise. Rectangles having equal bases and altitudes are equal in all respects.
564. Exercise. Construct a rectangle equivalent to a given parallelogram.
565. Exercise. Prove Prop. I., using this figure :
566. Exercise. Construct a rectangle whose, area is double that of a given equilateral triangle.

567. Exercise. A line joining the middle points of two opposite sides of a parallelogram divides the figure into two equivalent parallelograms.

## Proposition II. Theorem

568. Triangles having equal bases and equal altitudes are equivalent.


Let the $\triangle A B C$ and $D E F$ have equal bases and equal altitudes. To Prove the $\triangle A B C$ and $D E F$ equal in area.
Proof. On each triangle construct a parallelogram having for its base and altitude the base and altitude of the triangle.

These parallelograms are equivalent.
$\therefore$ the triangles are equivalent. (?)
Q.E.D.
569. Corollary I. If a triangle and a parallelogram have equal bases and equal altitudes, the triangle is equivalent to one half the parallelogram.
570. Corollary II. To construct a triangle equivalent to a given polygon.

To construct a triangle equivalent to $A B C$. . . $G$.

Draw $B D$.
Through $C$ draw $C X$ parallel to $B D$, meeting $A B$ prolonged at $X$.

Draw DX.
Show that $\triangle B X D$ and $B C D$ have a com-
 mon base and equal altitudes. $\therefore \triangle B X D=\triangle B C D$, and the polygon $A X D E F G=$ polygon $A B C D E F G$.

We have therefore constructed a polygon equivalent to the given polygon and having one side less than the given polygon has. A new polygon may be constructed equivalent to this polygon and having one side less; and this process can be repeated until a triangle is reached.
571. Exercise. Two triangles are equivalent if they have two sides of the one equal respectively to two sides of the other, and the included angles supplementary. [Place the $\&$ so that the two supplementary $\mathbb{\$}$ are adjacent and a side of one $\Delta$ coincides with its equal in the other.]
572. Exercise. Bisect a triangle by a line drawn from a vertex.
573. Exercise. Bisect a triangle by a line drawn from a point in the perimeter.
[ $B D$ is a medial line, $B E$ is drawn II to $P D$. Show that $P E$ bisects $\triangle A B C$.]

574 Exercise. The diagonals of a parallelogram divide it into four equivalent triangles.

575. Exercise. The three medial lines of a triangle divide it into six equivalent triangles.
576. Exercise. In the triangle $A B C, X$ is any point on the median $C D$. Prove that the triangles $A X C$ and $B X C$ are equivalent.

577. Exercise. On the base of a given triangle construct a second triangle equal in area to the first, and having its vertex in a given straight line. Under what conditions is this exercise impossible?
578. Exercise. Construct a right-angled triangle equivalent to a given equilateral triangle.
579. Exercise. From a point in the perimeter of a paralielogram draw a line that shall divide the parallelogram into two equivalent parts.
580. Exercise. Construct an isosceles triangle equivalent to a given square.

## Proposition III. Theorem

581. Rectangles having equal bases are to each other as their altitudes.


Case I. When the altitudes are commensurable.
Let $A B C D$ and $E F G H$ be parallelograms having equal bases and commensurable altitudes.

To Prove

$$
\frac{A B C D}{E F G H}=\frac{A B}{E F} .
$$

Proof. Let $S$ be the unit of measure for the altitudes, and let it be contained in $A B m$ times and in $E F^{\prime} n$ times, whence

$$
\begin{equation*}
\frac{A B}{E F}=\frac{m}{n} . \tag{1}
\end{equation*}
$$

Divide the altitudes by the unit of measure and through the points of division draw parallels to the bases.
$A B C D$ is divided into $m$ parallelograms and EFGII into $n$ parallelograms, and these parallelograms are all equal by § 562 .

$$
\begin{equation*}
\frac{A B C D}{E F G I I}=\frac{m}{n} . \tag{2}
\end{equation*}
$$

Apply Axiom 1 to (1) and (2).

$$
\frac{A B C D}{E F G H}=\frac{A B}{E F} .
$$

Case II. When the altitudes are incommensurable.


Let the parallelograms $A B C D$ and $E F G H$ have equal bases and incommensurable altitudes.

To Prove

$$
\frac{A B C D}{E F G H}=\frac{A B}{E F} .
$$

Proof. Let $E F$ be divided into a number of equal parts, and let one of these parts be applied to $A B$ as a unit of measure.

Since $A B$ and $E F$ are incommensurable, $A B$ will not contain the unit of measure exactly, but a certain number of these parts will extend as far as $I$, leaving a remainder $I B$ smaller than the unit of measure.

Through $I$ draw $I J$ parallel to the base $A D$.

$$
\frac{A I J D}{E F G I I}=\frac{A I}{E F} \text {, by Case I. }
$$

By increasing indefinitely the number of equal parts into which $E F$ is divided, the divisions will become smaller and smaller, and the remainder $I B$ will also diminish indefinitely.

Now $\frac{A I J D}{E F G H}$ is evidently a variable, as is also $\frac{A I}{E F}$; and these variables are always equal. (Case I.)

The limit of the variable $\frac{A I J D}{E F G I}$ is $\frac{A B C D}{E F G I}$.
The limit of the variable $\frac{A I}{E F}$ is $\frac{A B}{E F}$.
By § 341

$$
\frac{A B C D}{E F G I I}=\frac{A B}{E F}
$$

582. Corollary. Rectangles having equal altitudes are to each other as their bases.
583. Exercise. The altitudes of two rectangles having equal bases are 12 ft . and 16 ft . respectively. The area of the former rectangle is $96 \mathrm{sq} . \mathrm{ft}$. What is the area of the other ?

Proposition IV. Theorem
584. Any two rectangles are to each other as the products of their bases and altitudes.


Let $A B C D$ and $E F G H$ be any two rectangles.

To Prove

$$
\frac{A B C D}{E F G H}=\frac{A D \times A B}{E H \times E F}
$$

Proof. Construct a third rectangle $X Y Z R$, having a base equal to the base of $A B C D$ and an altitude equal to the altitude of EFGH.

$$
\begin{align*}
& \frac{A B C D}{X Y Z R}=\frac{A B}{X Y} .  \tag{?}\\
& \frac{E F G H}{X Y Z R}=\frac{E H}{X R} .  \tag{?}\\
& \frac{A B C D}{E F G H}=\frac{A B \times X R}{X Y \times E H} .  \tag{?}\\
& \frac{A B C D}{E F G H}=\frac{A B \times A D}{E F \times E H} . \tag{?}
\end{align*}
$$

Q.E.D.
585. Exercise. The base and the altitude of a certain rectangle are 5 ft . and 4 ft . respectively. The base and the altitude of a second rectangle are 10 ft . and 8 ft . respectively. IIow do their areas compare?
[The student must not assume that the area of the first rectangle is 20 sq . ft., as that has not yet been established.]

## Proposition V. Theorem

586. The area of a rectangle is equal to the product of its base and altitude.


Let $A B C D$ be any rectangle.

## To Prove

$$
A B C D=a \times b
$$

Proof. Let the square $U$, each side of which is a linear unit, be the unit of measure for surfaces.

$$
\begin{equation*}
\frac{A B C D}{U}=\frac{a \times b}{1 \times 1} . \tag{?}
\end{equation*}
$$

Whence
or

$$
A B C D=a b \times \text { the surface unit. }
$$

or

$$
A B C D=a b \text { surface units. }
$$

This is usually abbreviated into

$$
A B C D=a \times b
$$

Q.E.D.
587. Scholium. The meaning to be attached to formula (1) is, that the number of surface units in a rectangle is the same as the product of the number of linear units in the base by the number of linear units in the altitude.

If the base is 4 ft . and the altitude 3 ft ., the number of square feet (surface units) in the rectangle is $4 \times 3$ or 12 .

The area then is 12 square feet.
588. Corollary. The area of any parallelogram is equal to the product of its base and altitude.

Let $A B C D$ be any parallelogram and $D E$ be its altitude.

To Prove $A B C D=A D \times D E$.
Proof. Draw $A F \perp$ to $A D$, meeting $B C$ prolonged at $F$.


Prove $A D E F$ a rectangle.

$$
\begin{align*}
& A D E F=A D C B  \tag{?}\\
& A D E F=A D \times E D  \tag{?}\\
& A B C D=A D \times E D \tag{?}
\end{align*}
$$

Q.E.D.
589. Corollary. Any two parallelograms are to each other as the products of their bases and altitudes; if their bases are equal the parallelograms are to each other as their altitudes; if the altitudes are equal the parallelograms are to each other as their bases.
590. Exercise. Construct a square equivalent to a given parallelogram.
591. Exercise. Construct a rectangle having a given base and equivalent to a given parallelogram.
592. Exercise. Of all equivalent parallelograms having a common base, the rectangle has the least perimeter. Of all equivalent rectangles, the square has the least perimeter.

## Proposition VI. Theorem

593. The area of a triangle is one half the product of its base and altitude.


Let $A B C$ be any $\triangle$, and $B D$ its altitude.
To Prove $\quad A B C=\frac{1}{2} A C \times B D$.
Proof. Construct the parallelogram $A C B E$.

$$
\begin{aligned}
A C B E & =A C \times B D . \\
\triangle A B C & =\frac{1}{2} A C \times B D .
\end{aligned}
$$

594. Corollary I. Triangles are to each other as the products of their bases and altitudes; if their bases are equal the triangles are to each other as their altitudes; if their altitudes are equal the triangles are to each other as their bases.
595. Corollary II. The area of a triangle is one half the product of its perimeter and the radius of the inscribed circle.
[Draw radii to the points of tangency.

Connect the center $O$ with the three vertices.

Show that $O D$ is the altitude of $\triangle$ $A O B$, and that $O E$ and $O F$ are altitudes
 of $\triangle B O C$ and $A O C$. Call the radius of the inscribed circle r .

$$
\begin{align*}
& \triangle A O B=\frac{1}{2} A B \cdot r . \\
& \triangle B O C=\frac{1}{2} B C \cdot r . \\
& \triangle A O C=\frac{1}{2} A C \cdot r . \quad(?) \\
& \triangle A B C=\frac{1}{2}(A B+B C+C A) r \tag{?}
\end{align*}
$$

596. Corollary III. Calling $2 s$ the perimeter of the triangle $A B C, \triangle A B C=s r$, whence $r=\frac{\triangle A B C}{s}$. The radius of the inscribed circle of a triangle is equal to the area of the triangle divided by one half its perimeter.
597. Exercise. The area of a rhombus is equal to one half the product of its diagonals.
598. Exercise. Construct a square equivalent to a given triangle.
599. Exercise. Construct a square equivalent to a given polygon.
600. Exercise. Two triangles having a common base are to each other as the segments into which the line joining their vertices is divided by the common base, or base produced.
[The $\triangle A B C$ and $A C D$ have the common base $A C$; to prove

$$
\frac{\triangle A B C}{\triangle A D C}=\frac{B E}{E D} .
$$

Draw the altitudes $B F$ and $D G$.

$$
\begin{align*}
\frac{B E}{E D}=\frac{B F}{D G} . & \text { (?) } \quad \frac{\triangle A B C}{\triangle A D C}=\frac{B F}{D G} .  \tag{?}\\
& \frac{\triangle A B C}{\triangle A D C}=\frac{B E}{E D} .
\end{align*}
$$



Note. When the two triangles are on the same side of the common base, $B D$, the line joining their vertices is divided externally at $E$.


Prove

$$
\frac{\triangle A B C}{\triangle A D C}=\frac{B E}{D E}, \text { using these figures. }
$$

601. Definition. Lines that pass through a common point are called concurrent' lines.
602. Exercise. If three concurrent lines $A O, B O$, and $C O$, drawn from the vertices of the triangle $A B C$, meet the opposite sides in the points $D, E$, and $\dot{F}$, prove $\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=1$.
[The point $O$ may be within or without the triangle.


$$
\begin{equation*}
\frac{B D}{D C}=\frac{\triangle A O B}{\triangle A O C} \tag{?}
\end{equation*}
$$

$$
\begin{align*}
& \text { (?) } \quad \frac{C E}{E A}  \tag{?}\\
& =\frac{\triangle A O C}{\triangle B O C}
\end{align*}
$$

$$
\left.\therefore \frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=1 .\right]
$$



Conversely, if $\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=1$, to prove that the lines $A D, B E$, and $C F$ are concurrent.
[Draw $A D$ and $C F$. Call their point of intersection $O$. Draw BO. Suppose BO prolonged does not go to $E$, but some other point of $A C$, as $E^{\prime}$.

$$
\begin{align*}
& \frac{B D}{D C} \times \frac{C E^{\prime}}{E^{\prime} A} \times \frac{A F}{F B}=1  \tag{?}\\
& \frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=1 . \quad \text { (Hypothesis.) } \\
& \frac{C E^{\prime}}{E^{\prime} A}=\frac{C E}{E A} .
\end{align*}
$$



Show that this last proportion is absurd.
$\therefore A D, B E$, and $C F$ are concurrent.]
603. Exercise. Show by means of the converse of the last exercise that the following lines in a triangle are concurrent.

1. The medial lines.
2. The bisectors of the angles.
3. The altitudes.

## Proposition VII. Theorem

604. The area of a trapezoid is one half the product of its altitude and the sum of its parallel sides.


Let $A B C D$ be a trapezoid, and $m n$ be its altitude.
To Prove

$$
A B C D=\frac{1}{2} m n(B C+A D) .
$$

Proof. Draw the diagonal $A C$.
Show that $m n$ is equal to the altitude of each triangle formed.

$$
\begin{align*}
\triangle A B C & =\frac{1}{2} m n \cdot B C .  \tag{?}\\
\triangle A C D & =\frac{1}{2} m n \cdot A D . \tag{?}
\end{align*}
$$

605. Corollary. The area of a trapezoid is equal to the product of the altitude and the line joining the middle points of the non-parallel sides.

$$
\left[E F=\frac{1}{2}(B C+A D)(?) \quad \therefore A B C D=m n \cdot E F .\right]
$$

606. Exercise. In the figure for $\S 604$ let $B C=8$ in., $A D=12$ in., and $m n=E F$. Find the area of the trapezoid.
607. Exercise. Construct a square equivalent to a given trapezoid.
608. Exercise. Construct a rectangle equivalent to a given trapezoid and having its altitude equal to that of the trapezoid.
609. Exercise. The triangle formed by joining the middle point of one of the non-parallel sides of a trapezoid with the extremities of the opposite side is equivalent to one half the trapezoid.
610. Exercise. A straight line joining the middle points of the parallel sides of a trapezoid divides it into two equivalent figures.
611. Exercise. The area of a trapezoid is 12 sq . ft . The upper and lower bases are 7 ft . and 5 ft . respectively. Find its altitude.
612. Exercise. The area of a trapezoid is 24 sq . in. The altitude is 4 in ., and one of its parallel sides is 7 in . What is the other parallel side ?

## Proposition VIII. Theorem

613. Triangles that have an angle in one equal to an angle in the other, are to each other as the products of the including sides.


Let $\triangle A B C$ and $D E F$ have $\angle B=\angle E$.

To Prove

$$
\frac{\triangle A B C}{\triangle D E F}=\frac{A B \cdot B C}{D E \cdot E F}
$$

Proof. Lay off $B G=E D$ and $B H=E F$. Draw $G H$ and $A H$.
Prove $\quad \triangle G B H=\triangle D E F$.

$$
\begin{align*}
\frac{\triangle A B H}{\triangle B H G} & =\frac{B A}{B G} \quad \text { (?) } \quad \frac{\triangle A B C}{\triangle A B H}=\frac{B C}{B H} \\
\therefore & \frac{\triangle A B C}{\triangle B H G}=\frac{A B \cdot B C}{B G \cdot B H} \quad \text { or } \quad \frac{\triangle A B C}{\triangle D E F}=\frac{A B \cdot B C}{D E \cdot E F} .
\end{align*}
$$

614. Exercise. Prove §613, using this pair of triangles.
615. Exercise. The triangle $A B C$ has $\angle B$ equal to $\angle E$ of triangle $D E F$. The area of $A B C$ is double that of $D E F$. $A B$ is 8 ft ., $B C$ is 6 ft ., and $D E$ is 12 ft . How long is $E F$ ?


Proposition IX. Theorem
616. Similar triangles are to each other as the squares of their homologous sides.


Let $\triangle A B C$ and $D E F$ be similar.

To Prove

$$
\frac{\triangle A B C}{\triangle D E F}=\frac{\overline{A B}^{2}}{\overline{D E}^{2}} .
$$

Proof.

$$
\begin{align*}
\angle B & =\angle E .  \tag{?}\\
\frac{\triangle A B C}{\triangle D E F} & =\frac{A B \cdot B C}{D E \cdot E F} .  \tag{?}\\
\frac{A B}{D E} & =\frac{B C}{E F} .  \tag{?}\\
\frac{\triangle A B C}{\triangle D E F} & =\frac{\overline{A B}^{2}}{\overline{D E}^{2}} . \tag{?}
\end{align*}
$$

Q.E.D.
617. Exercise. Similar triangles are to each other as the squares of their homologous altitudes.
618. Exercise. In the triangle $A B C$, $E D$ is parallel to $A C$, and $C D=\frac{1}{3} D B$. How do the areas of triangles $A B C$ and $B D E$ compare?
619. Exercise. The side of an equilateral triangle is the radius of a circle.
 The side of another equilateral triangle is the diameter of the same circle. How do the areas of these triangles compare?
620. Exercise. Two similar triangles have homologous sides 12 ft . and 13 ft . respectively. Find the homologous side of a similar triangle equivalent to their difference.
621. Exercise. The homologous sides of two similar triangles are 3 ft . and 1 ft . respectively. How do their areas compare?
622. Exercise. Similar triangles are to each other as the squares of any two homologous medians.
623. Exercise. The base of a triangle is 32 ft ., and its altitude is 20 ft . What is the area of a triangle cut off by drawing a line parallel to the base at a distance of 15 ft . from the base ?
624. Exercise. A line is drawn parallel to the base of a triangle dividing the triangle into two equivalent portions. In what ratio does the line divide the other sides of the triangle?
625. Exercise. Draw a line parallel to the base of a triangle, and cutting off a triangle that shall be equivalent to one third of the remaining portion.
626. Exercise. Equilateral triangles are constructed on the sides of a right-angled triangle as bases. If one of the acute angles of the rightangled triangle is $30^{\circ}$, how do the largest and smallest equilateral triangles compare in area ?
627. Exercise. In the triangle $A B C$, the altitudes to the sides $A B$ and $A C$ are 3 in . and 4 in . respectively. Equilateral triangles are constructed on the sides $A B$ and $A C$ as bases. Compare their areas.
628. Exercise. The homologous altitudes of two similar triangles are 5 ft . and 12 ft . respectively. Find the homologous altitude of a triangle similar to each of them and equivalent to their sum.
629. Exercise. Draw a line parallel to the base of a triangle, and cutting off a triangle that is equivalent to $\frac{4}{5}$ of the remaining trapezoid.
630. Exercise. Through $O$, the point of intersection of the altitudes of the equilateral triangle $A B C$, lines are drawn parallel to the sides $A B$ and $B C$ respectively and meeting $A C$ at $x$ and $y$. Compare the areas of triangles $A B C$ and $O x y$.

Proposition X. Theorem
631. Similar polygons are to each other as the squares of their homologous sides.


Let $A B C D E$ and $F$ giHiJ be two similar polygons.
To Prove

$$
\frac{A B C D E}{F G H I J}=\frac{\overline{C D}^{2}}{\overline{\overline{H I}}^{2}} .
$$

Proof. From the vertex $A$ draw all the possible diagonals. From $F$, homologous with $A$, draw the diagonals in $F^{\prime} G H I J$.

$$
\begin{align*}
& \frac{\triangle A B C}{\triangle F G H}=\frac{\overline{A C}^{2}}{\overline{F H}^{2}}  \tag{?}\\
& \frac{\triangle A C D}{\triangle F H I}=\frac{\overline{A C}^{2}}{\overline{F H}^{2}}  \tag{?}\\
& \frac{\triangle A B C}{\triangle F G H}=\frac{\triangle A C D}{\triangle F H I} \tag{?}
\end{align*}
$$

Similarly prove

$$
\frac{\triangle A C D}{\triangle F^{\prime} H I}=\frac{\triangle A D E}{\triangle F^{\prime} I J} .
$$

$$
\begin{equation*}
\frac{\triangle A B C}{\triangle F G H}=\frac{\triangle A C D}{\triangle F H I}=\frac{\triangle A D E}{\triangle F I J} \tag{?}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\triangle A B C+\triangle A C D+\triangle A D E}{\triangle F G H+\triangle F H I}+\triangle F F I J=\frac{\triangle A C D}{\triangle F H I}(?), \text { or } \frac{A B C D E}{F G H I J}=\frac{\triangle A C D}{\triangle F H I} \\
& \frac{\triangle A C D}{\triangle F H I}=\frac{\overline{C D}^{2}}{\overline{H I}^{2}}  \tag{?}\\
& \text { (?) }  \tag{?}\\
& \frac{A B C D E}{F G H I J}=\frac{\overline{C D}^{2}}{\overline{H I I}^{2}} \\
& \text { (?) }
\end{align*}
$$

632. Corollary I. Similar polygons are to each other as the squares of their homologous diagonals.
633. Corollary II. In similar polygons homologous triangles are like parts of the polygons.
[This was shown in the proof of the proposition.]
634. Exercise. The area of a certain polygon is $2 \frac{1}{4}$ times the area of a similar polygon. A side of the first is 3 ft . Find the homologous side of the second.
635. Exercise. The homologous sides of two similar polygons are 8 in . and 15 in . respectively. Find the homologous side of a similar polygon equivalent to their sum.
636. Exercise. The areas of two similar pentagons are 18 sq. yds. and 25 sq. yds. respectively. A triangle of the former pentagon contains 4 sq. yds. What is the area of the homologous triangle in the second pentagon?
637. Exercise. If the triangle $A D E$ [see figure of § 631] contains 12 sq. in., and triangle $F I J$ contains 9 sq. in., how do the areas of $A B C D E$ and FGHIJ compare?
638. Exercise. The homologous diagonals of two similar polygons are 8 in . and 10 in . respectively. Find the homologous diagonal of a similar polygon equivalent to their difference.
639. Exercise. Connect $C$ with $m$, the middle point of $A D$, and $H$ with $n$, the middle point of $F I$ [see figure of §631], and prove

$$
\frac{A B C D E}{F G H I J}=\frac{\overline{C m}^{2}}{\overline{H n}^{2}} .
$$

640. Exercise. If one square is double another square, what is the ratio of their sides?
641. Exercise. Construct a hexagon similar to a given hexagon and equivalent to one quarter of the given hexagon.
642. Exercise. Construct a square equivalent to $\frac{4}{9}$ of a given square.

## Proposition XI. Theorem

643. The square described on the hypotenuse of a rightangled triangle is equivalent to the sum of the squares described on the other two sides.


Let $A B C$ be a right-angled triangle.
To Prove

$$
\overline{B C}^{2}=\overline{A B}^{2}+\overline{A C}^{2}
$$

Proof. Describe squares on the three sides of the triangle. Draw $A J \perp$ to $B C$, and prolong it until it meets $G F$ at $L$.
Draw $A F$ and $B D$.
Show that the $\triangle B C D$ and $A C F$ are equal by $\S 30$.
Show that the $\triangle A C F$ and the rectangle $C J L F$ have a common base and equal altitudes.

Whence,
Similarly prove

$$
\begin{aligned}
\triangle A C F & =\frac{1}{2} C J L F \\
\triangle B C D & =\frac{1}{2} A C D E \\
A C D E & =C J L F
\end{aligned}
$$

In a similar manner prove $A B H I=B G L J$.

$$
\begin{align*}
\therefore A C D E+A B H I & =C J L F+B G L J, \\
\overline{A C}^{2}+\overline{A B}^{2} & =\overline{B C}^{2} .
\end{align*}
$$

644. Note. The discovery of the proof of this proposition is attributed to Pythagoras ( 550 в.c.) , and the proposition is usually called the Pythagorean Proposition.

The foregoing proof is given by Euclid (Book I., Prop. 47).
A shorter proof follows:
In the R.A. $\triangle A B C, A J$ is drawn $\perp$ to the hypotenuse.
By § 518

$$
\begin{align*}
& \frac{B C}{A C}=\frac{A C}{C J}  \tag{1}\\
& \frac{B C}{A B}=\frac{A B}{B J} \tag{2}
\end{align*}
$$

Whence,

$$
\begin{align*}
& \overline{A C}^{2}=B C \times C J  \tag{3}\\
& \overline{A B}^{2}=B C \times B J . \tag{4}
\end{align*}
$$

Adding (3) and (4) $\quad \overline{A C}^{2}+\overline{A B}^{2}=B C(C J+B J)$
or

$$
\overline{A C}^{2}+\overline{A B}^{2}=\overline{B C}^{2}
$$

Q.E.D.
645. Corollary I. $\overline{A C}^{2}=\overline{B C}^{2}-\overline{A B}^{2}$ and $\overline{A B}^{2}=\overline{B C}^{2}-\overline{A C}^{2}$, that is, the square described on either side about the right angle is equivalent to the square described on the hypotenuse, diminished by the square described on the other side.
646. Corollary II. If the three sides of a right-angled triangle are made homologous sides of three similar polygons, the polygon on the hypotenuse is equivalent to the sum of the polygons on the other two sides.

Let polygons $M, N$, and $R$ be similar.

To Prove $\quad M=N+R$.
Proof. $\quad \frac{N}{R}=\frac{\overline{A B}^{2}}{\overline{A C}^{2}}$. (?)
Whence $\frac{N+R}{R}=\frac{\overline{A B}^{2}+\overline{A C}^{2}}{\overline{A C}^{2}}$.

$$
\begin{align*}
\frac{M}{R}=\frac{\overline{B C}^{2}}{\overline{A C}^{2}} \cdot \text { (?) } \quad \therefore \frac{N+R}{M}=\frac{\overline{A B}^{2}+\overline{A C}^{2}}{\overline{B C}^{2}} .  \tag{?}\\
\overline{A B}^{2}+\overline{A C}^{2}=\overline{B C}^{2} . \quad \therefore N+R=M .
\end{align*}
$$

Q.E.D.
647. Corollary III. The square described on the hypoténuse is to the square described on either of the other sides, as the hypotenuse is to the segment of the hypotenuse adjacent to that side.

Prove

$$
\frac{\overline{B C}^{2}}{\overline{A C}^{2}}=\frac{B C}{J C} \text { and } \frac{\overline{B C}^{2}}{\overline{A B}^{2}}=\frac{B C}{B J} .
$$

648. Corollary IV. The squares described on the two sides about the right angle are to each other as the adjacent segments of the hypotenuse.

Prove

$$
\frac{\overline{A B}^{2}}{\overline{A C}^{2}}=\frac{B J}{J C} .
$$

In Exercises 649-654 reference is made to the figure of § 643 .
649. Exercise. Show that $B I$ is parallel to $C E$.
650. Exercise. The points $H, A$, and $D$ are in a straight line.
651. Exercise. $A G$ and $H C$ are at right angles, as are also $A F$ and $B D$.
652. Exercise. If $H G, F D$, and $I E$ are drawn, the three triangles $H B G, F C D$, and $E A I$ are equivalent. [Use § 571.$]$
653. Exercise. The intercepts $A M$ and $A N$ are equal. [ $\triangle B A N$ and $C A M$ are similar to $\triangle B E D$ and $C I H$ respectively.]
654. Exercise. The three lines $A L, B D$, and $H C$ pass through a common point.
[By means of similar triangles, show :

$$
\frac{M A}{M B}=\frac{A C}{H B} \text { (1) } \quad \frac{N C}{A N}=\frac{C D}{A B} \text { (2) and by Cor. IV, } \frac{B J}{J C}=\frac{\overline{A B}^{2}}{\overline{A C}^{2}} \text { (3). }
$$

Multiply (1), (2), and (3) together, member by member.

$$
\frac{M A}{M B} \times \frac{B J}{J C} \times \frac{N C}{A N}=1 . \quad \therefore A L, B D, \text { and } H C \text { are concurrent.] }
$$

655. Exercise. The square described on the diagonal of a square is double the original square.
656. Exercise. The diagonal and side of a square are incommensurable. [See preceding exercise.]
657. Definition. The projection of $C D$ on $A B$ is that part of $A B$ between the perpendiculars from the extremities of $C D$ to $A B$.
$E F$ is the projection of $C D$ on
 $A B$.
$M R$ is the projection of $M N$ on $A B$.
658. Exercise. The projection of a line upon a line parallel to it, is equal to
 the line itself. The projection of a line upon another line to which it is oblique is less than the line itself.

## Proposition XII. Theorem

659. In any triangle the square of a side opposite an acute angle is equivalent to the sum of the squares of the other two sides, diminished by twice the product of one of these sides and the projection of the other side upon it.


Let $A B C$ be a $\triangle$ in which $B C$ lies opposite an acute angle, and $A D$ is the projection of $A B$ on $A C$.

To Prove

$$
\widehat{B C}^{2}=\widehat{A B}^{2}+\overline{A C}^{2}-2 A C \cdot A D .
$$

Proof. In figure (1) $D C=A C-A D$.
In figure (2) $D C=A D-A C$.
In either case

$$
\overline{D C}^{2}=\overline{A C}^{2}+\overline{A D}^{2}-2 A C \cdot A D .
$$

$$
\begin{align*}
\overline{D C}^{2}+\overline{B D}^{2} & =\overline{A C}^{2}+\overline{A D}^{2}+\overline{B D}^{2}-2 A C \cdot A D  \tag{?}\\
\overline{B C}^{2} & =\overline{A C}^{2}+\overline{A B}^{2}-2 A C \cdot A D .
\end{align*}
$$

Q.E.D.
660. Exercise. Prove this proposition, using the projection of $A C$ on $A B$.
661. Exercise. In a triangle $A B C, A B=6 \mathrm{ft}$., $A C=5 \mathrm{ft}$., and $B C=7 \mathrm{ft}$. Find the projection of $A C$ upon $B C$.

## Proposition XIII. Theorem

662. In an obtuse-angled triangle the square of the side opposite the obtuse angle is equivalent to the sum of the squares of the other two sides, increased by twice the product of one of these sides and the projection of the other side upon it.


Let $A B C$ be an obtuse-angled $\triangle$, and $C D$ be the projection of $B C$ on $A C$ (prolonged).

To Prove $\quad \overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}+2 A C \cdot C D$.
Proof. $\quad A D=A C+C D$.

$$
\begin{align*}
\overline{A D}^{2} & =\overline{A C}^{2}+\overline{C D}^{2}+2 A C \cdot C D \\
\overline{A D}^{2}+\overline{B D}^{2} & =\overline{A C}^{2}+\overline{C D}^{2}+\overline{B D}^{2}+2 A C \cdot C D \\
\overline{A B}^{2} & =\overline{A C}^{2}+\overline{B C}^{2}+2 A C \cdot C D
\end{align*}
$$

663. Corollary I. The right-angled triangle is the only one in which the square of one side is equivalent to the sum of the squares of the other two sides.
664. Exercise. The sides of a triangle are 6,3 , and 5 . Is its greatest angle acute, obtuse, or right ?

## Proposition XIV. Theorem

665. In any triangle the sum of the squares of two sides is equivalent to twice the square of one half the third side increased by twice the square of the medial line to the third side.


Let $A B C$ be any $\triangle$ and $B D$ be a medial line to $A C$.
To Prove

$$
\overline{A B}^{2}+\overline{B C}^{2}=2 \overline{A D}^{2}+2 \overline{B D}^{2} .
$$

Proof. Case I. When $B D$ is oblique to $A C$.

$$
\begin{gather*}
\overrightarrow{A B}^{2}=\overline{A D}^{2}+\overline{B D}^{2}+2 A D \cdot D E .  \tag{?}\\
\overline{B C}^{2}=\overline{B D}^{2}+\overline{D C}^{2}-2 D C \cdot D E .  \tag{?}\\
\overline{A B}^{2}+\overline{B C}^{2}=2 \overline{A D}^{2}+2 \overline{B D}^{2} . \tag{?}
\end{gather*}
$$

Q.E.D.

Case II. When $B D$ is perpendicular to $A C$.

$$
\begin{gather*}
\overline{A B}^{2}=\overline{A D}^{2}+\overline{B D}^{2} . \text { (?) } \quad \overline{B C}^{2}=\overline{D C}^{2}+\overline{B D}^{2} .  \tag{?}\\
\overline{A B}^{2}+\overline{B C}^{2}=2 \overline{A D}^{2}+2 \overline{B D}^{2} . \tag{?}
\end{gather*}
$$

Q.E.D.
666. Corollary I. The sum of the squares of the sides of a parallelogram is equivalent to the sum of the squares of the diagonals.
[Apply § 665 to $\mathbb{A} A B C$ and $A D C$
 and add the equations.]
667. Corollary II. The sum of the squares of the sides of any quadrilaterul is equivalent to the sum of the squares of the diagonals, increased by four times the square of the line joining the middle points of the diagonals.
[To prove

$$
\overline{A B}^{2}+\overline{B C}^{2}+\overline{C D}^{2}+\overline{D A}^{2}=\overline{B D}^{2}+\overline{A C}^{2}+4 \overline{M N}^{2}
$$

Draw $A M$ and $C M$.

$$
\begin{align*}
& \overline{A B}^{2}+\overline{A D}^{2}=2 \overline{A M}^{2}+2 \overline{M D}^{2}  \tag{?}\\
& \overline{B C}^{2}+\overline{C D}^{2}=2 \overline{C M}^{2}+2 \overline{M D}^{2} \tag{?}
\end{align*}
$$

$$
2\left(\overline{A M}^{2}+\overline{C M}^{2}\right)=2\left(2 \overline{A N}^{2}+2 \overline{M N}^{2}\right)
$$



Add these three equations, member by member, and simplify. (Remember that $4 \overline{M D}^{2}=\overline{B D}^{2}$.) (?)]

Show that Cor. I. is a special case of Cor. II.
668. Exercise. In any triangle the difference of the squares of two sides is equivalent to the difference of the squares of their projections on the third side.
669. Exercise. In the diameter of a circle two points $A$ and $B$ are taken equally distant from the center, and joined to any point $P$ on the circumference. Show that $\overline{A P}^{2}+\overline{P B}^{2}$ is constant for all positions of $P$.
670. Exercise. Two sides and a diagonal of a parallelogram are 7, 9, and 8 respectively. Find
 the length of the other diagonal.
671. Exercise. $A B C D$ is a rectangle, and $P$ any point from which lines are drawn to the four vertices.

Prove $\quad \overline{A P}^{2}+\overline{C P}^{2}=\overline{B P}^{2}+\overline{D P}^{2}$.

672. Exercise. If the side $A C$ of the triangle $A B C$ be divided at $D$ so that $m A D=n D C$, and $B D$ be drawn, prove

$$
\begin{aligned}
& m \overline{A B}^{2}+n \overline{B C}^{2}=m \overline{A D}^{2}+n \overline{D C}^{2}+(m+n) \overline{B D}^{2} . \\
& {\left[m \overline{A B}^{2}=\right.} \\
& m\left(\overline{A D}^{2}+{\overline{B D^{2}}}^{2}+2 A D \cdot D E\right) . \text { (?) } \\
& n{\overline{B C^{2}}}^{2}= \\
& n\left(\overline{D C}^{2}+\overline{B D}^{2}-2 D C \cdot D E\right) . \text { (?) } \\
& m \overline{A B}^{2}+n \overline{B C}^{2}= \\
& m \overline{A D}^{2}+n \overline{D C}^{2}+(m+n) \overline{B D}^{2} .
\end{aligned}
$$

Show that $\S 665$ is a special case of this exercise.]
673. Exercise. The diagonals of a parallelogram are $a \mathrm{ft}$. and $b \mathrm{ft}$. respectively, and one side is $c \mathrm{ft}$. Find the length of the other sides.
674. Exercise. In the triangle $A B C$ (see figure of § 672), if $A B=9 \mathrm{in}$., $B C=6 \mathrm{in}$., $A C=10 \mathrm{in}$., and $A D=4 \mathrm{in}$., find the length of $B D$.
675. Exercise. Find the lengths of the medians of a triangle. [In the triangle $A B C$ represent the lengths of the sides by $a, b$, and $c$. Show that

$$
\begin{aligned}
& \text { Median to } A C=\frac{1}{2} \sqrt{2 a^{2}+2 c^{2}-b^{2}} \\
& \text { Median to } B C=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}} \\
& \text { Median to } \left.A B=\frac{1}{2} \sqrt{2 a^{2}+2 b^{2}-c^{2}} .\right]
\end{aligned}
$$

676. Exercise. In the triangle $A B C$, the lengths of the sides are represented by $a, b$, and $c$ ( $a$ being the length of $B C$ opposite $\angle A$, etc.). The sum of the sides is called $2 S$.

$$
a+b+c=2 S . \quad \therefore \frac{a+b+c}{2}=S .
$$

Show that $\frac{b+c-a}{2}=S-a$,

$$
\begin{aligned}
& \frac{a-b+c}{2}=S-b, \\
& \frac{a+b-c}{2}=S-c .
\end{aligned}
$$



## Proposition XV. Theorem

677. The area of the triangle $A B C$ is

$$
\sqrt{S(S-a)(S-b)(S-c)},
$$

in which $a, b$, and $c$ are the lengths of the three sides and $2 s$ their sum.


Let $A B C$ be any $\triangle$.
To Prove $\quad \triangle A B C=\sqrt{S(S-a)(s-b)(s-c)}$.
Proof. Draw the altitude $B D$.
By §659,

$$
a^{2}=b^{2}+c^{2}-2 b \cdot A D
$$

Whence

$$
A D=\frac{b^{2}+c^{2}-a^{2}}{2 b}
$$

In the R.A. $\triangle A B D$ by $\S 645$,

$$
\begin{align*}
\overline{B D}^{2} & =c^{2}-\frac{\left(b^{2}+c^{2}-a^{2}\right)^{2}}{4 b^{2}}=\frac{4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}}{4 b^{2}} \\
& =\frac{\left[2 b c-b^{2}-c^{2}+a^{2}\right]\left[2 b c+b^{2}+c^{2}-a^{2}\right]}{4 b^{2}} \\
& =\frac{[(a-b+c)(a+b-c)][(b+c-a)(b+c+a)]}{4 b^{2}} \\
& =\frac{4}{b^{2}}\left(\frac{a+b+c}{2}\right)\left(\frac{b+c-a}{2}\right)\left(\frac{a-b+c}{2}\right)\left(\frac{a+b-c}{2}\right) . \\
\therefore \quad \overline{B D}^{2} & =\frac{4}{b^{2}}(S)(S-a)(S-b)(S-c) . \\
B D & =\frac{2}{b} \sqrt{S(S-a)(S-b)(S-c)} . \tag{a}
\end{align*}
$$

The area of $\triangle A B C=\frac{1}{2} b \cdot B D$.
$\therefore$ Area $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$.
Q.E.D.
678. Corollary I. The area of an equilateral triangle is one fourth the square of a side, multiplied by $\sqrt{3}$.
[In the formula for the area of any triangle, substitute $\alpha$ for $b$ and also for $c$. Area $=\frac{1}{4} a^{2} \sqrt{3}$.]
679. Corollary II. The altitude drawn to the side b in triangle $A B C$ is [See $(a)$ of $\S 677.] \frac{2}{b} \sqrt{S(S-a)(S-b)(S-c)}$. Write the values of the altitudes drawn to a and $c$ respectively.
680. Exercise. Show that the altitude of an equilateral triangle is $\frac{1}{2} a \sqrt{3}$. $\quad(a=$ length of $a$ side of the $\Delta$.)
681. Exercise. The sides of a triangle are 5,6 , and 7. Find its area, and its three altitudes.
682. Exercise. The area of an equilateral triangle is $25 \sqrt{3}$. Find its side, and also its altitude.
683. Exercise. The sides $A B, B C, C D$, and $D A$ of a quadrilateral $A B C D$ are $10 \mathrm{in} ., 17 \mathrm{in}$., 13 in ., and 20 in . respectively, and the diagonal $A C$ is 21 in . What is the area of the quadrilateral?
684. Exercise. Two sides of a parallelogram are 6 in . and 7 in . respectively, and one of its diagonals is 8 in . Find its area.
685. Exercise. Two diagonals of a parallelogram are 6 in. and 8 in. respectively, and one of its sides is 5 in . Find its area, and the lengths of its altitudes.
686. Exercise. The parallel sides of a trapezoid are 6 ft . and 8 ft . respectively ; one of its non-parallel sides is 4 ft ., and one of its diagonals is 7 ft . Find its area.
687. Exercise. The area of a triangle is 126 sq . ft., and two of its sides are 20 ft . and 21 ft . respectively. Find the third side.
[The work of this problem can be reduced by using the formula, area $=\frac{1}{4} \sqrt{4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}}$, and substituting 20 and 21 for $b$ and $c$ respectively.]

## Proposition XVI. Theorem

688. The area of a triangle is equal to the product of its three sides divided by four times the radius of the circumscribed circle.


Let $A B C$ be any $\triangle$ and let the lengths of its sides be represented by $a, b$, and $c$, and the radius of the circumscribed $\odot$ be called $R$.

To Prove

$$
\triangle A C B=\frac{a b c}{4 R}
$$

Proof. Draw the altitude $B D$, the diameter $B E$, and the chord $E C$.

$$
\begin{equation*}
\triangle A B C=\frac{1}{2} b \cdot B D \tag{1}
\end{equation*}
$$

Prove $\triangle A B D$ and $B E C$ mutually equiangular and similar,
whence

$$
\begin{align*}
& \frac{B D}{A B}=\frac{B C}{B E} \text { or } \frac{B D}{c}=\frac{a}{2 R} . \\
& B D=\frac{a c}{2 R} \tag{2}
\end{align*}
$$

Substitute (2) in (1).

$$
\begin{equation*}
\triangle A B C=\frac{a b c}{4 R} \tag{3}
\end{equation*}
$$

689. Corollary. From the conclusion of the proposition we have $\triangle A B C=\frac{a b c}{4 R}$, whence $R=\frac{a b c}{4 \triangle A B C}$. The radius of the SANDERS' GEOM. - 14
circle circumscribed about a triangle is equal to the product of the three sides divided by four times the area of the triangle.
690. Exercise. The sides of a triangle are 24 ft ., 18 ft ., and 30 ft . respectively. Find the radius of the circumscribed circle.

## Proposition XVII. Problem

691. To construct a square equivalent to the sum of two given squares, or equivalent to the difference of two given squares.


Let $A$ and $B$ be two given squares and $a$ and $b$ a side of each.


Show that $C=A+B$.


Show that $D=A-B$.
692. Corollary I. To construct a square equivalent to the sum of several given squares.
$a, b, c$, and $d$ are the sides of the given squares.
$\angle 1, \angle 2$, and $\angle 3$ are R.A.'s.
Show that $\overline{M N}^{2}=a^{2}+b^{2}+c^{2}+d^{2}$.
693. Corollary II. Construct a square having a given ratio to a given square.


Let $A$ be the given square, and $m$ and $n$ lines having the given ratio.
[Represent a side of the required square by $x$.

Then $x^{2}=\frac{m}{n} \alpha^{2}=\frac{m a}{n} \times \alpha$.


Construct a line equal to $\frac{m a}{n}(\S 461)$.
Call this line $c$. Then $x^{2}=c a$.
Find $x$. (§ 519.)]
694. Exercise. Construct a square equivalent to the sum or difference of a rectangle and a square.

- [Construct a square equivalent to the rectangle, and then proceed as in the proposition itself.]

695. Exercise. Construct a square equivalent to the sum of the squares that have for sides $2,4,8,12$, and 16 units respectively.
696. Exercise. If $a=2$ in., construct lines having the following values: $a \sqrt{2}, a \sqrt{3}, a \sqrt{5}, a \sqrt{6}, a \sqrt{7}$, and $a \sqrt{11}$.
697. Exercise. If $a, b$, and $c$ are given lines, construct

$$
x=\frac{a^{2}+3 b c+4 b^{2}}{2 a+3 c} \text { and also } x=\sqrt{\frac{3 a^{2} b+a b c}{a+2 b}} .
$$

698. Exercise. Construct a square whose area shall be two thirds of the area of a given square.
699. Exercise. Construct a right-angled triangle, having given the hypotenuse and the sum of the legs.

Let $a$ be the given hypotenuse and $b$ be the sum of the legs.
[Let $x$ and $y$ represent the legs.

b

Then

$$
x+y=b
$$

$$
x^{2}+y^{2}=a^{2} . \quad(\S 643 .)
$$

Solving these equations, we get

$$
\begin{aligned}
& x=\frac{1}{2}\left(b+\sqrt{2 a^{2}-b^{2}}\right), \\
& y=\frac{1}{2}\left(b-\sqrt{2 a^{2}-b^{2}}\right) .
\end{aligned}
$$

Construct these values of $x$ and $y$.
Then the three sides of the triangle are known.]
700. Exercise. Construct a right-angled triangle, having given one leg, and the sum of the hypotenuse and the other leg.

## Proposition XVIII. Problem

701. To construct a polygon similar to either of two given similar polygons and equivalent to their sum.


Let $A$ and $B$ be the two given similar polygons.
Required to construct a third polygon similar to either $\boldsymbol{A}$ or $B$, and equivalent to their sum.
[Construct a R.A. $\triangle$ having $a$ and $b$ (homologous sides of $A$ and $B$ ) for legs. On the hypotenuse of this $\Delta$ construct a polygon similar to $A$. Show, by $\S 646$, that this is the required polygon.]
702. Corollary I. Construct a polygon similar to either of two given similar polygons and equivalent to their difference.
703. Corollary II. Construct a polygon similar to a given polygon and having a given ratio to it.

Let $a$ be a side of the given polygon $A$ and $\frac{m}{n}$ be the given ratio.
[Construct $x^{2}=\frac{m}{n} a^{2}$.
(§ 693.)


On a side of the square $x^{2}$ construct a polygon $R$ similar to $A$.

$$
\frac{R}{A}=\frac{x^{2}}{a^{2}}=\frac{\frac{m}{n} a^{2}}{a^{2}}=\frac{m}{n} . \quad \text { (?)] }
$$

704. Corollary III. Construct a polygon similar to one given polygon and equivalent to another.

Let $A$ and $B$ be the two given polygons.

Required to construct a polygon similar to $A$ and equivalent to $B$.
[Construct a square $C$
 equivalent to $A$, and a square $D$ equivalent to $B$. Let $c$ and $d$ be sides of these squares.

Construct a line $m=\frac{a d}{c}$. (§461.)
On $m$, homologous with $a$, construct a polygon $R$ similar to $A$.

$$
\begin{equation*}
\frac{R}{A}=\frac{m^{2}}{a^{2}}=\frac{\frac{a^{2} l^{2}}{c^{2}}}{a^{2}}=\frac{d^{2}}{c^{2}} \tag{?}
\end{equation*}
$$

Since

$$
\begin{aligned}
& A=c^{2} \\
& \left.R=d^{2}=B .\right]
\end{aligned}
$$

705. Exercise. Construct a quadrilateral similar to a given quadrilateral and whose area shall be 3 sq . in. (§ 704.)
706. Exercise. Construct an equilateral triangle the area of which shall be three fourths of that of a given square.

## EXERCISES

1. The diagonal of a rectangle is 13 ft ., one of its sides is 12 ft .1 What is its area?
2. The square on the hypotenuse of an isosceles right-angled triangle is four times the area of the triangle.
3. The base of an isosceles triangle is 14 in ., and one of the other sides is 18 in . Find the lengths of its altitudes.
4. Find a point within a triangle such that lines drawn from it to the three vertices divide the tri-
 angle into three equal parts.
5. If a circle is inscribed in a triangle, the lines joining the points of tangency with the opposite vertices are concurrent.
$\left[\right.$ Show that $\left.\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=1.\right]$

6. Given a triangle, to construct an equivalent parallelogram the perimeter of which shall equal that of the triangle.

$$
\left[F E=\frac{1}{2}(A C+B C) \cdot\right]
$$


7. The sum of the three perpendiculars from a point within an equilateral triangle to the three sides is equal to the altitude of the triangle.
8. The bases of two equivalent triangles are 10 ft . and 15 ft . respectively. Find the ratio of their altitudes.
9. $A B C D$ is any parallelogram, and $O$ is any point within.

Prove that the sum of the areas of triangles $O A B$ and $O C D$ equals one half the area of the parallelogram.

10. $A B C$ is a right-angled triangle, and $B D$ bisects $A C$.

Prove that $\overline{B D}^{2}=\overline{B C}^{2}-3 \overline{D C}^{2}$.

11. In the right-angled triangle $A B C$, $A D$ is perpendicular to the hypotenuse $B C$, and the segments $B D$ and $D C$ are 9 ft . and 16 ft . respectively. Find the lengths of the sides, the area of the triangle, and the length of $A D$.

12. A square is greater than any other rectangle inscribed in the same circle.
[Show that both square and rectangle have diameters for diagonals.]
13. $A B C D$ is any quadrilateral, and $A E$ and $C F$ are drawn to the middle points of $B C$ and $A D$ respectively.

Prove $A E C F$ equivalent to $B E A+C F D$.
14. From any point $O$ within the triangle $A B C, O X, O Y$, and $O Z$ are drawn perpendicular to $B C, C A$, and $A B$ respectively.

- Prove
$\overline{A Z}^{2}+\overline{B X}^{2}+\overline{C Y}^{2}=\overline{Z B}^{2}+\overline{X C}^{2}+\overline{Y A}^{2}$.
[Draw $O A, O B$, and $O C$. Then use § 643.]

15. In the parallelogram $A B C D$ any point on the diagonal $A C$ is joined with the vertices $B$ and $D$.

Prove triangles $A B E$ and $A E D$ equivalent.

16. Draw a line through the point of intersection of the diagonals of a trapezoid dividing it into two equivalent trapezoids.
17. The square described on the sum of two lines is equivalent to the sum of the squares of the lines increased by twice their rectangle.

18. The square described on the difference of two lines is equivalent to the sum of the squares of the lines diminished by twice their rectangle.
19. The rectangle having for its sides the sum and the difference of two lines is equivalent to the difference of their squares.

20. A triangle and a rectangle having equal bases are equivalent. How do their altitudes compare?
21. Draw a straight line through a vertex of a triangle dividing it into two parts having the ratio of $m$ to $n$.
22. Through a given point within or without a parallelogram draw a line dividing the parallelogram into two equivalent parts.
23. If $a$ and $b$ are the sides of a triangle, show that its area $=\frac{1}{4} a b$ when the included angle is $30^{\circ}$ or $150^{\circ} ; \frac{1}{4} a b \sqrt{2}$ when the included angle is $45^{\circ}$ or $135^{\circ} ; \frac{1}{4} a b \sqrt{3}$ when the included angle is $60^{\circ}$ or $120^{\circ}$.
[Using either $a$ or $b$ for base, find the altitude of the $\triangle$.]
24. If equilateral triangles are described on the three sides of a rightangled triangle, prove that the triangle on the hypotenuse is equivalent to the sum of the triangles on the other sides.
25. On a given line as a base construct a rectangle equivalent to a given rhombus.
26. Bisect a triangle by a line drawn parallel to one of its sides. [§ 616.]
27. The square of a line from the vertex of an isosceles triangle to the base is equivalent to the square of one of the equal sides diminished by the rectangle of the segments of the base $\left[\right.$ i.e. $\overline{B D}^{2}=\overline{A B}^{2}-A D \times D C$ ]. [Draw the altitude to $A C$. Use § 643.]

28. If, in Exercise 27, BD is drawn to a point $D$ on the prolonged base, then $\overline{B D}^{2}=\overline{A B}^{2}+A D \times D C$.
29. Three times the sum of the squares on the sides of a triangle is equivalent to four times the sum of the squares on its medians. [§ 665.]
30. If the base $a$ of a triangle is increased $d$ inches, how much must the altitude $b$ be diminished in order that the area of the triangle shall be unaltered.
31. $O C$ is a line drawn from the center of the circle to any point of the chord $A B$.

Prove that $\overline{O C}^{2}=\overline{O A}^{2}-A C \times C B$.
32. The lengths of the parallel sides of a trapezoid are $a \mathrm{ft}$. and $b \mathrm{ft}$. respectively. The two inclined sides are each $c \mathrm{ft}$. Find the area of the trapezoid.
33. From the middle point $D$ of the base of the right-angled triangle $A B C, D E$ is drawn perpendicular to the hypotenuse $B C$.

Prove that $\overline{B E}^{2}-\overline{E C}^{2}=\overline{A B}^{2}$.

34. In any circle the suin of the squares on the segments of two chords that are perpendicular to each other is equivalent to the square on the diameter. [§ 643.]
35. Construct a triangle having given its angles and its area.
36. In the triangle $A B C, A D, B E$, and $C F$ are lines drawn from the vertices and passing through a common point $O$.

Prove that $\frac{O E}{B E}+\frac{O D}{A D}+\frac{O F}{C F}=1$.


$$
\left[\frac{O E}{B E}=\frac{\triangle A O C}{\triangle A B C} \text {. (?) Find similar expressions for } \frac{O D}{A D} \text { and } \frac{O F}{C F} \text {. }\right]
$$

37. From any point $O$ within a triangle $A B C, O D, O E$, and $O F$ are drawn to the three sides. From the vertices $A D^{\prime}, B E^{\prime}$, and $C F^{\prime \prime}$ are drawn parallel to $O D, O E$, and $O F$ respectively.

Prove that


$$
\frac{O E}{B E^{\prime}}+\frac{O D}{A D^{\prime}}+\frac{O F}{C F^{\prime}}=1 . \quad\left[\frac{O E}{B E^{\prime}}=\frac{\triangle A O C}{\triangle A B C}, \text { etc. }\right]
$$

38. Given the altitude, one of the angles, and the area, construct a parallelogram.
39. The two medial lines $A E$ and $C D$ of the triangle $A B C$ intersect at $F$. Prove the triangle $A F C$ equivalent to the quadrilateral $B D F E$.
40. The diagonals of a trapezoid divide it into four triangles, two of which are similar,
 and the other two equivalent.
41. Any two points, $C$ and $D$, in the semicircumference $A C B$ are joined with the extremities of the diameter $A B . A E$ and $B F$ are drawn perpendicular to the chord $D C$ prolonged.

Prove that $\overline{C E}^{2}+\overline{C F}^{2}=\overline{D E}^{2}+\overline{D F}^{2}$.

[Use § 643.]
42. Describe four circles each of which is tangent to three lines that form a triangle.
[One of the four is the inscribed circle of the $\Delta$, and its radius is denoted by $r$. The other three are called escribed circles of the triangle, and their radii are denoted by $r_{a}, r_{b}$, and $r_{c}$. ( $r_{a}$ is the radius of the escribed circle lying between the sides of $\angle A$ of the $\triangle$.)]
43. The area of triangle $A B C$ $=r_{a}\left(S^{\prime}-a\right)$.
$[\triangle A B C=\triangle A B E+\triangle A C E-$ $\triangle B E C$, and $r_{a}$ is the altitude of each of these ©.]

Show that $r_{b}(S-b)$ and $r_{c}(S-c)$
 are also expressions for the area of triangle $A B C$.
44. The area of triangle $A B C=\sqrt{r \times r_{a} \times r_{b} \times r_{c}}$. [Ex. 43.]
45. Prove that $r_{a}+r_{b}+r_{c}-r=4 R$ [ $R=$ radius of the circle circumscribed about $\triangle A B C$ ]. [Ex. 43 and § 689.]
46. Prove that

$$
\frac{1}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}
$$

47. The area of a quadrilateral is equivalent to that of a triangle having two of its sides equal to the diagonals of the quadrilateral and its included angle equal to either of the angles between the diagonals of the quadrilateral. [ $D F=B E$ and $C G=A E$. Show that $\triangle G D F=\triangle A B C$ and $\triangle G E D$ $=\triangle A C D$.]
48. Parallelograms $A D E B$ and $B F G C$ are described on two sides of the triangle $A B C . D E$ and $G F$ are prolonged until they meet at $H$. $H B$ is drawn. A third parallelogram AIJC is constructed on $A C$, having $A I$ equal to and parallel to $B H$. Prove that $A I J C$ is equivalent to the sum of $A D E B$ and $B F G C$. [ $A D E B=A L K I$ and $B F G C=L C J K$.]

49. The lines joining the points of tangency of the escribed circles with the opposite vertices of the triangle $A B C$, are concurrent. [See Ex. 5.]
50. Deduce the Pythagorean Theorem (Prop. XI, Bk. IV) from Exercise 48.
51. Through a point $P$ within an angle draw a line such that it and the parts of the sides that are intercepted shall contain a given area.
[Construct parallelogram $B D E F=$
 required area (Ex. 38), $D E$ passing through $P$. If $H G$ is the required line, $\triangle P I E=\triangle I F H+\triangle P D G$. The $\&$ are similar, $D P, P E$, and $F H$ are homologous sides, and $D P$ and $P E$ are known.]
52. Is there any limit to the "given area" in Exercise 51 ?

## BOOK V

707. Definition. A regular polygon is a polygon that is both equilateral and equiangular.

## Proposition I. Theorem

708. If the circumference of a circle is divided into three or more equal parts, the chords joining the successive points of division form a regular inscribed polygon; and tangents drawn at the points of division form a regular circumscribed polygon.


Let the $\operatorname{arcs} A B, B C$, etc., be equal.
To Prove the polygon $A B C D \ldots$ a regular inscribed polygon. [The proof is left to the student.]
Let the arcs $A B, B C$, etc., be equal.
To Prove the polygon $x y z \cdots$ a regular circumscribed polygon.
Proof. [Draw the chords $A B, B C$, etc.
Show that the $\triangle A y B, B z C$, etc., are isosceles $\triangle$ and are equal in all respects.]
709. Corollary I. If at the middle points of the arcs subtended by the sides of a regular inscribed polygon, tangents to the circle are drawn,
I. The circumscribed polygon formed is regular.
II. Its sides are parallel to the sides of the iuscribed polygon.
III. A line connecting the center of the circle with a vertex of the outer polygon passes through a vertex of the inner polygon.
[yO bisects $\angle M O N$, consequently bisects arc $M N$, and therefore passes through $B$.]
710. Corollary II. If the arcs subtended by the sides of a regular inscribed polygon are bisected, and the points of division are joined with the extremities of the arcs, the polygon formed is a regular inscribed polygon of double the number of sides; and if at the extremities of the arcs and at their middle points tangents are drawn, the polygon formed is a regular circumscribed polygon of double the number of sides.
711. Corollary III. The area of a regular inscribed polygon is less than that of a regular inscribed polygon of double the number of sides; but the area of a regular circumscribed polygon is greater than that of a regular circumscribed polygon of double the number of sides.
712. Exercise. An equiangular polygon circumscribed about a circle is regular.
713. Exercise. An inscribed equiangular polygon is regular if the number of its sides is odd.
714. Exercise. A circumscribed equilateral polygon is regular if the number of its sides is odd.

## Proposition II. Theorem

715. A circle can be circumscribed about any regular polygon; and one can also be inscribed in it.


Let $A B C \cdots G$ be a regular polygon.
I. To Prove that a circle can be circumscribed about it.

Proof. Pass a circumference through three of the vertices, $A, B$, and $C$, and let $O$ be its center.
Draw the radii $O A, O B$, and $O C$. Draw $O D$.
Show that $\angle 1=\frac{1}{2} \angle B$ and $\angle 3=\frac{1}{2} \angle C$.
Prove $\triangle O C B$ and $O C D$ equal in all respects.
Whence $O D=O B$.
Therefore the circumference that passes through $A, B$, and $C$ will also pass through $D$.

Similarly, it can be shown that this circumference passes through the remaining vertices.
Q.E.D.
II. To Prove that a circle can be inscribed in the polygon.

Proof. Describe a circle about the regular polygon $A B \cdots G$.
The sides $A B, B C$, etc., are all equal chords of this circle, and are equally distant from the center (?).

With $O$ as a center and this distance for a radius describe a circle.

Show that $A B, B C$, etc., are tangent to this circle, which is, therefore, a circle inscribed in the regular polygon.
Q.E.D.
716. Definitions. The common center of the circles that are inscribed in and circumscribed about a regular polygon, is called the center of the polygon. The angles formed by radii drawn from this center to the vertices of the polygon are called angles at the center. Each angle at the center is equal to 4 right angles divided by the number of sides in the polygon. A line drawn from the center of the polygon perpendicular to a side, is an apothem. The apothem of a regular polygon is equal to the radius of the inscribed circle.
717. Exercise. How many degrees in the angle at the center of an equilateral triangle? Of a square? Of a regular hexagon? Of a regular polygon of $n$ sides ?
718. Exercise. How many sides has the polygon whose angle at the center is $30^{\circ}$ ? $18^{\circ}$ ?
719. Exercise. In what regular polygon is the apothem one half the radius of the circumscribed circle?
720. Exercise. In what regular polygon is the apothem one half the side of the polygon?
721. Exercise. Show that an angle at the center of any regular polygon is equal to an exterior angle of the polygon.

## Proposition III. Theorem

722. Regular polygons of the same number of sides are similar.

[Show that the polygons are mutually equiangular and have their homologous sides proportional.]

## Proposition IV. Theorem

723. The perimeters of similar regular polygons are to each other as the radii of their inscribed or of their circumscribed circles; and the polygons are to each other as the squares of the radii.


Let $A B C \cdots F$ and $M N R \cdots S$ be two similar regular polygons.
To Prove that their perimeters are proportional to the radii of the inscribed and of the circumscribed circles, and that their areas are proportional to the squares of these radii.

Proof. Let $x$ and $y$ be the centers of the regular polygons.
Draw $x B$ and $y N$, and the apothems $x E$ and $y L$.
$x B$ and $y_{N}$ are the radii of the circumscribed circles and $x E$ and $y L$ are the radii of the inscribed circles.

$$
\begin{align*}
& \frac{\text { Perimeter } A B C \cdots F}{\text { Perimeter } M N R \cdots S}=\frac{B C}{N R}=\frac{B x}{N y}=\frac{x E}{y L}  \tag{?}\\
& \frac{\text { Area } A B C \cdots F}{\text { Area } M N R \cdots S}=\frac{\overline{B C}^{2}}{\overline{N R}^{2}}=\frac{\overline{B x}^{2}}{\overline{N y}^{2}}=\frac{\overline{x E}^{2}}{\overline{y L}^{2}}
\end{align*}
$$

724. Exercise. Two squares are inscribed in circles, the diameters of which are 2 in . and 6 in . respectively. Compare their areas.
725. Exercise. A regular polygon, the side of which is 6 in ., is circumscribed about a circle having a radius $\sqrt{3} \mathrm{in}$. Find the side of a similar polygon circumscribed about a circle the radius of which is 6 in .
726. Exercise. The perimeters of similar regular polygons are to each other as the diameters of their inscribed or of their circumscribed circles; and the polygons are to each other as the squares of the diameters.

## Proposition V. Problem

727. To inscribe a square in a given circle.


Let $O$ be the center of the given circle.
Required to inscribe a square in the circle.
Draw the diameters $A B$ and $C D$ at right angles.
Connect their extremities.
Prove $A C B D$ an inscribed square. (§ 708.)
Q.E.F.
728. Corollary I. Tangents to the circle at the exeremities of the diameters $A B$ and $C D$ form a circumscribed square.
729. Corollary II. The side of the inscribed square is $R \sqrt{2}$. The side of the circumscribed square is $2 R$.
The area of the inscribed square is $2 R^{2}$.
The area of the circumscribed square is $4 R^{2}$.
730. Corollary III. By bisecting the arcs and drawing chords and tangents as described in § 710, regular polygons of $8,16,32,64$, etc., sides can be inscribed in and circumscribed about the circle.
731. Exercise. The radius of a circle is 5 ft . Find the side and the area of the inscribed square.
732. Exercise. Find the side and the area of a square circumscribed about a circle, having a diameter 6 in . long.
733. Exercise. The area of a square is 16 sq . in. Find the radius of the inscribed circle and also the radius of the circumscribed circle.

## Proposition VI. Problem

734. To inscribe a regular hexagon in a circle.


Let $O$ be the center of the given circle.
Required to inscribe a regular hexagon in the circle.
Draw the radius $O A$. Lay off the chord $A B=O A$. Draw $O B$. $\triangle O A B$ is equilateral, and angle $O$ contains $60^{\circ}$.
$\therefore$ the arc $A B$ is $\frac{1}{6}$ of the circumference, and the chord $A B$ is one side of a regular hexagon.

Complete the hexagon $A B C D E F$.
Q.E.F.
735. Corollary I. The chords joining the three alternate vertices form an inscribed equilateral triangle.
736. Corollary II. Tangents drawn at the vertices of the inscribed hexagon and of the triangle form a regular circumscribed hexagon and a regular circumscribed triangle.
737. Corollary III. If the arcs are bisected and chords and tangents are drawn according to $\S 710$, regular polygons of 12 , 24, 48, etc., sides will be inscribed in and circumscribed about the circle.
738. Exercise. The side of the inscribed equilateral triangle is $R \sqrt{3}$, and its area is $\frac{3}{4} R^{2} \sqrt{3}$.
739. Exercise. The side of the circumscribed equilateral triangle is $2 R \sqrt{3}$, and its area is $3 R^{2} \sqrt{3}$.
740. Exercise. The side of a regular inscribed hexagon is $R$, and its area is $\frac{3}{2} R^{2} \sqrt{3}$.
741. Exercise. The side of a regular circumscribed hexagon is $\frac{2}{3} R \sqrt{3}$, and its area is $2 R^{2} \sqrt{3}$.
742. Exercise. The area of a regular inscribed hexagon is double that of an equilateral triangle inscribed in the same circle. [Show this in two ways: 1st, by comparing the values of their areas as derived in $\S \S 738$ and 740 ; 2d, by a geometrical demonstration using the figure of § 734 .]
743. Exercise. What is the area of a regular hexagon inscribed in a circle, the radius of which is 4 in .?
744. Exercise. The area of a regular inscribed hexagon is 10 sq. in. What is the area of a regular hexagon circumscribed about the same circle?
745. Exercise. The area of an equilateral triangle is $48 \sqrt{3} \mathrm{sq} . \mathrm{ft}$. Find the radii of the inscribed and of the circumscribed circles.
746. Exercise. The area of a regular hexagon is $54 a^{2} \sqrt{3}$. Find the radii of the inscribed and of the circumscribed circles.
747. Exercise. Show that the circumscribed equilateral triangle is 4 times the inscribed equilateral triangle; that the circumscribed square is 2 times the inscribed square ; and that the circumscribed regular hexagon is $\frac{4}{3}$ of the inscribed regular hexagon.
748. Exercise. Divide a circumference into quadrants by the use of compasses only.
[Suggestion. The side of an inscribed square is the altitude of an isosceles triangle whose base is $2 R$ and one of whose sides is $R \sqrt{3}$.]

## Proposition VII. Problem

749. To inscribe a regular decagon in a circle.


Let $O$ be the center of the given circle.
Required to inscribe a regular decagon in the circle.
Draw the radius OA. Divide it into extreme and mean ratio, $O B$ being the greater segment.
Lay off $A C=O B$. Draw $B C$ and $O C$.
By definition (Art. 551), $\frac{O A}{O B}=\frac{O B}{B A}$.

$$
\begin{equation*}
\frac{O A}{A C}=\frac{A C}{B A} . \tag{?}
\end{equation*}
$$

$\triangle O A C$ and $B A C$ are similar. (§ 495.)
$\therefore \triangle B A C$ is isosceles, and $A C^{\prime}=B C$.
$\triangle B O C$ is isosceles. (?)

$$
\begin{align*}
& \angle 1=\angle 3+\angle 0 \text { (?) or } \angle 1=2 \angle o . ~(?)  \tag{?}\\
& \angle A=2 \angle O \text { (?) and } \angle A C O=2 \angle o \text {. (?) } \\
& \angle A+\angle A C O+\angle O=180^{\circ} \text {. (?) } \\
& \angle \angle O+2 \angle o+\angle o=180^{\circ} \text {. (?) } \therefore \angle o=36^{\circ} .
\end{align*}
$$

$\therefore$ the are $A C$, the measure of $\angle 0$, contains $36^{\circ}$ of arc, and is $\frac{1}{10}$ of the circumference.

The circumference can therefore be divided into ten parts, each equal to the arc $A C$, and the chords joining the points of division form a regular inscribed decagon.
Q.E.F.
750. Corollary I. The chords joining the alternate vertices of a regular inscribed decagon form a regular inscribed pentagon.
751. Corollary II. Tangents drawn at the vertices of the regular inscribed pentagon and decagon form a regular circumscribed pentagon and a regular circumscribed decagon.
752. Corollary III. If the arcs are bisected and chords and tangents are drawn according to § 710, regular inscribed and circumscribed polygons of 20, 40, 80, etc., sides will be formed.
753. Exercise. The length of the side of a regular inscribed decagon is $\frac{1}{2}(\sqrt{5}-1) r$.
754. Exercise. Find the length of a side of a regular inscribed pentagon. [In the R.A. $\triangle A D C$ (see the figure of § 749), $A C$ is the side of the decagon, and $A D$ is one half the difference between the radius and the side of the decagon.]

$$
A n s . \frac{\sqrt{10-2 \sqrt{5}}}{2} r .
$$

755. Exercise. Show that the sum of the squares described on the sides of a regular inscribed decagon and of a regular inscribed hexagon equals the square described on the side of a regular inscribed pentagon.
[Represent the sides of the pentagon, hexagon, and decagon by $p, h$, and $d$, respectively.

In the figure of § 749,
or

$$
\begin{align*}
\overline{D C}^{2} & =\overline{A C}^{2}-\overline{A D}^{2} \\
\left(\frac{1}{2} p\right)^{2} & =d^{2}-\left(\frac{h-d}{2}\right)^{2} \\
p^{2} & =3 d^{2}-h^{2}+2 h d \tag{1}
\end{align*}
$$

whence
By § 551

$$
\begin{equation*}
\frac{h}{d}=\frac{d}{h-d}, \quad \text { whence } h d=h^{2}-d^{2} \tag{2}
\end{equation*}
$$

From (1) and (2) $\quad p^{2}=d^{2}+h^{2}$.
Give also an algebraic proof.]
756. Exercise. What is the length of the side of a regular decagon inscribed in a circle having a diameter 4 in . long?
757. Exercise. If the side of a regular pentagon is $2 \sqrt{5} \mathrm{in}$., show that the radius of the circumscribed circle is $\sqrt{10+2 \sqrt{5}} \mathrm{in}$.

## Proposition VIII. Problem

758. To inscribe a regular penteclecagon in a circle.


Let $O$ be the center of the given circle.
Required to inscribe a regular polygon of fifteen sides in the circle.

Lay off the chord $A B=$ side of regular inscribed hexagon, and the chord $A C=$ side of regular inscribed decagon.

The arc $A B$ contains $60^{\circ}$, (?) and the arc $A C, 36^{\circ}$. (?)
$\therefore$ the arc $B C \cdot$ contains $24^{\circ}$ and is $\frac{1}{15}$ of the circumference. The circumference can therefore be divided into fifteen parts, each equal to $B C$; and the chords joining the points of division form a regular inscribed pentedecagon.
Q.E.F.
759. Corollary I. Tangents drawn at the vertices of the inscribed pentedecagon form a regular circumscribed pentedecagon.
760. Corollary II. If the arcs are bisected, and chords and tangents are drawn as described in § 710, regular inscribed and circumscribed polygons of $30,60,120$, etc., sides will be formed.
761. Scholium. In Propositions V., VI., VII., and VIII. we have seen that the circumference can be divided into the following numbers of equal parts:
\(\left.\begin{array}{rrrrlr}2, \& 4, \& 8, \& 16 \& \cdots \& 2^{n} <br>
3, \& 6, \& 12, \& 24 \& \cdots \& 3 \times 2^{n} <br>
5, \& 10, \& 20, \& 40 \& \cdots \& 5 \times 2^{n} <br>

15, \& 30, \& 60, \& 120 \& \cdots \& 15 \times 2^{n}\end{array}\right\}\)| $n$ being any positive |
| :---: |
| integer. |

The mathematician Gauss has shown that it is possible to divide the circumference into $2^{n}+1$ equal parts, $n$ being a positive integer and $2^{n}+1$ a prime number.

It is therefore possible, by the use of ruler and compasses, to divide the circumference into $2,3,5,17,257$, etc., equal parts.
[An elementary explanation of the division of the circumference into seventeen equal parts is given in Felix Klein's "Vorträge über ausgewählte Fragender Elementar Geometrie."]

## Proposition IX. Theorem

762. The arc of a circle is less than any line that envelops it and has the same extremities.


Let $A M B$ be the arc of circle and $A S B$ any other line enveloping it and passing through $A$ and $B$.

To Prove

$$
A M B<A S B
$$

Proof. Of all the lines ( $A M B, A S B$, etc.) that can be drawn through $A$ and $B$, and including the segment or area $A M B$, there must be one of minimum length.
$A S B$ cannot be the minimum line, for draw the tangent $C D$ to the arc $A M B$.

$$
\begin{align*}
C D & <C S D  \tag{?}\\
A C D B & <A S B \tag{?}
\end{align*}
$$

The same can be shown of every other line (except $A M B$ ) passing through $A$ and $B$ and including the area $A M B$.
$\therefore$ the arc $A M B$ is the minimum line.
763. Corollary I. The circumference of a circle is less than the perimeter of a circumscribed polygon and greater than the perimeter of an inscribed polygon.

## Proposition X. Theorem

764. If the number of sides of a regular inscribed polygon is indefinitely.increased, its apothem approaches the radius as a limit.


Let $A B$ be the side of a regular inscribed polygon and $O C$ be its apothem.

To Prove that $O C$ approaches the radius as its limit when the number of sides is indefinitely increased.

Proof. - OA>OC. (?)

$$
O A-O C<A C . \quad(?) \quad \therefore O A-O C<A B
$$

By increasing the number of sides $A B$ can be made as small as we please, but not equal to zero. $A B$ consequently approaches zero as a limit, and since $O A-O C<A B, O A-O C$ approaches zero as its limit; and $O C$ approaches $O A$ as its limit.
Q.E.D.
765. Corollary. If the number of sides of a regular circumscribed polygon is indefinitely increased, the distance from a vertex to the center of the circle approaches the radius as a limit.
[Proof similar to §764.]

## Proposition XI. Theorem

766. If a regular polygon is inscribed in or circumscribed about a circle and the number of its sides is indefinitely increased,
I. The perimeter of the polygon approaches the circumference as its limit.
II. The area of the polygon approaches the area of the circle as its limit.


Let $A B$ be the side of a regular circumscribed polygon, and $C D$ (parallel to $A B$ ) be the side of a similar inscribed polygon.
I. To Prove that the perimeters of the polygons approach the circumference of the circle as a limit when the number of sides is indefinitely increased.

Proof. Draw $O A, O B$, and $O E$.
$O A$ passes through $C$ and $O B$ through $D$.
Let $P$ and $p$ stand for the perimeters of the circumscribed and inscribed polygons respectively.

$$
\begin{gather*}
\frac{P}{p}=\frac{O E}{O F} .  \tag{?}\\
\frac{P-p}{P}=\frac{O E-O F}{O E} \tag{?}
\end{gather*}
$$

or

$$
P-p=\frac{P}{O E}(O E-O F) .
$$

As shown in the preceding proposition, $O E-O F$ can be made as small as we please, though not equal to zero; and since $\frac{P}{O E}$ does not increase, $\frac{P}{O E}(O E-O F)$, or its equal $P-P$, can be decreased at pleasure.

Since $P$ is always greater than the circumference, and $p$ is always less than the circumference, the difference between the circumference and either perimeter is less than the difference $P-p$, and can consequently be made as small as we please, but not equal to zero.

The circumference is therefore the common limit of the two perimeters as the number of sides is indefinitely increased.
Q.E.D.
II. To Prove that the areas of the polygons approach the area of the circle as a limit, when the number of sides is indefinitely increased.

Proof. Let $S$ and $s$ stand for the areas of the circumscribed and inscribed polygons respectively.

$$
\begin{align*}
\frac{S}{s} & =\frac{\overline{O E}^{2}}{\overline{O F}^{2}} \\
\frac{S-s}{S} & =\frac{\overline{O E}^{2}-\overline{O F}^{2}}{\overline{O E}^{2}}=\frac{\overline{C F}^{2}}{\overline{O E}^{2}}  \tag{?}\\
S-s & =\frac{S}{\overline{O E}^{2}}\left(\dot{C F}^{2}\right)
\end{align*}
$$

As the number of sides is indefinitely increased, $C D$ approaches zero as a limit, as does also $C F$, and consequently $\overline{C F}^{2}$.
[The remainder of the proof is similar to that of Case I. of this proposition.]
Q.E.D.
767. Exercise. If, as is shown in $\S 766$, the difference between $P$ and $p$ can be made as small as we please, why is not $p$ the limit of $P$ ? (See definition of limit.)

## Proposition XII. Problem

768. Given the perimeters of a regular inscribed polygon and of a similar circumscribed polygon, to find the perimeters of regular inscribed and circumscribed polygons of double the number of sides.


Let $A B$ be a side of a regular inscribed polygon of $n$ sides, $C D$ (parallel to $A B$ ) a side of a regular circumscribed polygon of $n$ sides,
$A E$ a side of a regular inscribed polygon of $2 n$ sides, $F G$ a side of a regular circumscribed polygon of $2 n$ sides.
Required to find the perimeters of the inscribed and circumscribed polygons of $2 n$ sides.
Call the perimeter of the inscribed polygon of $n$ sides $p$, the perimeter of the circumscribed polygon of $n$ sides $P$, the perimeter of the inscribed polygon of $2 n$ sides $p^{\prime}$, the perimeter of the circumscribed polygon of $2 n$ sides $P^{\prime}$.

Then $\quad A B=\frac{p}{n}$ and $A H=\frac{p}{2 n} . \quad C D=\frac{P}{n}$ and $C E=\frac{P}{2 n}:$

$$
\begin{align*}
A E & =\frac{p^{\prime}}{2 n} \cdot \quad F^{\prime} G=\frac{p^{\prime}}{2 n} . \\
\frac{P}{p} & =\frac{O C}{O E} \quad(?)=\frac{C F}{F^{\prime} E} . \quad(\S 502 .) \\
\frac{P+p}{2 p} & =\frac{C F+F E}{2 F E}=\frac{C E}{F^{\prime} G}=\frac{P}{P^{\prime}} . \\
\therefore P^{\prime} & \left.=\frac{2 p \times P}{P+p} . \quad \text { (I. }\right) \tag{I.}
\end{align*}
$$

Prove $\triangle I F E$ and $A E H$ similar, whence

$$
\begin{gather*}
\frac{A I I}{A E}=\frac{I E}{F E} . \\
\frac{A H}{A E}=\frac{p}{p^{\prime}} \text { and } \frac{I E}{F^{\prime} E}=\frac{p^{\prime}}{p^{\prime}} .  \tag{?}\\
\therefore \frac{p}{p^{\prime}}=\frac{p^{\prime}}{p^{\prime}} \text { and } p^{\prime}=\sqrt{p \times P^{\prime}} . \tag{II.}
\end{gather*}
$$

Since $p$ and $P$ are given, Formula I. gives the value of $P^{\prime}$; then from Formula II. the value of $p^{\prime}$ can be derived. Q.E.F.
769. Exercise. The side of an inscribed square is $3 \sqrt{2}$ and the side of a circumscribed square is 6 . Find the sides of regular octagons inscribed in and circumscribed about the same circle.
770. Exercise. Find the perimeters of regular dodecagons (12-sided polygons) inscribed in and circumscribed about a circle having a diameter 12 in . long.

## Proposition XIII. Theorem

771. The area of a regular polygon is equal to one half the product of its perimeter and apothem.


Let $A B C D E F$ be a regular polygon.
To Prove that its area is equivalent to one half the product of its perimeter and apothem.

Suggestion. The altitude of each $\triangle$ is the apothem, and the polygon is equivalent to the sum of the triangles.
772. Corollary. The area of any circumscribed polygon is equal to one half the product of its perimeter and the radius of its inscribed circle.
773. Exercise. The perimeter of a polygon circumscribed about a circle having a 5 ft . radius, is 32 ft . What is its area?
774. Exercise. The side of a regular hexagon is 6 in. Find its area. [Suggestion. First find its apothem.]

## Proposition XIV. Theorem

775. The area of a circle is equal to one half the product of its circumference and radius.


Let $x y z$ be any circle.
To Prove area $x y z=\frac{1}{2}$ circumference $\times$ radius.
Proof. Circumscribe a regular polygon $A B C$ about the circle $x y z$. Area $A B C=\frac{1}{2}$ perimeter $\times$ apothem. (?)

If the number of sides of the polygon is increased, the area changes as does also the perimeter, and yet the area is always equal to $\frac{1}{2}$ perimeter $\times$ apothem. So the two members of the above equation may be regarded as two variables that are always equal. Since each is approaching a limit, their limits must be equal. [§ 341.]

The limit of area $A B C=$ area of circle.
The limit of the perimeter $=$ circumference.
The apothem is constant and equals the radius.
$\therefore$ area $x y z=\frac{1}{2}$ circumference $\times$ radius.
Q.E.D.
776. Corollary. The area of a sector is equal to one half the product of its arc and radius.

To Prove area $A O B=\frac{1}{2} A B \times R$.
Proof. Construct the quadrant COD.

$$
\begin{aligned}
& \text { Prove area } A O B=\frac{1}{2} A B \times R . \\
& \text { of. Construct the quadrant } C O D . \\
& \begin{aligned}
& \text { sector } A O B \\
& \text { sector } C O D=\frac{A B}{C D}(\S 345 .) \\
& \frac{\text { sector } A O B}{4 \text { sector } C O D}=\frac{A B}{4 C D} \\
& \frac{\text { sector } A O B}{\text { circle }}=\frac{A B}{\text { circumf. }} . \\
& \frac{\text { sector } A O B}{\frac{1}{2} \text { circumf. } \times R}=\frac{A B}{\text { circumf. }} \therefore \text { sector } A O B=\frac{1}{2} A B \times R .
\end{aligned}
\end{aligned}
$$

or
777. Exercise. The radius of a circle is 100 ft . and its circumference is 628.32 ft . Find its area.
778. Exercise. The area of a sector is 68 sq. in., and its radius is 8 in . How long is its are?
779. Exercise. The area of a circle is 100 sq . ft. The area of a sector of this circle is $12 \frac{1}{2} \mathrm{sq}$. ft . How many degrees in the arc of the sector?
780. Exercise. The radius of a circle is 10 ft . Find the area of a segment whose arc contains $60^{\circ}$.

Suggestion. Find the area of the sector having arc $=60^{\circ}$. Subtract the area of the triangle formed by the chord and the radii from the area of the sector.
781. Exercise. The circumference of a circle is 94.248 ft . The side of an inscribed equilateral triangle is $15 \sqrt{3} \mathrm{ft}$. Find the area of the circle.
782. Exercise. The area of a circle is 314.16 sq . in. The perimeter of a regular inscribed hexagon is 60 in . Find the circumference of the circle.
783. Exercise. Find the area of the part of the circle of § 782 lying between its circumference and the perimeter of a regular hexagon inscribed in the circle.

## Proposition XV. Theorem

784. The circumferences of two circles are to each other as their radii, and the circles are to each other as the squares of their radii.


Let $A$ and $B$ be two circles and $R$ and $r$ be their radii.

## To Prove

$$
\frac{\text { circumf. } A}{\text { circumf. } B}=\frac{R}{r} .
$$

Proof. Inscribe similar regular polygons in the two circles. Let $P$ and $p$ denote the perimeters of these polygons.

$$
\begin{equation*}
\frac{P}{p}=\frac{R}{r} \quad(?) \quad \text { or } \quad \frac{P}{R}=\frac{p}{r} \tag{1}
\end{equation*}
$$

As the number of sides is indefinitely increased, $P$ and $p$ approach circumference $A$ and circumference $B$ respectively as their limits. (?)

The members of equation (1) may therefore be regarded as two variables that are always equal, and since each is approaching a limit, their limits are equal. (?)

$$
\therefore \quad \frac{\text { circumf. } A}{R}=\frac{\text { Circumf. } B}{r}
$$

or

$$
\frac{\text { circumf. } A}{\text { circumf. } B}=\frac{R}{r} \text {. }
$$

Similarly, show that $\frac{\text { circle } A}{\text { circle } B}=\frac{R^{2}}{r^{2}}$.
785. Corollary I. The circumferences of two circles are to each other as their diameters, and the circles are to each other as the squares of their diameters.
786. Corollary II. The ratio of the circumference of a circle to its diameter is constant; that is, it is the same for all circles.
or

$$
\begin{aligned}
\text { By } \S 785, & \frac{\text { circumf. } A}{\text { circumf. } B}
\end{aligned}=\frac{\operatorname{diam} . A}{\operatorname{diam} . B}, ~ \begin{array}{ll}
\frac{\text { circumf. } A}{\operatorname{diam.} A} & =\frac{\operatorname{circumf.} B}{\operatorname{diam} . B}
\end{array}
$$

The value of this constant is denoted by the Greek letter $\pi$.
Thus,

$$
\frac{\text { circumf. } A}{\operatorname{diam} . A}=\pi
$$

Whence circumf. $A=\pi \operatorname{diam} . ~ A$.
i.e. The circumference of a circle is $\pi$ times its diameter.

If, in the formula for the area of a circle,

$$
\text { area }=\frac{1}{2} \text { circumf. } \times R,
$$

the value of the circumference just derived is substituted, we obtain

$$
\text { area }=\pi R^{2}
$$

i.e. The area of a circle is $\pi$ times the square of its radius.
787. Definition. Similar arcs are ares that subtend equal angles at the center.

Since the intercepted arcs are the measures of the angles at the center, similar arcs contain the same number of degrees of arc, and are consequently like parts of their circumferences.

Similar sectors are sectors the radii of which include equal angles, or intercept similar arcs.

Similar segments are segments whose ares are similar.
788. Corollary III. Similar arcs are to each other as their radii. [See definition.]
789. Corollary IV. Similar sectors are to each other as the squares of their radii. [\$§ 776 and 788 .]
790. Corollary V. Similar segments are to each other as the squares of their radii.
791. Exercise. The circumferences of two circles are 942.48 ft . and 157.08 ft . respectively.

The diameter of the first is 300 ft . Find the diameter of the second.
792. Exercise. What is the ratio of the areas of the two circles of the preceding exercise?
793. Exercise. How many units in the radius of a circle, the area and circumference of which can be expressed by the same number?

## Proposition XVI. Problem

794. To find an approximate value of $\pi$.

The perimeter of a circumscribed square (see § 729) is $4 D$ ( $D=$ diameter).

The perimeter of an inscribed square is $2 \sqrt{2} D=2.8284271 \mathrm{D}$. Substituting $4 D$ for $P$ and $2.8284271 D$ for $p$ in the formulas $P^{\prime}=\frac{2 p \times P}{P+p}$ (1) and $p^{\prime}=\sqrt{p \times P^{\prime}}(2)$, we get $P^{\prime}$ or the perimeter of the circumscribed octagon $=3.3137085 D$, and $p^{\prime}$ or the perimeter of the inscribed octagon $=3.0614675 \mathrm{D}$.

Substituting $3.3137085 D$ for $P$ and $3.0614675 D$ for $p$ in formulas (1) and (2), we obtain values for the perimeters of the circumscribed and the inscribed polygons of sixteen sides.

Substituting these values, the perimeters of polygons of thirty-two sides are obtained.

SANDERS' GEOM. - 16

Continuing in this way, the following table is formed:

| Number of <br> sides. | Perimeter of <br> Circumscribed poLyGon. | Perimeter of <br> Inscribed polygon. |
| :---: | :---: | :---: |
| 4 | 4.0000000 D | 2.8284271 D |
| 8 | 3.3137085 D | 3.0614675 D |
| 16 | 3.1825979 D | 3.1214452 D |
| 32 | 3.1517249 D | 3.1365485 D |
| 64 | 3.1441184 D | 3.1403312 D |
| 128 | 3.1422236 D | 3.1412773 D |
| 256 | 3.1417504 D | 3.1415138 D |
| 512 | 3.1416321 D | 3.1415729 D |
| 1024 | 3.1416025 D | 3.1415877 D |
| 2048 | 3.1415951 D | 3.1415914 D |
| 4096 | $3.1415933 \cdot \mathrm{D}$ | 3.1415923 D |
| 8192 | 3.1415928 D | 3.1415926 D. |

The circumference of the circle therefore lies between 3.1415926 D and 3.1415928 D.

For ordinary accuracy the value of $\pi$ is taken as 3.1416 .
Note. - The value of $\pi$ has been carried out over seven hundred decimal places. [See article on "Squaring the Circle" in the Encyclopædia Britannica.]

The value of $\pi$ to thirty-five decimal places is 3.14159265358979323846264338327950288.

By higher mathematics, the diameter and circumference of the circle have been shown to be incommensurable, so no exact expression for their ratio can be obtained.
795. Exercise. The radius of a circle is 10 in . Find its circumference and its area.
796. Exercise. The area of a circle is 7854 sq. ft. Find its cir' cumference.
797. Exercise. The circumference of a circle is 50 in . What is its area?
798. Exercise. The radius of a circle is 50 ft . What is the area of a sector whose arc contains $40^{\circ}$ ?
799. Exercise. The radius of a circle is 10 ft . The area of a sector of that circle is 120 sq. ft . What is its arc in degrees?

## EXERCISES

1. In a regular polygon of $n$ sides, diagonals are drawn from one vertex. What angles do they make with each other?
2. Show that the altitude of an inscribed equilateral triangle is $\frac{3}{4}$ of the diameter, and that the altitude of a circumscribed equilateral triangle is 3 times the radius.
3. The radii of two circles are 4 in . and 6 in . respectively. How do their areas compare?
4. Find the area of the ring between the circumferences of two concentric circles the radii of which are $a$ and $b$ respectively.
5. The area of a regular inscribed hexagon is a mean proportional between the areas of the inscribed and the circumscribed equilateral triangles. [See Ex. to Prop. 6.]
6. The diagonals joining the alternate vertices of a regular hexagon form by their intersection a regular hexagon having an area one third of that of the original hexagon.
7. Find the area of the six-pointed star in the figure of Exercise 6 in terms of the radius of the circle.
8. From any point within a regular polygon
 of $n$ sides, perpendiculars are drawn to the sides. Prove that the sum of these perpendiculars is equal to $n$ times the apothem of the polygon.
[Join the point with the vertices and obtain an expression for the area of the polygon. Compare this with the expression for the area obtained from § 771.]
9. Construct a circle that shall be double a given circle (§784).
10. Construct a circle that shall be one half a given circle.
11. Construct a circle equivalent to the sum of two given circles ; also one equivalent to their difference. [§646.]
12. If two circles are concentric, show that the area of the ring between their circumferences is equal to the area of a circle having for its diameter a chord of the larger circle that is tangent to the smaller.
13. Find the area of the sector of a circle intercepting an arc of $50^{\circ}$, the radius of the circle being 10 ft . [§ 776.]
14. The radius of a circle is 20 ft . What is the angle of a sector having an area of 300 sq . ft.?
15. The radius of a circle is 20 ft ., and the area of a sector of the circle is 300 sq . ft. Find the area of a similar sector in a circle having a radius 50 ft . long.
16. What is the radius of a circle having an area equal to 16 times the area of a circle with a radius 5 ft . long ?
17. Find the area of a circle circumscribed about a square having an area of 600 sq . ft. [§729.]
18. Show that the area of a circumscribed equilateral triangle is greater than that of a square circumscribed about the same circle.
19. Four circles, each with a radius 5 ft . long, have their centers at the vertices of a square, and are tangent. Find the area of a circle tangent to all of them.
20. How many degrees in the are, the length of which is equal to the radius of the circle?
21. A circle is circumscribed about the rightangled triangle $A B C$. Semicircles are described on the two legs as diameters. Prove that the sum of the crescents $A D B E$ and $B F C G$ is equivalent to the triangle $A B C$.
22. The radius of a regular inscribed polygon is a mean proportional between its apothem and the radius of a similar circumscribed polygon.

23. If the bisectors of the angles of a polygon meet in a point, a circle can be inscribed in the polygon.
24. The diagonals of a regular pentagon form by their intersection a second regular pentagon.
25. Any two diagonals of a regular pentagon not drawn from a common vertex divide each other into extreme and mean ratio. [ $\$ A B C$
 and $C f D$ are similar.]
26. Divide an angle of an equilateral triangle into five equal parts.
27. If two angles at the centers of unequal circles are subtended by arcs of equal length, the angles are inversely proportional to the radii of the circles.
28. The apothem of a regular inscribed pentagon is equal to one half the sum of the radius of the circle and a side of a regular inscribed decagon.
29. If two chords of a given circle intersect each other at right angles, and on the four segments of the chords as diameters, circles are described, the sum of the four circles is equivalent to the given circle. [Ex. 34, page 217.]
30. Divide a circle into three equivalent parts by concentric circles ( $\S 784$ ).
31. The radius of a given circle $A B D$ is 10 ft . Find the areas of the two segments $B C A$ and $B D A$ into which the circle is divided by a chord $A B$ equal in length to the radius. [Subtract area of $\Delta$ from area of sector.]
32. Find the radius of a circle that is doubled in area by increasing its radius one foot.
33. On the sides of a square as diameters, four semicircles are described within the square, forming four leaves. If the side of the square is $a$, find the area of the leaves.
34. In a given equilateral triangle inscribe
ree equal circles tangent to each other and to
35. In a given equilateral triangle inscribe
three equal circles tangent to each other and to the sides of the triangle.
36. In a given circle inscribe three equal circles tangent to each other and to the given circle.
37. In the circle $A B C D$, the diameters $A C$ and $B D$ are at right angles to each other. With $E$, the middle point of $O C$, as a center, and $E B$ as a radius, the arc $B F$ is described. Prove that the radius $O A$ is divided into extreme and mean ratio at $F$.
[Describe arc $O G$ with $E$ as center, and arc
 $G H$ with $B$ as center.]
38. The diameter $A B$ of a given circle is divided into two segments, $A C$ and $C B$. On each segment as a diameter a semicircle is described, but on opposite sides of the diameter. Prove that the sum of the two semi-circumferences described is equal to the semi-circumference of the given circle, and that the line they form divides the given circle into parts that are to each other as the segments of the diameter.
39. If a given square is divided into four equal
 squares, and a circle is inscribed in each of the small squares and also in the given square, prove that the sum of the four small circles is equivalent to the circle inscribed in the given square.
40. If a regular polygon of $n$ sides be circumscribed about a circle, the sum of the perpendiculars from the points of contact to any tangent to the circle is equal to $n$ times the radius.
[If $A, B, C, D$, etc., are the points of contact of the polygon and $P$ the point at which the tangent is drawn, the sum of the $1 s$ from $A, B$, etc., on tangent at $P=\operatorname{sum}$ of $1 s$ from $P$ to tangents drawn at $A, B$, etc.; and this by Ex. $8=n R$.]
41. The sum of the perpendiculars from the vertices of a regular inscribed polygon to any line without the circle is equal to $n$ times the perpendicular from the center of the circle to the line.
[Draw a tangent to the $\odot$ parallel to the given line, and then use Ex. 39.]
42. The sum of the squares of the lines drawn from any point in the circumference to the vertices of a regular inscribed polygon is equal to $2 n R^{2}$.
[Using notation of Ex. 39, show that the square of the line from the given point $P$ to each vertex $=2 R$ times the $\perp$ from the vertex to a tangent at $P$. Add these equations and use Ex. 39.]
43. A crescent-shaped region is bounded by a semi-circumference of radius $a$, and another circular are whose center lies on the semi-circumference produced. Find the area and the perimeter of the region.
[Show that the arc is a quadrant in a $\odot$ with radius $=a \sqrt{2}$.]
44. Three points divide a circumference into equal parts. Through each pair of these points an arc of a circle is described tangent to the

radii drawn to the points and lying wholly within the circle. Find the perimeter of the figure thus formed, and show that its area is $3\left(\sqrt{3}-\frac{1}{2} \pi\right) a^{2}$, where $a$ denotes the radius of the circle.
[Show that each arc is $\frac{1}{6}$ of a circumference with radius $a \sqrt{3}$.]
45. Three radii are drawn in a circle of radius $2 a$, so as to divide the circumference into three equal parts; and, with the middle of these radii as centers, arcs are drawn, each
 with the radius $a$, so as to form a closed figure (trefoil). Show that the length of the perimeter of the trefoil is equal to that of the circle, and find its area.

RETURN TO the circulation desk of any
University of California Library or to the
NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station
University of California
Richmond, CA 94804-4698

## ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

2-month loans may be renewed by calling
(510) 642-6753

1-year loans may be recharged by bringing books to NRLF
Renewals and recharges may be made 4 days prior to due date

## DUE AS STAMPED BELOW

 AUG 091993YB 17302

## Mexrery <br> $$
\because ;
$$

